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ABSTRACT 

Actor theory was invented by Hewitt and collaborators as a synthesis of many of the ideas 
from the high-level languages LISP, GEDANKEN, SMALLTALK, SIMULA-67, and 
others. Actor theory consists of a group- of actin.~j«ts called Actors, which communicate 
by passing messages to one another. 

This rhesis exprores several problems associated with implementing Actor theory as a basis 
for computer systems design. First. we give a firmer foundation to the theory by setting 
forth axioms which must be satisfied by any physically realizable message-passing system. 
We then give an operational semantics for this theory by exhibiting an interpreter which is 
a concrete model for the theory. Thirdly, we explore the implementation questions of 
mapping this conceptual system onto current hardware in such a way that simple primitive 
operations all take a (small) bounded amount of time. In particular, the issues of storage 
and processor management are investigated and a real-time inuemental garbage collection 
systftn for both is exhibited and analyzed. 
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1. Background 

1.1 Introduction 

Hardware is cheap. Software is dear. These are th.e diches of the computer industry 

in the 1970's. The proposals in this thesis will hopefully trade off slightly higher costs in 

hardware for greatly increaSed productivity in s0ftware. Systems savings should be 

significant for several reasons. &etter software productivity ·means less time in development 

and more in the marketplace. Since this increase in ptOductivity results in part from a more 

direct mapping of ideas into programs, costs of debugging and maint'!'ance should be less. 

Because the underlying computational model (Actors) is c~ 'to the conceptual objects 

(abstract data types) of the program, fewer approximations and compromises have to be 

. made, resulting in more robust programs. Greater software' productivity means that 

software costs are Jess, allowing for more specialized programs since decreased software costs 

can be spread over fewer installations. In many ca5es, any incr~ co~ts· in the hardware 

will be offset by the increased efficiency in the software-efficiency ga'ined by exploiting 

global instead of peephole optimizations. 

Ample evidence exists for the efficacy of this kind of tradeoff. The ubiquity of the 

optrational amplifier instead of the simpler (to make), cheaper, and •more efficient• 

transistor is a result of this ·mind-over-matter• tradeotr ... Even though no simple, elegant 

operational amplifier gate exists, it is a tribute to the mathematical elegance of this device 

and its ease of use in design that integrated circuits having large numbers of circuit 

elements are being made to simulate operational amplifiers. The existen'ce of the •op amp• 

allows this single concept to replace a wide variety of real devices; a conceptual economy 

tha.t simplifies synthesis procedures, analyses, and inventories. Thus, the ·op amp• is a 

paradigm for what can be achieved when total system design costs are fuAy accounted for. 

Of course, now that op amps are the accepted standard, their manufacturers will 

diligently search for ne~ gates and devices to implement this mathematical model more 

cheaply. Perhaps as a result of this research a single element op amp will appear which is 
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simpler and cheaper than a transistor. Tech~logy would then catch up with theory. 

This thesis argues that current Von Neumann computer architecture is as ill-suited to 

computer systems design as the transistor is to 'electronic circuit destgn; it ls reliable and 

cheap, but a poor match to the problem domain. The system· designer would like to think 

about high level objects like queues, datH>ases, 1/0 streams, program modules· and 

operations on those objects like "insert•, •print•, •delete•. Current day computers offer only 

bits, character strings, and numberS; and the size of fhe objects that can be conveniently 

operated on is restricted by the fact that these object5 must be examined or moved as a Unit, 

in their entirety. Thus, one can never ·get off the ground•, so to speak, because the 

computer is destined to work only with those trivial entities. 

Actor theor1 was invented by Carl Hewitt and collaborators (19,85,43,44,51,50,52] in 

response to these problems as a synthesis of many otlter ideas about abstract dat• types and 

control structures [27,15,26,391. In this theory, actors and messages are the only two types of 

objects. Actor systems eKhibit behavior through actDrs sending messages to other actors, 

which in turn send more messages. Actors can be created in the course of a computation, 

and their names can be communicated in ,messages wirhout sending the actors themselves in 

the messages. Hence, elements of b:igh~level data types can be modelled quite effectively as 

actors which receive messages indicating t-he high level operations that they should 

perform--perhaps on themselves. The actor model' also allows· for concurrent processing 

because many actors can be receiv,ing and sending messages independently of one another. 

Thus, in addition to the actor theory being univenal. which by itself is no great prize, it 

matches very well (some oO our intuitions about how physical, tomputationa1. and 

conceptual systems work. Thus, we propose to make the actor the ·op amp· of computation. 

1.2 Distributed Computing 

In re~ent years, there has been a shift from the centralized serial computing system to 

the distributed paraltet cm.iputing network. The large, general-purpose computer of the 

IBM System/360 style is being replaced by numerous more dedicated mini and 
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microcomputers connected together by phone lines, satellite links. Ethernets, and the like. 

