
I,:\ I~()R 1\~r<)I{'{ F()ll
(~();'vi Pl ;~rl;Jl S(]~~N(]~~

1j u r1111·rly }'n;1·d .\l :\t.'!

l'vl ASSACH USET'TS
INSTITUTE <>F
TECI IN< >I ,()CY

Ml 'l' /LCS/TR-179

NON-DISCRETIONARY ACCESS CONTROL FOR

DECENTRALI ZED COMPUTING SYSTEMS

Paul A. Karger

'I'll i ~; rl'SL·arch was supported by the Advanced
Research Projects Agency of the Department
ul Defense and was monitored by the Office

nf Nav;1l Rv s l' ;1rch under Contr;1ct Nu. N00014-75-C-Oo61

'i ·-l'i IH llNOIO(;y SQlJARt. CAMBRIDGE. MASSACHUSETTS 02139

MIT/LCS/TR-179

NON-DISCRETIONARY ACCESS CONTROL FOR DECENTRALIZED COMPUTING SYSTEMS

Paul A. Karger

May 1977

This research was sponsored in part by the Advanced Research Projects
Agency (ARPA) of the Department of Defense under ARPA Order No. 2095,
which was monitored by the Office of Naval Research under Contract No.
N00014-75-C-0661.

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

MASSACHUSETTS 02139

ACKNOWLEDGMENTS

First, I would like to thank my thesis supervisor, Professor J. H.
Saltzer, for his guidance and inspiration during the research described
in this thesis. Not only did he provide valuable technical insights,
but he also provided excellent editorial comments with the rapid
turnaround time required by my short deadline for completion.

I must also thank all the members of the Computer Systems Research
Group for their comments and suggestions relating to my work. In
particular, Dr. David Clark provided several ideas relating to
authentication. David Reed's naming scheme was the inspiration for much
of chapter 8, and I am grateful to him for allowing me to present his
ideas here, prior to their publication. Stephen Kent helped me by
critically listening to many of my ideas and pointing out their faults
and inconsistencies. I must also thank Mrs. Muriel Webber for her
assistance with several of the figures.

I must also thank several individuals from the MITRE Corporation
for their advice and comments. Steven Lipner provided suggestions for
one-way communication and downgrading and provided valuable editorial
comments. Michael Padlipsky and David Snow provided suggestions on
end-to-end encryption, and Stanley Ames provided a number of ideas
relating to multilevel terminals.

Finally, special thanks must go to Lt. Col. Roger R. Schell of the
U. S. Air Force Electronic Systems Division who first introduced me to
non-discretionary access controls in 1972, and was the origin and
inspiration of many of the ideas presented in this thesis.

This report is based upon a thesis of the same title submitted to the
Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, on May 12, 1977 in partial fulfillment of the
requirements for the degree of Master of Science.

2

NON-DISCRETIONARY ACCESS CONTROL FOR DECENTRALIZED COMPUTING SYSTEMS

by

Paul Ashley Karger

Submitted to the

Department of Electrical Engineering and Computer Science

on May 12, 1977 in partial fulfillment of the requirements

for the Degree of Master of Science.

ABSTRACT

This thesis examines the issues relating to non-discretionary
access controls for decentralized computing systems. Decentralization
changes the basic character of a computing system from a set of
processes referencing a data base to a set of processes sending and
receiving messages. Because messages must be acknowledged, operations
that were read-only in a centralized system become read-write
operations. As a result, the lattice model of non-discretionary access
control, which mediates operations based on read versus read-write
considerations, does not allow direct transfer of algorithms from
centralized systems to decentralized systems. This thesis develops new
mechanisms that comply with the lattice model and provide the necessary
functions for effective decentralized computation.

Secure protocols at several different levels are presented in the
thesis. At the lowest level, a host to host protocol is shown that
allows communication between hosts lacking effective internal security
controls as well as hosts with effective internal security controls.
Above this level, a host independent naming scheme is presented that
allows generic naming of services in a manner consistent with the
lattice model. The use of decentralized processing to aid in the
downgrading of information is shown in the design of a secure
intelligent terminal. Schemes are presented to deal with the
decentralized administration of the lattice model, and with the
proliferation of access classes as the user community of a decentralized
system becomes more diverse. Limitations in the use of end-to-end
encryption when used with the lattice model are identified, and a scheme
is presented to relax these limitations for broadcast networks.
Finally, a scheme is presented for forwarding authentication information
between hosts on a network, without transmitting passwords (or their
equivalent) over the network.

Thesis Supervisor: Jerome H. Saltzer
Title: Professor of Computer Science and Engineering

3

TABLE OF CONTENTS

Acknowledgments .. 2

Abstract ... 3

Table of Contents .. 4

List of Figures . • . 7

1. Introduction

1.1 What is a Decentralized Computing System?
1.2 Why Non-Discretionary Access Controls?
1.3 Plan of the Thesis ..

9

10
11
12

2. Protection Goals for Distributed Systems •••••••••••••••••••••••• 13

3.

2.1
2.2

2.3

Basic Requirements ..
Threats ...

2.2.1 Threats
2.2.2 Threats

to Physical Security •••••••
to Communications Media

2.2.3 Software Related Threats
2.2.3.1
2.2.3.2

Authentication

Direct
Trojan

At tac ks ••••••
Horse Attacks

....................
........................ ..

Semantics of Access Control

3.1
3.2

Discretionary Access Control ••••••
Non-Discretionary Access Control
3.2.l Definition of the Lattice Model
3.2.2 How is Trojan Horse Protection Achieved?

4. Need for Effectiveness

4.1 Ineffectiveness of Conventional
4.2 The Security Kernel Approach

4

Systems

13
14
14
15
17
17
19
20

23

24
26
27
29

31

31
32

S. Review of Existing Approaches•.•••...•.•........ 35

5 .1 ARPANET ... 35
36
36
37
38
42
43
45

5.2
5.3

5.1.1 ARPANET TELNET and FTP Protocols •••••••••••••••••••
5 • 1. 2 RSEXEC ...
5.1.3 National Software Works
Net~rk Security Centers
Military Net~rks ...

5. 4 Dynamic Process Renaming
5.5 External Security Monitors ••••••••••••••••••••••••••••••••

6. Lattice Model in a Decentralized System 49

7. Basic Message Passing Protocols ••••••••••••••••••••••••••••••••• 53

7.1

7.2

Protocol Design ... · ·
7.1.1 Basic Packet Communication •••••••••••••••••••••••••
7.1.2 Adding Security to the Basic Protocol ••••••••••••••
7.1.3 Trojan Horses in the Sending Host ••••••••••••••••••

One-Way Communication · ·
7.2.1 Rationale ..

7.2.1.1 Military Airlift Command Example ••••••••••••
7.2.1.2 Corporate Planning Example ••••••••••••••••

7.2.2 Implementing One-Way Communications ••••••.•••••••••
7.2.3 Limitations of One-Way Communications ••••••••••••••

7.2.3.1 Lack of Reverse Communications ••••••••••••••
7.2.3.2 Protocol Difficulties .•••••••••••••••••.••••

53
53
54
57
59
59
59
60
61
62
62
64

8. Naming under the Lattice Model •••••••••••••••••••••••••••••••••• 69

8.1 Reed's Generic Naming Scheme ••••••••••••••••.••••••••••••• 71
8.1.1 Goals of the Naming Scheme •••••••••••••••.••••••••• 71
8.1.2 Basic Implementation •••••••••••••••••••••••••.•.••• 72
8.1.3 Garbage Collection 75
8.1.4 Other Topics 75

8.2 Incorporating the Lattice Model in the Naming Scheme •••••• 76
8. 2.1 Notation • . . • . • • • • • • • . . . 77
8.2.2 Creating Edges and Vertices •••••••••••••••••••••••• 77
8.2.3 Using Directories and Services ••••••••••••••••••••. 79
8.2.4 Explicit Deletion of Edges and Vertices •••••••••••• 81

8.2.4.1 Multics Style Naming •••••••••••••••••••••••• 83
8.2.4.2 CAL Style Naming •••••••••••••••••••••••••••• 84
8.2.4.3 Naming With Revocable Capabilities •••••••••• 84
8.2.4.4 UNIX Style Naming • 85

8.2.5 Garbage Collection 86
8.3 Synchronization Without Writing ••••••••••••••••••••••••••• 87

5

9. Downgrading Information ...
9. 1
9.2
9.3

Why Downgrade Information?
Formularies ..•..•.....• , ..•..

Intelligent Terminals ••••••••• Secure
9.3.l User Requirements
9.3.2 Implementation

9.3.2.1 Processor and Memory Configuration
9.3.2.2 Display Windowing
9.3.2.3 Physical Protection •••••••••

10. Administration of the Lattice Model

11.

10.l Proliferation of Access Classes •••••••••••••••
10.2 Assignment of Categories and Clearances •••••••

Limitations of End-to-End Encryption

11. 1 The Problem ..
11. 2

11. 3

Countermeasures
11.2.1 Packet Length
11.2.2 Destination Address
11.2.3 Time Between Packets
Dynamic Key Renaming

Name Generation

........................
.. ... 11.3.1

11.3.2
11.3.3

.................................... Sychronhation
Opening Connections

12. Authentication ...
12.1 Forwarding Authentication in the Lattice Model
12.2 Forwarding Authentication in Discretionary Systems

13. Conclusions ..
13.1 Where Have We Been?
13.2 Where Can We Go?

References

13.2.1
13.2.2
13.2.3

............................. Implementation
Legislation
Further Research

....................................
...

6

89

90
92
95
95
97
98
99

100

101

101
104

107

108
110
111
111
112
113
114
115
118

119

119
120

125

125
128
128
129
130

131

LIST OF FIGURES

Figure 5.1 Network Security Center Failure ••••••••••••••••••••••••• 40
Figure 7.1 Packet Flow 'Tiirough a Kernel Based Switch ••••••••••••••• 56
Figure 7.2 One-Way Communications •••••••••••••••••••••••••••••••••• 67
Figure 8.1 Typical Naming Network •••••••••••••••••••••••••••••••••• 73
Figure 8. 2 Deletion Example • . 81
Figure 11.1 Typical Packet With Key Name••••••••••••••••••••••••••• 114
Figure 11.2 Transmission Name Generator •••••••••••••••••••••••••••• 116
Figure 11.3 Reception Name Generator ••••••••••••••••••••••••••••••• 117

7

[This page intentionally left blank.]

8

Chapter One

Introduction

Decentralized computing systems are becoming more and more common

throughout the computing industry. Although we have had decentralized

systems of one sort or another since the development of the SAGE air

defense system <Everett57> in the 1950's, the recent dramatic reductions

in the cost of computing hardware have led to a growing feeling that

decentralized computing systems offer a number of advantages in

providing efficient and economical computational power to the user.

The need for protection of information in computer based systems is

clear. The numerous examples of computer related crimes <Parker73>, the

need to protect national defense information, and the recent passage of

laws guaranteeing the protection of personal data <Privacy74> have all

led to a growing awareness and concern for computer security.

Decentralized systems can have an adverse impact on the security of an

individual computer system by:

"Potentially making the security controls on a
specific host irrelevant by making information
accessible to other hosts that do not have effective
security controls," and by

"Introducing additional vulnerabilities through the
lack of effective security controls in network
elements, e.g., insecure network communications
processors." <Schell76>

9

However, a decentralized computing system can also enhance the security

of some computational tasks. Decentralization of computing resources

can introduce protection through physical separation, and a properly

designed communications subsystem can ensure confinement of sensitive

information within selected boundaries.

1.1 What is a Decentralized Computing System?

The term "decentralized computer system" is used in this thesis,

primarily because the term "distributed computer system" has come to

mean all things to all people. Distributed computing can refer to

anything from a network of heterogeneous systems like the ARPANET to the

IBM Attached Support Processor system in whLh a 360/40 handled 1/0

functions for a 360/65 batch processor. Therefore, to assure a more

precise understanding, the term "decentralized computing" will be used

throughout this thesis.

The types of systems to be considered in this thesis as

decentralized systems are quite varied. They range from networks of

independent heterogeneous systems, such as the ARPANET, to collections

of geographically distributed processors, all performing a single

special purpose function. (1) Simple time sharing systems and tightly

(1) SAGE <Everett57> is an example of such a dedicated single function
decentralized system. Each SAGE center was capable of passing aircraft
tracks to neighboring centers and correlating tracks of the same
aircraft computed by two different centers. SAGE is certainly not a
very interesting system from the point of view of research in the
functionality of decentralized systems except for a historical

10

coupled multiprocessing systems are not of interest. Similarly, remote

terminals with simple editing or "fill in the blanks" capabilities are

not of interest. However, intelligent terminals with a significant

internal processing capability are of interest. Components of

decentralized systems usually can run autonomously, and often are under

independent administrative control.

1.2 Why Non-Discretionary Access Controls?

The primary emphasis of this thesis is on non-discretionary access

controls, access controls that are determined by the management of the

computing facility and may not be changed at the discretion of the

ordinary users. This emphasis on non-discretionary controls exists for

two reasons. First, decentralization of the computing systems

introduces new problems for a non-discretionary access control system.

Different host computer systems may have different non-discretionary

authorizations, yet still wish to communicate. Second, and perhaps the

more important reason, formal statements can be made about the security

of a non-discretionary system that cannot be made about the more general

discretionary systems. Since non-discretionary access controls can

effectively model a wide variety of security policies that match many

real world requirements, restricting the view to non-discretionary

access controls does not seem unreasonable.

perspective. However, from a security and protection point of view,
systems such as SAGE have many of the same characteristics as more
sophisticated decentralized systems.

11

1.3 Plan of the Thesis

This thesis examines the issues and requirements of

non-discretionary access controls in decentralized computing systems, to

develop a consistent approach to the protection of information.

Chapters 2 and 3 outline the basic protection goals for decentralized

systems and explain the rationale for the use of non-discretionary

access controls. Chapter 4 describes the security kernel technology

upon which much of this thesis depends, and chapter 5 summarizes much of

the related work on providing security in decentralized or network-based

systems. Security weaknesses in a number of these approaches are

identified.

Chapter 6 outlines the basic scenario under which the lattice model

will be enforced in a decentralized system. Chapter 7 discusses the

basic message passing protocols under the lattice model. Chapter 8

outlines a service naming scheme that maintains consistency under the

lattice model. Chapter 9 discusses the problem of downgrading

information from one security level to another, and suggests how

decentralized processing can aid in this task. The administrative

aspects of applying the lattice model in a geographically and

administratively decentralized system are examined in Chapter 10. The

interactions of the lattice model and end-to-end encryption are covered

in Chapter 11, and finally authentication is covered in Chapter 12.

12

Chapter Two

Protection Goals for Distributed Systems

Before we can examine techniques for assuring protection of

information in decentralized systems, we must understand what we mean by

protection. This chapter and the next present a basic set of security

requirements that model much of what people mean when they say they want

protection of information. Unfortunately, certain aspects of the

protection problems must be excluded from consideration, because their

solutions are intractable.

2.1 Basic Requirements

There are three basic requirements for information security in

computing systems:

a. Information shall not be released to unauthorized individuals.

b. Information shall not be entered or modified by unauthorized

individuals.

c. The services of the computing system shall not be denied to

authorized individuals by unauthorized individuals.

Several interesting points should be noted about these requirements.

First, the requirements are stated in a negative form. They state

properties that a system must not have. Second, the requirements refer

13

only to individuals, that is, human beings. They make no reference to

programs or processes or jobs. Third, the requirements do not define

the threat environment of the system. How far are unauthorized

individuals likely to go to achieve their illicit goals?

2.2 Threats

For purposes of this thesis, we shall assume a high threat

environment exists for the decentralized computing system.

Unauthorized, malicious individuals or organizations are assumed to

exist that are willing to invest large sums of money and to commit

illegal acts to obtain information illicitly. Such high threat

environments exist for national defense information and for high value

civilian data such as electronic funds transfer, stock transfer, or

trade secret information. Malicious individuals may attempt to gain

physical access to computing facilities or storage media, they may

attempt to attack the communications media, or they may attempt to

attack the software of a computing system.

2.2.1 Threats to Physical Security

The simplest attacks on the security of computing systems

(decentralized or otherwise) are direct physical attacks. If an

unauthorized individual can gain access to the front panel of a computer

or can steal or copy storage media, then there is little or nothing that

14

can be done to protect the information. (1) Physical security is not

the major topic of this thesis. Therefore, it is assumed that adequate

physical protection of facilities is provided by some combination of

guards, walls, fences, alarms, etc.

Other aspects of physical security that must be considered include

emanations security and erase procedures. Emanations security refers to

protection against electromagnetic or acoustic emanations from

electronic equipment that may reveal the contents of the data being

processed. Erase procedures are required for magnetic storage media

that may be released or disposed of after use. It will be assumed in

this thesis that adequate erase procedures are used, and that emanations

security is assured throughout the decentralized computing system

(including both central processing facilities and remote terminal

sites). Department of Defense guidelines on emanations security and

erase procedures can be found in <DoD73>.

2.2.2 Threats to Communications Media

Although physical security can be assured at the various nodes of a

decentralized computing system, it is generally impossible to guard the

communications links between nodes that may extend over thousands of

(1) One could certainly encrypt information before it is stored on
easily portable (and therefore easily stealable) storage media.
However, the encryption mechanism and encryption keys must be physically
present somewhere in the computing system, and therefore may also be
subject to theft.

15

miles of cables or may even include radio or satellite radio links. Not

only can a hostile agent listen in to communications, but the agent can

also introduce spurious messages into the communications medium.

Most often, encryption is used to protect data in a communications

medium. Encryption systems normally transform data (called cleartext or

plaintext) into a non-intelligible form (called ciphertext) that is then

transmitted. A basic introduction to cryptography can be found in

<Kahn67>.

In computer communications systems, two basic types of encryption

are typically used: link encryption and end-to-end encryption. In link

encryption, each individual communications link is equipped with a pair

of encryption devices. Messages appear in plaintext in individual

switching nodes, but are always encrypted on communications links. Link

encryption is the most commonly used form of encryption today.

In end-to-end encryption, a message is encrypted before it is

inserted into the communications network, and it is not decrypted until

it reaches its destination. Thus, switching nodes see only the

ciphertext form of messages.

The use of encryption in decentralized computing systems is

discussed more thoroughly in <Kent76> and <Diffie76> and will not be

covered in detail in this thesis, with the exception of chapter 11.

Throughout this thesis, it will be assumed that all communications are

encrypted, either with link or end-to-end encryption.

16

One important point must be noted here. Encryption is not a

panacea. If other security controls are inadequate, then it may be

possible to gain surreptitious access to cleartext information, either

by attacking the system while it is processing cleartext, or by

subverting the encryption mechanism itself to decrypt the material on

demand.

2.2.3 Software Related Threats

The primary focus of this thesis will be on software related

threats to decentralized computing systems. Software threats can be

categorized into direct attacks and so-called "Trojan Horse" attacks.

