MIT/LCS/TR-185

DEADLOCK DETECTION IN COMPUTER NETWORKS

Barry Goldman

September 1977

Tius blank page was inserted to preserve pagination.

MIT/LCS/TR-185

DEADLOCK DETECTION IN COMPUTER NETWORKS

Barry Goldman

September 1977

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly PROJECT MAC)

CAMBRIDGE MASSACHUSETTS 02139

Deadlock Detection in Computer Networks

by

Rarry Goldman

Submitted to the Department of Flectrical Engineering and Com-
puter Science on March 1, 1977, in partial fulfillment of the
requirements for the Degrees of Bachelor of Science and Master of
Science.

ABSTRACT

The problem of detecting process deadlocks is common to
transaction oriented computer systems which allow data sharing.
Several good algorithms exist for detecting process deadlocks in
a single location facility. However, the deadlock detection
problem becomes more complex in a geographically distributed
computer network due to the fact that all the information needed
to detect a deadlock is not necessarily available in a single
node, and communications delays may lead to synchronization
problems in getting an accurate view of the network state.

In this Thesis, two published algorithms dealing with
deadlock detection in computer networks are discussed, and exam-
ples demonstrating the failure of these algorithms are given.
Two algorithms are then presented for detecting deadlocks in a
computer network which allows processes to wait for 1) access to
a portion of a database, or 2) a message from another process.
The first algorithm presented is based on the premise that there
is one control node in the network, and this node has primary
responsibility for detecting process deadlocks. The second, and
recommended, algorithm distributes the responsibility for
detecting deadlocks among the nodes in which the involved pro-
cesses and resources reside. Thus a failure of any single node
has limited effect upon the other nodes in the network. A com-
puter model of the "decentralized" (second) algorithm was de-
signed and it is described in the Thesis.

THESIS SUPERVISOR: Stephen A. Ward
TITLE: Assistant Professor of Computer Science and Engineering

Acknowledgements

As a participant in M,I.T.'s VI-A (Electrical Engineering
and Computer Science Co-operative) Program, I was able to write
this Thesis based on research that I conducted while working in
the Advanced Systems Engineering Group of Honeywell Information
Systems, Inc. (Billerica, Mass.) I would like to thank Charles
W. Rachman, who acted as my supervisor at Honeywell. He
suggested the Thesis topic, and gave me valuable advice through-
out various phases of the project. I would also like to thank
others in the group for the help they gave me in conducting the
research and in the writing of the Thesis. They are Mike Canepa,
William Helgeson, Beth Lang, Maxine Neil, Charlotte Reiley, Mario
Trinchieri and Paul Wood.

Additionally, thanks go to Steven Taylor, who provided me
with some feedback in the early stages of my research after
introducing me to Mr. Bachman. Finally, I would like to thank
Professor Stephen Ward for his work in the supervision of the
Thesis, and John Tucker and Lydia Wereminski for running the VI-A
Program.

This research was supported by the Advanced Research Projects Agency
of the Department of Defense and was monitored by the Office of Naval

Research under Contract No. N00014-75-C-0661.

TABLE OF CONTENTS

ARSTRACT 2
Acknowledgements 3
I. Introduction 5
1.1 The Interference Problem 7
1.2 Deadlock Prevention 9
1.3 Deadlock Avoidance 10
I.% Deadlock Detection 1M1
I.5 Structure of the Thesis 13
IT. Proposal of Chandra, Howe and Karp 15
I1.1 Chandra, Howe and Karp's Proposed Solution 15
11.2 A Fault in the Proposed Solution 17
Figure 11.1 19
ITI. Proposals of Mahmoud and Riordon 20
I1I1.1 Mahmoud and Riordon's Centralized Control Approach 20
1711.2 Mahmoud and Riordon's Distributed Control Approach 21
ITIT.3 Some Comments about the Proposed Schemes 23
Figure III.1 26
IV. Introduction to Proposed Solutions 27
IV.1 Descriptions of Resources 28
IV.2 Access to Resources and the Blocking of Processes 31
IV.3 Creation and Expansion of an OBPL 33
V. Centralized Approach to Deadlock Detection 38
V.1 Allocation of Resources 38
V.? Deadlock Detection 40
V.3 Issues to be Resolved L3
V.4 Reasons for not Refining the Algorithm by
VI. Decentralized Approach to Deadlock Detection 46
VI.1 Allocation of Resources 46
VI.2 Deadlock Netection y7
VI.3 Explanation of Steps in the Deadlock Detection Algorithm
49
VI.4 Verification of the Algorithm 52
VI.5 Some Properties of the Algorithm 60
VII. ADT Model of the Decentralized Algorithm 63
VII.1 Data Structure Diagrams 63
VII.? Architectural Definition Technique]
VII.3 The Deadlock Detection Model 66
VII.4 Test Cases run on the Model T2
VIII. Suggestions for Further Research T4
VIII.1 The Rollback/Retry Problem T4
VIII.2 Optimization of the Decentralized Algorithm 77
VIII.3 Types and Probability of Deadlock 79
VIII.4 Refinement of the Centralized Algorithm 79
IX. Conclusions 80
References 83
Appendix I 84
Appendix II 92
Appendix III 146

I. Introduction

A simple example of deadlock (or "deadly embrace") occurs
when a process P! is blocked while waiting for access to resource
R2 which is controlled by process P2, and P2 in turn is blocked
while waiting for access to resource R1 which is controlled by
P1. A deadlock may involve more than two processes. For exam-
ple, process P1 may be waiting for access to resource R2 which is
controlled by process P2, P2 may be waiting for access to
resource R3 which is controlled by process P3, ..., process
P[n-1] may be waiting for access to resource Rn which is con-
trolled by process Pn, and Pn may be waiting for access to
resource R1 which is controlled by P1.

Multiprocessing and data sharing are commonly used in a
single location transaction oriented computer system. In the
future they will be common to transaction oriented, geographi-
cally distributed computer networks. 1In this Thesis an algorithm
is presented that can be used to detect deadlocks involving pro-
cesses waiting for access to a shared portion of a database or
waiting for a message from a process with which it is
communicating within a éomputer network. It is possible that a
process can be either computerized or manual, although a manual
process (i.e. a person at a terminal) can not directly request
access to a portion of a database, as it is restricted to only
communicate with computerized processes by the usé of messages.
Throughout this paper, the word "operator" will be used to refer

to a manual process.

Much has been written dealing with deadlock detection,
avoidance and prevention in computer sy#tems. However, most of
the literature discusses a single location facility where the
status of 011 proetsaes and resourtes are avaiiable in a single
local table. (For 2 good discussion, lneluding a graph model of
computer systems which can be used to detect degdlocks, see "Some
Deadlock Properties of Computer Sys;eu:?v{?}.) Very few articles
have been published that are cpnéerneg;ulth the deadlock problem
in a computer network (geographie:ily di;gf;bgted computer
system). | |

When dealing with a computer aatunrkvas opposed to a single
location fﬁcility, thé deadlock ﬂ&;ectlpﬁ‘groblem béqomes more
difficult due to the fact that all the lmfofanéion>needed to de-
tect a deadlock is n6t4neeessar11y avaliahlo in a single node,
and communication delays may lead to syuchrbﬂization problems in
getting an accurate view or the natuark ‘state. SQme reasons for
restricting access to portions of a databasp‘gqvcn though the
result of blocking processes canrleudk;o Qeﬁdloek),and some rea-
sons why the common deadlock prgventidn.and avoidance algorithms
are not well suited to the networks under consideration will be
discussed. Several deadlock éetection schemes for computer net-
works (some from recent llteraturc; aoﬁe da;ign@d by this author)
will be presented and they will be follaned hy a discussion of

some of the benefits of using the various ach&mes. .

I.17 The Interference Problem

Given two or more independent processes, interference is
said to have occurred if the results produced by their concurrent
execution would not have been obtained by running these processes
one at a time in any order (i.e. nonconcurrently).

A simple example of interference is the following. Let two
processes, P1 and P2, read the contents of database record R1.
Then let P1 add 5 to the value and let P2 add 10 to the same
value. Now let each process alter the contents of R1 to contain
the value computed by that process. Depending upon the order of
update, the contents of R1! will be either 5 or 10 greater than
the value that was contained during the reads. We have a case of
interference because the value of R1 would have been 15 greater
than the value contained at the time of the first read if P1 and
P2 had been executed sequentially in either order.

Another case of interference océurs when a process, in pro-
cessing one transaction, twice alters the contents of the same
database object and in between the two writes, a second process
reads the contents of that database object. In some cases a
process which is only reading the contents of a database object
may not care if there is any interference, in which case it may
request "dirty read" access to the database object. (A process
thét is only reading the contents of a database object can not
interfere with the values produced by another process, although
other processes can interfere with the values produced by the

"reading" process.)

When maximum concurrency among 1nd0pen¢ent processes is de-
sired, a process must be allowed to reud‘and jlter the contents
of a database object whenever it wants to. (This type of access
to data has been called "shared rccglth’rcd‘ﬁritef.) In order to
detect interference, records must be kept pboug_the_type of use
(read or write) of each database object, and what processes (and
when they) used it. An algorithm to detect interference when
this information is kept is prénentcd‘tp_”pn Managing Interfer-
ence Cause& by Database Sharing™ [10). A more thorough discus-
sion of 1nter?srenco is also given. After an interference
situation is detected, at least one of the involved processes
must be forced to rollbaek;to a previous state in order to cor-
rect the interference condition. |

Most systems, in order to avoid lnggrfggonce and guargntee
that a proces# iili see gconsisteat_stfge of a database,
restrict access to daté_ﬁy a syatemkog‘iocks. If a process wants
to change the contents of a databtap‘abqqet,,it mus; request ex-
clusive access to that datab5§e’object,;gngs cemporarily (for the
duration of the lock) prevenfingAall other processes from
accessing that database object. If a precess only wants to read
the contents of a database object, it enn.égque;t,shared‘read
access to thit datébaag object, thua,tenqugf;ly (for the dura-
tion of the lock) preventing all other:ﬁrpeé;sag from al;ering
the contents of ihat database object. If a database object can
be shared among several readers, the method of access is called

"shared read/exclusive write", whereas if there can be only one

reader, it is called "exclusive read/exclusive write".

When a request for access to a database object (resource)
can not be granted due to the existence of a lock on that
database object, the requesting process must be blocked until the
resource becomes available. Due to processes waiting for access
to resources, there exists the posSibility of deadlock among the

processes in a computer system.

1.2 Deadlock Prevention

Deadlock prevention schemes place constraints upon system
users in order to ensure that deadlock will never occur. There
is little operating system overhead involved when using
prevention methods. There are several deadlock prevention algo-
rithms that are widely known:

1. Each process must request all needed resources at one
time and will remain blocked until all requests can be
granted simultaneously. (This is often referred to as
"static" allocation.)

2. All resources are given a unique number and processes
must request resources, one at a time, in numerical or-
der.

3. When an active process requests a resource that is con-
trolled by a blocked process, the blocked process must
release the resource so that it may be allocated to the
active process. A process will go from the active to
blocked state only if it requests a resource controlled
by another active process.

The unpredictability of resource usage in a transaction

oriented system, plus the loss of productivity that results from
tying up resources unnecessarily or forcing processes to release

resources and request them later (which often results in some

redundant computations due to & process having to‘repeat some
operations to maintein a consistent detsbaee) geke‘prevention
algorithms undesirable for use in the systems under considera-
tion. 1In a multiproeessing environment whioh considers
inter-process messages as resourcet, 1t is 1mpossib1e to have an
advance knowledge of all the resourees that will be needed by a
process. Thus algorithm 1 can not be used 1n this type of sys-
tem, whether it is a single or multi node facility. Algorithm 2
is unsuitable for the systems under consideration because al-
though it may be possible to give & unfqué number to each
inter-process message, & protess must be "#llccated" each message
that it will send to another proecess, which can result in many
difficulties when two processes asre sendimg sevéral ﬁesseges to
each other. Algorithm 3 can not be used Wedduse it implies that
all resources must be pre-emptable (i e. they muﬁt be able to be
released by a procese upon the demand uf the: syatemo, which is an

impossible situation when messages are treatcddaa resources.

1.3 Deadlock Avoidance

Deadlock avoiﬂance algoribhms csiculate 3tfe paths for com-
pletion of all processea. Befere a rusearce 1s allacated to a
given process, the operating system cheeks 1r there would be at
least one path via which a11 processes can run to completion
after the allocation is made. If no such path exists, then the
requesting processbmust wait until a iime wﬁeh the resource can

be safely allocated to the process. Avoidance algorithms thus

10

force processes to wait unneceésarily in order to be certain thét
all processes will be able to run to compietion'without tﬁe
threat of deadlock. |

In "System Deadlocks" (5] it is stated that "to avoid
deadlocks in a multiprogramming system 1d whiéh the necessary
conditions for deadlocks can.exist, if iskushéliynhécesséry to
have some advance information on the resoufceAusage ofhtasks."
When portions of databases afe considered resbuféés; and they are
locked at a level lower than a filé”(pége, reébrd, field, etc.),
it is difficult to determine in advance uhai datagése objects
will be needed. 1In addition, due to the dhpredictability of
processes in a transaction oriented 3ys£éﬁ; it is 1mpos$1b1e to
have an advance knbwledge of all the inter-procéss messages that
will be redueSted by a process. The}efére, d;adlock avoidance
algorithms can not be used in a siﬁéle dr‘mﬁlti node trahsaction

system which permits 1nter-process‘communicatibn.

I.4 Deadlock Detection

Since it seems that deadlock prevention and avoidance algo-
rithms are unsuitable for the disbfibuted systems under consid-
eration, deadlock detection methods must be examined. When
employing a deadlock detection algorithm, requested resources are
usually assigned to the requesting processes whenever possible,
and processes are blocked only when desired resources are
unavailable. Either the operating system or a system user must

occasionally check for a deadlock situation, and if one is found,

1M

must rollback (backup) and retry at least ane process in order to
break the deadlock. ’(It is hoped this uill fqrcé é’new sequence
of access to resources.) | |

From the implementor's viewpoint. ;be Qas;estﬂitrategy to
adopt is that where one assumes deadloek occura 1nfrequent1y. In
this case someone (an operator) external to the network would
have the responsibility for detecting thq_dquloqg aqd deciding
what process shouid bé forced to réllb?ek‘go a‘previoug state.
With this approach the only everhaad involvethhe temporary
inability to access the resources cqnt[gglgq by the deadlocked
processes and the’coat of tollbacy(retrf_or aomev(bn all) of the
deadlocked processes (This cost may be Iarge for each deadlock,
but if there are few deadlocks the overall system cost may be
less than it would be if there were ay'@g;dloekpdepggpor? that
was constaht}y chgcking for deadlocks.) One cbuld also assume
that if a process has been blocked for 'X' unita of time, then it
is deadlocked and the operating system should force it to
rollback to a previous state, although this strategy may result
in some unnecéssary redundant computations because some processes
that will be retried may not have been involved in a deadlock.

At least two articles have been published which propose
protocols for allecating database objects in a computer network
in a manner such that deadlock carn be detected at the time a
request for access is denied. In:desigﬁing‘an:algdrithﬁ to be
used to detect process deadlocks in & transaction oriented com-

puter network which allows process to process comminication, it

12

i1s necessary to allow for the possibility of a process waiting
for a message from another process (which may be manual or
computerized). Additionally, a process must be allowed to wait
for access to a database object which has been allocated to at
least one other process.

Any algorithm that will be implemented as part of an oper-
ating system should be as efficient as possible. Therefore, in
the algorithms proposed by this author, an attempt was made to
minimize the number and size of internodal messages involved in

the detection of deadlocks.

1.5 Structure of the Thesis

Chapters II and III contain descriptions and comments
(including some examples pointing out deficiencies) relating to
two papers that have been published proposing protocols for
allocating database objects in a computer network such that
deadlock can be detected at the time a request for access to a
database object is denied. Chapter 1V presents an introduction
to the two schemes for detecting deadlock in a computer network
that are proposed by this author in Chapters V and VI. The two
schemes differ in that one (Chapter V) places the primary re-
sponsibility for detecting deadlock anywhere in the network on
one control node, whereas the other totally distributes the re-
sponsihility throughout the network. Chapter VII contains a
discussion of a functional model of the algorithm proposed in

Chapter VI, The Appendices contain a description and demonstra-

13

tion of the model, in addition to containing the PL/I code for
the model itself. Chapter VIII contains somé shggestioﬁs for
future research, and Chapter IX contains a comparison of the
various algorithms presented in Chaptera II,vIII,,V and:VI, plus
some concluding remarks. |

If one only wants to read about the algorithm that is
recommended by this author, it is possible io read Chapters IV
and VI with no loss of understanding. Chapter VII can also be
understood after reading Chapters IV and VI{tas,can the Appendi-

ces and some portions of Chapter VIII.

14

' II. Proposal of Chandra, Howe and Karp
In "Communication Protocol for Deadlock Detection in Com-
puter Networks" [3], a scheme is presented which the authors call
"a novel solution to the deadlock problem in the network
environment." Theilr "solution" is described below, and the de-
scription is followed by an example where the scheme allows a

deadlock to go undetected.

I1.1 Chandra, Howe and Karp's Proposed Solution

The authors propose that each installation (node) maintain a
resource table (RT) which contains information about which pro-
cesses have been allocated local resources, which processes have
been queued (waiting for access) for local resources, which local
processes have been allocated remote resources and which local
processes have been queued for remote resources. The type of
access requested by each process is also recorded. The authors
claim that in a single node facility, there are several well
known algorithms for detecting deadlocks using the tables
mentioned above. They then state "it is believed to be obvious
that these same algorithms would suffice in the multiple instal-
lation case provided that the resource table were to be expanded
to include the pertinent information from the remote sites.™ A
scheme to expand the resource table in a node is given in the
paper.

The authors believe there are three types of requests for

resources that can lead to deadlock. (In all cases, "it is as-

15

sumed that the requested resource is not available, because, if
it were, the allocation would take place immediately.") The ac-
tion taken for each type of request is the following (as stated
in the paper):

Case 1

A process requests a local resource, which is allocated
to a local process, and all of the processes which are
queued for this resource are also local processes. All of
the necessary information is contained in the local RT, and
the request is resolved locally.

Case 2

A process requests a local resource, which is either
allocated to a remote process or one or more of the pro-
cesses that are queued for this resource are remote
processes. In this case, all of the RT's must be obtained
by the local installation since deadlock may occur. Once
all of the RT's have been obtained, the
deadlock-determination algorithm can be applied to the
expanded RT which contains all of the resources and pro-
cesses in the total community of installations.

Case 3

A process requests a resource at some remote installa-
tion. In this case, the requesting installation forwards
the request and its RT to the installation which has the
requested resource. This installation then determines if
the request can be honored immediately or if all of the RT's
must be first obtained. In the case where the requested
resource is allocated to or queued by only processes local
to the two involved systems, the request can be honored im-
mediately. Otherwise, this installation obtains the RT's
from the remaining installations and then resolves the
request.

In all of these cases, the RT's that are involved in
the decision procedure must be locked until after the deci-
sion has been made. If the decision involves the RT's of
the other installations in the community, these installa-
tions must be notified after the decision is made and their
tahle is then released. 1In Case 3, the updates to the RT
must be returned to the requesting installation while all
other tables can be discarded and a simple release notice
returned. ‘

16

A description is given of the actions to be taken when "two
or more installations may simultaneously request the various RT's
in order to make an allocation for two or more independent

requests."

IT.2 A Fault in the Proposed Solution
There are some resource requests which fall under Case 1,
and result in a deadlock for which the local RT does not contain

enough information to detect. Consider the following example:

Let the network consist of two nodes, A and B. Let
processes P1 and P2 and resource R1 be local to A, and let
processes P3 and P4 and resources R2, R3, and R4 be local to
B. Assume the following state of the network. (Figure
I1.7a contains a diagram of this "intermediate"” state.) P1
has exclusive control of R1 and is queued waiting for access
to R4, P2 has exclusive control of R2 and is queued waiting
for access to R1, P3 has exclusive control of R3 and is
queued waiting for access to R2, and P4 is active
(non-blocked) and has exclusive control of R4, In this
state there is no deadlock. Now let PY4 request access to R3
and be queued for the resource. A deadlock now exists (see
Figure II.1b) involving all four processes and all four
resources. With the tables as described in the article,
this deadlock could not be detected unless node A sent node
R its tables, but this does not take place because the

request falls into Case 1 (since P4 is local to B, as are P3

17

and R3). Therefore the deadlock goes undetected.

Similar examples (for networks consisting of three or more
nodes) exist where requests falling under Case 3 result in
undetected deadlocks. RT's from 3 or more nodes may be needed
even if "the requested resource is allocated to or queued by only

processes local to the two involved" nodes.

18

Intermediate State Diagram

Figure II.1a

KEY

(:) Represents

[] Represents

E:}—+<:> Represents
O.-.—.D Represents

Final State Diagram

Figure II.1b

process
resource
process having exc¢lusive use of a resource

process waiting for access to a resource

19

II1. Proposals of Mahmoud and Riorddn

In "Protoecol Considerations for Software Controlled Access
Methods in Distributed Data Bases" [8], two sehemes are presented
for allocating database files in a netﬁork §ﬁﬁ1ronment. The
authors (Professors at Carleton University, Ottawa, Ontario,
Canada) claim that with their schemes, by using the graphic rep-
resentation as déseribed*in’f9], deadlocks-c¢dn be detected at the
time an allocation decision is made. The two schémes-are de-
scribed below, and a brief discussion about the schemes follows,
including an example where one of the proposals allows a deadlock
to go undetected.

The first approach qescribed requires that all deadlock
tests be made by one node, whereas with;the second: approach each
node must test for dégdlock rbéultiﬂggknon«df?ferent processes
accessing 1t37f11es. Each no;e in the networknwihl contain a
Distributed Data Pase Management Faciiity (DDBMF) which will
communicate with %he other DDBMF prooetses<1n ‘the network for the

purpose of handling requests for local and remote processes.

II1.1 Mahmoud and Riordon's Centralized Control ﬁpproach

In the centralized approach, one node, called the control
node, will make all the deadlock tests and handle all file
allocations. If a process running at node: i would like access to
a file in node j, a request is sent to the DPBMF tn node i, which
then relays it to the central - DDBMF, even if:node 1 and node j

are the same. Since the central DDBMF makes all the file

20

allocation decisions, it has an overall picture of the global
network status, and can therefore decide if the request can

safely (without deadlock) be placed on the file queue.

I11.2 Mahmoud and Riordon's Distributed Control Approach

In the distributed approach, the DDBMF at each node will
have full control over all access to the files located at its
node. As a result of this, the authors state that "each node
DDBMF will be responsible for handling job interference
(deadlock) problems that may arise while different processes are
accessing its files." In order to avoid or detect deadlocks
involving processes and files located at two or more nodes, "each
individual DDBMF must obtain information from other DDBMF pro-
cesses indicating the status of their files and queue tables.
The information will be used ... to construct a global picture of
the network and thus enable each individual DDBMF process to make
the correct decisions."”

All active user processes are separated into two classes.
In the authors' own words,

The classification is based on the localities of the files

requested by the process and the type of access to each of

these files:

Class 1: each process belonging to this class has the fol-

lowing properties:

1) Al1 files accessed by the process during its active
session are located in a single node.

2) All files being updated by the process are single-copy
files in the network (i.e. only a single copy of each
file exists in the network).

Class 2: each user process belonging to this class has the
following properties:

1) Files that are accessed simultaneously by the process

21

during an active session do not all exist in a single
computer system and/or

2) Any one of the files being updnted by the process has
multiple copies in the netuwork.

It is obvious that the tuo classes of processes are
mutually exclusive.

The authors suggest using a graph representation in order to
detect deadlock, and they describe how a DDBMF gets information
from the other DDBMF's in the network and when it should check
for deadlock:

Assume that there are n nodes in the network, i.e., n
individual DDBMF processes. Each process will transmit
(n=-1) identical messages simultapecusly, with one message
addressed to each of the remaining DDBMF processes. Each
message contains the most updated iaforsation: about the
status and queues of Tiles at the node in question. The
messages will be transmitted periodically at the onset of
synchronous clock intervals. Similarly, each DDBMF process
will receive periodically (n-}) messages. from the other
processes. Now assume that a DDBMF process receives a
request for access to.one.of the f{iles under its control
from a local or remote user process. If the requesting
process belongs to class 1, the DDBNF.will respond immedi-
ately to the request. Otherwise the DDBMF will delay action
until the next time interval,. i.e., uniil receiving updated
information about the status of the network files from other
DDBMF processes. The request is then checked against any
possible interference (deadlock) and the user process is
notified once a deaision is made, = S

‘Requests which can not be acted uponm uutil the next time
interval are placed in a pre-test gueue, S

‘At the beginning of a clock interval, each processor
receives information from other processors including the
contents of the file gqueues and the pre~test queue. The
processor extracts the contents of the. pra-&iat gueues and
combines them to construct a globsl .pre~test -queue which
includes all the requests for f!&aﬂacce;a~rodaiwnd by all
processors during the previous time .interval. The file ac-
cess requests on the global pre~tast quene are tested for
deadlock conditions and dncis&oaa~aro~$hen made.'

To avoid deadlock situations caused by critical race
conditions, the file access rcquestaeom - global pre-test

i

22

queue must be arranged in the same order in all

processors... All processors must then follow a predefined

routine in constructing the global pre-test queue. The
resulting versions of the global pre-test queue will be
identical in all processors at the beginning of every clock
interval.

I11.3 Some Comments about the Proposed Schemes

The authors state that their schemes will work if records,
or other units serve as the identifiable unit of object data,
rather than files, which were mentioned throughout the paper.
When records are allocated individually, there will be more mes-
sage traffic due to additional message requests for access to
database objects. Nowhere in the paper is the problem of message
congestion at the control node (when using the Centralized
approach) discussed. With all requests for access to database
objects being handled by the central DDBMF, there exists the
possibility of a message bottleneck at the control node, which
would degrade network performance due to slow response to the
requests.

It is mentioned that failure of the control node (when using
the Centralized approach) can "paralyze the operation of the
whole system," although all the DDBMF's can send all their in-
formation to another DDBMF, thus recreating the global picture of
the system at a newly designated control node. Although the
author's Centralized approach may be "inefficient," it can be
used to successfully detect all process deadlocks when only waits

on datahase objects are involved.

The NDecentralized approach, as described in the paper, does

23

not detect all deadloek situations when only process waits for

database objects are involved., Consider the folloying example:

Let the network consist of two nodes, A and B. Let
processes P1 and P2, and files F1 and F2 be local to node A,
and let processes P3 and P4, and files F3 and F¥ be local to
node B, Assume the following state of the network. (Figure
I11.1a contains a diagram for this "intermediate™ state.)

P1 has exclusive control of Fﬁ'and*isﬁquéued waiting for
access to Fi, P2 is active (non«blotked) and has exclusive
control of F2, P3 has exclustve céntrol of F3 and is queued
waiting for sccess to F2, and Pl is sttive and has exclusive
control of F#4, P1 and P3 belong to class 2, as defined by
Mahmoud and Riordon, and P2 and P4 both belong to class 1 as
long as each does not request access to a file located in a
node other than the one in which the process resides.

Now, within the same time interval, let P2 request ac-
cess to F1 and let P4 request access to F3, thus creating a
deadlock because neither file ean beéome available. (Figure
I11.1b contains the final state diagram for this deadlock.)
P2 and P4 remain class 1 processes, and therefore these
requests should be acted upon immediately and each node will
check for deadlook using the information that it has. No
deadlock will be detected because neither node has the in-
formation about the recent request in the other node, and no

provisions are stated in the article which imply that

24

deadlock involving P2 or P4 will be checked for at the onset

of the next synchronous clock period.

The authors believe that class 1 processes do not contribute
to deadlocks that involve processes waiting for files located in
more than one node, and therefore deadlock can be checked for
using only the information located at one node when a class 1
process requests access to a file. It is this assumption that
leads to the downfall of their Decentralized approach, because it
is possible that a class 1 process will request access to a file
controlled by a class 2 process, resulting in a deadlock (as
shown in the previous example) involving processes which are
collectively waiting for access to files located in two or more
nodes. Note that this is similar to the flaw in the protocols

for deadlock detection proposed by Chandra, Howe and Karp.

25

Intermediate State Diagram

Figure 1I1].1a

Represents
Represents
Represents

Represents

Final State Diagram

Figure III.1b

process
file
process having exclusive use of a file

process waiting for access to a file

26

IV. Introduction to Proposed Solutions

The deadlock detection schemes that are presented in
Chapters V and VI are based on the creation and expansion of or-
dered blocked process lists (OBPL's) and the restriction that a
process may only have one unapproved outstanding resource request
(and therefore be waiting for at most one resource at any
instant). A resource may be any non-ambiguously defined portion
of an object, whole object, or collection of objects which are
requested as an entity and released as an entity by all users.
(The case where there are several equivalent resources like tape
drives is not considered. A discussion of physical devices oc-
curs later in this chapter.) An OBPL is a list of process names,
each of which (with the exception of the last process in the
list) is waiting for access to a resource that has been assigned
to the next process in the 1ist. Fach process name in the list
is often referred to as a process entry in the OBPL, and when an
OBPL is sent between nodes, a resource name is inserted into the
single resource identification portion of the OBPL. The last
process to have an entry in the OBPL is either waiting for access
to the resource named in the resource identification portion, or
it already has access to that resource. In the former case, it
must be determined what process controls the resource, whereas in
the latter case, the state of the last process in the OBPL must
be determined.

It is assumed that at each node there is a process manage-~

ment module (PMM) which will handle deadlock detection and

27

resource allocation. It will maintain locallstate tables which
will contain inforhation about local resources (resources which
are located in that node) and local processes (processes which
are running in that node). If a PMM is checking for deadlock,
and it is examining the OBPL with process entries P1, P2, ...,
PN, then it knows that each process in the 1list (with the
exception of PN) is waiting for the next process in the list to
release a desired resource. If PN is not 9100ked, there is no
deadlock and the OBPL can be discarded. If it is blocked, then a
PMM must find out what process has been allocated the resource
for which PN is waiting. If this process already has an entry in
the OBPL, there is a deadlock, otherwise a PMM must append the
process name to the OBPL and repeat the above. The schemes that
are being proposed differ from each other in the way the OBPL's

get expanded.

IV.1 Descriptions of Resources

There are three types of resources that a process may wait
for where the blocking of the process can result in a deadlock.
They are database objects, message text from other computerized
processes, and message text from operators (manual processes). A
distinction is made between message text from processes and mes-
sage text from operators because a deadlock which involves no
operator messages can be detected without operator interaction,
whereas if a process is waiting for message text from an opera-

tor, a deadlock can not be detected without the operator stating

28

what he/she is waiting for. The reason for the latter point is
that an operator typically does not type in "receive message"
statements, but accepts output as it is given. In the algorithms
presented, it is assumed that an operator can only wait for a
message from a process with which he/she is communicating (a
discussion of operator and process communication is given later
in this section). This restriction can be relaxed, and it is
discussed in Chapter VIII.

Database objects, as discussed in this paper, can be fields,
records, files, or any other logical or physical component of a
database. It is important that all processes treat the same
portion of a database identically for the purposes of allocation.
The level of granularity (which may vary for different database
objects) at which database objects are allocated is unimportant
for the detection of deadlock: it does however, affect the
frequency of deadlock and, conversely, the burden of maintaining
information about resource allocation.

Message text must be treated differently from database ob-
jects because once a message text has been assigned to a process,
it is not available to any other process. In this sense, once a
message text has been assigned, it no longer exists for future
assignment. To ensure thaf a process receives the proper message
text, the sending and receiving processes must create a unique
connection over which message text between the two processes may
pass. When a process would like to receive message text, it must

state over which previously established connection the text

29

should come. Similarly, when a process wants to send message
text, it must give the message text and name the connection over
which the text should pass. All messages that are sent and
received over a given connection will be referred to as text
within a specific message group.

When message text is sent by a process, it is queued for
receipt at the proper destination end of the connection. A pro-
cess may send several items of message text over a given connec-
tion before any messages are requested by the other process as-
sociated with the connection. 1In this case the items of message
text are queued for receipt in a first in, first out manner. It
is assumed that message management has infinite queueing
capacity, and therefore the possibility of a deadlock involving a
process which wants to send a message but is blocked because
there is no place to put the message text will not be dealt with.

Unlike process to process messages, which may be sent be-
tween nodes, when a process and an operator communicate, they
must be located at the same node. Similarly, however, an
"operator connection” must be established between the operator
and process before message text can be sent over the connection.
The operator connection must be specified when message text is
sent or received over the connection. When messages are sent
from a process to an operator, they are usually printed immedi-
ately at the operator's terminal. However, messages that are
sent from an operator to a process are queued for receipt in the

same manner as process to process messages.

30

All of the resources described above are uniquely identifi-
able, and are allocated dynamically (i.e. during the execution of
the process requesting access to the resource). None of them are
physical devices (tape drives, printers, etc.), which are often
not uniquely identifiable (there may be N of a kind). Physical
devices are not considered by the algorithms that are being pro-
posed because they are typically allocated to a process before
execution begins and the known networks restrict processes to
requesting physical devices at the same node. (If a process
wants to control a physical device at another node, it must do so
indirectly through a process located at the same node as the de-
sired device.) Additionally, transaction oriented processes

typically do not use dedicated devices.

IV.2 Access to Resources and the Blocking of Processes

A process may get blocked when it requests read only
(shared) access or exclusive (read/write) access to a database
object. While one process has exclusive access to a specific
database object, all requests for access to that database object
result in the requesting process being blocked. While at least
one process has shared access to a specific database object, 2all
requests for exclusive access to that database object result in
the requesting process being blocked, and requests for shared
access to that database object will result in the requesting
process being blocked or being granted access to the desired

resource (depending upon the resource allocation scheme in use).

31

Recause data values are not changed when a process only reads a
databhase object, any number of processes‘may be allowed to have
concurrent read only access to a database object. When all pro-
cesses that had shared access to a given database object have
released it, or when a process releases a database object from
exclusive use, at least one process will be awakened and granted
access to the newly released database object, if any were waiting
for access to it.

