1 Ay

BB MASSACHUSETTS
A VR INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

(formerly Project MAC)

7 \

MIT/LCS/TR~189

o4

FORMAL SPECTFICATIONS FOR PACKET COMMUNICATION SYSTEMS

/'8 Dayid 3. Ellis

")

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Tius blank page was inserted to preserve pagination.

MIT/LCS/TR-189

November, 1977

[T T

y This | Yesearch Was_ suppol by the m m ;m undes grant
2 DC'R‘?S-OW&O ﬂnﬁ u th,? MM ! mqﬁm mnm'nt

' of Defense, - mrﬁ wol., Rogearch ;. Wadar canimact no.
Nooom-?ﬁ-cm,;;; o e

fé

MASSACHUSETTS ths] ,

LABORATORY. FOR.

CAMBRmE) s o g ,: i QA D i A TTIRE : o HUS s

by
DAVID J ELLIS

Submtmwmwtuwwmmmsm
on October 28, 1m1tpmmnmx«mmu
mmmumcm

One of the most difficult tasks facing computer scientists is that of
designing systems and making sure that they perform their intended functions
correctly. -As computr systems have gréwn in sie and complexity, the
problems of system design and werification hawe become incressingly acute.
Formal specifications, which are precise descriptions of a system's function,
pmmammwmmnmnmm
correctness. :

uwwummmmumumm

Thesis Supervim: Jack B, Dannh
Title: PMm of Computer Science and Engineering

- -throughout the research -as: will- a5 962 Mﬁﬁ d!

Acknowledgments

The hardest part of this research was the imterminably long time
spent grappling with vague, abstruse notions, trying 4o :fimd w‘“’
underlying concepts. During this period, I needed -- and received, -
assistance from many people around me, - 7 7

Professor Jack Dennis, my resaar{:h
 technical insight in working with me dn developing
areas, . I am gratetuf that he 'matthed :ay

mvestigate certain ideas that seemed barrhg BB

'Professors Liba Svobpdova _and Vaugh t ms. Nhave both
" been tremendously RMpril ik evaluatihg my P{, ﬁn%’gi proaches. They
shared gemgrous amounts of time with me gid mads ggp T lsgpt my Maas in
~ the proper perspective.

o Al thres of my. commitm mmbm m«m contributions
to the form and content ‘ ~ TQKs and
. misconcaptions to be corri *’

:) 1 wlsh to thmk my fellow mm mm; patiently
. ~to many versions. of my presentations of my . idess, pregtessing from the
~nnclear to the coherent. . Thanks to Bill Ackerman, Mildis Berzink, - Andy
.. .Boughton, Dean Brock, Cl - Glap m&w Schaffert, Ken
"Weng and a number of other students for qu w‘glmgg My ideas and
- come up with the ﬂght deflnitions an{ m,:, .

The MIT Laboratory. for mﬁm W mn a stmuilatlng |
.environment to work in. . Thanks are ‘due for their W%ﬁhchl “support
5 facmﬁes in

3, 'shovwd a remarkabh

__Preparing this document, . T, I

- My parents. gave me . consmiaév!a mmmm dacoungcment
standlng by me when. 1. needed it ud m*ﬂ &iﬂ'ﬁ% in" myselt
through their confidence in me.*. o

| -Finally, I wish to exg:m«m ng %aagm %0 'rohy my
fiancee and wife to be, for patiently bearing with me for two and a half long

and difficult years, m:g me emouom :upmiw m !
“'believing in me. : e e

Table of Contents

A’b'tr.ct S 2 LR P 0PI PIN NI NERIINNSIDINN IS ERRISECHEFIERECIEOPOIRESISIES
mmm"aQ.ot‘i"cttoocoooctlo'cv....".“Vvlt'l;.w.."O“Ol‘t-ttv."o..'lotl
conmu Sevssesevecscsrsvons 'l'l'l!l'...'...l'lﬂ..‘..".”.’V.""“"""..O.‘".

Chm h M '.'Il.IO'.....l.'r"‘fi‘wﬂkﬂ'l&f.."ﬁ.'....."..‘

12. Packet wcliiter

1.3' W d O.0!C‘.""U'.I"UG&C"“‘ﬁ‘w".mﬂm""".'U'

1.4. mm&&m...........m.........,..,..........
Chapter 2: Pumiet Sy mmm--

z 1 W :7....'.0..'.I.lQ'I&"..'.’*q.G‘Q'GC.&Q'.O..*"".‘...".O.'
zz - & closer look at pecket m B T L

z'av m R R N R W I S O S SR S S A A S SR AT AT R S SN A S
ZQ aw m 'V'D!l‘.i‘l‘*""‘i.‘"l.‘%"..‘“i’..f“0...-.....000

Ch‘m 33 Je mm 4 SRR A S e A St
31 m.mmm PO E I T EEN RS T TP OECESSFOrOEs eesres e
a'z‘ m““ m ’.""‘V". t“"' “'ﬂ"’ WG rECCE O EG SISO

3030 m s s hisiens s @B e -wd.. O SIS e o B PGB -‘wo—’vv‘c’.vt e S U Ve &

340 . km 0‘0:.&0"...vou.-vr'obovvotonoavaowowoodviooocottvd.

Chapter & Spscifitutions for Parket Syit

41 wwm '..0.QV'.';'.'.Il.."'.l‘.l.".'...‘.""..
4'2' F L E S ES S rYEre T T Tt TeT RSt Y ESE
4’3' - mmé‘ mm '.Oﬁl@‘"'."".“".‘."’.'..Q"O.‘...
4‘4 mm m CEAR PSS EWE PRI S SO eSS e
R

. Chapter 8: Proving Pachet Systems Covroctc.cccu.....

5', m”&mm PEEC o PR CHERE §EE T g ettt oo
5-8. m m “m m ovoc-hce*ncwr&vu-o.u’-wuaecs.-vccw.awca
5.3. Correctness of a cyclic SyBStmc.vivvrervoncocseisancnades
54. Proof mamm,..,,.,...‘.....“.u...........,
5.5. mmww mm

Ch‘pm &3 m ic'ciﬁ'cv-twoociuvrﬂmﬁovvvwrw'odvcoy-oono |
61 mmofmmh v-ooo-'o...o.o-ooc-o-.--oo;vwoau.ootwvvr

6-2. Futmm 20000 LLL00000600CENREENEPINIODENNEEIENSONSEESTOSEES
6-3. M“M LU A A I I I I I I A A 0 S S AR A S B O S SRR R I AL A

T LT o

TIT zaass’a sa:s:” SEEEY

¢t h QN

Ql-lvoQ-lv@n(..wcov.itwrvoco&..vl.«h 5

nwm SR——

17
a1

CHAPTER 1: INTRODUCTION

1.1. System design and specifioation © -

'rhe i‘ields of computer hardware and software both deal with the
same fundamentai goalx bniiding systems to pert'orm desig“nated functions.) A
'hardwaref system is constructed from physical coxnponents whtie a software
system is realized by writing programs in 2 language Vimplemented on some'
computer As both hardware and software systems have grown in size and
capability over the years, their structure and .W??‘QE{ZQ-!{,‘VQ grown
tremendousiy in compiexity.‘ This has made the task oi‘ desig,ning _Ssystems
increasingly difticult especiauy S0 t‘or large. hiih-mrformmce systems. It is
important that both system designers and users have confidence that their
systems peri‘orm their functions as intended. System tgsting,debuagin&and
modification constitute a significant fraction of the time and expense involved
in designing systems.; The issues of makin; certain that a system being
designed will operate correctly are thus of particular importance to both

hardware and software system designers.

{

Verifying | the iogical correctness of syste;n designs has been
accomphshed in practice mostly hyt "seat ot' the pants" techniques. ~ The
drawbacks of such an informal approach are clear: _one can be intuitively
certain that a system design is correct but this is far from a guarantee of
correctness There are numerous "horror stories" about rystems that had to be
redesigned or scrapped because their designs had serious concegtuai errors that

went undetected in the verification process. Such errors indicate a lack of'

understanding on the part of the designers as to exactly what fuactions the
systems are supposed ﬁmhmm to- hawe''a’ sound uaderstanding of
the way a system operates, and in order to ha‘ sure that it behaves correctly,
it is necessary to make use of msmmawm‘amw
function. It is for Just this reason t}m thc Mum of formal
specifications has arisn. Specificstions are mmm uf the behavior

FES 2% H e ol
desired of a system, andasymisshownw hacen‘ctbyvmmng that it
tORRTIL A
satisfies its speciﬁcations 1.0. mates as it is uum w bohawo. Thm are

fratool

two significant bedefits that may be realized by um fomax mciticauou. :
First, it becomes possibh to develop fonnal vcrﬂicam wmxo;m which
makes it reuibh zoprovo th‘tsynommmcuymdmuum their

RS

intended ‘tasks. Second fomm mmwou provido a modol through which

P

complex ‘systems can “be homr mcmood. 'riuu. tak of sysmn d@
may be facmtated through tho stmly ox‘ fornal qm :peclﬂcauon and

k2R

verification techniquu.

Forml wﬂcction tec.hnitmﬂ mmt hc nnd le wmwu;
‘consmeung m Rature of ‘the :ymnu wu mm _For lacgs, complex
‘systems, the spacmuuou may become s0 mﬂm & to _make cOTIeCtRess
proofs intractably difficuit, Eomwr mu mhhm m h alleviated by
treating only thu ay:tom that uxisfy' "lte- mtﬂ. Bv unhtiu oa
appropriate system coniiraints that must h mhﬂd, m can mnxu‘y clam
of ‘systems that Bave more oxdnrly nd mucwud Wwii:h no fmll ucrmeo
in functional capability. Through Judlcw use of thu couem of nrucmrod

system désxs.n the mum duuncr can bo mnd of mrkxn‘ wnh mtom
that can be rore wﬂy undcxmod. ducribod and v-rxmd. |

-7 -

Formal specifit:at‘riéns'-h‘ax‘re been the éeniéi' of much research“a'ctivitly
‘Within the software field "[Rixsiti’fxi, 1672; Liskov and Berzins, 2"1976]. In
‘addition, an entire discipline known as structm'odprogummlng has arisen to
study ideas of structured system design and their ramifications on the
programming process tﬁijkstra,f‘ 1972; Wortman, 197'?] iigweVéf, there has
been relatively little research in corresponding areas of the hardware field.
One might explain this difference by saying that there is a much ‘greater
concentration of theoreticians sﬁé'diiliiihgf 1;xsoftwarethan hardware, but

there is a more crucial undeﬂying reason. Design costs ts for hafdwfajx"e systems

ET0

hiave long been overshadowed by the costs” of ‘inaterials, fabrication and
assembly. Once a machine 15 into prodiction, the design process is ended; all
further costs lie in replication and - ma’in'tﬂjx’i;ﬁée.’":"‘ For fhese éiiéﬂd'nﬁc reasons,
the physical construction of systems: has bsen the deminant factor in hardware
development. With_ software, on the other hand; desigii -costs have always
predominated; since: everything is rmoit pmv. - Moreever, -software
systems are designed for specific mutmim 15 thvw&ﬁcms -t0:.be handled
are changed; then the programs -must -often 'de Yewritten Or :redesigned.
Hardware 'systems are general-purpose in.that-for-s change tn application it is
the program. -and not the machine that is modified. -Sofeware is thus far more
transient than ‘hardware; which makes design cests em*éﬁéreﬁiméertant‘ for
software, It is thersfore mo: wonder that the:indtiatives for-studying design
and specification methodolegies have been -strongést ia the software field.

The rapid :Erevelop;ﬁéﬁts iﬁ semiconductor technologyover “the past
few Yyears are beginning to alter a\e economic balance 1n \' ‘hérd'ware

development. Integrated circuit 'chips can be mass-produced at extremely low

cost. Constructm eosu for hmlwan mums arxe dmmau d:amttcally as
new fabrication techniques are m intn m Stm Mgn cuu are
rematning essantially the same, thsy are hncomm mare and more st&ntﬂmm
in relation to system development. 'rms m tlut lysum duign uchnxques
and approaches will souy be on the cujting edge of hapdware technology. For
large and coniphx symm, whoa lq,ical fnmml are upocuuy dgtﬁcun to
comprehend and work with, tho ayproachu to m mn are even more
crucial. It is thcrtfon important to open up a thorangh tnvstmuon of
formal specification and strucmrod system dutgn Jnathodol

gies for hardware
systems. And sznco much of the mmaivo m th;a Aarea has come. from
software research, it u wunl to loak for ways to, gm;r new. uchmlogiu
used in sottwaro design to tha hu'dwm mw

* A particular class of systems cailed packet comamsuicstion -gystems,
‘which aze descsibed in the next ssction, has beex vhesen ss the domain Tor
the research pressmted hese. Packet commuiication syetems are based.on a ‘sat
of structural properties which prowide fon::the Dutlding of large,
hl&hemtermoo systems and which. alse support the development of a
theoretical framework for formal specification and werifioation. ::In this thesis,
‘we shall develop techaigmes far formal mawm of packet
communication -systems. Ws shell also: taks 2 look -at how the formal
specifications may be amplied towards verifying the legidsi correctiess of these
systems. Becowse these has been 20 litle formal study:né; methoddlogiss £or
hardware system design, spectﬁca&ion and verification, the research here may
be considered as the first step 1n & ngw direction. |

-9 -
1.2. Packet communication architectﬂro and its biciigfound

_Packet communication architecture is a set o;f;;princagu according to
‘Which systems may be designed and structured.. The aystems satiafying-these
principles are collectively . known as -pecket -commumpiegtion systems: - for
brevity, they shall also be. called. packet systems: A8 iRfrodvced. by Dennis in
[Dennis, 1975b], packet systems . are . esgentially - interconnections of
independently functioning . units that interact only by sending each other
packets of information. = The infq;m;ﬂog contained .in & packet may -have

arbitxqrily ico‘x;;ple;: structure..

" In this research, we have taken a particular point of view,
regarding packet systcms as being physically cemposed fremhardware units.
Some ‘of the important goncepts underlying packet comsmumication architecture
are particularly advantageous when applied to .the ‘design and’ ithplementation
qf_ hardware systems, It is equally valid, -though, ta implement packet.
systems in software, There are no existing technigues for formally specifying
or verifying packet systems viewed from. the..software standpeint, 50 . our
work here :may also. be seen -as -an -advance in -the study at&:.‘ﬁ\sofw\?are
specification as well. .

There are two particular notions from the study of structured
programming that are directly supporied by the principles of packet
communication architecture: modularity ‘and hierarchy. These fibticns play a
large role in the suitability ‘of applying formal ‘specification ‘techniques to

packet systems.

- 10 -

composmé thmtmm nnmuuad modules. The basic ides is that the
use of a module 15 separeted: frofr the imtradl Getatty 'of “its tmplementation.
In this way, & motuié sem be dovilépid Wi chamged Withui ‘affecting”othier
modules. The conseptd -of “todularity S - SisotBME 48" mere detail lin
{Myers, 1875, Yourlien, -1978; -Dennis, +¥8b]. ‘Axekastiply of a mechanisin
for supporting medularity -im software ‘systems 15 ‘the 'mdtion ‘of dits
abstraction [Liskov amd ‘Zilles, 1974]. A désirsble dasigd ‘goal for inodular
systems is that individusl ‘modules- e aF ‘Seifscontained “ibd independeént as
st ‘among different

possible. This goal can be realized by making®liitis :
modules as simply. . structured as pessible.. through:iclean, well-defined
interfaces. . _Although the. advantages of WeduMEly SramaIed sxsems ara cleer,
problem. We shall not.investigate this roblem bepe...

the issues of .de

The wetion of Markrcky 16lates*to how iystenti” iy be viewsd and
_ | ‘system” s Obis that' Wiy be stratifiba
into * differemt levels ‘of comceptusl’ detefl. m*fmmm of
mechanisms whoss imiernal Qwlls aré hfles wwad' ih lower levéls. ~Eath

described. - A ‘Nierarchiéilly structute

mechanism within the system is used at higher, more abstrait tevels than
where it is definsd. Ia this way,.low-leval .detall is. isclated e that it will
not interfere with. highar-level MM vienws. -of the spstem.. —The. basic
principies apd concapis of histaschy in systems. haue bess, preseniod L) Pennas -
(Parnas, 1974; Parnag, 4876}

The properties of modularity and hierarchy make systems in generalv
easier to understand and work with. Each modulo ‘in a hierarchical and
modular system has a set of neighbor" modules with which it communicates
The behavior of a glven module depends on the conventions by which it
interacts with its neighbors, but it is icéﬁiﬁietexi’ ‘ﬁ&iﬁe’ﬁdent“ot‘t the internal
characteristics of thé ‘éther modules in tlieléys:ienz; Consequently. the designer
of a module need not worry about “what goes 1nside any ‘other modules. the
only relevant concerns are the internal constructlon and the interrace
conventions for the particilar module being tfesifned " In this way. design
{nformation is paftitioned along the boundaries of the modulés, insulating the
system désigner from irrelevant detail. Thisinsulitlon "{s ‘further enhanced in
hierarchical ystem structifes. ~Each Yovel of abstraction in the hierarchy is
isolated from the other lévels. The déslgner of arnédnle has to kinow the
external belisvioral' characteristics of thesubﬁiodules “from which the module.
is ‘composed, but the {ntérral stractures of iﬁe‘“mﬁmodules sﬁoﬁld be totaily
lrrelevant to the desig‘n of the given module. Tlms, systems that are both
modular and hierarchical have two dimenslons alonz v_vhlch deslgn details are
partitioned. = When the" structure of’ ’;aé‘E’ﬁiufg“rlﬁreventsi“certain design
information from affecting areas it does noiooncern, the 'systern riesign' ‘is
simpler ' to' ‘understand. .:Comceptual ‘ simiplitity: 4s-an - impoitant design goal

whenever. system specification and verification: are to:¢ 3daken into account. -

Although the concepts of modularity and hierarchy have been given
far less tliebretica’l';'"iii(tentfiuon"ln relation toha?dwa}ethan software, they ere
almost universally regarded as fundamental to good hardware design pracuce

Hardware systems have for a long time been built up from modules such as

-12 -
adders, mmthMMmuammvmef
otr-the-shei:mmtnmam Atsm Icml c!
abstraction, a tntcal mtcmcompm is mpcad d t W ‘some
RAM storaco. 1/Q d*rtms and intwfm M Each ot these componsuts
can betmudaawmmmmmwmum
For example, the processor has is submodules an agder, various registers,

gattng mgic.mmmmmm Mammdum

can 1nturnbctwmm mmmmmmmm
design exhibits hierarchical sad madular ~ In gemersl, these

B

properties are mm by Mlipnt W M‘ﬁ. but M are ijcun o

achxeve when W hm WMM systems. Im such. as virtual
memory, multi-user enviroaments, parallel pogmamming aad the sharing of
data amom&fmmmmtmmwmw
implemented in practice either hy simulating them. ia_ seftware or by. adding
Dew compoRents as a(mthom to a basic Vu ann machine. .. the
tnteractions among thue adhd Components am anyiiu , but modular in.
nature, which is ope of tho rums wny hm mgmtn; sxsms are. SO
difficult to build. Ptcht

$h R

k] . ¥ e sl b .}‘s,é.
provides direct mmmt for Merachy ana m,eduhzity

Packet. spatems are both mnduler ‘and. Mesarchiesh in structuze. The
modules in a pacies system: ” sapiy the isdependently: spesating - units dvat
comprise it. Wm can easily be pmm 0 that thgi: modules
correspopd; to the cnmwuunm mm W& m of the system.
Further, tmmammmmmmwmm
modules that fom a packot symm to be \qul Mtvumny as muma tha

- 13 -

may themselves be decomposed into interconnected component modules. This
hierarchical property of packet systems provides some‘oi‘ the ma,ior conceptual
foundations of the approach to specii'ication and veritication that will be
developed- By making hierarchy and modularity ’ explicit packet
communication architecture ‘not only facilitates formal specii‘icatlon and

verification. but in addition serves to encourage good system design practice.

NS

One of the most important design' goals , for_ pac-ke_t systems is that
the modules within a system operate as independently as possible In support
_ of this goal, it is required that modules communica‘te. 'with each other by
passing packets asynchronously This principle eliminates the need for a
centralized control facility to coordinate the action oi' all the modules, which
greatly simplifies system structure. Moreover, it provides for concurrent
operation of the modules, leading to enhanced system performance. A module,
‘while awaiting response i‘rom other modules in order to peri‘orm certain tasks
can busy itself with other tasks for which the required responses have
already arrived. An operation may proceed as soon as the ini‘ormation it needs
is received as opposed to what happens with conventional architectures. in
which operations cannot be performed until";they are explicitly initiated by
the sequential control. It is this distinction that provides i‘or concurrency and

thus allows packet systems to make more erfective use of the available

resources than do conventional large systems

The microcomputer example given above exhibits a number of
hierarchical levels of abstraction. It may be noted that;,kfthe_interfaces between

modules at different levels of the hierarchy have completely different

- 14 -

characterlstics. M the top lovel. one deals with trmmlssion ot applications .
data. within the mlctoprocoaor. mrcroinstructlous are passed and at a still
lower level, it is huic logical slgnals that are pusod and gatod In dxgltal
systems as they are currontly doﬂ;ned lntorfaco protoools depend on tho speed
at which the varlous modulos procm control and data sl‘nals 'l'his

4

dependence limits tho degreo of modularity that can _be oo}}igyod tn oaistlng

systems, slnco a modulo's lntorface wlth its outddo world is not free of

internal speed and tfmlng considerations.

Packet sy:toms m not subjoct to mch wnitanons; one of thelr
important propenios is tlwt the tlmlng chmrlstlos of; an lndivtdual modulo
in a packet system do not affoct tho opontloa of any otlux' modnle A
module ln a packot symm can bo royhood wlth m unit that porforms
'the same task ordors o! magnltudo tm or M M tho ett‘ind module.
and this change wm not alter tho logiral funcuoniu of tho syxtom. Packet'
'systems are thus mod lndomdont. which romom fmm tho dosigner the
burden of havln‘ to uko into ccoount tho lpud ‘f{d,) t_'lmln{ﬁ?ropertlos of
| system compomnts ln order to muro loglcal oorroctnm. Spad mdependence
enhances tho de;m of modularity 1n a :ysum and thus providu an. addltlonal
velement of structurm; in systom:. which furthorﬂ muts'sw;:stom do:sls.;gn’ and
vem‘icauon. It should bo noted that a mtom must oporoto asynchronously ln
order to achieve tho goal of speed indopondenoo Packot systomx, smco they
are speed independent, can accommodau a unitorm protoool tor communlcatlon
of packets amohg their component modules. ‘l'hls unlformlty of interface
provides the basis for the method of system spocﬂ‘lcauon that will be

described here.

- 15 -

" The idea of building ‘systems by connecting independent modules

under an asynchronous and speed-independent discipline is not mew. An early

- exposition ‘was given by Muller [Muller, 1963]. There was a 'ixiajor reSGarch

effort several years later directed towards rnlizing aystoms that wero to be

15

physically © constructed ' from hardware units' caued macromodules

* [Ornstein, 1967]. . Patil has investigated logical designs for modu'lés‘ With

which asynchronous systems may be ‘built [Dennls and Patu. 1971] and more
recently he has been working with applying progrmm’ble logic arrays to this
task [Patil, 1975} All of these designs differ from packet communication

“architecture {n that control signals and @ita values are passed through the
- systems separately, tﬁ‘veﬁng on fwo distinct Bots of communication pathways

‘ ‘ln packet systems, the’ aottons of control and data arc unu‘iad enmtnating the

need for -separate pathWays. This is yot anothor respect 1n which tho

principles of packet communication architecture ao:v_o to vsimplify system

-structure,

' “'Since 'packet systems operaté cémcurrently, a significant area of

application for packet communication architecturé lies in realizing computer
' ‘systefus that provide direct support fof inmm pmmnmu If different

‘parts of a program ‘can be executed in patallel, then it is advantageous to run

the program on- a machifie fof which the ' ‘hardware can overlap their

execution. In this Way, one can optimize runningspood and utilization of

" resources such as" memory, procossind ‘elements and poriphoral dovices T’he

stu&y of data flow computation has procuoly thls goal in mind Data flow is
the representation of programs “in such a way as to make the data

dependencies and ‘inNerent ‘parallelism’ oxpucit-. “Given any two ‘operations 0,

- 18 -

and O, in a data flow program, it W be Wmt from the
program stmmm Mm' O, m h m m D;, whether O
needs results of O, in order to bc Mwmd, or . whether, .Q, and Qg are
mdependent (can be ‘done in mnuol) Qm Tiow W&W has been
treated extemiwly in ﬁa mmtm; fﬁ' boﬂx W an4 refsrences, -see
[Dennis, 19754 Weng, 1875]). Substantial offort has geme into studying
~ designs for macmao; that can directly and officisatly exacute data flow
progiams [Rumbaugh, 1976; Dennis, 1974 Depais, 1877; Arviad, 1875;
' Plas, 1976]. on such a machine, thers i 50 sequencing-ef iustructioas; an
instruction may be executed sny time after its. ope MIfaW"
This is essentially the same principie as the ohe uRdeziying. the .operation. of
modules withia! M system; umm Spaoapta. 81 mm have
béen directly mnmm.d tgy the » mh in m mmmmms to

implement d&u flow.

