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I. In ction

We consider the computational complexity of the theory of real addition
(Th<R,+>) and several related theories. Previous results provide the following
bounds on the complexity of Th<R,+>:

1) Lower bound [FIR74]. Any decision procedure for ThCR,+> requires

nondeterministic t/me 2°(" for infinitely many n.

2) Upper bound [FeR73]. Th<R+> is decidable within space 29(M),

Because the precise relation between ‘computation time and space remains
unknown, there is an exponential dbcnpmywh.n upper and lower bounds are
both expressed in terms of time or space a!om That is, the exponential lower
bound (1) for time is only known to imply a linear space lower bound; the
exponential upper bound (2) for space is only known to imply a double
exponential upper bound for time.

Intmsthuhmhpmothommu Mghpcttlcdur

Main Theorem: There is an € > O such that any decision procedure for Th<R,+>
requires either more than space 25" or more than nondeterministic time 2" for

infinitely many n.

Let (N)TISP(T(n),8(n)) be the family 61‘ languages recognizable by a
(non)deterministic Turing machine which runs in time T(n) and space 8(n)

simuitaneously for almost al n. The Main Theorem is equivailent to the assertion



that Th<R,+> is not a member of NTISP(2",2€") for some € > O.

We do not interpret the Main Theorem as suggesting the likelihood of an
inherent time-space tradeoff lhodg decision aigorithms for Th<R,+>. The
The_orem merely leaves open the possibility of such a tradeoff.

The Main Theorem applies to other theories such as monadic predicate
calculus and exponentially bounded concatenation theory, all of .whlch can be
shown to be logfllncar equivalent [SM73, 8T074].v Recently Berman has
observed that Th<R,+) is an exampie of a language voonphtc under polynomial
time reduction in what is essentially the class AIt(2",n) of languages

recognizable by aiternating Turing machines using time 2“, end n alternations
[BER77, CSTO76, KO76]. Our resuits imply that ISP 2" c A(2%M,o(n)),
an observation which we interpret as supporting the conjecture that Berman's
alternating machine complexity classes properly contain the languages

recognizable in nondeterministic exponential time.

il. TIME-SPACE CLASSES

The basic computational model used Is a deterministic or nondeterministic
multitape Turing machine (DTM or NTM). it has a finite number of worktapes,
each with a single read-write head which can move In both directions and a
single input tape with a two-way read-only head. An accepting computation of
a Turing machine M on input x is a computation of M which starts with the

word x written on the input tape and the rest of the tapes blank, and
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terminates in an accepting state. The time of a conputatlon is the number of
steps In It; its space is the number of worktape squares visited during the
computation (input tape squares not counted). By the Ninear speed-up theorem
[HUBY], it suffices to specify time end space bounds only to within a constant
factor (e.g., nhmemuthfymbmdam). All time and
space bounds are assumed to be positive vaiued functions on the positive

integers.

Definition 1: Let T and S be functions from the positive integers to the positive
integers. Then a (n)tisp(T,S)-machine is a (non)deterministic multitape Turing
machiﬁowlﬂchonm)uyhputofloncﬁlnmmmatmtﬂn) and

space at most S(n).

Remark: Both time and space bounds have to be observed by a single

computation.

Definition 2: Let T be a finite alphabet. Then (N)TISP(T(n),S(n)) is the set of

languages A € Z* for which there exists a (n)tisp(T,8)-machine M such that for
all x € Z* (where n denotes the length of x)
1) if x € A then there is an accepting computation of M on X,

H)lfxt‘AthunthonbmnocopmmuﬁMofMonx.

We will show that under some famlllar‘ "honesty" conditions [GLI71, SFM73]

upon T and S, TISP(NTISP) defines a hisrarchy in the following sense: for small



increases in the growth rate of T and 8 new languages can be accepted which

could not be accepted before.

Definition 3: [SFM73] A function is fully constructible if there is a DTM M such

thatforeacthMnﬂm-hmwﬂn)mm:m

#55(N)-24 on one of its work tapes.

Definition 4: [SFM73] A function T(n) is a running time If there is a DTM M
such that for each input of length n, the computation of M hes precisely T(n)

steps.

Definition &: Two functions T(n) and S(n) are compatible if each of them is

computablé by a MT.S)-MM.