There are many driving forces behiruUhis shjft. Since- information is often produced 

at a different geographic location from where it is consumed. it must be transmitted. With 

the costs of both digital communication and the smallest viable computer dropping, it is 

becoming easier and more economical to digitize and edit the data at its source, so that only 

the editted data need be transmitted. Response time for editting these trivial requests can 

drop dramatically when there is a computer on-.site. System reliability may also be 

improved, because the loss of a particular node or link in the netWork need not completely 

shut down the system~ i.e. it becomes fail-soft 

But centralized computing facilities are also undergoing change. The costs of CPU's 

have continued to drop until they are only a small· sliver of .the cemputer budget. The cost 

per bit o.f memory has also dropped at the same tattt, but instead of systems hoW costing less, 

the size of memories has grown to keep the overall system cost constant: The 16.f,000 

question is "How to take better ad¥antage of all thil memory to increase throughput?" 

Faster CPU's are not the answer since they require ~. expensive high-bandwidth 

memories, and memory cost is already the largest smgte cost il'J the system. Neither are more 

CPUs the answer, because in the current "shared memory" paradigm they must still be 

connected to the same memory, and the memory bus b«omes the bottleneck. 

The answer that is becoming increuingtyclear K·to nsoiciate some computing power 

dosely with each chunk of memory and replace the "shared-memory" paradigm with the· 

"sQCiety of computers" paradigm. The hope is that the .computation' .of each CPU will be 

local enough to reduce the communication bandwidth required between memory chunks by 

at least an order of magnitude. This .arrangemem allows for bettfr utilliation of t'M scaf'ce 

resource--memory--than any of the other alternatives. 

The cost of the smallest viable computer going down, ancf its cost is going down faster 

than its computing power. Jn other words, computing power has gotten cheaper in absolute 

terms. However, the optimum MIPS/I does not come at the fast end of the scale, with 

sub-nanosecond gates, but in the. relatively slow_ range achieved by rnicrop~rs on a 

single chip. Therefore, massive parallelism may allow performance from these chips equal 
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to the performance of large serial computers· such as the,Cray!"l. Mechanisms and method.t 

must be found which· use this additional (Of1lputing po• to pr~; the answer to a given 

computing request faster. 

This thesis investigates several problems wbKh 6cf~S _with large numbers of 

independent computing elements must face. First, there are currently no good conceptual 

models for thinking about, these systems. Many. peepie &{I! working ;on this problem and 

offer models with widely varying degrees of generality and efficiency.; it is not yet clear 

·where the tradeoff lies between these two conflicting goals. Second, while we would like to 

make programs run faster on cheaper hardware, it has b«eme. clear -that for a vast number 

of situations, the cost of programming--especially testing and verification--is the limiting 

factor. Therefore, we would like to move to a lllel$age-~g pa,adigm, but not give up 

the hard-won gains in programmer productivity from advances in the serial computing art. 

We attack the problem of the lack of good ~ptual models through advances in the 

theory of Actors. We put this theory on a firpler ~OQ ~hrcNgh axioms which specify 

the behaviors of actor computations. We also present a. tOflstructive .model for these axioms 

which can. be used as a gedanken interpreter. for actor cempq&atiom. We argue that 

event-based correctness proof.s often avoid the exponential blowup Qf the classical "consider 

all shuffles" approach. 

We attack the probfem of programmer productivity on this new hardware 

configuration on several fronts. It has becQfl'Mt clear that ~ way of increasing a 

programmer's productivity is to give her the tool,5 to think about her problem in a high 

level way. In other words, instead of prog.rammitlg iA terms of·bits, byte1, and.blocks, the 

programmer should manipulate pictures, accounts, warehouse inventories, et<. as "first-class" 

data types, and leave it to the compiler and/or ift&er:preter to make it all work efficient1y. 

Actor theory provides a clear conceptual model for these types of programmer-defined 

data types since it unifies the concepts of fwopua. and-Gala~ An account actor, besides 

containing the data .necessary to describe the accaunt, also has a program called a script 

which allows the account to respond to high level requests such as: "what is your 60 day 

balance?" or "credit account with payment of l20;96'!. Oaee these high level dat_a types have 
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been defined, most p1"ograms wither away to a few Hnes'ef code which send messages off to 

these now-active data obj«ts to perform the real Werk. 

However, the trouble with systems which provide user-defined data types has been 

that either the programmer has to know far more aboUt the details or the implementation 

than is healthy. or she has to put up with gross inefficiency and perhaps intolerable 

run-ttme delays resulting from the auh>matic management oftM!eobjects. 

This thesis helps solve one of the biggest problems in systems which ta1te 

respornibihty for these user-defined data' types"""'tM 'lfttlru1gnwnt of stortigt. This is 

significant because as we have argued it is not CPU time; but access to storage which is the 

limiting factor in computer performance. Since currently programmers are forced to 

explicitly manage this scarce resouree Without much ·help· from eillier hardware or software, 

violations of storage management policies are hard to detec.t and cause havoc when they 

occur [16]. We claim that a system which uniformly and efficiently managed storage would 

increase programmer productivity manifOfd, especially in the prorram debugglftg Stage, and 

would even tend to do a better job at it than the programmer could. 