The conceptual compatibility bstwesn the ideas of data flow and
Packet communication architecture yields a natural commection between them.
In aﬂpack.et:‘ system, tho activity that tglus place within a module is initated
by the arrxval of tht aypmpmh date.packats. M iz no explicit uw&ng
of operations tn data flow programs, and it should be. practical to implement
vthem on systems that do not require ordered. ssquences of instructions as their
programs. This is ,one of the mttmun‘ Wl boh.ind the conception of
packet communicatmé &rchitectun M“‘; ot its W age far Imm Dew or
original, but it is tho mmtlon that makes ttmiubh for. yealizing data
flow computation ia h;:{lwan. Conversely, data flow is a natural way w

represent programs. that will run on processors dssigned according te .the

‘principles ' of packet communication erchitecture o Thus, there 'is a
commonality betweet data ﬂow and: packet eyetenu thet eriees because they
share similar: goals-and principles. e

‘There is one more property otpecket syetems that should be noted
here. The behavior of a packet systeni (or oi‘ an‘y‘ oli: | its modules) is
observable in terms oi‘ the packets it sends out in respouse to the packets it
receives. In general packet systems are nondeterminete. which means that
given the pacKets received by a module, there may be severel distinct but
equally valid' responses to the input Nondeterminacy is one of the factors
that make the behaVior of packet eystenu dii“i‘icult to understand and
formalize. ' This will have a definite beering on the approach taken here

HEr O S T i

towards specification end verii'ication

P S
=i

'i'his' concludes‘ the overview of | the besic ideas of packet
communication architecture._ The principal reaepn gnity Pecket systems ‘waere
chosen i'or this research is that their design is structured in- a way that
supports system specitication and verii‘ication. ’rhe next section presents an
overview of some of the ma,jor concepts and techniques that have been

developed i‘or formai specitication of computer program; and s,xgtems

1.3. Formal specifications

Much of the research concerned with formally describing the
activity within computer systems hes deait with Pl’oll’amming language’
specifications. 'rhere are eesentially three basic epproaches to describing the

behavior specii‘ied by a piece of program text: axtometic. denotational and

- 18 -

operational. Each approach may be amuod te mﬁm the LOTTRCIRESS of
program taxt as wou as uwvtu asa pure d;ucnm&w m

Axiomatic specifications capture the,-:;m‘rﬂf exeuting @& : program)
by comparing properues of the system s_tatc bc:‘ora and aftar execuuon The
paradigm "if 'assertron A is true bet‘ore progrm uxt 1’ ia execuxed then
assertion B is true after P is oxacutud" ducﬂbw the mng of program text
P. Special rules of mforence are ut up to &escrtb- the meanings of yarious
combinauons of program um in mm of their Wu‘ _meanings; ;hese
rules incorporate tbe basic ammuc gropatm of wnstmcts S4ych as, 1mauon
and condittonals. 'rms ap;roach bocm luwwn mrom the work of Floyd
[Floyd 1967] and Hoare [Hom 1969] m which it was, used to prave
correctness of simpla ﬁowchart-nko pregr?m that mqi _ad integers. The
assertions thcy used related values of pragram m ’i‘-h&ro has been a
substantial amount of more rocent rnmch m mmauc Mications
Dijkstra [Dijkstra, um] hes ‘Built up an entire mmw of Wammms
around the ideas of axiomatic spocit&aﬁon. thnkl lﬂd Grus [Owicki 1976]
extended Hoare's tachniqucs to parallel procms; thetr mcruons mde use of
auxiliary ‘state 'variables to k«p tnck ot inurpzucas coordinaticn. Grei:‘
[Greif, 1875] took a dﬂ't’aront approach to pnralhl mranu, using a parual}

time-ordering on events to express coordination

Denotational specifications captum thc effect of a program by
viewing the objects thcy modol as abstract mthmticai nntmes This
approach providu a formal maummattcai Mrim of the cemputational
notions being trcated A.n mly denomteml tpproach to mctficauons for

- 18 -

programming languages was the application of a mathematical formalism
known s lambda calculus towards describifiy the semantics of Algol 60
‘programs [Landin, 1965]. The best knows work in dexotational specifications
has followed from the research of Séstt and ~ Stfachey [Scott and
Strachey, 1971]. Mathematiéal results from latticé ‘théory are used in the
construction of complex domains over Which p&o{um "ate represented as
functions,.. Programs- are proved. equivalent by showing:' that their functions
coincide. A tutorial ‘presantation of the ScowtrStrachey -approach is given in-
[Tennent, 1876]. = - :

Operational specifications ‘deal ‘With the chinging states within
computer systems-as computations are porformed”}““fhts 15 done by means of a
State-transition model in which a state Tepre¥ents information present in “the
system at a-‘given moment in time. “The abtion of°a program is captired by
the sequence -of transitions of the model. “Theé' uqticﬂﬁe ‘of ‘states the model
passes throtigh as & program is executed defities ‘th¢ ‘sétich of an interpreter
for the program. The idea'of using such ‘dn {nté¥préter 6 define the meaning
of progréwms in some language origfmated with McCirthy [McCarthy, 1962]. A
well-known approach to operational spécifications s the Vienna Definition
Language (VDL) described in [Wegnet, 1978’5], whidh Uses an)"tﬁtérire’t‘er that
manipulates ' tree-structiréd system ‘states, Dennis' Common Base Language
[Dennis, 1871] is similar, dealing With “incfe‘general dlrééted graphs in place
of trees. Another approsch td° cperaticital”’spetifihtions 'is due to Parnas
[Parnaes; 1972]. - This approach dininguuhﬁiivvf&i;m&é “of “operations: tffbse
that yield state information, and “those that“alter thé state of the system.

" 'Parnas applied his approach to operations on abstract data in programming

- 20 -

languages; this was extended 10 the domain of systems in. [Rolinsen, 1875].
Verifiéatiop is achieved wttm an operatiopal framewsesk by psoxiag that the
behavior of the interpreter in guestion is equivalent to the behavier of one
thatv is known to perform thn desiradtum The ideas underlying
veriﬂcati#on ‘by) mtarpmur ‘equivalence were developed by - Milaer
[Milner, 1871] and are also presented in [Wegner, mmj

as software specification, thers has- beemw a subwtamtisl -amount of study of
computer hardware description languages »(cm';). The approaches taken
towards hardwarg spcctﬁcatian have boen m sptirely opsrational. The
languagé APL, befm it was ever implemented as a programming language,
was used as a hardware description language to. specify the gperation of
IBM/360 computers [Falkoff, 1864]. Another CHDL, called ISP, was developed
by Beil and Newell [Bell and Newell, 1871] w describe the operation of a
large number of differemt. computers. Both of shass CHDL's W their
target systems at the instruction set level, trssting machine words as a basic
data type with matwm for byte extraction and bitwise arithmstic. and
logical funciions, On the other hand, the language PMS, which. was also
developed by Bell and Newell [Bell and Newaell, 1971}, describes the stxuctuze

of computer systems .in tcrm of their com AL processors, memories,

controllers and 1/0 devices, This is an axunple of a CHOL describing systems
from a h_;igher-lqv‘el concgptual point of view., mgmemew, 1974]:is an
example of a lqwet-MI CHDL that defines meSMrpt;elew,mh' as
multipliers by specifying them as, interconnections af basic lagic gates,

-21 -

Most of the CHDL's have been daveloped with two particular goéis
in mind: automated system design, andsystexn testing by means .df
simulation. However, the microprogram certification project at IBM vhas
developed .an approach to hardwari system ‘specification that is directed
towards ‘formal verification of system designh {Bfrman, 1874]. For both the
instruction execution level and the microprogram lével, a VDL-style interpreter
is used to ‘iupply ‘formal Spoeiﬁcaﬁm. ' Phése ‘¥wo interpreters are then
proved equivalent in exactly the same 'way that correctness is proved in
operational specifi¢ations for programming languages as described above. The
proof techniques for this approach = are additionally described 1in
[Leeman, 1976; Leeman, 1977} Rumbaugh takes a ‘similar approach to the
IBM group - in - proving the -correctness of a data flow processor
[Rumbaugh, 1975]. - He shows that an interpreter: for -his machine is-

equivalent to one that models the operations in a data flow language.
1.4. The approach to be presented

The research in specifications that has been reviewed here cannot be .
directly applied to the task of formally describing and verifying packet
systems. The pxinf:ipal .reason for this is that conventjonal. techniques are not
equipped to handle the asynchronous. operation of..packet saystems. The
concurrency in packet systems makes it difficult ‘to wverify their correctness:
in order to establish some property of a packet system, it must be shown tfue
for all possible sequencings of packet transmissions and receptions within the
system. Most aexisting techniques. for formal spegifications do not. lend

themselves to this kind of task. Moreover, the notion of sequencing of

- 22 -

actions. which is fundamental to nearly an tho amoachqs that have been
taken towards t'ormal spacmcatioxu, 1s not proum in thc context of gacket

fxs

systems

There is a descriptive formalism, Petri nets, that has besn dswvelopad
specifically for specifying asynchronpus: hebavinr withitt systems. - Petrl: mets
[Petgrson, 1877] ave ;dizecied - g2aphs - in,; which marieera: called - tokens : pass
along the arcs and. through. the vertiees 10 model thacocourgsmce of ‘Varions
events. . Although .they have recsiued . mueli: sttengion in /. this m
(Patil, 1970; Hack, 1876], they cannet e dirently -applied 10! Venifying pacicet
systems. .Petri nets conmey only comtrsl.imformation for use in: coerdirating
concurrent activities; the.nature of these activities;is mr:mxmm ~In
Particular, they do not- treat data. valuss $hat ave. pagsed:. within patket
systems. Also, although- many mathematical apeperties: havie leen -estatilisived
for Petri nets, po.methodolegy: has besn: mummmw
system verification. Most of their pnctical Mns have been in
connection with simulating uynchroms bchavios rathcr than provins
Properties of systems.. Far. these rmu,mm de Aot seem. to meet the
goals of specification and verification. of packet systems,

Within & peclost systems; the ‘oddles™ reéeivé ‘and process’ ‘friput
packets, “:gexerats - new - packess - for - oufput .dnd’ +mend’ them' out, all
asynchronously -and i parallel. - The Kind-6f appioech et ‘deeims most suited
to specifying this kiud..of -Wshavidr: is basically® operattons} in fature: “The
state of a packet systemr @esorides wiiich puthwts have been passed ‘between
which modules {(and muyr-4lsc cdnvey:any-sosrdination nfefmation’ relevant 1o

- 23 -

. the correct éperatien of the system).: - However, -unlike conventional
operational models, the transitions betwesn states nesd to be geverned not by
an externally supplied sequence of instrustions to be progessed: by the system,
but rather by the presence or absencegf. packats as needed “for processing.
This means_ that an. ‘op_q;anonai model for a packet:system must-take into
account the many possible sequences of:axecwtion.<hat could:arise from the
flow of packets. .

Describing- the intermal operation “of packet sy‘étem; is not sufficient
by itself for Verification purposes.” There ‘must &lso be a method for
- specifying the logical function a system is expected ‘toperform fx‘hi’s‘fu'rvu‘:jtion
concerns the systenrs input/cutput beliavior as seen bythe 'out.;ide world in
" terms of packets Trecetved and sent out. Ofihethrce;kinds Of;:iappl;oadhes to
specifications -as disciissed ' in‘ the prev‘loué §ecﬂon, ' 'k’a%de‘noté‘\tioxiél ‘app}roach :
“seems best suited for our ‘needs becausé { Ein be sasily tailored to describe
sequences of packets that have been “passed Vetwesn various ‘modules. Because

‘of this flexibility, a denotational ‘approsch will also interface nicely with the

P et

“Rhierarchiedl structuring of packet systems. Thus, we shall be working with
two kinds of specifications for packefsysfema } 5&;&13;51'1speci”fications to
~ describe the internal opexatian, and denotstisnal spiicifitations to describe their
_behavior in relation teo.the outside world:. Vesiffomion of corréctness for a
packet system will sbq‘fa'dom‘enatnmd: by proving M ‘these tm**'ms of

specifications for me Ssystem -agree. wuh each wther,

" ‘A“recent research effort is specifically directed towards formally

describing the structure and behavior of packet communication systems. ;i'he

- 24 -

descripiions ave expresesd ia a formallsm caifed ADL (ffchitecturs Description
Languags), which is introduced i {Leung, Y977 Thers @ Wi ways in
which & system may b Sematbet 8 ADG: ‘stroctaially and’ behaviorally. A
,arucmdﬁmmwmwhw as an
interconnection of -medshes. A DekivieraF<deiciiption I ax operational
charecterisation’ of: the: systemy's- Smtetactivs 'With W' outside world, descridiag
rcceptm MMM«WM The notation
the underlylsg sementics are siso. bussd o the yeincigles of dae flow. As a
first umhwmummaaxmtm ADL is beth
helptul @d (lluminsting. _However, the copeept of Mecilying the. interpal
'omnmunmmmmmwmumm
framework. This ides, which has not beea studied previously, is crucial for
'wnrwummormnswmmm
The development of this concept is the mest sigailicant comtribution af our
mel spprowch o W meed in our. trestment for
spoclfyiuth-maqmtwmwhmmn\lﬂ
thntmcmummrmum

dmrtM&.MMﬁmmm%M The notion of
mrmtmh%“n”xhwmm
composition of packet systems is also presusted. - Chipter 3 predints the
denotational part of the packet system specifications. The bepavior of a
mntmcmutmwyatmu-mmﬂmw;m:
itmdvuulnntuﬂtluwmmﬂumhumtouthm

- 25 -

Chapter 4 motivates and defines the central concepts of the research, giving
~ an operational chl'ractcrﬁatioli ot the ictkms that take place withii; a packet
s&sfom. Chaptor 5 shows lww the lpocmcauon model dﬂrelmnd in the two
precedin.g chaptcra mqy be appliod to tho task of mﬂ‘yln; eorrectness of
mkot systoms Thm umpla systems m proven eorroct, and a theorem is
prmntodwahowhowthcmodelwbunmpnﬂodinmtdncms

2.1. Overyisw

mwmmm«mmmmmu
wiuboclucumodiaw ‘WMMymmdnnik:twsun
and devolop s mm for formally mu M structural é;npoimon of
such a system. We will also informally introduce the concept of correctness
for packet systemas. mmmymmtwwmmpm

corrwtmmnhmmmm&!ud&

Packet commuaication architecture is a discipline dealing with a
special clus of m known as p-chc cym: Packet aystems are
composed of independemtly functioning units, ksown as modules, which
interact only by passing information to each other. The imformation is passed
in the form of units called packeis. There is no centralized faciiity for
coordinating the actien of the modules. - Data processing and communication
within packet systems are asynchronous, and the various modules operate

concurrently.

In a packet system, the various modules are intercomnectsd through
one-way data paths known as channels. A channel connacts two moduln. in
a specified direction and is used o pass data from the first moduls to the
second. Channels leading into a module ae called fnput channels for the
module, and channels leading out are called output channels. A packet system
has its own set of iaput and output channsls connecting it to the outside

world. The other ends of these channels are never explicitly designated.

The structure of a packet system is determined by the way it is
composed from modules and channels, and always remains fixed for a
particular system. Modules and channels within a system are uniquely
named., Figure 2.1-1 depicts a packet system DAS composed from three
modules D, A and S. There is one system input channel X and two system
output channels Y and Z. The internal channel U connects module D to

module A, and channel V connects module D to module S.

v

R

Figure 2.1~1: A sample packet system DAS.

All data treated by a packet system appear in the form of packets,
which are passed along the various channels of the system. Each packet
carries a value of some type. The modules in a packet system all have the
same basic principle of operation: a module receives packets on its input
channels, processes them internally and generates packets to be sent out on its
output channels. This principle applies to entire packet systems Jjust as it
does to their .individual component modules. Packet systems are data-driven

in the sense that the progress of a computation in a packet system is

-.28 -

determined by the ‘passage of mm thmm x.po WS,

There are two ingredieats wmch_:gam determing the ‘behavior of
a packet system: its structure and the behavior of .its ‘modules. “Thus, -for
. instance, in order to describe how the system. DAS .agts, ong must fizst decide
what the modules D, A and § do. We mow describe the hahavior af these

three modules.

All three modules sessive wnd pass. Integer-amiued paciesss. ‘Miodule
A, upon receiving a pagiset frem its .impmt:cieaumel U, «ililis onw to “thve 'vilue
and sends out the imcremented value as a packet on its output channel Y.
Module S bcham identically exoept for asubtracting one instead of adding.
Module D duplicates the packsts it zeceives on X, ssnding out identical copies

on U and V.

Given thm doscrtpum it is not hard to figure out how system
DAS acts. Anymmt mnt‘tmi(hmwmwumv
The packet passed on U will be incremented amd ssut out on Y; the packet
passed on V will be décremented and sent out on 2. Thus esch packet
received by DAS causes two packets to e generated: a.packet with velue one
gréater on Y an;i ’;.Wt with value one less on Z.

It may occur 10 some zesdars hevs thet thess Cheracterizations are
incomplete. ‘Thon As ambiguity da w wioat happens ‘when ‘sevVerdl
Packets are to be progessed in ssguance: .in wiiet «order -are restliting ‘packets
generated and passed? JIn our exampls 'we ‘usn resdwe such ‘questions by
stipulating that the xelative order of packess ot & Uhaunel is ways M

- 29 -

the next chapter.
2.2. A closer look at packet systems

In this section the workings of packet systems will be examined in
greater detail. The first thing we discuss is one of the fundamental
properties they satisfy: the internal resources of a packet module or packet
‘system may be allocated and utilized in any aibzitz"ery'mamief as long as the
specified operations will be performed correctly Consider, for example, the
system DAS from the previous section when itfi is in a state depicted in figure
2.2-1. An input packet with value 2 has been received on the X channel and
processed by the D module, leaving copies of the jiecit:et on channels U and V.
Another’ packet With value 5 is still waiting on channel X to be processed by

the system.

f; ------------------------ 3
) i b
i U l: by
i - { -
xi _/-g,& E Ld
5: ° v :'z
1 t
] 's) >
el O
ol]
leconeccrnrnsanoeee - J

Figure 2.2-1: A sample state of sys’teﬁi'DAS.

There are three actions that should now be perforxned within the system:
(1) module A a'bsorbing and processing the packet on chennel U (2) module S

processing the packet on V; and (3) system DAS accepting the packet from

- 30 -

channel X and initiating its processing in module D. The crucial _property of
packet systems exhibited here is that these thres actions may be performed in
any order, serially or concurrently, and the celsest m of ‘system DAS
will be completely independent of wh.auwr partumhr ordor is choun It is
this property that mlus the behavior of packct lyttems gomnnely

asynchronous.

We can gain a bettar »upderstandigg. of theacuon of packet systems
by taking a more dvetrail‘«‘l vigﬁr of the ‘gﬁp.c_:xg‘_t;qn ‘,qt mpjr wmpomtmodnhs
When a modnliﬁ receives a packet from onoof ig_tgyut channels, it begins to
process the packet tq_t@rﬁa;ly. Sometimes the only _effect of the packet's
a‘bsorption is that the ﬁzodnh's internal ltatomy changs, Ia general, though,
the module's ummucl may require that it gensrate ona or mora packets to be
sent out on its outpﬁt channels in i'cply to the packet received.. The
sequences of packets gonerated by a module in reply to a packet received are
said to be the module's response to that pucku. It is important to note that
a module's response to a wucuhr packet may dqnu on previous packets
input as well as the Mmm oue. There may be an arbitrary finite delay
between the time a module receives a packet and the time the module
generates -and sends out 1ts response to that packet. The fact that packet
modules and systems must be able to _tolq:j_a't‘of;‘imch delays is an essential

consequence of their asynchronous operation.

There is a special protocol that must bo fulfilled in packet systems
for the transmission and ‘receipt of mkets through thc vuious modules and

channels. Suppon a chanael C connocu nodulo Ml to modulc M2 as

illustratec here:

Figuro 2.2-2: A channel in a packet system.

It is desirable for module M1 to have some way of knowing when it has
successfully sent a packet out on channel'C." The céiivention that has been
adopted is that when a packet sent on C from ‘Ml 1 réceived by module M2,
M2 will send a signal to'M] on chinnel C ix' the Féverse direction to indicate
that it now .has the packet safely in hafd: 'Suéha signal is known as an
acknowledge signal. 1t is. not_until Ml receives: an acknowledge signal for a
7 ?articulgr Packet that it knows.it is done with;she:pracess of generating and
sending that packet. .Thus, from..the point: of.wiew:.of :module ‘M1, there are
three discrete staps in the transmission.ef a:packets.generation, sending-and
recé,iptq of acknowledgment. . It should .be. ;@c;ed that. module M2 camnot
generate output to packets it rec_eiy,es{ from chanznel -C.until it has sent back
on C an acknowledge sxgnal for thosa packats Thero is a caveat with regard
to acknowledge signalsx although they are sent in rc;ponse to every, packet
transmission in a packet system we regard tham as part of the hardware and

‘ot available to be manipulated by systam dcaigners o

characteristics as transmission media. .The ﬁxﬂ. | sieapieat, is that any time
a packet is sent out on a channel, it will- eventually -be received at the other

end. A packet generated to be sent out from some module in a packet system

- 32 -

can never be called back. This means that whmr nmmrates a
packet to be sent .cut, it will receive an mem xaclut,
within some finite span of time. It is usumnd ‘that the nhmnals never
"break" and that mcknéwledge sigaals will alweys ‘be ‘Seceivel Ly the
appropriate modnhs Failure of muehlnum tor tlu m of werification,
invalidates me emtu m fmm The .m nf Jault tolerance .in
systems are beyomi the .scope .af this vesssrch. “Thas, patket eamanunication
. architecture zq;mm ‘that evexry kst gepsresad by seme zZaodalle: amust
actually be sent out MW ‘ithin aome Sinke sioe dntevusd. It
should be noted thet this Faguizement is.a Aensibamiion of mEmstaas Mither

A socou impartemn geoperty of Sfianitnls s -ttt 1t 'a moile receives
2 packet from jone w3t dnpitt thennils; mwm ' nbosit Maavé Deen sent
out .on that sthanmel at attke grevtths Hmé. s, ‘reidaile ‘M2
may not Tessiwe & Packet Mom dhaneil S nilies Meudils W1 Tl difesly sent
that packet out on T. Asother “wiy 'of stating Wils ‘proparty is that ne

& third cinucmistir: o‘rchnnmls.ts thlt theyantu mo quauu
which munsthutﬂthenmﬂuhﬂl mm-mx n;tfo{n channelc
and thennndsmtmmtymnm(:nnmnm M‘MQ must
receiwandwknnwmaxbafmy. mmmmmmpm that

g . S Lt Te et

- 33 -

Physically speaking, this assumption is not roalizablo 1n ganeral because no
real devicé can have infinite capacity. lot alone a hi;h—spoed transmission
medium. However, if we assume the unbounded buffortn;, then we rule out
the possibulty of system doadlock coused by packots pmng up in cortain'
channels and lnhiblting further packet output into those channels Unbounded

‘buffering is therefore a convenient assumption to make.

Ftnally. we ‘shalrl assume t_hat ,_forr‘_ oach channol i_n, a paclgot system
there is a oestgnated set (type) of packots thatl may be passed on the channel.
For examplc. one channel may carry cnly intogor packets w}ule another
channel may accept only packots that consist of nn oluploxcc ‘Bame together

wtth a correspondtng 1dentification number..

There is an extremely important property:of packet systems which
we will be txoatfng, nunaly,nopdg;gmjmx, A -'Jnoduh- or system is saio to
be nondeterminate if its semantics: allow . two-.or more distinct bOMblc
responses to a given packet input. A simple example of a nondeterminate
module is one that models the toss of a coin. It has one 1nput channel and
one output channel, and its response to any packet received will be a single
packet with either the vcluq "heads” or the walue "tails." The choice is
arbitrary ann independent of the inpyt packet. = Nondgterminete modules and
systems }aire very difficult to work with bocgusot)u -multiplicity of possible
results” is cumbersome to model mat}&maucuny, We wlul._o_xpu;_c;tly allaw for

nondeterminate modules and systems in our treatment.

A certain cldss of nondeterminate system ‘behavior will be of
particular interest because it arises fréquently in the design of packet systems.

- 34 -

This kind of beham concerns the mlative ordax of mknts sent out on a
channel. Con:idcr a mtnm m which tha mk af pwanu and sending out
Packets in response to inputs taken t‘gqm a specific _channel is relatively
complicated or .time-bonsuming. One would : naturally wish to _allow the
processing of distinct inputs | to promed concuumly if possible, But then it
may turn out that rasponses to a recent input will be roaqy to be sant ot
before responses to inputs receiwd earlier. Moreover, it cannot be determined
in advance whether or not such cuttmg M h-mm will actually occur.
It is possible to impose a synchronizatxon dhdyune tha wm fnrco the outputs
into a desired order. but in doing so all the advmxagu of asynchronous
processing of differen-t inputs axe lost. Thus, if tha system #ppncatmn and
design can tolerate “cutting ahead,” it is wiso to allow n. In maral. then,
provmmg for nondeterminate bshavior :that ‘tawoives ﬂffmt alternat.ive
orderings of generated output packets should often in practice become an
attractive design goal for packst communication: architectire.

2.3. Corractixm

The mnotion of correctness for packet systems bears a close
relationship to the ways the issues of system structuring and comﬁbsmoh are
treated within the framework of packet’ ommunication architecture. At a
very intuitive hvel a system is correct if it satisfiu certain canditions laiﬁ'
out for it in advance. For packet: systems ‘these conditions take the form of
behavioral specifications. As we mentionéd in the pncadtng chapter, a packet
system's behavior is observable by the way it responds to its inputs. More
Precisely, the behaviar is a relstionship betwesn inputs sessived and outpuls

B WA

it e

ARSI . SRR VA A A

-system is behaving correctly. Since modyules gperats asynch
- arbitrary. finite. delays, ome. cannot tell if additigpal

generated in response to those inputs. A packet systeiit, ii'he"iefdre, is correct if
this relation satisfies a given set of spocmcium ‘l'ht nature of such
specifications will be discussed in detail in subsequent ncuont.

It is important to note that one cannot prove correctness of a system
without some knowledge of iﬁ internal mmuwmm is viewed as a
"black box" (figure 2.3-1), |

W Y
X 4
by | ey
sYS I

Figure 2.31: "Black boK" view of & packet system.

then the only things that can be seen are packets ontoring and leaving. There
is simply mot epough information availabla, to. dstermine whether or not a

mously end with
-output . packets are
forthcoming. For. Oxumph, ~suppose a. .system..has slrgady sent out. all the
Packets: it should trapsmit in response to some partiular iput, The module

‘only appears to be hehaving correctly, since there is no gparantee that an
- invalid packet will be unexpectedly sent out later, Even if this were
-determinable, obssrvation alone could newer suffice.tg decide whether the

system would respond correctly in all situations. The only way to tie down

the notimofmtwqmmmmnzdm.umm
thesym‘ummm

v

'r ------------- o YW W - 1 .
, .
wv ! L 4
; —
'
)
)
[]
]
X ! z
+
]
?
)
]
[}

" Figure 2.3-2: Internal view of the same packst system.

If we view the sym:sbedngruundtnmsbftummt modules,
then the following mmmm correcinass mm evident:

A packet syseam is correct if its given structural
decompusition sstisTies the dehsvioral specificstéans for

the system whenever the component modules satisfy

their own rcfpcctm MMM apacirms
The notion of a system's dscomposition satiifying s set of specifications is not
yet formally &efined; it will be treatsd if detail ix -Chispter 4. The Dotivh of
a module satisfying mciﬁcaﬁons is simply that of a pliysical device acting as
intended. The above correctness principle defines cmly a relative nature of
system correcthess. An obvious quuﬁon that arises is how to estabilish ‘the
correctness of the modules in arder 10 shiow the system correct, We already
have the answer to this question: just as with the system itself, correctness
of the component modules can be established only in terms of their own

e

- 37 -
respective 1nto:na1 structures.

