
MIT /LCS/TR-196 

FINAL REPORT 
OF THE 

MULTICS KERNEL DESIGN PROJECT 

Schroeder, Clark, Saltzer & Wells 



This blank page was inserted to presenie pagination. 



MIT/LCS/TR-196 

FINAL REPORT OF THE MULTICS KERNEL DESIGN PROJECT 

by 

M.D. Schroeder* 
D.D. Clark 
J.H. Saltzer 
D.H. Wells 

June 30, 1977 

This research was sponsored in part by Honeywell Information Systems Inc., and 
in part by the Air Force Information Systems Tecbnoloay Applications Off ice 
(ISTAO), and by the Advanced Research Projects Agency (AllPA) of the Department 
of Defense under AB.PA order No. 2641, which was monitored by ISTAO under 
contract No. Fl9628-74-C-0193. 

* Present affiliation of M. D. Schroeder: Xerox Palo Alto Research Center, 
Palo Alto, California. 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

LABORATORY FOR COMPUTER. SCIENCE 

CAMBRIDGE MASSACHUSETTS 02139 



This empty page was substih1ted for a 
blank page in the original document. 



FINAL llEPOJlT OF THE :MULTICS KERNEL DESIGR'PltOJECT 

This report summarizes a three-year project to develop a simpler version of 
the supervisor of the Multics operating system, so that auditing for security 
certification •ight be feasible. 'nle repoTt is in four sections: 

I. A summary of the highlights of the project, together with a 
complete list of published papers and technical reports of the 
project. 

II. A short description of every individual task undertaken as 
part of the project. 

III. An estimate of the potential impact on the size of the Multics 
Kernel if every idea suggested for simplification were 
implemented. 

IV. Conclusions and rec<>mmendations. 

Together, these four sections provide a systea designer with a high-level 
description and many pointers to •ore detailed analyses of issues involved in 
securing a large-scale, general purpose computer system. 

Keywords and Phrases: Protection, Security, Security Kernel, Multics, 
Type Extension, Operating Systems, Supervisors, 
Verifiable Systems. 
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PART I: THE MULTICS KERNEL DESIGN PROJECT 

by 

Michael D. Schroeder 
David D. Clark 
Jerome H. Saltzer 

Abstract 

We describe a plan to create an auditable version of Multics. The 

engineering experiments of that plan are now complete. Type extension as a 

design discipline has been demonstrated feasible, even for the internal 

workings of an operating system, where many subtle intermodule dependencies 

were discovered and controlled. Insight was gained into several tradeoffs 

between kernel complexity and user semantics. The performance and size 

effects of this work are encouraging. We conclude that verifiable operating 

system kernels may someday be feasible. 
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Introduction 

In 1974, a project was begun to apply the emerging ideas of security 

kernel technology, information flow coatrol, and verification of correctness 

to a full function operating system, Multics. There were several aspects to 

this project; this paper discusses in depth the results of one aspect that was 

recently completed: some re-engineering experiments performed on the Multics 

supervisor to discover ways of simplifying it. To see how this part fits into 

the overall project, we first provide a project overview. 

The plan for ~ secure Multics 

The version of Multics available in 1974 contained a wide variety of 

sophisticated security features, and it had been designed from the beginning 

(in 1965) with the integrity of those features as a goal [Saltzer, CACM, 

1974]. However, there were two problems from a security point of view. 

First, the set of programs that constituted the central supervisor and that 

could in principle compromise security contained some 54,000 lines of source 

code and had been touched by perhaps a hundred or more programmers during the 

development of the system. To do an integrity audit, one would have to 

examine and understand thoroughly every line of code in each of these 

programs. Although the programs in question were largely written in a 

higher-level language (PL/I) and were quite modular by function, auditing was 

still an overwhelming task. Second, the security mechanisms provided (access 

control lists with individual users, projects, rings of protection, passwords, 

etc.,) while useful, were somewhat ad hoc, and did not fit into any simple 

underlying model. This lack of a simple model of security meant that even if 

an auditor were to undertake the previously mentioned overwhelming task of 

understanding every line of code, that auditor would lack a systematic 

specification of-what to look for. 
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Yet, before one could entrust sensitive information to protection by an 

operating system, some kind of integrity audit seemed essential. Therefore, a 

project was undertaken to make integrity auditing feasible, and to demonstrate 

that security is achievable in a large scale, full function operating system. 

As one might expect from the two problems mentioned, there were two key 

aspects to the project: 1) to simplify the supervisor so as to make it 

feasible for an integrity auditor to understand, and 2) to provide a set of 

security functions that can be described by a simple, understandable formal 

model. These aspects raised, in turn, three questions: 1) could auditability 

really be achieved? 2) is a formally modelable security function usable?, and 

3) what happens to the system's performance? To answer these questions, the 

overall project was broken into several small components that allowed orderly 

experimentation and took maximum advantage of already existing organizations. 

Figure 1 illustrates this plan. 

The formal model used, because of its simplicity and appare~t 

applicability to real world problems of the Air Force sponsor, is the MITRE 

model of sensitivity levels and compartments, which requires strict 

confinement and control of information flow among the levels and compartments 

[Bell and LaPadula, 1973]. The first step in this project (the box numbered 1 

in figure 1) was to take the standard Multics system, and systematically add 

to it, so far as possible, the security controls required by the MITRE model,* 

which involved labelling all information with sensitivity level and 

compartment names, and adding security checks at all points where information 

*Actually, a predecessor of the MITRE model devised by a team at Case Western 
Reserve [Walter, 1974] was used for this step. The later-developed MITRE 
model is consistent with that earlier model, and all recent work has used the 
newer model. 
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could cross level or compartment boundaries. These changes resulted in a set 

of security features known as the Access Isolation Mechanism (AIM) and a 

version of Multics known as Multics with AIM. Multics with AIM then became 

the base system for all future developments. 

At this point, the work branched out in several directions. Multics with 

AIM was installed (box 2 of the figure) on a machine in the Air Force Data 

Services Center, and it was later made part of the standard product released 

to other Multics sites, so as to begin developing operational experience with 

the features of AIM and with its impact on performance. A •eries of prototype 

implementations were undertaken to discover vaya of accomplishing the same 

functions with simpler and more systematic operating system structures, while 

keeping the disciplin9 of the security kerae~ concept [Sche:ll, 1973] in mind 

(box l of the figure). And two groups of analysts began to develop 

successively more detailed exmaples of formal specifications for the design of 

a kernel-based Multics with AIM, assuming the changes in structure proposed 

for experimental impleaentation turned out to be feasible (box 4 of the 

figure). 

This description brings us to the stage of the Multics kernel design 

project today. The plan from here forward involves two major paths to be 

undertaken in parallel: first, the formal specifications for the design of a 

Multics kernel (box 4) aist be completed aad they aust be verified (box 5) as 

matching the requirements of the MITRE security model. The second parallel 

path (box 6) involves a reimplementation of the central'supervisor of Multics, 

with two differences from the present implementation: those prototype 

simplifications that were successful will be incorporated, and the form of the 

design and implementation will be as "verifiable" as the state of the art will 
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allow. This latter goal is to be aided by using type extension as a 

systematic design discipline, and by using a programming language that is 

designed to support verification, such as EUCLID [Lampson et al., 19771 or a 

constrained subset of PL/I. 

The result of these two efforts will be on the one hand, a new, 

easier-to-review implementation of Multics with AIM, to be known as 

Kernel/Multics, and on the other, a set of formal design specifications that 

have been verified to match the MITRE security model. 'the final step, box 7 

of the figure, is unfortunately not as simple as its label suggests. A 

multipronged approach is proposed: 

l) Program verification should be used wherever feasible. Although the 

state of the art of both automatic and manually assisted program 

verification technology for the foreseeable future is simply not yet 

capable of dealing with specifications and programs of the size and 

number involved in ICernel/Multics, formal verification may be applicable 

to some components. 

2) Two or more small, expert teams of prograaamers can be assigned to be 

auditors of the code. With programs and specifications in hand, their 

job will be to try to understand the function of every program statement 

in Kernel/Multics, and to repert anythitlg that is not understandable or 

potentially in error. 

3) The system can be placed in operational use. If the redesign has been 

successful, not only will security failures be prevented, but many other 

operating system reliability failures should not occur. Operational 

failures can be traced to see if they originate in the security kernel. 
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4) A tiger team can be assigned the task of breaking into the system. 

Any one of these four approaches by itself cannot be expected to 

establish a credible verification of the integrity of Kernel/Multics, but the 

hope is that the combination of all four in parallel can provide a much higher 

level of confidence in integrity than has ever before been achieved in a 

full-function general-purpose operating system. A second hope is that the 

techniques that are developed be applicable not just to Multics, but to other 

general-purpose operating system designs, ancl also to specialized systems that 

are dedicated to file storage and aanagement.* 

Engineering studies for the Multics Kernel 

As suggested, one of the key parts of this project was a aeries of 

prototype implementations of simplifyiog i.deas for. the kernel. An earlier 

paper [Schroeder, 1975) described the plans and-,juaUficatioas for these 

experiments, and reported results of some early re~tructuring that removed, 

wholesale, certain functions from the keraei**• Without atteapting to repeat 

that paper, the general strategy involved identifying all reasonable-sounding 

proposals for simplifying the Multics kernel, and then selecting for trial 

implementation those that could riot be accepted as obviously straightforward 

* Several organizations have partJ.cipated in th~ project. the overall plan 
was organized by the Air Poree Electronics Systems Division. the AIM was 
implemented by Honeywell Infor!ll8tj.on Sy.~tela.J,nc.,, wUh technical supervision 
from the Air Vorce. the M.r.'r. Laboratory ·for Computer Science performed 
experiments with alternative structures. MITllE Corporation, and. later SRI, 
devised successively more precise formal specifications for the Multics 
kernel. In October, 1976, with boxes 1, 2, 3, and most of 4 of figure 1 
completed, the Air Force suspended work on the proj~ct, 

** The "kernel" that is referred to here is defined as all progra1DS that 
implement or affect access control of any kind, discretionary or 
non-discretionary. Therefore, a substantially larger body of programs is 
involved than in a security kernel that implements only non-discretionary 
controls, such as that described by MITRE lLiener, 1974). 
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or rejected as obviously inappropriate. Three kinds of redesign proposals 

emerged: 1) removing from the kernel those formerly protected supervisor 

functions that did not really require that protection; 2) taking advantage, 

whenever possible, of the natural separation afforded by independent processes 

in distinct address spaces communicating at arms length to implement protected 

functions, and 3) using more systematic program structuring techniques for 

implementing the remaining kernel function, so that the result aight be easier 

to verify. 

Probably the most interesting result of this work is the invention of a 

file system and processor multiplexing organization that is based on the 

discipline of type extension, and that eliminates many ~omplicating cycles of 

dependency in the kernel. 'nlis work required developing more carefully than 

usual analysis of the dependenci~s among supervisor modules, since the 

11achinery of the type extension implementation is itself part of the kernel. 

'nle following sections of this papeJ: describe .brief.ly this type extension 

system organization, several other structural r.eaulta.1 aad,. the estimated and 

observed effects of all these ideas on the size of the kernel and the 

performance of the overall operating system. 

~extension.!.!!..!. rationale for coping with complexity 

The initial projects of removing mechanun•s froa the Multlcs supervisor 

helped us understand what mechanisms nee(ied to be preaent in a sec:urity 

kernel, but they did not help us understand how these pieces should be 

organized. To simplify the security kernel, it was important to develop an 

organizational rationale for modularizing the required functions and fitting 

them into an understandable overall structure. The rationale adopted is an 
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application of the notion of type extension, and involves making all modules 

be object managers, categorizing all the ways one module can depend on 

another, and organizing the modules in a loop-free dependency structure. This 

rationale was developed by Janson and is reported in detail in his Ph.D. 

thesis [Janson, 1976]. Here we describe briefly this organizational technique 

and in the next section discuss its application to the }ilultics kernel. 

Making each module be an object manager is a way of providing an 

understandable semantics for modules. The interface to a module defines all 

operations on the object type managed by that module, and thus defines the 

object type. Disk records, core blocks, core segments, page frames, active 

segments, and known segments are some of the object types used in the Multics 

kernel design. An object manager and the JIO~~les it depends on are solely 

responsible for maintaining the integrity of th~ managed objects. Client 

modules can manipulate the objects only through the interface provided by the 

object manager. Knowledge of the way an object type is represented is 

confined to the manager •odule. A representation is a set of lower level 

component objects and the algorithms relating the operations of the object 

type to tbose of its components. This way of thirilting about modules has been 

developed by the programming languages community over the last several years 

[Liskov and_Zilles, 1975]. 

When trying to develop an understanding of the way a collection of object 

manager modules works, the important consideration is the way the modules 

depend upon one another. One module depends upon another if establishing the 

correct operation of the first requires assuming the correct operation of the 

second. Requiring a loop-free dependency structure, i.e., requiring that the 

structure generated by the "depends on" relation between modules be a 
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partially ordered set, allows system correctness to be established one module 

at a time. This argument was first exploited in the THE system [Dijkstra, 

1968] and more recently in the system design by SRI [Neumann, 1977). 

Inside an operating system careful analysis is required to identify all 

intermodule dependencies. The opportunity exists fot an operating system 

module to produce dependency loops by participating in the implementation of 

its own execution environment. Such opportunities are less of a problem for 

application programs, which typically depend on.the gperating system to 
. . . . . . - . . 

provide their execution environments. To develop the ~01'Plete dependency 

structure of a collection of object manager modul~s in an operating system, 

five kinds of dependencies need to be considered for each module. For a 

module M the possible kinds of dependencies on other modules are: 

a. Component Dependencies 

Module M depend·s on the modules that manage the dbjectli that are the 

components of the objects defii'led by M. For exa.ple, the manager of file 

syst~ directory object& in the MUltics'.tern'et has a,coaponent dependency 

on the aanager of segmnt objects, for each directory representation is 

stored in a segmnt. 

b. Map Dependencies 

Module M must maintain a mapping between the ttalies of the objects it 

manages and the names of the components of each. Thus', M depends on the 

managers that provide the objects in which the map is stored. 

c. Program Storage Dependencies 

The algorithms of M and their temporary storage are contained in objects, 

on whose managers M thus depends. 
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d. Address Space Dependencies 

The address space in which M executes is an object, on whose manager M 

thus depends. 

e. Interpreter Dependencies 

In order to execute, M requires an interpreter, i.e., a virtual 

processor. Thus, M depends on the lllQdule that impl-'ents its interpeter. 

This partition of dependencies into five categories is complete and 

fairly intuitive fo.r systems designed according to the rationale of type 

extension. When applied to an existing design that was modularized and 

structured by different principles (or no principles at all!) one can 

encounter explicit dependencies, due to procedure calls or due to interprocess 
. , . . :. ' 

messages froa which replies are expected, and implicit dependencies, due to 

direct sharing of writable data among modules. WhUe JM>ae of tlui!ae 

dependencies IQaY not fi~ natur.!illly into tbi.a clasaificat!on, proper 

classification is of no ~onceru, since the ~a.l,is their elimination and 

evolution to a design in which all dependeocies fit natui:ally into this 

scheme. 

Using the rationale just described, and with the five kinds of 

dependencies in mind, it was possible to design a loop-free atructure of 

object managers that implement the complete functionality requir-1 in the 

Multics kernel. Our experience in doing so 14 described in tbe next section. 

