
tt MASSACHUSETTS
LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

(formerly Project MAC)

MIT/LCS/TR-184

FACILITATING INTERPROCESS COMMUNICATION

IN A

HETEROGENEOUS NETWORK ENVIRONMENT

Paul H. Levine

This research was supported by the Advanced Research
Projects Agency of theDepari:.ent:of Defense and was

. monitored by the Office :of.'Naval:·Research U.nder ·
contract no. N00014-75-C-0661

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

This blank page was inserted to presenie pagination.

FACILITATING INTERPROCESS COMMUNICATION

IN A

HETEROGENEOUS NETWORK ENVIRONMENT *

by

Paul Howard Levine

ABSTRACT

Passing information among processors with different internal data
formatting schemes has proven to be a major complication to computer
networking efforts. Data format translation is necessary to support
information exchange in a heterogeneous network envirounent. Three
strategies for performing this translation. for ccamunications between
a message sender and receiver are: translation by the receiver,
translation by an intermediate translator, and the use of a standard
intermediate format. The standard format is ahown to be the most
responsive to a set of general network design principles.

The implementation of an intermediate format based interprocess
cormminications' scheme requires a mechanism for passing the semantic
description of each string of data bits. Two alternative mechanisms
for passing this information are discussed, and data "tagging" is
selected as the more flexible. Other implementation considerations
are examined, including possible problems in performing translation
and the relationship formal translation has to other network message
handling functions.

THESIS SUPERVISOR: Prof. Liba Svobodova

COMPANY SUPERVISOR: Dr. Robert L. Gordon

* This report is based upon a thesis of the same title submitted to
the Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, on March 25, 1977 in partial
fulfillment of the requirements for the degrees of Bachelor of Science
and Master of Sci~nce.

This empty page was substih1ted for a
blank page in the original document.

ACKNOWLEDGEMENTS

I would like to extend my thanks to my thesis advisor, Professor Liba

Svobodova. Her substantive suggestions, tireless editing and constant

encouragement contributed greatly to the final form and content of this

thesis. My sincerest thanks also go to Dr. Robert L. Gordon for having

suggested this area for research and for his valuable insight and support.

I am also indebted to the many other people, particularly W. Allan

Clearwaters, who contributed to my understanding of the issues through

countless hours of discussion. 'lben there are my greatest supporters,

Allan M. and Gloria Levine of Quincy, Massachusetts, whose perpetual

support and encouragement made this thesis possible.

'Ibis research was funded in part by Naval

IRAD funds, project ntanber A75030, W.

investigator.

- 3 -

Underwater Systems Center

A. Clearwaters principal

TABLE OF CONTENTS

1. Heterogeneous Computer Netwrks

1.1 Netwrlting

1. 2 Interprocess comnnm ica t ion

1. 3 Heterogeneity

1.4 Sumaary

2. Facilitating Interprocess Communications

2.1 Design principles

2.2 Possible strategies

2.2.1 User translation

2.2.2 Receiver translation

2.2.3 Intermediate translator

2.2.4 Standard form.at

2.3 Summary

3. An Intermediate Data Format

3.1 Data description

3.1.1 Passing description by prearrangement

3.1.2 Passing description by data tagging

3.2 The standard format

3.2.1 ASCII character representation

3.2.2 Formats based on data type

3.3 A possible IDF

- 4 -

6

6

9

11

14

16

16

24

25

27

29

31

39

46

48

52

56

59

60

62

65

4. Problems of Data Translation

4.1 Precision

4.2 Format incompatibility

4.3 Data type incompatibility

4.4 Summary

5. Translator Implementation Considerations

5.1 Message handling functions

5.1.1 Message packetizing

5.1.2 Flow and error control

5. 1. 3 Encrypt ion

5.2 Implementation of Message Processing functions

5.3 Supporting data description in the host

6. Cone 1 us ions

6. 1 Areas for future study

6. 1. 1 The contextual meaning of data

6 .1. 2 Passing pointers

6 .1. 3 Passing programs

6. 1. 4 Negotiating the IDF

References

- 5 -

68

70

74

76

78

79

79

80

82

83

85

90

92

93

93

96

97

98

100

CHAPTER I

Heterogeneous Computer Networks

A recent trend in computer systems research has been towards the

investigation of and experimentation with computer networks. Besides the

extensive work on ARPANET <Frank, Heart, Metcalfe!, Crocker, ARPA> and

other geographically distributed computer networks <Pouzinl, Wood>,

the possible implementations and applications of local computer networks is

also being researched at an ever-increasing number of laboratories

across the country <Fraserl, Farberl, Metcalfe2, Mills, Binder, MRG,

Hirt, Chen, Wulf, Swan>. Passing information among processors with

different internal data formats has proven to be a major complication

to these computer networking efforts <Farber2, Millstein, VanDam2>.

1.1 Networking

The definition of a computer network can be phrased in terms of a

network's form and function. One such definition asserts that

set of
form] ,

••• a computer network is defined to be a
autonomous, independent computer systems [the
interconnected so as to permit interactive resource
sharing between any pair of systems [the function].
[<Roberts> p. 543.]

- 6 -

Heterogeneous Computer Networks

Such a network is embodied as:

1) a collection of hosts (computers) providing service to
a user (either an end user or another host computer), and
2) a subnetwork providing coamaunication among host
computers, users, or both. [<Kimbleton2> p. 129.]

A typical network is depicted in Figure 1-1. 'nle subnetwork is built from

nodes and the communications links that serve as the data paths between

the nodes. 'nle nodes interface the network hosts to the subnetwork

<Crowther>. As shown, it may be possible for a single node to support the

network demands of more than one host.

Study of techniques for supporting general inter-computer

information exchange is motivated by the proposed uses of computer

networks. 'nle most often cited rationale for computer networking is

probably the facilitation of "resource sharing." <Chen, Farber 1,

Mills, Roberts, 'nlomas2> However, especially in the case of

geographically local networks, much attention is now being focused on

computer networks as the hardware/firmware base for distributed

systems <Kimbletonl, MRG, Rowe, Swan, 'nlomasl>.

- 7 -

Heterogeneous Computer Networks

--1 1--

I \
I I NODES I \

I \

--1 I I 1--

* HOSTS I \ I
I \ I

I \ I
\

\ LINKS *--1 1--* *--1 1--*
\

TYPICAL C<JilPUTER NETWORK

FIGURE 1-1.

Resource sharing networks are those computer comm.un ica t ions

systems that provide access to remote hardware and software services.

'nlis may include the use of standard· peripherals, special hardware

devices, information or software utilities through the network. 'nle

advantages are primarily economic. With the cost of the processing unit

becoming a smaller percentage of the total system cost for an

installation, concern has shifted to the cost of providing system

services. By increasing access to high cost software, large data

bases, or expensive peripherals, the need for redundant facilities can be

minimized.

A distributed computer network has been described as a system that

supports the execution of a user task by using multiple components

throughout the network, each component performing some part of the required

- 8 -

·.~, '

Heterogeneous Computer Networks

task <VanDaml, Wecker>. The subtasks COllUllunicate over the network to

accomplish the complete assignment. The principle distinction between

this and a resource sharing network is that a distributed system

offers the end user an interface to a single coherent system and yet

employs a network of computers to process his request <Elovitz, F.nslol!t>.

Networks supporting distributed systems can transparently offer a user

the performance advantages of load sharing and parallel processing as

well as the reliability feature of hardware modularity and modular

rechmdanc y.

1.2 Interprocess communication

'nle transfer of information between computers in a network can

accurately be described as data exchange between distinct processes

active on different processors. 'nlis view is a natural one for network

based distributed systems. One model of such a system consists of

several procedures for each task, running on different processors and

· performing the required interprocess communications across the

netwrk. However, viewing netwrk message passing as a case of

interprocess cOllllllunications is also appropriate for resource sharing

networks.

It is useful to think of resources as being
associated with processes and available only through
communication with these processes. tbis is a viewpoint
that has been successfully applied to time-sharing systems
and has been more recently been suggested to be an
appropriate view for computer networks. Consistent with this
view, the fundamental problem of resource sharing
is ••• the problem of interprocess communication •••• The view

- 9 -

•• :-··...&_

Heterogeneous Computer Networks

is also held that interprocess communication over a network
is a subcase of general interprocess communication in
a multiprogrammed environment. [<Walden> pp.
221-222.]

Considering the messages passed between network hosts to be

instances of interprocess communication provides insight into the

mechanisms needed to support inter-host net Work communications.

Specifically, any message passing scheme must support the transfer of the

kinds of messages that are the units of communication between

processes. Communicating processes may need to exchange only boolean

values or entire data files. The ALGOL-like languages allow the

interprocess exchange of the primitive data types (INTEGER, CHARACTER) as

well as more complex structures (STRINGS, ARRAYS). To facilitate

inter-host communications, then, a network message passing strategy must

support the transfer of both simple and composite data types.

The problem of passing information across a network can be broken down

into two stages. First, regardless of the information being passed, a

protocol muat be established that assures the bit integrity of exchanged

messages. Schemes for this level of hand-shaking usually employ a three

part structure, including a header, the data bits to be passed and a

trailer (Figure 1-2).

---------------------------------------~~------------------
header data field trailer

---------------------~--------------------------~----------

Figure 1-2.

- 10 -

Heterogeneous Computer Net"WOrks

The header contains a destination field as well as some, possibly

complex, message control information. The data field is usually

transparent to the message passing hardware and protocols. The

trailer contains the error-checking codes and status information.

This level of interprocessor communication has been examined

extensively in the literature <Bhushan, Metcalfe2, WhiteG> and is not

addressed in this study.

The second stage of information transfer over a network is the

interpretation of the bits in the data field. Because the internal

representation of data is different across products of different

computer manufacturers and even computer products from the same

manufacturer, some reformatting of the information is necessary to

support information transfer in networks.

1.3 Heterogeneity

Little has emerged in the way of techniques for allowing

different kinds of processors in a heterogeneous computing environment to

exchange information in a general way. Rather than concentrating on the

semantic content of interprocessor messages, much of the effort has been

directed towards simply getting one host computer in a network to

accept unexamined binary data from another. To this end, several

topologies for computer interconnection have appeared, as well as schemes

for insuring delivery of a binary packet from a sending host to its

- 11 -

Heterogeneous Computer Networks

intended receiver. Yet to be addressed is the problem of also

transmitting the semantic content or "meaning" of the bits in a general

way. Passing the bits themselves is only the first step towards

interprocessor communications. At this point, a mechanism is needed to

support the passing of information.

Insuring the integrity of a binary string as it is moved
from the memory of one processor to another, has not been
easy. Many complex issues concerning error detection
and recovery, message routing, system response and
component loading have been faced, only to uncover the next
set of problems, that of providing adequate semantics for the
transferred bit strings ••• Suppose the text file of one system
requires a carriage return artd line feed as a line
separator, while another system requires a carriage return.
Who should be responsible for the inclusion or exclusion of
the line feed? Worse yet, what do we do about
incompatible integers, character sets, and floating point
data types? Current solutions are worked out by cooperative
programmers, not processors, and severly limit solutions to
dynamic reconfiguration and load sharing among connected
processors. [<Gordon> p. 4]

These data formatting problems have been essentially avoided in some

networks by inter-connecting strictly machines that use similar internal

data representations <Fredericksen, Mills, Thomasl, Swam , Wulf> •

Processors in such a homogeneous computing environment require no data

format translation to exchange information. They are assured by common

hardware and software design that the semantic content of their passed

data will be correctly understood by their intended receiver if the

bit content is delivered correctly.

This approach to distributed computing, although attractive, is not

sufficient to support the growing demand for connected computers.

- 12 -

Heterogeneous Computer Networks

Clearly, homogeneous machines provide a processing environment more

hospitable for inter-computer message transfer. Unfortunately, many

organizations have discovered too late the

already acquired machines inter-connection,

manufacture for

having

separate computing requirements.

advantages of

of

The

different

capital

investment represented by these computers, in both hardware and

software, often prohibits their replacement with more compatible

counterparts. Ignoring the data translation problem because it can be

avoided in homogeneous environments is being unresponsive to the

needs of a large segment of the computing community.

real

Conveying meaning of transmitted bits in a

environment is not as simple as it may first appear.

heterogeneous

The difficulty

arises because of the total lack of an industry standard for the

internal representation of information in computers. The market is

filled with machines of every description: they support

sign-magnitude, or one's or two's complement arithmetic, 12, 16, 24, 32,

36, 48, or 60 bit word lengths, and unique floating point mnnber

representations. At the software level, there are different ways to

represent complex numbers, vectors, arrays and other data structures.

Discrepancies exist even in the case of character data. Although the

ASCII character set has become an industry standard, different

machines still ascribe different contextual meanings to control

characters such as form feed, line feed, tab and carriage return.

- 13 -

Heterogeneous Computer Networks

1. 4 Summary

There are several methods for facilitating general information

exchange between two dissimilar processors. 'nlis report examines

these methods in light of a set of design considerations for computer

networks. 'nlere are problems inherent to any scheme for presenting data

in different formats to processors with different requirements and

these, too, are examined. 'nle report does not claim to solve the problem

of inhomogeneity. Rather

alternatives, and to offer an

facilitating

environments.

interprocessor

its intent

adaptable and

communication

Chapter I has attempted to review computer

is to

extensible

in

examine

scheme

the

for

heterogeneous

networking and the

relationship between host-to-host message passing and interprocess

communication. 'nle problem of moving information between

heterogeneous processors is introduced, and the intent of the research

stated.