A significant ramification of this approach.is that packet systems
and modules are really two differant views of the same thing: & module is
revealed 10 be & system when one exemines :its imterpal structure, . and
ignoring the composition- of a packet fystem is Just-the demne: as regarding it
as a module. There is an underlying source fer this obnceptual unity, ‘which
is that.packet commusnication architecture suppotis-the: hterarchical structuring
and composition of systems. .-Packet systemss-ean (and should) be designed 30
that there are distinct and well-structured lovdyﬂotﬁﬁ&mwx{. ‘each level

consisting of systems built up from simpler modulps.. In‘ ghis sense, our

ST

AT

- fundamental correctness principle for packet systam supports a top-down

verification methodology in which cersectsess preofs sbe h;_nkan‘ down level
by level into their natural logicsl and. cpaeeptval; omstituents. . Logically
distinct lines of argument are isdlated so:that they cansot interfere with one
§n_q;her. Thus the notion. of moduwmmm gystem : structure ' is

carried through in the approaches we take to correctness and verification. -

It may seem for a moment that there is a potential infimite regress
in working with smaller and smaller modyles within :mms, ~but this can
never arise. . Therq is always a wall-defined bettom umuo the hierarchy in
which the modules are ;maxdad,xgs,‘xmpumun .primitive operstions such as -
adding and gating. At this point, corzectness: has been rpduced to the way the

primitive functions are defined.

Our - approach to correctness and ‘verification of packet systems

allows. a‘system to be viewed in two different Wways: ‘Internally, in terms of

- 38 -

its structural eompoﬂtion' from modules, and externally, by concealing the
internal workings. The idea of distinguishing between internaland éﬁcternal
views of systems is closely related to the notion of data abstractions in
programming languages [Liskov -and Zilles, 1974]. &5 we shall see in
Chapter 3, it is faisly straightforward 10 construct BsNavioral specifications
for a packet system viewed extarnmally. Howewer, in erder to establish
correctness of a systam, we need to MM&OMM&MMtion
agrees with the system's strucsuze. It is & aifficult task- to formelly ‘describe
the behavior of a system in terms of it imternal comiposition. We shall
address this task in Chapter 4.

2.4. Structural descriptions

The only means we have used s&-far to describe the structure of
packet systems is through infermel’ biock diagrams. I any generdl assertions
are 1o be made involviag syssem domposition; m will''need a more precise
vehicle ‘for - structural. desersption. - Such’ o ‘technique ‘is imtroduced in this

section.

The structurs of a packet system may be* fholleled in very
straightforward fadtion by a O&frected graph-in ‘which hodes representing

modules are. comnected by -directed ‘arcs repiisenting channéls,’ Figure 2.4-1

shows a sample packet: system segethitr with the dtrected ‘graph’ that models it.
Note that the directed graph has an extra fiode labeled . Thiz gives
explicit representation to the system's "outside world™ which serves as ‘both
the source of system input channel X and the target of sysiem output channel
Y. The graph may look like just another stylized drawing of the system, but

R

>

v

E [
- s = o o i e

Figure 2.4=1: "R packet system and {ts directed graph.

5
ft {s a mathematical object of specific characteristics., Formally speaking, a
aitvcted graph is an ordered pair of the form (N, A) in which N is the set of

its nodes and A is the set of its arcs. Each arc in A is an ordered triple

Ty -

containing a source node, an arc naxne .and a ;node An arc aeA has the

form (a.source, a.name, a.target). For oi’mplg.thcmph in figure 2.4-1 is

the ordered pair . | g

GraDLEFY, ((rX,0), (0,P,E), (ByQuF)s. (FeRsB)y (E,Y,x)D).

It is easy to see fhat for each node n in the directed graph we can define the
" sets of arcs Ieadlﬁé into and out ‘of n. Thisese’ti ite gﬁ'i“ezf by - : |
inputs(n) s {a&A: ““a".fa“r;got s n) and outpits(n) s (deA: ~a.souFce = n).
“The directed "graph’ charatterization thus mathematfcally ~specifies how the

modules in a system are interconnected,

There are two additional propérties’ of packet systems that can be
fncorporated into our formal Stﬁciﬁi’al'déﬁcﬁﬁﬁi\éﬁ ‘$rst,; Wb can model the
Packet type restrictions for the channel_s by associating a type description ‘with
each channel. Second, we can specify packets initially present on the
channels with an initial packet sequence for each channel. Both properties

are handled easily in the directed graph model by adding extra fields to the

- 40 -

arcs.

The above mathematical model for packet system structure may be
sugared into a structural description lansnm The duscription language we
use here is patterned after the structural portion cf ADL as presented in
[Leung, 1977). For the system we have besn discussing in this section, if we
assume that all chanmels carry only integer valued pmw: and that there is
one packet with wvalue :mo. m&taﬁgr present on channel R, then Vﬁa fermal
description of its structure may be M ‘a8 ‘Tollows:

System SYS

inputs X(integer)

outputs Y{integer) ‘

internals P 'mtmr)., mma, R(isrtmr)
Submodules - :

D tnputs X, R; mm P
€ inputs P; outputs Q, ¥
F inputs Q; outputs R
Initially ®K0> ‘
While descriptions of this form do not explicitly name the source m target
modules for each channel, these are very easily determined since each imternal
channel in the system must appear exactly once in a submodule inpnut list .and

exactly once in a submodule output list,

This section has presented structural specifications for packet
systems. The next twio chapters present a medel for behavioral spscifications.

CHAPTER 3: SPECIFICATIONS FOR PACKET MODULES

3.1. The slice relation approach

Because of the way a packef systexh u imilt up from component
modules, the behavior of a system will be a mmiqﬁ -of 4ts: structure and the
Sehavior of the moduh; in.it. In this chapter we ahall develop a method for
formally specifying the behavior of packet medules.:.Specifications defined by
this method will be called externsl specifications. because they describe the
behavior of packet modules, MW‘“WM“ theis. internal * strégctural

composition.

A packet module has a fixed numbér of input chanhels on which it
receives packets to be processed, and theté are a fived n‘uinbe'r&of output
channels on which it sends out packets in responsé to the inputs it has
received. A formal gbehav"ioral? specification for a xﬁddulé must be ‘able to
rigorously determine for esach input exactly what 13 a valid oﬁtpﬁt: response.
Because packet systems are in zcnetai" n&idﬁtcfﬂiiiafe.i : thé "pote’nthl
multiplicity of valid eutput responses rules out’a difect funétional mapping.
Iastead, we shall supply external specifications for’a module M in the form of
8 relation EXTM that formally ‘ relates inputs td"'"?the " semantically valid
corresponding. outputs; ‘Such a relation will Ba called an external

characteristic relation for the module M.

The most obvious approach is to use a relation from input packets to

output packets, but this does not suffice in ‘éven the sim’ﬁlest*cm: consider a

-';;42'-

module ID that "does nothing," that is, sends out its input packets untouched.

X Y

Figure 3.1-1: The identity module iD.

The identitf relation 'E»Xfm on packets defined by the equation
. () eEXTpirandealy Hpeq

does not completely describe the behaviar of the module 1. If ID receives as
input a packet with value 1 followsd by a Packet ‘With value 2, there are
two differeat pousibhaspam ID can semd ‘out the 1 faﬂbﬁvsd by the 2, or
it can send out the 2 first and the 1 later. Thus a specification for the
module must describe the sequencing of packsts.ia aéer 0 Gompletely capture
its behavior. For example, if we iatend tor the module i o preserve the
relative kordo;r of the packets it TeCeivVes, thcn .iu ‘oehavior would de correctly
specified by the identity relation EXTp taken ower the dumein of sequeaves of
packets rather than individual packets. Such sequences are regquired dn
general to describe the bshaviar of a module Whes it depends on a memory of
previou.g Packets received in order to decide how to respond o a.given packet.
We therefore need to (1_9\@1@_% mathematical machinexy for manipubsting
sequences of rpackets. We_wm use the term. stzeam to denote:a sequence of
Packets. The mathematics of streams will be discussed in the aext section.

In general, the behavior of a module 'is specified dy a binary
relation that relates presented inputs to vaml -output ‘responses. For the
module ID, we see that presented input may be correctly modeled by a stream

e e e e w2

- 43 -

of packets passed on the input channel X. For a module with an arbitrary

‘number of input channels, in order to model presented ‘input we need a

separate packet stream for each input channel. We thefefere define an input
slice for a module M to be a collection of stieexus. one for each lnput channel
of M. Similatly, an output slice has as its reompbneu:ts;eue stream for each -
output channel. Thus the formal speciﬁcatlons for a module M will consist
of a binary relation between lnput slices end output slices 'rhis relation is
called the characterlstic relation . for M ' We reserve the notation EXTM from
now on to denote the charecteristic relatlon for 's xnodule M. - The slice

relation approach to module specifications is not orlgtual, and a 'correspending '
definition may be found in [Dennis, 1szzqi,. S

As an example. an input slice for the module J shown below is a

HE

pair (u,v) in whtch u and vV are packet streams for channels U and V,

respectlvely; an output sllce for. J las the form (z). where z is a packet

stream over Z.

U — 2
v IJ—-———*

Thus the characteristic relation: EXT, for J will have elements of the form

,v), (2)).

Slices distinguish the time ordering between packets passed on each

individual‘ chaninel: but ‘not between packets ‘on ‘different channels. It may

seem that crucial behavioral information is lost by mot imposing a total

ordering on all packet transmissions into and out of a module, but this turns

- 44 -

out not to be the case. If a packet pl is sent out on a chamnel Cl n_s@c
packet system before packet p2 is semt out onm wcz, ‘there is no
guarantee that pl will arrive ahead of p2 in their race to their respective
destinations. This is becsuse asynchrompus packet systems im . BO
4constramts on transmiuion times m‘ channels, aneawhg for differeat
channels with diftmnt charmistics suitad to their md.s Thus, the extra
information ahtaimd from inmnnam ncht ardanx; is rendered ussless by
the prqurties of channels in a packet mmmm 'l'h;er use of
slices in our model, thﬁ, pmvidu exactly mmmm nom for proper
behavioral speci-ficatﬁn& | | | |

3.2. Streams and their operations

In this section the huic defmmam, epcmnom and ma%hemaucal
properties of streams are laid out in detail. m of m mmu wurc of
the material anmdaxwthemtnmmmwmmoﬂmm

Appendix.

For any arbitrary packet module, we take as given for each of its
input and output channels a mu-dtfm& » spwe (set) ‘ef packet values that
may be passed along that channel. Thaspwn. which we call a channel space
for the chansel, is identified with the chenmel and sheres the same name.
Similarly, elements of a channel space are identified with packets passed oa

the channel.

We will define a stream 0. be a. -seguence of packets passed on a
particular channel. Individual packets in a stmeam 2 Will be referzed te by

- 45 -

expressions of the form z[1] A stream z will be denoted by an expression of
the form (z[l]. 2[2]. Strnms mey be finite or (countably) infintte.
‘The size of a stream z. wrmen #z is the number ot peckets in it. Two
streams are equel ﬂ' they have the same size and corre:ponding packets in
‘them are equal This means thet a strum u uniquely determined by its slze
and by its elements and their orderiu. 'l'ho space of meuns for a channel Z
is denoted by Z*. Formally, we have:*

Deﬂgj ition: A set S of natural numbers is said to be an initial segment of
the natural numbers iff for any 1 € S, J < 1 implies j € S.

finition: A stream over a space Zis a function mapping some initial
segment of the natural numbers into Z. ~The space of all streams over 2 is
denoted by Z*,

Definjtion: The empty stream over a space Z, denoted by € or by ¢, is the
unique stream over Z having empty domain and no elements.

Definition: If 1 is in the domain of a- smam Z,°We deﬁne the i-th -element
of z, denoted z[1], to be the image of i under 2,

Observe that 2[1] is undefined if i is not in the domain of 2, and that if 2[1]
is defined then z[J] is defined for all j g i.

i Covday e T 2
Derinitggg: ~ For any stream 2, the size of z. denoted 42, is the number of
elements in the domain of 2. If the domaln of z u mﬂnite then we say
#2 = o,

Note that 2[1] is defined if and only ir 1 5 1 #z In particulax, 2[1] is
defined for all natural numbers if and enly if #2 = &,

Definition: Twom:zwdz’uesamwbeequd written z = 2, iff
#2 = #2' and 2[1] = Z[1] forall i < #2. - . \

-4 -

Inmtxm&.mabauwmm*- aaﬁam‘nishcd

i

natural numhor whma anthmouc mpmiu m MM in an nwml manner.
oo * hb

iz Fo7 GENT AT N oy

suchasigoando-'-i--mmmmnlnmhmi. mmmow

ci‘ PR

ormynothmunhdhth.mofwmmmmu

AT

dependsoncont-m. mmMmMammu,
i Lol wRLEOT RIS

»z(~]mMmmmwmzumw«m

TR Tt ¥ P

Mmmtmmmkﬁmzwm Spemn 2
uapreﬁxatnmmz‘whmmz anmdz’ uthewn

; i ko S T, ared e kel
“below: T
b 4
.
»‘:zﬂ EO

In such a cam, the seam diffevence: Z' o Zushall Be: the: portinm ol z'

occurring after the prefix 2. TR g e

Formfﬁmmzmmmmmiknleoum

segment of I consisting of the k-th thrmuh n—th chncnu of Z in order.
z[kaﬁjtsastrmdaﬁtn-kd mdmaﬂnwtha.ddmofﬁ“fnﬁnhe
FESCTS B F % F 35 PRI PG

stream whenm-- Ifh)n,then:{kn]ummmm As a. special
" case, whcnevu RSII. zuu] umwmazam& k. This
means that z[l k)[f] = 41; m oagh-4 £ K. e v e L

Given. streams. z,. M%w&mmmm&ma{OIa.
which uastrmmmdmmmz,fwwmmum
Z3. The formal Mtnmons now follow:

- 47 -

Definition: Given two streams z, Z' over the space Z, we say Z is a prefix of
2', denoted Z PREFIX 2z', if and only if

(1) #2 < #2 and

(2) 1 £ #z s> 2[i] = 2Z[1].

Definition: For any stream 2, If k < m < #2, then Z[k:m] is the unique
stream of size m-k+l such that 2[k:mJ[1] = 2[k+i-1] for each 1 in its domain,

Definition: Given streams z and Z' for which z PREFIX 2', we define the
difference 2' - 2 by 2' - Z = Z'[1+#2:42'].

Definition: For any two streams 2; and Z, over the same space Z, their
concatenation Z; @ Z, is the unique stream z of size #2; + #Z, satisfying
2[i] = (if i < #2, then 2|[1] else Z,[i-#2;]).
There are two stream operations we will use which count and find
particular packets in a stream: count{p,2) is the number of packets in Z
equal to packet p, and index(p,z,J) is the position in Z of the j-th occurrence

of packet p. They are defined by:

Definition: count(p,z) = card{(i < #2: z[i] = p).
Definition: 1index(p,2,J) = (if 31 < #2: 2[1] = p & count(p[l:i-1],2) = j-1
then 1 else undefined).

This is well-defined since if such i exists, then it is uniquely determined.

Two more important relations over streams are the subsequence axid
merge relations. A stream 2, is a subsequence of stream Z, if the elements of
Z; occur in the same relative order within Z,. They do not have to occur
contiguously. A stream 2 is a merge of streams z; and 2, if and only if 2,
and Z; occur in Z as disjoint subsequences and together exhaust Z. All merges

of Z, and Z, are of length #2; + #2,. The formal definitions are:

- 48 -
Deﬂmgiog: Gimtmmz,mhmmmz.mmz‘ ua
subsequence of Z;, denoted 2, SUBSEQ 2, tf amd only tf ﬁun m & mnmon
rthatmamthodendnofz;mtomedomdncfz!mﬁtw o

(1) Ky < kg ®> P(k;) < f(ky) and
(2) for each k < 'ﬂx{ z,[k] = z,{r('u)].

A function f ututymg properties (1) and (3) wﬂl h cauqi a muniba
MysuMSM&chamzmaWsz

which is formed simply by arrenging the elsments of 2. jndexed by S in
increasing order.

Refinition: Given three atreams Z, Z,, Zp QVSf & common, space Z, we say Z is
amryogzlmz,umwuqutzmmmnmdmo
two disjoint subsets, one. dafining 2, a&moﬁzﬂmmw
defining 2, as a suhnq\unm of Z.

Thn"concmdu the presentation of the fundamentals of streams.

¥

-3.-3. Examples

In this section we exhibit some elementary packet modules with
their specifications. The first module we descride is the distriiute méliels D

{ R
">

Figure 3.3-1: The distribuse module D.

Input slices for D belong to S' (streams over §) md untput slles b.lon‘ to
R"x Y= (pair:ofmemsomRandY zsyacthnly) mavuusthespac-
t‘or the characteristic nhtton EXTp < ((S’) % (R' x Y*)L Within a mlm

system, module D has the general fuxiétion' o’i“ distributfng- packets through the
- system to places where they need to be routed. There areﬁ no restrictions on
the type of packets that may be passed through D. The bﬁhaVio‘f of module D
is to pass unchanged copies of input packets from §$ »ontq both output channels
Y and R. The response of D to an input stream s is the generation of two
output streams r and y identical to-s. As with all the modules we describe
here, this works for infinite stiéims as well as finite streams. Thus the
behavior of D is defined by
((s), (ry)) e EXTp <=d>ray =g,

We give a couple of examples of the béﬂavi&- of D, showing input 'st_reams s
together with valid responses r and y: ‘ o
e = (8,1,6,4), r = (8,1,6,4), y = (8,1,6,4);
8 =(1,2,3, ..., r=(1,2,3, .0y =(1L,2,3, ..

The négatlon module N (figure 3.3-2) processes. boolean-valued
packets, sending out for each input value b apacket whosa value is the

logical ﬁqsation not(b).

X mm Y
Lo

Figure 3.3-2: The negation module N.

An output stream y will be a'tvermgwisq: negation of the corresponding input
stream X. Formally, EXTy ¢ ((X*) x (Y*)) and |
(X, (YD) € EXTy <=> #y = #x and y(i] = not(x[1]) Vi < #y. .

An example of the behavior of module N is:

4

-850 -

. X = (true,false,true,true,false), y = (fﬂu.truﬂ,ﬂ;_lu.{gjy.tmq).

The adder modwle A (figure 3.3-3) paizs. up:inveger-vilued Peckets
in correspanding positions in its input.streams X and r, sids the pairs md

e

R A — i

Figure 3.3-3: The adder modyle A,

If one input stream is longer than the othor. thc oxtra packm absorbod from
the longer input stroam are not rcﬂuctod in tha out)ut rnyom Thu is
specified by EXT, ¢ ((X* x R*) x (s')) and | - o

((x,r), () € EXT,. (=) #g = mln(lx, n-) m 3{11 x{t} +* rﬁl Vi n
As examples, wo havm »
X = (8,1,-6), r & (3,-5,6), & ® (11,-4,0)
X = (4,-9,0,-18), rs{),s=() :
X ® (1,3,5,...,29=1,...), r = (2,4,6,...,21,...), ¢ = (3, %10 ...,861,...).

A slightly more complicated module is the cumulative adder module

C (figure 3.3-4) for which uch packat ;awcud for cutput on Y is the sum

of all packets rocoivod on X so far.

X EY .

Figure 3.3-4: The cumulative adder module C.

We specify the behavior by EXTe ¢ ((X*) x (Y*)) and

B,

(x), ty) € D(Tc <= #y . and ym . § X[J1 Vi < #y. |

As examples of the action of C, we have: »

x=(42-10 63) y «.655 1z>;
X®()ys=s() ‘ _
X = (1,3,5,7;...,21°1,...), ¥ = (1,4,9,16,...,1%,...).
One of the modules we will be discussing later on is the feeddback
modified first module F (figure 3.3-5), which handles integer packets.

Figure 3.3-5: The feedback-modified first module F.

Packets input from U are copied direet‘ly onto output channel Y. "In addition,
the value of the first packet input A;rox’n U dr there is any) is suitably
modified and the resultin.g value is output as a packet on V For the purposes
of this example, we shall say that the ﬂrn« packet value - is modified. by
adding the number four to it. The 'béhavior of F 1is 'spécxfied_ by
EXTe ¢ ((U*) x (V* x Y*)) and
(), "(,Y'_Y» e EXT¢ £=> y = u and #v = min(l,#u) and V{1] = U[i]+4 Vi < #v.

As examples, we havex
U= g Vv -e.y-e(emptystreems);
us=<(1,23),v=e(E,ys(1,2,3

A module with an interesttn; logical function is the true gcte T

(flgure 3. 3-6), which peirs up integer deta inputs from chennel X with

- 52 -

boolean contral. inputs. from ,ml C. If the canprol, signal. valus is true,
‘the cormpondiu dtwinpnt from X is Mcmton Z It tMmtml mﬂ
is false, the data packet is discarded. mumommmdmmmcw:a
out specified olements of the data strsam %. C:mmhpdmmu.

and X and Z may pass:packats of a3y type as: long. an they: agree..

Figure 3.3-6: The true gats T.

The behavior of T is specified By EXT; T Q(W % C9 % (ﬁ*)) and

((x.c), (z)) 3 ExTT <=> dg ;amt(trmci L) .
n:l z{i] -xﬁnhﬂm ﬂ] Wt S #t.
“Ks examples, we hm“
%= (1,2,3,4,5), ¢ = (true, falu.truc.'cru,fﬂu) z: - (1.3 4.
X @ (6,7, ¢ = (FaTse, Sraestrue), T = (1% T
X "1‘.‘3“-&1“-1,”- € = (false,trug, tewe), 2 = (9,]10).

The above modules are all dstermimate, mféramtinmnahm

‘there s exacty oné Swtput'siice''that ctisiititutes & vald
behavior is therefcre functional. Our specification ti:imiqm w be am'lhd
to nondeterminate modules as well, as we wm ’

w

The nonduwmm mrsc mma J (ﬁl. 3.3-7) m out all the
S A
pacKets it receives from immt chanmis U ad V anto mwt w Z. The

omemhofUmVummtmm

rolathn

- §3 -

coming from these two channels are arbitrarily interleaved on output. There

is no restriction on the type of packets that may be passed through J.

v IJ———-»

Figure 3.3-7: The nondeterminate merge module J.

We may specify the behavior of J by EXT, € (U* x v-) x (z-r» and

((U.V). @) € EXTJ s> zisa merge ot u and v,
where the notion of a merge of two streams was defined in the previous
section to be a stream containing the two ;itten streams as disjoint
su‘osequences The size of an output stream z wiu always be the sum of the

sizes of the corresponding input streams u and v

As an example oi’ the behavior ot‘ J it itis given as inputs the two
streams us (1 2) and AR (3 4) then there are six possible valid output
responées: (1,2,3,4), (1324) (1342) (3124) (3,142) and (3412)
The output response (1,4,2,3), however, is not valid since the relative
ordering of 3 bet'ore 4 in the input stream v has not been preserVed on

.f

output

In practice, a wide variety oi‘ nondetetminate behavior can be
realized by constructing systems formed by interconnecting various determinate

modules with instances of the module .J, ln this sense, the _mondeterminate

merge module J is often viewed as a canonical source of nondeterminacy in .

packet systems

3.4. Evaluation

We have .seen ' how : the. -stieq-relation - approsch - to -+ module
specifications works for some simple csses. In this section we address the

question of applicability of our memo& 49 ggro complicated modules.

The examples we prmnto& maud only mbu of ahmentary types

(integer and boolean). Ome-of “the areas of hé n uckot communication

,pgg}.ats which
are arhitraxily complcx data structutos. xuch “:(W mxds. Data items

in the various ficlds ot' a stmtm-vg% m[gcgot may, be progassed

;.i~§ w.v
R

architecture 1s that systams w b‘ guily

p”“ rr ST o e ¥ o B

t

Bl B

concurrently in different internd soctions qf i sysum Direct support for

Panty,n 1Ay
handung packets with arbxu-aruy complox fstruct\u;o u oqmny easy in, our
P8 RN LA ada RN P 1 a.{lﬂi FER I e

specificatlon model All that noeds timbjg ;%&ﬁ?ﬁu,u apd pu;kgt

operators for buuding and docomposiu structures, and this is well understood

a
5o o BT fermmtae 04
Iy 'gv’»"‘” “’ N] HRe ¥

and straightforward: %tmctum m mtuny 'hhohd wtuian producu of

a "',‘ " ?"“""

2
their components, ‘ahd basic operatiom on. :tmctum have boon found m

4‘ o i '»:fre«z\ vh A .\t.f‘
programniing hnguage% for a long time.

'rhe buic quomon to beA discuuod hm is how effoctively our
Tild oW

specification techniques can model tha functioul cmbumu of modulo,s that
are to be physically realized in hardware within packet nmcms Wo claim
that the sucb-relation ﬁeacripuvo formalim hu mtﬁcunt pomr of exprossion

o,

oot nmadeye ol y
to - model the behavior ‘of any runxabh pucm module, ‘I‘hore are uvoral
faétors that sibstantiate this e claim Our uchniqm allowt thc uso ot arbitnry
£ Faguarais o ST gkt
mathexﬂatxcanir d“oﬁnod functions and prodmmﬁon packet valuos and streams.
e y*‘

Basic operations on packet values may be composed through tho uso of'

R ki s e i S

R nikeon ooy

YR

i 07

3 e T A i, G A

conditional exptessions and ro'éir‘dbn on streams, - Tﬁsphcu at our disposal
the functional capabilities of the textual language used to model data flow
schemas in [Weng, 1876]. Thus, from the stasdpeist-of Turing vomputability,
the suce-rolation approach can modol bchavior of any dodrod complexity.
Moroovor, a modulu clunctormic rohtton acu as a. prodicato that asks of an
output tllco "u thu a oorroct rononn tn tho pnunud mput?" 'rhus.
oxtorm charactcmuc nhuom m uu ﬁray our modol mcthommcauy'
dotcrmlm eorroctnou ot modulu m mht mum

B

The above arguments say nothing about the complcxny of behavioral
descriptions in our model. It is an unfortupate fact that as processes one
wishes to modol mcroau in comploxity, the ottort roquired to formally
speclfy thcm incruuc ovon moro rapidly Althou;h thu appnrs to be the

PRIV TR EAE9

case with packnt modulu a wou u wnh oompum pro‘rm. it il hopod that

the hierarchical eomposluon ot' pnclmt sysum can roduco tho structunl_
A5

comploxity to - bo handled u‘ not thn mmhm eomplexity. Bchavioral

IR e MO

speclficauons tor tho structunl conmnon ot p.ciot modulu mto systom

5 N 3

are tr«ted in the following chaptor

-~

_4.1. Internal spevifiostions

'rho oxmd mcmmuou éacribcd in thc pravions chapur

constttuteafo:malwayotwmiuhowammtlmmmtwmx
'its outsidaworld mmmmtmmmwmumta
system is comct whmr uumﬁ-m m Miuﬁnu. As we

UhGir ek
mentioned earlier, corroctm ot a m mt be mbnshnd hy ouuido

 observation alone; it is° Wm m m*mm ‘ qf a system

.r,i#A‘.M

in order to prm

szcturauy apakin;. a pu:m sym eomm; of a conaction of .