2.2.3.1 Direct Attacks

Direct attacks on the software security controls of a system

exploit the fact that most software systems have bugs. For example if a

legitimate user of a system can find a flaw in the implementation of the

security controls, then that user can exploit the flaw to gain access to

information to which the user was not authorized. Some of the classes

of direct attacks are described by Anderson <Anderson72>. The most

interesting fact to note is that there are no published reports of a

major commercial operating system withstanding a direct attack on its

software security controls.

17

A common but often ineffective response to direct attacks on

software security controls is to note that such direct attacks generally

require an on-line ptogrammihg capability. Therefore, it is often

assumed that the system could be made safe if the users were confined to

either only a restricted higher order language or only a query oriented

data management system.

<Anderson72> shows the vulnerability of a system to direct attack

from a restricted higher order language. Anderson successfully

penetrated the Honeywell 635/GCOS III Time Sharing System from a

restricted FORTRAN subset that barred the use of subroutine calls and

file I/O statements. All that Anderson required to gain access to the

system password file were FORTRAN arithmetic assignment statements and

ASSIGNED GOTO statements.

One could claim that FORTRAN is not the proper language, and that a

language such as Euclid <Lampson77>, or CLO <Liskov77>, or ALPHARD

<Shaw77> could prevent direct attacks on the security controls.

However, the compilers for such languages will tend to be sufficiently

complex, and will change sufficiently often, that efficient and verified

correct compilers cannot be expected for many years. (1)

Chapter 4 briefly outlines the security kernel technology, which is

the most promising approach to countering the threat of direct software

attacks. The security kernel addresses direct attacks through the use

(1) That is not to say that languages such as Euclid, CLO, or ALPHARD
could not be used to produce verifiable programs now, only that the
compilers will not be verified for some time.

18

of software that has been verified using mathematical proof of

correctness techniques.

2.2.3.2 Trojan Horse Attacks

Going beyond the restricted higher order languages, the query

oriented data management systems would seem to be resilient to direct

attacks, if they are implemented correctly. (Most such query systems

are not implemented correctly and have their own security flaws.)

However, such extremely restricted systems that presumably have no

accidentally introduced security flaws, fall victim to the so-called

"Trojan Horse" attacks in which clandestine security flaws are

deliberately introduced into the software. (1) Clandestine software

modifications may be introduced at any point in a system's life cycle.

They may be introduced during software development, distribution, or

maintenance, by either the individuals responsible for the development,

distribution, or maintenance, or by anyone who may successfully attack

the computer systems used for development, distribution, or maintenance.

For example, the query system could be attacked by a "Trojan Horse"

in the underlying operating system's teletype input handler. The

"Trojan Horse" would scan all input from the user prior to giving the

characters to the query system. If the user ever typed a particular

unique pattern that served as a password, then the "Trojan Horse" would

(1) This class of attack was first identified by D. Edwards in
<Anderson72>.

19

allow the user to access data without going through the query system.

Such "Trojan Horses" are described in more detail by Karger and Schell

in <Karger74>. Karger and Schell also demonstrated the ease of

insertion of clandestine software modifications, by placing such a

modfication in the Honeywell Multics operating system. That particular

modification escaped detection during quality assurance and was

distributed to all systems in the field. (1) In the next chapter, we

introduce non-discretionary access controls that provide a mechanism for

combatting the "Trojan Horse" threat.

2.3 Authentication

In any type of security system, the identity of the user must be

authenticated prior to granting the user access to the computing

system. In a decentralized system, a user wants to be authenticated on

one system, and have that authentication be forwarded automatically to

other systems on which the user is authorized. The technology for user

authentication has been studied extensively elsewhere and will not be

covered in depth in this thesis. Cotton and Meissner <Cotton75>

describe a wide range of user authenticators ranging from simple

passwords to magnetic stripe credit - type cards to fingerprint or

voiceprint readers to genetic code readers. Richardson and Potter

<Richardson73> describe in detail one authentication scheme using a

combination of passwords and magnetic stripe cards.

(1) The clandestine modification was in fact benign, in order to avoid
actual damage to customer systems.

20

Authentication need not even be performed by the computer. At the

Air Force Data Services Center (AFDSC) in the Pentagon, terminals are

segregated into rooms by their authorized security levels. A guard

controls entry to each room assuring that only properly cleared users

ever enter the rooms. Since the terminals in the rooms are uniquely

identified to the central computer by link encryption, (1) the central

computer can assume that any user on a specific terminal is cleared to

the highest access class for which the terminal is authorized. In

theory, no further authentication would be required. In fact, the AFDSC

does also require password checks. However, the passwords serve only as

a redundant check. Passwords are not the primary authenticators. The

AFDSC procedures are described in <Burke74>.

Regardless of the type of authenticator chosen, authentication

information must be passed from host to host in a decentralized

computing system. Chapter 12 describes two schemes for forwarding

authentication between host computer systems.

(1) Link encryption assures that any intruder on the communications link
could not generate intelligible commands to the host. The use of
encryption for authentication is described in more detail in <Kent76>.

21

[This page intentionally left blank.]

22

Chapter Three

Semantics of Access Control

Before we can propose mechanisms to enforce protection of

information, we must have the semantics of the desired access control

policy clearly defined. Without a clear understanding of the policy to

be enforced, one has no basis on which to assume that one's protection

mechanisms will serve any useful purpose. The vague security goals

discussed in the previous chapter are inadequate to precisely define the

requirements for a secure computing system (decentralized or otherwise).

In this chapter, we shall examine the two primary models of access

control - discretionary and non-discretionary. We shall also see that,

in general, formal statements of security can only be made about

non-discretionary systems.

23

3.1 Discretionary Access Control

A very general model of access control is Lampson's access matrix

<Lampson71> in which the access rights of each subject to each

information containing object are defined in entries of the matrix.

Normally, subjects are represented by rows of the matrix and objects by

the columns. By introducing attributes such as "owner" or "control",

the matrix can define not only access rights to objects, but also access

rights to change entries in the access matrix itself.

Two generic implementations of the access matrix have evolved that

encompass most actual computer security systems. Treating the access

matrix by columns, we get an Access Control List (AGL) system such as is

used in Multics <Organick72>. Each object has an associated AGL that

lists the access rights of subjects. When a subject wishes to gain

access to an object, the AGL must be consulted to determine access

rights.

If the access matrix is treated by rows instead of columns, we get

a capability system such as is described by Fabry <Fabry74>. Each

subject has a capability list that describes the objects to which the

subject has access rights. When a subject wishes to access an object,

the subject merely invokes the appropriate capability. Possession of

the capability implies that the subject has access rights to the object.

24

Both the ACL and the capability systems are usually implemented as

discretionary access control systems. By discretionary, we mean that

the "owner" of an object can determine at his or her own discretion who

may have access to information containing objects. For example, in the

Multics implementation of ACL's, an ACL may be modified by any user who

has modify permission to the directory containing that ACL. No

constraint is placed on the user as to what may be placed on the ACL.

Similarly, a process that owns a capability can give that capability to

any other process, again without constraint.

The basic problem of discretionary controls is, of course, their

vulnerability to attack by "Trojan Horses." ACL's and capabilities must

be manipulated by programs - programs that may contain "Trojan Horses."

Such "Trojan Horse" laden programs could surreptitiously modify an ACL

without the ever realizing what had happened. For example, the Multics

PL/I compiler must change the ACL of the segment into which the object

code is placed. First, the compiler must set the ACL to read-write to

be able to store the new machine instructions. Then it must set the ACL

to read-execute to enforce thee Multics pure procedure conventions. A

"Trojan Horse" in the compiler could surreptitiously add other names to

the ACL without difficulty. (1)

(1) The Multics compilers could easily be changed to not modify ACL's,
but to get "temporary write" permission to the object segments.
However, it is still true that programs subject to "Trojan Horse" attack
must manipulate ACL's. The user may choose to borrow a program to
modify the ACL's of all segments that match some particular selection
criteria. Such a program must modify ACL's and could contain a "Trojan
Horse."

25

The limitations of discretionary access controls have been formally

modeled by Harrison, Ruzzo, and Ullman <Harrison76>. Harrison, et al.

show that for a fully general access matrix, certain security questions

are undecidable. In particular, they show that the so-called

"confinement problem" is one such undecidable problem. The "confinement

problem," as stated by Lampson in <Lampson73>, asks whether there exists

a mechanism by which a subject that is authorized access to an object

can leak the information contained in that object to some other subject

that is not authorized access. If it can be shown that no such

mechanism exists for a particular security system, then that security

system is not vulnerable to "Trojan Horses." Harrison's results show

that discretionary security systems may be vulnerable to "Trojan Horse"

attacks, and that in general, it is impossible to determine if an

information leak exists.

3.2 Non-Discretionary Access Control

Harrison, et al. point out in their paper that although the

confinement problem is undecidable for a fully general access matrix,

there exist a large number of security systems for which the confinement

problem is decidable. Lipner <Lipner75> and Denning <Denning76> have

shown that under the so-called "lattice security model," the confinement

problem is decidable. The lattice model derives originally from the

military classification system and is a non-discretionary access control

system. Objects are assigned access classes and subjects are assigned

26

clearances. For a subject to gain access to an object, it must be

"cleared" for the the object. A subject does not have the discretion to

grant access to objects to other subject who are not cleared for the

objects.

3.2.1 Definition of the Lattice Model

The fundamental basis of the lattice model is a set of partially

ordered access classes from which subject clearances and object

classifications are chosen. The particular interpretation of the access

classes is not critical, as long as a partial ordering can be assigned.

The lattice requires only that there be a lowest access class that is <

any other access class and a highest access class such that any access

class is < the highest access class. Two arbitrary access classes need

not have a <, >, or = relationship, but may be disjoint.

One very simple lattice consists of two access classes - SECRET and

PUBLIC. The ordering (which in this case is a total ordering) is

PUBLIC < SECRET.

A more commonly used lattice is the military security lattice. In

the military lattice, an access class has two components - a sensitivity

level and a category set. The sensitivity levels are UNCLASSIFIED,

CONFIDENTIAL, SECRET, and TOP SECRET. Categories represent

compartmentalization of each sensitivity level into collections of

information that require special access permission. To gain access to a

27

category, one must not only be cleared for the sensitivity level, but

one must also be authorized the category. Examples of categories

include NUCLEAR and NATO. If an object is classified SECRET-NATO, then

even if a subject has a TGP SECRET ·clearance, the subject cannot gain

access to the object unless the subject has been authorized NATO access.

Since information may reside in multiple categories, an access class

consists of a sensitivity level and a set of categories. Access class A

is < access class B, if and only if A's sensitivity level is less than

B's, and A's category set is a subset of B's, Based on this definition,

only a partial ordering exists, since two access classes may be <, =, >,

or disjoint. A lowest access class (UNCLASSIFIED-no categories) and a

highest access class (TOP SECRET-all categories) both exist, making the

system a lattice.

More complex lattices could be constructed to model other types of

security systems such as corporate proprietary systems or systems

subject to the Privacy Act of 1974. Turn <Turn76> describes several

proposed privacy protection schemes that are based on an ordered set of

sensitivity levels. One could also assign categories to each particular

type of personal data. A common sensitivity level system could be used,

or each category could have its own sensitivity levels, independent of

other categories. As long as the partial ordering is maintained,

essentially arbitrary security lattices can be defined.

For the remainder of this thesis, the lattice based on the

sensitivity level and category set combination will be used. This

particular lattice is commonly used (by the military) and is

28

representative of the basic properties of lattice models. In

particular, it exhibits access classes that are disjoint, and therefore

are neither less than, greater than, nor equal to each other.

3.2.2 How is Trojan Horse Protection Achieved?

Thus far, we have defined the lattice model, but we have not shown

how the "Trojan Horse" threat is countered. Lattice type systems have

been formally modeled by the MITRE Corp. <Bell75> and Case Western

Reserve University <Walter75>. Out of these models have come two

properties that must be enforced to assure invulnerability to "Trojan

Horses."

First, the simple security property requires that if a subject

wishes to read (or execute) an object, the access class of the object

must be < the access class of the subject. Informally, a subject must

be cleared to read an object.

Second, the confinement property (1) requires that if a subject

wishes to write an object, the access class of the subject must be < the

access class of the object. Thus, a "Trojan Horse" can never write

information at a "lower" access class and can do no damage. The

detailed motivation for the confinement property is discussed in more

detail in <Bell75>.

(1) The confinement property was originally called the *-property by
Bell and LaPadula <Bell73>.

29

As an alternative to the confinement property, Weissman's ADEPT-SO

system <Weissman69> enforced a "high water mark" rule. Every subject in

ADEPT-SO had a current access class parameter that was the maximum

access class from which that subject had ever read information. The

current access class moved up as the subject read higher access class

material. Thus, the name "high water mark" came from the fact that the

current access class could move up, but not down.

Whenever a subject S wished to read an object O, the current access

class of S was set to the maximum of the access class of 0 and the

current access class of S. Of course, if the maximum access class of S

was less than the access class of 0, then access would be denied. If S

wished to create a new object O', the access class of O' would be set to

the current access class of S. ADEPT-SO, unfortunately, did not

control writing into already existing objects, and so could not

completely assure confinement of Trojan Horses. However, the "high

water mark" system could be easily modified to include a rule that if a

subject S wishes to write into an already existing object 0, the access

class of S must be equal to the access class of O. It should be noted

that 0 cannot be upgraded to the access class of S. Such an upgrade

would be visible to subjects at a lower access class than S, and

therefore, would constitute a form of communication that could be

exploited by "Trojan Horses."

30

Chapter Four

Need for Effectiveness

Thus far, we have examined the goals of security systems, and we

have proposed mechanisms to enforce desired security policies. However,

even the best security policy is worthless if its implementation is not

effective and complete. In this chapter, we shall briefly summarize how

computer security systems are penetrated and how effective security can

be achieved. The security kernel technology, upon which most of this

thesis depends, is briefly described.

4.1 Ineffectiveness of Conventional Systems

Numerous penetration studies have demonstrated that conventional

computing systems do not have effective security controls. In the

published literature, such systems as Honeywell GCOS <Anderson71>, IBM

OS/360/370 <Abbott76>, IBM VM/370 <Attanasio76>, Bolt Beranek and Newman

TENEX <Abbott76>, Univac Exec 8 <Abbott76>, and Honeywell Multics

<Karger74> have been examined and found lacking in effective security

controls. Further,, only a small percentage of all system penetrations

are reported in the literature. The evidence of successful penetration

is usually kept under close guard by most managers, and thus little ever

reaches the published literature.

31

Based on the results of the numerous and highly successful

penetration studies, it can be seen that there exist fundamental

security weaknesses originating from the basic complexity of

conventional operating systems. Even if every known security weakness

in a particular system were repaired, there would be no basis on which

to believe that every weakness had been found. Further, the

modifications to repair the security vulnerabilities are often so

complex that they themselves may introduce new vulnerabilities.

Anderson <Anderson72> reports that after extensive security "repairs"

had been undertaken for one large commercial system that had been

penetrated, the newly "repaired" system succumbed to a new penetration

after less than one person-week of effort.

4.2 The Security Kernel Approach

To overcome the weaknesses of conventional systems, an approach

based on the use of security kernels was proposed <Schell73> to assure

the effectiveness of the security controls of future systems. The

security kernel of an operating system mediates all accesses to

information, assuring that the desired security policies are enforced.

The security kernel approach provides effective security controls

by modularizing large and complex operating systems into security and

non-security relevant portions. By sufficiently simplifying the

security mechanisms and isolating them from the rest of the operating

system in the so-called security kernel, it becomes possible to

32

mathematically verify the correctness of the security mechanisms. To

assure completeness, the design of the security kernel must be based on

a formal model of secure systems <Bell75>. The verification methodology

takes the kernel design from the formal model to actual binary machine

code in several steps, with correspondence proofs between each

intermediate representation. The verification methodology is discussed

in more detail in <Millen76>.

Security kernels have been implemented for the PDP-11/45 by the

MITRE Corp. <Schiller75> and by U.C.L.A. <Popek74>. Kernels are

presently under development for the UNIX operating system <Ritchie74> by

both the MITRE Corp. <Biba77> and U.C.L.A. <Kampe77>. Kernels were

under development for the Honeywell Multics system <Schroeder75> and for

the Honeywell Series 60 Level 6 minicomputer <Honeywell76>, but

Headquarters, United States Air Force Systems Command has directed that

these two efforts be terminated in 1977, prior to completion. However,

the United States Air Force SATIN IV packet switched network is using

portions of the security kernel technology in the Internal Access

Control Mechanism (IACM) present in each SATIN IV communications

processor.

The security kernel technology forms the essential basis for much

of this thesis. To date, the security kernel is the only approach

identified to provide effective security controls for large complex

systems. However, since most existing systems do not have security

kernels, we shall examine configurations of decentralized systems in

which strategic placement of security kernel based communications

33

processors can provide effective security controls to systems without

effective internal access controls.

34

Chapter Five

Review of Existing Approaches

This chapter is a review of several existing or proposed approaches

to security in decentralized computing systems. Problems and drawbacks

of several of the approaches are identified. Later chapters will

address these problems and propose some solutions. Because some of the

problems are inherently unsolvable, solutions will not be proposed for

all the problems.

5 .1 ARPANET

In this section, we examine four protocols for implementing

security in the ARPANET - TELNET, FTP, RSEXEC, and the National Software

Works (NSW). Of course the ARPANET Interface Message Processors (ItiP's)

were not developed to be "penetration-proof." While IMP software is

quite reliable, it has not undergone the formal verification necessary

to assure security. In addition, IMP-IMP communications lines are not

encrypted. Therefore, the ARPANET is presently vulnerable to wire

tapping. ARPA is presently sponsoring development of two end-to-end

encryption devices for the ARPANET. One is called the Private Line

Interface (PLI) <IMP76>, and the other is called the BCR (Black - Crypto

- Red) <Bressler76>.

35

5.1.l ARPANET TELNET and FTP Protocols

The existing ARPANET TELNET and FTP protocols <Feinler76> (1)

provide very limited support for protection of information. Each host

is responsible for assuring its own protection, primarily by requiring

password authentication at the time a network connection is made. Using

these protocols, a user must remember different passwords (2) for each

machine used and must transmit these passwords through various host

machines, leaving opportunities for the passwords to be stolen.

Alternatively, the user could store passwords for the foreign machines

in files on the local machines. This technique, however, extends the

vulnerability of the passwords.

5.1.2 RSEXEC

RSEXEC (the Resource Sharing Executive for the ARPANET <Thomas73>)

provides a much more sophisticated decentralized environment than the

TELNET and FTP protocols do. RSEXEC allows a user to view the file

systems of several machines on the ARPANET as a single file system. (3)

(1) TELNET is a protocol to provide remote terminal communication over
the ARPANET. Using TELNET, a terminal connected either to a host
processor or a terminal concentrator can communicate with any host on
the network. FTP is a protocol to provide file transfer capabilities
between hosts on the ARPANET.