Chapter II proposes design considerations for networks and

network supporting functions. Section 2.2 presents three mechanisms for

data translation that can facilitate data transfer in a

heterogeneous environment. 'nl.e summary evaluates these strategies with

respect to the stated design considerations.

The mechanism found most responsive to the design goals in

- 14 -

Heterogeneous Computer Networks

Chapter II is the subject of Chapter III. The mechanics of the scheme are

presented and alternative designs argued.

Chapter IV discusses problems that are inherent to any data

translation mechanism, and suggests practical ways to deal with these

problems. Chapter v introduces

format translators, and Chapter VI

study.

implementation considerations for

presents some areas for future

- 15 -

CHAPTER II

Facilitating Interprocessor Communications

'nle development of any technique acceptable for providing

communications in a heterogeneous network environment must be guided by

the anticipated operating requirements such a facility may face. Any

such scheme must be flexible, extensible, provide enough

functionality to compensate for the cost and overhead it incurs, and also

be easy to use. From its beginning, the research reported herein has used

a set of design principles as a basis for the evaluation of strategies to

provide general interprocessor comaunications. 'nle following section

describes those design principles.

2.1 Design principles

Process Addressing -- Almost all of the doCllDented computer networks in

operation today support node to node message transfer. In the header

of the message being sent, the transmitting node

on the network as the target for that message.

of infot111ation exchange is the binding of

to a network node.

designates a second node

Implicit in this method

each communicating process

To send data, a process at one network site builds a message and

addresses it to the network node that represents the process receiving the

- 16 -

Facilitating Interprocessor Communications

data. The sending process then passes the message to the network to be

delivered. When it is accepted at its destination, the message is passed

to a process running in a host at that site for which the information in

the message was intended. It has been suggested <Farberl, Walden>

that rather than addressing messages to a receiving network node, the

transmitting process address messages directly to the receiving process.

The subnetwork interface at each node is then responsible for finding

and accepting messages addressed to any processes currently active at

its node.

Process addressing has several inherent advantages compared to the

more standard technique of node or processor addressing.

The most attractive feature of this approach is that it
allows a uniform conceptual point of view. The
processor oriented view requires a rather continual
translation from process name to the process that
supplied the service. This continual translation is
required for reliability and flexibility. [<Farberl> P· 7.]

The added flexibility offered by process addressing is a result of

having the physical location of the receiving process be transparent to

the sender. This transparency facilitates the dynamic relocation of

running processes on a network for purposes of load leveling or in the

event of partial node failure.

Since a message is not directed to a particular processor it can

- 17 -

Facilitating Interprocessor Communications

reach several instances of a process, each running under the same

process name at different network nodes. By allowing the duplication of

names, the communications system

announcements to several or all network nodes.

facilitates

It further

broadcast

supports

identical processes on different processors for increased reliability

through parallel redundancy.

Process addressing is not without a serious technical problem.

Besides depending on a network-wide process naming scheme, inherent in the

concept of location transparency is the requirement that every node be

allowed to examine every message. Each must compare the name of the

process being addressed with the names of the processes active at its

location. While reasonable for some network topoloaies, such as a simple

bus <Metcalfe2>, ring <Farberl>, or star, it is out of the question for

others. 'nle advantage of a tree network <MR.G>, for example, is its

ability to favor communications paths between certain processors. 'nlis

advantage is meaningless when every message must be circulated to every

node. In the case of multiply connected store and forward packet switching

networks <ARPA,, Frank, Heart, Metcalfe!, Pouzin>, a mechanism would be

necessary to insure that every packet travelled through every node.

However, because some network structures are suited to it,

sending messages by process name is a legitimate operating feature for a

mechanism that supports interprocessor communications. Facilitating

- 18 -

Facilitating Interprocessor Communications

process addressing is, therefore, a design consideration for such a

mechanism.

Easy Expansion Short of special purpose networks designed with

particular components and applications in mind, extensibility is an

important consideration in network facility design. In the case of a

general interprocessor communications

forms.

scheme,

First is the expansion of the network itself.

the issue takes two

'nle ability to add

nodes to a network with a minimllll of disruption to the operation of

already existing network nodes has been a design consideration for and been

achieved by many networking efforts <Binder, Farberl, Frank, Fraserl,

Mills, Metcalfe2, Pouzinl>. It is equally essential that incremental

expansion of a network should cause minimal disruption to a mechanism that

provides data representation compatibility between processors.

'nle second concern is for the addition or modification of data

formats in use by the processors at nodes already part of a network. 'nle

design of a network-wide communications scheme must anticipate the need for

such changes and provide the means for handling them with a minimtun of

effort.

- 19 -

Facilitating Interprocessor Communications

Functional Sophistication General interprocess information exchange

requires the support of a communications facility that allows for the

trans-network movement of a wide range of data types. The size of the

subset of data types handled by a mechanism and the flexibility with

which the supported data types can be manipulated are a measure of that

mechanism's sophistication.

Strategies for relatively simple information exchange between

processors in a heterogeneous environment have already

example of such a strategy that handles a single data

appeared.

type is

An

the

ARPANET TELNET <ARPA2> described in a later section. TELNET provides a

protocol for sending text across the ARPA network between host

processors. Each processor may store text in any of the several

commercially used internal representations for characters.

The single data type provided by TELNET does not offer the

sophistication required to support general interprocess

communications. Although characters are the most often considered data

type, they are only a very small subset of types used to transfer

information between processes. Textual information is more easily

handled because of the industry-wide recognition of the USASCII

character set <Bhushan>. However, providing data transfer in a

heterogeneous processing environment requires provisions for handling data

types without a standard format as well.

- 20 -

Facilitating Interprocessor Communications

Application-level Transparency -- Removing the programmer from the

details of machine operation has become a generally accepted notion

among members of the computer field. An example of this kind of

thinking is found in <Corbato>. In line with this philosophy is the

logical separation of the internal and external data formats used in

ordinary data processing. In this sense, internal data formats are

hardware dependent and external formats are those conceptual items with

which the applications progr81111ler and the human end-user must deal.

'nle importance of this distinction was noted as early as 1968 by the

National Bureau of Standards •

••• the internal representation of data is concerned with
the manner in which particular computers aad. other hardware
store and move the data around inaide the ayatem. 'nlis is
not the user's province, and there should be no imposition
on him as to how it is done. For example, it should be of
no concern to him whether the hardware represents his
data by means of 6-bit, 8-bit, or 64-bit units within the
computer. He should have no concern with "packing"
and "unpacking" of characters within the computer words. He
should not be troubled with physical file units. 'nlese are
all aspects of the supporting technology... (<Little> p.
93}

Applications of this view of data maintenance to the problems of

general process communications in a network demands that the necessary data

reformatting be transparent to the applications programmer. He should

- 21 -

Facilitating Interprocessor Communications

have a consistent view of data items regardless of

representation or wh~re in a network they may originate.

their actual

Minimal Host Overhead -- Providing an interprocess data communications

service among heterogeneous processors requires some level of data

reformatting. In large part, the

perform

format

data translation

compatibility. A

depends

general

amount

on the

scheme

of overhead required to

strategy used to

for facilitating

achieve

such

communications and an associated implementation, however, should not

presume on the sophistication of processors connected to the networks as

hosts.

This concern is slightly apart from the development of

communications scheme, as it is more an issue of a

a data

scheme's

implementation. The distribution of network related functions, such as

message formatting, between the subnetwork communications components and

their associated hosts is not a settled question for networking in general.

The issues are discussed in Section 5.2. Nonetheless, in order to be

responsive to the needs of those network environments that include

hosts with limited processing power, a mechanism for providing

interprocessor communications must be designed with the demands it places

on host processors in mind.

- 22 -

Facilitating Interprocessor Communications

Minimal Message Overhead -- The limiting of overhead added to the

network hosts is required to support the use of devices with limited or

inflexible processing capabilities as hosts. Minimizing message

overhead is a consideration that addresses the total cost of message

processing. These two design goals combine to minimize the overhead

caused by message passing, and then force as much of the remaining overhead

as possible into the node. that remains into the network hosts.

This total overhead includes

network site (host, subnetwork

modules) and traffic on the

represented at each network

the processing required at each

node, or special network processing

communications links. Overhead is

site by the maintenance of a

software/hardware base plus the processing time to perform the message

reformatting. At the communications level, message

the form of header and information-describing bits

length of data messages being carried. Reducing the

levels increases the effective thruput of

overhead appears in

that increase the

overhead at these

each message

transmission and reduces

network node.

the message processing required at each

Reliability -- The reliability of a network based system is a function of

several different aspects of design and implementation. The

- 23 -

Facilitating Interprocessor Communications

categories of areas that must be considered include: failure of a

communications link, failure of the node hardware supporting message

handling functions, surfacing of hardware/software design errors, and

system fault-tolerance for each of these categories. 'nlese issues are

involved, however, not all of them are relevant to a discussion of

facilitating meaningful host-to-host information

simplified view of reliability is adopted.

exchange. 'nlus, a

'nle interprocess communication facility considered

functional improvement to a rudimentary bit-passing

scheme. However, increasing the functionality of

here is a

communications

a network

communicatiorts system involves increasing the number and/or complexity of

required system modules; both the size and the sophistication of a

mechanism are directly related to failure through error in design. It

follows, therefore, that an important consideration in the design of a

strategy to increase system function is to limit the number and

complexity of additionally required hardware and software modules. It is

with this limited view of reliability in mind that the following

strategies are evaluated.

2.2 Possible strategies

Several schemes for facilitating communications in a

heterogeneous environment are presented in this section. 'nle common

- 24 -

Facilitating Interprocessor Communications

basis for each of these strategies is their need for a format

translation from the internal data format used by the transmitter to that

used by the intended receiver.

It is well recognized that hosts in a heterogeneous
net"'10rk use different bit patterns for encoding information.
Data translation is the basic capability which permits
hosts to communicate with each other in spite of
their differences. It follows that a data translation
capability is central to any effective capability to
communicate among heterogeneous computers. <Kimbletonl> p.
555.]

The differences in the schemes discussed below lie in the steps that each

requires to perform that translation.

2.2.1 User translation

'llle simplest, and so the most often adopted, attitude towards

providing formatting for data transmitted over a network attempts to

avoid the issue completely. In some cases, networks consist of a

totally homogeneous collection of processors and software

environments, and so never require any data translation <Haverty, Mills,

Swan, Wulf>. However, the majority of currently operating networks

that have adopted this approach do not fall into this category.

Netw:>rks such as ARPANET, DCS, CYCLADES, and ETHERNET are designed to

support heterogeneous processor environments, yet leave the data

translation necessary to facilitate general interprocessor communications

- 25 -

Facilitating Interprocessor Communications

totally to the applications programmers. (ARPANET does provide some format

translation for specific types of process to process communication.

These will be discussed later.)

For network user communities for which the coordinated use of more

than one network processor is an infrequent requirement, handling data

format incompatibilities at the applications level on a special case

basis may be sufficient. This seems inappropriate, however, for

heterogeneous networking efforts investigating

distributed data bases and distributed operating

the issues relevant to

systems. It is these

functions especially that require

interprocess information exchange.

a high degree of interprocessor

DCS is an example of such a network project.

distributed operating system on a fully

network has already been discussed <Rowe>.

The installation of a

heterogeneous DCS-type

The DCS project head

agrees that a data reformatting mechanism would be an important

addition to his research efforts, however, the problems of general

format translation are too complicated to be addressed by his

researchers at this time <Farber2>.

- 26 -

Facilitating Interprocessor Communications

2.2.2 Receiver translation

One approach to actually facilitating data

provide data translators at each node eligible to

communications is to

receive messages from

the net-work. In such a scheme, the transmitter performs no data

reformatting. To send a message, a process only forms a data block to be

transferred using the internal format native to the processor on which

it is running. 'Th.e data traverses the network in its original format,

but carries with it, in some network-wide format, a description

of the processor at which the message originated. 'Th.e transmitting

process can always know the nature of its supporting host and insert this

information into the message being sent.

When a message is accepted at a network node, the receiver reads the

message field that identifies the transmitting processor type. It then

performs any conversion necessary to translate the sender's internal

format into the internal format appropriate to the receiving host. 'Th.e

identity of the transmitter needs to (and can) be known to the receiver,

while the receiving node remains unknown to the transmitter. 'Th.is

condition supports the node independent (or process) addressing

previously discussed.

A major disadvantage of such a scheme is that for each processor to

be able to interpret messages from every other, it must have access to a

- 27 -

Facilitating Interprocessot Communications

translator that can resolve each possible dissimilar processor pairing.

At every node there must be a translator to convert each of the internal

formats used on the network to the internal format used at that node. In

the case of

requires

'n' different types of

that the network

processor,

support

this method of operation

'n(n-1)' translators to be

completely general, since each processor must be able to communicate

with all of the other types of processor on the network.

environments, this number quickly becomes prohibitive.

For diverse

lbis technique also hampers incremental system expansion. In

order for a new type of processor to communicate in the system

environment, it must be supported by a translator that translates from

every existing format into the format of the node being added.

Conversely, a translator that translates the new machine's format must be

added to every node already in the system. To continue to support every

possible communication path in the environment, every host requires

some modification when the 'n+l'th host is introduced into the system.