S

component modum mmnm by cxmnon; m behavior of a- symm is
'd.eternunod hy tvm thim its nmtnu nd tha m d tts comnonant
modules, Armmuamcmmmuhm.numv
kon these tmmmumnuauuamormmwnummm for
the :ystem uumttoxmmm‘smmm&mmxemd
composition, -

Inordertoshowam@hmmt.mnepsmmbaukcn.'
First, one must produce a set of internal specifications for the system. These
internal specifications then must be proved equivalent to the system's external
specifications. ‘m logical reasoning involved m is that the component
modules are assumed to be correct from the bmnnin;;this assumption is then
used throughout, the system correctness proof. If ome wishes to demonstrate
‘the correctness of a component module, it is decomposed structurally into its

.57 -

own components; this module's eorrectnm is vcriﬂed 1n the exact same
manner as the entire systom. In this way tho hicnrchical sysmn structuring
provided in packet communtcatlon archltocture mpports hierarchical

structuriu of mum verification,

£

, 'ro formany dorive the mternal spoci{}cgtiow for a packet system,
| two pieces of mformtlon are nndodx (1) a structural. dmrimion- of the
'syatem, and (2) the oxt.rml spociﬁcations for ?ach of its component modules.
It is not necessary to oxmtno tlmcomponont modm interaally, since they
are assuhmod correct, 'rhe intonnl spociflmupy will take ‘the ideatical form

as the oxtornal :poctficatiom. namoly a pinmr rolatm ‘between input slices

and output slices.

At first glance; coming up. with ‘titernal -spéeffications’ for a packet
; Wsmn may um 0. a stmghtfwwmm m« for example, the
system ; Sl shnwnr in figure 4.t-1.

Flours 4.1-1: Systen S1 acts by fanctional compostion

‘Suppose that modulo F applies a function f to mh packet value x received on
: o LA

X, seiiding ‘thé tesilting’ val\u f(x) ‘out ‘as a packot on Y I F preservos

‘ packet ordering, its charactérisuc rolation b(f; would conmn au ordered pairs

((x), (y)) for which" y 18 the stream obtained from strum x by applying f to

- 58 -

each packet of X in sequence. In other words. _
(x) (y)) € EXT; <=> 4y = #X and y['l] = f(x[i]) Vi £ #y.

If module G applies a function ¢ in the same Imanaer, 1.e.

| (y), (@) € EXTg <u> #z = #y and 211 = oly[1D Vi < #2,
then it is easy to see that for each packet entering the system sl, ﬂrst f and
then g is applied. The behavior of Sl then. is the tunctional composmon of
modules F and G. It is therefore a trivial matter te show that the mtemal |
specifications for §1 match the characteristic relation . “'

CUx), (@))€ EXT <=> #z % and Z[1] = ammn vi g .
One could ‘take a far movre écmpncated exunple. such as e system to compute
roots of quadratic equetions which is compond rrem modnm thet take square
roots, multiply by four, divide two values, and the _lik-. ‘There would be
long chains of functional gemposition,. bui:greducing:Itersal specifications
would present DA MAKT probiems. Evea: for & mdndetévminste systein, one
could simply compose relations instead of functons.: S¢:is% seemms, at ‘lsiist ‘so
far, that internal specifications are simple mdud to dstermine.

There turns out to be a very large fly in the ointment.
Figure 4.1-2 depicts a system stnictﬁi‘é““ for ‘which functional or relational
composition is of no use whatsoever. The qyclic interconnection structure
imposes mutual data dependencies between channels Q and R. Packets passed
on channef R from module B depéend” on tRe packdts received by B from
channel Q, while the packsts passed ou Q depend on sarlier packets Teceived
by module A from"el;unnel R. Itisa dminctly mtrlvlei task to eaxpress the
stream R in terms of the remaining streams X, Q and Z, since packets passed
on R muxng.nmxdepondonmkmmudymonn. .This kind of

. particular -presenisd input is. charecterized by a

- -

N.

[y R Vo

Figure 4.1-2: Cyclic dotl'dop;n&ncios

dependency introduces mutually recursive systems of equétions: expressing the
channel, styeams_in terms of one another. @illes.Kahn [Kshn, 1874] has found
a way to.solve systams of this kind through the use.of A mathematical theory

of fixpoints. - His techuique, however, . reqiaires that the modules be
determinate, and thew. is mmumwmwmmhw to
. hondeterminate sysiams. The task of -deyiving: internal saocmcatiou for a

Packet.system is a challanging prohiem, and a pew appxgech ;!‘ required.
'rhe-arpr'ﬁch ‘we will be ‘asing ‘is babid on -an- operational view of

systems. We model the operation- of a:-systert by recerdfiig-the progress of a

computation in a series of mulmmm. The_system's response to

internal states, which we call an execution sequence. In gonexal. there are a

- large, number of possible execytion sequences.that correspand to a particular

to prove must be showa to held over all possible sxecution sequences that

f introduces some of

- 80 =

the basic characteristics of execution sequesces.

4.2, Execution sequences (introduoctory)

The progress of a computation in a packet system is modeled by the
successioh of internal states in an execution sequence. We will be. doﬁning;
internal states so that a mu meorporm for each chanmi the cumulative
stream of packets m«d to b. puud on tlw. cluml. This: dourminos, in
particular, for each state th. lnput suce W te thl system: and the

ousput slice. m by thp«wem 50 fax,

Amwmmmmwhm is- that: ome: can
CONStruct a syswm ~stts that: Tepreswits the cCOmPEIENILE renuing to
‘completion, For suth a state, the output slice-réptusents: one of the: systém's
possitle ultimate resgonses to- its: pfesented {nput; Sudii‘sn ewecution: sequesce
will be said to reelize: that' particular ‘output reipésse 10" tlis: system's
presented input. It' will' then be &' straightférvward - task' to° produce the
system's internal wmm which- are.given. by. the. relation. between input
slices and. cmm output slices reslized:bj some-eXeCUIION - SGTUERCE.

A parskular kind of physical event we wisk to ‘model im an
execution sequetite is the transmission of ‘& packet on soifte: cliannel: The: act
of a module sendinig a packét out on a chanwel Mray-oocur at’ any moment
between the time the packet is gemerated By the module and the time the
module receives- afi* scknowledge- signal ‘for the- paclest;- For a”fm imstant
of time during such' ax' interval, the packet: may or may-mot: ve basn sent

- 61 -

sequences will capture two kinds of evonts:! gonciation , of a packet and
receipt of the acknowledge slgnal. - Because we do xidt' know the aétual
moment of transmission, a packet will be regarded as only potentially present

on .the channel during the interval between ‘these two events.

Each state in an execution sequence {m'ustjrihec't' the relevant events
that have occurred in the system. The events described above are associated
with particular channels, so we may partition state information into
components relating to the individual channels in the system. To model a
state, We give for each channel the cumulative sequence of events of each
kind (packet genera.tion and acknowled'gniént) that have taken place. Packet
generation events are handled by giving the stream of_ generated packets for
each channel. Since tl_\e ,ghaﬁnols act as FIFO queuu. the packets that have
been acknowledged are always given by a prefix of the generqted packet
stream. We call this prefix the acknowledged prefix)‘of') the stream. Thus
every state in an execution sequence consim of a gemerated packet stream for

each channel together with its acknow’l/odgod': }nﬁx. o

Anofher significant property of execﬁtiqﬁ sequences is that they are
to exhibi’t the behavior of the comj)onent modiiles of ;hev sys;em. At any
state, for each module the generated packet streams on the module's output
channels must constitute a valid response by that module to the input packets
it has receivéd (and acknowledged). | | |

A transition from one state to} the next in an exe¢ution sequence
models the physical occurrence of a module rmivi‘ngv new input and

generating new output packets in rosponse " If there are no more packets

generating new output packets in rnpom It thm aro no mrn packou
wamng to be Mhod by moduks m tkc sym thi m suto wm

remain constant

We now give. some examples of exscution spqusnses: for & pasticular
system S shown in figure 4.2-1.

]
[}
1
]
]
]
1
1
]
1
)
]
4
]
]
]
)
[]
[}
)
]
P
e,

" = o o i e -y
[I N PrTSppN
bk

|]
| 3
)
)
)
[
]
|
L3
'
]
[}
L3
2
[}
]
[]
]
]
[}
[}

Figere 4.2-1: A sample pachet systew S

J is the nondeterminate merge module and Fis the fepdback. modm,nd first
module; both of thca mocmu were descrived in the previous chapter.

Nondeterminate systems such as S may generats different output rasponses to a
given presented 1nput. This will bo unocui ia our mplu.

An execution sequence 1: ropmm by & tlbh iz which tho QWS
are the internal states and the columns correspond to channsls. _Each entyy in

the table is tho approprmc stream or m«d m wm\ » hmvy dot
marking the end ef the acknowledged prefix.

Execution sequence 4, shown m figure 4.2-2, models a particular
response of system $ to the input stream (1,2) Won channel X, We
also give a corrcpontuq series ofsnapm that mnmmthoiptmﬂsymm ’

- 63 -

states during the computation.

state X U v Y
0 o12 . . .
1 12 o] . .

2 1.2 1. o5 | ol

3 12. 1.2 3] el

4 |12 |12+ | 5 | .12

5§ |12« | 12.5}) 5 | .2

6 | 12. 125« | 5+ | o125

7 12. 125+ 5¢] 125.

Figure 4.2-2: Sample execution sequence A for system S.

The snapshots, shown in figure 4.2-3, depict the first 'seiren’ internal system
states captured in execution sequenée A. In state 0 the sequence {1,2) of
input packets has not yet entered the system to be proceised and no packets
have been acknowledged (all the heavy dots are at the left-end of the channel -
streams). In state 1, the first packet (with value 1) ha.s been received and
acknowledged by module J, and a copy has been generated to be sent on
channel U. This copy is, by the time of state 3, received and acknowledged
by module F. F generates a copy for output on Y, and also a packet with
value 5 (1+4) for output on V (since the packet 1 was the first packet
received by F on U). In state 3, tha'inpﬁt' packet 2 will be passed by J onto
U, and in state 4 it is generated as output on Y. Note that no further packets

are generated for i:hannel V. By state 5, the packet with value 5 has been

u

0 > - - -y

-

v

-

e e m e ---

v,

P w0 - - g

L-----------'---h---‘--'-J

. L&--ﬁ----‘-——»--—-w-----J

- state- 1

state O:

. v g

[PR PP

5
S PSP SOOI |

llllllllll

u.:

| PRI IR |

state 2

~ stats 3

O W W W ey

21

- - - - ——

oG- ---

'
]
X)

| RSP OIRDUSTURIE SAPr U 11

Lo w0 trsfons i e s s e s 0 Wit ann- -

state 4

state 5

P - -y

- — -

i
t
|
'

x

- -~

L-----ﬁ-'---—---.‘--—l{“dJ

state 6

Snapshots for execution sequence 4.

Figure 4.2-3:

- 85 -

processed by J, and by state 8 it has been passed through F. State 6 shows
that system S's response (1,2,5) to its input (1,2) has been completely.
generated for output. By state 7 (not shown), these packets have been sent

out and acknowledged by their outside world recipient.

We now present another execution sequence that models the
response of system S to the same presented input stream (l1,2). Execution
sequence B, shown ixi figure 4.2-4, is identical to oxecution sequence A4

except for states 2 and 4.

state X U v Y
0 '12 * L] []
1 1'2 .1 [] .

2 |12 | 12 S

3 12' 1'2 05 01 -

4 12. 125 50 el

5 | 120 |12:5] 5 | 12

6 12 125, 5o *125

7 | 120] 125« | 5. | 125-

Figure 4.2-4: Sample execution sequence B for system S.

From state 1 to state 3, this execution sequence has module J receive and
process the packet 2 before module F processes the packet .1, reversing the
order of these two events from the way‘ théy were in exécution sequence 4.

Similarly, from state 3 to state 5 here,> J takes inﬁ the packet 5 before F

- 66 -

processes the packet 2. The snapshots of states 2 and 4 for execution

sequence B are shown in figure 4.2-5.

e —m

state 20 AR Tstate 4

Figure 4.2-5: Snapshots for execution sequence B.

Observe that the two duunct execution uq\uncﬁ ‘A and B model two distinct
computations for the mam S, both nnnuu in the same system response
(1,2,5) to the presented input (1 , 2 "'Un" tie other hand, execution
sequence C, shown in fsgurc 4.2-6 qodqls a campuuuon in which the
system produces a diff-uat reqoue 1,5, 2) tho same input. This sequence
is identical with execution aqu.nco A through m 2, dbut now module J
processes the packet 5 from chnn;ul v hdm it takes the packet 2 from
channel X. This wmm is wh.; m m chngo in system response.
Snapshots for the romlm mm 3 thmm 8 fcr execution sequence C are
shown in-figype 4.2-7. ah

g

| - It is important to notn that at w timo duriu a computation in a
packetsystem.apacwmthabunmmtobomtomonsomo
channel nuy or may not act\ully lmn bnn unt out alrudy Artcr the

packet 13 acknowlm we know it hu bun unt out bu; before

- 87 -

X

state

. o~ -
. - *® . - — -

. . = . o

. > ‘' - - - [
.) KJ - [T7) [T] 5 "+ N
o~ -’ -

- - >y [d [o~ o

- - —t - (7] “w wy un
. ~ —t . — -

ooy few e | en . - .
- . * ™ - o~ [,¥] o~
- -~ — e ~— -y - -~
O ~ N ™M e W © O~

C for system S.

Figure 4.2-6:

Sample execution sequence

llllll

P N X T T R R R

|||||

P L L L T

state 4

state 3

|||||

P e e

P e L

| P I p—")

| QP o —

statp 6

state 5

V‘SnapShots for execution sequence C.

Figure 4.2-7:

—680

acknowledgment it is only potqntially, on thg chaml "Potential” packets are
guaranteed to have been by some futiiig' time .eventually passed en the
“channel in the relative order given, but we can draw no stronger conclusions.
This means that in all the mapsh?ns we have depicted here, the packets
shown on the various channels wm at the indieated time only potentially

present.

This concludes our informal introduction ‘to execution sequences. In
the next section we shall motivate and discuss the properties that will be

used to characterize them formaelly. .

4.3. Properties of execution sequences

In order to formally define execution sequences for a pockot systexn.
we need to. careruuy motivate and discuss several wwm ﬂux chnrac.tnrize
them. We shall be using as an example a pmiquln nqckct system C
composed from the modules A and D as shown in figure 4.3-1. The left half
of the figure shows thi system structure pictarially, while thn :mu half is a
textual repfeééi{ition that provides a formal strnctural “ doscription of the.
system. ‘-Once we ch‘araéterize execution sequ'cnces for C, {ts internal
specifications will be the hinary relaticn Wmln mmed input slices and
'the corresponding ontput sucea that are reauud as the systems response to
the given input hy some execution sequence. This, —of courlo. will provide a
formal behavioral specification for C expressed .in terms of the above
structural descfiﬁﬁon of C and in terms of the chanctoriiﬁc relations EXT,

and EXTp for the component modules A and D. In thé previous chapter, we

Systenm C
Y " inputs X{integer)
» outputs Y(intqser)

A inputs X, R: outputs S
D inputs S; outputs R, Y
Initially R<0> ‘

H

[]

]

1]

]

)

:.

! sobnodulos
i .
1

]

]

]

Figure 4.3-1: Realization of a sample nockot system c

specifically defined the external specificationis for A and D, dbut in our
treatment here the characteristic relations shall be Viewed abstractly.

An exocution sequenco is a umo-ordorod progrmton of 1nternal
| states of a packet system, d a state givos parucular 1nformation about each
. channel in the system. Tho state informtion for a channel Z at any given
moment contains, as we mentioned oarlier. both the stream of packets
generated to be passed on Z and its acknowledged prefix. The space of
streams of packets passed on Z-1s denoted by Z* and includes infinite as well
as finite streams. For any stream Z e Z*, we denote Its acknowledged prefix

by 23. A channel state for Z will then be an orderéd pair of the form (2,29).

Tho state information for a system is sunply the collection of state
information on all of its channels For our uxnplo system C deﬂne the space
CSYS' to be the cartesian product of the channel packot stream spaces X'I S=,
R* and Y*. Elements of CSYS*, which are callod systom suces, are denoted $
(the dollar sign is pronounced "slice” !) and are tuples of the form (X,s,r.y),
where X, 8, I and ¥y are streams of integet packefs. A system state will
consequeiitly be an ordered pair of the forit”(3;$%, where the acknowledged

prefix $2 of the slice $ is the tuple whose components are the acknowledged

- 70 -
prefixes of the respective components of §.

We have alresdy q.e'firiéd input qud;l output slices for, moduhs.rn a
packet system. . The nica af hput slices for a' 'm"m“‘u the. qu:tuun product’
of the channel stream spaces. er the module's input elumlu output slices are
similarly built up frm tho modui-'s output ch;nncl strum spaces. For the
module A in our example, thuo tm spuca are AlN' = (X* x R*) and
AOUT* = (S*); for the module D thcy are DIN®* = (S) and DOUT- = (R* x Y*).
The same thing cam be done. for the sysiem G W :Vispswiag it as & medules
CiN® = (X*) and CQUT® = (Y*), Thus, tha. characiesistic selmions. for tha system
C and its two commcnt modules A and D are glvon by EXTc < (X*) x (Y®),
EXT, ; (X* x R') x (S')) md EXT 0 S ((S') X (R' x Y')) . We wﬂl have
((x). (y) ¢ EXTc n' md only it tho outpm stmm y u a vaud response to the

input stream X undor the semantic promtha of thu mtom C

Execution sequences for a pecket system. will be of the : form
(¢, $%)), where 1 takes on - natuzal FUMLEr Values - starting. from .2ez0. $°
will be the agknowledged prefix <of, the i-th system:slige ... There are a
number of semantic proparties whigh.an axecution. saqusnce: must satisly in
order to corroctly modcl the action of a packct symm. WO describe them
‘here in tarms of thc sample packat symm C nottn.g that the gonoralization to
arbitrary packet systcm presents o dm’xculty | For tho system . C

components of smm slice 8 are dcnotad hy & (X.- s, ".- i)

The first cendition an execution: W must; satisfy- is thas. there
be a valid initial svmstam .To-express. the propexty:. that. no packets have
been processed at the start, we requise that.ihe inisial sate (Seife’> hwve an

-

-71 -

empty acknowledged prefix $,°. The components of ‘o Ncorresi;ondingi to input
channels must match the presented input slice. In our case, this means that
Xo must be equal to a given stream X of inpits. And it must also be the case
‘that the other components of $; agree with the initial cenfiguration defined
by the system structure. For system C; .this mutros “that: we ' have

80 = Yo = € (empty streams) and ry = (0) (stream of one ‘2ero-velued packet).

An execution sequence is supposed to reflect a system‘s response to a
particular presented input slicé, and this input slice ';a;apea‘rsh in its entirety
'wlthin the initial system slice $g. In order for the execution sequence to
realize a response to precisely this input and knothing more, we rnust have at
'@ach system state the identical input slice as at the begtnntn‘. whtch for the
system C means that X, = X, for all i. Physically, this requn'ement amounts
to the outside world suspendlng additlonal tnput to the system unul the

system completes its response to the input already prmnted

The third condition that must be fulfilled l;svangreement with the
semantic properties of the componentmodulesof ' the system. " What this
means is that for all states it' must be true of each ﬁodule:'tltat the paoltets
that have been received and acknowledged by that module are related through
‘the modules characteristlc relation to the output packets generated by that
module.” In our system, the semantlcs for the A lnoduleﬁ t‘mpose the condttxon
' ((x- r.8), (s)) € EXT,, and the D module Torces ((s) (r -ro, y,) € EXTD (The
reason we speciﬂcally remove the stream ro ls ;ﬁat lt represents a packet_‘

stream that ls initlally present but is not generated as output by any module.)

These conditions must hold for each i indexing some state in the execution

-72 -
~sequence, starting from the initial state with 1-0

The fourth . preperty that shouwld -hold withia an: esecution .segquence
is rather complex. Wa wish -to state M‘ﬂl seguipement that state
transitions within. an eXecution aseguente mAust .agmee wWith 1the :aystem
- structure. Each state ($;,, $.,%) must follow from its predesessor <§, $;") in
a manner cousistent with the physical arrangemant iof the isystem's clanhels.

back. For each channel Z in the aymm. pucluts can cnly be added in geing
| from one state to anothar. ‘Mqreover. since the chamls act as wmo queues,
new packets cannot disturb the relative order of pnvions pacluts 'l'hns for
each channel Z the channel stream Z; mm be a cubugnenoe of Ful for all 1.
| This require_ment also holds mately fpr the acknowkd.godproﬂxu on qach
.channel, slnce acknowledgcd packots cannat become nwknowlm 80 we

must also have 22 a a subuqucnce of z,,‘ for g

;t would greatly simylify the tochnical develapmant in the
t‘ouowing aoctton if we could strengthen thts fourth comuuon to require that
Z, be a preﬁx of Z,, rather than any snbseqxunce As it stands npw,' we are
requiring that a ﬁedula can only ;énd_ out addmo:ul ma in respon;ato
new input pacl-mts‘ rot.:eiv«‘l,‘ Insisting ‘on”; a prefix property would impose a
time restriction on me mtqfvals from packot gmor;ﬂon to packct transmission,
forcing packets - be apnt out on channols in thc oxu:t -same order m which
their respective woccsm of goncrmon wcra mmmd Unﬁortg{xﬁutoly_.v "this
turns out to be too strong a stipulation. If a module such a5 M

(figure 4.3-2) receives from its input channel X first a packet p and later a

packet g, it may very well take M longer to produce a packet p' in response

to p than to produce a packet ¢' in response to -q.

X Y
l{_H’ iy

Figure 4.3-2: A module M.

This could occur naturally in applications such as a cache/bulk memory or an
information retrieval system. In order- fof M te; derive the benefits of
asynchronous operation, its behavior .should be smtthd npondeterminately so
that either stream (p'.¢") or (¢',p) will be a-valid response to the input stream
(pq). Figure 4.3-3 depicts the two corresponding exegutien.sequences, which
should both be valid, |

‘state: X Y state. X Y

0 *Pq . 0 | e | -
1 | pra | " 1 | pea | '
2 | pa- | ep'q’ | 2 | pa- | -a'p
3 Pas | p'g'e 3 | pae _g-’»p-.
(a) - o ~ (b) |

Figure 4.3-3: Two execution ssquences for M.

In execution ‘sequehce (a), channel 'str'e‘am Yy, = {p" -:is a prefix of channel
stream Y» ® {p',¢"). However, in sequence (b), the packet ¢' has cut ahead of

the ‘packet p' by the time state 2 occurs. This is legal, since the p' packet is

only potentially present on Y during state 1. So for sequence (b), ¥y, = (p") is
a subsequence and not a prerix of Yo = (g'.p). in fact, thero is no way to
realize the response described ‘by execution uqueﬁco (b) if we insist that y;
be a prefix of y,. We need the generality of the subsequence relation to
realize “cutting ahead" behavior of this nature in packet systems. Thus we
cannot strengthen the requimnent that each channol stream in an execution

sequence be a subsequcnce of its snccessor

We can, on the other hend, ~m¢uthcn\‘- this subsequence property to
use the prefix relation in the case of atknowiedged prefixes of chanmnel states.
'fhe "cutting ahesd" dehavior' as ‘describéd sbove carinot’ occm' withisi the
acknowledged prefix of a channel stresn, ‘slice we know that all ‘the packets
here have alresdy been passed. This means'thst fii any execution sequence,
the only way 2.,® may differ from z® is through the appénding of newly
acknowledged packets to the end of the stream. 'l‘hua A 'cann'ot be just any

subsequence of Z,,%; it must be a prefix.

The fifth and final condition that must be satisfied by an execution
sequence is that no chamnel may receive mk.noMcm for a packet that
was never genersted as output to be sent aa ‘that Mul. This is guaranteed
by requiring that for each I the acknowlm m:mx z,.,‘ must be an initial

segment of the previous stream Z; on all channels Z.

The notfon of execution sequences that has been developed here
models the progress of a computauon witlun a2 packnt system, but tharo is one
ﬁnal element that is misingz thg idea of ummte result of a mqggption.

We must idontify when a packet system ﬁmhu nccuu to i;g tggg{;t_aq well

-75 -
as handlo the cases of mﬂnite mputs and mﬁnito ru)onas to tinito inputs.

This wm ho dono by dovoloptu the conoopu or umm and complotomu for

' oxocution uquonces

- For any packet system, we may define a relation PRECEDES on [s,ystem

states by (8, &%) PRECEDES (8, 8" m (8% PREFIX 8" and & SUBSEQ 8)).
‘ Intuttivoly, incrouing valuos with rupoct to PRECEDES indicato forward
“ »iprogrm or a coxnpuution Mthin a packot mton. In parttcular.
81 PRECEDES S2 muat hold whcnovcr tyston mto 82 is rachoblo from system
state S 1 in somo oomputation through tho proooutn; i; addmonal plckots
We may oburvo that PRECEDES u a tnumvo rohtion.‘ Furthermon. by
:condmon (4) abovo, an oxocutton nquonoo h monotontcally tncrmln; with

respect tos PRECEDES. An uppor bound of an oxocution soquonco. thon.
: ’eorresponds to a compntation that hu protrmd at loast as far as all the
statos in tho soquenco. whuo a lout uppor bound indmm that no oxtranoous
computation u taking phco Wo define l Ilnut of an oxocutton uquonco to
‘ be a lout upper bound wtth roap«:t to tho PRECEDES rolatton. _‘ ‘rhux. a limit
of an oxocution uquonco oormponds to a mtom mto 1n which all the
| computatton spociﬁod by tho nqnonco runs to oomplotion Thu notion applies
»to infinito as well as ﬁnito oomputatlom We use the notation'
lim {<s.. 8‘)} nsesgu {(8,. t')} to donoto tho umtt (hut \mnr bound) of an

execution uqnenco whon it is woll-doﬁnod and uniquo.

