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allows generic naming of services in a manner consistent with the 
lattice model. The use of decentralized processing to aid in the 
downgrading of information is shown in the design of a secure 
intelligent terminal. Schemes are presented to deal with the 
decentralized administration of the lattice model, and with the 
proliferation of access classes as the user community of a decentralized 
system becomes more diverse. Limitations in the use of end-to-end 
encryption when used with the lattice model are identified, and a scheme 
is presented to relax these limitations for broadcast networks. 
Finally, a scheme is presented for forwarding authentication information 
between hosts on a network, without transmitting passwords (or their 
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Chapter One 

Introduction 

Decentralized computing systems are becoming more and more common 

throughout the computing industry. Although we have had decentralized 

systems of one sort or another since the development of the SAGE air 

defense system <Everett57> in the 1950's, the recent dramatic reductions 

in the cost of computing hardware have led to a growing feeling that 

decentralized computing systems offer a number of advantages in 

providing efficient and economical computational power to the user. 

The need for protection of information in computer based systems is 

clear. The numerous examples of computer related crimes <Parker73>, the 

need to protect national defense information, and the recent passage of 

laws guaranteeing the protection of personal data <Privacy74> have all 

led to a growing awareness and concern for computer security. 

Decentralized systems can have an adverse impact on the security of an 

individual computer system by: 

"Potentially making the security controls on a 
specific host irrelevant by making information 
accessible to other hosts that do not have effective 
security controls," and by 

"Introducing additional vulnerabilities through the 
lack of effective security controls in network 
elements, e.g., insecure network communications 
processors." <Schell76> 
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However, a decentralized computing system can also enhance the security 

of some computational tasks. Decentralization of computing resources 

can introduce protection through physical separation, and a properly 

designed communications subsystem can ensure confinement of sensitive 

information within selected boundaries. 

1.1 What is a Decentralized Computing System? 

The term "decentralized computer system" is used in this thesis, 

primarily because the term "distributed computer system" has come to 

mean all things to all people. Distributed computing can refer to 

anything from a network of heterogeneous systems like the ARPANET to the 

IBM Attached Support Processor system in whLh a 360/40 handled 1/0 

functions for a 360/65 batch processor. Therefore, to assure a more 

precise understanding, the term "decentralized computing" will be used 

throughout this thesis. 

The types of systems to be considered in this thesis as 

decentralized systems are quite varied. They range from networks of 

independent heterogeneous systems, such as the ARPANET, to collections 

of geographically distributed processors, all performing a single 

special purpose function. (1) Simple time sharing systems and tightly 

(1) SAGE <Everett57> is an example of such a dedicated single function 
decentralized system. Each SAGE center was capable of passing aircraft 
tracks to neighboring centers and correlating tracks of the same 
aircraft computed by two different centers. SAGE is certainly not a 
very interesting system from the point of view of research in the 
functionality of decentralized systems except for a historical 
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coupled multiprocessing systems are not of interest. Similarly, remote 

terminals with simple editing or "fill in the blanks" capabilities are 

not of interest. However, intelligent terminals with a significant 

internal processing capability are of interest. Components of 

decentralized systems usually can run autonomously, and often are under 

independent administrative control. 

1.2 Why Non-Discretionary Access Controls? 

The primary emphasis of this thesis is on non-discretionary access 

controls, access controls that are determined by the management of the 

computing facility and may not be changed at the discretion of the 

ordinary users. This emphasis on non-discretionary controls exists for 

two reasons. First, decentralization of the computing systems 

introduces new problems for a non-discretionary access control system. 

Different host computer systems may have different non-discretionary 

authorizations, yet still wish to communicate. Second, and perhaps the 

more important reason, formal statements can be made about the security 

of a non-discretionary system that cannot be made about the more general 

discretionary systems. Since non-discretionary access controls can 

effectively model a wide variety of security policies that match many 

real world requirements, restricting the view to non-discretionary 

access controls does not seem unreasonable. 

perspective. However, from a security and protection point of view, 
systems such as SAGE have many of the same characteristics as more 
sophisticated decentralized systems. 
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1.3 Plan of the Thesis 

This thesis examines the issues and requirements of 

non-discretionary access controls in decentralized computing systems, to 

develop a consistent approach to the protection of information. 

Chapters 2 and 3 outline the basic protection goals for decentralized 

systems and explain the rationale for the use of non-discretionary 

access controls. Chapter 4 describes the security kernel technology 

upon which much of this thesis depends, and chapter 5 summarizes much of 

the related work on providing security in decentralized or network-based 

systems. Security weaknesses in a number of these approaches are 

identified. 

Chapter 6 outlines the basic scenario under which the lattice model 

will be enforced in a decentralized system. Chapter 7 discusses the 

basic message passing protocols under the lattice model. Chapter 8 

outlines a service naming scheme that maintains consistency under the 

lattice model. Chapter 9 discusses the problem of downgrading 

information from one security level to another, and suggests how 

decentralized processing can aid in this task. The administrative 

aspects of applying the lattice model in a geographically and 

administratively decentralized system are examined in Chapter 10. The 

interactions of the lattice model and end-to-end encryption are covered 

in Chapter 11, and finally authentication is covered in Chapter 12. 
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Chapter Two 

Protection Goals for Distributed Systems 

Before we can examine techniques for assuring protection of 

information in decentralized systems, we must understand what we mean by 

protection. This chapter and the next present a basic set of security 

requirements that model much of what people mean when they say they want 

protection of information. Unfortunately, certain aspects of the 

protection problems must be excluded from consideration, because their 

solutions are intractable. 

2.1 Basic Requirements 

There are three basic requirements for information security in 

computing systems: 

a. Information shall not be released to unauthorized individuals. 

b. Information shall not be entered or modified by unauthorized 

individuals. 

c. The services of the computing system shall not be denied to 

authorized individuals by unauthorized individuals. 

Several interesting points should be noted about these requirements. 

First, the requirements are stated in a negative form. They state 

properties that a system must not have. Second, the requirements refer 
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only to individuals, that is, human beings. They make no reference to 

programs or processes or jobs. Third, the requirements do not define 

the threat environment of the system. How far are unauthorized 

individuals likely to go to achieve their illicit goals? 

2.2 Threats 

For purposes of this thesis, we shall assume a high threat 

environment exists for the decentralized computing system. 

Unauthorized, malicious individuals or organizations are assumed to 

exist that are willing to invest large sums of money and to commit 

illegal acts to obtain information illicitly. Such high threat 

environments exist for national defense information and for high value 

civilian data such as electronic funds transfer, stock transfer, or 

trade secret information. Malicious individuals may attempt to gain 

physical access to computing facilities or storage media, they may 

attempt to attack the communications media, or they may attempt to 

attack the software of a computing system. 

2.2.1 Threats to Physical Security 

The simplest attacks on the security of computing systems 

(decentralized or otherwise) are direct physical attacks. If an 

unauthorized individual can gain access to the front panel of a computer 

or can steal or copy storage media, then there is little or nothing that 
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can be done to protect the information. (1) Physical security is not 

the major topic of this thesis. Therefore, it is assumed that adequate 

physical protection of facilities is provided by some combination of 

guards, walls, fences, alarms, etc. 

Other aspects of physical security that must be considered include 

emanations security and erase procedures. Emanations security refers to 

protection against electromagnetic or acoustic emanations from 

electronic equipment that may reveal the contents of the data being 

processed. Erase procedures are required for magnetic storage media 

that may be released or disposed of after use. It will be assumed in 

this thesis that adequate erase procedures are used, and that emanations 

security is assured throughout the decentralized computing system 

(including both central processing facilities and remote terminal 

sites). Department of Defense guidelines on emanations security and 

erase procedures can be found in <DoD73>. 

2.2.2 Threats to Communications Media 

Although physical security can be assured at the various nodes of a 

decentralized computing system, it is generally impossible to guard the 

communications links between nodes that may extend over thousands of 

(1) One could certainly encrypt information before it is stored on 
easily portable (and therefore easily stealable) storage media. 
However, the encryption mechanism and encryption keys must be physically 
present somewhere in the computing system, and therefore may also be 
subject to theft. 
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miles of cables or may even include radio or satellite radio links. Not 

only can a hostile agent listen in to communications, but the agent can 

also introduce spurious messages into the communications medium. 

Most often, encryption is used to protect data in a communications 

medium. Encryption systems normally transform data (called cleartext or 

plaintext) into a non-intelligible form (called ciphertext) that is then 

transmitted. A basic introduction to cryptography can be found in 

<Kahn67>. 

In computer communications systems, two basic types of encryption 

are typically used: link encryption and end-to-end encryption. In link 

encryption, each individual communications link is equipped with a pair 

of encryption devices. Messages appear in plaintext in individual 

switching nodes, but are always encrypted on communications links. Link 

encryption is the most commonly used form of encryption today. 

In end-to-end encryption, a message is encrypted before it is 

inserted into the communications network, and it is not decrypted until 

it reaches its destination. Thus, switching nodes see only the 

ciphertext form of messages. 

The use of encryption in decentralized computing systems is 

discussed more thoroughly in <Kent76> and <Diffie76> and will not be 

covered in detail in this thesis, with the exception of chapter 11. 

Throughout this thesis, it will be assumed that all communications are 

encrypted, either with link or end-to-end encryption. 
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One important point must be noted here. Encryption is not a 

panacea. If other security controls are inadequate, then it may be 

possible to gain surreptitious access to cleartext information, either 

by attacking the system while it is processing cleartext, or by 

subverting the encryption mechanism itself to decrypt the material on 

demand. 

2.2.3 Software Related Threats 

The primary focus of this thesis will be on software related 

threats to decentralized computing systems. Software threats can be 

categorized into direct attacks and so-called "Trojan Horse" attacks. 

2.2.3.1 Direct Attacks 

Direct attacks on the software security controls of a system 

exploit the fact that most software systems have bugs. For example if a 

legitimate user of a system can find a flaw in the implementation of the 

security controls, then that user can exploit the flaw to gain access to 

information to which the user was not authorized. Some of the classes 

of direct attacks are described by Anderson <Anderson72>. The most 

interesting fact to note is that there are no published reports of a 

major commercial operating system withstanding a direct attack on its 

software security controls. 
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A common but often ineffective response to direct attacks on 

software security controls is to note that such direct attacks generally 

require an on-line ptogrammihg capability. Therefore, it is often 

assumed that the system could be made safe if the users were confined to 

either only a restricted higher order language or only a query oriented 

data management system. 

<Anderson72> shows the vulnerability of a system to direct attack 

from a restricted higher order language. Anderson successfully 

penetrated the Honeywell 635/GCOS III Time Sharing System from a 

restricted FORTRAN subset that barred the use of subroutine calls and 

file I/O statements. All that Anderson required to gain access to the 

system password file were FORTRAN arithmetic assignment statements and 

ASSIGNED GOTO statements. 

One could claim that FORTRAN is not the proper language, and that a 

language such as Euclid <Lampson77>, or CLO <Liskov77>, or ALPHARD 

<Shaw77> could prevent direct attacks on the security controls. 

However, the compilers for such languages will tend to be sufficiently 

complex, and will change sufficiently often, that efficient and verified 

correct compilers cannot be expected for many years. (1) 

Chapter 4 briefly outlines the security kernel technology, which is 

the most promising approach to countering the threat of direct software 

attacks. The security kernel addresses direct attacks through the use 

(1) That is not to say that languages such as Euclid, CLO, or ALPHARD 
could not be used to produce verifiable programs now, only that the 
compilers will not be verified for some time. 
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of software that has been verified using mathematical proof of 

correctness techniques. 

2.2.3.2 Trojan Horse Attacks 

Going beyond the restricted higher order languages, the query 

oriented data management systems would seem to be resilient to direct 

attacks, if they are implemented correctly. (Most such query systems 

are not implemented correctly and have their own security flaws.) 

However, such extremely restricted systems that presumably have no 

accidentally introduced security flaws, fall victim to the so-called 

"Trojan Horse" attacks in which clandestine security flaws are 

deliberately introduced into the software. (1) Clandestine software 

modifications may be introduced at any point in a system's life cycle. 

They may be introduced during software development, distribution, or 

maintenance, by either the individuals responsible for the development, 

distribution, or maintenance, or by anyone who may successfully attack 

the computer systems used for development, distribution, or maintenance. 

For example, the query system could be attacked by a "Trojan Horse" 

in the underlying operating system's teletype input handler. The 

"Trojan Horse" would scan all input from the user prior to giving the 

characters to the query system. If the user ever typed a particular 

unique pattern that served as a password, then the "Trojan Horse" would 

(1) This class of attack was first identified by D. Edwards in 
<Anderson72>. 
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allow the user to access data without going through the query system. 

Such "Trojan Horses" are described in more detail by Karger and Schell 

in <Karger74>. Karger and Schell also demonstrated the ease of 

insertion of clandestine software modifications, by placing such a 

modfication in the Honeywell Multics operating system. That particular 

modification escaped detection during quality assurance and was 

distributed to all systems in the field. (1) In the next chapter, we 

introduce non-discretionary access controls that provide a mechanism for 

combatting the "Trojan Horse" threat. 

2.3 Authentication 

In any type of security system, the identity of the user must be 

authenticated prior to granting the user access to the computing 

system. In a decentralized system, a user wants to be authenticated on 

one system, and have that authentication be forwarded automatically to 

other systems on which the user is authorized. The technology for user 

authentication has been studied extensively elsewhere and will not be 

covered in depth in this thesis. Cotton and Meissner <Cotton75> 

describe a wide range of user authenticators ranging from simple 

passwords to magnetic stripe credit - type cards to fingerprint or 

voiceprint readers to genetic code readers. Richardson and Potter 

<Richardson73> describe in detail one authentication scheme using a 

combination of passwords and magnetic stripe cards. 

(1) The clandestine modification was in fact benign, in order to avoid 
actual damage to customer systems. 
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Authentication need not even be performed by the computer. At the 

Air Force Data Services Center (AFDSC) in the Pentagon, terminals are 

segregated into rooms by their authorized security levels. A guard 

controls entry to each room assuring that only properly cleared users 

ever enter the rooms. Since the terminals in the rooms are uniquely 

identified to the central computer by link encryption, (1) the central 

computer can assume that any user on a specific terminal is cleared to 

the highest access class for which the terminal is authorized. In 

theory, no further authentication would be required. In fact, the AFDSC 

does also require password checks. However, the passwords serve only as 

a redundant check. Passwords are not the primary authenticators. The 

AFDSC procedures are described in <Burke74>. 

Regardless of the type of authenticator chosen, authentication 

information must be passed from host to host in a decentralized 

computing system. Chapter 12 describes two schemes for forwarding 

authentication between host computer systems. 

(1) Link encryption assures that any intruder on the communications link 
could not generate intelligible commands to the host. The use of 
encryption for authentication is described in more detail in <Kent76>. 
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Chapter Three 

Semantics of Access Control 

Before we can propose mechanisms to enforce protection of 

information, we must have the semantics of the desired access control 

policy clearly defined. Without a clear understanding of the policy to 

be enforced, one has no basis on which to assume that one's protection 

mechanisms will serve any useful purpose. The vague security goals 

discussed in the previous chapter are inadequate to precisely define the 

requirements for a secure computing system (decentralized or otherwise). 

