
MIT /LCS/TR-185

DEADLOCK DETECTION IN COMPUTER NETWORKS

Barry Goldman

September 1977

This blank page was inserted to presenie pagination.

CAMBRIDGE

MIT/LCS/TR-185

DEADLOCK DETECTION IN COMPUTER NETWORKS

Barry Goldman

September 1977

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly PROJECT MAC)

MASSACHUSETTS 02139

Deadlock netection in Computer Networks

by

Rarry Goldman

Submitted to the Department of Electrical Engineering and Com­
puter Science on March 1, 1977, in partial fulfillment of the
requirements for the DeF.rees of Bachelor of Science and Master of
Science.

ARSTRACT

The problem of detecting process deadlocks is common to
transaction oriented computer systems which allow data sharing.
Several ~ood algorithms exist for detecting process deadlocks in
a single location facility. However, the deadlock detection
problem becomes more complex in a geographically distributed
computer network due to the fact that all the information needed
to detect a deadlock is not necessarily available in a single
node, and communications delays may lead to synchronization
problems in getting an accurate view of the network state.

In this Thesis, two published algorithms dealing with
deadlock detection in computer networks are discussed, and exam­
ples demonstrating the failure of these algorithms are given.
Two algorithms are then presented for detecting deadlocks in a
computer network which allows processes to wait for 1) access to
a portion of a database, or 2) a message from another process.
The first al~orithm presented is based on the premise that there
is one control node in the network, and this node has primary
responsibility for detecting process deadlocks. The second, and
recommended, al~orithm distributes the responsibility for
detecting deadlocks among the nodes in which the involved pro­
cesses and resources reside. Thus a failure of any single node
has limited effect upon the other nodes in the network. A com­
puter model of the "decentralized" (second) algorithm was de­
si~nert and it is described in the Thesis.

THFSIS SUPERVISOR: Stephen A. Ward
TITLF: Assistant Professor of Computer Science and Engineering

Acknowledgements

As a participant in M.I.T.'s VI-A (Electrical Engineering

and Computer Science Co-operative) Program, I was able to write

this Thesis based on research that I conducted while working in

the Advanced Systems Engineering Group of Honeywell Information

Systems, Inc. (Billerica, Mass.) I would like to thank Charles

W. Bachman, who acted as my supervisor at Honeywell. He

suggested the Thesis topic, and gave me valuable advice through­

out various phases of the project. I would also like to thank

others in the group for the help they gave me in conducting the

research and in the writing of the Thesis. They are Mike Canepa,

William Helgeson, Beth Lang, Maxine Neil, Charlotte Reiley, Mario

Trinchieri and Paul Wood.

Additionally, thanks go to Steven Taylor, who provided me

with some feedback in the early stages of my research after

introducing me to Mr. Bachman. Finally, I would like to thank

Professor Stephen Ward for his work in the supervision of the

Thesis, and John Tucker and Lydia Wereminski for running the VI-A

Program.

This research was supported by the Advanced Research Projects Agency

of the Department of Defense and was monitored by the Office of Naval

Research under Contract No. N00014-75-C-0661.

3

AASTRACT
Acknowledgements
I. Introduction

TABLE OF CONTENTS

I.1 The Interference Problem
I.? neadlock Prevention
I.j Deadlock Avoidance
I.4 Deadlock Detection
I.5 Structure of the Thesis

II. Proposal of Chandra, Howe and Karp
TI.1 Chandra, Howe and Karp's Proposed Solution
II.2 A Fault in the Proposed Solution

Fi~ure II.1
III. Proposals of Mahmoud and Riordon

2
3
5
7
9

10
1 1
13
15
15
17
19
20

III.1 Mahmoud and Riordon's Centralized Control Approach
III.2 Mahmoud and Riordon's Distributed Control Approach
III.3 Some Comments about the Propos~d Schemes

20
21
23

Figure III. 1
IV. Introduction to Proposed Solutions

IV.1 Descriptions of Resources

26
27

IV.2 Access to Resources and the Blocking of Processes
IV.3 Creation and Expansion of an OBPL

28
31
33

V. Centralized Approach to Deadlock Detection
V.1 Allocation of Resources
V.2 Deadlock Detection
V.3 Issues to be Resolved
V.4 Reasons for not Refining the Algorithm

VI. necentralized Approach to Deadlock Detection
VI.1 Allocation of Resources
VI.2 Deadlock netection
VI.j Explanation of Steps in the Deadlock Detection

VI.4 Verification of the Algorithm
VI.~ Some Properties of the Algorithm

VII. ADT Model of the Decentralized Algorithm
VII.1 Data Structure Diagrams
VII.? Architectural Definition Technique
VII.3 The Deadlock Detection Model
VII.4 Test Cases run on the Model

VIII. Suggestions for Further Re~earch
VIII.1 The Rollback/Retry Problem
VIII.2 Optimization of the Decentralized Algorithm
VIII.3 Types and Probability of Deadlock
VIII.~ Refinement of the Centralized Algorithm

IX. Conclusions
References
Appendix I
Appendix II
Appendix III

38
38
40
43
44
46
46
47

Algorithm
49
52
60
63
63
64
66
72
74
74
77
79
79
80
83
84
92

146

I. Introduction

A simple example of deadlock (or "deadly embrace") occurs

when a process P1 is blocked while waiting for access to resource

R2 which is controlled by process P2, and P2 in turn is blocked

while waiting for access to resource R1 which is controlled by

P1. A deadlock may involve more than two processes. For exam­

ple, process P1 may be waiting for access to resource R2 which is

controlled by process P2, P2 may be waiting for access to

resource R3 which is controlled by process P3, ... , process

P[n-1) may be waiting for access to resource Rn which is con­

trolled by process Pn, and Pn may be waiting for access to

resource R1 which is controlled by Pl.

Multiprocessing and data sharing are commonly used in a

single location transaction oriented computer system. In the

future they will be common to transaction oriented, geographi­

cally distributed computer networks. In this Thesis an algorithm

is presented that can be used to detect deadlocks involving pro­

cesses waiting for access to a shared portion of a database or

waiting for a message from a process with which it is

communicating within a computer network. It is possible that a

process can be either computerized or manual, although a manual

process (i.e. a person at a terminal) can not directly request

access to a portion of a database, as it is restricted to only

communicate with computerized processes by the use of messages.

Throughout this paper, the word "operator" will be used to refer

to a manual process.

5

...

~uch has been wr1tte·n dealing wt th deadlock detection,

avoidance and J>re•~fttion tn COllJH.tter systems. However, most of

the 1 i terature dl'lseusaes • single looatlon raclli ty where the

status of all processes and resources e.-. available in a single
I ~ I

local table. (For a ~ood dtscusaloe, tftcludiftg a graph mpdel or

co"1puter systewia vtttetl can be used to detect deadlocks, see "Some

Deadlock Properth~s of Cofltf)uter Syateaa" {Tl.) Very few articles

have been publlshed that are coftoern~ wltti. the deadlock problem

in a computer network (geo-graphteallr d1str1butiHI c011puter
• 'o I

system).

When dealing with a c01tputer ttetl!fOrlc •• Q1tPOSed to a single

location facility, the deadlock detec:t1on. 'roble111 becomes more

difficult due to ttte fact that all the latonaation needed to de-

tect a deadlock ts not rutcutaMrlly eYa1lab.l• in a single node,
: . -

and commun1oetion delars may lead t,o ayncmro111zat~_on problems in
•., ,H'•:

get tin~ an accurate vtew or ttte n•twork state. Sot1te reasons for

restricting access to porttOfts or a datal>••,e ~even thougtt the

result of bloeklft~ processes oan lead to deadlock) and $Ome rea-

sons why the common deadlock prevention eftd avoidance algorithms

are not well suited to the networks undef' coasideration will b~

discussed. Se•eral dead lock detect ton se,hMHts for cotiputer net•

works (some frOlft rffent 11 terature • SOtte dea1,n.•d by this author)

will be preseftted, artd they will t>e tollowed by a discussion of

some or the benefits of using the vartoua schemes.

6

I.1 The Interference Problem

Given two or more independent processes, interference is

said to have occurred if the results produced by their concurrent

execution would not have been obtained by running these processes

one at a time in any order (i.e. nonconcurrently).

A simple example of interference is the following. Let two

processes, P1 and P2, read the contents of database record R1.

Then let P1 add 5 to the value and let P2 add 10 to the same

value. Now let each process alter the contents of R1 to contain

the value computed by that process. Depending upon the order of

update, the contents of R1 will be either 5 or 10 greater than

the value that was contained during the reads. We have a case of

interference because the value of R1 would have been 15 greater

than the value contained at the time of the first read if P1 and

P2 had been executed sequentially in either order.

Another case of interference occurs when a process, in pro­

cessing one transaction, twice alters the contents of the same

database object and in between the two writes, a second process

reads the contents of that database object. In some cases a

process which is only reading the contents of a database object

may not care if there is any interference, in which case it may

request "dirty read" access to the database object. (A process

that is only reading the contents of a database object can not

interfere with the values ~roduced by another process, although

other processes can interfere with the values produced by the

"reading" process.)

7

When ma1imUll ooncurrency among independent processes is de­

str·ed, a prooeaa •u•t be allowed to read and alter the contents

or a database obJeot wheftever it wants to. (This type or access

to data has been called "•hal*ed r•Mlahared w.r1te".) In order to

detect tntertereno•, reoord1 must l>e k•Pt abou~ the. type of use

(read or write) or eaeh database objeot, a.ad wbat processes (and
. ~ - '

when they) used It. An algorithm to detect_interterence when

this information is kept is preaentecl 1~ "()n Managing Interfer­

ence Caused by Database Sharing" [10]. A aore thorou1h discus­

sion of intert•r•nce I• also aiven. After an interference

situation is detected, at least one of tb• involved processes

nrus·t be forced to rol lbaok to a prt•ioua state ln order to cor­

rect the interftrenoe condition.

~ost systems, in order to avoid tn\erterenoe and guarantee
' " "'.. .

that a process will 1ee a conaisttftt state ot • databeae,

restrict access to d•ta by a 1yatem o~ looks. If a process wants
• "> :,. •

to chan~e the contents or a datab••• obJe,ct, \t must request ex­

clusive access to that database object,_thu,s temporarily (for the
\ '.. - ~ '

duration or the look) preventin1 all other .pro~esses from

accessing that database object. It • proo••• on_ly wa11ts to read

the- contents of' a database object, 1 t can. r:~queat shared read

access to that database object, thus tnp~rarlly ((or the dura-
·~. ~-.

tion or the look) preventing all ot_her proc••.aes from alterin.g

the contents or that database object. Ir a database object can

he shared among several readers, the_met~od or access is called

"shared read/exclusive write", whereas if there can be only one

reader, it is called "exclusive read/exclusive write".

When a request for access to a database object (resource)

can not be granted due to the existence of a lock on that

database object, the requesting process must be blocked until the

resource becomes available. Due to processes waiting for access

to resources, there exists the possibility of deadlock among the

processes in a computer system.

I.2 Deadlock Prevention

Deadlock prevention schemes place constraints upon system

users in order to ensure that deadlock will never occur. There

is little operating system overhead involved when using

prevention methods. There are several deadlock prevention algo-

rithms that are widely known:

1. Each process must request all needed resources at one
time and will remain blocked until all requests can be
granted simultaneously. (This is often referred to as
"static" allocation.)

2. All resources are given a unique number and processes
must request resources, one at a time, in numerical or­
der.

3. When an active process requests a resource that is con­
trolled by a blocked process, the blocked process must
release the resource so that it may be allocated to the
active process. A process will go from the active to
blocked state only if it requests a resource controlled
by another active process.

The unpredictability of resource usage in a transaction

oriented system, plus the loss of productivity that results from

tying up resources unnecessarily or forcing processes to release

resources and request them later (which often results in some

9

redundant computations due to a process having to repeat some

operations to maintain a consistent datab•se) ~ake prevention

algorithms undesirable ror use in the systems under considera-

tion. In a multiprocessing •nvironm•nt which considers
. I

inter-process messages as resourcea, it is impossible to have an

advance knowledge of all the resources that will be needed by a

process. Thus algorithm 1 can not be used in this type of_ sys­

tem, whether it is a sin~le or multi node raoility. Algorithm 2

is unsuitable for the systems under constdetetfoft because al­

thouFth it 1nay be ·posalbl• to 8iVe • unl4fu• ftdtittt•r ·to eaoh

inter•proceas •ess•s•, a proo••• •••• tt• "'Mllocratedtt each message

that 1 t wi 11 ••net to anoth•r pNH••, wtt-tott oart res·ult in many

difficult ie• wl'ten two prooe•••• ai-e tffdf8«' · aevf+al nreas1ages to

each other. Algorithm 3 can not be usH,lfeO'wse it implies that

all resources muat be pr••emptabl• (Le. 1.-h•y lltU$t be able to be

released by a proo••·• upon the de11anc1 of th• ·•Y•teilf), which is an

impossihle situation when message• are treated aa resources.

I.3 Deadlock AvoidAnoe

Deadlock a.v~ot.-.clan-ce alAori;thlla oalo.ul.at• ••re paths for com­

pletion of all proceas••· · 8erore a re1ovr-oe t• allocated to a

given proceas, the. operatin~ syst.•tt o.tte-ok·1 1r~i there would be at

least one path via whioh all proces•es can run t~ completion

after the allocation ls made. If no such path exists, then the

requestin~ process must wait until a tille when the resource can
.- ,_

be safely allocated to the process. Avoidanoe algorithms thus

10

force processes to wait unnecessarily in order to be certain that

all processes will be able to run to completion without the

threat of deadlock.

In "System Deadlocks" [5] it is stated that "to avoid
·.·

deadlocks in a multiprogramming system in which the necessary

conditions for deadlocks can exist, it is usually necessary to

have some advance information on the resource usage of tasks."

When portions of databases are considered resources, and they are

locked at a level lower than a file (page, record, field, etc.),

it is difficult to determine in advan~e what database objects

will be needed. In addition, due to the unpredictability of

processes in a transaction oriented sys'tem, 1 t is impossible to

have an advance knowledge of all the inter-process messages that

will be requested by a process. Therefore, deadlock avoidance

algorithms can not be used in a single or multi node transaction

system which permits inter-process communication.

I.~ Deadlock Detection

Since it seems that deadlock prevention and avoidence algo­

rithms are unsuitable for the distributed ay~te•s under consid­

eration, deadlock detection methods must be •~•mined. When

employin~ a deadlock detection algorithm, req~efted resources are

usually assigned to the requeating .processes whenever possible,

and processes are blocked only whe" desi,red resources are

unavailable. Either the operating syate11 or a system user must

occasionally check for a deadlock situation, and if one is found,

, 1

must rollback (backup) and retry at lea1t one process in order to
"' , F: . ,,

break the deadlock. (It is hoped this vtll r~ree a new sequen~e

or access to resources.)

From the i'9plementol"'' s vtewpoi"t. the easiest s..trategy to

adopt is that vher• one assumes deadlock occurs infrequently. In

this case satneone (an operator) ex~,ernal to the network would
h ,•

have the resPonsibil1ty for detectin1 the deedlock and deciding . ' '", .

what process should be roreed to rollback to a previous state.

With this approach the only overlutad involves ,.the temporary

inahility to access the resources controlled by the deadlocked
.. • "'< ~ ·, ''I' ~ -v '

processes and the cost of' rollback/retry or some .. (or. all) of the

deadlocked procf!sses. (T~is cost ':"•Y be lar_,_e for each deadlock,

but 1r there are few deadlocks the overall sy$tetll cost may be

less than it would be if there were a "deadlock detector" that
' ~- ·"' ,. " . -, ~ ,. . ' . . '

was constantly checking for deadlocks.) One could also assume

that if a process has been blocked for •x• u"its of time, then it

is deadlocked and the operating aysttt11 should force it to

rollback to a previous state, although this st~ategy may result

in some unnecessary .. eduntJant contputatlona because ~ome processes

that will be l"'etrled 11ay not·have been involved ln a deadlock.

At least two &;ottcles have beert pubtta.t\~ which propose

protocols ro,. alloeat!ng database objects in a computer network

in a manner" such that deadlock oari·be detected at the time a

request for access is dented. In designin1·an algorithm to be

used to detect process deadl&C.ks in i transaction oriented com­

puter network whfch allows process to process 'comMunication, it

12

is necessary to allow for the possibility of a process waiting

for a message from another process (which may be manual or

computerized). Additionally, a process must be allowed to wait

for access to a database object which has been allocated to at

least one other process.

Any algorithm that will be implemented as part of an oper­

ating system should be as efficient as possible. Therefore, in

the algorithms proposed by this author, an attempt was made to

minimize the number and size of internodal messages involved in

the detection of deadlocks.

I.5 Structure of the Thesis

Chapters II and III contain descriptions and comments

(includin~ some examples pointing out deficiencies) relating to

two papers that have been published proposing protocols for

allocating database objects in a computer network such that

deadlock can be detected at the time a request for access to a

database object is denied. Chapter IV presents an introduction

to the two schemes for detecting deadlock in a computer network

that are proposed by this author in Chapters V and VI. The two

schemes differ in that one (Chapter V) places the primary re­

sponsibility for detecting deadlock anywhere in the network on

one control node, whereas the other totally distributes the re­

sponsibility throughout the network. Chapter VII contains a

discussion of a functional model or the al~orithm proposed in

Chapter VI. The Appendices contain a description and demonstra-

13

tion of the model, in addition to containing the PL/I code for

the mod~l itself. Chapter VIII contains some suggestions for

future research, And Chapt~r IX contains a COttlparison or the

various algorithms presented in Chaptera II, III, V and VI, plus
. I •

some concludinp, r&marks.

If one only wants to read about the algorithm that 1s

recommended by this author, it is possibl~ to read Chapters IV

and VI with no loss of understanding. Chapter VII can also be

understood after reading Chapters IV and VI; as can the Appendi­

ces and some portions of Chapter VIII.

II. Proposal of Chandra, Howe and Karp

In "Communication Protocol for Deadlock Detection in Com­

puter Networks" [3], a scheme is presented which the authors call

"a novel solution to the deadlock problem in the network

environment." Their "solution" is described below, and the de­

scription is followed by an example where the scheme allows a

deadlock to go undetected.

II.1 Chandra, Howe and Karp's Proposed Solution

The authors propose that each installation (node) maintain a

resource table (RT) which contains information about which pro­

cesses have been allocated local resources, which processes have

been queued (waiting for access) for local resources, which local

processes have been allocated remote resources and which local

processes have been queued for remote resources. The type of

access requested by each process is also recorded. The authors

claim that in a single node facility, there are several well

known algorithms for detecting deadlocks using the tables

mentioned above. They then state "it is believed to be obvious

that these same algorithms would suffice in the multiple instal­

lation case provided that the resource table were to be expanded

to include the pertinent information from the remote sites." A

scheme to expand the resource table in a node is given in the

paper.

The authors believe there are three types of requests for

resources that can lead to deadlock. (In all cases, "it is as-

15

sumed that the requested resource is not available, because, if

it were, the allocation would take place immediately.") The ac­

tion taken for each type of request is the following (as stated

in the paper):

Case 1

A process requests a local resource, which is allocated
to a local process, and all of the processes which are
queued for this resource are also local processes. All of
the necessary information is contained in the local RT, and
the request is resolved locally.

Case 2

A process requests a local resource, which is either
allocated to a remote process or one or more of the pro­
cesses that are queued for this resource are remote
processes. In this case, all of the RT's must be obtained
by the local installation since deadlock may occur. Once
all of the RT's have been obtained, the
deadlock-determination algorithm can be applied to the
expanded RT which contains all of the resources and pro­
cesses in the total community of installations.

Case 3

A process requests a resource at some remote installa­
tion. In this case, the requesting installation forwards
the request and its RT to the installation which has the
requested resource. This installation then determines if
the request can be honored immediately or if all of the RT's
must be first obtained. In th~ case where the requested
resource is allocated to or queued by only processes local
to the two involved systems, the request can be honored im­
mediately. Otherwise, this installation obtains the RT's
from the remaining installations and then resolves the
request.

In all of these cases, the RT's that are involved in
the decision procedure must be locked until after the deci­
sion has been made. If the decision involves the RT's of
the other installations in the community, these installa­
tions must be notified after the decision is made and their
tahle is then released. In Case 3, the updates to the RT
must be returned to the requesting installation while all
other tahles can be discarded and a simple release notice
returned.

16

-------------------~ --------------- ---------- ---------

A description is given of the actions to be taken when "two

or more installations may simultaneously request the various RT's

in order to make an allocation for two or more independent

requests."

II.2 A Fault in the Proposed Solution

There are some resource requests which fall under Case 1,

and result in a deadlock for which the local RT does not contain

enough information to detect. Consider the following example:

Let the network consist of two nodes, A and B. Let

processes P1 and P2 and resource R1 be local to A, and let

processes P3 and P4 and resources R2, R3, and R4 be local to

R. Assume the following state of the network. (Figure

II.1a contains a diagram of this "intermediate" state.) P1

has exclusive control of R1 and is queued waiting for access

to R4, P2 has exclusive control of R2 and is queued waiting

for access to R1, P3 has exclusive control of R3 and is

queued waiting for access to R2, and P4 is active

(non-blocked) and has exclusive control of R4. In this

state there is no deadlock. Now let P4 request access to R3

and be queued for the resource. A deadlock now exists (see

Figure II.1b) involving all four processes and all four

resources. With the tables as described in the article,

this deadlock could not be detected unless node A sent node

B its tables, but this does not take place because the

request falls into Case 1 (since P4 is local to B, as are P3

17

and R3). Therefore the deadlock goes undetected.

~imilar examples (for networks consisting of three or more

nodes) exist where requests fallinR under Case 3 result in

undetected deadlocks. RT's from 3 or more nodes may be needed

even if "the requested resource is allocated to or queued by only

processes local to the two involved" nodes.

18

KEY

Intermediate State Diagram

Figure II.1a

Final, State Diagram

Figure II. 1b

c:) Represents a process

[] Represents a resource

~ Represents a process having exelusive use of a resource

0-..,0 Represents a process waittng for access'to a resource

19

III. Proposals of Mahmoud and Riordan

In "Protocol Considerations for Software ·confrolled Access

Methods in Distributed Da~a Rases" [8], two seheaes are presented

for al locating database files in a net·work enviroriment. The

authors (Professors at Carleton University, Ottawa, Ontario,

Canada) claim ·that with their schemei, by using the graphic rep­

resentation as described in T9l, deadlocks"'~an be ,detected at the

time an alfocation decision is made. The two schemes are de­

scribed below, and a brief discussion about the s~hemes follows,

including an example whe-re one or the proposals allows a deadlock

to go undetected.

The first approach described requires Ufat all deadlock

tests be made by one node, whereas with the second1approach each

node must test for deadlock resulti-n'9, t'NJ111.~dtftfer~nt processes

accessing its files. Each node in the network wfll contain a

Distributed Data Rase Managem~nt Facility (ODBMF) ~hich will

communicate wi Ut ~he other DDBMF prooeS.e& in· 'the network for the

purpose of Handlin~ requests for local and remote processes.

I II. 1 Mahmoud and Riordon' s Central 1 zed Control A
1

pproach

In the centralized approach, &ne node, called the control

node, will make all the deadlock tests and handle all file

allocations. It' a process running at t'lode'i wou1d like access to

a file in node j, a request is sent to'the DORM' in node i, which

then relays it to the central<DDBMF,, even 1r,ncde 1 and node j

are the same. Since the central DDBMF makes all the file

20

allocation decisions, it has an overall picture of the global

network status, and can therefore decide if the request can

safely (without deadlock) be placed on the file queue.

III.2 Mahmoud and Riordan's Distributed Control Approach

In the distributed approach, the DDBMF at each node will

have full control over all access to the files located at its

node. As a result of this, the authors state that "each node

DDBMF will be responsible for handling job interference

(deadlock) problems that may arise while different processes are

accessing its files." In order to avoid or detect deadlocks

involving processes and files located at two or more nodes, "each

individual DDBMF must obtain information from other DDBMF pro­

cesses indicating the status of their files and queue tables.

The information will be used to construct a global picture of

the network and thus enable each individual DDBMF process to make

the correct decisions."

All active user processes are separated into two classes.

In the authors' own words,

The classification is based on the localities of the files
requested by the process and the type of access to each of
these files:

Class 1: each process belonging to this class has the fol­
lowing properties:

1) All files accessed by the process during its active
session are located in a single node.

2) All files being updated by the, process are single-copy
files in the network (i.e. only a single copy of each
file exists in the network).

Class 2: each user process belonging to this class has the
following properties:

1) Files that are accessed simultaneously by the process

21

during an active session do not all exist in a single
co•puter syste11 , and/or ·< .-,

~) Any on• or the files being updated by the process has
multipl• copies 1n the ne\vor~.

It is obvious th•t the t.vo olaasea or . .processes are
mutually exclusive.

The authors suggest uaina a graph r..,..-eaent•tion in order to

detect deadlock, and they despribe how a ~f's.ta information

from the other DDBMF's in the networ•. and when it ahould check

for deadlock:

Assu1t1e that there are n aod• in ·the- aetwork, 1. e., n
individual 1'D8MF processes. Each proc••• will transmit
(n-1) ld•ntic-.). ,.._.,•M•• ~,t...,...i,-f• ~Lth Orte .. asage
addressed to each· or the r•eintftl DDBMF processes. Each
messa«e. contal~• the . ..-t .~· u,fo...-.10"1 a0out the
status and q~euea ot tllea at. tit• no4e in queation. The
messages will be tra11:..-.U~Ud pert~c.i.,a.1, et. Ule- •n•et. of
synchronous clock intervals. Si•tlarly, each DDBMF proceas
will receive pertodlca1i1 .. (11-.U ._,..,., • .,~ .f•oa·.t.ne other
processes. Nov •••Wfte that • t>DW prooeaa l!"•cetves a
request for ace••• d ~°'1 oae or tile ru , ',~. -control
fro•. local or r•ote ., ... ,. proc•••· tr the1requesting
process belongs to cl••• 1, the D-F~will re•o,11d inedi­
ately to the request. Otherwt .. the 1)1)8MF will delay action
until the ne1i t.1•• iaterv•l,.'.-1·••, ,u._,1~. Peqe11'1JJI upctat.d
1nfor•atton about the status ot the .n•tvork tiles from other
DDBMF processes. The request 1• then qltff1re~·•1atnat any
possible interferenc-e (deadlock) and the u•er process is
not1 tied once1 a deo1s1011 is ••cle.,

Requests which can not be acted upq• until ti.e next time

interval are placed in a pre-test·4ueue.

At t~e beginning or a clock interval, ••oh proce~sor
receives 1nf'or•ation t'ro• othff proceaaora tncludlnc the
contents of tbe f11• .queue4 .,.,.. ·.tY ,~vt...tr .queue. The
proceaaor extract• the contents of t.tu- ,~ W.t 4.....,.. an.d
comt)ines tha .to, CQJl4.~act. ,• gloW ,~-.t :Qt.toe which
includes all the r•~t• to~ tl:l4' ~-,.·~ by all
proceutors during th•, previou 2~ tjfllter•-1. Th-e file ac­
cess requeata ~n t.he alobal .,pr ,...- W• tested for
deadlock conditiorfe and dec.t.a,J,t>aa ·••then made,.

To avo14. dead lo.ck a.ituatJ.Of')• .c.a~ bf critical race
conditions, the file access requeat.a;OJt·the global pre-test

22

queue must be arranged in the same order in all
processors ..• All processors must then follow a predefined
routine in constructing the global pre-test queue. The
resulting versions of the global pre-test queue will be
identical in all processors at the beginning of every clock
interval.

III.3 Some Comments about the Proposed Schemes

The authors state that their schemes will work if records,

or other units serve as the identifiable unit of object data,

rather than files, which were mentioned throughout the paper.

When records are allocated individually, there will be more mes-

sage traffic due to additional message requests for access to

database objects. Nowhere in the paper is the problem of message

congestion at the control node (when using the Centralized

approach) discussed. With all requests for access to database

objects being handled by the central DDBMF, there exists the

possibility of a message bottleneck at the control node, which

would degrade network performance due to slow response to the

requests.

It is mentioned that failure of the control node (when using

the Centralized approach) can "paralyze the operation of the

whole system," although all the DDBMF's can send all their in­

formation to another DDBMF, thus recreating the global picture of

the system at a newly designated control node. Although the

author's Centralized approach may be "inefficient," it can be

used to successfully detec~ all process deadlocks when only waits

on database objects are involved.

The Oecentralized approach, as described in the paper, does

23

not detect all deadlo~k situations when only process waits for

datahase obje~ts •~• invol•ed. COftSld•~ tWe following example:

Let th@ nP.twork cons1$t or tw nOdes, A and B. Let

processes P1 and P2, and files F1 and F2 be local to node A,

and let proce8se• P3 artd P'4, and f'iles' Fl and FJf be local to

node B. Assume tl'te following stat• or ttt. network. (Figure

III.1a contains a diaf!rlitn for thi• "interneflate" state.)

P1 has excluaive oontrol of P'land ta:que\led waiting for

access to rii, P2 is active (non-blOekd) and has exclusive

control of F'2, P3 has excnustve oon-tro1 of tj· and is queued

waittn~ for access to t2, and P• is ltftive and h•s exclusive

control of P'JJ. P1 and P3 belonw to cla•s 2, as defir'led by

Mahmoud and Riordon, and P2 aftd P• bOt~ b•l6~~ to class 1 as

long as each ttoea not requtst •cc.as to * file located in a

node other thin the one in wbi~h U•• pf"oe"tss resides.

Now, wtttltn thfJ eame tt111e interval, let P2 request ac­

cess to F1 and let P4 request acc•as to F3, thus creating a

deadlock becau•• netther file e•n·&eeOM• available. (Figure

III.1b contain• the t'inal state dtagriflt for this deadlock.)

P2 and Pit remain cla11s 1 pf'ooe••••• and ther"etore these

requests •hould be acted upon IMM••Ultttly and each node will

cheok ror 'deadlock using the into~••tion that it has. No

deadlo-ck will be detettted beoauae tteittter ftode has the in­

formation about the reoent reqv.lt ift the other node, and no

provisions are stated in the art161e whioh imply that

deadlock involving P2 or P~ will be checked for at the onset

of the next synchronous clock period.

The authors believe that class 1 processes do not contribute

to deadlocks that involve processes waiting for files located in

~ore than one node, and therefore deadlock can be checked for

usin~ only the information located at one node when a class 1

process requests access to a file. It is this assumption that

leads to the downfall of their Decentralized approach, because it

is possible that a class 1 process will request access to a file

controlled by a class 2 process, resulting in a deadlock (as

shown in the previous example) involving processes which are

collectively waiting for access to files located in two or more

nodes. Note that this is similar to the flaw in the protocols

ror deadlock detection proposed by Chandra, Howe and Karp.

25

Node A

h-­
~ -

~-

Figure III~Ja

Node B

""

-~
Final State Diagram

Figure I I I. 1 b

KEY

Q Represents a process

D Represents a file

0-0 Represents a process having exclusive use of a file

0-G Represents a process waiting f'or acoess to a file

26

IV. Introduction to Proposed Solutions

The deadlock detection schemes that are presented in

Chapters V and VI are based on the creation and expansion of or­

dered blocked process lists (OBPL's) and the restriction that a

process may only have one unapproved outstanding resource request

(and therefore be waiting for at most one resource at any

instant). A resource may be any non-ambiguously defined portion

of an object, whole object, or collection of objects which are

requested as an entity and released as an entity by all users.

(The case where there are several equivalent resources like tape

drives is not considered. A discussion of physical devices oc­

curs later in this chapter.) An OBPL is a list of process names,

each of which (with the exception of the last process in the

list) is waiting for access to a resource that has been assigned

to the next process in the list. Each process name in the list

is often referred to as a process entry in the OBPL, and when an

OBPL is sent between nodes, a resource name is inserted into the

single resource identification portion of the OBPL. The last

process to have an entry in the OBPL is either waiting for access

to the resource named in the resource identification portion, or

it already has access to that resource. In the former case, it

must be determined what process controls the resource, whereas in

the latter case, the state of the last process in the OBPL must

be determined.

It is assumed that at each node there is a process manage­

ment module (PMM) which will handle deadlock detection and

27

resource allocation. It will maintain local state tables which

will contain information about local resources {resources which

are located in that node) and local processes (processes which

are running in that node). If a PMM is checking for deadlock,

and it is examining the OAPL with process entries P1, P2, ... ,

PN, then it knows that each process in the list (with the

exception of PN) is waiting for the next process in the list to

release a desired resource. If PN is not blocked, there is no

deadlock and the OBPL can be discarded. If it is blocked, then a

PMM must find out what process has been allocated the resource

for which PN is waiting. If this process already has an entry in

the OAPL, there is a deadlock, otherwise a PMM must append the

process name to the OBPL and repeat the above. The schemes that

are being proposed differ from each other in the way the OBPL's

get expanded.

IV.1 Descriptions of Resources

There are three types of resources that a process may wait

for where the blocking of the process can result in a deadlock.

They are database objects, message text from other computerized

processes, and message text from operators (manual processes). A

distinction is made between message text from processes and mes­

sa~e text from operators because a deadlock which involves no

operator messages can be detected without operator interaction,

whereas if a process is waiting for message text from an opera­

tor, a deadlock can not be detected without the operator stating

28

what he/she is waiting for. The reason for the latter point is

that an operator typically does not type in "receive message"

statements, but accepts output as it is given. In the algorithms

presented, it is assumed that an operator can only wait for a

message from a process with which he/she is communicating (a

discussion of operator and process communication is given later

in this section). This restriction can be relaxed, and it is

discussed in Chapter VIII.

Database objects, as discussed in this paper, can be fields,

records, files, or any other logical or physical component of a

database. It is important that all processes treat the same

portion of a database identically for the purposes of allocation.

The level of granularity (which may vary for different database

objects) at which database objects are allocated is unimportant

for the detection of deadlock; it does however, affect the

frequency of deadlock and, conversely, the burden of maintaining

information about resource allocation.

Message text must be treated differently from database ob­

jects because once a message text has been assigned to a process,

it is not available to any other process. In this sense, once a

message text has been assigned, it no longer exists for future

assignment. To ensure that a process receives the proper message

text, the sendin~ and receiving processes must create a unique

connection over which messa~e text between the two processes may

pass. When a process would like to receive message text, it must

state over which previously established connection the text

29

should come. Similarly, when a process wants to send message

text, it must give the message text and name the connection over

which the text should pass. All messages that are sent and

received over a given connection will be referred to as text

within a specific message group.

When message text is sent by a process, it is queued for

receipt at the proper destination end of the connection. A pro­

cess may send several items of message text over a given connec­

tion before any messages are requested by the other process as­

sociated with the connection. In this case the items of message

text are queued for receipt in a first in, first out manner. It

is assumed that message management has infinite queueing

capacity, and therefore the possibility of a deadlock involving a

process which wants to send a message but is blocked because

there is no place to put the message text will not be dealt with.

Unlike process to process messages, which may be sent be­

tween nodes, when a process and an operator communicate, they

must he located at the same node. Similarly, however, an

"operator connection" must be established between the operator

and process before messa~e text can be sent over the connection.

The operator connection must be specified when message text is

sent or received over the connection. When messages are sent

from a process to an operator, they are usually printed immedi­

ately at the operator's terminal. However, messages that are

sent from an operator to a process are queued for receipt in the

same manner as process to process messages.

30

All of the resources described above are uniquely identifi­

able, and are allocated dynamically (i.e. during the execution of

the process requestinR access to the resource). None of them are

physical devices (tape drives, printers, etc.), which are often

not uniquely identifiable (there may be N of a kind). Physical

devices are not considered by the algorithms that are being pro­

posed because they are typically allocated to a process before

execution begins and the known networks restrict processes to

requesting physical devices at the same node. (If a process

wants to control a physical device at another node, it must do so

indirectly through a process located at the same node as the de­

sired device.) Additionally, transaction oriented processes

typically do not use dedicated devices.

IV.2 Access to Resources and the Blocking of Processes

A process may get blocked when it requests read only

(shared) access or exclusive (read/write) access to a database

object. While one process has exclusive access to a specific

database object, all requests for access to that database object

result in the requesting process being blocked. While at least

one process has shared access to a specific database object, all

requests for exclusive access to that database object result in

the requesting process being blocked, and requests for shared

access to that database object will result in the requesting

process beinR blocked or being granted access to the desired

resource (depending upon the resource allocation scheme in use).

31

Recause data values are not changed when a process only reads a

datahase object, any number of processes may be allowed to have

concurrent read only access to a database object. When all pro­

cesses that had shared access to a given database object have

released it, or when a process releases a database object from

exdlusive use, at least one process will be awakened and granted

access to the newly released database object, if any were waiting

for access to it.

0nce a process has been granted shared access to a specific

database object, subsequent requests by that process for exclu­

sive access to that database object are rejeated. This restric­

tion prevents a process from getting blocked waiting for a

database object that it already has access to, and implies that a

process must declare its most restrictive use when it requests

access to the database object. (It must request exclusive access

if there is any chance that the process might change the content

of the database object.) In order to ensure that a process has a

consistent view of the database, and that processes may be rolled

back to a previous state (when necessary), no database objects

will he released by a process until that process has reached a

"commitment point", at which time all the database objects that

the process had access to are released. A commitment point is

always reached at process termination. (When a process continues

processing after reaching a commitment point, for purposes of

detecting deadlock, a PMM can treat it as a new process because

it released all its database resources, and notified all pro-

32

cesses to whicn it could sen~ messages that no more messages are
' ' '

forthco~ing. The external effe~ts or a process, including

database updates and message text sent, can not be cancelled

after commitment. Process commitment points are synchronized,

which is to say that after a process reaches a commitment point,

it does no further processing until all processes with which it

has established connections over which it can receive messages

have also reached commitment points.)