(2) Users often choose the same password for all sites, making it
possible to attack several sites, after stealing a password for only one
site.

(3) Currently the RSEXEC protocols are only completely supported for the

36

The user can name files at distant sites and local files uniformly.

However, from an authentication point of view, RSEXEC is very similar to

TELNET and FTP. Passwords must be stored on user machines and

transmitted to server machines whenever network connections are made.

Although RSEXEC hides much of the password processing from the user, the

stored passwords for other systems remain subject to attack, either in

the user system or while being transmitted through the network.

5.1.3 National Software Works

The National Software Works (NSW) <Millstein76> is another

decentralized computing facility being implemented on the ARPANET. The

NSW is intended to support software development activities by providing

access to software development tools resident on various hosts. As in

RSEXEC, the user of the NSW is sheltered from the issues of where on the

network particular files or tools are stored. Authentication is very

simple in the NSW. A user who wishes to login to the NSW first connects

to a local Front End (FE) process running on a local machine. The FE

delivers the user's login request and authentication password to the

Works Manager (WM), which runs on some centralized machine in the NSW.

All requests for service must go through the FE to the WM where the

user's identity is verified. The WM then torwards autnorized service

requests to appropriate systems. All systems must trust the WM

TENEX operating system. RSEXEC is partially supported by the ITS and
Multics operat~ng systems.

37

implicitly. No authentication is performed by the target host, but

rather any WM request must be honored without question. A host can

assure itself that it is talking to the real WM by a scheme of dedicated

network sockets, but all systems must accept the trustworthiness of the

central WM.

5.2 Network Security Centers

One approach to security in decentralized systems is the concept of

a Network Security Center (NSC) proposed by Branstad <Branstad73,

Branstad75> and expanded upon by Heinrich and Kaufman <Heinrich76>. The

NSC is a centralized facility that, as proposed by Branstad, provides a

secure cryptographic key distribution service. As such, the NSC can

assure identification and authentication of the user to the servicing

host computer and vice versa. The authentication is implicit in the

cryptographic keys. The NSC is an example of a specialized multilevel

host. It does not support online programming, but must be verified to

be free of "Trojan Horses."

Note that the function of the NSC is analogous to the function of

the Works Manager (WM) in the National Software Works (NSW). While such

a centralized authority may be acceptable to a network under a single

management control, it may not be at all acceptable in a decentralized

computing system that does not have central management. Diffie and

Hellman <Diffie76> suggest an approach to avoid the necessity of

trusting a single central authority. They suggest the use of multiple

38

independent NSC's, each of which verifies and authenticates a requested

two-way communication. Each NSC provides a cryptographic key to the

sender and receiver processes. All the cryptographic keys are combined

via addition modulo two to produce a key not known to any of the NSC's

involved. Thus, the sender and receiver processes need not trust any

single NSC not to release their cryptographic key. Only if all the

NSC's cooperate, can they compromise the cryptographic key that was

generated by the processes.

Heinrich and Kaufman, however, attribute the NSC with security

capabilities beyond those proposed by Branstad. In particular, they

claim that the NSC can prevent unauthorized access to data by legitimate

users of the network. However, the NSC is in fact unable to prevent

such unauthorized accesses, unless the various host processors are

themselves secure. The following two examples demonstrate the inability

of the NSC to prevent unauthorized access.

For the first example, assume a network consisting of three host

computers - A, B, and C. (See figure 5.1.) Assume A, B, and C do not

have effective internal security controls, but that they communicate

only via the network using cryptographic keys provided by the NSC.

Assume A is authorized to access B's data base, and B is authorized to

access C's data base, but A is not authorized to access C's data base.

The NSC enforces the protection of C's data base by not providing a

common cryptographic key to A and C. However, the NSC can do nothing if

B forwards data from C to A.

39

NSC

A B c

FORBIDDEN

Figure 5.1 Network Security Center Failure

If host B enforced the lattice model with a security kernel, then B

could implement two untrusted processes, one to communicate with A, and

one to communicate with C. Since A and C may not communicate

(presumably because their access classes are disjoint), the security

kernel in B would prevent the two processes from communicating, and

therefore prevent A from receiving information from C. However, this

type of protection that the security kernel of B could provide is

entirely independent of the presence or absence of an NSC.

40

The example above uses multiple systems connected to a network to

leak information to unauthorized users. In fact, the NSC cannot prevent

unauthorized access, even if there is only one system involved.

Effectively, the NSC's granularity of protection is an entire computer

system. If a user can gain access to a host system for some legitimate

purpose, and the host's security controls are ineffective, then that

user can gain access to any information in that host. Since such an

attack would take place entirely within a single host, it would be

invisible to the NSC.

Heinrich and Kaufman describe the NSC as maintaining an access

matrix similar to Lampson's <Lampson71>. However, as shown by Harrison,

et al. <Harrison76>, merely maintaining an access matrix does not

guarantee that unauthorized access does not occur. In the first

example, using Harrison's terminology, B can leak to A the generic right

to read C's data base. In the second example, one can model the

ineffective security controls of the operating system as a special

subject in the access matrix. The special subject has access to all

data in that particular system, but due to the ineffective security

controls, all other subjects on that system have access to the special

subject. Thus, if the NSC grants a user access to that particular

system, by transitive closure on the access matrix, the user has been

granted access to all data stored in the system. While Heinrich and

Kaufman imply that the host system might choose to add additional

protection, they do not make clear that unless the host itself maintains

effective security controls, the NSC can leave significant security

41

vulnerabilities unblocked. This issue is of paramount importance if one

wishes to build secure decentralized systems in which some of the

component host systems are fundamentally incapable of providing

effective internal access controls.

5.3 Military Networks

The U.S. Department of Defense is presently developing two packet

switched networks - SATIN IV for the U.S. Air Force Strategic Air

Command and AUTODIN II for joint service communications. These networks

achieve protection of classified message traffic by encrypting

communications on a link by link basis and providing effective security

controls in each message processor. For example in SATIN IV, each

message is labelled with a sensitivity level and category set and the

Internal Access Control Mechanism (IACM) of each communications

processor assures that messages are routed only to destinations that are

properly cleared to receive them.

When messages are entered into SATIN IV from an external interfaced

system, the IACM must differentiate between interfaced systems with

effective security controls and interfaced systems without effective

security controls. Systems without effective controls cannot be trusted

to properly label messages. Messages from such untrusted systems must

be treated by SATIN IV as classified at the highest access class

42

processed by that particular system. (1) The IACM's of each

communications processor will be verified to operate correctly and

provide effective security controls.

The security characteristics of AUTODIN II are less well defined at

this time, but are expected to be similar to SATIN IV. A brief summary

of the requirements of both the SATIN IV and AUTODIN II systems can be

found in <Chandersekaran76>. One proposal for AUTODIN II security can

be found in <Postel76>.

5.4 Dynamic Process Renaming

Farber and Larsen <Farber75> suggest an approach to security in a

ring network by dynamically renaming the process names that appear in

the message destination fields. They reason that if in a series of

messages sent from one process on a host to another process on a

different host, the destination fields of the messages are changed in

every message based on presumably secret transformations known only to

the source and destination systems, then an intruder could not follow

the rapid exchange of messages and would be unable to extract

information. Farber and Larsen describe synchronization and error

(1) When presented with a message labelled at a lower access class than
the highest access class processed by the untrusted message source, the
IACM must either generate a security alarm or relabel the message at the
highest access class processed by that system. Operational requirements
will determine which is appropriate, If relabelling is performed, the
new label would consist of the alleged access class of the message and
the access class to which the packet must be protected.

43

detection methods that make dynamic process renaming a practical

communications protocol. Unfortunately, they do not address the

possibility of computer assisted traffic analysis that could easily

distinguish patterns in the traffic and determine the content of the

transmissions. For example, the login dialog to most time sharing

systems is very stylized in which the system sends a greeting message,

the user responds with a login command, the system requests the user's

password, and the user types it in. Such a dialog could easily be

recognized in a recording containing many unrelated messages. Such an

analysis was done in one penetration of a computer system, documented

in <Computerworld75>, in which the penetrator examined teletype

communications buffers to collect passwords of many users. An even

easier example would be traffic generated by a program like the MACSYMA

system <MACSYMA75> in which messages from the program to the user are

sequentially numbered so that the user can reference them easily in

later requests. Clearly, dynamic process renaming is effective only

against very unsophisticated attacks. Encryption of communications is

much more effective against sophisticated penetration attempts.

44

5.5 External Security Monitors

Painter <Painter75> proposes an approach to security in computer

networks in which an external minicomputer is attached to each host

processor to monitor all hardware and software operations for security

malfunctions. To monitor the hardware, Painter proposes equipment

analogous to Automatic Test Equipment (ATE) be attached to run periodic

tests on all hardware components. Since hardware can fail randomly,

such tests are important for the operation of any secure computer

facility. Software versions of hardware security monitors have been

implemented for the Honeywell 645 <Karger74> and for the Honeywell 6180

<Hennigan76>. Painter points out two major difficulties with his

external hardware monitor proposal. First, ATE normally interferes with

hardware performing its normal operational functions. Therefore, either

ATE must be designed that does not interfere, or redundant hardware must

be provided to allow checking of components on an offline basis. In the

latter case, software must also exist to allow reconfiguration of the

hardware without disruption of ongoing processing. Second, as LSI

technology advances, it becomes more and more difficult to build ATE.

Because of the concentration of functions on single chips, it becomes

impossible to break systems down into separate "black boxes" for

isolated testing. Perhaps future LSI hardware can be designed with

additional leads for ATE interfaces. Painter also points out that his

technique cannot detect Trojan Horses that may be concealed in LSI chip

designs.

45

Unfortunately, Painter's scheme for external software monitors is

less well founded than his hardware monitor scheme, because software,

unlike hardware, does not fail randomly. Software security systems are

either correct or incorrect from the start. They do not "fail" after a

period of time. Painter proposes that software security surveillance be

carried out by hardware performance evaluation monitors that examine the

contents of registers and main memory "looking" for security

penetrations. Painter admits the hopelessness of analyzing every

operation performed by the host computer. The CPU time required would

be many times that required by the host computation itself. Painter

instead suggests a statistical approach, periodically checking the host

for software security penetrations. However, the types of penetrations

described in <Karger74> can be consummated in a matter of microseconds.

The probability of statistically discovering a well rehearsed

penetration is extremely small. More importantly, Painter offers no

evidence that such an external software security monitor can be

effectively implemented, even given unlimited CPU time. Essentially,

Painter expects the monitor to examine arbitrary programs running in the

host system to see if they ever enter an insecure state. One can draw

an analogy to automata theory that shows the undecidability of the

question of whether an arbitrary Turing Machine ever enters a particular

state <Hennie77>. While a proof that Painter's approach is not

effectively computable is beyond the scope of this thesis, the

feasibility of his approach is certainly open to question.

46

Painter takes his software surveillance monitor concept one step

further and suggests that the monitor could be implemented on the host

system itself. This technique of self-monitoring is shown to be

insecure in <Karger74>. If the host system is secure, then the

self-monitor could be useful in detecting some, but not necessarily all,

unsuccessful penetration attempts. However, if the host system is not

secure, then the successful penetrator will immediately modify the

self-monitor to assure that it only reports that all is well.

47

[This page intentionally left blank.]

48

Chapter Six

Lattice Model in a Decentralized System

Before we can study the application of the lattice security model

to decentralized computing systems, we must define the characteristics

of the subject system. We assume the decentralized computing system

consists of a large number of host computers, ranging in size from very

large general purpose systems to individual microprocessor based

"personal" computers. No assumption is made concerning homogeneity of

instruction sets. The host computers are interconnected using a variety

of communications media including direct digital data links, store and

forward message processors, broadcast links, etc. The host computers

are not managed by a central authority. However, although

administration of the host computers is decentralized, there is a common

security lattice that is to be enforced on all machines. (1) We must

assume that a very large number of security access classes will be in

use in the system, although most hosts will only use a small subset of

them. The large number of access classes comes from the desire to

support a commercial decentralized system with thousands of customers in

which each customer may wish to define several categories of information

to be protected. In this context, a customer might be an entire

corporation or division of a corporation.

(1) The apparent dichotomy between decentralized control and a common
security lattice need not exist. The various divisions of a corporation
may operate with a high degree of autonomy, yet all agree on a common
system for protecting company confidential material. Similarly, a
common system for protecting classified information exists among the
otherwise autonomous agencies of the Department of Defense.

49

Not all host systems will be authorized to receive information at

all access classes. Even if Chrysler's computer had a security kernel,

Ford would be unwilling to store its data there. Therefore, the

communication network must assure that information is never made

available to hosts that are not authorized to receive the information.

Not all host systems will have effective security controls, because

many hosts will run conventional insecure operating systems. Despite

insecure software, such conventional systems can adequately protect

sensitive information if they are run in a dedicated mode. The

Department of Defense defines dedicated mode as follows:

"An ADP [Automatic Data Processing] System is
operating in a dedicated mode when the Central
Computer Facility and all of its connected
peripheral devices and remote terminals are
exclusively used and controlled by specified
users ••• for processing of a particular type ••• of
classified material." <DoD73>

If a host system running in a dedicated mode is connected to a

decentralized computing system, then the communications network must

assure that all output from the dedicated host is treated at the

dedicated access class. The dedicated host cannot be trusted to

correctly mark the access class of its output.

Systems that have effective security controls are called multilevel

secure systems. The Department of Defense defines multilevel security

mode as:

so

"A mode of operation ••• which provides a capability
permitting various levels and categories or
compartments of material to be concurrently stored
and processed ••• from various controlled terminals
by personnel having different security clearances
and access approvals." <DoD73>

A multilevel system can effectively control access to a number of

distinct access classes. However, as mentioned above, even though the

multilevel system has effective software controls, it may not be

authorized to receive all access classes, because the system may be

under the physical control of persons not authorized certain access

classes.

A very important requirement of this scenario is that the

implementation of the lattice model not interfere with the basic goals

of decentralized computing systems - the ability to share information

and computing resources and the ability to achieve robustness by taking

advantage of redundancy. Therefore, the lattice implementation should

not preclude such nominally secure operations as a SECRET process

reading information from an UNCLASSIFIED data base on another host

system. However, the implementation must assure that a "Trojan Horse"

in the SECRET process cannot downgrade information while reading the

UNCLASSIFIED data base.

One final assumption must be made in this scenario. All external

communications are encrypted using either link encryption or end-to-end

encryption. Chapter 11 discusses encryption in more detail.

51

[This page intentionally left blank.]

52

Chapter Seven

Basic Message Passing Protocols

In this chapter we shall examine the basic message passing

protocols for decentralized computing systems and show their

relationships to the lattice security model. As part of the discussion,

we will show how the lattice model controls can be added without

adversely affecting the reliability or performance of the basic

protocols. Performance of the basic message passing protocols is

critical to the decentralized system, because all other protocols are

built from the basic protocols in a layered fashion.

7.1 Protocol Design

7.1.1 Basic Packet Communication

Before we can discuss the basic protocol design, we must define

some terminology. The basic unit of communication is the packet.

Packets may be sent to and from ports that exist as logical full duplex

channels on the various hosts attached to the network. A host may have

a large number of ports that are simultaneously involved in network

communication. The notion of a port here is taken from Cerf and Kahn's

Transmission Control Program (TCP) <Cerf74>. The communications network

53

will deliver packets to their destination ports with high reliability,

but delivery is not 100% guaranteed. Some type of retransmission

strategy will be required for lost or damaged packets. This very low

level protocol is similar to the datagram protocols described in

<Pouzin76>. Higher level protocols can be constructed to break messages

up into fixed size packets, reassemble the packets, provide for

retransmission and flow control, etc.

7.1.2 Adding Security to the Basic Protocol

Adding lattice security controls to the very simple protocol

described above is quite straightforward. Initially, let us assume that

link encryption is used on all communications lines that must transmit

sensitive information. Use of end-to-end encryption is discussed in

Chapter 11. If each host attaches a security label to each packet as

it is entered into the network, and if the network communications

processors are multilevel secure, then the network communications

processors can assure that packets are delivered to only those hosts

that are authorized to read information at the access class of the

packet.

Since packets pass through the communications processors in

cleartext, the software in the communications processors must be

prevented from maliciously downgrading information. For example, a

"Trojan Horse" in the message routing software could copy a TOP SECRET

packet into a newly fabricated UNCLASSIFIED packet and send the

54

UNCLASSIFIED packet to an uncleared host system. Such a "Trojan Horse"

threat could be avoided by verifying the correctness of all software in

the communications processor. This approach is taken in the AUTODIN I

system. (1) Unfortunately, very severe restrictions are imposed on

software development by the AUTODIN I security approach. All

programmers must be cleared to the highest access class of information

to be passed. No off-the-shelf software can be used. Software updates

must undergo nearly exhaustive testing. Only because the AUTODIN I

software is very simple and rarely changes can such restrictions be

implemented. They are certainly unreasonable for more complex

communications systems in which off-the-shelf operating systems and

compilers are desired and in which software changes may occur

frequently.

To reduce the unreasonably strict AUTODIN I security restrictions,

the communications processors could be implemented with security

kernels. Figure 7.1 shows a very simplified view of packet flow through

a kernel based packet switching processor. Input packets are received

by a trusted process that must identify the packet access class and

store the packet in a memory segment of the proper access class. The

input process does no more than identify the packet's access class and

send a wakeup to an untrusted process (that could contain a "Trojan

Horse"). The untrusted process (or processes) then performs all

necessary validation, routing, and other functions normally performed by

(1) AUTODIN I is a message switching system presently operated by the
Defense Communications Agency (DCA). Its security characteristics are
briefly summarized in <Lipner72> and <Anderson72>.

55

Input
Trusted
Process

UNCLASSIFIED
Routing
Process

CONFIDENTIAL
Routing
Process

SECRET
Routing
Process

Output
Trusted
Process

Figure 7.1 Packet Flow Through a Kernel Based Switch

a packet switch. The untrusted processes are constrained by the

security kernel to obey the confinement property, and are therefore

unable to downgrade information. Just before transmission, the

untrusted process gives the output packet to a trusted process that

verifies the correctness of the security label (since a "Trojan Horse"

56

could attempt to mislabel a packet) and then sends the packet out the

communications line. Since communications processors may not be

authorized the same access classes, the trusted process must also verify

that the next communications processor intended to receive the packet is

authorized to receive the packet. If the packet is being sent to a host

processor, the trusted process must verify that the host processor is

authorized to receive the packet.

<ESD74> contains a more detailed comparison of the security kernel

approach and the AUTODIN I approach to secure communications processors.

