
MIT /LCS/TR-196

FINAL REPORT
OF THE

MULTICS KERNEL DESIGN PROJECT

Schroeder, Clark, Saltzer & Wells

This blank page was inserted to presenie pagination.

MIT/LCS/TR-196

FINAL REPORT OF THE MULTICS KERNEL DESIGN PROJECT

by

M.D. Schroeder*
D.D. Clark
J.H. Saltzer
D.H. Wells

June 30, 1977

This research was sponsored in part by Honeywell Information Systems Inc., and
in part by the Air Force Information Systems Tecbnoloay Applications Off ice
(ISTAO), and by the Advanced Research Projects Agency (AllPA) of the Department
of Defense under AB.PA order No. 2641, which was monitored by ISTAO under
contract No. Fl9628-74-C-0193.

* Present affiliation of M. D. Schroeder: Xerox Palo Alto Research Center,
Palo Alto, California.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER. SCIENCE

CAMBRIDGE MASSACHUSETTS 02139

This empty page was substih1ted for a
blank page in the original document.

FINAL llEPOJlT OF THE :MULTICS KERNEL DESIGR'PltOJECT

This report summarizes a three-year project to develop a simpler version of
the supervisor of the Multics operating system, so that auditing for security
certification •ight be feasible. 'nle repoTt is in four sections:

I. A summary of the highlights of the project, together with a
complete list of published papers and technical reports of the
project.

II. A short description of every individual task undertaken as
part of the project.

III. An estimate of the potential impact on the size of the Multics
Kernel if every idea suggested for simplification were
implemented.

IV. Conclusions and rec<>mmendations.

Together, these four sections provide a systea designer with a high-level
description and many pointers to •ore detailed analyses of issues involved in
securing a large-scale, general purpose computer system.

Keywords and Phrases: Protection, Security, Security Kernel, Multics,
Type Extension, Operating Systems, Supervisors,
Verifiable Systems.

This empty page was substih1ted for a
blank page in the original document.

PART I: THE MULTICS KERNEL DESIGN PROJECT

by

Michael D. Schroeder
David D. Clark
Jerome H. Saltzer

Abstract

We describe a plan to create an auditable version of Multics. The

engineering experiments of that plan are now complete. Type extension as a

design discipline has been demonstrated feasible, even for the internal

workings of an operating system, where many subtle intermodule dependencies

were discovered and controlled. Insight was gained into several tradeoffs

between kernel complexity and user semantics. The performance and size

effects of this work are encouraging. We conclude that verifiable operating

system kernels may someday be feasible.

This empty page was substih1ted for a
blank page in the original document.

7

Introduction

In 1974, a project was begun to apply the emerging ideas of security

kernel technology, information flow coatrol, and verification of correctness

to a full function operating system, Multics. There were several aspects to

this project; this paper discusses in depth the results of one aspect that was

recently completed: some re-engineering experiments performed on the Multics

supervisor to discover ways of simplifying it. To see how this part fits into

the overall project, we first provide a project overview.

The plan for ~ secure Multics

The version of Multics available in 1974 contained a wide variety of

sophisticated security features, and it had been designed from the beginning

(in 1965) with the integrity of those features as a goal [Saltzer, CACM,

1974]. However, there were two problems from a security point of view.

First, the set of programs that constituted the central supervisor and that

could in principle compromise security contained some 54,000 lines of source

code and had been touched by perhaps a hundred or more programmers during the

development of the system. To do an integrity audit, one would have to

examine and understand thoroughly every line of code in each of these

programs. Although the programs in question were largely written in a

higher-level language (PL/I) and were quite modular by function, auditing was

still an overwhelming task. Second, the security mechanisms provided (access

control lists with individual users, projects, rings of protection, passwords,

etc.,) while useful, were somewhat ad hoc, and did not fit into any simple

underlying model. This lack of a simple model of security meant that even if

an auditor were to undertake the previously mentioned overwhelming task of

understanding every line of code, that auditor would lack a systematic

specification of-what to look for.

8

Yet, before one could entrust sensitive information to protection by an

operating system, some kind of integrity audit seemed essential. Therefore, a

project was undertaken to make integrity auditing feasible, and to demonstrate

that security is achievable in a large scale, full function operating system.

As one might expect from the two problems mentioned, there were two key

aspects to the project: 1) to simplify the supervisor so as to make it

feasible for an integrity auditor to understand, and 2) to provide a set of

security functions that can be described by a simple, understandable formal

model. These aspects raised, in turn, three questions: 1) could auditability

really be achieved? 2) is a formally modelable security function usable?, and

3) what happens to the system's performance? To answer these questions, the

overall project was broken into several small components that allowed orderly

experimentation and took maximum advantage of already existing organizations.

Figure 1 illustrates this plan.

The formal model used, because of its simplicity and appare~t

applicability to real world problems of the Air Force sponsor, is the MITRE

model of sensitivity levels and compartments, which requires strict

confinement and control of information flow among the levels and compartments

[Bell and LaPadula, 1973]. The first step in this project (the box numbered 1

in figure 1) was to take the standard Multics system, and systematically add

to it, so far as possible, the security controls required by the MITRE model,*

which involved labelling all information with sensitivity level and

compartment names, and adding security checks at all points where information

*Actually, a predecessor of the MITRE model devised by a team at Case Western
Reserve [Walter, 1974] was used for this step. The later-developed MITRE
model is consistent with that earlier model, and all recent work has used the
newer model.

MITRE
security

Install fo-r
practical ex­
perience with
AIM functions

CD

class and-----­
compartment
model

Add Access Iso- ~Multics
lation Mechanism with
(AIM) to Multics AIM

©

Multics

Kernel concept

Simplifying
ideas _...

Experiment with
alternative in­
ternal structures

®

Devise formal
specifications
for Multics
supervisor

®

Prototype changes
for Kernel/Multics

type extensi

Unverified
design
specifica­
tions

Verify that
design speci­
fications
match formal
model @

Verified specifications
for Kernel/Multics

Implemented
Kernel/Multics

Certify com­
pliance with
specifica- /!:'\.
tions \]..;

Certified
Kernel/Multics

Figure 1 -- Plan for developing a certifiable security kernel for Multics

ID

10

could cross level or compartment boundaries. These changes resulted in a set

of security features known as the Access Isolation Mechanism (AIM) and a

version of Multics known as Multics with AIM. Multics with AIM then became

the base system for all future developments.

At this point, the work branched out in several directions. Multics with

AIM was installed (box 2 of the figure) on a machine in the Air Force Data

Services Center, and it was later made part of the standard product released

to other Multics sites, so as to begin developing operational experience with

the features of AIM and with its impact on performance. A •eries of prototype

implementations were undertaken to discover vaya of accomplishing the same

functions with simpler and more systematic operating system structures, while

keeping the disciplin9 of the security kerae~ concept [Sche:ll, 1973] in mind

(box l of the figure). And two groups of analysts began to develop

successively more detailed exmaples of formal specifications for the design of

a kernel-based Multics with AIM, assuming the changes in structure proposed

for experimental impleaentation turned out to be feasible (box 4 of the

figure).

This description brings us to the stage of the Multics kernel design

project today. The plan from here forward involves two major paths to be

undertaken in parallel: first, the formal specifications for the design of a

Multics kernel (box 4) aist be completed aad they aust be verified (box 5) as

matching the requirements of the MITRE security model. The second parallel

path (box 6) involves a reimplementation of the central'supervisor of Multics,

with two differences from the present implementation: those prototype

simplifications that were successful will be incorporated, and the form of the

design and implementation will be as "verifiable" as the state of the art will

11

allow. This latter goal is to be aided by using type extension as a

systematic design discipline, and by using a programming language that is

designed to support verification, such as EUCLID [Lampson et al., 19771 or a

constrained subset of PL/I.

The result of these two efforts will be on the one hand, a new,

easier-to-review implementation of Multics with AIM, to be known as

Kernel/Multics, and on the other, a set of formal design specifications that

have been verified to match the MITRE security model. 'the final step, box 7

of the figure, is unfortunately not as simple as its label suggests. A

multipronged approach is proposed:

l) Program verification should be used wherever feasible. Although the

state of the art of both automatic and manually assisted program

verification technology for the foreseeable future is simply not yet

capable of dealing with specifications and programs of the size and

number involved in ICernel/Multics, formal verification may be applicable

to some components.

2) Two or more small, expert teams of prograaamers can be assigned to be

auditors of the code. With programs and specifications in hand, their

job will be to try to understand the function of every program statement

in Kernel/Multics, and to repert anythitlg that is not understandable or

potentially in error.

3) The system can be placed in operational use. If the redesign has been

successful, not only will security failures be prevented, but many other

operating system reliability failures should not occur. Operational

failures can be traced to see if they originate in the security kernel.

12

4) A tiger team can be assigned the task of breaking into the system.

Any one of these four approaches by itself cannot be expected to

establish a credible verification of the integrity of Kernel/Multics, but the

hope is that the combination of all four in parallel can provide a much higher

level of confidence in integrity than has ever before been achieved in a

full-function general-purpose operating system. A second hope is that the

techniques that are developed be applicable not just to Multics, but to other

general-purpose operating system designs, ancl also to specialized systems that

are dedicated to file storage and aanagement.*

Engineering studies for the Multics Kernel

As suggested, one of the key parts of this project was a aeries of

prototype implementations of simplifyiog i.deas for. the kernel. An earlier

paper [Schroeder, 1975) described the plans and-,juaUficatioas for these

experiments, and reported results of some early re~tructuring that removed,

wholesale, certain functions from the keraei**• Without atteapting to repeat

that paper, the general strategy involved identifying all reasonable-sounding

proposals for simplifying the Multics kernel, and then selecting for trial

implementation those that could riot be accepted as obviously straightforward

* Several organizations have partJ.cipated in th~ project. the overall plan
was organized by the Air Poree Electronics Systems Division. the AIM was
implemented by Honeywell Infor!ll8tj.on Sy.~tela.J,nc.,, wUh technical supervision
from the Air Vorce. the M.r.'r. Laboratory ·for Computer Science performed
experiments with alternative structures. MITllE Corporation, and. later SRI,
devised successively more precise formal specifications for the Multics
kernel. In October, 1976, with boxes 1, 2, 3, and most of 4 of figure 1
completed, the Air Force suspended work on the proj~ct,

** The "kernel" that is referred to here is defined as all progra1DS that
implement or affect access control of any kind, discretionary or
non-discretionary. Therefore, a substantially larger body of programs is
involved than in a security kernel that implements only non-discretionary
controls, such as that described by MITRE lLiener, 1974).

13

or rejected as obviously inappropriate. Three kinds of redesign proposals

emerged: 1) removing from the kernel those formerly protected supervisor

functions that did not really require that protection; 2) taking advantage,

whenever possible, of the natural separation afforded by independent processes

in distinct address spaces communicating at arms length to implement protected

functions, and 3) using more systematic program structuring techniques for

implementing the remaining kernel function, so that the result aight be easier

to verify.

Probably the most interesting result of this work is the invention of a

file system and processor multiplexing organization that is based on the

discipline of type extension, and that eliminates many ~omplicating cycles of

dependency in the kernel. 'nlis work required developing more carefully than

usual analysis of the dependenci~s among supervisor modules, since the

11achinery of the type extension implementation is itself part of the kernel.

'nle following sections of this papeJ: describe .brief.ly this type extension

system organization, several other structural r.eaulta.1 aad,. the estimated and

observed effects of all these ideas on the size of the kernel and the

performance of the overall operating system.

~extension.!.!!..!. rationale for coping with complexity

The initial projects of removing mechanun•s froa the Multlcs supervisor

helped us understand what mechanisms nee(ied to be preaent in a sec:urity

kernel, but they did not help us understand how these pieces should be

organized. To simplify the security kernel, it was important to develop an

organizational rationale for modularizing the required functions and fitting

them into an understandable overall structure. The rationale adopted is an

14

application of the notion of type extension, and involves making all modules

be object managers, categorizing all the ways one module can depend on

another, and organizing the modules in a loop-free dependency structure. This

rationale was developed by Janson and is reported in detail in his Ph.D.

thesis [Janson, 1976]. Here we describe briefly this organizational technique

and in the next section discuss its application to the }ilultics kernel.

Making each module be an object manager is a way of providing an

understandable semantics for modules. The interface to a module defines all

operations on the object type managed by that module, and thus defines the

object type. Disk records, core blocks, core segments, page frames, active

segments, and known segments are some of the object types used in the Multics

kernel design. An object manager and the JIO~~les it depends on are solely

responsible for maintaining the integrity of th~ managed objects. Client

modules can manipulate the objects only through the interface provided by the

object manager. Knowledge of the way an object type is represented is

confined to the manager •odule. A representation is a set of lower level

component objects and the algorithms relating the operations of the object

type to tbose of its components. This way of thirilting about modules has been

developed by the programming languages community over the last several years

[Liskov and_Zilles, 1975].

When trying to develop an understanding of the way a collection of object

manager modules works, the important consideration is the way the modules

depend upon one another. One module depends upon another if establishing the

correct operation of the first requires assuming the correct operation of the

second. Requiring a loop-free dependency structure, i.e., requiring that the

structure generated by the "depends on" relation between modules be a

15

partially ordered set, allows system correctness to be established one module

at a time. This argument was first exploited in the THE system [Dijkstra,

1968] and more recently in the system design by SRI [Neumann, 1977).

Inside an operating system careful analysis is required to identify all

intermodule dependencies. The opportunity exists fot an operating system

module to produce dependency loops by participating in the implementation of

its own execution environment. Such opportunities are less of a problem for

application programs, which typically depend on.the gperating system to
. - . .

provide their execution environments. To develop the ~01'Plete dependency

structure of a collection of object manager modul~s in an operating system,

five kinds of dependencies need to be considered for each module. For a

module M the possible kinds of dependencies on other modules are:

a. Component Dependencies

Module M depend·s on the modules that manage the dbjectli that are the

components of the objects defii'led by M. For exa.ple, the manager of file

syst~ directory object& in the MUltics'.tern'et has a,coaponent dependency

on the aanager of segmnt objects, for each directory representation is

stored in a segmnt.

b. Map Dependencies

Module M must maintain a mapping between the ttalies of the objects it

manages and the names of the components of each. Thus', M depends on the

managers that provide the objects in which the map is stored.

c. Program Storage Dependencies

The algorithms of M and their temporary storage are contained in objects,

on whose managers M thus depends.

16

d. Address Space Dependencies

The address space in which M executes is an object, on whose manager M

thus depends.

e. Interpreter Dependencies

In order to execute, M requires an interpreter, i.e., a virtual

processor. Thus, M depends on the lllQdule that impl-'ents its interpeter.

This partition of dependencies into five categories is complete and

fairly intuitive fo.r systems designed according to the rationale of type

extension. When applied to an existing design that was modularized and

structured by different principles (or no principles at all!) one can

encounter explicit dependencies, due to procedure calls or due to interprocess
. , . . :. '

messages froa which replies are expected, and implicit dependencies, due to

direct sharing of writable data among modules. WhUe JM>ae of tlui!ae

dependencies IQaY not fi~ natur.!illly into tbi.a clasaificat!on, proper

classification is of no ~onceru, since the ~a.l,is their elimination and

evolution to a design in which all dependeocies fit natui:ally into this

scheme.

Using the rationale just described, and with the five kinds of

dependencies in mind, it was possible to design a loop-free atructure of

object managers that implement the complete functionality requir-1 in the

Multics kernel. Our experience in doing so 14 described in tbe next section.