There are two rt"asom for this. First, even though for any· /xJTUcular task the 

programmer can probably do a better job of smrage management-than the sy5tem, the many 

small domains of explicit storage management which result can lead to an overall reduction 

in total system efficiency, becaustfnorage can not be easily reaftocated when some domain 

becomes full. For example, a slack overftows whelt there is stiH plenty of room 1eft in the 

hash table. This is the dassica·I fragmentatiolt problem-"'sterage, s~ eYeryWhere, but 

not a byte· to munch!" A uniform, glebal strategy would allow the system to allocate storage 

only where and when it is needed. 

The other reason why a uniform s,aem can do a beLter jOb of storage management is 

that while programmers can do a better job, !My usually don'I, tN!cause they are pressed· for 

production, and U is not worth their valuable tit:ne·tcuiptmuze llOrap utilization.I 

By freeing the programmer from worrying at>euc the' management of storage 

(allocation and freeing), it leaves her mol'e' time.to worry about..,,_. tmportanr quesrtons, 

such as the con:ectness of the program or :the .Chedvling of vartous pans ef"the program to 
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achieve better response time. Time scheduling [24] is apparently a much harder problem 

than storage management, or else it is not so well understood; hence it is more important for 

the programmer to worry about the management of time than the management of storage. 

(After all, human beings have many automatic systems to manage their fluids, their 

energy resources, their ion balances, etc., but time scheduling for humans is still a very high 

level function. In this analogy, automatic storage management functions less like the brain 

than the kidney, which continually reprocesses the bodily fluids to maintain the right 

environment for the more important functions.) 

1.3 Actors in Hardware 

A revolution is currently taking place in the computer industry. For the first time, 

more CPU cycles are available than we know what to do with. This is due to the 

availability of microprocessors on a single chip that can be turned out almost as fast and 

cheap as copies from a Xerox machine. Some of these single-chip computers come complete 

with on-board ROM (for program storage), RAM (for data storage), and 1/0 capability, 

requiring only a power supply and some 110 devices for operation. 

Yet most computation remains expensive, far more expensive than these cheap 

micro-computers would lead us to believe. This is because system design and programming 

costs have remained high, or even increased, with the availability of these cheap computers. 

There are many reasons for this. First, many of the lessons learned at great cost on 

mainframe computers are being re-learned at the micro-level; e.g. high-level languages can 

cut the cost of programming and maintaining large systems, yet micro-computer system 

developers continue to use "assembly" languages, many without even crude macro facilities. 

I. One will notice that exactly the same reasons hold for using a dynamic uniform paging 
algorithm instead of manual overlays to manage programs that do not fit into primary 
memory. The paging system cannot perform as well on any particular stretch of code, but it 
is uniformly good on almost all of the code because it has access to dynamic run-time 
information. Therefore in most situations, the paging system does much better than manual 
overlays. 
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Second, program development requires a quite different environment than the running 

environment of the finished product; it requires editdrs, debuggers, sophisticated file 

systems, compilers for documentation, etc. Again, micro"a>mputer development limps along 

using micro-computers themselves for editing, eompilmg, etc., tasks which may be 

inappropriate for these devices. 

Third, old habits die hard. Faced with the prospect of cheap memory and cheap 

CPU cycles, programmers continue to apply techniques to conserve memory and multiplex 

CPU's which are inappropriate for the current hatcfware/software cost ratios. Time, not 

storage or CPU cycles, has always been of the essence, both in deve\opment and in product 

performance, but systems are continually evaluated in terms of their hardware cost only, not 

the software and opportunity costs whjch dominate. 

Fourth, systems designers have missed seeiQg the. forest for the trees. The real 

bottlenecks in computing are in communicating information between modules and not in the 

internal operation of any of the individual modules. Mast CPU's spend a considerable 

fr~tion of their tjme waiting for 1/0 devices .such as disks or in sertaUy searching some 

small region in fast memory while the refi of the fast. and very expensive. memory sits idJe. 

Yet the answer is not· in simply adding more CPU~s. became the bottleneck is still in the 

cQmmurn<:ation link bet~een t~ CPU aAd -memory, RGt in the CPU. 

What is needed is some way of de1igning a sy.stem· with a larger tatio of CPU cost _to 

memory cost so that a larger percentage qHhe memory is being, utilized most of the time. 

The answer given by this thesis is not to,design systems using· CPU's and RAM's as 

separated components, with ca.<hes, sophisticated .instruction sets,-and clever algorithms to 

get back some efficiency, but to design systems with large nulllbers of very s~mple actors, 

each of which combines both a CPU and a smaU amount of RAM. These actors 

communicate not by interrogating a shared memory but by sending. messages to one 

another. The best mec.hanism to tnnsmit and deliver these messages has yet to be 

developed, but a full "telephone exchange" nerwrk iike a Batcher sorting net [10] looks 

promising. 
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The speed and power of actor systems depends nbt upon the speed and power of the 

individual actors, which might be very dumb and slow; but on the 'massive parallelism of 

thousands and millions of these devices working in concert. The clever algorithms which 

have been developed for searching on serial computers to minimize the bandwidth required 

between the CPU and RAM are not needed in an actor system where hundreds of CPU's 

can be searching their focal memories simultaneously. Even if each CPU is slow, and uses a 

naive search method, the search cannot take very long because each local memory is small. 