'2n' translators must be developed -- 'n' to reside at the new node to

allow its neighbors communicate with it, and one new translator for each

host already in the environment to allow them to receive communications

from the added host.

A slight variant of this scheme is to have each transmitter

perform all of the data formatting for its intended receiver.

- 28 -

Facilitating Interprocessor Communications

However, this offers no relief to the need for a large number of

translators. Further, it interferes with process-to-process message

transfer and with network-wide message broadcasting by forcing the

sender of a message to anticipate the internal data format

requirements of its receiver.

2.2.3 Intermediate translator

A topologically different mechanism places a third party between two

communicating processes solely to perform any needed data

conversions. An experimental project on the ARPA network provides

access to such an intermediate translator for specific applications. The

project is the data reconfiguration service (DRS) <ARPA5>.

The DRS offers a solution to the problem of data format

incompatibility between a particular applications program and its

intended users. Through a predefined translation mapping, the DRS acts

as an interpreter between the program and its user, permitting each to

communicate in its own format.

There are two stages to the use of DRS. First, the applications

programmer must describe a mapping between the data formats native to the

processor hosting his program and the formats native to the

processors representing his program.' s users. This requires specific

- 29 -

Facilitating Interprocessor Communications

knowledge of both of the formats involved and the I/O data

requirements of the application, Once such a mapping is fully

defined, the programmer prepares a description of the conversion in a DRS

supported language and catalogs that description by a unique name with the

DRS.

When a user process wishes to communicate with such an

appl !cations program, it makes a connection with the DRS. It

requests, by name, the use of the appropriate format translation

description prepared by the applications programmer. The DRS then

makes a connection to the desired program and from then on the program and

its user communicate through the DRS each data transfer being

reformatted according to the specified reconfiguration scheme.

'nle result is that both the applications program and its users only

handle messages in their own respective formats.

'nle user process behaves as if it were connected
directly to the server process, and vice versa. 'nle DRS
appears transparent to both processes; its function is to
reconfigure data that pass in each direction between
them into formats amenable to each of their processing
requirements. [<Anderson> p. 3.]

The DRS is effectively transparent at the application level and

extensive data translation may be taking place.

- 30 -

yet

Facilitating Interprocessor Communications

As implemented on ARPANET, an intermediate third party for data

reformatting has only limited use. Each application requiring the

service must catalog the appropriate format descriptors at the

is

the

reconfiguration service site. Each DRS mapping description

specific to an application, as well as to the formats of

associated processors. These descriptors provide a syntactic

structure which can be applied to incoming bit strings to delimit the

separate data items for reformatting. Such a description is essential to

the reformatting process.

2.2.4 Standard format

The most often cited network communications facility uses a

standard intermediate format to exchange data between potentially

dissimilar hosts. This facility is TELNET <ARPA3>. Running on

ARPANET, TELNET and its companion protocol for file transfer, FTP

(file transfer protocol) <ARPA4>, support the transfer of characters from

one network host to another. These protocols are discussed below.

The TELNET protocol is intended to carry characters between a

process representing a human user at a data terminal or a process

expecting to communicate with a terminal. TELNET forces

standardization of character formnts by interposing the notion of a

network virtual terminal (NVT) between the two communicating

- 31 -

Facilitating Interprocessor Communications

processes. Each host maintains a resident translator that performs the

data reformatting between the internal representation of character data

used by the host and that of the NVT. Any host-resident process that

either emulates or services a remote terminal must communicate with the

network through an instance of such a translator.

'nle standard character format used by TELNET is seven-bit

USASCII. The data representation and conventions adopted for NVT, as

described in the TELNET specifications, were

intended to strike a balance between being overly
restricted (not providing hosts a rich enough vocabulary for
mapping into their local character sets), and being overly
inclusive (penalizing users with modest terminals).
[<ARPA2> p . 1.]

This is the original TELNET protocol. However, a scheme for

providing extensions to the NVT through the "principle of negotiated

options" has been added. 'nle principle of negotiated options allows two

communicating processes to discuss and agree to the use of each

available extension to the standard NVT format. Since not all options will

be supported at all sites, the ability to decline as well as request

and' accept the use of options is provided. By using the hand-shaking

protocol, two processes can find the maximal set of options that is

appropriate for their use.

The .options available are all extensions and enhancements of the NVT.

- 32 -

Facilitating Interprocessor Communications

They include changing the disposition of control characters (carriage

return, line feed, form feed, tab), extending the character set and

altering the message format. As described in the TELNET option

specifications, these extensions are provided

to permit sites to obtain more elegant solutions to the
problems of communication between dissimilar devices than is
possible within the frameW'Ork provided by the Network
Virtual Terminal. [<ARPA3> p. 1.)

It is through the mechanism of negotiation that use of these options is

controlled by the communicating hosts.

'llle file transfer protocol was designed to provide a mechanism for

file movement across ARPANET. As with TELNET, the communicating FI'P

processes agree through negotiation on the data format for the

information transfer. Each host performs the translation necessary to

convert its internal representation into and out of the

intermediate format being used for the data exchange.

'llle need for data reformatting in the hosts is discussed in the

original specifications for FI'P. While crossing the network, a text file

can be represented in the character set used by the TELNET NVT.

Data is transferred from a storage device in the
host to a storage device in the receiving host.

sending
Often

it is necessary to perform certain transformations
the data because data storage representations in
two systems are different. For example, NVT-ASCII

- 33 -

on
the
has

Facilitating Interprocessor Communications

different data storage representations in different
systems. PDP-lO's generally store NVT-ASCII as five
7-bit ASCII characters left justified in a 36-bit word.
360's store NVT-ASCII as 8-bit EBCDIC codes. MULTICS stores
NVT-ASCII as four 9-bit characters in a 36-bit word. It may
be desirable to convert characters into the standard
NVT-ASCII when transmitting text between dissimilar systems.
The sending and receiving sites would have to perform the
necessary transformations between the standard
representations and their external representations.
[<ARPA4> p. 9.)

For text files, two standard character representations (NVT-ASCII and

EBCDIC) are supported by FTP. Options for specifying format control

information are also available. The human FTP user sets up the

appropriate options and then initiates the file transfer.

Non-text files may also be moved by FTP. These are transferred as

unexamined blocks of bytes of a specified length. However, even

uninterpreted binary data can cause a problem in representation

between host systems with different internal word lengths.

It is not always clear how the sender should send data,
and the receiver should store it. For example, when
transmitting 32-bit bytes form a 32-bit word-length system to
a 36-bit word-length system, it may be desirable, (for
reasons of efficiency and usefulness) to store the 32-bit
bytes right-justified in a 36-bit word in the latter
system. In any case, the user should have the option of
specifying data representation and transformation functions.
It should be noted that FI'P provides for very limited
data type representations. Transformations desired
beyond this limited capability should be performed by
the user directly or via the use of the data
reconfiguration service. [<ARPA4> pp. 9-10.)

- 34 -

Facilitating Interprocessor Communications

An option is provided to allow the human user to specify the

logical byte size of the data being sent. 1brough this mechanism the user

can force the receiver to block and pad the data for storage.

1bis .•• is intended for the transfer of structured data. For
example, a user sending 36-bit floating point numbers to a
host with a 32-bit word could send his data ••• with a
logical byte size of 36. 1be receiving host would then
be expected to store the logical bytes so that they could
be easily manipulated; in this example putting the 36-bit
logical bytes into 64-bit double words should
suffice. [<ARPA4> p. 13]

It is only through this option that any information on the intended

format or use of binary data can be passed along with the bits in

non-text files. 1be problem of non-character data types is only

considered in this way by FTP.

Another ARPANET project that has had to deal with the problems of

interprocessor communication in a heterogeneous networking environment is

the National Software Works (NSW) • The NSW project recognizes the

existence of large software systems that can serve as "tools" for

further software development. Presently these software systems

scattered across the ARPANET .

..• the National Software Works will provide users with
access to software development tools on whichever machine
the tools happen to be. User's files are moved to the
tools over the NET, so the tools do not have to be
reprogrammed for each new computer. People building tools
may select the machine which is best suited for the tool
they are building... [<Crocker> p. 5.]

- 35 -

are

Facilitating Interprocessor Communications

Two phases of NSW are specified to address the data translation

issues. 1bese are interprocess communication and the file transfer

system.

Interprocess communication under NSW was originally to be

supported by a system called the Procedure Call Protocol (PCP) which was

later augmented and renamed the Distributed Processing System (DPS).

DPS was designed to support information transfer between dissimilar

network hosts. 1be protocol was to incl Ude data communication

through the use of standard intermediate representations.

<Kimbleton3, WhiteJ> The scheme was to handle most fundamental data

types.

Until mid-August 1975, NSW planned to provide for
communication between most of its building blocks through the
Distributed Processing Sys tea. In Aug~t, DPS was formally·
dropped from the NSW plan in favor of a much less
complicated scheme called MSG. [<Kimbleton3> p. 1-58.]

In January 1976, the preliminary specifications for MSG were

released. 1be report <MSG> deals with the data reformatting issue in a way

different from that of DPS.

Message exchange ••• is expected to be the most common
mode of communication among NSW proceaaea. To send a
message, a process addresses it by specifying the address
of the process to receive the mea•aae and then executes an
MSG "send" primitive which request• MSG to deliver the
message. [<MSG> p. i .. s.]

- 36 -

Facilitating Interprocessor Communications

A message is a string of bits created in the local
memory of a sending process. MSG sends the message to a
receiving process by duplicating the bit string in a
specified portion of the receiving process's local
memory. MSG itself imposes no further structure on
messages, nor does it interpret the contents of messages.
[<MSG> p. 2-6.]

Plans for data format standardization to support interprocess

communication were dropped in MSG.

lb.e file transfer system was designed to perform file format

translations on data files as they were moved by NSW across ARPANET.

lb.is facility, too, has been reconsidered.

lb.e file transfer system is heavily dependent on DPS.
Since DPS has been discontinued, the initial NSW
implementation is going to use FTP to move files. Later
refinements may provide for the non-FTP supported
features of the file system. [<Kimbleton3> p. a-68.]

In summary, then, although the original NSW design included an

examination of the data formatting issues, the current project effort has,

at least for now, laid those issues aside.

TELNET and FTP offer two examples of the use of a standard data

format to support information transfer between dissimilar processors on a

computer network. Negotiated options are an extension of the

mechanism that allows flexibility in the selection of the intermediate

representations two processors will use in a given exchange.

- 37 -

Facilitating Interprocessor Communications

Both TELNET and FTP force each transmission between processors to

conform to a universally observed intermediate data format (IDF). To

transfer data, each processor reformats its information into the IDF, and

then sends the translation. Upon receipt of a message, a

processor must perform a format translation to change the IDF

representation into its own. This mechanism provides processor

independent interprocess communication, since the broadcast message data

format is the same for every system host. The nlll!lber of required

translators is reduced, as well. Two translators for each type of

processor are required one for translation into and one for

translation out of the IDF. Again letting 'n' be the number of

dissimilar machines, the number of translators needed here is only

'2n' . That is, each processor in the environment must support exactly two

translators.

A universal format also facilitates incremental system expansion.

Since each new processor need only be able to understand the

relationship between the IDF and its own format, its addition to the

system does not require knowledge of the current configuration.

Further, the processors already in the system will only communicate with

the new entry in a format they already know. No modifications or additions

to them are required. The burden for system expansion ls solely on the

processor being added, which is pt ec isely where it belongs.

- 38 -

Facilitating Interprocessor Communications

2.3 Summary

'Tite previous sections have presented design alternatives for a

mechanism to support interprocessor communications in a heterogeneous

computer network. 'Tite selection of a design for implementation should be a

direct result of measuring the proposed mechanisms against desired

design characteristics. 'Tite design characteristics being considered

are the following:

process addressing
easy expansion
functional sophistication
application-level transparency
minimal host overhead
minimal message overhead
rel iab 11 i ty

'Titese are applied to the three proposed mechanisms

preceding section:

receiver translation
intermediate translator
standard intermediate format

described in the

Process Addressing - The internal data formats used by a running

process depend on the format employed by the processor on which that

process is active. Only by delaying the binding of a target data

format to each message until that message is accepted at the node on

which the desired process is active can process addressing be

facilitated.

- 39 -

Facilitating Interprocessor Communications

Both translation by receiver and the use of an intermediate

format delay the final stage of data reformatting until a message

reaches its destination. These mechanisms do not interfere with

addressing messages to processes. An intermediate translator, on the

other hand, requires the specification of the target format, and

therefore the receiving processor has to be identified before a

message can be translated and retransmitted to its intended

destination. A scheme based on such a translator, then, cannot

support process addressing, while the other two strategies can.

Easy Expansion Expansion includes both the addition of

processor types to a net'WOrk and the extension of the formats used by

processors already supported. An intermediate translator acts as a

central agency for all data reformatting. Under such a scheme, any

revisions required for system expansion are localized at that

translator, and so the modifications can be made easily. Similarly,

because an intermediate format demands that communications only appear in

the network standard, expansion of a system based on that mechanism impacts

only the translator at the site being added or changed.

However, as described, in a network with 'n' processor types, the

modifications required for the receiver translation mechanism increase as

- 40 -

Facilitating Interprocessor Communications

'n'. ('n-1' and '2n' translators are affected by format extensions and

additions respectively.) Compared with the t'«> other schemes, receiver

translation carries a high cost of expansion.