The basic issue, however, is that the communications processors can

assure that packets are delivered only to hosts that are cleared to

receive them.

7.1.3 Trojan Horses in the Sending Host

The protocol described in the previous section is adequate to

assure security if packets are properly labeled when they enter the

communications network. If the originating host processor has adequate

security controls (presumably because it runs a security kernel), then

packets will be correctly labeled. Just as in the multilevel packet

switch, the multilevel host must have a trusted process verifying the

accuracy of security labels on outgoing packets.

57

However, if the originating host processor does not have adequate

security controls and therefore is presumably running in a dedicated

mode as defined in chapter 6, then a "Trojan Horse" in the originating

host could easily mislabel packets to send information classified at a

high access class in a lower access class packet.

Therefore, to achieve confinement of the "Trojan Horse" in the

originating host and to maintain consistency with the definition of

dedicated mode, the security protocol must be modified. The input

trusted process of the packet switch must know which hosts can

effectively protect information and which cannot. The input trusted

process must assure that all packets received from a host that runs in a

dedicated mode are labeled at the dedicated access class. (1) If the

input trusted process receives a mislabeled packet, it can either

relabel the packet, or it can report an attempted security violation.

The particular choice is application dependent and does not impact the

basic security of the protocol.

(1) In fact, the Department of Defense also defines host systems that
may operate in a controlled environment over a limited range of access
classes. For example, the Air Force Data Services Center (AFDSC) in the
Pentagon runs a modified version of the Multics system in a two-level
SECRET/TOP SECRET controlled environment. The AFDSC Multics system
(described in <Whitmore73>) is trusted to separate SECRET and TOP
SECRET, but because it does not have a security kernel, it is not
trusted to separate UNCLASSIFIED from SECRET or TOP SECRET. For such
controlled environment systems, the input trusted process must maintain
a minimum access class M, and assure that for all packets transmitted by
the host labelled access class P, M must be < P.

58

7.2 One-Way Communication

7.2.1 Rationale

Even though some of the hosts in a decentralized computing system

do not have effective security controls and therefore must run in a

dedicated mode of operation, it is still desirable to have

communications with these hosts. Obviously, two dedicated hosts at the

same access class can communicate freely with each other. Similarly, a

dedicated host can communicate freely with an untrusted process running

on a multilevel host, if the untrusted process is at the same access

class as the dedicated host. However, it would be very desirable if two

dedicated hosts at different access classes could have some limited form

of communications. In particular, if there are two hosts A and B, such

that the dedicated access class of A is < to the dedicated access class

of B, then it would be desirable if programs on B could gain access to

the data stored in A on a read-only basis. The following two examples

demonstrate the utility of such read-only communication •

. 7.2.1.1 Military Airlift Command Example

The US Air Force Military Airlift Command (MAC) runs three

Honeywell 6080 GCOS systems as part of the World Wide Military Command

and Control System (WWMCCS). Because GCOS does not have adequate

59

security controls, the systems must run in a dedicated mode in which two

of the systems process only unclassified information and the third

system processes classified. During crisis situations, certain portions

of the normally unclassified data base become classified. When a crisis

occurs, MAC must copy the entire data base onto a set of disk packs to

be transferred to the classified machine. This manual transfer

procedure is extremely time consuming and does not meet MAC's

requirements for rapid response to crisis situations. In addition,

unclassified updates continue to come into the unclassified system,

rapidly making the classified data base obsolete. Since the purpose of

the classified data base is to allow contingency planning during crisis

situations, it is important to keep the data base accurate. The basic

requirement is that updates to the unclassified data base be accurately

reflected in the classified data base in a timely fashion. (1)

7.2.1.2 Corporate Planning Example

A similar example to the Military Airlift Command system can be

imagined for a civilian corporation. Assume there exists a corporate

data base system implementing some basic functions of operational

control of the company. As this data base only reflects routine day to

day operations, it is treated at a low sensitivity level. On a separate

computer, the corporate planning staff has a data base system that is

(1) The description of MAC requirements was taken from Appendix VII of
<Schacht76>. The original suggestion for read-only access to the data
base was made by S. Lipner in <Lipner71>.

60

considered highly sensitive. The corporate planning data base requires

periodic updates from the day to day data base, but no information is

required to flow from the corporate planning data base to the day to day

data base.

7.2.2 Implementing One-Way Communications

Solving the two problems posed above is relatively simple in a

single multilevel computer. A process is created at the high access

class, and it is granted read-only access to the low access class data

base. However, in a decentralized computing system, the high access

class process must send a message to a low access class process on the

low access class machine in order to read the data base. What was a

read-only transaction on a single machine has been transformed into a

read-write transaction by the use of a communications network. (1)

In the decentralized system, the read request from the high access

class host to the low access class host can be eliminated if the low

access class host is preprogrammed to automatically send data base

updates as they occur to the high access class host. Since the updates

are sent automatically, no information need flow from the high access

class host to the low access class host. In addition, the high access

class host need not "poll" the data base. It receives updates only as

they occur.

(1) In fact, the transaction was read-write on the multilevel machine as
well, but the security kernel and the supporting descriptor based
hardware made it possible for the read operation to occur "invisibly" to
the lower access class.

61

Of course, this update approach works only for preprogrammed

periodic transactions and offers no selectivity to the high access class

host. Fortunately, such preprogrammed transaction oriented systems are

common in the data processing industry. As another example, consider a

radar air traffic control system. There are several computers located

at radar sites connected to a central air traffic control computer via

communications links. The radar site computers do nothing but convert

raw radar returns into correlated air tracks that are then sent to the

central facility. Assuming each radar has a fixed area of coverage, all

communications flow is in one direction.

7.2.3 Limitations of One-Way Communications

Obviously, the one-way communications scheme outlined above has

many limitations. These limitations fall into two basic classes

discussed below - lack of reverse communications and protocol

difficulties.

7.2.3.1 Lack of Reverse Communications

The primary limitation of one-way communications is inherent in its

name. The fact that no reverse communications are allowed eliminates

from consideration any applications that require a large amount of

two-way communications. In particular, the high access class host

cannot selectively query the low access class data base, based on high

62

access class computations. It must swallow the entire data base as it

is generated and updated.

Based on these limitations, one would ordinarily dismiss one-way

communications from any further consideration. However, we must

remember that the ostensible purpose for considering one-way

communications was to allow limited communications between inherently

insecure host computers (or untrusted processes on secure hosts). While

it would be desirable to use multilevel secure hosts for all

applications, such hosts are not available on a commercial basis yet.

Development of security kernels for large scale general purpose systems

is a current research effort described in <Rhode77>. Even if multilevel

secure hosts were available now, large investments in conventional

insecure hardware and software would preclude immediate conversion. On

the other hand, multilevel secure communications processors will be

available soon outside the research environment. The Air Force's SATIN

IV network is one such system. Therefore, making secure decentralized

computing available on a limited basis using one-way communications

seems to meet at least some interim needs. In addition, Chapter 9 will

discuss some approaches to provide limited reverse communications to

alleviate some these severe restrictions.

63

7.2.3.2 Protocol Difficulties

In addition to the limitations inherent in the concept of one-way

communications, there are even difficulties in implementing the

preprogrammed transaction updates. Difficulties arise in the areas of

error control and flow control, although we shall see that these

difficulties can be overcome.

Error detection and correction is needed, because the

communications medium is not in general error free. Two generic types

of error control strategies are most commonly used - feedback error

control and forward error control.

Feedback error control is most commonly used in systems with a

usually low probability of error, but with occasional bursts of high

error probabilities. In feedback error control, the receiver examines

each arriving packet for possible errors. If no errors are found, an

acknowledgment is returned to the sender. If the packet is found to be

in error, a negative acknowledgment is returned. The sender retransmits

the packet upon receipt of a negative acknowledgment, or if no

acknowledgment is received for some period of time. However, if the

destination is on a dedicated host at a higher access class, then not

even packet acknowledgment can be permitted, because a "Trojan Horse"

could easily encode information in patterns of acknowledgments. For

example, the "Trojan Horse" could generate extra acknowledgments to

non-existent packets that would then be interpreted by software on the

low access class system.

64

Forward error control is typically used in systems that have fixed

error probabilities. Sufficient redundant information is transmitted

with every packet to allow the receiver to reconstruct information that

may have been lost or garbled. By comparison, feedback error control

transmits only enough redundancy to detect errors, but not enough to

correct them. Since no feedback is required, forward error control is

not vulnerable to "Trojan Horse" attacks.

Flow control presents problems similar to feedback error control.

The receiving host must somehow tell the sending host how fast it can

receive packets. Otherwise, the sending host may transmit so fast that

the receiving host's buffers overflow. A variety of flow control

techniques are possible. For example, the ARPANET Host to Host Protocol

<Feinler76> requires the sender to preallocate buffer space in the

receiver. The sender may not transmit until the receiver confirms that

the requested buffer space is available. In the Transmission Control

Program (TCP) <Postel76>, the receiver tells the sender how much may be

transmitted. When that so-called transmission window is exceeded, the

sender must wait until the receiver extends the window. Other schemes

are also possible. However, inherent in any such flow control scheme is

an information flow from the receiving host back to the sending host. A

"Trojan Horse" in the receiving host could exploit such an information

channel to release information.

Forward error control has the major drawback that it requires

significantly more bandwidth than feedback error control. The extra

bandwidth is required to transmit enough redundant information to handle

65

the worst case error probabilities on a noisy channel. (1) Therefore,

the following scheme is suggested to allow use of feedback error control

and to provide flow control in a one-way communications channel without

the risk of a "Trojan Horse" communicating in the reverse direction.

Since it is the dedicated mode host processor that is untrustworthy, a

multilevel secure front end processor with a security kernel could be

inserted between the communications network and the dedicated host.

(See figure 7.2.) The trustworthy front end processor could then

perform feedback error control and flow control functions without fear

of "Trojan Horses." The front end processor must guarantee to store and

accurately deliver all packets to the host, since end to end error

control is no longer possible. Therefore, the front end processor must

maintain a reasonable quantity of auxiliary memory on which to store

packets until the host processor accepts them.

A one bit communications channel for a "Trojan Horse" exists even

with the trustworthy front end processor, because there can only be a

finite quantity of memory in the front end processor to buffer packets.

(2) However in practice, the front end processor running out of memory

is a highly visible event, and any attempt to communicate using this

channel could be very quickly detected. Therefore, the secure front end

processor does seem to be a viable approach to providing error detection

(1) Forward error control is best used in high error probability
environments in which feedback error control would breakdown in an
avalanche of negative acknowledgments and retransmissions.

(2) This problem is similar to the disk allocation problem described in
<Schiller75>.

66

Packet
Store E

Low
Access Class

Packets

l-_.,,, - ... ,. -

Packets

Host

n

,,
Secure

Front End
Processor

~a

,,
High

Ack nowledgments
m Front End Fro

Ack nowledgments
om Host Fr

Access Class
Host

Figure 7.2 One-Way Connnunications

and correction and flow control securely in one-way communications. It

should be noted that the packet buffering for feedback error control and

flow control could be performed by the destination network switching

processor, rather than by a separate front end processor. For example,

the SATIN IV communications processors journal all message traffic for

67

possible retrieval at a later time. Such a journal could be used as

the buffer store, if it had sufficiently high reliability.

68

Chapter Eight

Naming under the Lattice Model

One of the major limitations of networks like the ARPANET has been

the lack of a uniform network wide naming scheme. Users of one host

system must learn the naming conventions of any other dissimilar host

systems that they wish to use. In addition, users must know the name of

the host on which a service exists in order to use it. Therefore, users

must be explicitly aware of redundancies across host boundaries that

have been created for reliability purposes. Ideally, a user should be

able to give the name of something without having to know on which host

it is implemented. If multiple copies exist for reliability purposes,

the decentralized computing system should automatically select one for

the user.

Security of information is very closely tied to the naming

structure of a system. In the Multics system <Organick72>, this tie is

very explicit. The Access Control List of an object can be modified by

anyone who has modify permission on the parent of the object. However,

even if one separates the naming structure from the authority hierarchy

as is suggested in <Rotenberg74>, naming and security must remain

closely tied, because both the names themselves and the shape of the

naming structure contain user modifiable information - information that

is also subject to modification by "Trojan Horses".

69

The tie between security and naming can be seen in the evolution of

the formal representations of the lattice model. In the initial MITRE

security model <Bell73>, naming of objects was not considered. An

attempt to implement this simple model on the PDP-11/45 <Schiller73>

failed, because a "Trojan Horse" could easily communicate information in

the names of objects or in the shape of the directory tree. The Case

security model <Walter74> provided the first solution to this problem by

recognizing that names and groupings of names, i.e., directories, must

also be assigned access classes. Ames extended the Case model in

<Ames74> to include all the attributes of a Multics segment, not just

names. At the same time, Bell revised the MITRE model in <Bell74> to

include the notion of the Multics hierarchy as an explicit element of

the model.

In this chapter, we will take a broader view of naming than just

the Multics directory hierarchy. In particular, we wish to include

naming structures in which an object has more than one parent. We shall

see that relaxing the single parent restriction of Multics generates

certain constraints on the underlying host implementations of a network

wide naming scheme.

70

8.1 Reed's Generic Naming Scheme

The naming scheme to be considered in this chapter is the one

suggested by D. Reed for the proposed M.I.T. Laboratory for Computer

Science Local Network. Because a description of Reed's scheme has not

yet been published, this section will highlight its major aspects.

8.1.1 Goals of the Naming Scheme

Reed identifies four major goals to be achieved by a network naming

system. First, the naming scheme should support translation of generic

service names into specific service instances. The user should not have

to know the particular host on which a service is implemented. The user

should also not have to know that a service is implemented on several

machines for reliability or load sharing.

Second, the generation and manipulation of names by users should be

easy. A naming system at least as powerful as the Multics directory

hierarchy is needed to allow users to select names without fear of

conflict.

Third, the naming system should be resilient to single hardware

failures. Any individual system or communications link going down

should not bring down the naming system. This precludes the use of a

single "naming computer."

71

Fourth, the naming system should continue to function even after

major portions of the network are down. If a service is reachable

through the network, then it should be nameable, even if all the rest of

the network (outside of the path to the service) is down.

8.1.2 Basic Implementation

Reed's naming scheme consists of a directed graph whose vertices

correspond to either directories or generic services. Directories have

zero or more child edges that point to other vertices. Services do not

have edges emanating from them. Each edge emanating from a directory

has a character string name. There is a directory called the root from

which all other vertices may be reached. A sequence of names from the

root to a particular vertex is called the treename of the vertex. Note

that multiple edges may point to the same vertex, and therefore, loops

may exist in the naming hierarchy. (1) Each directory will be

implemented as a list of names of edges and associated port identifiers

(2) that implement the target vertices. The target vertex of an edge

need not reside on the same host as its parent.

(1) The edges in Reed's naming scheme constitute so-called "hard links"
to objects, because each edge points to an actual vertex. A naming
scheme can also include "soft links" that merely consist of character
string treenames. In interpreting a name, if a "soft link" is reached,
the character string name contained in the "soft link" replaces that
portion of the original name from the root to the "soft link" that has
already been interpreted. Interpretation is now restarted at the root
with the new name. Thus, "soft links" are merely indirect pointers to
new names and do not have security relevance. "Soft links" correspond
to links in the Multics directory hierarchy.

(2) Ports were defined in chapter 7.
72

ROOT

B c

D E

G

Figure 8.1 Typical Naming Network

Figure 8.1 shows an example of a naming network. Service G can be

reached by a variety of treenames. Treename interpretation occurs as

follows:

1. Tiie user sends the treename ROOT.A.D.G in a message to the

root.

2. Tiie root strips off its own name and looks up the port number

for A. Tiie root then sends A a message consisting of the treename

73

A.D.G, the treename that was used to reach A, namely ROOT, and the

port number of the user process.

3. A performs the same operation and sends D a message consisting

of D.G, ROOT.A, and the user's port number.

4. Finally D sends a message to G consisting of G, ROOT.A.D, and

the user's port number.

5. G now responds to the user's port to initiate a network

connection to provide the required services.

As can be seen from the example, each directory strips off its own

name, looks up the next edge, and sends a message to the child vertex.

The treename evaluated so far is passed along for optimization purposes.

If a user frequently requests the same or very similar treenames, it

would be inefficient to re-evaluate the treenames from the root every

time. Therefore, each directory can (optionally) send its own port

number and the treename evaluated so far back to the user. Reed

demonstrates that the user can maintain an associative memory of

partially evaluated treenames that recognizes changes in the directory

structure that invalidate earlier entries in the associative memory.

The scheme is not reproduced here, because it is not impacted by

security requirements.

74

8.1.3 Garbage Collection

Reed proposes a scheme for garbage collection when the ports

associated with vertices are destroyed. Reed defines a timeout for each

edge in the naming network. Unless the timeout is extended, the edge is

deleted when the timeout expires. In the simplest case, a vertex can

extend its own timeout as long as it wishes to remain in existence.

8.1.4 Other Topics

Reed discusses a number of other topics related to his naming

scheme including approaches for robustness under loss of major portions

of the naming network, additional optimization strategies, and details

of the implementation on the proposed M.I.T. Laboratory for Computer

Science Local Network. These issues do not have a major security

relevance and are not discussed in this thesis.

75

8.2 Incorporating the Lattice Model in the Naming Scheme

Reed's naming scheme explicitly did not address protection issues.

In this section, we shall examine the issues of incorporating the

lattice model into the naming scheme. We shall see that the lattice

model fits into the scheme quite smoothly, but we shall also see that

Reed's garbage collection strategy cannot be implemented under the

lattice model. We shall also see that the underlying implementation of

the network naming scheme in terms of a host's local naming scheme can

have adverse affects on the overall scheme.

The basic approach to incorporating the lattice model will be

similar to the approach taken in the Case model <Walter74>. Each

directory and service vertex will be assigned an access class.

Operations on vertices will then be defined to preserve the simple

security and confinement properties. Two major new issues must be

considered that were not present in the Case model, which was based on

the Multics directory hierarchy exclusively. First, Reed's naming

scheme allows a vertex to have multiple parents. Since previous naming

systems that have incorporated the lattice model have had only single

parents, multiple parents could be expected to have major security

implications. However, we shall see that multiple parents can be

accommodated in the lattice model without major difficulties. Second,

the allowable list of operations could differ depending on whether a

vertex is implemented on a dedicated host or a multilevel host. In this

case, we shall see that, indeed, the list does differ.

76

8.2.1 Notation

In the remainder of this section, the following notation will be

used. An untrusted process P is making requests on the naming network.

The access class of Pis denoted by AC(P). Since Pis untrusted, it may

contain a "Trojan Horse". Multilevel hosts may also have a trusted

process TP. Vertices Vl, V2, and V3 have access classes AC(Vl), AC(V2),

and AC(V3). The three vertices are implemented on hosts Hl, H2, and HJ.