We conceive of chips in the near future on which the large majority of the area is 

taken up by memory, and a CPU squeezed in around the margins. A few more years will 

see large arrays of CPUs aH on a single chip, giving the power of tlte ILLIAC-IV [9) but 

with a good deal more nexibility. 

The key to the .current micro-computer revolution was the realization that one did not 

need a II the complexity of the big computer in$truction ~t$ to, build a Turing universal· 
... ,, ' ~ ... - . 

device that was still fast enough for many simple applications. Making the CPU simple 

allowed it to fit on a single chip. 

Making the CPU even simpler is the key .to the next revolution. Rather than trying 

to get a lot of power from one sophisticated CPU wor~ing :alone. we plan to get that power 

by the joint effort of many simple devices working tog~tu:r. Each CPU should be 

universal,2 but it must also be as simple as possible so that many wiH fit on a chip. The 

CPU does not need a clever instruction set, because it dGe$ not have to be speed or storage 

optimized; e.g. ten to twenty instructions are sufficieflt to perferm the simple tasks that are 

required. 

The content-addressable memory fad of the 1960's had the right idea--increase the 

memory bandwidth--but its advocates were slightly misguided. They hoped that by adding. 

a little logic--a comparator, flag bits, etc. to a memory cell. the proper tradeoff would be 

2. Each element of an array of parallel processes need not be universal for the array to be 
universal, viz. Conway's LIFE game (38] « Hennitt's iteratiff ·arrays [47). However, 
universality can be achieved with only.~ few tens of gates Dl an<J is ttierefore relatively 
cheap. · 
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achieved. However, the protocols in a content addressable memory are too simple.to make 

efficient use of the communication bandW#Jth.-_of.the acc;essing:~hanism. For only a "few. 

more" gates, one can add a complete .mi.aoprQCeSSOf to each memory cell and have a 

universal capability there. In this way. the messages .. can be m&Kh hjgher level than the 

simple "match and respond" messages of the aM¥ent-addressaJ?Je,memories. 

There has been considerable interest in how to. apply these large numbers of 

processors to the solution of a single task (331 Since the efficient utilization of a horde of 

processors will require a _lot of communication. sortif)g networks have been d~viseEl fl0.87] 

which allow every processor in an N-processor SJ$lesn to both send and receive a message 

on every clock pulse. However, it is still not clear how to effectively utili~ ·all of these 

processors. Later in this thesis, we will make one suggettjQll· ("call-by-future" or "e"Jer 

evaluation") for kee.ping all of these CPU's busy. 

1.4 Problems with Shared .Memory 

The hallmark of the Von Neumann computer model is its homogeneous array of 

read-write memory cells, addressed by a set Of dmtiguous non-negative integers. This 

memory has been abstracted Ollt from the compttter-proper as a-single separate RAM 

(random access memory) chip m many current tfiicrOcomputers. The RAM chip has a set of 

address lines, a- set of data fines, and a readfwrite 1~." If the diip is presented with a 

non-negative integer on its address lines and a "read" signal, the Contents of the memory cell 

addressed by that integer af>Pears on the data Unes after a short delay. If the chip is 

presented with an address and a "write" signal, the data presented to the chip on the data 

lines is written into the memory cell speeified by the address. 

A key property of this RAM design is that ont; lnlt address can be presented to the 

chip at one ttme, and that address· refers to only a-·stngle memory Celt. This means that if 
. 

one memory location is being addressed,· the ochers must .~emaill idle. This might not be so 

bad if only a few memory ~Us residtd en a c:bip/'H~r.·the trend ts to put more and 

more memory on the same chip. A result of this trend is that the fraction of the memory 
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that is active at any one time is becoming smaller and smaller. This means that in a given 

number of cycles, less and less of the memory stored in the device can be brought to bear on 

the problem at hand. 

One can counter this argument by saying that the speed of the memory chips has also 

been increasing, and therefore that this will counteract the previous trend. However, the 

speed is increasing at a slower rate than the capacity.3 If we consider the minimum time to 

examine every location as a figure of merit for a memory module (using parallel access, if 

the memory allows it), then this figure is increasing with time. 

The effect of this trend is to make memory less accessible than previously. Of course, it 

has been argued that few systems take advantage of anything like the bandwidth allowed 

by the smaller chips, since usually only one of the memory chips is enabled at a time. 

However, this fact is not something to be proud of. 

One can also argue that if the same information must by accessed from many places at 

the same time, it should be copied into separate chips or separate computer systems to avoid 

the accessing bottleneck. However, multiple copies of memory require multiple amounts of 

hardware to store. True, the actual cost of the storage itself is very small compared to the 

accessing network (this is true for the entire spectrum of memory devices from tape drives to 

memory chips), and therefore copying the whole memory may be no more expensive than 

copying only the accessing mechanism. Regardless of these costs though, multiple copies of 

information create great difficulties in keeping those copies consistent, and the 

communication bandwidth required for this purpose may cost more than keeping only a 

single, but very accessible, copy. 