Functional Sophistication - Each strategy is logically sufficient to

I

support a full range of data reformatting facilities.

Application-level Transparency - In large part, the impact felt by

end-users of any network mechanism depends on the host or network

operating system to 'Which user software must interface. For example,

TELNET offers almost complete application-level transparency while DRS

requires a considerable amount of information from the applications

progr811l11ler. TELNET is fully supported by systems software and DRS is not.

'nle difference lies in the way the description of passed data is handled.

'nlis issue is discussed further in <llapter III. Transparency

at the application level is less a function of the scheme used to handle

messages and more a function of the chosen scheme's implementation. In

this regard the three translation schemes each offer the same

opportunity for application-level transparency.

Minimal Host Overhead Both TELNET and FTP interpret the

standard data format being employed through a translator process that runs

in the network hosts. Because the actual data translation for an

- 41 -

Facilitating Interprocessor Communications

application independent intermediate data format would be performed as a

preprocessing step for all

translators required for each

intermediate format could be

messages,

host is

withdrawn

and because the number of

small, translation of the

from the host and placed at a

lower functional level in the node. Receiver translation could also be

performed at a node level below the receiving host, but the large number

of translators required could force an extra degree of node component

node resident sophistication. An intermediate translator eliminates

reformatting overhead, but requires one or

dedicated to data reconfiguration.

more nodes (and hosts)

Minimal Message Overhead

eliminates the need for any

While an intermediate translator

data translation at the communicating

nodes, the installation and maintenance of and communications to

special purpose reformatting nodes require additional overhead.

Receiver translation requires exactly one data reformatting stage

(that at the receiver), but demands the management of a large number of

translators. An intermediate format requires exactly two data

reformatting steps, but greatly reduces the number of translators that must

be maintained over that for receiver translation, and so is the most

preferable of the three strategies.

Reliability - The criteria for measuring reliability of the

proposed mechanisms are the number and compl~xity of critical

- 42 -

Facilitating Interprocessor Communications

components. Each of the three alternatives requires the integrity of the

two nodes between which data is being exchanged. The use of an

intermediate translator, also requires that a third entity to perform the

data translation be functioning. This scheme has three critical modules

while both receiver translation and the use of a standard intermediate

format have only two.

The nodes in a receiver translation environment must maintain

translators for every format used in the network. Therefore, the size and

complexity of their network support software and hardware is greater

than the package required in

Of the three, this rough measure of

standard format.

an intermediate format environment.

reliability favors the use of a

Figure 2-1 stunmarizes the evaluation of the three design stages with

respect to the design considerations discussed. The figure includes

examination of both the "ideal" implementation and, where applicable,

an existing implementation of each strategy. The rating of the

strategies for each

decidedly more

consideration

responsive to

is

a

qualitative. Where a strategy is

design consideration than the

alternatives, it is marked with a "plus" and the others are marked with

"minuses" (e.g. reliability). Conversely, when one strategy is decidedly

worse than the others in a particular category, it is marked with a

"minus" and the others are marked "plus" (e.g. process addressing) •

- 43 -

Facilitating Interprocessor Communications

For some considerations, the specific implementation of a strategy is

marked "minus" and the general use of that same strategy is marked with a

"plus." These markings indicate

implementation of the strategy is

consideration, an extension/generalization

designated design goal (e.g. sophistication).

- 44 -

that while the

not responsive

of it would

current

to

meet

that

the

Facilitating Interprocessor Communications

I------------1---------------1------------------I
I RECEIVER I INTERMEDIATE I INTERMEDIATE I
!TRANSLATION I TRANSLATOR I FORMAT I
I----------- I ------------ I -------------- I
I GENERAL I DRS : GENERAL I TELNET : GENERAL I

I--------------I------------I-----:---------I--------:---------1
I PROCESS I + I I + + I
I ADDRESSING I I i I
I--------------I------------I-----:---------1--------:---------I
I EASY I I + + I + + I
I EXPANSION I I I I
I--------------1------------I-----:---------I--------:---------I
ISOPHISTICATIONI + I + + I + I
I--------------I------------I-----:---------1--------:---------I
I APPLICATION- I I I I
I LEVEL I + I + I + + I
I TRANSPARENCY I I I I
I--------------I------------I-----:---------I--------:---------I
I MINIMAL I I I I
I HOST I I + + I + I
I OVERHEAD I I I I
I--------------I------------I-----:---------1--------:---------I
I MINIMAL I I I I
I MESSAGE I I I + + I
I OVERHEAD I I I I
1--------------I------------I-----:---------I--------:---------I
I RELIABILITY I I I + + I
I--------------I------------I-----:---------I--------:---------1

DESIGN CONSIDERATIONS
vs.

DESIGN STRATEGIES

FIGURE 2-1.

- 45 -

CHAPTER III

An Intermediate Data Format

nte discussion in the preceding section motivates the use of an

intermediate data format to facilitate interprocessor communication in a

heterogeneous computer network. ntis section will address the

mechanisms needed to support an IDF and the selection of standard data

representations.

nte conceptual view of interprocessor communications is depicted in

Figure 3-1.

------ ------- ------- ------
I HA I I IDF I IDF I I I
1----1 1-----1 1---- I I I I

PA I I I I I I I IDF I I HB I PB
I I I I ----1 1-----1 1----1
I I I I I I I I I

------ ------- ------- ------
HOST

HA
TRANSLATOR

TA
SUBNETWORK

MODULE
SUBNETWORK TRANSLATOR HOST

HB MODULE TB

Figure 3-1.

'PA' and 'PB' are processes residing in processors 'HA' and 'HB'

respectively. nte translators are responsible for any reformatting

necessary between the data representation used by their corresponding host

processors and the network standard. All data formatting is

transparent to the subnetwork communication modules. F.ach data link

between the modules in the figure has associated with it the data

- 46 -

An Intermediate Data Format

format moved through that link.

Tilere are six steps to the successful transfer of data

process to another.

* the sending host passes data to its associated translator.

* the translator reformats the data
network standard representation.

to conform

* the translator passes the reformatted message
subnetwork to be carried across the network.

to

to

* the subnetwork module at the receiving node
incoming message to its associated translator.

passes

from

the

the

the

* the receiving translator reformats the message from the IDF
to the representation appropriate for its host processor.

* the receiving translator passes the reformatted message to
the receiving process.

one

To perform its function, the translator is passed a buffer in an

input data format and builds a buffer containing the reformatted

information. 'llle translator can be broken down conceptually

following way (Figure 3-2).

1-------------------------------------1
TRANSMIT I HOST I I NETWORK !REFORMATTED

BUFFER--->! INTERFACE I I INTERFACE !-->TRANSMIT
I AND I TRANSLATION I AND I BUFFER

REFORMATTED I BUFFER I I BUFFER I
RECEIVER<--- I HANDLER I . I HANDLER I <---RECEIVE

BUFFER !-------------------------------------! BUFFER

A TRANSLATOR
Figure 3-2.

- 47 -

in the

An Intermediate Data Format

'llle standardization of an intermediate network format in turn allows the

standardization of the network interface section of the

translator. Similarly, the portion of the translation section that is

tuned to the IDF will be transportable among translators. 'llle host

interface and its half of the translation specifications will

necessarily be host dependent.

3.1 Data description

'nlere are two aspects of data description for a data item. 'llle

first is the definition of the data class or type of each item, such as

character, integer, or instruction. In general, a string of bits carries

no indication of the kind of data item it is intended to represent.

'lllis is because the overlllbelming majority of currently avaitable

computer systems are based on the Von Neumann philosophy for storing

digital information. 'lllese systems do not rely on any inherent

distinction between the internal storage of different data types to

manipulate information. Rather, the semantic meaning of a string of

bits is derived solely from the context in lllbich the bits are used.

'nle Von NeUlllann form states that data
program are indistinguishable. 'l'hia form assumes
size binary words or characters [bytes] lllbich
programs to be treated as data. These computational

- 48 -

and
fixed
allow
units

An Intermediate Data Format

are manipulable by a large, general purpose set of
operations. Meaning is not inherently represented in the
contents of these units; rather it is assigned to the
contents of these units by the program manipulating them.
[<Feustal2> p. 1.]

By example, an 8-bit string sent to a teletype may ring a bell, while that

same string may be moved to an arithmetic unit to represent an integer

value. Moving the same bits to the instruction register of a processor

may cause yet another effect. It is the use of the bits that defines

their data type, and not the bits themselves.

The second aspect of data description is the specification of the

internal data format used to represent the value of an item of a

particular data type. "Integer" is a data type. "Two's complement," on

the other hand, is a data format used in many processors to

represent integer values. Other formats used for integers include

sign-magnitude, one's complement and decimal. Saying that a 16-bit data

item is an integer specifies its type, but not the format used to encode

the value it represents, and so is an incomplete description of the item.

Describing the item completely requires the inclusion of both the data

type and the internal format of the data item, i.e. the sixteen bit item

is an integer represented in two's complement format.

Just as with the data type, determination of the data format used to

encode the value of an item cannot be made by examining the data bits.

- 49 -

An Intermediate Data Format

When two data items are added together in a processor that supports

integer addition, the operation identifies them as integers and the

architectural design of the "add" instruction identifies their format.

PDP-ll's support two's complement integer addition. S/370 supports

addition both of two's complement and decimal format integers; in

this machine, integers may be represented in either of these two

formats.

'nl.e data reformatting function replaces the bits that reflect a

value for a data type in one representation with the bits that denote the

same value in a second representation. (For a discussion of how

difficult this mapping can be, refer to Chapter IV.) To faithfully

reconfigure an input data stream, a format translator must know how

those bits were interpreted in the computing system environment from

which they originated. 'nlat is, the translator must know whether to

treat the incoming 8-bit bytes as EBCDIC characters or as quarters of

32-bit one's complement integers. As the data bits themselves carry no

indication of their type or format, they alone cannot specify which data

translation scheme must be applied to interpret them. A

description of the type of data being moved and the internal

representation scheme used for each type must be available to the

translator to facilitate the proper reformatting.

'nl.e information needed to form such description for each

- so -

An Intermediate Data Format

message being sent across a network is known exclusively by the

transmitting process. While the receiving process may be expecting a

message containing particular data items, there is no assurance that an

incoming message conforms to that expectation. 'llle description of data

items anticipated by the receiver is important to error checl~ing and

process synchronization. However, insuring a precise transfer of data

items with their original values requires the sole use of a data

description supplied by the sending process.

A semantic description of the data, then, as well as the data

being transmitted must cross three communications links: from the

sending process to its translator, from that translator to the

translator for the receiving process, and from there to the receiving

process itself. 'nlese links can be broken into two categories: the

host-translator connection and the translator-translator connection. 'nle

distinction is important. Any protocol used to exchange

information between a host and its associated translator must reflect the

host's data formatting needs. Such a protocol is constrained

specific characteristics

information to be carried

of

by

that host. While the

a translator-to-translator

by the

type of

protocol

depends on the hosts included in the network, the form each type of data

must take in the protocol is totally independent of all existing

equipment. Strategies for transporting data descriptors must be

evaluated in light of both of these connection categories. 'llle rest of

- 51 -

An Intermediate Data Format

this section discusses two alternative strategies for

necessary information.

passing the

3.1.1 Passing description by prearrangement

One strategy for passing the semantic description of a string of data

bits is to rely on a prearrangement of the bit stream format. The

mechanism is best explained by example. Two communicating modules may

agree that the next stream of bits transmitted will form 16-bit two's

complement integers. 1b.e sending module then transmits sixty-four

data bits. The receiver breaks the incoming data stream into four

16-bit two's complement integers, assuming that to be the type and

format of the data being sent. If the prearrangement mechanism has

functioned correctly, the receiver has been successfully transmitted the

context and substance of the four data items.

situation, t-wo communicating modules may handle a

In a more complex

bit stream that

represents a specific mix of data items of different data types (e.g. the

first item is a 16-bit two's complement integer, the second item is a

7-bit ASCII character, etc.).

Prearrangement of the type and format of the data items in a bit

stream can be handled in two ways. First, the character of the stream can

be fixed by system design and implementation.

terminal can only understand 7-bit ASCII

- 52 -

For example, one data

characters, while another

An Intermediate Data Format

can only understand 8-bit EBCDIC characters. A mismatch in design

prevents the transmission of meaningful information from one to the other.

Second, two communicating modules can select a format for the bit stream

through format option negotiation. 'nle semantic content of the passed

bit stream is still described by prearrangement. However, format

negotiation allows both the types of data items being moved, and the

formats in which they are encoded to change dynamically as conditions

warrant.

ARPANET implementation of the TELNET and FTP protocols are

examples of the prearrangement technique. 'nle original TELNET

specifications required each inter-host TELNET transmission to format data

in the 7-bit USASCII character set. For two communicating

processes, a description of the trans-network data stream

specified by the system design. 'nlat is, by prearrangement, the

stream was a stream of USASCII characters.

TELNET

was

data

'Th.e development of negotiated options offered a natural extension to

the TELNET data description strategy. Rather than forcing two TELNET

processes to communicate through a design determined format, negotiation

allowed the selection of a data stream format to

just before each data transfer was to take place.

be delayed until

This was a step

towards increasing communications flexibility. Data description was

still accomplished by prearrangement between two TELNET processes,

- 53 -

An Intermediate Data Format

but each option (or combination of options) represented a different

description that could be applied to the data stream being transmitted.