Remark: If two functions T and § are compatible then T is a running time and
S is fully constructible. nbanpwmm'M-mmmm

the converse holds.



Theorem 1: Let T, and 8, and T, and 8, be compatible functions respectively.
it | |

(1) Ty(ndog(T4(n) = o(Ty(m))  and

(1) 84(m = o(Sx(n))
then .

TISP(T(M),84(m) § TISP(T(n)85(n)) .

Proof:

it is a well-known result that condition (i) suffices to show that
DTIME(T(m) (Le., the class of languages recognized by a DTM within time
T4(n) ) Is property contained in DTIME(T,(n)). Likewise condition (¥) suffices to
obtain a simiar result for deterministic space [HUSD). It ls straightforward to

combine these proofs to obtain the separation resuit for TISP. We omit the
detalls. O
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Theorem_2: Let S,(n) 2 log(n) and lot"l"' and 8, and T, and S, be compatible
respectively. | | | |
it
(1) Ty(ne1) = o(Ty(n) end
(1) 84(n+1) = o(8;(n) ,
then |

NTISP(T4(n),8,(n)) & NTISP(T5(n),85(n)) .

Proof:

Condition (I) suffices to obtain a separation result for nondeterministic time
classes whereas condition (i) is ndomtc to get a similar result for
nondeterministic space classes [SFM73). We will sketch how to combine the
proofs of these resuits - assuming famillarity with the notation of [SFM73] - to
obtain a proof of Theorem 2. The conditions for the program code (Appendix | in
[SFM73]) are the same as for the time and space theorem (Thooroin 1 and
" Theorem 2 in [SFM73]) . The ullvorul m first lays off 8,(n) squares
and then behaves fike the clocked version. Only in the case when k 2 T(|x])
and log(k) 2 8(|x]) does the machine M' behave iike the machine M. in all other

‘cases [t behaves like U,. a



1"

Am:w'mpmmwmrmﬂhmmwmmumw

defined In [STO77].

Lemma 1:
LotAsMB.T(n)mds(n)bommmmm. Then

there is some polynomial p and some conetant ¢ > O such that

0]
DTIME(T(n)+p(n)) ’ DTIME(T(cn))
| DSPACE(8(n)+log(n)) ' DSPACE(S(on))
Ae | =8¢ "
NTIME(T(msp(n) NTIME(T(on))
NSPACE(S(n)+log(n)) : NSPACE(S(on))
()]
‘ TISP(T(n)p(n),8(n)+log(n)). flOP(T(on).s(cn))
Ag¢ =8¢
NTISP(T(n)p(n),8(n)+log(n)) | NTMT(cn).S(cn))

For a proof of part (i) of this Lamma see [8TO74]). Part (i) can be

shown in an analogous way.
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Nl. THE THEORY OF REAL ADDITION

Let R = <R+> be the structure consisting of the set of al real numbers
with the operation of addition. Let Th(R) be the first order theory of R, Le.,

the set of all first order sentences true in R,

As a technical tool for the proof of the Main Theorem as stated in the
introduction we will use the first order theory of string concatenation and what
.wa call t-bounded concatenation tﬁoory. Meyer [FMS768] has shown that
2"-bounded concatenation theory is log-#n reducible to Th(R). We will show
that ‘anp(z"z.z") is log-in reducidle to 2"-bounded mumuon theory. The
Main Theorem then foliows immediately from Lemma 1, Theorem 2 and the

trammyny of log-lin reducibliity.

Definition 6: Let T be a finite set and let L(Z) be the first order language with
equality, with constants ¢ for each ¢ € Z, and whose only atomic formulae
(other than equalities) are of the form cat(x,y,z). The elementary theory of
concatenation, CT(Z), is the sst of true sentenes in L(Z) under the following
interpretation: Z* is the underlying domain, the constant symbois denote the
elements ¢ € Z, and for ab,c « Z% gat(eb,c) ls true Itf a is the concatenation

of b and c.

We assume that one of the standard formats is used for writing well

formed formulae iIn CT(Z) which are bullt up with propositional connectives and
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quantifiers as usual. The /ength of a formula is the number of symbois in the
formula where subscripts are written in binary. |
By bounding the length of strings in CT(Z) (iIn a sense made precise in

the following definition), we obtain bounded concatentation theory.