If a' process attempts to receive message text over a speci­

fic connection, it will be given one message if any are queued

for receipt at that process; e's end of the connection. If no

messages are available, the process is blocked until message text

arrives. Upon arrival of a message, the process will be

awakened, because the receiving process is uniquely identified by

the connection over which message text is s~nt. Steps must be

taken to ensure that the receiving process and the sending pro-

cess of a message treat the same text as one message. (One pro-

cess can't treat a line as a message when the other process

treats a group of sentences as a message.)

IV.3 Creation and Expansion ot an OBPL

When a PMM wants to check whether a given blocked process i~

involved in a deadlock, it creates an QBPL·and inserts the net­

work unique name of the prqcess as the first process entry in the

OBPL. (It is assumed that operators, processes and resources

have unique names within a node, and these names can be made

33

unique within a network by qualifying them with the name of the

node in which they reside. Throughout this Thesis, operator,

nrocess and resource names are assumed to be network unique.)

Call this proc~ss P1. Let R1 be the resource to which P1 desires

access. R1 is then inserted into the resource identification

portion of the OBPL. A PMM (which PMM depends upon what scheme

is heing used to detect deadlock, and whether P1 and R1 are in

the same node) then determines what process controls R1. If R1

is a database object, then the process that controls R1 is the

process that has access to it. (If there are several shared

readers of Rl, then it is said that each reader controls R1 and

the OR.PL is copied enough times so that there is one list for

each reader of Rl, and a different copy of the OBPL is used for

each reader.) If Rl is message text in a message group, then the

process that controls R1 is the process that can send the desired

message, and if R1 is message text from an operator connection,

the process that controls the resource is the human operator that

can send the message. If Rl is message text over a connection to

which no process other than Pl has associated itself, the PMM

saves the OBPL so that after another process or operator associ­

ates itself with the connection the needed information will be

available and the OBPL can be expanded further. It is assumed

that no deadlock can exist unless two processes are associated

with the connection over which the desired message text can be

received.

Let PK be the process that controls Rl. A PMM then checks

34

if PK already has an entry in the OBPL that is being examined.

If it doesn't, the PMM adds its name to the OBPL and then lets

some PMM determine if PK is active. If PK had an entry in the

OBPL, the PMM has detect•d a deadlock, and should take the ap-

propriate action. Note that the entry for PK can be anywhere in

the OBPL, as it is possible that a process not involved in the

deadlock may be waiting to access a resource controlled by a

process that is involved in the deadlock. If PK is active, then

there is no deadlock and the OBPL can be discarded. If PK is

blocked, then the above procedure should be repeated, except PK

should be used instead of P1 and a PMM determines what resource ...
PK is waiting for. If PK represents an operator, then the PMM

must save the OBPL until information about the status of the op-

erator becomes available. A message is sent to the operator

stating that this state information is desired. If the operator

sends message text to a process, or ~f th~ operator responds that

he/she is active, then all OBPL's that needed state information

about this operator are discarded since there is currently no

deadlock. If the operator states that he/she is waiting, then

the operator connection over which the operator is awaiting a

message must also be stated. The process that can send the op-

erator the desired message is determined from the connection

name, thus the PMM now knows what process controls the resource

the operator desires, and this information is used to further

expand all the ORPL's that needed state information about the

operator. tf no OBPL's needed this information, and the operator

35

volunt~ers the information that he/she is blocked, then an OBPL

is created with the first process entry representing the opera­

tor.

In order to ensure that a PMM sees a consistent set of state

tables, no resources get allocated or released in the node of the

PMM while the PMM is examining an OBPL. (The PMM holds exclusive

use of the state tables in its node. The reason for this re­

striction becomes apparent in Chapter VI in the verification of

the decentralized algorithm.) There is no chance of a PMM itself

bein~ involved in a deadlock because it is the only process that

has access to the state tables in its node, and it does not wait

ror any messa~es or request access to any other database objects.

Resource requests and OBPL's arriving from other nodes result in

subroutine calls to the PMM. These calls are handled in a FIFO

sequence. In addition, when a process or operator associates

itself with a connection, a PMM is called to check if any OBPL's

have been saved waiting for this information. Furthermore, when

an operator sends message text to a process or states that he/she

is active or blocked, the PMM at that node checks if any OBPL's

have been saved waiting for state information about the operator

and takes the appropriate action.

The time at which an OBPL gets created depends upon the

optimization of the deadlock detection scheme, and which PMM

creates the ORPL depends upon what scheme

(centralized/decentralized) is used. An OBPL can be created as

soon as a process becomes hlocked, or it can get created after

36

'X' units of time have elapsed without the process gaining access

to the desired resource. The latter approach will be used with

the expectation that normally the process will be granted access

to the desired resource within 'X' units of time because deadlock

does not exist. Thus the overhead involved in creating and

expanding an OBPL will usually be avoided. However, within the

body of this paper, in the interest of clarity it is assumed that

an OAPL is created immediately after it is determined that a de­

sired resource is currently unavailable. It should be understood

that the removal of this assumption, and the imposition of a

delay before the OBPL gets created, does not impair the

effectiveness of the algorithms because once a deadlock occurs,

it exists until some type of recovery action is initiated.

Certain information must be available to the PMM's if the

ORPL's are to be properly expanded. The PMM at each node will

maintain a table which has an entry for each process in its node.

Associated with each process entry will be a list of all the

resources to which the process currently has access, and the name

of the resource to which the process desires access (if the pro­

cess is waiting). For each resource at the node, the PMM must

keep information stating what process or processes currently have

access to that resource, and what type of access they have. In

addition, a list of all processes that are waiting for access to

that resource must be maintained. (The latter information is

necessary so that the resources will be properly allocated when

they become available.)

37

V. Centralized Approach to Deadlock Detection

A "centralized" approach to deadlock detection in a computer

network is based upon the premise that one node (the "control"

node) in the network will act as the center of activity for glo-

bal resource allocation and deadlock detection. In order to re-

duce overhead, any requests for resources or checks for deadlock

that can be handled entirely by one node should not request the

service of the control node. For reasons that will be explained
I

later, the following description has not been refined, and should

not be viewed as a working algorithm. The description presents

some ideas that could form the basis for a practical centralized

approach to deadlock detection.

V.1 Allocation of Resources

A process management module (PMM) will have responsibility

for granting access to a local resource as long as no remote

processes have been allocated the resource nor have been queued

for it. When these conditions do not hold, the control process

management module (CPMM) (located in the control node) will have

responsibility for granting access to the resource. Thus when a

process desires a remote resource, the request must go to the

CPMM. When a process requests a local resource, the request must

go through the CPMM only if that module currently has responsi-

bility for grantin~ access to the resource, otherwise the request

will be handled by the local PMM. The set of resources for which

the CPMM grants access changes dynamically. (As soon as a pro-

3R

cess requests a remote resource, that resource becomes a member

of the centrally managed set if it isn't already a member, and

when the conditions above are satisfied again, the resource is

removed from the set.) For each resource in the set, the CPMM

maintains a list (in the global resource control table) of all

processes queued for that resource plus the name of the process

or processes (in the case of shared access) that have been al-

located the resource.

There are essentially three classes of resource requests in

this type of network. The following is a list of the resource

request classes and the proper response to each type of request:

1. A process requests a resource at the same node as the
process, and the local PMM is responsible for granting
access rights to the resource: The PMM can block the
process or give it the resource. In either case, the
PMM can update the appropriate tables.

2. A process requests a resource at the same node, and the
CPMM has been given responsibility for granting access
rights to the resource: A message containing the
resource request must be sent from the local PMM to the
CPMM. The local PMM will block the process until it
receives notification from the CPMM that the desired
access has been granted. Upon receipt of the resource
request, the CPMM will either grant the process access

. to the desired resource, or keep it blocked. In either
case, the CPMM updates its tables to reflect the state
after this request has been processed.

3. A process requests a resource at another node: A mes­
sage containing the resource request must be sent from
the local P~M to the CPMM. The local PHH will block the
process until it receives notification from the CPMM
that the desired access has been granted. Upon receipt
of the resource request, the CPMM, if it had the re­
sponsibility for granting access to the specified
resource, will either grant the process access to the
desired resource or keep it blocked. If the CPMM did
not have such responsibility, it will demand it from the
PMM that does, and then the CPMM will process the
request. After the request has been processed, the CPMM

39

will update its tables appropriately.

When a process reaches a commitment point, the local PMM

will release all the resources that the process controlled. The

PMM can then grant other local processes access to the resources

that were released and for which it has responsibility for

~rantin~ access. If any resources which were under the CPMM's

control were released, the CPMM will be notified of the reaching

of a commitment point by the process, and it will then grant

other processes access to the resources if ;any are queued for

them and the rules for resource allocation permit the new

assignments. If possible, following a resource release, the CPMM

will return responsibility for granting access to a resource back

to the PMM in the node where the resource resides.

V.2 Deadlock Detection

When a PMM denies a request for a resource and blocks a

process, it then creates an OBPL with a process entry for the

blocked process. It then expands the OBPL until 1) a deadlock is

detected, 2) it is ascertained that there is no deadlock, or 3)

the PMM does not have enough information to expand the OBPL fur­

ther (because an involved process is waiting for a global

resource, or a local resource is controlled by a remote process).

In the latter case the PMM sends the OBPL to the CPMM, which will

complete the expansion of the OBPL. When the CPMM denies a

request for access to a resource, it creates an OBPL with a pro­

cess entry for the blocked process and then expands the OBPL un-

40

til a deadlock is detected or it is ascertained that no deadlock

exists.

To expand an OBPL, a PMM uses its state tables that were

described in Chapter IV, and the CPMM uses its global resource

tables and those of the PMM's in the network. (How it obtains

copies of these tables is discussed later in this chapter.) The

method by which the PMM's expand an OBPL will be described first,

and it will be followed by the method which is used by the CPMM.

After a PMM has created an OBPL, it acts as if it were in step 2

below, with PN set to the name of the process which was just

blocked, and RN set to the name of the resource for which PN is

waiting. The following is a list of steps taken by a PMM when

expanding an OBPL:

1. Let PN be waiting for resource RN. If RN is a local
resource, go to step 2, otherwise go to step 6.

2. If RN is controlled only by local processes, go to step
3, otherwise go to step 6.

3. Let PX be the process controlling RN. If PX is blocked,
go to step 4, otherwise there is no deadlock and the
OBPL can be discarded. (If there are J shared readers
of RN, repeat this step once for each reader.)

4. If PX is already contained as a process entry in the
OBPL, there is a deadlock and the PMM must take appro­
priate action. If PX is not in the OBPL then go to step
5.

5. Append PX as a process entry in the OBPL and go to step
1, where PX is used in place of PN.

6. Place RN into the resource identification portion of the
OBPL and send the OBPL to the CPMM. Halt.

The CPMM will create an OBPL when it denies a request for

access to a resource. The only process entry in the newly ere-

41

ated OBPL is for the process whose resource request could not

currently be honored. After a CPMM has created an OBPL, it

starts in step 1 helow, with RN set to the resource whose

unavailability resulted in the OBPL being created. If the CPMM

receives an OBPL from a PMM, it sets RN to the resource that was

placed in the resource location of the OBPL, and sets PN to the

last process to be inserted into the OBPL. The CPMM verifies

that PN is still waiting for RN (if it isn't, either RN has al-

ready been allocated to PN or the CPMM has not yet received the

request by PN for access to RN, so there is currently no deadlock

and the OBPL can be discarded) and then starts in step 1 below.

The following is a list of steps taken by the CPMM when expanding

an ORPL:

1. Let PX be the process controlling RN. (If there are J
shared readers of RN then repeat this step once for each
reader.) 1 To find PX, the CPMM first checks if RN is in
the global resource table. If it is, then this table is
used to get PX, otherwise the copies of the local tables
for the node in which RN resides are used by the CPMM.
Go to step 2.

2. If PX is blocked, go to step 3, otherwise there is no
deadlock and the OBPL can be discarded. (First check if
PX is waiting for a global resource, and if it isn't,
then check the copies of the local tables for the node
in which PX resides in order to find out if PX is
blocked or active.)

3. If PX is already contained as a process entry in the
OAPL there is a deadlock and the CPMM must take appro­
priate action. If PX is not contained in the OBPL, go
to step 4.

4. Append PX as a process entry in the OBPL and go to step
5, where PX is used in place of PN.

5. Let PN be waiting for RN. (If PN is waiting for a glo­
bal resource, use the global resource table to determine
RN, otherwise use the copy of the local tables for the

42

node in which PN resides.) Go to step 1.

V.3 Issues to be Resolved

There are several problems with the algorithm as described

in the previous section. A major problem is determining how the

CP~~ maintains its copies of the tables belonging to the PMM's in

the network. One possibility is to have each PMM send a copy of

its tables to the CPMM every 'X' units of time. Another is to

have the CPMM request a new copy of the tables that it needs if

'Y' units of time (Y may equal 0) have elapsed since it last

received a copy of the desired table. In either case, once a

deadlock has been detected, all the tables of the nodes whose

processes and resources are involved should again be requested by

the CPMM in order to verify that the deadlock exists and that the

CPMM's detection was not a result of the CPMM looking at an

inconsistent state of the network. (Due to the fact that the

list of resources that are kept in the global resource table

chan~es dynamically, and the CPMM does not always have an up to

date copy of the local tables, it is possible that some needed

information may be incorrect and could cause problems for the

CPMM.) It is probable that there are better and more reliable

methods of maintaining the copies of the local tables in the

CPMM.

When the CPMM is expanding an OBPL, and encounters a process

waiting for message text from an operator, it can be difficult to

get the needed state information. A method is needed whereby the

43

CP~M can save the OBPL and notify the PMM at the node in which

the operator resides, that this state information is desired.

The PM~ must then query the operator and send the CPMM this in­

formation along with its latest state tables.

Another problem that must be resolved occurs when related

messa~es cross between two nodes. An example of this is that the

CPMM may return the rights to grant access to a resource to a PMM

at the same time that the PMM under discussion sends a request to

the CPMM stating that one of its processes would like to access

that local resource. Care must be taken when designing the

resource allocation scheme to ensure that cases like this will be

detected and the desired action (which in this case is granting

the process access to the resource) will occur. In addition,

steps must be taken in the deadlock detection algorithm to ac­

count for and detect similar problems.

V.4 Reasons for not Refining the Algorithm

Several factors led to the decision not to refine the above

algorithm to the point where it could easily be proved to work.

It was felt that with all remote resource requests going to one

node, there would be message congestion at that node, plus there

would be an extra delay due to the fact that a request must go

through the central node rather than going directly to the node

in which the desired resource resides. Another factor that in­

fluences message congestion is the size of the tables that will

~et sent from the PMM's to the CPMM. Since database records may

44

be considered resources, these tables can get quite large, and it

would be preferable to only send the CPMM parts of these tables,

but then there is the problem of deciding which parts should be

sent, and what the CPMM should do when it was not sent enough

information.

When one node is used as the center of activity in a net­

work, the network becomes only as reliable as that node. It

would be possible to have another node in the network serve as a

backup to the CPMM and maintain copies of the CPMM'S tables.

There would be a delay in updating this duplicate copy, and it

would have to be decided how often the copy should be updated.

(A great deal of overhead is involved if a message is sent to the

"backup" node every time the CPMM chan~ed its tables.) It would

also be possible to reconstruct the CPMM's tables at another node

by requesting information from all other nodes in the network,

thus saving the overhead involved in maintaining the duplicate

copy at a cost of added delay if the control node were to become

inoperable for some reason. In a computer network it is desira­

ble to distribute the computing and to minimize the overall net­

work problems when one node crashes. This was the major reason

it was decided not to spend time refining an algorithm for

deadlock detection which relies upon one node in the network.

45

VI. Decentralized Approach to Deadlock Detection

A "decentralized" approach to deadlock detection in a com­

puter network is hased upon the premise that there should be no

central or control node and that all nodes in the network will

share the responsibility for detecting deadlocks. In addition,

the failure of one node should only affect the processes of that

node and the processes of other nodes which are accessing that

node's resources. The amount of duplicate process and resource

state information among the various nodes in the network will be

kept to a minimum, and each node will be requested to help check

for a deadlock only when at least one of its processes or

resources is involved.

VI.1 Allocation of Resources

A process management module (PMM) located at each node will

always have responsibility for granting access to resources lo­

cated at that node. Whenever a process requests a resource, the

request will be processed by the PMM at the same node as the

process. This P~M will determine if the desired resource is lo­

cal or if it is located at a different node. (Message text

should be treated as local to the node of the sending process.)

If it is a local resource, then the PMM can immediately determine

if the desired access may be granted or if the process must be

blocked waiting for the availability of the resource. If the

request is for a remote database object, then the PMM must block

the process and send a remote database object request {RDOR) to

46

the PMM in the node which contains the desired resource. Upon

receipt of an RDOR from another node, a PMM will determine if the

requesting process must remain blocked or if it may be granted

access to the desired resource. If access is granted, a remote

database object assignment (RDOA) is sent to the PMM in the node

in which the requesting process resides. Upon receipt of this

RDOA, the PMM will awaken the proper process and notify it of the

resource assignment. If the process must remain blocked, no

message is sent to the node in which the process resides. The

details of implementing this feature are not described, as they

are not relevant to the scope of this Thesis.

When a process reaches a commitment point, the PMM at its

node will release all the database resources that the process had

access to and notify the necessary processes that no more mes­

sages are forthcoming from the specified process. All local

resources can be immediately allocated to other processes in ac­

cordance with the rules for resource allocation, and messages

must be sent to all nodes which had resources allocated to the

process, informing their PMM's of the reaching of a commitment

point. Upon receipt of such a message, the PMM will

appropriately update its tables and assign the resources to other

processes in accordance with the rules for resource allocation.

VI.2 Deadlock Detection

When a PM~ determines that a resource at its node can not·

currently be allocated to a process that requested it, the PMM

47

creates an OAPL (ordered blocked process list) with a process

entry for the blocked process. It then expands the OBPL until 1)

a deadlock is detected, 2) it is ascertained that there is no

deadlock, or 3) the PMM does not have enough information to fur-

ther expand the OBPL. (Note that if a database object has been

requested, the ORPL is created in the node where the database

object resides, whereas if message text has been requested, the

ORPL is created in the node where the requesting process

resines.) The PMM starts expanding the newly created OBPL in

step 10 below. When a PMM receives an OBPL from another node, it

starts in step 1 below in an attempt to complete the expansion of

the ORPL. The reasoning behind each step is contained in the

next section, and these explanations should be read before one

attempts to verify the correctness of the algorithm. It should

be noted that within the algorithm, PX and RX are names of vari-

ables whose contents represent processes and resovrces, respec-

tively, even though they are sometimes used as though they were

process and resource names themselves.

1. Set RX to the value contained in the resource
identification portion of the OBPL. If RX represents a
resource which is local to the node expanding the OBPL,
then go to step 2, otherwise go to step 8.

2. Verify that the last process added to the OBPL is still
waiting for RX. If it isn't then discard the OBPL and
halt, otherwise go to step 3.

~. Let PX he the process controlling RX. (If there are J
shared readers of RX, then repeat this step once for
each reader.) If PX already has a process entry in the
OAPL, then there is a deadlock and the PMM must take the
appropriate action. If PX is not in the OBPL then ~o to
step 4.

48

4. If PX represents a process which is local to the node
expanding the OBPL, then go to step 5, otherwise go to
step 7.

5. If PX is active, there is no deadlock, so discard the
OBPL and halt. Otherwise go to step 6.

6. Append PX as a process entry in the OBPL and ~o to step
10.

7. Append PX as a process entry in the OBPL. Place RX into
the resource identification portion of the OBPL and send
the OBPL to the PM~ in the node in which PX resides.
Halt.

8. Verify that the last process added to the OBPL still has
access to RX. If it doesn't, discard the OBPL and halt.
Otherwise go to step 9.

9. If the last process added to the OBPL is active, there
is no deadlock, so discard the OBPL and halt. Otherwise
go to step 10.

10. Get the name of the resource for which the last process
added to the OBPL is waiting and call it RX. If RX
represents a resource which is local to the node
expanding the OBPL, go to step 3, otherwise go to step
11.

11. Place RX into the resource identification portion of the
OBPL and send the OBPL to the PMM in the node in which
RX resides. Halt.

VI.3 Explanation of Steps in the Deadlock Detection Algorithm

The following is a description of the reasons for including
I

each step in the deadlock detection algorithm described in the

previous section. Each numbered paragraph below corresponds to

the step with the same number in the previous section.

1. An OBPL will be sent to a node when it must be deter­
mined what process controls a given resource, or what
state (active or blocked) a given process is in. If the
resource that was named in the resource identification
portion of the OBPL is local to the node that just
received the OBPL, then in order to expand the OBPL the
PMM needs to know what process has access to that
resource and it goes to step 2, otherwise it goes to

49

step 8 in order to check the state of the last process
to be added to the OBPL.

2. It must he verified that the last process added to the
OBPL is still waiting for RX because it is possible that
while the OBPL was sent from the PMM in the node con­
taining the process, the PMM in the node containing RX
sent a message stating that the process has been granted
access to RX. If this process is no longer waiting for
RX, the state that was assumed when the OBPL was sent no
longer exists, and the OBPL can be discarded.

If RX represents a database object, then the last pro­
cess added to the OBPL is still waiting for RX if it is
still queued for access to the database object. If RX
represents a message in a message group, then RX is
qualified by the sequence number of the message within
the message group that is desired. (If the process has
already received N messages over the specified connec­
tion, then it is waiting for message number N+1 in the
message ~roup.) The process is still waiting for the
specified message only if the number of messages already
sent to it over the given connection is less than the
number that qualified the message group Dame.

3. If PX already has a process entry in the OBPL, then
there is a loop of processes each waiting for a resource
that is controlled by the next process in the loop, so a
deadlock has been detected. If PX does not have a pro­
cess entry in the OBPL, go to step ~ in order to expand
the OBPL further if PX is not active.

If RX is a database object which has J shared readers,
then a copy of the OBPL must be made for each of these
readers because the process that requested access to RX
will not be able to access RX if the process is in a
deadly embrace loop involving any one of the J readers.

~. If PX is local to the node which is expanding the OBPL,
then the PMM can immediately check the state of PX, so
it goes to step 5. If PX is not a local process, the
OBPL must he sent to the node in which PX resides, so
the PMM goes to step 7.

S. If PX is not currently blocked waiting for access to any
resources, there can be no deadlock currently involving
PX. If PX represents an operator, the OBPL must be
queued waiting for state information about the operator.
The PMM will then ask the operator to enter information
ahout his/her state. The acceptable operator responses
are 1) that he/she is waiting for a message over a given
operator connection, 2) that he/she is active, or 3) a

50

regular message over an operator connection. If the
operator se,nds a regular message, or states that he/she
is active, then Utere is no deadl·oc'k wnd all the OBPL 's
that are queued for st&te iltf"ormat'ion ·&bout' ttri s opera­
tor will be discarded. lf the opera-tor"sta'tes that
he/she is waiting ror a mes••&e, !th•11t 'th~ PMM can (by
the use or the g1¥en operator cort"tfection) detenni ne what
procutss can send· the ••ssege .~~ftltr ~ero,aior desires,
and the PMM can Uren tur.tur :expend :t'ht!' OBP'L. It may be
desirable to "t1"'8e ou:t" a non-'reSipOW&!ve operator, as
operator ·inaction can stall the a~~ and p'erpetuate an
undetected deadlock.

6. PX is blocked, so insert it as the last entry in the
OBPL and then go to step to. in order to r.urther· expand
the OBPL.

7. Insert PX as the last entry in the OBPL even though the
PMM does not know the stat&~ (activ>e or.- blocked}· of PX.
(This will be checked by the node that will receive the
OBPL.) Place RX ·tnto the'. re•ource: ·t~enttrlcat\bn·
portion of the OBPL to indicate that PX currently con­
trols RX, and the st•te of PX 1~· ·netAfed !:'nformation. If
RX represents a message within a message group, it is
qualified by the sequence' rrullfber ol"~"tbe-' message within
the message group that is desired. The PMM therefore
sends the OBPL for further expansion to the PMM in the
node which contains PX.

8. It must be verified that the last process added to the
OBPL still has access to RX because it is possible that
while the OBftcL wa.s sent rre11' the· PM ln· the- node con­
taining RX, the PMM in the node containing the process
sent a message stating· that' IX ttiae \luriut· released by the
process. If the process no longer has access to RX then
the state that was assutned: whn tflae=.OBPL:-.ae sent no
longer exists, and the OBPL can be discarded.

9. If the last process added to the OBPL is not currently
blocked waiting for accees· to any reaau..,.CH!~S, · there can
be no deadlock currently involving the process. If the
proeeasis blocked, the PMfll·soes to •tep·torbecause the
process already has been inserted as the last process
entry in the OBPL.

10. Step 10 can be reach•d from step 6 or step 9. In either
case, the last process added to the OBPL is local to the
node wbloh ta ••pandtltR the '01PL, so t•u~ PMM ·ean find
out what resource the process desires access to. Set RX
to the name of this reso..i,.ce.. Ir RX ta local to the
node that is currently expanding the OBPL, the PMM can
continue to expand the ORPL, so it goes to step 3,

51

otherwise it ~oes to step 11.

11. To further expand the OBPL, what process has access to
RX must he known, so the PMM sends the OBPL to the PHM
in the node in which RX resides. Place RX into the
resource identification portion of the OBPL to indicate
that the last process added to the OBPL is blocked
waiting for access to RX and what process controls RX is
needed information. In the case where RX represents a
message within a message group, it is qualified by the
sequence number of the message within the message group
that is desired. Send the OBPL for further expansion to
the node in which RX resides.

VI.~ Verification of the Algorithm

There are two parts in the verification of the correctness

of the decentralized algorithm for deadlock detection. The first

and most important part is to prove that all deadlocks get

detected. The second part is proving that a deadlock is not

"detected" when (except in a special case discussed later) one

does not exist.

Part 1

To prove that all deadlocks get detected, it will be

shown that once a deadlock state is reached, an OBPL will be

created that will be passed among nodes which will expand it

until the deadlock is detected. There are two assumptions

that are required for this proof: 1) All internodal mes-

sages eventually get received by the proper nodes (and

therefore no OBPL's are "lost" in the transmission between

nodes), and 2) while the OBPL is being expanded, none of the

processes involved in the deadlock are aborted (which would

break the deadlock before it is detected) or rolled back to

52

a previous state (which would imply the deadlock has been

detected by the expansion of another OBPL).

Let a deadlock consist of processes P1, P2,

with P1 waiting for a resource controlled hy P2,

... '

... '
PN,

and PN

waiting for a resource controlled by P1. (Process names are

unique within a node and they can be made network unique by

qualifyin~ them with their node names, so throughout this

proof, assume the Pi represent distinct processes.) When

each process, Pi, involved in the deadlock was denied access

to a resource controlled by another process in the deadlock,

an OBPL was created with the first process entry represent­

in~ Pi. One of these OBPL's must have been the last (in

time) to be created, thus the deadlock existed at that time.

(If two or more of these OBPL's were created simultaneously

and they were the last to be created for processes involved

in the deadlock, then any one in this "last group" may be

arbitrarily selected as the last to be created. The

important point is that the deadlock existed at the time the

ORPL was created, and all the relevant tables collectively

contain the information showing each process in the deadlock

waitin~ for a resource controlled by another process in the

deadlock.) For simplicity, assume that this last OBPL con­

tains P1 as its first process entry. Additionally, in the

ensuing discussion, a message from an operator to a

computerized process will not be treated as a special type

of resource because it is assumed that operators will state

53

what they are waiting for when asked to do so by a PMM.

After P1 has been inserted as the first process entry

in this "last" OAPL, the PMM which will begin the expansion

of the OAPL will he in step 10 of the algorithm. If P1 is

waiting for access to a resource local to a different node,

then the PMM executes steps 10 and 11, and another PHH

(after receipt of the OBPL) executes steps 1 and 2, then

~oes to step 3, otherwise the PMM executes step 10 and goes

to step 3. (Since there is a deadlock, the OBPL will not be

discarded.) Now, no matter what P1 is waiting for, it can

be assumed that a PMM is about to start step 3 and it can

(i.e. it has the information in its tables) determine what

process (in this case, P2) controls the resource P1 has re-

quested. There are two ways (depending on whether P2 is

local or global to the node in which the OBPL is currently

located) in which a process entry for P2 will be inserted

into the ORPL.

Case A: P2 is "local".
Steps 4, 5 and 6 are executed, then step 10 will be
executed. The PMM will then be ready to execute step 3
or it will execute step 11 and another PMM will execute
steps 1 and 2, and will be prepared to execute step 3.

Case B: P2 is "global".
Steps 4 and 7 are executed, then the PMM which then
receives the OBPL will execute steps 1, 8, 9 and 10.
It will then be ready to execute step 3 or it will ex­
ecute step 11 and another PMM will execute steps 1 and
?, and will be prepared to execute step 3.

This "last" OBPL now has process entries for P1 and P2,

and a PMM is about to execute step 3 to continue the

expansion of the OBPL. A PMM is now essentially in the same

position some PMM was in shortly after the OBPL was created.

The only difference is that now two processes have entries

in the OBPL, and RX is set to the resource for which P2 is

waiting, rather than the resource for which P1 is waiting.

By repeating the above procedure as many times as necessary,

the OBPL will be expanded to include process entries for

processes P1, P2, ... , PN. At this point, when step 3 is

executed, it will be determined that P1 controls the

resource PN has requested, and the deadlock will be

detected.

OED Part 1.

Part 2

To prove that every deadlock that gets "detected" ac­

tually is a deadlock, it must be shown that an OBPL will be

discarded whenever there is a change in the state that was

assumed when a process entry was made in that OBPL. (The

one exception, which is ignored in the ensuing discussion,

is the case where the assumed state changes due to the

aborting or rolling back of a process, rather than having

the state change due to a waiting process being awakened and

granted access to the resource for which it was waiting.)

This condition is sufficient because if a deadlock is

"detected" when expanding the OBPL containing (in order of

insertion) process entries for P1, P2, ... , PM, PN, and

55

there has been no change in the state that was assumed when

each process was entered into the OBPL, then P1 is still

waitin~ to access a resource controlled by P2, ... , PM is

still waiting to access a resource controlled by PN, and PN

is still waitin~ to access a resource controlled by PJ,

where PJ appears earlier in the OBPL. Thus a deadlock ac­

tually exists if one is "detected" and there has been no

change in the state that was assumed when the process en­

tries were inserted into the OBPL.

Assume that a PMM is expanding an OBPL with process

entries (in order of insertion) P1, P2, ... , PK, PL. If the

al~orithm is correct, then P1 is waiting for access to a

resource controlled by P2, ... ,and PK waiting for access to

a resource controlled by PL. Now assume that this state

does not hold. That is to say, for some Pi, Pj with adjac­

ent process entries in the OBPL, either Pi is not waiting

for access to the same resource (say RQ) for which it was

waiting when it was ascertained that Pi was blocked and that

Pi should have an entry in the OBPL, or Pj no longer con­

trols RO. It will be shown that whenever this situation

occurs, it will be detected and the OBPL will be discarded.

It can he assumed that Pi and Pj are PK and PL respec­

tively, because if the state has changed from what was as­

sumed when Pi was inserted into the OBPL, then it either

changed before a PMM checked to see what Pj was waiting for,

Pj was not blocked, or the state changed after there was a

56

similar state change involving Pj and the next process in

the list. (The latter claim can be made because if Pi was

waitin~ for access to RO which was controlled by Pj, and Pj

controlled RO and was blocked at the time that it was

decided to further expand the OBPL, the only way the assumed

state could change would be for Pj to incur a state change

and be awakened so that it could release RQ.)

In order to show that PK is still waiting for RO, and

that RO is still controlled by PL whenever it is decided

that another process should be added to the OBPL, two cases

must be considered. 1) PL, PK and RO are all located in the

same node, and 2) PL, PK and RO are located in two or three

different nodes in the network.

Case 1.

Due to the restriction that operators can only

communicate with processes, there are three possible

combinations of the types (process or operator) of PL

and PK. (The resource type of RQ is either unimportant

or uniquely determined by PK and PL.)

Case A: PK and PL are both processes.
Once PK has been inserted into the OBPL, and the
PMM in the node in which PK resides is expanding
the OBPL, the PMM determines that PK is waiting
for access to RQ and that PL controls RQ. It then
inserts PL into the OBPL if PL is blocked and
discards the OBPL if PL is active. Since the PMM
has exclusive use of the state tables in its node,
there is no way the assumed state will change un­
til after the OBPL is discarded, sent to another
node or queued waiting for state information about
an operator (in which case the state can not
change until after the operator states that he/she
is active or sends a message to a process, both of

57

which result in the OBPL being discarded).

Case A: PK is an operator and PL is a process.
PK is not inserted into the OBPL until the opera­
tor states that he/she is waiting for a message
over a given operator connection (RQ). The PMM in
the node in which PK resides then determines that
PL is the process that can send the desired mes­
sage. If PL is blocked, it is inserted into the
ORPL, otherwise the OBPL is discarded. Since the
PMM has exclusive control of the state tables in
its node, the assumed state can not change until
after the OBPL is discarded, sent to another node,
or queued waiting for state information about an
operator.

Case C: PK is a process and PL is an operator.

Case 2.

PL is not inserted into the OBPL until the opera­
tor states that he/she is waiting for a message
over a given operator connection. PK is still
waiting for a message from PL because the OBPL
would have been discarded if any message text had
been received from the operator since the OBPL was
queued waiting for state information about the
operator. (Note that it is possible that the de­
sired message may have been sent by the operator
before the OBPL was queued, but it has not been
given to PK because calls to the PMM are processed
in a first in, first out fashion. In this case
though, the OBPL will be discarded before any
state message from the operator is processed, be­
cause the desired message text. was sent before the
operator state message.) The OBPL will then ei­
ther be discarded or have another process entry
added to it, because an operator can only wait for
a message from a process located at the same node.

When~ver an OBPL is sent between nodes, it must be

verified that the state that was assumed when the OBPL

was sent is still valid. Operators do not cause any

OBPL's to be sent between nodes (because they only

communicate with processes at their own nodes), thus in

this discussion PK and PL are always processes. There

58

are four combinations of the resource type of RO and

the locations of PK, PL and RO.

Case A: RO is a database object located in the same
node as PK, but different from PL.
After it is ascertained that PK is blocked waiting
for access to RO, it is determined that PL con­
trols RQ. PL is then inserted into the OBPL
(after the entry for PK) and the OBPL is sent to
the PMM in the node in which PL resides. When the
PMM receives the OBPL, it first verifies that PL
still controls RO. If it doesn't, there has been
a change in the assumed state (PL has released
RO), and the OBPL is discarded. Note that the
OBPL is also discarded if it is determined that PL
is not blocked.

Case B: RQ is a database object located in the same
node as PL, but different from PK.
After it is ascertained that PK is blocked waiting
for access to RO, the OBPL is sent to the PMM in
the node in which RO and PL reside. Upon receipt
of the OBPL, this PMM verifies that PK is still
waiting for access to RO. If it isn't, there has
been a state change (PK was granted access to RQ),
and the OBPL is discarded. The OBPL is also
discarded if it is determined that PL (which con­
trols RQ) is not blocked.

Case C: RQ is a database object located in a node
which contains neither PK nor PL.
After it is ascertained that PK is blocked waiting
for access to RO, the OBPL is sent to the PMM in
the node in which RO resides. Upon receipt of the
OBPL, this PMM verifies that PK is still waiting
for access to RQ. If it isn't, there has been a
state change, and the.OBPL is discarded. If PK is
still waiting for access to RO, then the PMM in­
serts PL into the OBPL (since PL controls RO) and
sends the OBPL to the PMM in the node in which PL
resides. After the OBPL is received, the PMM then
checks that PL still controls RO. If it doesn't,
there has been a change in the assumed state, and
the OBPL is discarded. The OBPL is also discarded
if it is determined that PL is not blocked.

Case D: RQ represents message text and PK and PL are
located in different nodes.
After PK is inserted into the OBPL because the
process is waiting for message text in message
~roup RO, RO is qualified by a message number.

59

The OBPL is then sent to the node in which PL
resides. PL will only be inserted into the OBPL
if it is blocked and the specified message has not
been sent (which implies PK is still in the state
it was in when it was inserted into the ORPL),
otherwise the OBPL will be discarded.

It has been shown that whenever the relevant portions

of the overall network state differ from the state that was

assumed when process entries were inserted into the OBPL,

the situation is detected and the OBPL is discarded.

Therefore it is impossible to detect anything but deadlocks

since a deadlock is never "detected" unless a PMM wants to

insert a process into an OBPL when there is already a pro-

cess entry in the OBPL for that process. It has thus been

oroven that the decentralized algorithm only "detects"

deadlocks.

QED Part 2.

OEn necentralized Algorithm.

VI.5 Some Properties of the Algorithm

It should be noted that all references to processes in the

previous sections actually referred to process "commitment units"

(the period between commitment points), and the fact that

commitment units within a process are network unique allows a

deadlock to be detected at a node different from the one which

contains the process that was found to already have a process

entry in an ORPL. This situation can arise if the process under

discussion controls a remote database object, and the PMM at the

node in which the datahase object resides wants to insert the

60

process into the OBPL due to its controlling the above mentioned

database object. The OBPL need not be sent to the PMM in the

node in which the process resides to verify that the process

still controls the database object, because the process has not

reached a commitment point (by virtue of the fact it already has

an entry in the OBPL) and therefore has not released any database

objects.