Once two communicating processes agreed on a set of options, each could be

certain that the receiving TELNET was applying the correct data

description when interpreting the data bits being sent.

The TELNET strategy attacks the problem of.

description across a network from one host to another.

carrying

The data

a data

type of

the items being passed is as characters. This permanent

requirement of a single

fixed

data type represents data description

prearrangement by system design. The data format representation of the

characters being exchanged is also described through

prearrangement. Instead of being fixed at design time, however, the

format of the characters being transmitted can be respecified through

option negotiation. The character formats currently available as

TELNET negotiable options include standard USASCII, extended ASCII and

binary. Under TELNET• renegotiation is allowed before every

transmission and so the format agreed upon may change as often as

every message.

Prearrangement with optional format negotiation has proven very

successful for TELNET. However it seems untenable for a general

communications scheme where it is necessary to communicate data of many

different types. The rigidity imposed by total agreement through original

- 54 -

An Intermediate Data Format

design is an unacceptable base for a general facility. The only flexible

form of prearrangement appears to be option negotiation as implemented for

TELNET. This, however, would be a costly mechanism for general

interprocess communication. TELNET is already characterized by

proliferation of options <ARPA>. The introduction of each new data type

can be expected to be accompanied by its own set of options. Indeed, each

data type would itself represent an option. Support for messages

composed of items of mixed data types would require a further

extension of the negotiation scheme to handle composite messages.

While prearrangement of data type and format is unwieldy for a

system requiring generality, it may be adaptable to some instances of

host-translator connections. An example of such a case is a network

connection to an unintelligent peripheral device such as a data

terminal. A terminal has neither the means nor the need to win format

flexibility through option negotiation. It must send and receive bit

streams that conform to a fixed data description. In this example, the

translator must match the data type (character) and data format (ASCII,

EBCDIC, etc.) of the terminal at all times. Such a binding is a natural

application for using prearranged data description to pass the semantic

content of data bits.

- SS -

An Intermediate Data Format

3.1.2 Passing description by data tagging

'nle second alternative for passing the description of a bit

stream is to mark each data item in a message as to its type and

format. In such a scheme, each datum in a transmitted message has a

standard data descriptor associated with it. &bedding these

descriptors in the actual data stream so that they preceed items which they

describe allows the receiver to delimit and determine the type of each item

separately as it is delivered. As long as it is paired with its data

descriptor, each piece of data is a totally self-describing item.

'nle support of self-describing data insures against the separation of a

message and its context.

Precision in data transfer permits s~mantics and
structural information which exists in the sender's instance
of a datum to be reproduced in the receiver's image of
the datum, even. though it may be represented in the
systems involved in entirely different
fashions ••• Data of a given type should be recognizable as
such [by a receiver] without the need for context ••• A
particular service can achieve data precision by meticulous
specification of the protocols by which data is transferred.
'nlis need is widespread enough, however, that it is
appropriate to consider inclusion of a facility to provide
data precision within the mechanism itself. [<Haverty> pp.
8-9. 1

... 56 -

An Intermediate Data Format

'Th.e technique of attaching descriptors to data

self-describing has been called "tagging"

Illife>.

items to make them

<Feustall, Feustal2,

Tagging does not totally eliminat,e the need for data description by

prearrangement; it only moves the agreement to a different level of data

handling. Instead of requiring prearrangement of the content of each data

stream passing between communicating modules, a scheme based on data

tagging allows any message to contain any legal combination of data

descriptors (tags) and data bits. 'Th.e tags in the message describe

the data being transmitted and no pre-message agreement of the items

in the message is

the meaning and

necessary.

form of

Required,

the data

module must understand and conform to the use

however,

tags.

of tags

is agreement of

Every communicating

to describe data

bits. Without common agreement at this level, messages built out of

self-describing data would be unintelligible.

complement integers, a transmitting To send four 16-bit two's

module builds a message out of the sixty-four data bits and the

"16-bit two's complement" tag. For 8-bit tags, this would mean a

message length of 96 bits. 'Th.en the module transmits the message. 'Th.e

receiver detects the tag that, through prearrangement, designates a 16-bit

two's complement integer and uses the sixteen bits that follow it to

- 57 -

An Intermediate Data Format

form the number. Likewise, the other three data items are delimited,

and the transmission of the four integers is successful.

Self-description more readily facilitates general inter-processor

communication by allowing data streams of mixed data types to appear in

messages. 'nle overhead associated with supporting the negotiation process

is replaced with the overhead of encoding, decoding and moving the extra

bits required for the descriptors.

Self-describing data involves a corruption

the item descriptors. While it provides full

of the data

flexibility

stream with

of message

format and content and is acceptable to intelligent communicating

modules, the scheme is not at all appropriate for the data needs of a

simple peripheral acting as a host. Although special equipment could be

built, most currently available unintelligent devices cannot tolerate

communications strategies that require modification of the data

handling protocol. 'lllis includes interpreting or even simply

discarding descriptors embedded in the data. For such devices, taging

is an unacceptable proposition.

Because data tagging allows more flexibility than option

negotiation, the use of data descriptors to build self-describing data is

preferable for translator-to-translator connections. While this scheme

offers the same advantage when applied to host-translator

- 58 -

An Intermediate Data Format

connections, some potential hosts are unable to perform the message

passing processing necessary to support it.

strategies used in each host-translator

The

link,

description

therefore, must be

selected to allow the translator to support its associated host in the most

reasonable fashion.

3.2 The standard format

An intermediate data format (IDF) is intended to provide two

processors using dissimilar internal data representations with a

common ground for information exchange. The basis for their

communications is the standard intermediate data format interpretable of

data stream descriptors. This section discusses the selection of the

data formats to act as the intermediate representation of each data

type to be moved among the translators.

In the ideal sense, the choice of intermediate formats can be made

arbitrarily. Messages with data items represented in a standard format

pass only betW'een network translators designed specifically to handle

whatever format is picked.

selection.

Only factors of

- 59 -

economy constrain that

An Intermediate Data Format

3.2.1 ASCII character representation

Two alternative formatting schemes have been proposed. The first

scheme involves the transmission of each data item in an ASCII

character representation of its value <Kimbleton3, Teager>. Every

datum has a human readable form that can be built as a character

string. The scheme proposes this format as. the intermediate

representation of the item. To transmit a small floating point

ASCII number, for example, a sending translator "WOuld broadcast the

characters representing the sign and

ASCII period for the decimal point, and

integer part of the data item, an

finally the ASCII characters

representing the fractional part of the number being passed.

The most convincing argllDent for the use of an intermediate data

format based on the ASCII character set is the already wide-spread use of

this format for the internal representation of human readable

information. By performing information input/output functions with

ASCII characters to terminals and line printers, processors are

already required to support translation between ASCII character

strings and the machine-dependent internal representations for other data

types. Choosing a standard format for 'Which marty processors already

support software/firmware translation can

development and the continual maintenance

module associated with each network host.

- 60 ...

greatly simplify the initial

of the IDF translator

An Intermediate Data Format

A strategy using the character-based intermediate format

mechanism for ARPANET has been suggested to facilitate the transfer of

records to and from data files. This strategy assumes that the

function to be supported is the transfer of data file records from the

secondary storage of one system to another, and that such data files are

associated with a data description of the records (type and format of the

items in a record).

Predicated upon the existence of a suitable logical
data description of the file being accessed, the
following four step approach to data translation in a
networking environment seems reasonable ••• The four steps
are:

using the access method originally used to write the
file to retrieve the desired record at the source
site,

using the logical data description of the record
together with knowledge of the I/O routine
originally [used to] write the file ••• to transform
the record from the form in which it is internally
stored to a character normal form analogous to that
in which the record would be listed by a line
printer,

using variants of existing ARPANET protocols
transmit the record from source to destination,

to

using at the destination, the record and its logical
data description to reconvert from the character
normal form to that used for internal storage of
information (corresponds to the usual
transformations performed in supporting data entry to
go from the manner in which data is entered to that
in which it is stored). [<Kimbleton3> pp. 2-7 to
2-8. J

- 61 -

An Intermediate Data Format

'lllus, this is an example of a situation where all data items are

translated into the same format and the actual description of data

types is passed by prearrangement. Similarly, it would be possible to use

the tagging strategy, where the tag would describe the actual type of an

item being transmitted as a string of characters.

3.2.2 Formats based on data types

'nle alternative to a character based intermediate format is the

definition of a set of data representations with the formats best

suited to each type of data item. An integer might be represented in a

32-bit two's complement format, as an example. Characters would

probably use the standard ASCII character set.

An advantage to establishing a different intermediate format for

every data type is that in many cases, the data translations can be

relatively straightforward. Because most processors operate on two's

complement numbers, for example, choosing a two's complement

intermediate format for integers Will necessitate only the simplest of data

reformatting for many machines.

'nle selection of one of these two alternatives for the design of an

intermediate format only impacts the implementation of the network

- 62 -

An Intermediate Data Format

translators and the use of the communications links that connect them. Tile

data passing strategy enforces transparency of the intermediate format

at all other system levels. The two schemes must, therefore, be

evaluated with respect to message processing overhead incurred at the

translator module and the data transmission overhead required to carry

information across a network.

Processing overhead at the translator is a direct function of the

complexity of the required data translations. In general, converting from

one machine readable form to another is simpler than manipulating character

string representations. Translating a 24-bit one's complement

integer into 32-bit two's complement representation is certainly

easier than translating that same integer into as many as 64 bits (eight

characters) to form the ASCII string. This overhead has prompted the

support of a high-level language option to allow human user controlled

specification of the internal format to be used to store application

program data. The user is recommended to store data items predominantly

used in calculations in binary or decimal format. Items that are required

extensively in human readable

format to facilitate their

222.] •

I/O operations may be stored in 'picture'

conversion to character strings [<PLI> p.

There is no question but that the human readable form of most data

requires a longer bit representation than common machine readable formats

- 63 -

An Intermediate Data Format

for the same data. 1he increase in message length through the use of

bit-wise inefficient data formats is included in communications connection

overhead. 1he use of inefficient formats increases network resource

contention and decreases message thruput affecting both

performance.

cost and

While the existence of support for ASCII format translation in many

processors encourages use of an ASCII-based scheme, simpler

translations and the overhead issues weigh heavily in favor of

data-type dependent intermediate formats. Were a scheme required

solely to transmit file records from processor to processor, the

character based formatting described above would be attractive.

Instead of building a data descriptor for each record, the information

passing utility could use the file descriptor already associated with each

file record. 'Ihe items in the data record would then have to be forced to

conform to the format presented in the record descriptor, i.e.

translated into their ASCII-character equivalents. However,

inter-processor communications require more general message content. For

these, the character-based format is more costly than a scheme based on

selecting an applicable format for each type of data to be transmitted.

- 64 -

An Intermediate Data Format

3.3 A possible IDF

This chapter has shown that the most reasonable choice for a

standard intermediate data format is one that transfers data items that

are tagged with their type and format. Further, for reasons of

efficiency, the format used to transmit the value of each data item

should be natural to that item's data type. Every item in an IDF of this

form has two parts, a data type tag and a data value. For a simple

data item such as an integer or a character, the "value" portion of

the item can merely be the actual nwnber or character. A distinction

must be made, however, between primitive data types and composite data

types.

Figure 3 3 depicts an IDF representation of the letter "a". The left

half of the item contains the type tag for character. 'lllere is exactly

one such tag for every data type, and since their use is limited to

the IDF translators the assignment of

totally arbitrary. 'llle tag value is

tag values

symbolized

right half of the item contains the character

the intermediate format.

- 65 -

to

here

data types

by II CHAR" •

is

The

being represented in

An Intermediate Data Format

I CHAR I a

Primitive Data Type Format
Figure 3-3.

Besides integers and characters, the list of primitive data types

includes items such as double precision integers, floating point

numbers, and boolean values.

The tagging mechanism also supports the transfer of data

structures. Although the set of compound data types that should be

supported is not clearly defined, composite data types such as arrays or

general data structures could be constructed from these primitive types.

Figure 3-4 is an example of an IDF representation for an array. 'nle

tag value for an array is specified, and the "int" following it

indicates that this is an array of 16-bit integers in two's complement

format. The next three fields describe the number of dimensions and then

the range of those dimensions. All of this is followed by the data

values themselves.

I array : int : 2 3 2 6 integer values

3 x 2 array of integers
Figure 3-4.

- 66 -

An Intermediate Data Format

The selection of the optimal intermediate format for each data

item is a topic that requires further investigation. While there is some

question as to the number of bits required in each item, the

overwhelming use of two's complement arithmetic in commercial

processors indicates that the intermediate formats for integers should be

based on two's complement. The same is true for ASCII and the

intermediate representation of characters.

- 67 -

CHAPTER IV

Problems of Data Translation

A data format is a scheme for representing the value of data

items ·of a particular type in a convenient way. For example, both the

familiar Arabic digits and Roman numerals are data formats for

representing the values of the counting numbers. Translation is the

process by which information in an input data format is mapped into its

corresponding representation in an output or target data format. A

simple example of this process is the conversion of 'XXV' to '25'.

Data translation can take place at two different levels. First is

the mapping of a data item of a particular type and format into a

different format for the same type. 'lllis is the case of translation

between one's and two's complement integers or

Roman numeral counting numbers. The second level

between Arabic

of translation

and

is

mapping a data item in one representation into a representation for an item

of a different data type. This process includes converting integers

into floating point values, or converting numeric characters into numbers.