Definition 7: Let Z be a finite set and let L(Z) be the first order language with
equality, with constants ¢ for ‘uch ¢ ¢ Z, and whoss only atomic formulae
(other than equalities) are of the f‘om‘ mg(a.b,c. ). Then for any function
t: N+ N, we define t-bounded conoatenation theory (t-BCT(Z)) as the set of
true sentences in L(Z) under the following interpretation: Z* is the undertying
domain, the constant m denots the elements ¢ ¢ 2, and for abc e« Z¥,
beat(ab,c,n) s true iff a ls the concatenation of b and ¢ and the length of a
is smaller than or equal to t(n), where n is the unary numeral for the

nonnegative integer n.

Remark: As n Is written in unary the length of the atomic formula bcat(a,b,c.n)

is proportional to n pius the size of the variables a,b and c.

in reducing NTISP to bounded concatenation theory it is convenient to
restrict the underlying computationai model to be a “"simpie” one-tape Turing
machine (SW) [STO77). This can be done without hu of generaiity because
an STM can simulate a multitape Turing machine with only & quadratic time loss
and no space loss [HUG9). Furthermore, we assume that any move which shifts

‘the head off the left end of the tape causse the STM to halt and reject the
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input.

in the reduction we will describe the computation of an STM with short
formulae in 23"-BCT(Z). Let M be an STM, let Q denote the sst of its states
andsn;t.pgm.ut. An instantaneous desoription (1d.) of M is any word In
S*QS*. As In [ST077] we define the funcuon'n'xt”; s%as* + 25705, where
Nexty,(d) is the set of Ld.'s that cen opour one step after L.d. d. We remark
here that Nexty, is length preserving. It sufficss to make “local checks” within
Ld. d, and id. d, to decide If d, € Nexty(d,). The resson for this is that in

one step only a few symbols arcund the state symbol cen change.

Lemma 2: [S8TO77] Let M be an 8TM, $48uQ, and Ts8uQuiS). There Is a
fmcuonunzz’ozz'mmm.mm:
Let d, be any i.d. of M, let k be the length of d, and suppose

$d,$ = d,d, d,....d,d

w9 ket m‘,lﬁz MOS]SRM and

sazs = "zo"adu-“'""a‘z.un where da € 2‘ for 0 s ) s kel
then

d, € Nexty(d,) iff dZJ-id!dei € N"(d, -Hd' Jd, J")

foral 1 s )sk
For a proof of Lemma 2 see [STO74]. Informally Ny, specifies all
possibiiities of how the symbois of one i.d. can change in one step.
The classes 1-TISP and 1-NTISP are defined for STM's In the same way
that TISP and NTISP were given in Definition 2 above for (n)tisp(T,5)-machines.

Then the main lemma can be stated as following:
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Lomma 3: (V A & 1-NTIBP(2", 2)3 ZXA Spgpn 2-8CT(E)).

Proof:

Lot M be a nondeterminietic STM recognizing A € ©° simultanecusly within
time z"zj-nd.p.«'z".' Lot!‘botOanérl'MhLmz. For
each x € 6% we wil describe a sentence 8, In 2*"-BCT(E) which asserts that
there |s an accesting computation of M on Input x. Thus x « A Iff 8, Is true in
2°7-BCT(Z). We will then observe that the function mapping x to 8, s
computable in deterministic logspace and ls lnear bounded, viz. the length of
Sy hatmtmﬂmdhﬂnhngﬁdxmmmmumm

‘Let n = |x|. The computation to be desoribed is 27 steps long, thus &
word consisting of a representation of the whole computation would be of length
20(n®) gng m‘mmuuwhm'mo-wz’“-acrm.
instead we shall define the formule S, based on the construction of the formula

Pu(z)wmch.fddmmmmmdzcl‘.hmm

1) z is a string of the form $2,82,8..82,,8 ,

2) z represents anll.d. , 1¢g ] 4 2" ,

a)||-2+1. 15)s 2",

4) in some computation of M which Is atarted In Ld. 2, the I.d. z,,, can be

reached In at most 25" gteps using space at most 2" , 1 < j s 2" .