Getting the loops out 

The file system, memory management, and processor management portions of 

the supervisor of Multics (which together constitute the bulk of the 

supervisor) appear to be organized in the sixlarg_e modules illustrated in 
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Figure 2. The obvious exception to a linear structure is the circular 

dependency of the processor multiplexing facilities and the virtual memory 

mechanism. (Page control depends upon prQcess control to give the processor 

to another process when the current process encounters a missing page 

exception. Process control in turn de.pends upon segment control to provide 

segments in which to store the states of inactive processes. Thus, for 

example, a missing page exception for one proce.a causes page control to 

invoke process control, which in turn invokes segment control to load the 

state of another process into primary me~ry using page control.) This 

dependency loop is common to many virtual~aemory time-sharing systems and is 

caused by the virtual memory mechanism beiria' part of its own interpreter. In 

addition to this obvious dependency loop ~here ate numerous examples of 

modules depending upon higher modules to contain their programs and maps, and 

represent their address spaces. For ex411JPle, page control code is stored in 

segments and the address space in wh~ch page control executes is provided by 

address space control. Closer inspection·. reveals other loops in the 

dependency structure-all related ·to handi1.ng exceptional conditions or 

controlling resource usage. Simplified descriptions of several problems 

typical of these more subtle 'loops follow: 

a. Missing Pages 

Because Multi~s has multiple real processors, several processes 

simultaneously may try to cause page control to alter the state of the 

same page. A global lock regulates such conflicts. Unfortunately, the 

hardware imposes a short time window between a missing page exception and 

the setting of the lock by page control during which time some other 

process may alter the address translation tables. Once the lock is 
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captured, page control must interpretively retranslate the virtual 

address that caused the exception to see if the same exception is still 

encountered. This interpretive retranslation requires page control to 

know the format of and to depend upon the correctness of the address 

translation tables maintained by segment control and address space 

control. 

b. Quota Enforcement 

Arbitrary directories in the file system hierarchy can be designated 

dynamically as quota directories. Associated witQ a, quota.directory is a 

limit on the total number of pageJJ that ~y b~ occupied by segments that 

are in the subtree below the quota directory but not also below an 

inferior quota directory. Also associated with a quota direct~ry is a 

count of the total number of pages currently occupied by segments in the 

controlled region. Whenever a segment is to be enlarged, it is necessary 

to find the limit and count of the nearest superior quota directory, 

check that the count does not use all the limit, and if quota remains 

increment the count. The ~eed to ell1arge ' segment is noticed in page 

control as a missing page exception ~n a neve~-before-used page of a 

segment. Before adding the page to the segment, page control must locate 

and manipulate the limit and count associated .with the nearest superior 

quota directory, as described above. Thus, page control must identify 

the page with a segment and th~ segment with its position in the 

directory hierarchy. Page control does. so by direct reference to the 

segment control data base, the active segment t~ble, that associates each 

active segment with the descriptors for its component pages and its quota 

directory. This implementation of quotas and storage usage records makes 

page control depend on segment control. 
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c. Full Disk Packs 

A file system directory entry in Multics names the corresponding segment 

by the identifier of the containing disk pack and an index into that 

pack's table of contents. For robustness and demountability, all pages 

of a segment are kept on the same pack. Enlarging a.segment occasionally 

causes a full pack exception, which results in the entire segment being 

moved to an emptier pack and the directory entry being updated to 

indicate the new location. If a full disk pack exception is detected 

when enlarging a segaent, page control invokes segment control, which 

direct& the relocation effort. To accomplish relocation, segment control 

reads a data base maintained by address space control to find the 

corresponding directory entry, which seg9lellt control then directly 

updates. 

Once the dependencies generated by these and siailar causes are taken 

into account, the simple, almost linear structure of the system illustrated in 

Figure 2 becomes the much less simple structure illustrated in Figure 3. 

'nle restructuring of the file system, memory aanageaent, and process 

management portions of the MUltics supervisor that elilllinates all dependency 

loops and provides an understandable object-based semantics for each module 

was worked out by Janson and lleed and is described in detail in their theses 

[Janson, 1976; Reed, 1976). Here we indicate in general how the new design 

eliminates the structural problems outlined above, and make some comments on 

the causes and solutions of such problems in general. Figure 4, taken from 

Janson's thesis, shows the modules of their design and indicates the 

dependency relationships among the modules. 
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The loop between the processor multiplexing facilities and the virtual 

memory mechanism originates from the goal of providing a variable number of 

processes. Brinch Hansen has argued that considerable simplification of 

implementation follows a decision to implement a fixed number of processes 

[Brinch Hansen, 1975). On the other hand, if one tried to open the dependency 

loop between process implementation and virtual memory implementation, every 

process state would have to be resident in the fastest, most expensive memory 

medium~ If the number of processes were fixed at the maximum that would ever 

be needed, valuable primary 111.emory space would be unused at other times. 

This combination of pressures led to the design for a two-level 

implementation of processor multiplexing. Process control is divided into two 

parts, the user process manager and the virtual processor manager illustrated 

in Figure 4. The bottom part implements a fixed number of virtual processors 

whose states are always in primary memory. Thus, this part does not need to 

use the virtual memory, and all the simplifying advantages suggested by Brinch 

Hansen occur. The top part implements an arbitrary number of user processes 

and depends upon the virtual memory to store their states. A subset of the 

virtual processors is multiplexed among the user processes as needed. The 

remaining virtual processors are permanently bound to the interpretation of 

various kernel modules, including the' virtual memory modules and the user 

process scheduler. 

This strategy of a two-level process implementation has been proposed 

elsewhere [Bredt and Saxena, 1975; Neumann et al., 1975) but these other 

proposals have left a key complicating factor as an exercise for the 

implementor: when a low-level virtual processor discovers an event that it 

must signal to a user-level process, it must somehow change the state of the 
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user-level receiving process. But that state _by design is not guaranteed to 

be in the real memory accessible tD the low-level virLual processor. As part 

of the Multics kernel design, Reed developed a method for this upward 

communication that makes the two-level process imp.lamentation feasible. The 

design involves placing a special, real memory me&sage queue between the 

lower-level and higher-level processor 11Ultiplexera [Reed, 1976]. It also 

involves using a new synchronizing protocol, based on eventcounts, that 

con.trols information flow between processes and does not require that the 

discoverer of an event have knowledge of the iden,titJ of the processes 

awaiting that event [Reed and ICanodia, 1977). Use of a two-level process 

iaplementation in the Multics kernel is worked out in sufficient detail that 

we are confident that this design provides a practical, well-structured method 

for providing an arbitrary number of processes in a system with virtual 

lllemory. The two-level design also provides a general way to eliminate all 

loops created by interpreter dependencies, for the bottom level provides an 

interpreter that depends on only the primary memory and the hardware 

processors. 

Loops due to map, prog~a• storage and addresa spac;.,e dependencies are 

relatively easy to break once ~heir ex:l.E!ttµii:;' J,.s_r~cogaiuci •. The key.to 

breaking these loops in the ne~ des~gn is ~?e~~~plicit recogQj.tiOll of co~e 

segments as objects. The core segment manager of Figure 4 i• implemented by 

system initialization code and by the processor hardware. The core segments 
' ,~ . . 

are allocated when the system is initialized (or reconfigured) and thereafter 

the only operations on them available to higher levels are the processor read 

and write operations. A core segment can be used by any system module to 

contain maps or programs and their temporary storage without fear of creating 
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a dependency loop. Use must be tempered, however, by the facts that the 

number of core segments is fixed, the size of a core segment cannot change, 

and core segments are permanently resident in primary memory. To eliminate 

address space dependency loops a second address translation table base 

register is added to the processor. One base register locates the address 

translation table, stcred in a virtual memory segment, that defines the 

address space in which user programs execute, while the other locates a 

translation table, stored in a core segment, that defines a per processor 

address space for. system modules•. In use, all segment descriptors in the 

latter translation table will be fo~ permanently active segments, i.e., 

segments whose page descriptors are always in primary memory, or core 

segments. Ail segment numbers below a certain value are translated relative 

to the system module ~ddress space. Thus, system modules using these segment 

numbers cannot be dependent on the machinery that supports the users' virtual 

address spaces. 

Correction of the dependency loop surrounding missing page exceptions 

requires an addition to the processor architecture. Recall that to eliminate 

potential coaflicts over the offending page descriptor, page control must 

reinterpret the virtual address that caused the exception after a global lock 

is set. A simple processor addition that corrects this problem is a mechanism 

that sets a lock bit in the offending page descriptor whenever a descriptor is 

encountered that indicates a missing page. Once the lock is set control is 

transfered to the page frame manager of Figure 4. A processor encountering a 

locked page descriptor will generate a locked page descriptor exception that 

* An implementation without extra hardware is also feasible, though a bit 
clumsy and not so modular, by sharing the first page of all address 
translation tables. 
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results in the page frame manager calling the wait primitive of the virtual 

processor manager. Once the original missing page exception is serviced, the 

page frame manager unlocks the descriptor and notifies all processes that have 

been waiting for this event, causing them to start execution again at the 

point just previous to encountering the locked page descriptor exception. In 

addition to the descriptor lock mechaiitsm, a wakeup waiting switch and a 

register to record the absolute address of the locked. page descriptor can be 

added to each processor to aid in preventing a notif icatioo froa being lost if 

it occurs between a locked page descriptor except;ion and invocation of the 

wait primitive. 

The solutions to the dependency loops associated with quotas and full 

disk packs illustrate two alternative ways of reporting exceptional conditions 

without creating dependencies. A problem. common to both situations is that 

software in some module may discover after some processing that a condition 

exists that needs to be handled at a higher level in the dependency structure. 

As described earlier, the condition results either i.u the mod.ule directly 

referencing the data bases at the.higher level, or in th.tit module c;.alling the 

higher level module. There is a basic s~rategy that can break these 

dependency loops: to transfer control and ~rgU!lellt8 ~o a higher level module 

without leaving behind any piocedure activation recorda or other unfinished 

busi.ness in expectation of a subsequent re~~n of control. This strategy can 

be carried out either by a }lardware interrupt or by a carefully planned 

software signalling mechanism. Both approa..cha.are illust.rated below. 

In the case of quota enforcement and recording disk usage, recall that an 

attempt to enlarge a segment, and thus the need to check the asspciated quota, 

is noticed in page control as a missing page exception on a never-before-used 
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page. The new design has the hardware distinguish such events and generate 

quota exceptions rath.er than missing-page exceptions. The exception is 

distinguished by an extra exception-causing bit in page descriptors that is 

set by software when the descriptor corresponds to an unallocated page in a 

segment. The quota exception invokes the known segment manager of Figure 4, 

reporting the segment number and page number of the address whose translation 

caused the problem. The known segment manager translates the segment number 

into a segment unique identifier and invokes the segment manager to find the 

appropriate quota directory, check the liait, and then call the _page frame 

manager to add the page to the segment. 

The loop associated with full disk packs is broken by the use of a 

software mechanism for signalling exceptions upward in the dependency 

structure. A full disk pack occasio~ally is encountered when processing a 

quota exception. If quota exceptions, which are detected by the hardware as 

described above, all were signalled directly to the directory manager, then a 

relatively simple mechanism for dealing with full disk packs would result. 

The directory manager would initiate a chain of calls down through the 

dependency structure that allowed the known segment, segment, and page frame 

managers to play their parts in checking quota, recording usage, and 

allocating a page. Further, if the page frame manager at the end of this call 

chain noticed a full disk pack when attempting to add the page to the segment, 

then this exception could be returned back up the call chain, allowing the 

segment manager to disconnect all address spaces from the segment and direct 

its movement to another pack, and allowing the resulting new pack identifier 

and table of contents index to be returned to the directory manager for 

inclusion in the corresponding directory entry. Unfortunately, it is too 
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inefficient to pass all quota exceptions to the directory manager just to 

handle easily the full disk pack exceptions that only rarely accompany them. 

Another solution that would generate a simple software structure is for 

the hardware to separate quota exceptions that will involve full disk packs 

from those that will not, signalling the former to the directory manager and 

the latter to the known segment manager. But it is unreasonable to expect the 

hardware to make the separation in this complex case. 

Thus, we must make do with all quota,exceptions lteing s.ignalled to the 

known segment manager, which initiates a chat.a of calls down through the 

dependency structure to handle them. A full disk pack exception is detected 

at the bottom by the page frame manager, which exception is returned back up 

the call chain as described earlier. Control finally returns to the known 

segment manager with both the quota and the unsuspected full disk pack 

exceptions taken care of, and with the pack identifier and table of contents 

index that locate the moved segment. The problem now is for the known segment 

manager to cause the directory manager to update the corresponding directory 

entry with the new disk location for the segment. The segment manager 

finishes all its work and prepares to restart the user process, but rather 

than restarting it passes control directly to the directory manager as though 

an exception had just occurred*. Thus, modules below the directory manager in 

the dependency structure do not depend on it finishing the job of updating the 

directory entry. When the directory manager completes updating the 

appropriate directory entry, it restore conditions to the point of the 

* The trick of passing an exception to another prograabetter equipped to 
handle it by making things look as if that other program had been called 
originally is an old one, used in many systems. The interest here is that it 
can be used to break dependency loops. 
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original exception and the user process then references the segment again. At 

this point any other process referencing the segment will be reconnected via 

the standard machinery for handling missing segment exceptions. 

This completes the discussion of the dependency problems found in Multics 

and the methods used to deal with them. Extensive analysis of the kernel 

design will be found in the theses by Janson and Reed. Some related ideas 

concerning the use of object property lists to break dependency loops will be 

found in the thesis by Hunt {Hunt, 1976). 

We suaaarize our experience in applying the type extension rationale to 

structuring the Multics kernel with the following observations. Most systems 

appear to have a loop-free dependency structure if viewed from far enough 

away. The obvious component relationships and the common operations follow 

loop-free paths among the modules. On close inspection, however, map, 

program, address space, and interpreter dependencies will almost certainly 

generate loops in a system designed without loop avoidance as a primary 

objective. The map, program and address space loops usually are broken easily 

(at least during the design stage) by introducing new object types to store 

the maps, programs, and address space definitions. The interpreter dependency 

loops appear to be eliminated in most systems by using a two-level 

implementation of processes. The most difficult and subtle structural 

problems are caused by exception handling--especially when the exceptions are 

part of the mechanisms that control resource usage. The difficulty is partly 

intrinsic--such exceptions tend to occur at low levels in the system but be 

related to high level objects--and partly methodological--resource usage 

controls and the paths followed to deal with exceptions tend to be added to a 

design last. A general method for removing loops related to exception 
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handling and resource control is harder to see, but in many cases removal 

involves improvement of hardware exception reporting ~hanisms or addition of 

software mechanisms for signalling upward in the dependency structure without 

generating new dependencies. 

From simple se•ntics .!!e complex :f.Dn>le!D§!lt.a.tioPJ!·&cow 

Much of t.he complexity of a system iulp~tation can arise from only a 

few of the features being implemented. When one realizes that a particular 

feature causes complexity, it is time to review the illportan~ of the feature 

and to see if a slight variation in its semantics might lead to a simpler 

implementation. In the course of reviewing the mechanisms of Multics to see 

hov they affected a kernel implementation, several exaaples of this phen01Denon 

were noted, and insight into the implications of certain user-visible features 

was thereby acquired. 

One example, the dynamic designation.~£ directories as repositories for 

disk storage quota, has already been discussed in the aecti9n on loop 

dependencies. The dynamic nature of quota directories implies at every quota 

exception a new search for the relevant quota cell by f.olloving a linked chain 

of directory entries in the active segment table. In order ~ maintain this 

linked chain segment control must be careful n~ver to deactivate a segment 

that is a directory if inferior segments in the hierarc;hy. are active. Thus 

segment control is constrained to manage t~e active segment table to track the 

shape of the directory hierarchy defined by directory cpn~rol. la this case, 

a slight change of semantics seemed worthwhile: .restrict the dynallic 

designation or undesignation of directories and q®·ta directories to those 

directories that have no children. Because of this change, the relationship 

between each segment and its controlling quota directory becomes static, and a 
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dynamic upward search of the hierarchy to locate the appropriate quota 

directory is no longer required each time a segment is enlarged. Whenever the 

known segment manager asks the segment manager to activate a segment, it 

provides the identity of the appropriate superior quota directory and the 

segment manager simply associates the static name of this directory's quota 

cell with the segment's identifier. AB a result, the deactivation of segments 

by the active segment manager no longer is constrained by the shape of the 

directory hierarchy. 