All resource requests will be handled with minimal delay

because, for any request, the only nodes involved are those which

contain the associated process and resource. (No information is

needed from any other nodes to process the request.) The algo­

rithm will function properly regardless of the resource

allocation scheme in use, since the needed information about a

resource is what process (or processes) currently controls it,

not the order in which processes will be granted access to the

resource in the future. (The latter information is necessary

only for deadlock avoidance algorithms.)

While a PMM is expanding an OBPL, all other PMM's may be

processing resource requests and releases. A PMM need only see a

consistent state within its own node in order to expand an OBPL.

The restriction that a PMM can not process resource requests and

releases while it is expandin~ an ORPL can be removed if the

decentralized algorithm is modified slightly. In step 10 the

branch to step 3 would be eliminated (and therefore always go to

step 11 after step 10), and thP.n in step 11 a PMM may send an

OAPL to itself. The new restriction would be that no resource

61

requests or releases can be processed while a PMM is executing

steps 1 throu~h 11, althou~h resource requests and releases could

he proces~ed between the execution of step 11 and step 1.

The same deadlock can be detected more than once if pro­

cesses and resources located in two or more nodes are involved.

This situation will occur if two or more processes request

request resources at approximately the same time, resulting in

OAPL's bein~ created starting with different processes in the

same deadlock loop. It is important to note that no matter how

lonR it takes for OBPL's, remote resource requests, remote

resource assignments, message text in message groups, and noti­

fication of a remote process termination to travel between nodes,

the algorithm still functions as expected due to the verification

steps that are included and the fact that once a deadlock exists,

it will not be broken until after it is detected and recovery

action is initiated.

62

VII. ADT Model of the Decentralized Algorithm

A functional model of the decentralized algorithm described

in the previous chapter was designed and created using the

facilities of the Architectural Definition Technique (ADT). The

model was designed so that the algorithm could be easily tested.

Additionally, by designing the model at the same time that the

algorithm was being refined, several deficiencies of early ver­

sions of the algorithm were detected and corrected. (See section

VII.2 and [1) for information about ADT.)

The model was written in PL/I and runs on the Honeywell

~ultics timesharing system. It was coded for ease of use and

readability, and is not intended to suggest the most efficient

way of implementing the algorithm in a computer network. A pre­

requisite to the use of ADT is an ability to understand the con­

cept behind Data Structure Diagrams.

VII.1 Data Structure Diagrams

An information structure can be described by a Data Struc­

ture Diagram. A particular object in an information structure is

referred to as an "entity", and an entire group of similar enti­

ties is called an "entity-class". (They are characterized by a

prototype called an "entity-type".) The ~rouping that associates

one or more entities of the same entity-class with one entity of

a second entity-class (same or different type) in a subordinate

relationship is known as an "entity-set". In a Data Structure

niagram, a block is used to represent an entity-type (the

63

~ntity-type name is written inside the block). A "set-class" is

a collection of similar entity-sets. (They are characterized by

a prototyp·e called a "set-type".) An ar:row r·epresents a

set-type. It ttest~fl!ates (by pointif'l:g f.reftt) the entity-type that

"owns" the set-ty'f>~ .and desi~nates {by pointing to) the

entity-type that serves as the "membersn of the set.

There is a 1 to n r~lat1onsh1p between the owner and members

of an entity-set: n m.ay be zero, ol'le or mo·r-e. For each owner

there may be any number of members, t>ut f'Or ·eacn member, there is

only one owner l~ A~y set oeeurrence. A dash~d arrow is used to

reprf"sent a !5et ... ty~ where the member relationship may or may not

exist. This is called a "sometimefr member relationship. When

there cat'! h·e only ofle member in an ~ntity-set, a line (rather

than arrow) ls dr~wn between the cnmer efttity ... class and member

entity-class. A dashed line is us~d ·w:l!len there can bi! a sometime

one-to-one rel~t1o~ship.

A si tu~tlon can arise wher~ a s~t·•tTI>e C8'fll have more than

one type o.f entity l n the member role. bi this cas~ a multi head

arrow is used to reJ)resent the set-tY'f'>'e. Stmilat'ly, a multitail

arrow is u5ed t,o re~re.sent a set•type whff!re m~re t'han one type of

entity can assume the owner role (altho~h ••e'h m~mber has only

one owner).. A more detailed ex r>l ltt'U.tti<>n of 1'ata Structure

Oia~rams can he found in [2).

VII.~ Architectural Oefinition Technique

AnT is an approach to arriving at a complete, concise,

non-ambiguous functional specification of a software or hardware

system which is totally independent of packaging considerations.

To use AOT, one must describe the system state variables in terms

of occurrences of entity-types, attribute types and set-types,

and create a user interface as a set of machine processable

function definition algorithms.

An example of an entity-type is "node" in a computer net­

work. Each node in the network must have a name, which is an

attribute of the entity. The entity-type and its attributes must

be declared. In addition, all entity-sets which a node may

belong to as a member or owner must be declared, and the rela­

tionship ("member", "owner", or "recursive") must be stated. A

node is a member of the set of all nodes in a network, but it is

the owner of various resources and processes located at that

node. The manner in which entities and their attributes and set

relationships are represented in the machine is irrelevant to the

~oal of achieving a functional specification. Therefore the ADT

user is relieved of this burden.

A function definition algorithm is a body of code which

specifies what action should take place in response to a given

external stimulus. A function definition algorithm has several

responsibilities. 1) It must validate the input parameters, 2)

It must execute the logic of the function, 3) It must access the

system state tables and update them appropriately to reflect the

action taken, and 4) It must provide an external response repre­

senting the action (or lack thereof) that has taken place. A

65

function definition al~orithm usually includes a series of calls

to the ADT modellin~ subroutines.

One inte~ral part or ADT is a set of procedures which faci­

litate the modellin~ of the "system state". These procedures

provide the capability to create and maintain a network

structurerl database which holds the entities, attributes and re­

lationships used to model the system.

A functional model created using ADT can be exercised and

"validated" by the creation and execution of a sequence of

commands. (Calls to the various function definition algorithms.)

Any numher of commands can be executed so that the model can be

ohserved in order to determine if it acts in accordance with

expectations.

Facilities are furnished in ADi to save these sequences of

commands (scenarios) and to automatically execute ~he~. There

are also facilities so that the system state can be saved and

restored. Display facilities are provided which permit a de­

tailed examination of the system state without altering it.

Usin~ these raci11ties it is easy to construct experiments, alter

them and examine the results at any time.

Ani is a deterministic system, and the machine is always in

a stahle state dur1np, the period between calls to the various

function definition alp,orithms.

VII.~ ihe Deadlock Detection Model

The deadlock detection model which runs using ADT was de-

signed to be driven entirely by the user of the model. All the

nodes in the network must be created by the model user, as are

processes and database resources located at each node. In addi­

tion all operators at each node must be declared. Each node in

the network must have a unique name. Operator names and process

names appear together in the same name space and must be unique

within each node. They are qualified by the node name to make

them unique in the network. Database objects must also have

unique names within the set of database objects at a node.

Process wait situations may arise as a result of requests

for message text in a message group or over an operator connec­

tion, or requests for access to a database object, but operator

wait situations are not forced by the system because operators do

not request message text, they only take it as it comes over an

operator connection. All requests by processes for resources

must be entered by the model user. The model will process the

requests, and allocate the desired resources, if possible,

otherwise the requesting process will be blocked. When message

text is requested, the message group name (in the case of process

to process communication) or operator connection name (for oper­

ator to process communication) must be given. With the model,

before message text in a message group can be received by a

process, the message group must first be initiated by the process

which can send the messages, and then be accepted by the process

that will receive the messages in the message group. (The model

user specifies when this takes place.) Actual systems may allow

messa~e ~roups to be accepted by a process before another process

initiates it. An operator connection must be established (by the

model user) between an operator and a process at the same node

before a process can receive message text over the operator con­

nection. This model does not support the sending of messages

from a process to an operator over an operator connection because

typically messa~es from a process to an operator are not queued

for receipt by an operator, they are simply printed at the

operator's terminal without an explicit op~rator request.

In order to make the model easier to use, it was decided to

make message group names and operator eon-neetiol'l names unique

within the network.

In a computer network it is probable that message text may

be sent by either process involved in a connection through which

they are communicating. (This is a two-way connection.) The

model only allows the initiator of a message group to send mes­

sa~e text over the associated connection because a two-way con­

nection can be simulated using two one-way connections, with each

process involved being the initiator of one of the message

~roups. The sender and receiver of message text in a message

~roup are thus uniquely determined by the message group name,

therefore the model user need not type a process name when

causin~ action to be taken to simulate the sending or receiving

or messa~e text. (Similarly, the sender and receiver of message

text over an operator connection are uniquely determined because

the model only allows message text to ~o from the operator to the

68

associated process.)

Each node will need to maintain some information about the

other nodes in the network. (It needs to know about remote pro­

cesses that have requested access to at least one of its

resources, and it needs some information about remote resources

that have been requested by at least one of its processes.) The

model is designed to create a set of node tables (one table for

each node in the network) at each node in the network. Each node

will use its set of node tables to maintain the information it

needs about all the nodes in the network.

Control messages are used by the model to simulate the

transmission of most types of internodal messages. When a mes­

sage must be sent between nodes, the model will cause text to be

printed at the model user's terminal giving the model control

message number and stating the destination node and what the

message represents. At the time the model user would like the

destination node to receive the message, he/she must issue a

command to the model to receive the associated control message.

OBPL's, message text within message groups, and resource

allocation messages are all sent between nodes via control

messages. This mechanism was selected so that the effect of

internodal messages being delivered with varying delays could be

simulated. The only internodal message that the model allows to

be processed without user intervention is the one that would be

associated with the initiating of a message group. There is no

need to model the delay of a message for this because the node in

which the accepting process of the message group resides must be

aware of the initiation before any checks for deadlock involving

that messa~e group will be made.

The types of resource allocation messages that may pass be­

tween nodes are 1) requests for access to remote database

objects, 2) notification that a process has been granted access.

to a previously requested database object, and 3) notification

that a process has released a database object. If the model user

enters a process request for a remote database object, the model

will hlock the process and send a control message (representing a

remote resource request) to the node in which the desired

database object resides. (Since deadlock detection is being

modelled, and resource allocation need not be completely

simulated, the model first looks across nodes to verify that the

requested database object exists before it sends the control

message.) After this control message is received and the desired

database object can be allocated to the aforementioned process, a

control message stating that the process has been allocated the

desired resource is sent to the node in which the process

resides. When this new control message is received, the process

will be awakened. Although the release of database objects is

not necessary to test an al~orithm for deadlock detection, a

command to allow a process to release a single database object

was included in the model for debugging purposes. When a process

releases a remote database object, a control message is sent to

the node in which the database object resides. The model does

70

not simulate the automatic release of all resources controlled by

a process at the time the process reaches a commitment point.

This is a feature of process and resource management, and is not

relevant to the simulation of a deadlock detection algorithm.

In order to create deadlock situations, processes must be

able to gain control of some database objects. The model uses a

first-in-first-out allocation scheme for database objects. A

process will be blocked if 1) it requests any type of access to a

database object that has been exclusively assigned to another

process, 2) it requests any type of access to a database object

which already has other processes waiting for access to it, or 3)

it requests exclusive use of a database object and some process

currently has access to the desired database object.

In order to adhere to the belief that the model should be as

si~ple as possible, the model, in expanding an OBPL, does not use

the decentralized algorithm exactly as described in the previous

chapter. In step 10, the branch to step 3 was removed, thus step

11 is always executed after step 10. When step 11 sends an OBPL

to the node in which it is already located, further expansion

takes place immediately. Steps 1 and 2 then get executed

unnecessarily because RX is properly set in step 10, and the

state tables have not been changed during the expansion of the

OBPL so the last process to be inserted into the OBPL is still

waiting for RX. This implementation was chosen to simplify the

coding of the function definition algorithm used to expand

OBPL's.

71

Appendix I contains a Data Structure Diagram for the

deadlock detection model, plus a description of the entities and

relationships shown in the Diagram. Appendix II contains a brief

description of all the user visible functions in the aodel, fol­

lowed by the PL/I code of the function definition algorithms

which define the model.

VII.4 Test Cases run on the Model

Using the model, several deadlock and near deadlock

situations were entered to demonstrate various features of the

deadlock detection algorithm. A feature of the ADT system allows

a user to save a series of commands in a file, and then type

"scenario <file name>" to have the cC>ftlmands executed in order.

In each of the cases given, after the system was reinitialized,

but before the commands specific to each example were executed,

the commands in file "demo0" were executed. The files, along

with the output that resulted from the commands in the files,

appear in Appendix III. The scenarios are well annotated, and it

should be noted that commands to the system appear flush with the

margin, whereas output from the Deadlock Detection Model is

indented.

The deadlocks created range from one involving two processes

and two resources located in a single node, to some involving

more than five processes or operators and more than four

resources located throughout a three node network. By creating

the same deadlock, but altering the order in which processes get

72

blocked and the order in which internodal messages are allowed to

arrive, it is shown that the number of times the same deadlock is

detected depends on how close (in time) some processes in the

deadlock get blocked, and on the locations of the various pro­

cesses and nodes. (The model works properly regardless of the

"simultaneous" processing of commands at various nodes.) Appen­

dix III also includes state diagrams for the test cases which

appear in that Appendix. For the cases where a deadlock is cre­

ated, only the final state is drawn (a key to understanding the

diagrams is included), whereas for the cases where there is no

deadlock, an important interim state is included in addition to

the final state.

The restriction stated in Chapter 4 that a process can not

Rain access to a database object, release it and request it again

before reaching a commitment point, was included to rule out the

situation that is shown in "demo_bug". (The scenario was

included for demonstration purposes only.)

73

VIII. Suggestions for Further Research

After a deadlock is detected, at least one involved process

must be forced to rescind its request for a resource that is

controlled by another process involved in the deadlock. Some of

the problel'ls involved in breaking a de.ad lock (in particular when

the dearllock is detected using the decentralized algorithm

presented in Chapter VI) are discussed below, es are some issues

that may lead to modifications in the schemes presented in

Chapters V and VI.

VIII.1 The Rollback/Retry Problem

In order to break a deadlock situation, at least one process

involved in the deadlock must be selected and be forced to

rollback (backup) to a state prior to the time at which it re­

quested access to the resource for which it was waiting when the

deadlock was detected. If the algorithm presented in Chapter VI

is beinr, used to detect deadlocks, then (due to the restriction

that a process cannot release a database object when it is be­

tween commitment points) the process selected for rollback must

he returned to its most recent commitment point. In rolling back

the process, the external effects created since the last process

commitment point must be cancelled.

To accomplish this rollback, it is necessary to undo all

database object updates that the process performed within the

scope of its current commitment unit (the period since its most

recent commitment point), and then release all the database ob-

74

jects that were assigned to the process. In addition, all items

of message text that were sent by the process in this commitment

unit must be taken back, and all items of message ~ext that were

received by the process in this commitment un~t must be requeued

over the proper connections so th~t they may again be properly

received after the process resumes execution. When taking an

item of message text bac~, if it had already been received by the
• ·.;··,, < ., • - • -

destination process, this destination process must,also be rolled

back to its most recent comm.i.tment point.

Research needs to be perfor.m~d to determine ~n efficient
\ .-

method for rolling back a process. It is possible that some
- - ··~ ,- ~ .·

constraints may have to be placed upon comft!qnJ~a.ting processes in

order to simplify the rollback pro.bl~m and le~.s,e,n the amount of
I

information about a process that must be retained between ... - - ·. . . '(~ ;. ·• -~~ - \. ' _,.

com"'i tment points. Some papers haye been p,ubli:~hed that deal

with the problem of rolling back a data~,se to a.pr~vi~u~ ~tate.
·:;

(See [4] for one example.)

Use of the deadlock detection algorithm described in Chapter

VI can result in the same deadlock being detected more tha.n. once. . ,. . _, -'· , : .

It therefore may be useful to d.evelop a d,.terml,n;lstic al.gorithm

for deciding which process should be rolled bac~, sp t~at addi-.,

tional processes are not rolled back unnecessarily. Note that if
,_ _ , . , ~ ,

OBPL's are created immediately after a process 1ets blocked, then

every deadlock will be detected with_ an OBPL tha~ cqntains only

the involved processes. Thus even thousti.'1.Proc~ss not involved

in a particular deadlock may be waiting for access to a resource

75

which has been assigned to a process in the deadlock, no action

need b~ taken when the deadlock is detected using an OBPL which

contains mor·e than tne involved processes. One possibility is to

impos·e an arbl trary ·orderin·g on t'he node·s i:fl the network, and

always rollh·ack '8 p;t-oc:ess in t·he lowest numbe:red node that is

involved in a giv:en d·e.adlock. This method ~:s unfair in the sense

that proce·sses in t'he hi·p;her ·num~~d nt1-de:s will rarely be forced

to rollback to a previous state. 'Perhaps a fairer method is to

attach a cost fa·ctor to each .proe'ess -ent1'y in an OBPL. This cost

factor wi 11 repres:e-nt th·e cost ('for the .asso'Ciated process) of

computation to d at>e :11'1 that ·Pf"<>cess C'Olritn-1t111etlt 'tm it. The process

with th·e lowest cos·t factor will be rolled back with the hope

that this minimize·s the overall n~t11ork cost of breaking the

deadloc.k. It is also possible that when the same deadlock is

detected more than once, it may ~ ~·ape·r (from the over al 1

network cost vi>e>Wpoi-nt) to rollb·acf.< afl extt"a process

occasionally, t·han to add the extre overhead that is needed for

the methods mentioned above. This is '8 ·t·opiie which needs to be

studied further.

Anothe,r related topic which can be investigated involves

relaxin~ some of the restrictions dealing with the release of

database objects so that a process can he rolled back to a state

somewhere between the previous commitment point and the deadlock

state. This may involve slight modifications to the algorithm

described in Chapter VI, but may be useful because less code will

have to be reexecut€d after rollback. (It may be particularly

76

worthwhile when a process is executing a section of code where it

is sequentially requesting access to several database objects

before readinr- or updating any of them. Thus a partial, and

perhaps sufficient rollback could be accomplished by the release

of some of the database objects.)

VIII.2 Optimization and Expansion of the Decentralized Algorithm

If OBPL's are created after a process has been blocked for

'X' units of time (with •x• greater than 0), then it may he pos­

sible to occasionally eliminate the need to create an OBPL after

a given process has been blocked for 'X' units of time. When a

process is inserted into an OBPL before it has been blocked for

'X' units of time, the need to create an OBPL with this process

as the first entry is eliminated. (Additionally, the process may

be ~ranted access to the desired resource before 'X' units of

time have elapsed, also eliminating the need to create an OBPL.)

This type of implementation would affect the scheme used to break

deadlocks, as there would no longer be the guarantee that each

deadlock would be detected with an OBPL that only contains pro­

cess entries for the involved processes.

A restriction presented in Chapter IV prevents a process

from requesting shared access to a database object and then

requesting exclusive use of the same database object. It may be

possible to allow this situation will little modification to the

decentralized algorithm.

The algorithm presented in Chapter VI requires that all

77

resources be uniquely identifiable. It may be desirable in some

applications to allow processes to wait for any one of N

identical and interehen~eahle resources. Inclusion of this

property would necessitate a chan~e tn the use and expansion of

OAPL's. Preliminary study shows that it would be necessary to

placP control of the expansion of an OAPL with one node (which

~ay be different for each OAPL), since notification would be re­

quired after it is ascertained that a loop exists in an OBPL or

that an active process has been encountered. This notification

is needed because there is a deadlock involving N identical

resources only if every process that controls one of these

resources is involved in a loop in an OAPL. (This is in contrast

to the situation where there are N readers of a given database

object and a deadlock exists if any one of these readers is

involved in a loop in an ORPL., Rather than passing an OBPL from

node to node, the "controlling" node may request other nodes to

expand a section of the OAPL and return it to the "controlling"

node. Further study is required to determine exactly how the

decentralized al~orithm can be modified to include the above

mentioned feature.

In addition, it may be worthwhile to study the possibilities

of allowin~ human processes to wait for events external to the

computer system (i.e. a phone call or a message from a fellow

worker, rather than only wait for a message from a given process)

and/or the possibilities of allowing a process to wait for more

than one resource at a time.

78

VIII.3 Types and Probability of Deadlock

In order to get a valid estimation of the cost of using the

deadlock detection algorithm presented in Chapter VI, it is nec­

essary to get estimations as to how many processes in how many

different nodes are typically involved in a deadlock, and how

frequently deadlock can be expected to occur. gome research has

been performed dealing with the probability of deadlock in a

computer system (see (6]), but to this author's knowledge, no

work has been performed dealing with the types (i.e. how many

processes in how many different nodes) of deadlock that can be

expected in a computer network.

VIII.~ Refinement of the Centralized Algorithm

The scheme presented in Chapter V was not studied

extensively. It is possible that it can be refined to a point

where little, if any, unnecessary processing takes place in order

to determine if a deadlock exists. Due to reliability factors

and communications delays, it is not recommended that a

centralized scheme be used exclusively in a network. However, a

hybrid model of the centralized and decentralized algorithms may

prove to be more cost effective than the decentralized algorithm

alone. This hybrid model could possibly be constructed by using

the centralized scheme for small groups of nodes located within a

specified distance of each other, and then using the

decentralized scheme between the control nodes for each of the

groups using the centralized scheme.

79

IX. Conclusion$

The schemes preaented in Chapters 1'1' anft III were designed

to be used to help detect process d•dl'~ka:· in & computer network

where th-e onl~ •l10tf~1e w:a1. t CHbhd-ltton, ·1sLlf'O'f": th~ availability

or database resctireee.· ·Many' ~yst.-.·· otrly' '*'110. this type of

process wait, so th'ef'e is a need to,. al«O-rithM ·which solve the

prohlefns -that· the 11ctt<em~s of· 'Ch'ep-t.,..• I:I:'·atms:l(l attack.

However, some alterations must be made to the scheme of Chandra,

Howe and Klll"P antf ttr th• dece:ntral i'tett: aotiMe or Mahmoud and

Riordon beft'H·• they C1tft b~ uaed to ib-lve· \h4t:" 'f>rObtefils they

address·. It.· sftlls.'; tb9t t,he._,, t-tro, •••m•il, , wtt•n ,Modi f1ed, would

result in essentially the same algorithm. This new algorithm

would require each node's resource t•bles to be sent-to one node

in the network, which will then proeess all the outstanding

requests ror access to database objects. · <In the case of Mahmoud

and Riordon's scheme. perhaps each node would •till examine all

rP.quests.) The major difference frQm t.he original schemes is

that no resource allocations would be-perf'or111•d without examining

the entire network state. (i.e. reqv•ata fQr access by a process

to l'ocal resources must still wait t•r tnfortnati·on from other

nod,es) With or without ntodifioationa, th• t.wo schemes are

inefficient in that they require large tabl•,s (when the databas-e

is looked at the r•aord level) to be passed bew:e-e:n the nodes.

Additionally, each node mu.st be capaole of processing requests

which require the presence of every n-od•'• tables in that node.

This is an undesirable constraint, because it requires

80

minicomputers which serve as nodes within the network to have the

capacity to store (in main memory or secondary storage) the

entire network state at one time. Although only minor modifica­

tions are required to the schemes so that they will work, they

may require some major modifications before they can be used in a

general scheme for detecting deadlock in all types (i.e. any size

computers and any number of nodes) of computer networks.

The two "centralized" schemes presented in Chapters III and

V can both result in message bottlenecks at the control node, and

if the control node fails, both result in a significant delay

while a new control node is established. Additionally, if the

network is geographically spread out, there can be an undesirable

delay in some cases when a process requests access to a local

database object. It is recommended that neither scheme be used

exclusively in a network which covers a large (geographically)

area or consists of a large number of nodes.

The decentralized algorithm presented in Chapter VI requires

each node to only maintain information relating to its processes

and resources. Thus the amount of storage required at each node

to support the algorithm is proportional to the total size of the

system at that node. Additionally, there is little, if any,

delay in granting a process access to an available resource.

The size of messages (OBPL's) passed between the nodes is

directly proportional to the number of processes involved in a

chain, where each process is waiting for a resource controlled by

another process in the chain. It is felt that these chains (and

A1

therefore ORPL's) each involve only a rew processes, and by

delaying the creation of OBPL's until after a process has been

blocked for 'X' units or time, the number or CBPL's that must be

passed between node• wtll be 11t.ntmal. It should be noted that

the decentralized al~orithm preaented in Chapter VI will work

re~ardless or whether or not proce•••$ are allowed to wait for

messa~es whi~h ll!ust be sent from other proc••N• within the net­

work.

With the Of)timi~ation t'eature diSCt.UUSed earlier, the algo­

rithm presented in Chapter Vl is efficient and can be use

rep;ardless of the •lie and comp0sitton of a oo.mputer network.

82

References

1. Bachman, Charles W.; Rouvard, Jaques; and Reeves, Raymond
J.D. "Architecture Definition Technique: It's Objectives,
Theory, Process Facilities and Practice", Internal Memoran­
dum, Honeywell Information Systems, Billerica, Mass., No­
vember 26, 1975. (An earlier version appeared in the
Proceedings of the 1972 ACM SIGFIDET Workshop, November
1972.)

?. Bachman, Charles W. "Data Structure Diagrams", Data Base, A
Quarterly of SIGBDP, Vol. 1, No. 2, Summer 1969, pp. 4-10.

3. Chandra, A.N.: Howe, W.G.: and Karp, D.P. "Communication
Protocol for Deadlock Detection in Computer Networks", IBM
Technical Disclosure Bulletin, Vol. 16, No. 10, March 19714,
pp. 3471-~li81.

4. Chandy, K. Many: Browne, James C.; Dissly, Charles W.; and
Uhrig, Werner R. "Analytic Models for Rollback and Recovery
in Data Aase Systems", IEEE Transactions on Software
Enp;ineering, Vol. SE-1, No. 1, March 1975, pp. 100-110.

5. Coffman, E.G.: Elphick, M.J.; and Shoshani, A. "System
Deadlocks", Computing Surveys, Vol. 3, No. 2, June 1971, pp.
67-78.

6. Ellis, Clarence A. "Probabilistic Models of Computer
Deadlock", Report ICU-CS-041-74, University of Colorado,
April 1974.

7. Holt, Richard C. "Some Deadlock Properties of Computer
Systems", Computing Surveys, Vol. 4, No. 3, September 1972,
pp. 17C)-196.

A. Mahmoud, Samy; and Riordon, J.S. "Protocol Considerations
for Software Controlled Access Methods in Distributed Data
Bases", Proceedings of the International Symposium on
Computer Performance Modeling, Measurement and Evaluation,
Harvard University, Cambridge, Mass., March 29-31, 1976, pp.
241-264.

Q. Murphy, J.E. "Resource Allocation with System Interlock
Detection in a Multitask System", Fall Joint Computer
Conference Proceedings, Vol. 33, 1968, pp. 1169- 1176.

1n. Trinchieri, Mario. "On Managing Interference Caused by
Oatabase Sharing", Alta Frequenza, Vol. XLIV, No. 11, 1975,
pp. 641-650.

83

System

Node

(lnit) Node r:========::.1 Tables (Accept)

Appendix I

i---~~-----..... resource

operator
connection

request

re.source
grant

reaource
release

message
tezt

OBPL
Paos ,... -

I

Operator - - - - - _J

message
group

process/
(Send process

COJl!llitment
(Receive) unit_ ____

\

I
J

....... ____ _ Databaee
Object

Database
'-~~~~___.;wObject

Shared
Aasigmaent

Data StPUcture Diagram for the ADT Dea~loek Detection Model

84

OBPL
Process
Bntl"J

Appendix I Entity Descriptions

Thia section describes the entities which are uaed in tb• AM' Deadlock
Detection Model. Each entity is described in baa1oall.y the aaae .. nner. The
format used is: · ·

<ENTITY NAME>
<text •••••.•••••)
entity attributes:

<attribute name>
<text ••••.•••••)

entity owner roles: ·
<name or set owned by entity>

<text•••..)
entity ... ber rolee:

<n ... or set where entity ia a member>

The sets are naaed in the following way:

ovner~>••ber_n..e

Both owner_n_ and .-er_n- are the names or entities. A quau.ner is

ueed to f1ettngulab between two •et• vJtiott . .,. .. the . .._.. ,eftttt1a· aa owner and
- ' ""\;,' ' -

••ber:
owner_name->me•ber_n ... (qualifier)

Ir there are alternate own.,.. 4:>r •lttpl• •mbere, t•·notation used ia:

ovner_n-/o,mer_naM/ •.• ->••l>er~/!19•e.r_p.-l.~ ~··· Vb~ .attribute
' , - '. .i). • ' ' .

n-• are used, tlley oorre•~ eXJotl7 to th¥'~ (whlob' lmtlad• .. a.bbrevia-. . ·, -·. ' ' " - •' ~ '•' . . ; '

tiona ror tbe entities they represent) that are used. in tbe PL/I code ot the

Model.

DATABA81_0BJICT
Thi•' ,....,..ta u ob.JMt y1th1n the ut•a• Wb10h 1a au. bjeot to. exclus. ive
(read/write) or shareable (read only) &009U. Oontl"Ol. u· e O.b ftO. t ... , ~1 be Ot
various lnela or ar.ularitJ (tile, PJD reoord_.. or,lt · o -~o~. · The
only r~uiNMnt 1• that tbe entire o~::t•HtMiitW''1ir · y·i.n i"egard
to aaatgment to a prooeaa and aubaeque~ rel"~~;t _. , ...

entitJ attributes:
dbO.n ..

Tbe unique naae tor the database object at tbe node in which it
reaidea. ·

entitJ owner rolee: · ·
databaae_ob~ot->databaae_objeot_aharecL.aaa~nt

t~!. r~~ ~..... . .. , .~iinB~. "'Pt. ' .. n11~~· .· o ,.b.~._,tatb•!S9. o)>~cj~ tderintng
nv vr 'OPcifiijpa . . .· v 1'1RJ da ·~·-· ""' eo on a read «rid)' bNla. ·. · · · · ·' # ·.· · · ·.. • · • ·· .,'°". ··

databaae_ob~ot->J)i"Oede . .
Tbe set or processes waiting on the ..-a1lability or the database ob-
ject. . .

(see node_table/dbo/mesaage_group/operator_connection->procesa)

85

Appendix I

entity member roles:
node_table->database_object

process->database_object

Entity Descriptions

DATABASE_OBJECT_SHARED_ASSIGNMENT
The mechanism tor recording the shared assignment of a database object to a
process for read only pur~oses.

entity_attributes: (none)

entity owner roles: (none)

entity member rolee:
database_object->database_object_shared_aesignment

process->database_object_shared_assignment

MESSAGE_GROUP
The string or text elements which are sent from one process to another over
a specified connection.

entity attributes:
message.name

The network unique name for the message group.

message.number_qd
The number or messages in the message group that have been received
by the acee1>tot- or the message groua>.f>ha• the number or ••sages that
are currently queued at the destlftatlon end and have not yet been
received.

message.number_rcvd
The number or messages in the message group that have been received
(read) by the aoaeptor or the me__. .group ..

message.number_sent
The nt.111ber of messages in the message group that have been sent
(regardlee~ of Whether or not they 6ave currently reaahed the desti­
nation node) by the initiator of the aeaaage group.

entity owner roles:
message_grour>process

The set o processes waiting for text in the message group. The na­
ture or exclu~ive assignment of a mesa~ group to a process
preQludes more than one process to actt.W.lly be waiti.rUt tor text.

(see node_table/dbo/message_grou,/operator_conneotlon->process)

entity member roles:
node_table->meesage_group(accept)

node_table->message_group(init)

process->message_group(receive)

process->mess&ge_group(send)

syetem->meesage_group

MESSAGE_TEXT
This represents one message within a message group when the initiator and
acceptor are located in different nodes. No actual text need be
transmitted, beoauee for the purposes of deadlock deteotion, the content or
the messages is unimportant, and it is only neceaaary to know how many
messages are sent and received.

86

Appendix I Entity Descriptions

entity attributes:
msg.mg_,name

The message group name to which the "simulated message" belongs.

entity owner roles: (none)

entity member roles:
system->message_text

NODE
A processor in the network which includes a Process Management Module for
the purposes of resource allocation and deadlock detection.

entity attributes:
node.name

The network unique name for the node.

entity owner roles:
node->node_table

The set of tables used by a node to maintain all needed information
about the nodes in the network.

entity member roles:
system->node

NODE_ TABLE
A table used to maintain needed information about operators, processes and
resources located at a given node.

entity attributes:
nod~Ltable.name

Tne name of the node about which this table will maintain informa­
tion.

entity owner roles:
node_table->database_object

The set of database objects located in the node "referenced" by the.
node table, and for which the node in which the node table resides
needs information.

node table->message_group(accept)
Tlie set of message groups that have been initiated with the accepting
process declared to be located in the node which is "referenced" by
the node table, and located therein. (If a node table does not
"reference" the node in which it is located, then this set is empty
for that node table.)

node_table->message_group(init)
The set or message groups that have been initiated by processes lo­
cated in the node which is "referenced" by the node table, and lo­
cated therein. (If a node table does not "reference• the node in
which it is located, then this set is empty for that node table.)

node_table->operator
The set of operators declared to exist at the node "referenced" by
the node table 1 and for whlch the node in which the node table re­
sides needs inrormation. {A node only needs to know about the oper­
ators at its own node! therefore if a node table noes not •reference•
the node in which it s located, this set is empty for that node
table.)

nod~rtable->process
Tne set or processes located in the node "referenced" by the node
table, and for which the node in which the node table resides needs
information.

87

Appendix I Entity Descriptions

node table/dbo/message_group/operator_connection->prooess
Tne set of processes in a particular state. If the owner is a
node_table which "references" the node in which it ii located, then
the process is in the ready or running state. It the owner is a
database object, the the process is waiting tor acoeas to that
database obJeat. If the owner ia a ,. 1roup or operator con­
nection, then the process is waiting tor ext in that message group
or over that operator connection.

entity member roles:
node->node_node_table

OBPL
An ordered blocked process list used to detect deadlock.

entity attributes:
obpl.res_name

The name or the resource for which the most recently inserted process
into the OBPL is waiting.

obpl.res_node name
The name o? the node in which the above mentioned resource resides.

obpl.res_ty~
The type (database object, messie in a message group, or mes.age
over an operator connection) of he above mentioned resource.

obpl.msg_numb
If the above mentioned resource is a message in a message group, then
this attribute contains the number or the message (within the message
group) that ia being waitied tor.

entity owner roles:
OBPL->OBPL_process_entry

The set of processes and operators that have been inserted into the
OBPL.

entity member roles:
OBPL_pass ... >OBPL

operator->OBPL

OBPL_PASS
This is used to pass an OBPL from one node to another, where it can be
further expanded.

entity attributes:
obpl_pass.des node_name

The name of the node to which the OBPL is being sent for further
expansion.

entity owner roles:
OBPLl>ass->OBPL

TKls is a one-to-one relationship with the member being the OBPL
that is being passed from one node to another.

entity member roles:
system->OBP~ass

OBPL_PROCESS_ENTRY
This represents a ppocess that has been inserted into an OBPL.

entity attributes:
pro~'t:"entry.node_name

Tne name of the node in which the process that has been entered into
the OBPL resides.

88

Appendix I Entity Descriptions

pr~entry.prooes2'.Jl ...
Tli• na• ot the prooesa that haa been entered into·tn OBPL.

entity owner roles: (none)

entity -•ber roles:
· OBPL->OBP~oe.._entry

OPERATOR
This entity represents a peraon that baa been deol~red as an operator at a
given·node.

entity attributes
operator.n-

The unique na• tor the operator in the node at whioh he/ah• is lo­
cated.

entity owner roles:
operator~>OBPL .

Tbe Mt ot OBPL,.a ''•t require atate latorwation about the operator
betore they oan be turther expanded.

operator->oMPator ..;..oonnenion · · ·
Tbe aet ot operator oonneotiona over vbtcb -'tbe o,.r-ator uy
oommunioate vitb prooeaeea.

entity ... ber roles:
noae_table->operator

OPIRATOR._COlllCTIOI
An entity via vbiob •saagea are sent trom an operator to a prooeaa.

entity attributu:
op oon.n-

"""The network unique name tor the operator connection

OP-fe·:=-:1 llieaaagea that have been sent bI the operator bUt have
not yet been received by the prooeaa OYer th 11.op•rat.or connection.

entity OllJ!er rolaa:
operator_oonneotion->prooeaa

The set ot ~ooe••• vai ting tor tex. t over the ..,.r,ator oonneetion. The-...,., wiun. ••at• ·11 •.or .a .,_.tior &m•otion :to a
prooeaa preoludea more than one process to aotual'lp:i• R1tiing tor
text.

(aee node_table/dbo/meaaage_group/operator_....otion-~}!!OHU)

entitJ ... ber roles:
operator->operator_oonneotion

prooeaa->operator_oonneotion

syat >operator_oonneotion

PROCESS (PROCESS CClllITllllT UNIT)
Thia ".....t

1
a a _.01111 wbiob ia exeoutill& w1tb1n a -PNGen ecmdtllent

unit {the period bet.,.. &>rOQe•• oomaitaent DOillb-) , ~· arre mai.que,
as are prooeaa o~tllent units, therefore the model treats them aa one
entity. ·· ·

entity attributes:
prooeaa.acoeaa_type

It the prooeaa ia waiting tor aoceaa to a databaae object, thia at­
tribute denotes tbe tJPe C •abared" or •uolui:ve•) or ace.as desired.