Both levels of data translation are required to support general

interprocess communications in a heterogeneous environment. As a data item

is moved from one processing environment to another, its

representation must change to meet the data representation constraints of

- 68 -

Problems of Data Translation

its new host. Whether this involves mapping into a different format

for the same data type, or translating into a representation for a

completely different type, will depend on the data types and formats

supported in the new environment.

As already stated in the section on data description in

the data type and format of an item represented by a string

established when those bits are used. Whether they appear

Chapter III,

of bits is

as an operand

to a one's complement addition or as an address loaded into the program

can just as well be sent counter, these bits

character in the next instant. The conclusion

to a line printer as a

to be drawn from this

is that the software running on a processor gives semantic meaning to

the data items. It is, therefore, the software, not the hardware, that

determines the data representations supported in a processing

environment •

The point is easily argued. A typical minicomputer has 16-bit

registers and an assembly language

complement addition on 16-bit operands.

instruction that performs two's

But with the proper software, this

processor can be made to perform 18-bit one's coaplement or even 64-bit

decimal floating point addition. True, the hardware facilitates

the manipulation of 16-bit two's complement integer data items, but the

hardware does not necessarily restrict the type and form of data that

can be interpreted by a processing system it hosts.

- 69 -

Problems of Data Translation

All of the problems associated with data translation are the

result of information moving between processing environments that

support different data types and formats. These environments are

shaped by software, and to say that a processor does not support a

particular data type means only that there is no intelligence in place to

handle data items of that form.

Performing precise data transfer requires the accurate and

complete movement of all of the information in the items being

transferred. When items must be exchanged by processors that support

different sets of data types and formats, translation problems can

occur. The rest of this chapter examines three of these problems, in

particular, precision, format incompatibility, and data type

incompatibility.

4.1 Precision

The precision of a data type format is a measure of the range of

values that can be represented in that format. For binary data, the

amount of information in an item is the number of significant bits the

current value of that item contains. Precision problems exist when the

input and target formats for a translation are formats for the same

data type, but can represent different ranges of values of that data

- 70 -

Problems of Data Translation

type. If data items represented in a high precision format are

translated into a format of lower precision, a loss of information can

occur.

For computers to exchange data of a particular data type,

translations may have to be performed between data formats based on

different word lengths. Some values that can be represented in 36-bit

words, for example, have no representation in 16-bit words. Items in the

larger format that require more than sixteen bits of precision cannot

be mapped into the sixteen bit format in a way that retains their

value.

The problem of precision loss can manifest itself at any point in the

communications system at which format translation is carried out. In the

case of systems that are based on an intermediate standard format,

these are the translations into and out of the IDF.

Precision problems can be avoided as items are translated into the

standard format by selecting standard representations that are of as high

a precision as the representations used in any of the host processors

in the network. Of particular concern are numeric data. There is no

single format of sufficient precision to represent the entire range of

integers or real numbers, however, it is necessary for an intermediate

format to be able to represent any number that may pass between

- 71 -

Problems of Data Translation

communicating processors. By considering the internal formats used by

the hosts on a network, an IDF of sufficiently high precision can be

chosen that contains representations for every value of each data type

that may appear in the network.

The formats of the receiving hosts, however, cannot be altered to

provide a representation for every required value. Their data format

and the software that implements precision is fixed by hardware

extensions of hardware defined formats. Data translators at this

stage must address the possibility of receiving data

adequately represented in their associated hosts.

The responsibility of the receiving translator is

that

to

cannot be

distinguish

between data items that can and cannot be represented completely in the

available target format. The translator can report incidence of problems

in precision to the receiving host process through a predefined

protocol. By convention, some attempt at representing the offending data

item can be made. Once notified, it is the responsibility of the

receiving process to respond to the problem through discussion with

the process transmitting the datum.

A scenario typifying the problem consists of a sending host

process transmitting 36-bit integers to a processor using 16-bit

words. Since the standard format must be able to transfer all

- 72 -

Problems of Data Translation

possible integer data values, the intermediate format for integers may

require 64 bits. Because of the IDF, neither of the two communicating

processors has knowledge of the internal format used by the other.

They each see only their own format.

Integers passed to the receiving translator are examined for

their precision. Items whose value can be represented in the 16-bit

integer format are translated and tagged appropriately in anticipation of

movement into the host. If the data value can be represented as a double

precision (32-bit) integer, the translation is performed and the item in

the target format is marked with its description. When even double

precision is not sufficient to represent the incoming data value (i.e. it

carries more than 32 bits of precision) some information must be

discarded. An algorithm can be applied to the incoming data to select

32 bits to form a double precision item. This item is then tagged with its

description and a mark to indicate that the translation caused a loss of

information.

The philosophy underlying the scheme to handle lost precision must

be one of "make do." Firmware or software mechanisms to support multiple

precision can offer an extended target format for the receiving

translator. In general, though, processes communicating across a

network need to anticipate the possibilities of sending or receiving

messages with values that suffer precision problems and cannot be

- 73 -

Problems of Data Translation

understood. Until all processors support each data type with equal

precision, the problem is unavoidable.

4.2 Format incompatibility

Another problem inherent to data translation is format

incompatibility. As is the case with precision, format

incompatibility problems occur when data items of a particular type and

in a particular format must be translated into a different format for the

same type. However, this incompatibility is strictly a function of

formatting scheme, and is not related to the number of bits allowed for

a value's representation.

The fractional values it is possible to represent "exactly" with a

specific number of bits differ from one formatting scheme to

another. The problem has been described in a warning that accompanies the

discussion of the automatic format conversions that occur in PL/I.

The rules for arithmetic conversion specify the way in which
a value is transformed from one arithmetic representation to
another. It can be that, as a result of the transformation,
the value will change. For example, the number .2, which
can be exactly represented as a decimal fixed point
number, cannot be exactly represented in binary. [<PLI> p.
270.]

- 74 -

Problems of Data Translation

In discussing the problems that surround the use of

Kernighan and Plauger state:

The reason is simple: "O. l" is not an exact
a binary machine (in much the same way that
exact fraction in a decimal world);
representation in most machines happens to be
than Q.1. [<Kernighan> p. 91.)

fractional

fraction in
1/3 is not an
its nearest
slightly less

data,

Another example is the format incompatibility that exists between

different representations for binary integers. The "minus zero" value in

the sign-magnitude and one's complement formats cannot be

represented in two's complement. This is not a precision problem

since increasing the number of bits allowed for the target (two's

complement) format will not make a difference.

To the translator connected to a heterogeneous network, the

rounding and truncation associated with reformatting fractional

numeric data is unavoidable. The PL/I approach to format

incompatibility is to print a warning in the language reference

manual. The average application program (programmer) tolerates

inaccuracies in the least significant digits of calculated results, and

only when exactness is required is the issue raised. 'nle problem cannot

be circumvented, and perhaps the most reasonable alternative for a

translator design is to issue a disclaimer and let the user beware.

- 75 -

Problems of Data Translation

4.3 Data type incompatibilities

'Th.e third problem of data translation is the resolution of data type

incompatibilities. To perform its function, the translator

associated with each network host must first determine the type of an

incoming data item. 'Th.at information is then used to map the input

format representation into an output format representation of the same data

type and value. Precision and format incompatibility problems exist when

the input for a particular data type supports a higher precision or can

represent different values that the output format for that same data type.

A data type incompatibility, on the other hand, is the complete absence

of an output format into which items of a data type being received can

be mapped. While an example of a precision problem is mapping

36-bit integers into 16-bit integers, an incompatibility is trying to

move 32-bit floating point numbers to a teletype. 'Th.e information

carried by the floating point item is lost to the teletype because it has

no way to represent any data type but characters. In the context of

a computer network supporting a diverse set of processing

environments, data type incompatibilities can arise between hosts of

different capabilities. 'Th.is is particularly true in the case of

special devices or unintelligent network hosts.

As with problems in precision, the translator must address data type

incompatibilities on a case by case basis. In some

- 76 -

Problems of Data Translation

circumstances, the value of an item of a data type not supported by

hardware may be marginally representable in the format for a second data

type that is supported. Floating point numbers can sometimes be

reasonably represented in an integer format. Boolean values can be

represented as integer zeros and ones. In other situations, no

intuitive alternative data type may exist. A hardware unit to perform

fast Fourier transforms on arrays of floating point numbers may not be able

to meaningfully handle any non-numerical data types.

Unlike precision problems, most instances of data type

incompatibility will need to be handled by the translator. This is

certainly true in the case of messages being sent to unintelligent

hosts or special purpose devices with limited processing power.

When no alternative format is acceptable, the translator must

initiate the appropriate fault recovery procedures. Again, especially in

the case of unintelligent devices, the receiving host must be

shielded from extraordinary conditions. Whether the necessary action is

to dispatch a standard message to the transmitting process to inform

it of the problem, or to just ignore the offending message, it is a task

best left to the translator.

- 77 -

Problems of Data Translation

4.4 Summary

There are no elegant solutions to the problems of data format

precision and format

patch the environment.

inc om pa tib il ity.

The inability to

A translation scheme can only

overcome some conditions of

heterogeneity remains. These

intelligently written applications

netwrk hosts.

problems

software

can only

running on

be handled by

the appropriate

An applications program requiring unusual data precision or using

peculiar data types can announce its requirements to its

correspondents. Difficulty in resolving representation problems may

force communicating processes to resort to negotiation ala TELNET or to

complete abandonment of the processing task at hand. Unless a

receiving process can understand the type of data being sent to it, a

standard intermediate format and format translators are of no use.

When the type of the data is recognized, it is still necessary to

consider the possible problems of precision and format

incompatibility.

- 78 -

CHAPTER V

Translator Implementation Considerations

Examination of possible

translators raises issues

strategies

that are

for implementation

transparent to the

of data

translation

scheme itself. 'lllese issues include the interaction between the

translator and other mechanisms that perform message processing, and the

additional data describing functions required of the host.

S.l Format translation and other message handling functions

Even without data format translation, successful transmission of

information between machines on a network requires several message

handling functions. 'llle order in which these functions must be

applied to each message is fixed, and this order is depicted in Figure 5-1.

'Th.e following subsections briefly describe each function and its

relationship to the implementation of format translation.

- 79 -

HOST
TRANSMISSION

I
v

FORMAT
TRANSLATION

I
v

ENCRYPTION
I
I
v

MESSAGE
DISASSEMBLY

I
v

FLOW AND ERROR
CONTROL

I
v

SUBNETWORK
TRANSMISSION

A. Message transmission

Figure 5-1.

5.1.1 Message packetizing

Translator Implementation Considerations

SUBNETWORK
RECEPTION

I
v

FLOW AND ERROR
CONTROL

I
v

MESSAGE
REASSEMBLY

I
v

DECRYPTION
I
I
v

FORMAT
TRANSLATION

I
v

HOST
RECEPTION

B. Message reception

Since communications between processors may take the form of very

large messages (up to millions of bits for file transfer), a great deal

of consideration has been given to the advantages of sending long messages

one portion at a time. To distinguish between messages and pieces of

messages, the term "packet" is used to describe message fragments.

While messages are the unit of communication between processes, these

packets are the unit of data that moves through the communication

subnetwork.

- 80 -

Translator Implementation Considerations

The motivating concern over packet size is subnetwork

performance. There are tradeoffs to be examined.

Large packets have a lower p~obability
transmission over an error-prone telephone
drives packet size down) , while overhead
(longer packets have lower percentage
packet size up. [<Crowther> p. 170.]

of successful
line (and this
considerations

overhead) drive

Cases can be made for the optimum packet size in a particular network

environment ; the governing factors have different manifestations for

local networks <Farberl, Fraserl, Metcalfe2> than for geographically

distributed networks <Metcalfel, Pouzin2>. (An especially good

examination of the issues for packet switching networks (i.e.

ARPANET) can be found in <Metcalfe l>.) It seems, however, that

regardless of the network, the fragmentation of at least some messages into

packets is necessary.

Figure 5-1 indicates that only fully assembled messages can

undergo format translation. In order to make message fragmentation the

simple-minded partitioning of messages into several packets of a fixed

length, the semantic content of the message (Chapter III) must remain

transparent to the disassembly process. The desire for this

transparency imposes an ordering on the two functions of message

packetizing and format translation.

- 81 -

Translator Implementation Considerations

Trying to perform data translation on message fragments to be

transmitted causes two problems. First, data reformatting will

likely, but unpredictably, change the size of the data items in a

message, partially defeating the packetizing mechanism. Secondly, and also

likely, the message may be split in the middle of a data item, severely

complicating any mechanism attempting to reformat that item.

potential fragmentation of data items also discourages

This

the

translation of received information in any form but fully

messages.

reassembled

5.1.2 Flow and error control

Simply, flow control is the process of insuring that the

receiving host does not lose information from its sender at any time due

to too high a rate of data transfer. Mismatches

sender-receiver pairs can result in packets arriving at

destination faster than they can be ingested, overwhelming

receiver, and forcing packets to be discarded.

of

their

the

Error control supercedes the normal error detection for packets

between subnetwork nodes, such as parity and checksum verification. These

simple types of errors are common when transmitting over potentially noisy

communication lines, and must be handled totally at the subnetwork level.