Getting the loops out

The file system, memory management, and processor management portions of

the supervisor of Multics (which together constitute the bulk of the

supervisor) appear to be organized in the sixlarg_e modules illustrated in

17

Figure 2. The obvious exception to a linear structure is the circular

dependency of the processor multiplexing facilities and the virtual memory

mechanism. (Page control depends upon prQcess control to give the processor

to another process when the current process encounters a missing page

exception. Process control in turn de.pends upon segment control to provide

segments in which to store the states of inactive processes. Thus, for

example, a missing page exception for one proce.a causes page control to

invoke process control, which in turn invokes segment control to load the

state of another process into primary me~ry using page control.) This

dependency loop is common to many virtual~aemory time-sharing systems and is

caused by the virtual memory mechanism beiria' part of its own interpreter. In

addition to this obvious dependency loop ~here ate numerous examples of

modules depending upon higher modules to contain their programs and maps, and

represent their address spaces. For ex411JPle, page control code is stored in

segments and the address space in wh~ch page control executes is provided by

address space control. Closer inspection·. reveals other loops in the

dependency structure-all related ·to handi1.ng exceptional conditions or

controlling resource usage. Simplified descriptions of several problems

typical of these more subtle 'loops follow:

a. Missing Pages

Because Multi~s has multiple real processors, several processes

simultaneously may try to cause page control to alter the state of the

same page. A global lock regulates such conflicts. Unfortunately, the

hardware imposes a short time window between a missing page exception and

the setting of the lock by page control during which time some other

process may alter the address translation tables. Once the lock is

18

disk
volume
control

file-system
directory cantrol

addreu space.
control

segment
control

page
control : · ·

process
control

Figure 2 -- Superficial Dependency Structure
in Multics.

19

captured, page control must interpretively retranslate the virtual

address that caused the exception to see if the same exception is still

encountered. This interpretive retranslation requires page control to

know the format of and to depend upon the correctness of the address

translation tables maintained by segment control and address space

control.

b. Quota Enforcement

Arbitrary directories in the file system hierarchy can be designated

dynamically as quota directories. Associated witQ a, quota.directory is a

limit on the total number of pageJJ that ~y b~ occupied by segments that

are in the subtree below the quota directory but not also below an

inferior quota directory. Also associated with a quota direct~ry is a

count of the total number of pages currently occupied by segments in the

controlled region. Whenever a segment is to be enlarged, it is necessary

to find the limit and count of the nearest superior quota directory,

check that the count does not use all the limit, and if quota remains

increment the count. The ~eed to ell1arge ' segment is noticed in page

control as a missing page exception ~n a neve~-before-used page of a

segment. Before adding the page to the segment, page control must locate

and manipulate the limit and count associated .with the nearest superior

quota directory, as described above. Thus, page control must identify

the page with a segment and th~ segment with its position in the

directory hierarchy. Page control does. so by direct reference to the

segment control data base, the active segment t~ble, that associates each

active segment with the descriptors for its component pages and its quota

directory. This implementation of quotas and storage usage records makes

page control depend on segment control.

20

c. Full Disk Packs

A file system directory entry in Multics names the corresponding segment

by the identifier of the containing disk pack and an index into that

pack's table of contents. For robustness and demountability, all pages

of a segment are kept on the same pack. Enlarging a.segment occasionally

causes a full pack exception, which results in the entire segment being

moved to an emptier pack and the directory entry being updated to

indicate the new location. If a full disk pack exception is detected

when enlarging a segaent, page control invokes segment control, which

direct& the relocation effort. To accomplish relocation, segment control

reads a data base maintained by address space control to find the

corresponding directory entry, which seg9lellt control then directly

updates.

Once the dependencies generated by these and siailar causes are taken

into account, the simple, almost linear structure of the system illustrated in

Figure 2 becomes the much less simple structure illustrated in Figure 3.

'nle restructuring of the file system, memory aanageaent, and process

management portions of the MUltics supervisor that elilllinates all dependency

loops and provides an understandable object-based semantics for each module

was worked out by Janson and lleed and is described in detail in their theses

[Janson, 1976; Reed, 1976). Here we indicate in general how the new design

eliminates the structural problems outlined above, and make some comments on

the causes and solutions of such problems in general. Figure 4, taken from

Janson's thesis, shows the modules of their design and indicates the

dependency relationships among the modules.

21

disk
volume
control

file-system
dire~tory control

address space
control

segment
control

page
control

process
control

Figure 3 -- Actual Dependency Structure
in Multics

----- --p

, ,..._
........ --......... - ---

........ -...

........

I

...........

..,
' I

I
I

....,

"' \

interpreter depead~cle1: every llOdule, except the Core Se1 .. nt ..._.,,r, depend• OD the Virtual Proe111or Man111r
addre11 1pece d1pendtr1cie1: aovery llOciule, except the Core Sejl .. nt Karu11er, depend• on the Core 51 ... nt Man111r

Figure 4 -- Restructured file system, with dependency loops removed.

N
N

23

The loop between the processor multiplexing facilities and the virtual

memory mechanism originates from the goal of providing a variable number of

processes. Brinch Hansen has argued that considerable simplification of

implementation follows a decision to implement a fixed number of processes

[Brinch Hansen, 1975). On the other hand, if one tried to open the dependency

loop between process implementation and virtual memory implementation, every

process state would have to be resident in the fastest, most expensive memory

medium~ If the number of processes were fixed at the maximum that would ever

be needed, valuable primary 111.emory space would be unused at other times.

This combination of pressures led to the design for a two-level

implementation of processor multiplexing. Process control is divided into two

parts, the user process manager and the virtual processor manager illustrated

in Figure 4. The bottom part implements a fixed number of virtual processors

whose states are always in primary memory. Thus, this part does not need to

use the virtual memory, and all the simplifying advantages suggested by Brinch

Hansen occur. The top part implements an arbitrary number of user processes

and depends upon the virtual memory to store their states. A subset of the

virtual processors is multiplexed among the user processes as needed. The

remaining virtual processors are permanently bound to the interpretation of

various kernel modules, including the' virtual memory modules and the user

process scheduler.

This strategy of a two-level process implementation has been proposed

elsewhere [Bredt and Saxena, 1975; Neumann et al., 1975) but these other

proposals have left a key complicating factor as an exercise for the

implementor: when a low-level virtual processor discovers an event that it

must signal to a user-level process, it must somehow change the state of the

24

user-level receiving process. But that state _by design is not guaranteed to

be in the real memory accessible tD the low-level virLual processor. As part

of the Multics kernel design, Reed developed a method for this upward

communication that makes the two-level process imp.lamentation feasible. The

design involves placing a special, real memory me&sage queue between the

lower-level and higher-level processor 11Ultiplexera [Reed, 1976]. It also

involves using a new synchronizing protocol, based on eventcounts, that

con.trols information flow between processes and does not require that the

discoverer of an event have knowledge of the iden,titJ of the processes

awaiting that event [Reed and ICanodia, 1977). Use of a two-level process

iaplementation in the Multics kernel is worked out in sufficient detail that

we are confident that this design provides a practical, well-structured method

for providing an arbitrary number of processes in a system with virtual

lllemory. The two-level design also provides a general way to eliminate all

loops created by interpreter dependencies, for the bottom level provides an

interpreter that depends on only the primary memory and the hardware

processors.

Loops due to map, prog~a• storage and addresa spac;.,e dependencies are

relatively easy to break once ~heir ex:l.E!ttµii:;' J,.s_r~cogaiuci •. The key.to

breaking these loops in the ne~ des~gn is ~?e~~~plicit recogQj.tiOll of co~e

segments as objects. The core segment manager of Figure 4 i• implemented by

system initialization code and by the processor hardware. The core segments
' ,~ . .

are allocated when the system is initialized (or reconfigured) and thereafter

the only operations on them available to higher levels are the processor read

and write operations. A core segment can be used by any system module to

contain maps or programs and their temporary storage without fear of creating

25

a dependency loop. Use must be tempered, however, by the facts that the

number of core segments is fixed, the size of a core segment cannot change,

and core segments are permanently resident in primary memory. To eliminate

address space dependency loops a second address translation table base

register is added to the processor. One base register locates the address

translation table, stcred in a virtual memory segment, that defines the

address space in which user programs execute, while the other locates a

translation table, stored in a core segment, that defines a per processor

address space for. system modules•. In use, all segment descriptors in the

latter translation table will be fo~ permanently active segments, i.e.,

segments whose page descriptors are always in primary memory, or core

segments. Ail segment numbers below a certain value are translated relative

to the system module ~ddress space. Thus, system modules using these segment

numbers cannot be dependent on the machinery that supports the users' virtual

address spaces.

Correction of the dependency loop surrounding missing page exceptions

requires an addition to the processor architecture. Recall that to eliminate

potential coaflicts over the offending page descriptor, page control must

reinterpret the virtual address that caused the exception after a global lock

is set. A simple processor addition that corrects this problem is a mechanism

that sets a lock bit in the offending page descriptor whenever a descriptor is

encountered that indicates a missing page. Once the lock is set control is

transfered to the page frame manager of Figure 4. A processor encountering a

locked page descriptor will generate a locked page descriptor exception that

* An implementation without extra hardware is also feasible, though a bit
clumsy and not so modular, by sharing the first page of all address
translation tables.

26

results in the page frame manager calling the wait primitive of the virtual

processor manager. Once the original missing page exception is serviced, the

page frame manager unlocks the descriptor and notifies all processes that have

been waiting for this event, causing them to start execution again at the

point just previous to encountering the locked page descriptor exception. In

addition to the descriptor lock mechaiitsm, a wakeup waiting switch and a

register to record the absolute address of the locked. page descriptor can be

added to each processor to aid in preventing a notif icatioo froa being lost if

it occurs between a locked page descriptor except;ion and invocation of the

wait primitive.

The solutions to the dependency loops associated with quotas and full

disk packs illustrate two alternative ways of reporting exceptional conditions

without creating dependencies. A problem. common to both situations is that

software in some module may discover after some processing that a condition

exists that needs to be handled at a higher level in the dependency structure.

As described earlier, the condition results either i.u the mod.ule directly

referencing the data bases at the.higher level, or in th.tit module c;.alling the

higher level module. There is a basic s~rategy that can break these

dependency loops: to transfer control and ~rgU!lellt8 ~o a higher level module

without leaving behind any piocedure activation recorda or other unfinished

busi.ness in expectation of a subsequent re~~n of control. This strategy can

be carried out either by a }lardware interrupt or by a carefully planned

software signalling mechanism. Both approa..cha.are illust.rated below.

In the case of quota enforcement and recording disk usage, recall that an

attempt to enlarge a segment, and thus the need to check the asspciated quota,

is noticed in page control as a missing page exception on a never-before-used

27

page. The new design has the hardware distinguish such events and generate

quota exceptions rath.er than missing-page exceptions. The exception is

distinguished by an extra exception-causing bit in page descriptors that is

set by software when the descriptor corresponds to an unallocated page in a

segment. The quota exception invokes the known segment manager of Figure 4,

reporting the segment number and page number of the address whose translation

caused the problem. The known segment manager translates the segment number

into a segment unique identifier and invokes the segment manager to find the

appropriate quota directory, check the liait, and then call the _page frame

manager to add the page to the segment.

The loop associated with full disk packs is broken by the use of a

software mechanism for signalling exceptions upward in the dependency

structure. A full disk pack occasio~ally is encountered when processing a

quota exception. If quota exceptions, which are detected by the hardware as

described above, all were signalled directly to the directory manager, then a

relatively simple mechanism for dealing with full disk packs would result.

The directory manager would initiate a chain of calls down through the

dependency structure that allowed the known segment, segment, and page frame

managers to play their parts in checking quota, recording usage, and

allocating a page. Further, if the page frame manager at the end of this call

chain noticed a full disk pack when attempting to add the page to the segment,

then this exception could be returned back up the call chain, allowing the

segment manager to disconnect all address spaces from the segment and direct

its movement to another pack, and allowing the resulting new pack identifier

and table of contents index to be returned to the directory manager for

inclusion in the corresponding directory entry. Unfortunately, it is too

28

inefficient to pass all quota exceptions to the directory manager just to

handle easily the full disk pack exceptions that only rarely accompany them.

Another solution that would generate a simple software structure is for

the hardware to separate quota exceptions that will involve full disk packs

from those that will not, signalling the former to the directory manager and

the latter to the known segment manager. But it is unreasonable to expect the

hardware to make the separation in this complex case.

Thus, we must make do with all quota,exceptions lteing s.ignalled to the

known segment manager, which initiates a chat.a of calls down through the

dependency structure to handle them. A full disk pack exception is detected

at the bottom by the page frame manager, which exception is returned back up

the call chain as described earlier. Control finally returns to the known

segment manager with both the quota and the unsuspected full disk pack

exceptions taken care of, and with the pack identifier and table of contents

index that locate the moved segment. The problem now is for the known segment

manager to cause the directory manager to update the corresponding directory

entry with the new disk location for the segment. The segment manager

finishes all its work and prepares to restart the user process, but rather

than restarting it passes control directly to the directory manager as though

an exception had just occurred*. Thus, modules below the directory manager in

the dependency structure do not depend on it finishing the job of updating the

directory entry. When the directory manager completes updating the

appropriate directory entry, it restore conditions to the point of the

* The trick of passing an exception to another prograabetter equipped to
handle it by making things look as if that other program had been called
originally is an old one, used in many systems. The interest here is that it
can be used to break dependency loops.

29

original exception and the user process then references the segment again. At

this point any other process referencing the segment will be reconnected via

the standard machinery for handling missing segment exceptions.

This completes the discussion of the dependency problems found in Multics

and the methods used to deal with them. Extensive analysis of the kernel

design will be found in the theses by Janson and Reed. Some related ideas

concerning the use of object property lists to break dependency loops will be

found in the thesis by Hunt {Hunt, 1976).

We suaaarize our experience in applying the type extension rationale to

structuring the Multics kernel with the following observations. Most systems

appear to have a loop-free dependency structure if viewed from far enough

away. The obvious component relationships and the common operations follow

loop-free paths among the modules. On close inspection, however, map,

program, address space, and interpreter dependencies will almost certainly

generate loops in a system designed without loop avoidance as a primary

objective. The map, program and address space loops usually are broken easily

(at least during the design stage) by introducing new object types to store

the maps, programs, and address space definitions. The interpreter dependency

loops appear to be eliminated in most systems by using a two-level

implementation of processes. The most difficult and subtle structural

problems are caused by exception handling--especially when the exceptions are

part of the mechanisms that control resource usage. The difficulty is partly

intrinsic--such exceptions tend to occur at low levels in the system but be

related to high level objects--and partly methodological--resource usage

controls and the paths followed to deal with exceptions tend to be added to a

design last. A general method for removing loops related to exception

30

handling and resource control is harder to see, but in many cases removal

involves improvement of hardware exception reporting ~hanisms or addition of

software mechanisms for signalling upward in the dependency structure without

generating new dependencies.

From simple se•ntics .!!e complex :f.Dn>le!D§!lt.a.tioPJ!·&cow

Much of t.he complexity of a system iulp~tation can arise from only a

few of the features being implemented. When one realizes that a particular

feature causes complexity, it is time to review the illportan~ of the feature

and to see if a slight variation in its semantics might lead to a simpler

implementation. In the course of reviewing the mechanisms of Multics to see

hov they affected a kernel implementation, several exaaples of this phen01Denon

were noted, and insight into the implications of certain user-visible features

was thereby acquired.

One example, the dynamic designation.~£ directories as repositories for

disk storage quota, has already been discussed in the aecti9n on loop

dependencies. The dynamic nature of quota directories implies at every quota

exception a new search for the relevant quota cell by f.olloving a linked chain

of directory entries in the active segment table. In order ~ maintain this

linked chain segment control must be careful n~ver to deactivate a segment

that is a directory if inferior segments in the hierarc;hy. are active. Thus

segment control is constrained to manage t~e active segment table to track the

shape of the directory hierarchy defined by directory cpn~rol. la this case,

a slight change of semantics seemed worthwhile: .restrict the dynallic

designation or undesignation of directories and q®·ta directories to those

directories that have no children. Because of this change, the relationship

between each segment and its controlling quota directory becomes static, and a

31

dynamic upward search of the hierarchy to locate the appropriate quota

directory is no longer required each time a segment is enlarged. Whenever the

known segment manager asks the segment manager to activate a segment, it

provides the identity of the appropriate superior quota directory and the

segment manager simply associates the static name of this directory's quota

cell with the segment's identifier. AB a result, the deactivation of segments

by the active segment manager no longer is constrained by the shape of the

directory hierarchy.

For another example of complicating semantics, a combination of two

simple access control ideas in Multics conspires to force some remarkable

maneuvering inside the supervisor. The directories of the Multics storage

system are arranged in a naming hierarchy, and every file and directory has

its own access control list, which specifies who may use the file or

directory. The first simple idea is that directories should have access

control lists on the basis that the names of files (and other directories)

often contain information, so access to those names should be controlled, too.