M ultiport memories have been developed which achieve some degree of simultaneous 

access to more than one memory location in a memory at one time; e.g. there exist small 

register chips with two completely independent access channels as well as large interleaved 

memory banks with arbiters, each of which multiplexes access from multiple sources to a 

3. The speed of a memory chip is roughly inversely proportional to its linear dimension, 
while its capacity is roughly proportional to its area. 
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single memory bank. Computer systems using muktport memories and dual processors can 

achieve a better processor to :memory match and m0re throughput per dollar than a single 

processor operating on a non-shared memory because the two slow proceS5ors are cheaper 

.than the single fast processor. However. the suecess of cache memories closely tied to CPU's 

indicates that considerably more can be done in matching CPU performance to memories. 

This is because accesses from a CPU to a memory are not random and independent, but 

show a considerable serial correlation. In other wonts, many of the accesses tn a given time 

period tend to be close to one another. By remembering-· ih a'' fast eache chunks of 

·information which are repeatedly accessed, the communication to· the matn memory is 

reduced. This means that for a given memory bandwidth, ·more CPU's (with caches) can 

have access to the same memory. 

The problem of multiple copies of information raises its ugly head agam, though. If 

multiple CPU's each have a copy .Of the same information; which.is the current one? The 

answer we propose is to have many CPU's'wlth caches, and to have· only one copy of each 

unit of information and no shared memory at all! Thus, if··one processor· ts cacheing a 

"memory ceit", and another wants to access "it, it must either aslt the fint processor to 

intercede for it, or the first processor must, give it up to the 'second. The first type of 

interaction is reminiscent of the simpte aocess· of a-·CPtf to a ltM!AiOry, white the .second is 

reminiscent of the tran_sferring into fast store a page of memory cells from· a backing store in 

a virtual memory system. The first type of interaction allows a CPU access to any memory 

in the system, while the second allows the location of intormatlon in the system to be 

optimized, depending upon who accesses it the most. 

Thus, the complex address decoding logic of' a serial computer whiCh steer pulses from 

one CPU to one of many memory locations and back can beteptaced by a more·symmetric 

arrangement whereby many CPU's send messages among themselves concurrently. 
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1.5 Real-Time Systems Design 

Consider the problem of the designer of a real-time system, a computer system with 

numerous stimuli which must be responded to wit~in strict time bounds. There are many 

such systems in existence today, and their number is growing daily. Some examples of 

real-time systems are .an airplane's autopilot, which responds to changes in the plane's 

course, altitude, or speed; the ignition and fuel injection controllers in. some automobiles 

which respond to changes in throttle position and load; and the distributed. computer 

message switching centers, which must process and re-direct thousands of messages per 

second. 

If computers and all their 1/0 devices were matched in speed so that a computer could 

hand le exactly one task at a time and finis/a it before starting on the next·-all the while 

meeting the response times required of it--then there would be no problem in allocating 

eithet' time or space on the system. The currently running task would have the whole 

machine--all the processor cycles and all the memory locations~.-until it finished. 

In a few fortunate cases, such a system design works well. However, in most cases, this 

kind of a system leads either to unacceptably long response delays, or unacceptably low 

utilization of the hardware (i.e. it is too expe~sive!). Thus, more efficient use of the system 

resources can be gained through multiplexing processor cycles and sharing memory among 

the different tasks. The execution of several tasks can ~hen be over,~pped with one another. 

When many tasks must share the same memory, some management scheme must be 

instituted in order that this sharing be done harmoniously, and with the least amount of 

hogging. What mechanisms can be used to manage the sharing of memory? If all the 

different tasks must share the same address space, the simplest method isflxtd allocation. In 

this scheme, every task is allocated its storage at system design time, and the task may never 

use more, regardless of the distribution of stimuli the system is subjected to. This scheme is 

subject to storage fragmentation because a task always has enough storage for its worst case, 
"i. • ' 

whether or not all tasks can achieve their worst cases simultaneously. 
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A second storage management policy is that of the flOOI, where allocation is dynamic, 

but its responsibility rests with a central facility and all tasks request storage from it in a 

uniform way. However, even this policy leads to storage fragmentation. If the pool allows 

for blocks of any size, it may reach a situation in which a block is needed and there is 

enough free storage in total to satisfy the request, but that free storage is not available in 

one contiguous block. Hence, the demand cannot be met. On the other hand, if the pool 

allows only for blocks of certain sizes, then much storage is lost through rounding requests 

up to the next block size. 

Therefore, for a system to make maximum use of its available storage, it must be able 

to re-organize the storage. i.e. it must rearrange blocks of data in memory so that free space 

can be made contiguous and hence more available for allocation. 

In the simple system which had only one task executing at any one time without 

pre-emption, each task allocated storage as it saw fit. For example, if the task algorithm 

were programmed in one of today's higher level languages, it would use a staclr. for local 

variables and subroutine return linkages, which would grow from one end of the linear 

array of storage cells. 

If the system were extended to use a well-ordered set of interrupt priorities, then it 

could allow the simultaneous execution of many tasks, all sharing the same stack, so long as 

the highest priority task finished before the next higher priority one resumed. However, 

this policy places great restrictions on the freedom of the higher priority tasks to allocate 

storage, since any object they allocate will be de-allocated before they finish. This means 

that if they want to return some information--e.g. a buffer of characters read in from some 

externa 1 source--to some lower priority task, it is the lower priority task that must allocate 

the space for the buffer. Hence storage is again fragmented, since the lower priority task 

must make a worst case guess as to the size of the buffer needed. 

