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| Abstract Data Types in Stack: Based Languages
Ly
John Eliot Blakesiee Moss
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‘Abstract data types-are the basis of an emerging methodology of mrpmgnmming The
only existing languages supporting abstractxdata types directly, CLU and: Simuta, both require

compacting garbage- collection, and thus- ;!ny are not suitable ‘for ‘many applications. This
thesis presents the design of -a new. language incorporating -sbetract data types; the language
requires ‘t.'mly a run-time.stack, and not. garbage collection. “Fhis-mew-Ianguage, called ASBAL
(for'“A Stack Based Abstraction: Language”), is based on:GLU,:and borrews.as many features
as possible directly from: it. Virtuaﬁy every ﬂgnmnm Mn of CLU: is carried ‘over into
'}ASBAL ‘in some form, ‘and extemioas are  inck - wilon - mry ‘For exmqﬂe the
* maximum size of obijects. bewmes an'lssteand is Mvid" by the addition of size parameters to
‘types. “Also, a “Timited “facifity for dymmk w ahiocation rated in ASBAL to
compensate for the removal of a garbage: collected: esp. “Tiis: my tﬁws st nud graph
‘stzactures to. be: built within: the framework of the stack-while:preventing dangling references

asa side-effect” of compilestime type checking.

Name and Title of Thesis Supervisor:: o ' Barbara H. Liskov
| | ‘ o Amm Professor of
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1. Introduction

In recent years the correttness of cocmter progrims%as bacome a topic of growing
interest. One approach ‘taken- to enh:mmg' m ‘Is the fdrmuhﬂon ‘of design and
programming: Mhodolagies It is hoped that tHfrécuness

'%be tchlevad by usiﬁg appropriate
structure and diseipline in the prograsiming process. T Sin “Bbstract data typesl is one of
the techniques being developed. Abstract dutd'tyjes appear:| é itiing for sinfpllfying proofs
of program correctriess, and seem to be hatdtal’ for M ih n programmlng and. in
*.cormunicating among thémselves about program

LL Motivation .

To date only two programming !anguages have been implememed that provide and
»enforce the abstract data type disciphne directly in tm hgguge- CLU [Liskov77], and
extensions to Simula [DahlBB] However, ‘both hm& Tequire ‘compacting garbage
collection. The main difficulty with garbagc collection is. the embarnsslng pause” which
occurs whenever the garbage collector is invoked. ‘Such a pause is intolerable in ‘real-time
systems such as operating systems, process control programs, etc. One way to eliminate the
pause is to use ﬁarawl"ilswe"ﬁ"of inichémissitat. [Raker7?, ' Dédt h’lﬁ: “Barth™n garbage
~ collection techniques. These methods have“tﬁ! eftect ‘of spréading the’ pause out uniform!y
over the normal processing time. Unfortundtely, efficien

4 ﬁfl‘ruéf garbage collection probabiy

requires special hardware, and’ ¢ thereforé ot !uiuble fat', m appucations, especlaily those

A e

relying on existing hardware. lqcr!m&ﬂ:l garbipe coflection lppears to’ ‘be more promising.
but both paraliel and incremental techniques for ob jects of different sizes (we say varlable size

objects) copy from one ob ject space to another. Each space i3 one haif of the total free memory;
thus the maximum amount of memory usable with the parallel ar incremental techniques is half
of the actual memory provlded This severely m aﬁﬁmmm pmslbte on most
machines, particularfy mini-’ and micro-comg f;'_;_ rs, wh{d,, gj;w,gmﬂaddrm spaces,tq,pegm

1. We éssuine the reader is' famluar with_aﬁstricjt; data typu. For those Jess well versed in the
recent literature the following papers may be helpfut: [Liskov77, Wulf76a, Liskov75, Guttag75).
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with. Another drawback to garbage coliection: is that the mym System mtght be
~a prime candidate far using abstract data types. Clearly: umm s part of the
~ memry managm{ syem.  If the language achich allems ome 40.yse sbstract data types
requires garbage collection, then that lnguage. cABROL: be teed 40 mrite. the garbage. collector.]
‘Ome might hope that 2. uselnl, ;sublet of. the jaaguege: that shoss net Pemise: gribege: collection
could be used to write the.garhage qollectar. Wmmmwm GWU or
, Simula they. deMm. arbage. cojection entirel _ v
7 - We feelt’hﬂ.tthgldttmmnm_ irbage. collectio muum parallel '
garbage collection into compuster hardware,  As the Mgf mmpdmm the
- cost of of software predominates, it may pay to dotble um.m.mmnm_n paraliel or
incremental garbage collection, and thus make MMMMWMMg
languages that ease software: dﬂehpmut However, in: MMM for: -”lmu
“the added hardware coit ummt be Mm Mmﬂsuacmm we. feel another
'sotuuon is in order T this thesls we: present a m agrsmming W incorporating
.abstract data types ina muer mmm mm D

112, Fhe Gosl

., Pascal, and PL/2 Rather, th designing this. new laoy

We have.designed a.new language with. abstracs sdate types:that will yun with-enly a
run-time stack. This stack is glmihr to m mnm&@hﬂ languagss such. as Algol,
: mmem CLu
as a basis and have Mn&d on remining .as megy. of its features 83 _possible. ‘To
understand what we: huwdm ﬂm mlmﬁ m SALhage: -1 egonsary in
CLU. : :

1 Withom speclal m::ks, that is. We feel-that tﬂekq nf um sort shuwld hetvo!ded and an

elegant sohstion found thit dies not invotves mibks-br Spbcidl
2. For some applications static aliocation might be apprepriate; we did -net lnmtlgate that
approach. However, see the wggamom t’or furﬂnr nmeh ﬂn lut chapter for more
comments about it o ' N




1

18, CLU alrd Garbage Coﬁection-

The coincidence of several :parts of the semantics of CLU makes garbage collection a
necessity. The basic unit of information in CLU is'an object. Every object has a type. and may
be manipulated only by the operations of its type: this is the key to abstract data types.
Conceptually, ob jects exist indepandently of pregeams, and gnce greated are never destroyed. A
variable ~rs simply a reference toanobpct.ﬂwm,aaame for it. It is important to‘realize that
variables do not contain objects, but.rather. object. eforances, implemsnted by. pointers or
capabilhies.- Two. variables ‘may- refer to'the same ebjecta-we -say -they -share that object.
-~ Objects may__referf._to. other objects, so.objects can be.,shared by objects as well as by variables.
This_' is useful.in.building hierarchical, graph, and. list date structures. Furthermore, cyclic.data
structures. can be_ built, thus. implying that. refersnce counting will not suffice to reclaim all
unused storage. -Becamse variable ;iu»obm”meg mﬁu garbage: eo“eam is ‘needed
- to prevent fragmentation o&uqnge. U e

n CLU, assignment, argument- mmm md results are all accomplished
by transmitting b ject references;ne obmgmnfm Forexample, in

X =Y, , S T e T NPT Ve
the variable x is made to refer to the same. object as that referred to by y. The ob ject referred
to by y is not affected in any way. In the case of argument passing a similar thing happens.
The called routine is given references to the argnm being pas to it. This is not the same

as. call by reference the al%ed routine does not have‘uocea o the varlables of its caller.
However, the ob jects passed are shared between the caller md the ca!led procedure Therefore
any modifications to the objects wm be visible m the caller |

Any procedure can create new ob jects at wlll and these ob jects are stored in the heap
References to ob jects can be stored in other ob jects and alao retumed to the caﬂer directly We
will call the ob ject semantics of CLU the objm-ammd Wmlo

In sum, CLU ob jects must be lliouted in a hup beause (a) they can be of
unpredictable size, (b rhelr size can grow over ttme without bouﬂd and (© their lifetime is

1. A heap is a global, garbage collected storage area, like that of Algol 68 [WijngaardenT77).



I.4. Our Approach
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indefinite. Garbage com is requimd because cyclic. structures can. btbuik. Compacting
garbage’ collection: must. be used to prevent fngmm o m buauu varhbk- size:

~objects are used. ‘ o ettt e g T

T R S LA

El

 CLU's mejer contribistion -is the:alitrace dita typé-Tuéility, -nor the objédioriented
view.. It appears shat the wwﬁwmqsw Wb requilelihY Tor' garbage
collection; as outtitabove.  PUrieps o Caib4 kﬁi Aa8iities withodt the

'obgew-ortemzd view.: As wmmwmm mﬁww srrive
at:is ‘a; symbiesis of /the tratitional us of vanabisaniOLUY! Wﬁm s‘-sunng
“objects is elmvinated, mmammww? e tiohs

objects in: vasinbtesic Firthen dissplios

" may -be-manipulaed. - OBr:panpos 58-S

’ wmmb wulf7ech’

possuble We 2all our makhg«daign wwg
concemratcd ‘On - thie  Sowamtice Tm ANl i oF N e
improved for-a pmw mwmm

£ o i N als i

I. 5 Related Work

The goals of the Alph:nd hngmgeﬂu!gn gmp IW appuf m be very simitar

) P I X EE e i*"*i«sw pIr i Ju ¥ 2
to ours: A!phard hn abmet data typu and runs with’ :nly Mf rer, fdphl:d is still
BV i“'%?q o r?‘fﬁ é J“M UM" g L ! :}w .;J’k
under. development and it is not clear how similar BAL r&lly' are. We' smpect
L e et le M‘ il 7 e ads ©f vz :
there wm be mgnifiunt diffm b&nneof out adhen i :h a° mors objm—oriemed

. ‘g"'% ﬁ_’t

APy sl e A ¥ies Fi O m*,?"‘ 3 ‘(;zJ

The !anguage Euclid [Lampmm ls ahu maﬂm M to our. work We are

FR I ¥ <3 % u SERIENT &3;.{»@»{ RN

" especiauy indebted “to Euchid for the cmqm‘ M mﬁm md w&hctions. lee -

38, SR @ aiEs myds ‘*‘ﬂj {d? B 2 e
Mphard Euctid is notix ?act-oﬂeuud. Fu nhu:n;%.; was nat: lpo?ﬂ’hﬂ deslgned to

provlde abstract data types, although they can be Mhml mm&: Euclid

o l__@;’ Do *ff‘"“ te "‘53 4
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places more emphasis on provability than we do, and on systems lmplementation features.
- Euclid is a more complete language than ASBAL, but our lntention _was. not to design a
complete ready-to—use language ' ’ : :
| The language Simula is also somewhat related to ASBAL Simula oould be described
" as CLU's ancestor, and CLU is ASBAL ancestor so the relatlonship is one of progressive
development No specific feature was consclously taken directly frorn SImula in the desrgn of
ASBAL, but much was taken from CLU _ .
The language ‘most closely related to ASBAL is of course CLU since it was the
starting point of our design

1.6. Outline

This mtroductory chapter is followed by flve chapters. Chapter 2 introduces the basic
semantics of ASBAL Iaying the phllosophtcal and sernantlc foundations for the rest of the
desugn The third chapter extends the basic futures nlth two mechantsms taken from CLU:
iterators and exception handling Chapter 4 further extends ASBAL by addlng parameters to
abstractions. The parameter mechanlsm of CLU is oopled but a significant new feature is
added - size parameters The f ifth chapter lnvestigates a toplc foreign to CLU , dynamic
allocation of ob Jects without requiring garbage collectlon ln Chapter 6 we surnmarize our
research, draw concluslons and make suggestions on how our work can be extended
mentionmg other approaches to our problern deservsng mvestigatlon

There are two appendices which more completely deflne our- ASBAL The first
appendix gives a context-f ree grammar with explanatlons of the various productions The
second appendix outllnes the basic data types and their operations.
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: .2 Basko Golwqyts

Thls chapter pmems many fundmnmﬂ um o!' ASBAL We begln with a

 discussion of the pbﬂmaphy bohmd ob Jocts md vurhm iﬂ pmnmmtng hngunges point out
particular upects of thu phﬂaophy thlt diml,lw ollr dqﬂm in the des(gn of ASBAL,

1%5‘}‘%-"\ gEvEn

and arrive at the buic mmm of vtrhblu fm‘ Asm Fm thh we chelqp the semantics

Pt wlmege

of procedure invuuuon uugnmmt. and m mm of ebm. M‘ter a discussion

¥y 3"“‘ st F r3 wphsy -r*-* f o 'ig

of implemenmim techmqlm. we pruem n examp ege guﬂnmm to lﬂumte the material
P 2 wln - Ay, el s
introduced.

21. Philosophy of Objects and 'Vamblu |

Variabies in tndltimal pmgmmkg hngmges me two mt)or ‘functions: they
provide a naming apl’bmty. xnd ﬂny pmtdem'vm mm (ise nurage space).
, CLU, with Its objett—oﬂemed “view, sepanlu m fm mpm lme the lnformtuon
" containers of CLU. (CLU variabies ok umymm ‘of ‘dbjects. ‘We generally say the
| ;T‘vanable denotes or rcfcrs to the object.) Obpcu hlve mwindct‘mw.' Iifulme, and may be

SRy IR TR T =3ﬂ E

x referred to by man’ywmbles lt once ‘Heuu. m mmgedu Mgeilleuted ina
heap. with’ varhb‘a beiug polmm m me m tl\tyim: o b&’eﬂm’ rel'cr to other
h objects and genem! gnph :tmmm d‘ qt;jecumaﬁowed u

" Some ob“jem hlve tlm-urﬁngpmpem we uy“wao objnwau nutablc The state

of a mutable ob ject " the set of prepam?a n m wm pom«m *um For example, the

' ﬂﬁbstracttype smck ts«muuble Thesmuram ummmw obaum ini. A
push or-a popmume:t Mk m gmnamm mmm amfurempﬂness
will not change the state. of a stack. ‘ '

. Immutable -objects are those whose properuu do not vary over time. Most
mathematical valuu are immutlble as are their mmpuur llnguage ‘models. (The values not
the variables in which.they are stored!) For enmple integers, rul numbers, characters, strings,
and ‘boolean ‘viiues are all immutable. "The integer ' is " mmocable object. 2" is 2’ no

" matter how you shice it, and ‘2'.can never be changed eoanym integer. -
The sep:ration of the naming and storage functions of variables acmeved by the
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ob pct-—oriented view leads to a clean semantics.  But probabty the most lmportant reason CLU's
”;2( € Fray ?is EEAN

l' ob, Ject-orieuted semantlcs is attm:tive l; that peop'e seem to think in ;terms of ‘ob Jects The
very structure of Ianguage, with nouns (naming objects) ad f:tives (describmg tbe properties

1§ SRR .i{,‘, It

of ob jects), and verbs (descrtblng the’ use of ob jects pr their hehavtor) seems based on thts view

of the world. If it is indeed true that people thlnk ‘:tn terms of objects, then Iinguistrc forms

.....

that enable people to program direcﬂy in térms of ob| jec‘ts colﬂd iud to better sof tware desngn
gyf ﬁg;iz‘ SRR RN *’. )

and’ imp1ementation by being more natural for people to use. .
» " Of course, the kind of objects to be found l'n prograruming concepts are highly
abstract, often’ mathematlca! in nature. '$o, gtbcre rernains much structure to be butlt to model
real ‘world ob jects and. systems 'l"his hck of structure lﬂows the l‘reedom | necessary in a
'general-purpose hnguage For domain speciﬁc systems (e.g.. metltcal dﬁgngsts)ﬁ mdre structure
may be desirable because it embod!es useful amp?ﬂ;t; aud prennts "reinventing the wheel
3 -purp The abstract data type

for every speciﬁc task Howevér ASBAL !s fo be geners :
facilities allow one to build spectatized systems by aocumuhting a Itbrary of type definitions

%‘fae u
-; ,,h.

“and procedures relevant to the appliatttun Our modeltng of objects must extend to abstract
data types to be useful. For this reason ASBAL is destgned frpm a very general point of view
‘with respect to types “Fhis m may make our descﬂpums of mntic oom:epts seem very vague.
It is hoped that the miny small examplu we gtve wtl! help oﬂ‘set the abstract descrtptlons

22. Vniables in Asskl. :
As was, discussed in the flrst chapm,qur hug cmm in the m ai ASBAL is to.
,obvnate the need for gm’bage .collection. . This,. we..asgued, .ireplies -either.. static- or
_ stack-allecation,o;;stongg, We explained that out- mmmumm 10-stack aMgcation.
-CLU-style ob jects cannot be stack-allocated in an ble. way, because they are very
general structures. We have decided that the best apwvech foc ASBAL 1s to store ob Jects in
y e pgddtrected our cholce Al
-, other-mechanisms we capsidered were mmmm Sursng ehzjaasin variables is not
as’ ice as the fuﬂ-—b’lown ‘bb jecf-—oriented appmch ﬁ‘ CLU bultg lt appears to be the best we
can do. The assignment, procedure call, and:component: m nechmtsms were-: designed
very carefully to help offset the limitations imposed by working in a stack. Here is a summary

-nr
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,;‘ - of the ob ject mterpmtaﬁon "
N , | A variabk- contntm an ubject An object hu a type. md » m a variable; a variable
- may only contain an object whooe type is the same a3 its own. Augmt nﬂl be used only to
| change whnch ob ject is ttored ina varhble. An aaignmcat effectiggy datroys whatever ob ject
prevuous!y existed ln a vartable, md cretm a m np'pct in m,,m Toc : the state of

5 2t /3.“\

an object rhe object must be passed (umtg the ,pmcgdun invocation mechanism) to an
operation of its type An operation that t changes an ubjsct’: m n njd to mtmc the ob ject 2

We emphasize that uslgnlng toa nmble gx not the mme as mmw;g the ob ject it

contalns This is becaun muuble ob, Jscts may havc prqnmu ne Wp‘y their. creation which

| may never be: changed later For example camk;er an. Ww that modeh autamobiles.

At creation the make model. and serhl number m ipedﬁd' thue propertie

E never be changcd after it is created ‘Onthg other ?mnd the number of p;uengers in a car

and locatien of a car can chmge q;me frw "; ug ﬂlﬂu yroper

of its state, oniy some of these prcpenies an be chaug;d by mtmuon 'However. if a car

. SER-Ts8
vanabte is asslgmd a new. car, ¢ll the pmpemu vight bdmm fm thme of the previous
car.

of a car may

es of a car are part,

Objects my have other ohjects a8 compomnts. Gwnpqpm of an object are stored -

Fie

where only references to mmponents are stond m an objaet

Several consequences of this ob Ject interpretation of varislples shaukl de mentioned. In
CLU, assignment is system-defined: it is an implicit operation. This & fecause 2 CLU
© atsigriovent entatts only copying an obiject reFerenia riitver ke ‘cupying & pointer or capability.
On' the sother Wwid we st construct &n mwmmm this ‘néw ob ject
mphcesmmpnmtymmmmmmm Thie'éorisegirent 'ﬂrtm:fm will
bthpwnd i thve ummwm | :

|y

L Recall that the absmct data tyge methodolugy ;lhm euly thc aperations. of a type to access
or.update the representation of objects of thattype.

22 Fhe only:muteiie objects aneiwoers and weray: , “thvam. Allimutation
is accomplished by mutation .of records or arrays. Mutagion jl,jgl ymmﬂw .since the
mutating ‘operations are atomic.. That is, the fmml muattng apemtiam cannot be
lwukm@wn -ivto-other, mmm S
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Another consequence of the ob ject lnterpreutlon ls that shaﬂng of components is
disallowed, beause components are dlrectly contalned in their parent objects, rather than
may be the same exact object, and any modification to thia shat‘ed component object via one

access path will be visible via the other access path. Our abjerts  cannot share components in
| this way. (The additlon of polnters to ASBAL. restores tlmablllty to share, so we are not
giving sharmg up completely) . . ks e i .

A rather obvious result of our semantlcs ls that the lifetime of an ob ject is bounded by
the lif etlme of the variable containing it, rather than Mmmma as in CLU.. . The major
* implication of this is that ASBAL routines will not be able to_return objects in the sense that
CLU procedures do. ln CLU procedures retum r{[cmm: to ob jects; hence, previgusly. existing
ob jects may be retumed by just copying . l’efm o thm »l'l ASBAL we are restricted to
constructing new ob jects to be returned. -

The btnding of an object’s lifetime to..lhai Qfltgmmnh!g variable, along with the

storing of components within objects rather than se ely, Toquires 2 new mechanism for
. selecting components. In GLU components. can be selected by just returning them since only a
reference is returned. On the other hand, our returns always create niew ob jects, $0'returhing a
component ‘cannot be done in the same sense as in CLU: we can only construct a copy of the
component. Therefore, without a new mechanism, component ob, jects may never be matated,
although new component ob jects may be substltuted by jons
Since we should be able to do anythlng with’ component 'objects that we can 'do with entlre

ttons on the contaming ob ject

ob jects, a new mechantsm 1s required o allow mutation of components ‘A new kind of module
* the selector, is intraduced for this purpose; it ‘will be &escrlbed in & tater section of this chapter

A last consequence of our semantic model is that ob jects cannot grow dynamically, at
least not without bound, because they are restricted to the storage allocated for the variable
containing them. . This leads to difficultiés when trylng to lmplement abstractions that are
conceptually unbounded. The parameter and area mechanisms t;be presented later are largely
devoted to solvlng this problem

To sum up, variables in ASBAL are containers for objects. Objects have a type,

which indicates how they may be manipulated, ie, what operations are allowed on them.



~ Variables are also given a type, indicating: what_type of abjects: M lgwy mn Variables
 will be implemented a3 storage afiocated: in a- ack; the: objpet. insergretasion we expouse onl
puts hmmuons on’ how thm mrqe my ﬁu MM. Tinmgr dm pees De
| oblects and heap tﬂmﬁod ohjeeu ate- N

A our otfja:trm stared” within: mwwum - tmo%d ob ject. in-
the variablé-assigned 15 is destroped and'a muwwm Mﬁtmc’spm
~ (2) because objects are swred i m&th!es,m Wm m cmtmg an
o object;
(3) there can beno simmgw &mvawmd objects among
" - objects: and: variabifes;
() the lifetime of sn object is WM%«F&WM:;W it
(5 and; the mwmwwnw&vmm&w“ ing it.

,T‘hc next few m’“tﬂﬁm m
' 'dmﬂ and: pfegem Mmﬁ . P

] 2»2& .Declarations: and- M

| | Programmustbaabietoreferwe&mm,"
vanables in ASBA‘L with he glven nypu H!J Fograms. PREOD-A1E. OO PRT s

| to disttnglmh ehcm frcm nmq uud fereuw 4 :“ﬂ w,u mmgﬂ ptecedm '
‘ lc mm&; mmmmm: mvm,ef @mﬂgwnwm,@t the same

time ln ASEA’L a.dumm M m&u

4 var x: foo. _ : .
__ is used to-do thls lﬁ themmph & new. deWﬁebM%g&m the name- x.
A newly created: variabm :veeum By % declaration; olbjeet; it ts m error to
attempt to use it. (We have mm: to %MW . vaw ow.): Qm can easily

extend the form-of :mwmmwmwmma once:
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var x; int, y: bool;
or : "
var x,y: int;

2.2.2. Variable Initialization

~ We define our declarations to create new. variables, that is, ones. never before known or
used. This definition prevents confusion over 4whether a “new’”. variable contains an oki.ob ject.
It does raise two problems, however. The first is that memory allocation is required - thls‘ is
discussed in the section on implementation hwmfﬁwmpm&'m aeoondproblemis that the
bits initially in the storage allocated for the variable may not represent a legal ob ject of the
type of the variable. There are two solutitms to thls problem. "One ls to store a def ault ob ject
of the-declared type in the variable as part of the actlom taken for the declaratlon Thls can
be done for user defined types as well as sym-provlded ones by requirlng each type
defmmon to have a routine ot‘ a partlcular name (tnu. sayl whlch wlll store an inltlal ob ject in
a variable given to it by the system Thli solutlon guarantees that varlables always contatn
legal ob Jects (assuming users do not write crazy init routlnes'l But unfortunately. it cannot
guarantee that the ob jects are :enstblc. slnce nnstblllty dependa on how a variable is used
The better solution is to conslder attempts to uae an tmlnltlalized variable as illegal
and to detect such attempts with a combinatim of compile—-tlme and run—time checks Exactly
what checks are requlred is dlscussed in the rection on implementatlon later in thls chapter

2.2.3. Constants

It is sometimes convenient to have a_holder for.an.object that cannot be assigned to
after initialization, and that does not allow the ob ject tobe mpdified. . We call such holders
constants to corltraat them with.. varjables; .they .are similar . to -congiant -objects. in. CLU.
However, we allow constants of mutable types, such as constant arrays. Since a constant
physically contains the object stored in it, modifications can easily be prevented by dlsallowlng
any write operations to the storage allooated toa oomtant. We wlll aee later that _we can.pass a
variable to a_procedure but’ have the prooedure consider it to bé a constant.’ This:is the real
motivation for constants - prevention of undesired modification to ob jects.
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A constant definition is similar to a vaﬂabte declaration, except: that. the object to be
stored in the comstant must be specified. Thus, in & constant’ m Wﬂn the desired
name, type, and the object to be stored in the:constant: ’

const n: int =53;
const i: int = j+ k;

const a: arraytint] = nnyteutuw)
In an implementation there is Titte difference between a mmd:t wm acmmnt is
essentially a write-omce vartable:

2.2.4. Scope and t{n Form of ASBAL Modules:

To gain an understanding of me ~scope of variable aml constant mames, we must
' consider the general form of modules in WL The mm modules of ASBAL are the
' cluster which tmpkmems tdm abm'mm md :mmm; ' ,:apmedunl
: abstractlon

A cluster defines a data abstraction, By gjm x M (of tew shortened to rep)
"Afor the abstractton bemg deﬂmd, md imphm of m opemi«w The operation
implcmentattons take the form of prooadum, but htw the: m m, to mvert ob jects of
the abstract type to and from the rep type. Imem:t W my be um the cluster. lists
which of the operations may be used ouum the c!umr

; Aﬂxedwehsahm«m:bﬁy.mbwmtmam The header
gives the types, and names. of the arguments, the types of any resulis: retuyped, and other
‘information to be'described later.