The second simple idea, to make the semantics of access control as simple as

possible, is the rule that access to a file is determined entirely by the

access control list for that file. This rule means that if one user wishes to

grant another user access to a file, the first user places the other user's

name on the access control list of the file, and the transaction is complete,

without need to revise or check access control lists of directories higher in

the naming hierarchy.

Now, suppose a user presents the storage system with the tree name of

some file deep in the hierarchy, and the tree name traverses one or more

directories to which the user does not have access. The simplifying rule

32

requires that the file system follow the name through those inaccessible

directories in order to get to the access control list of the file. If access

to the file is indeed permitted, that user will, by virtue of. not getting an

error message, confirm the existence and names of the intervening directory

structure. On the other hand, if access to the file is not permitted, the

file system mus·t be very careful in its response so as not to confirm the file

name, or the names of the intervening directories.

The non-kernel version of Multics handled this set of constraints by

burying the entire directory search operation inside the supervisor, and

reporting one of two responses: "file found", or "no access". (This last

response offers no clue as to whether or not the file and the directories

corresponding to the presented name exist.) In attempting to reduce the size

of the machinery that must be in the Multics kernel, it was apparent that the

general operation of following path names did not need to be a protected

mechanism. If the supervisor kernel provides a primitive to search a single,

designated directory for a presented name, and it returns the identifier of

any matching entry, the program that knows about how to expand tree names need

not be in the supervisor. Except, of course, that the particular protection

semantics in use require that the kernel not return the identifier of a

matching entry unless either the directory is accessible to the user or the

file ultimately to be addressed is accessible. The first case is eas~, but

the second one produces a problem.

An elegant, if unsatisfying, gimmick was invented by Bratt (Bratt, 1975)

to finesse the problem. The directory searching primitive, if asked to search

an inaccessible directory, always returns a matching identifier for the

presented name, whether or not the name exists. It will even return an

33

identifier if asked to search a non-existent directory. This returned

identifier, if then presented as a directory identifier to the directory

searching primitive, is always accepted. In the case that the path of

directories eventually leads to a file to which the user has access, each of

the intervening directory identifiers is real, as is the ultimately returned

file identifier. If, however, the user does not have access to the object at

the other end, his attempt to use this ultimate identifier will result in a

"no access" response from the file system,·· and he will be unable to decide

whether or not the idetitif ier (and all those of inaccessible traversed

directories) is real or mythical.

From a broader perspective, this interaction between protection and

naming semantics seems to leave three choices: a bizarre interface, as just

described, or implementing the entire function in the kernel (the earlier

design), or varying the user-visible semantics of protection or naming. But

the particular semantics in use were already the result of several years ·of

experiments with different kinds of semantics, and the particular rules

described have turned out to minimize errors and simplify user comprehension

[Saltzer, CACM, 1974). Getting all these considerations adjusted just right

is an open problem. It seems likely that a more explicit separation of

user-level semantics for naming and from those of protection, such as found in

UNIX [Ritchie, 19741 would help.*

An interesting final case study of tradeoff between implementation

complexity and user interface semantics arises in the Multics treatment of

* Note that this set of issues deals entirely w~th the semantics of
discretionary control. In a kernel design that focused exclusively on
non-discretionary control, the interaction between access control and name
resolution would be relegated to applications program implementation.

34

secondary (disk) memory storage charges. The user interface specifies a

charge for just the storage required to implement a file. Since page-sized

blocks of zeros happen to be implemented by flags in. the file map rather than

by allocating and storing whole pages full of zeros," a file of size of say,

100, 000 words (100 pages) but non-zero in only the first and last vo.rds will

accumulate a charge for only two storage pages. Users have talU.!n advantage of

this feature to simplify many file-manipulating programs. They create from

the beginning a file of the maximum size that might evar be needed, but for

much of its life the file contains little data, so it costs little to store.

This policy has three effects on the complexity of the kernel of the

operating system. First, any time the user writes data into a file, the

number of pages required to implement the.file may cha1;1.ge, and thus the

appropriate quota directory may need to be updated. As described earlier,

care is required to implement this update without creating a depe~ency loop.

Second, the page removal algorithm finds that part of its specification

includes searching the contents of pages about to be removed, to see if all

words are now zeros. Thus this algorithm must be given (otherwise.

unnecessary) access to the data in every page in primary memory. Finally,

since files are read by mapping them into blocks of core memory, if a user

tries to read from a page containing all zeros, °'' zero"'.'containing page must be

allocated, at least temporarily, and the accountiQ$ ~~.s.ures must be updated.

Thus a read i.mplicitly causes information to be written, perhaps on the other

side of a protection boundary, in violation of the confinement goal [Lampson,

19731.

Naming-related storage quotas, naming-related access control, and

accounting for physical representation costs are typical examples of conflicts

35

between desired semantics and implementation complexity that were encountered

in the Multics kernel simplification effort. It is interesting to conjecture

whether or not these conflicts would also arise in a computer system dedicated

to file storage and management. We believe that they would.

Impact of engineering studies .Q.!! the size of the Multics kernel

There are a variety of measures that can be used to assess the size of

the Multics kernel. One can count the number of lines of source code, but

this count is confused by the fact that while most of the code is written in

PL/I, some is in assembly language. This distinction could be eliminated by

counting the number of machine instructions in the kernel, but this number

seems somewhat irrelevant, since no auditing procedure is likely to be based

primarily on examination of the machine instructions themselves. The most

useful and consistent measure of the kernel size seems to be the number of

source lines, independent of the language being used, and this is the measure

we shall use.

The largest component of the kernel is those programs that are within the

innermost protection boundary of the supervisor, known locally as ring zero

programs. At the beginning of this project there were 44,000 lines of source

code within ring zero. As some measure of the modularity of this code, there

existed approximately 1,200 distinct entry points in the supervisor, of which

157 were callable by the user. In addition to the ring zero programs, there

are a number of other programs that ought to be included as part of the

Multics kernel: there were programs in other supervisor rings, and there were

also programs that ran in trusted processes. One study was made of the

largest of of these non-ring-zero programs: the Answering Service, which

regulates attempts to log in to the system, including authenticating

36

passwords, and manages system accounting. These programs contained about

10,000 lines of source code. It ls clear that the mm-ring-zero prugrame

contribute significant bulk to the kernel of the sys.tem. As a starting point,

then, we consider the kernel to have consisted of 54,000 lines of source code.

As mentioned above, some of the ker~el is coded in assembly language

rather than PL/I. Because of this, there would b.e a substantial size benefit

in recoding all assembly language procedur.es in PL/I. It must be noted that

such a recoding has both a benefit and a cost: experiments suggest that while

the number of source lines typically shrinks by s~~htly more than a factor of

two, the number of generated machine instructions seeiM. to increase by

somewhat more than a factor of two, thus having so• negative effect on the

performance of the system {Huber, 1976].

The size impact of our studies is easiest to assess for four projects

that were carried ·through to a trial implementation. Three of these had as

their goal the outright removal from the kernel of the system of a certain

body of code whose function we consider to be noncritical. Clearly, the

impact of these modifications on the kernel size is the most dramatic and

demonstrable. The extraction of the dynamic linker froa the kernel [Janson,

1974] had the effect of removing 2000 lines of source code, about 4%. More

interestingly, it only removed 2% of the entry points inside the kernel,

implying that most of the modules were fairly large; but it eliminated 11% of

the entry points from the user domain into the kernel. In other words,

removing this code from the kernel had a very strong effect in reducing the

complexity of the interface that the user sees to the kernel. This should not

be surprising, since we claiin that the code did not belong in the kernel at

all, and was in fact performing a user function. The project to remove some

37

of the name management mechanism from the kernel [Bratt, 1975] did not have

quite such a dramatic effect: it reduced the size of the kernel only by 1000

lines. The latter project was dramatic chiefly in the reduction by a factor

of four in the total size of the code that implemented the algorithm once the

algorithm was removed from the kernel. This was a case in which the

comple~ity of the algorithm itself was due largely to the fact that it was

inadvertently placed inside the kernel. Another project that had dramatic

impact on the size of the kernel was an investigation of the Answering Service

[Montgomery, 1976), the programs mentioned above that manage logins and

accounting. Of the 10,000 lines of source code, it was shown that fewer than

1,000 of them need be included in the kernel.

The fourth study actually implemented, the redesign of the memory

management algorithm [Huber, 1976], did not have as its goal the extraction of

code from the kernel, but rather the restructuring of code in the kernel using

parallel processes, for the sake of clarity. The main size impact of this

project came from recoding certain assembly language modules in PL/I, which

had the impact reported above.

In terms of reducing the actual bulk of the kernel code, another dramatic

impact may come from a project that is only now being completed, and whose

impact can therefore only be estimated. This project has to do with removal

from the kernel of much of the code having to do with connection of the system

to multiplexed networks [Ciccarelli, 1977). Two multiplexed communication

streams are attached to the Multics system: the ARPANET, and the local front

end processor with all its attached terminals. At the start of the project,

approximately 7,000 lines of PL/I were dedicated to handling these multiplexed

lines, about 12% of the kernel. If a third network were to be connected to

38

Multics, the original strategy would require that yet a third handler be added

to this system. In other words, the bulk of the network control code would

grow linearly with the number of networks attached. We are now completing a

project whose goal is to demonstrate that alm.ost all of the network control

software can be removed from the kernel into the user domain. and tha.t auch of

the software that remains in the kernel to perform the actual d"9Ultiplexing

of this stream can be, to a significant extent, constructed in a fashion

independent of the particular network. Thus, the bulk of the kernel is much

reduced, and only grows slightly as new networiu. .are attached. While the

results in this area are not yet demonstrable by a coaplete-impleaentation, we

estimate that this 7,000 lines of code in the kernel may shrink to_ less than

1,000.

Another project whose size impact can only be estimated is the redesign

of the system initialization mechanism, which proposed that certain parts of

initialization be done in a user process environment in a previous system

incarnation [Luniewski, 1977]. We estimate that the removal of this code will

shrink the kernel by 2,000 lines.

It is useful to assess the combined effect of all the changes discussed

above. Table one summarizes the various results. Aa this accounting

indicates, the combined effect of our various projects could be to cut the

size of the kernel roughly in half. At the start of the project, we had hoped

that our impact on the bulk of the kernel could be somewhat greater than it

was. Our optimism was, to a significant extent, based on the hope that

projects such as the redesign of the memory tQanager would yield a simpler and

thus smaller algorithm. In fact, the result was somewhat more subtle than

this; the algorithm did get simpler, but not by outright elimination of pieces

39

of code. Rather, the effect was elimination of paths between pieces of code.

Operations originally in the kernel continue to be needed there, but are

executed under circumstances more constrained and better understood. Thus,

the effect on absolute size is less than hoped, but the effect on complexity,

although more difficult to gauge, is considerable.

Kernel Size, Start of Project Reductions

44K ring 0 Linker 2K

lOK Answering Service Name Manager lK

54K TOTAL Answering Service 9K

Network I/O 6K

Initialization 2K

Exclusive use of PL/I BK

TOTAL 28K

Table 1

Summary of Kernel Size Reductions

Another area of interest is what might be the impact of specializing a

Multics to be just a network-connected file storage system, with no

general-purpose user programming permitted. Interestingly, many of the

functions that one might expect to see deleted have already been removed from

the kernel. Our best estimate is that such specialization might reduce the

kernel size by at most another 15 to 25%, mostly by allowing simpler

algorithms to manage the more constrained environment.

40

Impact of redesign ~ performance

The effect of these projects on the performance of the system must be

assessed. Our goal was not to achieve a perforaance improvement, but a

significant performance degradation would, be a cause for concern. In fact,

the conclusion reached by most of the studies is that the perforaance of the

system was not significantly affected by the proposed changes. While the

dynamic linker ran somewhat slower when removed from the kernel, the causes

were well understood and curable. The name space manager ran somewhat faster.

The revised Answering Service, in its preliminary iapleaentation, ran about 3%

slower.

The more interesting performance questions arise in connection with

modules which, rather than being moved lllholesale, were redesigned for clarity

while remaining in the kernel. The two most interesting examples of this sort

of modification are the new memory management and process management software.

The process management software is interesting because the new design included

a two-level process scheduler, a structutte wbi.~h·in the past has not yielded

good system performance although no one to our knowledge has been willing to

claim such a failure in print. Unfortunately, the trial implementation that

was intended to explore this scheduler performance was not completed. We have

implemented and studied the bottom layer of the scheduler, and are confident

that the combination of the layers will have a performance about the same as

the current system. However, this claim is only speculative.

The performance of the memory management aoftlftlre was studied in detail.

The new design was somewhat slower, for two important ~easons. First, parts

were recoded in PL/I from assembly language, which seemed to cost a factor of

two in the speed of the code. Second, the new version of the memory manager

41

used two dedicated processes to perform part of its function, while the

original design ran all functions in the process of the user that took a page

fault. This use of processes required memory management software to call the

process management software, which added a small but unavoidable cost. On the

other hand, the use of processes allowed part of the function to run at a low

priority, when the processor might otherwise have been idle. This lower

priority represents a performance improvement of uncertain magnitude. All

together, the performance impact of the new design would be negative, but not

significant unless the system were cramped for memory.

Conclusion

The primary conclusion of this project is that the kernel of a

general-purpose operating system (or of a specialized file-management system)

can be made significantly simpler by imposing first a clear criterion as to

what should be in it--the kernel concept--,and second a design discipline

based on type extension. The kernel concept seems to be a viable approach to

security in large-scale systems as well as in the small-scale ones to which it

has been previously applied.

On the other hand, compared with kernel designs that have been proposed

to deal exclusively with non-discretionary control {Lipner, 1974] the kernel

of a general-purpose system seems still to be a large program~26,000 lines of

source code in this case study. And it is not apparent that specialization of

the system to be just a file storage and management facility would make a very

big reduction in this number--maybe 20%. At the same time, there does not

seem to be a significant performance loss arising from use of simpler, more

modular designs. This observation reinforces observations made, as part of

the larger project, that in production use Multics with AIM performs no

42

differently than Multics without AIM. Together, these observations lead to a

very strong conclusion that a secure system need have no performance penalty.

It is also apparent that minor adjustments of the underlying hardware

architecture can make a significant dif£erence in operating syste• complexity,

and siailarly that minor variations in the semantics of the user interface can

make major differences in the complex~ty of implementation of the kernel.

Another conclusion for designers is that one cannot hope to develop a

modular design without consideration of the complete set of desired functions.

If one leaves out, for example, resource control or reliability strategies for

later addition, the chances are great that this addition will disrupt the

module boundaries or ·introduce undesired depetid.encies.

With these several conclusions in aind, and the objective of a

certifiable design as the goal, a designer of a new system should be .able to

create a design whose implementation can actually be reviewed for integrity,

and used with confidence.

Publications of the Kernel Design Project

A. External Publications

Saltzer, J.H., "Protection and the Control of Information Sharing in Multics,"
CoDll. ACM .!l, 7 (July, 1974), pp. 388-402.

Saltzer, J.H., "Ongoin& l.esearch and Developaent on Information Protection,"
ACM Operating SystellB Review!, 3 (July, 1974), pp. 8-24.

Schroeder, M.D., "Engineering a Security Kernel for Multics," Proceedings of
5th Symposium on Operating System Principles, ~ Operating Syste11S
Review .2_, 5 (November, 1975), pp. 25-32.

Janson, P.A., "Dynamic Linking and Environment Initialization in a
Multi-Domain Process," Proceediqs of 5th Symposium on Operating Systems
Principles, ACM Operating Systems Review .2,, 5 (November, 1975), pp.
43-50.

43

B. External Publications in Preparation

Gifford, D., "Hardware Estimation of a Process's Primary Memory Requirements,"
to be published in Comm of ACM, September, 1977.

Schroeder, M.D., Clark, D.D., and Saltzer, J.H., "The Multics Kernel Design
Project," to appear in the Sixth ACM Symposiwa on Operating Systems
Principles.

Reed, D.P., and Kanodia, R.J., "Synchronization with Eventcounts and
Sequencers," to appear in the Sixth ACM Symposium on Operating Systems
Principles.

Kanodia, R.J., and Reed, D.P., "Synchronization in Distributed Systems," in
preparation.

Janson, P.A., "Using Type-Extension to Organize Virtual-Memory Mechanisms," in
preparation.

C. Theses and Technical Reports

The following are theses submitted to the Massachusetts Institute
of Technology, Department of Electrical Engineering and C011J.puter
Science, and are available as M.I.T. Laboratory for Computer
Science Technical Reports.