The process P is implemented on host HP. The hosts may be either

multilevel or dedicated as indicated in the text. The maximum access

class of a host (or the dedicated access class) is denoted by AC(Hl), or

AC(H2), etc. Access classes form a partial ordering in which two access

classes may be <, >, or disjoint.

8.2.2 Creating Edges and Vertices

For an untrusted process P (which presumably could contain a

"Trojan Horse") to create an edge from vertex Vl to V2, where V2 is a

new vertex, P must write in directory Vl. Therefore, AC(P) ~ AC(Vl).

P must also read Vl to detect name duplication errors. Therefore,

AC(Vl) ~ AC(P). These two constraints together force AC(Vl) = AC(P).

Since V2 is being created for the first time, P is effectively writing

at the access class of V2. Therefore, AC(P) < AC(V2), and

AC(Vl) ~ AC(V2).

77

The constraint AC(Vl) ~ AC(V2) is called the compatibility property

by Bell in <Bell74>. In the Multics directory hierarchy, an object has

one and only one parent. Therefore, compatibility must be enforced

throughout the hierarchy, and the access class of a parent directory

must always be less than or equal to any descendent. However, Reed's

naming scheme allows multiple parents and naming loops. Assume we have

three vertices Vl, V2, and V3, where AC(Vl) ~ AC(V2) ~ AC(V3). Assume

Vl is a parent of V2, and V2 is a parent of V3. If compatibility must

hold, then V3 cannot be a parent of Vl unless AC(Vl) = AC(V2) = AC(V3).

Since this is an unreasonable constraint on the choice of access

classes, this seems to preclude one of the generalities Reed desired in

his naming scheme, the ability to have loops.

Fortunately, compatibility is required only when creating vertices.

If one wishes to define an edge from Vl to V2, where Vl and V2 already

exist and not(AC(Vl) ~ AC(V2)), the only requirement is that

AC(P) = AC(Vl) as before, and AC(V2) ~ AC(P) so that P may know of the

existence of V2. Thus, at least for defining edges between existing

vertices, the compatibility constraint need not be enforced.

In simpler terms, when adding a vertex to the naming network, the

first edge to be added must comply with the compatibility property,

i.e., the access class of the first parent must be < the access class of

the new vertex. However, once the first parent has been created,

additional parent edges may be added without complying with the

compatibility property.

78

8.2.3 Using Directories and Services

In the previous section, we showed how P could use (and modify)

directory Vl, if AC(P) = AC(Vl). Now assume we have directory Vl with

an edge pointing to service V2. Assume AC(Vl) < AC(V2) and

AC(P) = AC(V2). Ostensibly, P should be able to use V2, because the

access classes are equal. However, for P to reach V2 through the naming

system, P must send a message to Vl. (1) However, since AC(Vl) < AC(P),

the confinement property forbids P sending a message to Vl. If Vl is

implemented on a dedicated host Hl, then AC(Hl) = AC(Vl) < AC(P), and

the confinement property restriction must hold. In that case, if Vl is

the only parent of V2, then neither P nor any other untrusted process at

any access class can ever get to V2. However, if Hl is a multilevel

host and AC(P) < AC(Hl), then P can use Vl as follows: When P's message

arrives at Hl, it must be fielded by a trusted process TP. TP is

guaranteed not to contain a ''Trojan Horse''. TP notes the access class

of P's message and creates an untrusted process Q such that

AC(Q) = AC(P). Q can now read the contents of Vl, determine the port

number of V2, and complete the directory search operation. Since Q is

an untrusted process, it is forbidden by the confinement property to

write in Vl. (2)

(1) Section 7.2.2 discussed the origin of this problem.

(2) One additional point must be noted. Directories are normally shared
by many processes, and therefore synchronization is needed to assure
consistency. Section 8.3 discusses a scheme for synchronization without
writing.

79

It should be noted that this scheme for searching a directory at a

lower access class is also useful for using services at a lower access

class than the requesting process. For example, a multilevel host Hl

may offer a PL/I compiler service at the lowest access class

(unclassified). If AC(PL/I) < AC(P), then process P cannot send a

message to the process implementing the PL/I service. However, if

AC(P) ~ AC(Hl), then P's request can be fielded by a trusted process TP

that creates an untrusted process Q, such that AC(Q) = AC(P). Q can now

compile P's PL/I program, since Q can have read-execute-only access to

the code that makes up the PL/I compiler. By creating Q, we have

changed the read-write operations of sending messages back into the

read-only operation that running the compiler would have been, had the

system not been decentralized.

There is no fundamental reason why there must be multiple trusted

processes TP and untrusted processes Q for each service instance. For

efficiency reasons, a host could choose to multiplex a single trusted

process TP and a set of untrusted processes Q, with one Q per access

class currently in use. Q's need not exist for every access class that

might ever be used. Rather, TP can create Q's at the desired access

classes as needed.

80

8.2.4 Explicit Deletion of Edges and Vertices

Deleting edges and vertices from the naming network again leads us

to questions concerning the compatibility property. These questions

arise, because we wish deletion to occur cleanly, without leaving

Vl

Level 1
No Categories

V2

Level 2
Category A

V4

Level 2
No Categories

Figure 8.2 Deletion Example

V3

Level 2
Category B

so-called "lost objects" in the naming network. Figure 8.2 shows a

portion of a possible naming hierarchy that we shall consider in this

section. Vl, V2, and V3 are all parents of V4. AC(Vl) < AC(V4), which

81

maintains compatibility, but AC(V4) < AC(V2) and AC(V4) < AC(V3), which

do not maintain compatibility. Note that AC(V2) and AC(V3) are

disjoint, although both are> AC(Vl). We assume that the desired

behavior of the naming system is that when all parent edges of V4 are

deleted, then V4 is also deleted.

For process P to delete the edge Vl.V4, P must write into Vl.

Therefore, AC(P) < AC(Vl). For P to know of the existence of Vl.V4, P

must read Vl. Therefore, AC(P) AC(Vl). P cannot delete V4 based

solely on the deletion of Vl.V4. P does not have the right to know

whether V2.V4 or V3.V4 exist, but P must assume that they might exist.

P must somehow tell V4 that one of its parents has been deleted. If V4

maintained a count of par~nts, then V4 could delete itself when the

parent count went to zero. (1) Presumably, P sends a message to V4 when

Vl.V4 is deleted. However, if another process Q wishes to delete V2.V4,

a problem arises. We must require that AC(Q) = AC(V2), for the same

reasons that we required AC(P) = AC(Vl). However, this implies

AC(Q) > AC(V4), and the confinement property rules would forbid Q

sending a message to V4. If H4, the host on which V4 is implemented is

a dedicated host, then the confinement property must be enforced, and V4

cannot be deleted. But, if H4 is a dedicated host, the edges V2.V4 and

V3.V4 are useless for any type of access to V4. Therefore, the only

interesting case is if H4 is a multilevel host.

(1) This parent count mechanism is adapted from a similar mechanism in
the Cambridge University CHAOS system <Slinn76>.

82

If H4 is a multilevel host, and if AC(V2) .::_ AC(H4), and if

AC(V3) .::_ AC(H4), then Q can send the message to the trusted process TP

that implements V4 on H4. TP can maintain the parent count and delete

V4 when the count goes to zero.

Unfortunately, we have overlooked a basic difficulty. If V3.V4 is

the last parent edge of V4, the deletion of V4 is itself an operation

that contains information at AC(V3) which may be visible at AC(V4).

Even though the trusted process TP performs the deletion, TP is doing

so, only because process Q at access class AC(V3) requested it. Since

AC(V4) < AC(V3), this could constitute a confinement property violation

if the deletion were visible at the access class of V4.

Whether the deletion of V4 is visible at the access class of V4 is

determined by the implementation of the network naming scheme in terms

of the local naming scheme of H4. We will examine several possible

implementations of local naming and evaluate their impact on this

problem.

8.2.4.l Multics Style Naming

Multics very strictly enforces the compatibility property, because

each object has only one parent. Therefore, the deletion of V4 must be

visible at the access class of V4. The trusted process TP could attempt

to copy V4 into a new segment at a higher access class when Vl.V4 is

deleted. In this way V4 could seem to be deleted as soon as Vl.V4 was

83

deleted. However, since AC(V2) and AC(V3) are disjoint, there does not

exist a common access class to which V4 could be upgraded that would not

receive information in violation of the confinement property if either

V3.V4 or V2.V4 were deleted. Therefore, V4 cannot be deleted when the

last parent edge is deleted. Note that V4 is not a "lost object" if all

its parent edges are deleted. It can still be accessed through the

local Multics hierarchy, and could be deleted by a human being making an

explicit decision to downgrade the information that no parent edges

existed any longer.

8.2.4.2 CAL Style Naming

The CAL system <Lampson76> allowed objects in the hierarchy to have

multiple parents. However, one of the parents was always distinguished

as the "owner" of the object, and deletion of the object was determined

by the "owner" parent. Therefore, although CAL allowed multiple

parents, the "owner" characteristics would force CAL to have the same

deletion difficulties as Multics.

8.2.4.3 Naming With Revocable Capabilities

If directories are implemented on a capability - based system as

lists of revocable capabilities, (1) then the problem of deletion is

(1) Redell <Redell74> describes the implementation of revocable
capabilities.

84

solved. Each time TP receives a request for access to V4, it grants the

access as a revocable capability. A separate capability is created for

each access class that is requested, so that TP can selectively revoke

by access class. Now when P requests that Vl.V4 be deleted, TP revokes

all capabilities for V4 except those that were derived from V2 or VJ.

Thus, all capabilities except those for which AC(V2) ~ AC(capability) or

AC(V3) ~ AC(capability) are revoked. Once their capabilities have been

revoked, any process at a lower access class can no longer determine the

existence or non-existence of V4. Such a revocable capability naming

scheme could be implemented on the HYDRA kernel <Cohen75>.

8.2.4.4 UNIX Style Naming

In the UNIX operating system <Ritchie74>, each object is allowed to

have multiple parents, and there is no distinguished "owner" parent. If

a security kernel were implemented for UNIX (1) in which UNIX files were

mapped as segments in the PDP-11/45 name space, then an equivalent

function to the capability revocation could be performed by TP when a

parent edge is deleted. TP could request the kernel to do a "setfaults"

operation (2) on V4 after Vl.V4 was deleted. As a result of the

(1) Security kernels for UNIX are presently under development at the
MITRE Corp. <Biba77> and at u.c.L.A. <Kampe77>.

(2) "Setfaults" is a term taken from the Multics operating system.
"Setfaults" sets fault bits in the segment descriptor words for a
particular segment in the descriptor segments of all processes that
currently have the segment mapped. "Setfaults" is used to force all
processes to re-establish their access rights to a segment, for example,
after an access control list has been modified.

85

"setfaults", all processes would be forced to re-establish their access

to V4, and only those with access to V2 or V3 would succeed. Thus, a

security kernel for UNIX could also allow V4 to be deleted

automatically.

8.2.5 Garbage Collection

Reed's strategy for garbage collection based on timeouts can be

implemented only on multilevel hosts. If we have two vertices Vl and

V2, and Vl is the parent of V2, and AC(Vl) < AC(V2), then V2 cannot send

messages to Vl extending its own timeout. If H2 is a multilevel host,

then a trusted process TP could extend the timeouts, but only if

AC(H2) < AC{Hl).

At present, there is insufficient experience with decentralized

computing systems to determine if the lack of a garbage collector is a

serious restriction. Experiments with and without garbage collectors

will be required to determine actual system requirements in this area.

86

8.3 Synchronization Without Writing

In section 8.2.3 we identified the need for synchronization between

untrusted processes at different access classes. Assume a shared data

base exists and is modified by processes at a low access class, and

there exist reader processes at a high access class who wish to read the

data base, assuring consistency without sending information to the low

access class processes. Dijkstra semaphores <Dijkstra68> are inadequate

for this task, because two-way communication can be implemented with P

and V operations. Semaphores are inherently read-write objects to all

users.

Reed and Kanodia <Reed77> propose a scheme for process

synchronization using eventcounts that allows synchronization between

processes at different access classes without violation of the

confinement property. An eventcount is a non-decreasing integer

variable on which two operations are allowed - read and advance. The

read operation returns the value of the eventcount. It does not modify

the eventcount in any way, and thus cannot be used to transmit

information. The advance operation adds one to the value of the

eventcount. Both read and advance must occur indivisibly.

Assume we have a data base shared between two processes. One

process is the writer process and operates at the access class of the

data base. The other process is the reader process, and it operates at

a higher access class. Two eventcounts called in and out are defined.

The writer process advances in, updates the data base, and then advances

87

out. The reader process reads in, waits for the value of out

(determined by reading out) to equal the value read from in, and then

reads the data base. The reader now reads in again. If the value of in

has changed, then the data base may have been written while the reader

was reading, and the data extracted may be inconsistent. In this case,

the reader process must go back and retry the entire operation.

While this solution potentially requires the reader process to

repeat some work, it allows synchronization without violating the

confinement property. The solution described here is a simplified

version of Reed and Kanodia's, and it works for any number of

simultaneous reader processes and exactly one writer process. A

solution for multiple writers is shown in <Reed77>, but was omitted

here, due to its additional complexity. However, the multiple writers

solution also preserves the confinement property. An equivalent

solution was developed independently by White <White75>.

88

Chapter Nine

Downgrading Information

Downgrading of information is the process by which information

classified at a particular access class is reclassified at a new lower

access class. In the "paper world," downgrading of information occurs

for two major reasons. First, a human being may read a classified

document, extract an unclassified paragraph, and reprint it elsewhere.

Second, information classified for national defense reasons has

mandatory downgrading times specified by Presidential Executive Order

11652 <Nixon72>. After a specified period of time, any classified

document (with a few exceptions) must be downgraded to the next lower

access class, and eventually, must be declassified completely.

Because of the threat of "Trojan Horses," we cannot allow

uncertified computer programs to perform either type of downgrading.

This no-downgrading restriction is formalized as the confinement

property. In this chapter, we shall explore the needs for computerized

downgrading of information, and we shall see how distributing the

downgrading functions among different processors can make the function

easier to certify secure.

89

9.1 Why Downgrade Information?

Downgrading information in a computer system may be desirable for

two major reasons. First, files may be downgraded due to statutory or

other requirements. This type of downgrading does not have a time

criticality associated with it, and therefore can be accomplished by a

trusted user such as a system security officer (SSO). This type of

downgrading has been examined in depth in <Whitmore73> and <Schiller76>

and will not be discussed here. The other major reason for downgrading

is to provide "sanitized" versions of information. Sanitization

generally involves extracting selected portions of the classified

information that can be released at lower access classes.

Sanitization often has a high degree of time criticality associated

with it. If a user has constructed a file that he or she knows is

unclassified, then the system should mark it as such. The user does not

want to talk to the SSO, every time he or she wants to send mail at a

lower access class. An example of a more serious timing constraint on

sanitization is found in military intelligence centers. An intelligence

analyst may be processing some highly classified reports. Based on his

data correlations, the analyst determines that an enemy is about to

attack. That information must be quickly sanitized and released to an

operational commander, if effective countermeasures are to be taken.

The commander sometimes cannot be given direct access to the

intelligence reports, because that could compromise the intelligence

90

sources. Therefore, rapid sanitization of the data is essential. (1)

Sanitization is also important in civilian applications. For

example, a corporate executive may wish to generate a sanitized business

projection from a highly sensitive long range projection data base.

Such a sanitized projection might be required to respond to government

queries, or, on a more routine basis, to generate next month's

production schedule.

Sanitized information may pass between processes on multilevel

systems, but the more important application is for sanitizing

information to be passed between dedicated host systems. If we can

effectively sanitize messages, we have eliminated many of the drawbacks

of one-way communication that were described in chapter 7.

(1) Examples of the need for this type of sanitization to protect
intelligence sources can be found in <Cave Brown75>.

91

9.2 Formularies

Stork <Stork75> describes a technique for downgrading information

based on preprogrammed sanitization criteria. If one could write a

program that could examine messages to determine if they were properly

classified, that program (called a formulary by Hoffman <Hoffman70>)

could mediate the downgrading of information and allow a limited form of

two-way communication between hosts operating at different dedicated

access classes. The formulary could run in a trusted process on a

security kernel based processor interposed in the communications path,

or the formulary could run on a dedicated certified minicomputer.

Formularies are very difficult to implement in general. They must

make a classification decision based on the data present in a message,

yet the message may have an arbitrarily complex interpretation. For

example, if the message to be sanitized is the output of an electronic

mailing system, then the f ormulary presumably would require a natural

language understanding capability. Since general natural language

understanding is beyond the current state of the art, at least some set

of formularies are presently infeasible. Worse still, the formulary

must be resistant to attack by "Trojan Horses." The formulary must be

able to distinguish any classified information anywhere in the message.

Since the "Trojan Horse" could encode information using an arbitrarily

complex scheme, the feasibility of a formulary discerning the attack is

questionable at best. For example, if the data to be sanitized is a

table of 10-digit numbers, the "Trojan Horse" could encode information

92

by modifying the low order digits. As long as the formulary did not

check for a high degree of accuracy (which could be impossible if the

purpose of the untrusted "Trojan Horse" program was to compute the

10-digit numbers for the first time), such communication could go

completely undetected. Nibaldi describes this type of attack on

formularies by "Trojan Horses" <Nibaldi76>.

One type of formulary that can be implemented without a "Trojan

Horse" threat is one that automates the statutory downgrading procedure.

If every file is marked by the security kernel with its creation date

and downgrading schedule, a fully automated formulary could perform the

scheduled downgradings without vulnerability to "Trojan Horse" attacks.

One very simple to implement formulary is one that refers its

sanitization decision to a human being. All the formulary must do is

present the data to the human being and await the human's response.

Since human beings have a relatively sophisticated natural language

capability, they can usually do much better than the formulary programs

at understanding the content of a message. Human sanitization, of

course, is what is used in the "paper world" for all downgrading

decisions. A human review formulary must still be supported by a

trusted process. Otherwise, the system could not assure that the

human's decision would be implemented. One such human review formulary

has been implemented by the MITRE Corp. in a security kernel

demonstration system <Mack76>. In the demonstration scenario, an

intelligence officer in an air defense center selectively downgrades

classified air tracks, so that an uncleared operations officer may see

upcoming threats and direct defensive forces to respond.
93

Human review introduces obvious limitations in the bandwidth of

communications, but may be acceptable for many applications. Human

beings are also subject to "Trojan Horse" attacks._ Humans are also

vulnerable to obscure encodings of information in the messages. For

example, a "Trojan Horse" could encode information in non-printing

characters between legitimate words of a message. Since the

non-printing characters are not displayed, the human reviewer would be

unaware of their presence. The next section describes some approaches

to aid the human reviewer, primarily through the use of secure

intelligent terminals.