Once é process has been granted shared access to a specific
database object, subsequent requests by that process for exclu-
sive access to that database object are rejected. This restric-
tion prevents a process from getting blocked waiting for a
database object that it already has access to, and implies that a
process must declare its most restrictive use when it requests
access to the database object. (It must request exclusive access
if there is any chance that the process might change the content
of the database object.) In order to ensure that a process has a
consistent view of the database, and that processes may be rolled
back to a previous state (when necessary), no database objects
will be released by a process until that process has reached a
"commitment point", at which time all the database objects that
the process had access to are released. A commitment point is
always reached at process termination. (When a process continues
processing after reaching a commitment point, for purposes of
detecting deadlock, a PMM can treat it as a new process because

it released all its database resources, and notified all pro-

32

cesses to which it could send mgssageé that né more messages are
forthcoming. The externai effécts bf a prqcess, including |
database updates and méssage text sent, can not be cancelled
after commitment. 'ProéeSQ commitment points afe synchronized,
which is to say that after a process reachesya\céﬁmitment point,
it does no further processing until a11>§r6cesse5 with uhich it
has established connections ovéf wﬂich iivcbh héce1ve messages
have also reached commitment.points.) - |

If a process attempts to‘keceive meséage text over a speci-
fic connection, it will be given one message if any ére queued
for receipt at that proéess‘i& end of the connection. If no
messages are available, the process is Slocked until message text
arrives. Upon arrival of a messagé, the‘process Qill be
awakened, because the receiving process is»uniquely‘identified by
the connection over which meSSégé teit 13 Sent. Steps ﬁust be
taken to ensure that the receiving process an<he sending pro-
cess of a message treat the same>t§xtt$s one ﬁessage. (One pro-
cess can't treat a line as a message whén the éthef process

treats a group of sentences as a message.)

IV.3 Creation and Expansion of an OBPL

When a‘PMM wants to check whether a given blocked process is
involved in a deadlock, it creates an OBPL and inserts the net-
work unique name of the process as the first process entry in the
OBPL, (It is assumed that operators, processes and resources

have unique names within a node, and these names can be made

33

unique within a network by'qualifying them with the name of the
node in which they reside. Throughout this Thesis, operator,
nrocess and resource names are assumed to be network unique.)
Call this process P1. Let R1 be the resource to which P1 desires
access. R1 is then inserted into the resource identification
portion of the OBPL. A PMM (which PMM depends upon what scheme
is being used to detect deadlock, and whether P1 and R1 are in
the same node) then determines what process controls R1. If R1
is a database object, then the process that controls R1 is the
process that has access to it. (If there are several shared
readers of R1, then it is said that each reader controls R1 and
the ORPL is copied enough times so that there is one 1list for
each reader of R1, and a different copy of the OBPL is used for
each reader.) If R1 is message text in a message group, then the
process that controls R1 is the process that can send the desired
message, and if R1 is message text from an operator connection,
the process that controls the resource is the human operator that
can send the message. If R1 is message text over a connection to
which no process other than P1 has associated itself, the PMM
saves the OBPL so that after another process or operator associ-
ates itself with the connection the needed information will be
available and the OBPL can be expanded further. It is assumed
that no deadlock can exist unless two processes are associated
with the connection over which the desired message text can be
received.

Let PX be the process that controls R1. A PMM then checks

34

if PK already has an entry in the OBPL that is being examined.
If it doesn't, the PMM adds its name to the OBPL and then lets
some PMM determine if PK is active. If PK had an entry in the
OBPL, the PMM has detected a deadlock, and should take the ap-
propriate action. Note that the entry_for PK can te anywhere in
the OBPL, as it is possible that a process not involved in the
deadlock may be waiting to access a resource controlled by a
process that is involved in the deadlock If PK is active, then
there is no deadlock and the OBPL can be discarded. If PK is
blocked, then the above procedure should be repeated, except PK
should be used instead of P1 and a PMM determines what resource
PK is waiting for. If PK representsran operator, then the PMM
must save the OBPL until information ahout‘the status of the‘op-‘
erator becomes available. 'A‘message isAsent‘to the operator
stating that this state information.is desired. ‘If‘the operator
sends message text to a process, or if the operator responds that
he/she is active, then all OBPL's that needed state information
about this operator are discarded sinceithere is currently no
deadlock. If the operator states that he/she is waiting, then
the operator connection over which the operator is awaiting a
message must also be stated The process that can send the op-
erator the desired message is determined from the connection
name, thus the PHH now knows what process controls the resource
the operator desires, and this information is used to further
expand all the OBPL's that needed state information about the

operator. 1If no OBPL's needed this information, and the operator

35

volunteers the information that he/she is blocked, then an OBPL
is created with the first process entry representing the opera-
tor.

In order to ensure that a PMM sees a consistent set of state
tahbles, no resources get allocated or released in the node of the
PMM while the PMM is examining an OBPL. (The PMM holds exclusive
use of the state tables in its node. The reason for this re-
striction becomes apparent in Chapter VI in the verification of
the decentralized algorithm.) There is nojchance of a PMM itself
being involved in a deadlock because it is the only process that
has access to the state tables in its node, and it does not wait
for any messages or request access to any other database objects.
Resource requests and OBPL's arriving from other nodes result in
subroutine calls to the PMM., These calls are handled in a FIFO
sequence. In addition, when a process or operator associates
itself with a connection, a PMM is called to check if any OBPL's
have been saved waiting for this information. Furthermore, when
an operator sends message text to a process or states that he/she
is active or blocked, the PMM at that node checks if any OBPL's
have been saved waiting for state information about the operator
and takes the appropriate action.

The time at which an OBPL gets created depends upon the
optimization of the deadlock detection scheme, and which PMM
creates the OBPL depends upon what scheme
(centralized/decentralized) is used. An OBPL can be created as

soon as a process hecomes blocked, or it can get created after

36

'X' units of time have elapsed without the process gaining access
to the desired resource. The latter approach will be used with
the expectation that normally the process will be granted access
to the desired resource within 'X' units of time because deadlock
does not exist. Thus the overhead involved in creating and
expanding an OBPL will usually be avoided. However, within the
body of this paper, in the interest of clarity it is assumed that
an OBPL is created immediately after it is determined that a de-
sired resource 1s currently unavailable. It should be understood
that the removal of this assumption, and the imposition of a
delay before the OBPL gets created, does not impair the
effectiveness of the algorithms because once a deadlock occurs,
it exists until some type of recovery action is initiated.
Certain information must be available to the PMM's if the
ORPL's are to be properly expanded. The PMM at each node will
maintain a table which has an entry for each process in its node.
Associated with each process entry will be a list of all the
resources to which the process currently has access, and the name
of the resource to which the process desires access (if the pro-
cess is waiting). For each resource at the node, the PMM must
keep information stating what process or processes currently have
access to that resource, and what type of access they have. In
addition, a list of all processes that are waiting for access to
that resource must be maintained. (The latter information is
necessary so that the resources will be properly allocated when

they become available.)

37

V. Centralized Approach to Deadlock Detection

A "centralized" approach to deadlock detection in a computer
network is based upon the premise that one node (the "control”
node) in the network will aét as the center of activity for glo-
bal resource allocation and deadlock detection. In order to re-
duce overhead, any requests for resources or checks for deadlock
that can be handled entirely by one node should not request the
service of the control node. For reasons that will be explained
later, thelfollowing desceription has not been refined, and should
not be viewed as a working algorithm. The description presents
some ideas that could form the basis for a practical centralized

approach to deadlock detection.

V.1 Allocation of Resources

A process management module (PMM) will have responsibility
for granting access to a local resource as long as no remote
processes have been allocated the resource nor have been queued
for it. When these conditions do not hold, the control process
management module (CPMM) (located in the control node) will have
responsibility for granting access to the resource. Thus when a
process desires a remote resource, the request must go to the
CPMM. When a process requests a local resource, the request must
go through the CPMM only if that module currently has responsi-
bility for granting access to the resource, otherwise the request
will be handled by the local PMM., The set of resources for which

the CPMM grants access changes dynamically. (As soon as a pro-

38

cess requests a remote resource, that resource becomes a member
of the centrally managed set if it isn't already a member, and
when the conditions above are satisfied again, the resource is
removed from the set;) For each resource in the set, the CPMM
maintains a 1list (in the global resource control table) of all
processes queued for that resource plus the name of the process
or processes (in the case of shared access) that have been al-
located the resource.

There are essentially three classes of resource requests in
this type of network. The following is a 1list of the resource
request classes and the proper response to each type of request:

1. A process requests a resource at the same node as the
process, and the local PMM is responsible for granting
access rights to the resource: The PMM can block the
process or give it the resource. In either case, the
PMM can update the appropriate tables.

2. A process requests a resource at the same node, and the
CPMM has been given responsibility for granting access
rights to the resource: A message containing the
resource request must be sent from the local PMM to the
CPMM. The local PMM will block the process until it
receives notification from the CPMM that the desired
access has been granted. Upon receipt of the resource
request, the CPMM will either grant the process access

~to the desired resource, or keep it blocked. In either
case, the CPMM updates its tables to reflect the state
after this request has been processed.

3. A process requests a resource at another node: A mes-
sage containing the resource request must be sent from
the local PMM to the CPMM, The local PMM will block the
process until it receives notification from the CPMM
that the desired access has been granted. Upon receipt
of the resource request, the CPMM, if it had the re-
sponsibility for granting access to the specified
resource, wWill either grant the process access to the
desired resource or keep it blocked. If the CPMM did
not have such responsibility, it will demand it from the
PMM that does, and then the CPMM will process the
request. After the request has been processed, the CPMM

39

will update its tables appropriately.

When a process reaches a commitment point, the local PMM
will release all the resources that the process controlled. The
PMM can then grant other local processes access to the resources
that were released and for which it has responsibility for
granting access. If any resources which were under the CPMM's
control were released, the CPMM will be notified of the reaching
of a commitment point by the process, and it will then grant
other processes access to the resources if@any are queued for
them and the rules for resource allocation permit the new
assignments. If possible, following a resource release, the CPMM
will return responsibility for granting access to a resource back

to the PMM in the node where the resource resides.

V.2 Deadlock Detection

When a PMM denies a request for a resource and blocks a
process, it then creates an OBPL with a process entry for the
blocked process. It then expands the OBPL until 1) a deadlock is
detected, 2) it is ascertained that there is no deadlock, or 3)
the PMM does not have enough information to expand the OBPL fur-
ther (because an involved process is waiting for a global
resource, or a local resource is controlled by a remote process).
In the latter case the PMM sends the OBPL to the CPMM, which will
complete the expansion of the OBPL. When the CPMM denies a
request for access to a resource, it creates an OBPL with a pro-

cess entry for the blocked process and then expands the OBPL un-

4o

til a deadlock is detected or it is ascertained that no deadlock
exists.

To expand an OBPL, a PMM uses its state tables that were
described in Chapter IV, and the CPMM uses its global resource
tables and those of the PMM's in the network. (How it obtains
copies of these tables is discussed later in this chapter.) The
method by which tﬁe PMM's expand an OBPL will be described first,
and it will be followed by the method which is used by the CPMM.
After a PMM has created an OBPL, it acts as if it were in step 2
below, with PN set to the name of the process which was just
blocked, and RN set to the name of the resource for which PN is
waiting. The following is a list of steps taken by a PMM when
expanding an OBPL:

1. Let PN be walting for resource RN. If RN is a local
resource, go to step 2, otherwise go to step 6.

2. If RN is controlled only by local processes, go to step
3, otherwise go to step 6.

3. Let PX be the process controlling RN. If PX is blocked,
go to step 4, otherwise there is no deadlock and the
OBPL can be discarded. (If there are J shared readers
of RN, repeat this step once for each reader.)

b, If PX is already contained as a process entry in the
OBPL, there is a deadlock and the PMM must take appro-
priate action. If PX is not in the OBPL then go to step
5.

5. Append PX as a process entry in the OBPL and go to step
1, where PX is used in place of PN.

6. Place RN into the resource identification portion of the
OBPL and send the OBPL to the CPMM. Halt.

The CPMM will create an OBPL when it denies a request for

access to a resource. The only process entry in the newly cre-

41

ated ORPL is for the process whose resource request could not
currently be honored. After a CPMM has created an OBPL, it
starts in step 1 below, with RN set to the resource whose
unavailability resulted in the OBPL being created. If the CPMM
receives an OBPL from a PMM, it sets RN to the resource that was
placed in the resource location of the OBPL, and sets PN to the
last process to be inserted into the OBPL. The CPMM verifies
that PN is still waiting for RN (if it isn't, either RN has al-
ready been allocated to PN or the CPMM has not yet received the
request by PN for access to RN, so there is currently no deadlock
and the OBPL can be discarded) and then starts in step 1 below.
The following is a list of steps taken by the CPMM when expanding
an ORPL:

1. Let PX be the process controlling RN. (If there are J
shared readers of RN then repeat this step once for each
reader.) 'To find PX, the CPMM first checks if RN is in
the global resource table. If it is, then this table is
used to get PX, otherwise the copies of the local tables
for the node in which RN resides are used by the CPMM.
Go to step 2.

2. If PX is blocked, go to step 3, otherwise there is no
deadlock and the OBPL can be discarded. (First check if
PX is waiting for a global resource, and if it isn't,
then check the copies of the local tables for the node
in which PX resides in order to find out if PX is
blocked or active.)

3. If PX is already contained as a process entry in the
OBPL there is a deadlock and the CPMM must take appro-
priate action. If PX is not contained in the OBPL, go
to step 4.

4, Append PX as a process entry in the OBPL and go to step
5, where PX is used in place of PN.

5. Let PN be waiting for RN. (If PN is waiting for a glo-
bal resource, use the global resource table to determine
RN, otherwise use the copy of the local tables for the

42

node in which PN resides.) Go to step 1.

V.3 1Issues to be Resolved

There are several problems with the algorithm as described
in the previous section. A major problem is determining how the
CPMM maintains its copies of the taﬁles belonging to the PMM's in
the network. One possibility is to have each PMM send a copy of
its tables to the CPMM every 'X' units of time. Another is to
have the CPMM request a new copy of the tables that it needs if
'Y' units of time (Y may equal 0) have elapsed since it last
received a copy of the desired table. 1In either case, once a
deadlock has been detected, all the tables of the nodes whose
processes and resources are involved should again be requested by
the CPMM in order to verify that the déadlock exists and that the
CPMM's detection was not a result of the CPMM looking at an
inconsistent state of the network. (Due to the fact that the
list of resources that are kept in the global resource table
changes dynamically, and the CPMM does not always have an up to
date copy of the local tables, it is possible that some needed
information may be incorrect and could cause problems for the
CPMM,) It is probable that there are better and more reliable
methods of maintaining the copies of the local tables in the
CPMM,

When the CPMM is expanding an OBPL, and encounters a process
waiting for message text from an operator, it can be difficult to

get the needed state information. A method is needed whereby the

43

CPMM can save the OBPL and notify the PMM at the node in which
the operator resides, that this state information is desired.
The PMM must then query the operator and send the CPMM this in-
formation along with its latest state tables.

Another problem that must be resolved occurs when related
messages cross between two nodes. An example of this is that the
CPMM may return the rights to grant access to a resource to a PMM
at the same time that the PMM under discussion sends a request to
the CPMM stating that one of its processes would like to access
that local resource. Care must be taken when designing the
resource allocation scheme to ensure that cases like this will be
detected and the desired action (which in this case is granting
the process access to the resource) will occur. In addition,
steps must be taken in the deadlock detection algorithm to ac-

count for and detect similar problems.

V.4 Reasons for not Refining the Algorithm

Several factors led to the decision not to refine the above
algorithm to the point where it could easily be proved to work.
It was felt that with all remote resource requests going to one
node, there would be message congestion at that node, plus there
would be an extra delay due to the fact that a request must go
through the central node rather than going directly to the node
in which the desired resource resides. Another factor that in-
fluences message congestion is the size of the tables that will

get sent from the PMM's to the CPMM. Since database records may

by

be considered resources, these tables can get quite large, and it
would be preferable to only send the CPMM parts of these tables,
but then there is the problem of deciding which parts should be
sent, and what the CPMM should do when it was not sent enough
information.

When one node is used as the center of activity in a net-
work, the network becomes only as reliable as that node. It
would be possible to have another node in the network serve as a
hackup to the CPMM and maintain copies of the CPMM'S tables.
There would be a delay in updating this duplicate copy, and it
would have to be decided how often the copy should be updated.

(A great deal of overhead is involved if a message is sent to the
"backup” node every time the CPMM changed its tables.) It would
also be possible to reconstruct the CPMM's tables at another node
by requesting information from all other nodes in the network,
thus saving the overhead involved in maintaining the duplicate
copy at a cost of added delay if the control node were to become
inoperable for some reason. In a computer network it is desira-
ble to distribute the computing and to minimize the overall net-
work problems when one node crashes. This was the major reason
it was decided not to spend time refining an algorithm for

deadlock detection which relies upon one node in the network.

hs

VI. Decentralized Approach to Deadlock Detection
A "decentralized" approach to deadlock detection in a com-
puter network is hased upon the premise that there should be no
central or control node and that all nodes in the network will
share the responsibility for detecting deadlocks. 1In addition,
the failure of one node should only affect the processes of that
node and the processes of other nodes which are accessing that
node's resources. The amount of duplicate process and resource
state information among the various nodes in the network will be
kept to a minimum, and each node will be requested to help check
for a deadlock only when at least one of its processes or

resources is involved.

VI.1 Allocation of Resources

A process management module (PMM) located at each node will
always have responsibility for granting access to resources lo-
cated at that node. Whenever a process requests a resource, the
request will be processed by the PMM at the same node as the
process. This PMM will determine if the desired resource is lo-
cal or if it is located at a different node. (Message text
should be treated as local to the node of the sending process.)
If it is a local resource, then the PMM can immediately determine
if the desired access may be granted or if the process must be
blocked waiting for the availability of the resource. If the
request is for a remote database object, then the PMM must block

the process and send a remote database object request (RDOR) to

46

the PMM in the node which contains the desired resource. Upon
receipt of an RDOR from another node, a PMM will determine if the
requesting process must remain blocked or if it may be granted
access to the desired resource. If access is granted, a remote
database object assignment (RDOA) is sent to the PMM in the node
in which the requesting process resides. Upon receipt of this
RDOA, the PMM will awaken the proper process and notify it of the
resource assignment. If the process must remain blocked, no
message is sent to the node in which the process resides. The
details of implementing this feature are not described, as they
are not relevant to the scope of this Thesis.

When a process reaches a commitment point, the PMM at its
node will release all the database resources that the process had
access to and notify the necessary processes that no more mes-
sages are forthcoming from the specified process. All local
resourceé can be immediately allocated to other processes in ac-
cordance with the rules for resource allocation, and messages
must be sent to all nodes which had resources allocated to the
process, informing their PMM's of the reaching of a commitment
point. Upon receipt of such a message, the PMM will
appropriately update its tables and assign the resources to other

processes in accordance with the rules for resource allocation.

VI.2 Deadlock Detection
When a PMM determines that a resource at its node can not -

currently be allocated to a process that requested it, the PMM

u7

creates an OBPL (ordered blocked process list) with a process
entry for the blocked process. It then expands the OBPL until 1)
a deadlock is detected, 2?2) it is ascertained that there is no
deadlock, or 3) the PMM does not have enough information to fur-
ther expand the OBPL. (Note that if a database object has been
requested, the ORPL is created in the node where the database
object resides, whereas if message text has been requested, the
OBPL is created in the node where the requesting process
resides.) The PMM starts expanding the newly created OBPL in
step 10 below. When a PMM receives an OBPL from another node, it
starts in step 1 below in an attempt to complete the expansion of
the OBPL. The reasoning behind each step is contained in the
next section, and these explanations should be read before one
attempts to verify the correctness of the algorithm. It should
be noted that within the algorithm, PX and RX are names of vari-
ables whose contents represent processes and resources, respec-
tively, even though they are sometimes used as though they were
process and resource names themselves.

1. Set RX to the value contained in the resource
identification portion of the OBPL. If RX represents a
resource which is local to the node expanding the OBPL,
then go to step 2, otherwise go to step 8.

2. Verify that the last process added to the OBPL is still
waiting for RX. 1If it isn't then discard the OBPL and
halt, otherwise go to step 3.

3. Let PX be the process controlling RX. (If there are J
shared readers of RX, then repeat this step once for
each reader.) If PX already has a process entry in the
OBPL, then there is a deadlock and the PMM must take the

appropriate action. If PX is not in the OBPL then go to
step 4.

48

10.

1.

If PX represents a process which is local to the node
expanding the OBPL, then go to step 5, otherwise go to
step 7.

If PX is active, there is no deadlock, so discard the
OBPL and halt. Otherwise go to step 6.

Append PX as a process entry in the OBPL and go to step
10.

Append PX as a process entry in the OBPL. Place RX into
the resource identification portion of the OBPL and send
the OBPL to the PMM in the node in which PX resides.
Halt.

Verify that the last process added to the OBPL still has
access to RX. If it doesn't, discard the OBPL and halt.
Otherwise go to step 9.

If the last process added to the OBPL is active, there
is no deadlock, so discard the OBPL and halt. Otherwise
go to step 10.

Get the name of the resource for which the last process
added to the OBPL is waiting and call it RX. If RX
represents a resource which is local to the node
expanding the OBPL, go to step 3, otherwise go to step
11.

Place RX into the resource identification portion of the
OBPL and send the OBPL to the PMM in the node in which
RX resides. Halt.

VI.3 Explanation of Steps in the Deadlock Detection Algorithm

The following i§ a description of the reasons for including

each step in the deadlock detection algorithm described in the

previous section. Each numbered paragraph below corresponds to

the step with the same number in the previous section.

1.

An OBPL will be sent to a node when it must be deter-
mined what process controls a given resource, or what
state (active or blocked) a given process is in. If the
resource that was named in the resource identification
portion of the OBPL is local to the node that just
received the OBPL, then in order to expand the OBPL the
PMM needs to know what process has access to that
resource and it goes to step 2, otherwise it goes to

49

step 8 in order to check the state of the last process
to be added to the OBPL.

It must be verified that the last process added to the
OBPL is still waiting for RX because it is possible that
while the OBRPL was sent from the PMM in the node con-
taining the process, the PMM in the node containing RX
sent a message stating that the process has been granted
access to RX. 1If this process is no longer waiting for
RX, the state that was assumed when the OBPL was sent no
longer exists, and the OBPL can be discarded.

If RX represents a database object, then the last pro-
cess added to the OBPL is still waiting for RX if it is
still queued for access to the database object. If RX
represents a message in a message group, then RX is
qualified by the sequence number of the message within
the message group that is desired. (If the process has
already received N messages over the specified connec-
tion, then it is waiting for message number N+1 in the
message group.) The process is still waiting for the
specified message only if the number of messages already
sent to it over the given connection is less than the
number that qualified the message group name.

If PX already has a process entry in the OBPL, then
there is a loop of processes each waiting for a resource
that is controlled by the next process in the loop, so a
deadlock has heen detected. If PX does not have a pro-
cess entry in the OBPL, go to step 4 in order to expand
the OBPL further if PX is not active.

If RX is a database object which has J shared readers,
then a copy of the OBPL must be made for each of these
readers because the process that requested access to RX
will not be able to access RX if the process is in a
deadly embrace loop involving any one of the J readers.

If PX is local to the node which is expanding the OBPL,
then the PMM can immediately check the state of PX, so
it goes to step 5. If PX is not a local process, the
OBPL must be sent to the node in which PX resides, so
the PMM goes to step 7.

If PX is not currently blocked waiting for access to any
resources, there can be no deadlock currently involving
PX. If PX represents an operator, the OBPL must be
queued walting for state information about the operator.
The PMM will then ask the operator to enter information
about his/her state. The acceptable operator responses
are 1) that he/she is waiting for a message over a given
operator connection, 2) that he/she is active, or 3) a

50

10.

regular message over an operator connection. If the
operator sends a regular message, or states that he/she
is active, then there is no deadlock and all the OBPL's
that are queued for state information about this opera-
tor will be discarded. If the operator ‘states that
he/she is waiting for a message, then the PMM can (by
the use of the given operator connection) determine what
process can send the messdge -thet the ‘operator desires,
and the PMM can then further expand the OBPL. It may be
desirable to "time cut"™ a non-responsive operator, as
operator ‘inaction can stall the symtom'and perpetuate an
undetected deadlock. -

PX is blocked, so insert it as the last entry in the
OBPL and then go to step YOAin order to further expand
the OBPL.

Insert PX as the last entry in the OBPL even though the
PMM does. not know the state (active or blocked) of PX.
(This will be checked by the node that will receive the
OBPL.) Place RX ‘into the resource tdentification
portion of the OBPL to indicate that PX currently con-
trols RX, and the state of PX is needed information. If
RX represents a message within a message group, it is
qualified by the sequence: number of ‘the message within
the message group that is desired. The PMM therefore
sends the OBPL for further expansion to the PMM in the
node which contains PX.

It must be verified that the last process added to the
OBPL still has access to RX because it is possible that
while the OBPL was sent from the PMM in the node con-

taining RX, the PMM in the node containing the process

‘sent a message stating that RX has deen released by the

process. If the process no longer has access to RX then
the state that was assumed when t#e OBPL was sent no
longer exists, and the OBPL can be discarded

If the last process added to the OBPL is not currently
blocked waiting for access to any resources, there can
be no deadlock currently involving the process. If the
process is blocked, the PMM- goes to step 10 because the
process already has been 1nserted as the last _process
entry in the OBPL.

Step 10 can be reached from step 6 or step 9. In either
case, the last process added to the OBPL is local to the
node which is expanding the OBPL, 86 the PMM can find
out what resource the process desires access to. Set RX
to the name of this resource. If RX is local to the
node that is currently expanding the OBPL, the PMM can
continue to expand the OBPL, so it goes to step 3,

51

otherwise it goes to step 11.
11. To further expand the OBPL, what process has access to
RX must be known, so the PMM sends the OBPL to the PMM
in the node in which RX resides. Place RX into the
resource identification portion of the OBPL to indicate
that the last process added to the OBPL is blocked
waiting for access to RX and what process controls RX is
needed information. In the case where RX represents a
message within a message group, it is qualified by the
sequence number of the message within the message group
that is desired. Send the OBPL for further expansion to
the node in which RX resides.
VIi.4 Verification of the Algorithm
There are two parts in the verification of the correctness
of the decentralized algorithm for deadlock detection. The first
and most important part is to prove that all deadlocks get
detected. The second part is proving that a deadlock is not
"detected" when (except in a special case discussed later) one

does not exist.

Part 1

To prove that all deadlocks get detected, it will be
shown that once a deadlock state is reached, an OBPL will be
created that will be passed among nodes which will expand it
until the deadlock is detected. There are two assumptions
that are required for this proof: 1) All internodal mes-
sages eventually get received by the proper nodes (and
therefore no OBPL's are "1§st" in the transmission between
nodes), and 2) while the OBPL is being expanded, none of the
processes involved in the deadlock are aborted (which would

break the deadlock before it is detected) or rolled back to

52

a previous state (which would imply the deadlock has been
detected by the expansion of another OBPL).

Let a deadlock consist of processes P1, P2, ..., PN,
with P1 waiting for a resource controlled by P2, ..., and PN
waiting for a resource controlled by P1. (Process names are
unique within a node and they can be made network unique by
gualifying them with their node names, so throughout this
proof, assume the Pi represent distinct processes.) When
each process, Pi, involved in the deadlock was denied access
to a resource controlled by another process in the deadlock,
an OBPL was created with the first process entry represent-
ing Pi. One of these OBPL's must have been the last (in
time) to be created, thus the deadlock existed at that time.
(If two or more of these OBPL's were created simultaneously
and they were the last to be creafed for processes involved
in the deadlock, then any one in this "last group" may be
arbitrarily selected as the last to be created. The
important point is that the deadlock existed at the time the
OBPL was created, and all the relevant tables collectively
contain the information showing each process in the deadlock
waiting for a resource controlled by another process in the
deadlock.) For simplicity, assume that this last OBPL con-
tains P1 as its first process entry. Additionally, in the
ensuing discussion, a message from an operator to a
computerized process will not be treated as a special type

of resource because it is assumed that operators will state

53

what they are waiting for when asked to do so by a PMM.
After P1 has been inserted as the first process entry
in this "last" ORPL, the PMM which will begin the expansion
of the ORPL will be in step 10 of the algorithm. If P1 is
waiting for access to a resource local to a different node,
then the PMM executes steps 10 and 11, and another PMM
(after receipt of the OBPL) executes steps 1 and 2, then
goes to step 3, otherwise the PMM executes step 10 and goes
to step 3. (Since there is a deadlock, the OBPL will not be
discarded.) Now, no matter what P1 is waiting for, it can
be assumed that a PMM is about to start step 3 and it can
(i.e. it has the information in its tables) determine what
process (in this case, P2) controls the resource P1 has re-
quested. There are two ways (depending on whether P2 is
local or global to the node in which the OBPL is currently
located) in which a process entry for P2 will be inserted
into the ORPL.
Case A: P2 is "local".
Steps 4, 5 and 6 are executed, then step 10 will be
executed. The PMM will then be ready to execute step 3
or it will execute step 11 and another PMM will execute
steps 1 and 2, and will be prepared to execute step 3.
Case B: P2 is "global™".
Steps 4 and 7 are executed, then the PMM which then
receives the OBPL will execute steps 1, 8, 9 and 10.
It will then be ready to execute step 3 or it will ex-
ecute step 11 and another PMM will execute steps 1 and
2, and will be prepared to execute step 3.

This "last" OBPL now has process entries for P1 and P2,

and a PMM is about to execute step 3 to continue the

54

Part

expansion of the OBPL. A PMM is now essentially in the same
position some PMM was in shortly after the OBPL was created.
The only difference is that now two processes have entries
in the OBPL, and RX is set to the resource for which P2 is
waiting, rather than the resource for which P1 is waiting.
By repeating the above procedure as many times as necessary,
the OBPL will be expanded to include process entries for
processes P1, P2, ..., PN. At this point, when step 3 is
executed, it will be determined that P1 controls the
resource PN has requested, and the deadlock will be
detected.

QED Part 1.

To prove that every deadlock that gets "detected" ac-
tually is a deadlock, it must be shown that an OBPL will be
discarded whenever there is a change in the state that was
assumed when a process entry was made in that OBPL. (The
one exception, which is ignored in the ensuing discussion,
is the case where the assumed state changes due to the
aborting or rolling back of a process, rather than having
the state change due to a waiting process being awakened and
granted access to the resource for which it was waiting.)
This condition is sufficient because if a deadlock is
"detected" when expanding the OBPL containing (in order of

insertion) process entries for P1, P2, ..., PM, PN, and

55

there has been no change in the state that was assumed when
each process was entered into the OBPL, then P1 is still
waiting to access a resource controlled by P2, ..., PM is
still walting to access a resource controlled by PN, and PN
is still waiting to access a resource controlled by PJ,
where PJ appears earlier in the OBPL. Thus a deadlock ac-
tually exists if one is "detected" and there has been no
change in the state that wés assumed when the process en-
tries were inserted into the OBPL.

Assume that a PMM is expanding an OBPL with process
entries (in order of insertion) P1, P2, ..., PK, PL. 1If the
algorithm is correct, then P1 is waiting for access to a
resource controlled by P2, ..., and PK waiting for access to
a resource controlled by PL., Now assume that this state
does not hold. That is to say, for some Pi, Pj with adjac-
ent process entries in the OBPL, either Pi is not waiting
for access to the same resource (say RQ) for which it was
waiting when it was ascertained that Pi was blocked and that
Pi should have an entry in the OBPL, or Pj no longer con-
trols RO. It will be shown that whenever this situation
occurs, it will be detected and the OBPL will be discarded.

It can be assumed that Pi and Pj are PK and PL respec-
tively, because if the state has changed from what was as-
sumed when Pi was inserted into the OBPL, then it either
changed before a PMM checked to see what Pj was waiting for,

Pj was not blocked, or the state changed after there was a

56

similar state change involving Pj and the next process in

the 1list. (The latter claim can be made because if Pi was

waiting for access to RQ which was controlled by Pj, and Pj

controlled RQ and was hlocked at the time that it was

decided to further expand the OBPL, the only way the assumed

state could change would be for Pj to incur a state change

and be awakened so that it could release RQ.)

that
that
must

same

In order to show that PK is still waiting for RQ, and
RO is still controlled by PL whenever it is decided
another process should be added to the OBPL, two cases
be considered. 1) PL, PK and RQ are all located in the

node, and 2) PL, PK and RQ are located in two or three

different nodes in the network.

Case 1.

Due to the restriction that operators can only
communicate with processes, there are three possible
combinations of the types (process or operator) of PL
and PK. (The resource type of RQ is either unimportant
or uniquely determined by PK and PL.)

Case A: PK and PL are both processes.
Once PK has been inserted into the OBPL, and the
PMM in the node in which PK resides is expanding
the OBPL, the PMM determines that PK is waiting
for access to RQ and that PL controls RQ. It then
inserts PL into the OBPL if PL is blocked and
discards the OBPL if PL is active. Since the PMM
has exclusive use of the state tables in its node,
there is no way the assumed state will change un-
til after the OBPL is discarded, sent to another
node or queued waiting for state information about
an operator (in which case the state can not
change until after the operator states that he/she
is active or sends a message to a process, both of

57

which result in the OBPL being discarded).

Case B: PK is an operator and PL is a process.
PK is not inserted into the OBPL until the opera-
tor states that he/she is waiting for a message
over a given operator connection (RQ). The PMM in
the node in which PK resides then determines that
PL is the process that can send the desired mes-
sage. If PL is blocked, it is inserted into the
OBPL, otherwise the OBPL is discarded. Since the
PMM has exclusive control of the state tables in
its node, the assumed state can not change until
after the OBPL is discarded, sent to another node,
or queued waiting for state information about an
operator,

Case C: PK is a process and PL is an operator.
PL is not inserted into the OBPL until the opera-
tor states that he/she is waiting for a message
over a given operator connection. PK is still
waiting for a message from PL because the OBPL
would have been discarded if any message text had
been received from the operator since the OBPL was
queued waiting for state information about the
operator. (Note that it is possible that the de-
sired message may have been sent by the operator
before the OBPL was queued, but it has not been
given to PK because calls to the PMM are processed
in a first in, first out fashion. In this case
though, the OBPL will be discarded before any
state message from the operator is processed, be-
cause the desired message text was sent before the
operator state message.) The OBPL will then ei-
ther be discarded or have another process entry
added to it, because an operator can only wait for
a message from a process located at the same node.

Case 2.
Whenever an OBPL is sent between nodes, it must be
verified that the state that was assumed when the OBPL
was sent is still valid. Operators do not cause any
OBPL's to be sent between nodes (because they only
communicate with processes at their own nodes), thus in

this discussion PK and PL are always processes. There

58

are four combinations of the resource type of RO and
the locations of PK, PL and RQ.

Case A: RQ is a database object located in the same
node as PK, but different from PL.
After it is ascertained that PK is blocked waiting
for access to RQ, it is determined that PL con-
trols RQ. PL is then inserted into the OBPL
(after the entry for PK) and the OBPL is sent to
the PMM in the node in which PL resides. When the
PMM receives the OBPL, it first verifies that PL
still controls RQ. If it doesn't, there has been
a change in the assumed state (PL has released
RQ), and the OBPL is discarded. Note that the
OBPL is also discarded if it is determined that PL
is not blocked.