Janson, P.A., "Removing the Dynamic Linker from the Security Kernel of a
Computing Utility," S.M. thesis, June, 1974, Technical Report TR-132.

Bratt, R., "Minimizing the Naming Facilities Requiring Protection in a
Computer Utility," S.M. thesis, July, 1975, Technical Report TR-156.

Gifford, D., "Hardware Estimation of a Process' Primary Memory Requirements,"
S.B. thesis, May, 1976, Technical HemorandUDl TM-81.

Huber, A., "A Multi-process Design of a Paging System," S.M. thesis, May,
1976, Technical Report TR-171.

Montgomery, W., "A Secure and Flexible Model of Process Initiation for a
Computer Utility," S.M. thesis, June, 1976, Technical Report TR-163.

Reed, D., "Process Multiplexing in a Layered Operating System," S.M. thesis,
June, 1976, Technical Report TR-164.

Janson, P., "Using Type Extension to Organize Virtual Memory Mechanisms,"
Ph.D. thesis, August, 1976, Technical Report TR-167.

Hunt, D., "A Case Study of Intermodule Dependencies in a Virtual Memory
Subsystem," E.E. thesis, December, 1976, Technical Report TR-174.

Goldberg, H., "Protecting User Environments," S.M. thesis, January, 1977,
Technical Report TR-175.

44

Luniewski, A., "A Certifiable System Initialization Mechanism," S.M. thesis,
January, 1977, Technical Report TR-180.

Mason, D., "A Layered Virtual Memory Manager," S.M. thesis, June, 1977,
Technical Report Tlt-177.

Clark, D., editor, "Ancillary Reports of the Kernel Design Project," June 30,
1977, Technical Memorandum TK-87.

D. Theses and T~chnical Reports in Preparation

Ciccarelli, E., "Multiplexed eo-unication for Secure Operating Systems," S.M.
thesis, expected date of completion, September, 1977.

E. Annual Reports

M.I.T. Project MAC Annual Report XI, 1973-74, PP• 155-183.

M.I.T. Project MAC Annual Report XII, 1974-75, PP• 89-104.

M.I.T. Laboratory for Coaputer Science Annual Report, 1975-76, (in
preparation)

M.I.T. Laboratory for Computer Science Annual R.eport, 1976-77, (in
preparation)

Additional References

Bell, D., and LaPadula, L., "Secure Colaputer Systems," Air Force Elec. Syst.
Div. Report ESD-TR-73-278, Vols. I, II, and III, November, 1973.

Bredt, T., and Saxena, A., "A Structured Specification of a-Hierarchical
Operating System.," ACM Proc. Int. Conf. on Reliable Software 10, 6 (June,
1975), PP• 310-318.- -- - -- -

Brinch Hansen, P., "The Programing Language Concurrent Pascal," IEEE Trans.
~ Software Engineering SE-1, 2 (June, 1975), pp. 199-207.

Dijkstra, E.W., "The Structure of the THE-Multiprogramming System," Comm. ACM
l!_, 5 (May, 1968) pp. 341-346.

Lampson, B., "A Note on the Confinement Problem," co-. ACM_!&., 10 (October,
1973), pp. 613-615.

Lampson, B.W., et al., "Report on the Programaing Language EUCLID," SIGPLAN
Notices J1., 2 (February, 1977) pp. 1-79.

Lipner, S., Chm., "A Panel Session-Security Kernels," AFIPS Con£. Proc. 43,
NCC 1974, pp. 973-980.

45

Liskov, B.H., and Zilles, s., "Specification Techniques for Data Abstraction,"
IEEE Trans. Software Engineering SE-1, 1, (1975) pp. 7-19.

Neumann, P., et al., "A Provably Secure Operating System: the System, its
Applications, and Proofs," Final Report on SRI Project 4332, Stanford
Research Institute, February, 1977.

Ritchie, D.M., and Thompson, K., "The UNIX time-sharing system," CACM 11., 7
(July, 1974), pp. 365-375.

Schell, R., "Notes on an Approach for Design of Secure Military ADP Systems,"
in Prelimary Notes on the Design of Secure Military Computer Systems,
United States Air Force Electronic Systems Division MCI-73-1, January,
1973, pp. 1-1 through 1-5.

Walter, K.G., et al., "Primitive Models for Computer Security," United States
Air Force Electronic Systems Division Technical Report ESD-TR-74-117,
January 23, 1974.

47

PART 11: KERNEL DESIGN PROJECT TASK REPORT

by

David D. Clark

Introduction

The kernel design project was composed of twenty-two individual tasks.

This section of the final report discusses each of the tasks initiated during

the course of the project.

Many of the tasks described here have been documented in greater detail.

In most cases this documentation is in the form of a Technical Memo (TM) or

Technical Report (TR) of the Laboratory for Computer Science. A complete

bibliography of the project appears in Part I of the report.

49

I. Studies of Formalisms for System Specification

At the beginning of this project, we invested a certain amount of effort

in exploring known techniques for expressing the specification of operating

systems. While we did not intend, as part of our research, to construct a

formal specification for the Multics operating system, it was important for us

to understand enough about the construction of specifications to see how our

work would relate to this task. We experimented with three different

specification languages: the Vienna Definition.Language, a stylized English,

and a speci'.al language developed here and locally known as GSl'L, a PL/1-like

language with data structures based on LISP. In an attempt to discover the

relevance of structured pragramining to ou~ project, structlJred representations

of two parts of the system, page control and traffic coatrol, were developed.

These preliminary experimentations proved very valuable in developing the

group insight. The structured representation o£ page control in GSPL forms an

appendix to technical report TR-127 by B. Greenberg •.

II. Analysis of Original System

Before we could begin to perform any organized rearrangement of the

kernel of Multics, it was necessary to have a clear idea of what was contained.

in the kernel of the system as it existed at the beginning of our project. To

this end, the programs that constituted the supervisor of the existing system

were analyzed in several ways. First, we gathered together the functional

specification for every entry point into the supervisor. The resulting

notebook constituted a first cut at a functional specification of the Multics

kernel. Second, all of the segments that constituted this supervisor of the

system were categorized by function and by source language. The results of

50

this preliminary assessment, and a comparison with the system of today, are

summarized in the earlier portion of this final report. The preliminary

assessment is reported in "A Census of Ring O" by v.· Voydock, reprinted in

TM-87.

III. Formulation of Criteria for Inclusion of Modules ~ithin the Kernel

There are a variety of forces that have caused modules to be moved into

the Multics supervisor. Some of these modules are ob,riously related to

maintenance of system security, others have something to do with system

security, but might be removable at least in part, and othe-rs exist in the

supervisor for reasons such as effici~cy or convenience, and are not related

to maintenance of system security in any way. We believed that·the size of

the supervisor could be markedly reduced by di-ssecd.ng a -large ndmber of

system modules and removing them, either paft:iarly or llholly, from the

supervisor. Before we could begin such a'reaoval process, howe"er, it was

necessary t0- detel'llline exactly what criteria We would use to justify the

inclusion or exclusion of a module f rOll thi! kernel. we began by studying a

number of specific parts of the current system and identifying the trade-offs

related to removing these particular parts out of the kernel. One study in

particular was performed of page control. We identified three levels of

security with which we might be concerned, protection of information from

direct release or modification, denial of service, and confinement 9f user

computation to protect against leakage by means of a "trojan horse" attack.

In general, we adopted the principle that protection against confinement was

not easily achievable in today's environment, and that protection against

denial of service was achievable and important, but that denial of service was

less important than direct unauthorized release or modification of data. A

discussion of these kernel levels is contained in TR-163 by W. Montgomery.

51

IV. Analysis of Flaws in the Multics System

In an attempt to understand the sorts of problem that lead to potential

violations of security, our group periodically collected and documented every

known way to penetrate the Multics system. While the list of uncorrected bugs

was not circulated, we periodically issued a report which analyzed bugs after

a repair had been installed in the system. These analyses are of a very

pragmatic nature, but yield considerable insight into the sort of problem that

must be solved in practice if a secure system is to exist. These reports were

reprinted in TM-87.

V. Performance Benchmark for the Multics System

One of our concerns in this project was that the performance of the

system should not be significantly degraded by the modifications that we

proposed. We had anticipated using the standard Multics benchmark developed

at the MIT Information Processing Center to evaluate our modified versions of

the system, but we discovered that this benchmark was too time consuming and

not sufficiently precise for our purposes. For this reason we invested some

effort in producing a variant of this benchmark that ran more quickly than the

standard version and whose results were more repeatable. We produced a

version of the benchmark that started and stopped the calibration tasks in

such a way that the resulting running conditions were much more repeatable

than in the standard benchmark. This modified benchmark was used to produce

the performance results reported earlier in this report.

We also invested some effort in designing a version of the benchmark that

provided the test load on the Multics system using interactive processes

logged in over the ARPANET, as opposed to the absentee jobs used by the

standard benchmark. The advantage of interactive processes is that they

52

exercise the system in a fashion more similar .to the way the system is

actually used. This latter project was never completed. It appeared that the

need for an evaluator of this co111plexity and accuracy was no-t required, since

the majority of the engineering studies that we pe~foraed were not carried

through to an implementation that was sufficiently tuned to yield more than

very rough performance information.

We performed two other small projects related to performance monitoring

and evaluation. One project was experimental observation of various classes

of users on the system, in order to develop an empirical model of the arrival

pattern of user commands. This work is reported in an undergraduate thesis by

H. Rodriguez, entitled "Measuring User Characteristics f:)a the Multics System".

We also imported and made operational a performance monitoring package called

"aware" originally developed by the Ford Motor Company.

VI. Removal of the Dynamic Linker from the Kernel

Our preliminary analysis of the Multics kernel indicated that a

significant volume of the kernel consisted of programs that did not need to be

in the kernel for reasons of security, but were there for reasons of

efficiency or tradition. It was important to determine whether or not it vas

practical to remove these modules bodily from the kernel. In most cases it

was clear that some small percentage of the function did require supervisor

privilege, and there was some fear that this residue would complicate the

outright extraction of the remainder. The first such task which we undertook

was the removal of the dynamic linker from the kernel. The -dynamic linker,

which translates at run time between symbolic naaes ancl. seg•nt numbers, was

an obvious candidate for removal for four reasons. Firat, the link.er did not

implement any concept related to the protection of the system or needed to

53

support the protection mechanisms. Its function is entirely related to the

execution of user written code. Second, in view of the function implemented

by the linker, it seemed reasonable to suspect that the linker did not need

any of the privilege granted to typical modules of the security kernel.

Third, the linker was a very complex program. Even though its function was

easy to describe, the details of its implementation required the use of

intricate and sophisticated language constructs that made the reading and

auditing of the program an almost impossible task. Finally, the linker, by

its very nature, handles data directly accessible to the users of the system.

Such data could contain, purposely or not, inconsistencies capable of causing

the linker to malfunction or perform unexpected operations. It seemed much

harder to verify the correct operation of a program when that program could be

presented with an arbitrary input than to verify correct operation when a

"correct" input was guaranteed. Very sophisticated machinery would be

required to verify the consistency of user databases and thus insure proper

operation of the linker. Inclusion of such machinery, if possible, would only

increase the complexity of the linker. The alternative of removing the linker

from the kernel would insure automatically that no malfunction of the linker

would ever subvert the protection mechanism of the system.

Since this project was one of our earliest, the design was carried

through to an implementation in order to increase our confidence that the

techniques we were proposing in principle would work in practice. The

completed implementation also allowed us to make some preliminary performance

studies, since there was some concern that removal of functions from the

kernel might significantly degrade the performance of the system. The

conclusions drawn from this project were that the outright removal of certain

54

functions from the kernel was indeed feasible· and practical, that no drastic

performance degredation need be expected in practice, and that the flexibility

of the system was in fact enhanced by this extraction, since the user now had

the option of replacing the linker with an alternative program of his own

choice. One useful byproduct of this study was the conclusion that kernel

intervention is not required when control is being transfered between one user

d0111ain and another, even if those two -domains are mutually untrusting. This

is a most interesting conclusion, which was not at all obvious at the

beginning of the project.

The results of this project are reported in detail in technical report

Tlt.-132, and in "Dynamic Linking and Environment Initialization in a

Multi-Domain Process", Proceeding of 5th Syaposiwa on Operating Systems

Principles, ACM Operating Systems Review .2_, November 1975, both by P. Janson.

Vil. Minimizing the Naming Facilities Requiring 'rotection

This project involved identifying another coaponent of the existing

Multics kernel that could be removed bodily into the user enviroDDlent.

Multics provides a very sophisticated naming environment that users may use to

keep track of their files. One set of names avaU:able to the user, file

system names, are global in scope and can be used by any user to identify ~

shared file. Since these names are shared among users, it i.s not obvious hQ.w

their management could be removed from the kernel. However, there are other

sorts of names, reference names, private to each user, which provide an

efficient way of naming a file already identified using a file system name.

Since the management of reference names is private to each user, it seemed

reasonable to remove their management from the kernel.

55

Removing the reference name manager from the kernel required that a

kernel data base, the known segment table, be split into a private and a

common part. As part of this change, the interpretation of path names was

also removed from the kernel. As discussed in the first part of this report,

this required that the supervisor learn to lie convincingly on occasion about

the existence of certain file system directories.

This project was also carried through to an implementation, primarily

because we anticipated demonstrating a performance improvement, and a drastic

reduction in the complexity of the algorithm. once we eliminated the

constraints imposed on the algorithm by the necessity of its shared operation

in the kernel. The result was a reduction by a factor of five in the kernel

code required to manage the address space of a process, and an improvement in

performance. A new and simpler kernel interface was an additional by-product.

The results of this research are represented in technical report TR-156

by R. Bratt.

VIII. Removal of the Global Naming Hierarchy from the Kernel

The previous task description discussed the existence of a global naming

environment, the Multics file system. Since this naming environment is shared

among all the users, it was not at all obvious that this name management

mechanism could be removed from the kernel. However, it appeared that the

file system could at least be partitioned into two parts, a single-layer

catalog of segments, indexed by unique id, and a higher level name management

mechanism which performed no function except the mapping between user provided

names and unique id's. If such a division could be performed, then it would

be possible to imagine removing this higher level from the kernel, and

56

providing a different copy of this management package for users in each

different security compartaent. While this would segregate the users into

disjoint classes that would be incapable of refering·to each others files,

such a segregation might be acceptable in .. ny applications. Even if it were

not possible to remove this naae management algoritha froa the kernel, the

partitioning of the algoritha into two coaponents would presuaably increase

the modularity of the system, which would enhance the auditibility of the

kernel. This project was initiated, but not completed. It was clear that

this was a very major upheaval to the functionality of Multics, in addition to

being a major upheaval to the structure of the existing code. We felt that

for our purposes the effort required to perform this surgery would not be

appropriate, given the requirement that we conform to the current Multics

specification. In a new system that was being designed with the goals of

auditibility in aind, we would strongly urge that this structure be

considered, and if Multics were being completely redeaigu.ed, we think that it

would be quite valuable to evaluate this structure for inclusion.

IX. Study of Multics Systea Initialization

If one is to certify that a system works correctly, one aust begin by

verifying the "initial state" of that system. For this reason, it was very

important to understand how the Multics system initiali-z:ed itself. The

original initialization procedure was relatively unstructured in the sense

that we found it very difficult to understand how one aight verify its

operation. Essentially, initialization proceeded in a nuaber of very small

incremental steps, each of which augmented the environment of the progra11a

which followed it. This meant that each program ran in a slightly different

environment than its predecessor. It was characterizing this large number of

-------~------

57

different environments which made verification of program correctness so

difficult. The reason for this large number of incremental steps performed

during every initialization is that each of these steps represents a point at

which the system can be tailored to reflect the particular physical

configuration of the hardware available at the moment. Thus, a single Multics

tape containing the initialization programs could be generated that would

bring up a running Multics on any configuration, in contrast to other systems

that require the generation of a different tape specific to each particular

configuration.