. Each abstraction is impienmwd i terms of lower: level. Mmm The overall
structure is a hierarchilcal decomposition, witlv:the tighwst’ Tevel abstractons:at the top, amd the
‘lowest level abstractions Betivg types and: procedisres: Butle thto !N lingusge: ' A module is an
imphementation of ar abstraction:] Because' sn abstraction 13 entire unto itself, s free standing

‘1. A module may impfcmem a-class of related aburutm m!m than & &mgbtwmtm (see
the chapter on parameters). - : _
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mathematical ob Ject modules are conceptually sepante and iru:iependent2 For example. there

»»»»»»

another module to supply those variables :

This model is " somewhat contrary to the more oommon block-structured view of
programs in at least two ways. l'-‘lrst, the block-stmctured view leods to large ‘monolithic
programs, and the whole goal oi‘ modularity is to Prevent sucli hrge prognms Second we

e

allow only local varlables. not global variablu This wpports modularity by maiting module

TEX 3 Cined

relationships more explicit any data that a module wi;}hes to aocecs must be passed as
arguments to that module Since each procedure ;efines a distinct abstraction. and every
abstraction is implemented by distinct modules, nothing is gained by: defiming: procedures
within procedures. In the interest of simplicity procedure definitions in procedures are
'forbidden However, hierr¢hical’ n‘esting of’ M gWs wlt‘liln a procedure is quite
desirable, so it is-allowed and encouraged: F b S
What scoping of ‘nathes is- propétfor" this “fnodutar 'Hevvpoint? Without local
. procedures there is little reason to aliow variable namu and constant names to be obscured
(reused in nested blocks), especially since prooedum ‘are not expected to be very large
However, it is often helpful to restrict the.scope of certain; variable (or constant) names to an
inner block, such as a loop, rather than an entire. MAMI helps indicate the purpose of
the variable. ’ e S A
- Our no-global-variables ppli;cy makgs pmgnmsmmo(luhc but makes: some
. . The mwadvm«eﬁ global
data is not having to explicitly pass it to every pmeed.um,thatt might use it. An example of an
ob ject niormally made global is the symhnl.tal;l}_e of a compiler. . Assume we must implement a
~compiler in a language forbidding global dm -Let us,say the compiler parses by recursive
~ descent. Onlya few routines directly access %Wﬂhhﬂmnrrthesmw table; must be
_created at the highest level and, passed explicitly through many routipes. that never. use it-at all.
These intermediate routines only pass the sybal:tahle dewn for the lowest levels o use. We

programs a little more awkward when global data is necessa

2. This has nothing to do with separate compilation. however. -Modules may or may not be
separately compiled: we do not wish to pin this aspect down.
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. feel the modularity gained by forbiddmg ghbal data: more than effm the inconvenience of
\”:requtrmg extra wrmng for some pfogrum. RMg (&a data s m} to diminatlng
implicit ‘module interdependmciu. Block stmctun h uu! M in M gluidﬂdm is. However.,

once all data is local there is Httie potm to bieck :tmcm far mmmm:

" Even though ail data should mmnmmmm-am should be global.
"It is not useful to restrlctthempe of medwu.md mmnmhmmmun - it may
b‘force abstractlons to be re—implemmtad my 'ﬂnmﬁore we am M module names
“are global ‘We neither requm nor pmhibﬁ ethu' infm mlding tin reilﬂmsmps of
- modules - such modulemmaumm mfm uwmmamm |

2.8, - Procedure Invocation

- The previous section. discussed. vmm M the mechanisms. for. storing
and holding objects. We now continue, with procadize. innoos! oo, Wiich- aﬂm the creation of
- new objects.and. themaaipahum .of old.ones.. mmmMmigmt.

2.3.1. The Dif-ferent Clm of Argm -

" The whole point of prodedures 15t guin bstraction ihsactions. A set of actions that
© form a logical whele' is ‘greuped together and' vié e ‘85 s siwgie bstract action. The basic
actions are mutation of objtcts and assigmmnt to m Since all data is Jocal in ASBAL,
“the key to provedural ‘abstra mb passing  mechamiim; that is, the
*~ mechimist by which procediires are mmu&&wmm o
o “We can imagine as ridny as four différen tﬁﬁsﬂ’w n MAL The first
' cliss is mstmﬁ'afgum:s: K constant Gtgudient io i’ hoistiive uia m wm& cannot be
directly modified by the routine: 'We will se¢ itef that = providure

mcumtouan

- constant wmsnmmhgngmmuthm&pﬂn from some other

“argument to' the object that: allows' it to. be mtred. Mﬁttﬁrmapﬂnms.a
constant argumtmb&m hrmm e v ASBAL. Pimﬁeﬂmn if all

1. We reserve the word. pcmmm for 2 futme uu. M mdfuﬂy dtlungulsh bwveen
arguments and parameters;
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arguments to a procedure are constant a'rguments or result arguments (see below), then the
procedure is functional; that is, it does not modify any of its arguments

The second class of arguments is objm cr‘nmim -An. .object argumem gives access to
a particular ob ject, allowing observation and mutation of it. Hosvcver the variable _containing
the ob ject may not be accessed, and therefore max not be asslgned to.

The third class of arguments is mrtable argumnts A variable argument is a variable
passed by reference. Therefore assignment to it Is allowed, as 'well as access to (and mutation
of) the ob ject it contains. The difference between variable a
-exactly the difference between assignment to a vartable and muuﬂon of the ob ject | it contains.

Argugents and object arguments is

The last class of arguments is result crgumm A result argument isa variable which
may only be assigned to. The purpose ¢ of result arguments is the construction of new ob Jects in
vanables that is, assignment This includes initialization a8 well as assignmem ‘

Ob ject and variable arguments (the seoond and third classes describedl are not very
" much different from each.other in implementation Both would be implemented by passing by
reference. The only difference is that a variable argument may be assigqed to, and an ob ject
_argument may not be. This slight distinction i3 not \vorth the complei;ity of two separate
argument passmg modes. Therefore, we chose to dispense with one and keep the other: we
retained ob Ject arguments, and eliminated variable arguments, i‘or two reasons. First this s the
more conservative choice in that less access is given to arguments: Second, ob ject arguments
more like CLU’s argument passing mechanism. - In CLU, object referances are passed, by value.
The effect is as if immutable objects were passed by value, and mutable ones by reference;
except, the variables of the ‘calling proeedure cannot be affetted by the dilled procedure in any
way. However, the object passed is shared between the procedures, and hence mutations of it
performed by the called proceduré will be ‘visible“ to the callifig procedure The decision of
which class of arguments to keep is not all’ that fmportant in the’ long run, but has affected
later decisions such as the selector mechanisri ind alinsing detection '

© Now that we have séttled on the classes of arguments - constant, ob ject, and result - we

need to devise a syntax for expressing procedure definitions and invocations. Let us first
describe & simple scheme Which we will impme m ina mol'hent -
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2.3.2. A Simple Scheme

The simplest apﬁmch to defining prm is to Mu: header in each definition,
much like the procedure headers of Pascal. In tive header we m the bcsi name, type, and
" class of each argumient. For example:

p= proc(comt w,x: int, var y: sresylint), mnm

The above header says that procedure p takes four trgm two constant trgumems. w and
x; one ob ject argument, ¥; and one result w‘m W pis not allowed to mutate
or assign tow and x (integers are not mitable objects anyway); p my matate 9, but not assign
“to it; and pmust assign toz,butmtyrmamkbé‘mm Mby feference is used to
“implement all three kinds of arguments; the difference. m ﬁm B i what the cafled
: procedure may do with an argumem - ot tow the ngm ttpused
' Procedure invocations take the usul form: the name of the procedure followed by a
parenthesized list of arguments. For example, a call of ﬁnm p.w sbove might look
-~ like this: - | | - SR

p (1, i+5,a, b);

The types of the arguments must match those declred by p. Furthermore, access constraints
may not be viotated. T’hmeonmu may mtbepued umwwmms as res

arguments
2:3.3. Returning Values vs. Passing Varlabies

The stmple scheme outlined above is perfectly workable, but can easity be Improved
uv;pan.v The main thing to notice is that Me is no explickt assignment. All assignments are
;accomplished by passing a variable by res. (Presumably ,ﬂnm types have operations to
~ assign to a variable of their type. In a mmm are wagical, since all other
aSsignmems rely on thém.)' However, the ymtmn invecations pecessary for each ass'i_gnmnt
are tedious to write out in the simple schtme, md they obacure m i happening since resuit

1. We admit the use of vas mwmwnmmmmm mm«ltopnrallel
Pascal. Anyway. we do not wish to get involved in purely syntuctic fssues. :
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arguments do not stand out.
_ It is possible to separate result argumenu by wrmng them on the Ieft-hand slde of a
v’ symbol to signify asslgnment For examp!e. we would write:

var b: foo,c bar;

= qix,y);

cwrin;

a:=pi(b,c)
where in the simple scheme we wouldmlr:ve written:

var b: foo, c: bar;

q(x,y,b)

riz, ¢,

p (b, c a);
~ assurhing these to be the types of p, g, andy

P proctypeifvir foo, bar, res TD ~

- proctype (var T2, T3, res foo}

r: proctype (var T4, res bar) .

The use of "=’ shows mare clearly what ts{&qmgon, , ,

We can make a further improvement, however. If we had to declare a variable for
every temporary result, our programs would become qum cluttered with extraneous Val’hb‘es
and declarations. We can get around this problem .by having the mﬂu albcete temPOf"Y
variahles Adding this feature allows us to_ rewrjte the quve exupple amd ellmtnate the
temporary variables b and ¢ ‘ '

-a = p (qix,p, r2 )

varrable the compller will allocate a temponry va[bbht;g thg prgpedure to wrlte into, and
then the temporary will be thrown away (i, never accessed again). So, if the variable a were

never used again in the example, we could eliminate it, giving 2
plgxy, ) '

The end result of puttlng res arguments on the left, and having the compiler allocate
temporanes is syntax quite similar in appeerance to CLU. In fact, we encourage the
-programmer to- think of procedures as retuming objects instead of belng passed ‘variables to
write into. The overalf picture of this final scheme i3 that t‘e camng procedure gets the effect



of ob jects being retumed and the called procedure sees variables whlch ‘must be assigned to.
This is a good comprormse between abstraction and eﬁ iciency T‘he only constraint s that the
- size (or at least an. upper bound on tt) of all ob jects to be returmd must be known before the
call, so that the actual variable used can be created. How we dul with thls constraint will
become clear later.
X To encourage thinking in terms of returning ob jects, we put the ducrtption of what a

| procedure returns in a separate part of the procedure huder as in o

P = proc (const wx: int, var y: lrnﬁint}hemm ?zzw
The ob jects to be returned are given names because the procedur!*belng ‘defined views them as
variables. Therefore, we now call the resukt argumems of 2 procedure mm wtoblcs ‘Notice
that effectively all we have done is segregate the res argumenu

Now let us consider how to express the returning of, pbym in ASBAL. In principle
we could use a return statement like CLU s, whieh guesa Md m w mtlm This would
be implemented by lmpliclﬂy doing assignmemx }qbg g!:é ::m vﬂ’“; ables
|mphc1t assignments might involve the copying of hrge ‘olpjects into the return variables.
Instead, we allow ob jects to be built incremenwlly in the rewm viﬂtbies. tnd simply say

return

However. these

to return from a procedure We view the return vuﬂabies as béin{uninmaﬁzed on procedure

entry, and any retdrn statement in the procedure is cumideraf wbe a use of all the return

variables. This allows us to use whatever mechahism airexdy exiits for detecting the use of

uninitialized variables to handle return variables as well. ‘v som tm the underlying

‘mechanism of returning is the passing of variables (whethet: MWWW dectared of
" compiler created). "However, We dffdfige the X" i

" “bbjects, a' view ‘we feel is more natiral, " SRR

2.3.4. Mufltiole Returns

v In most Ianguages. procedures maAy return WIL zero or one things We remove this
. cov PR 14} &yc,;,m ;4 ».u B M‘

restrictlon because it is arbitrary and sometlmes copnterpr ucuwe, in that some procedures

._most natura“y return more than one. object. Of course, we pmjde mbh qnhcﬂc forms for

"usmg thls feature. T‘he return statement Itself need not be extended since we are depending on
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.as.signments to get the .return objects into the return vimblu, as previously ‘explained.
However, some syntactic form is necessary to designate the variables to receive the return
ob jects. The multiple assignment statement, which wﬂl.be discussed in detall in the section on
assighment, is used for this purpose. Its geneni formis

var;, vary, .., var, := invocation;

The header for a procedure retutnlng more than ‘one ob pa ‘would huave a returnis clause of the
form : S S et -
returns (vary: type;, ..., var,: type,)
where the types may be factored. For eximple:
| returns (x,y: int, : char)

The order of the variables ¢h tﬁe lel’t side in the “multlph aalgmnem statement is the
same as in the returns clause of the procedure header. This panlk!s ‘the* standard
eerrespondeme of actual and formal arguivients to m The Teturns clause may be
omitted for a procedure ret!mtlng no dbjam, or : '

. returns()

may be used. .
2.3.5. Aliasing

We have not dealt with the problem that arises when the same object is passed to a
procedure in two different var posit.iom. or in both a const and a var position. The problem
is that not altiprocedures are prepared to’'deal with overiapping variibles. The problem is
compounded - by the fact that there are:variables that leffectively): ave subvariables (eg.,
records and-arsays), and overlapping subvariables present the sme difficuky. :Furthermore,
the fact that each argument has a. different aame-in the called -procedure tends to make people
forget that two names might refer to .the :ame object (or overlapping objects).  We call the
prot;lem .aliasing (after Buclid Hamn'mh Wesbelieve thut aiissing: 'shoukl be illegal.: One
very good reason for prohibiting: ablasing is: that: Wwocan cuusd an abgument to mysteriously
change into an entirely different ob ject from that passed Consider the following proccdure
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p = procia: m:ytﬂ K:t);
a[lO] -
: a"(i? - X
eml P N _
It is reasonable to think that (a) § has no effiect on x.sinoes it dess NEt MR- ik in the body,
and (b) that after the second mﬁmmwm in. However, one
~ could call # in this way:

. p (b, bi10)); . : :
Assuming that both arguments are passed by reference, wmm the pssignment to CUO] in
the body of p cméutmy x. See [Lampun¥ll tor Mm“hmrmm should
be prohibited.] o

Most cases of aimmumummmmm&
run-time checks, eg., that two. array indexes-are dif favemt Mhﬂ

f alil, al§h; : . ,
and so on. Wewmup&hwhumhm»pmmmmmmm

~ implementation, and wiawptnd zmmwmmummam as we
encounter them.

2.4. Assignment

| Here we tescriby how 1 change mwsmma variabie -ae_: operation
jprocedure invoction, return: vaniables poer— Mmﬁk Wan the anly'
assigmewent mechanism. k*wuumm&rwﬂmm

. var = inyocation;
that is, variables being anigned a compused exprusion: thid vakisliie i passeil 4 the vutrmost
,.prmdure catled. a% wﬁi nmw Mﬁw an mmmuu.

l ‘There are no implicn ufgum in Asau..mm mm m the number
of checks required to prevent slinsing.




even if they are not explicitly written out. For example.
' X+y
reallj means
TS$add (x, y) e o
where T is the type of x) What about assignments of theform ,:
vary:=vary;, ? AR
There is no invocation there to pass var to! This probhm can be handled in three ways.
First, there could be a system—defined automatic oupy operation performed This is
what happens in most hnguages. lgnoring difl‘ering stora;e formats. etc. the implicit copy
performed is essentialiy a bit—for-bit copy of the oonm: of the storage allocated to var2 into

ﬂ%ﬁ.

...«.s- E

the storage of var . We call this tion a ut-co A bit A works fine in the absence of
| g r opera n t-cop) ) the abses

‘ abstract data types. but with their introduction a probiem tmes Any assignment creates 2 new
S P ety

ob ject; a bit-copy creates one wrth the same sme apithe ppe in }the right—hand variable The
problem is that not all types should be copied in this way l-’or example some types may require
all the existing ob jects of the type to have different states, :othat each object is detectably
umque In the presence of pointers. it is not r:i:er v:hethe:e; pointer which is a component of
an object to be copied should itself be copied or whether the object pointed to should be
copied. 1 Thus, an automatic copy primitive is not feasibie '

The second solution is to have ail assig-nments .

| vareexp;

mean

var := T$copy(¢xp)
(where T is the type of both exp and var) whether exp {s a variabie or an invocation This
“has the unfortunate ei‘fect of doing a redundant oopy whenever exp is not a variabie
Furthermore the redundant copy operation is hard to opthniae away because users write the
copy operations, and are not constrained to malte them easiiy optimized '

R B s TS B

We feel the best soiution is to insert no extra copy ta astgnments of the form N

1. This is called the copy problem and will be further discussed when' pointers are added to
ASBAL.



wr:-lnm
and to take

vary = varai
to mean

.TScopy(wz)

Thetypeofrtcop’tsmmedmbe

proctype (const T) returns (T); : ,
lfanasngnmdmnm&msnﬁ&hmﬁmmmwaﬁmm
not exist, then thcpmgnmislﬁerm
LauspdntMawadMMnhanm Fmt.every
| operatmn mnpmm:mmﬁﬁpmdmmmbhm from one
 variable to ancther. Tmummmmmmmmxammdm
; demonstratcd the firat solition to be infeasible. Second, the =" symbol tas a non-uniform
meanmg While wesmmmmmmwmmmwm.

lan:quemnms,mfednmummmmuﬂubm Whtlsgained is a

savmgs in efrmuopmm mmmumm ,
o Thermmmprmmwmmm
X -p(x ;-
Here p receives x as an afgument m two m one h mdtbh. md one is write-only.
~ Fhings couldgetmllymeuednpm,mnmmhmw One way to
solve this problem is to transiate it to
x := TScopy (p (x, y);

similar to the mmamprmmpm mammuammtmh

- because it is nowhere mr asobviomnwonwha&ammwﬂhew and when

it wmnot Thewmmmbwmuwamymm”abp Thenafter
p returns, a bit-copy s performed from the temporary im0 x. A bit-copy works because the
state of the object in p is unabmm@f&’&m&mhnfme the
obgectinthemmryismlmudtgm
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- 24.1 Multiple Assignments

Ina previous sectlon we lntroduced the ldu of retumlng more than one ob ject f rom a
procedure We need to be able to assign those ob jecn to varltbles The form of asslgnment
statement for this is

vary, vary, .., var, = invocation;

To .extend this to its logical (and useful conclusion; we also atfow simuitarteous multiple
assignments of the form ’ |

var,, varz, s VBT -cxp,, cx}vz, - cxﬁn. L S
Each variable var; is to be assigned the corresponding expresslon expi. and all these
assignments are to take place simultaneously. To prevent confusion  we require that each
expression either be a variable or return only one object. Jn case of aliasing, the. same-trick of
using temporarles works fine. For example, in . ' ‘

X, ¥ = q(z, rly), x); .
a temporary would be allocated for the result destined for x. On the other hand one is not
needed for y, because y is not an argument t0 ¢. ‘ ‘

" One partlcularly nice construct the multiple asslgnment mtement al‘lows is

X, Y=Y X;

It is hard to decide if this should just swap the bits of the objects stored in x and 9, using
. bit-copies, which is both efficient and semantically correct. or whether it should invoke t8copy

twice,! which is more.consistent with our above rule about assignments between variables. We
-._belie-ve it is better to be consistent (i, to call t$cogy). A mew operator could be used to swap
the ob jects in variables, but we will not explore such.pessibjlities here.

1. For “x, y‘ o Y, X" two vtempo‘rgrles; mlght.b‘eﬂ regul:ed, hom.!e;, it is not dif ficult to have a
compiler notice that one of them is not needed.



2:4.2. Declarations with:Initialization:

One last useful asstgmnent statement is & dechuum nith iumaumm (or assignment
" with declaranon) This form- of smem-m albm one: eo dwhn aud um to s vaﬂable in one
E et .

. step. Here are two exampm.

var x: foo = p ;
var x; foo, y: bar :=qft), r(u);

A declaration with initialization is effectivelyl a shorthand: for a m followed: by an"
assignment Thus the second dechfltlon*muwto ’ '
' var x: f00;'y: bars ’
= (0, rlu);
which is-in 'this case equivaient'to

var x: foo, y: bar;
X = qlt);
y:= r{u);

g

Constant’ deﬂnmms. which were imrmm MW& the same ef fect

as declarations with. initialization. mmmmmmmm be assigned.
to again. . '

25 Access to Components of Ob jects

The: previous: sections of this chapter have deait: with mechanisms: for mampuhung
‘objects as a whole; here: we discuss the: additional mmm Mfw mipullttng
components of ob jects. Thewmﬁim ‘actions that can Te-partormed.on ‘olijucts: objects may
be created, they may be observed (read), and they may be mutated. We desire to be able to do
all three to components of objects as well a3 to entire objects. Crestion i3 no problem. A
component of an object is either created vohen tht objlet is crmed. or is created by a

1 In Chapter 4 we will see that there can be an lmpemm difference between a declaration
with initialization and one without. However, for now, or the duciaration with
initixliiation to beeepmﬁm 102 declarition’ rmsmm
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(mutating) operation on the ob ject. Records are an example of ob jects whose components are
~ created with the objects themselves Arrays exhibit the other behavlor the addh ancl ‘addl
operations allow new array elements to be created dynamlcally (Records and arrays will be
described in more detail in a moment) Abstract data types may display either ‘or both
component creation behaviors, they may always possess some components but create (and
possibly destroy) other components dynamicall’y
Reading components is already taken care of as well Since all ob jects having:
'components are built from records and arrays, and records and arrays have operatrons to read
their components, any type can provide operations to read any components it may have of
course a type imay not make all components availabie externally and may return information
derived from the components rather than the components themselves However. reading
~ componetits. is always done by returmng ob jects This is unfortunate. because returned objects
are always copies - always new objects (Remember tltat return variables must always be
~assigned to) Thus, returning does not allow components ol‘ ob pcts to be mutated only copies of
the components may be manipulated
It may seem that storing a mutated copy baclt into a data structure is equrvalent to
mutating a component of the data structure, and this is ol‘ten true However, many data
structures do not allow cornponents to be replaced at w1ll in this fashton As an example
consider queues; perhaps we can observe the member at the front of the queue. but we can only
_insert new members at the end of the: queue " An even better example Js. items that must be
mutated atomically rather than by separate reading then writing;"semaphores and other

synchronizing data types fall into this category. les .are sufficient for _observing

components but a special mechanism is needed to allow t;uttation of components.

In a previous section of this chapter we indicated that the operations of an abstract
data type are procedures. We now design a new kind of module, the selector, which is also
allowed as an operation of a type. Here is what a selector. dnes. A selector is_given an ob ject

from which to select a component and possibly some au ar;umnt.r to describe which

component is desired. The selector then proceeds to calculate whatever array.indexes, etc., are
required, and eventually executes a select statement. . The select statement indicates the
component ob ject to be made available for use. What is returned to the caller of a selector is
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notanewobpct.bntra&«zdumpmquwm ¢That is, an object

| "reference is returned) The selected W ‘may be used 22 2 var arguavent to a procedure,
“and can thereby be mutated. However, what is m‘p_mm and hence may not be
fasslgncd to; only vartabhsmaybeldgﬂdtn o “
smenmmmmmwmmoapamqam“mm
| agaimt any danguug references. quxg a m M llhu ope: of its local variables

rather than a WdM&pﬂka&Mmerﬂeha dangling

reference when the desmptm is murmﬂ. Wc W&hlg iring_that. selectors never
select any of their lacael mhbm (w components. thereof). Nuia thet procedure returns
cannot create dangling refm of Mxm A M -ma rew object in its

| ’ return vanables procedum can nwer store wpct mfm in m m ,

i' There iﬂ two mm peinu o m regarding mjt First, comporrents
 selected from var's shwid be var, ie, muqbb a«d " mpones of const’s should be const.
Therefore, a selector dou rmt desm wbether bebpct w*&fmb const or var; that
 property is automatically inherited: from the nmuag *’.’F’- Fusthermore, 2 selector may not
mutate the ob ject being sefected fmm; hmmwpnkwusm inside the selector
for checkmg purposes. The nmd potm is that a m M not mutate any ‘auxiliary

- argumem Therefoma%lawxmatywmm»hm

Theformofanfcctwdcﬂnmmis

nam - szlector@uml ’”‘l' mz typz, s m', m) dqgflm nameq: typey:
, :tatemcﬁts '
eném ,

The name,; fort>0 are themmu‘y&tﬁm wh&nd’uusﬂu&fm The ‘of
type part m‘mﬂmwamﬂmu&em &Mwﬁﬂiﬁhhmy legal
“in a selector) takes this forii :

sekctwpressm
?Mapmsmummawm«m&wymdmm .
S ltrsmmumaumemsmoii‘m&mmmaua |
* sefector. We could use

selector_nametobject to select from, auxiliary am ats)
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to be hke procedure invocation, but we feel it is better to wrlte |

‘ object.selector_namelauxiliary arguments) |

to be anatogous to records “The latter form alse Kas the advantage of making the object being

selected from stand out.’ If the selector takes’ m auxmary arg\bmu. the parentheses may be

omitted, leaving ’ ' " ‘ : ‘ -
object.selector_name |

which is just Hke a record component sefection.

| ~ In many cases computing a- selection’ can ‘be expcnslve Therefore. we provide a

mechatyism for saving a sefection; it is the w&wumm . S |

with class name == expdo e

statements

end with;
where class is const or var. If the class is.var, then the selection must be from a var. The
name - stands ‘for the selected ohject withinithe bodj of the with ‘statement, and is treated
according to the declared class. A scope is used bechiise éxira checking must ‘be done for safety.
To prevent mutations ‘of the containing object fremdutmymg the selected object, all
arguments to invocations ln the body of th& with' WM are ch&dne& for overlap ‘with the
selection. ’ - EEEETEE

For example, say (bourxded) quetm are imphnmud as’artays. If the front member of
a queue is Held in a saved selection, then the quedt may not be iodifiéd until the scope of the
with statement is exited. This is because an element of an array (the front member) overlaps
with the array itself (the queue). The checking to prevent this aliasing is done using the
normal aliasing detection techniques. (The checking may be dlff icult to ‘accomplish” at
compile-time, however) The with statement s mrllhr t6 the bikd-operation i Euclid.