In this chapter, we shall examine the two primary models of access 

control - discretionary and non-discretionary. We shall also see that, 

in general, formal statements of security can only be made about 

non-discretionary systems. 
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3.1 Discretionary Access Control 

A very general model of access control is Lampson's access matrix 

<Lampson71> in which the access rights of each subject to each 

information containing object are defined in entries of the matrix. 

Normally, subjects are represented by rows of the matrix and objects by 

the columns. By introducing attributes such as "owner" or "control", 

the matrix can define not only access rights to objects, but also access 

rights to change entries in the access matrix itself. 

Two generic implementations of the access matrix have evolved that 

encompass most actual computer security systems. Treating the access 

matrix by columns, we get an Access Control List (AGL) system such as is 

used in Multics <Organick72>. Each object has an associated AGL that 

lists the access rights of subjects. When a subject wishes to gain 

access to an object, the AGL must be consulted to determine access 

rights. 

If the access matrix is treated by rows instead of columns, we get 

a capability system such as is described by Fabry <Fabry74>. Each 

subject has a capability list that describes the objects to which the 

subject has access rights. When a subject wishes to access an object, 

the subject merely invokes the appropriate capability. Possession of 

the capability implies that the subject has access rights to the object. 
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Both the ACL and the capability systems are usually implemented as 

discretionary access control systems. By discretionary, we mean that 

the "owner" of an object can determine at his or her own discretion who 

may have access to information containing objects. For example, in the 

Multics implementation of ACL's, an ACL may be modified by any user who 

has modify permission to the directory containing that ACL. No 

constraint is placed on the user as to what may be placed on the ACL. 

Similarly, a process that owns a capability can give that capability to 

any other process, again without constraint. 

The basic problem of discretionary controls is, of course, their 

vulnerability to attack by "Trojan Horses." ACL's and capabilities must 

be manipulated by programs - programs that may contain "Trojan Horses." 

Such "Trojan Horse" laden programs could surreptitiously modify an ACL 

without the ever realizing what had happened. For example, the Multics 

PL/I compiler must change the ACL of the segment into which the object 

code is placed. First, the compiler must set the ACL to read-write to 

be able to store the new machine instructions. Then it must set the ACL 

to read-execute to enforce thee Multics pure procedure conventions. A 

"Trojan Horse" in the compiler could surreptitiously add other names to 

the ACL without difficulty. (1) 

(1) The Multics compilers could easily be changed to not modify ACL's, 
but to get "temporary write" permission to the object segments. 
However, it is still true that programs subject to "Trojan Horse" attack 
must manipulate ACL's. The user may choose to borrow a program to 
modify the ACL's of all segments that match some particular selection 
criteria. Such a program must modify ACL's and could contain a "Trojan 
Horse." 
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The limitations of discretionary access controls have been formally 

modeled by Harrison, Ruzzo, and Ullman <Harrison76>. Harrison, et al. 

show that for a fully general access matrix, certain security questions 

are undecidable. In particular, they show that the so-called 

"confinement problem" is one such undecidable problem. The "confinement 

problem," as stated by Lampson in <Lampson73>, asks whether there exists 

a mechanism by which a subject that is authorized access to an object 

can leak the information contained in that object to some other subject 

that is not authorized access. If it can be shown that no such 

mechanism exists for a particular security system, then that security 

system is not vulnerable to "Trojan Horses." Harrison's results show 

that discretionary security systems may be vulnerable to "Trojan Horse" 

attacks, and that in general, it is impossible to determine if an 

information leak exists. 

3.2 Non-Discretionary Access Control 

Harrison, et al. point out in their paper that although the 

confinement problem is undecidable for a fully general access matrix, 

there exist a large number of security systems for which the confinement 

problem is decidable. Lipner <Lipner75> and Denning <Denning76> have 

shown that under the so-called "lattice security model," the confinement 

problem is decidable. The lattice model derives originally from the 

military classification system and is a non-discretionary access control 

system. Objects are assigned access classes and subjects are assigned 
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clearances. For a subject to gain access to an object, it must be 

"cleared" for the the object. A subject does not have the discretion to 

grant access to objects to other subject who are not cleared for the 

objects. 

3.2.1 Definition of the Lattice Model 

The fundamental basis of the lattice model is a set of partially 

ordered access classes from which subject clearances and object 

classifications are chosen. The particular interpretation of the access 

classes is not critical, as long as a partial ordering can be assigned. 

The lattice requires only that there be a lowest access class that is < 

any other access class and a highest access class such that any access 

class is < the highest access class. Two arbitrary access classes need 

not have a <, >, or = relationship, but may be disjoint. 

One very simple lattice consists of two access classes - SECRET and 

PUBLIC. The ordering (which in this case is a total ordering) is 

PUBLIC < SECRET. 

A more commonly used lattice is the military security lattice. In 

the military lattice, an access class has two components - a sensitivity 

level and a category set. The sensitivity levels are UNCLASSIFIED, 

CONFIDENTIAL, SECRET, and TOP SECRET. Categories represent 

compartmentalization of each sensitivity level into collections of 

information that require special access permission. To gain access to a 
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category, one must not only be cleared for the sensitivity level, but 

one must also be authorized the category. Examples of categories 

include NUCLEAR and NATO. If an object is classified SECRET-NATO, then 

even if a subject has a TGP SECRET ·clearance, the subject cannot gain 

access to the object unless the subject has been authorized NATO access. 

Since information may reside in multiple categories, an access class 

consists of a sensitivity level and a set of categories. Access class A 

is < access class B, if and only if A's sensitivity level is less than 

B's, and A's category set is a subset of B's, Based on this definition, 

only a partial ordering exists, since two access classes may be <, =, >, 

or disjoint. A lowest access class (UNCLASSIFIED-no categories) and a 

highest access class (TOP SECRET-all categories) both exist, making the 

system a lattice. 

More complex lattices could be constructed to model other types of 

security systems such as corporate proprietary systems or systems 

subject to the Privacy Act of 1974. Turn <Turn76> describes several 

proposed privacy protection schemes that are based on an ordered set of 

sensitivity levels. One could also assign categories to each particular 

type of personal data. A common sensitivity level system could be used, 

or each category could have its own sensitivity levels, independent of 

other categories. As long as the partial ordering is maintained, 

essentially arbitrary security lattices can be defined. 

For the remainder of this thesis, the lattice based on the 

sensitivity level and category set combination will be used. This 

particular lattice is commonly used (by the military) and is 
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representative of the basic properties of lattice models. In 

particular, it exhibits access classes that are disjoint, and therefore 

are neither less than, greater than, nor equal to each other. 

3.2.2 How is Trojan Horse Protection Achieved? 

Thus far, we have defined the lattice model, but we have not shown 

how the "Trojan Horse" threat is countered. Lattice type systems have 

been formally modeled by the MITRE Corp. <Bell75> and Case Western 

Reserve University <Walter75>. Out of these models have come two 

properties that must be enforced to assure invulnerability to "Trojan 

Horses." 

First, the simple security property requires that if a subject 

wishes to read (or execute) an object, the access class of the object 

must be < the access class of the subject. Informally, a subject must 

be cleared to read an object. 

Second, the confinement property (1) requires that if a subject 

wishes to write an object, the access class of the subject must be < the 

access class of the object. Thus, a "Trojan Horse" can never write 

information at a "lower" access class and can do no damage. The 

detailed motivation for the confinement property is discussed in more 

detail in <Bell75>. 

(1) The confinement property was originally called the *-property by 
Bell and LaPadula <Bell73>. 
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As an alternative to the confinement property, Weissman's ADEPT-SO 

system <Weissman69> enforced a "high water mark" rule. Every subject in 

ADEPT-SO had a current access class parameter that was the maximum 

access class from which that subject had ever read information. The 

current access class moved up as the subject read higher access class 

material. Thus, the name "high water mark" came from the fact that the 

current access class could move up, but not down. 

Whenever a subject S wished to read an object O, the current access 

class of S was set to the maximum of the access class of 0 and the 

current access class of S. Of course, if the maximum access class of S 

was less than the access class of 0, then access would be denied. If S 

wished to create a new object O', the access class of O' would be set to 

the current access class of S. ADEPT-SO, unfortunately, did not 

control writing into already existing objects, and so could not 

completely assure confinement of Trojan Horses. However, the "high 

water mark" system could be easily modified to include a rule that if a 

subject S wishes to write into an already existing object 0, the access 

class of S must be equal to the access class of O. It should be noted 

that 0 cannot be upgraded to the access class of S. Such an upgrade 

would be visible to subjects at a lower access class than S, and 

therefore, would constitute a form of communication that could be 

exploited by "Trojan Horses." 
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Chapter Four 

Need for Effectiveness 

Thus far, we have examined the goals of security systems, and we 

have proposed mechanisms to enforce desired security policies. However, 

even the best security policy is worthless if its implementation is not 

effective and complete. In this chapter, we shall briefly summarize how 

computer security systems are penetrated and how effective security can 

be achieved. The security kernel technology, upon which most of this 

thesis depends, is briefly described. 

4.1 Ineffectiveness of Conventional Systems 

Numerous penetration studies have demonstrated that conventional 

computing systems do not have effective security controls. In the 

published literature, such systems as Honeywell GCOS <Anderson71>, IBM 

OS/360/370 <Abbott76>, IBM VM/370 <Attanasio76>, Bolt Beranek and Newman 

TENEX <Abbott76>, Univac Exec 8 <Abbott76>, and Honeywell Multics 

<Karger74> have been examined and found lacking in effective security 

controls. Further,, only a small percentage of all system penetrations 

are reported in the literature. The evidence of successful penetration 

is usually kept under close guard by most managers, and thus little ever 

reaches the published literature. 
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Based on the results of the numerous and highly successful 

penetration studies, it can be seen that there exist fundamental 

security weaknesses originating from the basic complexity of 

conventional operating systems. Even if every known security weakness 

in a particular system were repaired, there would be no basis on which 

to believe that every weakness had been found. Further, the 

modifications to repair the security vulnerabilities are often so 

complex that they themselves may introduce new vulnerabilities. 

Anderson <Anderson72> reports that after extensive security "repairs" 

had been undertaken for one large commercial system that had been 

penetrated, the newly "repaired" system succumbed to a new penetration 

after less than one person-week of effort. 

4.2 The Security Kernel Approach 

To overcome the weaknesses of conventional systems, an approach 

based on the use of security kernels was proposed <Schell73> to assure 

the effectiveness of the security controls of future systems. The 

security kernel of an operating system mediates all accesses to 

information, assuring that the desired security policies are enforced. 

The security kernel approach provides effective security controls 

by modularizing large and complex operating systems into security and 

non-security relevant portions. By sufficiently simplifying the 

security mechanisms and isolating them from the rest of the operating 

system in the so-called security kernel, it becomes possible to 
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mathematically verify the correctness of the security mechanisms. To 

assure completeness, the design of the security kernel must be based on 

a formal model of secure systems <Bell75>. The verification methodology 

takes the kernel design from the formal model to actual binary machine 

code in several steps, with correspondence proofs between each 

intermediate representation. The verification methodology is discussed 

in more detail in <Millen76>. 

Security kernels have been implemented for the PDP-11/45 by the 

MITRE Corp. <Schiller75> and by U.C.L.A. <Popek74>. Kernels are 

presently under development for the UNIX operating system <Ritchie74> by 

both the MITRE Corp. <Biba77> and U.C.L.A. <Kampe77>. Kernels were 

under development for the Honeywell Multics system <Schroeder75> and for 

the Honeywell Series 60 Level 6 minicomputer <Honeywell76>, but 

Headquarters, United States Air Force Systems Command has directed that 

these two efforts be terminated in 1977, prior to completion. However, 

the United States Air Force SATIN IV packet switched network is using 

portions of the security kernel technology in the Internal Access 

Control Mechanism (IACM) present in each SATIN IV communications 

processor. 

The security kernel technology forms the essential basis for much 

of this thesis. To date, the security kernel is the only approach 

identified to provide effective security controls for large complex 

systems. However, since most existing systems do not have security 

kernels, we shall examine configurations of decentralized systems in 

which strategic placement of security kernel based communications 
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processors can provide effective security controls to systems without 

effective internal access controls. 
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Chapter Five 

Review of Existing Approaches 

This chapter is a review of several existing or proposed approaches 

to security in decentralized computing systems. Problems and drawbacks 

of several of the approaches are identified. Later chapters will 

address these problems and propose some solutions. Because some of the 

problems are inherently unsolvable, solutions will not be proposed for 

all the problems. 

5 .1 ARPANET 

In this section, we examine four protocols for implementing 

security in the ARPANET - TELNET, FTP, RSEXEC, and the National Software 

Works (NSW). Of course the ARPANET Interface Message Processors (ItiP's) 

were not developed to be "penetration-proof." While IMP software is 

quite reliable, it has not undergone the formal verification necessary 

to assure security. In addition, IMP-IMP communications lines are not 

encrypted. Therefore, the ARPANET is presently vulnerable to wire 

tapping. ARPA is presently sponsoring development of two end-to-end 

encryption devices for the ARPANET. One is called the Private Line 

Interface (PLI) <IMP76>, and the other is called the BCR (Black - Crypto 

- Red) <Bressler76>. 
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5.1.l ARPANET TELNET and FTP Protocols 

The existing ARPANET TELNET and FTP protocols <Feinler76> (1) 

provide very limited support for protection of information. Each host 

is responsible for assuring its own protection, primarily by requiring 

password authentication at the time a network connection is made. Using 

these protocols, a user must remember different passwords (2) for each 

machine used and must transmit these passwords through various host 

machines, leaving opportunities for the passwords to be stolen. 

Alternatively, the user could store passwords for the foreign machines 

in files on the local machines. This technique, however, extends the 

vulnerability of the passwords. 

5.1.2 RSEXEC 

RSEXEC (the Resource Sharing Executive for the ARPANET <Thomas73>) 

provides a much more sophisticated decentralized environment than the 

TELNET and FTP protocols do. RSEXEC allows a user to view the file 

systems of several machines on the ARPANET as a single file system. (3) 

(1) TELNET is a protocol to provide remote terminal communication over 
the ARPANET. Using TELNET, a terminal connected either to a host 
processor or a terminal concentrator can communicate with any host on 
the network. FTP is a protocol to provide file transfer capabilities 
between hosts on the ARPANET. 

(2) Users often choose the same password for all sites, making it 
possible to attack several sites, after stealing a password for only one 
site. 

(3) Currently the RSEXEC protocols are only completely supported for the 
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The user can name files at distant sites and local files uniformly. 

However, from an authentication point of view, RSEXEC is very similar to 

TELNET and FTP. Passwords must be stored on user machines and 

transmitted to server machines whenever network connections are made. 

Although RSEXEC hides much of the password processing from the user, the 

stored passwords for other systems remain subject to attack, either in 

the user system or while being transmitted through the network. 

5.1.3 National Software Works 

The National Software Works (NSW) <Millstein76> is another 

decentralized computing facility being implemented on the ARPANET. The 

NSW is intended to support software development activities by providing 

access to software development tools resident on various hosts. As in 

RSEXEC, the user of the NSW is sheltered from the issues of where on the 

network particular files or tools are stored. Authentication is very 

simple in the NSW. A user who wishes to login to the NSW first connects 

to a local Front End (FE) process running on a local machine. The FE 

delivers the user's login request and authentication password to the 

Works Manager (WM), which runs on some centralized machine in the NSW. 