It must be emphasized that all one can accomplish with human review

is better security, never perfect security. The human will always make

mistakes, and the "Trojan Horse" will always be able to sneak some

things by.

94

9.3 Secure Intelligent Terminals

In this section, we shall examine the potential of using multilevel

secure terminals to alleviate some the difficulties associated with

human sanitization of information. We shall assert that by moving some

of the downgrading functions into an intelligent terminal, (1) we can

improve the human engineering of the sanitizing operations, and can more

easily verify the correct implementation of the security related

functions.

9.3.1 User Requirements

From the user's point of view, a secure downgrading terminal should

offer a number of features to assure both convenience of use and

effective security. First, the user should be able to establish several

simultaneous network connections at different access classes. These

connections should be possible to both dedicated hosts and to untrusted

processes on multilevel hosts. The terminal must assure that data from

different connections is not mixed, since any of the processes to which

the terminal is connected could have a "Trojan Horse."

(1) By an intelligent terminal, we mean something far more capable that
the current commercial "intelligent" terminals that can do no more than
simple character insertion and deletion in a small buffer memory. An
intelligent terminal, as used here, would have a significant processing
capability and a reasonably large local memory. Such an intelligent
terminal would be able to store complex data structures, display them
for the user, and interact with the user in a sophisticated and dynamic
way to update and edit those structures, with little if any interaction
with the host computer. Examples of such intelligent terminals include
the IMLAC PDS-4 and DEC GT-40 graphics display terminals and the new
Xerox Soft Display Word Processor (SDWP) <Shemer77>.

95

The terminal should be capable of subdividing the display screen

into small windows that can be separately controlled by each network

connection. Windows should be of variable size, and the terminal should

assure that a network connection is confined within its particular

window. Ames discusses the needs for multiple windows in <Ames76>.

Security labelling should be clear and reliable. The user should

be able to determine at a glance the access class of each window, (1)

The sophisticated user will want to write programs to run in the

terminal to interact with software on the central host. Therefore,

untrusted code supplied by a "Trojan Horse" should not be able to

overwrite security labels displayed in "protected fields," nor should it

be able to create false security labels. The user should be able to

tell at a glance to which network connection the keyboard is currently

attached. The user should be able to look at an access class display

that is integral to the keyboard to determine the current access class.

The multilevel terminal should have a controller mode in which the

user can open and close network connections, allocate display windows,

and determine status information about the network connections, etc.

Since the controller functions must cross access class boundaries, they

must be implemented in the terminal by a trusted process.

(1) Note that the name of an access class may include both a level name
and a set of several category names. The terminal must allow sufficient
space for the complete access class name, although some types of
abbreviation may be used.

96

Downgrading of information in a multilevel terminal would consist

of identifying a candidate piece of text in a window at one access

class, passing the text to the multilevel controller, and verifying that

the text has been properly sanitized. The user should be provided a

pointing device such as a lightpen or a mouse <Engelbart68> to identify

the text to be downgraded. The candidate text should be highlighted in

its window, and then redisplayed by the multilevel controller in another

window. By using the redisplay technique, the user can verify that the

text passed to the multilevel controller by uncertified software is the

same text to which the user pointed with the mouse. The user should be

able to approve the downgrade by pushing a single downgrade button. The

terminal should keep a log of all downgrade requests to assure human

accountability. The log could be kept on another host on the network,

stored at the highest access class that is processed by the terminal.

The log does not provide a direct security control, but does provide a

mechanism for checking on the user who may make unwise or unauthorized

downgrade requests.

9.3.2 Implementation

Implementation of the type of multilevel terminal described here is

envisioned on a machine similar to the Xerox SDWP <Shemer77>. There are

three major aspects of the implementation that have security

implications - the processor and memory configuration, display

windowing, and physical protection.

97

9.3.2.1 Processor and Memory Configuration

Since the software for a terminal like the SDWP is going to be

large and complex, it will be impossible to verify its complete

correctness. Tilerefore, the multilevel terminal will require a security

kernel.

In a few years as LSI technology progresses, a machine like the

PDP-11/45 or the Honeywell Secure Communications Processor (SCOMP)

<Broadbridge76> will be available on a single board. Tilese machines

have the descriptor based addressing and multiple protection states

needed to run security kernels. Using such a very inexpensive machine

would allow each terminal to run a security kernel supporting a moderate

number of untrusted processes, one per network connection. Tile security

kernel (or a trusted process) would handle the network interface,

routing messages to each of the untrusted processes. Tile security

kernel process would also allocate the keyboard and pointing device from

process to process as requested by the user. However, there would

always be a button on the keyboard to allow the user to communicate

directly with the kernel. Tile button would be read only by the kernel,

so that other processes that might be running "Trojan Horses" could not

masquerade as the kernel.

98

9.3.2.2 Display Windowing

Breaking up the display into windows of dynamically varying size is

a difficult task on a convention display. If the display were assigned

directly to an untrusted process, then a "Trojan Horse" could overwrite

other windows and the security labels. If the display were assigned to

the kernel, then the kernel would have to interpret all display commands

to ensure that the window boundaries were observed. However, such

software interpretation of display commands can be very slow and

extremely difficult to verify correct.

To overcome these difficulties, a concept is borrowed from the

descriptor based processes to create what we shall call "descriptor

based displays." The Xerox SDWP uses a bit map raster scan display

driven by a display processor <Hartke77>, independent of the main

processor in the terminal. If the display processor implemented two

descriptors for accessing the bit map - an x-descriptor and a

y-descriptor, (1) then the security kernel could load the descriptors

with the x and y dimensions of the desired window and assign the display

directly to the untrusted process. The display processor would assure

that the bit map was addressed only within the limits of the x and

y-descriptors. This technique is analogous to the use of descriptor

based I/O in the SCOMP. Descriptor based I/O allows the user to

directly control I/O channels, because the channels accept only virtual

(1) Each descriptor would contain an upper and a lower bound for that
particular dimension of the window.

99

addresses from the user. Analogously, a descriptor based bit map

display allows the user to specify only virtual addresses within the bit

map.

9.3.2.3 Physical Protection

Multilevel secure terminals have particular physical protection

requirements. First, the terminal must be protected against physical

tampering. Otherwise, the security kernel could be bypassed by

surreptitiously modified circuitry. Second, storage media within the

terminal must be erased after use. Such erase requirements may be very

time consuming if the terminal includes a large, but slow disk. (1)

Third, the terminal must store and protect cryptographic keys for

communication on the network. If end-to-end encryption is used,

multiple keys must be stored. A more detailed consideration of the

physical security requirements for multilevel terminals can be found in

<Gardella76>.

(1) Alternatively, the disk (and other storage media) could be removed
from the terminal and stored in a vault.

100

Chapter Ten

Administration of the Lattice Model

Use of the lattice security model in large decentralized computing

systems introduces two administrative issues not present in centralized

systems. First, although individual hosts will generally use only a

small number of access classes, the network as a whole will use a large

number of usually disjoint access classes. Second, as host systems join

the network and new applications are created, new access classes must be

defined. The network must provide a mechanism for conveniently defining

new categories and assigning clearances for them without having to use a

central Network Security Officer for every operation.

10.l Proliferation of Access Classes

Individual hosts on a network in general use only a small number of

security categories to separate information. For example, the Honeywell

Multics system supports eight sensitivity levels and up to eighteen

categories <MPM75>. The eighteen categories are represented as an

eighteen-bit array, so that any combination of the eighteen categories

may be represented. Although this means that Multics potentially

supports 8 sensitivity levels times 262,144 category combinations for a

total of 2,097,152 access classes, in fact only a small portion of those

combinations are ever used, because most files can be assigned to one or

101

at most a combination of two categories. Very few files contain

information from several categories.

As a network grows, however, the number of categories required will

also tend to grow. Each host is likely to have some particular

collection of sensitive data to be compartmentalized that does not match

any already defined categories. If each host contributes only five

categories, a network of only twenty hosts must support 100 categories

for a total of l0,141,204,801,825,835,211,973,625,643,008 (which is

2**103) access classes. Clearly this type of exponential proliferation

must be limited.

Since only a small number of categories are in use at any one time,

the network can create and destroy processes dynamically in response to

different access class demands. Therefore, although the network could

support many millions of access classes, it would have to support at

most one access class per packet transmitted, and therefore at most one

untrusted process per packet. This is of course a -worst case, since a

network connection at a given access class will typically exchange many

thousands of packets at the same access class.

However, we still have a problem representing the security labels

in a network that supports a large number of categories. If the network

supports 1000 categories (a not unreasonable number for a nation-wide

commercial network that protects personal information with categories),

then if the Multics technique of assigning one bit per category is used

to allow representation of all possible combinations, then the header of

102

a packet must store 1000 bits just for the security label. The packet

size for some networks has been suggested to be as small as 128 bits

<Danet76>. In that particular case, security labels would require an

800% overhead. (1) Even if the 1000 bits could be tolerated in

communications, the 1000 bits must be stored with every object on every

host in the network.

To reduce these types of storage consumption, we propose to take

advantage of the fact that very few categories are used in combination

at any one time. If each category is assigned a unique 32-bit number,

(2) then an access class could be represented as a sensitivity level, an

integer indicating the number of categories to which this object

belongs, and a list of the category numbers. If we support eight

sensitivity levels (3 bits) and use 29 bits for the integer number of

categories, then an object residing in only one category requires only

64 bits for its security label.

An even more compact representation is possible if unique numbers

are assigned to frequently used category sets. Assuming a 3-bit level

number and a 29-bit category set number, an access class could be stored

in only 32 bits. If category sets exist for which category set numbers

have not been assigned, but for which category numbers have been

(1) This is assuming that every packet requires a security label. In
the case of link encryption, this is true. For end-to-end encryption,
the label could be implicit in the cryptographic key used to encipher
the data.

(2) A 32-bit category number is sufficient for approximately twenty
categories each for every man, woman, and child in the United States of
America.

103

assigned, then a special category set number could be reserved to mean

that the list of categories notation described above is being used.

For efficiency reasons, a host may wish to translate a small number

of frequently used category numbers into the bit array representation

described above. This translation could be performed independently at

each host, as long as all network traffic used the standard labelling.

10.2 Assignment of Categories and Clearances

The lattice security model, by its very nature, suggests a

centralized authority for handling category definitions and for

assigning clearances. The non-discretionary nature of the lattice model

says that the individual user may not make these decisions. In a single

host, a system security officer (SSO) is responsible for assigning

access classes and clearances. (1) However, in a network with

decentralized authority, each host will have an SSO responsible for that

particular host. The SSO's will want to periodically define new

categories, assign clearances to users and to other hosts, etc. It is

not acceptable that there be a network SSO to perform all of these

tasks, because far too much time loss would be introduced into the

system. Therefore, we make use of Branstad's concept of a Network

Security Center <Branstad73> to provide an automated way to assign new

categories and clearances.

(1) <MAM76> describes the SSO functions for Multics.

104

When an SSO wishes to define a new category, he or she sends a

message to the NSC requesting the category. Because the SSO functions

run in a trusted process, the NSC can be assured that no "Trojan Horses"

will interfere. The NSC assigns a 32-bit category number and returns it

to the SSO. At the same time, the NSC marks the host on which the SSO

is running as cleared to receive that category. Marking a host cleared

presumably involves broadcasting that information to relevant

communications processors in the network. Now the SSO can assign

clearances within his or her own host.

An SSO may also wish to grant clearances to other hosts on the

network for categories to which he or she has access. This can also be

accomplished by sending a message to the NSC, which then authorizes the

appropriate hosts. The NSC should only allow an SSO to grant access to

categories to which he or she is already authorized. The SSO can be

trusted because:

a. The SSO is already authorized the category, and

b. The SSO functions run in a "Trojan Horse" - free trusted

process.

Since the SSO is limited to granting clearances for access classes to

which he or she already has access, the SSO is limited from doing any

serious damage beyond that already possible.

105

[This page intentionally left blank.]

106

Chapter Eleven

Limitations of End-to-End Encryption

Throughout the rest of this thesis, it has been assumed that all

communications have been encrypted to counter the threat of electronic

eavesdropping through either wiretapping or listening to radio

broadcasts. Two types of encryption were discussed in section 2.2.2,

link encryption and end-to-end encryption. Link encryption has often

been criticized, because all packets must pass through the network

communications processors in plaintext. Therefore, it has often been

claimed that end-to-end encryption was the preferable encryption

technique for decentralized computing systems. Not only does end-to-end

encryption ensure that communications processors see only ciphertext,

but there is a general category of communications networks, broadcast

networks, for which link encryption is inappropriate. Thus, one could

easily conclude that end-to-end encryption is an ideal solution.

Unfortunately, we shall show in this chapter that end-to-end

encryption, far from being a panacea, can provide a "Trojan Horse" with

an effective means of surreptitious communication. Thus, we shall show

that link encryption is still necessary for many applications. For

broadcast networks, where link encryption is inappropriate, the

technique of dynamic key renaming is proposed to block the "Trojan

Horse" threat for this particular class of end-to-end encryption.

107

11. 1 The Problem

To understand the basic problem with end-to-end encryption, it is

necessary to establish a scenario under which attack can occur. Two

host computers exist between which two processes are communicating.

Both hosts have security kernels, and therefore can be assumed to

correctly label each outgoing packet with its proper security label.

The two processes are untrusted, and therefore are operating at the same

access class. For convenience, one will be designated the sender

process and the other, the receiver. Since the processes are untrusted,

both may contain 11 Troj an Horses, 11

Between the two hosts is a network of communications processors. A

large number of other hosts are also connected to the network, and

multiple paths exist between any pair of hosts. The communications

processors dynamically route packets through the network, selecting

optimal paths based on changing traffic levels. The communications

processors do not have security kernels and may contain "Trojan Horses. 11

Each host is equipped with end-to-end encryption hardware located

between the host and the local communications processor. Because the

communications processors see only ciphertext, link encryption is not

used.

The scenario just described would seem to be secure, because all

data is encrypted before being passed to the communications processors.

However, certain control information must be passed in cleartext from

the host to the communications processor to allow the network to

108

function. This control information consists of the destination address

for the packet, the length of the packet, and the time between

successive packet transmissions. (1) All three of these control signals

can be controlled by the untrusted user process. Therefore, a "Trojan

Horse" in the sending process could encode information in these control

signals that 'NOuld be readable both by the untrusted software in the

communications processors and by anyone tapping the communication links.

The external wiretapper can be excluded by adding link encryption, but

the "Trojan Horse" in the communications processor can still receive the

information, fabricate a new packet, and route it to some other host,

not authorized the access class of the sender and receiver processes.

One could assert that the bandwidth available in this way is

insufficient for the "Trojan Horse" to effectively communicate.

However, one estimate in <Padlipsky77> suggests that over 100 bits per

second could be passed with the destination address alone. Most

teletype communication in the world occurs at 75 bits per second.

Clearly, the "Trojan Horse" communicating in control signals is a

significant threat.

(1) The time between successive packets is passed implicitly.

109

11.2 Countermeasures

The most obvious countermeasure to a "Trojan Horse" signalling via

control information is to place a security kernel in every

communications processor and use link encryption. Now any "Trojan

Horses" remaining in the uncertified code of the communications

processors are effectively confined by the security kernels and cannot

leak any information, and the link encryption stops the wiretappers.

However, now one can question why use end-to-end encryption at all.

Since it provides no additional security, one could eliminate the

end-to-end encryption and reduce the expense and complexity of the

system.

However, end-to-end encryption must still be considered for two

reasons. First, two users of a shared communications processor may not

be willing to trust either the certification of the security kernels or

the persons with physical control of the processor. Ford and Chrysler

would not trust a shared communications processor. Second, we have not

considered broadcast networks in which link encryption is inappropriate.

Therefore, the next three subsections deal with closing each of the

control signal paths - packet length, destination address, and time

between packets. Countermeasures will be considered specifically for

broadcast networks.

110

11.2.1 Packet Length

Closing the packet length channel is very simple. Require all

packets to be the same fixed length, padding short packets out to the

full length. Now, the length field is not needed by the communications

processor, and the fact that the packet is padded should not be visible

through the encryption. While padding all packets to maximum length

certainly wastes some bandwidth for short packets, the single packet

size can considerably simplify software buffer management. Therefore,

the cost of fixed length packets might not be unreasonable.

11.2.2 Destination Address

Concealing the destination address of a packet is considerably more

difficult than concealing the length. If the communications network

must route packets based on address, then the address must appear in

plaintext. (1) In a broadcast network, every packet, by definition, is

transmitted to every host. (2) Therefore, each host could attempt to

decrypt every incoming packet. If the host was not authorized to

(1) As a special case, if a host communicates with only one other host
at one predetermined access class, then the destination address can be
filled in as a constant'by the security kernel or the cryptographic
device, and therefore, "Trojan Horses" can no longer modulate the
destination address. However, this limitation reduces the network to
providing no more than the equivalent of a dedicated telephone line with
link encryption.

(2) Examples of broadcast networks include the Xerox Ethernet
<Metcalfe76>, the U. C. Irvine Distributed Computing System <Rowe75>,
and the ALOHA network <Abramson70>.

111

receive the packet, the encryption keys would fail to match, and the

plaintext produced by the decryption device would be garbage. If the

packet successfully decrypted, then the host could check the now

decrypted destination address to be sure it was his own, so that any

packets for which the host was authorized, but were not addressed to

that host could be discarded. For an n-bit host address, there is a

probability of 1 in 2**n that a key mismatch will decrypt to the correct

address. The probability of this type of error can be reduced

arbitrarily by adding redundancy to the packet. Either a checksumming

technique could be used, or the message stream authentication techniques

described by Kent <Kent76> could be used.

11.2.3 Time Between Packets

Modulation of the time between packet transmissions is an example

of Lampson's "covert channels" <Lampson73>. Lipner <Lipner75> points

out that covert channels can be closed by making the observed time

required for an event independent of the actual time. Therefore, if

each host were assigned a fixed time slot for transmission, the time

between packets would be guaranteed to always be equal. Fixed time

slots can certainly exact a heavy penalty in bandwidth. The performance

aspects of time slot allocation are examined in <Roberts73>.

112

11.3 Dynamic Key Renaming

In the previous section, the packet length channel was closed by

using fixed length packets, and the time between packets channel was

closed by using fixed time slots for transmission. However, the

destination address channel was closed by requiring all hosts to attempt

decryption of every incoming packet. Unfortunately, decrypting all

messages is not as easy as it might seem. If a host is a multilevel

host, servicing several hundred access classes, it may have to try, in

the worst case, several hundred cryptographic keys to attempt to decrypt

every incoming packet. (1) The host could try each key serially, but

then could not keep up with the packet arrival rate. Alternatively, the

host could try all the keys in parallel, but several hundred

cryptographic devices connected in parallel would be far too unwieldy.

Clearly, some other approach is needed to be able to select the correct

key.