Case B: RQ is a database object located in the same
node as PL, but different from PK.
After it is ascertained that PK is blocked waiting
for access to RQ, the OBPL is sent to the PMM in
the node in which RQ and PL reside. Upon receipt
of the OBPL, this PMM verifies that PK is still
waiting for access to RQ. If it isn't, there has
been a state change (PK was granted access to RQ),
and the OBPL is discarded. The OBPL is also
discarded if it is determined that PL (which con-
trols RQ) is not blocked.

Case C: RQ is a database object located in a node
which contains neither PK nor PL.
After it is ascertained that PK is blocked waiting
for access to RQ, the OBPL is sent to the PMM in
the node in which RQ resides. Upon receipt of the
OBPL, this PMM verifies that PK is still waiting
for access to RQ. If it isn't, there has been a
state change, and the OBPL is discarded. If PK is
still waiting for access to RQ, then the PMM in-
serts PL into the OBPL (since PL controls RQ) and
sends the OBPL to the PMM in the node in which PL
resides. After the OBPL is received, the PMM then
checks that PL still controls RQ. If it doesn't,
there has been a change in the assumed state, and
the OBPL is discarded. The OBPL is also discarded
if it is determined that PL is not blocked.

Case D: RQ represents message text and PK and PL are
located in different nodes.
After PK is inserted into the OBPL because the
process is waiting for message text in message
group RO, RQ is qualified by a message number.

59

The OBPL is then sent to the node in which PL
resides. PL will only be inserted into the OBPL
if it is blocked and the specified message has not
been sent (which implies PK is still in the state
it was in when it was inserted into the ORPL),
otherwise the OBPL will be discarded.

It has been shown that whenever the relevant portions
of the overall network state differ from the state that was
assumed when process entries were inserted into the OBPL,
the situation is detected and the OBPL is discarded.
Therefore it is impossible to detect anything but deadlocks
since a deadlock is never "detected" unless a PMM wants to
insert a process into an OBPL when there is already a pro-
cess entry in the OBPL for that process. It has thus been
proven that the decentralized algorithm only "detects"
deadlocks.

QED Part 2.

QED Decentralized Algorithm.

VI.5 Some Properties of the Algorithm

It should be noted that all references to processes in the
previous sections actually referred to process "commitment units®
(the period between commitment points), and the fact that
commitment units within a process are network unique allows a
deadlock to be detected at a node different from the one which
contains the process that was found to already have a process
entry in an OBPL. This situation can arise if the process under
discussion controls a remote database object, and the PMM at the

node in which the database object resides wants to insert the

60

process into the OBPL due to its controlling the above mentioned
database object. The OBPL need not be sent to the PMM in the
node in which the process resides to verify that the process
still controls the database object, because the process has not
reached a commitment point (by virtue of the fact it already has
an entry in the OBPL) and therefore has not released any database
objects.

All resource requests will be handled with minimal delay
because, for any request, the only nodes involved are those which
contain the associated process and resource. (No information is
needed from any other nodes to process the request.) The algo-
rithm will function properly regardless of the resource
allocation scheme in use, since the needed information about a
resource is what process (or processes) currently controls it,
not the order in which processes will be granted access to the
resource in the future. (The latter information is necessary
only for deadlock avoidance algorithms.)

While a PMM is expanding an OBPL, all other PMM's may be
processing resource requests and releases. A PMM need only see a
consistent state within its own node in order to expand an OBPL.
The restriction that a PMM can not process resource requests and
releases while it is expanding an OBPL can be removed if the
decentralized algorithm is modified slightly. In step 10 the
branch to step 3 would be eliminated (and therefore always go to
step 11 after step 10), and then in step 11 a PMM may send an

OBPL to itself. The new restriction would be that no resource

61

requests or releases can be processed while a PMM is executing
steps 1 through 11, altﬁough resource requests and releases could
he processed between the execution of step 11 and step 1.

The same deadlock can be detected more than once if pro-
cesses and resources located in two or more nodes are involved.
This situation will occur if two or more processes request
request resources at approximately the same time, resulting in
OBPL's being created starting with different processes in the
same deadlock loop. It is important to note that no matter how
long it takes for OBPL's, remote resource requests, remote
resource assignments, message text in message groups, and noti-
fication of a remote process termination to travel between nodes,
the algorithm still functions as expected due to the verification
steps that are included and the fact that once a deadlock exists,
it will not be broken until after it is detected and recovery

action is initiated.

62

VII. ADT Model of the Decentralized Algorithm

A functional model of the decentralized algorithm described
in the previous chapter was designed and created using the
facilities of the Architectural Definition Technique (ADT). The
model was designed so that the algorithm could be easily tested.

Additionally, by designing the model at the same time that the
algorithm was being refined, several deficiencies of early ver-
sions of the algorithm were detected and corrected. (See section
VII.2 and [1) for information about ADT.)

The model was written in PL/I and runs on the Honeywell
Multics timesharing system. It was coded for ease of use and
readability, and is not intended to suggest the most efficient
way of implementing the algorithm in a computer network. A pre-
requisite to the use of ADT is an ability to understand the con-

cept behind Data Structure Diagrams.

VIT.1 Data Structure Diagrams

An information structure can be described by a Data Struc-
ture Diagram. A particular object in an information structure is
referred to as an "entity", and an entire group of similar enti-
ties is called an "entity-class". (They are characterized by a
prototype called an "entity-type".) The grouping that associates
one or more entities of the same entity-class with one entity of
a second entity-class (same or different type) in a subordinate
relationship is known as an "entity-set". 1In a Data Structure

Diagram, a block is used to represent an entity-type (the

63

entity-type name is written inside the block). A "set-class" is
a collection of similar entity-sets. (They are characterized by
a prototype called a "set-type".) An arrow represents a
set-type. It ﬂesignates (by pointing from) the entity-type that
"owns" the set-type and designates {(by pointing to) the
entity-type that serves as the "members" of the set.

There is a 1 to n relationship between the owner and members
of an entity-set: n may be zero, ohe or more. Fof each owner
there may be any numder of members, dbut for each member, there is
only one owher in any set occurrente. A dashed arrow is used to
represent a set-type where the member relationship may of may not
exist. This is called a "sometime® member relationship. When
there can be only ohe member in an entity-set, a line (rather
than arrow) is drawn between the owner emtity-class and member
entity-class. A dashed line is used when there can be a sometime
one-to-one relationship.

A situation ean arise where a set«type tah have more than
one type of entity in the member role. 1In this case 3a multihead
arrow is used to represent the setetype. Similarly, a multitail
arrow is used to represent a set«type where more than one type of
entity can assume the owner role (although ®ach member has only
one owner). A more detailed explanation of Data Structure

Diagrams can be found in [2].

VII.? Architectural Definition Technique

ADT is an approach to arriving at a complete, concise,

64

non-ambiguous functional specification of a software or hardware
svstem which is totally independent of packaging considerations.
To use ADT, one must describe the system state variables in terms
of occurrences of entity-types, attribute types and set-~types,
and create a user interface as a set of machine processable
function definition algorithms.

An example of an entity-type is "node" in a computer net-
work. Each node in the network must have a name, which is an
attribute of the entity. The entity-type and its attributes must
be declared. In addition, all entity-sets which a node may
belong to as a member or owner must be declared, and the rela-
tionship ("member", "owner", or "recursive") must be stated. A
node is a member of the set of all nodes in a network, but it is
the owner of various resources and processes located at that
node. The manner in which entities and their attributes and set
relationships are represented in the machine is irrelevant to the
goal of achieving a functional specification. Therefore the ADT
user is relieved of this burden.

A function definition algorithm is a body of code which
specifies what action should take place in response to a given
external stimulus. A function definition algorithm has several
responsihilities. 1) It must validate the input parameters, 2)
It must execute the logic of the function, 3) It must access the
system state tables and update them appropriately to reflect the
action taken, and 4) It must provide an external response repre-

senting the action (or lack thereof) that has taken place. A

65

function definition algorithm usually includes a series of calls
to the ADT modelling subroutines.

Nne integral part of ADT is a set of procedures which faci-
litate the modelling of the "system state". These procedures
provide the capability to create and maintain a network
structured database which holds the entities, attributes and re-
lationships used to model the system,

A functional model created using ADT can be exercised and
"validated” by the creation and execution of a sequence of
commands. (Calls to the various function definition algorithms.)
Any numbher of commands can be executed so that the model can be
ohserved in order to determine if it acts in accordance with
expectations.

Facilities are furnished in ADT to save these sequences of
commands (scenarios) and to automatically execute them. There
are also facilities so that the system state can be saved and
restored. Display facilities are provided which permit a de-
tailed examination of the system state without altering it.
Using these facilities it is easy to construct experiments, alter
them and examine the results at any time.

ADT is a deterministic system, and the machine is always in
a stable state during the period between calls to the various

function definition algorithms.

VITI.3 The Deadlock Detection Model

The deadlock detection model which runs using ADT was de-

66

signed'to be driven entirely by the user of the model., All the
nodes in the network must be created by the model user, as are
processes and database resources located at each node. In addi-
tion all operators at each node must be declared. Each node in
the network must have a unique name. Operator names and process
names appear together in the same name space and must be unique
within each node. They are qualified by the node name to make
them unique in the network. Database objects must also have
unique names within the set of database objects at a node.
Process wait situations may arise as a result of requests
for message text in a message group or over an operator connec-
tion, or requests for access to a database object, but operator
wait situations are not forced by the system because operators do
not request message text, they only take it as it comes over an
operator connection. All requests by processes for resources
must be entered by the model user. The model will process the
requests, and allocate the desired resources, if possible,
otherwise the requesting process will be blocked. When message
text is requested, the message group name (in the case of process
to process communication) or operator connection name (for oper-
ator to process communication) must be given. With the model,
before message text in a message group can he received by a
process, the message group must first be initiated by the process
which can send the messages, and then be accepted by the process
that will receive the messages in the message group. (The model

user specifies when this takes place.) Actual systems may allow

67

message groups to be accepted by a process before another process
initiates it. An operator connection must be established (by the
model user) between an operator and a process at the same node
before a process can receive message text over the operator con-
nection. This model does not support the sending of messages
from a process to an operator over an operator connection because
typically messages from a process to an operator are not queued
for receipt by an operator, they are simply printed at the
operator's terminal without an explicit op?rator request.

In order‘to make the model easier to use, it was decided to
make message group names and operator connection names unique
within the network.

In a computer network it is prebable that message text may
be sent by either process inveolved in a connection through which
they are communicating. (This is a two-way connection.) The
model only allows the initiator of a message group to send mes-
sage text over the associated connection because a two-way con-
nection can be simulated using two one-way connections, with each
process involved bheing the initiator of one of the message
groups. The sender and receiver of message text in a message
group are thus uniquely determined by the message group name,
therefore the model user need not type a process name when
causing action to be taken to simulate the sending or receiving
of message text. (Similarly, the sender and receiver of message
text over an operator connection are uniquely determined because

the model only allows message text to go from the operator to the

68

associated process.)

Each node will need to maintain some information about the
other nodes in the network. (It needs to know about remote pro-
cesses that have requested access to at least one of its
resources, and it needs some information about remote resources
that have been requested by at least one of its processes.) The
model is designed to create a set of node tables (one table for
each node in the network) at each node in the network. Each node
will use its set of node tables to maintain the information it
needs about all the nodes in the network.

Control messages are used by the model to simulate the
transmission of most types of internodal messages. When a mes-
sage must be sent between nodes, the model will cause text to be
printed at the model user's terminal giving the model control
message number and stating the destination node and what the
message represents. At the time the model user would like the
destination node to receive the message, he/she must issue a
command to the model to receive the associated control message.
OBPL's, message text within message groups, and resource
allocation messages are all sent hetween nodes via control
messages. This mechanism was selected so that the effect of
internodal messages being delivered with varying delays could be
simulated. The only internodal message that the model allows to
be processed without user intervention is the one that would be
associated with the initiating of a message group. There is no

need to model the delay of a message for this because the node in

69

which the accepting process of the message group resides must be
aware of the initiation before any checks for deadlock involving
that message group will be made.

The types of resource allocation messages that may pass be-
tween nodes are 1) requests for access to remote database
objects, 2) notification that a process has been granted access.
to a previously requested database object, and 3) notification
that a process has released a database object. If the model user
enters a process request for a remote database object, the model
will block the process and send a control message (representing a
remote resource request) to the node in which the desired
database object resides. (Since deadlock detection is being
modelled, and resource allocation need not be completely
simulated, the model first looks across nodes to verify that the
requested database object exists before it sends the control
message.) After this control message is received and the desired
database object can be allocated to the aforementioned process, a
control message stating that the process has been allocated the
desired resource is sent to the node in which the process
resides. When this new control message is received, the process
will be awakened. Although the release of database objects is
not necessary to test an algorithm for deadlock detection, a
command to allow a process to release a single database object
was included in the model for debugging purposes. When a process
releases a remote database object, a control message is sent to

the node in which the database object resides. The model does

70

not simulate the automatic release of all resources controlled by
a process at the time the process reaches a commitment point.
This is a feature of process and resource management, and is not
relevant to the simulation of a deadlock detection algorithm.

In order to create deadlock situations, processes must be
able to gain control of some database objects. The model uses a
first-in-first-out allocation scheme for database objects. A
process will be blocked if 1) it requests any type of access to a
databhase object that has been exclusively assigned to another
process, 2) it requests any type of access to a database oﬁject
which already has other processes waiting for access to it, or 3)
it requests exclusive use of a database object and some process
currently has access to the desired database object.

In order to adhere to the belief that the model should be as
simple as possible, the model, in expanding an OBPL, does not use
the decentralized algorithm exactly as described in the previous
chapter. In step 10, the branch to step 3 was removed, thus step
11 is always executed after step 10. When step 11 sends an OBPL
to the node in which it is already located, further expansion
takes place immediately. Steps 1 and 2 then get executed
unnecessarily because RX is properly set in step 10, and the
state tables have not been changed during the expansion of the
OBPL so the last process to be inserted into the OBPL is still
waiting for RX. This implementation was chosen to simplify the
coding of the function definition algorithm used to expand

OBPL's.

71

Appendix I contains a Data Structure Diagram for the
deadlock detection model, plus a description of the entities and
relationships shown in the Diagram. Appendix II contains a brief
description of all the user visible functions in the model, fol-
lowed by the PL/I code of the function definition algorithms

which define the model.

VII.4 Test Cases run on the Model

Using the model, several deadlock and near deadlock
situations were entered to demonstrate various features of the
deadlock detection algorithm. A feature of the ADT system allows
a user to save a series of commands in a file, and then type
"scenario <file name>" to have the commands executed in order.

In each of the cases given, after the system was reinitialized,
but before the commands specific to each example were executed,
the commands in file "demoO" were executed. The files, along
with the output that resulted from the commands in the files,
appear in Appendix III. The scenarios are well annotated, and it
should be noted that commands to the system appear flush with the
margin, whereas output from the Deadlock Detection Model is
indented.

The deadlocks created range from one involving two processes
and two resources located in a single node, to some involving
more than five processes or operators and more than four
resources located throughout a three node network. By creating

the same deadlock, but altering the order in which processes get

72

blocked and the order in which internodal messages are allowed to
arrive, it is shown that the number of times the same deadlock is
detected depends on how close (in time) some processes in the
deadlock get blocked, and on the locations of the various pro-
cesses and nodes. (The model works properly regardless of the
"simultaneous" processing of commands at various nodes.) Appen-
dix IIT also includes state diagrams for the test cases which
appear in that Appendix. For the cases where a deadlock is cre-
ated, only the final state is drawn (a key to understanding the
diagrams is included), whereas for the cases where there is no
deadlock, an important interim state is included in addition to
the final state.

The restriction stated in Chapter 4 that a process can not
gain access to a database object, release it and request it again
before reaching a commitment point, was included to rule out the
situation that is shown in "demo_bug". (The scenario was

included for demonstration purposes only.)

73

VIII. Suggestions for Further Research

After a deadlock is detected, at least one involved process
must be forced to rescind its request for a resource that is
controlled by another process involved in the deadlock. Some of
the problems involved in breaking a deadlock (in particular when
the deadlock is detected using the decentralized algorithm
presented in Chapter VI) are discussed below, &s are some issues
that may lead to modifications in the schemes presented in

Chapters V and VI.

VIITI.1 The Rollback/Retry Problem

In order to break a deadlock situation, at least one process
involved in the deadlock must be selected and be forced to
rollback (backup) to a state prior to the time at which it re-
quested access to the resource for which it was waiting when the
deadlock was detected. 1If the algorithm presented in Chapter VI
is being used to detect deadlocks, then (due to the restriction
that a process cannot release a database object when it is be-
tween commitment points) the process selected for rollback must
be returned to its most recent commitment point. In rolling back
the process, the external effects created since the last process
commitment point must be cancelled.

To accomplish this rollback, it is necessary to undo all
databhase object updates that the process performed within the
scope of its current commitment unit (the period since its most

recent commitment point), and then release all the database ob-

74

jects that were assigned to the process. In addition, all items
of message text thét were sent by the process in this commitment -
unit must be taken back, and all items of message text that were
received by the process in this commitment unit must be requeued
over the proper connections so that they,may(agqin be properly
réceived after the process resumeétexqcutionﬂi When taking an
item of message ﬁext back, if it had already been received by the
destination process, this destination procgsskmg;tﬁalso.be rolled
back to its‘most récent commitment pqint. _

Research needs to be performed to determine an efficient
method for rolling back a process. It is poss;§1e that some
constraints may have to be»placgd upon communicating processes in
order to simplify the roilback»prpblpm and,lggggn ;he.amounp of
information about a‘proce3§‘that mdgt_be re§g;nqg,pptg¢en
commitment points, ’Some pépers haye been'publighed tha;tdeal
with the problem of rolling back a ﬁatahqqg;tqvaﬁprgvious state.
(See [ﬁ] for one exampie.) - ;

Use of the deadlock detection algorithm described in Chapter
VI can result in the same deadlock being detected more than once.
It therefore may be useful to ﬂeyelop:a,dgtgrm;nistic algorithm
for deciding which process should be rolled back, so that addi-
tional processes are not rolled back unnecessarily. Note that if
OBPL's are created immediately after a process gets blocked, then
every deadlock will be detectediﬁith“an OBPL thag_cqntains only
the involved processes. Thus even though a process not involved

in a particular deadlock may be waiting for access to a resource

75

which has been assigned to a process in the deadlock, no action
need be taken when the deadlock is detected using an OBPL which
contains more than the involved processes. One possibility is to
impose an arbitrary ordering on the nodes in the network, and
always rollback a process in the losmest numbered node that is
involved in a given deadlock. This method is unfair in the sense
that processes in the higher numbéred nodes will rarely be forced
to rollback to a previous state. Perhaps a fairer method is to
attach a cost factor to each process entry in an OBPL. This cost
factor will represent the cost {(for the associated process) of
computation to date in that process commitmemnt unit. The process
with the lowest cost factor will be rolled back with the hope
that this minimizes the overall network cost of dbreaking the
deadlock. It is also possible that when the same deadlock is
detected more than once, it may be cheaper {from the overail
network cost viewpoint) to rollback an extra process
occasionally, than to add the extra overhead that is needed for
the methods mentioned above. This is a topic which needs to be
studied further,

Another related topic which can be investigated involves
relaxing some of the restrictions dealing with the release of
database objects so that a process can he rolled back to a state
somewhere between the previous commitment point and the deadlock
state. This may involve slight modifications to the algorithm
described in Chapter VI, but may be useful because less code will

have to be reexecuted after rollback. (It may be particularly

76

worthwhile when a process is executing a section of code where it
is sequentially requesting access to several database objects:
before reading or updating any of them. Thus a partial, and
perhaps sufficient rollback could be accomplished by the release

of some of the database objects.)

VIII.2 Optimization and Expansion of the Decentralized Algorithm

If OBPL's are created after a process has been blocked for
'X* units of time (with 'X' greater than 0), then it may be pos-
sible to occasionally eliminate the need to create an OBPL after
a given process has been blocked for 'X' units of time. When a
process is inserted into an OBPL before it has been blocked for
'X*' units of time, the need to create an OBPL with this process
as the first entry is eliminated. (Additionally, the process may
be granted access to the desired resource before 'X' units of
time have elapsed, also eliminating the need to create an OBPL.)
This type of implementation would affect the scheme used to break
deadlocks, as there would no longer be the guarantee that each
deadlock would be detected with an OBPL that only contains pro-
cess entries for the involved processes.

A restriction presented in Chapter IV prevents a process
from requesting shared access to a database object and then
requesting exclusive use of the same database object. It may be
possible to allow this situation will little modification to the
decentralized algorithm.

The algorithm presented in Chapter VI requires that all

77

resources bhe uniquely identifiable. It may be desirable in some
applications to allow processes to wait for any one of N
identical and interchangeable resources, Inclusion of this
property would necessitate a change in the use and expansion of
ORPL's. Preliminary study shows that it would be necessary to
place control of the expansion of an ORPL with one node (which
may be different for each ORPL), since notification would be re-
quired after it is ascertained that a loop exists in an OBPL or
that an active process has been encountered. This notification
is needed hecause there is a deadloeck involving N identical
resources only if every process that controls one of these
resources is involved in a loop in an ORPL. (This is in contrast
to the situation where there are N readers of a given database
object and a deadlock exists if any one of these readers is
involved in a loop in an ORPL.) Rather than passing an OBPL from
node to node, the "econtrolling™ node may request other nodes to
expand a section of the OBRPL and return it to the "controlling"
node. Further study is required to determine exactly how the
decentralized algorithm can be modified to include the above
mentioned feature.

In addition, it may be worthwhile to study the possibilities
of allowing human processes to wait for events external to the
computer system (i.e. a phone call or a message from a fellow
worker, rather than only wait for a message from a given process)
and/or the possibilities of allowing a process to wait for more

than one resource at a time.

78

VIII.3 Types and Probability of Deadlock

In order to get a valid estimation of the cost of using the
deadlock detection algorithm presented in Chapter VI, it is nec-
essary to get estimations as to how many processes in how many
different nodes are typically involved in a deadlock, and how
frequently deadlock can be expected to occur. Some research has
been performed dealing with the probability of deadlock in a
computer system (see [6]), but to this author's knowledge, no
work has been performed dealing with the types (i.e. how many
processes in how many different nodes) of deadlock that can be

expected in a computer network.

VITII.4 Refinement of the Centralized Algorithm

The scheme presented in Chapter V was not studied
extensively. It is possible that it can be refined to a point
where little, if any, unnecessary processing takes place in order
to determine if a deadlock exists. Due to reliability factors
and communications delays, it is not recbmmended that a
centralized scheme be uSed exclusively in a network. However, a
hybrid model of the centralized and decentralized algorithms may
prove to be more cost effective than the decentralized algorithm
alone. This hybrid model could possibly be constructed by using
the centralized scheme for small groups of nodes located within a
specified distance of each other, and then using the
decentralized scheme between the control nodes for each of the

groups using the centralized scheme.

79

IX. Conclusions

The schemes presented in ChaptererI*and I11 were designed
to be used to help detect process d&aﬂioﬁkéfih'é computer network
where'the~only‘&Ileuable:wait‘6§ﬁditionii5h$bffthe~availability
of database resources. Many systems only %1low this type of
process wait, so there is a néed fbf algbrithmaﬁwhieh solve the
problems that the schemes of Chhptt?t IT wnd: 3&1 attaek
However, some alterations must be made to the scheme of Chandra,
Howe and Karp and tb*tht'decentraliteé-seheue'ef Mahmoud and
Riordon before they eaa be used to sbive tht prablems they
address. It seems:that these two. tnhtmes, whtn modified, would
result in essentially the same algorithm.' This new algorithm
would require each node's resource tabléssto be sent to one node
in the network, which will then proeess all the outstanding
requests for access to database objeets. (In the case of Mahmoud
and Riordon's scheme, perhaps each node would still examine all
requests.) The major difference from the original schemes is
that no resource allocations would befperforqu without examining
the entire network state. (i.e. requests for access by a process
to local resources must still wait for information from other
nodes) With or without modifications, the two schemes are
inefficient in that they require large tables (when the database
is locked at the record level) to be passed between the nodes.
Additionally, each node must be capable of processing requests
which require the presence of every node's tables in that node.

This is an undesirable constraint, because it requires

80

minicomputers which serve as nodes within the network to have the
capacity to store (in main memory or secondary storage) the
entire network state at one time. Although only minor modifica-
tions are required to the schemes so that they will work, they
may require some major modifications before they can be used in a
general scheme for detecting deadlock in all types (i.e. any size
computers and any number of nodes) of computer networks.

The two "centralized" schemes presented in Chapters III and
V can both result in message bottlenecks at the control node, and
if the control node fails, both result in a significant delay
while a new control node is establishéd. Additionally, if the
network is geographically spread out, fhere can be an undesirable
delay in some cases when a process requests access to a local
database object. It is recommended that neither scheme be used
exclusively in a network which covers a large (geographically)
area or consists of a large number of nodes.

The decentralized algorithm presented in Chapter VI requires
each node to only maintain information relating to its processes
and resources. Thus the amount of storage required at each node
to support the algorithm is proportional to the total size of the
system at that node. Additionally, there is little, if any,
delay in granting a process access to an available resource.

The size of messages (OBPL's) passed hetween the nodes is
directly proportional to the number of processes involved in a
chain, where each process is waitihg for a resource controlled by

another process in the chain. It is felt that these chains (and

R1

therefore OBPL's) each involve only a few processes, and by
delaying the creation of OBPL's until after a process has been
blocked for *'X' units of time, the number of bBPL's that must be
passed between nodes will be minimal. It should be noted that
the decentralized algorithm presented in Chapter VI will work
regardless of whether or not processes are allowed to wait for
messages whieh must be sent from other p§oc§saes within the net-
work., o -

With the optimization feature discuaasﬂ earlier, the algo-
rithm presented in Chapter V] is efficient ;nd ecan be use

regardless of the size and composition of & computer network.

B2

10,

References

Bachman, Charles W.; Bouvard, Jaques; and Reeves, Raymond
J.D. "Architecture Definition Technique: It's Objectives,
Theory, Process Facilities and Practice", Internal Memoran-
dum, Honeywell Information Systems, Billerica, Mass., No-
vember 26, 1975. (An earlier version appeared in the
Proceedings of the 1972 ACM SIGFIDET Workshop, November
1972.)

Bachman, Charles W. "Data Structure Diagrams", Data Base, A
Quarterly of SIGBDP, Vol. 1, No. 2, Summer 1969, pp. H4-10.

Chandra, A.N.: Howe, W.G.: and Karp, D.P. "Communication
Protocol for Deadlock Detection in Computer Networks", IBM
Technical Disclosure Bulletin, Vol. 16, No. 10, March 1974,
pp. 3JHT1-30RY.

Chandy, K. Many: Browne, James C.; Dissly, Charles W.; and
Uhrig, Werner R. "Analytic Models for Rollback and Recovery
in Data Base Systems", IEEE Transactions on Software
Engineering, Vol. SE-1, No. 1, March 1975, pp. 100-110.

Coffman, E.G.: Elphick, M.J.; and Shoshani, A. "System
Deadlocks", Computing Surveys, Vol. 3, No. 2, June 1971, pp.
67-78 .

Ellis, Clarence A. "Probhabilistic Models of Computer
Deadlock", Report #CU-CS-041-T7H4, University of Colorodo,
April 1974,

Holt, Richard C. "Some Deadlock Properties of Computer
Systems", Computing Surveys, Vol. 4, No. 3, September 1972,
pp. 179-196. :

Mahmoud, Samy; and Riordon, J.S. "Protocol Considerations
for Software Controlled Access Methods in Distributed Data
Bases", Proceedings of the International Symposium on
Computer Performance Modeling, Measurement and Evaluation,
Harvard University, Cambridge, Mass., March 29-31, 1976, pp.
2u1-264,

Murphy, J.E. "Resource Allocation with System Interlock
Petection in a Multitask System", Fall Joint Computer
Conference Proceedings, Vol. 33, 1968, pp. 1169-1176.

Trinchieri, Mario. "On Managing Interference Caused by
Database Sharing", Alta Frequenza, Vol. XLIV, No. 11, 19075,
pp. 6U41=-650.

83

Appendix 1

résource
System request
] »resource
grant
Node :
resource
" release
(Init) [Node)
: i Tables e d
(Accept) » - "
s messag
- |text
OBPL | --- - wOBPL
Paass -—
; _ ,
/ i
» Operator |
N\ |connection : 4
T i OBPL
1 |Process
1 Entry
) - [}
Operator| — é i
message ﬁréccas/
group (Send) process
i coamitment
(Receive) | unit
;
r] f : 3atahuac
B T,
Dgtabgse
Shared
Assigp—cnt

Data Structure Diagram for the ADT Deadlock Detection Model

84

Appendix 1 \ Entity Descriptions

This section describes the entities which are used in the ADT Deadlock
geteogion gogel. Each entity is described in basically the same manner. The
ormat used is: ' -

<ENTITY NAME>
{text

entity attributes:
<attribute name>
<text..........

entity owner roles:
<name of set owned by antity)
<text'...l'...'

entity member roles:
<name of set where entity 13 a member>

The sets are named in the following way:

owner_nhame->member_namse
Both owner_name and member_name are the nauis of entitiee. K quallfier is
used to distingulah bstween two cett whioh hﬁ?t thc itnc-ontitiat ‘as owner and
member:

owner_name->member_name(qualifier)

If there are alternate owners or multiple members, the notation used is:
owner_name/owner_name/. . .->lonber_pan/l,nbpr_pm/. <+ Where attribute
names are used, bhay correspond e!aotly to thi gﬁlbt'(which 1neiudc abbrevia-
tions for the entities they repreaont) that are used in the PL/I code of the

Model. C '

DATABASE . _OBJECT

roprcs’nt objcet Yithin the thcbtsd-uhtbh is subject to exclusive

read/writo or sharesable (read only) access control. The ob eot,na be of

various levels of grasnularity (file, 3 - of- r# The
only requirement is that the entire’o o oy yvla rigard

to assignment to a process and subacquon; rnlgale.‘uf__.v

entigz attributes:

nane
The unique name for the database objnct at the node in which it
resides.

entit owner ro
base_ob t->d tabase_object_shared 1gnlo
The ae° Jec o _,hfisnugn t en 1tig=‘ia§ dggaba object defining
the n&nber offvr Respes surrently atal Jase obaeet on a
read only basis, - ‘ o

database_object->proceis
The set of processes waiting on the awyailability of the database ob-

Jec
%see node tlble/dbo/uesaage_group/operator connection-)procesa)

85

Appendix I Entity Descriptions

entity member roles:
node_table~>database_object

process->database_object
DATABASE_OBJECT SHARED_ASSIGNMENT
The mechanism for recording the shared assignment of a database object to a
process for read only purposes.
entity_attributes: (none)
entity owner roles: (none)

entity member roles:
database_object->database object_shared_assignment

process->database object_shared_ assignment

MESSAGE_GROUP
The string of text elements which are sent from one process to another over
a specified connection,

entity attributes:
message .name
The network unigue name for the message group.

message.number_%d

The number of messages in the message group that have been received
by the acceptor of the message §r .plus | number of messages that
are gurgentry queued at the destination end and have not yet been
received.

message . number_rcvd
The number of messages in the message group that have been received
(read) by the acteptor of the message group.

message .number_sent
The number of messages in the message group that have been sent
(regardless of whether or not they have currently reached the desti-
nation node) by the initiator of the message group.

entity owner roles:
message_group=>process
The set of processes waiting for text in the message group. The na-
ture of exclusive assignment of a message group to a process
pregludea more than one process to actually be waitini for text.
see node_table/dbo/message_group/operator connectlon->process)

entity member roles:
node_table->message_group(accept)

node_table->message_group(init)

process->message_group(receive)

process->message_group(send)

system->message_group

MESSAGE_TEXT

This represents one mesaaie within a mesaaﬁe group when the initiator and
acceptor are located in different nodes. o actual text need be
transmitted, because for the purposes of deadlock detection, the content of

the messages is unimportant, and it is only necessary to know how many
messages are sent and received.

86

Appendix I Entity Descriptions

entity attributes:
msg.mg_name
The message group name to which the "simulated message” belongs.

entity owner roles: (none)

entity member roles:
system->message_text

NODE
A processor in the network which includes a Process Management Module for
the purposes of resource allocation and deadlock detection.

entity attributes:
node .name
The network unique name for the node.

entity owner roles:
node->node_table
The set of tables used by a node to maintain all needed information
about the nodes in the network.

entity member roles:
system->node

NODE_TABLE
A table used to maintain needed information about operators, processes and
resources located at a given node.

entity attributes:
node_table.name
{Eé name of the node about which this table will maintain informa-
on.

entity owner roles:
node_table->database object
The set of database objects located in the node "referenced" by the
node table, and for which the node in which the node table resides
needs information.

node_table->mesasage_group(accept)
The set of message groups that have been initiated with the accepting
grocess declared to be located in the node which is "referenced™ by
he node table, and located therein. (If a node table does not
"reference® the node in which it is located, then this set is empty
for that node table.)

node_table->message_group(init)
The set of message groups that have been initiated b! rocesses lo-
cated in the node which is "referenced" by the node table, and lo-
cated therein. (If a node table does not "reference" the node in
which it is located, then this set is empty for that node table.)

node_table->operator
The set of operators declared to exist at the node "referenced® by
the node table, and for which the node in which the node table re-
sides needs information. A node only needs to know about the oper-
ators at its own node, therefore if a node table noes not "reference”
Ehglno?e in which it is located, this set is empty for that node
able.

node_table->process
The set of processes located in the node "referenced" by the node
Eagle, g?d or which the node in which the node table resides needs
nformation.

87

Appendix I Entity Descriptions

node_table/dbo/message_group/operator_connection->process
The set of processes in a particular state. If the owner is a
node_table which "references” the node in which it is located, then -
the grooess is in the ready or running state, If the owner is a
database object, the the process is waiting for access to that
database object. If the owner is a noacage group or operator con-
nection, then the groceas is waiting for text in that message group
or over that operator connection.

entity member roles:
node->node_node_table

OBPL
An ordered blocked process list used to detect deadlock.

entity attributes:
obpl.res_name

The name of the resource for which the most recently inserted process
into the OBPL 1s waiting.

obpl.res_node_name
The name of the node in which the above mentioned resource resides.

obp%.rea_type

he type (database object, messa%e in a message group, or message
over an operator connection) of the above mentioned resource.

obpl.msg numb
f the above mentioned resource is a message in a message group, then

this attribute contains the number of the message (within the message
group) that is being waitied for.

entity owner roles:
OBPL->0BPL_process_entry

SggLset of proceases and operators that have been inserted into the

entity member roles:
OBPL_pass->0BPL

operator->0BPL

OBPL_PASS

This is used to pass an OBPL from one node to another, where it can be
further expanded.

entity attributes:
obpl_pass.des_node_name

The name of the node to which the OBPL is being sent for further
expansion.

entity owner roles:
0B ass->0BPL

s is a one-to-one relationship with the member being the OBPL
that is being passed from one node to another.

entity member roles:
system->0BPL_pass

OBRPL_PROCESS_ENTRY
This represents a ppocess that has been inserted into an OBPL.

entity attributes:
proc_entry.node_name

The name of the node in which the process that has been entered into
the OBPL resides.