Rather, error control deals with the problems of lost or duplicated

- 82 -

f)

Translator Implementation Considerations

packets. Packets may appear or dissappear either as a result of the simple

checksum or parity errors (discarded by the subnetwork), or flow control

deficiencies or hardware failure.

Both error and flow control are functions concerned with the

movement of data packets over the communications subnet\VOrk. These

functions handle the blocks of data that move between subnetwork

nodes, and so must be performed at a level between the actual transfer of

message bits across the subnetwork and message packetizing.

5.1.3 Encryption

As the use of computers for the storage and manipulation of

classified (military), proprietary (industrial) and confidential

(personal) information increases, the need for mechanisms for secure data

handling also increases. Particularly vulnerable to breaches of

information security are the communications paths between the nodes of a

computer net\VOrk. Often these paths may be inter-laboratory, and so their

physical security cannot be assured. Unauthorized access to

information being carried in communications links can be thwarted by data

encryption. The intent of this section is to relate encryption to other

net\VOrk message handling functions, in particular format translation.

Encryption techniques and associated protocols are not discussed, and for

these the reader is referred to <Kent>.

- 83 -

Translator Implementation Considerations

Message encryption can be broken up into two separate categories.

First is the encoding of the data field (Figure 1-2) of the message.

This field contains the information the sending process is trying to

transmit to the receiving process. Presumably, this would be the

primary target for unauthorized access. The other category is the

encryption of the packet control information that must accompany the data

as it traverses the net\\'Ork. Precisely what information must be passed

with the text of a message and how it may be encrypted for a give network

is partly dependent on the implementation of of the communications

subnet\\'Ork. The protection of that information is not considered here.

'lllis section is only concerned with the encryption of the actual text of

the message.

Protection modules that perform data encryption/decryption must be

at the level following format translation for information transmission

and conversely the level before format translation for information

reception.

With respect to functionality, protection modules are
constrained to be below the portion of the communication
system that engages in syntactic processing of message
contents .•• With respect to output from the host, encryption
can be performed only after such transformations as
device-specific code conversion, white-space
optimization, and formatting. With respect to input to
the host, messages must be deciphered before such
transformations as canonicalization, break character

- 84 -

Translator Implementation Considerations

detection, erase-kill processing, translation, escape
sequence processing, character echoing, and high priority
message recognition can be performed. [<Kent> p. 65.)

A format translator must receive unencoded message text in order to

perform the semantic analysis necessary for data reformatting.

However, a mechanism for message packetizing must only be able to

count and partition the bits in the data field of a message. It need not

have access to that field in its unencrypted form. Similarly, flow and

error control functions require access only to the unencoded header and

trailer fields of packets. Figure 5-1 depicts the functional level

of message handling appropriate for the encryption process.

5.2 Implementation of message processing functions

There are two schools of thought on the implementation of message

handling functions. Both philosophies view each network site as having a

host processor connected to a subnetwork node. Simply stated, one side

argues that all message processing should be transparent to the

communications subnetwork. The other argues that all message

processing should be transparent to the hosts. As a result, networks have

appeared that reflect both philosophies <Metcalfe!, Metcalfe2, Pouzin2>.

The principle advantage to performing all message processing

operations in the host is the simplification of the subnetwork node.

- 85 -

Translator Implementation Considerations

Removing any host-specific functions from the subnetwork level permits each

subnetwork node to be exactly like every other. This duplication

facilitates subnetwork maintenance and enhancement. Perhaps more

importantly however, limiting the subnetwork function to delivering bits

accurately facilitates the interconnection of the subnetworks of different

networks. The incorporation of network specific protocols into the

subnetwork nodes necessarily complicates the mechanism that moves

messages between subnetworks. This thought is expressed strongly in

a paper about CIGALE, the subnetwork for the CYCLADES packet switching

network.

It is clear that the CIGALE transparency is its major trump
to provide a communication service between existing
systems. Any additional well-wishing function tied with
the external world is likely to be incompatible and
detrimental to a good service. in particular,
communications networks studded with all sorts of bells
and chimes will end up as one of a kind networks, unable to
communicate, unless an ad hoc kludge be interposed so that
they at last exchange packets. [<Pouzin2> p. 159.)

Another argument for performing all message handling functions in the

host is based on data security. Performing encryption and decryption in

the net\VOrk hosts is necessary to insure that no unencoded data need

ever leave the host. The importance of this consideration, however, is

minimized if the hardware performing message processing is considered to

be merely an extension of the host processor, as would be an I/O

channel, for example. The host and the message processor can be

- 86 -

Translator Implementation Considerations

physically close, and so they and the communications link between them

can enjoy the same level of physical security.

'nlere are also two argtunents for performing the message handling

functions at the subnetwork level. First is that regardless of the host

involved, the message processing operations are essentially the same for

every site in a network. A programmable subnetwork node can be customized

for each host, while the bulk of the software can be written one time

in a single language compiled for the nodes. This eliminates the need

to redevelop message handling routines at every host. It also greatly

simplifies the addition of a new host to the network.

'nle second argtunent is that keeping network related functions out

of the host minimizes the impact inclusion in a network may have on a

host software system.

installations with

This facilitates the use of the network by users at

either limited system expertise, or limited

processing power or flexibility.

Although the argtunents seem irreconcilable, a compromise that

seems to be a natural conclusion to the controversy has been suggested

<Manning>. Discussion to date has centered on the partitioning of

functions between a subnetwork node and a host-resident network

control program (NCP). Providing a separate hardware level expressly for

message processing is responsive to both sides of the argtunent. Figure

- 87 -

Translator Implementation Considerations

5-2 depicts such a configuration. 'TI!.e additional hardware -would host

a format translator, message packetizer,

modules and, when

encryption/decryption.

\
\ I

NETWORK >I
I I

... I

required, a

I I
I<---> I
I I

I I
l<------>I
I I

flow and error control

protection module for

NODE MESSAGE
PROCESSOR

HOST

DEDICATED MESSAGE PROCESSOR

FIGURE 5-2.

'TI!.e introduction of a "message processor" does not render the

net-work functions totally transparent to the processing systems of the

net-work hosts. Each host must still exchange data description

information with its associated format translator (Chapter III). 'TI!.is

impact to the host system cannot be avoided. However, with all other

message processing being performed at a separate level, the NCP

required can be relatively small. An area requiring further

investigation is how data description can best be supported by an

existing host system. (See section 5.3.)

- 88 -

Translator Implementation Considerations

The subnetwork node, on the other hand, can be functionally

limited to supporting bit-passing protocols. This requires no

host-specific information and so each subnetwork node can be

interchangeable with every other. Such a node has already been

suggested for some local networks <Mockapetris>.

While not all of the hardware and software at the additional

level can be standardized for all network hosts, it may be possible to

limit host-dependent information to the data translator. It is the

differences in the data rerepresentations of the hosts that force

message handling functions to be specific to the host with which they are

associated. These are the same differences that necessitate a

network-wide data translation scheme in the first place. The

discussions on data description (Chapter III) and on data format

precision and incompatibility (Chapter IV) underscore

translator customization.

this need for

Simplifying the subnetwork node by separating the message

handling functions from it satisfies an argument for moving all

operations into the host. Moving all but a minimum of operations

the host and into a separate module that can be

standardized, is responsive to the arguments for moving

functions into the subnetwork node.

- 89 -

out of

mostly

these

Translator Implementation Considerations

5.3 Supporting data description in the host

If, as suggested in Section 5.2, the majority of the message

handling functions are performed in a separate message processor, then a

host need only be able to move messages back and forth between

network-using processes it supports and the message processor.

the

In

particular, a host-resident network contl'ol progr•

interface applications programs with the format trattalator.

(NCP) must

Section 3.1 discussed methods of passing data description between

communicating modules. One of the two mechanisms described involved a

prearrangement of the semantic meaning

negotiation or by system design.

of a bit

The other was a

stream

data

by either

tagging

scheme, and this was suggested as the more flexible of the

general purpose processing environment.

item

two in a

An important consideration is the effect the implementation of a data

tagging scheme would have on the host operating system and user

community. Minimizing the impact on a community joining a network

makes the network a more attractive resource.

philosophy, a mechanism has

implementation of data description

format translator.

been suggested

through tagging

- 90 -

In line with

to facilitate

between host

this

the

and

Translator Implementation Considerations

Interprocess communication can be considered a case of data input and

output <Hoare>. 'nle destination process receives the output from a

sending process in response to an input request. 'nle implementation of

such a mechanism could be modelled after the I/O routine packages

currently available in single process environments for languages such as

FORTRAN IV, ALGOL and PL/I. 'nlese languages perform I/O on a user

specified transmission list and with a user specified format (i.e. the

FORMAT statement in FOR.TRAN, and the EDIT option in PL/I). 'nle user

could request I/O as he would for a locally resident process with

which he wanted to communicate. When some higher authority detemines that

the referenced process is active on some other network host, the network

I/O control program could combine the user's description of the data

with

the

the data

advantages

itself to form a tag-based data

of being familiar to most

a straightforward "add-on1
' to existing systems.

- 91 -

stream. 'nlis scheme has

application programmers and

CHAPTER VI

Conclusions

~e intent of this report was to examine possible mechanisms for

moving data between dissimilar processors and to identify the mechanism

most responsive to the requirements of a heterogeneous computer network.

'nlree data format translation schemes were reviewed, and from these, the

use of an intermediate data format was selected. Alternativ~s for the

intermediate formats were also discussed and one was proposed for general

use.

Some problems are inherent to data translation and are independent of

the translation scheme. Several of

passing of data description, data type

loss of data precision.

these were discussed including the

and form.at incompatibilities and

Although implementation considerations were presented, the results of

a sample implementation were not. nte unavailability of a suitable network

testbed made such an implementation infeasible.

'Ille effort involved in preparing this report will be justified by an

implementation of the mechanism described. We hope this document will

serve as the foundation for such implementations on both local and

- 92 -

Conclusions

geographically distributed networks. Several topics that require further

investigation are discussed in the following section.

6.1 Areas for future study

Many of the problems surroWlding the use of an intermediate data

format based network communication scheme have not been solved. llte last

three chapters have pointed out areas that require further investigation.

lltese include mechanisms for data description between hosts and network

translators, the data format representation best suited for use in an IDF,

and strategies for data format error recovery. llte next subsections

suggest other areas that still must be studied.

6.1.1 The contextual meaning of data

In certain processing environments, the appearance of particular data

values can sometimes cause a special effect. lltat effect, while triggered

by the data item, is a predetermined reaction of the environment to that

value. In the case of such items, passing the type and form of the

representation with the data bits to a second environment is not totally

sufficient. 1lle meaning of the item in the context of the transmitted

environment must also be sent.

- 93 -

Conclusions

Chapter III discussed the problem of "passing the semantic description

of a string of data bits." Mechanisms for describing data for this purpose

were presented in Section 3.1. The contextual meaning of data is

independent from issues of data type and format. It is separate, too, from

the formatting problems presented in Chapter IV. The ability to move data

values across the barrier of heterogeneity only uncovers the problem of

passing the effect those values have on a processing environment.

'nle difficulty encountered t«ien moving lines of text from one computer

system to another is an example of a problem conveying contextual meaning.

Two systems invariably disagree on the interpretation of format control

characters. A specific instance is the use of the horizontal tab

character. One system may take its appearance to mean pad the current line

with spaces until the line character count is the next multiple of eight.

Another system may space to the next multiple of five, while still a third

may attribute no special meaning to it at all. Characters causing similar

problems include form feed, vertical tab and carriage return.

'nle implementation of TELNET recognizes the problems of passing

contextual meaning. The effect a special character has in the receiving

environment can be established by prearrangement, aQd a TELNET negotiable

option for the disposition of many such text formatting characters is

described in <ARPA>.

- 94 -

Conclusions

It is important to understand that passing the tab character in itself

is a different problem. 'nl.e concern here is accurately passing the effect

the tab had in the system in which it originated.

Special text characters, however, are only a small part of the set of

data values that carry contextual meaning. Crucial to process coordination

in distributed systems will be the meaningful transmission of process

control and synchronization primitives.

Standardization of data formats and control semantics will be
essential for successful communication. While we do have
standards at the very lowest levels of data communication,
such as conventions for transparent binary and character
codes, we do not see similar standards even for such
primitives as floating point nllllbera, much less for records,
files, or objects. 'nle situation for control primitives is
much worse. Description of processes, interrupts, and
related mechanisms is presently very difficult to communicate
across computer boundaries except by specialized, ad hoc
methods. [<Levin> p. 16.]

Until a mechanism is provided to pass the contextual meaning of

special data values, communication between cooperating processes will

continue to be supported only on a case by case basis. 'nl.e requirements

for such a mechanism must be formally described, and the possibility of

using an extension of an intermediate form.at based strategy investigated.

- 95 -

Conclusions

6.1.2 Passing pointers

One of the data types eligible for exchange between processes is

address pointers. 'lll.e use of pointers in certain data structures, such as

linked lists, is indispensable, and a network data communications scheme

must support their movement.

If the communicating processes share a single address space, then

passing pointers engenders no special problems. 'Th.is approach is only

appropriate for homogeneous computer networks, and has been implemented at

CMU for local computer networks <Swan,Wulf>. Passing pointers does present

a problem, however, in a heterogeneous environment. When two communicating

processes exchange information, a representation of the data being

transferred is moved from the address space of the sending process into the

address space of the receiver. 'lb.e position in the address space of data

items to be referenced with pointers is important. Between the relocation

of the data in the virtual memory of the receiving process and the

potential differences in the addressing schemes involved, any pointers that

move between processors will have to have their values adjusted. However,

the necessary adjustment cannot merely be the calculation of a fixed offset

within the virtual memory. Because different data types and formats are

different lengths in different processing environments, the adjustment of

the pointer value will depend on the kinds of items it references.