To solve the dilemma of serial versus parallel decryption, we

borrow a technique from Farber and Larsen's Dynamic Process Renaming

strategy <Farber75> that was previously discussed in section 5.4.

Farber and Larsen's scheme suffered from the fact that the data in each

packet was not encrypted. We propose here to encrypt the destination

(1) In the worst case, the multilevel host is communicating with several
hundred dedicated hosts, all at different access classes. Therefore,
each network connection would require a different cryptographic key.
Such a situation could arise in a stock tranfer system, where "Trojan
Horses" could be used to reveal the timing of large stock transactions,
prior to their occuring.

113

address and data of each packet, and to use Farber and Larsen's renaming

scheme, not to rename processes, but to rename cryptographic keys.

11.3.1 Name Generation

Assume that a name is associated with each cryptographic key in the

system. The name could be a bit string long enough to be guaranteed

Data Address Key Name

1~ Encrypted ~1

Figure 11.1 Typical Packet

unique over some long period of time. Now if every encrypted packet

were preceded by its key name, as shown in figure 11.1, then the

receiving host could easily select the correct cryptographic key looking

up the key name in an associative memory. Because we have end-to-end

encrypted the address field and data field, we are no longer vulnerable

to the direct traffic analysis to which Farber and Larsen's scheme fell

prey.
114

Of course, now we are back where we started with end-to-end

encryption. A "Trojan Horse" could modulate key names just as well as

destination addresses. However, if key names were changed after every

packet, just as Farber and Larsen changed process names, then no

external agent could discern a pattern in the use of key names. Figure

11.2 shows how a name generator could prefix every outgoing packet with

a new name for its cryptographic key. Figure 11.3 shows how the name is

stripped off an incoming packet and how the key is retrieved from the

associative memory. After the key is retrieved, the next name is

generated and stored in the associate memory.

Since the name generators must pick names at random without any

predictability, the name generation function itself could be a high

quality encryption algorithm. The example in the figures shows both the

sender and receiver generating names. Alternatively, the sender could

include the next name in the encrypted portion of the packet itself.

11.3.2 Sychronization

Similar to Farber and Larsen's scheme, dynamic key renaming has a

synchronization problem. If a packet is lost, the name generator and

the associative memory will never get back in synchrony. This problem

can be reduced by generating several names in advance to be used if a

packet seems to be lost. (1) These special resynchronization key names

(1) Presumably, timeouts are used to detect lost packets.

llS

Sending Host

Data Address

,, "

Crypto -
Cipher text

r

l
Look up Key Key

and Key Name ~ A_d_d_r_e_s_s-t--_K_e_y ___ N_am---1e

Key

Name
Generator

Key Name

Concatenate ... -1---------' -
Packet ,,

Figure 11.2 Transmission Name Generator

116

Cipher text

Data

Packet

r
Split

Crypto

Key Name

,,
Look up

Key

Key

Key Name

Generate
New Key Name

Address

t
Receiving Host

Key Name

..

Figure 11.3 Reception Name Generator

117

Key

could be used to recover from lost packets. If resynchronization also

fails, then the network connection must be considered to be broken, and

a new network connection must be established in order to continue.

11.3.3 Opening Connections

Network connections could be opened by requesting a cryptographic

key and an initial key name from a Network Security Center (NSC)

<Branstad75>. Communication with the NSC could also use dynamic key

renaming, if the initial keys and key names were entered manually.

Clearly, a large number of resynchronization key names should be

reserved for use with the NSC, since loss of the NSC connection has

severe consequences for a host.

118

Chapter Twelve

Authentication

Authentication becomes of interest in decentralized computing

systems when we wish to forward an authentication from one host to

another. If two hosts are to cooperate, some form of authentication

must always be forwarded, although the forwarding may be implicit in

some cases. In contrast to the rest of this thesis, both

non-discretionary and discretionary aspects are covered, because of the

high potential for confusion between authentication and access control.

Forwarding of authentication between processes on a single host is

described in <Montgomery76>. The schemes described below are extensions

of his concepts to network systems.

12.l Forwarding Authentication in the Lattice Model

Authentication forwarding is entirely implicit in the lattice

model. As discussed in section 7.1.2, each packet or network port has

an associated security label. From that label, any receiving process

can immediately determine the access class of the sending process. The

security labels are assured to be correct, because they are created

either by the host security kernel if the sending host is multilevel, or

by the network interface processor security kernel if the sending host

is dedicated. As the labels are forwarded through the network, they are

119

protected from tampering by either encryption, if end-to-end encryption

is used, or by the packet switch security kernels, if link encryption is

used.

12.2 Forwarding Authentication in Discretionary Systems

In a discretionary security system, authentications cannot be

passed implicitly like the security labels in the non-discretionary

case. Users have names registered on various hosts of the network, and

their access rights are determined as a function of those names. (1)

The same user may have different names on different hosts. For example,

a user may be named Smith on one host, JSmith on another, and M4409 on a

third. However, all three names represent the same human being, and

that human being would like to authenticate once and freely use all

hosts on the network to which he or she has been granted access.

Sections 5.1.1, 5.1.2, and 5.1.3 describe two ways of forwarding

authentications - storing passwords and trusting a central authority.

Both these schemes have serious drawbacks. Stored passwords can be

easily distributed to other users and may be compromised while passing

through the network. In addition, when the user wishes to change a

password, he or she must transmit the password to all other hosts that

may have previously received it. While clearly not impossible, such

(1) Access is determined as a function of name in both Access Control
List (ACL) systems and capability list systems. For example, the
Cambridge Capability System <Slinn76> has the equivalent of an ACL to
determine to whom a capability should be granted.

120

password distribution tasks can become quite onerous. The National

Software Works (NSW) approach of establishing a central authority

contradicts the basic goal of discretionary access controls - that of

decentralized access decisions. The NSW's requirement that a host

system implicitly trust the access decisions of a central authority may

be totally unacceptable to the system administrator of some hosts. Ille

system administrator may be willing to grant limited and well-bounded

trust, but the NSW approach demands unlimited trust.

As an alternative to the stored passwords and the central

authority, a scheme for forwarded authentication based on proxy login is

proposed. Proxy login allows one user to grant a proxy to another usero

When the second user wishes to exercise the proxy, he or she requests a

proxy login from the system and gives his or her own password. Assuming

the first user has given permission, the second user is logged into the

system tmder the first user's ID. Proxy login has been proposed for

Multics <Saltzer74>, but has never been implemented.

In a decentralized computing system, proxy login could be extended

as follows. User Smith on host A grants a proxy to user JSmith on host

B. Now, when JSmith on host B want to login to host A, JSmith sends a

proxy login request to host A. Host B's operating system annotates the

request with the information that the request came from JSmith on host

B. Based on this information, host A can allow JSmith to login as Smith

without presenting a password.

121

Because host B does not store a password for Smith at host A, user

Smith knows that JSmith cannot give the password to anyone else, either

deliberately or accidentally. Therefore, Smith need not broadcast his

new host A password to many other hosts when it changes. Also, Smith

can remove a name from the proxy list without having to change his

password and therefore having to notify all other proxy recipients. It

should be noted, however, that proxy login offers no advantage over

stored passwords for protection from "Trojan Horses." User JSmith can

still login as Smith, and any "Trojan Horse" that JSmith runs has full

access to Smith's data, just as if it had Smith's password.

Proxy login also offers advantages to the system administrator (SA)

of host A. The SA need not completely trust host B. The proxy allows

host B to gain access only to Smith's data and no other. Assuming host

A is basically secure, the proxy has limited the potential damage that

host B can do. No such damage limiter is present in the central

authority scheme.

Proxy login, however, does have several disadvantages. First, the

system must provide a mechanism for defining proxies that is not

vulnerable to "Trojan Horses." Presumably, a trusted process will meet

this requirement.

Second, by granting proxy login to JSmith on host B, Smith has

implicitly granted proxy login to any proxies that have been granted by

JSmith. In addition, anyone who can penetrate the access controls of

host B or the system administrator of host B (if he or she misuses his

122

or her powers) can now also proxy for Smith. While Smith should be

aware of these potential problems, he may not think of them when

granting a proxy. Thus, Smith may be "surprised" that he granted more

access than he thought. This is a serious problem, because most

security failures are caused by human errors, not hardware or software

errors. The human engineering of the proxy login (and the entire

security system) must be carefully planned to assure that users to not

make inadvertent blunders that have disastrous consequences.

Proxy login has one other difficulty. User Smith will realize that

he can also grant a proxy to his friend Jones on host C. Smith wants

Jones to run one of his (Smith's) programs, but Jones does not have an

account on host A. However, if Smith grants Jones a proxy, Jones now

has access to all of Smith's data and all of Smith's money. (We assume

that all computing resources must be paid for and that each user

establishes an account against which computer usage is billed.) What

Smith wants to do is limit Jones' access to just certain files and to a

certain amount of money. One could invent ad hoc solutions to this

problem, for example, using the Multics instance tag mechanism.

However, a proper solution lies in implementing Rotenberg's authority

hierarchy concept that would allow each level in an authority hierarchy

to recursively define sub-authorities. Further investigation of this

area is outside the scope of this thesis. The interested reader is

referred to Rotenberg's PhD thesis <Rotenberg74>.

123

[This page intentionally left blank.]

124

Chapter Thirteen

Conclusions

13.1 Where Have We Been?

The goal of this thesis was to develop a consistent and effective

approach to provide non-discretionary access controls for decentralized

computing systems. To meet this goal, we first defined the semantics of

the lattice model in light of expected threats. In particular, we

defined the differences between dedicated hosts and multilevel hosts

from the point of view of confinement. We then examined several levels

of protocol for decentralized systems, linking each protocol to basic

security requirements.

At the basic host to host protocol level, we showed how packets can

be labelled with their access class to assure delivery only to

authorized destinations. We outlined a mechanism for one-way

communication between hosts dedicated to different access classes, and

showed how limited forms of error and flow control could be supported.

At the first protocol level above basic packet communications, the

lattice model was added to Reed's scheme for naming services in

decentralized systems. We saw that access classes could be assigned to

directories in the naming system, and that the compatibility requirement

for non-decreasing access classes could be weakened considerably for

125

naming networks that allow multiple parents. However, we saw that

revocation of access was essential to relaxing the compatibility

requirements. If revocation were not possible, then relaxation of the

compatibility requirements could leave objects in the naming network

that could not be deleted.

We next examined the concept of downgrading information, and saw

how decentralized processing can make downgrading easier to perform.

The multilevel intelligent terminal was introduced to aid the human

being who must perform downgrading operations. To support the

multilevel terminal's security kernel, descriptor based display

addressing was proposed to allow untrusted software direct access to

windows of the display screen.

Decentralization of computing resources introduced new problems in

administration of the lattice model. Access class proliferation, which

caused some difficulty for Multics with only 18 categories, became a

problem of the first magnitude when thousands of categories were

contemplated in a national commercial network. A scheme was proposed to

use Branstad's Network Security Centers to provide automated definition

of new categories on demand. In addition, a scheme was proposed to

assign unique numbers to categories and frequently used category sets.

By using the unique numbers, a considerably more compact representation

of access classes is possible.

126

Returning to the lowest level protocols again, we examined the use

of end-to-end encryption in conjunction with the lattice model. Here,

we found a fundamental limitation to the use of end-to-end encryption

that results from the requirement that pack.et destination addresses

appear in cleartext. We saw how this requirement was not present in

broadcast networks, because all packets are broadcast to all possible

receivers. However, encryption of the destination address led to the

difficulty of identifying the correct decryption key from the

potentially very large number of keys simultaneously in use by any given

host. To resolve this problem, the strategy of dynamic key renaming was

proposed.

Finally, we examined the area of authentication forwarding, both

for non-discretionary and discretionary systems. For non-discretionary

systems, authentication is implicitly forwarded from host to host in the

access class labels on packets. However, for most discretionary

systems, authentication forwarding is accomplished by transmitting

passwords from host to host. As an alternative to transmitting

passwords, we proposed a technique for forwarding authentication based

on proxy login. This technique allows a user to accept forwarded

authentications, without requiring unlimited trust of the foreign host

system.

127

13.2 Where Can We Go?

Based on the ideas presented in this thesis, the pursuit of

non-discretionary access control for decentralized systems should go in

three major directions - implementation, legislation, and further

research.

13.2.1 Implementation

Several of the concepts presented in this thesis can be implemented

immediately. The protocols for host to host communication, both one-way

and two-way, can be built into multilevel communications processors now.

Such systems as SATIN IV and AUTODIN II will need these types of

controls (and are planning them). Once networks with effective host to

host security controls are operational, the naming schemes discussed in

this thesis can be added to provide uniform secure naming of services

across the entire networks. Experimental multilevel terminals can be

built today using dedicated security kernel based processors. Until the

costs are low enough to have on processor per terminal, a security

kernel based processor could act as a concentrator for several displays,

although this would significantly increase the complexity of the

terminal controlling software and therefore, the difficulty of

certification. One prototype multilevel terminal has already been

developed <Ames76> using an 8080 microprocessor in an HP2649 display

terminal, but this terminal has serious limitations due to its limited

128

screen capabilities, and due to its lack of a security kernel. A better

multilevel terminal could be built using the Xerox SDWP with a security

kernel. Finally, the proxy login concept could be easily added to

systems presently on the ARPANET with little change in existing TELNET

and FTP protocols.

13.2.2 Legislation

Throughout this thesis, we have assumed that categories provide an

accurate model of the protection requirements for privacy. Based on a

technical assessment of privacy, categories are indeed appropriate.

However, current privacy legislation <Privacy74> is extremely vague

concerning actual protection requirements. The present legislation

requires only "adequate" protection of information, but leaves

"adequate" undefined. If privacy is to be enforced by law, the

semantics of protection of privacy must be clearly defined. Analogous

to the Executive Order that defines the military classification system

<Nixon72>, some type of legal definition of categories for privacy is

needed. The definition should not list the precise categories to be

used (since there may be many changing requirements for categories), but

it should authorize the existence of categories, clearly define their

semantics, and provide a legal mechanism for allocating categories.

129

13.2.3 Further Research

Further research in non-discretionary access control for

decentralized systems can be profitably engaged in several areas. Most

importantly, research is still required to develop security kernels for

large general purpose systems. While this thesis has assumed the

existence of large multilevel secure service hosts, development of such

systems, as described in <Rhode77>, has been terminated prematurely.

While one way communication protocols can provide a limited capability

for dedicated systems, the full benefits of decentralization of

computing can only be realized with multilevel secure hosts.

Second, as noted in section 8.2.5, research is needed in the area

of garbage collection of multilevel, multihost data bases. Techniques

are required to garbage collect, without violation of the confinement

property.

Finally, further research is needed in the area of end-to-end

encryption to find protocols that allow the use of end-to-end encryption

in non-broadcast networks. End-to-end encryption offers a number of

advantages that would make it desirable in non-broadcast networks, if

the cleartext address problem could be resolved. (Alternatively,

research to increase available communication bandwidths could eliminate

the need for non-broadcast networks.)

130

REFERENCES

(Documents with NTIS numbers may be ordered from the National Technical
Information Service, U.S. Department of Commerce, 5285 Port Royal Road,
Springfield, Virginia 22151.)

<Abbott76> Abbott, R. P., et al., Security Analysis and Enhancements~
Computer Operating Systems, The RISOS Project, Lawrence Livermore
Laboratory, Livermore, Ca., NBSIR 76-1041, National Bureau of Standards,
Washington, D.C., April 1976.

<Abramson70> Abramson, N., "The Aloha System," 1970 Fall Joint Computer
Conference, AFIPS Conference Proceedings, Vol. 37, AFIPS Press,
Montvale, N. J., 1970, pp. 281-285.

<Ames74> Ames, S. R., File Attributes and Their Relationship to
Computer Security, S.M. thesis, Departm~ of Computing and Information
Sciences, Case Western Reserve University, Cleveland, Ohio. (Also
available as ESD-TR-74-191, HQ Electronic Systems Division, Hanscom AFB,
Ma., June 1974. (NTIS# AD A002159))

<Ames76> Ames, S. R., User Interface Multilevel Security Issues in~
Transaction-Oriented Data Base Management System, MTP-178, The MITRE
Corp., Bedford, Ma., December 1976.

<Anderson71> Anderson, James P., AF/ACS Computer Security Controls
Study, James P. Anderson and Co., ESD-TR-71-395, HQ Electronic Systems
Division, Hanscom AFB, Ma., November 1971. (NTIS# AD 251865L)

<Anderson72> Anderson, James P., Computer Security Technology Planning
Study, James P. Anderson and Co., ESD-TR-73-51, Vols. I and II, HQ
Electronic Systems Division, Hanscom AFB, Ma., October 1972. (NTIS#
AD 758206 and NTIS# AD 772806)

<Attanasio76> Attansio, C. R., P. W. Mark.stein, and R. J. Phillips,
"Penetrating an Operating System: A Study of VM/370 Integrity," IBM
Systems Journal, Vol. 15, No. 1, 1976, pp. 102-116.

<Bell73> Bell, D. E. and L. J. LaPadula, Secure Computer Systems: A
Mathematical Model, The MITRE Corp., ESD-TR-73-278, Vol. II, HQ
Electronic Systems Division, Hanscom AFB, Ma., November 1973. (NTIS#
AD 771543)

<Bell74> Bell, D. E., Secure Computing Systems:! Refinement of the
Mathematical Model, The MITRE Corp., ESD-TR-73-278, Vol. III, HQ
Electronic Systems Division, Hanscom AFB, Ma., April 1974. (NTIS#
AD 780528)

131

<Bell75> Bell, D. E. and L. J. LaPadula, Computer Security Model:
Unified Exposition and Multics Interpretation, The MITRE Corp.,
ESD-TR-75-306, HQ Electronic Systems Division, Hanscom AFB, Ma., June
1975. (NTIS# AD A023588)

<Biba77> Biba, K., G. Nibaldi, and J. Woodward, A Kernel-Based Secure
UNIX Design, WP-21196, The MITRE Corp., Bedford, Ma., 6 April 1977.

<Branstad73> Branstad, D., "Security Aspects of Computer Networks,"
Proceedings Ef the AIAA Computer Network Systems Conference, Paper
73-427, Huntsville, Al., April 1973.

<Branstad75> Branstad, D., "Encryption Protection in Computer Data
Communications," Fourth ~ Communications Symposium, Quebec City,
Canada, 7-9 October 1975, pp. 8-1 - 8-7.

<Bressler76> Bressler, R. D., Combined Quarterly Technical Report
No.].: Private Line Interface Development, Packet Network Security,
Packet Broadcast~ Satellite, BBN Report No. 3458, Bolt, Beranek and
Ne-wm.an, Inc., Cambridge, Ma., November 1976. (NTIS# AD A033352)

<Broadbridge76> Broadbridge, R. and J. Mekota, Secure Communications
Processor Specifications, Honeywell Information Systems, Inc.,
ESD-TR-76-351, Vol. II, HQ Electronic Systems Division, Hanscom AFB,
Ma., June 1976.