All requests for service must go through the FE to the WM where the 

user's identity is verified. The WM then torwards autnorized service 

requests to appropriate systems. All systems must trust the WM 

TENEX operating system. RSEXEC is partially supported by the ITS and 
Multics operat~ng systems. 
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implicitly. No authentication is performed by the target host, but 

rather any WM request must be honored without question. A host can 

assure itself that it is talking to the real WM by a scheme of dedicated 

network sockets, but all systems must accept the trustworthiness of the 

central WM. 

5.2 Network Security Centers 

One approach to security in decentralized systems is the concept of 

a Network Security Center (NSC) proposed by Branstad <Branstad73, 

Branstad75> and expanded upon by Heinrich and Kaufman <Heinrich76>. The 

NSC is a centralized facility that, as proposed by Branstad, provides a 

secure cryptographic key distribution service. As such, the NSC can 

assure identification and authentication of the user to the servicing 

host computer and vice versa. The authentication is implicit in the 

cryptographic keys. The NSC is an example of a specialized multilevel 

host. It does not support online programming, but must be verified to 

be free of "Trojan Horses." 

Note that the function of the NSC is analogous to the function of 

the Works Manager (WM) in the National Software Works (NSW). While such 

a centralized authority may be acceptable to a network under a single 

management control, it may not be at all acceptable in a decentralized 

computing system that does not have central management. Diffie and 

Hellman <Diffie76> suggest an approach to avoid the necessity of 

trusting a single central authority. They suggest the use of multiple 
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independent NSC's, each of which verifies and authenticates a requested 

two-way communication. Each NSC provides a cryptographic key to the 

sender and receiver processes. All the cryptographic keys are combined 

via addition modulo two to produce a key not known to any of the NSC's 

involved. Thus, the sender and receiver processes need not trust any 

single NSC not to release their cryptographic key. Only if all the 

NSC's cooperate, can they compromise the cryptographic key that was 

generated by the processes. 

Heinrich and Kaufman, however, attribute the NSC with security 

capabilities beyond those proposed by Branstad. In particular, they 

claim that the NSC can prevent unauthorized access to data by legitimate 

users of the network. However, the NSC is in fact unable to prevent 

such unauthorized accesses, unless the various host processors are 

themselves secure. The following two examples demonstrate the inability 

of the NSC to prevent unauthorized access. 

For the first example, assume a network consisting of three host 

computers - A, B, and C. (See figure 5.1.) Assume A, B, and C do not 

have effective internal security controls, but that they communicate 

only via the network using cryptographic keys provided by the NSC. 

Assume A is authorized to access B's data base, and B is authorized to 

access C's data base, but A is not authorized to access C's data base. 

The NSC enforces the protection of C's data base by not providing a 

common cryptographic key to A and C. However, the NSC can do nothing if 

B forwards data from C to A. 
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NSC 

A B c 

FORBIDDEN 

Figure 5.1 Network Security Center Failure 

If host B enforced the lattice model with a security kernel, then B 

could implement two untrusted processes, one to communicate with A, and 

one to communicate with C. Since A and C may not communicate 

(presumably because their access classes are disjoint), the security 

kernel in B would prevent the two processes from communicating, and 

therefore prevent A from receiving information from C. However, this 

type of protection that the security kernel of B could provide is 

entirely independent of the presence or absence of an NSC. 

40 



The example above uses multiple systems connected to a network to 

leak information to unauthorized users. In fact, the NSC cannot prevent 

unauthorized access, even if there is only one system involved. 

Effectively, the NSC's granularity of protection is an entire computer 

system. If a user can gain access to a host system for some legitimate 

purpose, and the host's security controls are ineffective, then that 

user can gain access to any information in that host. Since such an 

attack would take place entirely within a single host, it would be 

invisible to the NSC. 

Heinrich and Kaufman describe the NSC as maintaining an access 

matrix similar to Lampson's <Lampson71>. However, as shown by Harrison, 

et al. <Harrison76>, merely maintaining an access matrix does not 

guarantee that unauthorized access does not occur. In the first 

example, using Harrison's terminology, B can leak to A the generic right 

to read C's data base. In the second example, one can model the 

ineffective security controls of the operating system as a special 

subject in the access matrix. The special subject has access to all 

data in that particular system, but due to the ineffective security 

controls, all other subjects on that system have access to the special 

subject. Thus, if the NSC grants a user access to that particular 

system, by transitive closure on the access matrix, the user has been 

granted access to all data stored in the system. While Heinrich and 

Kaufman imply that the host system might choose to add additional 

protection, they do not make clear that unless the host itself maintains 

effective security controls, the NSC can leave significant security 
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vulnerabilities unblocked. This issue is of paramount importance if one 

wishes to build secure decentralized systems in which some of the 

component host systems are fundamentally incapable of providing 

effective internal access controls. 

5.3 Military Networks 

The U.S. Department of Defense is presently developing two packet 

switched networks - SATIN IV for the U.S. Air Force Strategic Air 

Command and AUTODIN II for joint service communications. These networks 

achieve protection of classified message traffic by encrypting 

communications on a link by link basis and providing effective security 

controls in each message processor. For example in SATIN IV, each 

message is labelled with a sensitivity level and category set and the 

Internal Access Control Mechanism (IACM) of each communications 

processor assures that messages are routed only to destinations that are 

properly cleared to receive them. 

When messages are entered into SATIN IV from an external interfaced 

system, the IACM must differentiate between interfaced systems with 

effective security controls and interfaced systems without effective 

security controls. Systems without effective controls cannot be trusted 

to properly label messages. Messages from such untrusted systems must 

be treated by SATIN IV as classified at the highest access class 
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processed by that particular system. (1) The IACM's of each 

communications processor will be verified to operate correctly and 

provide effective security controls. 

The security characteristics of AUTODIN II are less well defined at 

this time, but are expected to be similar to SATIN IV. A brief summary 

of the requirements of both the SATIN IV and AUTODIN II systems can be 

found in <Chandersekaran76>. One proposal for AUTODIN II security can 

be found in <Postel76>. 

5.4 Dynamic Process Renaming 

Farber and Larsen <Farber75> suggest an approach to security in a 

ring network by dynamically renaming the process names that appear in 

the message destination fields. They reason that if in a series of 

messages sent from one process on a host to another process on a 

different host, the destination fields of the messages are changed in 

every message based on presumably secret transformations known only to 

the source and destination systems, then an intruder could not follow 

the rapid exchange of messages and would be unable to extract 

information. Farber and Larsen describe synchronization and error 

(1) When presented with a message labelled at a lower access class than 
the highest access class processed by the untrusted message source, the 
IACM must either generate a security alarm or relabel the message at the 
highest access class processed by that system. Operational requirements 
will determine which is appropriate, If relabelling is performed, the 
new label would consist of the alleged access class of the message and 
the access class to which the packet must be protected. 
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detection methods that make dynamic process renaming a practical 

communications protocol. Unfortunately, they do not address the 

possibility of computer assisted traffic analysis that could easily 

distinguish patterns in the traffic and determine the content of the 

transmissions. For example, the login dialog to most time sharing 

systems is very stylized in which the system sends a greeting message, 

the user responds with a login command, the system requests the user's 

password, and the user types it in. Such a dialog could easily be 

recognized in a recording containing many unrelated messages. Such an 

analysis was done in one penetration of a computer system, documented 

in <Computerworld75>, in which the penetrator examined teletype 

communications buffers to collect passwords of many users. An even 

easier example would be traffic generated by a program like the MACSYMA 

system <MACSYMA75> in which messages from the program to the user are 

sequentially numbered so that the user can reference them easily in 

later requests. Clearly, dynamic process renaming is effective only 

against very unsophisticated attacks. Encryption of communications is 

much more effective against sophisticated penetration attempts. 
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5.5 External Security Monitors 

Painter <Painter75> proposes an approach to security in computer 

networks in which an external minicomputer is attached to each host 

processor to monitor all hardware and software operations for security 

malfunctions. To monitor the hardware, Painter proposes equipment 

analogous to Automatic Test Equipment (ATE) be attached to run periodic 

tests on all hardware components. Since hardware can fail randomly, 

such tests are important for the operation of any secure computer 

facility. Software versions of hardware security monitors have been 

implemented for the Honeywell 645 <Karger74> and for the Honeywell 6180 

<Hennigan76>. Painter points out two major difficulties with his 

external hardware monitor proposal. First, ATE normally interferes with 

hardware performing its normal operational functions. Therefore, either 

ATE must be designed that does not interfere, or redundant hardware must 

be provided to allow checking of components on an offline basis. In the 

latter case, software must also exist to allow reconfiguration of the 

hardware without disruption of ongoing processing. Second, as LSI 

technology advances, it becomes more and more difficult to build ATE. 

Because of the concentration of functions on single chips, it becomes 

impossible to break systems down into separate "black boxes" for 

isolated testing. Perhaps future LSI hardware can be designed with 

additional leads for ATE interfaces. Painter also points out that his 

technique cannot detect Trojan Horses that may be concealed in LSI chip 

designs. 
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Unfortunately, Painter's scheme for external software monitors is 

less well founded than his hardware monitor scheme, because software, 

unlike hardware, does not fail randomly. Software security systems are 

either correct or incorrect from the start. They do not "fail" after a 

period of time. Painter proposes that software security surveillance be 

carried out by hardware performance evaluation monitors that examine the 

contents of registers and main memory "looking" for security 

penetrations. Painter admits the hopelessness of analyzing every 

operation performed by the host computer. The CPU time required would 

be many times that required by the host computation itself. Painter 

instead suggests a statistical approach, periodically checking the host 

for software security penetrations. However, the types of penetrations 

described in <Karger74> can be consummated in a matter of microseconds. 

The probability of statistically discovering a well rehearsed 

penetration is extremely small. More importantly, Painter offers no 

evidence that such an external software security monitor can be 

effectively implemented, even given unlimited CPU time. Essentially, 

Painter expects the monitor to examine arbitrary programs running in the 

host system to see if they ever enter an insecure state. One can draw 

an analogy to automata theory that shows the undecidability of the 

question of whether an arbitrary Turing Machine ever enters a particular 

state <Hennie77>. While a proof that Painter's approach is not 

effectively computable is beyond the scope of this thesis, the 

feasibility of his approach is certainly open to question. 
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Painter takes his software surveillance monitor concept one step 

further and suggests that the monitor could be implemented on the host 

system itself. This technique of self-monitoring is shown to be 

insecure in <Karger74>. If the host system is secure, then the 

self-monitor could be useful in detecting some, but not necessarily all, 

unsuccessful penetration attempts. However, if the host system is not 

secure, then the successful penetrator will immediately modify the 

self-monitor to assure that it only reports that all is well. 
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Chapter Six 

Lattice Model in a Decentralized System 

Before we can study the application of the lattice security model 

to decentralized computing systems, we must define the characteristics 

of the subject system. We assume the decentralized computing system 

consists of a large number of host computers, ranging in size from very 

large general purpose systems to individual microprocessor based 

"personal" computers. No assumption is made concerning homogeneity of 

instruction sets. The host computers are interconnected using a variety 

of communications media including direct digital data links, store and 

forward message processors, broadcast links, etc. The host computers 

are not managed by a central authority. However, although 

administration of the host computers is decentralized, there is a common 

security lattice that is to be enforced on all machines. (1) We must 

assume that a very large number of security access classes will be in 

use in the system, although most hosts will only use a small subset of 

them. The large number of access classes comes from the desire to 

support a commercial decentralized system with thousands of customers in 

which each customer may wish to define several categories of information 

to be protected. In this context, a customer might be an entire 

corporation or division of a corporation. 

(1) The apparent dichotomy between decentralized control and a common 
security lattice need not exist. The various divisions of a corporation 
may operate with a high degree of autonomy, yet all agree on a common 
system for protecting company confidential material. Similarly, a 
common system for protecting classified information exists among the 
otherwise autonomous agencies of the Department of Defense. 
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Not all host systems will be authorized to receive information at 

all access classes. Even if Chrysler's computer had a security kernel, 

Ford would be unwilling to store its data there. Therefore, the 

communication network must assure that information is never made 

available to hosts that are not authorized to receive the information. 

Not all host systems will have effective security controls, because 

many hosts will run conventional insecure operating systems. Despite 

insecure software, such conventional systems can adequately protect 

sensitive information if they are run in a dedicated mode. The 

Department of Defense defines dedicated mode as follows: 

"An ADP [Automatic Data Processing] System is 
operating in a dedicated mode when the Central 
Computer Facility and all of its connected 
peripheral devices and remote terminals are 
exclusively used and controlled by specified 
users ••• for processing of a particular type ••• of 
classified material." <DoD73> 

If a host system running in a dedicated mode is connected to a 

decentralized computing system, then the communications network must 

assure that all output from the dedicated host is treated at the 

dedicated access class. The dedicated host cannot be trusted to 

correctly mark the access class of its output. 

Systems that have effective security controls are called multilevel 

secure systems. The Department of Defense defines multilevel security 

mode as: 
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"A mode of operation ••• which provides a capability 
permitting various levels and categories or 
compartments of material to be concurrently stored 
and processed ••• from various controlled terminals 
by personnel having different security clearances 
and access approvals." <DoD73> 

A multilevel system can effectively control access to a number of 

distinct access classes. However, as mentioned above, even though the 

multilevel system has effective software controls, it may not be 

authorized to receive all access classes, because the system may be 

under the physical control of persons not authorized certain access 

classes. 

A very important requirement of this scenario is that the 

implementation of the lattice model not interfere with the basic goals 

of decentralized computing systems - the ability to share information 

and computing resources and the ability to achieve robustness by taking 

advantage of redundancy. Therefore, the lattice implementation should 

not preclude such nominally secure operations as a SECRET process 

reading information from an UNCLASSIFIED data base on another host 

system. However, the implementation must assure that a "Trojan Horse" 

in the SECRET process cannot downgrade information while reading the 

UNCLASSIFIED data base. 

One final assumption must be made in this scenario. All external 

communications are encrypted using either link encryption or end-to-end 

encryption. Chapter 11 discusses encryption in more detail. 
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Chapter Seven 

Basic Message Passing Protocols 

In this chapter we shall examine the basic message passing 

protocols for decentralized computing systems and show their 

relationships to the lattice security model. As part of the discussion, 

we will show how the lattice model controls can be added without 

adversely affecting the reliability or performance of the basic 

protocols. Performance of the basic message passing protocols is 

critical to the decentralized system, because all other protocols are 

built from the basic protocols in a layered fashion. 

7.1 Protocol Design 

7.1.1 Basic Packet Communication 

Before we can discuss the basic protocol design, we must define 

some terminology. The basic unit of communication is the packet. 

Packets may be sent to and from ports that exist as logical full duplex 

channels on the various hosts attached to the network. A host may have 

a large number of ports that are simultaneously involved in network 

communication. The notion of a port here is taken from Cerf and Kahn's 

Transmission Control Program (TCP) <Cerf74>. The communications network 
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will deliver packets to their destination ports with high reliability, 

but delivery is not 100% guaranteed. Some type of retransmission 

strategy will be required for lost or damaged packets. This very low 

level protocol is similar to the datagram protocols described in 

<Pouzin76>. Higher level protocols can be constructed to break messages 

up into fixed size packets, reassemble the packets, provide for 

retransmission and flow control, etc. 