Now that we have described the essential mtare of’ sélectors and selection, let us discuss
where selectors are appropriate and where theyarénot. “Selectors are "to' be used to mutate
ob jects stored in a sumxmding data strm:turé without dlsmrblng that siructure. The types
~ having selectors will tmmly bé nes that store data fterhs and’ nhtiomhlps between them, but
do not manipulate the data items dlrectly. Good exmplu are Jists, stacks, queues, trees, graphs,
etc. Selectors should definitely:not be used to. sccess: components:that carmot or should not be




mutated. Furthermore, selectors should not be used swerely t make access mare efficient, for
this can lead to (effectively) expusing. the representation amd thuy. Yinit the range of
"impiemematuons of a data type. For example, consider the functions ML imag, abs, and arg on
complex numbers. Implementing any of these functions as a selector forces that component of
compléx niumt‘;ers to be represented explicitly in the repressntation. Hence, selectors threaten
the uniform reference principle [Geschke’5, Ross69]. Thus, the specifier of a type must use

caution when deciding whether particutar operations should be procedures er selectors.
We now describe reconds and areays. It is important to understand their semantics, for

they are the principal types used in defining Wﬁ m data tmu. A record

~-type has named fields, each specifying a type. For example.
recordla: int,

b: bool,
c ralph]
Each fleld name defmes a seiecwr with the 8peciﬂ!d mme;the tmof ehe yelestor is
seltype () of type of field from record type . :
Record components may be changed. The opemion fpmld.m i: uad to updme the
named field of the record. The type of put.ﬁddﬁ.mm is
proctype (var record_type, const field_type);
- The.new object is constructed using the Jield. typeScopy muon. ‘whith must exist for
JSield_type to be usable in a record. For omvenwme, record put_ope m mn a sugar. one
may write ‘ - |
expy ﬁald,_nam = expz, |
‘ mstead of
- record._ typeSput_ﬁeld..name (expy, expp);
- Notice that record put operations are "magical” atomic mutating sztom. Records also have
‘copy and equal operations; records are more fully described in Ap e _{h; H. :
The only, other operation on reoords 13 creation. Thgs mnot be written out without
giving an order to the ﬂem We feel tt;ts mwm of the figids as being . umrdered, and

1. Selectors do save a copy eperation over procedures returning an object.
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) the user may not hwoke the record crute opemlon dlractly lnsmd thefe is a speclal form

calied a record constructor wlvlcﬁ allows cmtlon of%%o?& ob jects ln an order—lndependem way.
A record constmctor takes this form: ’
. record_typcslﬁcld_uaml: expp,
' field_namey: exp,,

ﬂald namn cxpn

{x- b ak . . (O

... The field names must all be. pmnp;exml; MMM m e ms ammnmd in

the order listed.’ 1 Suequ ields may be mwm (copies-of) MW chpuby writing:.
' Jield_ nama,ﬂcld..um g, XP g e e :
The record construetor invokes tbagmm sopy gpmms for each expmnea -which is a
variable, and for each expression
An array object is a sequence of obpcu. of a sln‘le type indexed sequenmlly The
sequence may be empty, and can grow and shrink in size dynamically. Amys have a selector to
index them; it is called fetch, but there is a shorthand for indéking lrrays “Ian element with
index- ¢ currently exlsts in the. amy e, then a(!) selecu tlm elameng. q dou thc unsugared form
afetch (. ‘ - e
' An array vartablc an hold only certaln nmy ob)ect: af its type More sgeclrlcally.
each array varfable has associated wlth it m lnterval of the lntegers. and only arrays whose
indexes are all in that interval may be saorod ln tl:e array | varhblg. ch emphaslze that the

indexes of an array ob ject and those allowe;l l‘or an array mlable are both sets of consecutive

; 'integers) The allowed indexes for an array varlqyle are, set wb?'- LI ls declared _and_never

1HEED. 4

change thereal‘ter Thus. an array varlable of type m%lfoq;lpw,hlgh] can be. asslgnad any
array ob ject whose elements are foo’s, and whose indexes are al g}egtgrthanm equal to low
and less than or equal to Aigh. The type of the array objac_t is ;gr;x[fog) {This difference in
the number of parameters and the ' notation \plll beg xplained n the gh;g;gr on farameters)
~There are operatlom on_ arrays that qu Addlng!md yemoving elements from the
hugh or low end (l e, growing or shrlnklng tlze arTpy one elemmg at a time at elthpr end) (addh

1. For ASBAL to be well-defined, the order of evaluauon is llways spedﬁed Unless explicltly
memioned thmt order {s left vooright. . . ol il
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and add)), trimming to a particuhr range of hdm (trim), guerying the size (:tze) low index
| Utow), and high mdex ﬁig&) shifting the dmts (ux,.lew) and replaciag the elements (store).
This last operation store, has a mgar smﬁm fn th:t for tbc rwwd m m& We may

- write

exp,[expzl - exp 3
in place of

array_type$store (exp;, expz. exps);
‘Both forms mean “replace‘the component ‘st intiéx nusmber upz in the array cxp, with a copy
of exp;". See the appendix for a complete Histiof smymmdms v

Arrays were designed in this (somewhat unusus® way to.be convenient for use as
 representations ‘of abstract data- typ!s and to'prevent accels to mmm 'However,

they are a bit more expens

in time.
2.5.1. Examples of Selectors

Su}p'pose' we had an abstract type usbcmm_mmy ‘which associates pairs of integers
We represent an associative memory as an array d‘ mmmds; each fmord has two components,
" one for each integer of the pair 'l"hm the repm mle d m amnnmry

cluster is

array(reeord{ﬂrst, second: int}; 1, 100]
: assuming a maximum of 100 elements is allowed. The We memury is to have an
“operation tpdate wmch wifl cluage the m m ef; pﬂf hnd m the ﬁrst element.
v pdale will have in it a statement ﬁﬁe R

a[index] second ‘= Ew;
which is a sugared form of

© RT$put_second(afetchlindex), new);
~ where RT is’ recor&ﬁrst. second: int]' ‘Thus, we have shovm howa nhcmr may be used.
" Ldusnwmﬂd«maa@kﬁaqpemnmm a bank account

record file. It is convenient to design the structure uud to W ﬂw Mi?idaaimgoum records
of a bank independent of destgnlng the records m“’* Of course the two :designs
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interface in the area of the keys used to mrch for the records, but except for the keys (and the
size of the records) no propertles ‘of the records affect. the deelgn of the access structure. -
Likewise, the access structure has no real effect on the properties of the records. Letus suppose
the file of al account rewrds is a (rather large) objact of type acwuwue, and that the type of
the  individual -Pecords 5 acoment.revord; “Since m mdr are mutable. we. deslgﬂ
acconnt._file with a sefector of type ‘

- seltype (key.type) of account_record from account_file ,
This allows us 1o realize the separation of accels from:‘tse: > This sepiration contributes to
abstraction by reducing dependencies among different types. In the ubsence of selectors, we
would be forced to implement: ait update actiohs o itcount records as operations on account
files,”and present the approprme key every time. Furfhermore, the access' would have to be
recomputed -every time. Thus not only sre mere tipe’ ‘dependericies created (by maklng all
record updates go through file operatioris), but perfurmance fs reduced as well. (Remember.
though, that perfmnee arguments aiotre do'not- piﬂ?yming lelector) 3

On the other hand, if a selector is used to aeeustlte‘reoord:. then a restriction is being
placed on every’ implemientation, namely that ccotint ‘records Tnast be represented explicitly in
account files, and that it must be poaibteforpr&gnm w eﬁiu mnt records dlrectly once
the records have been selected - | '

’2.5.2. Summa_ry.

. We have presented a hew module. the sclcctor, destgned speclf tcally for ASBAL'
ob ject interpretation semantics Selectors allow components of ob jecu to be selected dynamlcally
and passed to procedures to be mutated A type has :thel ultlmate control Jover the components
of its ob jects, and need not allow them to be selected Fnrthermore, only the ob ject can change
the tdenuty of its components. since selected componenu mey not be asslgned to. (Selectlons
produce ob Jects ot variables) Records and emys were Introduad as prime exarnples of types

1. Notice that selectors do not nlu my olf &hepmhhnu mllted wlth accessing - obpcts on
external storage; ASBAL assumes all objects exist in. &Munlﬁormly acoessible address

space.
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Aprov:dmg selectors. We afgued that m mmﬂmhhm ;pamlgly SO as
to avoid havmg typesdcpmd mmm.wmw ' '

: 2.6. Tinplementation

Now we came to the question of how to implement sl of these: eatures.] First, we are :‘
going to allow recursive (and mutually recursive) procedures, 30 & atsok of ;provedure activation
- records is required. . These frames (as we slto call the activation pecosds) aee very much like

. those used to implement hw Mm Algol.and PL/1. ‘Encls frame contains the: storage
far the (local) variables and tmpmsf mm -antivation 4o which 4t corresponds.
Since a finite (and umaﬂ;;mm number.of variphies ave “Mﬁpm it is possible to
give each variable a fixed offset from the beginning ﬂmm wivich can be very efficient
on many. machines. As for arguments and retumn yagi Mﬂ MM by address.
The slots for these addreues,m 2l be at fixed mwmm the start of
the frame, since the argument addresses may be. pnt ondhe. Jop of -tive -stack by the:calling
procedure before the frame is.created.

Using fixed offsets in this way fails only for joca) vm and-temporaries whose

dile-time.. (However, descriptors. M 5" peinters to those-parts
of a variable that are aliocated at run-time, can stif be norid. . weffeets- From the start of
the frame) Most types have a ﬁxed size, and we will not ﬂm the mechapisms for using
types of varying size uutilthcchapm on purameters. On the other hand, ‘we present the
implementation now since it af fects other parts of the dmga of A&BAL

Most cases can behmbd by mmmw mtﬂf norage on the
top of the stack as soon as the. size is kmum (Thk WBW%mgh a pointer at a
fixed offset in the frume) Thue are on!y mmw tktsdusnot work perfectly:
dedaratmns wuth inithlizm tnd Wiu in the aidﬂe &‘ m As we will see
later, the size of these varhbuc my nut be kmn umﬂ jmt Man :he proedure which is to

Seivp

size is not known .al. co

1. We assume the reader is f:trly familiar with implementation uduﬁqw for stack based
programming fanguages; so-we mmm MMWMW!& do not present
' specmmmsarm ;
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initialize them is invo'ked Unfortunately tMs ls afxer a“ tfle arguments to the invocation have
been computed if any of those arguments are thameives temporaries, then allocating the space
for the return variablgs at the top. of the stack: mnumem when the temporary is
freed. Let us prcsent a simple example to demo@tnﬁ the cmtlon of these holes in the stack:

var x foo := p (qly), r(z))
where the size of the Soo is not known until just before p is calied

(D The stack starts asin part (a) of Figure 4 wiﬂrrmd”’z Mthe current stack frame.

(2) A temporary variable 7_g is allocated, ard ¢ h*etﬁed'ﬂb)

(3) Another temporary f_r is allocated and 7 is ctM’ffc)

4 Space for x is aHocated and p is called (1d).

(5} The stack is left as in part (e} of Figure |, with a. hoie begween x and the rest of the
variables,

Thus we see that the simple scheme will leave holes. m ttmmck “There are three solutions to
this problem The first is to ignare it; this is not agood ldu for more and more holes could
accumulate {eg., in recursive calls) and cause considerable waste of storage. Still, it is not clear
just how. much storage:is wasted, and it may not payt&yrgyentthis particular waste. The
second solution is to’ bit-copy the new variable- after itls crgted.movlng it to the beginning of
the hole, and thus eliminate the hole. This need nqtbgwi@gff ldgm in terms of code because

many machines have a suitable block transfer instructioen; he

considerable processor time and memory cycles. .

er, the copying might use up

The third solution is to use two stacks rather than one. '!"he basic idea is to allocate
temporary variables on one or the other of the two stacks 50 that neither ends up With holes.
Let us call the stack with the usual frames and focal. mﬂn sariable stack, and the other
one the auxiliary stack! It is clear that in ordetito Mup,mm_m holes on the variable stack
the temporaries used for a call must be on the auxillary stack. A symymetric argument leads to

1. The auxiliary stack will have to be set up into muudtbut its frame pointers and
stack pointer can be saved in the variable stack. Thus all housekeedping information is kept in
the variable stack with the auxiliary stack used only for storing temporary variables. -
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(a)

(b)

(c)

(d)

(e)

hole {

Figure 1. Scenario of

Wmm

Emaf worx: &n-pw M

initial Stack |
(stack grows downward )

Stack during call of q

Stack during call of r

Stack during call of p

Final Stack
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the converse fact: that to avoid holes on the amtmary stack nmporarles needed during the
computation of intermediate temporary values must be put on the variable stack. What
happens is that we alternate between the stacks according to the nesting depth of a particular
temporary in an expression. Let us examine another scenario to illustrate this scheme. w¢' will
go thfough'the execution of | |
var a: fo0 = p ( q(r0), s(ON, uvO) );

The evaluation is strictly left to right. Figure 2 shows a sequence of relevant snapshots of the
stacks. It is not at all hard to figure out which temporaries should be put on which stack if one
works backwards from the desired f imi conf iguration Note alse that the use of the two stacks
is purely for the evaluation of expresslons within a procedure. Any procedure that is called
~during the expressnon evaluation can put its local variables and temporaries on top of either

stack so long as it cuts both stacks back to theh' previous state befoee. xetuxning Notice also .

that both ‘the one-stack and two—stack schemet handie multiple returns easily. by allocating
" more than one variable at once. '

It is not too hard to see how to implement two stacks on a computer- one starts at fow
_addresscs and grows upward, and the. othu M%high addresses and grows down. There is
' some time and space overhead involved In keeplng two stack pointers and frame pointers
instead of one each, but there are no severe technical problems. So, we have seen that two

stacks are better than on,e.1
2.6.1. Variables

_In either scheme (one stack or two stacks), a variabk is a contiguous block of storage,
at least cuncepmaﬂy “For variables whou size is known, storage is allocated at fixed off sets
from the beginning of the frame (in the variable stack). For.those whose size is not known,

1. Implementations. of Algol 68 have many of the same difficulties found in ASBAL. (See
- [Branquart70] for a description of the problems and their solution) For example, some space
reserved by loc generators in Algol 68 is more easily put in the heap than on the stack. It is
possible to put all space from loc generators in the stack, but in ASBAL we must resort to a
heap, second stack, or copying the space. However, ASBAL does have an advantage over Algol
in that it does not need a disphy. since it has no local procedures. .
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(a)

(b)

(e)

(d)

(e)

(t)

(g)

{h)

(i)

Figure 2. Scena
Execution of ‘var a: foo := pl g{r0, stOD, w(v() )}
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- space is reserved at a fixed offset for whatever information is necessary once the variable is ‘
created. This can all the' variabie fixed size parts. and sioks for the sizes and addresses of its
variable size parts, which are filled in when the vatuble is aﬁomsed The figure at the end of
~ this section shows a possible layout for stack frames.

2.6.2. Selections

. ]

A selection can be implemented as a pointer to (or descriptor of) the ob ject it denotes.
Slots for. these pointers are easily tlbaud uwmmmwm have tﬂxed size and
are of finite number. Even better, the number of selections is apparent from the text of the
program. Thus, allocation for selections is no-problem.
| Checking that selectors do ot select o local itein, etc:;is. more challenging. A compiler
can perform the. cheeks by,;neiysis of .the expression given:.in: the select statement of the
seiector. The expression must be the-object to select from;-or. (miote usually). a: selection. from
that ob ject. The other checks {(eg., th_atftheauuiihmw -are not mutated):are handled
by other.checking mechanisms: with no- spacial qasing:: Savedselestions tin the.with seatement)
present no more prablems shmuguhrmmdnwwme ;ame way.

-2.6.3. Nested hloeks

Instead of using a full frame for nesmd biocks, itis probably usiest to append their
fixed size space to that of the enclosing biocir.s, making omhrge fixed size biock Of . course
blocks at the same nesting depth can use the storage in different ways ""‘9";‘3’?1“’.9’ of . them
can be active at once. The part of their storage that Is unknown in size can be managed in
stack f.ashion:;allps:ated beyond mewfmthemm, and:cut back when the nested
block is exited. These are well known techniques.- . - o SRR

2.6.4. Checking if Variables are Initialized

Now we describe th“e"cﬁ&ks necessary for insuiing ‘variables are always. 'iniitia‘l‘ized
before use. First, let us see how much a compiler £an check It is clear that truly sophlsticated
checking might invotve complicated analysis of ‘the cont

¥ flow of a’ program However, we



"%

) “would like to keep the amalysis ® a mmm mve. we o 1 qllcd “structured
v programmlng com;ol-fbw mwmnu grelt!] W tbe  analpsls, Thc cﬂ&kal feamre of
" such statements Is thlt the ngmber of pltlw thmq@l ] W %W »ma m&bk size.
The compiler can keep & record of which variabley are sssigned 0 in every bigch. From this it
is fairly easy to combine the information, separating mmmm '

(1) those dcﬁfmdy initialized at every use;

(2) these defimitely Wninitinlioed atsomewse, = ¢

(9 and mmmummmmmmm rest.
~ The first class is all right; the second indictes an: incserect pragran:and the ixst ebunquires
~* the insertion of run-time checks. For saeh vaviibtewf the st sleny; the xompilyr stlocates one
 bit of memory in-the Tun-time stack frame 4 b rused 2 i indioatr o Whéther tHat vatiable
- has been_ initialised. - Thete bits-all siust n the no-sies. m«ﬁ-m plates on the
: questiombk mmmmuwn«tuunmwﬂmn Even if a
variable is. used and sssighed 0 8 MMM“”W&WM@] i few.
Thls, along with the fact that the: ‘oede 45 short one: Uz Twh- MNARIions On mest fixchines),
means that there is little rm-ume overhesd. We feel that the overhead is well worth it,
particularly when debugging programs. Notics that this same scheme checks for initialization

of return variabte: all.we need do is consider those vmulp © Mart. uninitiplized, and view
the return’ statemcnt na ‘use of tﬂ of the return VM

"’26 5. Anmng

The checks. Wuwmlnw mw ona simple
: inducttve principle: if there is no aliasing when mem ‘e, nowe of its

arguments or return variables overlap), and all local variabies of ' m dglsjum (none of them
overlap) then we can guarantee that $ introduces no sliasing in the mmuom it makes. The
compﬂer does this by mklng sure that mm MWM i the calls p

makes

‘Tolmpmntalhsm(dm“modamwdwmchmmuor
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variables overlap, and which do'not. The Euchid report [Lampson'm gives a very detailed
definition of which variables overlap in that language.: We will be content ‘with a less formal,
more intuitive descriptlon First, it is obvious that a variable overlaps with itself. It is also
clear that a record overlaps with any of its components, and an array with any of its elements.
This carries down through all fevels, so an array of reoorgg overlaps with any component of
any of its element records. On the other hand, if two vauabies do not overlap, such as two
local variables with different names, then none of -their whcomponents overlap either. When
two variables overlap, one must contain the other; hence, when two variables do not overlap.
they are completely disjoint.

How do we extend aliasing detection to ”general sggectlons? First of all, any selection
comes from a particular objact in a particular. vgrubk We need only check selections from the
same object. An ob ject and any selection from it are considered to overlap Selections from the
same ob ject generally requtre a run-time chi!ck ‘This’ eheck ascemlns whether the two
selections overlap physically in storage The mrtfhg nddrus for each selection is always
available at ropftime, but ‘tbhemlerrg“t!rof uchmustbepmvlded in additlon to the starting

addresses . |
| Ina later chapter we will extend aliasing preventtoq to cover.the use of pointers. Our’
'ahasmg detection methodsm based on those of mtmmm

2.6.6. Summary

ASBAL requires one stack to be maintained by its run-time system (but may do better
with two). The stack frame for a procedure activation contains the local variables references to
the arguments and result variables, and housekeeping information (return address, old frame
pbinter, etc). For most variables, fixed -offsets into the current frame can b_e used. Some
variables require a certain amount of descriptive information (descriptors or dope vectors),
mainly those whose size is not known at compile-time. Figure 3 shows a possible layout for
stack frames. . ‘

Argument passing is by reference, i, the addressu (or descrlptors) of arguments are
passed to a procedure when it is invoked. Returned resulu are simply extra argument
variables; the addresses of the variables are passed. Most of the checking for aliasing and



 Start of fmm a

i LAk

Dynam:c Pcrr't of Local Vﬂﬂab!es

.
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- uninirialized variables Is handled easily. at :ompile;-tm and the run-time checks do not
amount to much code. We conclude that our scheme is aborlt as:e_fflcient as possible given the
level of saf ety we require and the future;,we \un; ln MW

2.7. Programming Example

In this section -we will present a pmgnmn)j;g .example to help illustrate the
fundamental ideas introduced - in:this chapter. ‘“The example 1§ 2’ type definition, but since
clusters (the form of type definitions) have Mummm definitions inside them, all
three module types will be-illustrated. Leterwe Wit see that ‘using ' more advanced features
allows us to write better definitions for the tape we now: ppesent. but at this .point we are
_ restricted to the most basic of fextures. o R
There are. two essential parts to n type definition in. ASBAL. the rep (representation)

type and definitions for the operations As in CLU, we group these together in a smgle

module called the cluster. The syntactic form is: AURE

type name = cluster is nams_qf_opcramu:..cxporud

. ep =.rep_type; :
operation_name = proc ... ;.

~operation_name = selector ... ;
end typcinanrt.' B

The procedures and selectors may be mixed. There eup ,,,,may be lntemal procedures and
selectors; an internal opention is one that can be called?.lﬂy frbm within the type definition.
‘Internal operations are d!stlnguished by the fact that tbey do mt appear in the list of exported

operations.
2.7.1. Bounded Queues of Integers

In this first example, the task is to define and implement a new data type, a bounded
queue of integers. The operatiom'of this type and their functionality are listed below.



create: proctype () returns (queue)
.o -=(cmmammyqum’

insert: proctype (var queue, const int) .
' (invests ‘thye-trteger at the-end or ‘the quene)’

remove:  proctype (var queue) returns (int)
(removes the front member of the queue)

is_empty: proctype tconst queue) returns (ool
: (mumuuetf.udm&&&eiwm :

is_full proctype(const queus) returns (booh
(returns teve if and myamwm

size: ~ proctype (const quene) returns (int)
(returns the number of members in she queue:

'2;7.2. The R-epm«thn |

It is easy to decide what representation to use fur this mn. M am of 100 integers
~ will hold the members of the queue, and will be managed in ciralar buffer fashion. One
index will be maintained: the position of the first. mm‘d' the queve. Thcmemben will be
stored in order of increasing indexes in the array, moduto 100. Th; size will be kept explidtly
Thus our type def inition will begin:

© queue = cluster is create, insert, remove, is_emp&y Mnﬂ. ltne-
vep = record [first:int, :
size: int,
q atk
at = array [int; 0, 99];

end queus;
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273 The ’Op‘erations‘_

We will write the create W‘“ #irst. - mm the ﬂn‘tmt of*ehe rep to be

zero, the size to be zero, and fill the whelp nmg m;em. f‘rmm i flgw for efficiency;

it does not matter what it is filled with in this case) The mmm is presented
} 3 £S5

below: : ' . ‘ Rt e

crute = proc () returns (q cvt)
- Qe agp {fiest O poe sl
silg- 0 '
&!Brill w0, 0 m}
om&tm SRR AR SRR B

The notation cvt (from convm) indlcates a v:rhbk or &mﬁm whose type is viewed as the
abstract type (ie, the type being ' def wf’ siside the mo madule, and the’ np type inside. Of
course it is only allowed in a -module\ w%&m thgtgtype by context.
The expression ar$fuliilow,num denotes an array obpa. AR ol wpoe: m are copies of {
(made by using rSeopy), for all indexes in the nnge?ci" mb-,u@-j chisive
is not negative. (Camng at$fill with a negative third argument is mm.m what hlppem

. s
A T

, '{& 2‘5

- will be explained in tbe.next :ha?m)m‘gm,m iy o, returm .

abow.», for convemence. the end statement of a procedure does an tmplkn return.
Let us mveontosm.!s_mm.andw: -

size = proc (const q: cvt) retarns (s. lnt)
-8 = qsize; DI 2
nd size; . '

L TR

is empty = proc (colm q cvt) retlnu (e: bool)
e = (q size = 0);

end is_empty.

is_full - proc (const q cvt) retuﬂu {: lnol)
f := (q.size = 100);
. end is_full;
‘Our integers and booleans are like those of any other language; details are in the appendix on-
data types. The use of =’ in g.size = 0 actuaily indicates a call of ‘iatSequal (gsize, 0. This
use of syntactic sugar allows us to extend symbols such as =', *+', ™', °s’, /', etc., to abstract types.
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Full informauonon!henmnmmh"ﬁmhm'mw_f, o
Now let us maﬁmm

mm~m4m¢mmmmma
if gsize = 00-them error end if;
var index: nt :-W'bqum
qalindex] = val, -
q.size = qsize + §;
end insert;

The *//° is a sugar for typeSmod, that is, the m tor rerokincher) qperation of the. type.
Notice the use of supmd array and record m 3 operations. The wnext
chapter will present a mechanism for signalling and: mm now -we will

write error to indiate ﬁnt awhn chezbs:hm m

remove-pm(urs,cm MMM;
if q.size -émmwi'” ”
- member e qafq firnk
girst ;= h.ﬁm»ﬂﬁm
qstte -qtﬂe 1 g .

>Fin'm m are ﬁx&m aﬂ‘ ﬁ u‘e Q’muﬂlﬂ (T‘I e ~
typeSnot (expr)).” . ‘

varq queue -queuqtcmce()
if ~ queueSis_full (g qu(q.fwuiﬂ. ,,
if ~ queuetis_aupty wmmamma—nﬁ
var s int -qumﬁa(q)' | iy

This data type(quwe)mhmwwwmm mmmmm;
exampksdnhmrdﬂmmmm o a ‘




53

28, Conolusions

| " This chapter_has dealt with the.fundamenta) :semantics of ASBAL, a_language
' intended to preserve as. mnyofmwmm# CLLU} as is ‘posible under the
) and implementetien. : Wnumd with: the: notions of
varlables and ob jects. We then. wept into. ﬂlm and the; symtax. for: procedure call and
return. - Aliasing was discussed, and- rules formed to prevent: s mm. A-satisfactory
solution to the problem of uninitialized variables was presented, and an lmplementation
outlined. Next, the mechanism of assignment was explained, followed by a discussion of
component selection.  After discumng lmplemmtltlon we. prgmmd an example to illustrate
these conccpts The groundwork “has beanihld fof g, more advanced features of
'ASBAL. The next chapm wm mmam nvo m fem;m: m lpd exception handling.

. constraint of a ;tack-ortented semant




8. 'Twn Wm

In this chapter we extend ASBAL by the addition of two new futum = iterators and
exception handiing: - Berators iroduce 4 new Kind"of déraction, and are implemented by a
new kind of modue. mmmmmmmmmwmmm
modutes; it chisnges them frons kit functsbéit'si Yetal iy by allowing them to specify and
deat with exceptionat cases Weﬁﬁwa&fmukkwctﬂ and then modlfy it as
neeessary for ASBAL: A

3.1 lteratou

| Amaprgmldawnmmmmuwmnm?ngmmmerawayfrom

- details and into Ming tt a high oomepna! m Pmedm pw:?vm functional (or
procedural absiraction, and clusters provide data sbstraction. Ancther useful kind of
abstraction has been identified, the control abstraction [Liskov"?, WMJ The only sort of
,cmtm!:bﬁmﬁmnwﬁdfakamﬂuﬂuqlm«ﬂdauam based on the
itcratorsofCLU Akmpbuthmhukptm

o genemionafthenqumccd‘mhmswhmm. :
(2) operating on the data, and
(3) testing for completion

 Iterators proyide'.§ modular way of generating the sequence of ob jects to beoperued on. In
CLU, an iterator generates a sequence of objects that are pamed to the body of a loop. The
crucial point is that an fterator generates MW amm&r one ob ject at a
time. This will be easier to understand by following through an example.

Let us say we have an abstract type Mnary free. Furt!wwapmethatmnyof our
vprogramsthatusebinary.tmtneadmexamhcnﬂmmwdauuhkftmﬂghtorder If
.wgareglvenuperuﬂw»fe&hthekftmdﬁgﬂ%damwgqnhokvat the Ieave‘s,'
in the desired order by keeping a stack of trees. -A Joop to do this might look lke (in CLU)




t: tree := tree of interest;
st:. treestack trm::kscmn ;
whilemo&do v s e
iftisa leaf o
then
loapboa‘y
if treuuckSempty (st)
then more := false;
else t -treesmk$pop (st);
end .
else
mbﬂm-uqm %ot e
Cend;

"?

bet, the 3 mgmd whk,h have not been

Thus, the stack of trees is used to e ‘

T iy EX

generated. Wrmng this code out for every foop s memm ralies gn; many
details. If the type unary_tm offered an iterator called leaves, we could write the above loop
. this way: - A & ' o

forrl: leaf in binary_tresfleaves (O-de - =
. loopbody

- The variable  is called a loop variable, and is local to the {q; statement.
The for loop is more to the point. ngd jepends on s deail. tm,it!gu the while hop
In short, iterators provide better abmethn Iterators can alo be.more efficient than loops
_‘written "out, because they can be opg;am of a uster wwtm,\mve acgesy. to the

; ¥3 L 4‘!

- representation of ob jects of the t’pe The dqmthn of the gerator leages rpight look like this:

R S Rt B SR RS . P :

Tty
=AY




leaves = iter (b: bimry.ﬁw mm
if bis aleaf
tien yieM (b);
du
ym n;
end,
for & leaf in mnmmmgw o
yield (D,
end;
end;
end leaves;

The recursive fterator makes our tatent MM and ﬂnm 2 W o the genmtion
algorithm that was obscured mmmn Msummmm veman _
is less efficient than the terative vm b it i not W
upon implementation details, :

S mmtmﬁmmmmNm mmwmmomdm
: uﬂhg“&n fmmfhﬂéw% et EE :

(1) the for bup calls thl mwr o
~ (2) the iterator yields ubjlcu mmmmhw :
(9 the loop body is executed mmwmmbmm yielded by the
. iterator; : ‘
(4 the erator 1s resionsd, Wummwm Mn.or e
"5 the terator returis, termd ﬁnhup

Nmrhat:ﬁchepﬁodyﬁeﬂumdmp«yﬁﬁ,uﬂumb%mmmly Mso
L the itemur ¥ dlways resumed ]mtamr”i“aiumﬂ m;nhaaw'ambm intact.
Thus iterators are a form of corowtine. mmmmmWMem
run, but iterators are sufficlemtly restricted that they cun be implemented with a single stack.