For another example of complicating semantics, a combination of two 

simple access control ideas in Multics conspires to force some remarkable 

maneuvering inside the supervisor. The directories of the Multics storage 

system are arranged in a naming hierarchy, and every file and directory has 

its own access control list, which specifies who may use the file or 

directory. The first simple idea is that directories should have access 

control lists on the basis that the names of files (and other directories) 

often contain information, so access to those names should be controlled, too. 

The second simple idea, to make the semantics of access control as simple as 

possible, is the rule that access to a file is determined entirely by the 

access control list for that file. This rule means that if one user wishes to 

grant another user access to a file, the first user places the other user's 

name on the access control list of the file, and the transaction is complete, 

without need to revise or check access control lists of directories higher in 

the naming hierarchy. 

Now, suppose a user presents the storage system with the tree name of 

some file deep in the hierarchy, and the tree name traverses one or more 

directories to which the user does not have access. The simplifying rule 
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requires that the file system follow the name through those inaccessible 

directories in order to get to the access control list of the file. If access 

to the file is indeed permitted, that user will, by virtue of. not getting an 

error message, confirm the existence and names of the intervening directory 

structure. On the other hand, if access to the file is not permitted, the 

file system mus·t be very careful in its response so as not to confirm the file 

name, or the names of the intervening directories. 

The non-kernel version of Multics handled this set of constraints by 

burying the entire directory search operation inside the supervisor, and 

reporting one of two responses: "file found", or "no access". (This last 

response offers no clue as to whether or not the file and the directories 

corresponding to the presented name exist.) In attempting to reduce the size 

of the machinery that must be in the Multics kernel, it was apparent that the 

general operation of following path names did not need to be a protected 

mechanism. If the supervisor kernel provides a primitive to search a single, 

designated directory for a presented name, and it returns the identifier of 

any matching entry, the program that knows about how to expand tree names need 

not be in the supervisor. Except, of course, that the particular protection 

semantics in use require that the kernel not return the identifier of a 

matching entry unless either the directory is accessible to the user or the 

file ultimately to be addressed is accessible. The first case is eas~, but 

the second one produces a problem. 

An elegant, if unsatisfying, gimmick was invented by Bratt (Bratt, 1975) 

to finesse the problem. The directory searching primitive, if asked to search 

an inaccessible directory, always returns a matching identifier for the 

presented name, whether or not the name exists. It will even return an 
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identifier if asked to search a non-existent directory. This returned 

identifier, if then presented as a directory identifier to the directory 

searching primitive, is always accepted. In the case that the path of 

directories eventually leads to a file to which the user has access, each of 

the intervening directory identifiers is real, as is the ultimately returned 

file identifier. If, however, the user does not have access to the object at 

the other end, his attempt to use this ultimate identifier will result in a 

"no access" response from the file system,·· and he will be unable to decide 

whether or not the idetitif ier (and all those of inaccessible traversed 

directories) is real or mythical. 

From a broader perspective, this interaction between protection and 

naming semantics seems to leave three choices: a bizarre interface, as just 

described, or implementing the entire function in the kernel (the earlier 

design), or varying the user-visible semantics of protection or naming. But 

the particular semantics in use were already the result of several years ·of 

experiments with different kinds of semantics, and the particular rules 

described have turned out to minimize errors and simplify user comprehension 

[Saltzer, CACM, 1974). Getting all these considerations adjusted just right 

is an open problem. It seems likely that a more explicit separation of 

user-level semantics for naming and from those of protection, such as found in 

UNIX [Ritchie, 19741 would help.* 

An interesting final case study of tradeoff between implementation 

complexity and user interface semantics arises in the Multics treatment of 

* Note that this set of issues deals entirely w~th the semantics of 
discretionary control. In a kernel design that focused exclusively on 
non-discretionary control, the interaction between access control and name 
resolution would be relegated to applications program implementation. 
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secondary (disk) memory storage charges. The user interface specifies a 

charge for just the storage required to implement a file. Since page-sized 

blocks of zeros happen to be implemented by flags in. the file map rather than 

by allocating and storing whole pages full of zeros," a file of size of say, 

100, 000 words (100 pages) but non-zero in only the first and last vo.rds will 

accumulate a charge for only two storage pages. Users have talU.!n advantage of 

this feature to simplify many file-manipulating programs. They create from 

the beginning a file of the maximum size that might evar be needed, but for 

much of its life the file contains little data, so it costs little to store. 

This policy has three effects on the complexity of the kernel of the 

operating system. First, any time the user writes data into a file, the 

number of pages required to implement the.file may cha1;1.ge, and thus the 

appropriate quota directory may need to be updated. As described earlier, 

care is required to implement this update without creating a depe~ency loop. 

Second, the page removal algorithm finds that part of its specification 

includes searching the contents of pages about to be removed, to see if all 

words are now zeros. Thus this algorithm must be given (otherwise. 

unnecessary) access to the data in every page in primary memory. Finally, 

since files are read by mapping them into blocks of core memory, if a user 

tries to read from a page containing all zeros, °'' zero"'.'containing page must be 

allocated, at least temporarily, and the accountiQ$ ~~.s.ures must be updated. 

Thus a read i.mplicitly causes information to be written, perhaps on the other 

side of a protection boundary, in violation of the confinement goal [Lampson, 

19731. 

Naming-related storage quotas, naming-related access control, and 

accounting for physical representation costs are typical examples of conflicts 
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between desired semantics and implementation complexity that were encountered 

in the Multics kernel simplification effort. It is interesting to conjecture 

whether or not these conflicts would also arise in a computer system dedicated 

to file storage and management. We believe that they would. 

Impact of engineering studies .Q.!! the size of the Multics kernel 

There are a variety of measures that can be used to assess the size of 

the Multics kernel. One can count the number of lines of source code, but 

this count is confused by the fact that while most of the code is written in 

PL/I, some is in assembly language. This distinction could be eliminated by 

counting the number of machine instructions in the kernel, but this number 

seems somewhat irrelevant, since no auditing procedure is likely to be based 

primarily on examination of the machine instructions themselves. The most 

useful and consistent measure of the kernel size seems to be the number of 

source lines, independent of the language being used, and this is the measure 

we shall use. 

The largest component of the kernel is those programs that are within the 

innermost protection boundary of the supervisor, known locally as ring zero 

programs. At the beginning of this project there were 44,000 lines of source 

code within ring zero. As some measure of the modularity of this code, there 

existed approximately 1,200 distinct entry points in the supervisor, of which 

157 were callable by the user. In addition to the ring zero programs, there 

are a number of other programs that ought to be included as part of the 

Multics kernel: there were programs in other supervisor rings, and there were 

also programs that ran in trusted processes. One study was made of the 

largest of of these non-ring-zero programs: the Answering Service, which 

regulates attempts to log in to the system, including authenticating 
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passwords, and manages system accounting. These programs contained about 

10,000 lines of source code. It ls clear that the mm-ring-zero prugrame 

contribute significant bulk to the kernel of the sys.tem. As a starting point, 

then, we consider the kernel to have consisted of 54,000 lines of source code. 

As mentioned above, some of the ker~el is coded in assembly language 

rather than PL/I. Because of this, there would b.e a substantial size benefit 

in recoding all assembly language procedur.es in PL/I. It must be noted that 

such a recoding has both a benefit and a cost: experiments suggest that while 

the number of source lines typically shrinks by s~~htly more than a factor of 

two, the number of generated machine instructions seeiM. to increase by 

somewhat more than a factor of two, thus having so• negative effect on the 

performance of the system {Huber, 1976]. 

The size impact of our studies is easiest to assess for four projects 

that were carried ·through to a trial implementation. Three of these had as 

their goal the outright removal from the kernel of the system of a certain 

body of code whose function we consider to be noncritical. Clearly, the 

impact of these modifications on the kernel size is the most dramatic and 

demonstrable. The extraction of the dynamic linker froa the kernel [Janson, 

1974] had the effect of removing 2000 lines of source code, about 4%. More 

interestingly, it only removed 2% of the entry points inside the kernel, 

implying that most of the modules were fairly large; but it eliminated 11% of 

the entry points from the user domain into the kernel. In other words, 

removing this code from the kernel had a very strong effect in reducing the 

complexity of the interface that the user sees to the kernel. This should not 

be surprising, since we claiin that the code did not belong in the kernel at 

all, and was in fact performing a user function. The project to remove some 
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of the name management mechanism from the kernel [Bratt, 1975] did not have 

quite such a dramatic effect: it reduced the size of the kernel only by 1000 

lines. The latter project was dramatic chiefly in the reduction by a factor 

of four in the total size of the code that implemented the algorithm once the 

algorithm was removed from the kernel. This was a case in which the 

comple~ity of the algorithm itself was due largely to the fact that it was 

inadvertently placed inside the kernel. Another project that had dramatic 

impact on the size of the kernel was an investigation of the Answering Service 

[Montgomery, 1976), the programs mentioned above that manage logins and 

accounting. Of the 10,000 lines of source code, it was shown that fewer than 

1,000 of them need be included in the kernel. 

The fourth study actually implemented, the redesign of the memory 

management algorithm [Huber, 1976], did not have as its goal the extraction of 

code from the kernel, but rather the restructuring of code in the kernel using 

parallel processes, for the sake of clarity. The main size impact of this 

project came from recoding certain assembly language modules in PL/I, which 

had the impact reported above. 

In terms of reducing the actual bulk of the kernel code, another dramatic 

impact may come from a project that is only now being completed, and whose 

impact can therefore only be estimated. This project has to do with removal 

from the kernel of much of the code having to do with connection of the system 

to multiplexed networks [Ciccarelli, 1977). Two multiplexed communication 

streams are attached to the Multics system: the ARPANET, and the local front 

end processor with all its attached terminals. At the start of the project, 

approximately 7,000 lines of PL/I were dedicated to handling these multiplexed 

lines, about 12% of the kernel. If a third network were to be connected to 



38 

Multics, the original strategy would require that yet a third handler be added 

to this system. In other words, the bulk of the network control code would 

grow linearly with the number of networks attached. We are now completing a 

project whose goal is to demonstrate that alm.ost all of the network control 

software can be removed from the kernel into the user domain. and tha.t auch of 

the software that remains in the kernel to perform the actual d"9Ultiplexing 

of this stream can be, to a significant extent, constructed in a fashion 

independent of the particular network. Thus, the bulk of the kernel is much 

reduced, and only grows slightly as new networiu. .are attached. While the 

results in this area are not yet demonstrable by a coaplete-impleaentation, we 

estimate that this 7,000 lines of code in the kernel may shrink to_ less than 

1,000. 

Another project whose size impact can only be estimated is the redesign 

of the system initialization mechanism, which proposed that certain parts of 

initialization be done in a user process environment in a previous system 

incarnation [Luniewski, 1977]. We estimate that the removal of this code will 

shrink the kernel by 2,000 lines. 

It is useful to assess the combined effect of all the changes discussed 

above. Table one summarizes the various results. Aa this accounting 

indicates, the combined effect of our various projects could be to cut the 

size of the kernel roughly in half. At the start of the project, we had hoped 

that our impact on the bulk of the kernel could be somewhat greater than it 

was. Our optimism was, to a significant extent, based on the hope that 

projects such as the redesign of the memory tQanager would yield a simpler and 

thus smaller algorithm. In fact, the result was somewhat more subtle than 

this; the algorithm did get simpler, but not by outright elimination of pieces 
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of code. Rather, the effect was elimination of paths between pieces of code. 

Operations originally in the kernel continue to be needed there, but are 

executed under circumstances more constrained and better understood. Thus, 

the effect on absolute size is less than hoped, but the effect on complexity, 

although more difficult to gauge, is considerable. 

Kernel Size, Start of Project Reductions 

44K ring 0 Linker 2K 

lOK Answering Service Name Manager lK 

54K TOTAL Answering Service 9K 

Network I/O 6K 

Initialization 2K 

Exclusive use of PL/I BK 

TOTAL 28K 

Table 1 

Summary of Kernel Size Reductions 

Another area of interest is what might be the impact of specializing a 

Multics to be just a network-connected file storage system, with no 

general-purpose user programming permitted. Interestingly, many of the 

functions that one might expect to see deleted have already been removed from 

the kernel. Our best estimate is that such specialization might reduce the 

kernel size by at most another 15 to 25%, mostly by allowing simpler 

algorithms to manage the more constrained environment. 
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Impact of redesign ~ performance 

The effect of these projects on the performance of the system must be 

assessed. Our goal was not to achieve a perforaance improvement, but a 

significant performance degradation would, be a cause for concern. In fact, 

the conclusion reached by most of the studies is that the perforaance of the 

system was not significantly affected by the proposed changes. While the 

dynamic linker ran somewhat slower when removed from the kernel, the causes 

were well understood and curable. The name space manager ran somewhat faster. 

The revised Answering Service, in its preliminary iapleaentation, ran about 3% 

slower. 

The more interesting performance questions arise in connection with 

modules which, rather than being moved lllholesale, were redesigned for clarity 

while remaining in the kernel. The two most interesting examples of this sort 

of modification are the new memory management and process management software. 

The process management software is interesting because the new design included 

a two-level process scheduler, a structutte wbi.~h·in the past has not yielded 

good system performance although no one to our knowledge has been willing to 

claim such a failure in print. Unfortunately, the trial implementation that 

was intended to explore this scheduler performance was not completed. We have 

implemented and studied the bottom layer of the scheduler, and are confident 

that the combination of the layers will have a performance about the same as 

the current system. However, this claim is only speculative. 

The performance of the memory management aoftlftlre was studied in detail. 

The new design was somewhat slower, for two important ~easons. First, parts 

were recoded in PL/I from assembly language, which seemed to cost a factor of 

two in the speed of the code. Second, the new version of the memory manager 



41 

used two dedicated processes to perform part of its function, while the 

original design ran all functions in the process of the user that took a page 

fault. This use of processes required memory management software to call the 

process management software, which added a small but unavoidable cost. On the 

other hand, the use of processes allowed part of the function to run at a low 

priority, when the processor might otherwise have been idle. This lower 

priority represents a performance improvement of uncertain magnitude. All 

together, the performance impact of the new design would be negative, but not 

significant unless the system were cramped for memory. 

Conclusion 

The primary conclusion of this project is that the kernel of a 

general-purpose operating system (or of a specialized file-management system) 

can be made significantly simpler by imposing first a clear criterion as to 

what should be in it--the kernel concept--,and second a design discipline 

based on type extension. The kernel concept seems to be a viable approach to 

security in large-scale systems as well as in the small-scale ones to which it 

has been previously applied. 

On the other hand, compared with kernel designs that have been proposed 

to deal exclusively with non-discretionary control {Lipner, 1974] the kernel 

of a general-purpose system seems still to be a large program~26,000 lines of 

source code in this case study. And it is not apparent that specialization of 

the system to be just a file storage and management facility would make a very 

big reduction in this number--maybe 20%. At the same time, there does not 

seem to be a significant performance loss arising from use of simpler, more 

modular designs. This observation reinforces observations made, as part of 

the larger project, that in production use Multics with AIM performs no 
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differently than Multics without AIM. Together, these observations lead to a 

very strong conclusion that a secure system need have no performance penalty. 

It is also apparent that minor adjustments of the underlying hardware 

architecture can make a significant dif£erence in operating syste• complexity, 

and siailarly that minor variations in the semantics of the user interface can 

make major differences in the complex~ty of implementation of the kernel. 

Another conclusion for designers is that one cannot hope to develop a 

modular design without consideration of the complete set of desired functions. 