However, a static priority scheduling policy for tasks with hard response time 

constraints is known not to be optimal in the utilization of processor cycles [631 A "tightest 

constraint first" policy can in many cases be very close to optimal [631 but this policy is not 

a static priority scheme and would upset the delicate coordination of the LIFO storage 
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allocation with static priority scheduling. 

For these and other reasons, such as the desire for coroutines and other control 

structures more powerful than simple ,SUbroutining, one is forced to abandon the single 

stack method of storage allocation as too restrictive and hard to program. But storage 

management with more than one stack is a problem. With two stacks, one stack can grow 

from the bottom while the other grows from the top, but how does one manage three or 

more stacks? 

Some systems get around the problem of the one-dimensional nature of the random 

access memory through memor' mapping. This scheme allows every task the illusion that it 

has the whole memory to itself whereas in reality it has only a whole address spa.ct to ·itself. 

This illusion is implemented by means of a memory map, which is a partial mapping from 

the address space of each task into the real memory of the compt1ter system. This mapping 

from an address space to the real memory is not done on a word-by-word basis, because the 

cost of such a map would exceed that of the complete real memory for the whole address 

space4. Therefore, the mapping is done in larger blocks called pa.gts. However, again 

storage becomes fragmented because whole pages of real memory must be allocated even 

when only a few words of virtual memory on that page are being used. 

The use of a memory map greatly reduces the. amount of memory shuffling in 

multitask systems since information can be contiguous in virtual memo~y even when it is not 

contiguous in real memory. However, to reduce such shuffling to a minimum, every task 

should have its own map. But maps are expensive--both in terms of their hardware cost 

and in terms of the storage fragmentation they produce. 

It is for these reasons that list memor15 is so valuable--not only every task, but tVtT'J 

4. Such a map could be implemented far more effectively as a content addressable memory, 
but cheap content addressable memories have yet to appear. 
5. We mean by "list memorf a memory whose tell adjacency relationships are indicated 

explicitly with pointers, instead of implicitly through contiguity in the address space. We 
include small objects having more than two pointers under tlte definition of list memory. 
even though the paradigm of list memories, USP, has only. two potnters per object. 
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list is essentially a little map to the elements in the list, and the position of those elements 

can be intertwined with elements from other lists or shared with other lists, or even moved, 

so long as the "map" is updated. Since the list elements are of the same order of magnitude 

as a word, there is very little storage fragmentation due to •rounding up". 

1.6 Why Actors for Real-Time Systems Design? 

We have already argued that the standard random access memory is far from 

optimum as a memory model for a reaHime system. We will argue here that the standard 

prouss model for a task is also inadequate, hence the inadequacy of current hardware 

scheduling aids such as interrupts. 

Most state-of-the-art real-time systems are interrupt driven, with interrupt signals on a 

vectored interrupt bus causing a context-switch (attention shift) in the CPU. Internally in 

the software, however, they use a subroutine mechanism to communicate among internal 

modules which uses a stack as a medium for information exchange and state-saving. On 

the other hand, actor theory is a theory of message-passing among many modules, and does. 

not distinguish between externally and internally generated messages. It therefore unifies 

the concepts of interrupt-handling and subroutining. In this theory, an external signal and 

its corresponding data are packaged together into a mtssagt, which is then presented to an 

actor for processing. Whether the message is processed ims:neciiate1y or not depends on the 

scheduling algorithm, and messages generated externally are treated the same as those 

generated internally by that algorithm. A control stack is not need~ because each "return 

address" is represented explicitly in the naming environment as a contlnuatlon. A 

parameter stack is also superfluous because messages are explicitly constructed from heap 

storage. The only system structure needed explicitly is the f>ntdtng tvtnt structurt, which 

the event scheduling algorithm uses to keep track of messages in-transit 

Most existing real-time systems use a hardware static priority scheme to filter out high 

priority from low priority requests for service. This scheme meshes well with the use of a 

stack for saving the state of interrupted processes. because the priority levels are in a 
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one-to-one relationship with the levels of saved state on the stack.. However, as we have 

pointed out, this scheme requires that long-term memory for the higher priority tasks be 

provided for in advance, and this is both wasteful and awkward. It is wasteful because 

storage must be provided to satisfy the largest request and not the actual request. It is 

awkward, because the higher priority tasks be programmed in a manner (and perhaps even 

a language) different from that of the lower priority tasks. There will be little continuity 

between interrupts to a task because no state for the higher. priority tasks may be stored on 

the stack. Hence, constructs such as "for" loops cannot be used in the programming of these 

higher level tasks because they store some temporary' r~lts on the stack. 

A better system would allow every task to be programmed relatively independently of 

the others, but in the same language. For examplei one sbeuJd not have to know the 

relative priority of a task at the time it is programmed but one should be allowed to use 

every construct of the programming language. A system which uses a completety separate 

address space for each task has most of these properties, but ,the separate address spaces 

make it ha rd for the tasks to communicate with one another. In many such systems. tasks 

communicate by means of m11sag11 which are sent and received in much the same way that 

information is communicated between spatially. sepa.rate<l .noc:ies in a distributed system. 