(Iterators run in a single stack because of MMM of resuming they use) Let us
detail the transformutions mede to the stuck for ench of the basic sctions Nsted above.
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() - Iterator call -~ the ugumenu are passed-and & new. frameds mvpfér“the iterator, just

as inaprocedurecall Lo S b

(2) Yield - the loop variables, which are created at this polm uu!eu they are of fixed size,

- are set to the ob jects being yielded, the: tterator’s resusiie address ‘and frame polmer are
. pushed-en the smek, mdmemwmm:'m ‘the environiment reet to
that of the. iterator's-calier; (netice that: mum¢M ‘even tvmgh yneadmg is

semantically the same as resraing); - Lty e

(3) Loop body —the joop bady execites: normally; paiing: my temporary -inforiiation on

the top of the stack, beyond MMMM ‘

€)) Resume - the stack is popped back dogn to the itemaors I;ame and execution of the

iterator begins agaln at fts resume addms, wtth its mvtrenmem restored;

(5) lterator return - the iterator retursis to its caller executlon oontlnues after the for Ioop
';Thus, a yield is a kind of aand a resume s a kind of mm. both are a spechl case of
coroutine resumption. - gor o |

As the example demonstrates, iterators may contain Por Joops, even ones that call the
iterator recursively. This is useful for w&lldng5 reamlvcd& !mtetﬁres. *Although we did not
show it, it should be clear that for loqgs cal}be ngsug wi&h m Cﬂff lr.utty '

Another feature we did not mention is that a for loop can be tet:mlnated in other ways
than by the iterator returning. The Ioop body can exewte a speoigi stttement called break,
which terminates both the body and the iterator, continuing execution after the for loop. The
'~ body may also execute a return statement, which terminates the body. the iterator, and the
routine with the for loop, all at once.

$.1.1L ,lmplemenging Iterators for ASBAL

“The description above hai been of lterlm (" they appear in CLU here we will see
what Form mrators take in ASBAL. T-‘lm of aﬁ; our cafl mechanlsm can t:e trlylally extended
~ to include calling itefators. Tterator returis are ‘abio trlvul, being the umeiu procedure returns
Yielding is a little more complicated. Semanuuﬂyﬁn yteid is ltke a retum However. it cannot

be implemented as a “return in ASBAL because returning in ASBAL always create new ob jects;




_ semntlcs of CLU wemmtohelpusdeﬂ;nmmf«m mmﬁ signed

“an iterator should Ma&mmnmdﬂq*ﬁ%nmmuof an
array. This suggess that a- yield mmmauwwm will be
evaluated to objects, as is done for selections:

yied (exph:
yidd (exh, czpz, ey cxﬁn
‘We also md a mmmm:mmmw«: mmwmm same form
_as procedure: headers), which defines the order of the lunsit-and: thelr ‘types. It Is useful for the
iterator to control whether the objects it MMW constar vav B the bp body so the -
. yicfd‘ clause includes that Mum Hmmmm
i = iter (const a, b: int: -ylelds Gconst lnt);

or ' '
i-iter(coﬁstf roo,mwm) ymwkmf.mm;

‘orevem. . ;
_l-iter(comtmt.M)thdtO

Now, let us consider the. formofﬂveforbepm Thegeaw&lfm myaswell follow
CLU's. Thcm@mmm”ummwummumw‘
variables; the dechration will mewhmmmpmmmmwmum'sa
var's, Here are some exampiles:

..~ for.const x: int in-.. do mm
. for var x,y: int in ... do ... end for;
fotmnx,rtnt nrz:tnﬂn...du nim- '
The formsofthebteal:mdnummmw ;
brul_:
and ‘ L - p

return
3.1.2. Summary

We introduced thenaimofanmunwmm mmm&m at the
aform

" “for iterator deﬂmmms and for loops in ASSAL . There will be_more m of _iterator
deﬂnmon and use at the md ef ehe chapm
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3.2. Exception Handling -

In our earlier dlscussiorr of procedures we omitted one Impomm aspect of procedural
abstractions. A procedute, iterator, or :ew m(ghl ndlfy m caffer of an unusual or error
condition. We unify the terms unusual and cmr in the term mcpuou (or exceptional), after
Goodenough [Goodenough75l. In this sectipn; ‘we' First- exuniine Ctv's exceptlon handling
mechamsml and then proceed to modify it for ASBAL, in much the same spirlt as we did with

. iterators in the previous actlan ’ - A

3.2.1, Exceﬁtion .‘Ha.ndlllurg in CLU

Any procedure or iterator (we say routine for short) in CLU may stgnal exceptional
- conditions to its caller: The CLU viewpoint on the meaning of such signals is this: a module
signals to indicate that it cannot perform its duty as a good abstraction. This might be due to
an inconsistent state of an ob ject. beuuse of bad ar;pmem;. becau
‘because of a system llmitatlon (eg., out of memory) Of course, it may less

unusual but predictable situatlon, such as end... .,(!lc The Mmgle# semantic view. of what a
procedure does when it sigmls an exception ts that it returns a different and distinguishable
kind of ob ject to its caller. Each exception the pror.edure mlg!;t want to signal can be given a
different name and a list of ob jecu can be sent along with .the signal to further describe the
, condltion - | '

. The procedures caller has the option of hgndling exceptions signalied by the
procedure. If the caller has a htndler for the exeepuon then it 13 executed, and. execution
continues after the statement to which the handler was attached. If the calier. does not have a
handler. for the exception then the alhr slgnab 2 spe l ew;eqmon called Jailure, sendlng
along the string ' o

. of a ‘hardware: failure, or

1. We note that this' upem of ewm begi subject fo change, so qo not consider what we say
here to be definitive about CLY. However, ﬁew’of the mecﬁam;m is expected to remain
the same. We trust that any further work with'A would adopt any lmpfovements made
by the designers of CLU. -




uncaught exception: nam_of..nrtgmd_mpm
Here is the format ef a statement ‘with a handler block m

statement,

“except
when mcﬂtm_mml man,.

wlm: cmpmu_wmz m«z,
whes exception_namey: handler,;
end;

A handler block handles only exceptions arising from invocations in the statement to which it
is attached. Handler blocks may be nested, since a m with a harvdier M is considered
to be a statement. If more than one handier is vakrm m m handkr blocks
are nested, the lnmrmmt onc taka pmdm L T
‘ ' This exceptton hmdﬂng mechtm hdﬁfmm Mﬁ l’l-/l :mms in-several

ways:

' (l) Handlers are tumlty Associated with M&d mmﬂlmlmngmubled by
someﬁmghkemnmm‘ ’ :
2 Execuﬁﬂgaﬂgmtmmmauy:ummmmmmnmymtbe
~© resumed.
_ @ Theemtrecaﬂstacktsmtmrcﬁedfarmmmmapmduremustbe

prepared tohaadk‘ alt stgnﬁﬂntmigﬂmfmmymnum dkecﬁyz

Having handlers natkalty usecmud m bbcks et m was dloun over dymmic
v¢mchan1msmnummmmwmmmm mrmt in all
‘cases. Signaliing ahvays ammemmmm“bMWMcmtmm
with CLU’ vkwpo&mthaaﬁgmlhdmmmybmwwfm as asked.

1. To help in debaggtng, if a procedure does not Mﬁaun, then it Wﬁmm, sending
the same string as it received, wawmw

2 It is safe not to handle an exception only whew .4 corein mmimmm
will rot ratiie that exception. For examp f‘mﬁMﬁnav - f;m’lﬂvmabbmt
whmdietheexapﬂon fwd&stﬁwh}m
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Thus a procedure is saying “I give up' when it signals.
Let us go through an example. Suppose we have a type queue with an operation
called next’ which returns the member at the front of the queue and removes it at the same
time. Clearly. queuesnm cannot work when applied to an empty queuel Lief us say queueSnext
can signal an exception empty. The dbflnltlon of glmutm mlght look like (in CLU)

next = proc (q: queue) returns (element) signals (empty);
if q is emm tlnen signal empty- end .

return (old Aead of q)
end next;

Thus, we see that a slgmls clause is rqmlnd ln the pmondm header. Hm are -some

examples of such clauses:

signals (foo, bar (int))
signals (l)letch‘ (int, int, bool))

“The first one states that the procedure:can sighul two ‘exceptions: foo, with no ab jects, and bar
with an integer. (Factoring is disallowed here because it leads to amblguny.l To send ob jects
- along with a signal, thcy are llsted as in the yleld mtemt:

stgnal bar (D,
slgnHoo(hb,uz X >5l

A call of . queueSnext and handling of the exception mpty mlght look llke thls (agaln in. CLU)
begin

X := queueSnext (q);

end;

except
: when foo: ..;

“when empty: ..;
when bar: .;
end;

1. We are not considerlng parallel processing situations whefe such a request mlght lung untll
another process puts an item into the queue
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Af a signal sendsobjem, mmmmnmwm»mmwml The
following example shows how this is dane. : ‘ :

Y .

begin
ot |
when oh_foo (x,y: int, z: beel: bedy of hendler;,
:nd; .

In CLU, the semanucsofmdmgobpmm&nwhﬂnmmm&mm ob jects.
tony d, and a handler

executed ystasifapmeedureinmmw Mmmdmagml is

PR

fth!taﬂdf tmmnmm«m!wm m@le:
.- in fterate (x) do ' o

end;
- exeept |
when itorate sigant (stufl: dondler; - -

If a signal statement is executed in the for hup bdy &euy ﬂn m lnd the routine
' containing the for loop are ferminated all.at once. mu umm the bodys
catching an exceptton as ln )
for .. do
statemnt
except
when oh_fox: ..;
‘end;

end;

If oh_foo is signatied by some routine invoked in statemen, M the hlufdhr Mil'be'exe_cuted :

1. Actually, the handier may chm to igm the. abpw muulr the Mom tudgr can
peruse the syntax in the appmdtx ,

. i5
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“and the execution of the body will continue. Assumlng we have shown all handlers. if ok_bar
s sngnalled by some routine called in statement, the body and the lterator will ' be exlted and a
more global handler executed (if there is one).

3.2.2. Exception Handling in ASBAL

To transfer CLU’s exception handllng features m ASBAL we need forms and
semantics for signals clauses of routlnes headers. slgnal statements, and handlers Signalling is
basically like. returning, but the items sent along with the slgnal will probably not be handled
the same way as’ return variables For one thing. lt !s wasteful lo allocate space for ob jects that
might only be signalied once in a while. Another polnt Is that these objects are always the
initial va’lues of some new variables and constants: those declared for the handler of the signal.
- The best approach to sendlng the ob jects: appearsto be to leave them on the top of the stack.
Unl‘ortunately the space at the top of tlle stack overlaps with the varlables of the

signalling ‘foutine. The ob Jects will have to be enmputed ﬂrst and then eopled to that area.
" Untike the case of retumlng. we will probably be wllllng to pay the prlce ol‘ copylng items
down onto the top of the caller’s l‘rame wlnn tlley are to be slgnalled slnce exceptions are
generally rare compared to returns. Thls leads us to 2 algnal statement lllte CLU s, except that
ours always creates new ob jects, just as our returns do. Tllus we write '
| signal foo (10, b(3); ‘

signal bar
The signals clause in procedure and iterator headers glves a llst of types Wlth no names, just
as in CLU: .'

signals (foo, bar (int, arraylbooil))

~ signals (bletch (int, int, booD)
. Once the calling routine has the signalled ob jects at the top of the stack, the transfer to the
handler is semantically a_jump, but objects are sent to plug into the handler’s varla‘bles The
handlers variable list will take the same lorm . tlsat of a m lveaders argument list
part. For example




except whewfow(comt & int, br boslvercckesh .. .,
. ;‘d;‘ et |
M the ewprauenr in the signal m (ﬁf’uy) wm hwm; oqucts in:

tempunrvarhbhdmwm g,
(2) a: run-nmu mmmmw ’

_ rouune; ' T
(3) it prweedt to adjtnt tm m W autm Jown . the al
o <unngmt—oqm» then

DRI TeL F S SR TN

n b@mmmm it'is not

Mﬁ* fist

o too pamful Tﬁe luf‘cmuuw M'M "*“Q‘ -
wmmx of wMeh ww’m'm the:

a0 ﬁ ki

L

ommwtyuwmmmmwmwm W@wxljmnmrhofa

‘table. The mpmdu&pummhwum: CRUDS: Spevcy: Sftier: Bfremcly. exists at
fixed: offset slots for the: obsjects, or space’ ﬂmﬂm'dﬁﬁu.mm ﬁg’ t*m The
ohjwttmarmﬂlygomtwdmemdmhmmwm thq,mrefmed
to- throngh pmntm. and: mwf ali-at mmwwm ngm Fhus,

" there are no overwhelining, implementation wamm enoaption: Handling
mechmum, though it dmaﬁmhmrmmm

‘1 ‘Fhishuad}ammu'Mupmwm_:; p vigus:
ﬁimwmmwmwﬂwwm mww
Faredler variable) :
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3.23. ',Sutﬁmnry

We have examined CLU'’s exception handung mechanism in detail Based on this
~ examination; ‘we designéd parts of ASBAL to perrorm the & ume function “the structured
notification and hanﬁlfng’ of exoeptlom. I-‘ommn!y Tow clunga were needed ln the
© mechamisit Borrowed from CLU, aind intld additional mechanism was required Agaln we feel
we I‘nave been suceessful in triiizferrlng i good‘ fum’ frem t\.LU m AS%AL —

33. An Example - Sorted Bngs of Stringl '

This section presents" another data type definition: a sorted bag of strings. Thts data
~ type might be used for coraputing the fwd‘ m of dif ferent ‘werds in a sample
of text, and printing. them aut in: Wmﬁﬂm W Is based”on the
example in [LiskovI7). mnnwtmm L |

create: ) proctype() returm(bag) |
"(create a new empty bag)

insert: proctypelvar bag, const stringl:20) sw (ful)
(insert the strlng into the bag; sighal full if ehcre is no more room)

count: proctype(const bag) returns(int) o
A - (total numberofitemsintmmmgmmﬂ

size: - proctype(const bag) retms(flt) ‘ N
(total number of distinct items in thg \ng.,u.. not counting repetitiom)

increasing* itertype(eonst bag) yields(const gﬂn([.z)]. inp) ..
_ (generate each distinct string in_the. m. with its repetitlon count, in
alphabetical order) '

- The type string in ASBKL isa sequence of cham'.ten. of cplmt. strlng varlables must put a
limit on' the maxtmurﬁ ‘size $tring they can ‘store. ﬁuf?: themaon for the ?anmeter '20' to
the string types ‘above. (The ™ in % 251’ il be exphuin ) tn the mxt chapter.) A stﬂng s
‘different from an- amy Of -charactérs fn that its’ contents nnmt be ehmged Le., strlngs are
immuitable; ‘ Strings are whole valiés even thougﬁ ﬁtﬁr lnﬁvldual characters cain be accessed.

The usual operations on strings, such as substring and index, are provided in ASBAL. A full




-list of string operations is in Appendix II. -
3.3.1. The Representation

N Therepremmtonwewmuuforhag&nabmm MMW&Mna
smng with a count of the number of times:that string s been. imerted: in. the bag, All nodes
.-v ,' to left of a given node contaim stﬂng: which siphabetic mmm;mm with
the given node. Qf course wem«lﬁo kmu WQPWMB&MWM tree in
order to compute size and count efficiently. This. '!nphnhaq is:then: Whhg like this:

record [count: int,
size: imt,
t tr'ge]

- We will maintain -the tree- in-an armay, uﬂu;«mludmnﬁ‘pmfwth subtrees In the

- nodey, (We must gut a limit-on‘the: numbser:of distinct itoms: ina:bag. W wilkuse 500 in this

- example) This adds:tuffmﬂwm&m (TFobevenlly cloan-sbout: it. we would mmthétree
part as anoth@rtyp’e'bw we desired to: keep the-exnmpl : mm

rep = record [count: int,
: size:  int,
root: mbranch,
tree:  anl;

- an = array [node; 1, 500);

node = record'{s: stringl:20],
left: mbranch,
right:  mbranch,
num inty;

mbranch: = oneof fempty: null;,
branch: mﬁ; R | , &
The type mbranch is short for "nmbnmh v ummmm;m by an
index imo the: arny ‘A oneof type is a: discriminated: union, somewhat like, the-variant records
of Pascal [Wirth‘m A oneof- objea isa mg(mef mfmw ‘dong, with an ob ject of -
the correspondlng typc (Thm are operations that m an objact of some type: to a omeof.
object with * appmpdm tag. They and mmmﬂﬂhm below)
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i

' Allocatmg space for a oneof variable is easy; junt. M ﬂny:mtmlm of the sizes of the
varlous possible types in m fields, plus room for the tag. - '

: 3;3,2. The Operat_ions

Let us start with the m Wmup’?ﬂ*m set all the counts to 0, and

initialize the array. S f&;

create = proc () returns (b: cvt);
~ none: mbranch := mbranch. mke_nmpty muw

n: node node$(s: ", 5 N
left: - none, o
right:  none :
T :m@- s o g R
b -rePS(count.o i e e it ‘
- sz O,
root: none,
tree: an$fill (n,l.nm
end create;

The " means the empty (or nuld string. The creste opeuum shows how to make a oneof
value from a non-tagged value of the right mmmm qnaﬂon. #n this case the
make_empty operation. (This operation calls the copy operation of m’iﬁﬁ)

Here is the Insert operation on bags:.... e d AT

lnsert proe(urb cvf, copst m‘lm (ﬂlﬁ,u
" biroot := insertl (b, s.b.root)exeuptwhufuﬂ:d*nlmll;nd; 1

end insert; - Los
insertl = proc (var b: rep. eonst 5 stﬂn‘[;m]. root: mbnnd:) n!urqs (m- mbraqch) ngnnh (full
- tagease neot in o g G PLIN S
tag empty: e

m= add_node (b, s)



ot gl

tag branch (comst i: int):
m = root;
mgmﬂam
. ifsans e o iR
then
nnumber = nnumber + §;
bmt.-hm#l,
- elseif s <ns
muhfirmw
“else n.right = tnsert (b, 3, wright);
end #f;
end with;
MW i e
exaptwtufuﬂ:dg;dﬂm;ut ' :
endtmml.

add_node = proc (var b: rep, const & m&- M ligmh (Fuld);
if b.size = 500 thew signat fulk end if;
bsize = bsize+s }; .
b.count := b.count + I; :
none: mbranch = mmm_m tdﬂ;
btree(b.uw . M(s. s,
number: I,
left: . .none;
ngm. nonel;
“br- wmmww

end mqm

This operatinn mumstu the use of mml prm M h.""f ecedisre: ntexponed by a

cluster); it also demomtrﬂﬁ howte: ww lﬁ; ,

ob ject. Eachaselhmwtth'tq a{mm:mthWan the

name has the. discriminated type Thh* ﬂum Vu‘zﬁ w 2 onpef can be mutated.
" We also see a real use of ammm MMNUWM one.

3

wﬁhaomf

The count and smmammwm




count = proc (b: cvt) returns (c: int);
¢ := b.count;
end count;

size = proc (b: cvt) returns (s: ind);
8 := bsize;
- end size;

" The last operation to write is the iterator increasing:

increasing = iter (const b: cvt) yields (const string, int);
_ for const s: string. i: int in Mcmungl (b b.teot) do
yicld {s,.1); : 5
end for;
end increasing;

lncreaslngl - ftef (eomt b: rep. br: mbranéh) ylelds (const strlng. lnt)
tagcase br in :
- tag empty:
tag branch (i: int):
with const node =~ b.tree(i) do : ‘
for const s: string, | it in lmunguh. nodc,kft) do
yield (s, p;
end for; . '
yield (nodes, node.number); (-
for const s: string, } int in increasingl (b, node. right) do
yield (s, 9;
end for;
end with;
- end tagcase;
end increasingl;

Agam we see a recursive intemal operatlon and use of the mugq statement, At the top Jevel
our ermre type def inition looks like this:

¥ 3




bag-chmlsmmmﬂu.m
. rep -

create -
insert = ... ;
insertl » .. ;
- add_node =
coumnt = . ;
size = .. ;
increasing = ... ;
tncreasingl = .. ; :
en‘ b.g' T o Loy

Here are mmmmdmmmmwmmwz

{x "srr‘

b: blg WO ' IR T
bagﬂmert b, "a smun eaqgn when rgltwmm
avg: m-msmm/ww U

n: int -bn;tmat (b? o
?ﬂm&?ﬂf S d sl ST
end for; :

3.4. Sunimiry

This chapter msmmmmmm ASBM.. These two
successful. AﬂthtmthnmhnMMMfm
“YOICRN “with atteratioht 66 aetem date tir &* 5k dproiniton of ;M Tl;e ¥;:ext‘mm
chapters consider two additions 10 the nnguege. WMhmumm
WewmexpmmmgCLUEMMhMﬂﬂﬂww
Rwﬂhmoﬂgmﬂmfwmmwﬂ&mdwmau - The
fﬂmmzcmpmmwmmmhmwuﬂuw The
fmmwammmdmwmmmm
-inthenm '
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4. Parameters

. This chapter presents the ASBAL mechaniun for. pmmumg abstractions. We
begm with an examjnation of paramete;s ln CLU. We then.borrow and extend. CLU's
mechan;sm, modifying it to,,sult our needs. The. m;jorum -made is. for parameters
relating to the sizes of objects in ASBAL. We have seyeral goals in_ extending CLU's
mechanism for ASBAL: : '

Y | to make programs as independem of the sizes of their data ob jects as possible and to
~ allow sizes to be determined at run-time; ,
(2) to relieve the programmer of the burden of mm of the sizes of variables, and
to transfer this burden to the compiler and run-tini¢ iyuem. but,
(3) to allow the programmer ultimate control over the sizes of varhbles

After oresenting our parameter mechanism, we give an extendedmmple using it. We close
the chapter with a discussion of possible implementation techniques.

4.1. Parameters in CLU

Here we discuss the parameter mechanism used in CLU.: We start with the slmplest
and most strongly motivated case - parameters to chlwers. We present a full example of a
parameterized cluster, and then move on to parithetériziig other-abstractions.

4.1.1 .Pr!r-umeters to Type Definitions

Let us say we have wrltten a cluster to implement Queues of imegers A whne later we
find a .need for queues of strlngs, s we write a new clusur to lmplemem them borrowlng from
-the previous cluster. Some more rime passes, and we. f!nd we need queues of customers for a
simulation program. 50 we agaln ndnpt the queue-—of hnegets cluster Th!s copylng and
modification could go on forever. What is- Wse. if some subtle bug is feand in the origlnal
cluster, a lot of effort is necessary to find and correct all the other clusters that copied its code.

‘One might imagine using a fancy text eduor or macro processor to help in this




| correction and updatagm However, wmmﬂmﬂnm&eﬂudm
abstraction generator: am«mmmumnauw
Fmexaﬂphuemﬁmnm:wmim*luwym%rthem

< mwummm%wuwﬁﬂﬁw . Th |
mmmmtuewdm
mmmgpam:me
wtthmexample@h@l.m

queue M{ti”dhmndq.m
™p = mﬁt} '

-m»mw

WM

, i‘uMWMaW ‘
el zve types. fﬁhcﬁuu-ﬁws&m

eng = pnc(q:cﬂ,xﬁ
Mtﬂ.ﬂ

' deq = proc (g vt reterns (0 signall fempry;,
¥ repSsize (g) = 0
- then signsl empty;
mmmm&
T3 “ !
end deg;

Mummqamm
(M-G
endempty
end queue;
Tmrammmmmumtttygd’mm mwmmmam
‘pargmeter awgmmhmswmuaqm mwwtype!fw.
AL
say?thmextmawufqupﬂm _;_mmu

sl HAR L eHE

S X TMmmﬂsuwwM mmmwmm a

.....
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~ legal because quéue[lnt] Is a type, so it is a legal parameter to queue, etc. The representation is
.chosen to be. pruyf.t] - this. dmum that 7 - W 40 it weere: tn actual 'type
;spec,lﬂcationl inside the cluster definition. T"’Mmm PELUTIG AN MNPty Array
(representing an mp;y m ~Fhe eng.operation adds & paw . mw the high end: ‘of the
array. Notice that £.by itself i&lﬂwwmh*wd the eng operation. It
is alsa legal to declare. vasiabies 10 be.of dype./. inaidie-tby. dhisters we:mention this.to drive home
~ the paint.that £ really 1s.taken to.be.a typeapecification ssiaiin the:definition.of yweur. The

 deg operation is symmettigal $0 eng, except shatsit may:igaat expey, indicating that s’ caller
tried to remove an element from an empey qucue. Tbnn)mm atest to see’if a
queue has no members.”

4.1.2. .Restrlvctltms

- In order to demenatrate fusther featuves, se will add some new-operations to the queue -
cluster. One nice operation to have is copy. We would like copy to call tScopy on eich element
of the queue. Of course, this means that we c;n only copy 'unu[t] if ¢ has 2 copy operation
terions maﬁd uoCLU "A restriction defines
a set of types possessing cemln operations with partic, jar mmlym Restrictions are used

to Iimit the legal actual type paruneters. and thez imure ﬂi}t mlqu\”m has
' the specified opentlons Let us look at qucwup, for an ex .

e AEYELT

(which it need not have). For this reason restrictis

copy proc (q. cvt) returns (cvt);
. where t has copy: prectype(t) returns(t) ead;

return (repScopy(q));
' end copy; :

The call of arraylt}$copy (impﬂclt in repScopy) resukts in calls of - tsco”; since arny[t)scopy‘
- requires a copy operation of ¢, we must require that operation of our caller. Restrictions
- complicate type checking, but are necessary. The wbm elam an also require a parameter to

_ Qf W . »Tbc

have several opentions. ;nd an gut

1. A type speciflcation is the syntactic descrtpﬁoh of g type.
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 types. (The keywovds proc, iter, and m are ot used for this patpmn because syntactlc.

-+ - avbiguities resuit).