If one leaves out, for example, resource control or reliability strategies for 

later addition, the chances are great that this addition will disrupt the 

module boundaries or ·introduce undesired depetid.encies. 

With these several conclusions in aind, and the objective of a 

certifiable design as the goal, a designer of a new system should be .able to 

create a design whose implementation can actually be reviewed for integrity, 

and used with confidence. 
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PART 11: KERNEL DESIGN PROJECT TASK REPORT 

by 

David D. Clark 

Introduction 

The kernel design project was composed of twenty-two individual tasks. 

This section of the final report discusses each of the tasks initiated during 

the course of the project. 

Many of the tasks described here have been documented in greater detail. 

In most cases this documentation is in the form of a Technical Memo (TM) or 

Technical Report (TR) of the Laboratory for Computer Science. A complete 

bibliography of the project appears in Part I of the report. 
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I. Studies of Formalisms for System Specification 

At the beginning of this project, we invested a certain amount of effort 

in exploring known techniques for expressing the specification of operating 

systems. While we did not intend, as part of our research, to construct a 

formal specification for the Multics operating system, it was important for us 

to understand enough about the construction of specifications to see how our 

work would relate to this task. We experimented with three different 

specification languages: the Vienna Definition.Language, a stylized English, 

and a speci'.al language developed here and locally known as GSl'L, a PL/1-like 

language with data structures based on LISP. In an attempt to discover the 

relevance of structured pragramining to ou~ project, structlJred representations 

of two parts of the system, page control and traffic coatrol, were developed. 

These preliminary experimentations proved very valuable in developing the 

group insight. The structured representation o£ page control in GSPL forms an 

appendix to technical report TR-127 by B. Greenberg •. 

II. Analysis of Original System 

Before we could begin to perform any organized rearrangement of the 

kernel of Multics, it was necessary to have a clear idea of what was contained. 

in the kernel of the system as it existed at the beginning of our project. To 

this end, the programs that constituted the supervisor of the existing system 

were analyzed in several ways. First, we gathered together the functional 

specification for every entry point into the supervisor. The resulting 

notebook constituted a first cut at a functional specification of the Multics 

kernel. Second, all of the segments that constituted this supervisor of the 

system were categorized by function and by source language. The results of 
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this preliminary assessment, and a comparison with the system of today, are 

summarized in the earlier portion of this final report. The preliminary 

assessment is reported in "A Census of Ring O" by v.· Voydock, reprinted in 

TM-87. 

III. Formulation of Criteria for Inclusion of Modules ~ithin the Kernel 

There are a variety of forces that have caused modules to be moved into 

the Multics supervisor. Some of these modules are ob,riously related to 

maintenance of system security, others have something to do with system 

security, but might be removable at least in part, and othe-rs exist in the 

supervisor for reasons such as effici~cy or convenience, and are not related 

to maintenance of system security in any way. We believed that·the size of 

the supervisor could be markedly reduced by di-ssecd.ng a -large ndmber of 

system modules and removing them, either paft:iarly or llholly, from the 

supervisor. Before we could begin such a'reaoval process, howe"er, it was 

necessary t0- detel'llline exactly what criteria We would use to justify the 

inclusion or exclusion of a module f rOll thi! kernel. we began by studying a 

number of specific parts of the current system and identifying the trade-offs 

related to removing these particular parts out of the kernel. One study in 

particular was performed of page control. We identified three levels of 

security with which we might be concerned, protection of information from 

direct release or modification, denial of service, and confinement 9f user 

computation to protect against leakage by means of a "trojan horse" attack. 

In general, we adopted the principle that protection against confinement was 

not easily achievable in today's environment, and that protection against 

denial of service was achievable and important, but that denial of service was 

less important than direct unauthorized release or modification of data. A 

discussion of these kernel levels is contained in TR-163 by W. Montgomery. 



51 

IV. Analysis of Flaws in the Multics System 

In an attempt to understand the sorts of problem that lead to potential 

violations of security, our group periodically collected and documented every 

known way to penetrate the Multics system. While the list of uncorrected bugs 

was not circulated, we periodically issued a report which analyzed bugs after 

a repair had been installed in the system. These analyses are of a very 

pragmatic nature, but yield considerable insight into the sort of problem that 

must be solved in practice if a secure system is to exist. These reports were 

reprinted in TM-87. 

V. Performance Benchmark for the Multics System 

One of our concerns in this project was that the performance of the 

system should not be significantly degraded by the modifications that we 

proposed. We had anticipated using the standard Multics benchmark developed 

at the MIT Information Processing Center to evaluate our modified versions of 

the system, but we discovered that this benchmark was too time consuming and 

not sufficiently precise for our purposes. For this reason we invested some 

effort in producing a variant of this benchmark that ran more quickly than the 

standard version and whose results were more repeatable. We produced a 

version of the benchmark that started and stopped the calibration tasks in 

such a way that the resulting running conditions were much more repeatable 

than in the standard benchmark. This modified benchmark was used to produce 

the performance results reported earlier in this report. 

We also invested some effort in designing a version of the benchmark that 

provided the test load on the Multics system using interactive processes 

logged in over the ARPANET, as opposed to the absentee jobs used by the 

standard benchmark. The advantage of interactive processes is that they 
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exercise the system in a fashion more similar .to the way the system is 

actually used. This latter project was never completed. It appeared that the 

need for an evaluator of this co111plexity and accuracy was no-t required, since 

the majority of the engineering studies that we pe~foraed were not carried 

through to an implementation that was sufficiently tuned to yield more than 

very rough performance information. 

We performed two other small projects related to performance monitoring 

and evaluation. One project was experimental observation of various classes 

of users on the system, in order to develop an empirical model of the arrival 

pattern of user commands. This work is reported in an undergraduate thesis by 

H. Rodriguez, entitled "Measuring User Characteristics f:)a the Multics System". 

We also imported and made operational a performance monitoring package called 

"aware" originally developed by the Ford Motor Company. 

VI. Removal of the Dynamic Linker from the Kernel 

Our preliminary analysis of the Multics kernel indicated that a 

significant volume of the kernel consisted of programs that did not need to be 

in the kernel for reasons of security, but were there for reasons of 

efficiency or tradition. It was important to determine whether or not it vas 

practical to remove these modules bodily from the kernel. In most cases it 

was clear that some small percentage of the function did require supervisor 

privilege, and there was some fear that this residue would complicate the 

outright extraction of the remainder. The first such task which we undertook 

was the removal of the dynamic linker from the kernel. The -dynamic linker, 

which translates at run time between symbolic naaes ancl. seg•nt numbers, was 

an obvious candidate for removal for four reasons. Firat, the link.er did not 

implement any concept related to the protection of the system or needed to 
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support the protection mechanisms. Its function is entirely related to the 

execution of user written code. Second, in view of the function implemented 

by the linker, it seemed reasonable to suspect that the linker did not need 

any of the privilege granted to typical modules of the security kernel. 

Third, the linker was a very complex program. Even though its function was 

easy to describe, the details of its implementation required the use of 

intricate and sophisticated language constructs that made the reading and 

auditing of the program an almost impossible task. Finally, the linker, by 

its very nature, handles data directly accessible to the users of the system. 

Such data could contain, purposely or not, inconsistencies capable of causing 

the linker to malfunction or perform unexpected operations. It seemed much 

harder to verify the correct operation of a program when that program could be 

presented with an arbitrary input than to verify correct operation when a 

"correct" input was guaranteed. Very sophisticated machinery would be 

required to verify the consistency of user databases and thus insure proper 

operation of the linker. Inclusion of such machinery, if possible, would only 

increase the complexity of the linker. The alternative of removing the linker 

from the kernel would insure automatically that no malfunction of the linker 

would ever subvert the protection mechanism of the system. 

Since this project was one of our earliest, the design was carried 

through to an implementation in order to increase our confidence that the 

techniques we were proposing in principle would work in practice. The 

completed implementation also allowed us to make some preliminary performance 

studies, since there was some concern that removal of functions from the 

kernel might significantly degrade the performance of the system. The 

conclusions drawn from this project were that the outright removal of certain 
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functions from the kernel was indeed feasible· and practical, that no drastic 

performance degredation need be expected in practice, and that the flexibility 

of the system was in fact enhanced by this extraction, since the user now had 

the option of replacing the linker with an alternative program of his own 

choice. One useful byproduct of this study was the conclusion that kernel 

intervention is not required when control is being transfered between one user 

d0111ain and another, even if those two -domains are mutually untrusting. This 

is a most interesting conclusion, which was not at all obvious at the 

beginning of the project. 

The results of this project are reported in detail in technical report 

Tlt.-132, and in "Dynamic Linking and Environment Initialization in a 

Multi-Domain Process", Proceeding of 5th Syaposiwa on Operating Systems 

Principles, ACM Operating Systems Review .2_, November 1975, both by P. Janson. 

Vil. Minimizing the Naming Facilities Requiring 'rotection 

This project involved identifying another coaponent of the existing 

Multics kernel that could be removed bodily into the user enviroDDlent. 

Multics provides a very sophisticated naming environment that users may use to 

keep track of their files. One set of names avaU:able to the user, file 

system names, are global in scope and can be used by any user to identify ~ 

shared file. Since these names are shared among users, it i.s not obvious hQ.w 

their management could be removed from the kernel. However, there are other 

sorts of names, reference names, private to each user, which provide an 

efficient way of naming a file already identified using a file system name. 

Since the management of reference names is private to each user, it seemed 

reasonable to remove their management from the kernel. 
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Removing the reference name manager from the kernel required that a 

kernel data base, the known segment table, be split into a private and a 

common part. As part of this change, the interpretation of path names was 

also removed from the kernel. As discussed in the first part of this report, 

this required that the supervisor learn to lie convincingly on occasion about 

the existence of certain file system directories. 

This project was also carried through to an implementation, primarily 

because we anticipated demonstrating a performance improvement, and a drastic 

reduction in the complexity of the algorithm. once we eliminated the 

constraints imposed on the algorithm by the necessity of its shared operation 

in the kernel. The result was a reduction by a factor of five in the kernel 

code required to manage the address space of a process, and an improvement in 

performance. A new and simpler kernel interface was an additional by-product. 

The results of this research are represented in technical report TR-156 

by R. Bratt. 

VIII. Removal of the Global Naming Hierarchy from the Kernel 

The previous task description discussed the existence of a global naming 

environment, the Multics file system. Since this naming environment is shared 

among all the users, it was not at all obvious that this name management 

mechanism could be removed from the kernel. However, it appeared that the 

file system could at least be partitioned into two parts, a single-layer 

catalog of segments, indexed by unique id, and a higher level name management 

mechanism which performed no function except the mapping between user provided 

names and unique id's. If such a division could be performed, then it would 

be possible to imagine removing this higher level from the kernel, and 
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providing a different copy of this management package for users in each 

different security compartaent. While this would segregate the users into 

disjoint classes that would be incapable of refering·to each others files, 

such a segregation might be acceptable in .. ny applications. Even if it were 

not possible to remove this naae management algoritha froa the kernel, the 

partitioning of the algoritha into two coaponents would presuaably increase 

the modularity of the system, which would enhance the auditibility of the 

kernel. This project was initiated, but not completed. It was clear that 

this was a very major upheaval to the functionality of Multics, in addition to 

being a major upheaval to the structure of the existing code. We felt that 

for our purposes the effort required to perform this surgery would not be 

appropriate, given the requirement that we conform to the current Multics 

specification. In a new system that was being designed with the goals of 

auditibility in aind, we would strongly urge that this structure be 

considered, and if Multics were being completely redeaigu.ed, we think that it 

would be quite valuable to evaluate this structure for inclusion. 

IX. Study of Multics Systea Initialization 

If one is to certify that a system works correctly, one aust begin by 

verifying the "initial state" of that system. For this reason, it was very 

important to understand how the Multics system initiali-z:ed itself. The 

original initialization procedure was relatively unstructured in the sense 

that we found it very difficult to understand how one aight verify its 

operation. Essentially, initialization proceeded in a nuaber of very small 

incremental steps, each of which augmented the environment of the progra11a 

which followed it. This meant that each program ran in a slightly different 

environment than its predecessor. It was characterizing this large number of 

-------~------



57 

different environments which made verification of program correctness so 

difficult. The reason for this large number of incremental steps performed 

during every initialization is that each of these steps represents a point at 

which the system can be tailored to reflect the particular physical 

configuration of the hardware available at the moment. Thus, a single Multics 

tape containing the initialization programs could be generated that would 

bring up a running Multics on any configuration, in contrast to other systems 

that require the generation of a different tape specific to each particular 

configuration. 

We proposed an alternative structure for Multics initialization that 

continued to achieve this goal, but which we considered to be much more 

amenable to verification. Our strategy divided initialization into two 

phases. In the first phase, a bit string that consituted a version of Multics 

capable of running on any configuration was lo~ded into tllemory. In order to 

do this, it was necessary to demonstrate that there was a minimal set of 

hardware and software which constituted a subset of every viable 

configuration. Once we had defined this minimal configuration, it was 

possible to generate a version of Multics that used just these resources. The 

generation of this minimal Multics was done not at the time the system was 

initialized, but at the time the tape was generated. Generating the minimal 

Multics at tape generation time makes validating the generation programs much 

simpler, since the programs can run on a full fledged Multics, rather than in 

the environment that they are attempting to create. The second phase of 

initialization consisted of a series of dynamic reconfigurations that modified 

the minimal Multics to conform to the particular available hardware and 

operating parameters at this site. Dynamic reconfiguration has always been an 
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essential part of Multics, and many of the reconfigurations required for this 

purpose already existed in this system. However, it was necessary to 

demonstrate that certain supervisor tables, such as the traffic control and 

segment management data bases, could be grown, and an impleUletltation was 

performed to prove this particular claim. Althougl) this initialization 

strategy was not completely implemented, we are very cQnfident that it is 

easily amenable to validation, since it conforms in its structure to the 

principles of layering, which appear to be powerful principles in operating 

system structuring. 

Ihe results of this work are reported in technical report 'll.-180 by A. 

Luniewski. 

X. Restructuring of Page Control 

The Multics kernel is implemented as code distributed aaong all the 

processes in the system. That is, a user desiring a particular service of the 

supervisor executes the relevant supervisor code in"bis own process. There is 

an alternative structure, in which the supervisor is illpleaented as separate 

processes that communicate with the user using interprocess comamication 

mechanisms. This alternative, in certain cases, has the advantage that it 

isolates as a sequential process an algorithm that by its nature wants to be 

sequential, but that had been forced to an unnatural structure by being 

executed, potentially in parallel, by several user processes. We were very 

anxious to explore the use of this strategy within the Multics kernel. 

The part of the supervisor that we chose as a testbed for this experiment 

was the low level memory management, commonly called page control. When a 

user references a page not in main memory, the page must be fetched from 
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secondary storage into an empty location in main memory. In order to perform 

this move, it may be first necessary to create an empty space in main memory 

by removing some other page. This removal algorithm has traditionally been 

run at the time of a page fault, but there is no necessity that it be run 

then. Our belief was that the removal algorithm could be more sensibly 

structured as a separate process, running in p4r•llel with user processes, 

with no function other than to identify and remove froaa main memory pages not 

recently used. By segregating this algorithm in a separate process, the user 

process is no longer concerned, at fault time, with such probleias as queuing 

disk writes, and waiting for their completion. Rather, the users process 

performs a very simPle operation: it requests an empty piece of main memory, 

abandoning the processor if necessary until one is available, and then 

performs a read operation from secondary storage into this location. 