89

Appendix I Entity Descriptions

proeeas.nHe
The unique n ... of tbe prooe•• withitl t~• DOClt in wbtoh it resides.

entity ovoer ro1 .. 1
prooeaa~>debeta~ject

Tb• ..i or• · obJ~• curnnlr •-t=Y•lr . .,..tgec:t t.o the
y~oeaa tor r . write· pw-eo•:•· · :tr a di ~ •. ~~J•<>t. ia not

aerttcl t.e , ' Uil i • .
dat•~. ucjeot .. >databa~9bJ•"--~ •t 1• ..,t,, then
it ia aYailMl• ter e•elu1•• ... ~l. -

prT.-;~r-n"flCJ:!~~~-t •tit a r~•ntlnl
dattbeM t>bJeot• aNi&i94~ • a 1111,....lf reacS onlr,> baaia.

prooea ~a--.-....aroup(rttee1ve)
Tb• •• et :-~ niob '"*' _, the process.
(the PJ"OOft• ._ .._1ft la MllMe _. groupe.J

procea >••Mle....D'OUP(Hftd) ·
The. "· .. t. or,-OUN vbtoh. ••• ia1~1at.td . .,, tbe proo.aa.
(!be ,.._... -:.-.·•••••• te ·••••"••••·__.,.,,)·

... - ' : ~ -~'.\': • - •• ' ;. ' c

prooe.,...>~W. oonneotion
The .. , or -... ooaneetiona Mlle,. - receive '°". .··

entity,.... rolea:
noae_tat.le->proce ..

nocte_ta-1•14bo/....._._group/operator_CH.lllfte0t1on.>proo•••
RESOURCE_GUR · . . .

The intemodal Haaqe 1ranting a Prooe.ti aooe•• to a databa" object lo-
cated at a ditfereet nod•. ·
entity attribute•t

res_grant • prOQ...JUllle
Th•.., or tlte Pl"OO••• tqt 1• b4tlnl at••• aeoe"te •at•• ob-jeat.. . . : " .

rea_grant.prOQJodde _ _..
The ot tlw nOde in which tlse °"• -ti~M?fM08A reeiclee.

~:-:/'= ctaUb&ae ob~ • .- '*9,. -~,......., pr'Ooeaa is
gain.ta..,... to. · · .· .·::

~:-:fl~": in wbioh the ""9• ... t.tonttd da'u-. .. object
resides. ··'

entity owner roles: (none)

entity .. •ber roles:
syet >reeouroe_grant

RESOURCE_RILBASI ·
The int.ernoclal ._... atat.ing that a c•n .. ._ ·•~•ct llaa been .-...
leased ·by a eeettted pNana. -· - · · ·

entity attributes:
res rel .deet_dbo..n.-

1fhe n- ot the database object beift& Nleued.
res rel. deat.Jtodtt...n-. · ·

the a ... ot the node in which t~ Nl.....S atabue objeot reaides.

90

Appendix I Entity Descriptions

res_rel.rel._pnode_name
The name ot the node in which the process releasing the database ob­
ject resides.

res rel.rel,_proc_name
'The name or the process releasing the database objeot.

entity owner roles: (none)

entity member roles:
system->resource_release

RESOURCE_REQUEST
The internodal message in which a process requests access to a database
object located at a different node.

entity attributes:
res req.acoeas_type

'fhe type ot access ("shared" or "exclusive") that has been requested.

res req.deat_dbo name
'The na11e ot tlie database object to which access has been requested.

res,.req.deat_node_name
Jne name of the node in which the desired database object resides.

res..,req.req_Jlode~name
Jhe name ot toe node in which the requesting process resides.

res req.req_proc_name
'fhe naae ot the process requesting access to the above mentioned
database object.

entity owner roles: (none)

entity member roles:
systea->resource_request

SYSTEJ4
The COllputer network.

entity attributes:
system.last_cont_msg

The number ot internodal control messages that have been sent in the
network.

entity owner roles:
system->message_group

The set ot message groups that have been initiated throughout the
network.

system->message_text/OBPL/pass/resource_grant/resource_release/
resource_request

The set of control messages that have been sent, but have not yet
been received by the destination node. The type of control message
represented is uniquely determined by the entity type of the member.

system->node
The set or nodes in the network.

system->operator_connection
The set or operator connections that have been declared within the
network.

entity member roles: (none)

91

Appendix II

The ADT Deadlock Oeteotion Mod•l OOUWt.9 ot ann Pt.II pr90edurea, each

ot which coet•ia• mlU,U ~.. A 4•,.rtt*W. it ile ~ Detection

Model ueer •1•U>1- tunct.to. "8iu Ol'1 U. ..n ,.... •. %NJ.u4ed ta the d~

.cr1pt1on .of' a r.ottoa u ua.. aw of* ••••11.,...ta.nlob ~t tanction

appears. The,. PVJ prootclWN toll.Oii ta.. ,...,_ -..rt.pt.tone, and

these procedure• ve toll.owed bJ tta. wo ftJJ S.Olude tu. ~··are ued by
·~ ,

the varioua prooedwea. PU.e DOM_wn....J"OVt~ oo-W1u dNlaratlQn• or

Deadlock Det.crt_... Model twaetiou "'11.etl ... oali..d a., ~ tunotione within

the Model, ucl tile AD~ttvee oontdu deolMw.tt.oN ot the Jl>T aystem
f'\lllctJ.ons.

The tollov:tng i• .u lada to tu PWI ~ _,, include tiles.

Appendix II User Visible Functions

USER VISIBLE FUNCTIONS
ADT Deadlock Detection Mechanism

acceptmg(p.Jlg_name, p_acoept_node_name, p"lf'accept_proc_name)
Declares process "P. acoept_proc_name locatea in node

"p_accept_node_name11 as the only process that can receive messages in the
message group specified by 11p.J1g_name 11 • aoceptmg is located within procedure
MSG.

cdbo(i node_naae, P. dbo_naae)
~reates" a database ob~eot at the node specified by "g_node_name". The

database object has a "local name specified by "p_dbo_name • cdbo is located
within procedure DDH.

cnode (P. node_name)
"Creates" a node with the name specified by "p_node_name". cnode is lo­

cated within procedure DDM.

copcon(p_con_name, p_con_node_name p_op_name, p_process_name)
•creates• an operator connection between operator "p_op_name• and process

"p_process_name•, both located in node "p_con_node_name". The operator con­
nection will have the global name specified by "p_con_name•. copcon is lo­
cated within procedure OP_CON.

cproc (p_node_name, p_process_name)
•creates• a process with the name specified by "p_process_name" and lo­

cated in the node specified by •p_node_name". oproc is located within proce­
dure DDH.

dclop(p_op_node_name, p_operator_name)
•Declares" that an operator with name "p_operator name" exists at the

node with name •p_op_node_name". dclop is located within procedure DDM.

initmg(p Jll8,...name, p_init_node_name, p_init_proc_name, p_acceptiinod~"3'name)
DecTares process 11 p_init_proc_name" located in node •p_in t_nooe name" as

the only process that can send messages in the mess~e group specified by
•p_mg_name". All messages in the message group will be sent to a process in
the node specified by "p_accept_node_name". initmg is located within proce­
dure MSG.

opmsg(p co~._Jlame)
•sends a message from the operator to the process in operator connection

•p_con_name•. opmsg is located within procedure OP_CON.

opstat(p_op_node_name, p_oe_name, p_state, p_con_name)
States that operator P. op name" at node "p op node name" is either

"active" or "waiting" (specified by "p_state"). -If-the operator is waiting,
it would like to receive a message from the process in operator connection
•p_con_name•. opstat is located within procedure OP_CON.

rcvcm(p_cont_llSg_numb)
Causes the control message with number specified by "p cont msg_numb" to

be received by the appropriate node and the required action-then-takes place.
rcvcm is located within procedure RCV_CH.

rcvmsg(p_mg_name)
Causes a message to be "received" in message group "p_mg_name•. If no

messages are queue~i then the receiving process is blocked. rcVJ11Sg is located
within procedure M~.
rcvop11sg(p_con_name)

Causes a message to be "received" by the process in operator connection
"p_con_name". If no messages are queued, then the process is blocked and we
request the status of the operator involved with this operator connection.
rcvopmsg is located within procedure OP_CON.

93

Appendix II User Visible Functions

eendmag(p~) ,
•Sena• • •-- 1a tbe ••1188,_n.d ~ •pJll&..:.._... send1Ug

is located w:lttd.w PN•••_.. lflG,. ·

Appendix II Procedure DDM

%·
DOM: procedure;

1• This procedure is a collection of subroutines which either
creates entities needed to model the deadlock detection algorithm proposed
by Barry Goldman or performs services for other routines used in the model.
The following user visible tunationa are included:

CREATE DATABASE OBJECT
CREATE NODE
CREATE PROCESS
CREATE SYSTEM
DECLARE OPERATOR

The following support routines are included:
DECLARE DATABASE OBJECT
DECLARE DATABASE OBJECT SHARED ASSIGNMENT
DECLARE CONTROL MESSAGE
DECLARE NODE TABLE
DEa.ARE OBPL
DEa..ARI OBPL CONTROL MESSAGE
DECLARE PROCESS
DECLARE PROCESS BNTRY
DECLARE REMOTE RESOURCE GRANT
FIND ENTITY LOCATION
INITIATE OBPL •/

95

Appendix II Procedure DDM

dol oont_Jlag_numb
dcl dboret
dol eoa
dol exp_obpl
dol_...:llUllb
dol agr,et'
dol nOcllNel
dcl no...llore_nodea ·
dcl obpL,paaaNt ·
dcl obplret
dcl opret
dcl p_.ttr_olaH......_
dcl p_cont_aag_numb
dcl p.:.,.dbo- ·
dcl p_dbo.JK)de_naae
dol p:JfeCcontJ191,_.numb
dcl p:dcLclbo.Jt ...
dcl p_deLentitJ~laae_aame
d.cl p_doLnocle~-
d cl p_dcJ.:proc_.- ·
dcl p_dcl_ret
dcl p_deat__nocs._,._
dcl p_entity_n
dcl p_entit7_ret
dcl p__node_nme
crol P..,;.otlpli'et · ·
dcl p_opeNt.orJa.
dcl p;~-
dcl . p~rrat'· · -' ., .
dcl p_J)~DW
dcl p_p e_nme
dcl p_rea_n ..
dcl p_rea_node_name
dcl p_rea_tJ?e
dcl P~t11'71._
dcl prooret · .·· ·
dcl proc_.termret
dcl p_aen<L.node_nae
dcl P..Jll8t-"1'111111l.J'J!•• r
dcl ~t_ret
dcl sec_node_name
dcl aeCJIOderet
dcl tabreref'
dcl t911P_naae
dcl temp_rer
dcl vriteJ.iat_
Sinclude ADT_prlllittve•:

96

Appendix II Procedure DDM

I* CREATE DATABASE OBJECT 5/21/76 */
create database object: cdbo: entry(o node name, P. dbo name);
if fina_entity_Yoc{noderef, "sys->noaei-;- SYS_REF, p_node:name, "node.name")

then do:
call write list ("Invalid node name. ", p_node_name,

Wdoes-not exist."):
return:
end·

eos = findirentity_loc(tablerer, "node->node_table", noderef, p_node_name,
node_tabl~.name");

if A find_entity_loc(dboref, "node->dbo", tableref, p_dbo_name, "dbo.name")
then do·

cail write_list_(•Duplicate database object name");
return;
end;

call dcl_dboldborer, o_dbo_name);
call insert dborer, -node->dbo• "first" tableret);
call write_T st_(•Dat,base objec! ", p_dbo_name, • created in node ",

p_node_name J :
return;

1• CREATE NODE
cre1te_node: cnode: entry(p node_name);
if owner

7
(SYS_REF, •sys->noae•)

5/19176 •1

then ao•
c&il write_list_("Illegal request, system has not been created.");
return:
end; ·

call find_first_(noderef, •sys->node", SYS_REF, no..JDore_nodes);
do while T"" no more nodes)·

if extract (noaerer, I.node.name") = p_node_name
then ao;

call write_list_(•Duplicate node name•);
return;

call
end;

end·
find_neii_(noderef, •aya->node", no_more_nodes);

call create_entity_(noderer, •node");
call create_attribute (noderer, •node.name•, •rield"1 12~ p_node_name);
call create_relationaliip_(noderef, •srs->node"i •mamoer"1;
call insert_(noderef, •sya->node", •r rat•, SY~_REF)·
call create_relationship_(noderer, •node->node_table•, •owner");
call dcl_nod4)_table(tablerer, p_node_name);
call insert Ctableref, "node->node_table", "first•, noderef);

7W We will now make this new node •aware" of the existence of all
other nodes, and make all other nodes "aware" of this new node. •/

sec noderef = nQderef;
calY findTvext_(sec_noderef, •sya->node", no_more_nodes);
do while no_Jllore nodes):

1• First create a table entity for the new node to be used by
another node. •1

call dal_node table(tableref, p_node_name);
call insert Ctablerer, •node->node_table"! "first•, sec_noderef);
I* Now create a table entity for an exist ng node ~o be used by the

new node. •/
sec node_name =extract (sec noderef •node.name");
cali dcl_node_table(tabTerer-;- sec_no~e name);
call insert_(tableref, •node->node~tabTe", "first", noderef);
call find_next_(sec_noderef, "sys-,node", no_more_nodes);
end~

call write_list_("Node created: ", p_node_name);
return~

97

Appendix II Procedure DDM

t• CREATE PROCESS 5/21/76 •/
create_process: cproc: entry{p_node_nuae J)Jroeees_name);
if find_entity_loctnoderet', "sys->node". SY$....RD', Jt ... node_name, "·node.name")

then do:
call W!"'ite U.st_(".I.nvalid '10. c:le n •, p_node_name,

ird:cee not exist");
return:
end:

eos = fi~entity_loe(tablerer, "node-)nod._tab.le", noderef, p_node_name,
node_table.~ame"l:

if ... find_entity_loc(Pf"OCf"ef, 11node->procw•, tableref, p_process_name,
"proeess.naaa.")

then do·
cail write_list_C•I>vplicate p.._.&• nam•h
return:
end;

1• If an operator with the same name baB been declared at the node,
erint an error message and return •/

if find_entity_loc<o.prett "'n:ode->operat:orr • tableNt', R...Proeess_n•e,
"operator.n-.•1

then do·
cail Wl"'ite list_(p_proces$_namel "baa been previously declared•,

•as an operatol" at noete•, ~n-);
return:
end;

call del_proceaa{ procret,. p_proceu_name} •
call insert_(J)f"OCret,. ~>proeees•. •ti.rat• tableret);
call inaertI(proc;ref, 9node/dbo/mg->p~.1- 'ts.r.t.•1 tableref);
call vr1 te_ i&\.....{ •pl"Oft.a-, p_proc:e---.name,. •c ... ted J.ll node", p_node_name);
return:

1• CREATE SYSTIM 5l'ttl76 •I
create_syst: csys: a]Jeflen: entry;
if SYS REF ": 0

tTien do:
call wri\e_ltst_(."Syst.em already CPe&ted•).;
return:
end;

call create entity (SYS REF "system");
call create:attribute_CS'·YnR!F.t "s.ystem.last_coa' t..J1S&".1. "field", 10, O);
call create_relationship_ Y~EP', "sys->noa•., •awter•);
call create_relationshtl>_ SYS_R!F, •aya..~, "Owner")·
call create_relationship_ SYS,....BEF, •sys-.>ooii ~·i *owner");
call create_relationabij>_ SY&_RBF, "sys->me~ , •owner•);
call create_relationship_ SYS.-REF~ "sya->afl_eon-, "Olft'ler");
call write_list_("Syst• created• 1:
return:

!• DCL DBO 5127176 •/
dcl dbo: entry(p_dcLref, p_dcLdbo_name):
1• 'fhis procedure creates an entityy for a database object with name specified

by "p_dcl_dbo_name• and creates the neoeaaarY relationships. A reference
to the entitI is returned via •p, dcLreP. •t

call create_ent ty_(p_dcl_ref, "dbolr):
call create_attribute~(p_Icl ref, "dbo.name•, "field•, 12, ~,..dol_dbo_name);
call create_relationsnip_ p_acl_ref, "proceas->dbo•, memoer) ;
call create_relationship_ p_dcl_ref, "node->dt>c• •member•);
call create_relationship_ p_dcLrer, "dbo->dbo sil.a•t•, •owner•);
call create_relationship_ p_doLref, "node/dbo7mg->process•, "owner");
return:

98

Appendix II Procedure DOM

t• DCL DBO SH ASMT 5/27176 • /
dcl_dbo_sh_asmt: entry(p_dcl_ref) •
!• This procedure creates an entity for a database ob1ect shared assignment

and returns a pointer to it via "p dQl ref" I/
call create_entiti_(p acl ret, "dbo_sh_aanit">;-
call create_relat onslilp_Tp_dcl_ret, •process->dbo_st_asmt", "member");
call create_relationship~(p_dcLret, "dbo->dbo_sh_asmt•, "member"):
return;

I* DCL CONTROL MESSAGE 5/27/76 */
dcl_control_aessage: entry(p dcl_ref, p_dcl_entity_class_name,

p_dcl_contJDsg_numbT;
t• This procedure will establish an OBPL, a remote resource request or a

remote resource release as a control message. It will generate a control
message number (which becomes an attribute ot the entity specified by
•p_dcl_ret") and change the •system entity so that it is aware of the
new control message number. This control message number is returned via
•p_dcl cont msg_numb" •1

p_dci.:cont_msg_nulllb =extract (SYS_REF, "svstem.last_cont_msg") + 1;
call alter_(SYS_REF, •system.Tast_oont_msg~, p_dcl_oont msg_numb);
call create_order.'J..(p_dcl_reft p_dcl__entity class_name, TcontrolJDess~e");
call create_relationshfp_(p acl ref'; "sys->control_Jnessage•, "member">;
call create_attribute_ p_dcT_re?, •control_message.number", "field", 10,

return;
p_dcl_cont_msg_numb);

t• DCL NODE TAB~E 5/27/76 •/
dcl node_table: entry(p_dol_ref, p_dcl_node_tabl_name);
1• This procedure will create an entity for a node table and creates the

necessary relationshiis. The entity is also given the name specified by
•p_dcl._node_tabl__name • A pointer to the new entity is returned via
•p_dcl_ret". • / ·

call create_entity_(p_dcl ref, "node_table");
call create_attribute_(p dcl_ref, "node_table.name•, "field", 12,

p_dcLnode_tab name);
call create_relationship_ p_dcl:._ref, "node->node_table"~ "member");
call create_relationship_ p_dcl__ref, "node->operator•, owner");
call oreate_relationship_ p_dcl__ref, "node->prooess•, "owner");
call create_relationship_ p_dcLref, •node->abo", •owner•)·
call create_relationship_ p_dcl_ref, "node/dbo/mg->process•i "owner");
call create_relationship_ p_dcl_ref, "init_node->message", "owner•)·
call create_relationship_ p_dcl_ref, •acoept_node->message", •ownertt);
return:

99

Appendix II Procedure l>Dtif

1·00

Appendix II Procedure DDH

!• DECLAR! OPERATOR 7/13/76 I/
dclop: entry(p_etp_node_naae, p_operator name);
1• This procedure will create an entity '?or an operator with name specified

by "p_operator_name" and located at the node specified by
"p op node name" •/

1• If-the node specified by •"P,rop_node_name" does not exist, print an
error message a~d return

if find_entit~loc(noderer, "sys->node", SYS_REF, p_op_node_name,
"noue.name")

then do·
cail vrite.._.list_("Inmalid node name:", p_op_node_name,

"does not exist");
return;
end;

I' Get the location or the node table for "p op_node name" •/
eos = find_entity loc(tableref,-"node->nod~!able", noderef,

p_op node_name, "node_table.name"J;
1• If •p_operator_name• was oreviously declared as an operator, print an

'rror message and return •/
if find_entity_loc(opret, •node->operator", tableref, p_operator_name,

•operator.name•,
then do·

cail vrite._.list_(p'Toperator_name, "has been previously•,
"declareo as an operator at node", p_op_node_name);

return:
end;

1• If "p_operator_name• was ireviously declared as a process, print an
~rror message and return I

if find_entity_loc(prooref, •node->process", tableref, p_operator_name,
"process.name")

then do;
call write list_(p_operator_name, "has been previously declared",

1ras a process at node", p_op_node_name);
return;
end;

1• Create an entity tor the operator and declare the necessary
relationships and attributes •/

call creattt_entity_(opret, •operator•);
call create_attribute'C"(opref, •operator.name", "field", 12, p_operator_name);
call create_relationanip_fopret, "operator->op_oon• •owner"J;
call create_relationahip_ opret, "operator->obpl", Aowner")i
call create_relationahi~- opref, "node->operator", "member•1; .
call insert (opr,r, "node->operator", "first•, taoleret);
call writeiist_(p operator_name, "has been declared as an operator",

~..-at nodelr, p_op_node_name);
return;

101

Appendix II Procedure DDM

Appendix II Procedure DDM

I* FIND ENTITY LOCATION 5/19/76 */
find_entity_loc: entry(p_entity_ref, p_aet_claaa_name1 p ownerref,

p_entity name, p_attr_claas name) returns(bi~(1})·
I* Thia procedure determines the database address ot the entity with name

"p_entity_name" (specified by the attribute "p attr_class_name") which
is a member ot the set occurrence (designated by the parameter
"p_set_claas_name•) owned by the record occurrence designated by
"p_ownerref•.

If the desired named entitv does not exist, a true value ("1"b) is
returned and •p_entity ref• is unchanged. Otherwise a false value {"O"b)
is returned ana •p_entity_ref• is updated with the database address of
the desired entity. */

call find_tirst_(temp_ref, p_set_class_name, p_ownerref, eos);
if' eoa

then do;
temp:rname ~ extract_(temp_ref, p_fttr_class_name);
do wnile (eoa & (p entity_name = temp_name));

ciafll find_next_Ttemp_ref, p_set_class_name, eos);
eos
then temp_name • extract_(temp_rer, p_attr_class_name);

end;
.. end;

if eoa then p_entity_ref' = temp_ref;
return (eos);

1• INITIATE OBPL 6/25/76 */
initiate_obpl: entry(p_proc node_name, p_procesa_name, p_res_node_name,

p_rea_name p res :type) ;
1• This procedure wiil Initiate the creation and expansion of an OBPL. The

first process to be placed on the list is specified by •pyr>rocess_name•
and is located in the node specified by •2_proc_node name • The process
is waiting tor the resource specified by p res nameT and located in
the node specified by •p rea_node_name•. The resource type (8 dbo• or
•message•) is specified by •p_rea type•. •/

1• Create tbe OBPL entitJ ana have it initialized with the resource and
process information g ven by the parameters. •/

call dcl_.obpl(obolret1 p_res_node_name, p_rea_name, p_res_type);
call dcl....proo_ent1(ooplret, p_proo_node_name p_proceas_name);
1• It the prooeaa a waiti ror a message, t~en we must find out the

message nW1ber within ~e message group) that is desired and put this
inror11ation into tbe OBPL. In addition if the process and the sender
or the message are in different nodes, then we must send the OBPL to the
node which initiated the message group rather than try to expand
the OBPL right away •/

if p_res_type = •message•
then ao;

!• Get the location or the entity for the message group */
eos = finc:t.:entity_loc m1rer, •ays->message•, SYS_REF, p_res_name,

message.name);
I* Get the n\Bber or the message desired */
message_nmb = extract_(mgref, •meaaage.number_qd") + 1;
call alter_(obplrer, .. •obpl.msg_numb•, message_numb):
it p_proc_node_name = p_res_node_name

then do·
cail dcl_obpl._oont_Jllsg(obplref, p_res_node_name,

p_proc_node_name);
return:
end~

end:
1• Expand the OBPL as much as possible in this node •/
call exp_obpl(obplref, p_res_node_name);
return~
end DDM;

103

Appendix II

dcl cont~b
dol Ao........., ·
dcl d'bONt >'
dol dlll0.;..tatal:11.,.;
dol eoe
dcl exo ownel"l"et
dcl ndtt.J>1•oo_owne1Te1"
dcl p_aaoee•_type
dcl p_dbo..,..... ·-t::.;;-'
dcl p_.dbo~.Jl89
dol p~ , ;;"' ,

dol ~s;::.:•. • dcl ~·· r....hlll9
d~l p~e
dol ptableret
dcl rea ~C1CL...ret
dcl stL.amtret
dcl wrTte....U.at
Sinclude DDM.....89" l'OUtiftU;
J1nclude A~ti..,.•t

Procedure REQ

"i•.1

Appendix II Procedure REQ

1• RIQU!ST DATA~~BJECT 5/26/76 •/
requea.t_dbo: . rqd.· bo.: e . -~..!!::~?pe, p_proo_node_name, p_prooeaa_name,

1• Veri(J ~~~p Drc><UlodLUw" exiata •/
if tin<L.entit1Joof" · . _.'"' •J~odeT, SYS.,.RBF, p_proo_node_name,

•ftOde .n .. • -. · ·· '
then do·

oail writ•~liaL("Invalid orooeaa node name. •, p_prc;>oJlOde_name,
11'41099, aot uiat." > ; ·

return; ·
end·

1• Verif1 that the :.ro:::1.1roitied by "p_prooeea_name~ exists at node

eoe = fi~~"*!~ "=::::.i·~~" ~' .,,Oderef,
if fin<L.enf~f~. ,, •nocte=>p.-.eea••·1'-~tfet, P.. n rooea1L,.name,

•prooe••~.-•,-
then do· · . _ .

o&il vrlt'-..li•L.·(•Ja~ltd Prr9•••·,-.•,p,:p~aa_nue, "at node•,
D...Pl"H-Dode..;.,naM, 4oee not aiac. • H : return: .·· · ·

end· . , ·· ·

{: f :~:.;t~01:• ·!m.!z.::r:i;~~;.~;:il;;!~•: .:,.rec1• >

o&fl wrtt-._liat_(•Inftlid aooesa type, reqah. ·.11ot processed");
return; · · ·
~· . .

1• Check it the prooeaa · ia blocked •I . · .
~'1!11[tt}:T:Y,d~-:_~l,::;~',-~~r.~:1••, prooref);

then do· ··, '·:· .,,, · · ·'·· ,.,. · ,, ... ,, .. ·,)'·
Oii.1 vrii...lia\...,.f~~icf·NCl•..t .. ,: ~iaiatt, ;~ooeaa_n{lllle,

at ncide , P-Pl"Oel..~, "ia .not-active. •);
return: . · ·· · · · ··
end• ' .

1• Check it the Pl'QQff! ~ ~--.:ue at 'thew ftOde. •1

it P~j;y~~~aoume aN.at the aw node•/
I ertty tbat ·i&e databa• object apeaitial''bf. •p_dbo_n•e•

exists at node •p, d~~-·· 17 ',;;.·;.
it rt.net....-~. , loot~,~, ltftOdWecN.,....,, ·pt;abl_.,.f"f·' lJ_dbOJiue,

.-~idbb-:-n-•') · ·· ; . ·.···· .. .
then do• ·· . ; . · ··

odl vrite_lia.t_(•Inn ... lid .databa ... ~,.~nw.",
o_d~.,1 •.- ndle""~•: p..;.;. e_nue,
19Cloes not exist.") : · ·· ., ·

return; . ·
end; · · ·

!•Teat to~ it- tlae d. bo b88 all"4NllllY.been aaatgned to the process•/
if 1naert4ML..l4..._t, ·~a->Ao•l · ·

. ··Ulen di; . · /fQIMR i~·t.lw91'oee•·1' .. exclusive oontrol . : •*be datlttl•••.,,.~ •t
call tincLown. er_(exo_~•ll', ~proo,as->dbo", dboref);
it ~?·.• ~ ,. . ' ' '.

end;
else do:

\lien do·. ' '
· oah write._~·1.~(.]::;:.:r·e<tu. est. Process", · P....Proo.• n.-e, •at node" , .· · I . . .,, · ·: t W.already has" ,

iWG iwe oontrql ot", p_dbo_name,
"at node", p_;_dllj_.,)10de_name);

~~rn; ·
end;

t•c~eck if the process haa shared
it empty_intersection_(procret,

access to the dbo •/
•prooess->dbo_sl_asmt",

105

Appendix II Procedure R~

!•Grant the Pl"OOe9.8 exclusive use. or the desired
database ot>J•ct. •1

call insert_(dboret, •prooe->dbo•, "tirat•, procref);

Appendix II

- .. , .. ~··:-! . ' -

Procedure REQ

call write_liat_(p~rooeaa_n ... , •at node",
t-»~ '1• &ranted e,oluaiv• uae"
or'4 1>-4b0.Jl98, •• , Dode• •',p.;.abo_node_namej;

return: ·
end; ·

end;
1• The next 1eotion will be executed wbea a proces9 r•queata a remote

resouroec I
1• Verity that the deail'ed database objeot exiata •1 .
tr find_en5~t1e~:=.:~.-..tt · ••Je->iode", clYL.RSF~·· p_dbo_node_nue,

then do: . ·
call write_liat_(•Invalid da. tabaae object. n. octe n-. •,

p_d~t "doe• 9" •'•'·">; return; · ·
encl· · . · .

eoa = tind_entit'_l.oo(d·~.t•blere.· r, •. nod. iii:·i!~.t•ble" •. d. bo_noderet.
P. dM •:t• · •no«tLQat11.n " • ·· · . 1r tincLentTt1~. re., -•-.w.;;>-. , . ·. ableret, ll.:.dbo_nw, •dbo.nw•)

then do• ·· .. · · · ··
odl writ• 1i•:Oi:i1l"licl d•taba. . _ .. : •b.ftot, • · ", p..dbo_11ue, ,..t • ll.;.4bo...Jl~; •does not exiat.•l;
return;
end·

eoa = tind_entit1Joo(dbQ...tableret, "node->nne_table", pnoderer,
dbo....DOcte~, •nod table.nue• ;

1• Check 1J-itbe node oont&ining~e pi-oaeaa a aware or the existence or
tbe desired databaM ol>Jeot. •/

it rind_entitJ_loo{dbo.-.t, "node->dbo~ 1 dbo_.tableret1 p'fidbo_name, "dbo.naine•)
then do: /I-Create local inrol"lla'fion abou~ t e re110te resource and

· blook the 1>rooeaa. • /
call doLdbo{dboret', i-ctbo_naae);
call insert (dboret', node->dbo", •tirst" dbo_tablerer);
call alter_T{rooret 1 "orooeaa.aoceaa_type. ", p_acoeaa_type);
call reaoye_ proorer, 11node/dbo/mg->prooeaa•>;
call insert_ prooret', "node/dbo/mg->pi-oa•a•, •1aat•, dboref);
end;

else do; 1• Cheak if the databaae object baa already been aaaigned
to the prooe••· It it hie, print an error message,
otberwiae block the pr909aa. I/

it' inaertec:L(dboret, "pi-oaeaa->dbO•)
tben dO;

call tincLovner_(exc_ovnerret', •prooesa->dbo", dboret);
it proore? • exo_ovnerret

then do·

end;
else do; it ..

call write_list_(•Invalid request. Process•,
p_prooeall.JMIM, •at node•,
e_proQ.JIOCle...J'8'M, •already has•,
excluaift control ot", p.:...dbo_name,

•at node", p_dbo_node_nalli);
return;
end;

empt1~nteraectionCproorer, •erooesa->dbo_ah_asmt",
ouorer, ·dbo-')'dbo_stt_.a .. t ,

then do·
call write_list_("Invalid request. Process•,

p_pi-oaealL.ft ... , •at node•,
e_proCl..,J'oCle_oame, "alreadJ baa•,
shared aooeaa to•, p_dbo_t1•e,

return;
end;

•at node", p_dbo_nOde_naeJ;

end;
1• Legal request, "block" the process. •/
call alter_(procret, "prooess.acoess_type", p_access_tJJ)e):

107

Appendix II

call

Procedure RBQ

12,

•Nt•-""I·~·, •t1e1ct•, 12,

108

Appendix II Procedure MSG

%·
MSG: procedure·

1• This procedure contains the subroutines which perform the
message management functions for process to process communication within
a network. The followigg user visible functions are included:

ACCEPT MESSAGE GROUP
INITIATE MESSAGE GROUP
RECEIVE MESSAGE
SEND MESSAGE *I

dcl aocept_node_name
dcl aooept_node_tablerer
dcl accept_proo_name
dcl aooept_procrer
dcl cont_msg_numb
dol eos
dol init_node_name
dcl init_node_tablerer
dcl init_proo_name
dol init_proorer
dcl message ref
dcl mgref
dcl nd11LProc_ownerref
dol node ref
dcl p_aooept_node_name
dcl p_aooept_proo_name
dol p_init_node_name
dcl p_init_proc_name
dcl p_mg_name
dcl procref
dcl rev msg_numb
dol send_msg_numb
dcl write_list_
linolude DI»L.se~Troutines;
linolude ADT_primitives;

109

char(12);
fixed bin(17):
char(12);
fixed bin(17);
fixed bin;
bit(1)~
char(12);
fixed bin(17):
char(12);
fixed bin!17l; fixed bin 17 ;
fixed bin 17 ;
fixed bin 17 :

~~!~d!*bl}n 17 ;
char • :
char • ;
char • :
char • :
fixed bin(17):
fixed bin;
fixed bin:
entry options(variable):

Appendix II Procedure MSO

t• ACCEPT MESaAGE GROUP 7/1/76 •/
acceptmg: entrf(p~. , p_aooept_nocte_nme, p_aooept_proo_name);
1• Arter th1.• prooedur• 1• outedit tbe ~. . •• apeolf19C.t. bf

"p_aooept_pl'OO_n ... • (and looat at;_ t~· . . ~-3td bf ·
" aoae ". .·. ..-} trt11 bt . e"'\e · , • . · -~· tb,e 1Deaaage

f~oop ~Ji. ~.-· .··. · .,..,,*f,.r ,,.,. · -': '1,~: L·>·-, .. :,-.: . . , .. .
1• r the ~-- · · ···~-n tt·•~iR_.~._._. ntat, ~int

an error • · · .· .._1ilr'ft I . . . : , · .. ·
it rind_entity_l · _...,• •.,._>••~. sn_W'i'it'~, nime•1 ' .. ' •'

then do;
call write....l!~"!t'(•Invalid !lf•MI• Sl'OUP ftMI: •, pJlLname,

,, avwe not exi&t"J; '
retUf'rt;
end; .

1• If the meaMp ~ovp hat .flPeadf "'8ft &Oft-J'4Mt.1tl a ~s, print an
error H•'8Cft aftd ,...... I _ ' · ·

it intse ... rtecL<lliNt", •rd~),.~) . !. ··., .. ,

nen dO., ' ' ',· .. •' ; ·"· ' .
eail ... 1,._,:uet_(•lri4lM~• ; .. ,>.lt.JICJUIJle,

.... •lN4ft':tNW,. .i "'~·· ; return· · · · .,, · '··· · .. ·'
end ' . ·r. . . ;_ ~. . "- ,.., ~ ~ - - ·'

!•It' the node. ; ape:·::·· .. ·:e. • .. ~ .. · · .•. i .•.•• !¥..; .. -.-·· = .. f'-••• i.• Wt ··.· .. · · ... t.ing node that WM •=!n.l -· . ,5'•:'. , · ·....., .,.., l•H~'\S.$.0 a
rint an erf'Ot' ~••If . ;:!ffiet_. ' .. I · · · · · ·· ' , · · · ·

cal~ tind_OWMr_(a · .-· lfa.: •. · ··~··---~,.-..-... · . t);)
it P-fg:~~JI_. • ._....._,,,., t_.._'lnl• •• ...,.._\,t't;f.'t,naae•

call vrit• llaL(p~·, .. ~·-ufJS.'1-.~.·. IJOd.•.··· •.···Qat .. was", -r.,_.l'tlid tO : t w ; .. ,,. ; ' •);
call writ• ... llat_(• , · '"' ,·... lt-1 . ' ~ : Tlbt ..,_ptag•, r..-.t ia,H ; .. ; v··- ; .· .'
return: ·
end;

1• If the process ap. eo. 1. tied bf ·.~i:..c .. ~~. t~~:-•• -.. ... 1'~ ,exiat at the node •P,ctOitied by wp_a · _ _. •, prtat· · llft ~
message and ~*/ · _ , ...

if tind_entit1_loca(aG049Pt_prooret, "nod••>Pnoee••, ~e_tallleret,
~-aooept_pl"OO_n .. , 11prooeaa. nMe• J

then <to;
call writ•ir:ltat_(11Innl1d prooea• , ... : •, p_aooept_proo_n .. ,

does not exiat at node , p_aeoept.:;Jiode_naeJ;
return;
end:

1• If the prooeaa acoe1ting the message group 1• not aot1Ye, print an error
••2!Sase and ~turn I

call ttncLovner_(ndlL»roo_ownerret, •nOdeld'al••>p...-.ea•, aocept_prooret);
if enttty_olaaaJ-.:lndlLJ>l"OO_ownerret) • noll_ta,JA•

then do·
cah write_ltat_(•In•lid aooer~ o-.ncs. Process•,

p_aooept_proc__name, is not aot1: .. e•);
return:
end: ·

1• If the proeess accepting the mesaage group is thl same one that
initiated it, print an error m••a8f• and return I

call find_owner~(lnit_node_tableret, tnit.Jaod••>Manae•, mgref');
if init_node_tagleret • aooept_node_tableret

then do:
1• The initiating and accepting nodes are tbe same. See if

the initiating and aooepting proqea .. a are the same •/
call f'ind_owne~C init_prooret, •aencL,proc->aeaaage•, mgref);
if init_proore1 • aooept_prooret

then do·
cail write.