= definve ¥ type generstorsortedibay; wiieh: canbe:

Theubmccmvphmammtm‘ .' jif”t‘*"dwmt'havea

copy epamthen then: uil-the:otiver- uperations:of mew hmm&?ﬁwpy In

. some cases it is desirable %o put a: restoitton: o i the opén
;‘MQMMMMWWM!&*W

.7 ordered type: In: mwmwmamm: mthan o
o .andanmuu!muw.mmlsm:mmw B

- sorted bag: » cluster fte typed Is .5 - :
: whmthask.quakpmwmwem

end sorted_bag; _ -
We can st.m..ptit further restrictions on the type parameter within: lnd%ﬂdu&l operations if
... needed. - Thus, & ooy operation for tire sorted "bag ‘thisnir WoulS' retjuive- £ 0 have a- copy
_’ 4.;3{ ?anmttersa tq. me Iﬂd ltumm :

| JustasctumanhWMwmpwmm Comldera
bubble sort routine ‘that uies an my of any ‘ type and mt? it The same
msomngthatmmmmmudfmm %u&mmhﬂm -

sort routine:

1L We“‘wwld reﬂyﬂkewmmnaﬁwmm&mdqp!t.Mtauweun

. requite.in. 3 restrigtion-is. the-eptyact functlonality: Piisurilly, torgantithiot & Srders the objects

would mimmummmmmdmmmmwnamuma
- compiler to mmmwmm»ﬁmmmemm o



| ‘sort-proc[t t;pe]h at) , '
whmthseqlulk.proﬂypdwmmm
.qt"-aﬂaﬁtk L

end sort~

Operatlons ofv l tYPC may be Pi ik

followmg general form for operal T
' ty/n_nam[pammm to qp;gam ton.name parsmeters. fo.operatia

4.1.4. Other Klnds of rmmtm

In CLU, most compile-time constants are- Mwwum " This “includes
mtegers, characters, strings, reals, booksisi, Al these iﬂ'wfy useful (there is
_~ only one value of type: mull;: so null is: m as's: parametér - type). ‘Every distince seét of

~ parameters to a parameterized abstraction st W'h - AREREY m ““T'his theans that
queuelint] is different from qucutbal.m. Ao, IF: we:are. gived m&m :

, - foo = clyster {x,.y: int] . ;< Pt nTERE :
then fool1,2] is different from SJool2,2]. In like fashiion, dlf&reat sets - of parameters to
proccdu;es and iteraters mmmmmfm S
. .. There is a -gonl-that type: checking:be: spossibie: at: icomplie-time; Whtch requlres
. instantlation to be possible. at wnpih-dm Therefors, pasameters niay not be tompmcd at
| run-time. However, it:turns. .out thet even-if-all: W‘W ‘compiie-time tmble '
_instantiation is not ajways possible st-compilestime. « Tl dtPbipulty. will ‘be WM ' the
 section on lmplemmm Sl pun-time an%amms

oo 5 R OR

4, 2 Parameters for ASBAL

ASBAL can borrow all of CLU" pﬁlmetaf mechanlsm ‘with no ugmr lam changes
However, even mough that: iméchanism works Fine, it Is hot eounnhm for what wm be the
most widespread use oF patametes i ASBAL: i ""*'i‘a ﬂmdﬁ sizes mnmpgy ye must aliow
~ size paraineters to-Be computed it rin-tine. ‘i‘hﬁm she ﬁall bemdeﬁuh&nm much
trouble; but 1t is fiot sufficient. ‘Using CLUS méd

anish for “sizes will nm be inconvenlmt




because every size must be specified expiicitly, md each set ef size plnmaeu will result in a
distinct type. This results in a distinct set of cluster aierstions or each stze (akthough mest of
the physic&l code for the opemioman be M m; ﬂ Mﬂ%ﬁi type gmentor)
- The major difficulty is that binary (and higher mmm hjects.of different sizes
become hard mexmb&ma%mymnﬁm&yuh”ﬁmmwkww
and fmﬂ!em Mm.mummbm&uwmaobm
of different sizes simhmomty beumewym of dﬂ’fm dmmef m:ypu

, With the proliferation of paraiweters, exprestion mmw Consider
strings as an example. We could not write |
. s;=slht '
.. {The ¥ is a sugar for concar) We would be fosced to say
o S steinghl0WfcopyistringUioQiSeomentiSQitet; - |
. to.get the mmmmﬁ s dvnd_size 100 and: ¢-had: alne 50 mmmmmn
;:_smmmwuldmummtknm'um L 3 R

s -s#nﬁum}.ﬁlw L o

Of course it is possible to extend the notation for mmwxq” M100.50)), but the

'mzounatiunumabwmm S TR L :
| Having each set.of mmmwmmm ‘procedure; etc) separates

_Lypes tmﬂndyﬂmgsaf all, it conflicts with sbstactien: - Tha'olijaga &f imaivy types come ina
. -variety of um-ln&mwmwfmﬂm" ihmbe; fined siohi (Detause Mmd espond to
+.storage allocated in the stack) - objects’ aré comceptonlly of uniiodided ihie. For example, there

ammquhnwwm,wwum 4 1t v O the concepiuel type
L "'mwifwnrm
If we require every. abstnctieneobebmmdd mmpm;mwww on the

- abstractions just to make :helﬂaplammmmm OmnwaeMemfuct is to

’COI'BtdeI‘ objects to be unbounded, md vtmbk&}eh jraperfect . models of the. objects they
~ contain. Thts leads m attﬂbuﬂng mmm?m racighies.. The affect.is that nd-blu
| ;‘cannotWall&puﬁ:mmmwwmmwﬂ&gﬁhm o

in sum, size will be dectared only for variables %Mm O S
1 to state the slze !nformtuun is a3 part.of the type spacificatinme (ypespec

 for ‘vatiabies. Our




task is to design éonvenlen; syntactic forms for expressing . size iﬁférma’ilon‘ where it is
appropriatre,’anq’ to allow such information to be omitted where it 1y not necessary. The exact
- technique is to.introduce a new class of parameters to types, size paremeters. These parameters
‘are disting@isﬁed f rmnC!,p—stxlepanmeten (whgmm qurp,;ggu paramsters) by being: listed
after a % in the paramétéf Iist.\ Slupamm Jsed only with (ypes; rouunuuu only
regular parameters. Also, size parameters are ahgayg integers; no othet.typ_éa- seem useful
enough to Justify the lddmoml mechanism thgg‘ Corps ation would requice, S
} .- Two examples of size parameters have alread M used.in previous chapters. Aruy
takes two size parameters, indicating the mmmmm Mmd wdmxjmum Apper bound of
ob Jects storable in an array variable; string takes one gjze parameter, indicating the maximum
length ob ject a string varlable can hold. Amyland strings are | the only basic types of varying
size; all other types of varying me incorporate them lp thdr representation, aithough. possibly
'through many Ievels of data lbstractloql Tbg mentations of both. arrays and strings
insure that objects too Iarge for a variable of their. ty?s o hold are.not. asﬂgmdr to. the
variable. ‘Attempts to make such ﬂlega,l ssignments cause . an. excegtion, failure(*variable
ouerflow") to be signalled Furthermore, tm, » tatie otamy; insures that the ob jects
in array variables are not grown beyond the limm of their containing variables; if such an
attempt is made, the varlable overflow: ex@thn Is ngmlhd To make such exceptions
avmdable we wm provide a mechanism for querying the size parameters of a varlable This

cpammz

mechanism can be used. to check sizes before assighments or grow

43. The Size Pa_riméter ‘Mechanism

Hiving introduced some of the basic concepts and features of size parameters, we now

go into detail about their use. ‘Thls is more easily done by going through the syntactic forms

“used for specifying size in typespecs, and the restrictions lmpond on whlch forms may be used
with typespecs in dif ferent positions. '

1. That arrays and strings are the only sources of ob jects of different sizes is slmllar to the fact
that all mutation is accomplished via records and arrays.

2. Of course, one can just attempt the operation and then hmdle the exwpthn. but it.is often
better style to prevent the exbepﬂon s ohcm-ren”ee '
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4.3.1. Size Spec}f{ers

A:m:ﬁcufbrwaﬁnmmfmm‘dapm There_

«"io:-zaam hmmwwhtmmﬁww@um

,;_ﬂg{f '&«:mg;‘g“; [ e T S

, ""h#‘ﬂﬁ&&ﬂampx Amrkm«lua
slzumwmmmmaw\fémmm urumdumeu
A'.*immt Fﬁrmmnmmym:m»m

mmmmmamw:-ﬁehmm”

Tbeothu fovm of sivespec is UL, muaum‘ !Mmmuued

?-mmfwrs The Mmm s cwtvabu tb"s‘ W&I ?mtm the size of
mmam;whm teukeone

argwent, an’airily. T""’”m ?"‘”Wmmbﬁi};kﬁumkm the
stuunmmmmmnwm,ﬂ, .ﬁ. ”“m "

p-mhamtwmm w
x> .m‘um
endp.

- Theexpnummgtwmmwmmuumdﬂumlwmpn
run-time. (Tmm&ddﬂﬂummm”g;, oy al: ghe first is

Rl s

the sized&enr%udhmdhmmmmm-fﬂnmywm in the
Vat;)abk.) ' S R R LA LR :




4.3.2. The Kinds of Typespecs

There are three forms of typespecs in ASBAL. The first form is alled the vartable
typespec ( v-typespec) because it is used mainly in vaﬂabh doclaratiom. Al the sizespecs of a
, -typeSpec “Taust. be’ exact mespecs. so that the ml m requlred for a variable can: ‘be

" computed and ‘allocated. We will detail all places where each fprm’yf:_.typupgc is used below.
~ Here are examples of v-typespecs: r o | - .

string(;15)
- stringlu(x)+v(x)]
arrayiig 1,100)
arraylint; 1, 10a j+51
arrayling; f(x), 3]
arraylint; foolx, y), bar(y, 2)+2} -

" The second form of typeapec albm exact or t-uuspecs to be used, and ls called a
-‘vabtyfapcc (for-variable or &' cyp!iped for short. It is used where any size is auowed or size is
irrdewm but where: Mm is 'not aﬁwed V—iypupou are'a mbw of n—typupecs. here
.are-some ve-typespécs that are not v-typespect
' o stringle)

arrayling; », 10}
arraylint; &, v(x)]
 arraylint; ], «]
" arraylint; u(x), s]
 arrayling; s, ¢)

We aliow an abbreviation for typespecs all of whose sizespecs are ‘s" the size
;-panmeter part of the parameter list may be omitied, Iuchdm; the ke Furthermore if such
~ omission_resuits i1 1, the brackets unbedrqbped as wéil. Hm ' '

2

- arrayting; =, «] snd strhg( ) : | v i
array[int] and strlng

respecnvely _
The third form of W is themugenmi: m«ef ‘the three sizespecs may be used

in it. This form is called the mr?- typespec (for varlablr, s, or d, W Va-typespecs are a
subset of v#?—typespecs (and heme v-typespecs are ako a subest of ve?-typespecs); here are




Some va?-typespecs that:aremot- uw:

- stringl;?en]

arraylint; 1, 2high)
- arraylint; Plow, ¢]

| arraytint;vow, Mﬁ)

(There are many mm gomhm, dﬂﬁm iR ¥aR:4

43,3, How‘l‘ype Specltwmwm Hsed

Now we discuss: which form of typespec is uned MM Mc pwuon -and .the
-meaning attached to: it-in-that-position. -‘We- wilidoz W{m W
- -symtactic positions. »

43.3.1. Arguments to Rousines

.acceptable. "The use of-a- ?w allows that mm :
. exmle :\g{
'p = proc(vara, b anrayunt, L ?Mgm) Wy

end P

~In this. case, both e and b mmt be m’gn{ integers . ower
: bmmds are-not restﬂcmd. !ud M MMMM Il?lgg Tl
via the expressions atAigh and:itAigh As snother examel

1. However,. side—effect free:expressions. mwlﬂngxm to: nuﬁms, and ming only
, .vbuilummmmw .
2. These bounds-are the bounds of ithe sariobles;
-8 ?%smubemmwisx petiut binary
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pe ptoe[ttgpd@nrﬁ*at;eemt 22: 9 signaliovertio
. where t has octypeieonst £ returna
ate reayli; », ?thg?ir(pt T :
lf (al?high -~ athidgh(ad) <Msln(a23
then signaj | pvetﬂo\v -
endif; T

fqrmt&:thamm%.’?ﬁ
at$addh(al, x);
 endifor;
cendp; 4
© The test in the if statement is: ‘Does al have enwgh room for a oopy of uch element of a2?"
The elements iterator for amys producu Gldl element m the Array fmm the lowest to the

hlghest

4332, Return. Variables

O

Arguments are the mmt obvmm mg Mvm use for size parameters
iments. allow. M&@mxm handle objects of .any size
| conveniently However, there are also some situagions. whme fhexibility: in the-size of ob jects
.returned by a proceduye is . help(yL For this geason. we.allow -the size parameters of return
Hvanables to be detergm\ed dynamically;. :pecgﬂaﬁ. thm -sige parameters may be computed
from the arguments to the. precedure being.calied. For-comprehamsibility of ASBAL programs,
we require that any size cmyuumn fmm varisbles: mot. mutate ayguments: ‘of the
procedure being called. , This is done.by. MMMmﬁ the: -mmzm these
' size expresslons : . .

| Consider a gmgedme tl;p; me*m arrays together toiform a new
:Earray If it is known that the new army. ﬂ&m bewnirged, it is ressonable to' creste zg.e
'smallest possible array ;hetpgmmmm mmmu avold any wam wonge
Here is the skeleton of such a procedure: .. ' ~

q = proc (eomt al, a2: aint) returns (as: aWW«MM@M
aint « errey[lnt] .

‘ ~ because size pafameters in ar

end QG

Determining the size of return verlab!el on the fly has some complications, however.
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Recall that return vasiables-are really spaeifm fmmw inby the caHer If the
variable passed in is.a temposacy, shan Mk n:gmwm&m pruemed
in- Chapter 2 aliow for determiimtion of ‘$138 temporhrieh &F wputation of arguments to the
invocation “creating” the temporaries, - In fagt, wmsm designed With flexible
return variables in mind. On the other hand, if the nmbkm mn the return variable ts
‘mot -a tempmarymmy*mamﬂmwm Aahiolies %at run-time, ‘to
compare the size of the variable being passed in with the iizs deciesed.in the procedure header.
At this juncture:we have an opﬁm we may mm: mmm exactly, or just
that the variable passed in k at feast as big as. the one we wou m from the return: variable
specification. We have. ehmen m be ﬁexible md albw any righle. of ‘sufficient. sire. We
delay discussion of the basis. for this decision. tmﬂl the entire- ﬁem mum has
been presented. ' ‘
‘Two qucsuom Temain: what do we do .if the .size of s petum.-variable h&k the
run-time check outlined-above? Qur solution to.this problem .is:to have me tnmum being
atempted signat faumw overflow™. The m 'm :-m‘m n do If a return
: stion. simila mmmam.

- agml fatfuw( mmmagmﬁ | SR

- ‘Because of the tun-time ‘chiecks often wm mm variables my be
expensive. However, webehieve that the comeion ‘uses oF m mtum vnmhies will be
handled at. compile-time. The: reavon WP ccuspiie-tne Shstis will often siffice 1.: that mast
‘types:taking size parameters bave- sives-which- m‘ﬁ‘i Poturn wark d‘ weh a type were
. constructed using the minimat amount temery; it Xolkinot 8¢ grown Wieréstier. Therefore, we
believe it will be more common for the user wmfythemﬁ‘ﬁu vuhbb %o be returned by
_ passing .an argument for ‘perhaps a- pavameeh io e procetiure, tather than having the
_pracedure compute. the .sige iaelf. WQWBMQ M o mvely the size
infarmation may be comparaitie.at. éoing f weeh if hey ave fymbelic. that is, it may be
possible to_perform the checks. even if the.size s i paiinieter. 0 n srgament of the procedure
making the call. Heredsansrample . = s
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P = proc (const n: int, ..} ..;
varx: fool;n; |
x - q(n,..);
end p;
q = proc (const i: int, .. ) returns (a: fool;i));
| end G | o |

We grant that it may not be at ail easy to duign a compiler mm't mwgh to perfqrm this sort
of optimization - we are merely pointing out that the optimiution may be possible in many

‘_ca ses..
4.3.3.3. Declarations

_ There are two sorts of declarations: those-with initialization and thoae wiihout A

* declaration without initialization must use'a v-iypespec 30° ﬁnt Iwnge can be allocated for the

- variable being declared. Any expression evmung w m meger s tiiuwed for computing the
- size parameters.

Declarations with ipitialization are more compﬁcated because we have the opportunity
to reduce storage requiremenits: we an permit the ‘vartable to be the exact size returned by the
procedure being inveked to initialize the Vambie "Thus we allow «- and ?—sizespecs in the
typespecs for declarations with initiatization. - Any panmeter spedfied by a - or ?—sizespec

_takes. the value computed by the invocation for its return variable; any exact sizespecs in the
declaration with initialization are kept as'is. Therefore, the normal check necessary for flexible
return’ variables in assignment may ‘have to be petformed in dechntions with inmaliutlon as
well; the check can be omitted if all sizespecs are s~ or ?-siuspeca Conmnt definltions follow
the same scheme as declarations with initialization.

. Here are some exmpksuf'de‘thfﬁdm and constant definitions:




var n: int = 400;

var a: arsaylint; 1, n);

varb: areaytint) waveaylintiStil 0,1, 30V
" var ¢ areayling; 1, ¥highl =Tool);

const d: arcaylint) =b;

const e myt»ini;a W00 =t

The Iow and high bounds =f amuaumaaamm mm of the
array returned by foo mhem.hm&et”hhn}dw&e mythin m@gmhmw
oty ¥ LR ) il -

writmg cPhigh. The mﬁumulmupm@ wmacm fail
unless ¢ has at most 100 ¢lements. » | j ;‘ .

o ‘4.:’34 Repfesennﬁoa‘!’m o -
Thetypupecfortinmmhntmhqw)ofaahwmhenvww
variabiles of the typehmdctbdmhew M“W@; ,'m,thew

typespec must ‘be dmmm;mwpmmmmm l-bnevu arbitrary
.gxpresslons are aﬁowgd 0.7mpy ANon:

\bmem theymtyhee“ 49 1 h b i
,ugmmd when a reps il expuahn s M asiundtst
o Thefmderfurnmmm_ Tameters;takes; .
~ | idg = chuster [ repuler vempter. A i
Theidifori>01rethemyfmm
the rep type and aeherv ;

avatlable t to the op«m This. am;,;mm m,au abstzact size
"parameter mmes are not per. mmm athryper mm notumake
'nmeto use ﬂmu nmlnchmrm . e e e
Let us introdyce an exam mu&m heaughaws,auc disssion: of dise parameters
and mptypes Aummmmemtmmmqus.m we need to
implement them using arrays of characters. Here is a skeleton of part of the string cluster:




“string = cluster{;len] is ...

. rep = array[char; ), lealr \ |
. size = proc {const s: evt) retums (n Iut)

- = repBskaelsd;: .
endsizg L e

Notice tha;r :::l:::n fperation return; the size qf thubm not. th! sze d the. u&hbk

Now we come -to the question cf what ¢, and ?-W mean. when written 'in
W what, doe; $#yingls] or stringl?i) mean? . They
merely: mean that those abstract size paramefers are, Rot' m Mlgd. and.in the case of
P-sizespecs, t-hat,'those .abstract sjge@pa;; O -maybe. queried, og.; X2 if .x were.decpred as
stringl?). In every case where the size of the rep must be kuown. all ebstract size perameters
The only potentlal confuslon left is the rmmlng of the typespea rep and cvt. Rep

STl W

ke rep ypmp biaingd from
giving the abstrﬁct type ‘those size plrameters A; m CLU cvt u just 2 shorthand for the
’ ‘vabstract or rep typespec at the interface of a routtne. with a converslon epplled at the
o appropriate time: dovfn for incomlng ob jects. a;d}'u; Lfo;&iautgolng ones Tireref ore, cvt takes
the same ‘size parameters as the abstract and’ rep typespecs do. Notk:e that neither rep nor evt
, ‘requires Statement of reguhr type parameterz. the reguhr type perametm lre tmpﬂclt in the
' instantiatlon of the cluster. The converslom up, and d?}\?ﬁmse the ume semantics and
implementation as in CLU - they cause Tittle or A0 Ha-time. action, buat m used merely to
change the compiler’s “point of view" on the type of an object. }

To illustrate the use of cvt, consider the procedure m{m’t oi onr example string

cluster: ' . R , Cp

_ typespecs for the abstract type.: For examp

' wrl! be available, so the rep size panmeters. '

takes the size purameters of tﬁe ebstract type; the n

concat = proc (eomt sl, 52: cvt) returns (s3: cvr{mwidel)tupttize(s2)]);
end concat;

Notice that rh}e arguments (s/ and 32) have been Mh’ed before the computation of the size of

s3. If we had occasion to create a temporary variable of type rep. in the string cluster, we
might write o

var x: replin] ...



which would be'equiv&iem:ﬁ<
var x: arrayidur;j, nl;
.except that the latter cannot be up'ed. It cannot be W bec

o RETHYYY

of arbitrary functions in the general c:se. this is s0 becay K mmom on the way
in which the rep type demds on the abstract type's dm M ver, my amy!clurl
can be assigned toa rep nmbie (pmkhd mmm m&m pmbhtoup a

5;31

I thesizesoftm&rfag vambm u&uni&%m mneeded in the
e T eedang L by i «w’# fi 7 e st g EREIE
?operattons pmicedure b&f tﬁé R ‘ : e :

DOAEERL

e S I Fa

The: lengms 6f s1'and 32 b ¢ w‘ WWM { Sabeng

e ,;«,»,;‘ A T (IR T, SIS TS N R b A ":1'%‘3 g’g-‘& W oSER e 143
43.35 Oum RoﬁMuhmM SR R R

Qi e R R e B S

There are a few other positions m rwﬂne h?deglm

‘ rethet csof nnmenmrwﬂ howewnrtbﬂ ﬁngk
. .a yp P‘ 1T ";“2';% ‘"“"" e SR i B Al ik g«*

HED &

ob jects ylelded by an mmur iie w-tym

Girew i

o sue is anowed but there‘u no‘me rw ?-sizumulife.

g AR

2N

mt hold for th@ types

wfm or any

Lof clau‘ses from routine h;adm N .
By SR ESE 0 RLF . iy gy
signals (foutmy(iﬂ-l,t]) b&r(stﬂng)) -
ﬁmistﬂﬂ?ﬁmﬁ% w s
bieech prodx. mu., | e
edgar - seketor[-ﬁag: bool]
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4;3.3.6. Typea of Routlnes

A situatlon sllghtly dlfferent from routlne hude?flg gw* ressios QW for
the arguments, etc, In the typespecs of routm (Le.. proctype’s, mrtype's. and ulty”'s) The
“typespecs for routine types should aliow full type checking, 3o typespecs for arguments, returns, -
yields, etc., must all be given. The argument typapecs are ve-typaspecs, shere being 'no use for
?—sizespecs in that posmon (A routine accepts either a pamcuhr size, or any size) leewln.
" diaE: nﬁ*;ﬁéﬁ i %, not expremom.
only compilestime “expresstons are afiowed:: awthit n MW%MW can be dom at
_compile-time as-possible. Thurs the type of strliig9coi mmehmu ‘
~ iproctype (mwing,w mw Lot
which.is shost-for R S

- proctype (const steinglis); Mwwmww
Yieids, signals and of - typespecs are all handled just like return nmblc typespecs. That takes
care of all the special ttnms in typupea of routines. Here lﬁ ?:;ﬁﬂ! mmple routine
typespecs ' -

proctype(var nrrny[bool*l,t] const Mu[.lOl)
itertype(const arraylint]) yields wu.(;m» L
: myp&dm MW )

4.3.3.7. Actual Type Parameters 3 : e

Now we come to the writlng of typespecs for actual t!pe p}nmt of abstractions,
eg. the ¢ in array[t] These are a!wayivw}(wkh gngﬁuagthn) 30 that variables of
the type can be ‘declared. The exc:g??n s tmtg;pegaum to ptr. The type ptr h:s to do
with polnters which are discumd in the next : ; homnr la us qxphln here how ptr is
different. The type gencrator ptr isﬁusod for typdmmmugq u .ukg asa panmem: the |
* type of object pointed to. $ince the size of a pdm‘u depende of the slu of the gbja:t
pomted to, #- and P-sizespecs are al!owed ln typapea usuiiﬁa‘sé ganmaen to ggr Af m reading
Chapter 5 it should be clear why this wm work

Here are some exampm of typupecs used as panm




,}(on strings

arraylarraylint;1,1003).

recordia, b: smmmn
pteia, arrayling:s

ptria, recordla, EWJ

"Pfe:»se ignore the ﬂm pamm to ptr for m the m plmm is uu one discussed
Cabove. 7 '

4338, opemmm

There. is one Impmmonwhm W&nm&ﬁwm of -cluster -
" operations. In this pasition. all kinds o typapees 30r. e sncs: sie: peram

completely irrelevant. Hmﬂu is common.te- write the showt M‘zw Iov- chaster
operations, omitting the size pasameter . part.. complerdly. . <Fiis: gives progeams 2 nicer
appearance, but is not 'mem'ht It is ako cemm to use a short name;that s equated to a
,Vt?-typespec for examplgg %tfm: asesylil. A&@Mmmmm opemton-

5 string[,ZOlSconcat
“stringl:#1$concat
stringl;?len]$concat
string$concat
(This operation aiso has an infix form: !’J In elummm Mﬁsm’e for formmg

operatmn names.
4.{.' An Examp:le Clust_er --Seqmm:u g

The header fort‘he sequeme dmm is
seq = clumr [t type; n] ls nuu add!’a a@dl. oonmt, m mt, mm

g

rim, !m. mﬁﬁ, MM : ; laagth;

i TR

, whmthcsmpy pmctypc(mt)m@lﬂ L
- Sequences have mmy of the mma mwm are not m
(meir staté camnot be cﬁmgw s mww um m Wm ﬁy yenting
operationsafewatattme ﬁutfmt MW ' ‘ ‘
rep = arraylt; L, n);




Thus, sequences wm be modelled by arrays. Tlm is munpm bu:wn dny are similar in
many respects. : : o e

~ null = proc retnrm (s: cvt(;0));
$ := repScreate (1);
end nuli;

The array create operation returns an empty array; its argumem spedﬂes the low bound of the

array ob ject returned, Netice that it me Mﬁm
var x: seq(t] := seq[tBnulI()

because all x coukd ever hold is th&cmntym MWW &quenm are too big to fit in x.)

addh = proc (const s: cvt, e O returns (new: cvd:ipﬁlu@ol])
new := repScreate-(1);
for const x: t in repSelements (s) do
rep$addh (new, x);
end for;
repSaddh (new, e);
end addh; -

The addh operation returns a new sequence with one more element .at the end than the one
passed in, therefore the size of the returned object is one bigger than the dctual size of the
argument sequence. (Notice that this is not mﬂly the sime as ‘l'm I') The elements
opemion is an iterator that genenta the emnu of an sirey: 2 ) m from the first to the
last. The add! and concat operations are simifar to addh. '

addl = proc (const s: cvt, e t) returns (mw- cvt!m‘ﬂuhhm
new := rep$create (1); 7
rep$addh (new, e);
for const x: t in npSehmenu () do
‘rep$Saddh. (new, x);
end for;
end add};



concat = pm!m r, rwmmwwmmn»
new - repScreate (1), ot i
For comst x: CHr rep$ it '
rep$addh (new, x);
end for; D
for const x: t in repSelements (s)do ' b b R e
: repsaddh (new x)

end for; -
' endcomat . L .
- Now we present the m M produce-sherter W?fm ﬁ!ﬁf lnpﬂts. remh, reml,
and trim. : "

- remh = proc‘emts.dvt)mmm'

'“4mwgmm«mmﬁ
ndm-nqﬁmdﬂ »

Cifn<l | - S
meswmwuwv‘ U e T Y
else . k A . L ,»;x.’:k ¥ *

mawhuml | SR
whife index < n do |
' Wdh (m. ilndex}r
end ity |
_end remh;. R

rem} = proc (const s: cvt) utms (new- cvt{mxw-ﬂl} si(uh (emgty)
. i int = repSsipets); :
ifn<l s e
' then signal. empty, -
else o ‘
new := repicmu (l)
_ index: int 1= 2;
\th m <= ¥ “ i Lo TR .
‘ rcp&ddh(m.imﬂ SR
end while, -
end if;
end remf;.

W'W Mum W is passed to
retained. Trtm returns whamer pomnn ot the me m nmbawm tM:
bounds.

(Max is used to prevent a “r :frddt nessi
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trim = proc (s: q¥t, low; highidnt) returns (new: Mmmmh—lowlm
start: int := max'(l, low);
n: int := rep$size (s);
end: int := min (n, hlgh)
. new = sepScreate(l); - ST ‘
: .for const j int in lntSfrom_ﬁo.by (mrt.m;l )] dq
‘Tepsaddh thew, oL );
-end for;
end trim;

The from_to_by iterator genefates the integers from its first argument. threugh o its second
,argument incrementing by the third argument; it is iike an Algol fo: loop
Here are the selection operations: first, kst, Jetch, and elements. -

first = salector () of £ from zmmm B
if repSsize (s) = 0 ,‘ ) e e e
e iyt ¥ P ‘
else select s(13; U I S T AR
end if;
“end first;

* last = selector () of t-from-&: "““lm
n:int := repssile (s);
ifn=
' _then signal empty;
else select sinl;
end if;
endlast;

~ fetch = proc (i: int) of t from s.cvtmnh(unge)
if (i <11 U > repSsize(s)
o then signal range;
else select s{i};
end if;
‘ end fetch

| The vertical bar is.a sugar for the er. mm*um fwsolser’.