88

Appendix I Entity Descriptions

pr entry procoaq_n
e name of the process that has been entered into tht OBPL.

entity owner roles: (none)

entit ne-bor roles:
OBPL->OBPL_process_entry

OPERATOR
This entity represents a person that has been dcolcred as an operator at a
given node.

entity attributes
operator.namne
The.gniquo name for the oporator 1n the node at which he/ahe is lo-

entity owner roles:
operutor«>onrb
The set of OBPL's that roquire atlto &ufcnlntion about tho operator
before they can be furthe expnnd od.

operator->operator..gonneetion
The set or opcrator connections over which -the oponitor -BAY
communicate with processes.

entity member roles:
node_table->operator

OPERATOR_CONNECTION
An entity via which messages are sent fron an operator to a procoss.

entity attributes'
op_oon.name
“The network unique name for the operator connection

o) Loumber_

P e nuaber 3’ -.aaages that have been sont { the operator but have

not yet been received by the process over this oporator connection.

entity owner roles:

opzrator oonnoction->proceas
The set of processes waiting for text over the operator connegtion.
The nature of exclusive -of sn opsrator donnection to a
groceaa precludes more than one process to actually bs waiting for
see nodq_table/dbo/ueasngq_sroup/oporatot_nolaact1un~apvb¢-sa)

entity member roles:
operator->operator_connection

process->operator_connection
system->0perator_connection
Pnocsss (PROCESS COHHITHBHT UNIT)

g:oaqnt a_proosss which ia,exaoutingiwith a-ndt-ent
unit f’ iod between process commitme gg&n&t : are unique,
as are process commitment units, therororo t del treata then as one

entity.

entity attributes:
process.accesa_type
If the process is waiting for access to a database object, this at-
tribute denotes the type ("shared" or "exclusive") of access desired.

89

Appendix I Entity Descriptions

rocess.namne
P The unique nass of the process within the Ms 1n which it resides.

entity owner poles
prgeesa->dabata chct
The aet g 'ﬁ,u objecta currently e vyely assigned to the
rocess or r write purposes. If a da 88 ochct is not
nserted ough and ita
databug_ohjo)dctnbuc, bie ‘ W set is empty, then
it is available for exclys vc 88, at,

roE e et of datibase oo

database objeots assigned T

X r m‘f' ad ool anly) basia.

°'°°’=';:§' :ﬁmp(rccciv.g“h ‘aove Doen sceepted bg thcgrocesa.
Th e Prooess oan PQGQ&'D NOSSAEeS in »masege groups

rocess~>nes oup(send)

P 'rbe';ot o .kg“p

groups which have been initisted by tbo process.
The Proosss 008 Send Bessages in M 9 EPOUPS, ¥y

vion 35 ot
P g::’;.t of :g:%m aoamticna om m m proocess can receive
nossages frow opevators.

entity roles:
node_table~-2process

node_table/dbo/message_group/operator, connection->process
RESOURCE_GRA¥NT
The inte a3l -osus mgnntina . prm uccou to a daubue object lo-
cated at a different
entity attr%butu: L
res_grant.pr
Tﬁe nan eg the process that is being given n«n to s database ob-

res_grant.proc od
’l'ﬁe mneprofgm nodo in which the sbove mtiomd mn resides.

W dam:a abm ‘whiteh m M mtm process is
sninlc

""lrﬁ:"",,..."\“T "of the node in which the sbove mtioédd ditahuo object
resides. S

entity owner roles: (none)

entity member roles:
system->resource_grant

RESQURCE_RELEASE
The internodal stating that a stwn dl&lm ob;)oet has been re-
leased by a mciti proasas.

entity nttributea'
res_rel.dest_
e name or the database object being released.

res_rel.dest_node_name
The nmt_c’fl' the node in which the ﬂlm mm objoot reaides

90

Appendix I , Entity Descriptions

reaTrol.rel_pnodq_nane
he name of the node in which the process releasing the database ob-
Ject resides.

res_rel.rel proc_name
The name of the process releasing the database object.

entity owner roles: (none)

entity member roles:
system=>resource_release

RESQURCE_REQUEST
The internodal message in which a process requests access to a database
object located at a different node.

entity attributes:
res_req.access type
The type of access ("shared" or "exclusive") that has been requested.

res_req.dest_dbo_name
e name of the database object to which access has been requested.

res_req.dest_node_name
The name of the node in which the desired database object resides.

res_req.req_node _name
Th:qnane of the node in which the requesting process resides.

res_req.req_proc_name
The name of the process requesting access to the above mentioned
database object.

entity owner roles: (none)

entity member roles:
systen->resource_request

SYSTEM
The computer network.

entity attributes:
systen.last_cont_msg
Thg nuﬁber of internodal control messages that have been sent in the
network.

entity owner roles:
system->message_group
Th: se; of message groups that have been initiated throughout the
network.

system->message_text/OBPL/pass/resource_grant/resource_release/
resource_request
The set of control messages that have been sent, but have not yet
been received by the destination node. The t Ee of control measage
represented is uniquely determined by the entity type of the member.

system->node
The set of nodes in the network.

system->operator_connection
Th: sek of operator connections that have been declared within the
network. '

entity member roles: (none)

91

Appendix II

The ADT Deadlock Detection Mode]l consists of seven PL/I procedures, each
of which contains sultiple entries. A deseriptios of the Deadlock Detection
Model user visible functions begins on the sext page. Ineluded in the de-
scription of a function is the nsme of the prosedurs is which that function
appears. The seven PL/I procedurss follow the fumetion deseriptions, and
these procedures are followed by the two PL/I include files which are used by
the various procedures, Fils DOM_serv_routines mm declarations of
Deadlock Deteotion Model funetions which are salled by other functions within
the Model, and file ADT _primitives contains declarations of the ADT system
functions.

The following is an index to the PL/I sprocedurss and include files.

ADT_prisitives | 152
Wm | } 3%

92

Appendix II User Visible Functions

USER VISIBLE FUNCTIONS
ADT Deadlock Detection Mechanism

acceptmg(p_mg name, p_accept_node_name, p_accept_proc_name)

Declares process "p_accept_proc_name® located in node
"p accept_node_name"™ as the only process that can receive messages in the
ggasage group specified by "p_mg name"., acceptmg is located within procedure

cdbo(e node_name, p_dbo_name)

Treates” a database obJeot at the node specified by "E_nodq_name". The
database object has a "local® name specified by "p dbo_name"™. c¢dbo is located
within procedure DDM.

cnode(g_nodq_nane)
"Creates™ a node with the name specified by "p_node_name". cnode is lo-
cated within procedure DDM. ’

copcon(p_con_name, p_con_node_name p_opgname, p_process_name)

®Creates" an operator connection between operator "p_o ame™ and process
"p_process_name"™, both located in node "p_con_node_name". e operator con-
nection will have the global name specified by "p_con_name"™. copcon is lo-
cated within procedure OP_CON.

cproc(g_node_nane. p_process_name)

"Creates® a process with the name specified by "p_process name®™ and lo-
gatedD%g the node specified by "p_node_name®™. cproc 1s located within proce-
ure .

dclop(g_pg_nodq_nane, p_operator_name)
"Declares"™ that an operator with name "p_operator_name" exists at the
node with name "p_op_node_name". dclop is located within procedure DDM.

initmg(p_mg name, p_init_node_name, p_init proc_name, p_accept_node_name)
.geéihres process "p_init_proc_name" located in node "p_init_node_name" as

the only process that can send messages in the message group specifi by

'ﬁ_ng_nane'. All messages in the message group will be sent to a process in

g e nggg specified by "p_accept_node_name". initmg is located within proce-

ure .

opmsg(g_COn'nane)
*Sends™ a message from the ogerator to the process in operator connection
"p_con_name®. opmsg is located within procedure OP_CON.

opstat(p_op_node_nanme, p_pB_name, p_state, p_con_name)

States that operator op_nanme” at node "p_pg_node_name" is either
"active" or "waiting" (specified by "p_state"™). If the operator is waiting,
it would like to receive a message from the process in operator connection
"p_con_name®™. opstat is located within procedure OP_CON.

reven(p_cont_msg numb)

Causes the control message with number specified b{ "p_cont_msg numb" to
be received b{ the aggropriate node and the required action then takes place.
rcvem is located within procedure RCV_CM,

rcvmségpgpg_name)

uses a message to be "received" in message group "p_mg name®. If no
messages are queued, then the receiving process is blocked. rcvmsg is located
within procedure Msé.

rcvopasg(p_con_name)

Causes a message to be "received" by the process in operator connection
"p_con_name". If no messages are queued, then the process is blocked and we
request the status of the operator involved with this operator connection.
rcevopmsg is located within procedure OP_CON.

93

Appendix II User Visible Functions

rldDO(P;J;:SWWt m“', %&' ”mfmu : z&dbgaﬁ speoiried by

dmsg(o
sen “§."a§5 a ﬂm in tw group speeifisd by "p.,.ng..m' sendmsg

is located withim

“Creates" (mummc) the systea. is Jopated within procedure
DDM. Intermally it aise Ses the nems I o 7

94

Appendix II Procedure DDM

DbM: procedure;

/% This procedure is a collection of subroutines which either
creates entities needed to model the deadlock detection algorithm groposed
bx BarrI Goldman or performs services for other routines used in the model.
The fol owing user visible functions are included:

CREATE DATABASE OBJECT

CREATE NODE

CREATE PROCESS

CREATE SYSTEM

DECLARE OPERATOR
The followinsLaugport routines are included:

DECLARE DATABASE OBJECT

DECLARE DATABASE OBJECT SHARED ASSIGNMENT

DECLARE CONTROL MESSAGE

DECLARE NODE TABLE

DECLARE OBPL

DECLARE OBPL CONTROL MESSAGE

DECLARE PROCESS

DECLARE PROCESS ENTRY

DECLARE REMOTE RESQURCE GRANT

FIND ENTITY LOCATION

INITIATE OBPL &y

95

Appendix 1I

del cont_msg_nuamb
del dboref
del eos
del exp_obpl .
gci nlmugut:nulb:u-:‘

c mgret - .. noaw
do1 Pomore.nod

c no_more_nodes
del .obpl_plasref
del obplref
del opref
del p_nttr class_name
del : p_econt lag_nunb
del p_dbo_name .‘
del p_dbo_node_
gc% p ei_pont nag_nunb

e

del p_del_paﬁl’ _pinas name
del p_del node.

del d ol_proc

del p,dcl_ref
del p_dest
decl p_entity name:
del p_pntity_ref
del p_node_name

ol p‘bpgﬁntgr‘1

C. P . RENS
ggi p_ownerrel: -

p_process_name

del p_proc_node_nase
del p_res_naase

del p_res_node_name
del p_res_t

del proa._sn
del procref. - o
gci proo_ ter:gof

c p_send_node_nane
del p_set_o
del res_grant_ref
del sec_node_name
del se erefl
gei %’ ieref

c emp__name
dcl tenp_ref

write list

iinclude ADT_pr itives;

Procedure DDM:

fixed bin;

1xzd binl17);

‘Fﬁ &u—

~ Jentryl?ixod bin(17), char(12)).

ions{variable);

96

Appendix 1I Procedure DDM

/% CREATE DATABASE OBJECT 5/21/76 %/
create database_object: cdbo: entry(e node_name, p_dbo_name);
figg engity _Yoolnoderef, "sys->node%, SYS REF, p_node_name, "node.name")
en do:
call write list ("Invalid node name. ", p_node_name,
Wdoes not exist."):

return.

eos = find en£1t¥ loc(tableref, "node->node_table", noderef, p_node_name,
¥node_table.name"

i ° {ﬁnd entity_loc dboref "node-)dbo" tableref, p_dbo_name, "dbo.name")

en do;

cail write_list_("Duplicate database object name");
return'

call del_« dbo dboref e dbo_name)

call insert dboref node-)dbo' "First", tableref);

call write_list ('Datgbaae objeef ", p_dﬁo name, " created in node ",
p_node_nanme

return:

/% CREATE NODE 5/19/76 #/

create_node; cnode: entry(p_node_name);
ir ::ner (SYS_REF, "sys->node")
en do;
ca{l write_list ("Illegal request, system has not been created.");
return:

end;
call find 1rst ,_(noderef, "sys->node", SYS REF, no_more_nodes);
do while no_more_nodes);
it extract_(noderef, *node.name") = p_node_name
then do;
call write_list ("Duplicate node name"):
return°

caél find nexi (noderef, "sys->node", no_more_nodes);
end;
call create_ entit; (noderef, "node”);
call create_attribute (noderef, "node. name®, "field" p_node_name) ;
call create_relationship_(noderef, "sys->node", "mem er 5
call insert (noderef, "sys->node", "first", SY$ REF)‘
call create_ relationshig (noderer, "node->node_table
call dcl_node table(tableref, p_node_name):
call insert ableref, node-)node table™, "first"™, noderef);
We will now make this new node "aware" of the existence of all
other nodes, and make all other nodes "aware" of this new node. *
sec_noderef = n deret-
call find_next_(sec_noderef, "sys->node", no_more_nodes);
do while 1" no_more_nodes):
First create a table entity for the new node to be used by
another node. #/
call del_node table(tableref, p_node_name) ;
call insert_(tableref, "node->node_table" "weirst®, sec_noderef);
& Now cggdfé.g table entity for an exiatlng node to be used by the
new node.
sec_node_name = extract_ (sec_noderef "node name "),
call dcl_node_table(tableref, sec_ node name)
call insert_(tableref, "node->node. table", "first", noderef'):
call find_next_(sec_ noderef "sstShode", no_more_nodes);

"owner");

call write list_("Node created: ", p_node name):
return:

97

Appendix II Procedure DDM

/% CREATE PROCESS 5/21/76 %/
create_process: c?roc: entry(p_node_name nﬁg;pceaa_name);
ir righ_engity_loe‘noderef, "sys->node®, Sfa_ F, p.node_name, "node.name")
en do:
call write list ("Invalid node name. "™, p_node name,
Wdoes not exist"): ’
regurn:
end:
eos = findwentit{_loeétablegef, "node-3node_table", noderef, p_node_name,
. node_table.name®):
if © find_entity loc{preoeref, "node->process", tableref, p_process_name,
"process.name”)
then do:
call write_list_("Duplicate process name"):
return;

end:
/% If an operator with the same name has been declared at the node,
print an error message and return %/
if "find_entity_loc(opref, "nede->operator”, tableref, p process_ name,
th ;operator‘nant'
en ao;
cail writqwlist_(p_procesa;name, "has been previously declared",
R as an operator at node®, p_node_name);
return:

end;
call dcl_process(procref, p_process_name):
call insert_ (procref, “mode- ess®, "Pirst®, tableref);
call insert_(procref, “node/d /mg->praenaa?§ frirst®, tableref);
ca%l write Yist_("Process®, p_procesa name, “created im node", p node_name);
return;

/% . EREATE SYSTEM . 5/18476 #/
create _syst: csys: aysgen: entry;
if SYS REF "= 0 ¥ yo8 ¥
then do:
call write_list ("System already created®);
return:

end;
call create_entity_ (SYS REF
call create_attribute_(3YS REF "system.last_coat msg", "field", 10, 0);
call create_relationship_(SYS BREF, "sys->node®, "owner®);
call create_relationship (SYS REF, “sys- »_ “owner®):
call create_relationship (SYS REF, "sys->cont ssage®, *owner");
call create_relationship (SYS REF, "sys- message®™, "owner®);
call create_relationship_(SYS REF, "sys-Jop_con®™, “owner®);
call write Tist ("Systea crea ed®}:
return:

"system");

/% DCL DBO 5/427/76 %/

del _dbo: entry(p_decl_ref, p_dcl dbo_name):

/% This procedure creates an ent ty¥ for a database object with name specified
by "p_decl_dbo_name® and creates the neeeaanrx relationships. A reference
to the entity is returned via "p_dcl ref®. /

call create_ent tﬁ,(n_dcl,ref, "dboW)

call create_attribute_(p_decl_ref, "dbo.name", tfield", 12, p 9c1_dbq_nane);

call create_relationship_(p_dcl_ref, "process->dbo¥*, %member™):

call create_relationship (p_dcl _ref, "node->dbo", "member®):;

call create_relationship_(p_decl ref, "dbo->dbo sﬁ.asne", “owner");

ga%lrcreatq_relationship_ p_del_ref, "node/dbo/mg->process®™, "owner");

eturn:

98

Appendix II Procedure DDM

/" DCL DBO SH ASMT 5/27/76 %/

dcl_dbo_sh_asmt: entry(p_decl_ref);

/% This procedure creates an entii for a database ob‘ect shared assignment
and returns a pointer to it via "p del_ref™ /

call creatq_entiti_(p del_ref, "dbo_sh_asmt™);

call create_relationship [p_del ref, "process->dbo_sh_asmt", "member");

ca%l create_relationship_(p_del_ref, "dbo->dbo_sh asmt"™, "member"):

return;

/% DCL CONTROL MESSAGE 5727776 %/

del _control_message: entry(p del_ref, p_decl_entity_class name,

p_dcl_cont_msg numb);

/% This procedure will establish an OBPL, a remote resource request or a
remote resource release as a control message. It will generate a control
message number (which becomes an attribute of the entity specified by
*p_dcl_ref") and change the "sgstem entity so that it is aware of the
new control message number. This control message number is returned via
"p dcl_cont_msg numb"

p_dec)_cont_msg numb = extract_(SYS_REF, "sxstem.last_cont_msg") + 1

call alter (SYS REF, 'sistem.l'ast__cont_msg , p_del_cont_msg numb);

call create_order_(p_del _ref E_dc%_entity class name, ‘bontrol_messa§e"):

call create_relationship_(p del re , "sys->control_message”, "member"):

call create_attribute_(p_dcl ref, "control_message.number", "field", 10,

R p_decl_cont_msg numb);
return;

/® DCL NODE TABLE 5/72T7(76 %/

decl_node_table: entrI p.del_ref, p_del _node_tabl name);

/% is procedure will create an entity for a node table and creates the
necessary relationships. The entit¥ is also given the name specified by
:p_gci:pogg_tag name®. A pointer to the new entity is returned via

p_del _ref*™,

call create_entity_(p_dcl_ref, "node_table");

call create_attri utq_(g del_ref, "node_table.name®, "field", 12,

p_dcl _node_ta
call create_relationship_{p_decl_ref, "node->node_table", "member");
call create_relationship_(p_dcl_ref, "node->operator", "owner");

call create_relationship_(p_dcl_ref, "node->process"™, "owner");

call create_relationship_(p_dcl_ref, "node->dbo", "owner");

call create_relationship_(p_dcl_ref, "node/dbo/mg->process "owner");
call create_relationship_(p_decl ref, "init_node->message", "owner");
ca%l create_relationship_(p_decl ref, "accept node->message”, "owner');
return;

99

Appendix II Procedure DDM

DBCLAR

%lfﬁbpl + entry

cm:it
for

0121&/7 6 %

i “i‘ptgls

call crute_ﬂ
call create_,ro
call

/% Create Fﬁ at u Sktored oNly M‘m M ﬁs & weasage)
toj‘%:gigugd.}h nessdge m withis & W m that s being
wa 0

call m«m.ﬁn.unlnf, “opt w Wy 4 wgwy.

return:

call writ,e_ﬁa O eprebenting as WP
return; ' ~' e ' T

100

Appendix II Procedure DDM

/% DECLARE OPERATOR 7/13/76 %/

dclgg: entry(p_op_node_name, p_operator_name);

/% is procedure will create an entity for an operator with name specified
by "p_operator_name" and located at the node specified by
"p_og_node_nane" L

/% If the node specified by "p op_node_name" does not exist, print an
error message and return ®

if find_entity_loc(noderef, "sys->node", SYS_REF, p_op_node_name,

"node .name"
then do;
call write list_("Inmalid node name:", p_op_node_name,
Wdoes not exist®);
return;

end;
/% Get the location of the node_table for "p_ogInode_name" &/
eos = find _entity_loc(tableref, "node->node table", noderef,
p_op_node_name, "node_table.name");
/% If "p_operator_name" was Rreviously declared as an operator, print an
grror message and return %/
if "rind _entity_loc(opref, "node->operator", tableref, p_operator_name,
"operator.name"
then do;
call write list_(p_operator_name, "has been previously",
. declared as an operator at node", p_op_node_name);
return:

end;
/% If "p_operator_name" was greviously declared as a process, print an
error message and return %/

if “find_entity_loc(procref, "node->process", tableref, p_operator_name,

"process.name")
then do;
call write_list_ (p_operator_name, "has been previously declared",
R Was a process at node", p_op_node name);

return;

end;
/% Create an entity for the operator and declare the necessary
relationships and attributes #/
call create_en itg_(oprer, "operator");
call create_attribute_(opref, “operator.name", "field", 12, g_pperaton_name):
call create_relationship_(opref, "operator—>og_oon" "owner®);
call create_relationship_(opref, "operator->obpl", "owner"):
call create_relationship_(opref, "node->operator”, "member");
call insert (ogr?f, "node->operator®, "first", tableref);
call writQ*Ils ..(p_operator_name, "has been declared as an operator",
. at node¥, p_op_node_name);
return;

101

Appendix II Procedure DDM

a . DCL ngcwz _rer, p.d 5/21/76 %/
cl_process: en cl_ref, p_dc riame
Prhis broceure will arasts’sn. ﬂy"%af""’f&wv sm,gg,ggg,,,m, iy

call crente aLe
"field", 10, "%);

call ereatg aewgmt‘é‘:;;n& 61 fr, " ~goosss _type" ,
call create_relst : 1 _ref, “nodesiprocess” ,*ﬁllbdr'
y ' *ncde/ebes g=>p

11 cgiﬁc cg i .
5] nf, 'm,m* rrield*, 12,
A

: '

call creat.e__,rcnﬁ ' 1_ref gesss” , "meaber®);
ca%} creagq_rv) ggis::fy ’,““"5"5‘)
call create_rels L ref St ogue H
eai% orcagg g: t dal‘rtgwm ot p - Wy A;wg‘ﬁf'«ouéi?' :')

call cres zdulﬁi p (o el PProdionsttuge owner*);
g:%l create rolstions&in_ g_dal_ref' POt dnessags ,"ounér'):

urn: L

DECLARE PR
sl‘fg;:cimz! =1 W
anq tre Sredess. 2&1290«
an s
p.prdeii!znlid‘(lnc p.p

c¢all create it
call create ‘*git

call crea ,,’ﬁ‘ AP _7 : ,A";
call cream it' " f nm, mum mm* "ﬂeld"
call 1nsert (prve entryr 5? sabp1a>proa entry®, *first", p_obplref);

return:

/% DECLARE REMOTE RESOURCE GRA&? 6/17/76
del_rem res grant: em'.ry(y, Ab¢ P

p
/% This procedure wil} arudE&
then declare it us & Oﬁﬁﬁ

¢ Pproc _neode _name,
*ﬁez“s,rniiccrrbtodrac allocation and

call craate entit

call e!'Q.tC .t gm !'%I‘Mt f‘f, ’wﬂ !'m‘ nm’“
teld®
call Cl‘aaba attf‘isﬂtg ‘rﬁig'rmt ’. ¥ I'Os,_gl‘lﬂt !'“__m
B

call create attriﬁutc €req~grant_rcr 'gca;grant .proa_node_name",
"Field", 12, p_proe node_name
call create attribute "¢ res_grant_ref, "res_grant.proc_name",
"Fiel 12, p_process_nams);
call del control_nesauge ea_grlnt ret "res _grant™,
_gont_mag_rumb)
ca%l 1nserg ?req_grant ref, "sys->control _messsge”, "last", SYS REF);
return;

102

Appendix II Procedure DDM

/* FIND ENTITY LOCATION 5/19/76 #/
find_entity_loc: entry(p_entity_ref, p_set_class name ? ownerref,
P_entity _name, p_attr_class_name) returns(bit(17);

/% This procedure determines the database address of the enéity with name
"p_en 1t§_name" (specified by the attribute "p attr class_name") which
is a member of the set occurrence (designated by the parameter
:p_;et_clags_name") owned by the record occurrence designated by

p_ownerref",

If the desired named entitx does not exist, a true value ("1"b) is
returned and "p_entity_ref" is unchanged. Otherwise a false value ("O"b)
is returned and "p_entity_ref" is updated with the database address of
the deaired entity. #/
;:?1} find_first_(temp_ref, p_set_class name, p_ownerref, eos);
eos
then do;
temp_name = extract (temp_ref, _gttn_clasa_name);
do while (" eos & (p_entity name = temp_name));
ggl} find_next_(temp_ref, p_set _class name, eos);
eos
g then temp_name = extract_(temp_ref, p_attr_class name);
end;

end;
if ° eos then p_entity_ref = temp_ref:
return (eos);

/% INITIATE OBPL 6/25/76 %/

initiate obpl: entry(p_proc_node name, p_process_name, p_res_node_name,

p_res_name, p_res zpe :

/% This procedure wili InitTate the creation and expansion of an OBPL. The
first process to be placed on the list is specified by 'p'procesa_nane'
and is located in the node specified bg "g_proq_node name®™. The process
is waiting for the resource specified by res_name¥ and located in
the node specified b{ "p res node_name". The resource type ("dbo" or
"message”) is specified by "p_res_type". #

/®* Create the OBPL entitx and have it initialized with the resource and
grocess information given by the parameters. #

call dcl_obpl(obplref g_rea_nodq_name, p_res_name, p_res_type);

call del_proc_en (06p ref, p_proc_node name, p_process_name);

/% 1If the processria waliti for a message, then we must find out the
message number (within the message group) that is desired and put this
information into the OBPL. In addition, if the process and the sender
of the message are in different nodes, then we must send the OBPL to the
node which initiated the message group rather than try to expand
the OBPL right away %

if p_res type = "message"

then do:
/% Get the location o{ the entity for the message ﬁroup &/
eos = find'entity_loe mgref, "sys->message®, SYS REF, p_res_name,
message .name");

/% Get the number of the message desired %/
message un? = extract_(mgref, "message.numben_gd"; + 1
call alter_(obplref, "obpl.msg numb"™, message numb):
ir p_groq_node_name = p_res_node_name
hen do;
cail decl_obpl _cont_msg(obplref, p_res_node_name,
p_proc_node_name) ;
return:
end:

end;
/% Expand the OBPL as much as possible in this node #/
call exp_obpl(obplref, p_res_node_name);
return:
end DDM;

103

Appendix II Procedure REQ

REQ: procedure;
® This procedure contains the subroutise which allows processes
to request dsatabase objeota for shared or ewciasive uss. The railouing
user visible function included: RETIENEES T
REQURST nxrxaasz oBJBCY 8/ “ ‘L SERNE

proere
del ptableref
del res_req_ref
dcl "I asatref
del write list :
$1nclude D er'v_routines;
finclude A _priiittvci*

s m-w-a.& »
a3y -
.w -
e qut*.

variable)

104

Appendix II Procedure REQ

/% RBQUEST DATA BJECT . 5/26/76 %/
request_ dbO' rqd aa__iype, p_proc_node_name, p_process_name,
/% v adg!zi“ PP ame" exists %/
if find_entity_loc(g=$5ivcf aynﬁ&nouo rggSnnzg'np_proq_nodo name,
e.name"
then do;

cail vritq'list_(zgn:;%id Byocess node name oy p_proq_pode_name,
ooc a st. ‘

return' ,
/* Verify thaé the process gpeciried by "n_prooess name® exists at node

eos = r1n523§§§§§f§é;2paahaur.f ' ::::ugcbloﬂ, ﬁpoderef,

if rind_eng y_loo(p] : 'nodé'>procoan! Qett, P, process_name,
then dgfocollanan.! : Lo
call write list ("Invalid proooal an-.' :yccas ,_name, "at node",
p.proq_node name, “does m; cxu

return'

eri tha€ access t s 'a " or “cxoluaiv y»
Ipfggz.aq‘u;pc ’s ey ?.g‘? dgcaoaq,ﬁypc !n 'shared')

oail writq_liat ('Invalid access typo, requést ot processed") ;
return,

/:llcgeok 1f ihe process 1: blooked */ | . &% procref):
ind_owmer_ dbu! roces ref);
ir en&ty_ohsq_pmm_an‘mt; 4‘: Q__ ab e ' P
cail writq'lta 1 nnqulit oces e,
o ﬁgi , p_pd noda_ﬁtls '13 noE otive ') T
r urn:

{; Check 1rtﬁemamd urce-are atthemfnd«v 8/

hen.dgi - / ‘ d“ri source are at the same node #/
erlfy that the databnon obJoet apooitigd hy "p_dbo_name"

ist t
ir rs.nq::ng £3 .n.'tgm-d m&ﬁ“ m&%ﬁ. p..dbo_nue,

then do;
oall writq_list ('Invalid databuac bjt 2..3 "
3 oes not exist ") e ‘ - niame
retwn' i
/%Test to the dbo. has 31 baen lsaigned to the process®/
ir 1naertoga dhor.f, Eg::g%
I’ it'tht’groavotthaa gxcluaive control

eall r1 owner ?: oﬁhlrrﬁ? “ roccsa-)dbo" dboref)
ir proo:gf nquuwgii 9::P

dﬂ* !
- call writq_lla&;('\ valid request. Process",

p.p name, "at node
" pproa. Falready has",
exXolu 1!0 oontrql of", p_dbo n ame,
"at node®, p_ddt_node_name);
return;
end:
end: ~
else d

/'Check 1f the process has shared access to the dbo */
if © empty_intersection_(procref, "process->dbo_. sh_asmt"

105

Appendix II Procedure REQ

M
1{ S Check 1 ?u W w b’ :t;:?le for assignment %/
thea

‘iadaidhoi =P
mum Mhubeen
lgnﬂnwbrmf& um.umor

e

call insert_(sh a rof. 'pmnn-%bo_,ah,am" 'first",
[’ﬂt m’

O ned to",
"o P WM?? °

/'Thcmtﬁmﬂiihmltmmmn is for
lusive use of the database obisst
/® cm gmmnmm:m;ummmd database

ir m::, *dbo->dbo_sh_sawt®)
the proco” for nclmhr” ase of the database

o Ject bemu at g%‘o:za cgrrently

call altcr imf _ gyt v ‘)'exelusive"),
‘!ndﬁnl mg->process”, "last",

call vritq'% “Besource is ant wmtly available"
or glusive use ms " p_process_name) ;
call vri c? ed.*); roc_node_name,

oall 1nitW ga_nane,
L_Dene, P
r:‘f.u!‘a,
else do /%Grant the ogrooou Fclusive use of the desired
atabase object
call insert_(dboref, pmcu-)dbo' "first", procref);

106

Appendix II Procedure REQ

call write liat_(n_procesq_nlnc, "at node",
aﬁsroq“nodq RADS; gz:ntcd clusivo use"
of", n_dba_nllo, iat - p_dbo_node_name] ;
r;gurn: ' :
end;

/% 3200":52 gection will be executed when a procesa requesta a rcmote
sou

/% Verify that the desired database object exists %/

ir rinq_entioizloc(db?.neﬂnrot, -"sys->node"; - sxa_n:r, p_dbq_nodq.nano,

.name®
then do:
call write_list (*Invalid databnso object no?o name. ",
r‘turn' p__dbﬂ__m JNANey Tdoes not ex

finq_ggﬁity_loo(dbq_tibloro{i ;node->g q_xablo' dbo;nodoret,
. ¥
ms.. ableref, n_dbq_na-o, 'dbo name")

*" a1 writ.c‘,lia u&pnuu dauban “’333. name. mnedﬁ_._nm.

return,

eos = rind_pnéitz_loc(dbq_tabloref, 'nodo-)n q_tablc', pnoderef,
g_ ode_nane , a le.name"
/% Check if the node oontnining prgccas s aware of the existence of
1f 1 q_t tig. loc db?g:b". o¢e°§§6o" tableref, p_dbo_name, "dbo.name")
nd_en node- ablere _n
hen do: roate looal info fon about Lhe remote’ resource and
block the roooas.
call del_dbo(dboref, B
call insert_(dboref, nodo-)dbo' 'first" dbo_tableref);
call alter_{procref, grocoaa .access_type ,_p_access, _type);
call remove procro} nodc/dbol-g->prooos

ca%l insert_(procref, "node/dbo/mg->process", '1ast' dboref):

end;

else do; /% Check if the databaae objcot has already been assigned
to the process. If s, pr*nt an error message,

otherwise bloock the pr?o.es.
ir inaertega(dboref "process->dbo

cail rindrpuner _(exc_ownerref, "process->dbo™, dboref);
if procref = exc_ownerref

then d
oail write_list ("Invalid requcst Process",

p.proces , "at node"
P o_name, "already has",
exclusivo control of*, p bq_nane,
"at node", p _dbo_node _name);
return;
end;
end:
else g?" ty_int t r >dbo_sh_asat"
e ntersectio roore ocess-) sh_asmt”,
t:p !abore f, égo ah_;ﬁn Y
m .

eail write llst_('Invalid request. Process",
—Proa.n quzne asagggad has",
e’ﬂ.rﬁa".oo.-a té*. p_dqu ame,
"at node®, p_dbo_node_name);

return;
end:

end;
/% Legal r uest, "block" the process. #/
call alter_(procref, “process.access type", p_access_type):

107

Appendix II Procedure REQ

call remove sprocret "node/dbo/mg~>process®) :
call insert_ procref, "node/d bela;'>proonns' "last®, dboref);

call writq,l:n&g?sbrunzggig . !?ﬂl’ p.proc_node_name,

call write_l . " resource®);
Create an ity for a rn-agc resoUrod FrOOVSt and’ dccllro it
as a oaatro

call create_enti
call create_attribu
p_acoess_t

call
call
call
call
call
call
call
eall urite

return:
end REQ:

neooca.xrpc' 'field' 9,
L “peme®, "field”,
y "fleld”, 12,
: . 'ficid', 12,
me”, "field", 12,

108

Appendix II Procedure MSG

%.
MSG: procedure;

/* this procedure contains the subroutines which perform the
message management functions for process to grocess communication within
a network. he following user visible functions are included:

ACCEPT MESSAGE GRQUP

INITIATE MESSAGE GROUP

RECEIVE MESSAGE

SEND MESSAGE *®/
del accept_node_name char(12);
del accept_node_tableref fixed bin(17):
del accept_proc_name char(12);
del accept_procref fixed bin(17):
del cont_mag numb fixed bin;
del eos bit(1):
del init_node_name char(12);
del init _node_tableref fixed bin(17):
del init_proc_name char(12);
del init_procrefr fixed bin(17);
del messageref fixed bin(17):
del ngref fixed bin 1; ;
del ndm_proc_ownerref fixed bin(17):
del noderef fixed bin(17);
del p_accept_node_name char(®):
del p_accept_proc_name char(®);
del p_init_node_name char(®):
del p_init_proc_name char(%);
del _mg_name ‘ char(®%):
del procref fixed bin(17):
dcl recv_msg numb : fixed bin;
del send_msg_numb fixed bin;
del write_list_ entry options(variable):

finclude DDM serv_routines;
finclude ADT primitives;

109

Appendix IIX ‘ Procedure MSG

/% . ACCEPT(HESBAGE GROUP t nod 7/1,7g_p:éo neme) ;

acoeptm entr Mg _neme, p_acce __n o_name p_aeocg

/9 gteg this p;ogcdurc n'cgi 05 - y
"p_accept_proc_name® (and looat. lt th _Yk‘ﬂ, : _Qg !
"p,;oco . _ngae®) will 'g,%g ‘40 S0Pt ReSeuges 1n the message

e §5°% by *mw nzst, ‘print

an error seshag 5 n A - T
if find entity_,l -mg, "sw)nuugt' SYS MOV 'p, N name,

then d ‘
ctll write list ('Invnlid ssage name: " name,
Q' A en el gy sage group y P_Bg
catue
/% If the message groav has 3lroady Been accepted q: & préeusa. print an
error mes return

1f insert ?-mr. 'rw’ﬂ' ")
@ » . bR EATE el
call write_1fst ("Invé18d s z.nane,
"m 31.3:2} «ms:fgf 'ml sa‘)

return; 4 ‘
“‘:am' was umq Lz fmg

end; .
/® If the node 39‘°1f§;§‘32," j
f);

node that
q.nane')

calgr%!i‘gd:nmr.(- oo . 14 W ‘% <}
if p_%geepgsnodq_nlli wéeept_node.. t‘ﬁ.
cail write‘,lnttg_mmtf ‘ o

call write_l T ,
w roquea 18 rejected®);

/% If the rocasa s eeiriod b Ll gccept_proc_nane® not exist
at thepnode apogi pw_.nsgq__nm p?-?:z

nd
ir find‘ggtity_lou aeeoﬁt_procrer, "node«>p ", i@ﬁﬂn&;nnde tablaref,
th g_;ocept“proq_nale, "process.nane 5
en
cail writo list_("Invalid process name: _R0CCe y name
Wdoes not exist gt node E aeeti Enode pn_pyoc ’

return;
end;

/% If the process aeccgting the message group is not active, print an error
.1?‘?’ ® oune t ‘ £, " {abo/ug-> ", accept_procref)
c owner._ _ownerre n)P 88", accept_procref);
ir ’"gﬁt’ clasq_nulc ndw_proc_ownerref °9n=§q_£.a§3- !

en do:

cail write_list_("Invalid acceptag grooosa',
p_;ccept_proq_nane is not :etivc H
regurn

/% If the process accepting the message group is thg sane one that
initiated it, grint an error measa'e and return
call find_owner (init_node_tableref, 1n1t_¥ode~>-caa:ge', mgref);
if 1n%g noge _tableref = acoept_node tablere
en do:
/% The initiating and accepting nodes are the same. See if
the initiating and accepting prooocaon aro the same %/

call find_owner_{(init_procref, "send _proc-Juessage", mgref):
ir 1n%§_prgcref‘: accept_procref
en qo;

call write_1ist_("Initiating and acoepting processes",
Ware the same for -onaagc gre oup , D_mg_name,
"acceptmg command rejected

110

Appendix II Procedure MSG

return:
end:
end;
/% Insert the message group entity into the accept set for the process
specified by "p_accept_proc_name" #/
call insert (mgr? y "rcv_proc->message", "first", accept_procref);
call write Yist p_mg_name, " has been accepted by ", p_accept_proc_name,
¢ ¥ at node ", p_accept_node_name);
return:

/% INITIATE MESSAGE GROUP T/1/76 %/
initmg: entry(p_mg name, p_%nit_nodq_name, p_init_proc_name,
p_accept_node_name):
/% This procedure will create a message group with the global name
specified by "p_mg name®™. The only process that can send messages
in this message groug is specified by "p_init_proc_name" and is located
at the node specified by "p_init_node_name". The process that will
receive lessages in the given message groug is located in the
node specified by "p_accept_node_name". The specific process that will
gccggt the nesg7ges will be given in a subsequent call to "acceptmg”
e user.
/% I¥ we have a duplicate message group name, we must print an error
pessage and return %/
if f%gd_egtity_loc(mgref, "sys->message", SYS REF, p_mg name, "message.name")
en do;
call write_list_("Duplicate message group name. initmg",
. Weommand rejected"):
return:

end;

/% If the node specified by "p_init node_name" does not exist, print

and error message and return %/

if find_entity_loc(noderef, "sys->node"™, SYS_REF, p_init_node_name,

"node.name")
then do;
call write_list ("Invalid node name: " p_init_node_name,
does not exist");

return;

end;

/% Get the location of the node_table for "p_init_node name" %/

eos = find entity_loc(init_node_tableref, "node->node_table", noderef,

p_init_node_name, "node_table.name");

/% If the process speclfied by "p_init_proc_name"™ does not exist at the
node specified by "p_init_node_name", then print an error message
and return %/

if find_entity loc(procref, "node->process", init_node_tableref,

eh g_idIt_proq_name, "process.name")
en do;
call write list ("Invalid process name: ", p_init proc_name,
¥ does not exist at ", p_init_node_name);
regurn: ,
end:

/% If the process specified by "p init_proc_name" is not active, print
an error message and return %/

call find_owner_(ndm_proc_ownerref, "node/dbo/mg->process", procref);

ir en%%ty_glasa_name_ ndm_proc_ownerref) "= "node_table"

en do;
cail write_list_("Invalid initmg command. Process ",
. P_init_proc_name, " is not active"):
return;

end;
/% 1If the node specified bz "p_ecoept_nodq_name" does not exist, print
an error nessag? and return %/
if find_entity_loc(noderef, "sys->node", SYS_REF, p_accept_node_name,
"node.name")

11

Appendix II Procedure MSG

then do;
call write_list_("Invalid node name: ", p_accept_node_name,
¥ does not exist"):
return:

end;

/% Get the location of the node_table for "p_accept_node_name"” %/

eos = find_entity loc(accept_node_tableref, 'noge-modq_,table", noderef,

p_accept_node_name, "node_table.name");

/® Create an entity for a message group, create the neceasary relationships
and attributes, and insert the entity into the appropriate sets #/

call create_entity (mgref, "message"):

call create_relationship_(mgref, "sys->message", "member");

call create relationship (mgref, "init_node->message", "member");

call create_relationship (mgref, "accept_node-)message"* "member®);

call create_relationship (mgref, "send_proc->message”, "member");

call create_relationship_ (mgref, "rcv_proc->megsage”, ”member”)i

call create_relationship_(mgref, "node/dbo/mg->process", "owner)‘

call create_attributq_zmgre , "message.number_sent"™, "field" h‘ on);

call create_attribute_(mgref, "message.number qd", *field", &, 0“);

call create_attribute (mgref, "message.number_recvd™, ®field", 4, "0%):

call create_attribute_ (mgref, "message.name¥, "field"™, 12, p_mg_name);
call insert_(mgref, "sys->message", "first", SYS_REF):

call insert_(mgref, "init_node-’>message", "f%raﬁ' 1nit_node_tableref);
call insert_(mgref, 'accept_node-)messaﬁe”‘ tirsf", acceg ._node_tableref):
call insert_(mgref, "send_proc->messageV, first®, groere 3

ca%l write_1lis _('ﬁessage group ", p_mg name, "has been iniﬁiated');
return:

112

Appendix IX Procedure MSG

/% RECEIVE. MESSAGE o T/1/76 %/

rcvma ent _ngn
/% th g§o~ 11 aiunlato ths receiveing of a message in the message
apeol ed by p_pg_na-o

/* ag trfogngzcg :geo f&gd by "p.mg _name" does not exist, print
e ssag

ifr rigg entitaaloc?ngrnt, 'ays-)noaaage' sra_szr p_mg_name, "message. name")

n
cail uritq'list_("invalid ngsaugo group name: ", p_mg name,
turn: does not exis
return;

e
/% If no. erooo's has acocpted the message sroup, print an error message

and return , '
ir igg::ted (lgrer "pov_proc->message")

caii writq'ligt ('Inxulid revRsg oalnlnd No- roccss has",
return; ted message. group-"y p_RE_neme);

end:
/% Get the nake ‘node cf th OOC!B th :hould rooeivo the message %/
call Find oumes. (800opt a8
Py

ov_.proe W

"‘owﬁiz;(lco “t acccp e-$-an lgrcf)
accept e _name = ¢ ;Eg;l t_no&o tableref "n gle name®) :
/81 2:03 8- 3P roi:h, ’Sccop panq.pan.ﬁ aa&ive, print
an e urn
call find_owner_ ndn ?j i) " rocosa' ‘accept_procref):
ir en%%tg'blaaq_n : “u’rnq_puaorraof'é ggs gablq Sk pep
en do: S
oall writ { 'Preceaa' acoept.. " “at node'
q“l .&E‘ ode’ nino, "is not- acgiig. Ro- wessage oan be"):
call uritq_lia Tn recelVe 1n message group" p_ng_name5
!‘:glll'n- o .

/% ginglouﬁ.&f 5he nessaga can be received, or if bho process must
e bloc

rc!_nsg_nulb i extract_(mgref, 'nolsage.nunbor reva®

if rev ab < extract (lsrof ln-aastmnul n_gdz

t en Y
/' Allou the procqta Lo re 11. tho message ¥/

WMW..NM': p Mv.p:%mmb) ;

call write 1 g E'?“ 1§agc 'f‘noslace group', p_mg_name):
,r:gurn

else do
/'lglock the proce;:p'/ £, " ho/mE=> a):
call remove_ (acc rocre ‘mg~>process®):
call insert sacc:gt_prooref ggggjgbolng- Svooesc' "firsat",

call writq_! {st (‘Process ',uiop ' raq_n.na " Mag node®,

coe de_name, otk uait&na:fbr a%);
call write_l - @ . :apoup” g_name) ;
/% Get ths)pano of the nodo ‘that i&xaﬁ ”ouns he message

ro
calf rind owner_(init_node_t r "init_node->me ngref) :
init_node_; ane = extﬁigt ?Ihit n q_tableﬁ?f, "node taglefnaue')

/% Check /~

call 1n1tiat °§§§%?3§cept nodq_naue, accept_proc nane,
_node_name, p_mg _name, "uanse")‘

ragurn,

end:

113

Appendix II Procedure MSG

/% SEND MESSAGE 7/1/76 %/
sendmsg: entry(p_mg name):
/% This procedure will simulate the sending of a message in the message
groug specified by "p_mg_name"
/® e message group specified by "p_mg name® does not exist, print
an error message and return %/
if figd entity_loe(ngrer "sys->message®”, SYS_REF, p_mg name, "message.name")
hen do:
call write_list ("Invalid message group name: ¥, p_mg_name,
does not exist");
regurn:
end;
/% Verify that the proceas that should send the message is active %/
call find_owner_(init_procref, "senq_eroc->mesaage" mgref);
call find_owner_ ndm_?roc ownerref nodg/dbo/mg-)process' init_procref):
ir engéty glass ._name_{ndm_proc_ ownerref) =z "node_table"
en do:
/% The process that should send the measage is not active. Get
© . its name and ?ode and print an error méssage. %/
call find_owner 1n1t_node tableref, *init n ->messa e”, mgref);
init_node_name = extract_ Thit_node tableref, "nodq_ta 1e name");
init_proc_name = extract_ 1n1t*£rocrer, "process.name H
call write_list ("Process " ame, " at node *,
Initinode name, "'is not active. No measage can be ")
ca%l write_lis sent in message group ", p_mg name):
return;

en
/% Add 1 to tﬁe number of messages sent in this measage group %/
send_msg numb =z extract_(mgref, "mess e nuu er sent® + 1'
call alter_(mgref, "message.number_ sen sga
/% Find out if the message must be sent éotveta
call find_owner_ sinit node_tableref, “init_node~>measage" mgref)
call find_owner_(accep} node_ tableref, "acc node-)neasage , mgref):
if 1ni§ nog: _tableref "= accept_node_ ﬁablero
en do:
/%’ Send a control message stating that a message has been sent in
the message irou? specified b: 'ng__nane
call create_entity_(messageref,
call create_attri uge (-essageref mag mg_name", "field", 12,
p_mg_name);
call del control_ness o(mese eref, "mag", cont_msg_ umb) ;
call insert_(messageref, "sys- control_ncasage "last"™, SYS_REF);
/% Get the names of the es involved ®
init_; nodqagamo =z extract* ?1t_nodo habler.f 'nodg_table name");

acecept_n na-e =b§xtraot aoeopt_neﬂu_tcblore ,
able.name¥
call write list "Control mosaago aumber ", cont_msg numb,
¥ sent from ", init_node_name, " to ", accept_node_ nane);
call write list_ (" representing a message in a message”,
Wgroup");
return,

en
/* If the next section of code is executed then the message should be sent
between processes at the same node #
/% The number of messages queued e ua%s the number of messages sent because
there is no delax across any node
call alter (mgref message.number_qd", send _msg numb);
call write_list_ (A message has been sent in message group , P_mg_name);
% If no process has accegted the message group, return rather than see ir
a process should be woken up
if “inserted_(mgref, "rov proc-)message“)
then return;
/% {g a process is waiting for this message, wake it up and let it "receive"
e message %
call find_owner_ gaccept _procref, "rcv_proc->message™, mgref):
call find_owner_(ndm proc_. ownerref "node/dbo/mg-~ process", accept_procref),
if ndm_proc_ownerref = mgref

114

Appendix II Procedure MSG

then do;

return:

end MSG:

/% Wake up the process pointed to by "accegt proeref" L4

call remove_(accept_procref, "node/dbo/mg->process");

call insert_ accepdaprocref, "node/dbo/mg->process“ "first"
accept_n tableref

/% "Receive” the messag

rev_msg numb = extract ?mgref "message.number_rcvd®) + 1;

call alter (mgref, "message. number revd®™, rcv_msg numb);

/% Get the name of the process that was awakened

accept_node_name = extract accept_node tableref,
"riode_table,.name"):;

accept_groqrname = extract_ aecept_procref "process, name")

call ist ("Process" accept_proc_name, "at node",

g node, _name, "has been awakened ugon")
call write lis receipt of a message in message group",
mg_name)'

end;

115

Appendix II

1 B
OP_CON: procedure;

Procedure OP_CON

/% This procedure contains subroutines which create an operator connection,

allow the operator to send messages over the connection

allow the

operator to receive messages over the connectiog, and aliow the

operator to report its status (active or blocke
The following user visible functions are included:

operator connection.
CREATE OPERATOR CONNECTION
OPERATOR MESSAGE
OPERATOR STATUS
RECEIVE OPERATOR MESSAGE

del con_opref

del eos

del ndm_proc_ownerref
del noderef

del node_tableref
del number_qd

del obplref

del op_conref

del opref

del p_con_name

del p_con_node_name
del p_oOp_name

del p_op_node_name
del p_process_name
del process_name
del proc_node_name
del procref

del _state

del ableref

del write list

$include DDM_serv_routines:
finclude ADT primitives:

VA CREATE OPERATOR CONNECTION
copcon: entry(p_con_name,

with respect to the
&/

fixed bin(17);
bit(1);
fixed bin(17):
fixed bin 1;

.
1

fixed bin(17):
fixed bin;
fixed bin 1; 5
fixed bin(17):
fixed bin(17):
char(®);
char(®):
char(®):
char(®):
char(®):

char 12;:
char(12);
fixed'gin(17):

char
fixed bin(17); ,
entry optionalvariable);

7/9/76 #/

_con_node_name, p_op_nhame, p_process_name);
/% This procedure will create a connection between the operator s

cified

op_name®" and the process specified by "p_process name®, both

by "p_
locaged at the node specified bx
be given the name specified by

" ”
p_op_node_name®™,
p_con_name"™ &

The connection will

/% If we have a duplicate operator connection name, print an error message

nd return %/

ir innd_entity_loc(op gonref, "sys->op_con", SYS REF, p_con_name,

"op_con.name™
then do:

call write list_ ("Duplicate operator connection name.",

WCommand rejected"):

return;

end:
/% If the node specified by :g_aon_node_name" does not exist, print an

error message and return

if find entity_loc(noderef, "sys->node", SYS_REF, p_con_node_name,

"node.name")
then do:

call writewlist_(“lnvalid node name:", p_con_node_name,

does not exist"):

return;

end;
/% Get the location of the node_table for "p_con_node_name" #/
eos = find_entity_loc(node_tableref, "node->node_table", noderef,

Appendix II Procedure OP_CON

n_conInodq_name, "node_table.name"):
/% If the node Is unaware of the existence of the operator, print an
error message and return %/
ir find_cntity_loo(opref‘ "node-~>operator”, node_tableref, p_op_name,
"operator.name®)
then do:
call write list_("Invalid operator name:", p_op_name,
Wdoes not exist at node", p_con_node_name);
regurn;
end;
/% If the process specified by "p_process name" does not exist at the
node specified by "p_con_node_name", print an error message and return %/
ir rind_entity_loe(procref‘ "node->process®, node_tableref,
th g_procesq_nane, process,.name"
en do:
call write_list_("Invalid process name:", p_process name,
. Wdoes not exist at node", p_con_node_name);
return;

end;
/% If the process specified by "p_process_name" is not active, print an
error message and return %/
call rind_owner_(nd roc_ownerref, 'node{dbo/gg-) rocess", procref):
if engtty_glasq_namq_ ndm_proc_ownerref) "= "node_table"
en do;
call write list_("Invalid copcon command. Process", p_process_name,
¢ ¥is not active");
return;

end:

/% Create an entity for an operator connection and insert it into the
groper sets %/

call create_entity_(op_conref, "op_con");

call create_attribute_{op_conref, ¥op_con.name®, "field" 12‘ P conangme);

call create_attribute_(op_conref, “op_con.number_qd", vrield , ¥, "0");

call create_relationship_{op_conref, 'brooess-)op_con"‘ "member");

call create_relationship_{(op_conref, "operator—)og_con ’ "nember');

call create_relationship_(op_conref, "sys—)ogaoon ‘ H

call create_relationship_ (op_conref, "node/dbo/ -$process" owner®):

call insert_ op_conref,"process-)op_pon" "firs "‘ procref’:

call insert_(op_conref, "operator->op_con®, "first ,'ogser):

call insert og_conref, "sya->0p_con *first®™, SYS_REF);

"member")

ca%l write_list_("Operator connection", p_con_name, "has been established");
return;

17

Appendix II Procedure OP_CON

/¢ OPERATOR MESSAGE T7/13/76 %/

opmag: entry{p_con_name) :

/% This procedure will cause a message to be sent from an operator to a
process over the operator connection apecified by :g_con_name". If a
grocess is waiting for this message, it will be awakened and given

he message, otherwise the message will be gqueued. Any OBPL's that
were waiting for state information about the operator with respect to
this operator connection will be discarded since the operator 1is active #/

/% If the operator connection specified by "p_con_name®™ does not exist,
print an error message and return %/

if find_entity_loc(op_c?nrer, "sys~>op_con®, SYS_REF, p_con_name,

op_con.name"
then do:
call write_list_("Invalid operator connection name:",
. p_con_name, "does not exist"):
return:

end;
/% Discard any OBPL's that were waiting for state information from the
operator that sent the message %/
call find owner_ ogrer, 'ogerator-)og_con', op_conref);
call find_firat (obplref, "operator->obpl", opref, ecs);
do while ([eos);
call remove_(obplref, "operator->obpl"):
ca&l find__fTrst_(obpirer, "operator->obpl®, opref, eos):
end:
/% If no process is waitin§ for the message, queue it an return #*/
if emggy_ gp_conref, "node dbo/mg-)proceas"’
en do:
number_aqd = extract_(op_conref, "op_con.number qgd") + 1;
call alter_(op_conref, 'bp_con:num er_qd", number_qd);
call write list ("No procesg is waiting for the message,",
Wso it is queued™);
regurn;
end;
/% A process is waiting for the message, so we must wake it up %/
call find_first_(procref, "node/dbo/mg-ipm ss*, op_conref, eos);
call remove_(procref, "node/dbo/mg->process®):
call find_owner_ tabieref, "node->process®, procrer);
call insert_(procref, "node/dbo/mg->process", "first®, tableref);
/% Get the name of the process that was awaken
process_name = extract_(procref, "process.name");
proc_node_name = extract_{tableref, "node_table.name");
call write_list_(process name, "at node", proc_node_name, "has been",
Wawakened upon¥);
call write list (" receipt of a message over operator connection”,
. p_con_name) ;
return:

118

/
Appendix II Procedure OP_CON

/% tat OEER TOR STAEUS tat T/14/76 '/)
opstat: entry(p_op_node_name, p_op_name, p_state, p_con_name):
/g This procedure will take the appropriate action when an operator
reports that it is "active® or "waiting® %/
/% If the node specified by "p_op_node_name" does not exist, print an
error message and return %/
if find_entity_loc(noderef, "sys->node", SYS_REF, p_op_node_name,
"node.name")
then do:
call write_list ("Invalid node name:", p_op_node_name,
does not exist");

regurn;

end; ’

/% Get the location of the node table for the node specified by
“g_og_node name" *

eos = find_entity_loc(tableref, "node->node_table", noderef,

p_op_node_name, "node_table.name");
/% if the operator specified by "p_op_name"™ does not exist at the given
node, print an zrror -esagse and return

if find entity_loc opref* "node->operator", tableref, p_op_name,
"operator.name")
then do:
call vritg'list_("lnvalid operator name:", p_op_name,
does not exist"):
return;
end:

/% If the operator is active, we can discard all OBPL's that desired this
state in ormation‘ and then return %/
if p_state = "active
then do:
cail find_first_(obplref, "operator->obpl", opref, eos);
do while (“eos);
call remove (obplref, "operator->obpl");
call find_first_ obpiref, "operator->obpl®, opref, eos):

end:;
call write_list ("All OBPL's waiting for the given state",
Winformation have been discarded");

return:

end;
if p_state "= "waiting"

then do;
cail write list ("Invalid state. An operator can only be",
. Wactive or waiting");
return;

end;

/% If the operator connection specified by "p_con_name"™ does not exist,
print an error message and return because one can not wait for a
message over a non_existent operator connection #

if find_cntity_loc(op_cgnref, "sys->op_con", SYS_REF, p_con_name,

Yop_con.name"
then do;
call write list_("Invalid operator connection name:",
¢ p_con_name, "does not exist"):
return:

end:

/% 1f the operator specified by "p_op _name" is not involved with the
operator connection specified by "p_con_name", print an error message
and return %/ :

call find'ownen_(con?opref, "operator->op_con", op_conref):

ifr opggf ; con_opre

en do;
cail write list_ (p_op_name, "at node", E_op_node_nameﬁ
Wis not associated with operator connection®,
p._con_name);
return;
end;
call write_list ("We will now check for deadlock involving the given",

119

Appendix II Procedure OP_CON

"ogerator“)
call write_1 and operator connection"):
/% If the procesa that can send messages over the operator connection
specified by Bg con_ name" is active, there is no deadlock
d scard all 0 's that requested the given state 1nformation &/
call find_owner_(procref, “proeeas-)op con” op_conref)
call find owner_{ndm_proé ownerref, o?./dﬂo ng- proceas", procref):
if en%%ty glass name__ ndm_proc ownerref) = "node_table"
en do:
call find f;rst (obplref, "operator->obpl"™, opref, eos);
do whi%; caY; (£, " t Jobpl"
ca roaove obplre operator->0
ca%l find fIra?p%obpir P 'operator-)o&pl", opref, eos);
en
return;

d.
/% If there are no OBPL's waiting for state information about this
operator, create an OBPL with the operator as the only process entry %/
ir emgty_ opref, "operator->cbpl")
hen do;"

call dcl_obpl(obplref g) Op_| n@de y *%, "op msg");

call del_proc_entry(obpiref, p oE,nodq_nane, op_name)

call insert_(obplref, operator- obpl®, "fipst¥ opref3

end:
/% Find out the name of the process that can send the message the
operator desires %/
process name =z extract_(procref, "process.name"):
* Expand each OBPL that required state information about the given
operator
call find_first_(obplref, "operator—>obp1' oprcf ‘eos);
do while T eos);
/¥ Remove th OBPL from the set bel %ng to the given operator #/
call remove_(obplref, "operator->obpl
/% Check if | we save a deadlock *
call check_for_deadlock(obplref, p_.op.: ‘name, process name, eos);
/% If eos = 1, then a deadlock was nob ogted, so we should add a
resource to the OBPL and then expand it

if eos
then do; '

call obpl_. add_resource(obplro ndqﬁproc ownerref,

p_op_node name, 608 ;

/% If eos = 1 then the resource the process is waiting for
is in the same node aa the process, so we can continue
to expand the OBPL %/

if eos

then call exp_: obpl(obplret, p_op_node_name) ;
/% See if there are any more OBPL's to be examined %/
caél find first_(obplref, "operat.or-)tabpl , opref, eos);
end;
return;

120

Appendix II Procedure OP_CON

/% RECEIVE OPERATOR MESSAGE 7/13/76 %/
revopmsg: entry(p_con_name):
/% This grocedure will simulate the receiving of a meseaﬁe by a process
over the operator connection specified bx "p_con_name® #/
/% If the operator connection specified by
print an error message and return %/
ir find_entity_loc(op_c?nref, "sys->op_con", SYS_REF, p_con_name,
"op_con.name"
then do;
call write list_("Invalid operator connection name:", p_con_name,
Fdoes not exist"):

p_con_name" does not exist,

regurn;
end;
/% Get the name and node of the process that should receive the message #/
call find_ownen_(grocref, "process->op_con", op conref):
process_name = extract_(procref, "process.name");
call find_owner_(tableref, "node->process" grocref);
proc_node_name = extract_ltableref, "node_table.name®);
/% If the process is not active, grint an error message and return #/
call rind_ownen_(ndq_?roq_ownerre y "node/dbo/mg->process", procref);
ir engity_glasa_namq_ ndm_proc_ownerref) = "node_table"
en do;
cail write_liat_("?rocess"‘ process name, "at node",
proc_node_name, "is not active. No message can be");
call write_ list_ (" received over operator connection®,
p_con_name) ;
regurn;
end;
/% Find out if the message can be received, or if the process must be
blocked #/
number _qd = extract_(op_conref, "op_con.number_qd");
if nudﬁén_gd >0
then do;
/% Remove one message from the queue */
number_qd = number qd - 1:
call alter_(op_conref, "op_con.number_qd"™, number_qd);
call write_list_(process name, "at node", proc_node_name,
Fhas received a message");
call write_list_(" over operator connection®, p_con_name):
return;
end;
else do:
/% Block the process and initiate proceasing of an OBPL %/
call remove_(procref, "node/dbo/mg->process"):
call insert_ procr;{, "node/dbo/mg->process®, "first",
op_conref);
call write_EIst_("Process"‘ process name, "at node"*
proc_node_name, %is blocked walting for a%);
call write list_(") message over operator connection",
p._con_name) :
call initiate_o pl(proq_nodq_n?me, process_name, proc_node_name,
p.con_name, "op_msg");
return;
end;
end OP_CON:

121

Appendix I Procedure RCV_CM

5
RCV CM: procedure:
/% This procedure is a collection of subroutines which will accept
a control message and take the appropriate action. The following user
visible function is included:
The foll 1ECEIVE CONTROLG¥ESSAGE {neluded:
e follow support routines are inclu
ngcssg MESSAGE
PROCESS OBPL PASS
PROCESS "PROCESS TERMINATION"
PROCESS RESOQURCE GRANT
PROCESS RESOURCE RELEASE
PROCESS RESOURCE REQUEST 8/

del accept_node_name char(12).

del accept_node_tableref b&n(17)
del accept_proc_name

del accept_procref fixe? bin(17)
del access_type

dcl cont_msg numb fixed bin‘

del cont_msgref fixed binl17):
del cont_msg_type char{20):

del dbo_nane char(12);

del dbo_node_nane char{12);

del dbo_noderef fixed bin(17);
del dboref fixed bin(17):
del dbo_tableref fixed bin(17);
del eos bit z)'

del mg_name char(12);

del m ref fixed bin(17);
del Ipr'oc _ownerref fixed bin(17);
del obp re fi:;? in(17);
del p_cont_msg_numb char{®);

del p_msgref fixed bin(17 3
del p_obpl_passref fixed bin(17):
del reQJgrantref fixed bin(17):
del p res_relref fixed bin(17):
del p_res_reqref fixed bin(17):
del process_name char 12

del proc_node_name char 12

del proc_noderef fixed bin 17 ;
del procref fixed bin(17):
del proc_tableref fixed bin(17);
del qd_msg_numb fixed bin;

del rcv_msg numb fixed b*n,

del rev_node_name char(12

del sh_asmtref fixed bin(17);
del write list_ entry options{variable);
finclude DDM_serv_routines:

finclude ADT primitives:

/7% RECEIVE CONTROL MESSAGE 6/15/;6 &/
receive control_mess rcvem: entry(p_cont_msg_numb

/% This procedure wil verify that the control message which has its number
gecified by "p contﬁms numb" has been sent, but has not been received.
e procedure will t etermine what type of control message it is, and
the appropriate subroutine will be called to act on the message, *#
call find_first_ contImsgre "sys->control_message”, SYS REF, eos);
/% Co?verglthe ‘control measage number from a character string to a numeric
value
cont_msg numb = p_cont_msg numb:

122

Appendix II1 Procedure RCV_CM

/% Find the control message with number specified by "p_cont_msg numb" #/
do while (“eos);
ifr ex%gact (cont_msgref, "control_message.number") = cont_msg numb
en do:
/®* Remove the control message from the set of control messages
:gmthgﬁ this control message will not be received a second
e
call remove_(cont_msgref, "sys->control_message");
/% Find out what t g of'conzrol message it ?g, and call the
routine that will take the appropriate action *
cont_msg_type = entity_class name_(cont_msagref);
if con&_nsg_type = “"mag"
en :

t <)
cail.writq_list ("Control message_number",
B cont_msg_numb, "regresenting a message",

na ssage group"
call write_list__?g hgs been received");
call process_msg(cont_msgref);
return;

end;
if cont_ps&_type = "obpl_pass"
then do;

call write_list_("Control message number",
B cont_msg _numb, "regresenting an OBPL",
has been received."):

call process_obpl_pass(cont_msgref);

return;

end;
if cont_mss_type = "res_grant"
then do:
cail write_list ("Control message number",
e_conf;mag_numb, "reesesenting a remote",
resource allocation®);

call write_list_ (" has been received"):
call process_res grant(cont_msgref);
return:
ir t eng; " AR
cont_ms e = "res_re
then 5_.yp

o

call write_list_("Control message number",
E_codEJmsg_numb, "representing a remote®,
resource release"):

call write_list_(" has been received"):;
call process_res rel(cont_msgref):
return;

end;
if cont_msg _type = "res_req"
then 53'
call write 1ist_("Control message number",
E_eont_msg_numb, "representing a remote",
resource request");

call write_list_(" has been received"):
call process_res_req(cont_msgref);

regurn:

end:

end;
call find_next_(cont_msgref, "sys->control_message", eos):

end;

/% 1If 'g_cont_nsg_numb" didn't match anz control message number, then we
should print an error message and return #/

call write_list_(p cont_msganymb, " is not a valid control message number.",
. Command rejected");

return:

123

Appendix 1T Procedure RCV_CM

/® PROCESS MESSAGE T/1/76 */

process_msg: entry(g magref):

/% This groeedure will receive a mesaage in a measage group. If a process
is waiting for this message, it will be woken up, otherwise the message
will be “queued" %/

/% Get the name and location of the mess group %/

ng_name = extract_(p_magref, "mag.mg name");

eos = findwentity_loc(nﬁgef, "sys->message”, SYS REF, mg name,

message.name®);

/% Acknowledge receipt of the message by adding 1 to the number of messages
that have been gqueued in this message group %/

qd msgInumb = extraet_(mgref, “message.nunben,gd') + 1

call alter_ (mgref, "message.mumber_ qd™, qd_meg numb);

/% If no process has accepted the nessaﬁ? group, return %/

ir igger gd, mgref, “rav_proc->message

en do;
call write_list_("Message group", mg name, "has not been",
Waccepted. %ge gessagé is queuéd."?;

end;
/% Get the name and node of the process that can receive the message %/
call find_ownen_(accegt_pro?rer, "rcv_proc->message®, mgref);
accept_proc_name = extract accegt_procref, "srocess.name”);
call find_gwnen_(acc:g&,ndaq_tab eref, "accept_node->message"”, mgref):
accept_node_name = extract_(accept_node_tableref, "node_table.name®);
/% Keep the -easage.quaugd if the process is not waiting for it. Otherwise
wakeup the process. /
call find_owner_(ndm proc_ownerref, "node/dbo/mg~>process", accept_procref);
if ndm _proc_ownerref = mgref
then call write list_("No eyocess is wvaiting for the message,",
lse d "so it is queued"):
else do;
call remove_(accept_procref, "node/dbo/mg->process"):
call insert_(accept_ procref, 'goda/dbo/ng-)process", "first",
aceept_node_tableref H
rev msgtnum?»z extract_(mgref, "mesaage.number_rcvd") + 1;
r_(m

call a gref, "message.number rcvd", rev_msg _numb);
call write_list ("Process ", accegE_proq;gane " at Yode ",
accept_node_name, "has en aw eneé ugon' H
call write_ list (" receipt of s message in message group®,
mg_name) :
end:
return:
/4 PROCESS QBPL PASS 6/24/76 ®/

process_obpl_pass: entrz(p_obpl_passref);

/®* This procedure will allow a partially expanded QBPL to be "received" by a
node and then be expanded as much as possible within that node %/

/% Get the location of the OBPL entity that has been "passed" between nodes.
We need not check "eos" because we know the desired entity exists. #

call find_first_(obglref, "obpl_pass->obpl", _pbpl_passref‘ eo0s):

/% Get the name of the node receiving the control message. %/

rev_node_name = extract_(g obp assref, "obpl_pass.dest_node_name");