7.1.2 Adding Security to the Basic Protocol 

Adding lattice security controls to the very simple protocol 

described above is quite straightforward. Initially, let us assume that 

link encryption is used on all communications lines that must transmit 

sensitive information. Use of end-to-end encryption is discussed in 

Chapter 11. If each host attaches a security label to each packet as 

it is entered into the network, and if the network communications 

processors are multilevel secure, then the network communications 

processors can assure that packets are delivered to only those hosts 

that are authorized to read information at the access class of the 

packet. 

Since packets pass through the communications processors in 

cleartext, the software in the communications processors must be 

prevented from maliciously downgrading information. For example, a 

"Trojan Horse" in the message routing software could copy a TOP SECRET 

packet into a newly fabricated UNCLASSIFIED packet and send the 
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UNCLASSIFIED packet to an uncleared host system. Such a "Trojan Horse" 

threat could be avoided by verifying the correctness of all software in 

the communications processor. This approach is taken in the AUTODIN I 

system. (1) Unfortunately, very severe restrictions are imposed on 

software development by the AUTODIN I security approach. All 

programmers must be cleared to the highest access class of information 

to be passed. No off-the-shelf software can be used. Software updates 

must undergo nearly exhaustive testing. Only because the AUTODIN I 

software is very simple and rarely changes can such restrictions be 

implemented. They are certainly unreasonable for more complex 

communications systems in which off-the-shelf operating systems and 

compilers are desired and in which software changes may occur 

frequently. 

To reduce the unreasonably strict AUTODIN I security restrictions, 

the communications processors could be implemented with security 

kernels. Figure 7.1 shows a very simplified view of packet flow through 

a kernel based packet switching processor. Input packets are received 

by a trusted process that must identify the packet access class and 

store the packet in a memory segment of the proper access class. The 

input process does no more than identify the packet's access class and 

send a wakeup to an untrusted process (that could contain a "Trojan 

Horse"). The untrusted process (or processes) then performs all 

necessary validation, routing, and other functions normally performed by 

(1) AUTODIN I is a message switching system presently operated by the 
Defense Communications Agency (DCA). Its security characteristics are 
briefly summarized in <Lipner72> and <Anderson72>. 
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Figure 7.1 Packet Flow Through a Kernel Based Switch 

a packet switch. The untrusted processes are constrained by the 

security kernel to obey the confinement property, and are therefore 

unable to downgrade information. Just before transmission, the 

untrusted process gives the output packet to a trusted process that 

verifies the correctness of the security label (since a "Trojan Horse" 

56 



could attempt to mislabel a packet) and then sends the packet out the 

communications line. Since communications processors may not be 

authorized the same access classes, the trusted process must also verify 

that the next communications processor intended to receive the packet is 

authorized to receive the packet. If the packet is being sent to a host 

processor, the trusted process must verify that the host processor is 

authorized to receive the packet. 

<ESD74> contains a more detailed comparison of the security kernel 

approach and the AUTODIN I approach to secure communications processors. 

The basic issue, however, is that the communications processors can 

assure that packets are delivered only to hosts that are cleared to 

receive them. 

7.1.3 Trojan Horses in the Sending Host 

The protocol described in the previous section is adequate to 

assure security if packets are properly labeled when they enter the 

communications network. If the originating host processor has adequate 

security controls (presumably because it runs a security kernel), then 

packets will be correctly labeled. Just as in the multilevel packet 

switch, the multilevel host must have a trusted process verifying the 

accuracy of security labels on outgoing packets. 
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However, if the originating host processor does not have adequate 

security controls and therefore is presumably running in a dedicated 

mode as defined in chapter 6, then a "Trojan Horse" in the originating 

host could easily mislabel packets to send information classified at a 

high access class in a lower access class packet. 

Therefore, to achieve confinement of the "Trojan Horse" in the 

originating host and to maintain consistency with the definition of 

dedicated mode, the security protocol must be modified. The input 

trusted process of the packet switch must know which hosts can 

effectively protect information and which cannot. The input trusted 

process must assure that all packets received from a host that runs in a 

dedicated mode are labeled at the dedicated access class. (1) If the 

input trusted process receives a mislabeled packet, it can either 

relabel the packet, or it can report an attempted security violation. 

The particular choice is application dependent and does not impact the 

basic security of the protocol. 

(1) In fact, the Department of Defense also defines host systems that 
may operate in a controlled environment over a limited range of access 
classes. For example, the Air Force Data Services Center (AFDSC) in the 
Pentagon runs a modified version of the Multics system in a two-level 
SECRET/TOP SECRET controlled environment. The AFDSC Multics system 
(described in <Whitmore73>) is trusted to separate SECRET and TOP 
SECRET, but because it does not have a security kernel, it is not 
trusted to separate UNCLASSIFIED from SECRET or TOP SECRET. For such 
controlled environment systems, the input trusted process must maintain 
a minimum access class M, and assure that for all packets transmitted by 
the host labelled access class P, M must be < P. 
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7.2 One-Way Communication 

7.2.1 Rationale 

Even though some of the hosts in a decentralized computing system 

do not have effective security controls and therefore must run in a 

dedicated mode of operation, it is still desirable to have 

communications with these hosts. Obviously, two dedicated hosts at the 

same access class can communicate freely with each other. Similarly, a 

dedicated host can communicate freely with an untrusted process running 

on a multilevel host, if the untrusted process is at the same access 

class as the dedicated host. However, it would be very desirable if two 

dedicated hosts at different access classes could have some limited form 

of communications. In particular, if there are two hosts A and B, such 

that the dedicated access class of A is < to the dedicated access class 

of B, then it would be desirable if programs on B could gain access to 

the data stored in A on a read-only basis. The following two examples 

demonstrate the utility of such read-only communication • 

. 7.2.1.1 Military Airlift Command Example 

The US Air Force Military Airlift Command (MAC) runs three 

Honeywell 6080 GCOS systems as part of the World Wide Military Command 

and Control System (WWMCCS). Because GCOS does not have adequate 
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security controls, the systems must run in a dedicated mode in which two 

of the systems process only unclassified information and the third 

system processes classified. During crisis situations, certain portions 

of the normally unclassified data base become classified. When a crisis 

occurs, MAC must copy the entire data base onto a set of disk packs to 

be transferred to the classified machine. This manual transfer 

procedure is extremely time consuming and does not meet MAC's 

requirements for rapid response to crisis situations. In addition, 

unclassified updates continue to come into the unclassified system, 

rapidly making the classified data base obsolete. Since the purpose of 

the classified data base is to allow contingency planning during crisis 

situations, it is important to keep the data base accurate. The basic 

requirement is that updates to the unclassified data base be accurately 

reflected in the classified data base in a timely fashion. (1) 

7.2.1.2 Corporate Planning Example 

A similar example to the Military Airlift Command system can be 

imagined for a civilian corporation. Assume there exists a corporate 

data base system implementing some basic functions of operational 

control of the company. As this data base only reflects routine day to 

day operations, it is treated at a low sensitivity level. On a separate 

computer, the corporate planning staff has a data base system that is 

(1) The description of MAC requirements was taken from Appendix VII of 
<Schacht76>. The original suggestion for read-only access to the data 
base was made by S. Lipner in <Lipner71>. 
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considered highly sensitive. The corporate planning data base requires 

periodic updates from the day to day data base, but no information is 

required to flow from the corporate planning data base to the day to day 

data base. 

7.2.2 Implementing One-Way Communications 

Solving the two problems posed above is relatively simple in a 

single multilevel computer. A process is created at the high access 

class, and it is granted read-only access to the low access class data 

base. However, in a decentralized computing system, the high access 

class process must send a message to a low access class process on the 

low access class machine in order to read the data base. What was a 

read-only transaction on a single machine has been transformed into a 

read-write transaction by the use of a communications network. (1) 

In the decentralized system, the read request from the high access 

class host to the low access class host can be eliminated if the low 

access class host is preprogrammed to automatically send data base 

updates as they occur to the high access class host. Since the updates 

are sent automatically, no information need flow from the high access 

class host to the low access class host. In addition, the high access 

class host need not "poll" the data base. It receives updates only as 

they occur. 

(1) In fact, the transaction was read-write on the multilevel machine as 
well, but the security kernel and the supporting descriptor based 
hardware made it possible for the read operation to occur "invisibly" to 
the lower access class. 
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Of course, this update approach works only for preprogrammed 

periodic transactions and offers no selectivity to the high access class 

host. Fortunately, such preprogrammed transaction oriented systems are 

common in the data processing industry. As another example, consider a 

radar air traffic control system. There are several computers located 

at radar sites connected to a central air traffic control computer via 

communications links. The radar site computers do nothing but convert 

raw radar returns into correlated air tracks that are then sent to the 

central facility. Assuming each radar has a fixed area of coverage, all 

communications flow is in one direction. 

7.2.3 Limitations of One-Way Communications 

Obviously, the one-way communications scheme outlined above has 

many limitations. These limitations fall into two basic classes 

discussed below - lack of reverse communications and protocol 

difficulties. 

7.2.3.1 Lack of Reverse Communications 

The primary limitation of one-way communications is inherent in its 

name. The fact that no reverse communications are allowed eliminates 

from consideration any applications that require a large amount of 

two-way communications. In particular, the high access class host 

cannot selectively query the low access class data base, based on high 
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access class computations. It must swallow the entire data base as it 

is generated and updated. 

Based on these limitations, one would ordinarily dismiss one-way 

communications from any further consideration. However, we must 

remember that the ostensible purpose for considering one-way 

communications was to allow limited communications between inherently 

insecure host computers (or untrusted processes on secure hosts). While 

it would be desirable to use multilevel secure hosts for all 

applications, such hosts are not available on a commercial basis yet. 

Development of security kernels for large scale general purpose systems 

is a current research effort described in <Rhode77>. Even if multilevel 

secure hosts were available now, large investments in conventional 

insecure hardware and software would preclude immediate conversion. On 

the other hand, multilevel secure communications processors will be 

available soon outside the research environment. The Air Force's SATIN 

IV network is one such system. Therefore, making secure decentralized 

computing available on a limited basis using one-way communications 

seems to meet at least some interim needs. In addition, Chapter 9 will 

discuss some approaches to provide limited reverse communications to 

alleviate some these severe restrictions. 
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7.2.3.2 Protocol Difficulties 

In addition to the limitations inherent in the concept of one-way 

communications, there are even difficulties in implementing the 

preprogrammed transaction updates. Difficulties arise in the areas of 

error control and flow control, although we shall see that these 

difficulties can be overcome. 

Error detection and correction is needed, because the 

communications medium is not in general error free. Two generic types 

of error control strategies are most commonly used - feedback error 

control and forward error control. 

Feedback error control is most commonly used in systems with a 

usually low probability of error, but with occasional bursts of high 

error probabilities. In feedback error control, the receiver examines 

each arriving packet for possible errors. If no errors are found, an 

acknowledgment is returned to the sender. If the packet is found to be 

in error, a negative acknowledgment is returned. The sender retransmits 

the packet upon receipt of a negative acknowledgment, or if no 

acknowledgment is received for some period of time. However, if the 

destination is on a dedicated host at a higher access class, then not 

even packet acknowledgment can be permitted, because a "Trojan Horse" 

could easily encode information in patterns of acknowledgments. For 

example, the "Trojan Horse" could generate extra acknowledgments to 

non-existent packets that would then be interpreted by software on the 

low access class system. 
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Forward error control is typically used in systems that have fixed 

error probabilities. Sufficient redundant information is transmitted 

with every packet to allow the receiver to reconstruct information that 

may have been lost or garbled. By comparison, feedback error control 

transmits only enough redundancy to detect errors, but not enough to 

correct them. Since no feedback is required, forward error control is 

not vulnerable to "Trojan Horse" attacks. 

Flow control presents problems similar to feedback error control. 

The receiving host must somehow tell the sending host how fast it can 

receive packets. Otherwise, the sending host may transmit so fast that 

the receiving host's buffers overflow. A variety of flow control 

techniques are possible. For example, the ARPANET Host to Host Protocol 

<Feinler76> requires the sender to preallocate buffer space in the 

receiver. The sender may not transmit until the receiver confirms that 

the requested buffer space is available. In the Transmission Control 

Program (TCP) <Postel76>, the receiver tells the sender how much may be 

transmitted. When that so-called transmission window is exceeded, the 

sender must wait until the receiver extends the window. Other schemes 

are also possible. However, inherent in any such flow control scheme is 

an information flow from the receiving host back to the sending host. A 

"Trojan Horse" in the receiving host could exploit such an information 

channel to release information. 

Forward error control has the major drawback that it requires 

significantly more bandwidth than feedback error control. The extra 

bandwidth is required to transmit enough redundant information to handle 
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the worst case error probabilities on a noisy channel. (1) Therefore, 

the following scheme is suggested to allow use of feedback error control 

and to provide flow control in a one-way communications channel without 

the risk of a "Trojan Horse" communicating in the reverse direction. 

Since it is the dedicated mode host processor that is untrustworthy, a 

multilevel secure front end processor with a security kernel could be 

inserted between the communications network and the dedicated host. 

(See figure 7.2.) The trustworthy front end processor could then 

perform feedback error control and flow control functions without fear 

of "Trojan Horses." The front end processor must guarantee to store and 

accurately deliver all packets to the host, since end to end error 

control is no longer possible. Therefore, the front end processor must 

maintain a reasonable quantity of auxiliary memory on which to store 

packets until the host processor accepts them. 

A one bit communications channel for a "Trojan Horse" exists even 

with the trustworthy front end processor, because there can only be a 

finite quantity of memory in the front end processor to buffer packets. 

(2) However in practice, the front end processor running out of memory 

is a highly visible event, and any attempt to communicate using this 

channel could be very quickly detected. Therefore, the secure front end 

processor does seem to be a viable approach to providing error detection 

(1) Forward error control is best used in high error probability 
environments in which feedback error control would breakdown in an 
avalanche of negative acknowledgments and retransmissions. 

(2) This problem is similar to the disk allocation problem described in 
<Schiller75>. 
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Figure 7.2 One-Way Connnunications 

and correction and flow control securely in one-way communications. It 

should be noted that the packet buffering for feedback error control and 

flow control could be performed by the destination network switching 

processor, rather than by a separate front end processor. For example, 

the SATIN IV communications processors journal all message traffic for 
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possible retrieval at a later time. Such a journal could be used as 

the buffer store, if it had sufficiently high reliability. 
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Chapter Eight 

Naming under the Lattice Model 

One of the major limitations of networks like the ARPANET has been 

the lack of a uniform network wide naming scheme. Users of one host 

system must learn the naming conventions of any other dissimilar host 

systems that they wish to use. In addition, users must know the name of 

the host on which a service exists in order to use it. Therefore, users 

must be explicitly aware of redundancies across host boundaries that 

have been created for reliability purposes. Ideally, a user should be 

able to give the name of something without having to know on which host 

it is implemented. If multiple copies exist for reliability purposes, 

the decentralized computing system should automatically select one for 

the user. 