. elements = iter (copst s:axt) m«mw i
for const e: t in repSelements(s) do
CTyleld (e
. endfor;
“end elements;

Notice the use of the array iterator elements to implement our own iterator. ‘It would be nice to
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be able to assign sequences, 3o we define a copy operation.
OpY.= PO (oMt 5 £xL) petmens. (naw: witianpSatoelally; -

new := §; :
end copy; ' S T

The copy operation will often be this simple, but then trbm fauypa ﬂnre more must be
g ErT 0 B
'done. We also provide mmwﬂm zm that qm needs an

© extra restrictionont?t. = | ' ‘-,a,%

equal . proc (const r, 5: cvt) returns (eq: bood

‘ whmtmwtkmwgﬁ;”; e
eq w(r=g) - l
return;

end equal,

| Notice that we use the Mm Mm%a&*%m of t to
compare the arrays element by element. Now we write the inyg
length = proc (comst 3: cvt) returns (k int); |

| := rep$sizels);
end’ length

- It will be helpful to see mwmu m

First we defire a few types:
st100 = seqlint; 1003;
si_ = seqlint; +J;
silen = seqlint; Men);

Now some declarations:
a: sil0g; . A G e :;  L
b~si100 slmmﬂl()' - | S PR
d sﬂen -c;
if d?len = O then ...

First, @ is uninitialized, and has room fer sequences up to mm laug | The next variable,
b, is the same size, but hasjesn assigned the null seyuencs:’ m%d‘r’mm
dynamically, it can hold only the nult soquence!’ (Fiols: i wav very-shveft - lt*m why size
should normally be specified in dectarations)’ The same is troe gism its size can be |
queried by using dmn as shown in the if statement. Hmm& o




‘i_:-a.lld; o
b :=si_$addh (a, 5
-iF si_$last (b) = 5-then ..
var j-int := 0,
for const i: int in si Sekment:(b) do
J=j+ iy
~ end for;
Nouce that the first line calis the :iIOOScmat operation.

- We have defined a complete type generator for muencu This example is atypical in
that it has no mutating operations. ‘We chose this over a ﬁﬁuahlg type because it demonstrates
more of the parameter mechanism, since it- retums more things. and tends to allocate the
' blg types Is not always desirable,

since they may need to grow later. Furthemou. even if the objam are lmmutable larger ones

minimum storage posstble (Allocating the mumm for"‘

may be asslgned toa variable Iater of course the styie of uae is up to the programmer)

4.5, lmplemen-tation

Here we discuss how to implement ASBAL's parameter mechanism We first explore
techniques for the régular parameters, these methods are borrowed _directly from CLU. We
then consider the addmons neceuary ror sue panmeters

4.5.1. Reg-uvlar "Partme’téfs _

The most straightforward idu is to pass parameters.as extra arguments in calls. This
works fairly well, except when: procedum and iterators are passed around as‘objects. When an
instance of a parameterized prgcedure or iterator is paaud around, its parameters must be '
stored in the ob Ject, since they are not available when it is calied. lewise an opefatton of a
pa rameterized type must carry the parameters of the type around.

 This difficulty suggests what ‘we call the macro ilnphmgnmion of parameters This
implementation actually aubs%mtes the actual - put“mm ‘n and comes up with separate
procedures {iterators, uiectors. clusters) for each dlstlna set of mr;ms This would seem to

be inefficient in terms of memory use, but can be good in some situations. Its main advantages
are simplicity, and the ability to do better optimization of code once the substitutions have been
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made. ormmmmmmhuuhw Gmumhnnama
parameter dependent suctien which comtalns te m s e
pointer to a large puramuter independent section. thmmcam

Hinkage sections to hold per precess data in an m el ‘ W of sharable

PRl YA

- .pure code.

" ihere is a foothote 'em 19 m)

There i3 still one problem however. namwmmmwm

unbounded mumber of different pyramens Ammméﬁu-mmm”" cLw
that has that propeﬂr

' nuty_‘b - pm (t- typc] n: fnt)
eml nasty. |

'R shwﬁhemywmmmmt.

Maintamingthcdm-mmnhmmm&tﬂkaﬁtﬁammmnm
potentially overflow. However, mwammmmmmm
useful, Tberefmwummmhmumhm %Mnmm:m ,

.written.  Wa must deul with Shem:in: ASBNL. ‘A Sobig

. - e

e Gries 1nd

 referrtmg ummém
however. = - B Lt
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4.5.2. Iinplementing Size Plrameters

Now we turn to the question of implemeﬂﬁng ASBAL's size parameters First of all,
they are not true parameters to the type. aad Qppur e@al; as dummies, o in positions to allow
allocation of memory for variables. The bask technique for handling size parameters is to
store the size information in the Vvariables. This method leads to a nice lmplemematlon of x?y:
just fetching a component at a fixed: ﬂffnt from’ ehe beginifg of x, very slmilar to records.
Because the sizes are stored with, the vambles there are no. ptﬁm of. aﬂocmng space for
size parameters dynamically - the. space has alrady been merveﬂ ln ugh varuble (The next
section will discuss storage formats fnr variable size obpcts in more deml) In the case of

abstract data types defined by users. the undeﬂylng sizes of arnys and smngs must be kept for

_the use of procedures receiving the components as argumts etc. However, the abstract size

_ ' ;parameters must also be kept, for' querying- md for the size ‘checks required in passing
o pre-existing variables as return varia_bles (seethe-nexuecuon and Sectlonﬁ.s.?.@.

4.6. Analysis of Costs of Size Parameters |

There are two major costs associated with size parameters: storage overhead and
processor time, and: both are. somewhat depetdeat on-the actual s&onge :epresentatlon used.
Therefore, let us consider the storage effk.leacy of postble represemttom. and the extra
processor time required by size parameters. Part: ® of Figure 1 shows the most general
storage format one using poimers This format is simple to use since items are always at
complle-time known offsets _within substructures, although considerable lndexing and
indirection may be required to access a deeply nested item. ‘More efficient forms such as the
l linear format of part (c) of the figure are possible in :many cases. Sm:h a mfeﬁ format slwes
memory and cuts agcess time because the polnﬁn do not have to be stored or followed.
However, the linear represenmbn 15 not sufFictent for alf’ cases. It Is better to adopt a general
representation using pointers - we believe that a single storage format shou!d be used
thraughout the system. Having multiple formats in the system would be bad for the following

rea SOﬂ s




Emtsmm
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a) Let this be part of the foe cluster:

 foo = clystes [siael, size2d is... -
rep - rewv(ft: ingl;
T e W4m

end foo; |

‘b) Let x be decl;md umm;umm;mwm

¢} An optimized representation: for x and 9 is linear:
* . . n Dy, IR R B

_1st.abstract -sise parcmeter
anobstmct g&u W
Maxlmum !cngth ot u ; ™

- Stéragé for charactérs of @

ACW,N Iengj,h gg{gg,

St?rnsa tor eharastens.of b, i o
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(D) _code generation- ‘would be mdemw
- (2 if multiple coples of modules were snde, eath mm one' mrage formt. moduhl:ity :
A "wwldbethreaumd. , S RS T RS o .
- (3 if, on: the other hand, Muiumﬂ ‘handle any: storage fnrmat. the code would  be
larger, or. mterpm” execution Wawm o
(4) the entire ;runmmfmu mmsiﬁhlkﬂie‘payo‘" mgm be small.

Thus, the optimization to a: fumm more: mm the pohnr format may not be worth the
'complicmons it incroduces : ‘

Given that we will.use the pointer  storage: format, ‘let us examine the cost of size
_parameters in detail. ‘First, let us see how much.siorage ‘overlitad i introduced by havlng-uze_
parameters. The Me» overhead for size purameters consists of “one integer per abstract size
parameter per object of- am abstract: data typeplus one poltiter for  each array’or string
component. - t is hard to assess just Kow much-impact this overhead Il have, because it
entirely. depends .on. how- often variable: size ‘vbjects are used, ‘ahd whether the arnys and
strings.in them tend to be large or small. Dope vectors: hikve:bean accepted in many hnguages.
. and size parameters. are only 3 generalization of dope vectors.. 'We believe that the storage

~ overhead for size. parameters is acceptable: -Besides, this overliéid is uitavoidable because size
- parameters can be determined.at run-time: Therefore, wwggﬁt that mxe overhead !s less

- of a problem than pracessor time.

In examining processing overhead, we consider the bit-copy operatlon flrst l-‘or fixed

size types a bit~copy can:be-accomplished with-a blotk move, provided poimers» to components
are represented as- relative offsets, and all components -aré- packed ‘together linearly. (Both

i -proﬁsbs are possible, and the .offsets. can ‘be deternsined lth—tiNe’ ‘With care, the
components of an object of a variable size type can be packéd together in a similar way,
although the offsets will generatly beW!tMﬁ,aM thie order of the parts accessed
through pointers (ie, offsets) may not always be the same. The-tlme‘when care must be
exercised is in the initial copstruction of the nbmm ‘the: components will- mver be
“moved fater. The only information that should be stored at a fixed offset in the stack frame
- for var'iables of a variable size type is a pointer to the ob ject itself in the dynamic part of the
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frame; in tha way a ungmmummlp rm is achieved. ,

Run-time size checks. Wmmw MW 43 we made a

. decision regarding..how clowely return vaniblue stul apaihicatioNy: ML rid ‘im sizes of
- pre-existing variables; narwly, we decided to-sllow WMWM so long
Aas each of jts arrays- AN RRINES Ware st lenit-as m' i o “pettivh variable.
Thus lfxmapMmMW"_., Nt . ‘FWM for a

return variable jntended: . be-x the alon mw*wm*m the
abstract size parameters ({10, 20’ and (20, 309 are different; MWMiW of x i3

. theia 458 COMMOTIoUN: quiies:w trewille oF e "‘tﬁ*mm the

return variabl! speciﬂclum and the pre-existing variabile; that i WAy ke StHvg ¥ must
.., ‘be compared. p_mgm} Hor: smample; fer: mmw ﬁw aﬂw. mpamﬁ
. Would ba compared, and:the stew of the: oo g e e ._
Rm«ms S — mmm prosssior ttine apent
B doing size kaém!# the i ot mmm W 4 i o Mth.

mvemm, a, "ﬂ! m Mr
s SEOTR “’"Mi%wm b

\""’"‘"‘* T-’?‘ W&W«j&nmw
. On theother hand, sum-tig ‘mmmwmwﬁmwm

o

on asslgument: reduces the gverhead MM
‘pf non-exact. mmwm
. >."°P‘ ’»""’9 "%W Mmm for: ther il
» AP"’C“‘;& OR&M ationg,- of . - o

'ltmwﬂﬂmpwtm»ﬁﬁ m\u‘
to ‘"‘Y'q““lﬁ%‘» TR IR SRS (g 4 S et A R wiey B




4,7, Summary

The ﬂexlblllty gained with size. pannmm an be expensive. However, size
parameter; are really just a generallution of the bouuds pf arnyx, and many.of the same
) implememation technlquu ;pply Notice m: if sige armgters are. required to match exactly
in assngnments. we have a scheme very close o tm W yg is part of the type. However,
- we have avoided several dlffk:ultles associated vnqh havmg :m bepm of the type of objacu

() We do not have different operations fer ob jccu of different sizes;

2) -and thus we have prevenwd an explosfon of pamneun to opeutiom

(3) We know expﬁcmy which pammtm oust be oomptle known. and whlch may be

‘computed at run-time;

(4) and because types (as opposed to sizes) must be compile-time known, we avoid having
run-time type objects (i.e, objects of type type) at run-time, akhough we do require
run-time size information;

(5 and, agun becauie types areeumpﬂe-tuu kmn,mun perform all the difficult type
checking at. oompue-ume. ' .

~ Although it is a master of epinion, we feel that separating size information results in a cleaner

notion of type and helps to separate ahstract concerns frors implementation details. Overall, we
-are certain of Lbe usefulness of regular m and ‘believe that size parameters are also
helpful in programming
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B. A“Il and Natm

In this chapter we present a mechanism for dymk storage allocation. It allows
 programs to bulld general graph-like dita structures m’uqumug gnrbage collection o
~ much run-time overhead. Furthermore, the use of thw mfw can be prevented at
"cempikeﬂm Our presentation’ begtm With areas, the objmcti ;hapﬁm mnge allocation.

‘The discussion’ ofafus!sfoibwedbyadacﬁpébndw th!objectsuned to name
ob jects aflocated in areds. We then present details of & uﬂug areas and pointers; it is here that
the techniques used to prevent dmguug references are devsloped. N '

After prescming the area and pointer mechsnium, we dimmthe impact of the
| mechanisms on aliasing. mmeqt on the copy pro 90, A0d. Qrsent a variety of methods that
| might be used to implement areas. Lutly we &ve m p 40 ilgtrate the use of the

mechanisms.

SI Areas

An ares; mamm‘awm w m a stack frame,
somewmt like an array. The idea is that the m--w ‘ot this M dyn;micany..

request. Areas are bised on the collections of Euclid tumpson’m but there are several
lmponam differences. The. ‘ma jor; dif fevence wmwmw m of a single
type, whereas wmummmmmmm *Thus st area bounds
only.the tatal amount of me mwmm& of W)utu éf ‘each type
separately, as collections would. This can lead to better storage 3 :
The simplest allocation method is to allocate ob jects knuﬂy from one end of the area

' to the other. No reclamation is done; because areas are in the stack, the space for an entire area
an be reclaimed when the frame it is in is released.2 When the size of a requested allocation is
larger than the remaining space, the allocation operation wil fail. This allocation technique
brings out the sknlhrlty between amsmdam*p: lmpmgmdymmﬂy using the addA

1. We will discuss more wphiuuted tmpmam m for mm Iater’ m this chapter
- However, the general properties of areas will hold true for any
2. Again, we will outline. mmum schemu that do more ﬁe.g.. rechmation) hter
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or addl operations; areas. allocate new components dynamically it liké fashion. The similarity

ends there, however, because arrays are omogensous aggregatis'and:sreas are héterogéneous.
 Pointers are used: to'access pbjects atloonied i sress. Followlig & pointer is not uniike

‘ index ing an array, but a polnters lype includes the area in which the ob jact polnted to resides,

and the type of the object, for safety Thus the type generator ptr (for pointer) takes two
parameters: an area and’ A type; ptr(a,ﬂ means & pointer to AN object of type ¢ in the area a.
will be ¢ di;cuued in more detail

(The type generator ptf and the use of areas upa

TENERE O

" below) The auocauon of ob jects in ams is pmormod by the operation ptdc.tlwloc It takes

one argument an ob ject that is copled to produce the'newly allocated objoct The new ob ject is

. created using r$copy. The typeof ptriasiSaifac s -

proctype (const ¥ setuens (ptriagd)

- where g is an area and §-isia:type. Alloc slgmhjdhml'eru out of memory”) when there is not
~ enough memory left in. the avea to aliocatean: cbpaof MWW If a'is an area, then

» . Nar P plr[a,lnt}u- ptrinintiSaliac®;. R ~
is a legal declaration. wuh initialization. Its effect:is unﬂomem integer ln the area g, and set
the pointer variable ¢ to point to that newly allouted integer. In this case’ the new lmeger Is 5.
Corresponding to alloc, there isa selemr deref, med to access objects alloatcd in
areas; the type of ptrﬁmf]&duq’u , SRR SRR
seltype O of ¢ from. ptr{at) slgmk {bad pointer) : o
where a is an area, and ¢ is a type. Dmf signals bed_pointer when given a null polmer to

follow. (The null pointer will be discussed below) An unsugared use of deref is

ptrla,intl$deref(p)
The standard selection sugar allows this to be written as _
P deref < ‘ N {

However, there is a speclal sugar. for dmj whlch is more convenlem than either of the

' previous f orms

pt | ‘
There is no free operatlon to release prevlously allocated stonge. Fr« would be unsafe. or if
safe, prohlbitlvely expenslve Having free and requlrlng afety would amount to requiring
ob Jects to be reference counted, and still one could not truly free cyclic stmctum wlthout first
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- breaking the cycles. We feel-that reference counting is:t00 axpensive.to justify requiring it for

~all areas. However, partisuiar. apeas can.do refecance MMMW from the
. compiler; there woulkd still be no. explicit free-opezation, hut-setting: a - W wﬁuﬂptr might
. cause the. ob ject puviwﬁym hbym mnum

' 5.2. Pointers v

For each area ¢ and each type ¢ there is a mnr ty ;m(a,tl The ob jects of that

pointer typeare pointers to objects of type { in.aven.s. ’I:bmmﬂnmﬁmuofthe type
" ptriat); in addition to ailoc.and d«cfwhkhmmmw wehawr

(3) equal: proctype(const ptr[a.tl, ptriasd eetueni (oo = retuens true if and only if the
two-pointers point to the same ob ject ti.;the same Jocition in the:same area);

(4) copy: proctype(canst piriasl retuens: (piria, < cogies its megument (the poiriter, not

(5 null: proctype O retwrns (ptrias))  alwags renins the'nefl pointer,# pointer which
_points to no object. (Remember that fmwmm fil and sigmls an
exception.) |

'There is a sugar for ptt(a.ﬂsnull() it is :mptr Netia m ﬂu umes no destgmﬁon of
‘pointer type - the correct type can- h obtahld fmm ampt n the ‘case of nilptrf,
which will always signal bad_pointer anyway.: The wm& W are alloc and nilptr.

5.3. Using Pointers and Areas

Up to this point we. have described some feamm 'of areas and 'poinms, but have
omitted several crucial points. A goal in the design of the area mechanism is safety In
particular, we desire to prevent dangling references Mmly mtplie-tim ebecks Prevcntion
of dangling references depends equally on several differént parts of the deslgn it is the
- synthesis of these parts that achieves our goal of nl‘ey. and not the individual parts.

' The technique used to prevent dmgllng rel‘m is buiaﬁy the foﬁo\msg We use
the symacnc scope.of each ates object mdeﬁne X ﬁmmk. muc seope of the am object at
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' vrun-time e, we arrange things such that the ares s ﬂy nameable wh‘e’re it will ‘exist when
the program is run. We also arrange for any object that mlght conmn (or try to constmct)

references to ob jects in an area, to have the area’s name u purt of its type Thls "trlck anows .
standard type checklng to prevent dangltng refi at mmplle—:lme, Thus, we use the
standard type checking restﬂctions of the anguage to get a3 much of. the Checking,u«m can.’

53.1. Area Crestion B AT SRR TR .
Areu is.a type. and-areas are quemﬂ the. mm Thesww epenﬂon of the type
area ‘is areaSnew, which s used to creste mw Tm ‘operation akes e argumenu. a
string (describing what sort of area management: schemé is*to ‘be ‘used.} ‘©g. "simple” or
“ref_counted™, and an integer (deseribing. the size of thearex 10 be created, eg., in ‘words, or .
bytes, or some other standard unit such.as the:size of an M‘Fﬁuﬂhuypeof area$new is
| proctypelconst string, inp returns (area)signals (bad_arguments(string))
The exact meaning of :both. of the arguments.is systom’ Wt: the number am! kinds of
area. management schemes, and their names are detersvined by the language - mplemematum
the unit storage size is determined «by Mmmm ‘and the: meaning of the size
argument may depend on-the area management scherne. choten, ay well. ‘Of course’ thnm
may signal if its arguments are improper (e.g. the size is negative). N

' Almough area isa. &ype. we do not aiaw. Mthllﬂﬁtmam in fact ‘only two things
can be done with areas: they may be created, and: they:may be‘used 3 ‘wctual parameters Area
variables are a bad idea because area assignment is dangerous - ueg a;ﬂgmmm could resukt in

dangling references to the area written over by MW
' Since there are no area variables, a special statement is. used to:Create new areas, tbe :
new statement. For example,

" new a: area = areaSnew (“simple", 500)
Creates a mew area g, of the “simple vartety and of slze 500 units. The new statement is
intended . to ‘parallel constant definitions, and the scope of the area introduced in a new
statement is the same as the scope an identifier in a oonmntdeﬂnmon would have in the same

1. See Section 5.6, which is about implementing areas, for several area management schemes.



f"""“"" Wmmwdmwwemmmusu«d
. SreaSnew. FUttheroet /e sow sutemont:js the:on T T

R S AL B

5.372. P'oint’ers aml A‘reuhleps L o R R

ftis mmxw:mmmmmemwwmm Hiving

m&mmepspemu“fjff mmwumm%mmamma
the area mechanism. However, any typemmhw repremniion s relying on the
area which cmtmtheobpasmudw. m«mmnmaawmm :
an area: a. gga is saigt0 Wp wmmmmmwuw via objects:
;.- 9E the typs. Thus mmmﬁuﬁmwwﬂmqm the
- second type d@@damam&mm e '
1 We mentioned .our-mesived of MWWMRWI:W
depending on.an anes. mwmmw W willid o ‘tgpes Umwritable
by requiring. any iype mwmwwmwm“vm Fhus, areas are
hot clobalmddMq ﬂ-wmwww‘wmuman that

3.5 gloments. e avm 5 i athe & 2081 -

e

'w L mwm&u% ifloved: 3

.« binary. e @MMﬁMzu & s f SSE N LT B

l'!i! -ﬁ]ﬂﬂi Hodel;,

-~ node = mwm ¥
mbm‘q m Al a VRS L S NS - ok S e S
Notice that the type node Is rnwruve. CLU joes

i e v T
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lf their (pouibly infinite) .Pmm ‘u tbt 1 ﬁ“ .
'~ temporary data structure mlght fook uke nm. |
foo = proc N

edure that used a binary tree asa

bcgin ,
const a: area = amtncw( slmple n)
bintree » blmry_trwh. At
.. bintreeS... .. -

. end;
end foo; ‘
| The other- thing to notice about btmry..tm is that it takes g as a ptnmetér- it miist do so to use

ain its representation. R S R R |

Why are no other uses of areas. ot!fm Mm M?' As was lrgued
before, area variables are dangerous because assignment of areas isan iimolmolhbk source of
dangling references. Other uses of areas, such as storing them in dm urmres. or passing
them as arguments, tend to destroy the static soup!ng requtnd o that the compm-tlm checks

,,,,, SET

to prevent dangling references will Wurk Buidu. ‘since mch_ dynamlc posmom may not be
“used as parameters, and ptr takes the area pdnud into as paumeter these dgmmic uses of

PR ?2

areas would not be ‘hﬁpl‘ul the usefuhen of aren déﬁends on poimer types. and i in some

A e R

context the type of pointer; lnto an area canmt be expremd nothmg un be done wuh the
~area. In sum, there is no way for dangllng nfemm uo lrlu from dltg stmttures becausc the

type of the data structure depan(Hng on an area unmt be expqu mywhere thq area does
not exist

5.33. Closing the Loopﬁoks

As demgnstratqd above, d{,ﬁ_ tﬁm amnt ‘arise from dam structures.

| However there are more possible. asqurges of Anogling: afm For mmpk- the procedure
| ptr[a tlsalloc is clearly bound to the area g, and we would not ltkﬂhttpm to be usable

1 This rule is.the same as. that-used in-Algol 68. Sntﬁﬂmufdeh'm fot an algorithm for
checking type (mode) equlvalmce



where a does not exist. - One might think, 'The aren ¢ is mamed In wm‘ out pmmsauu.
there is no danger.’ Hm, tym s mm Mm m gmedun

deflmtlon SRR
- foo = proeta am](msu tnt)mﬂnt) |
The a'ssignmm st:temcm below is pnmmblymh
p := foolal;
where a is an area, and the type of p is

P""“)'Pe(couu int) retarns (int)
, - Therefore, we can write, . '

var p: proctypt(mn int) mm (int);

T AR EE R

gl

“The tode’ pktured above my foim a dangung rgfcrm LX m am o; that retcrence is
hidden m me prowdm wm ’

" with other objuts we mld nn the t”eef mw”n : r
Mest rouunes typadonfabﬂnam&qm Fuka@Mﬁt
. proctypc(eum 0 nhrudpuu.m :
' and'tRat of ptrfaibderdfis
seitype) of ¢ from ptries) aumud..pumﬂ |
and both types refer to a. To prevent dangling m-&mmmmm
we prombn routines from taking an area.as a parameter mmmg tlnt area as part of
their type. Thus mmﬁumww Stice & euinng o

A ,;i;iiﬁatmmmm access

AT

ohibitin 4mmm 57 mmn of a
_ routine does nex 1efer, 0. any Swas.:thes wmmmwwm be. p.md
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‘-through tho routine’s interface. And if no objects depending on an area are pgssed through a
routine’s interface, then there is no point.in the routine’s nhiagth! area it ) parameter in the
first place: if the area is to be used only- louly the rwtmc gm; ggfwell uqte an area for its
own private use. : ik B

Another loophole is the use of aréa as anacmaipanmetér ina posmon' requiring a
type. For example, if an abstraction h:s a type p'amneter‘ t, it may declare variables of type ¢,
arrays of type arraylt], etc. Previous restrlctlons we have made prohibit the use of areas as
variables and - their stonge in data: structures. - Tiserefose; -we imtist ‘make ‘n “additiona)
restriction that.area may pot be usad as: an:actusd wmm A

'534 Summnry B

' .Hdre f*a‘ré the restricﬁdm wemdetopt?evema’mgﬁl& referenw |

(1) areas, once created may only be used as ucmal panmters, 7
- (2 if a routine takes an area as a pamneter then that area must appur In the type of the
routine. s o .

@ area may not be used asan actua! tzge ptmneﬁgr

h_polnter fypes, may. be. . Thus

arraylptrla, 1) isa legal type. but bar(p] wtm B8 of, tgpd peigsl is not, ,,gxg;g;-.m,mg what
meaning can be attached to polnters as panm& gnngx) | . ; * |
~ With the restrictiom suted above u;erq . no_possible way of mllowin& a. daagliﬂz

reference in ASBAL However. it ls poulbie ] w 2 dangling reference.that can never be
followed Consider thlx fngmentofcode- i ' !

In: addmon, pointers may not be used as, parameter;. thoug!

P
5 I3 YR T
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 new a: area -W'W.m;

7*‘2‘\?'&5?: . .h! '“ [T S

. e M*MM‘UM m;
type ptdbvht]' e e e T

var p pt,yp wmwmw

e
T

Fre *Afmmm black mmﬁmm umiﬁmm of g will

SR Bap omesun eat 144 -x,bygﬁle_}é. SESERT B EETR S N BEREY

remain. That pointer wil be:dungiing teckuse ftiachies isio sieiet, yich tixs bueni deitroyed.
However that pointer can never be accessed m»mmmmw cannot
be written outside the begin black (the scope of #. Evan If the begin lock were in & loop,
.00 & ASPIR when it would be

there is no way to “r nember” such a dangh
invalid,

3.4. Pointers and Al

EYSTa

With the amﬂmmNamnam‘mMMmCLu‘ |
We gain many advantages: shatitg, mmﬁwmﬂmmmm wegﬂn

L0 prviet di:u!pt“ifuta dere

T mmp MMWMi
same type. What kind of aimihg riﬁﬁ
oBhed W EUCHA PLavhpedh
“shiwring. 'The sharing g |

© no checks are made necessary at a dereferencing. M wwaﬂmwwhp
so if two derqnemmmmwswwmemunmmmw no
checks are necessary If the pointers themselves are passad. mmmm»n'
pointers of .the mtm“hdﬂeﬁ;m&mmmm Thqﬂnﬂng

possible through pointers is:not quite as bad. ummmmmmmum
- Object in an area is never destroyed by having another object written over it; objects in areas

nhnhﬁum Ownppmchts
m!u whmmwm not all
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may onlybemutated (Thuisbmuuﬁhamw::mbeaﬁtgm to)

- Another problem, which was mentioned * whert: sefections and allasing wére first
d_iscu,ssqd in Chapter 2, is.that h;a,vtng' an object:as & conet does not gusranteé that'thé ob ject’s
§tate’ will not change. This is because the object may be actensible via anothier path as‘a var,
for example, by fdmmg a chain of- pointers. Huywever, sven thoagh a const iy be mutated
undcr some conditions, there is a simpk condition uncier Wwhich: it ‘tan &guurameed fot to be
mutated: the object .is not allocaeed in an area. Tests for aliasing alweys catch overlapping
ob jects residing - in the mvambbw«if ‘an-ob ject that is-physically pant of a variable is
. accessible. .as a censt, then we can be sure it will.not be mutated.- Thealuslng detection - checks
performed before procedure calls. gumnm this. On the other hand, if the object in’ qucsnon ,
is in an area, it might be mutated via mmmmmm used to access it but its
|dennty can never change because the iaapm vaziable itmddu in:can never be mgned to.
This 1s an advantage of derefegencing t0 mm of ts varixbles.