It may bo obarvod that tho PREFIX rolation is a partlal order and
that for any exocution _sequence s t,‘)} tho nqmm (8 ') is monotonically
- increasing with rospoct to PREFIX and alwm has a uniquely defined least

- 76 -

upper bound §,° = ':g? {&‘) These facts are pmvod in thc next section.
However lem upper ho\m&: ere not neeeuuﬂy mﬂ deﬁned with respect to
PRECEDES We therd‘ore need mme aﬁditton& vmm to bc ntisﬂed by an
execution sequence in order to guarantes that limits exm md ere weu
defined,

Consider a synem state (3 3‘) in which l‘ u a propor pretix ot $.
The nonempty differm slice 3 3‘ mld upnum pecluts that ‘have been
generated but not yet acknowhued. Sueh a m cen never represeht a.
complete compumwn, :tm:e it qndﬁ.u mem .en m&itm prooemng by
various internal modules. 1If the system s 0 funy m.;; to its taputs, all
the packets that have been generated at eny time dnrtng a computetion must
eventuany be ecknowhdged We thul deﬂne an cxecnunn seqnem {(3;. Si)
" to be complete if and only i for uch i there exists a J such that
$; SUBSEQ 3, 'l‘hu J wm bo the stlte by chh dma all packett that have
been generated by the time of state 1 will hwe been sent ont and
acknowledged In general, in any state <s. s'> for which § = s‘, there are
no generated packets wamn‘ to: proeuung and acknowledgment so the
system cannot perform any further actions We prove in the next soction
that any compleee execution sequence s, s.‘)} has a unique and well
defined limit (§,, $.% for wmch s., s.,‘ This mun will be known as
the Limit Exxstence Thmom. Thus the nouon of a mmatton muniné to

completion within a packet system is always well dlﬁned.

The umz ot a oomplete ‘execution uquem should alweys repreunt

the state of the symm upon completing iu ultim output mpenu to the

- 77 -

presented input. For a given input slice, we call such a state a limit state,
and we say that the slice consisting of the streams for the system output
channels in a limit state is an ultimate output slice. The presented input slice
and the ultimate output slice may each be finite or infinite. If either is
infinite, there will be infinitely many states in a complete execution sequence
and the limit state Will not be one of the states in the sequence. We shall
adopt the convention that execution sequences will always be infinite, If
both the presented input and ultimate output slices are finite, then the limit
state will be an element of the execution sequence, and all succeeding

elements will be identical to this state.

There is a class of pathological conditions under which the limit of
a complete execution sequence fails to represent the system's ultimate output
response to the presented input, Consider the case of a module M

(figure 4.3-4),

p Q
Lo

Figure 4.3-4: A discontinuous module,

which outputs the empty stream for finite input but which echoes any
infinite input stream. The external characteristic relation EXTM is given by
EXTy ¢ ((P*) x (Q*)) and |

((P), (@) € EXTy <=> (#p < = and q=e¢) or (¥p = = and q=p).
In response to input streams p; of increasing finite length, M will not send

out any packets at all, and the limit of a complete execution sequence

- 78 -

- modeling this behavior will exhibit an empty ultimate output stream Qq,. But

this disagrees with M's specified noRempty response to infinite imput, The
problem lies in the way EXTy .is specified; we may avoid this by JHWM
that all modules in packet systems be continuoug, which mesns that the
responses to an increasing sequence of input strsams ‘?‘w tend .to an
aﬁpropriata,, weli-defined lmit. . When this is the case, we are guaranteed
that the limit of & complete execution sequence does in fact propssly capture
the system's ummau output Tesponse. |

We now heve-descrided dli the rélevias characteristics of exeoution
sequences. The mathematical developmént RAlows i the next. section: -

. Daeben i)

We now, give the formal characterization fox-the notign of execution

sequences that has been developed., First, wb show an examples afterwards,
we give the definition for the general case. Consider the sample system C,;

which wudm.mmmfmm»mummm:

' System C
I ¢ - inputs X(1integer)

Tt .. outputs Y{integer)

1 intmﬁs S(Mugor). R(intow)

' le8
' A inputs X, R; outputs §
! D inputs s.uov&pm:s B ¥
H Inituny W(U)

Y
. &

Figure 4.4-1: Realization of a sample mntsystm c

we have the following characterization:

-79 -

An infinite sequence {(($, $)) in which for esch natural number i
$° = (x9, 88, r? y?) is an acknowledged prefix of § = (x, 8, I, ¥} will be
an execution sequence for C if and only if thc touowtu fivc conditions hold:
(1) [initial state] $,° = (€,,€,€), 8 & Yo 5 &, Fp = (O)
(2) [input suspension] X, = X5 for all 4
(3) [consistency] Vi: ((x,‘, r‘).) e EXTA snd (s, (r i~Tor y,)) € EXTD
(4) [FIFO] $® PREFIX $.,% and §; suasso '$,, for all {
(5) [connection] s,..‘ PREFIX §; for all 1

An execution sequence {($;, $%)) for systam C :is . commote if. and only if
Vi 33: §; SUBSEQ $3. , | L

Note that although the PREFIX ami SUBSEQ rsIauons were defined over streams,
they are being applied to s‘ystem sllcos here. "f'he 1nunt is for these relations
to be taken componentwise over all’ channef strdms whfch meaus that one
slice is a prefix of a second:if -and ,nnb' if-each: componant akannel .stream.in
the first slice is a prefix of the matching chansneliséream in the: second ‘slice.
Subsequences are treated in the same way.

The above formal characteriution of cxocution sequences for the
system c may be extended to srbitrary packst sysums with no dit‘ficulty.
The formal structural dofinmon for a psckot systsm u of the general form

" system SYS ‘

inputs W(---)}, ..., K(===)
outputs Y(--=), ..., Z(===)

internals U(===), ..., V(===)
Submodules

M inputs P, ..., Q; cutputs R; .. 8

Initially UCudd, ..., VCvB>,. Y<y0>, ..., K20>.
The parenthesized items are channel packet types and may be ardbitrary. (The
use of consecutive letters in ‘the alphabet ‘sépatated by ellipses, such as

P, ..., Q" allows an arbitrary number of items in botwson.‘ so tfmt)for

- 80 -

example a submodule M of the system may have any] number of input

channels.)
The generalized deﬁnﬁitions now becomae:

Definition: A sequence {(§;, $"} of system states for a system SYS whose
structural description is as given above wm be an execution sequence for SYS
if and only if

(1) [initial state] $,2 = (¢,...,€), U = u0, ..., Vo = VO, Yo = ¥0, ..., Zo = 20

(2) [input suspension] Vi: W, =W, .., X% = X

(38) [consistency] For each module M in SYS we have

: ((p® vosns 8, (tiro,.. -+$-%0)) € EXT v
(4) [FIFO] $® PREFIX s..,' and §, sunszo $., for all i
(5) [connection] &.,.,' PREFIX §; for all §

Definition: An exmcution sequence {(§, $?)) for.a system SYS is mmplote if
and only if Vi 3j: §; SUBSEQ : K3 '

We will thus be able to give internal specifications for any packet systéxn.

The relations PREFIX and suéssd_ were defined in section 3.2. We
now proceed to derive the basic mthematicﬁ mpcnies for ‘these two
relations and the PRECEDES ralation. This wm M up to a proof of the Limit
Existence Theorem, which states that limits exist and are well-defined for

complete execution sequences.

Lemma 1: For any space Z, the PREFIX relation is a partial ordering over Z*.

Proof: The reflexive and transitive properties ave clearly satisfied. Now if
z PREFIX Z' and 2' PREFIX 2, then #2 < #2' and #2' < #2, so #2 = #2° = N, which
means Z and Z' have the same domain. But then for 1 £ N we have
z[1] = 2'[1], which means z and 2' coincide over their common domain. This
forces Z = Z' and establishes the antisymmetry property, completing the proof.

Definition: A sequence (Z,) of streams is said to be monotone if for each i,
2, PREFIX z,,,.

- 81 -

Lemma 2: Any monotone aequenco (z,) of :trunu hu a unique and well
defined least upper: bound.

Proof: Each stream Z; is a function that°may be regarded as a set of ordered
pairs of the form (k, Z[k]). Let Z-be the set~theovetis union.of all the 2z,
Then 2z will be a function, since any two ordtred pairs (k, z[k]) and
(k, Z[k] must camcmo by monotonicity). * It is immediately apparent that
. 2eZ* and Z is an upper bound for {2} ‘umier PREFIX" Moredver, z will be a
least upper bound, since any ‘upper bound for {z} must contain all the Z
' set-theoreucally and hence their union Z. Finany nnsquenm fouows from
the antisymmetry property derived in Lemma 1

-Lemim 3: PREFIX 15 &' subrelation of ‘SUSSEQ:

Proof: The insertion function required by the torual definition of SUBSEQ is
simply the ldentlty function.

It is easy to see th;t; thp SDBSEQ. roll#iog !,greﬂg.ﬂwmd transitive. However,
it is not vnecessarny antlsymmetrlc! Conaﬂer the two infinite streams (0011)*
and (0101)*, .each consisting of:: mmmy ey 2erds and ones. - These
streams are distinct, but each is a subhqmnce of the other. Thus, 4508850 is

not a partial ordering relation. (S

'l'he relations PREFIX and SUBSEQ both apply to streams, but the
PRECEDES relation Wﬂk e taken over Thannel states; which ‘'we now define.
Definition: A channel state for a chanm Z in a packast system. is am ordered

pair of the form (z,z‘) in which 2. ﬂlﬂ 2 are meguentes - of - packets..and
2% PREFIX z. :

Definition: : For ‘two- channe’i‘ stites (2,28 and ét,'.,.z,,,‘) ‘we say
(z,,2,2) PRECEDES (zi,,,z;.,‘) if and- only it'E suss'ab z... and z® PREFIX z..2.

Definition: A sequence ((z..z,‘)) of cmg.l mtu n am to be monotone if
and only if (,2") PRECEDES Q,.A.') ror all i, '

Definition: A sequence {(z;,2®)} of channel states is said to be complete if

st ARl N

and only if Vi 3§ s.t. 2 SUBSEQ Z,

It is extremely important to note that thc M W& au- tm be a
. partial order hecam of. its SUBSEQ componant: . This:is,eaaliy #seR im the case
of the Ttwo chaRbi¥l swites” <mm‘°, mu«aﬁo-r‘r"* &, ditn ha‘m; an
m T&?gm mm am digsinct
- and. ﬁao&\ m the m.xmm amtisynimetey ‘pasporsy fails m-’ '{h\u

infinite stream and an cmpty aeknow ,

s&« 8F

’least uppdr bounds for a monotom ﬁq o? lunncl sum an not

necessaruy weu dettned. Howpw, mf mgmmm to

guarantee that the least uppez; DIMBAe. GXim- 804: 29 smigun.: The: fpllewing
‘P‘W‘? PW”‘%WA‘ Sﬁ"‘h Sl Daomoiimeta
75 LS R

Theorem:s If ((z‘.z“)) is a monotone and compiete sequence of channel states

e 3, s e wy.m&"& mM%szmmmwm

} vequgl 0. RpnZedsii .00 . v a8 z
.£roof: . Since L, is by defiaitien: wwmm&w{:ﬁvw hawe'
(1) - V‘hﬁ PREFINZ,.
Now given anyi byconphtenmmhm
(2) s 7, Susseq Zf* - T T
But za PREFIX z,,,, wmch hy mea 3 inyuu L
(4) 2 SUBSEQ Z,,.
~ The <ombination OF eguations’ (¥} aud (¥) ditabiisfes (z,,.z,) a5 ﬂt ‘épper
© bound for ((Z,2%) wmder'the PROGWDES rilicttn, ' ¥ S

In order to show that this upper bound is in fact a’ least u‘ypor
bound, we must establish: that far.any mmm;or whigh;.,
(6) - W (a..;'a PRECEORS x> P P
it must be the case that (212,,) PRECEDES g.z‘) Now oquation (6) im?““
2, SUBSEQ 2 ang Z% PrEFIX 25 mﬁmmwmg« (z;"}mm be
a prefix of the upper bound 2%, le.

o

- 83 -

- (6) | 2., PREFIX 28,
But since (2,2%) is a channel state, 2% PREEIX Z,°s0 2, PREFIX-Z, which implies
7y | z.SUBSEQ Z. |

The combination of equations (6) and (‘7”) ﬁelds the result
(25.2,) PRECEDES (2,2%), so we now have established that (2,2, is a Ieast
upper bound for (2,2,

' The proof is not yet complete. smce the PRECEDES relation is not
necessarily antisyxnmetric and we must therefore explicitly guarantee the
well-definedness and uniqueness of the least upper bound we produced This
will follow directly if we show that for any channel state (z,za) whenever
(Z,,,2,) PRECEDES (2,2%) and <z,z°> PRECEDES (z,,,z,,) then it must be true that
z=2% sz, Now 2z, PREFIX 28 PREFIX 2, implies 28 = 2,. Also, the
combination za PREFIX Zz SUBSEQ Z, implies #28 < #2 £ #2,, and this "squeeze"
condition forces #z% -_tz.f But since z® PRERIX T, we must-have-2® = 2. Thus
z 2% =2, which sets up the required antisymmetry condition and
guarantees uniqueness of the least upper bound. This completes the proof.

All of the results established here have béen: stated for individual
channels in a packet system. .However, we may apply them to the internal
behavior -of an entire system in a rather striightferward manner.. As -an
example, a system slice $ 1s a prefix of a slice $.if and -only if each
component stream in $ is a prefix of the corresponding component stréam in

$'. All properties of the PREFIX stream relation are just as valid for- the

_ PREFIX slice relation. Similarly, all' properties of the stream: relation SUBSEQ

hold for slices. Moreover, all ‘properties of ghéc;PRE@EDES? relation on channel

. states apply to system states. In particular; the- foliowing theorem, which we

call the Limit Existence Theorem, holds:

Theorem: 1If (($, $) s a complete execution sequence for a packet system,

and if 8§, = oSup. ($%), then oSUR “{{$, $)) is well defined and ‘unique
and equal to ($,, $,). « ’

- 84 -

‘We mow @$ive a formal definition for the notion of continuity,
which was mextionell in the yrévious sectéon. Coutinuily is .2 property of a
module's oxmn&l ch ?Uilﬁen. lo we define n for biwy rohtxons

over slim

Definjtion: A relation ~ un slices is continuous if wxmever s - mn {82

wherethom{t,}d!nwumt,mlxtu fornnl.thtn
(38‘)e~<->aaqumo(&)ofmmhmt
(1) (8,8)) € ~ for all & |
(29 G’SUBSSQS,,, torllliaand o
(awr&tﬂ aunmywnud

4.5. Chisravtertuntion of titwmal i mtm)

" Now thet ‘we have' defined e¥ecuiion sequences Tor any ~packet
systeim, it is simple 10 produce 4-syatem's dnsemnal apecifications.: The internal
#pecifications for -a. pevket .gystem SYS- eare:n bimery:-vedstion INTgys from mystem
input -slices- 10 - System ouiput alices, Wiich. we call; the system's issernal
. churacteristia relatien. For she sample:system C we have Seen discussing, we
have Iﬂkcm)#m and e intermel specifications may e formally
charactericed by £(x), {¥) € I il .end wmsdy if :therw: is a complets jexecution
sequence {(6, &%) far G such that Xy* X il Yy = ¥, Whete X anl.¥, are
defined by g = (% W W, ¥o) and §, m 8%) = ® (X, 8 Fuy Yo). - Note
that %o represunsts the iaitial input pressnted to C -and that Y, tepressats:. the
ultimate output yielded Sy C. Wae qan essily .gensvalisze this te an arbitrary
system by qmttrying tho condnton xo = X over nu 1nput channols X and

quantifying ths Wton Yo * Y OVer au output clunneh Y. Note: &hﬂ the
definition of iNTgys is in effect parmetcriud by the structural description of

system SYS and by the characteristic ‘relations of the éomhbnant modules in
SYS.

The development .of internal s?ecifi@:at;ox;s fo; packet $&stems is now
compiete. Wa have two ways of formally describing the behavior ‘of a packet
system: exteraally, in terms of its interaction with -the .owtside waorld, and
internally, in terms of its ;tructura and composition. . We can apply .this to
~ correctness proofs by observing that a system $¥S is corypctiy realized by its
internal structure if and only if its (external) charactexistic relation: EXTsys
and its internal characteristic relation WTgy are idensioal.. A correciness proof
for a packet system will therefore consist of a demonstration that each .of

these two relations is contained in the other.

Aside from the obvious application to system.verifigation, the-formal
-specifications we have developed for packet systems. ara ﬁaluabim Ain achieving
a. frequently overiooksd objective: understanding he bgmyxoz’, of these
systems. Our operational approach lets us model the activity within a system
_step by step. The "dot notation" tables for execution.sequences are a useful
pedagogical tool, aiding in a person's conceptualization.of what goes om. in
‘packet systems. It is hoped that even witheut gaing: through a process of
formal verification, designers of asynchronoys, Rondelerminate systems will

find the techniques developed here to be . eof assistance in building packet

systems.

n: msm wes discuss’ tiie: spslitatton O7’ our spectfication model
to the problemy- of proving packet: systems: cofrecy. - ‘A ‘puckiit “system fs*an
fta internal spedifitatons. < Shok ‘e syster will e cirrest ff 1t alio sattstids a
SIvEn. set: of extesmel sperifivetions: - Cébredindss‘of ‘& Dacidt systent, taréfbre,

: atwwm@nuw““ i ‘utid rhﬁofexwi'ﬁal

"

. specifications - A e T wwe o tewe w s b cnd

Tomwmmudammsymm onamustshowthat _

. 1ts ext6Tnal Clsaactaristic’ Yelation BTy et i Siheemal CHardctir
e cotnctln. WWMWWMMMV the
Will be woved:ay shiowig thet. for any-coiplens Smidlition sequenice for' SYS,
the: initial Vet slick-and: mmm {Baits stard) w A6 are s%y
EXTgns. We sl this®b conststency Jorttsh of' the’prvof, i ft Vrifies
~The other: tnchesioty'- siites they al “befavibe WtOwe’ By~ Yhe ' extdrnal
specifications may be reslized by some complete execution sequence. ~THis is

ic relation

called the synthesis portion of the proof, since it involves construction of an
appropriate exscution ssquence to realize each instance of system behavior.

- 87 =

The simplest example we can give of a correctness proof is for a
system D composed from two copies Nl and N2 of the negauon module N
described in section 3.3. The structure of this system is shown in

figure &. 1- 1.

rmmemmmee—m—m——i— e .———— . B ,Sysm 10
inpats: X(boolean)

] t
1 1
L . Y — 2 outputs Z(boolean)
—,'——-)[E:—II—N___Z———i—-» internals Y(boolean)
S : =i : - submodutes

1
'
1D ' Nl inputs X; outputs Y
it ! : N fnputs Y; outputs Z
~I,g|1ti,a_nx empty

Figure 5.1-1: A simple system |D to be proved correct

The behavior of ID is triviali any boblean packet value coming in on channel
X is twice negated, thus remaining unchanged..: Sipce:both. Nl and N2
preserve stream ordering amd since the ch‘fnners are ‘an FIFD the system [0

sends out on Z the identical stream received on X So to demonstrate the

PR

correctness of ID, we will have to show that its internal charactertstic
relation INT.D matches the external characteristic relation E;(Txo Q ((X') x (Z'))
given by) -
| (%), (@) € EXTpp <= 2z = x,

For the component modules N1 and N2, the =aqxtemakacheucteﬂsuc relations
EXThy ¢ ((X*) x (Y*)) and EXTye g (Y*) x (£%)) .are given by

((x), (¥)) € EXTy, <=> #y = #x and y[i] = not(x[i]) Vi < #y
and ((y), (2)) € EXTy, <=> #z = #y and 2Z[i] = hot(y[i]) Vi < #z.

Note that all three channel spaces X, Y and Z are equal to the set

{true, false} of boolean values.

- 88 -~

We can Im'muy mtc the cotuctnm thmom fox the given
‘ reauzauon of m ID The doﬁnmon of the r-utton INT,D is iacorporated
into the fouowing statament.

Theorem: ((x), (&) € EXTp <=> ((x), (2)) € INTp

<=> 3 a compiete execution sequence ((§, $*) for ID such that Xp = X and
Z, =2, where X, and 2, are defined hy So (%o, Yo» Z0) and
$o ® Sup {s‘} * Xy Yo Z)- | |

We recall the d@ﬁniﬂm of execution uquahce and oamplﬂemss. stmi:{g them
for our particular system iD: A sequence of the M'{(S;. $%) in which for
each 1 83 = (x¥ y® z%) is a prefix of § = (X, y,) will be an execution
sequence for 1D if and only if the to‘mswingﬁvc conditions héld:

(1) [initial state] 852 = (e€€) Yo =2 = €

¢4} [inpm suspension] X, = X for all 1 o

(3) [coasistemcy] (O4%), (y)) € EXVy a0l ((y%), (@) < EXT N2 for all {
(4) [FIFO] (%, $ PRECEDES (5,5 &™) for all 1 -
(5) [connocuon] $.,® PREFIX §, for all 1

An execution uqmncc {18, 8)} tar ID is complm u and only if
vm si. § SUBSEQ §7. xou that whenever um is true, the unm Exmeneo

Theorem guum%ou that we will also have 2B {(O 8‘)} (3,,', $ ')
a
where $, = '&% {$*).

The statement of the correctness theorem: for the system ID is now

complete, and we &re resdy 10 begin developing & preof.

B s O R s Lt

6.2. Proof for the system ID

- We must show “that for the systeg D tno {gg;tggmerelauon :EXT;D
and the internal relation N5 cotncties ~THe consuteuy portion of the p‘t'oof
)iinVOWes showing that INTD < EXT;D, whtch momﬂﬁt'at , ﬁfqr any complete
execution sequence for ID tha mxtm i.npu% Yo and: the. ;ixttntm outpu,t 25
satisfy the characteristic rolatlon EXT,D. In provtng tml. we need to estabush
a particular property that will be an 1mpottont tngredient 1n all our
correctness proets This property! ‘which we. shaji g¢all: - tho leit sxze Lemma,
- concerns the size of -ghannel sequencos ‘tn & u*mit étate“ for ‘a system
Essenuauy, it asserts that the size of each channel stroaxn in the umit state of
an execution sequence is tie Hmit of the #iiss of“the’ Strdo‘m‘s for ‘that channel
as one proceeds through the states in the mm mu.m Noté that this
property is not limited to the partit:‘ulai“‘Tsyf"s‘t‘iing ID; but rather holds for any
system we will wish to prove correct, m I.tmit Size Léthma s proved by
" using the least upper bound property of tho ltmt ctat; :o ogubhsh thg least
upper bound property for the sequence sizes, .

Lemma: In a complete’ monotone sequence {(z, Z%) of channel states for a
packet system, if 2, = SR {22}, then f2, = sup (M) :‘i'wpa{#z-@-}

‘Proof: - The sequence {#23) is a nondecreasing sequence of natural numbers
and must either be eventually constant or else increase without bound In
the first ca.e, there exists a J such that VK)j: k*‘ = #z, “which implies
#22 = sup (#2%). Now for any kdj, the combtnatton #zk‘ = #2% and
23 PREFIX 2z forces z® = 2,8 Thus 2z, = oSup =¥ i =‘_;z"SI | and

¥z, = #22 = sup (#2%). \

In the second case, sup {#z?) = o, We claim #z,,, «. If this is
false, then 3N: #z, = N. But then (Vi: z3 PREFIX z,) implies
(Vi: #22 < #2, = N), which would make N an upper bound for {#z%),

- 80 -

contradicting sup {#z*) = . Thus #2, = w = up_ (lz,‘} S
Now by the Limit Existence Theorem, we ~ have

Zor 2a) ® a&.& (@,), which implies Vi: (, z,') mceoes (ZalZs). In
particular, Vv z m:m, 0 Vi n; < n,,. ‘which makes iz an upper
~ boumnd for {#3). Buk Mis 3P PREFIGX; kapligs A 1s-Me < 4, 's0° any upper
bound for {#z) must be an _upper bound. for {h,") and mugt therefare be no
less than the least upper bound #2,. This makes ”, 3 least upper bound for
{#}a&wﬂlufw(’w whiehconﬁiﬁﬂhﬁmr ‘ S

Corollary: It ke and k 5 #2,, ‘then thero oxista n i such that ﬂ,‘ > &

Proof: Suppose that for all i we had n,' <k This would imply
- Vit #2® < k-1, which maliee kel am'-dbpes’ 'BoEnt “for (#z*Y. But by the
. Limit Size Lemma, €2, is the lsast upper. besink, s we: must: have
2, S k-1 ¢ k Which contradicts the hypothesls for finite X.

Now that we have proved this: lommi: the. consistency. proof .for
system 1D, 15 easy., We shall e the apboavistion LSL in this proef amd cell
others to denats use of the Limit, Size Lemms.

WW, ummwmmmmmmamm
statement of the correctness theorem for ID, we must show that if x = g, and

2'% 2, then (%), @F € EXT. ﬁuuix\uumdoiﬁytfz-x.xo
#2 = #x Malﬁ’ﬂ}awx(ﬂ&}‘ i <o,
so we must vex'ify hoth &ﬁu nropmy and L2 m yof 2o,

We first m M:by the: inpuat suspension mﬁ‘ an exccuﬁan seQuence,
X, sxosxrorani nmquhphgwx,.nag. Inwncula(, Xy = X,
But then we luvc :
2, -sup{ﬂg (I.SL) S
= ".‘P{”J.} 0'! m&)
= Ig,, sz
- sup(y) US)
= sup(#x,®}’ (by EXTwi)
=, tf.m)
= ix

PRE

- 91 -

which establishes the desired size property.

The element condition ’is'equally easy. TFor any mnatiiral number

k < #2, by the corollary to LSL we hava 31: #2% .2 k. . Now.weg have
| zm . zu,[k] -

¥ =z8[k] (since 2 PREFIX 2,)
Z{k] . fsinow 2 PREFIX.Z)
not(y (kD) (by EXTNa)
not(y.[k]) (since y2 PREFIX y,)
net(rotix (kD) oy €XTyN)
‘not(nat(x[k1)) . (since xB PREEI& x)

= X[k].

This is the required element condmon. and the consistency portion of the
proof is now complete.

Ha

" Hoou '- l

The above mnstatu:cy proot”fmy lmar 40 be relattvety ‘intricate for
such a‘trivial system as 1D, but it really isn't, An we reauy had to do was
set up two simple chains of equality that traced the sAnterna) dase -paths, and
applied the behavioral properties of the s%mpdnent modules. Fo'f noncyclic

systems. thls presents no ‘real difficulttes

RS
4

The synthests portion ot‘ the eo:rectness proof for ID involves
 showing that EXT ™ ; INT 0 For each " gtven tnput stream X and each
corresponding output stream 2, we need to- canstrﬁct aﬁ execut’ion Sequence for
ID to realize the appropriate system behavior Thus, ;hren st,x;eams x and Z for
- which ({x), (2)) € EXT.,, we must realize the mm ‘sshavior of D by a
matching execution sequetice $o,.. 3,. “in which” nch »system state $; is- a
: 3-tuple (x,. y,. Z) of dotted cha’imel States.: “(The dot as we mentioned earuer.

v =

separates the acknowledged preﬁx from the rest of a chaml st;rm)

- 92 -

Our strategy is to produce a general order in which the component
modules absorb and process packets, The order we choose for these actic.ms in
the system ID is as follows: (1) Module Nl receives a packet p from channel
X and generates its negation not(p) for output on Y; (2) Module N2 receives
the not(p) packet from Y and generates a packet with value not(not(p)) = p for
output on Z; (3) The outside world receives and acknowledges the p packet
from Z. This sequence of actions is repeated once for each packet in the
presented input stream X. Thus the execution sequence we shall generate for

the given streams X and Z will be cyclic of period three.