Security of information is very closely tied to the naming 

structure of a system. In the Multics system <Organick72>, this tie is 

very explicit. The Access Control List of an object can be modified by 

anyone who has modify permission on the parent of the object. However, 

even if one separates the naming structure from the authority hierarchy 

as is suggested in <Rotenberg74>, naming and security must remain 

closely tied, because both the names themselves and the shape of the 

naming structure contain user modifiable information - information that 

is also subject to modification by "Trojan Horses". 
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The tie between security and naming can be seen in the evolution of 

the formal representations of the lattice model. In the initial MITRE 

security model <Bell73>, naming of objects was not considered. An 

attempt to implement this simple model on the PDP-11/45 <Schiller73> 

failed, because a "Trojan Horse" could easily communicate information in 

the names of objects or in the shape of the directory tree. The Case 

security model <Walter74> provided the first solution to this problem by 

recognizing that names and groupings of names, i.e., directories, must 

also be assigned access classes. Ames extended the Case model in 

<Ames74> to include all the attributes of a Multics segment, not just 

names. At the same time, Bell revised the MITRE model in <Bell74> to 

include the notion of the Multics hierarchy as an explicit element of 

the model. 

In this chapter, we will take a broader view of naming than just 

the Multics directory hierarchy. In particular, we wish to include 

naming structures in which an object has more than one parent. We shall 

see that relaxing the single parent restriction of Multics generates 

certain constraints on the underlying host implementations of a network 

wide naming scheme. 
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8.1 Reed's Generic Naming Scheme 

The naming scheme to be considered in this chapter is the one 

suggested by D. Reed for the proposed M.I.T. Laboratory for Computer 

Science Local Network. Because a description of Reed's scheme has not 

yet been published, this section will highlight its major aspects. 

8.1.1 Goals of the Naming Scheme 

Reed identifies four major goals to be achieved by a network naming 

system. First, the naming scheme should support translation of generic 

service names into specific service instances. The user should not have 

to know the particular host on which a service is implemented. The user 

should also not have to know that a service is implemented on several 

machines for reliability or load sharing. 

Second, the generation and manipulation of names by users should be 

easy. A naming system at least as powerful as the Multics directory 

hierarchy is needed to allow users to select names without fear of 

conflict. 

Third, the naming system should be resilient to single hardware 

failures. Any individual system or communications link going down 

should not bring down the naming system. This precludes the use of a 

single "naming computer." 
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Fourth, the naming system should continue to function even after 

major portions of the network are down. If a service is reachable 

through the network, then it should be nameable, even if all the rest of 

the network (outside of the path to the service) is down. 

8.1.2 Basic Implementation 

Reed's naming scheme consists of a directed graph whose vertices 

correspond to either directories or generic services. Directories have 

zero or more child edges that point to other vertices. Services do not 

have edges emanating from them. Each edge emanating from a directory 

has a character string name. There is a directory called the root from 

which all other vertices may be reached. A sequence of names from the 

root to a particular vertex is called the treename of the vertex. Note 

that multiple edges may point to the same vertex, and therefore, loops 

may exist in the naming hierarchy. (1) Each directory will be 

implemented as a list of names of edges and associated port identifiers 

(2) that implement the target vertices. The target vertex of an edge 

need not reside on the same host as its parent. 

(1) The edges in Reed's naming scheme constitute so-called "hard links" 
to objects, because each edge points to an actual vertex. A naming 
scheme can also include "soft links" that merely consist of character 
string treenames. In interpreting a name, if a "soft link" is reached, 
the character string name contained in the "soft link" replaces that 
portion of the original name from the root to the "soft link" that has 
already been interpreted. Interpretation is now restarted at the root 
with the new name. Thus, "soft links" are merely indirect pointers to 
new names and do not have security relevance. "Soft links" correspond 
to links in the Multics directory hierarchy. 

(2) Ports were defined in chapter 7. 
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Figure 8.1 shows an example of a naming network. Service G can be 

reached by a variety of treenames. Treename interpretation occurs as 

follows: 

1. Tiie user sends the treename ROOT.A.D.G in a message to the 

root. 

2. Tiie root strips off its own name and looks up the port number 

for A. Tiie root then sends A a message consisting of the treename 

73 



A.D.G, the treename that was used to reach A, namely ROOT, and the 

port number of the user process. 

3. A performs the same operation and sends D a message consisting 

of D.G, ROOT.A, and the user's port number. 

4. Finally D sends a message to G consisting of G, ROOT.A.D, and 

the user's port number. 

5. G now responds to the user's port to initiate a network 

connection to provide the required services. 

As can be seen from the example, each directory strips off its own 

name, looks up the next edge, and sends a message to the child vertex. 

The treename evaluated so far is passed along for optimization purposes. 

If a user frequently requests the same or very similar treenames, it 

would be inefficient to re-evaluate the treenames from the root every 

time. Therefore, each directory can (optionally) send its own port 

number and the treename evaluated so far back to the user. Reed 

demonstrates that the user can maintain an associative memory of 

partially evaluated treenames that recognizes changes in the directory 

structure that invalidate earlier entries in the associative memory. 

The scheme is not reproduced here, because it is not impacted by 

security requirements. 
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8.1.3 Garbage Collection 

Reed proposes a scheme for garbage collection when the ports 

associated with vertices are destroyed. Reed defines a timeout for each 

edge in the naming network. Unless the timeout is extended, the edge is 

deleted when the timeout expires. In the simplest case, a vertex can 

extend its own timeout as long as it wishes to remain in existence. 

8.1.4 Other Topics 

Reed discusses a number of other topics related to his naming 

scheme including approaches for robustness under loss of major portions 

of the naming network, additional optimization strategies, and details 

of the implementation on the proposed M.I.T. Laboratory for Computer 

Science Local Network. These issues do not have a major security 

relevance and are not discussed in this thesis. 
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8.2 Incorporating the Lattice Model in the Naming Scheme 

Reed's naming scheme explicitly did not address protection issues. 

In this section, we shall examine the issues of incorporating the 

lattice model into the naming scheme. We shall see that the lattice 

model fits into the scheme quite smoothly, but we shall also see that 

Reed's garbage collection strategy cannot be implemented under the 

lattice model. We shall also see that the underlying implementation of 

the network naming scheme in terms of a host's local naming scheme can 

have adverse affects on the overall scheme. 

The basic approach to incorporating the lattice model will be 

similar to the approach taken in the Case model <Walter74>. Each 

directory and service vertex will be assigned an access class. 

Operations on vertices will then be defined to preserve the simple 

security and confinement properties. Two major new issues must be 

considered that were not present in the Case model, which was based on 

the Multics directory hierarchy exclusively. First, Reed's naming 

scheme allows a vertex to have multiple parents. Since previous naming 

systems that have incorporated the lattice model have had only single 

parents, multiple parents could be expected to have major security 

implications. However, we shall see that multiple parents can be 

accommodated in the lattice model without major difficulties. Second, 

the allowable list of operations could differ depending on whether a 

vertex is implemented on a dedicated host or a multilevel host. In this 

case, we shall see that, indeed, the list does differ. 
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8.2.1 Notation 

In the remainder of this section, the following notation will be 

used. An untrusted process P is making requests on the naming network. 

The access class of Pis denoted by AC(P). Since Pis untrusted, it may 

contain a "Trojan Horse". Multilevel hosts may also have a trusted 

process TP. Vertices Vl, V2, and V3 have access classes AC(Vl), AC(V2), 

and AC(V3). The three vertices are implemented on hosts Hl, H2, and HJ. 

The process P is implemented on host HP. The hosts may be either 

multilevel or dedicated as indicated in the text. The maximum access 

class of a host (or the dedicated access class) is denoted by AC(Hl), or 

AC(H2), etc. Access classes form a partial ordering in which two access 

classes may be <, >, or disjoint. 

8.2.2 Creating Edges and Vertices 

For an untrusted process P (which presumably could contain a 

"Trojan Horse") to create an edge from vertex Vl to V2, where V2 is a 

new vertex, P must write in directory Vl. Therefore, AC(P) ~ AC(Vl). 

P must also read Vl to detect name duplication errors. Therefore, 

AC(Vl) ~ AC(P). These two constraints together force AC(Vl) = AC(P). 

Since V2 is being created for the first time, P is effectively writing 

at the access class of V2. Therefore, AC(P) < AC(V2), and 

AC(Vl) ~ AC(V2). 
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The constraint AC(Vl) ~ AC(V2) is called the compatibility property 

by Bell in <Bell74>. In the Multics directory hierarchy, an object has 

one and only one parent. Therefore, compatibility must be enforced 

throughout the hierarchy, and the access class of a parent directory 

must always be less than or equal to any descendent. However, Reed's 

naming scheme allows multiple parents and naming loops. Assume we have 

three vertices Vl, V2, and V3, where AC(Vl) ~ AC(V2) ~ AC(V3). Assume 

Vl is a parent of V2, and V2 is a parent of V3. If compatibility must 

hold, then V3 cannot be a parent of Vl unless AC(Vl) = AC(V2) = AC(V3). 

Since this is an unreasonable constraint on the choice of access 

classes, this seems to preclude one of the generalities Reed desired in 

his naming scheme, the ability to have loops. 

Fortunately, compatibility is required only when creating vertices. 

If one wishes to define an edge from Vl to V2, where Vl and V2 already 

exist and not(AC(Vl) ~ AC(V2)), the only requirement is that 

AC(P) = AC(Vl) as before, and AC(V2) ~ AC(P) so that P may know of the 

existence of V2. Thus, at least for defining edges between existing 

vertices, the compatibility constraint need not be enforced. 

In simpler terms, when adding a vertex to the naming network, the 

first edge to be added must comply with the compatibility property, 

i.e., the access class of the first parent must be < the access class of 

the new vertex. However, once the first parent has been created, 

additional parent edges may be added without complying with the 

compatibility property. 
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8.2.3 Using Directories and Services 

In the previous section, we showed how P could use (and modify) 

directory Vl, if AC(P) = AC(Vl). Now assume we have directory Vl with 

an edge pointing to service V2. Assume AC(Vl) < AC(V2) and 

AC(P) = AC(V2). Ostensibly, P should be able to use V2, because the 

access classes are equal. However, for P to reach V2 through the naming 

system, P must send a message to Vl. (1) However, since AC(Vl) < AC(P), 

the confinement property forbids P sending a message to Vl. If Vl is 

implemented on a dedicated host Hl, then AC(Hl) = AC(Vl) < AC(P), and 

the confinement property restriction must hold. In that case, if Vl is 

the only parent of V2, then neither P nor any other untrusted process at 

any access class can ever get to V2. However, if Hl is a multilevel 

host and AC(P) < AC(Hl), then P can use Vl as follows: When P's message 

arrives at Hl, it must be fielded by a trusted process TP. TP is 

guaranteed not to contain a ''Trojan Horse''. TP notes the access class 

of P's message and creates an untrusted process Q such that 

AC(Q) = AC(P). Q can now read the contents of Vl, determine the port 

number of V2, and complete the directory search operation. Since Q is 

an untrusted process, it is forbidden by the confinement property to 

write in Vl. (2) 

(1) Section 7.2.2 discussed the origin of this problem. 

(2) One additional point must be noted. Directories are normally shared 
by many processes, and therefore synchronization is needed to assure 
consistency. Section 8.3 discusses a scheme for synchronization without 
writing. 
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It should be noted that this scheme for searching a directory at a 

lower access class is also useful for using services at a lower access 

class than the requesting process. For example, a multilevel host Hl 

may offer a PL/I compiler service at the lowest access class 

(unclassified). If AC(PL/I) < AC(P), then process P cannot send a 

message to the process implementing the PL/I service. However, if 

AC(P) ~ AC(Hl), then P's request can be fielded by a trusted process TP 

that creates an untrusted process Q, such that AC(Q) = AC(P). Q can now 

compile P's PL/I program, since Q can have read-execute-only access to 

the code that makes up the PL/I compiler. By creating Q, we have 

changed the read-write operations of sending messages back into the 

read-only operation that running the compiler would have been, had the 

system not been decentralized. 

There is no fundamental reason why there must be multiple trusted 

processes TP and untrusted processes Q for each service instance. For 

efficiency reasons, a host could choose to multiplex a single trusted 

process TP and a set of untrusted processes Q, with one Q per access 

class currently in use. Q's need not exist for every access class that 

might ever be used. Rather, TP can create Q's at the desired access 

classes as needed. 
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8.2.4 Explicit Deletion of Edges and Vertices 

Deleting edges and vertices from the naming network again leads us 

to questions concerning the compatibility property. These questions 

arise, because we wish deletion to occur cleanly, without leaving 

Vl 

Level 1 
No Categories 

V2 

Level 2 
Category A 

V4 

Level 2 
No Categories 

Figure 8.2 Deletion Example 

V3 

Level 2 
Category B 

so-called "lost objects" in the naming network. Figure 8.2 shows a 

portion of a possible naming hierarchy that we shall consider in this 

section. Vl, V2, and V3 are all parents of V4. AC(Vl) < AC(V4), which 
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maintains compatibility, but AC(V4) < AC(V2) and AC(V4) < AC(V3), which 

do not maintain compatibility. Note that AC(V2) and AC(V3) are 

disjoint, although both are> AC(Vl). We assume that the desired 

behavior of the naming system is that when all parent edges of V4 are 

deleted, then V4 is also deleted. 

For process P to delete the edge Vl.V4, P must write into Vl. 

Therefore, AC(P) < AC(Vl). For P to know of the existence of Vl.V4, P 

must read Vl. Therefore, AC(P) AC(Vl). P cannot delete V4 based 

solely on the deletion of Vl.V4. P does not have the right to know 

whether V2.V4 or V3.V4 exist, but P must assume that they might exist. 

P must somehow tell V4 that one of its parents has been deleted. If V4 

maintained a count of par~nts, then V4 could delete itself when the 

parent count went to zero. (1) Presumably, P sends a message to V4 when 

Vl.V4 is deleted. However, if another process Q wishes to delete V2.V4, 

a problem arises. We must require that AC(Q) = AC(V2), for the same 

reasons that we required AC(P) = AC(Vl). However, this implies 

AC(Q) > AC(V4), and the confinement property rules would forbid Q 

sending a message to V4. If H4, the host on which V4 is implemented is 

a dedicated host, then the confinement property must be enforced, and V4 

cannot be deleted. But, if H4 is a dedicated host, the edges V2.V4 and 

V3.V4 are useless for any type of access to V4. Therefore, the only 

interesting case is if H4 is a multilevel host. 

(1) This parent count mechanism is adapted from a similar mechanism in 
the Cambridge University CHAOS system <Slinn76>. 
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If H4 is a multilevel host, and if AC(V2) .::_ AC(H4), and if 

AC(V3) .::_ AC(H4), then Q can send the message to the trusted process TP 

that implements V4 on H4. TP can maintain the parent count and delete 

V4 when the count goes to zero. 

Unfortunately, we have overlooked a basic difficulty. If V3.V4 is 

the last parent edge of V4, the deletion of V4 is itself an operation 

that contains information at AC(V3) which may be visible at AC(V4). 

Even though the trusted process TP performs the deletion, TP is doing 

so, only because process Q at access class AC(V3) requested it. Since 

AC(V4) < AC(V3), this could constitute a confinement property violation 

if the deletion were visible at the access class of V4. 

Whether the deletion of V4 is visible at the access class of V4 is 

determined by the implementation of the network naming scheme in terms 

of the local naming scheme of H4. We will examine several possible 

implementations of local naming and evaluate their impact on this 

problem. 