<Burke74> Burke, E. L., Concept .£i. Operations for Handling I/0 in~
Secure Computer at the Air Force Data Services Center (AFDSC) , The MITRE
Corp., ESD-TR-74-113, HQ Electronic Systems Division, Hanscom AFB, Ma.,
April 1974. (NTIS# AD 780520)

<Cave Brown75> Cave Brown, A., Bodyguard E.f Lies, Harper & Row, New
York, N. Y., 1975.

<Cerf74> Cerf, V. G. and R. E. Kahn, "A Protocol for Packet Network
Intercommunications," IEEE Transactions on Communications, Vol. COM-22,
No. 5, May 1974, pp. 637-648. ~

<Chandersekaran76> Chandersekaran, C. S. and K. S. Shankar, "Towards
Formally Specifying Communication Switches," Trends and Applications
1976: Computer Networks, Institute of Electrical and Electronics
Engineers, Inc., New York, N. Y., 17 November 1976, pp. 104-112.

<Cohen75> Cohen, E. and D. Jefferson, "Protection in the Hydra
Operating System," Proceedings of the Fifth Symposium on Operating
System Principles, ACM Operating Systems Review, Vol. 9, No. 5, November
1975, pp. 141-160.

<Computerworld 7 5> "T/ S Service Security Grae ked by Schoolboy With
Series of Tricks," Computerworld, Vol. IX, No. 5, 29 January 1975.

132

<Cotton75> Cotton, I. W. and P. Meissner, "Approaches to Controlling
Personal Access to Computer Terminals," Proceedings of the 1975
Symposium.£!!. Computer Networks: Trends and Applications, Institute of
Electrical and Electronics Engineers, New York, N. Y., 1975.

<Danet76> Danet, A., et al., "The French Public Packet Service: The
Transpac Network," Proceedings of the Third International Conference on
Computer Communication, Toronto, Canada, 3-6 August 1976, pp. 251-260.

<Denning76> Denning, D. E., "A Lattice Model of Secure Information
Flow," Communications of the ACM, Vol. 19, No. 5, May 1976, pp. 236-243.

<Diffie76> Diffie, W. and M. E. Hellman, "Multiuser Cryptographic
Techniques," 1976 National Computer Conference, AFIPS Conference
Proceedings, Vol. 45, AFIPS Press, Montvale, N. J., 1976, pp. 109-112.

<Dijkstra68> Dijkstra, E. W., "Cooperating Sequential Processes,"
Programming Languages (Ed. F. Genuys), Academic Press, New York, N. Y.,
1968.

<DoD73> ADP Security Manual: Techniques and Procedures for
Implementing, Deactivating, Testing, and, Evaluating Secure
Resource-Sharing ADP Systems, DoD 5200.28-M, Department of Defense,
Washington, D.C., January 1973.

<Engelbart68> Engelhart, D. C. and W. K. English, "A Research Center
for Augmenting Human Intellect,", 1968 Fall Joint Computer Conference,
AFIPS Conference Proceedings, Vol. 33, Part 1, AFIPS Press, Montvale,
N. J., 1968, pp. 395-410.

<ESD74> ---,The Feasibility.£!.~ Secure Communications Executive for~
Communications System, MCI-75-10, Information Systems Technology
Applications Office, HQ Electronic Systems Division, Hanscom AFB, Ma.,
August 1974.

<Everett57> Everett, R. R., C. A. Zraket, and H. D. Bennington, "SAGE -
A Data-Processing System for Air Defense," Proceedings .£!. the Eastern
Joint Computer Conference, December 9-13, 1957, Washington, D. C., The
Institute of Radio Engineers, Inc., New York, N. Y., 1958.

<Fabry74> Fabry, R. S., "Capability-Based Addressing," Communications
of the ACM, Vol. 17, No. 7, July 1974, pp. 403-412.

<Farber75> Farber, D. J. and K. C. Larson, "Network Security Via
Dynamic Process Renaming," Fourth Data Communications Symposium, Quebec
City, Canada, 7-9 October 1975, pp. 8-13 - 8-18.

<Feinler76> Feinler, E. and J. Postel, ARPANET Protocol Handbook, NIC
7104, Network Information Center, Stanford Research Institute, Menlo
Park, Ca., April 1976.

133

<Gardella76> Gardella, R. S., Issues in the Design and Use .£f Secure
Terminals, MTR-3128, The MITRE Corp., Bedford, Ma., June 1976.

<Harrison76> Harrison, M. A., W. L. Ruzzo, and J. D. Ullman,
"Protection in Operating Systems," Communications of the ACM, Vol. 19,
No. 8, August 1976, pp. 461-471.

<Hartke77> Hartke, D., W. Sterling, and J. Shemer, "A Raster Scan CRT
Display Processor for Typewriter Emulation," Fourteenth IEEE Computer
Society International Conference, IEEE, Inc., New York, 1977, pp. 54-58.

<Heinrich76> Heinrich, F. R. and D. J. Kaufman, "A Centralized Approach
to Computer Network Security," 1976 National Computer Conference, AFIPS
Conference Proceedings, Vol. 45, AFIPS Press, Montvale, N. J., June
1976, pp. 85-90.

<Hennie77> Hennie, F., Introduction to Computability, Addison-Wesley,
Reading, Ma., 1977.

<Hennigan76> Hennigan, K. B., Hardware Subverter for the Honeywell
6180, The MITRE Corp., ESD-TR-76-352, HQ Electronic Systems Division,
Hanscom AFB, Ma., December 1976.

<Hoffman70> Hoffman, L. J., The Formulary Model for Access Control and
Privacy in Computer Systems, PhD thesis, Department of Computer Science,
Stanford University, May 1970. (Also available as Stanford Linear
Accelerator Center Report No. 117, Stanford University, Stanford, Ca.,
May 1970.)

<Honeywell76> Security Kernel Specification for 3! Secure
Comm~nications Processor, Honeywell Information Systems, Inc.,
ESD-TR-76-359, HQ Electronic Systems Division, Hanscom AFB, Ma., in
preparation.

<IMP76> Specifications for the Interconnection .£f 3! Host and~
IMP, Report No. 1822, Bolt Beranek and Newnan, Inc., January 1976,
Appendix H.

<Kahn67> Kahn, D., The Codebreakers, Macmillan, New York, N. Y., 1967.

<Kampe77> Kampe, M. and G. Popek, The UCLA Data Secure UNIX Operating
System, University of California at Los Angeles, 1977.

<Karger74> Karger, P. A. and R. R. Schell, Multics Security Evaluation:
Vulnerability Analysis, ESD-TR-74-193, Vol. II, HQ Electronic Systems
Division, Hanscom AFB, Ma., June 1974. (NTIS# AD A001120)

134

<Kent76> Kent, S. T., Encryption - Based Protection Protocols for
Interactive User - Computer Communication, SM thesis, M.I.T. Dept. of
Electrical Engineering and Computer Science, May 1976. (Also available
as MIT/LCS/TR-162, Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, Ma., May 1976. (NTIS# AD A026911))

<Lampson71> Lampson, B. W., "Protection," Proceedings Fifth Princeton
Conference _£!!. Information Sciences and Systems, Princeton University,
March 1971, pp. 437-443, reprinted in Operating Systems Review, Vol. 8,
No. 1, January 1974, pp. 18-24.

<Lampson73> Lampson, B. W., "A Note on the Confinement Problem,"
Connnunications ~the ACM, Vol. 16, No. 10, October 1973, pp. 613-615.

<Lampson76> Lampson, B. W. and H. E. Sturgis, "Reflections on an
Operating System Design," Communications of the ACM, Vol. 19, No. 5, May
1976, pp. 251-265.

<Lampson77> Lampson, B. W., et al., "Report on the Programming Language
Euclid," ACM SIGPLAN Notices, Vol. 12, No. 2, February 1977.

<Lipner71> Lipner, S. B., MACIMS Security Configurations, WP-3697, 'llle
MITRE Corp., Bedford, Ma., 6 January 1971.

<Lipner72> Lipner, S. B., SATIN Computer Security, 'Tile MITRE Corp.,
MCI-75-2, Information Systems Technology Applications Office, HQ
Electronic Systems Division, Hanscom AFB, Ma., September 1972.

<Lipner75> Lipner, S. B., "A Comment on the Confinement Problem,"
Proceedings of the Fifth Symposium on Operating System Principles, ACM
Operating Systems Review, Vol. 9, No. 5, November 1975, pp. 192-196.

<Liskov77> Liskov, B, et al., "Abstraction Mechanisms in CLU," to
appear in Communications of the ACM, Vol. 20, No. 7, July 1977.

<Mack76> Mack, J. L. and B. N. Wagner, "Secure Multilevel Data Base
System: Demonstration Scenarios," 'Tile MITRE Corp., ESD-TR-76-158, HQ
Electronic Systems Division, Hanscom AFB, Ma., October 1976.

<MACSYMA75> MACSYMA Reference Manual, Project MAC, Massachusetts
Institute of Technology, Cambridge, Ma., November 1975.

<MAM76> , Multics Administrators' Manual - System Administrator,
AKSO, Rev. 1, Honeywell Information Systems, Inc., Waltham, Ma., October
1976.

<Metcalfe76> Metcalfe, R. M. and D. R. Boggs, "Ethernet: Distributed
Packet Switching for Local Computer Networks," Communications ~ the
ACM, Vol. 19, No. 7, July 1976, pp. 395-404.

135

<Millen76> Millen, J. K., "Security Kernel Validation in Practice,"
Conununications El_ the ACM, Vol. 19, No. 5, May 1976, pp. 243-250.

<Millstein76> Millstein, R., National Software Works Status Report
No. 1, Massachusetts Computer Associates, RADC-TR-76-276, Vol. I, Rome
Air Development Center, Griffiss AFB, N. Y., September 1976. (NTIS#
AD A034133)

<Montgomery76> Montgomery, W. A., A Secure and Flexible Model of
Process Initiation for~ Computer Utility, SM and EE thesis, MIT Dept.
of Electrical Engineering and Computer Science, June 1976. (Also
available as TR-163, Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, Ma., June 1976.)

<MPM75> ---, Multics Programmers' Manual Reference Guide, AG91, Rev. 1,
Honeywell Information Systems, Inc., Waltham, Ma., December 1975.

<Nibaldi76> Nibaldi, G. and B. Wagner, Secure Multilevel Data Base
Systems: System Software, MTR-3160, Vol. III, The MITRE Corp., Bedford,
Ma., in preparation.

<Nixon72> Nixon, R. M., "Classification and Declassification of
National Security Information and Material," Executive Order 11652, The
White House, Washington, D. C., 8 March 1972.

<0rganick72> Organick, E. I., The Multics System: An Examination El_ its
Structure, MIT Press, Cambridge, Ma., 1972.

<Padlipsky77> Padlipsky, M., D. Snow, and P. Karger, Limitations El_
End-to-End Encryption in Secure Communications Networks, MTR-XXXX, The
MITRE Corp., Bedford, Ma., in preparation.

<Painter75> Painter, J. A., "A Minicomputer Network to Enhance Computer
Security," Communications Networks, Online Conferences, Ltd., Uxbridge,
England, 197 5.

<Parker73> Parker, D. B., S. Nycum, and S. S. OUra, Computer Abuse,
Stanford Research Institute, Menlo Park, Ca., November 1973.

<Popek74> Popek, G. J. and C. S. Kline, "Verifiable Secure Operating
System Software," 1974 National Computer Conference, AFIPS Conference
Proceedings, Vol. 43, AFIPS Press, Montvale, N. J., 1974, pp. 135-142.

<Postel76> Postel, J. B., L. L. Garlick, and R. Rom, Transmission
Control Protocol Specification, SRI-ARC-35938, SRI-ARC-35939,
Augmentation Research Center, Stanford Research Institute, Menlo Park,
Ca., 15 July 1976. (NTIS# AD A035337)

<Pouzin76> Pouzin, L., "Virtual Circuits vs. Datagrams - Technical and
Political Problems," 1976 National Computer Conference, AFIPS Conference
Proceedings, Vol. 45, AFIPS Press, Montvale, N. J., 1976, pp. 483-494.

136

<Privacy74> Privacy Act of 1974, Title 5, United States Code, Section
552a (Public Law 93-579), December 31, 1974.

<Redell74> Redell, D. D., Naming and Protection in Extendible Operating
Systems, PhD thesis, Department of Electrical Engineering and Computer
Science, University of California at Berkeley. (Also available as
Project MAC TR-140, Massachusetts Institute of Technology, Cambridge,
Ma., November 1974. (NTIS# AD A001721))

<Reed77> Reed, D. P. and R. J. Kanodia, "Synchronization with
Eventcounts and Sequencers," submitted to the Sixth ACM Symposium ~
Operating Systems Principles, Massachusetts Institute of Technology,
Cambridge, Ma., March 29, 1977.

<Rhode77> Rhode, R. D., ESD 1976 Computer Security Developments
Summary, 'nle MITRE Corp., MCI-76-2, Directorate of Computer Systems
Engineering, HQ Electronic Systems Division, Hanscom AFB, Ma., January
1977.

<Richardson73> Richardson, M. H. and J. V. Potter, Design of i!_ Magnetic
Card Modifiable Credential System Demonstration, MCI-73-3, HQ Electronic
Systems Division, Hanscom AFB, Ma., December 1973.

<Ritchie74> Ritchie, D. M. and K. Thompson, "'nle UNIX Time-Sharing
System," Communications of the ACM, Vol. 17, No. 7, July 1974, pp.
365-375.

<Roberts73> Roberts, L. G., "Dynamic Allocation of Satellite Capacity
Through Packet Reservation," 1973 National Computer Conference and
Exposition, AFIPS Conference Proceedings, Vol. 42, AFIPS Press,
Montvale, N. J., 1973, pp. 711-716.

<Rotenberg74> Rotenberg, L. J., Making Computers Keep Secrets, PhD
Thesis, Department of Electrical Engineering, Massachusetts Institute of
Technology, February 1974. (Also available as Project MAC TR-115,
Massachusetts Institute of Technology, Cambridge, Ma., February 1974.
(NTIS# PB 229352/AS))

<Rowe75> Rowe, L. A., The Distributed Computing System, Technical
Report #66, University of California at Irvine, Irvine, Ca., June 1975.

<Saltzer74> Saltzer, J., "Protection and the Control of Information
Sharing in Multics," Communications of the ACM, Vol. 17, No. 7, July
1974, pp. 388-402.

<Schacht76> Schacht, J. M., Jobstream Separator: Supportive
Information, 'nle MITRE Corp., ESD-TR-75-354, HQ Electronic Systems
Division, Hanscom AFB, Ma., January 1976. (NTIS# AD A020521)

<Schell73> Schell, R. R., P. J. Downey, and G. J. Popek, Preliminary
Notes~ the Design_£!. Secure Military Computer Systems, MCI-73-1, HQ
Electronic Systems Division, Hanscom AFB, Ma., January 1973.

137

<Schell76> Schell, R. R. and P. A. Karger, Security in Automatic Data
Processing (ADP) Network Systems, ESD-TR-77-19, HQ Electronic Systems
Division, Hanscom AFB, Ma., December 1976.

<Schiller73> Schiller, W. L., Design of a Security Kernel for the
PDP-11/45, The MITRE Corp., ESD-TR-73-294, HQ Electronic Systems
Division, Hanscom AFB, Ma., June 1973. (NTIS# AD 772808)

<Schiller75> Schiller, W. L., The Design and Specification of_!!.
Security Kernel for the PDP-11/45, The MITRE Corp., ESD-TR-75-69, HQ
Electronic Systems Division, Hanscom AFB, Ma., May 1975. (NTIS#
AD AOll 712)

<Schiller76> Schiller, W. L., P. T. Withington, and J. P. L. Woodward,
Top Level Specification E.f ..!!. Multics Security Kernel, WP-20810, The
MITRE Corp., Bedford, Ma., 9 July 1976.

<Schroeder7 5> Schroeder, M. D., "Engineering a Security Kernel for
Multics," Proceedings of the Fifth Symposium on Operating System
Principles, ACM Operating Systems Review, Vol. 9, No. 5, November 1975,
pp. 25-32.

<Shaw77> Shaw, M, and W. A. Wulf, "Abstraction and Verification in
ALPHARD: Defining and Specifying Iteration and Generators," to appear
in Connnunications E..f the ACM, Vol. 20, No. 7, July 1977.

<Shemer77> Shemer, J. E., et al, "Development of an Experimental
Display Word Processor for Office Applications," Fourteenth IEEE
Computer Society International Conference, IEEE, Inc., New York, 1977,
pp. 42-46.

<Slinn76> Slinn, C. J., Chaos Manual, Computer Laboratory, Corn
Exchange Street, Cambridge, England, 3 September 1976.

<Stork75> Stork, D. F., Downgrading in..!!. Secure Multilevel Computer
System: The Formulary Concept, The MITRE Corp., ESD-TR-75-62, HQ
Electronic Systems Division, Hanscom AFB, Ma., May 1975. (NTIS#
AD A011696)

<Thomas73> Thomas, R. H., "A Resource Sharing Executive for the
ARPANET," 1973 National Computer Conference and Exposition, AFIPS
Conference Proceedings, Vol. 42, AFIPS Press, Montvale, N. J., 1973, pp.
155-163.

<Turn76> Turn, R., "Classification of Personal Information for Privacy
Protection Purposes," 1976 National Computer Conference, AFIPS
Conference Proceedings, Vol. 45, AFIPS Press, Montvale, N. J., 1976, pp.
301-307.

138

<Walter74> Walter, K. G., et al, Primitive Models for Computer
Security, Case Western Reserve University, ESD-TR-74-117, HQ Electronic
Systems Division, Hanscom AFB, Ma., 23 January 1974. (NTIS# AD 778467)

<Walter75> Walter, K. G., et al., Initial Structured Specifications for
~ Uncompromisable Computer Security System, Case Western Reserve
University, ESD-TR-75-82, HQ Electronic Systems Division, Hanscom AFB,
Ma., July 1975.

<Weissman69> Weissman, C., "Security Controls in the ADEPT-50 Time
Sharing System," 1969 Fall Joint Computer Conference, AFIPS Conference
Proceedings, Vol. 35, AFIPS Press, Montvale, N. J., 1969, pp. 119-133.

<White75> White, J. C. C., Design~~ Secure File Management System,
The MITRE Corp., ESD-TR-75-57, HQ Electronic Systems Division, Hanscom
AFB, Ma., April 1975. (NTIS// AD A010590)

<Whitmore73> Whitmore, J., et al, Design for Multics Security
Enhancements, Honeywell Information Systems, Inc., ESD-TR-74-176, HQ
Electronic Systems Division, Hanscom AFB, Ma., December 1973. (NTIS#
AD A030801)

139