We proposed an alternative structure for Multics initialization that

continued to achieve this goal, but which we considered to be much more

amenable to verification. Our strategy divided initialization into two

phases. In the first phase, a bit string that consituted a version of Multics

capable of running on any configuration was lo~ded into tllemory. In order to

do this, it was necessary to demonstrate that there was a minimal set of

hardware and software which constituted a subset of every viable

configuration. Once we had defined this minimal configuration, it was

possible to generate a version of Multics that used just these resources. The

generation of this minimal Multics was done not at the time the system was

initialized, but at the time the tape was generated. Generating the minimal

Multics at tape generation time makes validating the generation programs much

simpler, since the programs can run on a full fledged Multics, rather than in

the environment that they are attempting to create. The second phase of

initialization consisted of a series of dynamic reconfigurations that modified

the minimal Multics to conform to the particular available hardware and

operating parameters at this site. Dynamic reconfiguration has always been an

58

essential part of Multics, and many of the reconfigurations required for this

purpose already existed in this system. However, it was necessary to

demonstrate that certain supervisor tables, such as the traffic control and

segment management data bases, could be grown, and an impleUletltation was

performed to prove this particular claim. Althougl) this initialization

strategy was not completely implemented, we are very cQnfident that it is

easily amenable to validation, since it conforms in its structure to the

principles of layering, which appear to be powerful principles in operating

system structuring.

Ihe results of this work are reported in technical report 'll.-180 by A.

Luniewski.

X. Restructuring of Page Control

The Multics kernel is implemented as code distributed aaong all the

processes in the system. That is, a user desiring a particular service of the

supervisor executes the relevant supervisor code in"bis own process. There is

an alternative structure, in which the supervisor is illpleaented as separate

processes that communicate with the user using interprocess comamication

mechanisms. This alternative, in certain cases, has the advantage that it

isolates as a sequential process an algorithm that by its nature wants to be

sequential, but that had been forced to an unnatural structure by being

executed, potentially in parallel, by several user processes. We were very

anxious to explore the use of this strategy within the Multics kernel.

The part of the supervisor that we chose as a testbed for this experiment

was the low level memory management, commonly called page control. When a

user references a page not in main memory, the page must be fetched from

59

secondary storage into an empty location in main memory. In order to perform

this move, it may be first necessary to create an empty space in main memory

by removing some other page. This removal algorithm has traditionally been

run at the time of a page fault, but there is no necessity that it be run

then. Our belief was that the removal algorithm could be more sensibly

structured as a separate process, running in p4r•llel with user processes,

with no function other than to identify and remove froaa main memory pages not

recently used. By segregating this algorithm in a separate process, the user

process is no longer concerned, at fault time, with such probleias as queuing

disk writes, and waiting for their completion. Rather, the users process

performs a very simPle operation: it requests an empty piece of main memory,

abandoning the processor if necessary until one is available, and then

performs a read operation from secondary storage into this location.

A redesign of page control also allowed us to explore the implications of

recoding certain assembly language programs in PL/l. The page control

algorithms had been coded in assembly language for efficiency, and we were

anxious to find out exactly what the impact would be of using a higher level

language. The redesigned page control was implemented, since we were

interested in investigating the performance characteristics of the system and

since we wanted to confirm, by actually running the system, that we had

identified all interactions between the page control functions now isolated in

separate processes, and the higher levels of the supervisor still running in

user processes. In fact, these connections between the removal process and

the higher levels of the supervisor turn out to be some of the stickiest

problems associated with this version of page management. The problem is that

higher level functions occasionally request that particular pages they specify

60

be removed from primary memory, and this explicit request from above does not

fit neatly into the otherwise clean pattern of the removal algorithm. The

alternative of having these explicit removal operations performed by the user

process implies that aore than one process can be removing pages from memory

at the same time, which in turn implies that the.data bases describing the

contents of memory are being updated by more than one process. This

eliminates much of the cleanliness of a multiprocess inpleaentation, since

locking must still be used to insure the integrity of the data base.

The results of this implementation, especially the conclusions we draw

concerning performance of the algorithm in a high level lang_~e, are reported

in the earlier part of this report. Details of this froJect are reported in.

technical report TR-171 by A. Huber, and in "Further B.esults with .-.

Multi-Process Page Control" by R.. Mabee, reprinted in 'l'M-87.

XI. Efficient Processes for the Kernel

As discussed in the previous task description, it 'ppeared that ,,

structuring some of the supervisor around separate proc~s_ses was convenient

and appropriate. It was clear, however, that the mechanisms then existing in

Multics for the creation and scheduling of processe• ve~e soaewllat unwieldy

for this particular sort of application. We saw many places in the syste11in

which a process could be used if it did not carry with it the full price tag

of the user process. In particular we concluded that a process that .could

take page faults, but could perform no other modifications on its environaent,

such as adding a new segment to its address space, would be an effective and

economical compromise for system processes. We performed an implementation of

such a process, in order to demonstrate that its operation was compatible with

the Multics structure, and we used this process in a variety of ways. It was

61

utilized heavily in the design of page control discussed above. It was also

used to demonstrate that processes could be used in Multics to handle I/O

interrupts. Currently in Multics, the code that responds to an interrupt runs

in a very unusual and limited environment, with restrictions such as that it

cannot call a locking primitive or perform any other action that might

conceivably result in it loosing the processor. If an interrupt could be

translated into a wakeup, these problem would vanish. It was clear that the

immediate translation of an interrupt into a wakeup was an obvious and crucial

idea in the correct structuring of the system. We demonstrated the utility of

these fast processes by modifying the teletype interrupt handler so that it

ran in such a process. We also explored the us, of, such a process for

handling other I/O interrupts, such as the interrupts necessary to operate our

connection to the ARPANET. In the discussion of task XVI below, we

demonstrate a structure to the system which provides these efficient processes

in a clean and understandable way. The implementation that was part of task

XVI ran almost every interrupt handler in the system as a supervisor process.

XII. Multiple Processes in the User Ring

Another related experiment involving the use of multiple processes was

the restructuring of the user ring computatio~ so that it could run in a

multiprocess environment. While there are a variety of advantages to a

multiprocess user environment, such as being able to,suspend several coamaods

and then restart them in an order different from the order in which they were

suspended, the principal impact on the kernel, as opposed to the user, of

multiple processes has to do with handling of the Multics quit signal. The

quit signal currently propagates its way through the Multics kernel in a most

astonishing and intricate pattern, starting out in an interrupt handler, where

62

it is translated into a special call to the traffic controller. This call in

turn generates a special interrupt in the target proceaa, which may cause that

process to run in order to be interrupted. If we understood how to structure

the user computations so that the quit was nothing but a wakeup to a separate

user process, then the mechanism in the kernel would be much reduced, since

the only operation the kernel would perform would be the imaediate translation

of a quit signal into a wakeup, which is exactly the same action that the

kernel would presumably take on any I/O interrupt. A running implementation,

of tbe user computation as a number of processes was produced, although the

results of this research were never published. A related document, however,

is discussed below in task XVIII.

XIII. Study of Error Recovery

One of the most disruptive events in a system supervisor is the

occurrence of an error. An error may be so severe as to cause.susp~nsion of

all system operation, but even in this context it is necessary to bring the
·~ _.' . - : ' - . "; .~ .. - :;- "'t

system to an orderly halt so that ainiaua information is lost. If an error is

not that severe, it may still be necessary to reflect the occurrence of this

error to some module other than the'"module that actually discovered the error.

It turns out that these error reporting paths are tb'e ao·st intractible

COIDDlUnication paths in the system when one attempts- to modularize the various

functions of the supervisor. Typically, an error is detected at a very low

level in the supervisor, and is reported to some higher level, thereby

providing a reversed direction conm1t1nication channel from.low to high levels

in-violation of the layering strategy. During the course of this project we

performed a variety of studies with the goal of understanding how Multics

should recover from errors, and whether steps taken' to insure reliable

63

recovery from errors might in fact compromise system security. The first

project was a study of the Burroughs 7700 operating system, since we were

given to believe that this system was highly resilient in the face of errors,

and could continue operating without disruption of the user computation. In

fact, we concluded after a study of the system listings that the level of

recovery provided by the Burroughs system did not markedly exceed that which

Multics itself displayed. A more detailed analyses of the various sorts of

errors to be expected in the Multics system was performed as part of this
l

project, although the documentation of this report is still in draft form.

A related project which addressed the question of upward communication

across layers is described in task XVI.

XIV. Removal of Answering Service from kernel

The Answering Service is that collection of modules that manage the

system accounting, authenticate users logging into the system, and keep track

of the allocation of typewriter channels and user processes. As currently

structured, the Answering Service is a very large collection of code, all of

which must be included in the security perimeter of the system. It was our

belief that the functions could be structured in such a way that only a small

portion required kernel privileges. In fact, we felt that functions

traditionally performed as part of the ke~nel, such as user authentication,

could be performed by the user process itself. In order to investigate these

beliefs, we developed an alternative structure for the Answering Service that

attempted to minimize the kernel functions related to user authentication and

accounting. The result of this design was a version of the system with

increased flexibility, since users were now permitted to create authenticated

and accountible processes at will. At the same time this version reduced the

64

size of the kernel dramatically, as reported in the earlier portion of this

document. A byproduct of this research was increased insight into the

relationship between process creation, as currently·performed when a user logs

in, and the crossing from one protection domain to another, as is often

discussed in systems with protection boundaries more general than the Multics

ring structure.

A demonstration of this version was implemented. The results are

reported in tecbnical report Tll-163 by W. Montgomery.

XV. Organization of the Virtual Memory Mechanism of a Computer System

One of the most important results of our research is a method for

producing modular, structured software to support the virtual memory mechanism

of a computer system. This material is discussed at length in the first part

of this report, and is summarized only briefly here.

The method that we propose for organizing a virtual memory mechanism is

based on the concept of type extension. A virtual memory mechanism should be

regarded as implementing abstract information containers (e.g. segments) out

of physical information containers (e.g. main aemory blocks and disk records).

Further, we showed how one could implement the programs and the address space

of the mechanism itself without violating modularity and structure. We

illustrated the use of the method by applying it to the redesign of the

virtual memory mechanism of Multics.

This work is summarized in the earlier part of this paper and in the

Laboratory for Computer Science Annual Report for the period ending June 1976,

and is discussed in detail in technical report TR-167 by P. Janson.

65

XVI. Processor Multiplexing in a Layered Operating System

In the original system, there existed a very intractable entanglement

between the virtual memory manager and the processor manager. An important

project was to disentangle these two modules, and to produce a structure for

the processor manager that was consistent with the principles of layering and

type extension developed in the project discussed in the previous section.

The general nature of the entanglement was as follows. The virtual

memory manager depended on the processor manager in a number of vays. First,

of course, it depended on the processor manager to provide the interpreter for

the code of the virtual memory manager. Second, and more explicit, the

virtual memory manager called upon the processor 1114nager to suspend the

execution of a process that was waiting for a page to be moved from secondary

to primary memory. The processor manager, in turn, depended on the virtual

memory manager to move to and from main memory the pages containing the

description of processes that were about to be run. This unfortunate

circularity was eliminated in our redesign by separating the processor manager

into two levels. The bottom level was implemented without employing the

functions of the virtual memory manager. It executed using only information

permanently fixed in primary memory. On top of this layer, the bottom levels

of the virtual memory manager ran. The virtual memory manager could call upon

this lower level to switch execution from one process to another in order to

suspend a process waiting for a page. On top of this bottom layer virtual

memory manager, a second layer of processor management was then provided.

This upper layer had available to it a virtual memory, and could therefore

store the state of a large number of processes, whereas the bottom layer

processor manager, since it was restricted to storage permanently allocated in

66

main memory, could store a state of only a fixed and rather small number of

processes. By multiplexing these fixed slots among the larger number of

descriptions managed by the top layer processor manager, the effect could be

achieved of multiplexing an unbounded number of processes among the available

hardware processors.

One additional result of this thesis was a discussion of the problem of

upward signalling: the passing of a message from a lower level to a higher

level of the system in such a way that the layering dependencies are not

violated. The problem arises in this case when, as a result -of an event

detected by the bottom layer traffic controller, a process whose state is

known only at the higher level must be readied for execution. - A solution to

this problem is proposed which does not make the lower layer processor 98nager

dependent on the uper layer.

This research is discussed in the earlier part of this report, and is

presented in detail in technical report TR.-164 by D. P. Reed. In order to

investigate the performance of the two level processor manager, a detailed

design of both levels was completed, and the bottom level was implemented.

This detailed design is reported in "A Two-Level Implementation of Processes

for Multics" by R.M. Frankston, reprinted in TM-87.

XVII. Separation of Page Control and Segment Control

From the beginning of this project it was clear that one area of great

confusion and complexity within the Multics system was the Active Segment

Table and the large number of modules that manipulate it. The structure of

the Active Segment Table is dictated by the needs of several layers in the

memory management system, from page control at the bottom to directory control

67

at the top. An extensive study was launched of the Active Segment Table and

the file system in an attempt to understand what the underlying cause of this

entanglement was. A major conclusion of this study was that resource control,

in particular the management of storage systea quota, was at the root of a

great deal of the confusion.

Given the general principles of layering and type extension discussed

earlier, it seemed appropriate to attempt to apply them in detail to this area

of the system. The particular project undertaken was the separation of the

bottom two layers of tbe virtual memory manage.r: page control, which moves

pages of information to and frOJR main memory, and 11egJDent control, which

manages the aggregation of pages into se911ents. These two modules were the

primary villans causing the entanglement manifested in the Active Segment

Table. The root of the problem was, as expected, resource management, in

particular the "quota problem". Much of theetructure of the Active Segment

Table was being provided so that the low level page manager could implement

resource management decisions that reflected policies being specified

dynamically by higher level managers. The solution to this problem was to

remodularize page control and segment control as three modules rather than

two. The bottom layer continued to manage the movement of pages into and out

of memory. The top layer provided the abstraction of an active segment, and

also the interface to the yet higher layers. The second layer provided an

intermediate abstraction that lumped pages together for the purpose of

resource control. The result of this particular modularization was a clean

isolation of those variables in the Active Segment Table into categories which

were referenced by one and only one layer.

This work is reported in technical report TR-177 by A. Mason.

68

XVIII. Provision of "Breakproof" Environment for User Programming

As vurioue parts of the operating environment are r~moved from the

kt.!rnel, thtt qul!•L lon nri•eK a• to wh&ar~ they lri\uuld bt' put. If they are

placed in the same ring as the executing progra11l8 of the user, then they can

be destroyed by a programming error of the user. It would be very nice if the

removal of programs from the kernel did not lead to a reduced robustness of

the progralllDing environment.

This project used the tmltics ring mechanism to create an environ11ent

which was not a part of the kernel but was still protected fr011 the user.

This environment could be used to contain prograas private to but still

protected from the individual user. W& defined a cons£atent ~t of programs

to constitute this environaent, 1fhich inclOdi.ng tbe co-and processor and the

error recovery mechanisa. The result was a program development and execution

environment which was considerably more robuet than the current system.

'nlis mechanism was implemented, because we felt we needed operational

experience with this subdivision of the user environment into two parts. Much

of the Multics environment was easily transformable into this new

configuration, although certain components of the system were less tractable

than others. The question of how error messages should be signaled in this

multi-domain environment was a source of considerable study. 'nlere was a

slight performance loss in this environment, due to increased page faults from

duplication of stacks and related segments in both d011ains.

This work is reported in technical report TR-175 by R•J. Goldberg.

XIX. Control of Intermodule Dependencies in a Virtual Memory Subsystem

As discussed above in task XV, the techniques of type extension and

layering appear to be very important in producing a structured kernel. This

69

project was a case study of the virtual memory management algorithms of an

abstract system resembling Multics, with the intention of applying these

principles in such a way that both the number of modules and the number of

interconnections between these modules is minimized. The central thesis of

this research is that the various operations performed by the layers of the

virtual memory manager can be cha~acterized as being of one of two sorts: one

that associates and disassociates two computational objects, the other that

fetches attributes of a computational object gi.ven its name. Decomposition of

the virtual memory manager in this way reveals the kind of dependencies that

result when one module remembers the name of an object. More strongly, this

case study decomposition suggests that if the system provides a primitive

mechanism to perform. each of these two operationa, this pair of operations can

be used by several different layers of the virtual memory manager. Such reuse

is an especially effective way to reduce the number of modules in a system.

The representation of the operations used in this research is modeled on

the LISP concepts of atomic element and property list. Tbe LISP paradigm

provides a convenient and suggestive model for the primitive operations

performed in this decomposition of a virtual memory manager.

This research is reported in technical report Tll-174 by D. Hunt.