8.2.4.l Multics Style Naming 

Multics very strictly enforces the compatibility property, because 

each object has only one parent. Therefore, the deletion of V4 must be 

visible at the access class of V4. The trusted process TP could attempt 

to copy V4 into a new segment at a higher access class when Vl.V4 is 

deleted. In this way V4 could seem to be deleted as soon as Vl.V4 was 
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deleted. However, since AC(V2) and AC(V3) are disjoint, there does not 

exist a common access class to which V4 could be upgraded that would not 

receive information in violation of the confinement property if either 

V3.V4 or V2.V4 were deleted. Therefore, V4 cannot be deleted when the 

last parent edge is deleted. Note that V4 is not a "lost object" if all 

its parent edges are deleted. It can still be accessed through the 

local Multics hierarchy, and could be deleted by a human being making an 

explicit decision to downgrade the information that no parent edges 

existed any longer. 

8.2.4.2 CAL Style Naming 

The CAL system <Lampson76> allowed objects in the hierarchy to have 

multiple parents. However, one of the parents was always distinguished 

as the "owner" of the object, and deletion of the object was determined 

by the "owner" parent. Therefore, although CAL allowed multiple 

parents, the "owner" characteristics would force CAL to have the same 

deletion difficulties as Multics. 

8.2.4.3 Naming With Revocable Capabilities 

If directories are implemented on a capability - based system as 

lists of revocable capabilities, (1) then the problem of deletion is 

(1) Redell <Redell74> describes the implementation of revocable 
capabilities. 
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solved. Each time TP receives a request for access to V4, it grants the 

access as a revocable capability. A separate capability is created for 

each access class that is requested, so that TP can selectively revoke 

by access class. Now when P requests that Vl.V4 be deleted, TP revokes 

all capabilities for V4 except those that were derived from V2 or VJ. 

Thus, all capabilities except those for which AC(V2) ~ AC(capability) or 

AC(V3) ~ AC(capability) are revoked. Once their capabilities have been 

revoked, any process at a lower access class can no longer determine the 

existence or non-existence of V4. Such a revocable capability naming 

scheme could be implemented on the HYDRA kernel <Cohen75>. 

8.2.4.4 UNIX Style Naming 

In the UNIX operating system <Ritchie74>, each object is allowed to 

have multiple parents, and there is no distinguished "owner" parent. If 

a security kernel were implemented for UNIX (1) in which UNIX files were 

mapped as segments in the PDP-11/45 name space, then an equivalent 

function to the capability revocation could be performed by TP when a 

parent edge is deleted. TP could request the kernel to do a "setfaults" 

operation (2) on V4 after Vl.V4 was deleted. As a result of the 

(1) Security kernels for UNIX are presently under development at the 
MITRE Corp. <Biba77> and at u.c.L.A. <Kampe77>. 

(2) "Setfaults" is a term taken from the Multics operating system. 
"Setfaults" sets fault bits in the segment descriptor words for a 
particular segment in the descriptor segments of all processes that 
currently have the segment mapped. "Setfaults" is used to force all 
processes to re-establish their access rights to a segment, for example, 
after an access control list has been modified. 
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"setfaults", all processes would be forced to re-establish their access 

to V4, and only those with access to V2 or V3 would succeed. Thus, a 

security kernel for UNIX could also allow V4 to be deleted 

automatically. 

8.2.5 Garbage Collection 

Reed's strategy for garbage collection based on timeouts can be 

implemented only on multilevel hosts. If we have two vertices Vl and 

V2, and Vl is the parent of V2, and AC(Vl) < AC(V2), then V2 cannot send 

messages to Vl extending its own timeout. If H2 is a multilevel host, 

then a trusted process TP could extend the timeouts, but only if 

AC(H2) < AC{Hl). 

At present, there is insufficient experience with decentralized 

computing systems to determine if the lack of a garbage collector is a 

serious restriction. Experiments with and without garbage collectors 

will be required to determine actual system requirements in this area. 
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8.3 Synchronization Without Writing 

In section 8.2.3 we identified the need for synchronization between 

untrusted processes at different access classes. Assume a shared data 

base exists and is modified by processes at a low access class, and 

there exist reader processes at a high access class who wish to read the 

data base, assuring consistency without sending information to the low 

access class processes. Dijkstra semaphores <Dijkstra68> are inadequate 

for this task, because two-way communication can be implemented with P 

and V operations. Semaphores are inherently read-write objects to all 

users. 

Reed and Kanodia <Reed77> propose a scheme for process 

synchronization using eventcounts that allows synchronization between 

processes at different access classes without violation of the 

confinement property. An eventcount is a non-decreasing integer 

variable on which two operations are allowed - read and advance. The 

read operation returns the value of the eventcount. It does not modify 

the eventcount in any way, and thus cannot be used to transmit 

information. The advance operation adds one to the value of the 

eventcount. Both read and advance must occur indivisibly. 

Assume we have a data base shared between two processes. One 

process is the writer process and operates at the access class of the 

data base. The other process is the reader process, and it operates at 

a higher access class. Two eventcounts called in and out are defined. 

The writer process advances in, updates the data base, and then advances 
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out. The reader process reads in, waits for the value of out 

(determined by reading out) to equal the value read from in, and then 

reads the data base. The reader now reads in again. If the value of in 

has changed, then the data base may have been written while the reader 

was reading, and the data extracted may be inconsistent. In this case, 

the reader process must go back and retry the entire operation. 

While this solution potentially requires the reader process to 

repeat some work, it allows synchronization without violating the 

confinement property. The solution described here is a simplified 

version of Reed and Kanodia's, and it works for any number of 

simultaneous reader processes and exactly one writer process. A 

solution for multiple writers is shown in <Reed77>, but was omitted 

here, due to its additional complexity. However, the multiple writers 

solution also preserves the confinement property. An equivalent 

solution was developed independently by White <White75>. 
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Chapter Nine 

Downgrading Information 

Downgrading of information is the process by which information 

classified at a particular access class is reclassified at a new lower 

access class. In the "paper world," downgrading of information occurs 

for two major reasons. First, a human being may read a classified 

document, extract an unclassified paragraph, and reprint it elsewhere. 

Second, information classified for national defense reasons has 

mandatory downgrading times specified by Presidential Executive Order 

11652 <Nixon72>. After a specified period of time, any classified 

document (with a few exceptions) must be downgraded to the next lower 

access class, and eventually, must be declassified completely. 

Because of the threat of "Trojan Horses," we cannot allow 

uncertified computer programs to perform either type of downgrading. 

This no-downgrading restriction is formalized as the confinement 

property. In this chapter, we shall explore the needs for computerized 

downgrading of information, and we shall see how distributing the 

downgrading functions among different processors can make the function 

easier to certify secure. 
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9.1 Why Downgrade Information? 

Downgrading information in a computer system may be desirable for 

two major reasons. First, files may be downgraded due to statutory or 

other requirements. This type of downgrading does not have a time 

criticality associated with it, and therefore can be accomplished by a 

trusted user such as a system security officer (SSO). This type of 

downgrading has been examined in depth in <Whitmore73> and <Schiller76> 

and will not be discussed here. The other major reason for downgrading 

is to provide "sanitized" versions of information. Sanitization 

generally involves extracting selected portions of the classified 

information that can be released at lower access classes. 

Sanitization often has a high degree of time criticality associated 

with it. If a user has constructed a file that he or she knows is 

unclassified, then the system should mark it as such. The user does not 

want to talk to the SSO, every time he or she wants to send mail at a 

lower access class. An example of a more serious timing constraint on 

sanitization is found in military intelligence centers. An intelligence 

analyst may be processing some highly classified reports. Based on his 

data correlations, the analyst determines that an enemy is about to 

attack. That information must be quickly sanitized and released to an 

operational commander, if effective countermeasures are to be taken. 

The commander sometimes cannot be given direct access to the 

intelligence reports, because that could compromise the intelligence 
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sources. Therefore, rapid sanitization of the data is essential. (1) 

Sanitization is also important in civilian applications. For 

example, a corporate executive may wish to generate a sanitized business 

projection from a highly sensitive long range projection data base. 

Such a sanitized projection might be required to respond to government 

queries, or, on a more routine basis, to generate next month's 

production schedule. 

Sanitized information may pass between processes on multilevel 

systems, but the more important application is for sanitizing 

information to be passed between dedicated host systems. If we can 

effectively sanitize messages, we have eliminated many of the drawbacks 

of one-way communication that were described in chapter 7. 

(1) Examples of the need for this type of sanitization to protect 
intelligence sources can be found in <Cave Brown75>. 
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9.2 Formularies 

Stork <Stork75> describes a technique for downgrading information 

based on preprogrammed sanitization criteria. If one could write a 

program that could examine messages to determine if they were properly 

classified, that program (called a formulary by Hoffman <Hoffman70>) 

could mediate the downgrading of information and allow a limited form of 

two-way communication between hosts operating at different dedicated 

access classes. The formulary could run in a trusted process on a 

security kernel based processor interposed in the communications path, 

or the formulary could run on a dedicated certified minicomputer. 

Formularies are very difficult to implement in general. They must 

make a classification decision based on the data present in a message, 

yet the message may have an arbitrarily complex interpretation. For 

example, if the message to be sanitized is the output of an electronic 

mailing system, then the f ormulary presumably would require a natural 

language understanding capability. Since general natural language 

understanding is beyond the current state of the art, at least some set 

of formularies are presently infeasible. Worse still, the formulary 

must be resistant to attack by "Trojan Horses." The formulary must be 

able to distinguish any classified information anywhere in the message. 

Since the "Trojan Horse" could encode information using an arbitrarily 

complex scheme, the feasibility of a formulary discerning the attack is 

questionable at best. For example, if the data to be sanitized is a 

table of 10-digit numbers, the "Trojan Horse" could encode information 
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by modifying the low order digits. As long as the formulary did not 

check for a high degree of accuracy (which could be impossible if the 

purpose of the untrusted "Trojan Horse" program was to compute the 

10-digit numbers for the first time), such communication could go 

completely undetected. Nibaldi describes this type of attack on 

formularies by "Trojan Horses" <Nibaldi76>. 

One type of formulary that can be implemented without a "Trojan 

Horse" threat is one that automates the statutory downgrading procedure. 

If every file is marked by the security kernel with its creation date 

and downgrading schedule, a fully automated formulary could perform the 

scheduled downgradings without vulnerability to "Trojan Horse" attacks. 

One very simple to implement formulary is one that refers its 

sanitization decision to a human being. All the formulary must do is 

present the data to the human being and await the human's response. 

Since human beings have a relatively sophisticated natural language 

capability, they can usually do much better than the formulary programs 

at understanding the content of a message. Human sanitization, of 

course, is what is used in the "paper world" for all downgrading 

decisions. A human review formulary must still be supported by a 

trusted process. Otherwise, the system could not assure that the 

human's decision would be implemented. One such human review formulary 

has been implemented by the MITRE Corp. in a security kernel 

demonstration system <Mack76>. In the demonstration scenario, an 

intelligence officer in an air defense center selectively downgrades 

classified air tracks, so that an uncleared operations officer may see 

upcoming threats and direct defensive forces to respond. 
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Human review introduces obvious limitations in the bandwidth of 

communications, but may be acceptable for many applications. Human 

beings are also subject to "Trojan Horse" attacks._ Humans are also 

vulnerable to obscure encodings of information in the messages. For 

example, a "Trojan Horse" could encode information in non-printing 

characters between legitimate words of a message. Since the 

non-printing characters are not displayed, the human reviewer would be 

unaware of their presence. The next section describes some approaches 

to aid the human reviewer, primarily through the use of secure 

intelligent terminals. 

It must be emphasized that all one can accomplish with human review 

is better security, never perfect security. The human will always make 

mistakes, and the "Trojan Horse" will always be able to sneak some 

things by. 
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9.3 Secure Intelligent Terminals 

In this section, we shall examine the potential of using multilevel 

secure terminals to alleviate some the difficulties associated with 

human sanitization of information. We shall assert that by moving some 

of the downgrading functions into an intelligent terminal, (1) we can 

improve the human engineering of the sanitizing operations, and can more 

easily verify the correct implementation of the security related 

functions. 

9.3.1 User Requirements 

From the user's point of view, a secure downgrading terminal should 

offer a number of features to assure both convenience of use and 

effective security. First, the user should be able to establish several 

simultaneous network connections at different access classes. These 

connections should be possible to both dedicated hosts and to untrusted 

processes on multilevel hosts. The terminal must assure that data from 

different connections is not mixed, since any of the processes to which 

the terminal is connected could have a "Trojan Horse." 

(1) By an intelligent terminal, we mean something far more capable that 
the current commercial "intelligent" terminals that can do no more than 
simple character insertion and deletion in a small buffer memory. An 
intelligent terminal, as used here, would have a significant processing 
capability and a reasonably large local memory. Such an intelligent 
terminal would be able to store complex data structures, display them 
for the user, and interact with the user in a sophisticated and dynamic 
way to update and edit those structures, with little if any interaction 
with the host computer. Examples of such intelligent terminals include 
the IMLAC PDS-4 and DEC GT-40 graphics display terminals and the new 
Xerox Soft Display Word Processor (SDWP) <Shemer77>. 
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The terminal should be capable of subdividing the display screen 

into small windows that can be separately controlled by each network 

connection. Windows should be of variable size, and the terminal should 

assure that a network connection is confined within its particular 

window. Ames discusses the needs for multiple windows in <Ames76>. 

Security labelling should be clear and reliable. The user should 

be able to determine at a glance the access class of each window, (1) 

The sophisticated user will want to write programs to run in the 

terminal to interact with software on the central host. Therefore, 

untrusted code supplied by a "Trojan Horse" should not be able to 

overwrite security labels displayed in "protected fields," nor should it 

be able to create false security labels. The user should be able to 

tell at a glance to which network connection the keyboard is currently 

attached. The user should be able to look at an access class display 

that is integral to the keyboard to determine the current access class. 

The multilevel terminal should have a controller mode in which the 

user can open and close network connections, allocate display windows, 

and determine status information about the network connections, etc. 

Since the controller functions must cross access class boundaries, they 

must be implemented in the terminal by a trusted process. 

(1) Note that the name of an access class may include both a level name 
and a set of several category names. The terminal must allow sufficient 
space for the complete access class name, although some types of 
abbreviation may be used. 
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Downgrading of information in a multilevel terminal would consist 

of identifying a candidate piece of text in a window at one access 

class, passing the text to the multilevel controller, and verifying that 

the text has been properly sanitized. The user should be provided a 

pointing device such as a lightpen or a mouse <Engelbart68> to identify 

the text to be downgraded. The candidate text should be highlighted in 

its window, and then redisplayed by the multilevel controller in another 

window. By using the redisplay technique, the user can verify that the 

text passed to the multilevel controller by uncertified software is the 

same text to which the user pointed with the mouse. The user should be 

able to approve the downgrade by pushing a single downgrade button. The 

terminal should keep a log of all downgrade requests to assure human 

accountability. The log could be kept on another host on the network, 

stored at the highest access class that is processed by the terminal. 

The log does not provide a direct security control, but does provide a 

mechanism for checking on the user who may make unwise or unauthorized 

downgrade requests. 

9.3.2 Implementation 

Implementation of the type of multilevel terminal described here is 

envisioned on a machine similar to the Xerox SDWP <Shemer77>. There are 

three major aspects of the implementation that have security 

implications - the processor and memory configuration, display 

windowing, and physical protection. 
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9.3.2.1 Processor and Memory Configuration 

Since the software for a terminal like the SDWP is going to be 

large and complex, it will be impossible to verify its complete 

correctness. Tilerefore, the multilevel terminal will require a security 

kernel. 