A redesign of page control also allowed us to explore the implications of 

recoding certain assembly language programs in PL/l. The page control 

algorithms had been coded in assembly language for efficiency, and we were 

anxious to find out exactly what the impact would be of using a higher level 

language. The redesigned page control was implemented, since we were 

interested in investigating the performance characteristics of the system and 

since we wanted to confirm, by actually running the system, that we had 

identified all interactions between the page control functions now isolated in 

separate processes, and the higher levels of the supervisor still running in 

user processes. In fact, these connections between the removal process and 

the higher levels of the supervisor turn out to be some of the stickiest 

problems associated with this version of page management. The problem is that 

higher level functions occasionally request that particular pages they specify 
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be removed from primary memory, and this explicit request from above does not 

fit neatly into the otherwise clean pattern of the removal algorithm. The 

alternative of having these explicit removal operations performed by the user 

process implies that aore than one process can be removing pages from memory 

at the same time, which in turn implies that the.data bases describing the 

contents of memory are being updated by more than one process. This 

eliminates much of the cleanliness of a multiprocess inpleaentation, since 

locking must still be used to insure the integrity of the data base. 

The results of this implementation, especially the conclusions we draw 

concerning performance of the algorithm in a high level lang_~e, are reported 

in the earlier part of this report. Details of this froJect are reported in. 

technical report TR-171 by A. Huber, and in "Further B.esults with .-. 

Multi-Process Page Control" by R.. Mabee, reprinted in 'l'M-87. 

XI. Efficient Processes for the Kernel 

As discussed in the previous task description, it 'ppeared that ,, 

structuring some of the supervisor around separate proc~s_ses was convenient 

and appropriate. It was clear, however, that the mechanisms then existing in 

Multics for the creation and scheduling of processe• ve~e soaewllat unwieldy 

for this particular sort of application. We saw many places in the syste11in 

which a process could be used if it did not carry with it the full price tag 

of the user process. In particular we concluded that a process that .could 

take page faults, but could perform no other modifications on its environaent, 

such as adding a new segment to its address space, would be an effective and 

economical compromise for system processes. We performed an implementation of 

such a process, in order to demonstrate that its operation was compatible with 

the Multics structure, and we used this process in a variety of ways. It was 
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utilized heavily in the design of page control discussed above. It was also 

used to demonstrate that processes could be used in Multics to handle I/O 

interrupts. Currently in Multics, the code that responds to an interrupt runs 

in a very unusual and limited environment, with restrictions such as that it 

cannot call a locking primitive or perform any other action that might 

conceivably result in it loosing the processor. If an interrupt could be 

translated into a wakeup, these problem would vanish. It was clear that the 

immediate translation of an interrupt into a wakeup was an obvious and crucial 

idea in the correct structuring of the system. We demonstrated the utility of 

these fast processes by modifying the teletype interrupt handler so that it 

ran in such a process. We also explored the us, of, such a process for 

handling other I/O interrupts, such as the interrupts necessary to operate our 

connection to the ARPANET. In the discussion of task XVI below, we 

demonstrate a structure to the system which provides these efficient processes 

in a clean and understandable way. The implementation that was part of task 

XVI ran almost every interrupt handler in the system as a supervisor process. 

XII. Multiple Processes in the User Ring 

Another related experiment involving the use of multiple processes was 

the restructuring of the user ring computatio~ so that it could run in a 

multiprocess environment. While there are a variety of advantages to a 

multiprocess user environment, such as being able to,suspend several coamaods 

and then restart them in an order different from the order in which they were 

suspended, the principal impact on the kernel, as opposed to the user, of 

multiple processes has to do with handling of the Multics quit signal. The 

quit signal currently propagates its way through the Multics kernel in a most 

astonishing and intricate pattern, starting out in an interrupt handler, where 
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it is translated into a special call to the traffic controller. This call in 

turn generates a special interrupt in the target proceaa, which may cause that 

process to run in order to be interrupted. If we understood how to structure 

the user computations so that the quit was nothing but a wakeup to a separate 

user process, then the mechanism in the kernel would be much reduced, since 

the only operation the kernel would perform would be the imaediate translation 

of a quit signal into a wakeup, which is exactly the same action that the 

kernel would presumably take on any I/O interrupt. A running implementation, 

of tbe user computation as a number of processes was produced, although the 

results of this research were never published. A related document, however, 

is discussed below in task XVIII. 

XIII. Study of Error Recovery 

One of the most disruptive events in a system supervisor is the 

occurrence of an error. An error may be so severe as to cause.susp~nsion of 

all system operation, but even in this context it is necessary to bring the 
·~ _.' . - : ' - . "; .~ .. - :;- "'t 

system to an orderly halt so that ainiaua information is lost. If an error is 

not that severe, it may still be necessary to reflect the occurrence of this 

error to some module other than the'"module that actually discovered the error. 

It turns out that these error reporting paths are tb'e ao·st intractible 

COIDDlUnication paths in the system when one attempts- to modularize the various 

functions of the supervisor. Typically, an error is detected at a very low 

level in the supervisor, and is reported to some higher level, thereby 

providing a reversed direction conm1t1nication channel from.low to high levels 

in-violation of the layering strategy. During the course of this project we 

performed a variety of studies with the goal of understanding how Multics 

should recover from errors, and whether steps taken' to insure reliable 
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recovery from errors might in fact compromise system security. The first 

project was a study of the Burroughs 7700 operating system, since we were 

given to believe that this system was highly resilient in the face of errors, 

and could continue operating without disruption of the user computation. In 

fact, we concluded after a study of the system listings that the level of 

recovery provided by the Burroughs system did not markedly exceed that which 

Multics itself displayed. A more detailed analyses of the various sorts of 

errors to be expected in the Multics system was performed as part of this 
l 

project, although the documentation of this report is still in draft form. 

A related project which addressed the question of upward communication 

across layers is described in task XVI. 

XIV. Removal of Answering Service from kernel 

The Answering Service is that collection of modules that manage the 

system accounting, authenticate users logging into the system, and keep track 

of the allocation of typewriter channels and user processes. As currently 

structured, the Answering Service is a very large collection of code, all of 

which must be included in the security perimeter of the system. It was our 

belief that the functions could be structured in such a way that only a small 

portion required kernel privileges. In fact, we felt that functions 

traditionally performed as part of the ke~nel, such as user authentication, 

could be performed by the user process itself. In order to investigate these 

beliefs, we developed an alternative structure for the Answering Service that 

attempted to minimize the kernel functions related to user authentication and 

accounting. The result of this design was a version of the system with 

increased flexibility, since users were now permitted to create authenticated 

and accountible processes at will. At the same time this version reduced the 
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size of the kernel dramatically, as reported in the earlier portion of this 

document. A byproduct of this research was increased insight into the 

relationship between process creation, as currently·performed when a user logs 

in, and the crossing from one protection domain to another, as is often 

discussed in systems with protection boundaries more general than the Multics 

ring structure. 

A demonstration of this version was implemented. The results are 

reported in tecbnical report Tll-163 by W. Montgomery. 

XV. Organization of the Virtual Memory Mechanism of a Computer System 

One of the most important results of our research is a method for 

producing modular, structured software to support the virtual memory mechanism 

of a computer system. This material is discussed at length in the first part 

of this report, and is summarized only briefly here. 

The method that we propose for organizing a virtual memory mechanism is 

based on the concept of type extension. A virtual memory mechanism should be 

regarded as implementing abstract information containers (e.g. segments) out 

of physical information containers (e.g. main aemory blocks and disk records). 

Further, we showed how one could implement the programs and the address space 

of the mechanism itself without violating modularity and structure. We 

illustrated the use of the method by applying it to the redesign of the 

virtual memory mechanism of Multics. 

This work is summarized in the earlier part of this paper and in the 

Laboratory for Computer Science Annual Report for the period ending June 1976, 

and is discussed in detail in technical report TR-167 by P. Janson. 
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XVI. Processor Multiplexing in a Layered Operating System 

In the original system, there existed a very intractable entanglement 

between the virtual memory manager and the processor manager. An important 

project was to disentangle these two modules, and to produce a structure for 

the processor manager that was consistent with the principles of layering and 

type extension developed in the project discussed in the previous section. 

The general nature of the entanglement was as follows. The virtual 

memory manager depended on the processor manager in a number of vays. First, 

of course, it depended on the processor manager to provide the interpreter for 

the code of the virtual memory manager. Second, and more explicit, the 

virtual memory manager called upon the processor 1114nager to suspend the 

execution of a process that was waiting for a page to be moved from secondary 

to primary memory. The processor manager, in turn, depended on the virtual 

memory manager to move to and from main memory the pages containing the 

description of processes that were about to be run. This unfortunate 

circularity was eliminated in our redesign by separating the processor manager 

into two levels. The bottom level was implemented without employing the 

functions of the virtual memory manager. It executed using only information 

permanently fixed in primary memory. On top of this layer, the bottom levels 

of the virtual memory manager ran. The virtual memory manager could call upon 

this lower level to switch execution from one process to another in order to 

suspend a process waiting for a page. On top of this bottom layer virtual 

memory manager, a second layer of processor management was then provided. 

This upper layer had available to it a virtual memory, and could therefore 

store the state of a large number of processes, whereas the bottom layer 

processor manager, since it was restricted to storage permanently allocated in 
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main memory, could store a state of only a fixed and rather small number of 

processes. By multiplexing these fixed slots among the larger number of 

descriptions managed by the top layer processor manager, the effect could be 

achieved of multiplexing an unbounded number of processes among the available 

hardware processors. 

One additional result of this thesis was a discussion of the problem of 

upward signalling: the passing of a message from a lower level to a higher 

level of the system in such a way that the layering dependencies are not 

violated. The problem arises in this case when, as a result -of an event 

detected by the bottom layer traffic controller, a process whose state is 

known only at the higher level must be readied for execution. - A solution to 

this problem is proposed which does not make the lower layer processor 98nager 

dependent on the uper layer. 

This research is discussed in the earlier part of this report, and is 

presented in detail in technical report TR.-164 by D. P. Reed. In order to 

investigate the performance of the two level processor manager, a detailed 

design of both levels was completed, and the bottom level was implemented. 

This detailed design is reported in "A Two-Level Implementation of Processes 

for Multics" by R.M. Frankston, reprinted in TM-87. 

XVII. Separation of Page Control and Segment Control 

From the beginning of this project it was clear that one area of great 

confusion and complexity within the Multics system was the Active Segment 

Table and the large number of modules that manipulate it. The structure of 

the Active Segment Table is dictated by the needs of several layers in the 

memory management system, from page control at the bottom to directory control 
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at the top. An extensive study was launched of the Active Segment Table and 

the file system in an attempt to understand what the underlying cause of this 

entanglement was. A major conclusion of this study was that resource control, 

in particular the management of storage systea quota, was at the root of a 

great deal of the confusion. 

Given the general principles of layering and type extension discussed 

earlier, it seemed appropriate to attempt to apply them in detail to this area 

of the system. The particular project undertaken was the separation of the 

bottom two layers of tbe virtual memory manage.r: page control, which moves 

pages of information to and frOJR main memory, and 11egJDent control, which 

manages the aggregation of pages into se911ents. These two modules were the 

primary villans causing the entanglement manifested in the Active Segment 

Table. The root of the problem was, as expected, resource management, in 

particular the "quota problem". Much of theetructure of the Active Segment 

Table was being provided so that the low level page manager could implement 

resource management decisions that reflected policies being specified 

dynamically by higher level managers. The solution to this problem was to 

remodularize page control and segment control as three modules rather than 

two. The bottom layer continued to manage the movement of pages into and out 

of memory. The top layer provided the abstraction of an active segment, and 

also the interface to the yet higher layers. The second layer provided an 

intermediate abstraction that lumped pages together for the purpose of 

resource control. The result of this particular modularization was a clean 

isolation of those variables in the Active Segment Table into categories which 

were referenced by one and only one layer. 

This work is reported in technical report TR-177 by A. Mason. 
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XVIII. Provision of "Breakproof" Environment for User Programming 

As vurioue parts of the operating environment are r~moved from the 

kt.!rnel, thtt qul!•L lon nri•eK a• to wh&ar~ they lri\uuld bt' put. If they are 

placed in the same ring as the executing progra11l8 of the user, then they can 

be destroyed by a programming error of the user. It would be very nice if the 

removal of programs from the kernel did not lead to a reduced robustness of 

the progralllDing environment. 

This project used the tmltics ring mechanism to create an environ11ent 

which was not a part of the kernel but was still protected fr011 the user. 

This environment could be used to contain prograas private to but still 

protected from the individual user. W& defined a cons£atent ~t of programs 

to constitute this environaent, 1fhich inclOdi.ng tbe co-and processor and the 

error recovery mechanisa. The result was a program development and execution 

environment which was considerably more robuet than the current system. 

'nlis mechanism was implemented, because we felt we needed operational 

experience with this subdivision of the user environment into two parts. Much 

of the Multics environment was easily transformable into this new 

configuration, although certain components of the system were less tractable 

than others. The question of how error messages should be signaled in this 

multi-domain environment was a source of considerable study. 'nlere was a 

slight performance loss in this environment, due to increased page faults from 

duplication of stacks and related segments in both d011ains. 

This work is reported in technical report TR-175 by R•J. Goldberg. 

XIX. Control of Intermodule Dependencies in a Virtual Memory Subsystem 

As discussed above in task XV, the techniques of type extension and 

layering appear to be very important in producing a structured kernel. This 
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project was a case study of the virtual memory management algorithms of an 

abstract system resembling Multics, with the intention of applying these 

principles in such a way that both the number of modules and the number of 

interconnections between these modules is minimized. The central thesis of 

this research is that the various operations performed by the layers of the 

virtual memory manager can be cha~acterized as being of one of two sorts: one 

that associates and disassociates two computational objects, the other that 

fetches attributes of a computational object gi.ven its name. Decomposition of 

the virtual memory manager in this way reveals the kind of dependencies that 

result when one module remembers the name of an object. More strongly, this 

case study decomposition suggests that if the system provides a primitive 

mechanism to perform. each of these two operationa, this pair of operations can 

be used by several different layers of the virtual memory manager. Such reuse 

is an especially effective way to reduce the number of modules in a system. 

The representation of the operations used in this research is modeled on 

the LISP concepts of atomic element and property list. Tbe LISP paradigm 

provides a convenient and suggestive model for the primitive operations 

performed in this decomposition of a virtual memory manager. 

This research is reported in technical report Tll-174 by D. Hunt. 

XX. New Mechanism for Process Coordination 

As part of this project, we proposed a new mechanism for process 

coordination called "Eventcounts". Basically, Eventcounts are semaphore-like 

coordination variables that are constrained to take on monotonically 

increasing values. Coordination of parallel activities is achieved by having 

a process wait for an Eventcount to attain a given value: one process signals 

- --- - -- -------------------
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another by incrementing the value of an Eventcount. Any coordination problem 

for wh !rh " lil4)lut ton haa btt•m dt!veloped uatna aetuphorea can eaai ly be 

converted to a solution using Eventcounts. In addition, many Eventcount 

solutions seem to have the property that moat &veatcounts are written into by 

only one process; this red.uction in write conten~ion has b-eneficial effects on 

security problems and on coordination-of prctoesaes separated bya transaission 

delay, as in a "distributed" computer syst•. Eventcounts provide a solution 

to the "confined readers" problem, a version of the readers-writers 

coordination problea in which reader& of the illfo111atioa are suppose to be 

confined in such a way that they cannot ~o.-Jllica~• information to the 

writers.. Finally, for the class of synchron1.zation problems encountered 

inside an operating kernel, Eventcounts appear to leacf to aillple, 

easy-to-verify solutions. 

This work is reported in RFC-102, and in a paper entitled 

"Synchronization nth Eventcount:a ancl Sequencera11 ·:to be presented at the 6th 

Symposium on Operating: Systems Priaciplea by D• l.eed aacl R. tcanoclia. 