_ _ Note that if an object has componen _\ﬁm ave stared: in &% area; then its componmts
can always be replaced by, replwng tbc m:@ them m lese_no useful abmty through
derefergncing pointers to ob pcumsmd of. {0 variables.. The major disadvantage of sharing
in ASBAL is the same as its major disadvantage:in- cw *siumg makes verification and
proofs about programs. difﬂcult., by requiring mm axioms and proof rules. The
complication of proofs mum from . sharlag =is, v 33 1& .unsolved pmbkm common to alt
Ianguages having pointers or sharlng '

5.5, 'The Copy Problem

When presen;ed with an ob ject to copy.that: contains 5pabnrs. should we copy just the
pointers, or ;hé.s ob jests pointed to as well? TMMi&MmW require copying the
 ob jects 'pomted to, and other types forbid- 4t Asdiscussed: in ﬂwuzmd chapter, the only
| solution to the problem is to have each Lﬂn provide a a” operation, which does the

appropriate.thing for that type, - o

In CLU, a copy operation will uuully copy- the obﬁcu referred to ‘instead of the
refere.nces. but both sorts of copying are provided in many cases. For example; CLU has two
copy operations for arrays, called copy and copyl cof:y does a full, recursive copy while copy/




copies only: obpct“m However, Mmmmh CLU, wiereas they are
‘ always eamsin M&ﬁ» Heoswes: wehave. WM ﬁw M’”m can

Eum sort. Tm,gw« .4 mm . ;
<. fach- component is W WWM@W
s usually, desired; et she ' ,,w;wmmmn WMW
~,,E,;@eutimo£ that type. .
- Tmmmmmwmm Mwuﬂ mwm
.. problem. mm mmmm%ﬁmw: :ype. and it

ﬁ.smwmwﬁa ot seme. typen: e spbowgent ootk Rt Ui JeltiN & e of Rion
. objects. are; sqeinelent Jt amrl: owlfe 15 thiy an S5E SN ok “Per difier:
eqmvalence of mwﬁ%&&w&m WO W, N W ‘

S . r WlﬂWM T"’%o sets are
msw«od«pﬂeif mwnmmymw ~theord ]f tﬁtm in the
. Mmm for etk It 18 too: strong: W WWMW T

stmctures mmhtypemmpmvmu, : e o

5.6. lmpleme,miag Amtnd Pointers

- Our ariginal nokion:of awArer WeE X blocki of siériggy: alidbatid: in a suck frame, and
. thatof a-pointer was-a: nm:mwﬁmm ogivhving of thie aren).
. However,. any-otber. implerntations of Mﬂw Ay chuldt’ *M& d‘memory
~ taken from a- sorage pool sepurmie frony the salk’ This' iiglimenu i
run-time support code, but has more. flexibility. For exnmgti: il COuNE’ grib pros b‘!&ks
storage automatically  If thelr orighwet sivount Wil wedd Ul ‘Rbied stiv-biltks would be
. allocated; and the-blocks wsed by:an:uris woukl be: réftiiniet 65 & ot of Tres Ulbeks When the
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area .was destroyed. Thus, very emdent norage muw would be posslble. One coud
‘even go so fards 16" copy cumnﬁy _' ?nmmbm-ﬁmmw devm to get
an effective thcreasé ‘in- ‘address space. An ' it differont 2

single heap in which alt areas allocate thetr ol ‘jlm. 'l‘he obpuef uch lnl couid be chamed

. ESE L
Fpe ; B

together. to be freed when the area is dmoyd RO : .
| Somewhat orthogonal to the source of the mww m;emem The simplcst

oooo

- scheme has been mentioned before: linear allauuon wizh do nchmation Hmver, areas could

reference count their ob Jects; alloc and the pom copy Gpersition toild have code to maintain
the counts. (The compiler would have to. hg& in noting_paimters. that;are destroyed, however.)
With more sophisttuted run-time support, umm collection schemes  could  be

mplementet:\l Our goal has been to avoid the necessi }gﬁpmcﬂm but thl.t does not

mean that we cannot provide it when asked. , ‘
| Jaﬂogfmn; dimgggt:m mgmt schemes to
coex;ist if care is t;ken Hence. stongl m agement . facilifies can l# tailored. to the
.programmer s needs in each problm even wm;kg &1{[ res ut‘ n;em program. .

. We beheve areas are a flexible and potential)
coilection Poimcrs can be as efriclent as mchinc lﬁm md a“mtion within areas M!d
not be slow area routines will most. likely be hand m in ammbly huguage. Argumeuts to
‘the routines will be in terms of machine addresses, o(‘flm. and ml_mbm rather than types, etc.,
b.éi:a use they will be called by ob ject code and not directly by users. The ability to tailor storige
v'mana‘gement to the task is probably the biggest udnmqe of areas over a global storage
mahagement Qchefnel ' | ‘ '

One mem of areu s th&t thgy

1. The main difficulty is supplying the information required for tracing. See Bishop
[Bishop77] for applicable pamai garbage collection techniques. Perhaps these techniques could
be combined with Baker's ideas on incremental. garbage collection [Baker77), or with the
transaction file methods (Dmh‘n Barth77] to provide areas that do local, incremental
garbage collection.
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Figure 5. The Queue Cluster

quede-duiterhu& t:ty.pd “cred ’"mmg
~ where thas copy: proctypelconst 1) xe ~

rep = record(first, last: ptype];

ptype = ptr.(i; element];
element = record(next: ptype, member: Gy

create = pfoc () returns (q: cvt); |
- q = rep${first, last: nilptr);
end Create;

insert = proc (var q: cvt, const X: ©); ' :
. VAF P: ptype i m;,mwmw ﬂlblfmember x});
If qt‘irat =nilptr
then ¢first .« p;
. else.glagttpext = " P
end if;
‘ qhst p.
end insert

5 .3* .-

remove = proc (var g: cvt) returns (x: t) sigluls (empty);
if qfirst = nilptr
then signal empty;
else
X := g:firstt. member;
- qfirst := gfirstt.next;
end if;
end remove;

members = iter (const q: cvt) ylelds (const b);
var p: ptype := q.first;
while p ~= nilptr. da
yield (pT.member)
p := pt.next;
end while;
- end members;

end queue;
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5.8. Example Two - smsm

) Thuexmhnawmpfwmhm& hmmmhan_
‘m'eproved bagsbypmm WW[ PERAS ‘

I’Qp « recordicount:  iInt, . ey RS b
" root: ,M

prode - ptria, neﬂe). R S

node = recorilleloment: t, : - “*
count: - int, T T

left:  pnode, .
| right: prode);
This rep;mnm 13 coppmtin mmumm MNW uphcﬁ by an
ares, and arraymdasnphadbym Figure 6 pry mmm ‘We feel the.
new mﬁmnmwmmmmm Mpmmm the
array containing the nodes had to be paused In sny recussive il in
wmu:hucm'm‘qwtmbm ‘
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Figure 6. The Sorted Bag Clustér

bag = clusteria: area, t: typel is create, insert, count, size, tmrmlng. ,
‘where t has copy: proctypc(m v mn:uw. .

equal.lt proctypeicbil € 1) returnilbisD end;
rep recortlcount int, _
‘ size: Int : o
pnode = ptria, node] = SRR -
node = recordelement t '

" count: int,
left: - pnode, .
-right pnode]

create = proc () returns (b: cvt);
b= reps{count: 0, siz&'0, root: ﬁw
end create; .

insert = proc (var b: cvt, const x: t) R R
b.count := beount + §; ot S
const Rew_ptr: pnode, alloated bool « insertl (broot.x)
b.root := new_ptr;
if allocated then b.size := bsize + I; end if;
end insert;

insertl = proc (const p: pnode. x: t) returns (q. pnode, aliocated:bool);
if p = nilptr
' then
q:- = ptrla, nodel$aliocinode${element: x, count: 1, left, rlght. nilptr});
aliocated := true; '
 elseif pt.element = x.
then pt.count := pt.count + |;
elseif pt.element < x _ ' o :
then q, allocated := insert] (p1.left, x); : .
else q, allocated := insertl (pt.right, x);
- end if;,
end insertl;



Hé

| Figure 6. (continued)
size = pm(mbaﬂmuw _
s:=bsize;
endsiu;
°mt-pm(amvmm.,gw
c -bm
end count;

increasing = iter (const b: cvt) yieids (const't, dmt)
for const e: t,.c: int in increasingl (b: ”.
yield {e; o)
end for;
end increasing;

"""’"P"Mmmu ,

fﬂ'm e t,c:m ”M )
yieki (e, ©;

- end for; :
yield (pl.element, pt.count);
fwmn,;:m,,

3‘"‘“ pa .
Iend incml,

e
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‘5.9, .Exnmﬁh 'l'hree - Symbol Table

Our last example is. a new one. The's : ﬁ*ﬁkﬁt ﬂ'om TWuIﬂBc] md is

’ ; o . L . L Lo Lot R e "’(?‘ 5 :

presented to allow comparison with Alphard. A o " ?&ﬂh pﬁfm 2 mpptng from strings

(representing identiﬁen) to attrtbute objueu in Slock- iy ¥ W !-h'e u ‘the cluster
header: - : o

| symtab - clulter[a ares, lm" type] is mm h,ww
e o ek

' where attr Im copr pnﬁypdmammm
and a description of the operations: . L y
~ create: proctype () returns (symmb) L
creaMa new,empty W B g e A

insert:

e ttines prstypn e -
,returmtmlfmdoulyifﬂnthdbddhdﬂlbubbekkm

: -entgr;hbck »proctype (ur symtab) T ;
: ' performs whatever ekéeping ks ”""”“’furimbleck Evel ‘

,m : '.:',.7‘.";‘ -

Ieavé;block proctype (ur symub) tt(mk (mtdcr_fhm ' :
: flushes symbols of top WWEF and' dvgii Bk ' level; sigmas underflow if
~an attemptismndewﬁW‘ phRitiid WM

‘ Ioolt.up: seitype (otring) of attr 146 m" L_pr - |
_ selects the attribute cbijet Foe“thie sy ‘?.; fti’mfl;aigmh not_present if
there the symibol 15 et wm g et o

A hash table will be used: to ook’ up the W ﬁ‘ﬂtdhhlg We will use a linked: list

,rf‘ @

for symbo!s hashing to the same bu%thggm MMM nfm such a Tist. Each
entry in one of these lists will be a pomtgr*to)the dmau;uggre for om symbot This. data
structure consists of the name of tly symbol gm i MMQ" mtrlu made for that
symbol. Each block s represented by the list of the mbell deﬂmd in it, and the blocks are

stored in a stack.” An actual statement of the represenbittioll ookt mike this miore dar:




| oeHELyEs

18

R SR AL
ER S YT I R I &

See Figure 7 for an examph of ‘h W% oy

performed Here are: el ALY 4 ,WMM‘N
0 ‘ *»ﬂf~ i E g‘.‘ e ",.,,.:; PRSI AR AR Fa T ;’L SFonand At

(1) cr@%p%&m i’y ,
mmmm

ii’ft w,‘é N EERTRUEE UIEPE USSR s LN

S ot *.‘ *‘MW” “Wﬁww & R
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L]

Figure 7. A Snapshot of a Symbol Table
Below is a drawing of the representation of a txmhg\ n@k after the. following qperations have
been performed on it: .
. create

insert: a, x1

insert: b, x2

insert: d, x3

enter_block

enter_block

insert: a, x4

insert: c, xb

. enter_block -

insert: f, x6.

leave_block
(Assume that a, ¢, and f hash to the same. bm u;d list. md “stack are implemented with
linked lists.) . R

jevel 3 ‘ IR g ‘.\8
blocks
' hnsh‘.tu&e.;!': ’ ' :

.
I
——

x1




%

(D creste: WW
(D cmrpmt’,dmt, it fm..-.,mm R |
o mm:mmmﬁuwmnmmnmﬁm
of the Hat;
themchmmumdtmm

(3) members: u«type(lﬂh.tl) yieldo(v)
ybeids the elements of the list nm

Nowwepmenttheopomdmmm muuﬁu

create = proc () retuens (3: cvt);
s -nps{lenk lv,_

Thuscrcauremmta:mhdubhubbckNLMWMMwWyhash

tabte and a single b block with no spnbols. . ’ : :
mzmmummummmmmm It

worksufnliam. S e SR o D '

(l) :hemuzmnmhdmmmm»nwuum _
@ i thesymbdhpmwd"ﬁmmutﬁcmwm&enam :
aNMnI:CMMWMMﬁmMM
() f the symbol is defined WWMMMWbmm
4 if the smmqmmnmwmhawdfnmm-wun
ummformqmmumuwwm o
® lamy the symwm mwuam":. _h__wmmmm
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insert = pm (vars: cvt conist srm. ntrlng,‘ !Mll(ull (d;ﬁned);
~ const bkt_num: int = hlsb(sym) e .

var p: p-sym_ent := niw
“for ptin bucketSitien

7 break;
" else sigul defined;
end if;

. end if;
; end for;
if p = nilptr
' then -
P pﬁta, sym,_entry!talbd . ‘
sym,,entrys(:ymbot sym, ,
attr..:tktpush(pf.stack, uttr_mtryﬁleul: ‘ sJevcl

m); ¢

const, newblk symmt - xymwmp bM&W.symbow
blk.stk&top(s.bbckﬁ.sm 2
end insert, - e ¢

The operator cor (for conditional ory evaluates lts ucoad u;gument only if the first argument is
false; its value Is the logical or of its arguments. Thereisalsoa clﬂ operator' conditional and,
~and it evaluates its second argument only if the first arngs mn. .The.regular and and or
operators are sugars for calls, and thcrefore uhuys cvahme m&mrgumm The cor used
" above prevents our following a null polnm

The rest of the operatiom, ts_dcﬂnod, mm.mch, lcaw..btoclt. and loolmp. are
straightf orward. Notk.e that lmvc.bloch must thm l.\ny au symbol deﬂni!lom for the block :
_ being exited. However, it does mot throw way an uapty :’-uth. in this sense a symbol, once

entered, is never deleted '
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is.defm -mtauunmmw”ﬁ&m

d = False;
end is dcﬁmd-

enter, Mock pmfvn s evt);
P ; M{MW»

sesire aln

s. levei = slevel # ;-
end enter_block; fias
leave_block -pm(vn&cmmm Lo
1F slevel « 1 thew signal underflow; ond if: it oa
slevel := slevel - I;
for var q: p_aym_ent in ‘
attr_ﬁckwm}'
end for;,
end Iuve M
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| .'5 10. Comparison of Area- and Staclz Based Progumming

There are aomidmbh diffmnm mm tlusters for objects in the stack
- and_vnes.for,ggmgo be-allocated in areas. - Unlortunately the:user must plan ahead because
abstréctian: designed for the one storage mede. will uwwhemenmc to operate in the other.
The reason is. that stack- and area-based ubmm take. dﬁimt plnmm ‘sack-based
abstractlons will use size parameters, | md M am will matm one area a; a
. parameter, but not usually any size parameters. -hlowewer, 4f- mnmm is examined more
closely, it appears that stack- and area-based ubstm:ﬁon will alnys be different abstractions,

f ltacl-bued uburactlons will

stacks as opposed to areas. Another dlﬁm n‘ﬂm amys"wﬂ! be used‘ to reprmnt lisu in
stack-—bﬂed &b!tm'.tm biit Whﬂked Aists’ m potiiee be n:ed in. areas. This matter
of bounded vs. unbounded abstucﬁm ‘ndeldy’ Pirther memi‘: TR

501 Summary

‘ We have presented areas and polnters, featum that add dynamlc storage allocation
and list processlng capabilmes to ASBAL wnhout requmng garbagg collection or great
run-time overhead. Our pointers are safc- they may never point to garbage Polmer safety is

' guaranteed by compile-time checking whlch prevents fol any dan&lln&n{emces We

'possnble implcmentatlons for areas Lastly, we prmn,ted three prqgra mmin exampm two

were new implementations of previous examples, and one m a new clustcr We believe thnt
the concepts bchlnd our areas may be useful ln other hnguagu beﬂdes ASBAL
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6. Summary and cm

.. does not. mwmm Our-ajipy
extend - i a3 neededti; The' najor cm m%ﬁ*tﬁe aniliielying - semantic” mode! of
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RFU TRy
We have deugncd pngmnm ha;nqa mg abstrnct data types that
sdhi il A 0 CLXY 232 ‘Basis and change or

vés ‘many of the

wmwmwwctvwwh%mm angum

necessary: i obviise mmmwm Bt
S 2 \ . o "'4 ii;;u,r : RS F S ’ L
_ﬁ(l) Selectors ;mh;qum far accessing objects qoptaimerd, within athes objects; -

- ;Mv&mmmm but handiing

2 Siu pammem's -a tm ;
gm Deded; shae; prramaters mmﬁm where

I %. sue aum‘!’ Red, ‘

Of the three extensions, two are just génenlimbm of cmly mqim ideli,’ from their
presem use to the mlm of abstmt data typea Sem'swﬂu reurd and array component

WRteTsy {55

o 'acces;. and sizé puamrs generaaur amy m &nd dap: naon.

" becatibe the ob ject-orie
*“account. “For eximh.ifwmbdehhmfm mmm pnblem ww!d ot

C Tn theabmceofxrmdnwh&mﬂ:mﬁdﬁgkhw

.....

* Areas exténd the' hnguage m quite a dm’m dm Théy are an orthogonal
addition to the Basic ASBAL premtsd in Glnpun 2 bt l-hnm lms were tdded so easily

3L

ted semantics of mmmmm zaklng areas into

 arise. thwttheouprprobhmﬂm&hgahbbhna deﬂmdmgyfornltypes

faw"'oa.s VRS

cant] m«!nt. T'he area

mmim m’m T ‘ b’m i3 & g L oaig "‘3’* 4
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vestigation_ related (o, the. -design of
'e ﬁeﬂ cancerning ASBAL
e }!n anguage we haxe designed.

| An implementation would glve direct ﬂidm d ﬂm: . We dﬂm uetgqqdr muy are
worthwhﬂe and efﬂqem '”W&h m? : TSR | ‘

There are many areas of possible f srther. |

Ianguages supportlng lbatnct dat:

‘mlghtbeworthwhne ‘ T B R
o A' more ambmous undenakm‘ mld bg egm to. A&BAL for _systems
| programmlug, although my tal wouh ,EXsend thclmm OMme... )Hm
are some systems Pr.osnmm‘ fmm ;bgt 7‘ s v t

*Im' machlm-orlenwd typu fsuch as word& bym. b“ m&' addresses. "“)
B¢ ”’contrafled excin’ﬂem o amﬂy “W f‘?i"g_(“"“ '"“'f ¢ W‘um" such "

i Y

(e ..g:iche memogy) prpcus

(‘i’ o

f:.':'i' 2373

 controt of input/output Jevica and | :p‘d}l mg! - €
swapping, and ‘other features for bumhg higher fleirei panlle! programming_
constructs; O R

(4) user-written ' storage mamgemem puckages, pombly in the form of new

. implementations-of the area typ&

‘ Anofher suggestion for further Wivestigition is: incorporation of our area and poimr
mechanism in other languages. We believe our scheme mmumwg:w ASBAL, and

wat L .
RN <~ e PRTE +

1 Por’ exampie memory' atiocation’ !nvo%va the unufc u,g: Vo mewm Qf ahlock
of memory words to an arbitrary, type. f&% otk cemAln: M% o9 the.question of how

"~ often’ and” how “locally_such_] oS ooigt be used, if. at-all. -See Eucld

CTL&mpsenTN for oné teé'hnique bypuaag " qummm is
simple but inadequate, because there is not enough control over which programs may use it,
and how they use it. :
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émﬁm'intemmmﬁnmmmm Camparison of our area
mechanism with its parent, Euclid's collection MWﬂm The size
parameter thmwawummmmmmuuarmw.
wﬂgmrorwurdgmmdm* o ciiion B GENTE YO G

S L R differént tine of Fetearch | tmmﬁnmgukﬁﬁsk?m.
et uimg witic TathG Wi Wick “Thication of Werage lém * mm‘&m a
 syfithesis of the'CLU- cwwwm“ e M‘WW Eachtype
S mamager witM staticatly m’%m = &&N!ﬂeg‘;aebm yuma that
“ﬂe»ge* THe Osef's m O ﬁu‘i stack” would

LAY ANy A 2eaing? rEEe.

W% twﬁ ?b;na refmma. which

He 1P mg (I *f;aifi%w gl 't. type - w o er would
‘ a!mwm W osd o

distribute. on!v refm o s ebjacts. the ehjm mu b n,g i peivate sorage.

ENE ““r& i :.:f‘?f“ 5 AT bi ENR TS H SRR

stonge used by lmceeutbk wjam. )
33 &,9 Y3

mamtgers2 Sﬁﬂ. we beucn the type“ w » 48 quig
"’aevaoped ima a stmphr und me pncum Wm m

82. leusiom ‘

" We believe we' were successful in mamwmm types that
does not requireg:rbagem Aﬂdnmmmhmgnaﬁrm
; ,Q;@;mpﬁml Mwhm ;,;,%amm vl ot

P B ) . * - ". \\;-‘ et AL
A R A T A B L N L NN
. R TR bot LB e MR s
‘,@3 L fone ¥

1. The aumatimdwhmwmwmhpgg‘",
simple; the type managers would iwn complgte .
ﬁawxwammw oA
R rokghe be Hard wmimw%
“ whigh “queuds: of= aly ippe. “Em *‘Wﬁt lﬁ"_ i
Wmmwmm - k)

i BE
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~* ASBAL does not haye the ehgam or cw But we did not exper.t 1t would. There

appears to be a mde—d‘f besm elgame gu Mm L yad ﬁfuenﬁ on the other.
CLU’s semantics achieve elegance through the use of a simple and pm'ful amtlc model.
which unfor.tumtely requires fairly wmphx mn-um auppnn. We Mvc tnda.t away some of -
that elegance for a more efficient run-time muhaaum. Humu we mw tried not to
compromise - some. more. mmgmoccw. anw has bpen toward a-
completely type-safe lpnguage. type-2 fnty bﬂa; 2 key to the abstract data typc unthodology

If ASBAL does not have CLU’s ebpnca. miunr dou it have the simpliclty of
traditional languages, for’ example Pucal. ln fact. CLU ‘h m comphx than Pascal (and
~ similar languages) but more because it hu a pammgu thap beuuse of abstract
 data types! Yet ASBAL s more mmplax than CLU. ‘{u beueve the source of ASBAL's
cempkxuy is-the conummd‘ ranning - within.a MMW% Mmmged
heap. In a sense, we have buikt ASBAL o WWWWW onus
by our requiremenu :

ASBAL represents a synthesis - of ideas from several hnguages, and several semantic
models. We feel the synthesis was profitable, and hope that our work ~may suggest and
encourage more investlgmon in the area.

l Pascal -has been criticized on  the grounds that it i3 too slmple in this respect. no. Paml
_program can deal with arrays of any size.
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1. Syam aum

m“mmm,cmmﬁm TMMWM& an
extension of the me form. "mm $veial speciol symbols mJM mning is as
’ “ v ‘,Z‘,;r: g U L e e

[" ] -.ncmw' “i,.e;.,umi m
{ } mmmmmwwwmyumwmmmmmmm
RN -soporammmrhm‘:]b’nma&o%‘a’or b; R

( ) -.remwtovm;tmmmm _
= - used to separsls the le-hand sids ¢ cwhmmn (- mnhrmmd) from the
rvsht-hm -u- (the mim i mx o |

» mmme WMWW HWW m tormind
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I.l. 'Formal Syhﬁx. | o g e
LLL Modules o
. e . a _:y.

Praarﬁ" ”W‘ ' ‘{"“’“‘ : i}
module RN ->cknﬁr]procdoﬂﬁnaditddﬂ

cluster | |  : > id = ckuter [ fcpm flﬂ* t[ m"mi ]
' { mto;}m*W:f%‘i}}
c!ustirmoduh{ cw

clustermodule  => procdef | iterdet lula&
procdef ‘ - id -ﬁpm [ fpam: ]W{ Q‘dﬁ' }{éw ]

[mtmu«m }'bodyﬂfuﬁ];

iterd-e:f .’ .' N -lter[fmrm ]‘W ’fyld:‘j{W]t .

o [“rqsﬁktm;}wm id }8

seldef .-  eid ‘akctw'gfm"i( uwﬁ{\.u-wm} ])

ofstyp.fmsdz,quffa’g [roariehm ]bodyond[ 1

L2 Pmmauwm

fparms' o -> [ fpmnﬂem { fpamihm } ]
- fcparms - => [ [ fparmilom{ fpnmﬂm} 1 E;Hs ] ]
fparmétem .' => ids : ( int | bool I char | typc l area )

The shave three prodmﬂom e for formel wmton (to ol q.ﬁmm
except clustorc), formel wamhn co duhn, ond tho items in formel
_ perameter lists.
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e ot »«m}nm»{.m}}z
sparm => exp | atype

~ The productions for aparms and qnm ore for actual #i;'aﬁﬁton. which may
be exmoom, or type m M% w@d s MM

_restrictions B wm 'Oﬂﬁdbﬂ { m restrict m }s lyer : |

restriction =>id Inl restrict’ { .th'k:t }
restrict => ids : ( Plype ityns. 'm)
113 Arguments Returns, Yelds, and Signels .

fargs . | ->([mm{ m-m}gll

E | “taitem o ->(&!;!: lm) “'%M{W ?M‘} -

.frets . | -'>’ntw‘n_s‘( [Ms,dwq{gﬁwgw}],

tylditem o ->‘(«‘ "d m’%)*‘?"{*ﬂﬂ'} RS

P = riek (| frtant . v

fsigs .. =>signals(feigliem {"’W‘}) sty

e it oimeda]

The .above-productions are for for ; vidt ibts, yielde lists,
and c&mh lm: Tboy are mw«mmm

1.1.4. Sta;temcnts

body : ->{Wu}{imm:}

equaf!é' -> id - ‘gp ‘

et
SR 'assign




. decl

assign

if
while

for

: 4—_"b.'@g\pnﬁrav;q:‘.‘»;f: S R T
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it
| white

' | with

;Iexcapt
| return ' ' o e

| yiaid

| soloct . T SR I

| signal

| invoke

| tucm‘f ,. M
| bresk
l new

=> var ids : qtypo{.ids q!ypo}s-mtp{-“b}

‘tlnrids tym{ .idl;tm}

| const ids : qiw'{ .'d' q'ym}-m{ J’ﬂi}

In the first and third productbm for decl, m‘im of identifiers on the left
must equal thonupbwdtxprmiﬂnonthrw

'->ids -oxp{ exp}

' Thoro must bo elthor one Q:prudm, or s mny cxprossiom os thou are

identifiers.

| ->if.xpmenbody{wmthabﬂv}[°"°°°‘y]"“[" ]

> wmnupdobadymfm]

=> for fordec! ,fmaml}mmuwm[ for ]

|for[ ]Inlrwokodobodyend[lor]
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‘,_’fovducl »(m[m)kb aype
with »m(mimjw-numﬂfmf
. except o ,»Mw{ M;}Emdﬁ o
meanme’
whenarm »m&[fm}:dm
| imuu) ststement | |
' lnmmamﬁhmmwmwmmmcm
" types of objects in the seme: erder. Tiw® dbcos produsiion is used for
:mmmmmw‘“w‘*ﬂmwm .
Mﬂnﬁhhmkﬂ"}' spitl :
~ ofherssrm => otivers ( const id : glyps- ) : stulement
' : | |M€t) dm |
_mHmm&;Mh“wumuW’.
arvdis: the: name of Wi teke st |
ta s_»:"»"m,"‘«-s;: . : ‘”m '

vid i [ [wT -»}I‘)I’

select - => golect oxp -

I R o O3 wzm

imlw "“‘—lwi’w}'lﬁ o

- w«-Lscv~;m»mi; -

tegease | = tagosce oxn fu lapari
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L YRR R &

There may be only one others arm per ugan statement. All tags must be

~ accounted for in each tagcase statement. AR tags named on the same arm

break

must be for the same tmlndﬂn!yudthhcﬂydodvodbdonmhr must
match thet type.