/% Remove the OBPL from this control message so that we can send the expanded
OBPL in another control message if necessary %/

call remove_(obplref, "obgl_pass-)obgl”):

/% Expand the OBPL as much as possible in the receiving node %/

ca%l exp_obpl(obplref, rcv_node_name):

return:

124

Appendix II Procedure RCV_CM

/% PROCESS RESOURCE GRANT 6/15/76 %/

process_res grant: entry(p res_grantref):

/% This procedure will wake up a process and give it access to a resource as
specified b{ the remote resource grant control message pointed to by
"p_res _grantref® 8/

/% Get the names of the process, resource and nodes involved #/

process_name = extract_(p_res_grantref, 'res_grant.groq_name");

proc_node_name = extract_(p_res_grantref, "res grant.proc_node_name");
bo_name = extract_(p_res_grantref, "req_grant.reqfname" H

dbo_node_name = extract g res_grantref, "res grant.res_node_name");

/% Find the locations of the entities for the process, resource and their node
tables within the node specified by "proc_node name". Note that we need
not test "eos" because we know the names placed in the control message
represent existing entities. #/

eos = find_entity_loc(proc_noderef, "sys->node", SYS_REF, proc_node_name,

¥node.name");

eos = find_entity_loc{(proc_tableref, "node->node_table", proc_noderef,

proclndah_n?no, ¥node_table.name");

os = find entity_loe(procref, "node->process", proc_tableref, process name,

e fi d' tity_1l £ £, "node-> " tableref

process. name®):
eos = findaentity_loc(dbo tableref, "node->node_table", proc_noderef,

bo, noquname Wnode_table.name"):
eos = findweggitx_ 2§(d60ref, "node->dbo", dbo_tableref, dbo_name,
.name¥):

/% Unblock the process #/
call remove_(procref, "node/dbo/mg->process");
call insert_(procref, "node/dbo/mg->process", "first", proc_tableref):
/% Give the process exclusive or shared access to the dbo, depending upon the
tyge of access that was requested. %/
ir extgacta(procref, "process.access type") = "exclusive"
en do; '
/% Grant the process exclusive control of the database object #/
call insert_(dboref, "process->dbo", "“first", procref);
call write_list_ (process_name, "at node", proc_node_name,

has been granted exclusive use of");
call write_list (" % dbo_name, "at node", dbo_node_name);
return;
end;
else

do;
/% Grant the process shared access to the database object #/
call dcl_dbo_sh_asmt(sh_asmtref):
call insert_{(sh_asmtref, "dbo->dbo_sh_asmt", "first",K dboref);
call insert_(sh asmtref, "process->dbo_sh_asmt", "first", procref):
call write_list_(process _name, "at node", groc_node_name,

%has been granted shared access o");
call write_list_ (" % dbo _name, "at node", dbo_node_name);
regurn: ' ,
end:

125

Appendix II Procedure RCV_CM

/% PROCESS RESOURCE RELEASE 6/15/76 %/

process_res_ rel: entr{ p_ rea_relref)

/% This procedure will release a resource from control by a remote process,
as specified in the resource release control message. If possible,
addi ional processes will be removed from the guene for thg database

gect and will be granted access to the databnse object

/% Get the names of the process, resource and nodes involved /

process name = extract_{(p req,relrof, ”rca,rel _proc_name"):

proc_node_name = ex?rac& Tb relref, "rag. rel.r _nane"):

ggg nage = extract t 1lre "req,rcl. ent_. ")

node_name = extrac ro relre. 1.desk node name
/% Find the locations o‘t t :‘:’:‘tiuos'fom 00888, resource and their

node tables wit égd by “, ", Note that we
do not test “eos hoonuan ad .in the resource release
control message sent existing entitieg /
eos = find'entity loce| ébp noderef, "sys->node", SYS_ REF, dbo_node_name,
name"
eos = fin entity loc! &bo tableref "node-)node »_table", dbo_noderef,
QIn Wnode wtab ble.name"
eos = findwcdfity (dﬁoref Wnode->dbo", dbo _tableref, dbo_name,
eos = find enhity_loc(proc tableref "node-)node table', dbo_noderef,
In Fnode tabie
eos = finq_ent ty_loc! procrer ‘hode* rocnsa' proe_tableref,

proc : s.name"
call write list,iabq_nane‘ at node", dﬁq_node _nanme, "has been released by");
call write_list process nane "at 5node
/% Check if the process had exclusiye onntrnl or the datal object "8y
if 1n:§rt {dboref, "proocess->dbo"

o:

/% Release the database object aad then grant at least one other

process access to the database object if any processes are
veued for it #
cal reuove (dborer‘ "process->dbo");

if emg node/dbo/mg~->process")
en oall rem_proc_from_gueue(dboref, dbo_tableref);
return;
end
else do

/* Release the database object from this shared assignment, and if
there are no other processes currently having shared access to
the database object we can grant another grocess access to the
database object if anz are queued for it

call find firs 1ntersec ion_(sh_gsmtref process-)dbq_sh_asmt"

procref, "dbo->dbo_sh ; asnt , dboref eos),

call delete entity (sh_asmtref h_asmt?

if member_coupt (Bore Babor3dbo. SR asace) 2’0

then if empt{ dboref "node/dbo/mg->process®)
then cal rem_proc from_queue(dboref, dbo tableref),
regurn;

end;

126

Appendix II Procedure RCV_CM

/% PROCESS RESOURCE REQUEST 6/15/76 %/

process_res_req: entry(p_res_reqref);

/% This procedure will process a request for a resource from a remote
grocess, as specified in the resource request control message. If

he resource can be assigned, it will be and a control message will
be generated to that effect. Otherwise the process will remain blocked
until the resource becomes available. %/

/% Get the names of the process, resource and nodes involved #/

process_name = extract_(prrea_reqref, "res_req.req_proc name");

proc_node_name = extract_(p_res rearef. "res_req.req_node_name®)
dbo_name = extract_(p_res_reqref, "res_req.dest_dbo_name");
dbo_node_name = extract (g res_reqref, "res_req.dest_node_name");

/% Find the locations of the entities for the process, resource and their
respective node tables within the node sgec fied by "dbo_node_name". If
the node is unaware of the existence of the process, create a local entity
for that process. e do not have to test eos because we know the entities
for the node tables and the resource exist because the names were placed
in the resource request control message

eos = find'entity_log dbo_noderef, "sys->node"”, SYS_REF, dbo_node_name,

node.name");
find_entity_loc dbo tableregi "node~>node_table®™, dbo_noderef,
e

-
L

eos =
bo_node_name, "node_table.name");
eos = rindwgggity;Iec(d6orer, %node->dbo", dbo_tableref, dbo_name,
.name®):
eos = find_entity loclproc tableref, "node->node_table", dbo_noderef,

c_node_name, "node_table.name"):

ro H

ir find_engit _loc(procref, "node->process", proc_tableref, process_name,

"process.name")

then do:

/% Create a "local" entity for the process, since one does not
already exist #/

call del_ procesas(procref, procesa_name);

call 1nsert_$procref, "node-)grocess", first"h proc_tableref);

call insert_(procref, "node/dbo/mg->process", "first¥®,

proc_tableref):

end; !
/% Determine what type of access is desired ¥/
access_tyge = extract_(p_res_reqref, "rea_reg.aecesq_type");
/% Check 1f the database object miﬁht be available for assignment #/
if inserted_(dboref, "process->dbo") ! empt*_(dboref, "node/dbo/mg->process")
then do: /%"Block the process if the database object has been
assigned to another process for exclusive use or
if other processes are currently queued for the
database object /
call alter_ (procref "Brocess.accesa_type“, access_type):
call remove_gprocref, node/dbo/mg->process"):
call insert_(procref, "node/dbo/mg-d>process", "last", dboref):
call write 1ist_("Resource not available, process remains blocked");
call initiate obpl(proc_node_name, process_name, dbo_node_name,
. dbo_name, "dbo"):
return;

end:
/® Check if the request is for shared access #/
if access_type = "shared"
then do; /#*Give the process shared access to the desired
database object *#
call del_dbo_sh_asmt(sh_asmtref):;
call insert_{sh_asmtref, "dbo->dbo_sh asmt™, "first", dboref);
call insert_(sh_asmtref, "process->dbo_sh_asmt", "first"™, procref):
call write_list_(process name, "at node", proc_node_name,
Wis granted shared access to"):
call write_list (" " dbo_name, "at node", dbo_node_name):
call del_rem res_grant(dbo_node_name, dbo_name, proc_node_name,
process_name, cont_msg numb):
call write_list_(™Control message number"‘ cont_msganumb,
Wsent from", dbo_node_name, "to", proc_node_name):
call write 1ist (" representing this allocation™):

127

Appendix II Procedure RCV_CM

return

/%The next if statement will be executed if the request is for
exclusive use of the database object #*/
/% Check if any process has shared access to the desired database object %/
if * empty_(dboref, "dbo->dbo_sh_asmt ")
then do: /%Queue the process for exclusive use of the database
object because at least one other process currently
has shared access to the database object. #/
call alter_(procref Rrocess.access type", "exclusive®):;
call remove ?procref node/dbo/mg->process");
call insert_(procref, "node/dbo/mg->process", "last", dboref);
call write Iist (*Resource is not currently available for®,
Wexclusive use, prooeaa , process_name) ;
call write list (» t node*, proc_node_name,
emains blocked“),
call initiate _obpl(proc_node_name, process_name, dbo_node_name,
dbo_name, "“dbo");
regurn-
end:
else do: /%Grant the process exclusive use of the desired
database object.
call insert_(dboref, "process—)dbo" "first", procref);
call write'Iist (process _name, "at node', proc_node name,
Wis granted exclusive use of"):
call write_list (" ® “dbo_name, "at node", dbo_node_name):
call del_rem res_grant(dbq_node name, dbo_name, proc_node_name,
process_name, cont msg_nums
call write_list (’Control message number"‘ cont_msg numb,
sent from" dbo_node name, "to proc node_nane)
call write list (" “representing this allocation®);
return:
e
end RCV_CM:

-
.

128

Appendix II

%
OBPL: procedure,

This procedure is a collection of subroutines which act on

an OBPL and check for deadlock.

The rollowingcgugsort routines are included:

R DEADLOCK
COPY OBPL
EXPAND OBPL
OBPL ADD RESOURCE

del eos

del first_procref

del message_numb

del m ref

del ndm_proc_ownerref
decl new_obplref

del obpl_proc_name
del obpl_proc node_name
del obpl_proc_node_tableref
del obpl_procref

del old_proc_entryref
del op_conre

del operator_name

del opref

del p_copyref

decl p_eos

del p_nd roc_ownerref
del p_obplref

del p_process_name
del p_proc_node_name
del p_rcv_node_name
del proc_entryref

del process_name

del proc_node_name
del procref

del proc_tableref

del rcv_noderef

del res_name

del res_node_name

del res_node_tableref
del resref

del res _type

del asnmtref

del wr te_list_
$ine1ude DDM_serv_routines;
%2include ADT primitives;

129

/

bit(1):

fixed bin(17):
fixed bin:
fixed bin(17);
fixed bin 172
fixe n{17);
char

char 12

fixed bing g;

fixed bini17 !
fixed bin(1

char
fixed bin(17)
entry options{variable):

Procedure OBPL

Appendix II Procedure OBPL

/t CHECK FOR DEADLOCK 6/25/76 %/
check_for_deadlock: entry(p_obplref, p_proc_node_name, p_process_name, D eos):
/% This procedure will check if the process specified by p_groeess ame
and located in the node specified by "g_proq_node_name" already has an
entry in the OBPL pointed to by "p_obplref". If no such entr{ exists
then one will be created and "p_eos" will be set to "1"b, indicating that
there is no deadlock. If an entr alread¥ exists for the process, we
have a deadlock and a message will be printed %1ving the processes
involved and "p_eos" will be set to "0"b indicating a deadlock has been
detected. #/
/% Get the location of the first proc_entry in the OBPL %/
call find_first_(proc_entryref, "obpl->proc_entry" g_pbglref p_eos):;
/% For each proq_entrz in the 6BPL, check 1F it maéc es the glven Brocess.
Note that if we detect a deadlock, we will return from inside the loop
and p_eos will be O If no deadlock is detected we will exit the loop
before returning and p_eos will be 1, as desired. #*/
do while ("p_eos):
/% If we have a match with "p_process name" and a proc_entry, we must
then check if the node name attribute matches "p_proc_node_name" #/
ir p_grocesa_name = extract_(proc_entryref, "proc_entry.process name")
hen if p_eroc_nodq_name = extract_{(proc_entryref,
proe_entry.node_name")
then do;
/% A deadlock has been detected, list all the processes
involved and return. %/
call write_list_("A deadlock has been detected."
WThe Following processes are involved:*);
eos = "0O"b;
do while (“eos): ‘
process_name = extract_(proq_entryrgf,
"nrog_entry.process name");
proc_node_name = extract_{proc_entryref,
"groq~gntry.node_name"):
call write list_(" ", process_name,
Wat node ", proc_node_name];
call finq_pri?n_(proq_entryref, "obpl->proc_entry",
eos);

end:
call write_list_(" End of deadlock list"):
return;
end;
/% Get the next proc_entry in the OBPL %/
call find_next_(proc_entryref, "obpl->proc_entry", p_eos):

end:

/% No deadlock has been detected, so create a new proc_entry and have it
inserted into the OBRPL #/

ca%l dcl_proc_entry(p_obplref, p_proc_node_name, p_process_name):

return:

130

Appendix II Procedure OBPL

/* b1 COPYtOB?L . bolref) 6/25/76 %/

copy_obpl: en p_copyref, p_obplref);:

/% This procedu;z will copi the OBPL pointed to by "p_obplref" and return
a pointer to the copy via "g_co yref". The order of the OBPL entries,
and their attribute values in the copy will be identical to those in
the original. #

/% Get the attribute values (resource information) from the OBPL entity
pointed to by "p_obplref". #/

res_name = extract_{p_obplref, "obpl.res_name");

res_node_name = extract_{p_obplref, "obpl.res ?ode_name");

res_type = extract_(g obplref, "obpl.res type"):

/% Create an OBPL entity with the above attribute values #/

call decl_obpl(p_copyref, res_node_name, res_name, res_type):

message_numd = extract_(p obplref, "obpl.msg_numﬁ"):

call alter_(p_copyref, "oERl.ms numb" message_numb);

/® Get the last entry in the OBPL poinéed to by "p_obplref" #/

call find_last_(old_proc_entryref, "obpl->proc_entry”, p_obplref, eos):

/% CogY each OBPL entry ¥/

do while (“eos):

/% Get the attribute values of the proc_entry pointed to by
"o0ld_proc_entryref" #/

process_name = ract_(olderoq_entr{ref, "proc_entry.process_name"):

proc_node_name = extract_(old_proc_entryref "groq_pn ry.node_name"):

/% Create a new proc_entry wi the above attribute values and
insert it into the new copy of the OBPL. #*/

call dec roc_entry(p_copyref, proc_node_name, process_name);

/% See iT there are any more proc_entries to be cogied "/

caél find_prior_(old_proc_entryref, "obpl-d>proc_entry", eos);

end:

return:

131

Appendix II Procedure OBPL

/* EXPAND OBPL 6/24/76 #/

exp_obpl: entry(p_obplref, p_rcv_node_name):

/% This procedure will expand the OBPL pointed to by "p_obplref". It will
be expanded as much as poxxible using the information available to the
node specified by "pIrov_node name"

/% Get the fully qualified name (resource name plus the name of the node
in which it resides) of the resource which is controlled bﬁ or being
waited for by the last Brocess to be added to the OBPL. (Note that we
add processes to the OBPL by inserting them at the beginning of the set #/

res_name = extract_(p_obplref, "obpl.reaIname");

res_node_name = extract_{p_obplref, "obpl.res_node name"):

/% Get the type of the resource ("message" or "dbo" or "op_msg") #/

res_type = extract_(p_obplref, "obpl.res_type");

if res_type = "message"

then do-

/% The resource t{ﬁe is a message, therefore we know the grocess
that can send e desired mesaage is in the node that 1is
exganding the OBPL., We will ac b

/® Get the location of the entity for the message group from which
a message is desired. We need not test "eos™ because we know
the entity exists, #

eos = find entity_loc(mgref, "gys->message", SYS REF, res_name,

Tmessage.name®):

/% Get the number (within the message group) of the message
that is desired. #/

message_numb = extract_(p_obplref, "ob l.msgﬁnumb");

/% If this number is less than or equal to e number of messages
sent in this message group, then there is no deadlock. */

if © (message_numb > extract_(mgrot, "message.number_sent®))

then return;

/% Find the process that can send the desired message %/

call find_owner_(procref, "send_proc->message", mgref):

/% Find out if the process is active. Ir it 13 active there
is no deadloc?. 8/

call find_pwnen_r?dm_proq_pwnerrer, "node/dbo/mg->process”

procref):

if entity_class_name_(ndm proc_ownerref) = "node_table"

then return;

/% Get the process name and check for deadlock %/

process_name = extract_(procref, "process.name");

call check_fog_deadloéﬁ __obplref, res_node _name, process name,

eos);

{; %; eog = 0 then a deadlock has been detected and we are done %/

eos
then return:

/% Add the resource that the process is waiting for to the OBPL #/

call obpl_add_resource(p_obplref, ndm proc_ownerref,
p_rcv_node_name, eos):

/% If eos = 1 then the resource the process is waiting for is in
the same node as the process, so we can continue to expand
the OBRPL. #/

if eos

then call exp_obpl(p_obplref, p_rev_node name):

return:

ir ¢ end:" n

res_type = "“op_msag

then do: P

accordingly.

/% The resource type is an operator message, therefore we know
the last process to be added to the OBPL is waiti for a
message from an operator at the same node. We will act
acecor in§ly. *

/% Get the location of the entity for the operator connection
over which a message is desired ¥/

eos = find_entity_loc{op_conref, "sys->op con", SYS_REF,

res_name, "op_con.name"):

/% Get the location and name of the operator who can send the
desired message %/

132

Appendix II Procedure OBPL

call find_ownen~(ogref "operator->op_con", op_conref);
ogeraton_name = ex raci_(oprer, "operator.name®):
/% Check if the operator is already in the OBPL list %/
call cheok_ron_deadlock(p_obglrer, res node_name, ,
operator_name, eo0s);
{; %(eo? = 0 then a deadlock has been detected and we are done */
eos
then return:
/% Queue the OBPL and request status information from the
operator
call insert_(p obglret “ogerator->obpl", "first", opref);
call write _Iist ("An OéPL as been queued waiti?g for a status",
Wpeport from operator", operator_name);
call write 1ist (" at node", res_node_name,
. ¥The Involved operator connection is", res name):
return:

end;

/% If the next section is executed, a database object is controlled by or
is being waited for b{ the last process to be added to the OBPL */

/% Get the name and location of the last process to be added to the OBPL %/

call find_first_ obgl_procref Yobpl->proc_entry", p_obplref, eos):

obpl_proc_name = extract_(ob irprocref, "proc_entry.process_name" ;
obpl_proc_node_name = extract_{obpl procref, "proc_entry.node_name"):

/% Get the entIty locations for the database o gect and its node tabie, and
the process and its node table within the node specified by
"p_rcv_node_name®. We need not test "eos"™ in most cases because we
know the entities exist

eos = find'entity_loc rev_noderef, "sys->node", SYS REF, p_rcv_node_name,

node.name")

eos = find _entity_loc obgl proc_node_tableref, "node->node_table",
rev_noderef, obpl_proc_node_name, "node_table.name"):

eos = find_entity_loc(res node_tableref, "node->node_table", rcv_noderef,
res_node na?e ¥node_table.name");

eos = find_entity_loc(obpl_procref, "node->process", obpl_proc_node_tableref,

1

obpl_proc_name, ‘grocess.name");
/% Ve must test "eos" to see if the node containing the resource is aware

of the existence of the most recentli inserted process in the OBPL. If
ir it is not, we have no deadlock at this time, so we can return #

eos

then return:
eos = find_entity_loc(resref, "node->dbo", res_node_tableref,
res_name, "dbo.name");

/* Check if the resource is in the node that is expanding the OBPL #/
if res node_name = p_rcv_node_name
then do:

/®* Verify that the process specified by "obpl_proc_name" is still
waiting for the resource specified by "res name® #

call find_owner_(nd roc_ownerref, "node/dbo/mg-d>process",

obpl_procref);

if resref "= ndm_proc_ownerref

then return:

/% We must now add an entry to the OBPL for the process
that controls the resource specified by "res_name",
grovided that the process is not already in the

BPL. If there are n processes that have shared
access to the database object, then we must create
n copies of the OBPL and use a different copy
for each reader %/
if inserted_(resref, "process->dbo")
then do:
/% The database object is held for exclusive
use, Find the controlling process and
check for deadlock. %/
call find_owner_(prooref, "process->dbo",
resref);
process_name = extraet_(grocref, "process.name"):
call find_owner_(proc_tableref, "node->process",

133

Apvendix II Procedure OBPL

procref):
proc_node_hame = extraot_(egoq_tableref,
"node_table.name"):
call find_owner (nd?_proq_ownerref,
"node/dbo mg->groeeaa’ procref);
/% If the process is active and {t 1s at the
same node as the resource, then we have
no deadlock. %/
if entity_class _name (ndm_groq_ownerref)
= "node_table" proc_node_name
= res_node_name
then return:
call check _for_deadlock(p_obplref,
proc_node_name, Yrocesa_name, eos);
/% If eos = 0, than a deadlock has been
detected and we are done #/
if (“eos)
then return;
if proc_node_name = res node_nanme
then do:

/% The process is in the same node as
the database object, so we can
continue to expand the OBPL #/

/% Add to the QBPL the resource that the process
is waiting for &/

call obpl_add_resource(p_obplref,

ndm_proc_ownerref,
p_rev_node_name, eos);

/% If eos = 1, then the resource that was added
to the OBPL is in the same node as the
process that is waitinE for it, so we can
further expand the OBPL #/

if eos

then call exp_obpl(p _obplref,
p_rey_node_name):

return:

end:

do:

/% Send the OBPL to the node specified
by "Eroq_node;name” */

call decl_obpl _cont_msg(p_obplref,

else

proc_node_name, p_rcv_node name);
return;
end;

end;

/% If the following code is executed, the database object
has n readers. We need to make n-1 additional copiles
of the OBPL. Each time we make a cog¥ of the OBPL,
we expand that copy as much as possible for the given
ggge and the process that we are associating with

s copy

/% Find a process that has shared access to the
database object #/

call find_first_(sh_asmtref, "dbo->dbo_sh_asmt",

resref, eos);

call find_pwnen_(first_procref, "process-~>dbo_sh_asmt",

sh_asmtref);

/% We will check for deadlock involvi the OBPL and the
process pointed to by "first_procref" after we check
for deadlock with all the other readers of the
database object. We will teherefore use the "original™
OBPL (rather than a copy) for this check #/

call find_pext_(sh_asmtref, "dbo->dbo_sh_asmt", eos):

do while { eos):

/% Find the process that has the shared access
represented by the dbo_sh asmt entity pointed
to by "sh_asmtref" #/°

134

Appendix II Procedure OBPL

call find_owner_(procref, "process->dbo_sh asmt",

sh_asmtref):

process name = extract_(procref, "process.name");

/% Get the name of the node in which the process
resides %/

call find_ownen_(groq_tableref, "node->process"”,

procref);

proc_node_name = extract_(groc,tableref,

"node_table.name"):

/% If the process is not active or if it is at a node
different from the node in which the resource
resides, then we must check for deadlock. #/

call find_owner_(ndm proc_ownerref,

"node/dbo m%->process", procref);
if entity glass name_ ndm_Proq_ownerref)
.= "node_table" |} (proc_node_name
= res_node__namej
then do;
/'lgopy thebog?L andbcgec¥ for geidlggk &/
call copy_obpl(new_obplref, p_obplref):
call check_for_deadlock(new_obplref,
proc_node_name, process_name, eos):
/% 1f eos = 1 then we must either continue
to expand the list or send it to
another node %/
if eos
then if proc_node_name = res_node_name
then do;

/% Add to the OBPL the resource that
the process is waiting for %/

call obpl_add_resource(

new_obplref,
ndm_proc_ownerref,
p_rcv_node_name, eos):

/% If eos = 1, then the resource that
was added to the OBPL is in the
same node as the process that is
waiting for it, so we can further
expand the OBPL #/

if eos

then call exp_obpl(
new_obplref,
p_recv_node_name):

end;
else call del_obpl cont_msg(
new_obplref,
proc_node_name,
q p_rcv_node_name);
end;

/% See if there are any more readers of the database

ob%ect specified by "res_name" #/

call find_next_(sh_asmtref, "dbo->dbo_sh_asmt", eos);

end:
/% Find the process name and the node in which it resides
for the process pointed to by "first_procref" #/
process_name = extract_(first procref, "process.name"):
call find_owner_(proc_tableref, "node->process",
first_procref):
proc_node_name = extract_(proc_tableref, "node_table.name"):
/® If the process is at the same node as the resource and
it is active, we need not check for deadlock. %/
call find_owner_{(ndm proc_ownerref, "node/dbo/mg->process",
firast_procref):
if entity_class name_{ndm_proc_ownerref) = "node_table"
roc_node_name = res_node_name
then return:
/% Check for deadlock and then expand the OBPL or send

135

Appendix II Procedure OBPL

it to another node #*/
call check_for_deadlock(p obplref, proc_node_ name,
process_name, €08):
if eos
then if proc_node_name = res_node_name
then do;
call obpl_add_resource(p_obplref,
ndm_proc_ownerref, p_rcv_node_name,
eos):
if eos
then call exp_obpl{p_obplref,
q p_rocv_node_name);
end;
else call del_obpl_cont_msg(p _obplref,
proc_node_name, p_rcv_node_name):
regurn:
end:
/® The next section of code will be executed if the resource is located
in a node different from the one that is exgandins the list %/
/% First check if the process is active. If it is aetive* we are done %/
call find_owner_(ndm_proc_ownerref, "node/dbo/mg->process®, obpl_procref):
if entity_class name_(ndm proc_ownerref) = "node_table"
then return:
/% Verify that the process specified bx "obpl_proc_name"™ still controls
the resource specified by "res_name® #/
/% See if the process had either exclusive or shared access to
the database ob‘ect specified by "res name®, If it has neither,
we can return. %/
ir (empty_interaection.(ob%l_procref, "process->dbo", res_node_tableref,
"node->dbo") 7 & empty intersection_(obpl_procref,
"process->dbo_sh_asmt" resref, "dbo->dbo_sh_asmt"))
then return:
/% Add to the OBPL the resource that the process is waiting for %/
call obpl_add_resource(p_obplref, ndm_proc_ownerref, p_rcv_node_name, €o0s):
/% If eos = 1, then the resource that was added to the OBPL is In the same
node as the process that is waiting for it, so we c¢an further expand
the OBPL #/
if eos
then call exp_obpl(p_obplref, p_rcv_node_name):
return:

136

Appendix II Procedure OBPL

/® OBPL ADD RESQOURCE 6/24/76 %/
obpl_add_resource: entry(p_obplref, p_ndm proc_ownerref, p_rcv_node_name,

p_eos);

/% This grocedure will be passed a pointer to a resource that the most
recently inserted process in an OBPL is waiting for. The procedure will
determine the type of resource that "p_ndm proc_ownerref" points to, and
will insert information about this resource into the OBPL entity pointed
to by "p_obplref", If the resource is in the node specified b{
"p_rcv_node_name", then p_eos will be set to 1, otherwise it wlll be set
to 0 and the OBPL will be sent to the node that contains the resource #/

if en%%ty_glasa_namq_(p_ndm_proc_pwnerref) = "dbo"

en do;

/% Get the database object name and get the name of the node in
which it resides %/

res_name = extra?t_(p_ndm_groq_pwnerref, "dbo.name");

call find_owner_(res_node_tableref, "node->dbo",

p_ndm_proc_ownerref);

res_node_name = extract_(res node_tableref, "node_table.name");

caé alter_(p_obplref, Wobpl.res_type", "dﬁo");

end;

ir en%%ty_ﬁlass_name_(p_ndm_proq_pwnerrer) = "message"
en do;

/% Get the message groug name and the name of the node from
which a message should be coming #

res_name = extract_(p_ndm_groq_ownerref "message.name");

call find_owner_(res_node_tableref, "init_node- message”,

_ndm_proc_ownerref);

reanode name = extract_(res_node_tableref, "node_table.name");

/% Get the number of the message (within the message group) that
is desired and insert this into the OBPL %/

message _numb = extract_(p_ndm proc_ownerref, “message.number_qd”)+1;

call alter_(p_obplref, "obpl.msg numb", message numb);

call alter_(p obplref, "obpl.res_type", "message");

end;
if ent%ty_glasa_name_(p_ndm_proq_pwnerref) = "op_con"
en do;
/% Get the name of the operator connection over which a message
from an operator is desired %/
res_name = extract_(p_ndm proc_ownerref, "op_con.name");
/% The resource (operator connection) is located entireiy in
one node, so the resource_node_name is the same as that of
the node processing the OBPL #/
res_node name = p_rcv_node_name;
cagI alter_(p_obpIref, "obpl.res_type", "op_msg");
end;
/% Put the resource name and its node name into the OBPL %/
call alter_(p_obplref, "obpl.res_name", res_name);
call alter g obplref, "obpl.res node_name", res_node_name);
/% Check if the node can continue to expand the OBPL or if it must send the
OBPL to another node %/
if res_node_name = p_rcv_node_name
then p_eos = "1¥%b:
p_eos = "0"b:
call decl_obpl_cont_msg(p_obplref, res_node_name, p_rcv_node_name);

return:
end OBPL:

137

Appendix II Procedure REL

’.
REL: procedure:
® This procedure contains subroutines which allow processes
to release resources and then assigns the released resource to a new
process if possible. The following user visible function is included:
RELEASE DATABASE OBJECT

The followigﬁosup rt routine is included:
REMOVE

ROCESS FROM QUEUE

del cont_msg_numb fixed bin;

del dbo_name chari12 :

del dbo_node_name char(12);

del dboref fixed b n217;;
del dbo_tableref . fix?d bin(17);
del eos bit(1):

del ndm_proc_ownerref fixed bin§17g;
del ownerref fixed bin(17):
del p_dbo_name eharé';;

del p_dbo_node_name char(®):

del p_dboref fixed bin(17);
del p_dbo_tableref fixed bin(17);
del pnoderef fixed bin(17);
del p_process_name char(®);

del p_proc_node name char(®):

del process_name char(12);

del proc_node_name char(12);

decl procref fixed bin(17);
del ptableref fixed bin(17)};
del res_rel_ref fixed b%n 17);
del sec_node_name char(12);

del sh_asmtref fixed bin 17;;
del tableref fixed bin(17);
del temg_name char(12);

del write_list entry options(variable);

finclude DDM_serv_routines;
finclude ADT primitives:

®/

138

Appendix II Procedure REL

/% RELEASE DATABASE OBJECT - 6/2/76 %/
release dbO'dbrldbo s entry(p_proc_node_name, p_process_name, p_dbo_node_name,
O_name

/% This rocedure will cause the Yrocess specified by "p Eﬁrocess name" (at
node i_proc node name") to release its control over e database object
speeif ed by "p_ bo name" and located at the node specified by

bo_node_name" ¥7

/% Verif " that the node specified by "pwproc node_name" exists #*/

if find entity loc(pnoderef "sys->node®, SYS_REF, p_proc_node_name,

"node.name"
then do;
call write list_("Invalid grocess node name. ", p_proc_node_name,
. Wdoes not exist");
re urn;

/® Verify thaé the process specified by Pp_process_name" exists at the node
specified b{ roc_node_name" %/
eos = find_entity_JYoc(ptableref, "node->node_table", pnoderef,
grgroc _node_name, "node_table.name¥):
if find_entity_loc procref "node'>process", pﬁableref p_process name,
"process.name")
then do;
call write _1ist_("Invalid process name." g'grocess_name, "at node",
t p_proc_node_name, "does not exis
re urn;

/% Verify thaé the node specified by "p_dbo_node_name" exists #/
if find entitg _loe(dbo_tableref, "node->node_table", pnoderef,
th o_node_name, "node_table.name"
en do;
cal1 write_list ("Invalid database object node name. ",
p_dbo_node_name, "does not exist."
regurn'
end;
/% Verify that the database obJect seeeified by "p_dbo_name®™ exists at the
node specified by "p_dbo_node_name and that the process specified by
_grocess _name™ has access to it.
VA | fy that the node containing the process is aware of the existence of
the database object ®
if figg engity loc{dboref, "node->dbo", dbo_tableref, p_dbo_name, "dbo.name™)
en do;
call write list_("Invalid release. Process", process_name,
Wat node", p_proc_node_name, "does no? have®
call write_list_(" access to", p_dbo_name, "at node“
p_dbo_node_name) ;
regurn'
end;
/% Verify that the process has access to the database object #/
if find entity_loc dboref, "process->dbo" i procref g dbo _name "dbo.name")
dggpggsintersection_ procref, process-id o_sh_asmt®, dboref,
->dbo

cail write_list_("Invalid release. Process", p_process_name,
Wat node", p_proc_node_name, "does not have");

call write_list_ (" access to", p_dbo_name, "at node"
p_dbo_node_name)

_sh_asmt"
then d

regurn:
end;
/% Verify that t?e process 1is active #/
call find owner_(ndm_proc_ownerref, "node/dbo/mg-> rocess", procref);
if en%%ty _class name_(ndm_proc_t ownerref) = "node able"”
en do;

il write_list ("Invalid release. Process " p_grocess_name,
Wat node", p_proc_node_name, "is not ive");
regurn;
end;
/% Check if the database object is at a node different from the one that

139

Appendix I Procedure REL

contains the procgss %/
if p_groc_node_name = p_dbo_node_name
hen do:

/® Release the resource and send a resource release control message
to the node which contains the database object */

/® Check 1if there are no more "local" processes queued for the
specified remote database object #/

if emggy_(gboref, "node/dbo/mg->process™)

en do;

/% If the process had exclusive control of the database
object or if no other local process had shared access
to the database object, then we can delete all local
information about the remote database object
otherwise just "release" the shared access of the
Erocess to the database object %/

if inserted_(dboref, "process->dbo")

i member_count_(dboref, "dbo->dbo_sh_asmt") < 2
then call delete_entity_(dboref, "dbo");

else do;
/% Find the entitx for the involved dbo_sh_asmt
and delete it %/
call find_first_intersection_(sh_asmtref
"process~>dbo_sh_asmt", procref
"dbo=>dbo_sh_asmt", dboref, eos);
caél delete_entity (sh_asmtref, "dbo_sh_asmt");
end;
end;
else do;