10

The formulae P, (z) will be defined inductively. First we will write them In
CT(T) to clarify the idea underlying the construction of the appropriate formulae
in 23"-BCT(Z). |

As a notational convenience we will introduce some abbreviations for

formulae in concatentation theory. Let A = (¢ ...}, where ¢ e« T for

1sisk
Abbreviation . Formse
p=aqr  cat(p,q.r)
ptqu' . (IxXp = gx A X = r8)
ped | p=e)v..vip=e)
p € A* | | (YxyzXp s xy2nyeZ »y € 4)
pcq C (axyXe = xpy)

We alsp define for each k € N a formula 4 (x) of concatenation theory
which is true iff the length of x is equal to k. We define £,(x) inductively in
such a way that the length of the formula itseif is proportional to log(k) pius

the length of the VQM x,
2,(x) = xeZ
£,,(x) = (JyzXx s yz A (VYWN(w=yvws2) lt(\\?)))

LX) = (ya2Xx = yz A B,(y) A £(2))

meomm.mtﬂnmm'mhmmmﬂmla
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fromlknudonlybomtm-nmmmmmﬂnvnﬂabluofﬁ.

m.w.mmmmmmnmmmctg.

The formula Form(z) will assert conditions 1) - 3) above. We use the
convention that in every iLd. the state symbol q is positioned immediately to the

left of the symbol being scanned.

Form(z) 1= (WNz=8W8) A Loniznuzs, () A(VZN{(82,8c2 A 8¢2,) +

[2,0,4(2)) A (Bw, W 0w, ,w.€8% A qeQ A Wy A z,-w',qwz 1) 1)

A:tholnducﬂonbmmmmtm'cttMMPu(z)Mumﬂu
the conditions 1) - 3) above and the conditions that sach of the successive

Id.'s are elther identical or follow in one step.

. Popnl2) = Form(z) A (Vz,.2,){(8z,82,8cz A $¢z, A 8¢2)) +» (3w, 8,.q.8,wW,u)

(s,,8,€5ui8] A qeQ A Oz,t-w,a,dozwz A Z2wuw, A ueNy(s,qs,))] (2)

For the induction step we will write a formuls P, () using P n(2) as a

subformula. The basic idea Is that Ld. z.. can be reached in 2(K*1)N gieps

1
froml.d.zlmmcrohlotrmgwwﬂohhuz‘nlpnﬂx.zmuaaufﬂxnnd

for which P, (w) holds. Thus P, (z) can be written as :

Prar(@) i Form(@) n (vz,2,){(82,82,8c2  $ez, A $e2) +
QWP (82,8w,82,87]  (3)
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This compietes the inductive construction of P, (2).

mummmtmm&pmﬁnmﬁo-mmmm
length of P, and the length of the formula Form. The formula Form is of length
O(n). Hence P, Is of length O(n%) primerly becauss of the n ccourrences of
Form. However there is a standard “abbreviation triok® [RA76, FeR78] which
aliows n occurrences of subformulae which are the same - except for the name
dmvmbm-bhmbymmmﬂHWVm
and one occurrence of the subformula. m'hmm'hi’u

mumanoqwmmw”qmmm.

We wish now to mtmct a ohor( formula b-’»PM(z) in tho language of
2°".BCT(Z) which Is true iff conditions 1) - 4) as above hold. The
straightforward way to obtain such & b-P,, ie o frst rewrite P', 80 that the
fomuh.p_é_g_t_nphcunohmm«m. Since there are only proportional
to n ocourrences of gat In P, and the length of boat ls O(n), one could next
apply the standard sbbreviation trick on the multiple ocouences of boat to
obtainvl formula b-P,_ which is aiso of length O(nlog(n)). This would be enough
to prove a version of our Main Theorem with 20("/08%(M) 4y piace of 20(n)
and 200/100(") 1 piace of 29, in the parsgrashe below we Wil give a
sllghtlf more MMMMQMHMMB .My
of length O(n).
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The idea of the construction is as folllows: the formula su(-,b.c.d.o.z)

will mean the same as

beat(a,6,c.0) A £y0,1(@) A Lppian,gy,((8) A P, (2).
Thus the formula 8, , (a,b,c,d,0,2) wil bo equivalent to
(3t,9,u)8, , (ab,c,t,gu) A ()8, ,(«,c.¢,d0u) A P .,,(z)

(where é denotes the empty :trlnc).