Synthesis proof: Given streams X and z for which ((x), (2)) € EXT;5, we note
that this means z = X, Let ka#X (note that k may be infinite), - i let ¥ be
the unique stream of size kX for which each element is given by
y[i] = not(x[i]).
For each natural number i starting from zero, define

(0) $5 = (X[1:iJex[i+1:k], Y[1:i]e, 2[1:1]0).
This formula gives every third state in the execution sequence, For i=0, it
reduces to the case of the initial system state

$o = (X, ¢,),

since the stream segments indexed by the expression [1:1] = [1:0] are all
empty.
For each natural number i starting from one, define _

(1) $3.2 = (x[1:1]-x[i+1:k], y[1:i-1]sy[1], 2[1:1-1]¢) and

(2) $3..; = (x[1:iJex[1+1:k], y[1:i]e, 2[1:i-1]7e2[i]).
These two formulas give all the system states whose indices are respectively
one more and two more than the multiples of three.

Together, the formulas (0), (1) and (2) define an infinite sequence of system
states $,....$,,... which may be verified in an extremely tedious and extremely
straightforward manner to in fact be a complete execution sequence for the
system D, We will not go into the details here, since the remainder of the
proof is neither interesting nor illuminating. We shall, however, make some

- 93 -

- ‘comments about the execution sequence ”V’;'re j’us't‘ constructed |
First we make some observations about the states In the l-th state

SURTE: S SRNE) s =

given by formula (1), the i-th packet x[i] in the input stream X has Just
been absorbed by module N1, and its negation is seen as a newly-generated
(but not yet acknowledged) packet" tn " chéanel Y‘ deno“ted by the "oy[i]". Im
- the corresponding “(i-th) dtate gtv%nhy'(a):*ém packet im been received and
acknowledged by m and N2 "hias genermd a n-w ‘packet with value z[t]
This ‘state. is followsd by the”I-th stite ‘given By (d), which reflects the

. acknowledgment of the z[1] packet by the outside wotld. ’
ories EER G D] $ AT Y < b
If the size k of the input stream X is tgnite, then the above
E IR L # Yoo
. sequence of system stated wiu repeat endlessiy after 83.. Ali states from this
. e DY s) :

" point on will be identical namely
(") | | (x- ¥, 2o) |
In this terminal state, all the ianfmcbﬁ#*hau Wee v provessed and” a

complete response has been passed to the outside world Since the sequence of
RTINS ping e Gt

“'states is eventually constant in this cese. the limit is precisely this repeating

’ 77 (JRTTRCF SRS L hr s &

’ terminal state. In the case of an infinite input stxeam x the states in the

DT "s';:?eh;a EE

ini‘i’nite sequence ate ail distinct and the terminal state given by (") above is
Tt M P :‘!f’n ﬁ‘- sl

‘the’ limit even thouah it does not actualiy occur within the sequence in

FYSEr T

V'either case, we note that the output stream z wiu be identical to the input‘

: T RN EL DR A

“stream X By the hypothesis ((x). (2)) € EXT.Q
. : R 4}

ST
G ‘

‘enhaust all possxble sequences for the system lD hgweve;, they are sufficient

to realize all legal behaviors for ID given by, EXT,Q.

- 94 -

One m_vial oburvauon now completes he gorrectness precf for our
realization of system ID. smco all thrn channols X Y and Z accept only
boolean-valued packcts. there h obvioully no conmct betwaen packet type

restrictions.

The proof }givyn here may. seem, hngmy, bg.tmo,grud‘} logical and
mathematical arguments are byief ;&,‘nd‘_sgd‘l;tgg;waggggmg place where we

took the functional composition of the two -l

Regations. te. yield:-the
ider\xtit‘yv_xrelgtfianwgg in the final step of. memum of - aur :proof,
wheh w; used the ptppg;}y,,njot(mt(xtlgw.g{,,x{kl., . Qther . systems. wiithout
cyclic data dependencies in their intemal ztruct\u'e are proved in similar

»

fashion to sausfy the appropmte campeﬂuon of the oxternal characterlsuc -

l

relations of their compontnt modules | In the mxt secuon, we prove
o "{ OSSR T

correctness for a system with cyclic structure.

6.3, Correctness-af & cyoummtm

One of the sampla packet systems we have alraady worked with. the
'system Cc composad from the adder moduh A and the dtstributc module D, has
a cychc mterconmction structure In thxs systom.' shown agqu in
figure 5 3-1 clumnels S ‘and R form a directed cycle We shall prove the
correctness ot' system C in this section It is not hard to give an informal
characteriutlon of the syatem behavmr Inuially. module A pairs up the ﬁrst
packet value input from X with the zero packet on channel R, sending out
the sum t0'both ¥ and R’ by way of module 0. This sum, once passed around
through R baek into A, is added to the next packet input to A from X and

the new sum is cycled around again on channols S and R In this Way. _we

- 96 -

' System C
X by inputs X(integer)
et o outputs- Y{integer)
: internals S(integer), R(inteqer)
Submodules

A 1nNts x, R. outputs
D inputs S; cptputs R, Y
Initially ROY -~ ©

c

T T S,
LT R R)

1
t
1
[|
1
1
1
]
]
]
]
1
f
|
1
]
]
1
1
]
]

. Figure 5.3-1: The cyclic packet system C

can see that module A computes a sequence of cumulative sums of packets
' taken from the system input stream X. Thus t,he behavlor of C is to send out
on Y a stream of cumulative sums of packets taken in on X. We wish to
prove that this is indeed the case; to do this, we shall make use of the

'formal speciﬁcation technjques that have been developed here.

We have previously given the extemal characteristic relations
EXTy ¢ (@X* x R) x (S%) and ExT., € x ®e x Y-» for modules A and D.
The telation EXTD is defined by |

(8). (r.y)) e EXTp <=> r= y . e,
and EXTA is defined by
(06r), (5) € EXTy <=> #s = min(#x, #r) and o[1] = X[11+ FL1] V4 < #s.

The external speciflcatlcu for the mm C miﬂenﬂml .to ‘those ‘fo”r.' the
cumulative adder module C described in Chapter 3. The extermal characteristic
relation EXTc ¢ ((X*) x (Y%)) is defined by R

(), (¥)) € EXTc <=> #y = #x and y[i] = Z ;[JJ Vi< #y.
F

In proving the correctness of system C, we must show that the system's

internal characteristic relation INT; is precisely equal to EXTc. The following

R R Rl o tor oot S R R T

- 98 -
correctness theorem for C incqxpoum the -deﬂnitiop»af INTe.

Thegrgm ((x), (Y}) € EXTe <= ((x), (y) € INT; : .- X

<= 3 a commtc execution W (s, &) fol’ c such that %o = X ‘and
Yo ® ¥ Wit xf, ‘std 'y, are defined by $ = (xo.so.ro.Vo) and
m Plﬁu?l {‘lt} ‘ "xhv 'u- L Yb)

Execution sequences for: system C ‘wers formally’ dofiuod in Section 4.4. We

reiterate here that in aa exocntton nqumco {(3'. t')) tor C, sach system

= LE VIR SPR

- suce $ has tho form t s (X, 0,, r,, y,), wd uch aekaowledged preﬂx $2 has

R T

the rorm $% = (x ‘. &,‘, r‘ yd). ‘We are ncw rudy to ciovolop the correctness

Py Tewsry
ih S :"‘.‘{»3(;/v"‘t,-.:'

proof for sy:tcm €.

’rhoro are two lcmmas wc shau nquirg that du} with the
preservauon of a cartam kind of chuul mto nhti.ouhlp u an emcuuon

sequoncc for tho lysmn C‘ is’ ukcn to m linm Lonun 1 13 a buic property
_ 7y LN 8
of least upper ‘bounds of aqucncu of natiral numbu Lemma z which we

: " +
S S E f ¢

call the Minimum Limit Lemma, auows us to draw a signim:am conclusion

about the size of mwn éhannol sttum in tﬁi limlt mto of an oxecnuon

S
S

sequence.

Lemma 1: If '{ki){ and {m) m nondmii(uqumccs; 'bf‘ nat;irdl ‘\i{:;mbers
and k, 'S w for edohil; WM 1 k- = sUp(N) sud w i sOPPN}, Ak <'m. "

Proof: For esch i-veei have kK < 'w < W, unauwhmmr (kY and
is therefore no less than the least upper bomgl Kecovim

Lemma 2: If {k,). (mQ and {n;)} are nandecrmin‘ sequences of natural
numbers such thet ‘& Q,Jnfn(q.w) tor anl 1, andif lf i sup(k); o = sup(m),
ns= sup{n,}. thun k = min(n n).

- 97 -

Proof: Vi: k < m, so by Lemma 1, k < .. Similerly, k-< n, so k < min(i;n).
We now show that strict inequality leads to a'comtrddiction. If' we had
k < min(m,n) then k < m and k < n, so 3i1l: k < m; (otherwise k > -m for each [
would imply. k > m) “and 312: k < n;z. Now for i = max(il,12) ~we .have
k <m; <m and k < np < n, so k ¢ mm(m.,n) 2 k' < k. The result k < k is a
contradiction, which forces k = ‘min(m,n). ‘

We 'now pi-ocead with the x@gm,_pjodx of the Aeoj:rectvpes\sf proof for C.
Consistency proof: In this part of the proof, we will use the abbreviation
LSL to denote use of the Limit Size Lemma.- If. we are givem a complete
execution sequence as in the statement of the Theersm, we. must show that if
X = Xo and y = ¥, then ((x), {y)) EXT“CA,: “Fhis is true: if anc_\ only if

#y = #x and y[i] = Z xm Vf < .

ek
so we shall verify both a size property a;xd an qlgmgnt property of Y. By

the input suspension property of an execution sequenc;. X;.® Xo = X for all I,
s0 we must also have x = x In particular. Ix » ¥, Now we have
Yo = SUp{#y} S

= sup{#s®} (by EXTp)

= #s, (LSL)

= sup(#s;)} (LSL) _ :

= sup(min(fx?, #.2)) (by EXTA) : o

= min(sup{#x%}, sup{#r)) (by the Minimum Limit Lemma) :

= min(#x,, #,) (LSL).
If #x, < #r,, then we have #y, = ", . X, " which u the desired size
-~ property. - Otherwise, (*) #r, g #x,,. and' 'we have - B R

o = R

= sup(#r) (LSL) ;

= sup{1+#3®) (by EXTp)

‘=1 + sup(#s®)

= 1 + #8, (LSL) .

= 1 + min(#x,, #ry) (from the‘_;p':eyiwp};a; chain of :egugl§tie§!)

=144, Gy (") |
which can only be the case if #y_ = #r, = «. But (*) yitlds © = #r; < ix,,,.

- g8 -

50 #X, = o, - This fazces #Y,:= lx«, = w; which :yields: the desired " size
. property in this case as well.

"The elemant candttion is straightforward to establish We need to
‘show that - : o ’
Yulk] = Z &[JJ vk < ty.,

Now for any k < #y,, the cort;llary to LSL implies 3i: k £ #y, . Since

'y PREFIX y. and y® PREFIX y, We have Ya,[’kI y-'t&“] ® y;[k]

We can now work with the particular systam state mdexed hy i, We_ have:

y{k] = Ca{k] by mﬂ) R e .

~ = gf{k]) (since 82 PREFIX s) :

%Ak} + rAkY (vy EXTY)

x[k] + r{k] (since r2 PREFIX F) =

x(k] + (0e82)k] - (by EXTp). ..

x[k] + (0ey)[k] (by EXTp)

%[k} + (vay,)m (since xoax)

Thus we have ylk]l = xotk] + (GW,)IR]. which yields the paxr of equalmes
(1) DR 7¢ s L E s 8 andm"_
(2) ViOL: yikl = X[k] + y‘{k-ﬁ

We now claim by induction that for all k < fy,.

RAT

yik] = Z %[l o

!
The basis step is prectsely equatzon (1) aove md the 1nd'dction step .fallows
directly bys- - v o Gt i Rl ’
K-) |

YIKD = xglk] + yk-1] = K] + ; Xl3] = 2 *ol31.
,.

in which the second equamy is. the;, il;dactive hmhuw and follows from

equation (2) above. But this now gives us the result
K

Yolk] = ylk] = 5 xoldl,
which 1is precisely the required element condition. This completes the

consistency portion of the correctness proof for C.
Note that the inductive argimernt was necessitated "b}"“tﬁe"éydlig structure of

the system C. In.general, a cyclic system .tequires induction of some form -in

- 99 -

- order to establish that its ‘external characteristic vrei'atton" is satisfied by a

- complete execution sequence,

For the synthesis portion of the proof we need to construct an
~ appropriate execution sequence for the system c given an tnput stream X and
an output stream y The sequences we construct here shall repeat in periods

of four states. as we now show

Synthesis proof: Given streams X and y for which ((x), ty)) € EXTc, we
must realize the internal behavior of the system C by an appropriate
execution sequence. ' Let ke#X (note that k may be infinite), and let "@"
denote the stream concatenation 'operater. = We procesd to 'CORstruct an
execution sequence $,,...,$;... in whtch each _system state §; is a 4-tuple
(X;, 8j, I}y ¥;) of dotted channel states.
For each natural number i starting from 2ero, define

(0) 84 = (x[1:1]-x[i+1:k], y[1:1], (0@y)[1:1]-y[i], yld:i]:).
~ For- =0, this reduces to the case of the initial sy'stem 3tate
' $o-(-x ., +(0),)
“l-'or each natural number { starting from one, define
(1) $4g = (X[1:1- -13ex[1:k], y[1:i- l]-. (08y)(1: i] yl1:i-1]4),
(2) $4.2 3 (X[1: 1]ox[i+1: k1, y[l i- 1]-y[1], (OOy)[l 1+, yl1:i-1]-) and
(3) 84y = OKLL:AJex[4+41:k], Y1:11o, (OO I 13910, yE1:4-13.y[17).

The above formulas (0), (1), (2) eand (8) define an fnfinite sequence of
system states $y,...,$;,... for which it is again both tedious and straxghtforward
" to verify that it is in fact a comp*lete execution sequence for the system C.
As before, the gory details are omitted here.

We now make some observations about the sequence that we just
constructed. It is cyeclic of period fouir and corresponds to a particular order
of system actions. In the states given by _fo‘fm"\na (1), a packet has just been

absorbed by the A module from the R thahnel. The states given by (2)

-190-

correspond to module: A processing a PRacket -from. input chanpel- X. Ia these
states, the value of this input packet isv added.. to. the: packet. recensly taken
from R and the sum is seen as a newly-genarated pachet on channel S (not
B /Yet acknowledgedﬂ). deuoted by the “-y[ki" In the states given by (3).
" module D has absorbed a pae)mt from channel S and this packet is newly
"visﬂ o in the states for the channels R and Y 'l'he states given by (0)
reflect packets output by the system C having bnn acknowledged by the

s

.. outside wotld,. e e ELRTIEORTE o T

| If the stze k of the inpu,t szream x. 4; ﬁwc, then the above
4 seqnsmé of .system. states: will repeat: M W m,. Al ‘states from
this point on wlﬁ be equal to' the fimit stste . - x
Xy Yo, (00« Y‘!:);

in which all the iaxmt packﬂs ‘Raveé: batn prdcesud‘ and a complete response
has been passed to the outsidc wmd, _ smce thc sequenee of states is
eventually constant in this: case; the: limit is’ wmxy tHis maﬂng term’ihal
_state, In 1ha case of an’ infinito input strtam x, the stazes in the mfinite
sequence are au diqﬁnct. and this temiml mmn tlu liatt even though it

does not actually occur within the sequemes, .

'I‘}us pbmp}éiés thé correctnessprqf for me system C.
6.4. Proof for a@noudeterminate,symm

_ The caxreqt:gess proofs given in the two.-preceding sections have
dealt with modules and systems that .are expligitly determinates ©Our

~ techniques, though, have been designed to bhandie nendeterminate behawior.

- 101 -

This section contains a correctness proof for the Sample ﬁbﬂdete_rminate system

S depicted in figure 5.4-1.

_System S .

inputs X(integer)

. putputs Y{:iatager)

internals U(integer). V(integer)
Submodu!es '

¥ “4nputs X, V3 oatputs U

F inputs U;. outputs v, Y
Inft%a?fy empty-

Figure 5.4-1: A sample nondeterminate “system S

This system, whose behavior was discussed in the last ‘chapter, is compoéed
from the nondeterminate merge module ,"J'.a'nd, ‘the feedbm:k modified first
module F, both of which were. described inir;ection‘ 3:3. ' The nondeterminacy
.in the systuﬁn'-sssbehavior‘% -arises from meduu<J ming: on its' output channel U
an arbitrarily chesen interleaving of the packet ‘streéams’ taken from the two

input channels X and V.

We can mformally characterize the behavmr of system S in response
to an "arbitrary input stream X. If there are no inputs on channel X, then
nothing can be done, and the empty stream is - output on channel Y.
Otherwise the first imput value is taken 'by modute 3 amf eventuauy passed
“on channel U, This packet is output on Y and @ packet with Value four
greater than the given value is sent on V back to module J, where there is a
“race” between it- and the second input packet. If' ft wins the race (gets
processed and output by J first), them it is output on ¥ and no further

packets get sent out on V. If it loses, it finds itself in successive races with

- _102 -

successive immt paem trom X ux;;il it finally wins. .Thus, the sysjem S

DI LEARIDAYYLG b

outpuu an et m anm packets in the order in wlgchﬁt‘lﬁ + 4F¢ pEesenled as
input, but also outputs a packet with value four greater than the first input
‘packet, This exira Pecket may appear in the output at any place after the
first packet im tiu stm me m'ocn& to _prove, thct the syqem S
behaves pnctalrwiw mm specificatitm mﬁ& ‘

G)J it
., We repeat, the, wiamons of the oxumd charactetistic relations
EXT, ¢ ((X' PR R G}m;}uq jﬁ',r g ((U*) x (V* x Y')) for the modules J
and F. The relation EXTy is defined by -

h

(W), (vy)) € EYT; <-r> y sy m;..#v s mn(l #u) ud v[i] = u[i] Vi € #v,
7 andEXT.L“tMM BY, Ly e sk vwwad o wendwsane oo edils
e m%@f(@*‘m&“)&:“ a.menge of M.emdo¥oou e
N NOte that Q‘TJ, s satjstied pracisely what.fust:#X svwvand orakd. v O0dwrias
.dig.;gg;}; subsequences of U apd togpthes: CRRMLD.SAL the vismentyief :y: For the
. System $ as a wehole, we haug EXTe. g (€47) aee¥ hh: andrddads () e: EXTy wall
hold if and only if. both X and y are empty or if Nopes Looosaneds fugai
TG B t!’l"ﬂ“““»‘

ytlfmaady[lltx“]andyuawg ofxand ()g{;;]d)

We now sme the mrectm thoorem ter our¥ realization of the System S .

STV meotte tudid

“Lhisreme (), {93 € EXTg oy (0), ¥ ITg Do o708 o0 oo ot
<=> 3_a complete execution. sequanee:{(%. §31)- fovcS: such® that xy# xidad
ym Y. where X, and y, are defined "Xmg"m‘f“’ Yo Yo Yol and

TH 3 [1t4 2 \(—}i” 21 d
w [I j {(xw’ nn m' YG}y
) 4 wLuta -

L ~r NG v" fHe Ty 4, FE AN 6 G} BRI (Y L
},In an exec;,mqn sequence for the system: S, &ystem séates: are-of fhe ferm
- ($bsi :) whpre s = (xw “0 V,, Y|) i{ldn ‘;?"" (xm- “f? Mﬁ} y" Sre Thee: oMy

ETTCTUIL T SN SRR TE TR B £ T ORF D SIE N TR B 4 FEEH

AR SR A o B

- 103 -

property that should be stated here is consistency:

(%2, v, (U)) € EXT, and ((u®), (v, ¥))) € EXT; for-all 1.

There are a few interesting properties relating to least upper bounds’
and execution sequences which we shall establ’ishwbeforg ‘gqin‘g into the actual
details of the correctness proof. These res'ultg are g(mtain.ed in the fﬂlnwing

lemmas.

‘The following lemma is called the Sum. Limit Lemma and asserts
that the least upper bound of the termwise sum of two sequences is the sum
of the least upper bounds of these two sequences.. The Sum Limit Lemma
will be used in the consistency part of _'i;.he - COrrectness: .pmot«-for"syszer}n S in
.the same wﬁy the Minimum Lixh;i;t,,l.emma was. used in the correctness proof
for system C.in the preceding section.

Lemma: It {x:), {y,} are nondecreasing sequemces of -satural numbers for
‘whxch X = sup{x;) and y = sup(y,) and if we define the sequence {s;} by
s-i = x+y, for each 1, then sup{s) = x+y, ‘

Proof: If 3kl Vidkl: x=x,, then x=x,. If 3k2: Vidk2: y,=ykz, then ysy,,. If
both of these hold, then for k = max{kl,k2) Wwe have '
12k 2> 5 3 Xi#y; = Xybyy = Sy,
sup{s)} = s = Xt = Xi*¥ig = X+Y.

‘Otherwise, {x;} and {y;} are not both eventually constant, so ‘at least one of
these two sequences must increase without.bound. If it is {x)} that is
unbounded, tiien xaw, which gives us e

sup(s;) = sup{x,-w,} sup{x,} =X E o= ety = x+y.
This completes the proof. ' : -

~ Before we get into the actual correctness preof far system $§, there

is one more preliminary result that needs to-te established. Suppose a packet

system is in a state for which all packets have already beén acknowledged. o

- 104 -

(In terms of "dot notation,” all -the .dots for this: state will' he at the
right-hand ead- of their streams.) ‘Wn;mlg"m to infef from this that the

system is in a limit state, i.o. has finished tts um:aata raponse to the

* presented input. In other wordc

PLemmar If $=8"in an exécution aqucm ((S;. 3,‘)} ror a given system.
then. 8, = %= g, » u?‘(gbi} Tt BEETACI: EHTRE

el

Unfortunately, this is ot always true. There are circumstances under which
‘the notion of “ultimste’ response® is Rb¢ will Géfined.. Consider &' module with
~-one - imput -chaanel and one éuxyut, ehatinely and sippose thaV Af 4t-is presented
the input stresm @), them either Of the ‘twi oulplt streams & or (bc)
- constitutes a: Valid: resposise, If-Gie ‘mélule’ CWPts ‘4 Packét with “Value b,
- then .it.:may.cbe considesst as mmfmnww% m Erput packet ‘a.
But it cannot be determined whether Of fot:thie pitket ¢ - -wilt cofre But
subsequently, 20 thete & we. way %0 Wll- m e m:ie‘ ‘has ymm m
ultishate ottput, Le. flnished mpemmg i) ﬁs umn. 'rhls kind Ral‘ ,nomly
occurs if a moduh anow: two Msﬁm ummt' output respansps ‘Q Some
given tnput succ and ope. Qf ARese - mamm s @ peefbiod! sthe. othe&aw’lf
we can rule out suax situstions; then ‘the ooumon stated above will be

,,,,,

satisfied. Accordingly, we define a " module to tg, b wrict df . tts. behastor

- prohibits .one outpat ﬂiml&mé bejny a-poufix of another #f:thérd - is” some
: i gBy i SIIANT awEa (0 s L 00 Tl
input slice to which the two given ouwt‘a;iﬁm are distinct valid responses.
: S S A S A T Rt St S

B S S P T

Formally, we have » | \ ,' e o

finfiom: A medule M iy striet If whenevar 'we Tave (S Siow) € EXTy
434 (Syims Fims) € EXTagy 1000 S PREFIX S 50p1108: Bt &'

- 106 -

All determinate modules are obviously strict, and:fany modu-le :ifor, which the
sizes of the output stseams are functiona-lly deétermined from:-the inputs will
also be strict., This includes the nondeterminate merge module J We now
state the corrected lemma.

Lemma: If all modules in system §YS are' strict, ‘and if $=8%° in an

execution sequence {(§, $) for SYS, then §; = $2'= §, = ‘"SElFJ) ($a)

Proof: For any possible system state ($1, S,.l) that can j‘ollow the given
state j, we must have $% PREFIX §,,8 PREFIX §; = s,‘ which forces

(1) $% = pl‘-.
Also, $; = $; PREFIX. s,.. PREFIX $;,;, s0
(2) $; PREFIX $,,;.

Now equation (1) implies that for eacli module M in the system its input
slice remains unchanged between state j and state j+1 Equation (2) xmplies
that Ms output slice at state j is ‘a prefix of Ms output slice at state J+1
But M is ‘strict, so its output slices at these two states must be equal Since
“this holds for all modules in the system simultaneously. we must have
'$; = $,,. Thus no successor state to J may differ from. it, 5o the state at J
must be a limit state “This establishes the desired result. '

We call the above lemma the Cutoff Lemma because it "cuts off" an execution

sequence once all packets are acknowledged

We now proceed with the main body ~of the correctness proof for
the system S. We must prove that the external relation»EXTs coinc¢ides with

the internal velation INTg. The proof divides into the two usual portions.

Conslstengx proof: Given a complete execution sequence (<s,. S‘)} for S, let
X=X and Y=Y, To show ((X).) e EXTs. there are two. cases to
consider, If Xx=¢, then the inltial ~ state must be given by
(X0, Yo, You Yo) = (+,0,0,0), 50 by the Cutoff Lemma W, have Yo =.Yo ® €.
Thus EXTg is always satisfied in this case. Otherwise #x > 1, and we have

7106-

the following chain of equalmes for the size condmon: N
‘ ¥y, = sup(#y) (LSL) TR -
. = sup{#u?} . (by EXTp)
= fu, (LSL)
= sup{#u} (LSL)
= sup(#x 3 + #v3) (by EXT)
o= sup{#x3} + sup{#v?) by tm;:spm Linait. Lmnma) :
B L, "SI A (L8L). . LORYT g s
Now we also have o
T vy = sup{#v,} sy \
sup{min(1, %} (by EXTp)
min(1,sup{#u®}) (by ihé’mai‘;num‘um,it Lema).
min(1,#u,) (LSL). :
NowbyEXTJ,#u(,'=#xo+#vo=#x°+0)0 ThusluwZ#uo>1 so#v = 1
'and iiy 1+ #x which is the requxred size condnion o
' To establish the elemem condmon. “we muat show um x[LJ = x;l] and y is a
‘merge of X and (x[l}+4) We ﬁrst note that v?{ = 3 (by the, inmal state
property) and v, n € (as proved above) ap there xm;st be a state 1 for which
v = ¢ and v,.,ar - ¢. Now by the connection property,; R ‘ PREFI& Vi, .50
v, = €, which by EXT; implies ua €. But by EXT, a8 lox;g as va‘ = € we
have u, = X PREFIX X. Then since u,‘ # ¢ and U® PREFIX U, we must have
U1l = ul1] = x[11. Now for any n 2 i, u® PREFIX u,,, so u,,°[11 = x[ll.