- 96 -

Conclusions

There appear to be t"WO approaches to this problem. The sending

process can pass entire data structures so that any pointer used "WOuld be

"local" to the structure in a single message. By building pointers as

offsets from the beginning of the structure, the receiving translator could

map pointers into the values appropriate for the reformatted data.

A different approach is necessary for passing pointers that reference

data structures too large to be feasible or practical to move. In this

case, messages may contain pointers into the sender's address space for use

by the receiver.

The principle difficulty in supporting this kind of passed pointer is

the possible relocation of the sending process. The movement of absolute

memory addresses can be avoided by passing offsets into the address space

of the sending process. 'nlis will allow the relocation of the of the

sending process within a single processor. However, if that process

migrates to another processor, the appearance of its address space (ie.

the length and format of the data items contained in it) will change.

Maintaining passed pointers as simple offsets in this case will not be

sufficient.

6.1.3 Passing programs

One of the proposed uses for net"WOrk based systems is reliability

through redundancy and increased performance through load sharing.

Realization of either of these goals in a general way requires a mechanism

to support the movement of program code through the network.

- 97 -

Conclusions

One strategy is to pass the source text of a high level language for

which each host has a compiler. Code transportability has been attempted

in this way by the specification of standard versions of FORTRAN and COBOL.

Another possibility is the use of an intermediate programming

bridge the gap between compilers and the object code

language to

of different

processors. 'llle application of these techniques to program passing needs

to be considered.

6.1.4 Negotiating the IDF

'llle intermediate format to be used to represent data items as they

move between IDF translators must be fully general, allowing any data

values represented in one host to be transferred to another. In some

cases, however, the use of general formats may be unnecessary and

inefficient, and an ability to select format options for intermediate data

formats may be useful.

Probably the most frequent use of such a mechanism would be to

facilitate data transfer between similar processors in a network. 'llle IDF

is intended to serve as a common language for data transfer. When machines

that use the same data formats for identical sets of data types wish to

exchange information, no intermediate format translation need nor should

occur.

- 98 -

Conclusions

One way to provide the additional flexibility offered by intermediate

format options is through the use of option negotiation. By using a

predetermined protocol, two communicating translators may agree to use a

non-standard intermediate format or possibly to perform no data

reformatting at all. The potential uses and implementation strategies for

such a facility is yet one more area that requires further study.

- 99 -

<Anderson>

<ARPA>

<ARPA!>

<ARPA2>

<ARPA3>

<ARPA4>

<ARPAS>

<Bhushan>

<Binder>

<Chen>

<Corbato>

REFERENCES

Anderson, R. H., et al, "The Data
Service -- An Experiment in Adaptable
Communication," The ACM/IEEE Second
Problems in the Optimization of Data
Systems, October 1971, pp. 1-9.

Reconfiguration
Process/Process
Symposium on

Communications

ARPANET Protocol Handbook, NIC #7104, April 1,
in llilich can be found:

McKenzie, A., "Host/Host Protocol for
Network," NIC #8246, January 1972.

the

1976,

ARPA

"TELNET Protocol Specification," NIC #18639, August
1973.

"TELNET Option Specifications," NIC #18640, August
1973.

Neigus, N. J., "File Transfer Protocol," NIC #17759,
August 12, 1973.

Anderson, R., et al, · "Data reconfiguration Service
-- Implementation Specification," NIC #6780, May 25,
1971.

Bhushan, A. K.
Standards for
1968, pp. 95-104.

and R. H. Stotz, "Procedures and
Inter-Computer Communications," SJCC

Binder, R., N. Abramson, F. Kuo, A. Okinaka, and D.
Wax, "ALOHA Pack.et Broadcasting A
Retrospect," NCC 1975, pp. 203-215.

Chen, R. C., P. G. Jessel, and R. A. Patterson,
"Mininet: a Microprocessor-controlled
'Mininetwork' ,"Proc. IEEE, vol. 64, no. 6, June 1976,
pp. 988-993.

Corbato, F. J., "PL/I as a Tool for System
Programming," Datamation May, 1969.

- 100 -

<Crockerl>

<Crocker2>

<Crowther>

<Elovitz>

<Enslo'W'>

<Farberl>

<Farber2>

<Fe us tall>

<Feustal2>

References

Crocker, S. D., J. H. Heafner, R. M. Metcalfe, and J.
B. Postel, "Function Oriented Protocols for the ARPA
Computer Network," SJCC 1972, pp. 271-279.

Crocker, S. D., "'llle National Software Works: A New
Method for Providing Software Development Tools
Using the ARPANET," Presented at Consiglio Nationale
Delle Ricerche Istituto di Elaborazione Della
Informazione meeting on 20 Years of Computer
Science, Pisa, 16-19 June 1975.

Crowther, W.R., F. E. Heart, A. A. McKenzie, J. M.
McQuillan, and D. C. Walden, "Issues in Packet
Switching Network Design," NCC, 1975, pp. 161-175.

Elovitz, H. S. and C.
Computer Network? , "
Article NTC 74-1007.

L. Heitmeyer, "What is a
Naval Research Laboratory

Enslow, P. H. Jr.' "What Does Distributed
Processing Mean?" School
Georgia Inst
Distributed
University Aug.

Farber, D. J.
Architecture

of Tech,
Processing

1976.

and K. c.
of the

of Info and
presented

Workshop,

Larsen, "'llle
Distributed

System," Proc. Symposium on Computer
Brooklyn Polytechnic Institute, 1972.

David Farber, at the Distributed
Workshop, Brown University, Aug. 1976.

Comp Sci
at the

Brown

Systems
Computing
Networks,

Processing

Feustal, E. A., 'llle Rice Research Computer - A Tagged
Architecture, Rice University Laboratory for
Computer Science and Engineering, OR0-4061-2,
January 5, 1972.

Feustal, E. A., Gedanken Machines,
University Laboratory for Computer Science
Engineering, OR0-4061-3, January 31, 1972.

- 101 -

Rice
and

<Frank>

<Fraser!>

<Fraser2>

References

Frank, H., W. Chou and I. Frisch, "Topological
Considerations in the Design of the ARPA
Computer Net-work," SJCC 1970, pp. 581-587.

Fraser, A. G., SPIDER A Data Communications
Experiment, Bell Laboratories, Computing Science
Technical Report #23.

Fraser, A. G., "On the Interface Between
Computers and Data Communications Systems," CACM July
1972, pp. 566-573.

<Fredericksen> Fredericksen, D. H., "Describing Data in Computer

<Gordon>

<Haverty>

<Heart>

<Hirt>

<Hoare>

<Illife>

Net-works," IBM Systems Journal, vol. 12, no. 3,
1973, pp. 257-282.

Gordon, R.
Working
Processing

L.' "Distribution vs.
paper presented at the

Workshop, Brown University,

Cooperation,"
Distributed
Aug. 1976.

Haverty, J., "Thoughts on Interactions in
Distributed Services," NIC #36806, September 16, 1976.

Heart, F. and R. Kahn et al.,
Message Processor for the
Net-work," SJCC 1970, pp. 551-567.

"The
ARPA

Hirt, K. A., "A Prototype Ring-structured
Network Using Microcomputers,"
Postgraduate School, NTIS AD772877, Dec. 1973.

Interface
Computer

Computer
Naval

Hoare, C. A. R., "Communicating Sequential
Processes," Department of Computer Science, The
Queen's University, Belfast, draft, August 1976.

Illife, J. K., Basic Machine Principles, American
Elsevier, New York, 1968.

- 102 -

<Kent>

<Kernighan>

<Kimbletonl>

<Kimbleton2>

<Kimbleton3>

<Levin>

<Little>

<Manning>

<MERIT>

<Metcalfe l>

<Metcalfe2>

References

Kent, S. T., Encryption-based Protection Protocols for
Interactive User-Computer Communication,
MIT/LCS/TR-162, Massachusetts Institute of
Technology, May 1976.

Kernighan, B. W. and P. J. Plauger, 'llle Elements
of Programming Style, McGraw-Hill, New York, 1974.

Kimbleton,
Perspective
pp. 551-559.

s. R. and R.
on Network Operating

L. Mandell, "A
Systems," NCC 1976,

Kimbleton, Stephen R. and G. Michael Schneider,
"Computer Communication Networks: Approaches,
Objectives and Performance Considerations,"
Computing Surveys, vol. 7, no. 3, September 1975, pp.
129-173.

Kimbleton,
Distributed
1976.

S. R. and R.
Computation Study, NTIS

L. Mandell,
AD-A024670, April

Levin, R., J. McQuillan, and R. Schantz,
"Distributed Systems," Operating Systems Review, ACM
SIGOPS, January 1977, pp. 14-19.

Little, J. L. and C. N. Mooers, "Standards for User
Procedures and Data Formats in Automated Information
Systems and Networks," SJCC 1968, pp. 89-94.

Eric Manning, Private communication.

The MERIT Computer Network: Progress Report for the
Period July 1969 - March 1971, Publication 0571-PR-4,
NTIS PB 200 674.

Metcalfe, R. M., Packet Communication,
Massachusetts Institute of Technology Project MAC
Report TR-114, December 1973.

Metcalfe, R. M. and D. R. Boggs, "ETHERNET:
Distributed Packet Switching for Local Computer
Networks," CACM, July 1976, pp. 395-404.

- 103 -

<Mills>

<Millstein>

<Mockapetris>

<MRG>

<MSG>

<PLI>

<Pouzinl>

<Pouzin2>

<Roberts>

<Rowe>

<Swan>

References

Mills, D. L., "An Overview of the
Computer Network," NCC 1976, pp. 523-531.

Distributed

Robert Millstein, at the
Workshop, Brown University,

Distributed Processing
Aug. 1976.

Mockapetris, P. V., M. R.
"Design of Local Net-work
Dept. of Information and
of California, Irvine,

Lyle and D. J. Farber,
Interfaces," Available from

Computer Science, University
CA 92717, 1977.

MRG Progress Report, MIT Laboratory
Science Domain Specific Systems
Microcomputer Research Group, May 1976.

for Computer
Research

MSG: The Interprocess Communication
National Software Works, NSW #30,
January 23, 1976.

Facility for the
BBN Report #3237,

PL/I (F) Language Reference
GC28-8201-4, IBM, 1972.

Manual, Order no.

Pouzin, L., "Presentation and Maj or
Aspects of the CYCLADES Computer Net-work,"
Data Communications Symposium, 1974.

Pouzin, L., "CIGALE, The Packet
Machine of the CYCLADES Computer
Information Processing 74, North
Publishing Co., 1974, pp. 155-159.

Roberts, L. G., and B. D. Wessler,
Netwrk Development to Achieve
Sharing," SJCC 1970, pp. 543-549.

Rowe, L. A., "The Distributed Computing
System," University of Califiornia at
department of information and Computer
Technical Report #66, June, 1975.

Design
Proc. 3rd

Switching
Net-work,"

Holland

"Computer
Resource

Operating
Irvine,
Science

Swan, R. J., S. H. Fuller, and D. P. Siewiorek,
"The Structure and Architecture of On*: A
Modular, Multi-microprocessor," Computer Science Dept.,
CMU, presented at the Distributed Processing
Workshop, Brown University, Aug. 1976.

- 104 -

--- -------------- --------

<Teager>

<Thomas!>

<Thomas2>

<VanDaml>

<VanDam2>

<Walden>

<Wecker>

<'WhiteG>

<WhiteJ>

<Wood>

<Wulf>

References

Herbert M. Teager, Private communication.

Thomas, R. H.,
Multi-computer
281-293.

D. A. Henderson,
Programming System,"

"MCROSS A
SJCC 19 72 , PP •

Thomas, R. H., "A Resource Sharing Executive for the
ARPANET," NCC 197 3, pp. 155-163.

Van Dam, A., Memo #4 from the Distributed
Processing Workshop held at Bro'WD University, Aug.
1976, Computer Science Program, Bt:o'WD University.

Andries Van Dam, At the Distributed
Workshop, Brown University, Aug. 1976.

Processing,,

Walden, D. C., "A System for Interprocess
Communication in a Resource Sharing Computer
Network," CACM, April 1972, pp. 221-230.

Wecker, S., "'lb.e
Purpose Network
1976, Boston, Ma.

Design of DECNET
Base," Presented at

A General
ELECTR0/76, May

White, G. W., "Message Format Principles,"
ACM/IEEE Second Symposium on Problems in
Optimization of Data Communications Systems,
1971, pp. 192-198.

'lb.e
the

Oct.

White, J. E., "Elements
Programming System," NWG/RFC
Jan. 5, 1976.

of
1708,

a Distributed
Menlo Park, CA,

Wood, D. C., "A Survey of the Capabilities of 8
Packet Switching Networks," Proc. 1975 Symposium on
Computer Networks: Trends and Applications.

Wulf, W. A. and C.
multi-mini-processor,"
Proceedings, vol. 41,
765-777.

- 105 -

G. Bell,
AFIPS

part II,

"C.mmp A
Conference

FJCC 1972, PP•