XX. New Mechanism for Process Coordination

As part of this project, we proposed a new mechanism for process

coordination called "Eventcounts". Basically, Eventcounts are semaphore-like

coordination variables that are constrained to take on monotonically

increasing values. Coordination of parallel activities is achieved by having

a process wait for an Eventcount to attain a given value: one process signals

- --- - -- -------------------

70

another by incrementing the value of an Eventcount. Any coordination problem

for wh !rh " lil4)lut ton haa btt•m dt!veloped uatna aetuphorea can eaai ly be

converted to a solution using Eventcounts. In addition, many Eventcount

solutions seem to have the property that moat &veatcounts are written into by

only one process; this red.uction in write conten~ion has b-eneficial effects on

security problems and on coordination-of prctoesaes separated bya transaission

delay, as in a "distributed" computer syst•. Eventcounts provide a solution

to the "confined readers" problem, a version of the readers-writers

coordination problea in which reader& of the illfo111atioa are suppose to be

confined in such a way that they cannot ~o.-Jllica~• information to the

writers.. Finally, for the class of synchron1.zation problems encountered

inside an operating kernel, Eventcounts appear to leacf to aillple,

easy-to-verify solutions.

This work is reported in RFC-102, and in a paper entitled

"Synchronization nth Eventcount:a ancl Sequencera11 ·:to be presented at the 6th

Symposium on Operating: Systems Priaciplea by D• l.eed aacl R. tcanoclia.

XXI. Management of Multiplexed Input/Output

One of the functions of the Multics kernel is to control access to

ault:iplexed I/O strea118.such as the connection to tile front elld processor

managing terminals or the connection to the ARP.ABET. The kernel aust be

involved in the use of these streams, in order to insure that the messages of

one user are not inadvertently or maliciously observed or aodif ied by another

user. Currently, a large bulk of very complex code is included in the kernel

to control each of these streams. This code implements many functions in

addition to the necessary kernel function of multiplexing and demultiplexing

the messages transmitted over the connection. To reduce the bulk of this

71

code, we have developed a model of the communication taking place over a

multiplexed connection that is general enough to characterize the behavior of

the current front end processor, the current ARPANET, and various other

protocols for the ARPANET and other nets. From this model it is possible to

design modules resident in the kernel that implement the security functions

appropriate for any network that can conform to this model, rather than

creating a new control program for every network added to the system. A vast

majority of the network dependent code can be removed from the kernel and

placed instead in the user ring of the individual processes using the network

in question.

The model of this portion of the system is rather different in structure

than the models proposed to structure the virtual memory manager of the

system. The distinctions arise because the I/O stream represents an

asynchronous process whose behavior in some sense drives the kernel modules

managing the connection. This differing structure may provide an interesting

test case for the generality of extended type managers as an organizing tool

in a kernel.

XX.II. Hardware Estimation of A Process' Primary Memory Requirements

We completed a project to demonstrate that a process' primary memory

requirements can be approximated by use of the miss rate on the processor's

page table word associative memory. An experimental version of the system

demonstrated that the current working set estimator can be eliminated by the

use of this hardware feature. The working set estimator is a potentially

complex algorithm whose elimination is clearly appropriate in a simplified

kernel.

This work is reported in TM-81 by D. Gifford.

73

PART III: DETAILED STUDY OF POTENTIAL SIZE REDUCTION OF THE MULTICS KERNEL

by

Douglas M. Wells

Abstract

We estimate the impact on the size of the Multics kernel were our various

projects carried out. We specify results for three different versions of the

kernel. The first includes the effect of those projects that were carried to

a trial implementation, or whose size impact could otherwise be accurately

predicted. This version corresponds to the estimate stated in the first part

of the report. The second version involves projects whose impact could only

be estimated. The third version involves a very tentative and unsupported

estimate of the impact of producing a file system that only enforces

non-discretionary access controls.

Introduction

The first part of this report contained a preliminary study of the impact

our project had on the size of the kernel. This section of the report is a

detailed analysis of that topic. At the time that the first part of this

report was written, the only study of the size of the Multics system was one

that was performed at the beginning of the project. For this reason, the

numbers reported in the first part of this report are based on modifications

to the kernel as it existed at the start of the project. In order to perform

a more detailed analysis, we examined the kernel as it exists in the standard

system now. Since the size of the standard system has increased since the

74

start oi our project, the absolute numbers reported in this portion of the

report differ from thoae given in the preliminary atudy. The percentage

impacts that we report are approximately the same, however.

Scope of the Kernel

In defining the security kernel considered for this work, we consider

several parts of the standard system:

- Ring O supervisor. Potentially, any procedure executing in ring 0 can

examine or modify any part of Multics. We therefore need to consider any

module included in ring O as part of the security kernel.

- Message Segment Priaitives. For purposes of the Access Isolation

Mechanism, message segments may contain information at multiple levels

and/or categories. lbus, any misbehavior on the part of the message

segment primitives could allow unauthorized access to data.

- Answering Service. Because the Answering Service is responsible for the

creation of all other processes, an error here could cause a process to

be created with uncontrolled privileges.

- Backup Services. One of the fundamental services of Multics is providing

reliable file storage services. Any error in one of these services could

cause a segment to be reloaded at a level other ·than its proper level.

- Detachable Storage System Media. Although Janson's type extension

techniques indicate methods of handling tkeae outside the kernel, the

actual Multics implementation is new enough that there has not been an

actual analysis of it. We will therefore consider the existing

mechanisms as being within the security kernel.

75

There are also several areas that are not considered here:

1/0 Services. Although bulk printer and card servi~es are a service of

the standard Multics, we have not devoted resources to studying this

area. Primarily, this is because the problems in the area seem not to be

ones that require engineering of the kernel software, but rather ones of

adhering to various laws and government regulations concerning classified

data. In addition, we believe that these services might better be

performed in a Secure Front End Processor, as described in scenario two.

We will, therefore, consider I/O services as being outside the security

kernel.

- Frontend Network Processor. 'll\e standard Frontend Network Processor (FNP)

does not seem well suited to interfacing a Multics security kernel. The

problem areas include a lack of protection hardware and ~ poorly

structured hardware interface between the FNP and the Multics memory. i,

Because of these problems, we have not pursued the use of the FNP in a

secure version of Multics. Rather, we have assumed that some Secure

Front End Processor with its own security kernel is used for system

Input/Output. The use of this SFEP is discussed further in scenario two

below.

- Special Backup Services. The standard Multics system provides two backup

services that will not be considered in this report: .complete dumps of

the hierarchy, and retrieval of individual segments from backup tapes.

We believe that these services need not be considered here because they

are each only an optimization of one of the other services. A complete

dump is taken only to coalesce the results of all previous incremental

76

dumps. A retrieval is essentially a reload in which most of the segments

that would normally he reloaded are skipped.

Base Multics Kernel

In assessing the impact of this project upon the size.of the Multics

kernel, we report the results of the various simplifications upon a base

system. The base system we have chosen is the Multics system actually running

at the time that this report was written. This system, designated system MSS

31-b, was installed at M.I.T. on June 23, 1977. This system is typical of the

various versions of Multics that have existed during the period of this

research. One slight peculiarity of this system is that it contains two

versions of the Backup mechanism. The older, now-obsolete Backup system (the

Hierarchy Dumper and Reloader) will be retained until confidence in the newer

Backup system (the Volume Dumper and Reloader) is acquired.

At the outset of this research, an initial census was made of the Multics

ring 0 supervisor [Voydock, in Clark, 1977*} _. That cenlius included a

functional breakdown of the modules in the ring O portion of Multics, and

provided totals of the sizes of the programs. 'nlen, based on an assumption of

5 words of text section per PL/I source statement, the size of the ring 0 part

of the system was estimated at 44,000 source lines. That number, plus the

13,000 lines in the Answering Service is the basis of the 57,000 line kernel

size used in part one of this report.

We also performed a census upon our base system for the purpose of

determining the sizes of the various functional categories. For this census,

* References in this part of the report may be located in the Publications and
References sections of part 1.

77

we counted the sizes of the modules, both the text section size and the count

of source statements. The differences between that 1974 version of Multics

(MSS 20-lOa) and our base system (MSS 31-6) reveal a few interesting changes.

The ring O portion of the system has increased in size by 48%, from 157,000

words of text to 233,000. The number of source modules has increased in

almost the same proportion, 305 versus 432. On,ly one major section of the

system has crossed the ring 0 boundary: Tape Control has been moved outside

the supervisor.

On the other hand, a surprising number of things have remained the same.

It appears that the sizes of the individual modules have remained relatively

constant, averaging about 525 words of text section per module. Due to the

differences in methods of computing program size, we can't directly compare

the relative usage of assembly language, but we do find that the proportion of

assembly language modules is about the same in the previous system as in the

base system. Also, it should be noted that there are no major new functional

units in ring O; the only changes have been ones of replacement or alteration.

If we look for the reason for the increase in the size of the ring O

portion of the system, we immediately find that the capabilities of the system

have been improved substantially. During the period since the initial census

of the Multics supervisor was performed, the system has been altered in a

number of significant ways:

- the Access Isolation Mechanism has been incorporated into the system,

- a "new" storage system implementation has been installed, including

support for detachable parts of the hierarchy,

78

the salvager, which was previously a stand-alone system, is now an

integral part of the normal Multics,

- PL/I support of language I/O features has been dramatically improved

including a retmplementation of the PL/I "file" support,

"c
- dynamic reconfiguration has been "idiot-proofed",

- a rewritten typewriter-control system has been installed.

Typically, each of these reimplementations has caused the size of the

subsystem to increase. There are two primary reasons for the increase

expanded function, and improved debugging and metering facilities within the

subsystem.

The base system is organized so as to simplify system maintenance and

development, not to reduce the size of the kernel portion of the system. One

result of this organization is that the kernel service processes, such as the

Answering Service, tend to use normal system utility routines. These utility

procedures often include more function than is needed by the service process.

An example of this is the temporary segment manager. Although a temporary

segment can be created with only one PL/I source language call, the temporary

segment manager maintains a pool of such temporary segments in order to

eliminate unnecessary costs of segment creation and deletion. Because the use

of this facility can improve overall system performance, the Answering Service

uses this (and other) facilities •

. An unfortunate result of this organization is the fact that the address

space of the non-ring 0 kernel processes is much larger than it needs to be.

Many system utilities, even those not used by the kernel processes, are

79

included in segments in their address spaces. In certifying the standard

system, however, all these extra modules would have to be audited. In

performing the census of the base system, we chose not to include all these

extra modules. First, the actual identification and analysis of these modules

seemed impractical. Second, the system could be trivially recoded to

eliminate such uses. Therefore, in computing the size of the kernel of the

base system, we have applied one exclusion factor.

The rule we have applied has been: if the call to the utility procedure

could be replaced by fewer than about 10 lines of code in the original

program, we have not counted that utility as being in the kernel. We estimate

that had we included all those extra modules in the system, the base kernel

would have been about 20,000 line,s larger.

To give some indication of the sizes of the various subsystems of the

base Multics system, we will give a functional breakdown of the components.

Ibe numbers given here are for all source modules in the kernel that contain

executable code. That is, modules that contain only functional parameters or

table space are excluded from the count. Gate segments have also been

excluded. The SIZE is a count of the source language statements in the

procedure modules. NON-PL/I is the percentage of the code, measured in source

statements, written in a language other than PL/I. It should be noted that

dispatch modules are typically coded in assembly language or macro language

and artifically increase this percentage when used as a measure of the use of

non-higher-level languages. The TEXT-LEN section indicates the size of the

"text" section of the object modules. For PL/I, this includes all constants

and executable instructions. Although some assembly lan~uage programs rnay

80

contain executable instructions in other sections of the object module, this

number provides a good indication of the size of the object program.

<;:ATEGORY MODULES SIZE NON-PL/I TEXT-LEN

Initialization 45 4636 37% 23708

Reconfiguration 13 1126 2% 7714

Fault Handling 13 1326 90% 21.58

1/0 Control 38 3526 28% 17598

Printer 6 958 73% 2532

Tape Control 21 2662 2% 10449

TTY Control 19 4266 5% 20477

ARPANET 55 7493 1% 40338

Error Handling 25 2016 9% 9312

Process Control 28 1296 6% 8773

traffic Control 3 2296 92% 2710

IPC 25 3061 2% 16160

Process Signals 5 390 17% 1450

Resource Control 32 2343 11342

Storage System 38 5366 1% 35864

Directory Control 51 6609 < 1% 34434

Segment Control 32 1973 5% 11460

Page Control 26 5870 69% 13704

Salvager 18 2897 1% 20747

Dynamic Linker 14 1793 11% 7234

File System 5 1161 2% 6631

AIM 7 924 6% 6223

Error Interpretation 12 856 1% 7228

81

Kernel Utility 5 470 93% 663

Shared Utility 16 2800 81% 5069

Backup 44 7827 57002

Answering Service 73 12987 2% 94609

PL/I Support 39 12504 94% 18641

Miscellaneous 4 191 22% 918

Totals 712 101623 26% 495148

(Ring 0 Only) 432 61848 41% 232824

Since the total number of source lines involved is about 100,000, each

thousand lines represents about 1% of the kernel size. It is useful to keep

this comparison in mind·while reading the following description of size

reductions. As the reductions accumulate, it is also uaeful to remember that

the perceived impact measured in terms of the final kernel is much larger.

Thus, a removal of 1000 lines would reduce the final 38,000 line kernel by

2 1/2%, not 1%.

First Level Reduction Estimates

This scenario includes those.concepts whose feasi~ility has been proven

and that have little or no impact upon the user interfaces to the system. The

changes described at this level would reduce the size of the kernel by 40% and

could probably be done in one year real time.

The changes in this version of the kernel include:

- removal of obsolete code,

82

- removal of extraneous PL/I support routines,

- restructuring of page control,

- removal of Answering Service,

- use of encipherment in backup services,

- making ring-0 and the kernel coincident,

- removal of dynamic link.er and reference name management,

- miscellaneous cleanups and recoding in PL/I.

Removal of Obsolete Code

As the Multics system has evolved over the years since its inception,

many subsystems have been redesigned and now have sign'ificantly different

interfaces. Often, the newer interfaces are more primitive (and therefore

simpler) than the old interfaces. In order to provide coapatibility to the

existing user community, the old interfaces are usually recoded to use the

newer interfaces. These write-arounds are then made a part of the newly

redesigned subsystem. For subsystems that are a part of the kernel, the

write-arounds are also included in the kernel.

Early experiments with removing the dynamic link.er frCJlll the kernel have

indicated that moving the write-arounds outside of the kernel can usually be

done quite trivially by replacing the kernel gate procedures with non-kernel

dispatch modules. Users would call the entry points in these modules, which

would then transfer to the actual kernel gate procedures or to the

write-around as appropriate to the particular ftmction invoked. This approach

83

is not usually followed since old application programs that make use of the

write-arounds will encounter a slight performance loss in going through an

extra level of name resolution 8J1d by the addition of one extra page to the

working set.

Portions of the base system that include significant amounts of obsolete

code include: Backup with 3400 lines, Tape Control with 1000 lines, PL/I

Support with 3000 lines, and Directory Control with 700 lines. In addition,

there are small amounts in various other subsystems that total about 1500

lines.

Net reduction: 8100 lines

Removal of Extraneous PL/I Support Routines

In order to reduce the size of object programs and in an attempt to

provide a higher degree of compatibility, the PL/I compiler makes heavy use of

rtm-ti.me operators. This is especially true fQr Input/Output support and

mathematical functions. Currently, all of these operators are combined into

one large segment that is included in the kernel. Fully 55% of this operator

segment in the base system is never needed by kernel procedures. Also, most

of this support code in written in assembly language. Thus, the removal of

these routines would have a significant impact on the size of the kernel.

25 modules involving 5200 lines of non-obsolete source could be directly

removed from the kernel. In addition, approximately 700 more lines could be

eliminated from kernel support modules and moved to new, non-kernel modules.

Net reduction: 5900 lines

84

Restructuring Page Control

Page Control is one of the most complex subsystems in the base Multics

system: A given page may be in any one of about thirty states. Most of the

state transitions occur during the handling of faults or interrupts. More

than two-thirds of it is coded in assembly language. Thus, it seemed an ideal

candidate to test our ideas about use of kernel ~rocesses and conversion of

assembly language programs to PL/I.