11
,Ji•t-r("Initiating and aocepting prooeaaes",
are t;he • ._ tor •••- 1roup ", p_Jllg_name,

"acceptmg command rejected);

110

Appendix II

return~
end:

Procedure MSG

end:
I* Insert the message group entity into the accept set for the process

specified by "p_aocept_proc_name" •/
call insert {mgr,r, "rcv_proc->message", "first", accept_procref);
call writewl'ist_(p_m§-name, " has been acoepted by ", p_accept_proc_name,

at node , p_accept_node_name);
return;

I* INITIATE MESSAGE GROUP 7/1/76 •/
initmg: entry(pJ1g_name, p_j.nit_node_name, p_init_proc_name,

p_accept_node_name);
1• This procedure will create a message group with the global name

specified by "pJ1g_name". The only process that can send messages
in this message group is specified by "p_init_proc_name" and is located
at the node specified by "p_init_node_name". · The process that will
receive messages in the given message group is located in the
node specified by "p_accept_node_name". The specific process that will
accept the messages will be given in a subsequent call to "acceptmg"
by the user. •/

1• If we have a duplicate message group name, we must print an error
!f!Ssage and return •/

if find_entity_loc(mgref, "sys->message", SYS_REF, p.JDg_name, "message.name")
then do·

cail write list_("Duplicate message group name. initmg",
•command rejected"):

return:
end;

1• If the node specified by "p_init_node_name" does not exist, print
and error message and return */

if find_entity_loc(noderef, "sys->node", SYS_REF, p_init_node_name,
"node.nBlle")

then do·
cail write,..list {"Invalid node name: ", p_init_node_name,

n does not exist");
return;
end;

1• Get the location of the node_table for "P init node name" •1
eos = find_entity_loc(init_node tableref, "node->node "table" noderef,

p_init_node_name, "node_table.name");
1• If the process specified by "p_init_proc_name" does not exist at the

node specified by "p_init_node_name", then print an error message
and return •/

if find_entity loc(procref, "node->process", init_node_tableref,
p_inTt_proc_name, "process.name")

then do;
call write list_("Invalid process name: ", p_init_proc_name,

T does not exist at ", p_init_node_name);
return:
end:

I* If the process specified by "p_init_proc_name" is not active, print
an error mess2J.ge and return *I

call find_owner_(nd11L..proc_ownerref, "node!dbo/mg->process", procref);
if entity_class_name_(ndm_proc_ownerref) = "node_table"

then do·
cail write_listT("Invalid initmg command. Process ",

p_ini~_proo_name, " is not aotive");
return;
end;

1• If the node apeoitied by "P~•coept_node_name" does not exist, print
an error messag, and return-it/

if find_entity_loccnoderer, "sys->node", SYS_REF, p_accept_node_name,
"node.name")

111

Appendix II Procedure MSG

then do;
call write list ("Invalid node name: " p_accept_node_name,

~does not exist"): '
return:
end;

1• Get the location of the node table for "P. accept_node_name• •/
eos : find_entity loc(accept_noae tablerer, Tnode->nod-..table•, noderef,

p_accept_node_name, "noae_table.name•);
1• Create an entity for a message group, create the necessary relationships

and attributes, and insert the entity into the appropriate sets •1
call create entitI (mgref •messll2e");
call create:relat onship_ mgrer, •sys->message•, "member");
call create_relationship_ mgref, "init_n.ode->message", "member")·
call create_relationship_ mgref, "accept_node->meesa••"~ •memberle);
call create_relationship_ mgref, "send_proc->message", "member");
call create_relationship_ mgref, "rcv_proc->meeaage", •member•)·
call create_relationship_ mgref, "nodeldbo/mg->process" 1 •ownerle)i
call create attribute !mgref, "message.number aent• •field" !I "0"):
call create-attribute: qref, "measage.number:qd" :irteld", 4, "o•)·
call create_attribute_ mgref, "message.number_rcvc\•t •field", 4, •o">i
call create_ettribute_ mgref, "messa«e.naae•, "riela•, 12, p_mg_name1;
call insert_!mgref, "ays->message", •r1rat• SYS REF)·
call insert_ mgref, "1n1t_node->message•, •firstT inlt_node_tableref);
call insert_ mgref, •accept_node->messa1•"~ it1rai•, acce~t_node_tableref);
call insert mgrer "send_proc->message , "firet•, procref)•
call write_Tist_(•Message group •, p_mg_name, "has been initiated");
return:

112

Appendix II Procedure MSG

1• RECBfYl,MESSMl.1 711n6 •1
rcvmag: entry P.JILJ.I-) ;
1• thia'..J>l!OOedur. vllcJ.- al-1.ate thl recelveing ot a meaaage in the meaaage

group apea1·r1ed by •p_mg_nae• I
1• It t~ ·••.-s• ~ ..-oiMad "-' - nwW - does not exist' print an eri'or 119saagi &del' returii~i/ vz ., --
it find_enU.tJ.-.loof..,..r, '•1~>•--.e•, SYLBU. P.JD&...ft•e, "message.name")

then cfo·- . . , . · ·
c&il writ liat_("invalid ~aaqe group name: ", p.Jlg_name,

does not exist">;
return; .
end; · .

1• Ir no prooeaa haa accepted .the _..... group, print an error message
fnd return •1

if inaert~(mgret, •rcv_pr-oo->meaaage•)
then do·· . ..

0811 wi-it~lftt_(•I1tv.1:1d rcyaq c. rr•·. No prooeaa has",
.-..-pted ••_.. G'O'*,· ·; P...JIL.n94t:J;

.return~ . ·
end;

1• Get the._ f:: _,.. c:>t t:J Pip~• th~·~~reoeiv• the message •1

::!!i.~~~·~~·='n; call n=._~Oifter .. :..<aoo - t ti erer·. •iooep e-"'8aHge•, llll"•t);

~~.-~J!T~~·::~t:~~·::-:;1~t
call t'ind_ovner,.~~.--·, .. ··· ~ _ •. n•.i•tiaL. •.;.)prooe. ·aa:•1 aooept_procret);
it entity_cla•~-- ~~oWilerret). ·-~ • -•ioc1e~t•ble"

then do; ,, .,., . . .·. ·
oall writ'-1).l.~!"P:.-ooeH11 , aoM:'ti. · ~- ._... ... ·•at node•,

· aooef>'E~ode_n ... ,, "l• ff ,·•;att.J."J•• lo •MMe oan be•)·
call write_liat_{" reoe·1ve in message group•, p,Jlg.:.,name):
return: . · · .
e~I . .

I• Find out if' the message can be received,: OP if' the.:prooeaa must
be blocked • / . . . · - · ·

rcv_Jlsg_numb · •. · extraot_(llSl:et, "••aas•. n•ber:-r~YCl' \.~.·.
it rct~:~b ~ ext.-aot_(qret', ·~·~~-..,r~it

!• All()IW the p~aa -t.o r.,.i¥e:tbe ae_s_ M«• •1
ra » .. ,. •"••l'INl~b 1' S• ·. . , ..
cal a ·~ •t•,·--!!r~'-i_ tJ!O'ff" • MYJllCJlUllb);
call writtt_ i•~5 Pr~el'a , ~~· •at. node",
o•fl write..:_~"f.~• a 1:' .. :::-teMsH.e ·group•, p_mg_name):
return: ·
end:

else do:
1• Block the process •1
call remo .. _(40cepL,procret, "ao.d.elc:lbOl..,.>proceaa"):
call 1nsert_Cao'oept_procret, •n0d,6fd'9o/11'1->1>rooea.•, "first",

call wr1tlfi:-~t's.{)f•_ P.rocess. "'. aoo. me· · ·....:_ · .. ,.·;•a_ ·.tt node",
aco . · ... e...;neme, "ta·I> . · wai'°iflg:."tor a•);

call w.riteJ. _..,..._ .mea.-..~ar.oup" PJIL.name);
1• Get tl'Ml •• ot the n04e t~\iniM:ataect: ~..- JtoNrH•"> the message

group •t · -
call t'iild_ovner_(init_nod4Ltabl.-.t. •tni-t_noffi->me-nage", mgref);
}~i &ne::•.,:,.~ • extrai}-{ 1ni t_riOde_tabl.e.rer, •:~·o,de_:table. name") ;
call in1ti8t4LO=. ocept_node_name, aooept_pr_oc_name,

1n1t_n0de_nalle, P-JIL!l8llle, ._aaace •-)~
return;
end:

113

Appendix II Procedure MSG

1• SEND MESSAGE 7 /1176
sendmsg: entry(p_mg_name);
1• This procedure will aimulate the sending of a mesaage in the message

group specified by "p_Jlg_name" •/
1• If the message groupspecified by "p.Jll&....name" doee not exist, print

an error message and return •/
if find_entity_loc(mgref, •sys->measage", SYS_RU, PJl&...name, •message.name")

then do:
call write,..liat_("Invalid message group name! ", p_mg_name,

does not exist");
return;
end;

1• Verify that the process that should send the message is active •/
call find_owner_(init_procref, "sen<L.2roc->mesaage", mgref);
call find_owner_(nd11Loroc_ownerref, nodt/dbo/~·>proceas", init_procref):
if entity_class_name_{ndlll...Proc_ownerref) 11 "nocle_table"

then do;
t• The proceas that should send the aeaeage is not active. Get

ita name and !)ode and print an •rror Maaage. •/
call find_owner_{init_node

1
tableret, •ift1t_noae->message", mgref);

init_node_name = extract_(nit_node_tableref, "node_tab)le.name");
init_proc_name = extract_(init_prooref, •process.name" i
call write list ("Process", i~~~ ... , •at node ,

Tnit_node n&M, " is aot aotY••· · No message can be ");
call write_liat_(" - sent in meenge group ", P.JIL.name);
return;
end·

1• Add 1 to the number of messages sent in thil mess~e group •/
send_msg_numb = extract_(mgref, "message.num~et_aent•) + 1;
call alterT'(agret' •message .number_sent" 1 .. - senoaL.nUllb);
1• Find ou~ if the me89tlge must be sent oe'weee noaea I/
call find_owner_Cinit_nod~7tableref, "init_node•>meesage", ~ref);
call find_owner-r-(accepk_noae_tableref1 "aeoept_node->aesaage , mgref);
if init_node_taDleref = accept_node_t:ablerer

then do;
1• Send a control message stating that a messll§e has been sent in

the message group specified bf "~,((lg_name• I
call create_entity_Cmesaageret, ma•);
call create_attribute_(messagerer, Kmag.mg_name", "field", 12,

p_mg_,name) ;
call dcl_control_Jlleseage(messa.geref, •msg", cont.J1sg_numb);
call insert_(•ssagerer, "sys->control..JJiaaage11 , "last", SYS_REF);
1• Get the names or the ncxtea 1RY01Yed •1 ·
init_node_name • extraot_{i~it_node_.tal>leref, •node_.table.name");
accept_node_naae a extl'"ao~"lf(aoeept.;Jioete_t.ulerer,

•node_table. name) ;
call write liat-r{"COnt~ol •••aa• aumber ", cont_msg_numb,

lr ttenl; from •, init_nOde_naae, • to•, aocept_node_name);
call write,..list_(" representing a message in·a message•,

group");
return;
end:

1• If the next section of code is executed, then the message should be sent
between processes at the same node •/

1• The number of messages queued equals the number of messages sent because
there is no dela? across any node I

call alter_(mgref message.number_qd", send,_mSL,numb);
call write_list_(AA meesage has been sent in message group •, p_mg_name)j
1• If no process has accepted the message g~oup, return rather than see if

a process should be woken up •/
if Ainserte<L.(mgref, "rcv_proc->message")

then return·
1• If a process is waiting for this message, wake it up and let it "receive"

the message •/
call find_owner_(accept_procref, "rcv_proc->message•, mgref);
call find_owner_(ndm_proc_ownerref, "node/dbo/mg->process", accept_procref);
if ndm_proc_ownerref = mgref

114

Appendix II Procedure MSG

then

return:
end MSG:

do;
1• Wake up t1e process pointed to by "accept_procref" •/
call remove_ aocept_prooref, "node/dbo/mg->prooess");
call insert_ aooept_proorer, "node/dbo/mg->process", "first",

aocept_node_tableret);
1• "Receive• the messag' •/
rcv,..msg_numb = extract_(mgrer, "message.number_rcvd") + 1;
cali alter_(mgrerL "message.number_rcvd", rcv_ms~numb);
1• Get the name or the process that was awakened I
accept_node name = extract,,.~accept_node_tablerer,

"iiode_table.name ;
accept_proo~ame = extract_ accept_procref, "process.name");
call write_list ("Process", accept_proc_name, "at node",

accept node name, "has been awakened upon");
call write_list_T• - receipt of a message in message group",

end;
p_mg_name) ~

115

ll>pendiJ: II Procedure OP_CON

J~
OP CON: procedure;
/.-"This procedure contains subroutines which create an operator connection,

allow the operator to send messages over the connectioni allow the
operator to receive messages over the connection . and a low the
operator to report it8 status {active or bloekedJ with respect to the
operator connection. The following user visible tuhctions are included:

CREATE OPERATOR CONNECTION
OPERATOR MESSAGE
OPERATOR STATUS
RECEIVE OPERATOR MESSAGE •/

dcl con_opref
dcl eos
dcl ndlll...J)roc_ownerref
dcl node ref'
dcl node_tableref
dol number qd
dcl obplre?
dol op_conref
dol opref'
dol p_oon_name
dcl p_oon_node_na111e
dcl p_op_name
dol p_op_node_name
dol p_process_name
dol procesa~name
dol proc_nooe_name
dol procrer
dcl p state
dol tablerer
dcl write_list_
Jinclude DDM_aervilroutines:
linclude ADT_prim tives;

fixed bin{17);
bit{1);
fixed bin~17~ :. fixed bin 17 ;
fixed bin 17 :
fixed bin·
fixed bin!17~; fixed bin 17 ;
fixed bin 11 ;
oh. ar •1; char • ;
char • ;
char • ;
char- • •
chat' 12);
char 12);
fixed bin(17):
char(•)·
fixed blnC17)· .
entry opti<malvariable);

t• CREATE OPERATOR CONNECTION 7/9/76 •/
copoon: entry(p_con_name, p_con_node_name, p_op_name, p_process_name);
1• This procedure will create a connection between the operator specified

by "p_op_name• and the process specified by "p_prooess_name•, both
located at the node specified bv "p_op_nod:-name". The connection will
be given the name specified by bp_oon_name •/

1• If we have a duplicate operator connection name, print an error message
tnd return •/

it find_entity_loo(op, 9onref, "sys->op_oon•, SYS_REF, p_con_name,
"op_con.nameir)

then do·
cail writelflist_("Duplicate operator connection name.",

Command rejected");
return;
end;

t• If the node specified by "p con_node_name" does not exist, print an
error message and return •1-

if find_entity_loc(noderef, "sys->node", SYS_REF, p_con_node_name,
"node.name")

then do:
call write list ("Invalid node name:", p_con_node_name,

"ff'does-not exist");
return;
end; ·

t• Get the location of the node table for "p con node name" •t
eos = find_entity_loc(node_tableref, "node->node:table", noderer,

116

Appendix II Procedure OP_CON

p_oon._node_name, "node_table.name"):
1• If the node is unaware of the existence of the operator, print an

error meaaage and return •/
if find_entity_loo(opret. •node->operator", node_tableref, p_op_name,

"operator.name•)
then do·

oail writelFlist_(•Invalid operator name:", p op_name,
does not exist at node", p_con._noCfe_name);

return;
end;

t• If the process specified by "p_process_name" does not exist at the
node specified by •p_oo1L.Dode_name•, print an error message and return •/

if find_entity_loc(procref, •node->proce,s•, node_tableref,
p_procesa_name, process.name•)

then do;
call writelFlist_(•Invalid process name:•, p_process__name,

does not exist at node", p_con._node_nameJ;
return;
end;

1• If the process specified by "p_process_name• is not active, print an
error message and return •1

call find_ovner_(nd11L.Proc_ownerref, •nodeidbo/mg->process•, procref};
if entity_class_name_Cnd'-J)roc_ownerref) = •node_table"

then do·
cail writewlist_(•Invalid copcon command. Process", p_process_name,

is not active•);
return;
end;

1• Create an entity for an operator connection and insert it into the
proper sets •/

call create_entity_(op conref, •op con");
call create_attribute_Top_conref, 1Fop_con.name•, "field"! 121 pvcog__n(lllle);
call create_attribute :Cop conret, •op con.number_qd", •r eld , ~ •o•J;
call create_relationaliip_Iop_conref, 1Fprooeaa->op_con• •member"J·
call create_relationship_ op_conret, "operator->oo_oonA, "member•);
call create_relationship_ op_oonref, •ays->op_cont· •member")•
call create.J'."elationahiP. op_conrer, •node/dbo/mg-)prooess"f *owner•);
call insert_lop_conref, 1Fprooeas->op_con• "first• procrefJ;
call insert_ op_conref, •operator->oi_coni, •tirstA, opref);
call insert op_conref, •sya->op.._con "first", SYS_RBF>;
call write_Tist_(•Operator connection', p_oon._name, "has been established"};
return;

117

Appendix II Procedure OP_CON

7113176 ., 1• OPERATOR MESSAGE
oomsg: entry(p_oon_name) ;
1• This procedure will cause a message to be sent rrom an operator to a

process over the operator connection specified by "p_coq_name". It a
process is waiting tor this message, it will be avaleened and given
the message, otherwise the message will be queued. Any OBPL's that
were waiting tor state information about the operator with respect to
this operator connection will be discarded since the operator is active •/

1• If the operator connection specified by •p_oon_name" does not exist,
print an error message and return I/

if find_entity_loc(op_c9nrer, •sys->op_con•, SY$_REF, p_con_name,
"op_con.name•)

then do;
call write_list_("Invalid operator connection name:•,

p_con_name, "does not exist•):
return:
end;

1• Discard any OBPL's that were waiting for state information from the
operator that sent the message I/ •

~:it ~l~~-tr~:r:~gg~r~ar:0e~~=~~i~~~~og~~:: gg-r~~~r:~~);
do while eos);

call remove (obplrer •operator->obpl");
call find_fTrst_(obpii-er, •operator->obpl•, opref, eos);
end:

1• If no process is waiting for the messaget queue it an return •/
if empty_(op_conrer, "node/dbo/mg->process•1

then do:
null'lber qd = extract_(op conref, •op_con.number qd") + 1;
call aTter_(opTconrer, Top_con.number_qd", number_qd);
call write lis~-r("No proces' is waiting for the message,•,

Tso i~ is queued">;
return:
end; ·

1• A process is waiting for the message so we must wake it up •/
call find_first_(procref, "node./dbo/mg-)proc,ss•, op_conrer, eoa);
call remove (pro9rer •node/dbo/mg->process">;
call find_o'Wner_(tabierer, "node-)proceae•, procrer)·
call insert_(procrer, •node/dbo/mg->process•, "first*, tableref);
1• Get the name or the process that was awakened •/
process name = extract_(procref, •procesa.naae•);
proc_noae_name = extract_(tablerer, •node_table.nmne•);
call writeTlist_(procese_pame, •at node", pl"OCLJ!ode_name, "has been•,

awakened upon">;
call write_list_(• receipt of a message over operator connection",

p_con_name) :
return:

118

f
Appendix II Procedure OP_CON

t• OPERATOR STATUS 7/14/76 •/
ovstat: entry(p_op node_name, p_op_name, p_state, P. con_.name);
I This procedure will take tne aporopriate action when an operator

reports that it is "active" or iwalting" •/
1• If the node specified by "P- op_node_name" does not exist, print an

error message and return ·~
if fin<L.entity_loc(noderef, "sys->node", SYS_REF, p_op_node_name,

"node.name")
then do;

call write
11
Jist_("Invalid node name:", p_op_node_name,
does not exist");

return;
end;

1• Get the location or the node table for the node specified by
"P op node name" •/

eos =-fin<L.entit~7loc(tableref, "node->nod~_,.table", noderef,
p_op_noae_name~ "node_table.name"1; .

1• if the operator speoi~ied by "p_op_name" does not exist at the given
node, print an 9rror message and return •/

if find_entity_loc(oprer~ "node->operator", tablerer, p_op_name,
"operator.nm1e•)

then do;
call write list_("Invalid operator name:", p_op_name,

"ldoea not exist");
return;
end;

1• If the operator is active, we can discard all OBPL's that desired this
state information.\ and then return •/

if p_state = "active
then do·

cail find_rirat (obplref, "operator->obpl", opref, eoa);
do while (eosT;

call remove (obplref "operator->obpl");
call tind_tfrst_Cobpirer, "operator->obpl", opref, eos):
end:

call writeirl~~~~:tl~nog~;~sb::~t~~c~~e~~1;given state",
return:
e~d;

if p_state = "waiting"
then do·

cail write_.list ("Invalid state. An operator can only be",
•active or waiting•);

return;
end;

1• If the operator connection specified by "p_con_.name" does not exist,
print an error message and return because one can not wait for a
message over a non_.existent operator connection •/

if find_entity_loc(op_cpnref, "sys->op_con", SYS_REF, p_con_.name,
"op_con.name"J

then do·
cail write_list_("Invalid operator connection name:",

p_con_name, "does not exist");
return:
end:

1• If the operator specified by "p_op_name" is not involved with the
operator connection specified by •p_con_.name", print an error message
and return •/

call find._owner_(con_.opref, "operator->op_con", op_conref):
if opref = con_.opref

then do·
cail write._list_{p_op_name, "at node", p_op_node_nameA

"is not associated with operator connection ,
p_con_.name);

return;
end;

call write_list_("We will now check for deadlock involving the given",

119

Appendix II Procedure OP_CON

"operator");
call write_list_(" and operator connection");
1• If the process that can send messages over the operator connection

specified by "P oon·name" is active ttave i• no deadlock so
discard all OIPt's tbat requested t~e given state information •1

call find_owner_(procref, "process->op_con• op_conref);
call find_owner_(nd11LProe_ownefTef, •n~/dl,o/mg~>procees", procref):
if entity claas_name_{pdm nroc_ownerref} = "node_table• then-do: ~ ···-

call f1nd_f1r•t (obplref, "operator->obpl", opref, eos);
do while (eoaT:

call remove (obplref "operator->obpl");
call firw!_t'Il"St_(obplret, •operator->obpl", opref, eos);
end;

return;
end;

1• If there are no OBPL's waiting for state information about this
operat9r,. create an OBPL with the opeNtof' as the only process entry •1

if empty_(opref, "operator->obpl") •
then do: · ' .

call dcl__obpl(obplref1 p_op_n&de~.. , ••, "op_Jllsg");
call dol..,.ProQ_entry(oo~lref, p_o !Jlode_nae, P. op_name) •
call insert_{obplref, operator- ot>pl•, "firstT, opref);
e~: .

1• Find out the name of the process that ean eend the message the
operator desires •/

process_nue = extraot_(procref, •proce•a.name•)·
1• Expand each OBPL that required state 1nfC>r111atlon about the given

operator *I •
call find [irst_(obplref, "operator->obpl •, otn-et, "eos);
do while T eos);

1• Remove tht: OBPL from the set belou:ing to t;tie given operator •1
call remove_Cobplref, •operator->o•,11f);
1• Check if we have a d•adlock •/
call cbeck_for_deadlook(Obplref, p..;..e>p~. ' ame, process-r~ame, eos);
1• It eos • 1, tbea a deadlock was ··nol' ctneoted, so we anould add a

resource to tne OBPL and then expand .u. • / if eos .· ··· · · ·
then do· · · ·

cail obpl_add_resouroe(obplr•f• ndlll.J>roc_ownerref,
p_op node_name, eoa ;

t• If eos = 1 then the re80Ul"ce the process is waiting for
is in the same node as th• prooeea, so we can continue
to expand the OBPL •/ · ·

if eos
then call exp_obpl(obplret, p_op_node_name);

end;
1• See if there are any more OBPL's to t>t auined •/
call find_tirat_(obplref, •operatoP->obpl•, oprer, eos);
end;

return;

120

Appendix II Procedure OP_CON

t• RECEIVE OPERATOR MESSAGE 7 /13176 •/
rcvopmsg: entry(p_con_name);
1• This procedure will simulate the receiving of a mess~e by a process

over the operator connection specified bv "p_con_name •/
I* Ir the operator connection specified by 'p_con_name" does not exist,

print an error message and return */
if find_entity_loc(op_cpnrer, "sys->op_con", SYS_REF, p_con_name,

"op_con.name"J
then do·

cail write~list_{"Invalid operator connection name:", p_con_name,
"does not exist");

return;
end;

1• Get the name and node of the process that should receive the message •/
call find_owner_(procrer, "process->op_con", on conref);
process_name = extraot_(procrer, •process.name'};
call find_owner_(tableref, "node->process"1 grocref)i
proc node_name = extract_\tableref, "node_~a le.name•);
l* If the process is not active, print an error message and return */
call rind_.owner_(ndllLJ)roo_ownerref, "node/dbo/mg->process", procref);
if entity_class_name_Cndiq,_proc_ownerref) ·= "node_table"

then doi·
ca l write_list_{•Process• process_name, "at node",

proc_node_name, ~is not active. No message can be");
call 'Write_list_(" received over operator connection•,

p_con_name) ;
return;
end;

1• Find out if the message can be received, or if the process must be
blocked •1

number qd = extract_(op_conref, "op_con.number_qd");
1 f number _qd > 0

then do;
1• Remove one message from the queue •/
number qd =number qd - 1;
call aTter_(op-rconref, •op_con.number qd", number-.:rqd);
call write ... Jis1'_(prooess_name, "at node•, proc_nooe_name,

"has received a message");
call write_list_(• over operator connection•, p_con_name);
return;
end;

else do:
1• Block the process and initiate processirur of an OBPL •/
call remove_(procref, "node/dbo/mg->process-W):
call insert_(procrer, "node/dbo/mg->process", "first",

op conref);
call write_1Tst_(11Process•1 process_name1 •at node"~)

proc_node_name, is blocked wa ting for a ;
call write_list_(• message over operator connection",

p con_name) :
call initiate_obpl(proc_node_n{lllle, process_name, proc_node_name,

p_con_name, "op_msg11 J;
return;
end;

end OP_CON;

121

Appendix II Procedure RCV_CM

'~ RCV_CM: procedure:
1• This procedure is a oolleotion or subroutine• which will accept

s control message and take the appropriate action. The following user
visible function is included:

RECEIVE CONTROL MESSAGE
The following s~p~ routines are included:

PROCESS MESSAGE
PROCBSS 08PL PASS
PROCESS •PROC&SS TERMINATION"
PROCESS RESOURCE GRANT
PROCESS RBSOURCE RELEASE
PROCESS RBSOU•CE REQUEST . I/

dcl accept_node_ntUDe
dcl acoept_node_tableref
dcl accept_proc_n8llle
dcl aocept..J>rocrer
dcl acceea:type
dcl cont.JDsg_numb
dcl cont_msgref
dcl cont_meg_type
dcl dbo_n1111e
dol dbo_node_n&11e
dcl dbo_noderef
dol dboref
dcl dbo_tableref
dcl eos
dcl mg_name
dcl mgref
dcl ndm_proc_ownerref
dcl obplref
dcl p_cont_msg_nw.ab
dcl pJDsgrer
dcl p_obpl_passrer
dcl p_rea_grantret
dcl p_res_relref
dcl p_res_reqret
dcl process name
dcl proc_node_name
dcl proc_noderef
dcl procref
dcl proc_tableref
dcl · qd_msg_numb
dcl rcv_msg_numb
dcl rcv_node_name
dcl stL.aS11tref
dcl write_list_
jinclude DOM serv routines:
jinclude ADT:J>rimTtives:

cbar(12);
fixed b1n(17);
char(12);
fixed bin(17):
ehar(9)•
fixed bln·
fixed{ btnt17); e.har 20 ;
char 12 ;
cbar 12 ;
fixed bin{17}; fixed bin 17 ;
fixed bin 17 :
bit(1)· '
char(12);
fixed bin{17J; fixed bin 17 ;

~~=·'~ft 17 ;
fixed bln!17l; fix-ed bin 17 :
fixed bin tT :
fixed bin 11 :
fixed bin 17 ;
char(12 ;
obar(12 :
fixed bin{17J; fixed bin 17 ;
fixed bin 17 ;
fixed bin;
t'ixed bin;
char"(12) :
fixed binC 11> •
entry optionslvariable);

/ 1 RECEIVE CONTROL MESSAGE 6/15/76 •/
receive_control_message: rcvcm: entry(p_cont.JDsg_numb};
1• This procedure will verify that the control message which has its number

specified by "p oont.JDsg_numb" has been sent, but has not been received.
The procedure wTll then determine what type of control message it is, and
the appropriate subroutine will be callea to act on the message. •/

call find_firet_(cont_msgref, "eys->oontrol.JDessage", SYS_REF, eos);
I* Convert the control message number from a character string to a numeric

value */
cont_msg_numb = p_cont_msg_numb:

122

Appendix II Procedure RCV_CM

t• Find thf control message with number specified by "p_cont_msg_numb" •/
do while (eos) ;

if extract.-:1.Ccont_msgrer, "controlJDessage.number") = contJDsg_numb
then uo:

call
end;

t• Remove the control message from the set or control messages
so that this control message will not be received a second
time •/

call remove_(oont magref, "sya->control_meas~e");
t• Find out what type or control message it is, and call the

routine that will take, the appropriate action •/
cont_mag_type • entity_claas_name_(contJDsgref);
if cont_mag_type = •mag"

then ao·
cail write_list ("Control message_number",

D cont_Jllsg_numb, "representing a message",
fiTn a ~ssage group•);

oall write_list_" h's been received");
call process_msg contJDsgref);
return;
end:

if cont_msg_type = "obpl_pass"
then do·

cail write_list_("Control message number",
n-rcontJDsg_numb, •representing an OBPL",
fi'nas been received."J;

call process_obpl_pass(contJDsgref);
return;
end;

if cont_msg_type = "res_grant"
then do·

oail write_listT("Control message number",
n_oon~_msg_numb, "reeresenting a remote",
~resource allocation J;

call write list (" has been received"):
call proce'is_re'i_grant(contJDsgref);
return:
end; ·

if cont_msg_type = "res_rel"
then do·

cail write_list ("Control message number",
n_oont_Jllsg_numb, •representing a remote",
hresouroe release"):

call write list (" has been received");
call prooe'is_rei_rel(contJDsgref):
return;
end;

if cont_msg_type = "res_req"
then do·

cail write_list_("Control message number",
n_oontJDsg_numb, "representing a remote",
firesource request");

oall write list (" has been received");
call process_res_req(oont_msgref);
return:
end:

end:
find_next_(cont_msgref, "sys->control_message", eos):

1• If •p~cont_msg_numb" didn't match any control message number, then we
should print an error message and return •/

call write,..list_(p oont_msg_n\Jlllb, n is not a valid control message number.",
" Commana rejected•);

return:

123

Appendix II Procedure RCV_CM

1• PROCESS MESSAGE 7/1/76 */
process_msg: entry(p magref):
1• This procedure will' receive a message in a message group. It a process

is waiting tor this message, it will be woken up, otherwise the message
will be •Queued" •1

1• Get the name and location of the meaaact 81'"0UP •/
ll(Lname = extraet_(p_msgrer, "mag.mg_n-"J;
eos = fin<lw:entitJ_loc(mgrer, "sys->messege•,. SYUIF, mg_name,

message.name•);
t• Acknowledge receipt ot the message by adding 1 to the number of messages

that have been queued in this message group •/
qd msg_numb = extract_ {9gref, •message. number _qcl") + 1 ;
ca'Il alter_{mgret_, ._saage.number_qd•, qcl,Jl9L1tab);
t• If no proc9as nu accepted the messac. aroutt, Nturn •/
if inserted_(mgref, •rev_proc~>message"> ·

then do;
call writeTlist_{"Message group", mg_name, "h's not been•,

accepted. Tlte message is queued.");
return;
end;

1• Get the name and node of the process that can receive the message •/
call find_owner_{accep.t__proc;ret', •rcv__proc ... >aeasage•, mgref);
accept__proc_name = extract (accept__procrer, •process.name•);
call find_ovner_(accep11_.node_tablere~~ "ac~Uod•·>-eage•, mgref);
accept_node_name = extraet_(aecept_noae_tableret, •nocte_tal:>le.name•);
1• Keep the message queued if the pl'"oceea ia aot waiting tor it. Otherwise

wakeup the process. •1
call find_ovner _{ndrJ-lroc_ovnerref, "node/dbo/1111->process•, accept__procref);
tr ndm__proc_ovnerret = mgr.et

then call vrite.~.list_(•No oro.cess is waiting for the message,•,
"so h ia queued"> :

else do·
cail remove_Caceept__procret, "node/dbolmg->process•):

return:

call inaert_{accept_orocref, ·~o~/dbo/mg->process•, "first•,
acoep-t_ncXre tableref > •

rev msg_numl) = extracL(mgref, •-~.aumber_rcvd") + 1;
cal'I alter_{mgref" "message.number rcvd", rev_msg_numb);
call vrite_list-r(Process•, accept_pr~name 1 " at pode •,

accep~ node_name, "has been avakenea upon">;
call write_list_T• receipt ot a ••MS• in message group•,

mg__name) ~
end:

I* PROCESS OBPL PASS 6/24/76 •/
process_obpl__pass: entry(p_obpl_passret');
1• This procedure will allow a partially expanded OBPL to be "received" by a

node and then be expanded as much as possible within that node •/
I* Get the location of the OBPL entity that has been •passed" between nodes.