XXI. Management of Multiplexed Input/Output 

One of the functions of the Multics kernel is to control access to 

ault:iplexed I/O strea118.such as the connection to tile front elld processor 

managing terminals or the connection to the ARP.ABET. The kernel aust be 

involved in the use of these streams, in order to insure that the messages of 

one user are not inadvertently or maliciously observed or aodif ied by another 

user. Currently, a large bulk of very complex code is included in the kernel 

to control each of these streams. This code implements many functions in 

addition to the necessary kernel function of multiplexing and demultiplexing 

the messages transmitted over the connection. To reduce the bulk of this 
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code, we have developed a model of the communication taking place over a 

multiplexed connection that is general enough to characterize the behavior of 

the current front end processor, the current ARPANET, and various other 

protocols for the ARPANET and other nets. From this model it is possible to 

design modules resident in the kernel that implement the security functions 

appropriate for any network that can conform to this model, rather than 

creating a new control program for every network added to the system. A vast 

majority of the network dependent code can be removed from the kernel and 

placed instead in the user ring of the individual processes using the network 

in question. 

The model of this portion of the system is rather different in structure 

than the models proposed to structure the virtual memory manager of the 

system. The distinctions arise because the I/O stream represents an 

asynchronous process whose behavior in some sense drives the kernel modules 

managing the connection. This differing structure may provide an interesting 

test case for the generality of extended type managers as an organizing tool 

in a kernel. 

XX.II. Hardware Estimation of A Process' Primary Memory Requirements 

We completed a project to demonstrate that a process' primary memory 

requirements can be approximated by use of the miss rate on the processor's 

page table word associative memory. An experimental version of the system 

demonstrated that the current working set estimator can be eliminated by the 

use of this hardware feature. The working set estimator is a potentially 

complex algorithm whose elimination is clearly appropriate in a simplified 

kernel. 

This work is reported in TM-81 by D. Gifford. 
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PART III: DETAILED STUDY OF POTENTIAL SIZE REDUCTION OF THE MULTICS KERNEL 

by 

Douglas M. Wells 

Abstract 

We estimate the impact on the size of the Multics kernel were our various 

projects carried out. We specify results for three different versions of the 

kernel. The first includes the effect of those projects that were carried to 

a trial implementation, or whose size impact could otherwise be accurately 

predicted. This version corresponds to the estimate stated in the first part 

of the report. The second version involves projects whose impact could only 

be estimated. The third version involves a very tentative and unsupported 

estimate of the impact of producing a file system that only enforces 

non-discretionary access controls. 

Introduction 

The first part of this report contained a preliminary study of the impact 

our project had on the size of the kernel. This section of the report is a 

detailed analysis of that topic. At the time that the first part of this 

report was written, the only study of the size of the Multics system was one 

that was performed at the beginning of the project. For this reason, the 

numbers reported in the first part of this report are based on modifications 

to the kernel as it existed at the start of the project. In order to perform 

a more detailed analysis, we examined the kernel as it exists in the standard 

system now. Since the size of the standard system has increased since the 

------------
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start oi our project, the absolute numbers reported in this portion of the 

report differ from thoae given in the preliminary atudy. The percentage 

impacts that we report are approximately the same, however. 

Scope of the Kernel 

In defining the security kernel considered for this work, we consider 

several parts of the standard system: 

- Ring O supervisor. Potentially, any procedure executing in ring 0 can 

examine or modify any part of Multics. We therefore need to consider any 

module included in ring O as part of the security kernel. 

- Message Segment Priaitives. For purposes of the Access Isolation 

Mechanism, message segments may contain information at multiple levels 

and/or categories. lbus, any misbehavior on the part of the message 

segment primitives could allow unauthorized access to data. 

- Answering Service. Because the Answering Service is responsible for the 

creation of all other processes, an error here could cause a process to 

be created with uncontrolled privileges. 

- Backup Services. One of the fundamental services of Multics is providing 

reliable file storage services. Any error in one of these services could 

cause a segment to be reloaded at a level other ·than its proper level. 

- Detachable Storage System Media. Although Janson's type extension 

techniques indicate methods of handling tkeae outside the kernel, the 

actual Multics implementation is new enough that there has not been an 

actual analysis of it. We will therefore consider the existing 

mechanisms as being within the security kernel. 
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There are also several areas that are not considered here: 

1/0 Services. Although bulk printer and card servi~es are a service of 

the standard Multics, we have not devoted resources to studying this 

area. Primarily, this is because the problems in the area seem not to be 

ones that require engineering of the kernel software, but rather ones of 

adhering to various laws and government regulations concerning classified 

data. In addition, we believe that these services might better be 

performed in a Secure Front End Processor, as described in scenario two. 

We will, therefore, consider I/O services as being outside the security 

kernel. 

- Frontend Network Processor. 'll\e standard Frontend Network Processor (FNP) 

does not seem well suited to interfacing a Multics security kernel. The 

problem areas include a lack of protection hardware and ~ poorly 

structured hardware interface between the FNP and the Multics memory. i, 

Because of these problems, we have not pursued the use of the FNP in a 

secure version of Multics. Rather, we have assumed that some Secure 

Front End Processor with its own security kernel is used for system 

Input/Output. The use of this SFEP is discussed further in scenario two 

below. 

- Special Backup Services. The standard Multics system provides two backup 

services that will not be considered in this report: .complete dumps of 

the hierarchy, and retrieval of individual segments from backup tapes. 

We believe that these services need not be considered here because they 

are each only an optimization of one of the other services. A complete 

dump is taken only to coalesce the results of all previous incremental 
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dumps. A retrieval is essentially a reload in which most of the segments 

that would normally he reloaded are skipped. 

Base Multics Kernel 

In assessing the impact of this project upon the size.of the Multics 

kernel, we report the results of the various simplifications upon a base 

system. The base system we have chosen is the Multics system actually running 

at the time that this report was written. This system, designated system MSS 

31-b, was installed at M.I.T. on June 23, 1977. This system is typical of the 

various versions of Multics that have existed during the period of this 

research. One slight peculiarity of this system is that it contains two 

versions of the Backup mechanism. The older, now-obsolete Backup system (the 

Hierarchy Dumper and Reloader) will be retained until confidence in the newer 

Backup system (the Volume Dumper and Reloader) is acquired. 

At the outset of this research, an initial census was made of the Multics 

ring 0 supervisor [Voydock, in Clark, 1977*} _. That cenlius included a 

functional breakdown of the modules in the ring O portion of Multics, and 

provided totals of the sizes of the programs. 'nlen, based on an assumption of 

5 words of text section per PL/I source statement, the size of the ring 0 part 

of the system was estimated at 44,000 source lines. That number, plus the 

13,000 lines in the Answering Service is the basis of the 57,000 line kernel 

size used in part one of this report. 

We also performed a census upon our base system for the purpose of 

determining the sizes of the various functional categories. For this census, 

* References in this part of the report may be located in the Publications and 
References sections of part 1. 
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we counted the sizes of the modules, both the text section size and the count 

of source statements. The differences between that 1974 version of Multics 

(MSS 20-lOa) and our base system (MSS 31-6) reveal a few interesting changes. 

The ring O portion of the system has increased in size by 48%, from 157,000 

words of text to 233,000. The number of source modules has increased in 

almost the same proportion, 305 versus 432. On,ly one major section of the 

system has crossed the ring 0 boundary: Tape Control has been moved outside 

the supervisor. 

On the other hand, a surprising number of things have remained the same. 

It appears that the sizes of the individual modules have remained relatively 

constant, averaging about 525 words of text section per module. Due to the 

differences in methods of computing program size, we can't directly compare 

the relative usage of assembly language, but we do find that the proportion of 

assembly language modules is about the same in the previous system as in the 

base system. Also, it should be noted that there are no major new functional 

units in ring O; the only changes have been ones of replacement or alteration. 

If we look for the reason for the increase in the size of the ring O 

portion of the system, we immediately find that the capabilities of the system 

have been improved substantially. During the period since the initial census 

of the Multics supervisor was performed, the system has been altered in a 

number of significant ways: 

- the Access Isolation Mechanism has been incorporated into the system, 

- a "new" storage system implementation has been installed, including 

support for detachable parts of the hierarchy, 
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the salvager, which was previously a stand-alone system, is now an 

integral part of the normal Multics, 

- PL/I support of language I/O features has been dramatically improved 

including a retmplementation of the PL/I "file" support, 

"c 
- dynamic reconfiguration has been "idiot-proofed", 

- a rewritten typewriter-control system has been installed. 

Typically, each of these reimplementations has caused the size of the 

subsystem to increase. There are two primary reasons for the increase 

expanded function, and improved debugging and metering facilities within the 

subsystem. 

The base system is organized so as to simplify system maintenance and 

development, not to reduce the size of the kernel portion of the system. One 

result of this organization is that the kernel service processes, such as the 

Answering Service, tend to use normal system utility routines. These utility 

procedures often include more function than is needed by the service process. 

An example of this is the temporary segment manager. Although a temporary 

segment can be created with only one PL/I source language call, the temporary 

segment manager maintains a pool of such temporary segments in order to 

eliminate unnecessary costs of segment creation and deletion. Because the use 

of this facility can improve overall system performance, the Answering Service 

uses this (and other) facilities • 

. An unfortunate result of this organization is the fact that the address 

space of the non-ring 0 kernel processes is much larger than it needs to be. 

Many system utilities, even those not used by the kernel processes, are 
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included in segments in their address spaces. In certifying the standard 

system, however, all these extra modules would have to be audited. In 

performing the census of the base system, we chose not to include all these 

extra modules. First, the actual identification and analysis of these modules 

seemed impractical. Second, the system could be trivially recoded to 

eliminate such uses. Therefore, in computing the size of the kernel of the 

base system, we have applied one exclusion factor. 

The rule we have applied has been: if the call to the utility procedure 

could be replaced by fewer than about 10 lines of code in the original 

program, we have not counted that utility as being in the kernel. We estimate 

that had we included all those extra modules in the system, the base kernel 

would have been about 20,000 line,s larger. 

To give some indication of the sizes of the various subsystems of the 

base Multics system, we will give a functional breakdown of the components. 

Ibe numbers given here are for all source modules in the kernel that contain 

executable code. That is, modules that contain only functional parameters or 

table space are excluded from the count. Gate segments have also been 

excluded. The SIZE is a count of the source language statements in the 

procedure modules. NON-PL/I is the percentage of the code, measured in source 

statements, written in a language other than PL/I. It should be noted that 

dispatch modules are typically coded in assembly language or macro language 

and artifically increase this percentage when used as a measure of the use of 

non-higher-level languages. The TEXT-LEN section indicates the size of the 

"text" section of the object modules. For PL/I, this includes all constants 

and executable instructions. Although some assembly lan~uage programs rnay 
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contain executable instructions in other sections of the object module, this 

number provides a good indication of the size of the object program. 

<;:ATEGORY MODULES SIZE NON-PL/I TEXT-LEN 

Initialization 45 4636 37% 23708 

Reconfiguration 13 1126 2% 7714 

Fault Handling 13 1326 90% 21.58 

1/0 Control 38 3526 28% 17598 

Printer 6 958 73% 2532 

Tape Control 21 2662 2% 10449 

TTY Control 19 4266 5% 20477 

ARPANET 55 7493 1% 40338 

Error Handling 25 2016 9% 9312 

Process Control 28 1296 6% 8773 

traffic Control 3 2296 92% 2710 

IPC 25 3061 2% 16160 

Process Signals 5 390 17% 1450 

Resource Control 32 2343 11342 

Storage System 38 5366 1% 35864 

Directory Control 51 6609 < 1% 34434 

Segment Control 32 1973 5% 11460 

Page Control 26 5870 69% 13704 

Salvager 18 2897 1% 20747 

Dynamic Linker 14 1793 11% 7234 

File System 5 1161 2% 6631 

AIM 7 924 6% 6223 

Error Interpretation 12 856 1% 7228 
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Kernel Utility 5 470 93% 663 

Shared Utility 16 2800 81% 5069 

Backup 44 7827 57002 

Answering Service 73 12987 2% 94609 

PL/I Support 39 12504 94% 18641 

Miscellaneous 4 191 22% 918 

---
Totals 712 101623 26% 495148 

(Ring 0 Only) 432 61848 41% 232824 

Since the total number of source lines involved is about 100,000, each 

thousand lines represents about 1% of the kernel size. It is useful to keep 

this comparison in mind·while reading the following description of size 

reductions. As the reductions accumulate, it is also uaeful to remember that 

the perceived impact measured in terms of the final kernel is much larger. 

Thus, a removal of 1000 lines would reduce the final 38,000 line kernel by 

2 1/2%, not 1%. 

First Level Reduction Estimates 

This scenario includes those.concepts whose feasi~ility has been proven 

and that have little or no impact upon the user interfaces to the system. The 

changes described at this level would reduce the size of the kernel by 40% and 

could probably be done in one year real time. 

The changes in this version of the kernel include: 

- removal of obsolete code, 
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- removal of extraneous PL/I support routines, 

- restructuring of page control, 

- removal of Answering Service, 

- use of encipherment in backup services, 

- making ring-0 and the kernel coincident, 

- removal of dynamic link.er and reference name management, 

- miscellaneous cleanups and recoding in PL/I. 

Removal of Obsolete Code 

As the Multics system has evolved over the years since its inception, 

many subsystems have been redesigned and now have sign'ificantly different 

interfaces. Often, the newer interfaces are more primitive (and therefore 

simpler) than the old interfaces. In order to provide coapatibility to the 

existing user community, the old interfaces are usually recoded to use the 

newer interfaces. These write-arounds are then made a part of the newly 

redesigned subsystem. For subsystems that are a part of the kernel, the 

write-arounds are also included in the kernel. 

Early experiments with removing the dynamic link.er frCJlll the kernel have 

indicated that moving the write-arounds outside of the kernel can usually be 

done quite trivially by replacing the kernel gate procedures with non-kernel 

dispatch modules. Users would call the entry points in these modules, which 

would then transfer to the actual kernel gate procedures or to the 

write-around as appropriate to the particular ftmction invoked. This approach 
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is not usually followed since old application programs that make use of the 

write-arounds will encounter a slight performance loss in going through an 

extra level of name resolution 8J1d by the addition of one extra page to the 

working set. 

Portions of the base system that include significant amounts of obsolete 

code include: Backup with 3400 lines, Tape Control with 1000 lines, PL/I 

Support with 3000 lines, and Directory Control with 700 lines. In addition, 

there are small amounts in various other subsystems that total about 1500 

lines. 

Net reduction: 8100 lines 

Removal of Extraneous PL/I Support Routines 

In order to reduce the size of object programs and in an attempt to 

provide a higher degree of compatibility, the PL/I compiler makes heavy use of 

rtm-ti.me operators. This is especially true fQr Input/Output support and 

mathematical functions. Currently, all of these operators are combined into 

one large segment that is included in the kernel. Fully 55% of this operator 

segment in the base system is never needed by kernel procedures. Also, most 

of this support code in written in assembly language. Thus, the removal of 

these routines would have a significant impact on the size of the kernel. 

25 modules involving 5200 lines of non-obsolete source could be directly 

removed from the kernel. In addition, approximately 700 more lines could be 

eliminated from kernel support modules and moved to new, non-kernel modules. 

Net reduction: 5900 lines 
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Restructuring Page Control 

Page Control is one of the most complex subsystems in the base Multics 

system: A given page may be in any one of about thirty states. Most of the 

state transitions occur during the handling of faults or interrupts. More 

than two-thirds of it is coded in assembly language. Thus, it seemed an ideal 

candidate to test our ideas about use of kernel ~rocesses and conversion of 

assembly language programs to PL/I. 

Due to our special interest in the effects of using multiple processes 

and recoding in PL/I, we made an attempt to optimize and tune this 

multi-process version of Page Control. As reported in [Mabee, in Clark, 

1977], the final version consumes 50% more CPU resources in managing pages 

than the equivalent assembly language version. The object modules are also 

about 20% larger. On the other hand, when measured in source statements, the 

PL/I version is 1000 lines smaller, about 17% of the size of Page Control. 