/® Release the database obiect from access b{ the process,
but retain other local information about the remote
database object %/

if inserted_(dboref, "process->dbo")

tgen gall remove_{(dboref, "process->dbo");
else do;
call find_first_intersection_(sh_asmtref
"process->dbo_sh_asmt", procref
"dbo~>dbo_sh_asmt"™, dboref, eos);
caclll delete_entity_(sh_asmtref, "dbo_sh_asmt");
end;

end;
/% Create an entity for a remote resource release and the declare it
as a control message
call create_entitﬁ_(res_rel_ref, "res rel");
call createfattri ute_(res_rel_ref, 'rea_rei.rel_pnode_name",
"field ?_proc_pode name) ;

12
call create_attribute_(res rel_ref, "res_rel.rel_proc_name",
"field", 12, p_process_name);
call create attriﬁutq_(res rel_ref, "res_rel.dest_node name"™,
"field", 12, p_dbo_node_name);
call create attr;ﬁutq_(res rel_ref, "res_rel.dest_dbo_name",
"field™, 12, p_dbo_name);
call decl_control_message(res rel_ref, "res_rel"h cont_msg numb);
call insert_(res_rel ref, "sys->control _message®, "last¥, SYS.ﬁEF);
call write Yist "Control message number"‘ cont_msg numb,
Wsent from", p_proc_node_name, "to", p_dbo_node_name);
ca%l write_list (" representing a remote resource release");
return;

end:

/% The next section will be executed if the process and database object are
located in the same node %/
/% Check if the process had exclusive control of the database object %*/
if inggrteg_(dboref, "process->dbo™")
en do;
/%* Release the database object and then grant at least one other
process access to the database object if any processes are
ueued for it.
call remove_(dboref, "process->dbo");

140

Appendix II _ Procedure REL

call writq list_("Proeeaa“ rocess name "at node"
_pane, REP voie database”
call write aﬁ, . JObJect . p dbq_name, "at node"

ir * ty %Eboref, gnode dﬁo/ng ocess®)

en call rem proc_f rom_guaugidboref dbo_tableref);
regurn
enda;

/8 Release the database object from this shared assignment, and if
there are no other processes eunﬁon&l;~h:v1n¢ shared access to
the databasecggjtgt we can gr grne.as access to the

else

call delets y {sh_asat
call write - roeoas » B

eb~ c; l;dhqapilo, Nat node"

call write S '
-p_abo node_ :
if member_cou dbe% g sat®) = 0
then {f ’t' I ggovo ”nod 6%35 «>process”)
then oal rcq_proc_rron_qutu borer, dbo, . tableref):
return:
end;
/% REHOVE PROCESS F QUEUE ? L4
rengroc queus: dborot p_dbo.tableref,
ure will grant at lea ﬁaaoeoss access to the database
objec that is referenced by "p_ bore? Shnd is loca in the node that
has its own node_table referenced by "p_dbo_tableref®). If the first

process on the Mants exem.tn use of the umae object, then
only this eoo 8 ¥ e -granted -acoess to the dho, othervwis
: uested sbar “,,; , ':MQM are’ in front ?nx the

' processes B
queue) of (11 -uf;,l;;w ste isekhu&?e use will be given
/e Bong the’ ‘r": g . am object 8/
cgléhrigd t};;: % ?oore ;;nﬁﬁ ral e g boref, egg)ét .
ec ncaa& clusiv e obje
ir exggact (procr yr "Drocess . stoess_ o pe’&'s *Cxcluaive'
en do:

/% Unblock the process */ e (
call find_owner_(ownerref, "node->process"”, groorer),
call remove. (procref, ‘noao/gbollg-kproenag
0311 insert_(proordf, "node/dbo/ , Ty
/ Gifn 8. prooess: exclusive o the' resourca ‘s
call insert_{p_t dborcf’ 'proooa > » prooref i
/% Get the pames of dbo~cnd nod-a involved #/
dbo_name = extraost (p db? ‘
dbo_node_name = extract_(p_ dﬁo tablorcr node ?able name");
proces alo = extraot_{procref, procsss name"
proe ame = extract_(ownerref, "node_table.name®);
/® Cﬁbck f the prooesa Enin%ng access to the database obJect is in
the same node as
ir prgg noge _name = dbq_nodq_nane
en do;
call writq_list ('Proeess"‘ process_name, "at node"
En?dq_nlne, is given excluaive use of'
call writ is , dbo_name, "at node",
_node_name) ;

"first®, ownerref);

return;
end:

else d
8 Create a control message for a remote resourc
141

Appendix II Procedure REL

else

return:
end REL:

allocation and send it across nodes. #/
call del_rem res_grant(dbo_node name, dbo_name,
proc_node_name, process name, cont_msg numb);
call write_list_("Control message number"‘ cont_msg_numb,
Wsent rgom", d?q_nodq_name, "to",
proc_node_name);
call write_list_(" granting", grocesa_name,
L exclusive use of", dbo_name);
return;
end;
end; R
do while (“eos);
/% The first process on the queue requested shared access %/
/% Unblock the process %/
call find_owner_(ownerref, "node->process", grocref);
call remove_(procref, "node/dbo/mg->process®);
call insert_(procref, "node/dbo/mg->process®™, "first", ownerref);
/% Give the process shared access to the database object #/
call del_dbo_sh_asmt(sh_asmtref);
call insert_ (sh_asmtref, "dbo->dbo sh_asmt®, "first", g dboref);
call insert_(sh_asmtref, "process->dbo_sh_asmt", "firs ‘; procref);
/% Get the names of the process, dbo and nodes {nvolved #/
dbo_name = extract_{p_dboref "ébo.nane”)a
dbo_node_name = extract (p_dﬁo tableref, "node_table.name");
process_name = extract_(procref, "process.name¥);
proc_node_name = extract_(ownerref, "node_table.name");
/% Check If the process gaining access to the database object is in
the same node as the dbo #*/
if proc_node_name = dbo_node_name
then do;
cail write_list_("?rocess"& process_name, "at node",
proc_node_name, "is granted shared access to");
call write %135;é") " dbo_name, "at node",
o_node_name) ;
end;
else do;
/% Create a control message for a remote resource
allocation and send it across nodes.
call del_rem_res_ grant(dbo_node_name, dbo_name,
proec n? e_name, process_name, cont_msg numb);
call write_list_ "Control message number"* cont_msg numb,
Fsent fgom", d?q_node_nane, ntot,
proc_node_name);
call write list (" anting", grooesa_name,
Wshared access to", dbo_name);

end;
/* Find what is now the first process queued for the database

object

call gind_rirst_(procref, "node/dbo/mg->process", p _dboref, eos);

/% If this process wants exclusive control of the database object it
must remain blocked and we will not remove any more processes
from the queue %/

if extract_(procref

d then eos = "1"5;
end;

"process.access_type") = "exclusive"

142

Appendix II DDM_serv_routines

/% DDM_sery_routines.inecl,pli
The following declarations are of the DDM servioce routines 8/
del ochecik_for_deadlock entry(fixed biz‘ ;), pShar rs;2)
/% Located within Proced re 0 '
del del_dbo fixod b}n(17). char(12));
/% Located within Proczx? :
del del_ fixed B*h(17)),
Looatcd within Proo
del dol_pontrol_peaa:go entry(fixe bin(lln’ char(20),
decl del_node_! /;.Lacthod vithin P:gg:g?r.xcd ::n(17) char(12));
(o] [’
{.o0ated within P
del dcl_pbpl ~ entry(fixed bin(1;). char(1§)
' /% Loosted within Procod?ro DDM
del dcl_obpl_cont_meg entry(fixed di (1;3 char(12),
/% Looated within Procod?r
del del_proo, entry ent tixod bin‘l;). char(12),
/* Loontid'within Procedyre DDN /
del dcl_proeess/. within P f!x;ﬂ‘b%n(TT?, char(12));
Loaatad n rogzzwre
del dcl_proc_torg, entry(char 12 char('), char(12));
/7 'Locatcd.uithin Procedyre R
del dcl_rem_res great ~ entry char(1 ghar(na gh:§(12)
- /* Looated within Procedure DDM -
del find_entity_. loc : entry(fixegigin(17)(‘72ar§g2;(12
char L] g returns (bitzi));
del exp_obpl /% Located '1thin‘P::§.d?§:xdg“u1 17), char(12));
(4] ’
/% Located uithin Procsz?rb O 95 ’
del initiate_obpl entry

cn§331°9"(.nr(7 ’r(12)’
/% Located within P

del obpl_add_resource . entry ! fixed bizszzl, ri?o?)bin(11),
/% Located within-P

del run_proq_rro’_an.ao ent ! fixed h%n(17). fixed bin(17));
de1 rlgbo | Cosated within Fe °m°:5'l'om'¥), gnar(®), char(®)
h.;<39!, ’

/® Located within Procedure REL #/

143

Appendix II ADT _primitives
/%75-12-29 ADT primitives.incl.pl?
These are ADT primitives designed to assist the fu ct on definit gn writer %/
del add_ entry(char(128), char(12
returns(char(128) varling),
del alter_ entry(fixed bin(17), char(44
del append_ entry?fixed bin(17), char(20),
har(6 xed bin(17))
del break__ entry?fixed Sin 17
del create_attribute_ entry(fixed bin(17 char(lh)
char g fixed bin(1T)
del create_catalog_object__ entry fixed bin 17), char(®)):
del create_entity_ entry(fixed bin{(17), char 20 2'
del create_group_ entry(fixed bin 17 char(yy
del create_order_ entry fixegobin 17), char(20
del create_relationship_ entry(gix d bin(17) char(20),
del deleted_ entry(fixed bin(17)) returnaSbit(l)),
decl delete_entity_ entry(fixed b% 17),
del divide_ entry(char(1), 5?
returns(c 12 r51n§)
del empty__ entry(ftxed ?12€21§)
1
del empty_intersection_ entr rixed bin(1 char(20
y} ixed bin(1z; ’ehar(20))’
returns(bit 12;,
del entity_class_name_ entry(fixed bin(11
returns(char(20));
del entity_order_name_ entry(fixed bin(17; char(20))
returns(bit(1)};
del exception_ entry
del extract_ entry(fixed bin(1z) har(uu))
returns(char(128) rging :
del find_associatively_ entry(fixed bin(1;), char ;
fgxe?nﬁ%n(gzt(1§?ar(128 varying,
del find_catalog_object_ entry(fixed bin(17 ’ chari' ;;
del find_direct_ entry(fixed bin(17), char(®));
del find_each_ entry(fixed bin(17), bit(1));
del find_first_ entry(fixed bi %z ,bgh?rg 0},
ixe
del find_first_intersection_ entry(fixed bin(1 , char(zb),
fixed bin(17), char(20),
ixed bin 27 bit(1z)‘
del find_first_union_ entry(fixed bin(17}, char{20),
fixed bini1; , char(0),
ixed bin(1 bit(1
del find_last_ entry fixed bi s;; ch?r ;
del find_next_ entry(fixed bin(17$ char(20
del find_next_intersection_ entry(fix d 6in(17z ghar(ZO)
char(20), bit(1)
del find_next_union_ entry(fixed b{n(1), char(20)
ixed bin§17 char
fixed bin(17), bit(12%
del find_owner_ entry(fixed bin(1z , char 6
fixed bin(17));
del find_prior_ entryé£%¥?g)bin(17 , char(20),
del insert_ entry(fixed bin(17), char(20),
char(6), fixed bin(1
del inserted_ entry(fixed bin(17§ char 20)
returns(bit(1)};

Appendix II ADT_primitives

del last_of_set_ entry(fixed bin(17 char(zo))
returns(bit(1

del member_ entry(fixed bin(17 char(ZO))
returns(bit(1 5

del member_count__ entry(fixed bin(17 char(ZO))
returns(fixed bin(17))

del name_catalog object_ entry(fixed bin(1¥3
returns(char(44) va ing),

del multiply_ entry(char(128), char(1
returns(char(128) var¥1n§)

del owner_ entry(fixed bin(17 ehar(0
returns(bit(1

del remove entrysfixed bin§17 , chariZO;);

del sort_relationship_ entry gix%gogin 17), char(20
char

del subtract_ entry(char(128), char§128))
returns(char(128

ing);
/% The following are global reference variables used by modellersrx 8)
del chanEemode fixed bin(17) external static;

del fixed bin(17) external static init(0);
del CN_REF fixed bin(17) external static init(0);
del PROC_REF fixed bin{(17) external statiec init(0):
del PSPH_REF fixed bin 17 external static init(0);
del PSSG_REF fixed bin(1 external static init(0);
del return_code fixed binar external static init(0);
del SYS_REF fixed bin(17) external static init(0};
del tracemode bit(1) external static init(™0"b);

145

Appendix III

This appendix contains examples of several deadlock and "near deadlock”
situations, thus demonstrating various features of the deadlock detection al-
gorithm presented in Chapter VI. In the case where a deadlock is detected, a
final state diagram is given, whereas in the examples where no deadlock is
detected, an important intermediate state is also shown. A key to the
diagrams appears on the next page. Diagrams appear on a page with a header
containing the name(s) of the associated scenario(s). Each diagram immedi-
ately follows the first scenario with whieh it is associated.

It should be noted that before the commands specific to each example were
executed, after the system state was reinitialized, the commands in file

"demoO" were executed.

146

Appendix III

®
>

(3 dbok
access_type

city

Key for State Diagrams of Demonstration Scenarios

Represents process "pi" as the initiator of message

group "mgj". @ and are always in the same
node for this representation.

Represents process '"pi" as the acceptor of message
group "mgj" and "pi" is currently waiting for a mes-

sage in "mgj". @ and ‘ﬂL need not be in the
same node for this representation.

Represents process "pk" waiting for a message from

operator "opi" over operator connection "conj".

Represents operator "opi" waiting for a message from

process "pk" over operator connection "conj".

Represents process "pi" as having access to database
object "dbok". The type of access is specified by

"access_type". @ and need not be in the

same node.

Represents process "pi" as waiting for access to
database object "dbok". The type of access desired

is specified by "access_type". @ and need

not be in the same node.

Represents a node with the node name specified by
noity", @ and drawn "within® this node
represent processes and database objects located
within the node specified by "city". drawn
"within" the node represents a message group that was
initiated by a process located in the node specified
by "eity".

147

Appendix III

scenario demo0
sysgen

System created
cnode Boston

Node created: Boston
cnode Phoenix
Node created: Phoenix

cproc Boston pl

Process pl created in node Boston
eproc Boston p2

Process p2 created in node Boston
cproc Boston pg

Process created in node Boston

cdbo Boston dbot
Database object dbot

cdbo Boston dbo2
dbo2

Database obJe?t
p? created in node

created in node

created in node
cproec Phoenix

Procggs N Phoenix
cproc oenix
Procg:s $ pB created in node Phoenix
cproc Phoenix

Process pg created in node Phoenix
cdbo Phoenix d

Database ob ect dbo1
cdbo Phoenix dbo2

created in node

Database object dbo?2 created in node
cnode Cambridge
Node create Cambridge

cproc Cambridge p1

Process p1 created in node Cambridge
eproc Cambridge p2

Process p2 created in node Cambridge
cproc Cambridge p3

Process p3 created in node Cambridge

cdbo Cambridg
Database o Ject dbo1
cdbo Cambridge dbo2
Database object bo2

created in node

created in node

148

scenario demo0

Boston

Boston

Phoenix
Phoenix

Cambridge
Cambridge

Appendix III scenario demo_bug

scenario demo_bug

note This is an example of a case where a deadlock involvin% two
note processes and two resources located in two nodes 1s detected,
note when in fact no deadlock exists. The reason a deadlock is

note detected is that an OBPL sent from Boston to Phoenix had its
note arrival delayed long enough so that p1 in Phoenix could release
note dbo1 in Boston reguest access to it again, gain use of the
note database obJeeé and then request access to and Eet ueued for
note dbo1 in Phoenix before Phoenix examined the OBPL. he first
note seven commands set up the state where pt in Phoenix has exclusive
note use of dbo1 in Boston, pl1 in Boston has shared use of dbo1 in
note Phoenix, p1 in Boston is blocked waiting for shared use of dbo?
note in Boston, and an OBPL has been sent to Phoenix by Boston.

rqdbo shared Boston pl1 Phoenix dbo1
Process 21 at node Boston 1s blocked while a request is sent to
he node containing the desired resource
Control message number 1 sent from Boston to Phoenix
: representing a remote resource request
revenm
Control message number 1 representing a remote resource request
has been received

p1 at node Boston is granted shared access to
at node Phoenix
Control message number 2 sent from Phoenix to Boston

5 representing this allocation
rcvem
Control message number 2 representing a remote resource allocation
has been received
p1 at node Boston has been granted shared access to
dbo1 at node Phoenix
rqdbo exclusive Phoenix 81 Boston dbo1l
Process gl at node hoenix is blocked while a request is sent to
he node containing the desired resource
Control message number 3 sent from Phoenix to Boston
representing a remote resource request

rcvem 3
Control measage number 3 representing a remote resource request
has been received
p1 at node Phoenix is granted exclusive use of
d at node Boston
Control message number U sent from Boston to Phoenix -

4 representing this allocation
revem
Control message number 4 representing a remote resource allocation
has been received
p! at node Phoenix has been granted exclusive use of
dbo1 at node Boston
rqdbo shared Boston p1 Boston dbo1
Resource not available, process blocked.

Control message number sent from Boston to Phoenix
representing an OBPL
note Do not let the OBPL be received at this time. Let p!1 in Phoenix
note release dbol in Boston, so that p1 in Boston will be awakened and
note granted shared use of dbol in Boston,

rldbo Phoenix p1 Boston dbo1
Control message number 6 sent from Phoenix to Boston
representing a remote resource release
rcvem 6
Control message number 6 representing a remote resource release
has been received

dbo1 at node Boston has been released by
p1 at node Phoenix
Process p1 at node Boston is granted shared access to
dbo1 at node Boston
note Let p1 in Phoenix request access to dbo1 in Boston for the
note second time, and let it be granted shared use of the database
note object.

149

Appendix III scenario demo_bug

rqdbo shared Phoenix pl1 Boston dboil

Process €1 at node Phoenix is blocked while a request is sent to

he node containing the desired resource
Control message number 7 sent from Phoenix to Boston
7 representing a remote resource request

revem

Control message number 7 representing a remote resource request

has been received

p? at node Phoenix is granted shared access to
dbo1 at node Boston
Control message number sent from Boston to Phoenix

8 representing this allocation
revem
Control message number 8 representing a remote resource allocation
has been received

p? at node Phoenix has been granted shared access to
dbol at node Boston
note Let p1 in Phoenix request exclusive use of dbo1 in Phoenix.
note The process will be blocked and an OBPL will be sent to Boston

note where it will be discarded because pl1 in Boston is active.
rqdbo exclusive Phoenix p1 Phoenix dbo1
Resource is not currently available for exclusive use, process p1l
at node Phoenix 1s blocked.
Control message number 9 sent from Phoenix to Boston
representing an OBPL

rcvem 9

Control messa%e number 9 representing an OBPL has been received.
note Now let Phoenix receive the OBPL that was previously sent bg
note Boston. A "false" deadlock will be detected because pl1 in Phoenix
note is blocked and has access to dbol in Boston, even though this is
note not the same assignment of the resource that was used when the
note . OBPL was created.
rcvem

Control message number 5 representi an OBPL. has been received.
A deadlock has been detected. The fol owingoproeesses are involved:
p1 at node ston

p1 at node Phoenix
End of deadlock list

150

Appendix III scenario demo_bug

exclusive
+(e7)

shared

Jdboﬂ

Boston Phoenix

State where control message 5 representing an OBPL has just been sent
from Boston to Phoenix. Receipt of the OBPL is delayed until after the state
drawn below has drawn been reached.

shared
dbo1 > p1
]
]
shared | exclusive
|
]
shared
p1 dbo1
Boston Phoenix

Final State Diagram

151

Appendix III scenario demo1

scenario demo1

note This is an example of a two process two resource deadlock in a
note single node. No control messages and no operators are involved
note in the detection of this deadlock.

initmg mg1 Boston p2 Boston
Message group mgl has been initiated
accegtmg mg! Boston p1
ngo has been acce?ted by g1 at node Boston
rqd shared Boston pl Boston dbo1
p} at node Boston granted shared access to dbol at node Boston
rqdbo exclusive Boston p2 Boston dbo1
Resource is not currently available for exclusive use, process p2
at node Boston 1is blocked.
recvmsg mgt
Process p1 at node Boston is blocked waiting for a
message in messa%e groug ng1
A deadlock has been detected. The followingoprocesses are involved:
p1 at node Sjoston

p2 at node Boston
End of deadlock list

Boston

Final State Diagram

152

Appendix III scenaric demo?2

scenario demo2

note This is an example of a two process two resource deadlock

note involving two nodes. The first three commands create the state
note where both processes are active and both involved resources have
note been allocated to the proper grocesses.

rqdbo exclusive Phoenix p1 Phoenix dbo

n£1 at node Phoenix 1s granted exclusive use of dbol at node Phoenix
initmg mg2 Cambridge p! Phoenix

Message groug mg2 has been initiated
acceptmg mg2 Phoenix p1

mgg has been accepted bz g1 at node Phoenix
raqd shared Cambridge p1 Phoenix dbo1
Process g1 at node Cambridge 1is blocked while a request is sent to

he node containing the desired resource

Control message number 1 sent from Cambridge to Phoenix

r:gresenting a remote resource request
note ge 11 delay the receipt by Phoenix of this resource request.
rcvmsg mg
Process pt at node Phoenix is blocked waiting for a
message in message groug mg2
Control message number 2 sent from Phoenix to Cambridge
2 representing an OBPL
rcvem

Control message number 2 representing an OBPL has been received.
Control message number 3 sent from Cambridge to Phoenix
representing an OBPL

note This OBPL contains entries for pl1 in Phoenix and p1 in Cambrid%e.
note It will be discarded b{ Phoenix because Phoenix has no record that
note pl1 in Cambridge is waiting for dbo1 in Phoenix since control

note 3 message 1 still has not been received.

revem

Cont?ol message number 3 representing an OBPL has been received.
revem
Control message number 1 representing a remote resource request
has been received
Resource not available, process remains blocked.

Control message number sent from Phoenix to Cambridge
representing an OBPL
note This OBPL contains entries for p1 in Cambridge and p1 in Phoenix.

note It states that g1 in Phoenix is waiting for a message in message
note group mg2. Cambridge will verif{ that the desired message has
note 4 not been sent, and a deadlock will be detected.
revem
Control message number U4 representin§ an OBPL has been received.
A deadlock has been detected. The fol owing processes are involved:
p1 at node ambridge

p1 at node Phoenix
End of deadlock list

153

Appendix III scenarios demo?2 demo3 demod

exclusive

Phoenix Cambridge

Final State Diagram

154

Appendix III scenario demo3

scenario demo3

note This is an example of a two process two resource deadlock

note involvi two nodes. The first three commands create the state
note where both processes are active and both involved resources have
note been allocated to the proper ?rocesses.

rqdbo exclusive Phoenix p1 Phoenix dbo

£1 at node Phoenix s granted exclusive use of dbo1 at node Phoenix
initmg mg2 Cambridge p1 Phoenix
Message groug mg2 has been initiated
accegtmg mg2 Phoenix p1
mg has been accepted bK §1 at node Phoenix
rqdbo shared Cambridge p1 Phoenlx dboi
Process 81 at node Cambridge is blocked while a request is sent to
he node containing the desired resource ,
Control message number 1 sent from Cambridge to Phoenix
" r:gresenting a remote resource request
e

note 11 dela{ receigt by Phoenix of this resource request just
note long enough to block p1 in Phoenix (which controls dbol in Phoenix)
note and send an OBPL to Cambridge. In this way, after receipt of the
note resource request, we will have two OBPL's outstanding, and the same
note deadlock will be detected twice.
rovmsg mg2

Process p1 at node Phoenix is blocked waiting for a

message in message groug mg2
Control message number 2 sent from Phoenix to Cambridge
1 representing an OBPL

rcvcem

Control message number 1 representing a remote resource request
has been received
Resource not avalilable, process remains blocked.
Control message number sent from Phoenix to Cambridge
representing an OBPL
revem 2
Control message number 2 representiné an OBPL. has been received.
Control message number 4 sent from ambridge to Phoenix
representing an OBPL
revem 3
Control message number 3 representinf an OBPL has been received.
A deadlock has been detected. The fol owiné processes are involved:
pl at node ambridge

p1 at node Phoenix
End of deadlock list
revem b
Control message number U representing an OBPL has been received.
A deadlock has been detected. The fol owing processes are involved:
p1 at node hoenix

p1 at node Cambridge
End of deadlock list

155

Appendix III scenario demol

scenario demol

note This is an example of a two process two resource deadlock

note 1nvolvin% two nodes. The first three commands create the state
note where both processes are active and both involved resources have
note been allocated to the proper grocasses.

rqdbo exclusive Phoenix p1 Phoenix dbo

§1 at node Phoenix s granted exclusive use of dbot at node Phoenix
initmg mg?2 Cambridge p1 Phoenix
Message groug mg2 has been initiated
acceptmg mg2 Phoenix p1
ngo has been accepted bg £1 at node Phoenix
rqd shared Cambridge p1 Phoenix dbo1
Process €1 at node Cambridge 1s blocked while a request is sent to
he node containing the desired resource
Control message number 1 sent from Cambridge to Phoenix
representing a remote resource request

note We will allow this resource request to be immediately received
note by Phoenix. No OBPL will be generated because F1 in Phoenix is
note active, and it controls dbol In Phoenix. By delfault, control
note messages generated in the future will be received immediately
note : after they are sent, and the deadlock will be detected once.
rcvem

Control message number 1 representing a remote resource request
has been received
Resource not available, process remains blocked.
rcvmsg mg2
Process p1 at node Phoenix is blocked waiting for a
message in message groug mg2
Control message number 2 sent from Phoenix to Cambridge
representing an OBPL
rcvem 2
Control message number 2 representing an OBPL has been received.
Control message number 3 sent from ambridge to Phoenix
representing an OBPL
rcvem 3
Control message number 3 representinf an OBPL has been received.
A deadlock has been detected. The fol owing processes are involved:
p1 at node hoenix

pl at node Cambridge
End of deadlock list

156

Appendix IIIX scenario demo5

scenario demo5
note This is an example of a state where two deadlocks exist
note involving four processes and t sonroes located in three

note nodes. desdlocks are invo i? ecau;e dbo1 in Cambridge
note has two shared users. - 0. cop-a s oreate the state
note where all the involvog :20 ive and all the involved
note resourdss have bde loonted to. oper processes.
initmg mg1 Boston p1 Cambridge :

Message group 1 "has been 1n1t1ated

acceptmg mg1 Canbri e p
1 has boc, gptog g at node Cambridge
Ld Ca-br dge d
dgo anted ahared access to db01 at node Cambridge

rqdbo shared Boaton p1 idge dbo1
Process pl1 at nodgﬁtgggton is blocked while a requoat is sent to

e node a ing. !:hc desired resourc

Control message nusber 1 sgn t from. Boaton to Cambridge

! representing a rtun rasdﬂree,request
rcvenm

Control message number 1 representing a remote resource request
has been received

p1 at node Boston is granted shnrod _accass to
dbo1 R '5 node bridge :
Control message numbsr g!nt om Cnubridse to Boaton
e 5 representing this allocation v
revem
Control messageenunber 2 representing a remote resource allocation
as n recei
p1 at node Boaton has beeén . granted ahared agccess to
1 at node Cambridge

le a request is sent to
ce
‘to Phoenix

Process 2 at node ad .}
he node oMY s, g resqu

Control message numder 3 sent frc mbrida
representing a remote resouroe reque
rcves

Control nelaggg’n 3 r!praannting a,ralnte resource naqueat
rdot ved
at node Cambridge is granted axclusive use of
bo1 a& node Phoenix =
Control -essagp ent from Phoshix to Cambridge
" fhg this~alloeat1ﬁn
revem

Control mesaag:enunber 4 repreaenting a remote resource allocation
n received

p2 at node Cambridge has been grlntod exclus;ve use of

bo t ,”_eqbggoenix

p1 d access to dbo2 at node Phoenix
rqdbo excluaive Boston p

oenix dbo2
Process g at node Boston 1is blocked while a request is sent to
he node oontaining the desired resource
Control message number 5 sent from Boston to Phoenix
re reaenting‘a remote resource request
note No OBPL will sent to another node, and no deadlock will

dbo
rqdbo exclusive Cambridge p2 Phoenii'dgo1

note be detected because pl1 at node Phoenix is active and is the only
note 5 process that has access to dbo2 in Phoenix.
revem
Control nesaa nunber 5 representing a remote resource request
E..n recei
Resource is not ourrontly available for exclusive use, process pi
at node Boston remains blocked

rqdbo shared Phoenix gl Phoenix dbo!1
Resource not nvail. le, proceas blocked.
Control message number sent from Phoenix to Cambridge
representing an OBPL

157

Appendix III scenario demo5

note No deadlock will be detected because p2 in Cambridge is active.
rcvem

Control message number 6 representing an OBPL has been received.
note This next request will create a three process three resource
note deadlock. An OBPL will be created, ard we will immediately pass
note it from node to node in order to detect the deadlock.

rqdbo exclusive Cambridge p2 Cambridge dbo1
Resource is not currently available for exclusive use, process p2
at node Cambridge 1is blocked.
Control message number 7 sent from Cambridge to Boston
representing an OBPL

revem 7 ,
Control message number g representing an OBPL has been received.
Control message number sent from ston to Phoenix

8 representing an OBPL
revem
Control message number 8 representing an OBPL has been received.
A deadlock has been detected. The fol owing processes are involved:
a

P at node mbridge
p1 at node Boston
p1 at node Phoenix
End of deadlock list
note The next command will create a four process four resource deadlock.
note Due to the faet that two processes have shared access to dbo1l in
note Cambridge, both this newly created deadlock, and the previously
note detected deadlock will be detected when the OBPL is created and
note passed among the nodes.
rcvmsg mgl
Process pi at node (Cambridge i3 blocked waiting for a
message in message groug mg1
Control message number 9 sent from Cambridge to Boston
representing an OBPL
rcevem 9
Control message number 9 representing an OBPL has been received.
Control message number 10 sent from Béston to Phoenix
representing an OBPL
revem 10

Control message number 10 representing an OBPL has been received.
Control message numbér 11 sent from Phoenix to Cambridge
representing an OBPL
revem 11
Control message number 11 representing an OBPL has been received.
A deadlock has been detected. The followiné processes are involved:
o]

p1 at node mbridge
p1 at node Boston
p1 at node Phoenix

p2 at node Cambridge
End of deadlock list
A deadlock has been detected. The following processes are involved:
pt at node 30ston
p1l at node Phoenix

p2 at node Cambridge
End of deadlock list

158

Appendix IIIX scenarios demo5 demob

@ exclusive

shared

Boston Phoenix

shared exclusive

shared

exclusive

Cambridge

Final State Diagram

159

Appendix III scenario demob

scenario demob

note This is an example of a state where two deadlocks exist

note involving four processes and four resources located in three
note nodes. o deadlocks are involved because dbol in Cambridge
note has two shared users, The first 10 commands create the state
note where all the involved processes are active and all the involved
note resources have been allocated to the proper processes.

initmg mg1 Boston p1 Cambridge
Message group mg1 has been initiated
acceptmg mg1 Cambridge p1
mg1 has been accepted by 21 at node Cambridge
rqdbo shared Cambridge p1 Cambridge dbo1
1 at node Cambridge granted shared access to dbol at node Cambridge
rqdbo shared Boston p1 Cambridge dbol
Process €1 at node Boston is blocked while a request is sent to
he node containing the desired resource
Control message number 1 sent from Boston to Cambridge
. representing a remote resource request
rcvem .
Control message number 1 representing a remote resource request
has been received

pl at node Boston is granted shared access to
dbo1 at node Cambridge
Control message number 2 sent from Cambridge to Boston

5 representing this allocation
rcvem
Control message number 2 representing a remote resource allocation
has been received
p1 at node Boston has been granted shared access to
dbo1 at node Cambridge
rqdbo exclusive Cambridge p2 Phoenix dbo1
Process gz at node Cambridge 1s blocked while a request is sent to
he node containing the desired resource
Control message number 3 sent from Cambridge to Phoenix
3 representing a remote resource request
rcvem
Control message number 3 representing a remote resource request
has been received

p2 at node Cambridge is granted exclusive use of
dbot at node Phoenix
Control message number 4 sent from Phoenix to Cambridge

" representing this allocation
revem
Control message number 4 representing a remote resource allocation
has been received
pe at node Cambridge has been granted exclusive use of
dbo1 at node Phoenix
rqdbo shared Phoenix p1 Phoenix dbo2
pt! at node Phoenix ranted shared access to dbo2 at node Phoenix
rqdbo exclusive Boston pt1 Phoenix dbo2
Process 81 at node Boston is blocked while a request is sent to
he node containing the desired resource
Control message number 5 sent from Boston to Phoenix
representing a remote resource reguest
note p! in Phoenix is active, so there will be no deadlock when the
note 5 remote resource request is received from Boston.
recvem
Control message number 5 representing a remote resource request
has been received
Resource is not currently available for exclusive use, process p1
at node Boston remains blocked
radbo shared Phoenix p1 Phoenix dbo1
Resource not available, process blocked.
Control message number sent from Phoenix to Cambridge
representing an OBPL

160

Appendix III scenario demob

note YZ in Cambridge is active, so the OBPL will be discarded after
note 6 t is received by Cambridge.
rcvem

Control message number 6 representing an OBPL has been received.
revmsg mg1t

Process pl at node Cambridge is blocked waiting for a
message in message groug ngl
Control message number 7 asent from Cambridge to Boston

representing an OBPL

note EZ in Cambridge is active, so the OBPL will be discarded when
note t reaches Cambridge.
recvem 7
Control message number g representing an OBPL has been received.
Control message number sent from Boston to Phoenix

8 representing an OBPL
reven
Control message number 8 representing an OBPL has been received.
Control message number 9 sent from hoenix to Cambridge
representing an OBPL

rcvem 9

Control message number 9 representing an OBPL has been received.
note This next request will create two deadlocks, due to the fact that
note dbo1 in Cambridge has two readers. Two OBPL's will be generated,
note and both deadlocks will be detected when their respective OBPL's
note arrive in Phoenix. The OBPL's need not return to Cambridge
note because p2 in Cambridge was the first process to be placed in the
note OBPL's, and Phoenix knows that p2 in Cambridge controls dbo1
note in Phoenix.

rqdbo exclusive Cambridge p2 Cambridge dbo1
Resource is not currently available for exclusive use, process p2
at node Cambridge 1is blocked.