We need not check •eos" because we know the desired entity exists. •t
call find_first_(obplref, "obpl_pass->obpl", p_obpJ......passref~ eos);
I* Get the name of the node receiving the control message. •/
rev node_name = extract_{p obpl_oassref, "obpJ......pass.dest_node_name•);
1• Remove the OBPL from thTs control message so that we can send the expanded

OBPL in another control message if necessary •/
call remove_(obplref, "obpl.....pass->obpl");
1• Expand the OBPL as much as possible in the receiving node •1
call exp_obpl(obplref, rcv_node_name);
return=

124

Appendix II Procedure RCV_CM

I* PROCESS RESOURCE GRANT 6/15176 •1
process_res_grant: entry(p_res_grantref)r
I* This procedure will wake up a process and give it access to a resource as

speciried by the remote resource grant control message pointed to by
"P. res_grantret"' */

I* Get the names or the process, resource and nodes involved •1
process name = extract_(p res_grantref, •res_grant.proc_name");
proc_node_name = extract_Tp_res_grantref, •res_grant.proo_node_name");
dbo_name = extract (p_re,_grantref, •res arant.res_name");
dbo node name = extract (P. rea_grantrer,--.res_grant.res node name•);
1• "Pind the locations o? tlie entities for the process, resource and their node

tables within the node specified by "proc_node name". Note that we need
not test •eoa• because we know the names placed in the control message
represent existing entities. •/

eos = find-entity_loc~pro~noderef, "sys->node", SYS_REF, proc_node_name,
"node.name• ;

eos = find_entity loo proc tablerefi •node->node_table", proc_noderef,
proc_nOCle_npe, Tnode tab e.name•);

eos = find._.entlty_loc(procref, Tnode->process", proc_tableref, process_name,
"process.name•);

eos = find__entity_loc(dbo._tablerefi "node->node_table", proc_noderef,
dbo node_name "node tab e.name");

eos = find entity_loc(d6oref, Ynode->dbo", dbo_tableref, dbo_name,
irdbo.name•):

1• Unblock the process •/
call remove_(procrer, •node/dbo/mg->prooess");
call insert_(procref, •node/dbo/mg->process", "first", proc-:rtableref);
t• Give the process exclusive or shared access to the dbo, aepending upon the

type of access that was requested. •/
if extract (procrer, •proceaa.access_type") = •exclusive"

then do;
t• Grant the process exclusive control or the database object •/
call insert (dboref, "proceas->dbo•, "first", procref);
call vrite_Iistr(process-rname, •at node", proc_node_name,

"has oeen gran~ed exclusive use of")·
call vrite_list_(" ", dbo_name, "at node It, dbo_node_name);
return;
end;

else do;
1• Grant the process shared access to the database object •/
call dcl_dbo stt_asmt(s}L.aamtref);
call insert_Jsh...asmtref, "dbo->dbo sh_al!llllt", "first", dboref);
call insert sl\.:.:.al!llltrer, "process-)dbO_sl_asmt", "first", procref)~
call vrite..,Jist't:"(prooess_name1 "at node", proc_node_name,

whas oeen granted snared access to•)·
call write_list_(" ", dbo_name, "at noden, dbo_node_name);
return;
end;

125

Appendix II Procedure RCV_CM

t• PROCESS RESOURCE RELEASE 6/15176
process_res_rel: entry(p_res_relref);
1• This procedure will release a resource from control by a remote process,

as specified in the reaource releaae ooiitrol message. If possible,
additional prooeaau vill be reaaove4 troa tbe tor the database
object and will be granted ac~ea• to the datalMiae object •t

t• Get the names or tlti process, resource .and nockt.a in¥Olved •1
process_name = extract_{ptr.e~elref, •r~l .• ~·· .· :...name");
proc_node_name = extract_ p~relref, "'r~.. . _name•);
dbo_name = extrac~Cp_rq_. relrer, ."res_rel •. w.tt_, _n .. • ;
dbo node_name = ex~ract-:(P. re._relref, ~rea_.rel, ... deflt,._.node_name");
1• Find the locat.io.na o? tne • .. ntitl•s for .tJa«t. ·.~· .:ouroe and their

node tables vit~li ~ ftQde ·•"Qi tied '" " ·· ·". tlote that we
do not test "eoa beoauae we know the .aame• ·f> . ·.La the resource release
control message ~sent existigg entitJ.••·· . I .

eos = find entity_loe.4bo_noderer, "sys->node*, SYS_REF, dbo_node_name,
--Wnode.name" • ·

eos = fincLentity_l0o dbo._tableret
1

"node->node_table", dbo_noderef,
:clbo no<le_name "node tab e. name•) ;

eos = find entity_loc(dborer, Tnode->dbo", ctbo_tabl-erer, dbo_name,
-irdbo.name•) • .

eos = find_entity_loc(p.roc,..tablerefi "node->node_table", dbo_noderef,
proc_.nOde_.ntal!, "·node tab e.,oame");

eos = find_entityJ.oc{procrer, Tnode•>t>rooee••~ proo_:tableNl',
proce•r nae, "~a.a.e"J·

call write_list_ <Tbo__mme1 at node", di>o~ name, "has been released by");
call write list_ " ._ proceaa_name, •at ftode.•, ,proc__nocie_aaM);
t• Check 17 the process haa exoluaiy• OOAt.POl or t!M database ·object •t
if inserte<L(dbarer, "'prooeaa->dbo")

then dO:
t• Release the database object .a:ad tdw1 ..-ant .at least one other

process access to the database object it' any processes are
gueued for it •/

cal!- remoy'7(dbore.f... •prooess-><tbo");
if empty_,uborel', •no<ie/dbo/mg->"'°oeas")

then c•ll reDL.proc_fr°"-...Q¥eUe(dbore1', dbo_tableref);
return; 1

end;
else do:

t• Release the database object from this shared assignment, and if
there are no other processes currently haying shared access to
the data~ase object we can grant another orooeas access to the
database object if any are queued tor it •t

call find_t'irst_interseotiol'L.(slL,aamtret1 _~process->dbo_sh_asmt", procrel', "dbo->dboJh...;.amt", doorer eos);
call delete_entit~~~sh_a811tref1 9 dbo_iltt_a81lt11);
if member_couft_(doorel', "dbo->db<Ll!Jh...•amt•) = O

then if empty_(dbOrer, "node7dbo/Jpg->process•)
then call rellLJ)roc_fr011L.queue{dboref, dbo_tableref);

return:
end; ·

126

Appendix II Procedure RCV_CM

I* PROCESS RESOURCE REQUEST 6/15176
process_res_req: entry(p_res_reqref);
I* This procedure will process a request for a resource from a remote

process, as specified in the resource request control message. If
the resource can be assigned, it will be and a control message will
be generated to that effect. Otherwise the process will remain blocked
until the resource becomes available. •/

I* Get the names or the process, resource and nodes involved */
process name = extraot_(p_res_reqrer, •res_req.req_proc name•)·
proc_node_name = extract_Cp_res-.rearer, "res_req.req_nodeTnameb);
dbo_name = extract (p_res_reqre1, dres_req.dest_dbo name•,;
dbo node name = extract (p rea_reqref, "res_req.dest_node name•);
I* 'find the locations o? tlie entities for the process, resource and their

respective node tables within the node specified by "dbo_node_name". If
the node is unaware or the existence of the process, create a local entity
tor that process. e do not have to test eos because we know the entities
for the nOde tables and the resource exist because the names were placed
in the resource request control message •/

eos = find entity_locCdbo_noderef, "sys->node", SYS_REF, dbo_node_name,
""node. name" l ·

eos = find
7

entity_loc(dbo tablerefi "node->node_table•, dbo_noderef,
abo_node name .Tnode tab e.name");

eos = findTentity_Toc(d~oret, Tnode->dbo", dbo_tableref, dbo_name,
dbo.name•)·

eos = fin<L.entity-:rloclproc tablerefi "node->node_table", dbo_noderef,
proc_nooe_name, Tnode tab e.name•);

if find_entity_loc(procref, •nc:Xle->process", proc_tablerer, process_name,
"process.name•)

then do;
I* Create a "local" entity for the process, since one does not

already exist */
call dcl_process(procref, process_name)·
call insert_(procref, "node->process", ftfirst" 1 proc tableref);
call insert_(procref, "node/dbo/mg->process", "firstlr,

proc_tableref) :
end·

I* Determine what type of access is desired */
access_type = extract_(p_res_reqrer, "res_req.access_type");
1• Check if the database object miaht b~ available for assignment */
if iru1erted_(dboref, •process->dboW) I empty_(dboref, "node/dbo/mg->process")

then do: /*Block the process if the database object has been
assigned to another process for exclusive use or
if other processes are currently queued for the
database object */

call alter_(frocrefL "orocess.aocess_type", access_type);
call remove_ procrer, hnode/dbo/mg->process"):
call insert procref, •node/dbo/mg->process•, "last•, dboref):
call write_Iist ("Resource not available, process remains blocked");
call initiate_oopl(proc_node_name, process_name, dbo_node_name,

return:
end~

dbo_name, "dbo");

I* Check if the request is for shared access */
if access_type = "shared"

then do; /*Give the process shared access to the desired
database object */

call dcl_dbo sh_asmt(sh_asmtref);
call insert_Tsl_.asmtref, "dbo->dbo sl'l_asmt•, "first•, dboref);
call insert :Csl'l_asmtref, "process-)dbo_sh_asmt", "first", procref);
call write Tist_(process_name, "at node", proc_node_name,

"W"!s granted shared access to•):
call write_list_(• •, dbo_name, •at node", dbo_node_name):
call dcl._r911Lres_grant(dbo_node_name1 dbo_name, proc_node_name,

procesl}. name, cont_JDsg_numo):
call write_.list_(TControl message number"~ cont_msg_numb,

"sent from", dbo_node_name "to" proc_node_name):
call write_list_(" representing this allocation•):

127

Appendix II Procedure RCV_CM

return:
end;

/*The next if statement will be executed if the request is for
exclusive use or the database object *I

I* ~heck if any process has shared access to the desired database object •/
if empty (dboref, "dbo->dbo_sh_asmt")

end

then do: /*Queue the process for exclusive use of the database
object because at least one other process currently
has shared access to the database object. •/

call alter_(lrocrefL "orocess.access_type•, •exclusive•);
call remove_ procrer, hnode/dbo/mg->prooess•);
call insert

1
procref, "node/dbo/mg->prooess", "last•, dboref);

call write 1st ("Resource is not currently available for•,
Texolusive use, prooeas•, process_name);

call write list (" at node", proc_node_name,
Trema'lns blocked");

call initiate_obpl(proc_node_name, process_name, dbo_node_name,
dbo_name, "dbo");

return:
end;

else do~ /*Grant the process exclusive use of the desired
database object. •/

call insert (dboref, "prooess->dbo", "first", procref);
call write Tist_(process_name, •at node•, proc_node_n8111e,

Tis granted exclusive use of")·
call write_list_(" •, dbo_name, •at node", dbo_node_name):
call dcl_rem_res_grant(dbo_node_name, dbo_name, proc-'node_name,

process name, cont_msg_numo);
call write list_(Tcontrol message number", cont_msg_numb,

lfsent from", dbo_node_name "to• proc_node_name);
call write_list_(" representing this allocation•);
return:
end:

RCV_CM;

128

Appendix II Procedure OBPL

%~
OBPL: procedure;

t• This procedure is a collection of subroutines which act on
an OBPL and check for deadlock.
The followi11g support routines are included:

CHECK FOR DEADLOCK
COPY OBPL
EXPAND OBPL
OBPL ADD RESOURCE */

dcl eos
dcl first__procref
dcl message_numb
dcl mgref
dcl ndDL.Proc_ownerref
dcl newTobplref
dcl obp.1.__proc_name
dcl obpl__proc_node_name
dcl obp~roc_node_tableref
dcl obpl__procref
dcl ol(l_j)roc-ientryref
dol op_conrex
dol operator_name
dol opref
dcl p_copyref
dcl p_eos
dcl p_nd11LProc_ownerrer
dcl p_obplref
dcl p_process name
dcl p_proc_node_name
dcl p_rcv_node_name
dcl proo_entryref
dcl process name
dcl proc_node_name
dcl proorer
dcl proc_tableref
dcl rcv_noderef
dol res_name
dol res_node_name
dol rea_node_tableref
dcl resref
dcl res type
dol sn_'ismtref
dol write list
Jinolude DDM_serv_routines;
%include ADT_primitives;

129

bit(1);
fixed bin(17):
fixed bin·
fixed b1n!17~: fixed bin 17 ;
fixef b}n 11 ; char 12 :
char 12 ;
fixed bin! 171; fixed bin 17 :
fixed bin 17 ;
fixed bln 17 ;
ohar(12);
fixed bin(17);
fixed bin(17);
bit(1)·
fixed bin(17);
fixet bln(17): char 12 ; ·
char 12 ;
char 12 ;
fixed b}n(17);
char(12 ;
char(12 ;
fix. ed bin~17}; fixed bin 17 ;
r1xef b}n 11 : char 12 ;
char 12 ;
fixed bin(17);
fixed bin(17);
char(7) ·
fixed btn(17)·
entry optionslvariable):

Appendix II Procedure OBPL

1• CHECK FOR DEADLOCK 6/25/76 •/
check_for_deadlock: entry(p obplref, p_proc_node name, p_grocess_name, ~Teos);
1• This procedure will check if the process specified by p_process_name

and located in the node specified by "p_proc_node_name" already has an
entry in the OBPL pointed to by "p_obplref". If no such entrr exists
then one will be created and "preos" will be set to "1"b, ind eating that
there is no deadlock. If an en~ry alreadI exists for the process, we
have a deadlock and a message will be pr nted giving the processes
involved and "p_eos" will be set to "O"b indicating a deadlock has been
detected. •1

1• Get the location of the first proo entry in the OBPL •/
call find first (proc entryref "obpl::>proc entry" p obplref p eos):
1• For each proc_entry in the OBPL, check fr it matches the glven process.

Note that if we detect a deadlock, we will return from inside the loop
and p_eos will be 0. If no deadlock is detected we will exit the loop
before returning and p_eos will be 1, as desired. •1

do while (p_eos):
1• If we have a match with "p_process_name" and a proc_entr:r, we must

then check if the node name attribute matches "p_proc no~e name" •1
if p_prooess_name = extract_(proc_entryref, "proc_entry.prooe'is_name")

then if p~roc_node_name = extract_(proc_entryref,
proc_entry.node_name")

then do;
1• A deadlock has been detected, list all the processes

involved and return. •/
call write._list ("A deadlock has been detected."~

nThe ?ollowing processes are involYed:•);
eos = "O"b;.
do while (eos):

process_name = extract_(proc_entryr~f,
"proo_entry.process_name"J;

proc_node_name = extract_(proc_entryref,
"proc_entry.node_name");

call write list_(• "~ process_name,
lrat node ", proc_node_nameJ;

call find_prio)r_(proc_entryref, "obpl->proc_entry",
eos ;

end:
call write_list_(" End of deadlock list"):
return~
end;

I* Get the next proc_entry in the OBPL •1
call find_next_(proc_entryref, "obpl->proc_entry", p_eos)~
end~

I* No deadlock has been detected, so create a new proc_entry and have it
inserted into the OBPL •1

call dcl_proc_entry(p_obplref, p_proc_node_name, p_process_name):
return:

130

Appendix II Procedure OBPL

I* COPY OBPL 6/25/76 */
copy obpl: entry(p, copyref, p_obplref):
1• Tnis procedure will copr the OBPL pointed to by "p_obplref" and return

a pointer to the copy v a "p_copyref". The order of the OBPL entries,
and their attribute values in the copy will be identical to those in
the original. •/

I* Get the attribute values (resource information) from the OBPL entity
pointed to by "p obplref". •/

res name= extract Jp obplrer, "obpl.res name"):
res=node_name = extract-r-(p_obplrer, "obpl.res pode_name");
res_type = extract_(p ogplrer, "obpl.res_typelf'J;
1• Create an QBPL entity with the above attribute values •/
call dcl_obpl(p_copyrerJ res_node_name, res_name1 res_type);
message numb = extract_\p obplrer, "obpl.msg_numo"):
call alter_(p_copyrer, "oopl.msg_numb" message_numb);
1• Get the last entry in the OBPL pointed to by "p_obplref" •/
call find_last (old_proc entryref, "obpl->proc_entry", p_obplref, eos):
1• Copy ea2h O~PL entry T/
do while (eos):

I* Get the attribute values of the proc_entry pointed to by
"old_proc entryref" •/

proces~.,name-= extract_(old_proc_entryref, "proc_entry.process_name"):
proc_nooe_name = extract_(ol~_proc_entryrer1 "proc_entry.node name"):
I* Create a new proc_entry with the above a~tribute values and

insert it into the new copy or the OBPL. •1
call dc1-l>roc_entry(p_copyrer, proc_node_name1 process_name);
1• See il""there are any more proc entries to oe copied •/
call find_prior_(old_proc_entryre'?, "obpl->proc_entry", eos);
end!

return:

131

Appendix II Procedure OBPL

t• EXPAND OBPL 6/24/76 •/
exp obpl: entry(p_obplrer, p_rcv_node_name):
1• ~his procedure will expand the OBPL pointed to by "p_obplref". It will

be expanded as much as poxxible using the information available to the
node specified by "~_rov_node name" •/

1• Get the fully qualified name Tresouroe name plus the name of the node
in which it resides) or the resource which is controlled by or being
waited for by the last process to be added to the OBPL. (Note that we
add processes to the OBPL by inserting them at the beginning of the set •1

res_name = extract (p_obplref, "obpl.res_name");
res_node_name = extract_(p_obplrer, "obpl.rea~ode name");
1• Get the type of the resource ("message" or "dboT or "op_msg") •/
res_type = extract_(p_obplref, "obpl.res_type");
it res_type = "message"

then do~
I* The resource type is a message, therefore we know the process

that can send the desired message is in the node that is
expanding the OBPL. We will act accordingly. •/

1• Get the location or the entity t'or the messaae group from which
a message is desired. We need not test "eos11 because we know
the entity exists. •/

eos = tind entity_loc(m~rer, "sys->mesaage•, SYS_REF, res_name,
nmesaage.name11):

1• Get the number (within the message group) of the message
that is desired. •/

mess~e numb = extract_(p_obplrer, "obpl.matt...numb");
1• If' tliis number is less than or equal to the number of messages

~ent in this message group, then there is no deadlock. •/
if (message_numb) extract_\mgrer, •message.number_sent•))

then return;
1• Find the process that can send the desired message •/
call find owner (procref, "send__J)roc->~ssage• mgref);
I* Find out if the process is active. (If it ls active there

is no deadlock.) •/
call f'ind_owner_(ndlll_proc_ownerrer, •node/dbo/mg->process",

procref);
if entity_class_name_(nd11Lproc_ownerref) = •node_table"

then return;
1• Get the process name and check for deadlock •/
process_name = extract (procref, "process.name");
call checlL_for_deadlock{p_obplref, res_node_name, process_name,

eos);
1• If eos = 0 then a deadlock has been detected and we are done •/
if ("eos)

then return:
1• Add the resource that the process is waiting for to the OBPL •/
call obpl_add,_resource(p_obplref, ndlJl._J)roc_ownerref,

p_rcv node name, eos):
1• If eos = 1 then the resource the process is waiting for is in

the same node as the process, so we can continue to expand
the OBPL. •/

if eos
then call exp_obpl(p_obplref, p_rcv_node_name);

return~
end:

if res_type = "op_msg"
then do'.

1• The resource type is an operator message, therefore we know
the last process to be added to the OBPL is waiting for a
message from an operator at the same node. We will act
accordingly. •1

I* Get the location of the entity for the operator connection
over which a message is desired */

eos = find_entity_loc(op_conref, "sys->op_con", SYS_REF,
res_name, "op_con. name"):

1• Get the location and name of the operator who can send the
desired message •1

132

Appendix II Procedure OBPL

call find_owner_(opref1 "operator->op_oon", op conref);
ooerator_name = extrac~_(opref, "operator.nameT):
1• Check if the operator is already in the OBPL list •/
call cheolL_for_deadlock(p_obplref, res_node_name,

operator_name, eosJ;
1• I(eos = 0 then a deadlock has been detected and we are done 1 /
if (eos)

then return:
1• Queue the OBPL and request status information from the

operator •/
call insert (p obelreri •operator->obpl", "first", opref);
call write.Iist_(An O~PL has been queued waitipg for a status",

report from operator", operator_nameJ;
call write list (" at node", res node name,

TThe Involved operator connection is", res_name):
return:
end;

1• If the next section is executed, a database object is controlled by or
is being waited for by the last process to be added to the OBPL •/

1• Get the name "1d location of the last process to be added to the OBPL •1
call find_first_Cobpl._procref~"obpl->proo_entry", p_obplref, eos):
obpl__proc_name = extract (obp prooref, "proc entry.process_name")·
obpl_proc_node name= extract obpl._procref, "proc entry.node nameb).
/I Get the entlty locations for the oatabase object and its node table, and

the process and its node table within the noae specified by
"p_rcv_node_name•. We need not test "eos" in most cases because we
know the entities exist •/

eos = find entity_loc~rcv_noderef, "sys->node", SYS_REF, p_rcv_node_name,
lrnode.n•e" ;

eos = find_entity_loo obpl proc_node_tableref, "node->node_table",
rcv_noderef obpl:..Proc_node_name, "node_table.name");

eos = find_entity_loclres.._.node_tableref, "node->node_table", rcv_noderef,
res noae naipe "node_table.name");

eos = find_entity_Tocco6pl_orocrer, "node->process", obpl._proc_node_tableref,
obpl__proc_name, ll"J>rocess.name");

1• We must test "eos" to see if the node containing the resource
of the existence or the most reoentlI inserted process in the
it is not, we have no deadlock at th s time, so we can return

if' eos
then return:

is aware
OBPL. If
•1

eos = find_entity_loc(resref, "node->dbo", res_node_tableref,
res name, "dbo.name")·

1• Check if the resource is in the node that is expanding the OBPL •/
if res node_name = p_rcv_node_ilame

tlien do;
1• Verify that the process specified by "obpl_proc"name" is still

waiting for the resource specified by "res name •/
call find_owner_(ndDLJ>roc_ownerref, "node/dbo7mg->process",

obpl__procref);
if rearer A= nd11L..proc_ownerref

then return~
!• We must now add an entry to the OBPL for the process

that controls the resource specified by "res_name",
provided that the process is not already in the
OBPL. If there are n processes that have shared
access to the database object, then we must create
n copies of the OBPL and use a different copy
for each reader •/

if inserted_(resref, "process->dbo")
then do:

1• The database object is held for exclusive
use. Find the controlling process and
check for deadlock. •/

call find_owner (procref, "process->dbo",
resre?);

process_name = extract_(procref, "process.name")~
call find_owner_(proc_tableref, "node->process",

133

Appendix II

procref);
proc_node_name = extraot_(croc_tableref,

"node_table.name~>:
call find_owner

7
(nd11LProc_ownerref,

"node1dbo/mg->proeeaS- procref);
I* If the process is active and it is at the

same node as the resource, then we have
no deadlock. •/

if entity_class_name (ndm_proc_ownerref)
= "node_table" & proc_node_name = res_node_name

Procedure OBPL

then return;
call checlL_for_deadlock(p_obplref,

proc_node_neae, process_name, eos);
I* If eos = O, than a deadlock has been

d~tected and we are done •/
if (eos)

then return;
if proc_node_name = res_node_name

then do~
1• The process is in the same node as

the database objeot1 so we can
continue to expand ~he OBPL */

I* Add to th• OBPL the resource that the process
is waiti~ for •t

call obpl_ada_reaource(p_obplrer,
nd~roc ownerrer,
p_rcv noae name, eos);

I* If eos = 1 'then the reaource that was added
to the OBPl ia in the same node as the
process that ia waiting for it, so we can
further expand the OBPL •t

if eos
then call exp_obpl(p_obplref,

p_roY_node_name);
return:
end;

else do:
I* Send the OBPL to the node specified

by "proc_node name" •/
call dcl_obpl_cont_Jllsg(p_obplref,

proc_node_name, p_rcv_node_name) ;
return;
end:

end;
t• If the following code is executed, the database object

has n readers. We need to make n-1 additional copies
of the OBPL. Each time we make a copy or the OBPL,
we expand that copy as much as possible for the given
node and the process that we are associating with
this copy •/

t• Find a process that has shared access to the
database object •t

call find_first (sn_asmtref, "dbo->dbo_sn_asmt",
resref eos);

call find_owner_lfirst_procref, "procees->dbo_sn_asmt",
sh asmtref);

t• We will check for deadlock involving the OBPL and the
process pointed to bI "first_procref" after we check
for deadlock with al the other readers of the
database object. We will teherefore use the "original"
OBPL (rather than a copy) for this check •/

call find vext (sh_asmtrer, "dbo->dbo_sn_asmt", eos);
do while T eosT:

t• Find the process that has the shared access
represented by the dbo sn_asmt entity pointed
to by "sh_asmtref" •r

134

Appendix II Procedure OBPL

call find_owner_(procref, "process->dbo_sh_asmt",
sh_asmtref);

process_name = extract_(procref, "process.name");
t• Get the name of the node in which the process

resides •/
call find_owner_(proc_tableref, "node->process",

procrefJ;
proc_node_name = extract_(oroc_tableref,

"node_table.name~);
t• If the process is not active or if it is at a node

different from the node in which the resource
resides, then we must check for deadlock. •/

call find owner (ndDL.Proc ownerref,
-"node7dbo/mg->process", procref):

if entity_2lass_name_Cnd~roc_ownerref)
A= "node_table" l (proc_node_name = res_node_nameJ

then do:
t• Copy the OBPL and check for deadlock •/
call copy .. obpl(new""3"obplref, p-r:obplref);
call checll\._for_deaulock(new_ooplref,

proc node_name, process_name eos):
1• If eos = 1 then we must either continue

to expand the list or send it to
another node */

if eos
then if proc_node_name = res_node_name

then do;
1• Add to the OBPL the resource that

the process is waiting for •/
call obpl_add_resource(

new_obplref,
ndlll...J)roc_ownerref,
p_rcv_node_name, eos):

I* If eos = 11 then the resource that
was added ~o the OBPL is in the
same node as the process that is
waiting for itl so we can further
expand the OBP •1

if eos
then call exp_obpl(

new_obplref,
p_rcv_node_name):

end·
else cali dcl_obpl_cont_msg(

new_obplref,
proc_node_name,
p_rcv_node_name);

end;
1• See if there are any more readers of the database

object specified by "res name" •/
call tind_next_(sh_asmtref,-"dbo->dbo_sh_asmt", eos);
end:

1• Find the process name and the node in which it resides
for the process pointed to by "first_procref" •1

process_name = extract (first_procref, "process.name"):
call find_owner_(proc_tableref, "node->process",

first procref):
proc node_name "i" extract_(proc_tableref, "node_table.name"):
1• If the process is at the same node as the resource and

it is active, we need not check for deadlock. •/
call find_owner_(ndm_proc_ownerref, "node/dbo/mg->process",

first_procref):
if entity_class_name_(ndm_proc_ownerref) = "node_table"

& proc_node'--name = res_node_name
then return:

1• Check for deadlock and then expand the OBPL or send

135

Appendix II

it to another node */
call check_for_deadlock(p_obplref, proc_node_name,

process_name, eos):
if eos

Procedure OBPL

then if proc_node_name z res_node_name
then do·

cail obpl_add_resource(p_obplref,
ndmTproc_ownerref, p_rcv_node_name,
eos ;

return;
end:

if eos
then call exp_obpl(p_obplref,

p_rcv_node_name);
end·

else cali dcl_obpl._cont.JDsg(p_obplref,
proc_node_name, p_rcv_node_name);

1• The next section of code will be executed if the resource is located
in a node different from the one that is expanding the list •/

1• First check if the process is active. If it is active we are done •1
call find_owner_(ndDL.proc_ownerref, "node/dbo/mg->processA, obpl._procref):
if entity_class_name_CndDL.proc_ownerref) = •node_table"

then return~
1• Verify that the process specified bl "obpl_proc_name" still controls

the resource specified by "res_name •/
1• See if the process had either exclusive or shared access to

the database ob1ect specified by "res_name•. If it has neither,
we can return. I/

if (empty_intersectionj(obfl._procref, "prooess->dbo", res_node_tableref,

=~~~;!~~~~~o-~tt._=:~~I-;-1~;:~=~~t!~~~~g~~~={A))
then return·

1• Add to the OBPL the resource that the process is waiting for •1
call obpl_ad<L_resource(p_obplref, ndnt_proc_ownerref1 p_rcv_nodeTname, eos):
1• If eos = 1, then the resource that was added to ~he OBPL is n the same

node as the process that is waiting for it, so we can further expand
the OBPL •/

if eos
then call exp_obpl(p_obplref, p_rcv_node_name);

return:

136

Appendix II Procedure OBPL

I* OBPL ADD RESOURCE 6/24/76 *I
obpl_add_resource: entry(p_obplrer, p_ndm_proc_ownerref, p_rcv_node_name,

p_eos);
I* This procedure will be passed a pointer to a resource that the most

recently inserted process in an OBPL is waiting for. The procedure will
determine the type of resource that "p_ndDLJ)roc_ownerref" points to and
will insert information about this resource into the OBPL entity pointed
to by "p_obplref". If the resource is in the node specified by
"p_rcv_node_name", then p_eos will be set to 1 otherwise it will be set
to 0 and the OBPL will be sent to the node that contains the resource •/

if entity_class_name_(p_ndDLJ)roc_ownerref) = "dbo"
then do;

I* Get the database object name and get the name of the node in
which it resides •/

res name = extraQt_(p_ndDLProc_ownerrer, "dbo.name");
calI find_owner_(res_node_tableref, "node->dbo",

p_ndllLJ)roc_ownerref);
res_node name = extract (res node tableref, "node table.name");
call alter_(p_obplrer, lrobpl-:-res_type", "doo"); -
end;

if entity_class_name_(p_ndm_proc_ownerref) = "message"
then do;

1• Get the message group name and the name or the node from
which a message should be coming •/

res name = extract (p_ndDLProc ownerref "message.name");
calT tind_owner_(res_node_tableref, "inlt_node-)message",

p_ndm_proc_ownerref);
res_node name = extract (res node tableref, "node table.name");
1• Get the number or thi message Twithin tne message group) that

is desired and insert this into the OBPL •/
message numb= extract_lp ndm_proc_ownerref, "message.number_qd")+1;
call alter_(p_obplref, "oopl.msg_numb", message_numb);
call alter_(p_obplref, "obpl.res_type", "message");
end;

if entity_class_name_(p_ndDLProc_ownerref) = "op_con"
then do;

1• Get the name of the operator connection over which a message
from an operator is desired */

res_name = extract_(p_ndDLJ)roc_ownerref, "op_con.name")·
1• The resource (operator connection) is located entireiy in

one node, so the resource node name is the same as that of
the node processing the OBPL •7

res node name = p rev node name;
calT alter_(p_obpTrer-;- "obpl.res_type", "op_msg");
end;

1• Put the resource name and its node name into the OBPL •/
call alter_(p_obplref, "obpl.res_name", res_name);
call alter (pt:"obplref, "obpl.res_node_name", res node_name)l·
1• Check if" tne node can continue to expand the OBPL or if t must send the

OBPL to another node *I
if res node name = p rev node name

then p:eos = "1Tb; - -
else ao;

p eos = "0"b:
call dcl_obpl_cont_msg(p_obplref, res_node_name, p_rcv_node_name);

return~
end OBPL:

137

Appendix II Procedure REL

%·
REL: procedure:

1• This procedure contains subroutines which allow processes
to release resources and then assigns the released resource to a new
process 1r possible. The following user visible function is included:

RELEASE DATABASE OBJECT
The following support routine is included:

REMOVE PROCESS FROM QUEUE •/

dcl cont_msg_numb
dcl dbo_name
dcl dbo_node_name
dcl dboref
dcl dbo_tablerer.
dcl eos
dcl ndm__proc_ownerrer
dcl ownerref
dcl p_dbo_name
dcl p_dbo_node_name
dcl p_dboref
dcl p_dbo_tableref
dcl pnoderef
dcl p__process name
dcl p__proo_node_name
dcl process name
dcl proc_node_name
dcl procref
dcl ptableref
dcl res_rel_ref
dcl seo_node_name
dcl sh_asmtref
dcl tableref
dcl temp name
dcl write list_
%include DDH serv routines;
Jinclude ADT::i>rimitives:

138

fixed bin;
char(121;
char(12 ;
fixed b n(17);
fix•d bin(17);
bit(1);
fixed bin(17);
fixed binC1.7);
char(•);
char(•)·
fixed b:i.n~17~; fixed bin 17 ;
fixed bin 17 ;
char!•); char •) •
char 12S;
char 12);
fixed bin~ 17~; fixed bin 17 ;
fixed bin 17 ;
char(12);
fixed b1n(17);
fixed bin(17);
char(12) ·
entry options(variable);

Appendix II Procedure REL

I* RELEASE DATABASE OBJECT 6/2/76 */
release_dbo: rldbo: entry(p_proc_node_name, p_process_name, p_dbo_node_name,

p_d bo_name) ;
1• This orocedure will cause the process specified by "p__process name" (at

node hp_proc_node name") to release its control over the database object
specified by "p_dbo name" and located at the node specified by
"p_dbo_node_name" •7

1• Verify that the node specified by "p oroc node_name" exists •1
if find_entity_loc(pnoderef, "sys->nodelr, SYS_REF, p_proc_node_name,

"node.name");
then do·

cail write .. Jist_("Invalid process node name. ", p_proc_node_name,
does not exist");

return;
end·

I* Verify that the process specified by "p_process_name" exists at the node
specified by "p_proc node name• •1

eos = fin<L.entity_loc(ptableref, •node->node table", pnoderef,
p_proc_n9de name, "node table.namelr)·

if find_entity_locCprocref, "node=>process•, ptableref, p_process_name,
•process.name•)

then do·
cail write_list_(•Invalid process name.•1 p_process_name, "at node",

p_proc_node_name, "does not exist");
return;
end·

1• Verify that the node specified by "P. dbo node name" exists */
if find_entity_loc(dbo_tableref, "node-)nodi tab'Ie•, pnoderef,

p_dbo_node_name, "node_table.name"}
then do·

cail write_list_("lnvalid database object node name. ",
p_dbo_node_name, "does not exist.");

return;
end·

I* Verify that the database object seecified by "p_dbo_name" exists at the
node specified by •p_dbo_node_name and that the process specified by
"p_process_name" has access to it. */

I* Verify that the node containing the process is aware of the existence of
the database object •/

if find_entity_loc{dboref, "node->dbo", dbo_tableref, p_dbo_name, "dbo.name")
then do·

cail write list_("Invalid release. Process", prprocess_name,
0 at node", p_proc_node_name, "does no~ have");

call write_list_(" access to•, p_dbo_name, "at node",
p_dbo_node_name);

return;
end·

1• Verify that the process has access to the database object •1
if find_entity_loc(dboref, "proqess->dbo"~ procref1 p_dbo_name, "dbo.name")

& empty_intersection_(procref, process->dbo_sh_asmt , dboref,
"dbo->dbo_sh_asmt")

then do·
cail write list_("Invalid release. Process", p_process_name,

lrat node", p_proc_node_name, "does not have");
call write_list_(" access to", p_dbo_name, "at node",

p_dbo_node_name)j
return;
end;

1• Verify that the process is active •/
call find_owner_(ndDLP.roc_ownerref, "node~dbo/mg->process", procref);
if entity_class_name_(ndDLJ)roc_ownerref) = "node_table"

then do· '
cail write list_("Invalid release. Process "1 p_proce,s_name,

irat node", p_proc_node_name, "is not. active");
return;
end;

I* Check if the database object is at a node different from the one that

139

Appendix II Procedure REL

contains the proc1ss •/
if p_proc_node_name = p_dbo_node_name

then do:
1• Release the resource and send a resource release control message

to the node which contains the database object •1
1• Check if there are no more "local" processes queued for the

specified remote database object •1
if empty_(dboref, "node/dbo/mg-~prooess")

then do;

else

1• If the process had exclusive control of the database
object or if no other local process had shared access
to the database object, then we can delete all local
information about the remote database object
otherwise just "release" the shared access of the
process to the database object •/

if inserted (dboref, "proqess->dbo")
1-member_count (dboref, "dbo->dbo sh_asmt") < 2

then call delete_entity_(dboref, "dbo"};
else do;

1• Find the entitl for the involved dbo_sh_asmt
and delete it I

call find_first_J.nterseetion_(sh_asmtref J.
"process->dbo_sh_asmt", procrert
"dbo->dbo_shJsmt", dboret', eosJ;

call delete_enti ty:....(ah_asmtref, "dbo_sh_asmt");
end;

end;
do;
1• Release the database object from access by the process,

but retain other local ln~ol"lllation about the remote
database object •1

if inserted_(dboref, "procesa->dbo")

end;

then call remove_(dboref, "process->dbo");
else do·

cail find_first_intersection_(sh_asmtrefJ.
"prooess->dbo_sh_asmt•, procrert
"dbo->dbo_sh_asmt", dboref, eos1;

call delete_entity_(sh_asmtref, "dbo_sh_asmt");
end;

1• Create an entity for a remote resource release and the declare it
as a control message •/

call create entity (res rel ref, "res_rel")·
call create:attribute_(res_rel_ref, "res_rel.rel_pnode_name",

"field 12, p_proc_node name);
call create~attr!bute_(res_rel_re?, "res__rel.rel_proc_name",

"1ield" 12, p_process_name);
call create attribute (res rel ref, "res rel.dest node name",

"field" 12-; p_dbo_node_name) ;- - -
call create

2
attr1bute_(res-rrel__rer, "res__rel.dest_dbo name",

"1 ield", 12, P. doo_name); -

~!fl f~!e;~nf~~;~=~~~Tir::y;:}c~~{ro~::s~:i:•,co~la:~f;n~~~~EF);
call write Tist_("Contro message number"1r cont_msfl_numb,

lrsent from", p_proc_node_name, to", p_dbo_node_name);
call write_list_(" representing a remote resource release");
return;
end:

1• The next section will be executed if the process and database object are
located in the same node •/

1• Check if the process had exclusive control of the database object •/
if inserted_(dboref, "process->dbo")

then do;
1• Release the database object and then grant at least one other

process access to the database object it' any processes are
gueued for it. •/

call remove_(dboref, "process->dbo");

140

Appendix II Procedure REL

call write_liat_(•Proceaa", 2...Prooeaa_name 1 "at nod,",
p_proo..,.pocle_nue, baa .i.leiaact :.a&tat.ae");

call write_11Cotc...l:CS .)-object•, 1)..:_dboJYdle, "at node",
if .. empty_,~, ~df>o/1111~?-Pt'OCflU~)

then call rfllL.Pl"OC..Jro1LqueuetdbOrer, dbo_tableref);
return:
end; ·

else do;
1• Release the database object from this shared aaaignment, and if

there are no 9tllar ·Pl'~MS ou1T91\. '.·'1:fg .. ~ .. ins.· . abared access to
~:;.:.i:~· .::~fr.:•. :.fu:!.a ... , • 1 ... ,J7cw aooeaa to the

call fi.ndJi,.. :·. •.je!·· '.~ .. '.{---.•~-~a&t~dbo_sb_asmt", •~~·. -ittt eoe),
call. del•te-81l_ ti I• ... liiBret. -~...._.~•1 · ···
call wr1te_r1.•• .. ·.c•frooea.. it';.~·~~'•' noc1,•,

,1>,f~ - '' 8Utlbaae• 1 •
oall writ•,-..Jfti..T"'" - . ': 'ot>- ot .- • .:.d~• t node",

1r ••ber_~.:tf. ~.11;'!".~ .• ~~~)cltNL.a~11tt•) • o .
then it .·,ty..,.(CW.f, . •node7dii/iM""!>prooeaa.")