An analysis of the functioning of this subsystem indicates that the 

poorer performance is· almost entirely due to the recoding in PL/I, not to the 

use of multiple processes. lbus, even in cases where the performance of the 

system is critical, the use of multiple processes to allow a simplified 

structure does not seem to intolerably degrade the performance. 

In addition, there are a number of functions in page control that could 

be removed without seriously decreasing the performance of the system. 

Although often the amounts of code that would be removed are not large, these 

functions unnecessarily complicate the transitions Within page control. These 

functions include: aborting read/write sequences while moving pages from the 

bulk store to the disk, special-casing segment truncations. 
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One significant point about page control is that it is one of two 

portions of the kernel that are coded in assembly language primarily for 

efficiency. Although the implementation of multi-process page control was 

converted to PL/I and thus was less efficient, the overhead attributable to 

page control {whether coded in PL/I or assembly language) can be reduced to an 

arbitrarily low amount by using large memory hardware configurations. 

The implementation performed by Huber [Huber, 1976} demonstrated that 

1000 source lines could be removed from Page Control. 

Net reduction: 1000 lines 

Removal of Answering Service 

The Answering Service is one of the largest single components of the base 

kernel. By itself, it comprises 13% of the kernel. In addition, significant 

portions of ARPANET and TTY Control are included in the kernel only because 

they are required by the Answering Service (or Backup, the other service 

process included in the kernel). Thus, reductions in the size of the 

Answering Service have enhanced effects on the kernel. 

The trial implementation by Montgomery [Montgomery, 1976] demonstrated 

that the Answering Service could be divided into two parts: modules that 

managed the creation and access capabilities of processes, and modules that 

interact with users in order to call upon the process controlling modules. 

Those modules that only interact with users can be moved outside the kernel. 

Based upon the results of that implementation, we find that those modules 

that manage user processes comprise less than 7% of the size of the Answering 

Service -- resulting in the elimination of over 12,000 lines of code. This 
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alone reduces the size of the kernel by 12%. In addition, 2700 lines of 

ARPANET support code included in the base kernel are used only to interact 

with users. Because the corresponding portions of the Answering Service have 

been removed from the kernel, this ARPANET code can also be removed. 

Net reduction: 14, 700 lines 

Encryption in Backup Services 

As part of the implementation of the "new'' storage system, the Multics 

backup mechanism has been changed to use a different mechanism for determining 

which segments require backing up. The previous mechanism used a privileged 

process that periodically scanned the storage system hierarchy looking for 

segments that had been modified since the previous such scan of the hierarchy. 

In the new mechanism, the storage system notices whenever a segment has been 

modified and notifies the Backup process. The Backup process then copies that 

segment onto tape. 

Using a methodology similar to that applied to the Answering Service, we 

can divide the new backup mechanism into two parts: those modules that 

interface to the storage system, and those that perform external functions 

such as actually writing the information onto tape, or producing 

human-readable maps of the backed-up data. By enciphering the segments and 

associated storage system information as it is passed out of the kernel, we 

can remove the external functions from the kernel, leaving only a small 

storage system interface still in the kernel. In return, we would have to add 

the enciphering mechanism. 
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It should be noted that the use of encipherment here is the first 

instance we have proposed for actually allowing a non-kernel module to 

physically maintain a copy of a particular protected object. Tile only 

mechanism used here to ensure security is the fact that the data is 

enciphered. We are relying on the extreme difficulty of decoding the data. 

Although there are no known proofs of "uncrackability" of existing "difficult" 

encipherment schemes, there are claimed to be encipherment algorithms that 

have been certified as acceptable for use at any desired level of security.* 

The elimination of the external functions allow us to reduce the size of 

the kernel portion of Backup to about 1100 lines, a reduction from the 

original 2800 lines of non-obsolete code. Implementations of enciphering 

mechanisms for other purposes have indicated that we would have to add about 

500 lines to the kernel to perform the encipherment and to manage the cipher 

keys (or to manage flow of data to and from an enciphering box). Also, in 

order to allow the system security officer to inspect the backup tapes and 

request non-standard retrievals, we would probably need another 500 lines of 

code. 

In addition, because the Tape Control programs no longer need to be 

considered part of the kernel, we can eliminate another 1600 lines of tape 

management code from the kernel. 

Net reduction: 2300 lines 

*Kahn, D., The Codebreakers, Macmillan, New York, 1967. 
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Mak Ing IHng-0 ::tnc.I th~ Kl•rncl Coln<' td~n t 

The Multics ring O is a very special environment within Multics. Many 

aspects of the environment while running in ring 0 are special cased: all 

programs in ring O are pre-linked at system initialization, so the dynamic 

linker is not required; the segment number of any given segment is the same 

in all processes, so linkage sections can be shared; ring 0 segments are never 

deactivated, so segments faults do not happen on kernel segments. All of this 

means that programs executing in ring 0 exist in a lllOre primitive enviromnent 

than programs executing in other rings. In fact, there are a number of kernel 

subsystems that only will work for outer ring callers. For the subsystems 

that are used by both ring O and outer ring programs, however, we find that 

there are often two versions of a particular function, one for ring 0 and one 

for the other rings. For example, there is a prelinker program for ring 0 and 

a dynamic linker program for the other rings; there is a program that 

initially activates ring 0 programs, and another program that activates 

segments in response to segment faults by outer ring procedures. 

When trying to reduce the size and complexity of a security kernel, we 

find that the duplication of functions unnecessarily increases the size of the 

kernel. If we can remove the outer-ring version of a program from the kernel, 

we often eliminate more than half the statements in the overall subsystem. In 

order to eliminate the outer-ring version of the program from the security 

kernel, however, we must move all kernel programs into ring O. Thus, to allow 

the removal of these duplicate functions, we need to move the message segment 

primitives, the detachable media manager, and the appropriate parts of the 

Backup and Answering Services processes into ring o. 
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In addition to the linker and reference name table management code 

described below, we can eliminate 800 lines of I/O System, all the File 

System, all the Error Interpretation system, 260 lines of Process Signal code, 

and all of TTY Control that is in the outer ring. 

Net reduction: 3240 lines 

Removal of Linker and Rererence Name Table Management 

Early implementations by Janson [Janson, 1974] and Bratt [Bratt, 1975)) 

demonstrated that the dynamic linker and reference name table (RNT) management 

were functions that could easily be removed from the ring 0 portion of 

Multics. Unfortunately, these subsystems were still required by privileged 

processes such as the Answering Service and the Backup processes, and as such, 

had to be included within the security kernel of the system. With the changes 

to the Answering Service and Backup functions described above, however, the 

remaining kernel functions could easily be moved into ring O using kernel 

processes as described in the discussion of Page Control above or the 

equivalent hardcore processes available in the base version of Multics. 

The removal of the dynamic linker and RNT management from the kernel 

allows us to remove 1950 lines of code. Furthermore, these particular 

functions include a disproportionate number of entry points into the kernel. 

Thus, removing these two functions also significantly reduces the complexity 

of the interface into the kernel. 

Net reduction: 1950 lines 
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~iscellaneous Cleanups 

There are a number of other removals that will be listed here. 

Typically, these are straight forward cleanups that have not been performed on 

the standard Multics due to the necessity of changing large amounts of other 

kernel programs to replace calls to the eliminated functions. The code 

conversion and canonicalization portions of TTY Control can be easily moved 

outside the kernel. The full implementation of IPC channels is not needed in 

the kernel; the "special" channels will handle all needs for IPC by kernel 

functions. There are a number of Directory Control functions, such as 

make_seg and move_seg, that need not be in the kernel. The Fault Handling 

modules translate hardware faults into the equivalent PL/I faults even though 

not kernel functions depend on this translation. There are also a number of 

places where modules can be converted from assembly language to PL/I without 

significantly affecting the performance of the system.-

The implementation of these cleanups should result in the removal of 

about 3000 lines of code. 

Net reduction: 3000 lines 

Summary of Level ~ Reductions 

After perfoming this first set of simplif:lcations., we have a system that 

provides essentially the same user interface as the :base. s:yatea. Only in rare 

circumstances would even the side effects of the fµnctioning be different. 

The only essential difference would be the fact that the kernel would be some 

40% smaller than the base system. The breakdown by category, including the 

change from the base system, is as follows: 
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CATEGORY SIZE % CHANGE 

Initialization 4636 

Reconfiguration 1126 

Fault Handling 1326 

l/O Control 2783 -21% 

Printer 958 

Tape Control 0 -100% 

TTY Control 3100 -27% 

ARPANET 4824 -36% 

Error Handling 2016 

Process Control 1200 -7% 

Traffic Control 2200 -4% 

IPC 2400 -21% 

Process Signals 120 -69% 

Resource Control 2343 

Storage System 5366 

Di rec to ry Control 5900 -11% 

Segment Control 1973 

Page Control 4900 -17% 

Salvager 2897 

Dynamic Linker 100 -94% 

File System 0 -100% 

AIM 924 

Error Interpretation 0 -100% 

Kernel Utility 470 

Shared UtHity 2800 
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Backup 1600 -80% 

Answering Service 1000 -92% 

PL/I Support 3600 -71% 

Encryption 500 New 

Miscellaneous 113 -41% 

------
Totals 61075 -40% 

(Base System) 101623 

(Reduction) 40548 

Level Two Reductions 

This level of kernel revision includes those concepts that would either 

alter the function of the system in some manner that would show up at the user 

interface, or concepts that require significantly more work than those in the 

first scenario. Because this scenario includes a number of concepts for which 

we have not completed trial implementations, the estimated size of the 

resulting kernel is much less precise. 

The changes incorporated in this version include: 

- two level traffic controller. 

- revised initialization 

- simplification of Directory Control interfaces. 

- separation of tracing/metering code. 
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- use of kernel processes for multiplexed 1/0 

- use of Front End 1/0 processor. 

Two-Level Traffic Controller 

By using the same methodology described above for the Answering Service, 

Reed [Reed, 1976] was able to divide traffic control into two parts -- one 

implementing basic mechansims, the other higher level policies. In this case, 

also, we were able to move the policy manager outside the security kernel. By 

restricting the outer-ring mechanism to the control of scheduling parameters, 

we can ensure that it cannot cause the leakage of protected information. In 

fact, the particular mechanism proposed allows us to move almost all the base 

system's process controlling subsystems outside the kernel. 

The trial implementation of the lower level virtual processor manager 

took 1176 source lines. This implementation did not include the functions 

necessary to allow the higher level process manager to cause switching of user 

processes, but it did indicate that the addition of that function would only 

add about 600 lines to the kernel modules. This small amount of kernel code, 

together with the proposed (non-kernel) "level 2" policy mechanism would 

completely replace the base kernel functions of Process Control, Traffic 

Control and Process Signalling. In addition, it would eliminate 952 lines of 

Fault Handling, and all of IPC except the message segment primitives. 

Net reduction: 3500 lines. 

----- ---------------------------··---- -------
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Core Image Initialization 

The base version of Multics initializes itself by having a small 

bootstrapping program loaded into primary memory. This small program then 

incrementally reads more of the Multics system from a tape. Some of this 

newly-read system serves only to provide an interim environment for loading 

the actual programs that will actually function in the fully-operational 

Multics environment. If we could just load a completely initialized image of 

the Multics system, we would eliminate a nUlllber of these initialization 

programs from the kernel system. 

In examining the problems associated vi.th this type of "core image 

initialization," Luniewski [Luniewski, 1977 J found that the major problem area 

was one of adjusting the size of various databases. A trial implementation 

show~d that these tables could be dynamically grown at the expense of adding 

about 500 lines of reconfiguration code to the system. In return for this, wie 

can eliminate 2500 lines of initialization code; much of it in assembly 

language. 

Net reduction: 2000 lines 

Simplification of Directory Control Interfaces 

In examining some parts of the system, we find large portions of the 

subsystem are used to provide interfaces to the user. Typical systems in 

which this is true inc.lude Input/Output Control and Directory Control. This 

is especially true of Directory Control, because of the large number of 

attributes that are handled: Access Control Lists, Time Last Modified, Safety 

Switch, Copy Switch, etc. The base version of Multics has a separate entry 

into the kernel for reading each of these values, and if the particular value 

----------------- ----------· 
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is settable by the user, a separate entry for setting the value. At each of 

these entries, the kernel program must first verify the arguments, then verify 

that the particular operation is allowed for this user, and finally retrieve 

or store the appropriate value in the directory. We find that much of the 

code in these operations is used in the verification of the arguments and the 

access. 

If we were to reduce the number of entries so that there was essentially 

one entry for each type of access that was allowed, we could save much of this 

duplicated code. In the case of Directory Control, we would have one entry to 

read the current Access Control List, another to replace the entire list. We 

would have one entry to set the various switches and parameters; there woul~ 

be another entry that would return the value of the switches and the various 

times stored by the system. 

In the case of directory listing, we find that the base interface uses a 

"star name" as an argument and tests each name in the directory against the 

star name to see if it matches. Also,. there are various entry points to 

return additional information (such as the times and effective access) for 

each returned entry. A much simpler and sdlaller interface would return all 

entry names in a directory and require that the star name processing be done 

outside the kernel. If the extra information were desired, the kernel 

interface should be designed so that it always returns the extra information 

that was most often used. Other, atypical cases could use the status 

returning entry described above to get any additional desired information. 

One other simplification possible in this area is the elimination of the 

use of the PL/I area functions for returning this informtttf.on. If we chnnge 
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the information returning entry points, so that they write into a preallocated 

buffer, rather than allocating in an outer-ring area, we can eliminate the 

area management code from the kernel. This would remove about 800 more lines 

from the kernel. 

When this simplification scheme is applied to the base Multics system, we 

find that over 1000 lines could be saved in this user interface area. Even 

more importantly, the user interface area is_ one that often contains security 

leaks because of errors in programs that incorrectly validate arguments•. 

Thus, by reducing the size and complexity of this particular_ area, we have 

made extra progress in aiding the auditing process. 

On the other hand, because the kernel no longer performs complex 

interface operations, certain actions that are possible under the base version 

of Multics can no longer be performed. 'llle actions that would be disallowed 

correspond to the caf;e where a user has only "append" access to a directory. 

Thus, simplifying the interfaces as described he.re easentially requires that 

we remove the concept of "append only" directories. Since the concept is only 

occasionally used, and is often replaceable by use of "add bnly" message 

segments, the loss does not seem to affect the normal capabilities of Multics. 

Net reduction: 1800 lines 

An investigation into known security leaks in earlier versions of Multics 
[Janson and Forsdick, in Clark, 1977) showed that most leaks in the system 
could be categorized into a very small number of areas. One such area was the 
improper validation of arguments. 
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Separation of Debugging/Metering Code 

As mentioned it:t the introduction to this section, one of the areas that 

has grown most in the time since our initial census of the system, is the area 

of debugging and metering. This is primarily due to the intense effort being 

made to further develop Multics and to improve its performance. Many kernel 

subsystems now include extensive tracing and performance measurement 

facilities. Unfortunately, these facilities are undesirable in a kernel that 

is to be audited. By definition, the code performs no part in effecting the 

desired functions. Contrarily, the only non-transparent actions possible are 

deleterious. On the other hand, if there are ever to be future improvements 

to kernel system, this debugging code would prove to be very useful. Thus, we 

would propose a compile-time feature or a load-time feature that would allow 

the debugging and metering code to remain in the source code, but would 

guarantee that the code could not affect the security kernel. One example of 

how this could be done is to consider adding a new section to the object 

module. Although normally present for debugging runs, etc., the security 

kernel version of the system could discard this section of code, replacing it 

with no-operation instructions. 