=> break

"->newid:nm-oxp

The expression must be an invocation of aulnow

.Seversl of - the. above. M ore- m in particuler contexts. The

. ntm ﬂdmﬂh lagal: only in procedires: ahd Rerators; yield is legal only

LS. Expreulom

_.exp

.snmmmmmmmbmmumm only in for

=> exp bop exp e
| uop exp

- Hexp)

uterst oy
| selexp

* latvpe sl apame ]

lup
[down -

The last four productiom of cx[a md oxydnkg;; thoy ‘are for routines. The

special rouﬁnes ‘up and Mn e M only in clusters and coﬂvort

i belmn the abstract and rep types. . Cy

selexp

-> id

Jexp. id[(oxp{ oxp} ]

| Iexptoxp]

jexpt
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literal

- boollit
nuliit

ptriit

These forms ars (in orderk o varisble, selaclion, arrey indewing, and pointer

Clel-tu

B A R bl Ead ke |~<l~‘-l-l~’-l~°

|8 |comd B
I1]cor

The opersiors on mmmw&m prévedence. The operalors in the

.. tivst Hine tind most Nghtly, Whoss' W th: sucidil-Tuss tightly, eic, 5o the last

Hine binds lneal tightly:" wmmmmmmw o,

xopyep? m%x»y)uﬂwaffu?ﬂm*ua(yuzr

‘->-'~

-Mmmlch.rmhmnlwlwiﬂ
[atype 8 [ oxp : m{.m}l B

'lq'mﬂmo oxp : oxp ]

[ atype & { ide : wof id:on})

Tvnmmmmrdﬁmnhﬂrmwm Mhaﬂwobrm
The me'ng.mz.«mrmmmmumhhwm
u%mnm.n,mmhmmm The
‘[cxpo - o%py upzj’bmm-umiy‘”“mm.wo.w

py), ond o slomenty woples o m The fest




1.1.6. 'l"jpu '

type -

ptype
itype

seltype

fpargs =
fpargitem
. 'fpréts '

| ids

,. - [ fpargihm{ fporguom} l)

e R R Rt st s e

| =>int

| bool - _
| char , Lo L
' null:

| area
|“""l[wxp]
|‘"‘7['mnxa,m1 T

:l'ﬂ”“’[“‘ fYP'{.Hl:!yp}] ’
oneo (e stype {6 tm }1 .

"d [‘wm'm ]

,lip*vpe. |
| itype gt |
| seitype I T

levtliexp)
Iptr[id,atype ) -

-> pmfype fptf!! [btps_ak_ lIllbl ]7

=> jtertype fp.'” fylds [ m” ] Lo e nn

- seitypo [ !pargc }ofslypo fﬂl Q'Yﬂ‘{ Ml‘ ]

. "i'\i“ .

.>( varleomt)qtypo T e

L returns ( [ stype { stype } ] )

S )

135

The productions of type ere for thoss po.nm where ». v-typespec is

requirbd.
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1.L.7. Star Types

R stype B o -»h&

lstﬁng[[;m]]
. hﬂq[ﬂm[ spa;, Wi‘}

lmtm stw-{ ide : m}]

R 2 TN

lllomof[hls cstype { , - .m.."}j

| l'd[muf]

| ptype
| itype
| seftype

lwt[{;@m},@{g% ‘
m{}}«

’w[[:m

: : l ptr(id qtm 1 o s gl e
I .mm sloe3 ]

sparm e W |+ .
| A stype bs usad tir “vo-byncopede. =
LL8. Question Mark or Star Types

atype = int
. | boo!

| char

| nunt’

l ares
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- stf‘i:n( [[aqpmn]] R
_hmy[qtvw[swmqpim}] e
| record [ ics q.,,,.{'m qt,,.}]'
| |oneof[idnqcm{,w. q,yp.}]_
| .lw[qp.m.]"
| ptype

|itype
| soitype

- .Icvt[[mp-m{.wm} ]
_"v|"P[[mp-rm{ Q""}l]
lptrlid,atyps ).,
s =t} [ {en} 1
‘aparm - oxplndh g

 The nontorﬁndwpoxpands to vc?-tymn ond ﬂd’s -
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- L2. Syntactic Sugm

forms are catmm:.y.mdzmmubmu
type of x (i.e, its typoud.ﬂmdhgpmgrmor

Suger

There mmnmwmm-m tuwm These

x.n
X.n =2

x[y)

Cx[y) =2z

X X% y
X*y
x/y
xfly
X+y
X-y
xHy
%<y
)‘(<‘-‘y
X =y
x>-y

.X>Y-

X' ~<y
x~<-y
X~ my |
x~>y -
x&y
x|y

L.3. Reserved Words

and
ares
array
begin
bool
break
cand:

char else
cluster elseif
const end
cor  except
cvi false
do  for

down

13
from iter
has itertype
# new
in nit
ind nitptr
is null

ﬂm and T is the synhetic_




R

| T id .
alpha
e Hetter
digit
intlit
c.hafll',
Catrlit
' | char-_r‘vepl
~ printing

special

octal

1.4, Termlml Symbou

T
R

‘-*-hho{-wtm}
;'_*_->|.uor|,__
ALl
 ;->0| e .

=> digit { d&git} '

2

23 s ke

| {chdr_ropl }
- prtnuu |\ specist -

it e

-locm ocul octel

->0l |7

@

-> my ASCII character such M 378 < ochl vilue. < 1773

oF ) -;,‘, g ;’,,\7,7,

X fOP"OQth

! represents *

o "*W - !“W*M)

% represents FF (form feed)

% ".metl CR (carrhu rotum)

X represents VT (vertical teb)

199
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I. Mnmrmam

S el

mfanmmmammmﬂm Mmﬁrﬂducﬂbelhe

. special notations used. The srguments h mmm ebjects, not the “syntactic
expresswns) are cdiod aru' ‘org?’, ﬂc., or. just ‘the w H there is ov*y m If an
operation signals ‘foo’, we say that foo occurs. Tho wgﬁgi&“w nomes is dropped
where there is no ambiguily. Arithmetic ons: i j‘mmmmmm
mcmwwmmummmmm'mvmmm |
Some definitions invelve restrictions. a:%&mmnma 'is ‘sither a
standard where clause, oro!mm
where each T; has oper_decl;
which is an sbbrevistion for ' !
" where T, has oper_decl, -, T, bas operidecl, |/
Seversi definitions will involve tuples. A tupler i ﬁ ften <o
components of the tupb.nﬁth“ihi”‘m. A

on -luple. We seo define the fokouing oporotiembsmtighen - © e
5'20(‘!1‘1.1 Q“?)Iap, _i oo it k et

A =B iff (Size(A) = sia-ca»Amusisnxq-baJ
| <a,. .,b>tl<c,..,d>l<a,...,b,c,....d"
FrQnK‘-!, b, C)m<a, B>
 Tail(<a, b, ., P} <, 0>
~ Tail%A) = A end - Taav*Lonyw TaRCTARA)
Occurs(A, B, i} !m EW- C’I% RM -i 13)

Lastly, we say tuple Amt dhﬁxfﬁ F#M B, 1).holds.
ILL Nulls o RS

stamt

There is only one, immutable object of %m""v"“'“"” nil
causl:  proctypeiconst mell, mell seturms. oo
A'st rotums true.
copy: | ptoctym null) veturns (nall)

The obvious copy.
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E I1.2. Booleans

There are two, immutsble objocls of type bool, denoted by trwe aﬂi hhc. They r.prmnt the
logical truth valm

IR S

o endr 'rproctype(const bool, booh mum_(w) C
Coors : vawmfm M) "im‘(wl\ S g o
“not: ’proctype(mstbul)rei ) | RoERIE R

g

The ‘“tandard h;tc.ﬁuncuom SN
" equat: '- pl‘ocfype(eonst tooi, bool) retmi (bool)
'Equal returns true m its orgumnh ore the: m

copy: proctype(comt bool) returns M

Copy simply coples its wgumont., p

113. I ntegers

_ Objects of the type int sre immutable nd’ npnunt u wbrm of the mathematical
, _)ntegers The subnnu (which may differ wma oach in ¥ s Is.. b,
[Int_Min, Int_Max], where Int_Min s -215+1 end lmwzzm-lmﬁn mrﬁow exception is
signalled by an operation if the result would lie qutdda Ahis. intgrval- .

add: proctype(const int, int) returns (int) sl.nlh (mrﬂow)
sub: ©  proctype(const int, int) returns (int) signals (overfiow)
mul: pmetypdu»m int, int) returns’ ﬂnﬂWM)

S ]

'ThQ standard lntqur opqutm,
minu;: proctype(eomt ‘Int) returns (int) slgmls (overfiow)
| Minus ';etuv"ns .tho 'h;gltM-of its argmnﬁﬂ ’? | |
div: proctype(const iut, int) ;éturns"(ihi) Ql_gum(mo m, m,»ﬂ‘o;) ’.

Div computes the quoﬂon! of argl and arg2, i..., tho integer q such thlt '
(3rl0 < r < jarg2)) [argl -qtargztr]. Zoro_di\dd.mt" og2 = 0.
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po'wer: proctype(eemt ht. um returns M) dpak Mo_w mm)

Thascomuﬂl nhudtoﬂnxg!m Mm-l WM'
'Joccursﬂar;z <0, .. o e

mod:  proctype(const int, int) returns (lnt) dguh (un_dlﬁl-. mﬁu)

This compuhsihoinhw rm#fvi 3
argl - argZ*dN(lr'l ww Zorom Wgag nq;a- )

from_to_by: itertype(const int, int, int) ym (cum iut} w (mera_ste

This iterator yisids, in succession, -rgl.ml * arga, argl *3‘%%&1&#!@0&[
value to. be vyielded, x, nﬁ;ﬂn h’lr‘!l\lrﬂ’ﬂv (x<u;2nmﬁ<0)'
Zero__stgp occurs t’l arga -0 e

Ik proctype(const int, int) retwrns (bogl) . -
le: | _proctype(mu Inf, int) veturns (hool) o
equal:  proctype(const int, int) returns (bool)
ge:  proctype(const int, int) returns (beol) .

- gk prectype(const int, int) returns (bool)
Gopy:_proctypeleonst int) retuins Uml)

o Ti;o oiwious copyillrdhn. |

"H.4. Chmcters o ‘ o o : S ER ey

The objects of tm d:cr are M anl m Mﬂs Every
8mplementﬂmn is  assumed to m ot lnsf 128 ebtncbn. bﬂl no mm than 512. Cherscter
are numbered from O to soms Cher Top,mdthm pederi :‘fcr&.ehmchr
lypo The first’ lZSchnrm aro !Nmmhmwm : ‘

SEERR RS

i2c: proctype(const hﬂ m (ehf) w M_chr)

12¢ returns the cheracter numbered argl n tho bering otdnru;!m W..W
occurnﬁthaargm};mf%rmta.m_m B .




c2i:

143

proctype(const char) returns (int)

Rbiurns the numb-r corrospomﬂﬂu to ih ﬂumonl.
it: pmctype(oonst char. char) retlmu M)
le: -~ proctype(const char, char) returns (bool)
“equal proctype(mu&.&gm)m (bogh ;. -
ge: _ proctype(const char, char) returns (bool)
gt: proctype(const-char, char) ‘Fetiris (boot)

'The ordtfm. rﬁiﬂom oomichnt with the numborh 0! chpnchn
copy: proctype(eoast char) returns (dur)

' 'The obvvous copy ¥ |
. IS, sungs |

Strings are immutable ob]octs Each string nprnonts ) lup!o of .characters. The ith

character of the string is the ?hgm &hm Th:Sideret » string: must be » legel
integer; if it |s not, then a failure exception s signalied. Furthcrmo. ] vwiabh declared
string[i): mést be dble lo ‘store strings whosd ‘size Uoc: ot exceed n, snd may possibly store

larger strings ’

size:

indexs:

indexc:

c2s:

- R egke

| pmtype(eqnlt string) returns (int)

‘Returns ther'sizé of the tuple roarmﬂﬁn. Ih afgdﬁ’mt

proctype(const s&ring, smng) ntum (lnt)

The operation returns the hut h\dtx of M lr|2 occurs in aul (Notic. that this
‘means ‘1 nmummf ifﬂ s’ uwfr

mmi’

Lt

nol occur in ar;l. then O is
rol‘urned

proctype(eonst string. clnr) retuﬂu (lnt)

54

, Indexc returm the least indox st which tho l-lupb <lr'2> occurs in argl If <arg2>

does not occur in argl, then O is retirned.”

‘proctype(const char) returns (string)
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concatl:

append:

fetch:

substr:

. resty

s2ac:

ac2s:

chars:

 Ac2s is the inverse of s2ac. The regulti. mm th,
Cas in its arzumnt Thus the ith chumhr of -the result h M«ﬁﬂMﬂl) -pth
_element of the argmm

_ Returns the string repressnied by the 1-luple <srgl>.

C et T L I
proctype(const min string) returns (string)

Concat returns the stﬂm for’ which arsl H art2 is the ropnuuhﬁon.

proctype(const mm; int) refurns. o

Fetch retum; the . mﬂ‘ . cheracter .of kgl M oo0urs : 1! (ar52< Dv

 (arg2 > suze(.rgl))

proctype(m string, int, int) r:tm W WM muﬁvo sm)

Substr _ returns  the  string. . mprmm by the tuple of size
min(arg3, siu(lf;l) g2 + 1) which occurs st M g2 inergl. m occurs if

(argz< 1)v(-r;2>du(-ni)+ 1) WMWHwﬁ‘O

FEaery + 1 < L1 o4

pmmmam WMWM

| k'Equwn!ent to subsMar;l argz. slzw»,t,,..mmu Iﬂ"‘?'&hun.

proctype(comt string) returns (array{char) -

This operastion crestes a new m'w, tht m of m e iho choncim of the
argument. The low, bound of the srrey. is 1, and thesiee d«ﬂgmhnho(vcl). The
it element of the mly s eh- tﬁ‘ ebuaehrofﬂnm -

z'%zfr*',

' proetype(mst uuy{char]) retum (strluj‘ o

SPRLAA™ ‘

e seme order

itertype (const strhg) yhlds (mst clm)

A I A s

: Th;s ntar-tor ymlds ln ordor, mh chcrachr d ih w

#4:
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BT proctyp«mst string. stmg)mumw

io: scmg}'rmm (beol) | R
‘ _ equsi: P'M’Mw‘ “ﬂ" “ﬂ§$ mow) 11 «:xv T

ge: proctype(mnﬂu string 1 T O o asa e s
gt *'”'“-Vproctypefamtdﬂng. ﬁm M

# ot anna ".*t R e

‘These uss the usual bﬂw MWW% m for chlractors.‘ The it
aperation is equiveient to the fomm Mo: '

'_lt_ ‘proc(const X, J: string) returns i bo-l)

int.» 0tn 5

if sue_x <= slu Y
then min := size x;
else min = site y;
end if; .
for const i: int in, lattfrom_ﬁo_by ﬂ.min D dq
if xti) < yi1) L ,
) the' m . mmm' Y I “d"‘i‘i:‘ i ‘ R

: end if
less -(slu.x <slze_y) T A AR e o
copy: Proctﬂ”(mst st}hg) mw,(‘m" ) R A
| Tho obviom copy '

(SR

B llG Atnys ‘

The array typo generator defines: on Tty MW For every lypc T there is a
type array[T} Arny objocts are muhblo. Tho ctm d nn wrey W gqmbh Qf

» l an integer Low. cdlod Iholo\vbomq,md e e
nupl.msocobpcbonm‘r uman-bm;

) »Wc aisbsd.ﬂm Sipe v SizwlEite);iond High slow's Sige L. *Wmf la thlnk of the components
- -of Eits-as_ howmmumdm tow; 'so nmm orray Jhdbi ' the f“‘eommm to be
(i - Low + 1). Esch array object nmmmmmm nnt.m Siie, Low, snd High -
must all be legal integers. Secondly, Low end ch e boumbd by the size of the verisble
containing the array. o&iod Any attompts to mmm result in a feilure
exception: failure(illegal_arfey™) in'thie Al cakia, snd Tilliirlivariable overfiow™) in the other. ‘A
variable (or object compomnt) of type arvay[Ti i, h) M be &b {o contain srray objecls with
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Low 2 I and High b it may be able to contain larger errays. I sn.srrayis sseignedito @ varisble,
‘grown with addh or -addl, or shifted with uUw.»su:hy,M !ﬁp Mn:qt ﬂu Mobh woukl be
exceeded, then failure(“variable: worﬂcw") is\”dgﬂlﬂ.;d, mmm

For an srray A, we shauld write LowA, ofc, to mnn_ehgm o that ob;ect, but |
subscnpls will be dropped where the mehtion k dllr ‘
: ‘Note that for ail srray opm
states of the srguments are m}mm hoe

We use the abbrevistion AT. for »ﬂnw

create:  proctypetconst ity returns (AT)

This returns sn-sriey ﬁ*mfm owie erg] orid e

new: proctype() returns (AT) _ e e

quivp!entvto criqh(l.),

low:  proctype(const AT) retarns (int)
high: - pree&n)mt AT) m em)
size: - proctype(mn AT) m:m ﬁnt)

' These opeutiom mm,mwmm

set_low: .proctype(w AT, eomt int)

Set_low makes Low equal to nmz This: npnntion may invoive physwy shmrgg the
elements of the array in storege. However, block mmm:«m»:: many
machmsmbq mmmmmm

. trim: proetype(v:r AT, eomt int, int) dgnb (bcouds. wﬂmﬁm)

‘Thts opention mdus Low cqud to »?gz lﬂ!’ Mﬁ‘ m th. iupk of size
min(arg3, High' - arg2 + 1) which occurs in Elts" at index arg2 - Low’ + 1.1 That is, every
eloment with arcg,y.hdox lus Ahan.arg2,or. 1granter. - Ahenidr: oquil -0 weg2: - org3, is

-rmd Bounds Laccurs i, w <.Low?) VAWW‘**'&: W aceun if_
arg3 < Q

1. E1s’, Low’, efc, refer 1o the stats.prier 1o invoking the-oparetion. .




. fill:

fetch:

~ bottom:

’top: .

.sto.r'c: ‘

 proctype(const int, int, T) returns (AT) signals (negstive_size) -
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R

wmehucopv.pMymnrumm ‘

a‘a‘é

Filt returns an erray for which Low is ar;l. end Elte is @ (nm(o. arlz»-!uph in which

- every--component: Iy bcoworm it eahﬂwiy ”wz) ﬂm to get the

ohmonti 4w order. mmmmcw IR

seltype(int) of T from AT slgnlls (bounds) ‘
<%

Fotch selecls the . obmont ol ar;l wlth .rroy_indox ar'Z Bounds occurs if

 farg2 < t.oww (org2->-Hgh).

_ seltype(h of T from AT.signale foounde) .
 seltype() of T from AT signals (boveds) ..

These operations select the slemants with erney irdex’s.Low, and High, reapectively.

Bounds occurs it Sizo =0,

| proctype(var AT ccmt tnt. T) slguh (boundn)

where T has eopy. p"mm Wmm

‘Store mmtmanowlupb\mchdmummudhtm org3 is the element with

| erray_index erge. Ticopy:is mao mm amw ~‘@bunds occurs if

- larg2 «Lm v (arg2 > High).

proctype(nr AT, const T)
whm T has copys pnctype(eﬁit T& mm

=

This operation mok» Em tho new tupb Elts * <ar|2> Tlcopy Is uud to create the

: -Mwmémt =

proctype(nr AT eomt T) _ : .
* where T has copy: ptoetype(euut T) nnmu (T) .

" This operation mmc Low equel to Low® - 1, end Eits the tuple <erg2> » Elts TScOpy is
ssed to cresis the-new compone. W Wﬂn .ruy_jndcxs of the

f-- npnviomm%im) T e :

rerv:ih:

roctype(var AT) returns (T) slguli (bomds)
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 permuted.) Records are mutable objects. The stale of a record of type record{ld: T g = 1t Tp)
is an n-tuple. The: it component-of the tupie: b of type ;. mﬁﬁmm Is aiso called the
mompomnt w«m M&ﬁﬂ'i. ....f"ﬁ,,i v,,mm*wu I

‘ create'

ld“ o

 Put_Jdg

| prost:lpe(m RT. emt Ti)

s W

pmtmegm T T SRNMMED |
Mhere each T b-&smwmm&ﬁmw g

Th's opoulion roturm 8 new record with the tupb Gor;l. s mN> s its stot- lt uses
T,CcOpy to copy oy crnh is not wm hhm&bﬂ J;- 4. b jmplicit-in the
record Cwﬂgdﬂf. L sl ’*‘.“fi»‘,--.;%'; R UL

Jdtypq)qf;[, fm RT S

This operation ubch the ld;-componoﬂ! of its «;mnt 'rhm is an ld, opmﬂon for

‘each Id;. _' - fhe S0 e

This 6pmuon mekes the stete of #&) & 1ww fuplewivich ditferes from the oidsin that
its ld‘-compomm e copy ‘of arg2’ m(h uolu Tpeopy Thon h ] put_ld, operation

R ‘for,,actﬂd; et f.s... SR a’ an
proctype(eomtRT RT) returns (bool) el e

oﬁuilﬁ

copy:

wheu each T; has squal: pnetypdmst T., T‘) Mlmu (bool)
o:;{'s" r’ v.,f

Thii operstion compaces. the, Juping qg q:;bﬂ q‘@mﬂt by compomnt ‘using
TiSequal for the ld,-componont I all the mm rctum uturn tme. the result is

;em Mu tﬁw«m L3 m R

proctype(eonst Rﬂ reumts (RT) :
where unh Ti has copy: pros oy ‘l’ﬂ mmﬂp : R
Frpe T2 g ey aket Wais e

| This oporotion returm a record whose state ls s eopy of tho stlto of the orgumont.
s F m«ﬁwmmww [disco
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I1.8. Oneofs

, qumf quwaw dofMlMMudh mwm i‘utwluptmd Hllype
pairs <(idj, T), s {1y Ty where ol the id’s are-diatingd eothin-eleogrepiic-ordery theve is a
type oneoffid;: T, .., Id,; : Tp} (The user may wﬂh !hk tyyt m ﬂn pﬁn permuted.) Oneof
_objects are immutable. Each oneof object is represuitod by v puit* (i, R} ‘ X is oF type T;
The Id; part of ‘the’ peir'is “called” the “fag, - M’“i'&" e
 oneof[Id;: Ty By T ]toOTbolow | N

DR g !-'L:;,A, N I T S ST RS- SR SRR I S B AR

muke 14, prectypetconst T teterms (OT)
' whm T; has mpy: myfe(m 'f,)

This opeuhon returne the oneof obioct !or the paié ﬁdplh’!), udn( TMy Th.ro is
8 make ld, opcntkm for o«:b ld,

ST, S

is_Id;: - proctype(comt OT) returns (bool)

This opernhon roturm true m thc tu of argl it !6; m ﬁo L3 tmpﬁen in ‘the ugcue
statement. There: Is & is_ld; bgierafion for éach m, . ‘

L ~vm_1w nltype() oF T mms&ﬁb m.w

If the argument hs hg Id;. thh selects tho vduo paﬂ of the qmnl Wrong_teg
occurs if the tag is not Id; .This opurdion is uud Wy by the ta‘eue stn!mnt.
There 6s a va!uo_ldg for nch ldi R anty ey

equal: proctype(eomt OT OT) returns (bool)

wmmnmma- "‘““'r‘.ﬁmmusM)

i

HE L L

- If the tags of the urgumenis sre dvffomn},«albn Mh seturesd.. H:the tags are both
!d,, then the result is Titoqml appﬂed to tho vdu- parh cf tht nr;mnh '

copy:  proctypelconst QT)WW 101') . O e
‘ whm each T‘ has copy' pnetyp«mu Ti) utms (T,)
. ’ 2
This opentiom re!urm .,m bed ﬁ&h m ;gm Mmt. md o value
part a copy of the valve partof thoargmnt ltth.tl(bld,,thtn!hocopy icmnd.
using T;$copy.
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: ll.9. Pointers

‘type T, ptr(A, T is a type. The representation of poir

The pointer type generator defines an lnﬂnlto class of lypeu -For oach area A, mq, pach
#ts is fot aoftmd explicitly, but implicoﬂy

through the behavior of pointor objoch. Poinlor objoch ore wm Wa sbbreviate P"[A» 7]

nolp@r:

alloc:

deref: -

equal:

copy:

"vTh|s openhon retgrns ) qoih.?,_&
‘other null pointon of the same |ypo, ond cennpl- ho«dinhnmd

" to PT below.

procxype() rmmn (PT)

.that p@m to.no object, Th.roion. it is equal only to

,proctype(eonst T) returns (PT) s!gnals (fdhn(stﬂng)) |

where T has copy: proctype(const T) returns (T)

This operahon creates a copy of argl in sres A, returning. @ pointer to the newly

_ created object. The copy is made using T8copy. Failure occurs if the ares cannol
‘contain the new object; the string signalled is “area out of memory™. _' '

seltype() of T from PT signals (bod_pomr)

This. Opermon “follows” a pointer.to the nb}oct pointed at. Bad_polnlor occurs if the
null pomter is dereferenced.

proctype(const PT, PT) returns (bool)

This Operahon returns false unless argl and arg2 point to the same object, or argl and
arg2 are both null pointers.

proctype(const PT) returns (PT)
This operation returns a pointer equsl to its argument. That is, the resuit points to the
same object as the argument.

J1.10. Areas

new:

An area object is used for the dynamic sliocstion of other ob]cc(s.'

proctype(const strlﬁg, int) returns (area) signals (bed_srguments)

H
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This operation returns s new srea. Argl is used. to: describe: whet: sort of sres
mansgement scheme is desired; and arg2 is for size. mmmm is
umphmnhtion dependant. :

; li .. Proceduns, nm mm

, Fﬁr‘@ach procediie, thntw, st selector WMmM.MMmy,
and equal.  Create is- not avasilable to the. user;’ its use:is. imﬂdthmm and run-time:
A sysfem Copy pnwmbiy does noi'cew mwm‘mw%mmm vely s descriptor.

clustor are considerad:to: be:differentmbiiuies:



 Baker?3. Buker, Heney G, Jr, “List Profesiing v K] Titpe
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Time", pp m—mw va 2,7
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Space and: 66:::” mm*m lm;. g( Ted! ij Jor m  Sely
TR-l‘ls mym? A |

' Branquart’” Bfi
Working Conf on.

Dahl66. DaM ‘Os J, wmd: ﬁ'ygn ok <
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