Now note that as in (3) “m(z) is equivalent to

 Form(2) A (vz,,2.){(82,82,8¢cz A 8¢z, A 8¢2) +
(3w, t,gX8, (e,¢,.,082,8w,82,8))]. ()

Similarly the formula Form(z) as in (1) is equivalent to

(3wXz=8w$) A ()8, (... fzu) A (V2 {(82,8cz A 8¢z) »
[(So.u)su(t._c.t.z,.o.u) A (Vw,.wz.q)(w,mzcs' A QEQ A W€ A 25w .qw, )]}  (6)

w.mm.mmtmnmum.ommmw and (6)
does not chcngo it each ocourrence of the fomuh 2!1 is replaced by the
formula bcat as the length of ali strings in (4) and (5) is bounded by 23",

m:(4)am(5)mmmmbymuohmmof
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cat(p,q,r) by (3f,g,u)8, (parfgu). So we can conclude that a formula S',,, .

equivalent to S8 can be written using a fixed number

k+1,n
(independent of k and n) of copies of su plus a fixed number of additional
quantifiers, variables and logloal connectives. We assume now that the reader
is familar with the technical detalls of the sbbreviation trick and we merely

summarize its application to §' Applying the abbreviation trick to S'etn

ket
yleldsthefomuhs“ummmmmyofsuunmmnunda
fixed number of quantifiers, vmmwm Again we note
that no difficulty arises If the new varisbles introduced in constructing §,,,.,
coincide wlth variables bound inside 8,, Thus only a constant number of
additional variables are needed to construct Sy 410 from §, .. Therefore the

length of S,,,. is O(k+1) plus the length of 8, .

We will proceed now In constructing a formula so m(a,b.c.d,e,z) whose
meaning Is thi.u‘mu as becat(a,b,c;n) and 4,, .(d) and 2yn2ne2)41(®) and Py (2).
As we \n)ant the length of 8, to be proportional to n, we shall require a
formula b-f,  (ab,c,d) written in the language of 2°"-BCT(Z) whose length Is
o(n) blus O(log(m)) plus the length of a,b,c and d and which means that
bcat(a,b,c,n) hoids and that the length of d is m, where m is any integer s 25",
The construction of b-£, . (ab,c,d) is simiiar to the one for £,(d).

We henceforth use the same notational abbreviations as were introduced
for fwﬁulaq 'ln ‘CT(!) except that p = gr is an abﬁnvhtlon for the formula

becat(p,q,r.n).




a1

b-2, (abcd) = beat(abon) ndel
b-2,,, nfabecd) = (3..1‘)(Vp.q,t.n)[((p.-q,r,s)kd,c,f.t) v <p,qr8>=<ab,c,)
b-2,, n(P.ar8)]

b“zm...'.n(.obictd) = (a.lfxb-‘m(di.ofl.) A b."’"(.tb'cif))

By carefully reusing bound variables in the construction above, only a
fixed number of distinct variables is needed. Thus the length of b-f,  (a,b,c,d)
is O(n) plus O(log(m)) plus the length of a,b,c and d. Note that therefore the
lengths of} the formulae b-lz,", labcd) and b-lmﬂ”“ ala:b,c,d) are both

proportional to n phus the length of a,b,c and d.

Now let b-P, (z) be the formula obtained from P, (z) as given in (2) by
first replacing each of occurrence of l.(d) by b-l..n(c.c.e.d) and then by
substituting the formula bocat(p,q,r,n) for each occurrence of the formula
cat(p,q,r). As only a fixed number (independent of n) of copies of the formulae
b=2,ns1,n + B=lonanizyer,n @Nd beat (not including the boat's inside b-Lmp) are
needed to write tho formula b-P,, , the length of b-PM(z) is proportional to n.

Finally, we take §, (a,b,c,d,e2) to be
- bR, n(@0,C,d) A b-Bonon oy n(€€€E0) A b-P, (2) .

Therefore the length of sm(a.b,c.d.o,z) is O(n).
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Thus we have shown how to construct a formula 8, (s,b,c,d,e2) In the
language of Z“%W)mmbm.m-uﬂhmmubnof
b-Lon 41 n(0:0,0,d), D-25nanyz)es '”(i.t,t.o) and b-P, (z) and whose length is

proportional to n.