Due to our special interest in the effects of using multiple processes

and recoding in PL/I, we made an attempt to optimize and tune this

multi-process version of Page Control. As reported in [Mabee, in Clark,

1977], the final version consumes 50% more CPU resources in managing pages

than the equivalent assembly language version. The object modules are also

about 20% larger. On the other hand, when measured in source statements, the

PL/I version is 1000 lines smaller, about 17% of the size of Page Control.

An analysis of the functioning of this subsystem indicates that the

poorer performance is· almost entirely due to the recoding in PL/I, not to the

use of multiple processes. lbus, even in cases where the performance of the

system is critical, the use of multiple processes to allow a simplified

structure does not seem to intolerably degrade the performance.

In addition, there are a number of functions in page control that could

be removed without seriously decreasing the performance of the system.

Although often the amounts of code that would be removed are not large, these

functions unnecessarily complicate the transitions Within page control. These

functions include: aborting read/write sequences while moving pages from the

bulk store to the disk, special-casing segment truncations.

85

One significant point about page control is that it is one of two

portions of the kernel that are coded in assembly language primarily for

efficiency. Although the implementation of multi-process page control was

converted to PL/I and thus was less efficient, the overhead attributable to

page control {whether coded in PL/I or assembly language) can be reduced to an

arbitrarily low amount by using large memory hardware configurations.

The implementation performed by Huber [Huber, 1976} demonstrated that

1000 source lines could be removed from Page Control.

Net reduction: 1000 lines

Removal of Answering Service

The Answering Service is one of the largest single components of the base

kernel. By itself, it comprises 13% of the kernel. In addition, significant

portions of ARPANET and TTY Control are included in the kernel only because

they are required by the Answering Service (or Backup, the other service

process included in the kernel). Thus, reductions in the size of the

Answering Service have enhanced effects on the kernel.

The trial implementation by Montgomery [Montgomery, 1976] demonstrated

that the Answering Service could be divided into two parts: modules that

managed the creation and access capabilities of processes, and modules that

interact with users in order to call upon the process controlling modules.

Those modules that only interact with users can be moved outside the kernel.

Based upon the results of that implementation, we find that those modules

that manage user processes comprise less than 7% of the size of the Answering

Service -- resulting in the elimination of over 12,000 lines of code. This

86

alone reduces the size of the kernel by 12%. In addition, 2700 lines of

ARPANET support code included in the base kernel are used only to interact

with users. Because the corresponding portions of the Answering Service have

been removed from the kernel, this ARPANET code can also be removed.

Net reduction: 14, 700 lines

Encryption in Backup Services

As part of the implementation of the "new'' storage system, the Multics

backup mechanism has been changed to use a different mechanism for determining

which segments require backing up. The previous mechanism used a privileged

process that periodically scanned the storage system hierarchy looking for

segments that had been modified since the previous such scan of the hierarchy.

In the new mechanism, the storage system notices whenever a segment has been

modified and notifies the Backup process. The Backup process then copies that

segment onto tape.

Using a methodology similar to that applied to the Answering Service, we

can divide the new backup mechanism into two parts: those modules that

interface to the storage system, and those that perform external functions

such as actually writing the information onto tape, or producing

human-readable maps of the backed-up data. By enciphering the segments and

associated storage system information as it is passed out of the kernel, we

can remove the external functions from the kernel, leaving only a small

storage system interface still in the kernel. In return, we would have to add

the enciphering mechanism.

87

It should be noted that the use of encipherment here is the first

instance we have proposed for actually allowing a non-kernel module to

physically maintain a copy of a particular protected object. Tile only

mechanism used here to ensure security is the fact that the data is

enciphered. We are relying on the extreme difficulty of decoding the data.

Although there are no known proofs of "uncrackability" of existing "difficult"

encipherment schemes, there are claimed to be encipherment algorithms that

have been certified as acceptable for use at any desired level of security.*

The elimination of the external functions allow us to reduce the size of

the kernel portion of Backup to about 1100 lines, a reduction from the

original 2800 lines of non-obsolete code. Implementations of enciphering

mechanisms for other purposes have indicated that we would have to add about

500 lines to the kernel to perform the encipherment and to manage the cipher

keys (or to manage flow of data to and from an enciphering box). Also, in

order to allow the system security officer to inspect the backup tapes and

request non-standard retrievals, we would probably need another 500 lines of

code.

In addition, because the Tape Control programs no longer need to be

considered part of the kernel, we can eliminate another 1600 lines of tape

management code from the kernel.

Net reduction: 2300 lines

*Kahn, D., The Codebreakers, Macmillan, New York, 1967.

88

Mak Ing IHng-0 ::tnc.I th~ Kl•rncl Coln<' td~n t

The Multics ring O is a very special environment within Multics. Many

aspects of the environment while running in ring 0 are special cased: all

programs in ring O are pre-linked at system initialization, so the dynamic

linker is not required; the segment number of any given segment is the same

in all processes, so linkage sections can be shared; ring 0 segments are never

deactivated, so segments faults do not happen on kernel segments. All of this

means that programs executing in ring 0 exist in a lllOre primitive enviromnent

than programs executing in other rings. In fact, there are a number of kernel

subsystems that only will work for outer ring callers. For the subsystems

that are used by both ring O and outer ring programs, however, we find that

there are often two versions of a particular function, one for ring 0 and one

for the other rings. For example, there is a prelinker program for ring 0 and

a dynamic linker program for the other rings; there is a program that

initially activates ring 0 programs, and another program that activates

segments in response to segment faults by outer ring procedures.

When trying to reduce the size and complexity of a security kernel, we

find that the duplication of functions unnecessarily increases the size of the

kernel. If we can remove the outer-ring version of a program from the kernel,

we often eliminate more than half the statements in the overall subsystem. In

order to eliminate the outer-ring version of the program from the security

kernel, however, we must move all kernel programs into ring O. Thus, to allow

the removal of these duplicate functions, we need to move the message segment

primitives, the detachable media manager, and the appropriate parts of the

Backup and Answering Services processes into ring o.

89

In addition to the linker and reference name table management code

described below, we can eliminate 800 lines of I/O System, all the File

System, all the Error Interpretation system, 260 lines of Process Signal code,

and all of TTY Control that is in the outer ring.

Net reduction: 3240 lines

Removal of Linker and Rererence Name Table Management

Early implementations by Janson [Janson, 1974] and Bratt [Bratt, 1975))

demonstrated that the dynamic linker and reference name table (RNT) management

were functions that could easily be removed from the ring 0 portion of

Multics. Unfortunately, these subsystems were still required by privileged

processes such as the Answering Service and the Backup processes, and as such,

had to be included within the security kernel of the system. With the changes

to the Answering Service and Backup functions described above, however, the

remaining kernel functions could easily be moved into ring O using kernel

processes as described in the discussion of Page Control above or the

equivalent hardcore processes available in the base version of Multics.

The removal of the dynamic linker and RNT management from the kernel

allows us to remove 1950 lines of code. Furthermore, these particular

functions include a disproportionate number of entry points into the kernel.

Thus, removing these two functions also significantly reduces the complexity

of the interface into the kernel.

Net reduction: 1950 lines

90

~iscellaneous Cleanups

There are a number of other removals that will be listed here.

Typically, these are straight forward cleanups that have not been performed on

the standard Multics due to the necessity of changing large amounts of other

kernel programs to replace calls to the eliminated functions. The code

conversion and canonicalization portions of TTY Control can be easily moved

outside the kernel. The full implementation of IPC channels is not needed in

the kernel; the "special" channels will handle all needs for IPC by kernel

functions. There are a number of Directory Control functions, such as

make_seg and move_seg, that need not be in the kernel. The Fault Handling

modules translate hardware faults into the equivalent PL/I faults even though

not kernel functions depend on this translation. There are also a number of

places where modules can be converted from assembly language to PL/I without

significantly affecting the performance of the system.-

The implementation of these cleanups should result in the removal of

about 3000 lines of code.

Net reduction: 3000 lines

Summary of Level ~ Reductions

After perfoming this first set of simplif:lcations., we have a system that

provides essentially the same user interface as the :base. s:yatea. Only in rare

circumstances would even the side effects of the fµnctioning be different.

The only essential difference would be the fact that the kernel would be some

40% smaller than the base system. The breakdown by category, including the

change from the base system, is as follows:

91

CATEGORY SIZE % CHANGE

Initialization 4636

Reconfiguration 1126

Fault Handling 1326

l/O Control 2783 -21%

Printer 958

Tape Control 0 -100%

TTY Control 3100 -27%

ARPANET 4824 -36%

Error Handling 2016

Process Control 1200 -7%

Traffic Control 2200 -4%

IPC 2400 -21%

Process Signals 120 -69%

Resource Control 2343

Storage System 5366

Di rec to ry Control 5900 -11%

Segment Control 1973

Page Control 4900 -17%

Salvager 2897

Dynamic Linker 100 -94%

File System 0 -100%

AIM 924

Error Interpretation 0 -100%

Kernel Utility 470

Shared UtHity 2800

92

Backup 1600 -80%

Answering Service 1000 -92%

PL/I Support 3600 -71%

Encryption 500 New

Miscellaneous 113 -41%

Totals 61075 -40%

(Base System) 101623

(Reduction) 40548

Level Two Reductions

This level of kernel revision includes those concepts that would either

alter the function of the system in some manner that would show up at the user

interface, or concepts that require significantly more work than those in the

first scenario. Because this scenario includes a number of concepts for which

we have not completed trial implementations, the estimated size of the

resulting kernel is much less precise.

The changes incorporated in this version include:

- two level traffic controller.

- revised initialization

- simplification of Directory Control interfaces.

- separation of tracing/metering code.

93

- use of kernel processes for multiplexed 1/0

- use of Front End 1/0 processor.

Two-Level Traffic Controller

By using the same methodology described above for the Answering Service,

Reed [Reed, 1976] was able to divide traffic control into two parts -- one

implementing basic mechansims, the other higher level policies. In this case,

also, we were able to move the policy manager outside the security kernel. By

restricting the outer-ring mechanism to the control of scheduling parameters,

we can ensure that it cannot cause the leakage of protected information. In

fact, the particular mechanism proposed allows us to move almost all the base

system's process controlling subsystems outside the kernel.

The trial implementation of the lower level virtual processor manager

took 1176 source lines. This implementation did not include the functions

necessary to allow the higher level process manager to cause switching of user

processes, but it did indicate that the addition of that function would only

add about 600 lines to the kernel modules. This small amount of kernel code,

together with the proposed (non-kernel) "level 2" policy mechanism would

completely replace the base kernel functions of Process Control, Traffic

Control and Process Signalling. In addition, it would eliminate 952 lines of

Fault Handling, and all of IPC except the message segment primitives.

Net reduction: 3500 lines.

----- ---------------------------··---- -------

94

Core Image Initialization

The base version of Multics initializes itself by having a small

bootstrapping program loaded into primary memory. This small program then

incrementally reads more of the Multics system from a tape. Some of this

newly-read system serves only to provide an interim environment for loading

the actual programs that will actually function in the fully-operational

Multics environment. If we could just load a completely initialized image of

the Multics system, we would eliminate a nUlllber of these initialization

programs from the kernel system.

In examining the problems associated vi.th this type of "core image

initialization," Luniewski [Luniewski, 1977 J found that the major problem area

was one of adjusting the size of various databases. A trial implementation

show~d that these tables could be dynamically grown at the expense of adding

about 500 lines of reconfiguration code to the system. In return for this, wie

can eliminate 2500 lines of initialization code; much of it in assembly

language.

Net reduction: 2000 lines

Simplification of Directory Control Interfaces

In examining some parts of the system, we find large portions of the

subsystem are used to provide interfaces to the user. Typical systems in

which this is true inc.lude Input/Output Control and Directory Control. This

is especially true of Directory Control, because of the large number of

attributes that are handled: Access Control Lists, Time Last Modified, Safety

Switch, Copy Switch, etc. The base version of Multics has a separate entry

into the kernel for reading each of these values, and if the particular value

----------------- ----------·

95

is settable by the user, a separate entry for setting the value. At each of

these entries, the kernel program must first verify the arguments, then verify

that the particular operation is allowed for this user, and finally retrieve

or store the appropriate value in the directory. We find that much of the

code in these operations is used in the verification of the arguments and the

access.

If we were to reduce the number of entries so that there was essentially

one entry for each type of access that was allowed, we could save much of this

duplicated code. In the case of Directory Control, we would have one entry to

read the current Access Control List, another to replace the entire list. We

would have one entry to set the various switches and parameters; there woul~

be another entry that would return the value of the switches and the various

times stored by the system.

In the case of directory listing, we find that the base interface uses a

"star name" as an argument and tests each name in the directory against the

star name to see if it matches. Also,. there are various entry points to

return additional information (such as the times and effective access) for

each returned entry. A much simpler and sdlaller interface would return all

entry names in a directory and require that the star name processing be done

outside the kernel. If the extra information were desired, the kernel

interface should be designed so that it always returns the extra information

that was most often used. Other, atypical cases could use the status

returning entry described above to get any additional desired information.

One other simplification possible in this area is the elimination of the

use of the PL/I area functions for returning this informtttf.on. If we chnnge

96

the information returning entry points, so that they write into a preallocated

buffer, rather than allocating in an outer-ring area, we can eliminate the

area management code from the kernel. This would remove about 800 more lines

from the kernel.

When this simplification scheme is applied to the base Multics system, we

find that over 1000 lines could be saved in this user interface area. Even

more importantly, the user interface area is_ one that often contains security

leaks because of errors in programs that incorrectly validate arguments•.

Thus, by reducing the size and complexity of this particular_ area, we have

made extra progress in aiding the auditing process.

On the other hand, because the kernel no longer performs complex

interface operations, certain actions that are possible under the base version

of Multics can no longer be performed. 'llle actions that would be disallowed

correspond to the caf;e where a user has only "append" access to a directory.

Thus, simplifying the interfaces as described he.re easentially requires that

we remove the concept of "append only" directories. Since the concept is only

occasionally used, and is often replaceable by use of "add bnly" message

segments, the loss does not seem to affect the normal capabilities of Multics.

Net reduction: 1800 lines

An investigation into known security leaks in earlier versions of Multics
[Janson and Forsdick, in Clark, 1977) showed that most leaks in the system
could be categorized into a very small number of areas. One such area was the
improper validation of arguments.

97

Separation of Debugging/Metering Code

As mentioned it:t the introduction to this section, one of the areas that

has grown most in the time since our initial census of the system, is the area

of debugging and metering. This is primarily due to the intense effort being

made to further develop Multics and to improve its performance. Many kernel

subsystems now include extensive tracing and performance measurement

facilities. Unfortunately, these facilities are undesirable in a kernel that

is to be audited. By definition, the code performs no part in effecting the

desired functions. Contrarily, the only non-transparent actions possible are

deleterious. On the other hand, if there are ever to be future improvements

to kernel system, this debugging code would prove to be very useful. Thus, we

would propose a compile-time feature or a load-time feature that would allow

the debugging and metering code to remain in the source code, but would

guarantee that the code could not affect the security kernel. One example of

how this could be done is to consider adding a new section to the object

module. Although normally present for debugging runs, etc., the security

kernel version of the system could discard this section of code, replacing it

with no-operation instructions.

The addition of such a feature would allow the elimination of about 1500

lines from the system. Because of the removals allowed by the Two Level

Traffic Controller, however, only about 300 lines of this represents debugging

and metering code that would otherwise still be in the kernel. Since the

debugging and metering code is widely distributed through the system, its

removal would tend to reduce the size of many modules rather than eliminate a

few of them.

Net reduction: 300 lines

98

Use of Kernel Processes for Multiplexed 1/0

The control of multiplexed devices, such as an ARPANET or a typewriter

controller, is conceptually a simple task. In one direction, data is accepted

from a user, inserted into a queue, and then, when the device is ready, the

data is transmitted to the 1/0 device. In the other direction, data is

accepted from tile device, and then placed on a queue .fo.r a particular user as

indicated by a field in a message header. Yet we find that the components for

handling multiplexed devices make up alutost 20% of the base system.

Obviously, something is 1110re complicated than it appears at first glance.

When we analyze the existing software, we find that none of the

multiplexed 1/0 subsystems adhere to this simple model. In fact, the size of

the particular subsystem seems to be in direct proportion to its deviation

from this model. The problem seems to be in controlling the flow of data to

each individual device. In the case of typewriters, some are much faster then

others. So, if fast devices had to wait for slower devices to complete

processing, the faster devices would spend most of the time waiting.