thea-oall r~roe_tPOIL,qu-.ae<dtMN-et, dbo_tablerer):
return: . ·
end; ·

1• .REMOVE PROCESS ll'IOM QUEUE 6/3176 •/
rem_proc_frG11LQueue: QW(.a_dborer p_dbo,,.;;.tableretl;
1• Thia proceaure will gt'ant at l .. .tti:•p·. ~ aoceaa to the database

object that 1.s referenced by 11p_dbore •-(iftd-ia locabed in the node that
has its own node_table reterenoid by •p_dbo_tablerel'!l. It the first
process on.the ~"° •X41H ~-;.""'°' tebe'.~ object., then
~~~ t:;: r;;.or~;r~--~ '~it:~·-= =:·:~i,:=·ri:1the 
~= :r :!! tMCiilt&tpFI.·; ·~.•.:eit.-.i•• uae wi11 be given 

1• Find ~he ~l'llt ......... 'W · "9.# ...... ~I 0111 tindJiNt_(pl"ooN!'';· ·11ttO«elllbo!..->~_. borer, eoa); 
I Check lt(.~ prao~•• ... --... ·•aluai•• ._ J3il.L ,·.;t:t .. h .. e objeot • / 
it' extraot"T ~er, ·~.~tJpe"'f··· ncluaive" 

then ao; · · 
!• Un.block Ule «OOHS •/ 
call find...!~·· •r_'COini•rot~~1 -~node->prooeaa•, proorer); 
oall move.... pr~, '"JJOCHll'dbo/mg•)fK!DOW" 1; 
call 1••rt- pr~• ~nOcleldbol~, , •tirat•, ownerref); 
1• Gi• tb• .tr"4Nie~ •olwsi.ve·. ,.119f.,t.M reaouroe •/ 
call 1naerLt p_dtiOr•(b "prooeea-> , '·Jlf'~•, prooret > i 
~:O::!.!h: :9zi~Jt ("p_J~-tjb0~.,.:.Df >;'!°*1a. i~lved I 
dbo_node_naae • eitraot_(p_di>o

2
tableret, •noct~,..table.n .. •); 

proceaa_n- • extraot_Tproore1, •procesa.n ... ); 
proo node_n ... • extraot_(ownerret, •nocte_table.name•); 
l• Clieck 1r the prooesa ~1ning aooeas to the database object is in 

the aa• node aa the dbo i/ 
i r proc_node_nue = dbo_node_name 

then do· 
call write_list_("Prooeaa"~ proceas_name, "at node"L 

proc_n9de_naae, •is given exclusive use or•); 
call writtL..list_c• ", dbO_name, "at node", 

dbo_node_name) ; 
return; 
end; 

else do; 
1• Create a oontrol message ror a remote resourc 

141 



Appendix II Procedure REL 

else 

return: 
end REL: 

allocation and send it across nodes. *I 
call dcl rem res_grant(dbo node name, dbo name, 

- proc_node_name proceis_name, cont_Jllsg_numb); 
call write list_("Controi message number". cont_msg_numb, 

lrsent from•, dbo_node_name, "to", 
proc_node_name); 

call write list_(" aranting", process_name, 
1Texclus1ve use or•, dbo_name); 

return; 
end; 

end· 
do ;,hile ("eos); 
1• The first process on the queue requested shared access */ 
1• Unblock the process •/ 
call find_owner_(ownerref, "node->process", procref); 
call remove_(procref, "node/dbolmg->process"J; 
call insert_(procref, "node/dbO/mg->process•, "first", ownerref); 
1• Give the process shared access to the database object •/ 
call dcl_dbo sh_asmt(sh asmtref)· 
call insert Tsh asmtrer-;- "dbo->dbo sh_asmt", "first", p dboref); 
call insert:(sh:asmtref, "process-)dbo.,....s}L.asmt"1 "firstlri procref); 
1• Get the names of the process 1 dbo aftd nodes involved •/ 
dbo name = extract_(p dboref "abo.name•)· 
dbo:node_name = extract (p_dbo

2
tablerec, *node table.name"); 

process name= extract_Tprocrex, •prooess.namelr); 
proc_node name = extract_(ownerref, •node_table.name"); 
l* Check Tf the process gaining accesa to the database object is in 

the same node as the dbo */ 
if proc_node_name = dbo_node_name 

then do· 
cail wr1te_list_("Process•1 process_name, "at node", 

proc node_name, is granted shared access to"); 
call write list_(• ", dbo_name, •at node", 

dbo_node_name) ; 
end; 

else do; 
1• Create a control message for a remote resource 

allocation and send it acroas nodes. •1 
call de l_reDL,res_grant ( d bo_node_NUlle, d bo_name , 

proc nqde_name process_name, cont_JDsg_numb); 
call write list_C"Controi message number•. cont_JDsg_numb, 

li"sent from", dbo_nodeJame, "to", 
proc_node_name) ; 

call write list_(" aranting", process_name, 
lrshared access to•, dbo_name); 

end· 
I* Find what is now the first process queued for the database 

object •/ 
call rind_first_(procref, "node/dbo/mg->process", p_dboref, eos); 
I* If this process wants exclusive control of the database object it 

must remain blocked and we will not remove any more processes 
from the queue •/ 

if extract_(procref1 "process.access_type") = •exclusive" 
then eos = "1"o; 

end; 

142 



Appendix II DDM_serv_routines 

1• DDt{.JHtrY..J'"OUtinea.1nol.pl1 
The follow1'ag deol.al'atioae are ot the DDM aervioe routines •/ 
dcl obiolc...t'or_deadlook entry(tixed bi?C17), o~r(12), 

ohar 12), bit(1)); 
1• Located within Proced¥r• OBPL I 

dol doLdbo ent~tized bin(17), ohar(12)); 
1• Located within Proo re DDM-i/ 

dcl doL~Looated vi thin p~:C,i:l~zg&.-,,(17)); 
dcl doLoontro1-__. entry{ ti~~ bi~~~I~hobar(20), 

I* Loo&Md within Prooed11n DDMXf / 
dol dol,Jlocte_tabla · , entrtU'ixed bin( 17), char( 12)); 

t•~Looated vi tb1n· ProoelvN DflM-I / .. ·. 
dol doLobpl entry( tiz.ed ~n ( 17} , char( ( )12? , 

. . ~,-12) ,., 1fbar T ) , 
1• Looatedwithin Prooedvr• Di>Mft 

doLobpLcont~ entry{tized bi?~~J~; ohar( 12), 
1• Located wtttlin Proced~e D~i 

doJ...proo_entrp entryCtized b1ni17), ohar(12), 
· . olmP(tl)); 

J• LOOated·within Proced~e DDM-./ 
doJ....prooeaa en=find;'blfl(l'r), ohar( 12)); 

· I• Loa.tad ill thin Pr D*~ I dcl...proc_t91'1l. · entrt char 12~ char(•), char( 12)); 
1• 1.ooated w1tb1n Prooedvre R ·· · c t-1 

dcLrellL.l".......,,...t entry(ohar~1~~J 9har(•)t char(12), 
~·•), tixea bin); 

1• Looated within Procedure DDM •1 
find_entity_loc entry(tixed bin(17)f o~ar(20)( 

~~:1-=~~ ~!t~:8fb1~lf )); 
1• Loeated v1tb1n Proced11n DDll'. •1 

ezp_obpl en=m(tiXed bin(17), obar(12)); 
1• Looated·vitbin P re OIPt._•/ 

initiate_obpl' · entl'J obal'(1ft'fcttaP<•>, oll,r( 12), 
,. Looated within ProoedQN D~>12>· -bal'('f)); 

obpUckLJ"e•oar• ·· . entry(tix. eel b1.f<17. ). , ti_. bin(17), 
· o!aar.12), bit(1)); 

r91LP~ted'wittain,Pr===r'dx::'t.'.nf'~ . .:,), tind. bin(17)); 
- /tri;ooatecl within P RIL-i/ 

rldbo · entry obar<•lr .W(•), oltar(•), 
ohai'(•)); 

1• Located within Procedure REL •/ 

dcl 

dcl 

dcl 

dcl 

dol 

dcl 

dcl 

dcl 

dcl 

dcl 

dcl 

1Jl3 



Appendix II ADT_primi ti ves 

!•75-12-29 ADT_primitives.incl.pl1 
These are ADT primitives 
dcl add_ 

designed to assist tbe fu9ction defi9iti9n writer •/ 
entry(oharC128), charC128J) 

returns(char(128) varying); 
entry(tixed bin(17), char(~4), 

c;har(•)) • 
dcl 

dcl 

dcl 
dcl 

dcl 
dcl 
dcl 
dcl 

dcl 

dcl 
dcl 
dcl 

dcl 

dcl 

dcl 

dcl 

dcl 
dcl 

dcl 

dcl 
dcl 
dcl 
dcl 

dcl 

dcl 

dcl 

dcl 

dol 

dcl 

dcl 

dcl 

dcl 

dcl 

alter_ 

append_ 

break_ 
create_attribute_ 

create_catalog_object_ 
create_entity_ 
create_group_ 
create_order_ 

create_relationahip_ 

deleted_ 
delete_entity_ 
divide_ 

empty_ 

empty_intersection.._ 

entity_class_name_ 

entity_order_name_ 

exception_ 
extract_ 

find_associatively_ 

find_catalog_object_ 
find_direct_ 
find_ each_ 
find_first_ 

find_first_intersection_ 

find_first_union_ 

find_last_ 

find_next_ 

find_next_intersection_ 

find_next_union_ 

find_owner_ 

find_prior_ 

insert_ 

inserted_ 

144 

entryCtixed bln(17), char(20), 

!har(6)l ftxed bin(17)); 
entry fixed oin 17)); 
entry fix?d ~in 17)~ char(-4), 

charl10~, fixea bin(17), 

entryI~t~e~)blnl171, char1•)1· entry fixed bin 17 , char 20 ~; 
entry fixed bin 17 , char 44 ); 
entry fixed bin 17 , char 20 , 

char(20)); 
entry(fix,d bin(17), char(20), 

charc9)) • 
entry~fixed bln(17)) returns(bit(1)); 
entry fixed bin(17), ~bar(ZO)); 
entry char(128), char 128)) 

returns(chilr(128 vai:Ying): 
entry(tixed bin(17}t char(20)J 

returns(bit(1 1; 
entryCtixed bin(17 , char(20), 

tixed b1n(11)~ char(~O)) 
returns(bit(1 ); 

entry(fixed bin(11 ) 
returns(char(20)); 

entry(fixed bin(17)t char(20)) 
returns(b1t(1)1; 

entry· 
entry(fixed bin(11>~ char(44)) 

returns(char 1~8) var_"Ying); 
entry(fixed bin(17), char(20), 

fixed bin(17)l char(128) varying, 

I

har(44) bit 1)); 
entry fixed bln!17l, char(•~); entry fixed bin 17 , char(• ); 
entry fixed bin 17 , bit(1) · 
entry fixed bi9 17 , charc2oi, 

fixed bin( 7) bit(1})· 
entry(tixed bin(1I'' char(20), 

fixed bin(17 , char(20), 

fixed b1n(17 bit(1))· 
entry fixed bin{1 J, char(20), 

fixed bin(17 , char(iO), 

}
ixed b1n(17 bit(1 )· 

entry fixed b19(17j, ch•r 20), 
ixed binC17) bit(1 )• 

entry(fixed bin(17j, char(20), 
bit( 1)). 

entry(fix~d bin(17li Qhar(20), 
char(20) bit(1)J; 

entry(fixed btn(11), char(20), 
fixed bin(17 , char(20), 
fixed bin(17 bit(1))· 

entry(fixed bin(17l, oharC26), 
fixed bin( 17) ; 

entry(fixed bin(17 , char(20), 
bit( 1)); 

entry(fixed bin(17), char(20), 
char(6), fixed bin(17))· 

entry(fixed bin(17)t char(20)) 
returns(bit(1)J; 



Appendix II 

dcl 

dcl 

dcl 

dcl 

dcl 

dcl 

dcl 
dcl 

dcl 

1• The 
dcl 
dcl 
dcl 
dcl 
dcl 
dcl 
dcl 
dcl 
dcl 

last_of_set_ 

member_ 

member_count_ 

name_catalog_object_ 

multiply_ 

owner_ 

remove_ 
sort_relationship_ 

subtract_ 

following are global reference 
changemode 
SF_REF 
CN REF 

!i~-!!f 
return code 
SYS_REl' 
tracemode 

ADT_primitives 

entry(fixed bin(17!t char(20)) 
returns(bit(1 J; 

entry(fixed bin(17 t char(20)) 
returns(bit( 1 n 

entry(fixed bin(17 l char(20)) 
returns(fixed oin(17)); 

entry(fixed bin(1t)) 
returns(char 44) varring); 

entry(char(128), char{128J) 
returns(char(128) varying); 

entry(fixed bin(17lt char(20)J 
returns(bit(1 Ji 

entry(fixed bin(17 , char(20)); 
entry(fixed bin(17 , char(20), 

char(20)) · 
entry(char(128j, char(128)) 

returns(char(128) va'ling); 
variables used by modellers I 

fixed bin 17 external static; 
fixed bin 17 external static init!Ol; fixed bin 17 external static init O ; 

145 

fixed bin 17 external static init 0 ; 
fixed bin 17 external static init 0 ; 
fixed bin 17 external static init 0 ; 
fixed binary external static init(O)· 
fixed bin(17) external static init(O}; 
bit(1) external static init(•O•b); 



Appendix III 

This appendix contains examples of several deadlock and "near deadlock" 

situations, thus demonstrating various features of the deadlock detection al­

gorithm presented in Chapter VI. In the case where a deadlock is detected, a 

final state diagram is given, whereas in the examples where no deadlock is 

detected, an important intermediate state is also shown. A key to the 

diagrams appears on the next page. Diagrams appear on a page with a header 

containing the name(s) of the associated scenario(s). Each diagram immedi­

ately follows the first scenario with which it is associated. 

It should be noted that before the commands specific to each example were 

executed, after the system state was reinitialized, the commands in file 

"demoO" were executed. 

146 



Appendix III 

®----...,M 

®------~ 

~---@ 

e---~ 
I.---------access_type 

~--------~ \t:/" accees_type 

city 

Key for State Diagrams of Demonstration Scenarios 

Represents process "pi" as the initiator of message 

group "mgj". @ and ~are always in the same 

node for this representation. 

Represents process "pi" as the acceptor of message 

group "mgj" and "pi" is currently waiting for a mes­

sage in "mgj". @ and~need not be in the 

same node for this representation. 

Represents process "pk" waiting for a message from 

operator "opi" over operator connection "conj". 

Represents operator "opi" waiting for a message from 

process "pk" over operator connection "conj". 

Represents process "pi" as having access to database 

object 11dbok". The type of access is specified by 

"access_type". @ and jdbokl need not be in the 

same node. 

Represents process "pi" as waiting for access to 

database object "dbok". The type of access desired 

is specified by "access_type". @ and ldbok I need 

not be in the same node. 

Represents a node with the node name specified by 

"city". @ and ldbokl drawn "within" this node 

represent processes and database objects located 

within the node specified by "city". ~drawn 
"within" the node represents a message group that was 

initiated by a process located in the node specified 

by "city". 

147 



Appendix III scenario demoO 

scenario demoO 
sysgen 

System created 
cnode Boston 

Node created: Boston 
cnode Phoenix 

Node created: Phoenix 
cproc Boston p1 

Process p1 created in node Boston 
cproc Boston p2 

Process p2 created in node Boston 
cproc Boston p~ 

Process ~ created in node Boston 
cdbo Boston d 1 

Database ob~ect dbo1 created in node Boston 
cdbo Boston d o2 

Database object dbo2 created in node Boston 
cproc Phoenix ~1 

Process p created in node Phoenix 
cproc Phoenix ~2 

in Process p created node Phoenix 
cproc Phoenix ~3 

Process p created in node Phoenix 
cdbo Phoenix dbo1 

Database ob~ect dbo1 created in node Phoenix 
cdbo Phoenix bo2 

Database object dbo2 created in node Phoenix 
anode Cambrid~e 

Node create : Cambridge 
cproc Cambridge p1 

Cambridge Process p1 created in node 
cproc Cambridge p2 

Process p2 created in node Cambridge 
cproc Cambridge p3 

Process p3 created in node Cambridge 
cdbo Cambrid~e dbo1 

Database o ject dbo1 created in node Cambridge 
cdbo Cambrid~e dbo2 

Database o ject dbo2 created in node Cambridge 

148 



Appendix III scenario demo_bug 

scenario demo_bug 
note This is an example of a case where a deadlock involving two 
note processes and two resources located in two nodes is detected, 
note when in fact no deadlock exists. The reason a deadlock is 
note detected is that an OBPL sent from Boston to Phoenix had its 
note arrival delayed long enough so that p1 in Phoenix could release 
note dbo1 in Boston request access to it again, gain use of the 
note database objecl and then request access to and get queued for 
note dbo1 in Phoenix before Phoenix examined the OBPL. The first 
note seven commands set up the state where p1 in Phoenix has exclusive 
note use of dbo1 in Boston, p1 in Boston has shared use of dbo1 in 
note Phoenix, p1 in Boston is blocked waiting for shared use of dbo1 
note in Boston, and an OBPL has been sent to Phoenix by Boston. 
rqdbo shared Boston p1 Phoenix dbo1 

Process p1 at node Boston is blocked while a request is sent to 
the node containing the desired resource 

Control message number 1 sent from Boston to Phoenix 
representing a remote resource request 

rcvcm 1 
Control 

pl 

Control 

rcvcm 2 

message number 1 representing a remote resource request 
has been received 

at node Boston is granted shared access to 
dbol at node Phoenix 

message number 2 sent from Phoenix 
representing this allocation 

to Boston 

Control message number 2 representing a remote resource allocation 
has been received 

at node Boston has been granted shared access to 
dbo1 at node Phoenix 

p1 

rqdbo exclusive Phoenix p1 Boston dbo1 
Process p1 at node Phoenix is blocked while a request is sent to 

the node containing the desired resource 
Control message number 3 sent from Phoenix to Boston 

representing a remote resource request 
rcvcm 3 

Control 

p1 

Control 

rcvcm 4 

message number 3 representing a remote resource request 
has been received 

at node Phoenix is granted exclusive use of 
dbol at node Boston 

message number 4 sent from Boston 
representing this allocation 

to Phoenix · 

Control message number 4 representing a remote resource allocation 
has been received 

pl at node Phoenix has been granted exclusive use of 
dbo1 at node Boston 

rqdbo shared Boston p1 Boston dbo1 
Resource not available, process blocked. 
Control message number 5 sent from Boston to Phoenix 

representing an OBPL 
note Do not let the OBPL be received at this time. Let p1 in Phoenix 
note release dbo1 in Boston 1 so that p1 in Boston will be awakened and 
note granted shared use of dbo1 in Boston. 
rldbo Phoenix p1 Boston dbo1 

Control message number 6 sent from Phoenix to Boston 
representing a remote resource release 

rcvcm 6 
Control 

dbo1 

Process 

note 
note 
note 

message number 6 representing a remote resource release 
has been received 

at node Boston has been released by 
pl at node Phoenix 
p1 at node Boston is granted shared access to 
dbol at node Boston 

Let pl in Phoenix request access to dbo1 in Boston for the 
second time, and let it be granted shared use of the database 
object. 

149 



Appendix III 

rqdbo shared Phoenix p1 Boston dbo1 
Process p1 at nod·e Phoenix is blocked while a 

the node containing the desired resource 
Control message number 7 sent from Phoenix to 

representing a remote resource request 

scenario demo_bug 

request is sent to 

Boston 

rcvcm 7 
Control message number 7 representing a remote resource request 

has been received 
p1 

Control 

at node Phoenix is granted shared access to 
dbo1 at node Boston 

message number 8 sent from Boston to Phoenix 
representing this allocation 

rcvcm 8 
Control message number 8 representing a remote resource allocation 

has 6een received 
p1 at node Phoenix has been granted shared access to 

dbo1 at node Boston 
note Let p1 in Phoenix re~uest exclusive yse Of dbo1 in Phoenix. 
note The process will be t:>locked and an OBPL will be sent to Boston 
note where it will be discarded because p1 in Boston is active. 
rqdbo exclusive Phoenix p1 Phoenix dbo1 

Resource is not currently available for exclusive use, process p1 
at node Phoenix is blocked. 

Control message number 9 sent from Phoenix 
representing an OBPL 

rcvcm 9 

to Boston 

Control message number 9 representing an OBPL has been received. 
note Now let Phoenix receive the OBPL that was previously sent by 
note Boston. A "false" deadlock will be detected because p1 in Phoenix 
note is blocked and has access to dbo1 in Boston even though this is 
note not the same assignment of the resource that was used when the 
note OBPL was created. 
rcvcm 5 

Control message number 5 representing an OBPL has been received. 
A deadlock has been detected. The following processes are involved: 

p1 at node B<>aton 
p1 at node Phoenix 

End of deadlock list 

150 



Appendix III 

I 

shared1 

Boston 

scenario demo_bug 

shared 

Phoenix 

State where control message 5 representing an OBPL has just been sent 
from Boston to Phoenix. Receipt of the OBPL is delayed until after the state 
drawn below has drawn been reached. 

shared 

shared 

Boston 

Final State Diagram 

151 

I 

I 
1 exclusive 
I 

Phoenix 



Appendix III scenario demo1 

scenario demo1 
note This is an example of a two process two resource deadlock in a 
note single node. No control messages and no operators are involved 
note in the detection of this deadlock. 
initmg mg1 Boston p2 Boston 

Message group mg1 has been initiated 
acceptmg mg1 Boston p1 

Boston ag1 has been accepted by p1 at node 
rqdbo shared Boston p1 Boston dbo1 

p1 at node Boston granted shared access to dbo1 at node Boston 
rqijbo exclusive Boston p2 Boston dbo1 

Resource is not currently available for exclusive use, process p2 
at node Boston is blocked. 

rcvmsg mg1 
Process p1 at node Boston is blocked waiting for a 

message in message group mg1 
A deadlock has been detected. The following processes are involved: 

p1 at node Boston 
p2 at node Boston 

End of deadlock list 

Boston 

Final State Diagram 

152 



Appendix III scenario demo2 

scenario demo2 
note This is an example of a two process two resource deadlock 
note involving two nodes. The first three commands create the state 
note where both processes are active and both involved resources have 
note been allocated to the proper processes. 
rqdbo exclusive Phoenix p1 Phoenix dbo1 

p1 at node Phoenix is granted exclusive use of dbo1 at node Phoenix 
initmg mg2 Cambridge p1 Phoenix 

Message ~oup mg2 has been initiated 
ac:i!tmg mg2 Phoenix p1 

Phoenix has been accepted by p1 at node 
rqd shared Cambridge p1 Phoenix dbo1 

Process p1 at node Cambridge is blocked while a request is sent to 
the node containing the desired resource 

Control message number 1 sent from Cambridge to Phoenix 
representing a remote resource request 

note We will delay the receipt by Phoenix of this resource request. 
rcvmsg mg2 

Process p1 at node Phoenix is blocked waiting for a 
message in message group mg2 

Control message number 2 sent from Phoenix 
representing an OBPL 

rcvcm 2 

to Cambridge 

Control message number 2 representing an OBPL has been received. 
Control message number 3 sent from Cambridge to Phoenix 

representing an OBPL 
note This OBPL contains entries tor p1 in Phoenix and p1 in Cambridge. 
note It will be discarded by Phoenix because Phoenix has no record that 
note p1 in Cambridge is waiting for dbo1 in Phoenix since control 
note message 1 still has not been received. 
rcvcm 3 

Control message number 3 representing an OBPL has been received. 
rcvcm 1 

Control message number 1 representing a remote resource request 
has been received 

Resource not available, process remains blocked. 
Control message number q sent from Phoenix to Cambridge 

representing an OBPL 
note This OBPL contains entries for p1 in Cambridge and p1 in Phoenix. 
note It states that p1 in Phoenix is waiting for a message in message 
note groug mg2. Cambridge will verify that the desired message has 
note not een sent, and a deadlock will be detected. 
rcvcm 4 

Control message number 4 representing an OBPL has been received. 
A deadlock has been detected. The following processes are involved: 

p1 at node Cambridge 
p1 at node Phoenix 

End of deaalock list 

153 



Appendix III scenarios demo2 demo3 demo4 

exclusive 

shared 

Phoenix Cambridge 

Final State Diagram 

154 



Appendix III scenario demo3 

scenario demo3 
note This is an example of a two process two resource deadlock 
note involving two nodes. The first three commands create the state 
note where both processes are active and both involved resources have 
note been allocated to the proper processes. 
rqdbo exclusive Phoenix p1 Phoenix dbo1 

p1 at node Phoenix is granted exclusive use of dbo1 at node Phoenix 
initmg mg2 Cambridge p1 Phoenix 

Message group mg2 has been initiated 
acceptmg mg2 Phoenix p1 

Phoenix mg2 has been accepted by p1 at node 
rqdbo shared Cambridge p1 Phoenix dbo1 

Process p1 at node Cambridge is blocked while a request is sent to 
the node containing the desired resource 

Control message number 1 sent from Cambridge to Phoenix 
representing a remote resource request 

note We will delay receipt by Phoenix of this resource reguest just 
note long enough to block p1 in Phoenix (which controls dt>o1 in Phoenix) 
note and send an OBPL to cambridge. In this way, after receipt of the 
note resource reguest, we will have two OBPL's outstanding, and the same 
note deadlock will be detected twice. 
rcvmsg mg2 

Process p1 at node Phoenix is blocked waiting for a 
message in message group mg2 

Control message number 2 sent from Phoenix 
representing an OBPL 

rcvcm 1 

to Cambridge 

Control message number 1 representing a remote resource request 
has been received 

Resource not available, process remains blocked. 
Control message number 3 sent from Phoenix 

representing an OBPL 
rcvcm 2 

to Cambridge 

Control message number 2 representing an OBPL has been received. 
Control message number 4 sent from Cambridge to Phoenix 

rcvcm 3 
representing an OBPL 

Control message number 3 representing an OBPL has been received. 
A deadlock has been detected. The following processes are involved: 

p1 at node Cambridge 
p1 at node Phoenix 

End of deadlock list 
rcvcm -Control message number 4 representing an OBPL has been received. 

A deadlock has been detected. The following processes are involved: 
p1 at node Phoenix 
p1 at node Cambridge 

End of deadlock list 

155 



Appendix III scenario demo4 

scenario demo4 
note This is an example of a two process two resource deadlock 
note involving two nodes. The first three commands create the state 
note where both processes are active and both involved resources have 
note been allocated to the proper processes. 
rqdbo exclusive Phoenix p1 Phoenix dbo1 

p1 at node Phoenix is granted exclusive use or dbo1 at node Phoenix 
initmg mg2 Cambridge p1 Phoenix 

Message group mg2 has been initiated 
acceptmg mg2 Phoenix p1 

Phoenix ag2 has been accepted by p1 at node 
rqdbo shared Cambridge p1 Phoenix dbo1 

Process p1 at node Cambridge is blocked while a 
the node containing the desired resource 

Control message number 1 sent from Cambridge to 

request is sent to 

Phoenix 
representing a remote resource request 

note We will allow this resource request to be immediately received 
note by Phoenix. No OBPL will be generated because p1 in Phoenix is 
note active, and it controls dbo1 In Phoenix. By default, control 
note messages generated in the future will be received immediately 
note after they are sent, and the deadlock will be detected once. 
rcvcm 1 

Control message number 1 representing a remote resource request 
has been received 

Resource not available, process remains blocked. 
rcvmsg mg2 

Process p1 at node Phoenix 
message in message group mg2 

Control message number 2 sent from Phoenix 

rcvcm 2 
representing an OBPL 

Control message number 2 representing an OBPL 
Control message number 3 sent from Cambridge 

representing an OBPL 
rcvcm 3 

is blocked waiting for a 

to Cambridge 

has been received. 
to Phoenix 

Control message number 3 representing an OBPL has been received. 
A deadlock has been detected. The following processes are involved: 

p1 at node Phoenix 
p1 at node Cambridge 

End of deadlock list 

156 



Appendix III scenario demo5 

scenario demo5 . 
note Thia 1a an example or a state wbere two d•adlooka exiat 
note involving. rtour. J~oc. eaae.s •.ad t,o'1l' "". s~u. ro. ea loe•ted in. three note nodes. TWo de looks are 1nYtlY:lkll>eoauae dbo1 in-Cambridge 
note has two shared uait'a. 'l'he .(',iJ"a~ .. 10~ q_~o4a qr"t• the state 
note where all .. the involved pr~ ..... _ ~an_ ;•~~·• ~.·._·all the involved 
note reaouree11·bave been-allooated\o.th f15..., '"9•••••· initmg mg1 Boston p1 Ca•bridq_. ··.· 

Heaaage group q1 liaa bHft'initiated 
acceptmg 1111 CUbricfge p1 

mg1 baa ~atild by p 1 at node Cambridge 
rqdbo shared rt p, Callbrlge.dl>o1 . . 

p1 at node , · dft grantedabared aooeaa to dbo1 at node Cambridge 
rqdbo shared Boston p1 ca.bridge dbo1 

Process pJ at n~.- a.ton,_. J~s bl_ook~_ wbile a_ reque_ ·~ is aent to 
tbe nddt -0~1nc,·£tie aeeired ~ou~oe . 

Control ...._ n...,.... f , :.HQt'' tl'Qlll.. Boston to Cambridge 
representing a re.c>tf reaoutae..request 

rcvcm 1 ' · 
Control message number t riepresent1ng a remote N.eOUroe request 

has been received _ ·. 
p1 at l'IOde Boston is ar-a~ed ahatied ac~s to 

dbo1 ' _ at Jipcle C&mb~1Ui __ . · · _ · 
Control meas• number 2 _ ... 1'r0dl Ciabr,tdae to Boston 

repi'fteftting this al'looation . 
rcvcm 2 · 

Control message nU!l~r . 2 representing a rellO~ resource allocation 
has been received .. .- ... _ _. 

p1 at node Boston . . h~ be$:l. grartted. shared access to. 
dbo1 at nOde Callbrid'ge 

rqdbo exclusive Cambridge p2 Phoenix dbo1 · 
Process r!~_ ~~ ... nog:n_ --~ctfh ill_ .. -~lopk~,~ e a request is sent to 
Control .... :U..- 3 U:.rii.~ri'Dceto PtK*iu 

representing a reaote resource requeit 
rcvcm 3 . _ _. .· .. · 

Control ..,..._. ~,.- 3 r••&ltdt1na a ..-te resource r.equest 
has tieeft· reni ved · · · --. . · 

p2 at node Ca•bridge is granted' exclusive use or 
dbo1 _ _ at node. .Phoenix . _ . . . , 

Control .._ • ...,.r : It aant trm Ph~x· to ca.bridge 
repraentt'ftg this alloaatttm 

rcvcm JJ · 
Control message n1.11ber -- repr•sent1'11 a_remote resource allocation 

has been reoei veO _ . · 
p2 at node Qillbrlttge has been granted exclus-.ve use of 

dbo1 -~1-;g-. _e _Phoenix · · . -rqdbo shared Phoenix p1 I'll- . ·. ~2 . 
p1 at node Pboenti ar_ · t« ~--: acoeJa to dbo2 at node Phoenix 

rqdbo exclusive Boston p1, Oiii't dbot 
Process p1 at node ~on- 1s blocked while a reqftl4J8t ia •.ent to 

the node containing the deaired resour~e 
Control message number 5 aent tram Boston to Phoenix 

representing a remote resource r~uest 
note No OBPL will be aent to another node and no deadlock will 
note be detected beoauae p1 at node Phoenix is active and is the only 
note process that has access to dbo2 in Phoenix. 
rcvcm 5 

Control message niaber 5 representing a remote resource request 
has been received 

Resource is not currently available ror exclusive use, process p1 
at node Boaton reains blocked 

rqdbo shared Phoenix p1 Phoenix dbo1 
Resource not available, prooeaa blocked. 
Control message number 6 sent trcm Phoenix 

representing an OBPL 

157 

to cambridge 



Appendix III scenario demo5 

note No deadlock will be detected because p2 in Cambridge is active. 
rcvcm 6 

Control message number 6 representing an OBPL has been received. 
note This next request will create a three ~rocess three resource 
note deadlock. An OBPL will be created, art~ we will immediately pass 
note it from node to node in order to detect the deadlock. 
rqdbo exclusive Cambridge p2 Cambridge dbo1 

Resource is not currently available for exclusive use, process p2 
at node Cambriage is blocked. 

Control message number 7 sent from Cambridge 
representing an OBPL 

to Boston 

rcvcm 7 
Control message number 7 representing an OBPL 
Control message number 8 sent from Boston 

has been received. 
to Phoenix 

rcvcm 8 
representing an OBPL 

Control message number 8 represent!~ an OBPL has been received. 
A deadlock has been detected. The following processes are involved: 

p2 at node Cambridge 
p1 at node Boston 
p1 at node Phoenix 

End of deadlock list 
note The next command will create a four process four resource deadlock. 
note Due to the fact that two processes have shared access to dbo1 in 
note Cambridge, both this newly created deadlock, and the previously 
note detected deadlock will be detected when the OBPL is created and 
note passed among the nodes. 
rcvmsg mg1 

Process p1 at node Cambridge is blocked waiting for a 
message in message group mg1 

Control message number 9 sent from Cambridge to Boston 
representing an OBPL 

rcvcm 9 
Control message number 9 representing an OBPL 
Control message number 10 sent from BOston 

has been received. 
to Phoenix 

rcvcm 10 
representing an OBPL 

Control message number 10 representing an OBPL 
Control message number 11 sent from Phoenix 

has been received. 
to Cambridge 

rcvcm 11 
representing an OBPL 

Control message number 11 representing an OBPL has been received. 
A deadlock has been detected. The following processes are involved: 

p1 at node Cambridge 
p1 at node Boston 
p1 at node Phoenix 
p2 at node Cambridge 

End of deadlock list 
A deadlock has been detected. 

pl 
p1 
p2 

End of deaalock list 

The following processes are involved: 
at node Boston 
at node Phoenix 
at node Cambridge 

158 



Appendix III 

I 

shared 

\ 
\ 
I 

I 

scenarios demo5 demo6 

exclusive 

Phoenix 

exclusive 

Cambridge 

Final State Diagram 

159 



Appendix III scenario demo6 

scenario demo6 
note This is an example of a state where two deadlocks exist 
note involving four processes and four resources located in three 
note nodes. Two deadlocks are involved because dbo1 in Cambridge 
note has two shared users. The first 10 commands create the state 
note where all the involved processes are active and all the involved 
note resources have been allocated to the proper processes. 
initmg mg1 Boston p1 Cambridge 

Message group mg1 has been initiated 
acceptmg mg1 Cambridge p1 

mg1 has been accepted by p1 at node Cambridge 
rqdbo shared Cambridge p1 Cambridge dbo1 

p1 at node Cambridge granted shared access to dbo1 at node cambridge 
rqdbo shared Boston p1 Cambridge dbo1 

Process p1 at node Boston is blocked while a request is sent to 
the node containing the desired resource 

Control message number 1 sent from Boston to cambridge 
representing a remote resource request 

rcvcm 1 
Control message number 1 representing a remote resource request 

has been received 
p1 

Control 

at node Boston is granted shared access to 
dbo1 at node Cambridge 

rcvcm 2 

message number 2 sent from Cambridge 
representing this allocation 

to Boston 

Control message number 2 representing a remote resource allocation 
has been received 

p1 at node Boston has been granted shared access to 
dbo1 at node Cambridge 

rqdbo exclusive Cambridge p2 Phoenix dbo1 
Process p2 at node Cambridge is blocked while a request is sent to 

the node containing the desired resource 
Control message number 3 sent from Cambridge to Phoenix 

rcvcm 3 
Control 

p2 

Control 

rcvcm 4 

representing a remote resource request 

message number 3 representing a remote 
has been received 

at node Cambridge is granted 
dbo1 at node Phoenix 

message number 4 sent from Phoenix 
representing this allocation 

resource request 

exclusive use or 

to cam bridge 

Control message number 4 representing a remote resource allocation 
has been received 

p2 at node Cambridge has been granted exclusive use of 
dbo1 at node Phoenix 

rqdbo shared Phoenix p1 Phoenix dbo2 
p1 at node Phoenix granted shared access to dbo2 at node Phoenix 

rqdbo exclusive Boston p1 Phoenix dbo2 
Process p1 at node Boston is blocked while a request is sent to 

the node containing the desired resource 
Control message number 5 sent from Boston to Phoenix 

representing a remote resource request 
note p1 in Phoenix is active, so there will be no deadlock when the 
note remote resource request is received from Boston. 
rcvcm 5 

Control message number 5 representing a remote resource request 
has been received 

Resource is not currently available for exclusive use, process p1 
at node Boston remains blocked 

rqdbo shared Phoenix p1 Phoenix dbo1 
Resource not available, process blocked. 
Control message number o sent from Phoenix 

representing an OBPL 

160 

to Cambridge 



Appendix III scenario demo6 

note 
note 
rcvcm 6 

p2 in Cambridge is active, so the OBPL will be discarded after 
it is received by Cambridge. 

Control message number 6 representing an OBPL has been received. 
rcvmsg mg1 

Process p1 at node Cambridge is blocked waiting for a 
message in message group mg1 

Control message number 7 sent from Cambridge to Boston 
representing an OBPL 

note p2 in Cambridge is active, so the OBPL will be discarded when 
note it reaches Cambridge. 
rcvcm 7 

Control 
Control 

rcvcm 8 

message number 7 representing an OBPL 
message number 8 sent from Boston 
representing an OBPL 

Control message number 8 representing an OBPL 
Control message number 9 sent from Phoenix 

representing an OBPL 
rcvcm 9 

has been received. 
to Phoenix 

has been received. 
to Cambridge 

Control message number 9 representing an OBPL has been received. 
note This next request will create two deadlocks due to the fact that 
note dbo1 in Cambridge has two readers. Two OBPl 1 s will be generated, 
note and both deadlocks will be detected when their respective OBPL's 
note arrive in Phoenix. The OBPL's need not return to Cambridge 
note because p2 in Cambridge was the first process to be placed in the 
note OBPL's, and Phoenix knows that p2 in Cambridge controls dbo1 
note in Phoenix. 
rqdbo exclusive Cambridge p2 Cambridge dbo1 

Resource is not currently available for exclusive use, process p2 
at node Cambridge is blocked. 

Control message number 10 sent from Cambridge 
representing an OBPL 

to Boston 

Control message number 11 sent from Cambridge to Boston 

rcvcm 10 
representing an OBPL 

Control message number 10 representing an OBPL 
Control message number 12 sent from Boston 

has been received. 
to Phoenix 

rcvcm 12 
representing an OBPL 

Control message number 12 representing an OBPL has been 
A deadlock has been detected. The following processes are 

p2 at node Cambridge 
pl at node Cambridge 
p1 at node Boston 
p1 at node Phoenix 

End of deadlock list 
rcvcm 11 

received. 
involved: 

Control message number 11 representing an OBPL 
Control message number 13 sent from Boston 

has been received. 
to Phoenix 

rcvcm 13 
representing an OBPL 

Control message number 13 representing an OBPL has been 
A deadlock has been detected. The following processes are 

p2 at node Cambridge 
p1 at node Boston 
p1 at node Phoenix 

End of deadlock list 

161 

received. 
involved: 



Appendix III scenario demo7 

scenario demo7 
note This is an example of a state where three deadlocks exist 
note involving six processes and five resources located in three 
note nodes. Three deadlocks are involved because dbo2 in Boston 
note has three shared users. Five, rather than six, resources are 
note involved because two processes are waiting ror the same database 
note object. The first 18 commands create the state where all the' 
note involved processes are active and all the involved resources 
note have been allocated to the proper processes. 
rqdbo shared Boston p1 Boston dbo2 

p1 at node Boston granted shared access to dbo2 at node Boston 
initmg mgl Phoenix p1 Boston 

Message group mg1 has been initiated 
acceptmg mgl Boston p1 

mg1 has been accepted by p1 at node 
rqdbo exclusive Phoenix p2 Boston dbo1 

Boston 

Process p2 at node Phoenix is blocked while a request is sent to 
the node containing the desired resource 

Control message number 1 sent from Phoenix to Boston 

rcvcm 1 
Control 

p2 

Control 

rcvcm 2 

representing a remote resource request 

message number 1 representing a remote resource request 
has been received 

at node Phoenix is granted exclusive use of 
dbo1 at node Boston 

message number 2 sent from Boston 
representing this allocation 

to Phoenix 

Control message number 2 representing a remote resource allocation 
has been received 

p2 at node Phoenix has been granted exclusive use of 
dbo1 at node Boston 

rqdbo shared Cambridge p1 Boston dbo2 
Process p1 at node Cambridge is blocked while a request is sent to 

the node containing the desired resource 
Control message number 3 sent rrom Cambridge to Boston 

representing a remote resource request 
rcvcm 3 

Control 

p1 

Control 

rcvcm 4 

message number 3 representing a remote resource request 
has been received 

at node Cambridge is granted shared access to 
dbo2 at node Boston 

message number 4 sent rrom Boston 
representing this allocation 

to Cambridge 

Control message number 4 representing a remote resource allocation 
has been received 

p1 at node Cambridge has been granted shared access to 
dbo2 at node Boston 

rqdbo shared Cambridge p2 Boston dbo2 
Process p2 at node Cambridge is blocked while a request is sent to 

the node containing the desired resource 
Control message number 5 sent from Cambridge to Boston 

representing a remote resource request 
rqdbo shared Phoenix p1 Cambridge dbol 

Process p1 at node Phoenix is blocked while a 
the node containing the desired resource 

Control message number 6 sent from Phoenix to 
representing a remote resource request 

request is sent to 

Cambridge 

rcvcm 5 
Control message number 5 representing a remote resource request 

has been received 
p2 

Control 

at node Cambridge is granted shared access to 
dbo2 at node Boston 

message number 7 sent from Boston 
representing this allocation 

162 

to Cambridge 



Appendix III scenario demo7 

rcvcm 6 
Control message number 6 representing a remote resource request 

has been received 
p1 

Control 

at node Phoenix is granted shared access to 
dbo1 at node Cambridge 

rcvcm 7 

message number 8 sent from Cambridge 
representing this allocation 

to Phoenix 

Control message number 7 representing a remote resource allocation 
has been received 

p2 at node Cambridge has been granted shared access to 
dbo2 at node Boston 

rcvcm 8 
Control message number 8 representing a remote resource allocation 

has been received 
p1 at node Phoenix has been granted shared access to 

dbo1 at node Cambridge 
rqdbo exclusive Cambridge p3 Phoenix dbo1 

Process p3 at node Cambridge is blocked while a request is sent to 
the node containing the desired resource 

Control message number 9 sent from Cambridge to Phoenix 
representing a remote resource request 

rcvcm 9 
Control message number 9 representing a remote resource request 

has been received 
p3 

Control 

at node Cambridge is granted exclusive use of 
dbo1 at node Phoenix 

rcvcm 10 

message number 10 sent from Phoenix 
representing this allocation 

to Cambridge 

Control message number 10 representing a remote resource allocation 
has been received 

p3 at node Cambridge has been granted exclusive use of 
dbo1 at node Phoenix 

rcvmsg mg1 
Process p1 at node Boston is blocked waiting for a 

to Phoenix 
message in message group mg1 

Control message number 11 sent from Boston 
representing an OBPL 

note The OBPL will be discarded by Phoenix because p1 is active. 
rcvcm 11 

Control message number 11 representing an OBPL has been received. 
rqdbo shared Cambridge p1 Boston dbo1 

Process p1 at node Cambridge is blocked while a request is sent to 
the node containing the desired resource 

Control message number 12 sent from Cambridge to Boston 
representing a remote resource request 

note The process that controls dbo1 in Boston is located in Phoenix, 
note and ls active. Therefore, when Boston receives the resource 
note request, it will create an OBPL and send it to Phoenix, which 
note will then discard it. 
rcvcm 12 

Control message number 12 representing a remote resource request 
has been received 

Resource not available, process remains blocked. 
Control message number 13 sent from Boston 

representing an OBPL 
rcvcm 13 

to Phoenix 

Control message number 13 representing an OBPL has been received. 
rqdbo exclusive Phoenix p2 Phoenix dbo1 

Resource not available, process blocked. 
Control message number 1~ sent rrom Phoenix to Cambridge 

representing an OBPL 
note The OBPL will be discarded by Cambridge because p3, which controls 
note dbo1 in Phoenix, is active. 
rovcm 14 

Control message number 14 representing an OBPL has been received. 

163 



Appendix III scenario demo7 

rqdbo exclusive Cambridge p3 Cambridge dbo1 
Resource is not currently available for exclusive use, process P3 

at node Cambridge is blocked. 
Control message number 15 sent from Cambridge to Phoenix 

representin~ an OBPL 
note The OBPL will be discarded by Phoenix because p1, which controls 
note dbo1 in Cambridge, is active. 
rcvcm 15 

Control message number 15 representing an OBPL has been received. 
rqdbo shared Cambridge p2 Phoenix dbo1 

Process p2 at node cambridge is blocked while 
the node containing the desired resource 

Control message number 16 sent from Cambridr 
representing a remote resource requea 

rcvcm 16 

a request is sent to 

to Phoenix 

Control message number 16 representing a remote resource request 
has oeen received 

Resource not available, process remains blocked. 
Control message number 17 sent from Phoenix to Cambridge 

representing an OBPL 
note An OBPL is sent to Cambridge because p3 in Cambridge controls 
note dbo1 in Phoenix. p3 will be added to the OBPL which will then 
note be passed to Phoenix because p1 in Phoenix controls dbo1 in 
note Cambridge. The OBPL will then be discarded because pl is active. 
rcvcm 17 

Control 
Control 

rcvcm 18 

message number 17 representing an OBPL 
message number 18 sent from Cambridge 
representing an OBPL 

has been received. 
to Phoenix 

Control message number 18 representing an OBPL has been received. 
note The next request creates three deadlocks. When Boston receives 
note the remote resource request for dbo2 it creates three OBPL's 
note because there are three readers of t~e database object. We will 
note then allow the three OBPL's to be passed amoi nodes until all 
note three deadlocks have been detected, at which ime there will be 
note no outstanding OBPL's or control messages. 
rqdbo exclusive Phoenix p1 Boston dbo2 

Process p1 at node Phoenix is blocked while a request is sent to 
the node containing the desired resource 

Control message number 19 sent from Phoenix to Boston 

rcvcm 19 
representing a remote resource request 

Control message number 19 representing a remote resource request 
has been received 

Resource is not currently available for exclusive use, process p1 
at node Phoenix remains blocked 

Control message number 20 sent from Boston 
representing an OBPL 

Control message number 21 sent from Boston 
representing an OBPL 

Control message number 22 sent from Boston 

rcvcm 21 
representing an OBPL 

to Cambridge 

to Phoenix 

to Cambridge 

Control message number 21 representing an OBPL has been 
A deadlock has been detected. The following processes are 

p1 at node Phoenix 

received. 
1nvo1Yed: 

p1 at node Boston 
End of deadlock list 

rcvcm 20 
Control message number 20 representing an OBPL 
Control message number 23 sent from Cambridge 

representing an OBPL 
rcvcm 22 

Control message number 22 representing an OBPL 
Control message number 24 sent from Cambridge 

representing an OBPL 

164 

has been received. 
to Boston 

has been received. 
to Phoenix 



Appendix III 

rcvcm 23 
Control message number 23 representing an OBPL 
Control message number 25 sent from Boston 

rcvcm 25 
representing an OBPL 

Control message number 25 representing an OBPL 
Control message number 26 sent from Phoenix 

representing an OBPL 
rcvcm 26 

scenario demo7 

has been received. 
to Phoenix 

has been received. 
to Cambridge 

Control message number 26 representing an OBPL has been received. 
A deadlock has been detected. The following processes are involved: 

p1 at node Phoenix 
p1 at node Cambridge 
p2 at node Phoenix 
p3 at node Cambridge 

End of deadlock list 
rcvcm 24 

Control message number 24 representing an OBPL 
Control message number 27 sent from Phoenix 

representing an OBPL 

has been received. 
to Cambridge 

rcvcm 27 
Control message number 27 representing an OBPL has been 
A deadlock has been detected. The following processes are 

. p1 at node Phoenix 
p2 at node Cambridge 
p3 at node Cambridge 

End of deadlock list 

165 

received. 
involved: 



Appendix III 

I 
I 

I 

\ 

shared\ 
\ 

shared 

Boston 

\ 
\ 

\ 
\ 

' ' \ 
\ 

\ 

exclusive 

exclusive 

' ' 

Cambridge 

Final State Diagram 

166 

, , 
/ 

scenarios demo7 demo8 

exclusive 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

I 
I 

I 

I 

I 

I 

I 

I 
I 

I 
I 

/shared 
I 



Appendix III scenario demo8 

scenario demoB 
note This is an example of a state where three deadlocks exist 
note involving six processes and five resources located in three 
note nodes. Three ~eadlocks are involved because dbo2 in Boston 
note has three shared users. Five, rather than six, resources are 
note involved because two processes are waiting for the same database 
note object. The first 18 commands create the state where all the 
note involved processes are active and all the involved resources 
note have been allocated to the proper processes. 
rqdbo shared Boston p1 Boston dbo2 

p1 at node Boston granted shared access to dbo2 at node Boston 
initmg mg1 Phoenix p1 Boston 

Message group mg1 has been initiated 
acceptmg mg1 Boston p1 

mg1 has been accepted by p1 at node 
rqdbo exclusive Phoenix p2 Boston dbo1 

Boston 

Process p2 at node Phoenix is blocked while a request is sent to 
the node containing the desired resource 

Control message number 1 sent from Phoenix to Boston 

rcvcm 1 
Control 

p2 

Control 

rcvcm 2 

representing a remote resource request 

message number 1 representing a remote resource request 
has been received 

at node Phoenix is granted exclusive use of 
dbo1 at node Boston 

message number 2 sent from Boston 
representing this allocation 

to Phoenix 

Control message number 2 representing a remote resource allocation 
has been received 

p2 at node Phoenix has been granted exclusive use or 
dbo1 at node Boston 

rqdbo shared Cambridge p1 Boston dbo2 
Process p1 at node Cambridge is blocked while a request is sent to 

the node containing the desired resource 
Control message number 3 sent from Cambridge to Boston 

representing a remote resource request 
rcvcm 3 

Control 

p1 

Control 

rcvcm 4 

message number 3 representing a remote resource request 
has been received 

at node Cambridge is granted shared access to 
dbo2 at node Boston 

message number 4 sent from Boston 
representing this allocation 

to Cambridge 

Control message number 4 representing a remote resource allocation 
has been received 

p1 at node Cambridge has been granted shared access to 
dbo2 at node Boston 

rqdbo shared Cambridge p2 Boston dbo2 
Process p2 at node Cambridge is blocked while a request is sent to 

the node containing the desired resource 
Control message number 5 sent from Cambridge to Boston 

representing a remote resource request 
rqdbo shared Phoenix p1 Cambridge dbo1 

Process p1 at node Phoenix is blocked while a request is sent to 
the node containing the desired resource 

Control message number 6 sent from Phoenix to Cambridge 

rcvcm 5 
Control 

p2 

Control 

representing a remote resource request 

message number 5 representing a remote resource request 
has been received 

at node Cambridge is granted shared access to 
dbo2 at node Boston 

message number 7 sent from Boston 
representing this allocation 

167 

to Cambridge 



Appendix III scenario demo8 

rcvcm 6 
Control 

p1 

Control 

rcvcm 7 

message number 6 representing a remote resource request 
has been received 

at node Phoenix is granted shared access to 
dbo1 at node Cambridge 

message number 8 sent from cambridge to Phoenix 
representing this allocation 

Control message number 7 representing a remote resource allocation 
has been received 

p2 at node Cambridge has been granted shared access to 
dbo2 at node Boston 

rcvcm 8 
Control message number 8 representing a remote resource allocation 

has been received 
p1 at node Phoenix has been granted shared access to 

dbo1 at node Cambridge 
rqdbo exclusive Cambridge p3 Phoenix dbo1 

Process p3 at node Cambridge is blocked while a request is sent to 
the node containing the desired resource 

Control message number 9 sent from Cambridge to Phoenix 

rcvcm 9 
Control 

p3 

Control 

rcvcm 10 

representing a remote resource request 

message number 9 representing a remote resource request 
has been received 

at node Cambridge is granted exclusive use of 
dbo1 at node Phoenix 

message number 10 sent from Phoenix 
representing this allocation 

to Cambridge 

Control message number 10 representing a remote resource allocation 
has been received 

at node Cambridge has been granted exclusive use of 
dbo1 at node Phoenix 

p3 

rqdbo exclusive Phoenix p1 Boston dbo2 
Process p1 at node Phoenix is blocked while a request is sent to 

the node containing the desired resouroe 
Control message number 11 sent from Phoenix to BOston 

representing a remote resource request 
note After reoeipt of the remote resource request, Boston will send 
note two OBPL's to Cambridge because two processes in that node have 
note shared use of dbo2 in Boston. A third external mes~e is not 
note needed because the third reader or db02 18 located in Boston 
note and is active. We will delay the receipt of one of the OBPL's 
note until after the process in the list that controls dbo2 gets 
note blocked waiting for a resource located in Phoenix. 
rcvcm 11 

Control message number 11 representing a remote 
has been received 

Resource is not currently available for exclusive 
at node Phoenix remains blocked 

Control message number 12 sent from Boston 
representing an OBPL 

Control message number 13 sent from Boston 

rcvcm 12 
representing an OBPL 

Control message number 12 representing an OBPL 
rqdbo shared Cambridge p1 Boston dbo1 

Process p1 at node Cambridge is blocked while 
the node containing the desired resource 

Control message number 14 ·sent from Cambridge 
representing a remote resource request 

rqdbo shared Cambridge p2 Phoenix dbo1 

resource request 

use, process p1 

to 

to 

Cambridge 

Cambridge 

has been received. 

a request is sent to 

to Boston 

Process p2 at node Cambridge is blocked while 
the node containing the desired resource 

Control message number 15 sent from Cambridge 
representing a remote resource request 

a request is sent to 

to Phoenix 

168 



Appendix III scenario demo8 

rovom 13 .. · . 
Control mesllilge number 13 representing an OBP. L ha·s· ~n received. 
Control waage DMlllMr . 16 sent traa ca.t>ridae , t<> Phoenix 

rltprfaentirig an OBPL · · . , • · .· 
note Let Phoenix reoe1.\fe. t .. OBPL ~tare 1 t reoei v-.. the r.emote resource 
note req.uest that .•. a a1tauiled .to have. ta~· .e.n ... q. ~t9r.• .tll• .last 
note pr~ •• added to tbe QIPL .. :·?•~ 1 ¥$.ll;,~~ Ma~ t»eoa~ 
note PhOltllfi hU no reoord ·that p2 in ea rldge .~:Wait.ins t~ dbo1 
note in Phoenix. 
rove• 16 . . . . . 

Control mespu 111.Bt>er 16 ·; .~n~D&; an 08Pl.i· __ hae· ~en received. 
note Rov le-t ·the above •tit10Decl remote r~,.-~et be. r"e1 ved 
note by. Phoenix. . An.. .OBPL w·.1· 11. be oreat. ed. ·a. n4r sent ·i.oo. Cambridge, wbiah 
note td,11, then d1~ the; OlfL l>~,i>l. ta -.ot~ •. 
rcvcm 15 . · . . · ... · · ; . : · . · . . 

Control me.h::*-nu:!:1~ repre.a·ent{. ni a r.llote" .. reeo. · uroe request 
Resource not. • le, P~· ~~--.bl.ooked. . 
Control ........ · ·.r 17 . ;:.t'1"<>9 · Pho4tti'lZ to Callbridge 

'~-Ntaentinl an 0 .. . ' . . ... 
rcvoa 17 ' · 

no~:ntrol11:T t~~,_.~t!7 re~~~~t'<rgraboMnT.t'~v;~· in 

~~t: ~~.-v&1:1:r-1~am~ .. ;'~•nm". !~~~.~-.· -·1~11~:r.·~ 
note the.. illl'be ~on to 'Caa'Cr .,#.-. ~ aotlve, an~ 
note the OBPL will then be discarded. · · 
rcvom 1 If . .. . . . . . .· . . 

Control ....... '•Ullber 11f rePl,' ... iltltlg~ a r.-ote reeeuree req"at 
baa ~ .. n received 

~:=~~~eiiW:C~~~~:tr~~na.:=~· .. to Phoenix 
rCYCll 18 :~ . ·~ . . · . . 
rq~t!t=:!J!:l~:*J OU.'*"~ 1~U:flDI .,, OBPL ha• been reeei ved. 

Reaouroe •' Pt.i ~- ~!!6 blocked .. 
Control-:- · > , ·~~o~&:! tr~. P~o.$ . . ·to Callbridge 

note 1.'he ·. i.·tt i ., C8"1"~d bf cpbl"J.dp._.,.._. p3 1a aotive. 
rcvcm 19 ';, · · •. · .. , . · ··. · . ·. · · ,, •·· · · 

Control •• ..,. nwaber 19· representing an OBPL ·baa beeo,r.Oei•"· 
note Tbe nut ~nd will 01"9!~f ~·5-w·••.U•k. 
::~: :: ~.=LO·.~t1.t·:=~. r.ti. •'om;•.·····~ ·.··~.•.·t:! .. u~-~·,.·t.n1:~.w~.1tf.ng note tor dJX>~-ln 14paton • ., TM-L~ _ ··14 .· :"'t ~ . !f· icl; .and .two 
note OBPt•1 Will 6' aent tO C8mt>riqe MOaU~ . dtr•"'. ··r l"eaders 
note of dbo2. Theae OBPL' a will then be ~ · · arotand un i they · 