T ;
PET R

thus, by using EXT; again we obtain y,,[l&] u,,'[l]) x[l] Since this holds
for all n > i, we must have y [1]= x{t) - SR TSy el : o
What is left'to show is that y, is a merge of X and (X[1J+4). We have
already shown that there is a state 1 tor:’:WKi'c‘h'ui"‘[T« x[1]. ‘Then by EXT;
we have, .V, ® (x{ 1]+4).. Now by completenass -of the :ececution sequence there
must be a state J for whxch X; SUBSEQ xa and v, SUBSEQ va Smce
x,® PREFIX X, =X = x and since #v“ < #vy = 1 for all 'j. this means that for
the J we Just chose we must have X = x and v, = va 3 (x[l]+4) But now
by EXT,, y must be a merge of x‘a and V“, whxch means u 1s a merge of X
“and v, = (X[1]+4). Now we use the completeness property again ~ given Js
there must be a stite k for which 'y, sussso ut By EXTF. Vi = u,,‘; and by
another use of cumxﬁeteness there is a state m such that yk SUBSEQ y,. . But

- 107 - .

then Yy, PREFIX y,, and by tracing a transitive chain of subsequences and
prefixes we obtain u; SUBSEQ y, SUBSEQ Y, l-‘lnally. slnce and <xfl]+4) occur
in y; as dis,jomt subsequences. they must . occnr in y,, Ay dts,jomt §nbsequences
But X = X, and (X[1]+4) = v represent all the p,ackets that, can ultxmately be
passed on channels X and Vv, so all the. paclgets that can ultlmately be passed
on channel U are contained in u;.. Simtlatly. . all the packets that ca
ultimately be passed on channel Y are contamed in yk, Thus y is a merg,e of
X and (x[l]+4> satisfying EXTs, whlch completes the consxstency portlon of
the proof.

The element condition ‘was extremely dlfftcult to verlfy. because we
had to go tracing the progress ot‘ 1ndtvidual packets tluoqgh the system,
There seems to be no readily ,a_vallable met’mﬁ to simplify this proof, despite

the elementary system struct’ure.

For the synthesis part of the proof tt‘ the systems input and output
streams are nontrivial then the enecution seqqences wtll repeat in periods of

~ three states. The construction is. now given.:

Synthesis proef: = Given (€x),. (y)) eEXTs. we " must’ construct a complete
execution sequence to reallze this behavior of '§ internalty. The’ execution
_sequence will be of the form $o.y80e. 1B, Which. each system state §; is a
4-tuple (x;, U, V,, Y;) of dotted channel states. If. X = €; them we. must have
Y = €, and the required execution sequence will have all :states identical to
(e, », ¢, v), Otherwise, #X will be some K0 (we allow the possibility of
kzeo), In this case, ¥ must be of size #y = kel, - There must also be some
finite index m such that 1< m < kel and y[m].= x[1]+4. Moreover, the
concatenatxon of the rematntng elements of y must sattsfy
yll:m-110 y{m+l'k+l] = X,
which means that
' y = x[1:m1] @ x[1]+4 @x[m u] |

(We are abuslng notauon here to let "@" concatenate packets wtth streams)
We now construct our execution sequence for X &nd y. The streaiit V ‘is

- 108 -

defined by v 5 (K[1]¢8),
“For each natural number I from zero through m-l inclulive, deﬁne
(40)85» (X[1: VIex{i+1:k], x(1: i, .vu 11, x[1:17°). T
Whem ho this tea’aces to me case of the ihmal symm mte o
: g , 30 i (oo ;",:).L
For each natufal number i fYom one through Ry mclusive. dafine |
(A1) s:;,,,z o x[1:17- x[141 k], x[l i- n-xuj, -v(x 1].‘x[1 1- 1] D and
(42) &5, = X[1: 1]-x[1+1 k], X[1:43, V1217, x[1:14- 1]-x[1])
We now define the specific system states
(B1) $3p.2 = (X[1:m-11exm:k], X[1:m=13ev[1]s ¥[1]e, X[1:m=1]0),
(82) $amg = (X[1: m-l]-x[m k], x[1:m=1J0v[1]s, v[l}- x[l m-l]ovtll). gnd
(BO) $5-« (}{1:m-13%mik], X(1in-1T0vITR V11T, x[l m-l]OVIlJ).
_ Finally, for each natural number: 1 2 m+l, define’ . .- e
(C1) $3.0 = (X[1:4~ llox[i], x[1: m-l]ng]Gx[n 1-2]-x{1 1]. VLIJ,'
X[1l:m-1]Jev[1]ox[m:i=2]+),
(c2) sa,_ = (L1 4-11oX0 k00 X[1:m-1J0VEL XAz 421]e, M Do,
x[l m-l]OV[UGx[n \-Zl-xti 1]) and
(CO) 85 * (x[1:1- -1]X 1K), (1 =110V 1 ToxCmi 4= 1’1. vi1)e,
X[1:m=1Jovi1I0xEmsdetYadio 1
When i > k+l, formula (CO) generates the system state
$5 = (X, Xx[1: n-lw&ll@xln'vﬁ' V«[&]- :’KII:M%W[UWEH ke)
which is a lmit state m system. S, ’ o

The above set of formulés ~generates a wen-c&nm infinite ssquence of
system states §;,....$;... for which it is-émce’ wﬂn ‘andn\ighwning to ’Writy
‘that it {3 a complete execution saquetice for §. oo

Theformmn ‘we have just giveh: roq‘utm somhe commert in order"to
be properly unders(ood Tha execution s!quence constructed above consxsts of
three parts (4), (B) and (C) Part {A) co:«rg.spoms to the first m-l packets
from X being passed through the system and out on Y. In th& st&ﬁs‘gfwm By
formula (Az), module J has received a packet from X and is passing it out on

chgnnel U In the states givan by formula (42), module ¥ has adsorbed this

- 109 -

“packet and is passing it out on channel Y For the ﬁrst packet F recelves, it
" also sends out on channel V the value of this packet 1ncremented by 4. The
states given by (A0) corrupond to the outddn world rocciving an output
packet and acknowledging it. Part (B) handles the ' processitig ‘of the one
--packet passed on chammel-V. In state (B1); this packet is absorbed by J and
_passed on U; in state (B2), it is received by F aid‘ passed out ‘on Y; and in
‘state (BO), it is received .and acknowledged by the outside world. Part (C)
treats the processing of the remaining’ input packéfs from the m-th on; the
states given by fermulas{C1), {C2) and-{CD) cérress

ind -respéctively to ‘those
given by. (A1), (A2} and '.(Aog._ L

The proof of correctness t‘or the nondeterminate system S 1s now
8L, ETRG RV 11 T VIR

'compleie. We shall talk’ about more ‘gexieral proof techniques in the next

section.

6.6. Proving correctness of more complex packot systems

So far in this cljspter. "we have é;ilqh”correéiness proofs for three
particular packet systems. An ~three sygiems are ‘rsther simple: in both
behavior and structure, but a lot of machinery has to be manipulated in order
to verify them. There is a significaﬁt’ pi"dblem that arises in considering how
to apply the techniques that have been deveioped here to larger, more useful
systems. As systems increase in complexity. Vtwimeir.y formal descriptions and
correctness _proofs grow more cor‘nplex. at a much fés&gr rate. Proving .the

correctness of packet systems that are substanu,quy larger than the toy-sized

ones we treated may thus turn out so coqplicated as to be of dublous

-110-

practicahty The only remedy for thxs kmd of sxtuation 1s to somehow reduce
the complextty of packet systems as they are seen from within correctness

proofs. We now address this issue

w*

Much of the complexity in. our correctness. probfs comes from
setting . up _executton_’ sequences. . However, ,exe¢uiion . seuences: - ware
in,troduced“ into our _,,;go;del,b, to -handle. one ﬁargicum ;characteristic .of ‘system
structure, which -is cyclic interconnsaction-dependescies... When a ‘systef's
structure is acyclic, its internal specifications may be characterized muuch more
s;_mply than through sexegution. sequences. ,We 'shall prave: that the .internal
characteristic relation of an acyclic system may be Fealized ;asf“‘a?agéPPropMe
functwnal or relational composition of the external charecterxstic relauons of
the component modules Consider. for axamplo the System, SYS Allustrated in

| ngure S. 5-

: =

K

>

%
S

P e R TS

N i o,

L Sty S —

R =) - B
£

]
]
[}
i
13
1]
4
1
1
[]
t
J
1
1]
]
{]
t
]
)
]
1
[}
]
]
)
.
[}
.

rE g
[

Figure 5.5-1: An acyclic pa_kclft,qlt.. system.

. I -C F P LI Lot DU e TR
Suppose that the exterrial specifications for the modules A, B and C are given

by the respective characteristic relations EXT,, EXTB and EXTC Let us also

assume that the mddule A s determinate, ‘Which’ makes the relauon EXT.

- 111 -

‘functional over ((W*) x (P* x Q")') Then there are two stream functions.
ap: W* « P* ana agqt W* » Q*, which togcthor characterize the behavior of
module A, The internal characteristic relation INT svs for systam SYS is given*
by the composition .

((w,x), (¥,2)) @ INTgps <=> 31 ((x,aq(W)), (r.z)) € EXTc & ((ap(w) r), (Y)) € EXTa
This compositional characterization relieves us of the noed to go into the

complications of execution sequences with the acyclic system SYS

We can give a general rorrnulation of‘ how the internal
specifications of any acyclic packet system can be characterized _as -an
appropriate composition of the cxternal characteristic relations of the

component modules Our formulation has one condition on it: the external
" A e
characteristic relations of the component modules must all be continuous.

-Continuity was defined in the precedlng chapter 'l'lie formulation is

contained in the statément of the followlng theorem: o

Theorem: If an acyc_licusystem SYS has the structursl description -

System SYS o
- inputs Wle==), ..., X(===)"
outputs Y(---), ..., Z(-=--)
internals Uf{«~==), ..., V(=w=)
Submodules

M inputs P, ..., Q; outputs R, ..., §

Inttially Uuod>, ..., v, . Y<yo>f. eoey 1€200,
and if for each component module M the oxternal characterlstic relation EXTM
is continuous, then
((WyeX), (Ypeii2)) € INTgyg <> 3 U, W Y M (), (r. .8)) € EXTu

- 112 -

One has to examme the statemen.t o{ the theavem carefully in order
Hto observe that it in fact characterizes lNTsys as a.composition of the external
characteristic reletions EXTM. The _crucial point is the existeatial
quantiﬁcation of the channel streams U,.,v through which.the EXTy. relations
are composed Ptoving the theorem rqqu,tres two directions,of argument. The
"left to right" 1mpucation asserts that ;tven a comglete execution seguence
realizing an tnstance ef the belmrior of SYS the;e are annropz:hte inteznal
channel streams connecting the input to the output m a mamner ntisfying all
the EXT, relations. This will be proved by ustng the Ltmit Existence
Theorem and the continuity of the EXTM. ; Note tlut tms part of the proof

does not use the assumptien tﬁat the symm structure ia acyclic.

lThe reverse implication asserts‘ that anything reeuzed as the given composition
of the EXTM must also be re:lized by a complete execmicn sequence for S¥S.
This direcuon of proof is more difﬁcult and we x;eed three preliminary
lemmas in order to prove it. Lemma 1 is a simple property of insertion
mappings that realize etreamas-mbieqm of -other ‘streams. L&um‘a 2
asserts that a subsequence relation Dbetween mm is uneftected by the
presence or absence of certain packets in the streaaia ma 3 asserts that
in producing execution sequences for the proof of the theorem, one can

always find a sequence of acknowledged prerixes so as to assure completeness.

We now proceed with the lemmas and the proof of the theorem.

Lemma 1: If f is.any insertion, then f({) > i for all i in the domain of f.

Proof: The result is obviously true for i » 1. Inductively, if we assume. it
true for i = m, then we have f(m+l) > f(m) 2 m, which implies f(m+l) 2 mel.

- 113 -

Lemma 2; If X SUBSEQY and if ‘there is 'a m < #X such that
x[1:m=1] = y[1:m-1] and X[m] = y[m], then x SUBSEQ Y, where
y' = yl[l:m-1] @ y[mel:#y]. o ‘ ‘

Proof: For any insertion f of x into Y defme the funcnon 8%
9(1) =ifi<m then i else f(i).

& is an insertion of X into y which Ls the idenuty mapmng over the first m-1
values By Lemma 1, g(m) 2 m, but y[m] " x[ug] Tules out q(m) =m We thus
. have both g(m-l) = m-l and g(m) >m, which imply that m is not in the range
of & This fact together with the fact that y[i] = y'{,i 1] Vi)m. makes the
funcuon h defined by

h(i) s if i< m thon 9(1) else 9(1) l
an msertxon of X mto y whlch proves the lexnn;g,

: ___mu If (¢} is a sequence of streams sguch that ¥i: ¢, SUBSEQ ¢, ,, and if

c = sy {c,} is uniquely defined, then there is a sequence {c*) -of streams

such that Vi: ¢ PREFIX ¢, and Vi: ¢® PREFIX'c,;® and sup (#c®) = #c.

- Proof: For each I we shall let ¢ be the longest prpﬁx of ¢ that is also a
prex‘m of all the € following ¢, More precisely, let

. m 3 SUp (n S#cacllal = cllin] Vi>i)
and‘ ¢ = cllim] =
Clearly, {m)} u nondecrusmg, %0 ¢® PREFIX-C,,® and c? PREFIX €, for all i. If .
m = sup {m} = sup(#c%), we must-show m =.#, Since it is clear that m < #c,
this will be proved by contradiction; we,sh.al,lﬁ assume m < #¢ and show that
the sequence {C;) has another least upper; bound under-SUBSEQ besides C.

If m< #c, then there is some I for which m = m and ¢, > m. We
shall <claim that the existence of this i forces the existence of a stream C'xC
such that ¢’ SUBSEQ C and Vj: ¢; SUBSEQ C', comtradicting the unique definition
of ¢ = oSup {c.}. First.observe that :

(1) - ¢l m) = gl1:m] (V3 k1) = C.U m].
Now take any J)i. since ¢; SUBSEQ ¢ (by- ‘trangitivity of SUBSEQ) we have
#c; 2 #C, > m. We first claim that :

(2) | .~ ¢f1:m] PREFIX C, |
If this is mnot true, then there must be some n <m for which
c1:n-1] = c[1:n-1] and c¢[n] # c[n]. But then Lemma 2 implies that

-‘114- |

o SUBSEQ (R whe;e c = c{l.n IJ @ c[m-l #c).. -Sjape the value: ot: &, 18
independent of oyr .choice of j>1 (by ecmqgon (,J,)) this. ,makqs c' an. ﬁnger
‘bound for all the ¢ beyond G, under SUBSEQ, and hanow,. for .4l the ¢ But
¢' = ¢ and ¢ SUBSEQ ¢, which makes C' a lesser upp.r bound than <, givin,g us
the desired eonmdxéuén ’nm &kia‘blmm aquation (55 HOURE LR

There are How e c&e& to ‘condiger. ' 'ft c,[ml] " c{ml]. then
~since équa\mn (2) tmplies c,{l lﬂ ¥ e{‘l ii]’ Wo tan’ apply Lomm 2 to oﬁtiln
€, SUBSEQ €', whdre''c’ W ¢[1:AT @ c[‘m?.lc'f “Dhervilse’ c,tmn‘ . c[m‘i) ‘and
since m+1'> m'w u,, ‘there must exist a k> J l’éi' w‘iﬂch faﬁi] " ctm‘i] But
B1:m] = é1:m} = c{1:m], 50 a8 1h the first Ghie e’ "‘ﬁ‘{i’n ’m‘i\‘rg"é.(suaszo c‘
The transitivity of SUBSEQ then ylelds AL R

- ¢ SUBsEQ’ & si:mo e
In either case we must haVe ¢; "$UBSEQ ¢'” Which makés ¢’ ‘ai upper bound for
~all the € under SURSEQ “But:e’ M&Qa“&fﬂdn ‘ptcdudes the Wasired
contradietion, - Thws it is . impassiblei to:hive 5 Py 50 W' mm have

m = sup {#c‘; = iz,, _This oongahm the prqn; g v

Proof of 1he- Ms(-&m»% ‘this half & thi"ifm‘w."wﬁ“’ao\“ﬂbt \lf"’ithe
assumption that SYS is acyclic.: Supposb-{(w,.x}4Y; 58 € INFiyg. ~ This titbéns
there is a complete sxecution sequendce Tor SYS Tosll#ing the slice (Yr .2) as an
ultimate output response to the isput slfce WyeX), SR
, If the exeeution wequesicé:is given s {684y, "fien: the Timit-state
is given by (84, 8,5 where $,'= o £8AY. " Trie dimiiv ke $ WY have
the FOIm (We,.iXg, Ugrie Ve Yori2l)e W cliltin $liatit,,... V. Tate the désited
.V for Whick: m ‘the' mmt’ﬂ\ﬂw m %ﬁr‘?ﬁﬂm& yitattdhs
‘are satisfi®d, - 1 | SR
Fer - each mocule ~‘M with- umit chinmis’Q de ‘Gutput ‘chafitiéls

"""""" N“ Lo ;i:,sg FRGES 5

(1) (p, ,....q,‘) mnx*'(a;.,'. 3 .?‘)* wEoe e
(2) : (Fiveee) SUBSEQ (M)3ns8y) famdi© |
(8) o U g) (i) € BXTgit-
Applying the Limit Existence Theorem to thése dices, e hive
(4) P, m"“) Cpi®....q %), and
(6) - Frn8) = su'a'é‘? “{r,...)} 1s"the unique l’u'b..)

80 by continuity ‘of M_ mt have ((p....,q), "(’r....:i'))» € éXT“. -whjch 13 the desired

- 115 -

result

1_";99{ of the eorem (<=)= Suppose we are gzven a stream for each channel
of SYS such that the external charactenstic relation EXTy of each module M is
satisfied - We need to construct an appropria;e complete e:.ecution ~sequence
for SYS It SYS has ~acyclic structure, then we may order its channels
Ci,. ..Cn so that if there is a path from Cl to Cc2 through the system, then
Cl must come berore C2 in the ordering. For each channel C in turn, taken
according to this ordering, we must construct a sequence {(c.c)) of channel
states such that the limit state for Cis (c c) where c is the given stream for
C.

Each channel C is either a system input channel or else there is a
module M for which C is an output channel. In the former case, we define
{c,.cd) = «, c[1:1)), where ¢ is the given stream for channel C. From this, i
must follow that "g&gc ,s»{«:f.c-,‘)}- = {¢,6). In the latter case, all the input
channels of module M ‘have already had ~appropriate channel sequences
constructed, so we already have a sequence of acknowledged prefixes of input
slices for M, ordered by the PREFIX relation and with a umique l.u.b. under
PREFIX. -Since the given stream ¢ for channel C is related to ‘this unique limit
through EXTM. by continuity of M there exists a sequence {¢} of channel
streams for C such that ¢, SUBSEQ ¢, for all 1 and such' that ¢ = SUE {c) is

uniquely defined. ‘Moreover, EXTM is satisfied at each state i, By Lemma 3,
then, we may define the sequence {C; a} ‘such” that for all i, ca PREFIX ¢, and
c,® PREFIX c,,? and such that sup {#c;3) = #c.- Thus ¢ = PRSEL:?X {3}, so imn

this case, too, we have ppuR {c.c) = 0.

In this way we construct for each channel .a sequence of channel
states for which the given channel stream is the limjt." This. gives us a
sequence of eystem states satisfying all the requirements for a complete
execution sequence except two: the initial state property and the connection
property. The . initial state property is. in:a sense trivial, since given any
system SYS there is a ‘corresponding system SYS consisting of matching
modules connected in the same way such that the behavior of SYS' is
‘identical to that of SYS mtemaily as well as ~ex_ternally. and such that the
. initial state of SYS' is empty, with $; = (&,..,€). SYS' is easy to describe: its
 specifications are identical to those of SYS except for an empty initial state

- 116 -

and for external characteristic relations defined by
(Branr Fioot) € EXTY <0 St * Suout @ $y and (Sy, 3m)(EXTM.
The cuuma Property d&s nst hold tor’ﬁbmm cunsmte&
" above, since €.,% Is fet nHecwssarily & prefix of ‘¢."" However, we may
" interpolate & chanisel state € 6% berween ze’,c,"r sﬁd ‘(c,,,.c,,,*) so that the
connection propesty f& Wi’c& zz we define ¢ » q., é’." = g%, tﬁm we
have c;“'mmeg'“ | E¥ pREFIX e;*mmql” c,smc, susfszuc,,
¢ PREFIX ¢, amd’ c, ¥ PREFIX'¢,. TIn this way, .tho roquim& oxecutmn
sequence is emu&wtmmuw symm Mwun mh pgu'
of existing system. states. This wmm the M e -

- With proper ust of tids thisorem, ww caw grestly smmy- éomctness proofs
smce aeyclic pacm syma m be saaeif}ut m mtﬁ«i mwh mcre easuy
through the use of nelationsl and SMmM than - by weghing

. Cy
,,,,,,,

Mthznemmm o

Ly .

The hisrarclical styucturing of packet sygtems- M us toe-apply
acychc‘ stmﬁl’iﬁwtm Wiqw even to %ﬂm af Systoms with &irected

7 i

cycles Smce a packet. smm t\l aq- iuumtmﬂqf. mmmt quu,lgs
any poition of a-sywtesiv may te iteelf wiewbd . as w systish. Tiue mmr Spsiem
S shown in ﬂguw 55~z has a mm cam*plcx stmctu;fe simz:lfmf,i'ng a d:ires:ted
cycle between mwuhs F, G and H. We can greaay ﬂgxpiify this structure
for proof puspesss by umamﬁ the,. mm aéS’mm of modules A, B,
C,Dand¢ E as & pwm mtem SI (ﬂgmv &5-3)? "rhe sysrém Sl is adyt:’uc
and easy to sseeify, its intcrnal cha::acter,isttc ;qlanqn lNT gk, is an appropri,ate
_com'posuxomd the external: charattesistic’ retations: for the mmles ﬁq&a’c.nD
and E. But “the mnctples of pac’ket commizmcaﬂon arcmtecture ailow us to
treat system $1 as & module whose axtonal chqrmmic rdatiﬂn. %;is
precisely INT5,. TRus we ean reduce: the - strizcture of System*'S “to e’ ‘as

RS 0 TR

- 117 -

lecccccecmccccncnencecsamcrenrrerseanoeanresrensenemnanaaneemanao=d

Figure 5.5-2:

A more complex system structure.

P s L

- - - -

1
i
]

R b LTy 1

B o o o o e = = - - =]

|
'
'
J

- e S e e e

LR il R R R g Y T Y R T T R L R R R R R

M)
)
[
'
)
L

Five modules forming a system Sl within S.

F1gurc 5.5-3:

Simplified structure for system S.

o Figure. 5.5-4:

- 118 -

shown in figure 5.5-4. For the system S, our acyclic simplification technique

has reduced the structural complexity by one-half.

It is possible to carry our technique further by treating the portion

of system S consisting of modules F, G and H as a system S2 (figure 5.5-5).

o e e e e T e T e S e A e e W M e = W

v

v

Figure 5.5-5: A second system S2 within S.

This manipulation simplifies the structure of system S enormously, reducing it

to what is shown in figure 5.5-6.

P R L P

S2

v

v

Figure 5.5-6: Further simplified structure for system S.

This structure is acyclic and therefore simple to characterize. It may seem

that we have reduced our proof to the point of triviality, but this is not the

- 119 -

case. The only way to 'determ’fne' the specifications for the cyclic system S2
isv through execution sequences; thus, the proof forj system .S has been
essentially reduced to a characterization and ebrrectiiéss proof for the new
system S2. For a general system, structural composition techniques such as
these can greatly reduce the complexity of correcmess proofs. but in the
presence of directed cycles there still 1s no way to avoxd the 1dtncac1es of

execution sequences

‘We have just seen how the structure of a packet system can be
‘simplif‘_xled for proof purposes by “collapsing” 1;__ort;<ms;_,,i of .the system into
modules. Using this techaique together. with the theorsm we proved about
~ acyclic sxs;em__s can greatly reduce the complexity of . packet system

; Verif_ication. ‘

In this chapter, we have shown how: our model for specifying
packet systemsl‘can be applied to proving them correct. T_lxere is no question
that the ‘cox;rectness proofs presﬁentedl here are complicated, even for small
systems. Hcfw’ever. part of the complexity found .in these proofs was
comained in the development of a basic sat of lemmas that can serve.as
) buuding blocks for other proofs. Thete. are ; munbox of approaches to
generalizing the proof techniques that have been presepted here, and we will

describe some of them in the next chapter.

- 120 -

CHAPTER 6: CONCLUSIONS

6.1. Review of the research

The basic task of this research has been the development of a
methodology for formally describing the behavior of packet communication
systems. The work here was motivated by the notable difficulty of designing
computer systems and, more specifically, in making sure that they act
correctly. Consequently, one of the major goals uhderlying the specification
techniques presented here has been suitability for formal verification of
system correctness. We have taken a particular view of systems: hafdware
systems composed by interconnecting smaller units. The research presented
here has been a first attempt to formally describe and verify the behaﬂor of

systems viewed in this way,

The class of packet communication systems is distinguished by a
number of desirable system structuring properties that facilitate description
and verification. Our approach to specification depends on the ﬁroperties of
modularity, hierarchy, speed independence and uniformity of interface. Until
now, the principal benefits under which packet syst.ems have been promoted
have concerned the fact that the asynchronous, concurrent operation of packet
systems allows for faster system performance by allowing for. more efficient
scheduling of the available computational resourées. This document has, for
the first time, identified those properties of packet communication architecture
which make packet systems well-structured and amenable to formal

description. Appropriate use of the concepts of -structured system design

- 121 -

makes it easier to design and undersund systom even without formal
verification; with formal mothods, sy:tem oorroctnou cm be xnathematicauy :

demonstrqtod as well,

Systems may be viewed extornany. through their interaction with
the outside world, or internally, in terms of thelr ooxnposmon from sqaller
components, From an external point of view, tho bolnvior of a packet system
is the relationship between sequences of mchutransmntod on the system's
_input and output chantels, The denotational approach we have taken towards
external specifications for packet systems is elegant precisely because it gives
» dtrect mathematical expression to thoﬁ sequeiices of packets; the formal
descriptions that comstitute our exterfial specifications contain no c:tt:aneous
notions that would only serve to occlude the relevant behavioral properties.
Thus, the use of mathematical operations “én ‘streams provides an appropriate
level of abstraction to aid in the formal doacnpﬁon of systexn behavior.