The implemented solution to this problem in the TTY Cpotrol and ARPANET

subsystems is to also keep an output queue for each user. Data from these

individual queues is entered into the actual device queue only when the user's

subchannel has indicated that it will accept the data. Unfortunately, the

signal that the subchannel will accept the data is received asynchronously and

there may be no user process available to process the input. Due to

historical reasons of efficiency and the difficulty of creating processes, the

solution generally employed to solve this problem has been to process the

input data during the handling of the device interrupt signal.

99

Unfortunately, performing this processing at interrupt time unduly

complicates the algorithm. There are several reasons for this. First, the

normal locking primitives can not be used while processing an interrupt; the

process which has a lock set may be the same one that is processing the

interrupt. Second, there must exist code to do the same function in a normal

user process; if the device is quiescent, there will be no interrupts coming

in, so a call-side process must initiate the operation. Third, all programs

and data that are referenced at interrupt time, must be in wired-down

locations in primary memory; thus, often there are two types of queues -- one

wired and the other pageable.

For all these reasons and more, architectures that use a dedicated device

process are usually simpler than those that use interrupt-time processing.

Furthermore, experiments by Ciccarelli [Ciccarelli, 1977] indicate that when a

process structure is used, the various multiplexed I/O·device subsystems can

share buffer management primitives. Since the buffe't'· maugement is one of the

largest components of each of the base I/O subsystems, the use of common

buffer management would greatly reduce the bulk of. the system. Although we

have no firm figures, initial estimates are that the-use of kernel processes

and the associated sharing of buffer l!Ulnager primitives would probably

eliminate 6000 lines of source.

Net reduction: 6000 lines

Use of Front End Processor for I/O

Approximately 19% of the base Multics kernel is devoted to controlling

source/sink Input/Output devices, such as teletypewriters, printers, and tape

drives. On the other hand, the view from outside the kernel is that these

100

various peripheral devices are essentially interchangable. This is evidenced

by the fact that normal usage of these devices is via an I/O switch, which

provides essentially three types of operation -- read, write, and

special-fwiction. If we could move the actual device control to another,

dedicated-purpose processor, we could eliminate a significant portion of the

kernel. In order to cOlllmunicate with this SFEP, the Multics kernel would

retain only one program, a multiplexed I/O handler as described in the

previous section.

At first glance it appears that we are only moving the _functionality from

one security kernel to another in the Front End Processor. 'lllere are,

however, several advantages to moving the functionality to the SFEP. First,

the SFEP is a dedicated machine. 'lllere are rto users writing programs to try

to "crack" the system. Second, the SFEP gets its commands and data via

"thin-wire communications". Because the user and the SFEP are using different

address spaces, the commands and data are delivered from the caller to the

SFEP as complete, integral messages. Because the mesaage delivered to the

SFEP cannot be changed by the caller, the SFEP does not need to consider the

problems that occur if a user is allowed to Change the data after it has been

validated. Third, and most important, there is no need for sharing of data or

for communication between the individual device drivers. Because of this,· the

system can be completely compartmentalized. Other than a small kernel devoted

entirely to message switching and primitive 1/0 operation validation, the

various device control programs can be entirely separated from one another.

TI!.us, except for multiplexed devices, the device control programs do not have

to be certified and are not part of the security kernel(s) of the complete

system.

101

Although we have not investigated the actual size of the kernel for the

SFEP, implementations by other researchers have indicated that it should not

be more than 1000 or 2000 source lines [Lipner, 1974]. The savings in the

Multics security kernel, on the other hand, would be on the order of 3000

lines.

Net reduction: 3000 lines

Summary of Second Level Reductions

After performing the above modifications, we have a Multics kernel that

is only 44,500 lines, some 44% of the size of base kernel. The only major

change at the user interface is the lack of "append only" access to

directories. An approximate breakdown of the subsystem sizes is shown below:

CATEGORY

Initialization

Reconfiguration

Fault Handling

1/0 Control

Buffer Management

Printer

Tape Control

TTY Control

ARPANET

SFEP Control

Error Handling

Process Control

SIZE

2100

1600

374

2300

1000

0

0

0

0

1000

2016

0

% CHANGE

-55%

+42%

-72%

-35%

New

-100%

-100%

-100%

-100%

New

-100%

Traffic Control

IPC

Process Signals

Resource Control

Storage System

Directory Control

600

1563

0

2343

5366

4700

Segment Control 1973

Page Control 4800

Salvager 2897

Dynamic Linker 100

File System 0

AIM 924

Error Interpretation O

Kernel Utility 470

Shared Utility 1700

Backup 1600

Answering Service 1000

PL/I Support 3400

Encryption 500

Miscellaneous 113

Totals 44439

(Base System) 101623

(Reduction) 57184

102

-74%

-49%

-100%

-29%

-18%

-94%

-100%

-100% .

-29%

-80%

-92%

-73%

New

-41%

-56%

103

Third Level Reductions

The final scenario presented here provides the most significant

simplification of the kernel. Correspondingly, it also requires more drastic

changes to the structuring of the system and presents a user interface that

has significantly different side-effects than the base kernel.

The changes proposed at this level include:

- removal of Discretionary Access Controls.

- restructuring of the Salvager.

- separation of Segment Control and Page Control.

REMOVAL OF DISCRETIONARY ACCESS CONTROLS

The underlying security model does not require that discretionary access

controls be included in the security kernel. In fact, only the

non-discretionary access controls, the segregation into levels and categories,

needs to be enforced to ensure that security is not compromised. In Multics,

the discretionary access controls are the Access Control Lists, which are

managed by Directory Control. If Directory Control can be moved outside the

kernel, the kernel will have shrunk by a substantial amount.

In the base version of Multics, however, Directory Control also manages

the non-discretionary access controls. The particular access authorization of

any particular segment or directory is stored in the parent directory. To

move the discretionary access controls outside the kernel would require

separating the base Directory Control into two parts: one to manage the

discretionary access controls and one to manage the non-direcretionary

104

controls. 'Ibis leaves us with only a minimal, kernel directory system which

manages only the contents of segments and the access authorizations of those

segments inside the kernel. Everything else that was previously in Directory

Control has been moved outside the kernel, though probably running in a more

privileged ring than normal users.

One method of implementing this minimal kernel directory system calls for

the use of a linear directory (somtimes called a "flat file system") inside

the kernel. In fact, this system would appear to be much like the "inode"

list of the UNIX system [Ritchie and Thompson, 1974). 'nle kernel would

provide facilities to create, segments, to hand over use of the pages in the

segment to Page Control, to delete the segments and to upgrade the segments.

The non-kernel Directory Control would use some of these segments as directory

catalogs, and store knowledge of other segments in these directory catalogs.

Rather than containing disk addresses, the directories would contain unique

ids as generated by the kernel directory system.

The removal of this particular part of the base kernel, however, would

have several adverse effects. First of all, the user interface to the

Directory Control system would change substantially. Th.ere are currently a

few a spec ts of the AIM system that require that processes running at multiple

levels be able to read and write in a particular segment. The current use of

multi-level message segments is an example of this. Either there would have

to be invented a special mechanism for full-duplex commlUlication between

processes at multiple levels, or each particular use would have to be special

cased inside the security kernel. In either case, the user interface to the

mechanism would be substantially changed.

105

A second adverse effect is that the Directory Control system, including

normal Multics Access Control Lists, would no longer be certified. Thus,

although the new, smaller kernel would adhere to the underlying security

model, there would still be the possibility that one user could obtain

unauthorized access to another user's data due to a bug in the non-kernel

Directory Control system. For this to happen, the two users would have to

share a category, but there are currently fewer than 72 categories. Thus, for

any system with more than 72 registered users, at least two of those users

would have to share a category. Any protection features between the two users

would be by the possibly-uncertified discretionary control system, not by the

kernel.

We have not performed any trial implementations of this concept, but

initial analyses indicate that about 85% of the remaining Directory Control

could be moved outside of the security kernel.

Net reduction: 4000 lines

Restructuring of Salvager

If the Directory Control system were moved outside the kernel, the

Directory Salvager would have to be divided into the same two functional

components. The kernel component would have to be able to reconstruct the

kernel segment list. It would ignore the contents of the segment even if the

non-kernel Directory Control was using that particular segment as a directory

catalog. The other salvager would perform most of the functions that the base

system salvager -- reconstructing ACLS, validating entry name chains,

rebuilding hash tables, etc.

106

Because the kernel version of the Salvager would have such a simple job,

initial indications are that it would require about 15% of the code of the

present Salvager, resulting in a savings _of about 2400 lines of code.

Net reduction: 2400 lines

Summary of Level Three Reductions

Because of the lack of firm numbers for this last scenario, we will

simply suggest that this final system results in a security kernel which is

approximately 38,000 lines, some 37% of the size of the base. kernel. The

following table is indicative of the sizes of the components: some 37% of the

size of the base kernel.

CATEGORY SIZE

Initialization 2100

Reconfiguration 1600

Fault Handling 400

1/0 Control 2300

Buffer Management 1000

SFEP Control 1000

Error Handling 2000

Traffic Control 600

IPC 1400

Resource Control 2300

Storage System 5400

Directory Control 700

Segment Control 2000

107

Page Control 4800

Salvager 500

Dynamic Linker 100

AIM 900

Kernel Utility 500

Shared Utility 1700

Backup 1600

Answering Service 1000

PL/I Support 3400

Encryption 500

Miscellaneous 200

Further Reductions

Although we have now reduced the kernel by 63% of its base size, there

are, in fact, a few subsystems that we have not analyzed here. One is the

Storage System. It would appear that something could be done to allow the

separation of the detachable disk management code to be divided in much the

same way that the Answering Service and the Traffic Control sec·tions were.

Another major area not analyzed here is the separation of segment control

and page control. 'ftlis is a project that we propose primarily because it

would improve the modularity of the two subsystems, and thus decrease the

complexity of the system. Chrrently, Segment Control and Page Control share a

data base·-- the Active Segment Table. The fact that these two subsystems

share this database disproportionately increases the difficulty of verifying

the two systems. Rather than considering two reasonably small subsystems that

communicate via normal subroutine call interfaces, an auditor of the base

108

system (or even of any of the other scenarios above) would have to consider

the system which consists of the union of the two subsystems. If we assume

that difficulty of auditing is proportional to the possibl~ connectivity

within a system, we find that the difficulty increases as about the square of

the size of the system. Using this assumption, we find that the auditor would

be faced with a task twice as difficult as necessary.

We have no indication of the size of the resulting code. It is quite

possible that the two resulting subsystems would be substantially larger than

the existing systems. But we tend to doubt that this would happen. Trial

implementations of other subsystems have shown that although the first rewrite

is larger than the initial system, a few passes through the algorithms often

realize substantial improvements, both in the size and the speed of the code.

Ihe Resource Control Package is another major section that we have not

considered. Because this subsystem ho.th controls the access of peripherals

and manages the attachable of those devices to the apten. the. fact that we

have now moved the actual Tape Control and Pri~e~ Control systems outside the

kernel would indicate that at least part of this suhayatem could also be moved

out.

Finally, almost no analysis was made on the potential size and compl~ity

reductions that could be accomplished by replacing the present very

sophisticated resource management algorithms (page removal, working set

management, multiprogramming scheduling, disk queue management, disk track

assignment, and supervisor table management) vi.th siJapl~r versions. Any such

proposed change, for creditability, would. have to be accaapanied by a trial

implementation and extensive benchmark performanct! testing, so as to

understand the performance cost of relying on simpler algorithms.

109

Applicability _!£ Standard Multics

Although the assumed goal in these simplifications has been to reduce the

size of the Multics kernel, the application of these proposals to the standard

Multics system would also have benefits. In many cases, the simplifications

employed in trial implementations exposed bugs and/or security flaws in the

standard Multics system. This seems to be a general rule: 1be simpler, more

straight-forward a system is, the better it is understood, and, therefore, the

less likely it is to have bugs.

Implementation of Secure Multics

Since this 38,000 line figure is an upper-bound on the size of the secure

Multics kernel, we can make some estimates about the amount of manpower

required to implement it. Computer folklore tells us that programmers can

write about 200 lines of well-debugged code per month. This means that to

implement the secure Multics kernel should take about 190 man-months -- about

8 people working for about 2 years.

This nUClber does not include the programming of the non-kernel portions

of the system. It represents the basic cost of implementing a secure version

of a Multics-like operating system on an arbitrary hardware base. The

non-kernel portions of such an operating system are likely to be highly

machine-independent and written in higher level languages. Thus, they should

be transportable from one system to another.

This empty page was substih1ted for a
blank page in the original document.

111

PART IV. CONCLUSIONS AND RECOMMENDATIONS

This research project has demonstrated conclusively that if the goal is

to simplify and improve auditability, substantial reduction in the size of the

security kernel (in comparison with a system not explicitly designed that way)

can be accomplished without damaging either the performance or function of a

Multics-class operating system. This demonstration is, we feel, quite

encouraging to proponents of the security kernel concept and to the goal of

developing future acceptably secure operating systems. We further believe

that the last suggested figure of 38,000 lines for a Multics kernel really

represents an upper boundary on the necessary size. One would expect that if

a designer sat down with the radically reduced set of functions represented by

that last round of evaluationary changes, and systematically developed a new

design from the ground up but to the same specifications, that this new

design, being less constrained by history, should be simpler, smaller, and

perhaps even a better performer. Current projects to make a security kernel

for the UNIX system on the PDP-11 computer suggest that a lower boundary based

on less ambitious functions is near 4000 lines. Thus, these two projects

provide an order of magnitude target within which new operating system kernel

projects should expect to land.

The primary piece of further work that we would recommend would be to

carry out that new ground up design, to see how it ends up, and also to carry

forward into experimental trials both design-to-model verification and

implementation-to-design verification for systems at this level of complexity.

Only with these two further steps can general-purpose, secure systems ever be

expected to become available.

This empty page was substih1ted for a
blank page in the original document.

CS-TR Scanning Project
Document Control Form

Report # L..c.s-IR- 19 6

Date : _}!__; ~c. I ~s

Each of the following should be identified by a checkmark:
Originating Department: ·

D Artificial lntellegence Laboratory (Al)
~ Laboratory for Computer Science (LCS)

Document Type:

D Technical Memo (TM) ~ Technical Report (TR)

D Other:
-~~~~~-----------~

Document Information Number of pages: 11.:t_(11q-lm"ro)
- Nol to include DOD forms, printer lntstructions, etc ... original pages only.

Originals are: Intended to be printed as :

D Single-sided or D Single-sided or

D Double-sided D Double-sided

Print type:
D Typewriter D Laser Print

D InkJet Print«

D OffsetPresa

D UnlcooMI D other:.~~~~~~-
Check each if included with document:

D DODFonn

'A Spine

D Other:

D Funding Agent Fonn

~ Printers Notes

Page Data:

~Cover Page

D Photo negatives

Blank Pagestbf,._numbel)· FoL...Lovv LTLI; foR.~A~ ABITRMt FP~~~4S.J 4}1JJl01J111 ...
• -) ') J J

Photographs/Tonal Material tbf .-oe _..,: ____________ _

Other ,_ .. .,,.... numbel):
Description : Page Number:

Xtrit.GE m&cr ~ c' -11.l..J U.t-i#' .("Q -c· ai+ BLAN!<- fPR\.\H\RD. Bl.AN is
)) I

AGSTM~BlBN~ J-~0_,4N-i4- 8Lk/t'5u.ivtteL~)
~) ... j I) WV+t"YlkJ3 ~1 oi) u..NitaL~! I I U.NH'" gLk.

Scanning Agent Signoff:

Date Received: J!l._1 J.6 I q S Date Scanned: _)L_I IS I C/S Date Returned: !!_1_J!?__1 CfS

Scanning Agent Signature:. __ ~,_
1

.......""'""""".1\ J , __ ~......,..--__
- " Rev 11194 DSILCS ~ Conllol Form c.lrbm.wd

Scanning Agent Identification· Target

Scanning of this document was supported in part by
the Corporation for National Resea~ch Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-Jl029.

The scanning agent for this project was the
Document Services department of the M.I. T
Libraries. Technical support for this project was
also provided by the M.I. T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