~~~= 8:~;~d= .;ift!"~tftt =Totl~J,-+it: .,t':=t~:::r:J~ in 
rcvmsg mg 1 · · · · ··. · . .

Prooeas p1 at n<>de Boston is blocked waiting for a
...... in-•uu• sroup •.1111 .

Control mee..ae nua"r ·20 sent trom. BoatOQ to Phoenix
reisresent1nt an OBPL

rcvom 20
Control •uaae nmber 20 representing an Olitn.. ~ been re~ei ved.
Control_..,,._Mr 21 sent. from .. Phoenu to· Boston

repreaedting an OBPL

169

Appendix III

rcvcm 21
Control message number 21 representing an OBPL
Control message number 22 sent from Boston

scenario demo8

has been received.
to Cambridge

representing an OBPL
A deadlock has been detected.

p1
The following processes are involved:

at node Boston
~1

End of deadlock list
at node Phoenix

Control message number 23 sent from Boston
representing an OBPL

rcvcm 22
Control
Control

rcvcm 24

message number 22 representing an OBPL
message number 24 sent from Cambridge
representing an OBPL

Control message number 24 representing an OBPL
Control message number 25 sent from Boston

representing an OBPL
rcvcm 25

to Cambridge

has been received.
to Boston

has been received.
to Phoenix

Control message number 25 representing an OBPL ·has been received.
Control message number 26 sent from Phoenix to Cambridge

rcvcm 26
Control

rcvcm 23
Control
Control

rcvcm 27

representing an OBPL

message number 26 representing an OBPL

message number 23 representing an OBPL
message number 27 sent from Cambridge
representing an OBPL

Control message number 27 representing an OBPL
Control message number 28 sent from Phoenix

representing an OBPL
rcvcm 28

has been received.

has been received.
to Phoenix

has been received.
to Cambridge

Control message number 28 representing an OBPL has been received.
note This next request will create two deadlocks. An OBPL will be
note sent to Phoenix, which will add p1 in Phoenix to the list and
note send it to Boston. Boston will then send out three OBPL'S,
note one ror each reader of dbo2 in Boston. These OBPL's will be
note passed among the various nodes until there are no more OBPL's
note and control messages outstanding. Note that the two process two
note resource deadlock will be detected for a second time because of
note the fact that p1 in Boston still has shared access to dbo2 in
note Boston and the deadlock has not been broken by aborting any
note processes.
rqdbo exclusive Cambridge p3 Cambridge dbo1

Resource is not currently available for exclusive use, process p3
at node Cambridge is blocked.

Control message number 29 sent rrom Cambridge to Phoenix

rcvcm 29
representing an OBPL

Control message number 29 representing an OBPL
Control message number 30 sent from Phoenix

representing an OBPL
rcvcm 30

Control
Control

Control

Control

rcvcm 32

message number 30 representing an OBPL
message number 31 sent from Boston
representing an OBPL

message number 32 sent from Boston
representing an OBPL

message number 33 sent from Boston
representing an OBPL

has been received.
to Boston

has been received.
to Cambridge

to

to

Phoenix

Cambridge

Control message number 32 representing an OBPL has been
A deadlock has been detected. The following processes are

p1 at node Phoenix

received.
involved:

p1 at node Boston
End of deadlock list

170

Appendix III scenario demo8

rcvcm 31
Control message number 31 representing an OBPL
Control message number 34 sent from Cambridge

has been received.
to Boston

representing an OBPL
rcvcm 34

Control message number 34 representing an OBPL
Control message number 35 sent from Boston

representing an OBPL

has been received.
to Phoenix

rcvcm 35
Control message number 35 representing an OBPL has been
A deadlock has been detected. The following processes are

P3 at node Cambridge

received.
involved:

rcvcm 33
Control
Control

p1 at node Phoenix
p1 at node Cambridge
p2 at node Phoenix

End of deadlock list

message number 33 representing an OBPL has been received.
message number 36 sent from Cambridge to Phoenix
representing an OBPL

rcvcm 36
Control message number 36 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:

p3 at node Cambridge
p1 at node Phoenix
p2 at node Cambridge

End of deadlock list

171

Appendix III scenario demo9

scenario demo9
note This is an example of a case where a process releases a remote
note database object and sends a remote resource control message at
note the same time that an OBPL is sent to this node stating that some
note other process is waiting for the resource mentioned above, which
note is controlled by the first process mentioned above. Before the
note OBPL arrives, the first process gets blocked waiting for a resource
note that is controlled by the process that was placed in the OBPL.
note No deadlock is detected because the resource in question is no
note longer controlled by the last process to be added to the OBPL.
rqdbo shared Boston p1 Phoenix dbo1

Process p1 at node Boston is blocked while a request is sent to
the node containing the desired resource

Control message number 1 sent from Boston to Phoenix
representing a remote resource request

rcvcm 1
Control

p1

Control

rcvcm 2

message number 1 representing a remote resource request
has been received

at node Boston is granted shared access to
dbo1 at node Phoenix

message number 2 sent from Phoenix
representing this allocation

to Boston

Control message number 2 representing a remote resource allocation
has been received

p1 at node Boston has been granted shared access to
dbo1 at node Phoenix

rqdbo exclusive Phoenix p1 Boston dbo1
Process p1 at node Phoenix is blocked while a request is sent to

the node containing the desired resource
Control message number 3 sent from Phoenix to Boston

rcvcm 3
Control

p1

Control

rcvcm 4

representing a remote resource request

message number 3 representing a remote resource request
has been received

at node Phoenix is granted exclusive use of
dbo1 at node Boston

message number 4 sent from Boston
representing this allocation

to Phoenix

Control message number 4 representing a remote resource allocation
has been received

p1 at node Phoenix has been granted exclusive use of
dbo1 at node Boston

rqdbo shared Boston p1 Boston dbo1
Resource not available, process blocked.
Control message number 5 sent from Boston to Phoenix

representing an OBPL
note Let dbo1 in Boston be released by p1 in Phoenix, and let p1 in
note Phoenix then get blocked waiting for dbo1 in Phoenix before the
note OBPL from Boston is received by Phoenix.
rldbo Phoenix p1 Boston dbo1

Control message number 6 sent from Phoenix to Boston
representing a remote resource release

rcvcm 6
Control message number 6 representing a remote resource release

has been received
at node Boston has been released by

p1 at node Phoenix
dbo1

Process p1 at node Boston
dbo1 at node Boston

is granted shared access to

rqdbo exclusive Phoenix p1 Phoenix dbo1
Resource is not currently available for exclusive use, process p1

at node Phoenix is blocked.
Control message number 7 sent from Phoenix

representing an OBPL

172

to Boston

Appendix III scenario demo9

rcvcm 7
Control message number 7 representing an OBPL has been received.

note No deadlock will be detected because Phoenix observes that p1 in
note Phoenix no longer has access to dbo1 in Boston, and discards
note the OBPL.
rcvcm 5

Control message number 5 representing an OBPL has been received.

shared

shared

exclusive

Boston Phoenix

State where control message 5 has just been sent from Boston to Phoenix.
Control message 5 represents an OBPL. ~eceipt of the OBPL is delayed until
after the state drawn below is reached.

shared

Boston

Final State Diagram

173

I
I
1 exclusive

Phoenix

Appendix III scenario demo10

scenario demo10
note This is an example where an OBPL is sent from Boston to Phoenix
note stating that a process in Boston is waiting for a message from a
note process in Phoenix. Before the OBPL arrives in Phoenix, the
note desired message is sent, and the process in Phoenix gets blocked
note waiting for a resource ~hat is controlled by the process that was
note placed in the OBPL that was sent from Boston to Phoenix. No
note deadlock is detected because Phoenix notices that the message
note that was desired by the process· in Boston has already been sent.
note The first six commands create the state where the OBPL
note mentioned above has just been sent.
initmg mg1 Phoenix p1 Boston

Message group mg1 has been initiated
acceptmg mg1 Boston p1

Boston mg1 has been accepted by p1 at node
rqdbo exclusive Boston p1 Phoenix dbo1

Process p1 at node Boston is blocked while a request is sent to
the node containing the desired resource

Control message number 1 sent from Boston to Phoenix
representing a remote resource request

rcvcm 1
Control message number 1 representing a remote resource request

has been received
p1

Control

at node Boston is granted exclusive use of

rcvcm 2

dbo1 at node Phoenix
message number 2 sent from Phoenix
representing this allocation

Control message number 2 representing a remote
has been received

to Boston

resource allocation

p1 at node Boston has been granted exclusive use of
at node Phoenix dbo1

rcvms~ mg1
Process p1 at node Boston is blocked waiting for a

message in message group mg1
Control message number 3 sent rrom Boston to Phoenix

representing an OBPL
note We will now temporarily delay receipt of the OBPL by Phoenix.
note Send the message that the process in Boston desires.
sendmsg mg1

Control message number ~ sent from Phoenix to Boston
representing a message in a message group

note Let the process in Boston receive tfie message.
rcvcm 4

Control message_number 4 representing a message in a message group
has been received

Process p1 at node Boston has been awakened upon
receipt of a message in message group mg1

note Block p1 in Phoenix and then let Boston discard the OBPL that
note will be created as a result of this wait.
rqdbo shared Phoenix p1 Phoenix dbo1

Resource not available, process blocked.
Control message number 5 sent from Phoenix to Boston

representing an OBPL
rcvcm 5

Control message number 5 representing an OBPL has been received.
note Now let Phoenix receive the OBPL that was previously sent by
note Boston.
rcvcm 3

Control message number 3 representing an OBPL has been received.

174

Appendix III scenario demo10

exclusive

- --

Boston Phoenix

State where control message 3 representing an OBPL has just been sent
from Boston to Phoenix. Receipt of the OBPL is delayed until after the state
drawn below is reached.

exclusive

Boston Phoenix

Final State Diagram

175

Appendix III scenario demo11

scenario demo11
note This is an example of a deadlock involving one process and one
note operator at the same node. Two operator connections are involved.
dclop Boston op1

op1 has been declared as an operator at node Boston
copcon con1 Boston op1 p1

Operator connection con1 has been established
copcon con2 Boston op1 p1

Operator connection con2 has been established
note Let p1 in Boston request a message from operator op1 in Boston
rcvopmsg con1

Process p1 at node Boston is blocked waiting for a
message over operator connection con1

An OBPL has been queued waiting for a status report from operator op1
at node Boston The involved operator connection is con1

note Create a deadlock by reporting that op1 is waiting for a message
note over operator connection con2.
opstat Boston op1 waiting con2

We will now check for deadlock involving the given operator
and operator connection

A deadlock has been detected. The following processes are involved:
p1 at node Boston
op1 at node Boston

End of deadlock list

Boston

Final State Diagram

176

Appendix III scenario demo12

scenario demo12
note This is an example of a deadlock across three nodes which involves
note several operator connections. It demonstrates that deadlock
note involving operators will be detected as long as the operator
note properly states what he is waiting for. The first 15 commands
note set up the state where all operators have been declared, all
note operator connections have been created, the message group has
note been initiated and accepted, and the involved database objects
note have been assigned to the proper processes.
dclop Boston op1

op1 has been declared as an operator at node Boston
dclop Phoenix op1

op1 has been declared as an operator at node Phoenix
dclop Boston op2

op2 has been declared as an operator at node Boston
copcon con1 Boston op1 p1

Operator connection con1 has been established
copcon con2 Boston op1 p2

Operator connection con2 has been established
copcon con3 Boston op2 p2

Operator connection con3 has been established
copcon con4 Boston op2 p3

Operator connection con4 has been established
copcon con5 Phoenix op1 p2

Operator connection con5 has been established
copcon con6 Phoenix op1 p1

Operator connection con6 has been established
initmg mg1 Cambridge p1 Phoenix

Message g?"Oup mg1 has been initiated
acceptmg mg1 Phoenix p1

mg1 has been accepted by p1 at node Phoenix
rqdbo exclusive Boston p3 Cambridge dbo1

Process p3 at node Boston is blocked while a request is sent to
the node containing the desired resource

Control message number 1 sent from Boston to Cambridge
representing a remote resource request

rcvcm 1
Control message number 1 representing a remote resource request

has been received
P3
Control

rcvcm 2

at node Boston is granted exclusive use of
dbo1 at node Cambridge

message number 2 sent from Cambridge
representing this allocation

to Boston

Control message number 2 representing a remote resource allocation
has been received

p3 at node Boston has been granted exclusive use of
dbo1 at node Cambridge

rqdbo shared Phoenix p2 Phoenix dbo1
p2 at node Phoenix granted shared access to

note Let p1 in Boston wait for exclusive use
note deadlock will be detected because p2 in
note dbo1 in Phoenix is active.

dbo1 at node Phoenix
of dbo1 in Phoenix. No
Phoenix, which controls

rqdbo exclusive Boston pi Phoenix dbo1
Process p1 at node Boston is blocked while a request is sent to

the node containing the desired resource
Control message number 3 sent from Boston to Phoenix

rcvcm 3
representing a remote resource request

Control message number 3 representing
has been received

Resource is not currently available for
at node Boston remains

177

a remote resource request

exclusive use, process
blocked

p1

Appendix III scenario demo12

note Let p2 in Phoenix now wait for a message from op1 in Phoenix.
note We then state that op1 in Phoenix is active, so no OBPL's get
note expanded further.
rcvopmsg con5

Process p2 at node Phoenix is blocked waiting for a
message over operator connection con5

An OBPL has been queued waiting for a status report from operator opl
at node Phoenix The involved operator connection is con5

opstat Phoenix op1 active
All 08PL's waiting for the given state infoMDation have been discarded

note Let p1 in Phoenix wait for a message from p1 in Cambridge. No
note deadlock exists because p1 in Cambridge is active.
rcvmsg mg1

Process p1 at node Phoenix is blocked waiting for a
message in message group mg1

Control message number 4 sent from Phoenix to Cambridge
representing an OBPL

rcvcm 4
Control message number 4 representing an OBPL has been received.

note Let p3 in Boston wait for a message from op2 in Boston. The
note OBPL created when p3 gets blocked will be ~isoarded when we
note state that op2 is active.
rcvopmsg con4

Process p3 at node Boston is blocked waiting for a
message over operator connection con4

An OBPL has been queued waiting for a status report from operator op2
at node Boston The involved operator connection is con4

opstat Boston op2 active
All OBPL's waiting for the given state information have been discarded

note Simultaneously block p1 in Cambridge and p2 in Boston. Then
note let Boston receive the OBPL from Cambridge that was created
note when p1 in Cambridge was blocked. Before we report the status
note of op1 in Boston state that op2 in Boston is waiting for a
note message from p2 In Boston, thereb{ queuing a second OBPL for
note information on the status of op1 n Boston.
rqdbo shared Cambridge p1 Cambridge dbo1

Resource not available, process blocked.
Control message number 5 sent from Cambridge

representing an OBPL
rcvopmsg con2

to Boston

Process p2 at node Boston is blocked waiting for a
message over operator connection con2

An OBPL has been queued waiting for a status report from operator op1
at node Boston The involved operator connection is con2

rcvcm 5
Control
An OBPL

message number 5 representing an OBPL has been received.
has been queued waiting for a status report from operator op2
at node Boston The involved operator connection is con4

opstat Boston op2 waiting con3
We will now check for deadlock involving the given operator

and operator connection
An OBPL has been queued waiting for a status report from operator op1

at node Boston The involved operator connection is con2
opstat Boston op1 waiting con1

We will now check for deadlock involving the given operator
and operator connection

Control message number 6 sent from Boston
representing an OBPL

Control message number 7 sent from Boston

to Phoenix

note
note
note
note
note
note
note

to Phoenix
representing an OBPL

There were two OBPL's waiting for state information from op1 in
Boston, therefore two OBPL's are expanded and sent to Phoenix.
Let Phoenix receive and expand both OBPL's 1 and state that op1
in Phoenix is waiting for a message from p1 in Phoenix thereby
closing the deadlock loop. The deadlock will be detected twice
because we had two OBPL's being passed around due to the fact
that we blocked two processes simultaneously.

178

Appendix III scenario demo12

rcvcm 6
Control message number 6 representing an OBPL has been received.
An OBPL has been queued waiting for a status report from operator op1

at node Phoenix The involved operator connection is con5
rcvcm 7

Control message number 7 representing an OBPL has been received.
An OBPL has been queued waiting for a status report from operator

at node Phoenix The involved operator connection is
opstat Phoenix op1 waiting con6

We will now check for deadlock involving the given operator
and operator connection

Control message number 8 sent from Phoenix
representing an OBPL

Control message number 9 sent from Phoenix

rcvcm 8
representing an OBPL

to Cambridge

to Cambridge

Control message number 8 representing an OBPL
Control message number 10 sent from Cambridge

has been received.
to Boston

rcvcm 9
representing an OBPL

Control message number 9 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:

p1 at node Cambridge
p3 at node Boston
op2 at node Boston
p2 at node Boston
op1 at node Boston
p1 at node Boston
p2 at node Phoenix
op1 at node Phoenix
p1 at node Phoenix

End of deadlock list
rcvcm 10

op1
con5

Control message number 10 representing an OBPL has been received.
An OBPL has been queued waiting for a status report from operator op2

at node Boston The involved operator connection is con4
opstat Boston op2 waiting con3

We will now check for deadlock involving the given operator
and operator connection

A deadlock has been detected. The following processes are involved:
p2 at node Boston
op1 at node Boston
p1 at node Boston
p2 at node Phoenix
op1 at node Phoenix
p1 at node Phoenix
p1 at node Cambridge
p3 at node Boston
op2 at node Boston

End of deadlock list

179

Appendix Ill

Boston

Cambridge

Final State Diagram

180

I
I

I
I

Phoenix

scenario demo12

CS-TR Scanning Project
Document Control Form

Report# Le 5-T~ ~ J'b5

Date : JL1 J I 'is

Each of the following should be identified by a checkmark:
Originating Department:

D Artificial lntellegence Laboratory (Al)
la, Laboratory for Computer Science (LCS)

Document Type:

~Technical Report (TR) D Technical Memo (TM)

D Other: ·-----------
Document Information Number of pages: f<Jo (1~~ .,· MAo::J)

Not to Include DOD forms, printer tntstructlons, etc ... origlrial pages only.

Originals are: Intended to be printed as :
D Single-sided or D Single-sided or

M Double-sided .)(Double-sided

Print type:
D Typewriter 0 Laser Print

D Ink.Jet Printer

D Offset Press

D Unknown 0 Other:._~~~~~-
Check each if included with document:

0 DODFonn

~Spine
D Funding Agent Fonn

D Printers Notes

')(_Cover Page

D Photo negatives

D Other: ------------
Page Data:

Blank Pages(by ... number): __________ _

Photographs/Tonal Material (by1111119number): ________ _

Scanning Agent Signoff:

Date Received: Jj_/ _!__j Cf S Date Scanned: __ j_j_J J.J.J ..lJ. Date Returned: J.!.J d..~ll_

Scanning Agent Signature:. _ __,2i....i.u/v..(.~J i M"'-4!'"--l..1v~J...;;;~z..·~=---

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Resear.ch Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-Jl029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