~ Now to complete the construction of 8, we will need, in addition to S, ,
a fofu;ula INy (W) which is true iff w b’thc‘m x, Lot x,Xy...X, be the
successive symbois in x. Then the oﬁmmd way to write the formula
Ny 1(W) uses n different varisbles and thersfore its louoﬂ! would be nlog(n).
Instead we will define a formula I, ,(e,5,0,) whose meening ls the same as the

conjunction of IN, ,(w) and boat(a,b,c), such that the length of I, ,, is O(n).

Ie’n(u,b,c.w) = bcnt(l.b.c.g) AwW®EeE.
For ueZ¥, scZ, we define |
lug n(a:b,cw) := (3w XVP,qre)(<p,qredelw,w, o.w> v <p,qrsd=<ab,cw,.>) -+

lu.',,(p_.d.r.-)]

Again we note that 'x,n can be constructed using a fixed number of

distinct varisbles.

Finally let S, be the following formula, whers q, denctes the initial state,

q.thoacccbunnmtomdbthcmmm

Sy = (Awb,zul[ly p(€.6,6w) A be(B)* A Sq,wb8q,uscz A 8, (€,€.€,q,u,2,2)]




Clearly x € A Ift §, Is (true) in 2°'-BCT(Z). We have aiready shown that
" the function mapping x to S, is linear bounded. The results of [SM73, LIN74]
may be used to shoﬁ that the conputltldn of §, can be carried out within
deterministic logspace; we leave the verification of this final claim to the

reader. Hence the transformation of x to 8, Implies that A S0y, 2¥.8CT(X).

Remark: For any ¢ > 1 and any alphabet T there exists an aiphabet @ such

that 2°"-BCT(Z) is log-tn reducible to 2"-BCT(O).

Lemma 3 and the preceding remark, tonnthir with the reduction of

2"-BCT(Z) to Th<R,+> completes the proof of the Main Theorem.

IV. OPEN _PROBLEMS

in this thesis we classified logical theories with respect to both
computation time nnp space. The bnlé open question rc}nalnlng is to
characterize the oomphxlty of Th<R,+> (or equivalently Ait(2",n)) more precisely
in_terms of time and space. Note that the clalms that Alt(2",n) is equivalent to
NTIME(2™ or equivalent to SPACE(2), or both for that matter, remain consistent
with our Main Theorem.

A second related open probiem is to improve the known lower bounds on
the compiexity of Presburger Arithmetic. Such l-prcvulonti do not follow

directly by the same method used to bound Th<R,+>, as can easily be seen by
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parameterizing our main resuit. We have shown that for f(n)=2", the class
NTISP((n)",1(n)) reduces tc; Th<R,+>. The same proof shows only that
NTISP(g(n)",g(n)) reduces to Presburger Arithmetic where o(n)'zzn , & result
which degenerates to the known ruu!f. [FIR74] that NTmE(zz" ) reduces to
Presburger Arithmetic.

We hope that the framework we have set up leads to a better
understanding of the rohtlon between the computational ruourcio time and

space. ‘
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APPENDIX: RELATION BETWEEN THE COMPLEXITY CLASSES

$4(t(n),g(n)) [BER77] AND Alt(t(n).a(n))

in his paper Berman [BER77] introduced a new complaxity measure based

on the specification of sets by bounded guantification of linear-time predicates.

Definition 1: [BER77] A set is in the complexity class 84(H(n),g(n) If there is a
linear-time predicate R(-) on strings such that
A={x | W,Vyz...wwmxlmy,#....hm) A lylet(xp) A ... A |ym|<f(|x|)]}

Furthermore he observes that Th<R,+> is complete In ‘lé_!s, (2X" n) under a
polynomial time reduction. We will show that the complexity measure S, Is

e:;enﬂcﬂyﬂbosmuthmmmmw:

Definition 2: A set is In the complexity class Ait(t(n),a(n)) it there Is an
alternating Turing machine [CSTO76] which accepts A within time t(n) using at

most a(n) alternations.
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Lemma 1:
Let f(h) and g(n) be eompuublo in time f(n)g(n) and «"), 2 n. Then
| 84(Hm,o(m) © AR(Hn)g(n).0m)

Proof:.