Control message number 1 sent from Cambridge to Boston
representing an OBPL
Control message number 11 sent from Cambridge to Boston
representing an OBPL
rcevem 10
Control message number 10 representing an OBPL has been received.
Control message number 12 sent from ston to Phoenix
representing an OBPL
rcvem 12

Control message number 12 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:
a

pe at node mbridge
p1 at node Cambridge
p1 at node Boston

p1 at node Phoenix
Fnd of deadlock list
rcvem 11

Control message number 11 representing an OBPL. has been received.
Control message number 13 sent from Boston to Phoenix
representing an OBPL
rcvem 13
Control message number 13 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:
p2 at node ambridge
p1 at node Boston

pl at node Phoenix
End of deadlock list

161

Appendix III scenario demo7

scenario demo?7

note This is an example of a state where three deadlocks exist

note 1nvolvin§ six processes and five resources located in three

note nodes, hree deadlocks are involved because dbo2 in Boston

note has three shared users. Five, rather than six, resources are
note involved because two processes are walting for the same database
note object. The first 18 commands create the state where all the
note involved processes are active and all the involved resources
note have been allocated to the proper processes.

rqdbo shared Boston p1 Boston dbo2
£1 at node Boston granted shared access to dbo2 at node Boston
inltmg mgt1 Phoenix p1 Boston
Message group mgl has been initiated
accegtmg mgl1 Boston p1l
mg has been accegted bg p1 at node Boston
rqdbo exclusive Phoenix p2 Boston dbo!l
Process p2 at node hoenix 1s blocked while a request is sent to
the node containing the desired resource
Control message number 1 sent from Phoenix to Boston
: representing a remote resource request
revem
Control message number 1 representing a remote resource request
has been received

P2 at node Phoenix is granted exclusive use of
dbo1 at node Boston
Control message number 2 sent from Boston to Phoenix

» representing this allocation
rcvem
Control message number 2 representing a remote resource allocation
has been received
p2 at node Phoenix has been granted exclusive use of
dbo1 at node Boston
rqdbo shared Cambridge p1 Boston dbo?2
Process €1 at node Cambridge 1is blocked while a request is sent to
he node containing the desired resource
Control message number 3 sent from Cambridge to Boston
3 representing a remote resource request
rcvem
Control message number 3 representing a remote resource request
has been received

p1 at node Cambridge is granted shared access to
dbo2 at node Boston
Control message number 4§ sent from Boston to Cambridge
" representing this allocation
revem

Control message number U representing a remote resource allocation
has been received
pl at node Cambridge has been granted shared access to
dbo at node Boston
rqdbo shared Cambridge p2 Boston dbo2
Process €2 at node Cambridge 1is blocked while a request is sent to
he node containing the desired resource
Control message number 5 sent from Cambridge to Boston
regresentin% a remote resource request
rqdbo shared Phoenix pl1 Cambridge dbo1l
Process €1 at node Phoenix 1is blocked while a request is sent to
he node containing the desired resocurce
Control message number 6 sent from Phoenix to Cambridge
. representing a remote resource request
revem
Control message number 5 representing a remote resource request
has been received

p2 at node Cambridge is granted shared access to
dbo2 at node Boston
Control message number 7 sent from Boston to Cambridge

representing this allocation

162

Appendix III scenario demo7

rcvem 6
Control message number 6 representing a remote resource request
has been received

p1 at node Phoenix is granted shared access to
dbo1 at node Cambridge
Control message number 8 sent from Cambridge to Phoenix

representing this allocation

rcvem 7
Control message number 7 representing a remote resource allocation
has been received
p2 at node Cambridge has been granted shared access to
8 dbo2 at node Boston
revem

Control message number 8 representing a remote resource allocation
has been received
p? at node Phoenix has been granted shared access to
dbot at node Cambridge
rqdbo exclusive Cambridge p3 Phoenix dbo1
Process €3 at node Cambridge is blocked while a request is sent to
he node containing the desired resource
Control message number 9 sent from Cambridge to Phoenix
9 representing a remote resource request
rcvem
Control message number 9 representing a remote resource request
has been received

p3 at node Cambridge is granted exclusive use of
dbo1 at node Phoenix
Control message number 10 sent from Phoenix to Cambridge

representing this allocation
revem 10
Control message number 10 representing a remote resource allocation
has been received

p3 at node Cambridge has been granted exclusive use of
dbo1 at node Phoenix
rcvmsg mgl
Process p1 at node Boston is blocked waiting for a
message in messa%e group mg?
Control message number 1 sent from Boston to Phoenix
representing an OBPL
note " The OBPL will be discarded by Phoenix because p1 is active.
revem

Control message number 11 representing an OBPL has been received.
rqdbo shared Cambridge pl1 Boston dbo1
Process 81 at node Cambridge 1is blocked while a request is sent to
he node containing the desired resource
Control message number 12 sent from Cambridge to Boston
representing a remote resource reques

note The grocess that controls dbol in Boston is located in Phoenix,
note and 1s active. Therefore, when Boston receives the resource
note request, it will create an OBPL and send it to Phoenix, which
note 12 will then discard it.

revem

Control message number 12 representing a remote resource request
has been received
Resource not available, process remains blocked.
Control message number 18 sent from Boston to Phoenix
representing an OBPL
rcevem 13
Control message number 1; regrasenting an OBPL has been received.
rqdbo exclusive Phoenix p2 Phoenlx dbo1
Resource not available, process bloocked,
Control message number 14 sent from Phoenix to Cambridge
reggeaenting an OBPL

note The OBPL will be discarded by Cambridge because p3, which controls
note ” dbo1 in Phoenix, is active.
ravem

Control message number 14 representing an OBPL has been received.
163

Appendix III scenario demo7

rqdbo exclusive Cambridge p3 Cambridge dboil
Resource is not currently available for exclusive use, process p3
at node Cambridge 1is blocked.
Control message number 1 sent from Cambridge to Phoenix
representing an OBPL
note The OBPL will be discarded by Phoenix because pi1, which controls
note dbol in Cambridge, is active.
rcvem 15
Control message number 15 representing an OBPL. has been received.
rqdbo shared Cambridge p2 Phoenix dbo1
Process p2 at node Cambridge 1is blocked while a request is sent to
the node contain%ng he desired resource
Control message number 1 sent from Cambrid to Phoenix
representing a remote resource reques
rovem 16
Control message number 16 representing a remote resource request
has been received
Resource not available, process remains blocked.

Control message number 17 sent from Phoenix to Cambridge
representing an OBPL
note An OBPL is sent to Cambridge because p3 in Cambridge controls
note dbo1 in Phoenix. 3 will be added to the OBPL which will then
note be passed to Phoenix because p1 in Phoenix controls dbol in
note . Cambridge. The OBPL will then be discarded because p1 is active.
rcvem
Control message number 1Z representiné an OBPL has been received.
Control message number 1 sent from Cambridge to Phoenix
representing an OBPL
rcevem 18
Control message number 18 representing an OBPL has been received.
note The next request creates three deadlocks. When Boston receives
note the remote resource request for dbo2, it creates three OBPL's
note because there are three readers of the database object. We will
note then allow the three OBPL's to be passed anong nodes until all
note three deadlocks have been detected, at which time there will be
note no outstanding OBPL's or control messages.

rqdbo exclusive Phoenix pl1 Boston dbo2
Process gl at node Phoenix is blocked while a request is sent to
he node containing the desired resource
Control message number 19 sent from Phoenix to Boston
19 representing a remote resource request
revem
Control message number 19 representing a remote resource request
has been received
Resource is not currently available for exclusive use, process pi

at node Phoenix remains blocked

Control message number 20 sent from Boston to Cambridge
representing an OBPL

Control message number 21 sent from Boston to Phoenix
representing an OBPL

Control message number 22 sent from Boston to Cambridge

representing an OBPL
rcvem 21
Control message number 21 representing an OBPL has been received.
A deadlock has been detected. The followins processes are involved:
p1 at node hoenix
pl at node Boston
End of deadlock list
rcvem 20

Control message number 20 representing an OBPL has been received.
Control message number 23 sent from Cambridge to Boston
representing an OBPL
revem 22
Control message number Zﬁ representiné an OBPL has been received.
Control message number 2 sent from Cambridge to Phoenix
representing an OBPL

164

Appendix III scenario demo7

revem 23

Control message number 23 representing an OBPL has been received.
o

Control message number 25 sent from ston to Phoenix
representing an OBPL

revem 25

Control message number 2 representinghan OBPL. has been received.

Control message number 2 sent from oenix to Cambridge
representing an OBPL

revem 26

Control message number 26 representing an OBPL has been received.
A deadlock has been detected. The followinghproeesses are involved:

pl at node oenix
pl at node Cambridge
p2 at node Phoenix

p% at node Cambridge
End of deadlock list
revem 24

Control message number 24 representinghan OBPL has been received.

Control message number 27 sent from oenix to Cambridge
representing an OBPL

rcvem 27

Control message number 27 representing an OBPL has been received.
A deadlock has been detected. The followinghprocesses are involved:

p1 at node oenix
p2 at node Cambridge

p3 at node Cambridge
End of deadlock list

165

Appendix III scenarios demo7 demo8

exclusive

dbo1 »{ p2
/'
// exclusive :
/
/ (D EErE EEE— -»BgN [dboT]
[} \
: shared \
. Abo2)< ~SXelusive _ (>) \
N~ L “
\ Boston Phoenix :
\
1
shared‘\ shared shared shared 1
!

/
exclusive /
!

/shared

Cambridge

Final State Diagram

166

Appendix III scenario demo8

scenario demo8

note This is an example of a state where three deadlocks exist

note involving six processes and five resources located in three

note nodes. hree deadlocks are involved because dbo2 in Boston

note has three shared users. Five, rather than six, resources are
note involved because two processes are waiting for the same database
note object. The first 18 commands create the state where all the
note involved processes are active and all the involved resources
note have been allocated to the proper processes.

rqdbo shared Boston p1 Boston dbo2
51 at node Boston granted shared access to dbo2 at node Boston
initmg mg1 Phoenix p1 Boston
Message group mgl has been initiated
acceptmg mgl Boston p1
mg has been accepted bg pt at node Boston
rqdbo exclusive Phoenix BZ oston dbo1
Process gZ at node hoenix is blocked while a request is sent to
he node containing the desired resource
Control message number 1 sent from Phoenix to Boston
representing a remote resource request
rcvem 1
Control message number 1 representing a remote resource request
has been received

p2 at node Phoenix is granted exclusive use of
dbo1 at node Boston
Control message number 2 sent from Boston to Phoenix

2 representing this allocation
rcvem
Control message number 2 representing a remote resource allocation
has been received
p2 at node Phoenix has been granted exclusive use of
dbo1 at node Boston
rqdbo shared Cambridge p1 Boston dbo2
Process g1 at node Cambridge 1s blocked while a request is sent to
he node containing the desired resource
Control message number 3 sent from Cambridge to Boston
3 representing a remote resource request
revem
Control message number 3 representing a remote resource request
has been received

p1 at node Cambridge is granted shared access to
dbo2 at node Boston
Control message number 4 sent from Boston to Cambridge

" representing this allocation
rcvem
Control message number 4 representing a remote resource allocation
has been received
p? at node Cambridge has been granted shared access to
dbo2 at node Boston
rqdbo shared Cambridse p2 Boston dbo2
Process 2 at node Cambridge 1s blocked while a request is sent to
he node containing the desired resource
Control message number 5 sent from Cambridge to Boston
re resentin§ a remote resource request
rqdbo shared Phoenix pl Cambridge dbol
Process 81 at node Phoenix 1s blocked while a request is sent to
he node containing the desired resource
Control message number & sent from Phoenix to Cambridge
representing a remote resource request
revem 5
Control message number 5 representing a remote resource request
has been received

p2 at node Cambridge is granted shared access to
dbo2 at node Boston
Control message number 7 sent from Boston to Cambridge

representing this allocation

167

Appendix III scenario demo8

revem b
Control message number 6 representing a remote resource request
has been received

pl at node Phoenix is granted shared access to
dbo1 at node Cambridge
Control message number 8 sent from Cambridge to Phoenix

. representing this allocation
rcvem
Control message number 7 representing a remote resource allocation
has been received
p2 at node Cambridge has been granted shared access to
dbo?2 at node Boston
rcvem 8 _
Control message number 8 representing a remote resource allocation
has been received
pl at node Phoenix has been granted shared access to
dbo1 at node Cambridge
rqdbo exclusive Cambridge p3 Phoenix dbol
Process €3 at node Cambridge is blocked while a request is sent to
he node containing the desired resource
Control message number 9 sent from Cambridge to Phoenix
9 representing a remote resource request
revem
Control message number 9 representing a remote resource request
has been received

p3 at node Cambridge is granted exclusive use of
dbo1 at node Phoenix
Control message number 10 sent from Phoenix to Cambridge

10 representing this allocation
rcvem
Control message number 10 representing a remote resource allocation
has been received

p3 at node Cambridge has been granted exclusive use of
dbo at node Phoenix
rqdbo exclusive Phoenix g1 Boston dbol
Process pl1 at node Phoenix is blocked while a request is sent to

the node containing the desired resource
Control message number 11 sent from Phoenix to Boston
representing a remote resource request
note After receipt of the remote resource request, Boston will send

note two OBPL's to Cambridge because two processes in that néde have
note shared use of dbo2 in Boston. A third external message is not
note needed because the third reader of dbo2 is located in Boston
note and is active. We will delay the receipt of one of the OBPL's
note until after the process in the list that controls dbo2 gets
note " blocked waiting for a resource located in Phoenix.

revem

Control message number 11 representing a remote resource request
has been received
Resource is not currently available for exclusive use, process pi1

at node Phoenix remains blocked

Control message number 12 sent from Boston to Cambridge
representing an OBPL

Control message number 13 sent from Boston to Cambridge

representing an OBPL
revem 12
Control message number 12 representing an OBPL has been received.
rqdbo shared Cambridge pl1 Boston dbo1
Process g1 at node Cambridge is blocked while a request is sent to
he node containing the desired resource
Control message number 14 'sent from Cambridge to Boston
representing a remote resource reques
rqdbo shared Cambridge p2 Phoenix dbo1
Process p2 at node Cambridge 1is blocked while a request is sent to
the node containing the desired resource
Control message number 15 sent from Cambrid%e to Phoenix
representing a remote resource reques

168

Appendix III scenario demo8

-

revem 13

Control message nunber 2 representing an OBPL has been received.
Control ne:s:g: gu aont from bridge AQto Phoenix
r enti
note Let Phoenix receivn Sba:OBPL bof e it receivea the remote resource
note request that was assumed to have aken X,

ore the last
note was added to the OBPL. f wi qgl disgarded because
note gr g: has no record that p2 1n"ll%:g ridge aa:uniting for dbo1
note 16 in Phoenix.
reveam

Control me an OBP has. bqen‘rooeived
note g g thc lbovo nnilon*od remo ng L {-gun be received
note 3 Phoenix. An OBPL will de erutod and son Canbridge, which

note 111 then discard the OBPL becaualraa.i

recvem 15 o

Control n:ssa nuubbr 15 representing a re-otu . resource request

as
Resource not a lo h%ggg:d S
Control mes : mbder’ ? Egn& ;::ng‘ to Cambridge
" ruprosénting an O

revonm

Control no w 17 re ting. hggn ronoived
note g E th% f te roaos;::’:oquno ‘or dbo1 1n by pt1 in
no:e to ri - by, _ ggggf ,i_Q?rggfad and aent
note . P4 or-. 4ho
note p, n to'Cil r here pi: aotive, an

h s N y
note 1 the OBPL will theg.g:.giacarded.
revem
Control number 14 re egen a renote rosouree request
ng::.gzbn reteived pr t;ac Qq
Resource not available, ocesa renaina blocked.

Control no:;;g:-gggger ?5 ou Boc&on ',to Phoenix

. repr
’°5§'t'°1"* = number 18 r u ﬂBPL ba b ived.
ntro ; se an s been receive
rqdbo exclusive ;Ph003£§' g
Resource net 3 1 v‘é»b,goknda‘ ,
Control mess ggi;' om Pbo.nix " to Cambridge

‘rA»j77ﬁfif? an - '
not: 19 The DBPL will by dtac;rdnd by Calbridgp-chanse p3 is active.
roevem

Control message nulber 19" fepreaenting an OBPL has been. received.

note The next command will oreate-a Lwo. p& :twe regeurce deadlock.
note An OBPL will he sent to. dix, whioch will s ad.pY.-in Pheoenix
no%e to the OBPL andt::nd the OBPL bagk-te: n- be uspa:i i:agaiting
note desd =il ~gesnc tvo
note OBPL'a w1§1 bé sent tgheiabri : ped readers

noge ftdbo . o:a OBPL'a will then ‘ d a 4 beez th ‘n
note return to use p
note gaubridgt 3%?1 gf'i be . active u:%% g‘ L'a 3¢t .examined.
revmsg

Prooegg p1 at node Boston is blooked waiting for a

sage in. noaaase group . .
Control neaaagc nunhcr sent from Boston to Phoenix
20 repreésenting an OBPL

rcvem

Control nestage number 20 representinghan OBPL has beegovzgeived

Control message number 21 sent from oeaix
representing an OBPL

169

Appendix III scenario demo8

rcvem 21
Control message number 21 representing an OBPL has been received.
Control message number 22 sent from Boston to Cambridge
re resenting an OBPL
A deadlock has been 1etected. The following processes are involved:

P at node oston
p1 at node Phoenix
End of deadlock list
Control message number 28 sent from Boston to Cambridge
representing an OBPL
rcvem 22

Control message number 22 representiné an OBPL has been received.
Control message number 24 sent from Cambridge to Boston
representing an OBPL
revem 24
Control message number 24 representing an OBPL has been received.
Control message number 25 sent from Boston to Phoenix
representing an OBPL
revem 25 ‘
Control message number 22 representing an OBPL has been received.
Control message number 26 sent from Phoenix to Cambridge
representing an OBPL
rcevem 26
Contggl message number 26 representing an OBPL has been received.
revem
Control message number 2 representing an OBPL has been received.
Control message number 2 sent from Cambridge to Phoenix
representing an OBPL
revem 27
Control message number 2 representing an OBPL has been received.
Control message number 2 sent from FPhoenix to Cambridge
representing an OBPL

revem 28

Control message number 28 representing an OBPL has been received.
note This next requeat will create two deadlocks. An OBPL will be
note sent to Phoenix, which will add p1 in Phoenix to the list and
note send it to Boston. Boston will then send out three OBPL'S,
note one for each reader of dbo2 in Boston. These OBPL's will be
note passed among the various nodes until there are no more OBPL's
note and control messages outetandin%. Note that the two process two
note resource deadlock will be detected for a second time because of
note the fact that p1 in Boston still has shared access to dbo2 in
noge Boston and the deadlock has not been broken by aborting any
note rocesses.

rqdbo exclusive Cambridge p3 Cambridge dboi
Resource is not currently avajilable for exclusive use, process p3
at node Cambridge 1is blocked.
Control message number 2 sent from Cambridge to Phoenix
representing an OBPL

rcvem 29
Control message number 23 representing an OBPL has been received.
Control message number 3 sent from hoenix to Boston

representing an OBPL

rcvem 30
Control message number go representing an OBPL has been received.
Control message number 1 sent from Boston to Cambridge
representing an OBPL
Control message number 32 sent from Boston to Phoenix
representing an OBPL
Control message number 33 sent from Boston to Cambridge

representing an OBPL
revem 32
Control message number 32 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:
p1 at node hoenix
p1 at node Boston
End of deadlock list

170

Appendix III scenario demo8

rcvem 31
Control message number %1 representing an OBPL has been received.
Control message number 4 sent from Cambridge to Boston

representing an OBPL
revem 34
Control message number y repreaenting an OBPL has been received.
Control message number 35 sent from Boston to Phoenix
representing an OBPL
revem 35
Control message number 35 representing an OBPL has been received.
A deadlock has been detected. The tollowing processes are involved:
a

p3 at node mbridge
p1 at node Phoenix
p1 at node Cambridge

p2 at node Phoenix
End of deadlock list
revem 33

Control message number g representing an OBPL has been received.
Control message number sent from ambridge to Phoenix
representing an OBPL
revem 36
Control message number 36 representing an OBPL has been received.
A deadlock has been detected. The following processes are involved:
p3 at node ambridge
p1 at node Phoenix

p2 at node Cambridge
End of deadlock list

171

Appendix III scenario demo9

scenario demo9

note This is an example of a case where a process releases a remote
note database object and sends a remote resource control message at

note the same time that an OBPL is sent to this node stating that some
note other process is waiting for the resource mentioned above, which
note is controlled bg the first process mentioned above. Before the
note OBPL arrives, the first process gets blocked waiting for a resource
note that is controlled b{ the process that was placed in the OBPL.

note No deadlock is detected because the resource in auestion is no
note longer controlled b{ the last process to be added to the OBPL.
rqdbo shared Boston p1 Phoenlix dbol1

Process €1 at node Boston 1is blocked while a request is sent to
he node containing the desired resource
Control message number 1 sent from Boston to Phoenix
: representing a remote resource request
revem
Control message number 1 representing a remote resource request
has been received

p1 at node Boston is granted shared access to
dbo1 at node Phoenix
Control message number 2 sent from Phoenix to Boston

» representing this allocation
revem
Control message number 2 representing a remote resource allocation
has been received
pl at node Boston has been granted shared access to
dbo1 at node Phoenix
rqdbo exclusive Phoenix 81 Boston dbo1l
Process g1 at node Phoenix 1is blocked while a request is sent to
he node containing the desired resource
Control message number 3 sent from Phoenix to Boston
representing a remote resource request
revem 3
Control message number 3 representing a remote resource request
has been received

p? at node Phoenix is granted exclusive use of
dbo at node DBoston

Control message number 4 sent from Boston to Phoenix
representing this allocation

rcvem U

Control message number 4 representing a remote resource allocation
has been received

pl at node Phoenix has been granted exclusive use of
dbo1 at node Boston

rqdbo shared Boston p1 Boston dbo1
Resource not available, process blocked.

Control message number sent from Boston to Phoenix
representing an OBPL
note Let dbo1 in Boston be released by p1 in Phoenix, and let p1 in
note Phoenix then %et blocked waiting for dbol in Phoenix before the
note OBPL from Boston is received by Phoenix.

rldboc Phoenix p1 Boston dbo1
Control message number 6 sent from Phoenix to Boston
representing a remote resource release
reven 6
Control message number 6 representing a remote resource release
has been received

dbo1 at node Boston has been released by
pl at node Phoenix

Process p1 at node Boston is granted shared access to
dbo1 at node Boston

rqdbo exclusive Phoenix pl1 Phoenix dbo?
Resource is not currently available for exclusive use, process pl
at node Phoenix is blocked.
Control message number 7 sent from Phoenix to Boston
representing an OBPL

172

Appendix III scenario demo9

rcvem 7

Control message number 7 representing an OBPL has been received.
note No deadlock will be detected because Phoenix observes that p1 in
note Phoenix no longer has access to dbol in Boston, and discards
note 5 the OBPL.
rcvem

Control message number 5 representing an OBPL has been received.

shared
45bo1|
exclusive
»{ D1
Boston Phoenix

State where control message 5 has just been sent from Boston to Phoenix.
Control measage 5 represents an OBPL. eceipt of the OBPL is delayed until
after the state drawn below is reached.

shared
Pl)e
shared ' exclusive
Boston Phoenix

Final State Diagram

173

Appendix III scenario demo10

scenario demoi10

note This is an example where an OBPL is sent from Boston to Phoenix
note stating that a process in Boston is waiting for a message from a
note process in Phoenix. Before the OBPL arrives in Phoenix, the

note desired message is sent, and the process in Phoenix gets blocked
note waiting for a resource that is controlled by the process that was
note placed in the OBPL that was sent from Boston to Phoenix. No

note deadlock is detected because Phoenix notices that the message
note that was desired by the process in Boston has alreadg been sent.
ncte The first six commands c¢reate the state where the OBPL

note mentioned above has just been sent.

initmg mg! Phoenix p1 Boston
Message group mgl has been initiated
acce?tmg mg1 Boston pl
mg has been accepted bg 51 at node Boston
rqdbo exclusive Boston pl1 Phoenix dbo1
Process p1 at node Boston 1is blocked while a request is sent to
the node containing the desired resource
Control message number 1 sent from Boston to Phoenix
1 representing a remote resource request
rcvem
Control message number 1 representing a remote resource request
has been received

pl at node Boston is granted exclusive use of
dbo1 at node Phoenix
Control message number 2 sent from Phoenix to Boston
representing this allocation
rcvem 2
Control message number 2 representing a remote resource allocation
has been received
pl at node Boston has been granted exclusive use of
dbo1 at node Phoenix
rcvmsg mgl
Process p1 at node Boston is blocked waiting for a
message in message group mgl
Control message number 3 sent from Boston to Phoenix
representing an OBPL
note We will now temporarilg delay receipt of the OBPL by Phoenix.
note Send the message that the process in Boston desires.
sendmsg mg1l
Control message number y sent from Phoenix to Boston
representing a message in a message group
note Y Let the process in Boston receive the message.
revem
Control message_number } representing a message in a message group
has been received
Process p1 at node Boston has been awakened upon
receipt of a message in message group mgl
note Block p!1 in Phoenix and then let Boston discard the OBPL that
note will be created as a result of this wait.

rqdbo shared Phoenix pl1 Phoenix dbo1i
Resource not available, process blocked.
Control message number sent from Phoenix to Boston
representing an OBPL

revem 5

Control message number 5 representinﬁ an OBPL has been received.
noge gowtle Phoenix receive the OBPL that was previously sent by
note oston.

rcvem 3
Control message number 3 representing an OBPL has been received.

174

Appendix III1 scenario demo10

Boston Phoenix

State where control message 3 regresenting an OBPL has just been sent
from Boston to Phoenix. Receipt of the OBPL is delayed until after the state
drawn below is reached.

exclusive
(@)=

Boston

Phoenix

Final State Diagram

175

Appendix III scenario demo11

scenario demoi1
note This is an example of a deadlock involving one process and one
note operator at the same node. Two operator connections are involved.
delop Boston opl

opl has been declared as an operator at node Boston
cogcon con1 Boston opl pt

perator connection conl has been established
copcon con2 Boston opl pl

erator connection con2 has been established

note Let p!1 in Boston request a message from operator op1 in Boston
rcvopmsg cont
Process p1 at node Boston is blocked waiting for a

message over operator connection coni
An OBPL has been queued waiting for a status report from operator op1

at node Boston The involved operator connection is cont
note Create a deadlock by reporting that opl is waiting for a message
note over operator connection con?2.

opstat Boston op1t waiting con2
We will now check for deadlock involving the given operator
and operator connection
A deadlock has been detected. The following processes are involved:
p1 at node oston

op1 at node Boston
End of deadgock list

Boston

Final State Diagram

176

Appendix III scenario demo12

scenario demo12

note This is an example of a deadlock across three nodes which involves
note several operator connections. It demonstrates that deadlock

note involving operators will be detected as long as the operator

note properl¥ states what he is waiting for. The first 15 commands
note set u he state where all operators have been declared, all

note operator connections have been created, the message groug has

note been initiated and accepted, and the involved database objects
note have been assigned to the proper processes.

dclop Boston op1
opl has been declared as an operator at node Boston
delop Phoenix op1
op has been declared as an operator at node Phoenix
dclog Boston op2
op has been declared as an operator at node Boston
cogcon conl Boston op? p1
perator connection con1 has been established
copecon con2 Boston opl p2
Operator connection con2 has been established
copecon con3 Boston op2 p2
perator connection con3 has been established
cogcon cond Boston op2 p3
perator connection conli has been established
coocon conS Phoenix opl p2
perator n 0 s
0 tor connection conS has been established
copeon conb Phoenix op1 p1
erator connection conb6 has been established
initmg mg1 Cambridge p1 Phoenix
Message groug mg! has been initiated
acceptmg mg1 Phoenix p1
mg1 has been accepted by §1 at node Phoenix
rqdbo exclusive Boston p3 Cambridge dbo1
Process €3 at node Boston 1s blocked while a request is sent to
he node containing the desired resource
Control message number 1 sent from Boston to Cambridge
] representing a remote resource request
revem
Control message number 1 representing a remote resource request
has been received .

r3 at node Boston is granted exclusive use of
d at node Cambridge
Control message number 2 sent from Cambridge to Boston

5 representing this allocation
rcvem
Control message number 2 representing a remote resource allocation
has been received
p3 at node Boston has been granted exclusive use of
dbo1 at node Cambridge
rqdbo shared Phoenix p2 Phoenix dbol
p2 at node Phoenix granted shared access to dbol at node Phoenix

note Let 51 in Boston wait for exclusive use of dbo1 in Phoenix. No
note deadlock will be detected because p2 in Phoenix, which controls
note dbo1 in Phoenix, is active.

rqdbo exclusive Boston pi Phoenix dbo1
Process g1 at node Boston is blocked while a request is sent to
he node. containing the desired resource
Control message number 3 sent from Boston to Phoenix
representing a remote resource request
recvem 3
Control message number 3 representing a remote resource request
has been received
Resource is not currently avalilable for exclusive use, process pl
at node Boston remains blocked

177

Appendix III scenario demo12

note Let g2 in Phoenix now wait for a message from opl in Phoenix.
note We then state that op1 in Phoenix is active, so no OBPL's get
note expanded further.
revopmsg conb

Process p2 at node Phoenix is blocked waiting for a

message over operator connection conb
An OBPL has been queued waiting for a status report from operator opl
at node Phoenix The involved operator connection is con5
opstat Phoenix ogl active
All OPPL's wal 1nshfor the given state information have been discarded

note Let g1 in oenix wait for a message from pl1 in Cambridge. No
note deadlock exists because pl1 in Cambridge is active.
rcvmsg mgt

Process p1 at node Phoenix is blocked waiting for a

message in message groug mg1

Control message number 4 sent from Phoenix to Cambridge

representing an OBPL
revem U _

Control message number U representing an OBPL has been received.
note Let p3 in Boston walt for a message from op2 in Boston. The
note OBPL created when p3 gets blocked will be discarded when we
note state that op2 is active.
rcevopmsg conl

Process p3 at node Boston is blocked waiting for a

message over operator connection conH
An OBPL has been queued waiting for a status report from operator op2
at node Boston The involved operator connection is conkl
opstat Boston op2 active
All OBPL's walting for the given state information have been discarded

note Simultaneously block pl1 in Cambridge and p?2 in Boston. Then
note let Boston receive the OBPL from Cambridge that was created
note when p!1 in Cambridge was blocked. Before we report the status
note of opl in Boston, state that op2 in Boston is waiting for a
note message from p2 {n Boston, thereby queuing & second OBPL for

note information on the status of op1 in Bosten.
rqdbo shared Cambridge p1 Cambridge dbol
Resource not available, process blocked.
Control message number sent from Cambridge to Boston
representing an OBPL
rcvopmsg con2
Process p2 at node Boston is blocked waiting for a
message over operator connection con2
An OBPL has been queued waiting for a status report from operator opt
5 at node Boston The involved operator connection is con2
rcvem :
Control message number 5 representing an OBPL has been received.
An OBPL has been queued waiting for a status report from operator op2
at node Boston The involved operator connection is conl
opstat Boston op2 waiting con3
We will now check for deadlock involving the given operator
and operator connection
An OBPL has been queued walting for a status report from operator opl
at node Boston The involved operator connection is con2
opstat Boston op1 waiting con1
We will now check for deadlock involving the given operator
and operator connection

Control message number 6 sent from Boston to Phoenix
representing an OBPL
Control message number 7 sent from Boston to Phoenix
representing an OBPL
note There were two OBPL's waiting for state information from op1 in
note Boston, therefore two OBPL's are expanded and sent to Phoenix.
note Let Phoenix receive and expand both OBPL's, and state that op!
note in Phoenix is waiting for a message from pi in Phoenix, thereby
note closing the deadlock loop. The deadlock will be detected twice
note because we had two OBPL's being passed around due to the fact
note that we blocked two processes simultaneously.

178

Appendix III scenario demo12

revem 6
Control message number 6 representing an OBPL has been received.
An OBPL has been queued waiting for a status report from operator opl
7 at node Phoenix The involved operator connection is con5
revem
Control message number 7 representing an OBPL has been received.
An OBPL has been queued waiting for a status report from operator opl
at node Phoenix The involved operator connection is conb
opstat Phoenix op1 waiting conb
We will now check for deadlock involving the given operator
and operator connection

Control message number 8 sent from Phoenix to Cambridge
representing an OBPL
Control message number 9 sent from Phoenix to Cambridge
representing an OBPL
revem 8
Control message number 8 representing an OBPL has been received.
Control message number 10 sent from Cambridge to Boston
representing an OBPL
rcvem 9
Control message number 9 representing an OBPL has been received.
A deadlock has been detected. The fol owiné processes are involved:
pt at node ambridge
p3 at node Boston
op2 at node Boston
P at node Boston
opt at node Boston
P at node Boston
p2 at node Phoenix
opl at node Phoenix

pl t node Phoenix
End of deadlock list
rcvem 10

Control message number 10 representin% an OBPL has been received.
An OBPL has been queued waiting for a status report from operator op2
at node Boston The involved operator connection is conil
opstat Boston op2 waiting con3
We will now check for deadlock involving the given operator
and operator connection
A deadlock has been detected. The following processes are involved:
o

p2 at node ston
op1 at node Boston

p1 ' at node Boston

p2 at node Phoenix
op1 at node Phoenix
pl at node Phoenix
p1 at node Cambridge
p3 at node Boston

ogz t node Boston
End of deadlock list

179

Appendix III) soenario demoi2

Boston

exclusive

Cambridge

Final State Diagram

180

CS-TR Scanning Project ,
Document Control Form Date: /{13 1T

Report# Lcs-T& . |35

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
M\ Laboratory for Computer Science (LCS)

Document Type:

JX Technical Report ("(R) ~ [1 Technical Memo (TM)
O other:

Document Information Number of pages: (39 (J5¢-imacs7)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
[J Single-sided or O Single-sided or
X Double-sided X Double-sided
Print type:
O Typewriter [0 offsetPress [] Laser Print
[inkletPriter [] Unknown] other:

Check each if included with document:

O DoD Form O Funding Agent Form X Cover Page
ﬁ Spine O Printers Notes O Photo negatives
O Other
Page Data:

Blank Pagesey page numben:

Photographs/Tonal Material ey pege aumbes:

Qther (nots descripionipege numben;
Description : Page Number:

Trmacc mAS! (L-[30) wnit sy TITLE A~A85Tm€g 3-130
(mv 136) SQANCMTT“\OKJ\ COULR, SP-‘A/E) TRETS(3)

Scanning Agent Signoff:
Date Received: [/J /75 Date Scanned: _///2a/ §5 Date Returned: _// 1 dQ/§S

) .
Scanning Agent Signature: 2144 < ZM é ZSZ J Qgé Revarod Form -

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