Donoutlonal spocifications may bo providod for modulos at all the
hierarchical levels ot abstractlon in a packot s;stem Thu glves a complete
- formal doscription of the behavior of tho systom and an the component
modules in it, from the top level down to the primitivo modules at the
bottom In order to verify the system it must be ahown that at each level
the given modules are interconnected 30 as to perform thc correct function.
‘Because of the great difficulties involved 1n providing a denotational
* characterization for ‘the behavior of an inm'oonnocuon of nondoterminate
modules, Qi ‘operational approach to' system verification was chosen. There is

no existing methodology for formally deacribing composmons of either

channels, This basic notion is an, effecti

B R S 1

(=122 -

_yhardware or sottwm syﬁem, lot alom vcrifytu thqp W;th the .notion of
executian soquencu t!a uham af a_system. can X expressed in texrms of
the behavior of its component modules and the way they a;:e stzuctarally

fitted togeum' By Mung huminu aad nommmato symms in a
umform fm thc ruarch hm Mmm a mbltaatul Mnovation 1n the

" field of symm spocmmaon

A.nothu advanugo of our t‘gm 11100 .08

they are built up directly from sequances
w‘h@mﬂm fwﬁmgmm the
being mﬁd‘d; Moreover, for, Rondgterminate W’mmﬂwﬂomta& .which
a module | t;gc;du wluch of sqveral W‘w‘? actions te, perferm 4 mt ed
vy m'e way we have defined the notion. of ag , prefixes. of channel

F Packet .are egArded as

bemg made when the packeta reeeipt is acknowhdgod An the notions

RPN & 0 RS Aa %

[S

streams. Deci‘si‘ont based ogthq arrival of a partigul

embodied in cxmm uqmma tor pacm syatom havc been devaloped in

‘such a way as to bo cammem with rmct to”the matcal proportus of the
systems. 'l‘mu oxacutloa soqmnw as pmtod here not cnly dm:;be system

wifE ey L
behavior and auaw for foraal mmatm but also support appropriate

‘A-r:_,e‘:

i

i Mt

i AT

conceptual abstracuons

N ‘ In addwon to the basic_ develqpmu&@t oxu;‘
have demonsu-am m applicabmty to, verification by, ngwkig Qut, corraciness
procfs for thm amph Packet systems. In the coyr

stated *“!d, proved & numper of auxiliary lemmag,, fSome. of these, jemmas,

BTI00IIEIe

doissees

ﬁ:ma g:m w 1ob10 -
s Q&i&%ﬁmi} w%

| Sdentifiot the
'E'M%‘i’ﬁﬁi&r*‘

- 124 -

architectnu; we have axmbitod a huh-lovel Mcripuve formlism for

SEEE

. specifying the 1amocuon of pocke! modulu ud qm: w!th the outside_

world; we have fommd tho con«pt of wha it noqm for a systom to be

’f‘i ’gj i

composed from Mum and how its mnm may bo Mmod in tqrms of the

PERVETR 7

behavior of m myomt moduks; ud m haw hgun the dwozapment of

] GEFR TN FaIARgUA
methods for fornd vumuuen of tho mucmm et mm mwms.
=ostubom By
8.3, Future work P BEREGTTE T

£ige sl i EPRRTELA S

Thc work here has opened up, tha wAy fog a ;ront ﬂoal of fur,thcr
research iato :ym Mwioa na wﬂncmon. 'rhm m two principal

areas open tor tuture tnmmﬂom tha uu ofttrum “and m'am aperations

. NG LRI A S A I&i’)

in external thzom, and gtneruint&on of w)roof mhm:mu to more
B Lok AN I SR SERERERE B 11

complex systems. '

o There is RO way to redua _the lgmnglgxity of the extgrnal
charactertsttc rehtlou of medulu wlthta e plch§ ;ymm but it u fwibh to
) ‘develop higlureiavnl dmrtrmw fernuunu for ;guun; ptmms and their
operations. mc.n, for example, the adder modulp A, o .Which _ adds
correspondiﬁg mm tron m input chcnmu X M R to yiold tho packuts for

its bqlu,m by tho nlguon EXT,

SR IRGH

its output MS ‘We eiur ¢

deﬂned by - o .
((x.r). (t)) € EXT,. <-> n . min(#x, #r) and 1[1] . x[i] + r[i] Vi S m

at a higher level, we should be abln w vhw thuﬂx;clquop u a functional

operation on streams, expressed as 8 = X + r. Of course, in ordnr to use such

hlgher-level éoocﬂpuou mﬁtably m proofs, we woum nood to dovolop a

methodology for performxng vmom mulpuhum on. thum. ’ wnn mch a

- 125 -

methodology, it seems that correctness proofs can be i'urther simplified by
bringing the level of formal description closer to our conceptual view of

packet systems and their operation.

There is even more rooxn for further .._, fesearch in studying the
development of a general proof methodgioéy for verifying packet systems.
Given a particular packet system, it is a iengthy exercise to work out the
“details of a correctness proof, but a general proof methodology would yield a
systematic approach to the art oi‘ proof ;eneration. V\‘fe‘now discuss some of

the issues involved in abstracting the correctness proots we devised

All of our correctness proofs have both a consistency part and a
synthesis part. The consistency part isset np_tof,\shovv, that for a given
execution sequence, the system input and otit_ptit . slices satisfy the external
specifications for the system. . Since the”exte‘drnai; sgocifintiqns are given in
terms of streams, the consistency part consists of showing that various streams
satisfy desired properties, _i-'or our nrooi's. these ‘_gromg{grtiesi,;reiate .to the size
and elements of the strearns. 7 Accordingiy_g . the consistency,;\ portion of a
~ correctness proof is often divided into two parts: | a size conditiop and an
element condition. The synthesis portion of a corroctness proof entails the
construction of execution sequences to realize given system behavior. These

two parts, consistency and synthesis compose the framework ot a correctness

proof for any packet system.

In order to produce a correctness proof for. the general case of an
arbitrary packet system, one must develop a set of toolg for handling the parts

of a proof mentioned above., We now discuss each of these parts in detail.

- 126 -

For the consistency portion of a correctnoss yroof we need to
establish chains of equalmes connecting the vario\u system mput and oytput
streams. Construction of such chains, of course. is accomplished thxough the
use of the external specifications of the componnnt modules of the system.
With all bat the most trivial of symms, uparato chains m\m be set up to

handle the sizs and olemom propertios of the chennel atreams

In our pzoofs or the system C and S we made use of special limit
lemmas to comphto the size choins The Sum Limit Lemma, for example,
asserted that the nmit of a tcrmwise sum or two streams is the sum of the
limits of the two m'oamx Mathemticany spoaking we may view this
‘lemma as stipulating that sums end umu "commute" | undor approprxate
" conditions. S’nch a oommutauvity propmy ossenthuy states that the termwlse
stream’ ‘Sum operation is continuom ina cortdn mthematicai sense. For an
arbitrary packet systom ln gonerel conﬁnuity lemmn mch as these are needed
in orfter ‘to establsh ‘relations among strems m a systems limit state from
corresponding relations that hold for inmmediate mtes A fairly large class -
of arfthmetic and logical operations satisfy tho dosired continuity properties.
| ¥ may be wise to rutrtct the class of poclut systoms to mclude only those

'belrzviors for which the size properties are continuous

Thero u an oaurely dirferont conceptual abstraction associjated with
the eiement propemes in a consistency proof, In order to relate particular
output packet valuas with corresponding input pockot values, it is in general
" necessary to trace the puuge “of mdivmw pockots through the mternal
channels’ of “the systém. . This becomes a difficult task even with rolatively

- 127 -

simple systems such as S, since the transmission and acknowledgment of a
packet are traced through an entire series of applications of the system's
connection properties and the specifications of the component modules. In
order to obtain a general proof methodology, it is essential to develop some
formalism for describing and deriving properties of the packet transmission
pathways within a system. In the system C, for example (see figure 5.3-1),
we should be able to formally state that any packet received on channel X
will be passed through module A onto channel S and then through module D
onto both channels R and Y. By a judicious use of appropriate descriptive
tools, a high-level formalism for manipulating properties such as these should

be achievable.

There is another approach we may take towards comnsistency proofs.
In the characterization theorem for acyclic systems given in the preceding
chapter, one direction of proof did not require that the systems be acyclic.
We proved that in any complete execution sequence for any packet system,
cyclic as well as écyclic, if the external characteristic relations for all the
modules are continuous, then the system's limit State satisfies all these
external relations simultaneously. It may seem that this result would make
consistency proofs almost trivial, but centinuity must be established in order
to use it, This alternative approach, although it does not reduce the
complexity of consistency proofs, may be more suitable for developing a
generalized proof methodology than the ad hoc approach used in proving the

three sample systems.

- 128 -

For the synthesis portion of a correctness proof, there is an approach
to proof methodology that follows as a logical outgfowth of the conceptual
notions available to the system designer. It is the designer's task to realize
certain desired behavior through interconnections of various modules, whici'x
means that the designer must envision how packets are to be routed through
the system in order to achieve the intended actions. The designer really goes
through a conceptual simulation process of the system's behavior. The logical
framework for a synthesis proof is thus already present as one of the
elements of the system design process, Again, for a general proof
methodology, one would need to develop some formalism for describing
sequences of routings of packets through the various modules in a system. In
the particular proofs we presented, there was a regular, cyclic structure to
these routings. It is reasonable to expect that a similar regularity be present
in the internal behavior of more complex systems. Exploiting this regularity
should turn out to be helpful in constructing synthesis proofs for packet

systems.

As we mentioned in the preceding section, the lemmas we developed
for our three sample proofs are suitable for use as more general tools.
Another area for future research is a determination of the scope of their
applicability and the development of a more comprehensive set of tools for

system verification.

In general, the study of specification and proof methodologies for
packet systems (and perhaps other kinds of structured systems as well) appears

to be a fertile area for additional exploration. The current research is really

- 129 -

only a first attack on the problem of formii doscriptioxi and verification of
systems, but thq approaches preéented :hofe should foiht ‘tho way for further

investigation.
c 6.3. Parting ghotg

A detailed development of a packet system verification methodology
based on the ideas presenited in the preceding séétion 15 mot an :eé.'::y“ task, but
there is a far more difficult problem to be considersd. The complexity of the
systéms that aré studied will always be a constnining factor for formal
specification and verification, since formal descriptions grow in complexity
faster than. the systems they describe. The use of the acyclic system °
characterization theorem and similar techniques can help reduce the
complexity inherent in many systems, but this reduction will not make
complicated systems simple. Proofs for systems significantly larger than the
ones we have discussed may be unmanageably difficult in practice to
construct in their entirety. Thus, any specification methodology whose only
goals deal with formal proofs will have limited practical application to real
systems. No system designer is going to slosh through all the intricate details
of a proof for a system that he already "knows" is correct. Moreover, proofs
can contain errors just as much as programs or system designs. However, our
scheme ior packet system specifications supports the hierarchical factoring of
systems into components that approximate the .designer's conceptual view,
Execution sequences and. packet streams in our specification model are useful
tools that may be manipulated ‘by a system designer to test out and to gaix;

further insight into the operation of packet systems being designed. In this

-130-

way, we toel that t!u conmpts that luvo heon dwdnpod in our rcsearch can

be applied w atd signmcantly 1n tha - process of designln;, using and

understanding pockct :ystems

In summary, the research here has opemd up a new area of formal
specification and verification of computing symms. both lurdwm and
software. The originality of this work is particularly

svident in the context

of hardware system design. The approaches and techniqu:

developed here are unml in their own right and also help. point the way for
future work in understanding and wufxtumm

-ihat_have been

- 131 -

BIBLIOGRAPHY

[Arvind, 1875] Arvind, and Gostelow, K. 4 New Interpreter for Data Flow
and its Implications for Computer Architecture. Technical Report TR-72,
‘Department of Information and Computer Scia&; Hhiwrsny of California
(Irvine), October 19785. :

[Bell and Newoll 1871] Bell, C. Gordon and Newell, Allen. Computer
Structures: Readings and Enmplos Now Yorlt: McGraw—Hm 1871.

[Birman, 1974] Birman, A. "On Proving Correctness of MiCroprograms » IBM
Journal of Research and Developmm. May 19?‘4, pp. 250-265.

[Dennis. 1971] Dennis, J. B. On the Design and Spocitication of a Common
Base Language. Computation Structures Group Memo 60, MIT Laboratory
for Computer Science, November 1871. '

[Dennis and Patil, 1971] Dennis, J. B., and Patil, Suhas. "Speed Independent
Asynchronous Circuits," Proc. Fourth:Hawaii Intornationa: Conference
on System Sciences, 1871, pp. 85+58. S

[Dennis, 1972a] Dennis, J. B. Concurrency iIn Software Systems.
Computation S$tructures Group Memo 65-1, MIT: “Labarotory for cOmputer
Science, June 1972, ;

[Dennis, 1972b] Dennis, J, B. Modularity. Computation Structures Group
Memo 70, MIT Laboratory for Computer Sciemnce, June 1872.

[Dennis, 1974] Denais, J. B., and Misunas; D. P... The Design of a Highly
- Parallel Computer for Signal Processing .Applications. Computation
‘Structures Group Memo 101, MIT Laboratory for Computer Science,
August 1974. o SRR L :

[Dennis.r 1975a] Dennis, J. B. First Version :of:a Data Flow Procedure
Langusge. Technical Memorandum TM-61 MIT Laboratory for Computer
‘Science, May 1875. - : . : . ~

[Dennis, 1975b] Dennis, J. B. "Packet Commusdcation Arcmecm Proc.
1976 Sagamore Computer Conference on Parallel Processlng, Syracuse
University. August 1975, pp. 234-228. : : :

- 138 -

[Dennis, 1877] Deanis, J. B., Misunas, D. P, and Leung, C. K. A4 Nighly
Paralle]l Processor Using 4.0 .Fiow Machine lLanguage. Computation
Structures Group Memo 134, MIT Ladoratory for Computer Science,
January 1877,

[Dietmeyer, 1974] Dietmeyer, D. L. Introduciag DDL" Computer,
: -Decembaer.- sau.w 84-38. e 2T

[mmwmmaw “Nauummmmmg.m
Structured Progremming, by O.-J. DA}, B 'W. DBifkstra and
C. A. R. Hoare. Inldcm Amdmicl’rul 1972

 [Dikstra, 1976] Digkstrs, E. W. 4 Diwctpiine of W Eaglewood
Cliffs, N. J+ Preatioe Hall, 1976.

Y

[Falkoft:. iﬂeﬂ !‘M A. D., M X ., m Sﬁmmh, !: “A

Formal Dncrw of smmlaso" IBM Systems Journal 3, 1964,
P 1»98; . SO dipten DR ansno

[Floyd, 1967] Floyd, R. w. "Assighing ' ‘Mesniang to Pregrams.® Proc.
Syapodum in Applied ammm;, ms 19 1967 pp 19-33

| [Greif, 1976] enm Treae. Semamics of cwu Paratie] Procouu
‘Technical Report TR-154, MIT Zaborstery - -fé¥ ‘- Comgaiter ’ Science,
Scpmhr 1376 :

[Kack, w?sg m Mivhad, mmr an-mm for Mt Nets. Technical
Report TR-181, MIT Laboratory for Computer Schemce, June 1976.

[Hoare, 1968] Hosre, C. A. R “An Axiomestic’ Buts 'for &mpum
Programmiag.” W!&mlm 9. ET6~660. -

 [Kahn, 1874} Kahn; Gilles. “The Semantics of ‘« Simple Language for Parallel
Pi‘urmm m WMMM;;.MW o

[Landin. 1965] Ltwn. Petor "A Oortusondcm Betwben m 60 and
Church's Lsmbda Notation." CACM 8, February and March 18686,
™. as-mznu ut-iw.) : B R R

[Leeman. 1975] x.mm, George B., Jr. “Some Problems in Certifying
Microprograms.” IEEE Mueuom oa Ctmm'z;a. _vol. C-24, no, §,
WM‘”- M “ - . gt ’ RS

[Leeman, 1977] Lu:un Gcor;o ‘B, m. nm W and c:-rur ‘W, An
Automated Proof of Microprogram Correctness. Research

- 133 -

Report RC 6587, Computer Sciences :Depsrtment, IBM Thomas J. Watson
Research Center, Yorktown Heights, N.Y., June 1977.

[Leung, 1977] Leung, Glemeat K. AR,Lc . An_ Architecture Description
Language for Packet Communication Systems. Computation Structures
Group Memo, MIT Laboratory for Computer s:tenm. forthcomxng.

[Liskov and Zilles, 1974] Liskov, B., apd M s‘ . "Programming with
Abstract Data Types." Proc. Symposium on Vary Hlsh Level Lansuases. :
ACM SIGPLAN Notices. 9, April 1974, pa, 5Qa§9

[Liskov and Berzixis. 1976) Liskov, B, and Berzins, V. An Appraisal of
Program . Specifications. Computation Stmctm Group Memo 141, MIT
Laboratory for Computer Scxonco, me 1976, ;

" [McCarthy, 1862] Mccmhy, J. ot. al. LISP 1.6 Programmer's Manual. - MIT
Computation Center and Research Labontory of Electronics Cambridge,
Mass.: MIT Pross, 1962. : o

[Milacr, 1971] Milner, Robin. "An Algebraic Defiaition of Simulation Between
Programs." Proc. Second International Joint Conference on Artificial
Intelligence, London, September 1971.

[{Muller, 1963] Muller, David E. "Asmhroml.ogics and Application to
Information Processing." In Switching Theory ia Space Technology, ed
~Aiken and Main. Palo Alto: ‘Stanford University - Press, 1963,
pp. 289-297. SR ; '

[Myers, 1975] Myers, Glenford J. - Reliable Software Through Composite
Design. New York: Petrocelli/Charter, 1876. .-

[Ornstein, 1967] Ornstein, S., Stucki, M., and Clark, W. A. "A Functional
Description of Macromodules.” Proc. AFIPS SiGE, 1967, pp. 337-3SS.

[Owicki, 1976] Owicki, Susan, and Gries, David. “Verifying Properties of
Parallel Programs: an Axiomatic Apbroneh "' CACM: 18, May 1876,
pp. 273-284. S

[Parnas, 1972] Parnhs, D. L. "A Technique foi Softwire Module Speciﬂcation
with Examples." CACM 16, May 1973. PP, 330-336. "

[Parnas, 1974] Parnas, D. L. "On é 'Buzzword' Hierarchical Structure."” Proc.
IFIP Congress, 1974, pp. 336-339. ‘

[Parnas, 1975] Parnas, D. L., and Siewiorek, D. P. "Use of the Concept of

-

- 134 -

Transparency in the Design of Hhrarchicany Stmcturod Systems."
CACM 18, 7, Jnxy«tem ,p m—zba”e* el T

[Patil, 1970] Patil. Suhas cOotdinauon of Asynchronoux Events. 'rechnical
- Report TR-72, MIT Laboraéty for cémw s&&m Juh’& is'm

[Pam 1975] Patu», sanas "On- - W nfgzun sysmﬂs Proc.
International Symposium oa Conm Hcrdivm Dogcrdpuon Lm.guasos
mzam Apphcm Hms pp. %‘-e*“- v

: AR Ve S . ‘

[Peterson, 1977] Pcto!(‘on, Juwies r. Pi&i Nets* - ‘A?:M ‘cbmpmw Survcys 9,
September 1977 pp 223-852

Gy S

(

[pm xs»7s] Plas, ww uf mm Axcmw&nm ‘A wmni ‘Data Driven
Processor Based on ‘Single'’ Assighinent " 'Proc.’ 1978 lsternational
Conference on Pcnllel Procuuug. od. P B. Enslow, August. 1976
‘PP 283802, : IR , |

{Robmson, 1975] Robixuon. Lawronce et. al. ‘™On Munnnt Rnl'fa'ble Software
for a Secure Opcratlu System.” Proc. International Confer ch on
, x-zm;aonm. ﬂ:at m N&Icoi‘“’ Jm mie bp 2 1284,

[Rumbaugh 1975] Rumbaugh J&u !;‘*“‘ 7 8 hrm Asyncﬁrohout Computer
Architecture for Data Flow Programs. Tochnical chort TR-IGO MIT
Lahonlmv mmm M& m LR

. . e
A £

[Rustin; mm Mn M (ed) ra-mu mmtcs of © th‘gumming
Languesges. Englewood Cliffs, N. J.: Prcntieo Hall, 1972, o

[Soott amd Strashey, 1571] Seott, Do nd Swecliey, C. - “Toivafds a
Mathematical Semantics: for Liitiguaé® “Proc. ‘Symposium on
cOmputeu and Autom Polyuchnic qutnh ot Brooklyn N Y 1971

) £

[Taunen:, te7s}amn, »‘ﬁ. D. "m. WW&& of ?roxumming
Languages CACM 19 August 1976, pp 437-453

Fail

,[ngner. . 18?8.1 dena, d'aut. mma ian! fcs of Programming
Languages." = Proc. ACM Symposium on Proving -Assertions About
Pro;rams. ACM SIGPMN Noucos, Juwy 1973. PP. 128-141

\ . f W ffr‘gr. SRy

[Wegner, 197Zb1 W vPaur. ! "m \honn Mﬂﬂﬁoa mmm ACM

Computing Surveys 4, March 1972 pp 5-63
RS SO £ 3

[Wang, 1975] Waeng, Kung-Song Mm c«mm{on in Rocuruvo

Data Flow Schcmu 'rechnical Mamonnaum TM-SS. MIT Laboratory for

TR . R V14 £

- 136 -

Computer Science, October 1978.

[Wirth, 1971] Wirth, N. “The Programming Language PASCAL." Acta
Informatica 1, 1971, pp. 35-73.

[Wortman, 1977] Wortman, David B. (ed.) -Proc. ACM Conference on

Language Design for Relisble Software, ACM SZGPLAN Notices 12,
March 1877.

- [Yourdon, 1975] Yourdon, Edward. Techniques of Program Structure and
Design. Englewoed Cliffs, N.J.: Prentice Hall, rsn

.. ackpowledged prefin;, , . 8., i

v AR R L e

- 136 «

GMY@;?‘.&- IR 3o < AT SR LI S G

F

Lo . . «-'J..- 3{— IESRETE I S T i: A ‘. - M 0
~ Technical words and phrases~ ..o & onnos o

ackpow

: * : N v . N
wres @Y ngy B L vomnaW Do

w
B
L

PO e

ADL . .. 20, 53, 54 T O (E e
axiomatic specifications . .. 17 .
chanaels. . '.-'f'!"zgrw'i Vooamin RS RPN 2% S ECF S R
channel space . . ;4& - . 7 o T Lower v
channel state . . . 81

CHDL ... 19

" complete . . . 76, 80, 82

concatenation . . . 46, 47

consistency . . . 88

continuous . . . 78, 84

Cutoff Lemma ... 10§

data flow . .. 14, 1§

denotational specifications . .. 17

difference . . . 46, 47

directed graph . .. 39

dot notation . . . 682, 83

empty stream ., , 45

equality of streams . .. 45

execution sequence .. . 58, 80

external characteristic relation ... 41, 43

external specifications . .. 41

formal specifications . . . 6

hierarchy ... 8

initial segment . . . 45

input channels . ., 28

input slice . . . 43

insertion . . . 48

internal characteristic relation .. . 84

internal specifications . . . 68

limit . . . 76 v

Limit Existence Theorem ... 78, 84

Limit Size Lemma . . . 88

limit state . . . 77

LSL ... 90

merge . . . 47, 48

Minimum Limit Lemma . . . 86

modularity ... 9

modules . . . 9, 26

monotone . ., 81, 82
nondeterminacy . . . 16, 33
operational specifications . . . 18
output channels 86

output slice . . . 43 '

Packet communication :ystcnu .o
Packet systems . . . §, 26

prefix L3R AR 3 46' 47 -

realize . . . 60

response ., . . 30

size ... 45

~slice . . . 43

stream . X 45

strict ., . . 104 .
'xtructured programming . . .
structured symm Mn
subsaquenci 47 48
Sum Limit Lemm

" synthesis . . . 86
system slice . . . 69
ultimate output slice .
VDL ... 18

. 103

@.77'

- 137 -

Names, symbols and notation

$...869, 70
$8...70
($.8M)...70

€ ... 46, 47

o, ..46

O... 45

€ (empty stream) . . .
#2...45

A module . ..
count(p,2) ...
CSYS* . .. 89
C module . . . 50
D module . . . 48
EXTy . .. 41, 43
F module ... 51
iD...42

45

60
47

index(p.,2,J) . . . 47

lNTSVS"'as

J module ... 52
lim{.)...76
N module-. . . 49
76
PREFIX . . . 47
SUBSEQ . . . 48

sup (...} ... 76

T module (true gate) . . .

z%...69
zzh ... 69 ,
2[1] .

2[k: n] . 46 47

@1}, z[23,...) .
Zr .

. 45

62

- 13‘ -

David Ellis was born in Brooklya, .New: ¥umk .on Decembder 68,1848
and- attended public achool ir Plaiaview, NGW® York, greitUating - from
Plainview-0l4 Bethpage High School in June, 1867. Hedid his-undetgretuate
work at Columbia University in Néw. York Clagy: wajeviiig ia: ‘meneniaties. As
an undergraduate, he was a teaching assistiit .Yor e Dipeitiieat of
Mathematics, & student programming coasultant for the ‘Comiputer Canvlie;: and
manager of the collage wrestiing team. Ke graduated ‘dusithe. cum- fmxfe in
June, 1971, and was awarded s Woodrow Wilson fellowiltly for: jseduate
study. During the summer of 1§71, he did resssrch at SHookhawes JRRional
Laboratory, woarking oa the development of a meoaitor m for mxm
computation,

‘In the fall of 1871, mmummmuusgorxmmuur‘
science at the Massachusetts Institute of Tachn

teaching assistant for the Department of ‘;« ical MAgingating
Science and as a resssrch assistant for the Comipyfption Structupes
the MIT Laboratory for Computer Scieace. Il , 1028, b 2ot

‘?M ma&mmammmmwxw
ack Denais. | e

Mr.mumnmmrowwnmm nd he
mxuoxnm.mwmwrmmum»w% sey
in December, 1877.

Mr. Ellis is a member of Beta Ka ﬂmm
Compuuu lhchuuy : Phb ' '

SN o T 1

- for

Puhnatim

Ellis, David, Wu{@; m su'uauus and Rl!mncu Tubntcal chort
TR-134, MIT Leberstory:for Gemputer Scieace, August 1974.

g L PR Ve TR