In a few years as LSI technology progresses, a machine like the 

PDP-11/45 or the Honeywell Secure Communications Processor (SCOMP) 

<Broadbridge76> will be available on a single board. Tilese machines 

have the descriptor based addressing and multiple protection states 

needed to run security kernels. Using such a very inexpensive machine 

would allow each terminal to run a security kernel supporting a moderate 

number of untrusted processes, one per network connection. Tile security 

kernel (or a trusted process) would handle the network interface, 

routing messages to each of the untrusted processes. Tile security 

kernel process would also allocate the keyboard and pointing device from 

process to process as requested by the user. However, there would 

always be a button on the keyboard to allow the user to communicate 

directly with the kernel. Tile button would be read only by the kernel, 

so that other processes that might be running "Trojan Horses" could not 

masquerade as the kernel. 
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9.3.2.2 Display Windowing 

Breaking up the display into windows of dynamically varying size is 

a difficult task on a convention display. If the display were assigned 

directly to an untrusted process, then a "Trojan Horse" could overwrite 

other windows and the security labels. If the display were assigned to 

the kernel, then the kernel would have to interpret all display commands 

to ensure that the window boundaries were observed. However, such 

software interpretation of display commands can be very slow and 

extremely difficult to verify correct. 

To overcome these difficulties, a concept is borrowed from the 

descriptor based processes to create what we shall call "descriptor 

based displays." The Xerox SDWP uses a bit map raster scan display 

driven by a display processor <Hartke77>, independent of the main 

processor in the terminal. If the display processor implemented two 

descriptors for accessing the bit map - an x-descriptor and a 

y-descriptor, (1) then the security kernel could load the descriptors 

with the x and y dimensions of the desired window and assign the display 

directly to the untrusted process. The display processor would assure 

that the bit map was addressed only within the limits of the x and 

y-descriptors. This technique is analogous to the use of descriptor 

based I/O in the SCOMP. Descriptor based I/O allows the user to 

directly control I/O channels, because the channels accept only virtual 

(1) Each descriptor would contain an upper and a lower bound for that 
particular dimension of the window. 
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addresses from the user. Analogously, a descriptor based bit map 

display allows the user to specify only virtual addresses within the bit 

map. 

9.3.2.3 Physical Protection 

Multilevel secure terminals have particular physical protection 

requirements. First, the terminal must be protected against physical 

tampering. Otherwise, the security kernel could be bypassed by 

surreptitiously modified circuitry. Second, storage media within the 

terminal must be erased after use. Such erase requirements may be very 

time consuming if the terminal includes a large, but slow disk. (1) 

Third, the terminal must store and protect cryptographic keys for 

communication on the network. If end-to-end encryption is used, 

multiple keys must be stored. A more detailed consideration of the 

physical security requirements for multilevel terminals can be found in 

<Gardella76>. 

(1) Alternatively, the disk (and other storage media) could be removed 
from the terminal and stored in a vault. 
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Chapter Ten 

Administration of the Lattice Model 

Use of the lattice security model in large decentralized computing 

systems introduces two administrative issues not present in centralized 

systems. First, although individual hosts will generally use only a 

small number of access classes, the network as a whole will use a large 

number of usually disjoint access classes. Second, as host systems join 

the network and new applications are created, new access classes must be 

defined. The network must provide a mechanism for conveniently defining 

new categories and assigning clearances for them without having to use a 

central Network Security Officer for every operation. 

10.l Proliferation of Access Classes 

Individual hosts on a network in general use only a small number of 

security categories to separate information. For example, the Honeywell 

Multics system supports eight sensitivity levels and up to eighteen 

categories <MPM75>. The eighteen categories are represented as an 

eighteen-bit array, so that any combination of the eighteen categories 

may be represented. Although this means that Multics potentially 

supports 8 sensitivity levels times 262,144 category combinations for a 

total of 2,097,152 access classes, in fact only a small portion of those 

combinations are ever used, because most files can be assigned to one or 
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at most a combination of two categories. Very few files contain 

information from several categories. 

As a network grows, however, the number of categories required will 

also tend to grow. Each host is likely to have some particular 

collection of sensitive data to be compartmentalized that does not match 

any already defined categories. If each host contributes only five 

categories, a network of only twenty hosts must support 100 categories 

for a total of l0,141,204,801,825,835,211,973,625,643,008 (which is 

2**103) access classes. Clearly this type of exponential proliferation 

must be limited. 

Since only a small number of categories are in use at any one time, 

the network can create and destroy processes dynamically in response to 

different access class demands. Therefore, although the network could 

support many millions of access classes, it would have to support at 

most one access class per packet transmitted, and therefore at most one 

untrusted process per packet. This is of course a -worst case, since a 

network connection at a given access class will typically exchange many 

thousands of packets at the same access class. 

However, we still have a problem representing the security labels 

in a network that supports a large number of categories. If the network 

supports 1000 categories (a not unreasonable number for a nation-wide 

commercial network that protects personal information with categories), 

then if the Multics technique of assigning one bit per category is used 

to allow representation of all possible combinations, then the header of 
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a packet must store 1000 bits just for the security label. The packet 

size for some networks has been suggested to be as small as 128 bits 

<Danet76>. In that particular case, security labels would require an 

800% overhead. (1) Even if the 1000 bits could be tolerated in 

communications, the 1000 bits must be stored with every object on every 

host in the network. 

To reduce these types of storage consumption, we propose to take 

advantage of the fact that very few categories are used in combination 

at any one time. If each category is assigned a unique 32-bit number, 

(2) then an access class could be represented as a sensitivity level, an 

integer indicating the number of categories to which this object 

belongs, and a list of the category numbers. If we support eight 

sensitivity levels (3 bits) and use 29 bits for the integer number of 

categories, then an object residing in only one category requires only 

64 bits for its security label. 

An even more compact representation is possible if unique numbers 

are assigned to frequently used category sets. Assuming a 3-bit level 

number and a 29-bit category set number, an access class could be stored 

in only 32 bits. If category sets exist for which category set numbers 

have not been assigned, but for which category numbers have been 

(1) This is assuming that every packet requires a security label. In 
the case of link encryption, this is true. For end-to-end encryption, 
the label could be implicit in the cryptographic key used to encipher 
the data. 

(2) A 32-bit category number is sufficient for approximately twenty 
categories each for every man, woman, and child in the United States of 
America. 
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assigned, then a special category set number could be reserved to mean 

that the list of categories notation described above is being used. 

For efficiency reasons, a host may wish to translate a small number 

of frequently used category numbers into the bit array representation 

described above. This translation could be performed independently at 

each host, as long as all network traffic used the standard labelling. 

10.2 Assignment of Categories and Clearances 

The lattice security model, by its very nature, suggests a 

centralized authority for handling category definitions and for 

assigning clearances. The non-discretionary nature of the lattice model 

says that the individual user may not make these decisions. In a single 

host, a system security officer (SSO) is responsible for assigning 

access classes and clearances. (1) However, in a network with 

decentralized authority, each host will have an SSO responsible for that 

particular host. The SSO's will want to periodically define new 

categories, assign clearances to users and to other hosts, etc. It is 

not acceptable that there be a network SSO to perform all of these 

tasks, because far too much time loss would be introduced into the 

system. Therefore, we make use of Branstad's concept of a Network 

Security Center <Branstad73> to provide an automated way to assign new 

categories and clearances. 

(1) <MAM76> describes the SSO functions for Multics. 
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When an SSO wishes to define a new category, he or she sends a 

message to the NSC requesting the category. Because the SSO functions 

run in a trusted process, the NSC can be assured that no "Trojan Horses" 

will interfere. The NSC assigns a 32-bit category number and returns it 

to the SSO. At the same time, the NSC marks the host on which the SSO 

is running as cleared to receive that category. Marking a host cleared 

presumably involves broadcasting that information to relevant 

communications processors in the network. Now the SSO can assign 

clearances within his or her own host. 

An SSO may also wish to grant clearances to other hosts on the 

network for categories to which he or she has access. This can also be 

accomplished by sending a message to the NSC, which then authorizes the 

appropriate hosts. The NSC should only allow an SSO to grant access to 

categories to which he or she is already authorized. The SSO can be 

trusted because: 

a. The SSO is already authorized the category, and 

b. The SSO functions run in a "Trojan Horse" - free trusted 

process. 

Since the SSO is limited to granting clearances for access classes to 

which he or she already has access, the SSO is limited from doing any 

serious damage beyond that already possible. 
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Chapter Eleven 

Limitations of End-to-End Encryption 

Throughout the rest of this thesis, it has been assumed that all 

communications have been encrypted to counter the threat of electronic 

eavesdropping through either wiretapping or listening to radio 

broadcasts. Two types of encryption were discussed in section 2.2.2, 

link encryption and end-to-end encryption. Link encryption has often 

been criticized, because all packets must pass through the network 

communications processors in plaintext. Therefore, it has often been 

claimed that end-to-end encryption was the preferable encryption 

technique for decentralized computing systems. Not only does end-to-end 

encryption ensure that communications processors see only ciphertext, 

but there is a general category of communications networks, broadcast 

networks, for which link encryption is inappropriate. Thus, one could 

easily conclude that end-to-end encryption is an ideal solution. 

Unfortunately, we shall show in this chapter that end-to-end 

encryption, far from being a panacea, can provide a "Trojan Horse" with 

an effective means of surreptitious communication. Thus, we shall show 

that link encryption is still necessary for many applications. For 

broadcast networks, where link encryption is inappropriate, the 

technique of dynamic key renaming is proposed to block the "Trojan 

Horse" threat for this particular class of end-to-end encryption. 
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11. 1 The Problem 

To understand the basic problem with end-to-end encryption, it is 

necessary to establish a scenario under which attack can occur. Two 

host computers exist between which two processes are communicating. 

Both hosts have security kernels, and therefore can be assumed to 

correctly label each outgoing packet with its proper security label. 

The two processes are untrusted, and therefore are operating at the same 

access class. For convenience, one will be designated the sender 

process and the other, the receiver. Since the processes are untrusted, 

both may contain 11 Troj an Horses, 11 

Between the two hosts is a network of communications processors. A 

large number of other hosts are also connected to the network, and 

multiple paths exist between any pair of hosts. The communications 

processors dynamically route packets through the network, selecting 

optimal paths based on changing traffic levels. The communications 

processors do not have security kernels and may contain "Trojan Horses. 11 

Each host is equipped with end-to-end encryption hardware located 

between the host and the local communications processor. Because the 

communications processors see only ciphertext, link encryption is not 

used. 

The scenario just described would seem to be secure, because all 

data is encrypted before being passed to the communications processors. 

However, certain control information must be passed in cleartext from 

the host to the communications processor to allow the network to 
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function. This control information consists of the destination address 

for the packet, the length of the packet, and the time between 

successive packet transmissions. (1) All three of these control signals 

can be controlled by the untrusted user process. Therefore, a "Trojan 

Horse" in the sending process could encode information in these control 

signals that 'NOuld be readable both by the untrusted software in the 

communications processors and by anyone tapping the communication links. 

The external wiretapper can be excluded by adding link encryption, but 

the "Trojan Horse" in the communications processor can still receive the 

information, fabricate a new packet, and route it to some other host, 

not authorized the access class of the sender and receiver processes. 

One could assert that the bandwidth available in this way is 

insufficient for the "Trojan Horse" to effectively communicate. 

However, one estimate in <Padlipsky77> suggests that over 100 bits per 

second could be passed with the destination address alone. Most 

teletype communication in the world occurs at 75 bits per second. 

Clearly, the "Trojan Horse" communicating in control signals is a 

significant threat. 

(1) The time between successive packets is passed implicitly. 
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11.2 Countermeasures 

The most obvious countermeasure to a "Trojan Horse" signalling via 

control information is to place a security kernel in every 

communications processor and use link encryption. Now any "Trojan 

Horses" remaining in the uncertified code of the communications 

processors are effectively confined by the security kernels and cannot 

leak any information, and the link encryption stops the wiretappers. 

However, now one can question why use end-to-end encryption at all. 

Since it provides no additional security, one could eliminate the 

end-to-end encryption and reduce the expense and complexity of the 

system. 

However, end-to-end encryption must still be considered for two 

reasons. First, two users of a shared communications processor may not 

be willing to trust either the certification of the security kernels or 

the persons with physical control of the processor. Ford and Chrysler 

would not trust a shared communications processor. Second, we have not 

considered broadcast networks in which link encryption is inappropriate. 

Therefore, the next three subsections deal with closing each of the 

control signal paths - packet length, destination address, and time 

between packets. Countermeasures will be considered specifically for 

broadcast networks. 
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11.2.1 Packet Length 

Closing the packet length channel is very simple. Require all 

packets to be the same fixed length, padding short packets out to the 

full length. Now, the length field is not needed by the communications 

processor, and the fact that the packet is padded should not be visible 

through the encryption. While padding all packets to maximum length 

certainly wastes some bandwidth for short packets, the single packet 

size can considerably simplify software buffer management. Therefore, 

the cost of fixed length packets might not be unreasonable. 

11.2.2 Destination Address 

Concealing the destination address of a packet is considerably more 

difficult than concealing the length. If the communications network 

must route packets based on address, then the address must appear in 

plaintext. (1) In a broadcast network, every packet, by definition, is 

transmitted to every host. (2) Therefore, each host could attempt to 

decrypt every incoming packet. If the host was not authorized to 

(1) As a special case, if a host communicates with only one other host 
at one predetermined access class, then the destination address can be 
filled in as a constant'by the security kernel or the cryptographic 
device, and therefore, "Trojan Horses" can no longer modulate the 
destination address. However, this limitation reduces the network to 
providing no more than the equivalent of a dedicated telephone line with 
link encryption. 

(2) Examples of broadcast networks include the Xerox Ethernet 
<Metcalfe76>, the U. C. Irvine Distributed Computing System <Rowe75>, 
and the ALOHA network <Abramson70>. 
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receive the packet, the encryption keys would fail to match, and the 

plaintext produced by the decryption device would be garbage. If the 

packet successfully decrypted, then the host could check the now 

decrypted destination address to be sure it was his own, so that any 

packets for which the host was authorized, but were not addressed to 

that host could be discarded. For an n-bit host address, there is a 

probability of 1 in 2**n that a key mismatch will decrypt to the correct 

address. The probability of this type of error can be reduced 

arbitrarily by adding redundancy to the packet. Either a checksumming 

technique could be used, or the message stream authentication techniques 

described by Kent <Kent76> could be used. 

11.2.3 Time Between Packets 

Modulation of the time between packet transmissions is an example 

of Lampson's "covert channels" <Lampson73>. Lipner <Lipner75> points 

out that covert channels can be closed by making the observed time 

required for an event independent of the actual time. Therefore, if 

each host were assigned a fixed time slot for transmission, the time 

between packets would be guaranteed to always be equal. Fixed time 

slots can certainly exact a heavy penalty in bandwidth. The performance 

aspects of time slot allocation are examined in <Roberts73>. 
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11.3 Dynamic Key Renaming 

In the previous section, the packet length channel was closed by 

using fixed length packets, and the time between packets channel was 

closed by using fixed time slots for transmission. However, the 

destination address channel was closed by requiring all hosts to attempt 

decryption of every incoming packet. Unfortunately, decrypting all 

messages is not as easy as it might seem. If a host is a multilevel 

host, servicing several hundred access classes, it may have to try, in 

the worst case, several hundred cryptographic keys to attempt to decrypt 

every incoming packet. (1) The host could try each key serially, but 

then could not keep up with the packet arrival rate. Alternatively, the 

host could try all the keys in parallel, but several hundred 

cryptographic devices connected in parallel would be far too unwieldy. 