Let A € 5;(Hn)o(n)). To show that A is also a member of AM(f(n),g(n))
we will describe a computation of an aﬂmm Turing machine M which
accepts A within time f(n)g(n) using at most u(a) siternations. |

The proof is very similar to the one of Theorem & lnb[K‘O'TO] and we
assume famﬂcﬂty'm the notions used there. Let x € A, n = |x]. On input x
M first writes x#'™ on its tepe. Now it -ntm an existential state to write
down x#'(")y, (M- ly,ist(n) ). Then by changing into an unlvuul‘ state it
writes down x#""’fr,.yz for all y, with |y,jsf(n). It proceeds now altoimtlng
existential and universal states unti xO'(")y,i...Oy'@ is written on the tape.
This can be done with at most f(n)g(n) steps and g(n) alternations. Now M
checks the predicate R(x#""’y,!...ly.m) and accepts itf R(-) Is true. As R(-)
is a linear-time predicate, M uses at most f(n)g(n) steps to check it. As we
can speed up the \vholo computation by a constant factor, M accepts A within

time f(n)g(n) using at most g(n) aitemations. 0O




Lemma 2:
Let t(n) 2 n. Then

ARt(t(n),a(n) € 8,(t(n),a(n))

Proof:

Let A be a set accepted by an siternating Turing machine M within time
t(n) uslhg at most a(n) alternations. To simpiify the following proof we assume
(w.l.o.g.) that M has only one taps on which initially the input Iis wﬂttcn.
Furthermore we adopt the convention that once M enters the acoepting state
q, it keeps running in Gq We also inauu that the initial state is an
existential state. We want to show tlnf A is aleo In the class 8(t(n)a(n)).
To clarify the construction of the predicate R(-) as required in Definition 1 we
wil first show that A is in the class 8, (t(n)%.a(m).

Let x € A and n = |x|. Aooaputnﬂonofﬂon*mbodo;cﬂbodbya
sequence of strings Yy 2-1¥ o) wh‘n. each Y, is a sequence of ids all of
which only contain states of one kind, universal if | is even, existential if | is
odd. We define the predicate R,y 6.0y, ) to be true Iff y,#y.¢..#y,.,)
describes an ‘accoptlno computatlon‘ of M on input x
(Le., y ¥y, ¥4y, = d,nzd...n«", with d, being the initial i.d., d,,, the

accepting I.d. and for 1 s | < t(n)-1 the id. d_. follows from i.d. d, in one

+1

computational step) or there is an i.d. d, which is a substring of some y,

1 < J s Lt(n)/2) and is not a successor i.d. of d,_,.




It Is now straightforward to verify that
. {x | x accepted by M) =
(X 1 3y ¥y 30y ROy 0y ) A Iy ) A o A Iyl HM])
We remark only that without the second clause in the definition of R,, the
predicate 3y,Vy,.Qy,\R,(-) is never trus as u.. quantifiers mm over all
strings. |

Now note that at most 2 symbols change between two consecutive i.d.s.
These changes are determined by the next move function of M. Now let
u,....,u;(n) be a sequence of strings which w a sequence of moves in a
computation of M. That means that for each |, 1 < | s t(n), u, is a string of the
form pdq, where p denotes the symbol to be printed, d the direction of the
move of the head and g the state to be entered. A computation of M contains
at most a(n) alternations. Therefors up to t(n) M\n moves correspond
to situations where M does not changs between universal and existential state
and we will replace each such sequence by single variables w, 1 s‘js a(n).
Asfnohnqmofmmu,um'mmummfw‘un
most of order t(n). We will construct now a linear-time predicate
R(x#'™w &..#w ) which is true Iff there is an accepting computation of M on
X determined by u, through u'm or for some u, which Is part of some Wap
1 5 J s Lt(n)/2] the following is true: u,dounotdncﬂbo’l’hgal move for
the configuration obtained by applying the moves u, through u,_, on Input x.

The predicate R(x#*Pw #..4w ) cen be computed in time near in its

input by the foliowing straightforward procedure:




a1

1) construct the initial i.d. from x

2) for each | check if u, describes a legal move (thh can be done by
comparing u, .m the 3-tupies determined by the transition function)
It u, describes a legal move: update the ourent Ld.
otherwise: hmMWMKthMﬁMNJMjho!cn
otherwise hait and output false |

3) check If the string Uyin) contains the symbol A

‘Clearly the above procedure doss not take mors than O(t(n)) steps. D
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