However, transmitting messages between different tasks in the same computer system boils 

down to a glorified way of .copying the contents of one area of memory to another. and if a 

large amount of information must be transmitted, the time to send such a message is 

proportiona I to the length of the message, including aU of its components. 

It can be argued that aU that copying is not nec:euary, if one only updates the memory 

map for the receiving process to reflect the fact that a certain .part of memory now contains 

the message instead of what it. used to contain. There are problems with this scheme 

because mapping is not performed on a per-word ba~ii; and this requires that both the 

sending and the receiving buffers begin on a page. boundary and occupy an integral 

number of pages. Thus, the average message sue wilUnteract with the choiee of page size. 

• The result of working out aU of these details is most inelegant. 
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Worse is the fact that the message buffer is now shared between two maps, and if the 

sender now tries to construct a new message in its message buffer, tt wilt destroy the message 

being processed by the receiver! So mapping the memory did not achieve what we wanted 

at all, namely passing a message, but instead achieved the non-goat of passing a buffer of 

memory cells. 

Since we would like to construct and pass messages and not message buffers, we must 

use a different buffer to construct the messages than the one the receiver is processing, and 

this requires a great deal of protocol to agree on Which buffers are being used and a great 

dea 1 of synchronization to change buffers. Furthermore, if variable--length messages are 

being sent and the receiver does not process them in a simple FIFO or LIFO order, the 

problem of managing the message buffers becomes as big a headache as any in the whole 

system. The final blow to this scheme is the fact that buffers nor used by one pair of tasks 

in their communication may not be re-used for another communkation link. 

Therefore, if messages are to be sent and received with a mtnimum of copying and a 

maximum of sharing, message buffers must be allocated from a central pool of storage 

shared by all tasks. (This pool must be shared by oil tasks because a rask may forward a 

message or point to it as a subpart of another message.) However, once message. sharing 

has gotten this complicated, the responsibUity for redaiming and re-ustng otd message 

·buffers must be taken away from the indiVidual tasks, and gtYfn· to the central authority, 

since the individual tasks are not in the best position to know when a buffer is no longer 

needed. Thus, through a series of logical steps we are now back In the realm of list 

processing for the management of messages between dif'{eRnt tasks in a real-time system. 

By proposing a real-time system based on separate tasks sharing a list memory and 

communicating by passing messages which are stored in the· list memory, we solve quite a 

few of the problems of real-time s-ystem design. However, a large problem which results 

from multiplexing many tasks on a single computer remains. This is the problein of fast 

context-switching. Modem "mainframe" computers tend to have a large number of registers 

in the CPU which must be saved on an interrupc and ~ored upon resumplion of that 

task. In addition, many CPU's have a cad~ memory which is effectively sa·ved and restored 
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on every interrupt and resume, but perhaps not so obviously. These fast registers and 

caches speed up the CPU in the execution of one task, but incr~ase the time required to 

switch tasks. Real-time systems, which must be able 'to respond quickly to external stimuli, 

cannot afford to spend a long time saving and restoring the states of tasks, and must 

therefore minimize the amount of state informaUon needed to represent that task. 

Again, computer designers have responded to this problem by implementing multipl1 

register sets in the CPU, one per process·-in eff«t implementing a map from task number 

to register set.· In fact, the Texas Instruments 9900- single chip microprocessor takes this 

scheme to its logical conclusion by keeping an its "registers" in main memory, and switching 

tasks by changing the CPU register which points to the block of storagt! atlOcated ·for the 

"registers" of the current task! In this CPU, task switching invotv·es the saving and 

restoring of only 3 words--the program counter, the task status word, and life· register block 

pointer. 

This register mapping scheme certainty solves the problem of long context switching 

time; a processor using it can switch contexts in only a few memory cycles. However, the 

whole concept of a task as a process has become more virtual. Memory has been abstracted 

into an address space and a register has become jUst aftother memory cell with a shorter 

name. One wonders where this process witl eventually end, and whether it might be 

simpler and cleaner to use another conceptual model for programming these systems. 

1.7 Continuation'!"Passing Style 

We have been arguing that the standard static-priority, stack-recursive control 

structures of present day real-time systems are inadequate to deal with truly complex 

situations involving dynamic priorities and co-routines. The systems that try to handle such 

situations do so badly because they must allocate multiple stacks with all the problems that 

they cause. 
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A heading for all of these issues might be called focus-oj-atttntlon or the 111anag1m1nt 

of attention because this is what a reaHime system must do to respond to its stimuli. Over 

the past 15 years, researchers in the field of Artificial Intelligence have concerned themselves 

very much with this issue because for most of the problems in this field, the total amount of 

computation can be drastically reduced if the attention of the computer is focussed. Since 

much of this type of computation involves starclaing, the mean search time over many 

computations can be reduced if the search is performed by looking in the most likely places 

fir:st, then the next most likely, and se on.· 

However, the orders of search which are easiest to program-e.g. dtf1tlajirst searcla--do 

not usually correspond to the most likely first ordering. Hence the computer must make 

many shifts of context as drastically different alternatives are examined, one after another. 