Clearly, some other approach is needed to be able to select the correct 

key. 

To solve the dilemma of serial versus parallel decryption, we 

borrow a technique from Farber and Larsen's Dynamic Process Renaming 

strategy <Farber75> that was previously discussed in section 5.4. 

Farber and Larsen's scheme suffered from the fact that the data in each 

packet was not encrypted. We propose here to encrypt the destination 

(1) In the worst case, the multilevel host is communicating with several 
hundred dedicated hosts, all at different access classes. Therefore, 
each network connection would require a different cryptographic key. 
Such a situation could arise in a stock tranfer system, where "Trojan 
Horses" could be used to reveal the timing of large stock transactions, 
prior to their occuring. 
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address and data of each packet, and to use Farber and Larsen's renaming 

scheme, not to rename processes, but to rename cryptographic keys. 

11.3.1 Name Generation 

Assume that a name is associated with each cryptographic key in the 

system. The name could be a bit string long enough to be guaranteed 

Data Address Key Name 

1~ Encrypted ~1 

Figure 11.1 Typical Packet 

unique over some long period of time. Now if every encrypted packet 

were preceded by its key name, as shown in figure 11.1, then the 

receiving host could easily select the correct cryptographic key looking 

up the key name in an associative memory. Because we have end-to-end 

encrypted the address field and data field, we are no longer vulnerable 

to the direct traffic analysis to which Farber and Larsen's scheme fell 

prey. 
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Of course, now we are back where we started with end-to-end 

encryption. A "Trojan Horse" could modulate key names just as well as 

destination addresses. However, if key names were changed after every 

packet, just as Farber and Larsen changed process names, then no 

external agent could discern a pattern in the use of key names. Figure 

11.2 shows how a name generator could prefix every outgoing packet with 

a new name for its cryptographic key. Figure 11.3 shows how the name is 

stripped off an incoming packet and how the key is retrieved from the 

associative memory. After the key is retrieved, the next name is 

generated and stored in the associate memory. 

Since the name generators must pick names at random without any 

predictability, the name generation function itself could be a high 

quality encryption algorithm. The example in the figures shows both the 

sender and receiver generating names. Alternatively, the sender could 

include the next name in the encrypted portion of the packet itself. 

11.3.2 Sychronization 

Similar to Farber and Larsen's scheme, dynamic key renaming has a 

synchronization problem. If a packet is lost, the name generator and 

the associative memory will never get back in synchrony. This problem 

can be reduced by generating several names in advance to be used if a 

packet seems to be lost. (1) These special resynchronization key names 

(1) Presumably, timeouts are used to detect lost packets. 
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could be used to recover from lost packets. If resynchronization also 

fails, then the network connection must be considered to be broken, and 

a new network connection must be established in order to continue. 

11.3.3 Opening Connections 

Network connections could be opened by requesting a cryptographic 

key and an initial key name from a Network Security Center (NSC) 

<Branstad75>. Communication with the NSC could also use dynamic key 

renaming, if the initial keys and key names were entered manually. 

Clearly, a large number of resynchronization key names should be 

reserved for use with the NSC, since loss of the NSC connection has 

severe consequences for a host. 
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Chapter Twelve 

Authentication 

Authentication becomes of interest in decentralized computing 

systems when we wish to forward an authentication from one host to 

another. If two hosts are to cooperate, some form of authentication 

must always be forwarded, although the forwarding may be implicit in 

some cases. In contrast to the rest of this thesis, both 

non-discretionary and discretionary aspects are covered, because of the 

high potential for confusion between authentication and access control. 

Forwarding of authentication between processes on a single host is 

described in <Montgomery76>. The schemes described below are extensions 

of his concepts to network systems. 

12.l Forwarding Authentication in the Lattice Model 

Authentication forwarding is entirely implicit in the lattice 

model. As discussed in section 7.1.2, each packet or network port has 

an associated security label. From that label, any receiving process 

can immediately determine the access class of the sending process. The 

security labels are assured to be correct, because they are created 

either by the host security kernel if the sending host is multilevel, or 

by the network interface processor security kernel if the sending host 

is dedicated. As the labels are forwarded through the network, they are 
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protected from tampering by either encryption, if end-to-end encryption 

is used, or by the packet switch security kernels, if link encryption is 

used. 

12.2 Forwarding Authentication in Discretionary Systems 

In a discretionary security system, authentications cannot be 

passed implicitly like the security labels in the non-discretionary 

case. Users have names registered on various hosts of the network, and 

their access rights are determined as a function of those names. (1) 

The same user may have different names on different hosts. For example, 

a user may be named Smith on one host, JSmith on another, and M4409 on a 

third. However, all three names represent the same human being, and 

that human being would like to authenticate once and freely use all 

hosts on the network to which he or she has been granted access. 

Sections 5.1.1, 5.1.2, and 5.1.3 describe two ways of forwarding 

authentications - storing passwords and trusting a central authority. 

Both these schemes have serious drawbacks. Stored passwords can be 

easily distributed to other users and may be compromised while passing 

through the network. In addition, when the user wishes to change a 

password, he or she must transmit the password to all other hosts that 

may have previously received it. While clearly not impossible, such 

(1) Access is determined as a function of name in both Access Control 
List (ACL) systems and capability list systems. For example, the 
Cambridge Capability System <Slinn76> has the equivalent of an ACL to 
determine to whom a capability should be granted. 
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password distribution tasks can become quite onerous. The National 

Software Works (NSW) approach of establishing a central authority 

contradicts the basic goal of discretionary access controls - that of 

decentralized access decisions. The NSW's requirement that a host 

system implicitly trust the access decisions of a central authority may 

be totally unacceptable to the system administrator of some hosts. Ille 

system administrator may be willing to grant limited and well-bounded 

trust, but the NSW approach demands unlimited trust. 

As an alternative to the stored passwords and the central 

authority, a scheme for forwarded authentication based on proxy login is 

proposed. Proxy login allows one user to grant a proxy to another usero 

When the second user wishes to exercise the proxy, he or she requests a 

proxy login from the system and gives his or her own password. Assuming 

the first user has given permission, the second user is logged into the 

system tmder the first user's ID. Proxy login has been proposed for 

Multics <Saltzer74>, but has never been implemented. 

In a decentralized computing system, proxy login could be extended 

as follows. User Smith on host A grants a proxy to user JSmith on host 

B. Now, when JSmith on host B want to login to host A, JSmith sends a 

proxy login request to host A. Host B's operating system annotates the 

request with the information that the request came from JSmith on host 

B. Based on this information, host A can allow JSmith to login as Smith 

without presenting a password. 
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Because host B does not store a password for Smith at host A, user 

Smith knows that JSmith cannot give the password to anyone else, either 

deliberately or accidentally. Therefore, Smith need not broadcast his 

new host A password to many other hosts when it changes. Also, Smith 

can remove a name from the proxy list without having to change his 

password and therefore having to notify all other proxy recipients. It 

should be noted, however, that proxy login offers no advantage over 

stored passwords for protection from "Trojan Horses." User JSmith can 

still login as Smith, and any "Trojan Horse" that JSmith runs has full 

access to Smith's data, just as if it had Smith's password. 

Proxy login also offers advantages to the system administrator (SA) 

of host A. The SA need not completely trust host B. The proxy allows 

host B to gain access only to Smith's data and no other. Assuming host 

A is basically secure, the proxy has limited the potential damage that 

host B can do. No such damage limiter is present in the central 

authority scheme. 

Proxy login, however, does have several disadvantages. First, the 

system must provide a mechanism for defining proxies that is not 

vulnerable to "Trojan Horses." Presumably, a trusted process will meet 

this requirement. 

Second, by granting proxy login to JSmith on host B, Smith has 

implicitly granted proxy login to any proxies that have been granted by 

JSmith. In addition, anyone who can penetrate the access controls of 

host B or the system administrator of host B (if he or she misuses his 
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or her powers) can now also proxy for Smith. While Smith should be 

aware of these potential problems, he may not think of them when 

granting a proxy. Thus, Smith may be "surprised" that he granted more 

access than he thought. This is a serious problem, because most 

security failures are caused by human errors, not hardware or software 

errors. The human engineering of the proxy login (and the entire 

security system) must be carefully planned to assure that users to not 

make inadvertent blunders that have disastrous consequences. 

Proxy login has one other difficulty. User Smith will realize that 

he can also grant a proxy to his friend Jones on host C. Smith wants 

Jones to run one of his (Smith's) programs, but Jones does not have an 

account on host A. However, if Smith grants Jones a proxy, Jones now 

has access to all of Smith's data and all of Smith's money. (We assume 

that all computing resources must be paid for and that each user 

establishes an account against which computer usage is billed.) What 

Smith wants to do is limit Jones' access to just certain files and to a 

certain amount of money. One could invent ad hoc solutions to this 

problem, for example, using the Multics instance tag mechanism. 

However, a proper solution lies in implementing Rotenberg's authority 

hierarchy concept that would allow each level in an authority hierarchy 

to recursively define sub-authorities. Further investigation of this 

area is outside the scope of this thesis. The interested reader is 

referred to Rotenberg's PhD thesis <Rotenberg74>. 
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Chapter Thirteen 

Conclusions 

13.1 Where Have We Been? 

The goal of this thesis was to develop a consistent and effective 

approach to provide non-discretionary access controls for decentralized 

computing systems. To meet this goal, we first defined the semantics of 

the lattice model in light of expected threats. In particular, we 

defined the differences between dedicated hosts and multilevel hosts 

from the point of view of confinement. We then examined several levels 

of protocol for decentralized systems, linking each protocol to basic 

security requirements. 

At the basic host to host protocol level, we showed how packets can 

be labelled with their access class to assure delivery only to 

authorized destinations. We outlined a mechanism for one-way 

communication between hosts dedicated to different access classes, and 

showed how limited forms of error and flow control could be supported. 

At the first protocol level above basic packet communications, the 

lattice model was added to Reed's scheme for naming services in 

decentralized systems. We saw that access classes could be assigned to 

directories in the naming system, and that the compatibility requirement 

for non-decreasing access classes could be weakened considerably for 
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naming networks that allow multiple parents. However, we saw that 

revocation of access was essential to relaxing the compatibility 

requirements. If revocation were not possible, then relaxation of the 

compatibility requirements could leave objects in the naming network 

that could not be deleted. 

We next examined the concept of downgrading information, and saw 

how decentralized processing can make downgrading easier to perform. 

The multilevel intelligent terminal was introduced to aid the human 

being who must perform downgrading operations. To support the 

multilevel terminal's security kernel, descriptor based display 

addressing was proposed to allow untrusted software direct access to 

windows of the display screen. 

Decentralization of computing resources introduced new problems in 

administration of the lattice model. Access class proliferation, which 

caused some difficulty for Multics with only 18 categories, became a 

problem of the first magnitude when thousands of categories were 

contemplated in a national commercial network. A scheme was proposed to 

use Branstad's Network Security Centers to provide automated definition 

of new categories on demand. In addition, a scheme was proposed to 

assign unique numbers to categories and frequently used category sets. 

By using the unique numbers, a considerably more compact representation 

of access classes is possible. 

126 



Returning to the lowest level protocols again, we examined the use 

of end-to-end encryption in conjunction with the lattice model. Here, 

we found a fundamental limitation to the use of end-to-end encryption 

that results from the requirement that pack.et destination addresses 

appear in cleartext. We saw how this requirement was not present in 

broadcast networks, because all packets are broadcast to all possible 

receivers. However, encryption of the destination address led to the 

difficulty of identifying the correct decryption key from the 

potentially very large number of keys simultaneously in use by any given 

host. To resolve this problem, the strategy of dynamic key renaming was 

proposed. 

Finally, we examined the area of authentication forwarding, both 

for non-discretionary and discretionary systems. For non-discretionary 

systems, authentication is implicitly forwarded from host to host in the 

access class labels on packets. However, for most discretionary 

systems, authentication forwarding is accomplished by transmitting 

passwords from host to host. As an alternative to transmitting 

passwords, we proposed a technique for forwarding authentication based 

on proxy login. This technique allows a user to accept forwarded 

authentications, without requiring unlimited trust of the foreign host 

system. 
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13.2 Where Can We Go? 

Based on the ideas presented in this thesis, the pursuit of 

non-discretionary access control for decentralized systems should go in 

three major directions - implementation, legislation, and further 

research. 

13.2.1 Implementation 

Several of the concepts presented in this thesis can be implemented 

immediately. The protocols for host to host communication, both one-way 

and two-way, can be built into multilevel communications processors now. 

Such systems as SATIN IV and AUTODIN II will need these types of 

controls (and are planning them). Once networks with effective host to 

host security controls are operational, the naming schemes discussed in 

this thesis can be added to provide uniform secure naming of services 

across the entire networks. Experimental multilevel terminals can be 

built today using dedicated security kernel based processors. Until the 

costs are low enough to have on processor per terminal, a security 

kernel based processor could act as a concentrator for several displays, 

although this would significantly increase the complexity of the 

terminal controlling software and therefore, the difficulty of 

certification. One prototype multilevel terminal has already been 

developed <Ames76> using an 8080 microprocessor in an HP2649 display 

terminal, but this terminal has serious limitations due to its limited 
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screen capabilities, and due to its lack of a security kernel. A better 

multilevel terminal could be built using the Xerox SDWP with a security 

kernel. Finally, the proxy login concept could be easily added to 

systems presently on the ARPANET with little change in existing TELNET 

and FTP protocols. 

13.2.2 Legislation 

Throughout this thesis, we have assumed that categories provide an 

accurate model of the protection requirements for privacy. Based on a 

technical assessment of privacy, categories are indeed appropriate. 

However, current privacy legislation <Privacy74> is extremely vague 

concerning actual protection requirements. The present legislation 

requires only "adequate" protection of information, but leaves 

"adequate" undefined. If privacy is to be enforced by law, the 

semantics of protection of privacy must be clearly defined. Analogous 

to the Executive Order that defines the military classification system 

<Nixon72>, some type of legal definition of categories for privacy is 

needed. The definition should not list the precise categories to be 

used (since there may be many changing requirements for categories), but 

it should authorize the existence of categories, clearly define their 

semantics, and provide a legal mechanism for allocating categories. 
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13.2.3 Further Research 

Further research in non-discretionary access control for 

decentralized systems can be profitably engaged in several areas. Most 

importantly, research is still required to develop security kernels for 

large general purpose systems. While this thesis has assumed the 

existence of large multilevel secure service hosts, development of such 

systems, as described in <Rhode77>, has been terminated prematurely. 

While one way communication protocols can provide a limited capability 

for dedicated systems, the full benefits of decentralization of 

computing can only be realized with multilevel secure hosts. 

Second, as noted in section 8.2.5, research is needed in the area 

of garbage collection of multilevel, multihost data bases. Techniques 

are required to garbage collect, without violation of the confinement 

property. 

Finally, further research is needed in the area of end-to-end 

encryption to find protocols that allow the use of end-to-end encryption 

in non-broadcast networks. End-to-end encryption offers a number of 

advantages that would make it desirable in non-broadcast networks, if 

the cleartext address problem could be resolved. (Alternatively, 

research to increase available communication bandwidths could eliminate 

the need for non-broadcast networks.) 
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