The addition of such a feature would allow the elimination of about 1500 

lines from the system. Because of the removals allowed by the Two Level 

Traffic Controller, however, only about 300 lines of this represents debugging 

and metering code that would otherwise still be in the kernel. Since the 

debugging and metering code is widely distributed through the system, its 

removal would tend to reduce the size of many modules rather than eliminate a 

few of them. 

Net reduction: 300 lines 
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Use of Kernel Processes for Multiplexed 1/0 

The control of multiplexed devices, such as an ARPANET or a typewriter 

controller, is conceptually a simple task. In one direction, data is accepted 

from a user, inserted into a queue, and then, when the device is ready, the 

data is transmitted to the 1/0 device. In the other direction, data is 

accepted from tile device, and then placed on a queue .fo.r a particular user as 

indicated by a field in a message header. Yet we find that the components for 

handling multiplexed devices make up alutost 20% of the base system. 

Obviously, something is 1110re complicated than it appears at first glance. 

When we analyze the existing software, we find that none of the 

multiplexed 1/0 subsystems adhere to this simple model. In fact, the size of 

the particular subsystem seems to be in direct proportion to its deviation 

from this model. The problem seems to be in controlling the flow of data to 

each individual device. In the case of typewriters, some are much faster then 

others. So, if fast devices had to wait for slower devices to complete 

processing, the faster devices would spend most of the time waiting. 

The implemented solution to this problem in the TTY Cpotrol and ARPANET 

subsystems is to also keep an output queue for each user. Data from these 

individual queues is entered into the actual device queue only when the user's 

subchannel has indicated that it will accept the data. Unfortunately, the 

signal that the subchannel will accept the data is received asynchronously and 

there may be no user process available to process the input. Due to 

historical reasons of efficiency and the difficulty of creating processes, the 

solution generally employed to solve this problem has been to process the 

input data during the handling of the device interrupt signal. 
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Unfortunately, performing this processing at interrupt time unduly 

complicates the algorithm. There are several reasons for this. First, the 

normal locking primitives can not be used while processing an interrupt; the 

process which has a lock set may be the same one that is processing the 

interrupt. Second, there must exist code to do the same function in a normal 

user process; if the device is quiescent, there will be no interrupts coming 

in, so a call-side process must initiate the operation. Third, all programs 

and data that are referenced at interrupt time, must be in wired-down 

locations in primary memory; thus, often there are two types of queues -- one 

wired and the other pageable. 

For all these reasons and more, architectures that use a dedicated device 

process are usually simpler than those that use interrupt-time processing. 

Furthermore, experiments by Ciccarelli [Ciccarelli, 1977] indicate that when a 

process structure is used, the various multiplexed I/O·device subsystems can 

share buffer management primitives. Since the buffe't'· maugement is one of the 

largest components of each of the base I/O subsystems, the use of common 

buffer management would greatly reduce the bulk of. the system. Although we 

have no firm figures, initial estimates are that the-use of kernel processes 

and the associated sharing of buffer l!Ulnager primitives would probably 

eliminate 6000 lines of source. 

Net reduction: 6000 lines 

Use of Front End Processor for I/O 

Approximately 19% of the base Multics kernel is devoted to controlling 

source/sink Input/Output devices, such as teletypewriters, printers, and tape 

drives. On the other hand, the view from outside the kernel is that these 
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various peripheral devices are essentially interchangable. This is evidenced 

by the fact that normal usage of these devices is via an I/O switch, which 

provides essentially three types of operation -- read, write, and 

special-fwiction. If we could move the actual device control to another, 

dedicated-purpose processor, we could eliminate a significant portion of the 

kernel. In order to cOlllmunicate with this SFEP, the Multics kernel would 

retain only one program, a multiplexed I/O handler as described in the 

previous section. 

At first glance it appears that we are only moving the _functionality from 

one security kernel to another in the Front End Processor. 'lllere are, 

however, several advantages to moving the functionality to the SFEP. First, 

the SFEP is a dedicated machine. 'lllere are rto users writing programs to try 

to "crack" the system. Second, the SFEP gets its commands and data via 

"thin-wire communications". Because the user and the SFEP are using different 

address spaces, the commands and data are delivered from the caller to the 

SFEP as complete, integral messages. Because the mesaage delivered to the 

SFEP cannot be changed by the caller, the SFEP does not need to consider the 

problems that occur if a user is allowed to Change the data after it has been 

validated. Third, and most important, there is no need for sharing of data or 

for communication between the individual device drivers. Because of this,· the 

system can be completely compartmentalized. Other than a small kernel devoted 

entirely to message switching and primitive 1/0 operation validation, the 

various device control programs can be entirely separated from one another. 

TI!.us, except for multiplexed devices, the device control programs do not have 

to be certified and are not part of the security kernel(s) of the complete 

system. 
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Although we have not investigated the actual size of the kernel for the 

SFEP, implementations by other researchers have indicated that it should not 

be more than 1000 or 2000 source lines [Lipner, 1974]. The savings in the 

Multics security kernel, on the other hand, would be on the order of 3000 

lines. 

Net reduction: 3000 lines 

Summary of Second Level Reductions 

After performing the above modifications, we have a Multics kernel that 

is only 44,500 lines, some 44% of the size of base kernel. The only major 

change at the user interface is the lack of "append only" access to 

directories. An approximate breakdown of the subsystem sizes is shown below: 

CATEGORY 

Initialization 

Reconfiguration 

Fault Handling 

1/0 Control 

Buffer Management 

Printer 

Tape Control 

TTY Control 

ARPANET 

SFEP Control 

Error Handling 

Process Control 

SIZE 

2100 

1600 

374 

2300 

1000 

0 

0 

0 

0 

1000 

2016 

0 

% CHANGE 

-55% 

+42% 

-72% 

-35% 

New 

-100% 

-100% 

-100% 

-100% 

New 

-100% 



Traffic Control 

IPC 

Process Signals 

Resource Control 

Storage System 

Directory Control 

600 

1563 

0 

2343 

5366 

4700 

Segment Control 1973 

Page Control 4800 

Salvager 2897 

Dynamic Linker 100 

File System 0 

AIM 924 

Error Interpretation O 

Kernel Utility 470 

Shared Utility 1700 

Backup 1600 

Answering Service 1000 

PL/I Support 3400 

Encryption 500 

Miscellaneous 113 

Totals 44439 

(Base System) 101623 

(Reduction) 57184 
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-74% 

-49% 

-100% 

-29% 

-18% 

-94% 

-100% 

-100% . 

-29% 

-80% 

-92% 

-73% 

New 

-41% 

-56% 
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Third Level Reductions 

The final scenario presented here provides the most significant 

simplification of the kernel. Correspondingly, it also requires more drastic 

changes to the structuring of the system and presents a user interface that 

has significantly different side-effects than the base kernel. 

The changes proposed at this level include: 

- removal of Discretionary Access Controls. 

- restructuring of the Salvager. 

- separation of Segment Control and Page Control. 

REMOVAL OF DISCRETIONARY ACCESS CONTROLS 

The underlying security model does not require that discretionary access 

controls be included in the security kernel. In fact, only the 

non-discretionary access controls, the segregation into levels and categories, 

needs to be enforced to ensure that security is not compromised. In Multics, 

the discretionary access controls are the Access Control Lists, which are 

managed by Directory Control. If Directory Control can be moved outside the 

kernel, the kernel will have shrunk by a substantial amount. 

In the base version of Multics, however, Directory Control also manages 

the non-discretionary access controls. The particular access authorization of 

any particular segment or directory is stored in the parent directory. To 

move the discretionary access controls outside the kernel would require 

separating the base Directory Control into two parts: one to manage the 

discretionary access controls and one to manage the non-direcretionary 
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controls. 'Ibis leaves us with only a minimal, kernel directory system which 

manages only the contents of segments and the access authorizations of those 

segments inside the kernel. Everything else that was previously in Directory 

Control has been moved outside the kernel, though probably running in a more 

privileged ring than normal users. 

One method of implementing this minimal kernel directory system calls for 

the use of a linear directory (somtimes called a "flat file system") inside 

the kernel. In fact, this system would appear to be much like the "inode" 

list of the UNIX system [Ritchie and Thompson, 1974). 'nle kernel would 

provide facilities to create, segments, to hand over use of the pages in the 

segment to Page Control, to delete the segments and to upgrade the segments. 

The non-kernel Directory Control would use some of these segments as directory 

catalogs, and store knowledge of other segments in these directory catalogs. 

Rather than containing disk addresses, the directories would contain unique 

ids as generated by the kernel directory system. 

The removal of this particular part of the base kernel, however, would 

have several adverse effects. First of all, the user interface to the 

Directory Control system would change substantially. Th.ere are currently a 

few a spec ts of the AIM system that require that processes running at multiple 

levels be able to read and write in a particular segment. The current use of 

multi-level message segments is an example of this. Either there would have 

to be invented a special mechanism for full-duplex commlUlication between 

processes at multiple levels, or each particular use would have to be special 

cased inside the security kernel. In either case, the user interface to the 

mechanism would be substantially changed. 
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A second adverse effect is that the Directory Control system, including 

normal Multics Access Control Lists, would no longer be certified. Thus, 

although the new, smaller kernel would adhere to the underlying security 

model, there would still be the possibility that one user could obtain 

unauthorized access to another user's data due to a bug in the non-kernel 

Directory Control system. For this to happen, the two users would have to 

share a category, but there are currently fewer than 72 categories. Thus, for 

any system with more than 72 registered users, at least two of those users 

would have to share a category. Any protection features between the two users 

would be by the possibly-uncertified discretionary control system, not by the 

kernel. 

We have not performed any trial implementations of this concept, but 

initial analyses indicate that about 85% of the remaining Directory Control 

could be moved outside of the security kernel. 

Net reduction: 4000 lines 

Restructuring of Salvager 

If the Directory Control system were moved outside the kernel, the 

Directory Salvager would have to be divided into the same two functional 

components. The kernel component would have to be able to reconstruct the 

kernel segment list. It would ignore the contents of the segment even if the 

non-kernel Directory Control was using that particular segment as a directory 

catalog. The other salvager would perform most of the functions that the base 

system salvager -- reconstructing ACLS, validating entry name chains, 

rebuilding hash tables, etc. 
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Because the kernel version of the Salvager would have such a simple job, 

initial indications are that it would require about 15% of the code of the 

present Salvager, resulting in a savings _of about 2400 lines of code. 

Net reduction: 2400 lines 

Summary of Level Three Reductions 

Because of the lack of firm numbers for this last scenario, we will 

simply suggest that this final system results in a security kernel which is 

approximately 38,000 lines, some 37% of the size of the base. kernel. The 

following table is indicative of the sizes of the components: some 37% of the 

size of the base kernel. 

CATEGORY SIZE 

Initialization 2100 

Reconfiguration 1600 

Fault Handling 400 

1/0 Control 2300 

Buffer Management 1000 

SFEP Control 1000 

Error Handling 2000 

Traffic Control 600 

IPC 1400 

Resource Control 2300 

Storage System 5400 

Directory Control 700 

Segment Control 2000 
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Page Control 4800 

Salvager 500 

Dynamic Linker 100 

AIM 900 

Kernel Utility 500 

Shared Utility 1700 

Backup 1600 

Answering Service 1000 

PL/I Support 3400 

Encryption 500 

Miscellaneous 200 

Further Reductions 

Although we have now reduced the kernel by 63% of its base size, there 

are, in fact, a few subsystems that we have not analyzed here. One is the 

Storage System. It would appear that something could be done to allow the 

separation of the detachable disk management code to be divided in much the 

same way that the Answering Service and the Traffic Control sec·tions were. 

Another major area not analyzed here is the separation of segment control 

and page control. 'ftlis is a project that we propose primarily because it 

would improve the modularity of the two subsystems, and thus decrease the 

complexity of the system. Chrrently, Segment Control and Page Control share a 

data base·-- the Active Segment Table. The fact that these two subsystems 

share this database disproportionately increases the difficulty of verifying 

the two systems. Rather than considering two reasonably small subsystems that 

communicate via normal subroutine call interfaces, an auditor of the base 



108 

system (or even of any of the other scenarios above) would have to consider 

the system which consists of the union of the two subsystems. If we assume 

that difficulty of auditing is proportional to the possibl~ connectivity 

within a system, we find that the difficulty increases as about the square of 

the size of the system. Using this assumption, we find that the auditor would 

be faced with a task twice as difficult as necessary. 

We have no indication of the size of the resulting code. It is quite 

possible that the two resulting subsystems would be substantially larger than 

the existing systems. But we tend to doubt that this would happen. Trial 

implementations of other subsystems have shown that although the first rewrite 

is larger than the initial system, a few passes through the algorithms often 

realize substantial improvements, both in the size and the speed of the code. 

Ihe Resource Control Package is another major section that we have not 

considered. Because this subsystem ho.th controls the access of peripherals 

and manages the attachable of those devices to the apten. the. fact that we 

have now moved the actual Tape Control and Pri~e~ Control systems outside the 

kernel would indicate that at least part of this suhayatem could also be moved 

out. 

Finally, almost no analysis was made on the potential size and compl~ity 

reductions that could be accomplished by replacing the present very 

sophisticated resource management algorithms (page removal, working set 

management, multiprogramming scheduling, disk queue management, disk track 

assignment, and supervisor table management) vi.th siJapl~r versions. Any such 

proposed change, for creditability, would. have to be accaapanied by a trial 

implementation and extensive benchmark performanct! testing, so as to 

understand the performance cost of relying on simpler algorithms. 
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Applicability _!£ Standard Multics 

Although the assumed goal in these simplifications has been to reduce the 

size of the Multics kernel, the application of these proposals to the standard 

Multics system would also have benefits. In many cases, the simplifications 

employed in trial implementations exposed bugs and/or security flaws in the 

standard Multics system. This seems to be a general rule: 1be simpler, more 

straight-forward a system is, the better it is understood, and, therefore, the 

less likely it is to have bugs. 

Implementation of Secure Multics 

Since this 38,000 line figure is an upper-bound on the size of the secure 

Multics kernel, we can make some estimates about the amount of manpower 

required to implement it. Computer folklore tells us that programmers can 

write about 200 lines of well-debugged code per month. This means that to 

implement the secure Multics kernel should take about 190 man-months -- about 

8 people working for about 2 years. 

This nUClber does not include the programming of the non-kernel portions 

of the system. It represents the basic cost of implementing a secure version 

of a Multics-like operating system on an arbitrary hardware base. The 

non-kernel portions of such an operating system are likely to be highly 

machine-independent and written in higher level languages. Thus, they should 

be transportable from one system to another. 
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PART IV. CONCLUSIONS AND RECOMMENDATIONS 

This research project has demonstrated conclusively that if the goal is 

to simplify and improve auditability, substantial reduction in the size of the 

security kernel (in comparison with a system not explicitly designed that way) 

can be accomplished without damaging either the performance or function of a 

Multics-class operating system. This demonstration is, we feel, quite 

encouraging to proponents of the security kernel concept and to the goal of 

developing future acceptably secure operating systems. We further believe 

that the last suggested figure of 38,000 lines for a Multics kernel really 

represents an upper boundary on the necessary size. One would expect that if 

a designer sat down with the radically reduced set of functions represented by 

that last round of evaluationary changes, and systematically developed a new 

design from the ground up but to the same specifications, that this new 

design, being less constrained by history, should be simpler, smaller, and 

perhaps even a better performer. Current projects to make a security kernel 

for the UNIX system on the PDP-11 computer suggest that a lower boundary based 

on less ambitious functions is near 4000 lines. Thus, these two projects 

provide an order of magnitude target within which new operating system kernel 

projects should expect to land. 

The primary piece of further work that we would recommend would be to 

carry out that new ground up design, to see how it ends up, and also to carry 

forward into experimental trials both design-to-model verification and 

implementation-to-design verification for systems at this level of complexity. 

Only with these two further steps can general-purpose, secure systems ever be 

expected to become available. 
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