As a result of these needs, A.I. researchers have come to the condusion that simple recursive, 

single-stack control structures are not adequate for their requirements. They have found a 

need for co-routines, generators. and backtracking in order ro ~Qs the attention of the 

computer program upon the currently most premi,sing line to attack its most pressing 

problem. 

Landin [GO], Reynolds [73], Hewitt [501 Steele (8J,82,8tl and others [35,86} have shown 

that all of these control structul'.'es c:an be modelled very elegantly in a form of ,programming 

called "continuation-passing". Jn the continuation-passing style of programming, the cQntrol 

stack of subroutine return points is not left implicit in the nested structure of the program, 

but is made explicit by providing an additional parameter" in each subroutine argument 

tuple called the continuation. When a procedure A is called from a procedure B with an 

argument list including C as a co~tinuation argument, procedure A computes its vaiue 

using the normal arguments passed to it, but instead of "returning" to A, it calls C with the 

computed value as an argument. But since the body of C encodes all the computations 

which A would have done on the value returned by B, it is the continuation of A after the 

"return" from B. If one carries this form of programming to the limit, i.e. by everywhere 

calling a continuation argument instead of returning, then the .return points are only pushed 

onto the stack and never popped. Thus, although the control stack grows to a depth which 
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is proportiona I to the length of the computation, it can be eliminated entirely since it is 

never referenced again. 

The control stack is not needed when programming in the continuation-passing style, 

because it duplicates information already stored in the variable binding environment 

[50,81,82). However, this variable binding environment should be a tree-shaped structure to 

avoid the "FUNARG" problems which would otherwise result. The tree-shaped 

environments required for the continuation-passing style of pr~raniming can be easily 

implemented in list storage. Since there is no control stack, a11 storage required by the 

program can be satisfied by one mechanism--a garbage-c;ollected heap; i.e. one uniform 

mechanism provides for both the implicit stora~e required for binding as well as the explicit 

storage requested by the programmer. 

Although a little efficiency is given up by replacing the stack push operation by a 

continuation creation operation plus a variable binding operation, one immediately gains 

the flexibility of non-recursive control structures such as co-routines, generators, anc;l 

backtracking. Furthermore, if one writes continuations in such a way that they accept 

multiple arguments, then one also gets the effect of returning multiple values from a 

subroutine essentially for free. In this style, a divide subroutine can return both the 

quotient and remainder from the division process without the usual kludgery involved in 

handling multiple values. 

Continuation-passing style makes the programming of real-time control systems easier, 

since the logical event causalities of the various tasks are explicit in the text of the program 

instead of being buried in some scheduler. When a routine is finished performing some 

computation, it has the flexibility to go directly on to the next computation, whether or not 

that computation is to be done by the routine which called it. Since the state of the con.trol 

structure is explicitly represented in the environment instead of implicitly in a control st.ack. 

there is very little state in the CPU to change in order to respond to external stimuli. 

quickly. All of the tasks are on the same level, instead of having "interrupt-level" routines, 

"high-priority" routines, and "background" routines. Finally, ,since the management of 

storage for the continuations is handled by the system, the programmer need not worry 
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about where ail of these bits and bytes are being allocated, but only whether the total 

storage used exceeds the amount available. 

1.8 0 u tline of the Thesis 

Chapter 2 presents axioms for actor theory and discusses some theoretical problems 

posed by them. It also presents a constructive interpreter which is capable of generating an 

possible computations from an initial configuration of actors. This interpreter is not 

intended to be used in a real actor system, but only to illustrate more concretely a scheduling 

mechanism which is consistent with the actor axioms. 

Chapters 3 and i discuss one of the main problems in implementing an actor system 

which is subject to real-time constraints--the allocation and recollection of storage. An 

incremental garbage co11ection approach is advocated, and a method is exhibited which has 

the additional property that all allocation, accessing and updating primitives are 

time-bounded by a constant. Hence, the events in an actor system which uses this technique 

can also be time-bounded. 

Chapter 5 deals with a new problem that comes up in actor systems with large 

numbers of activities and processors. An activity may be started on the presumption that 

the result it will eventually rerurn will be useful. However, as other activities progress in 

parallel with it, this presumption may prove false, and the activity which is now deemed 

useless must be stopped and its resources returned to the system. One of the best examples 

of a system which generates activities which may later tum out to be useless is that of an 

interpreter for an "applicative" (expression-based) language which implements 

"call-by-future", a parameter binding mechanism which is different from call-by-name, 

call-by-value, call-by-need, call-by-reference, etc. Call-by-future is implemented by an "eager" 

interpreter, which spawns a new activity (a "futurei for every e"pression which is an 

argument to a procedure. Eager evaluation may resuk in faster response from r:eal-time 

systems, since an activity doeJ not have- to wait until its relevancy is proven before it can be 

started. The Church-Rosser theorem [21,261 which ensures the invariance of the value of 
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an expression in these languages regardless of the order of evaluation, can be extended to 

cover this new evaluation order. Thus, in a language like LISP which has been extended 

with ca II-by-future, the value of an expression will be independent of the evaluation order 

"most" of the time, i.e. whenever the side-effects do not interfere.6 

In Chapter 5, a garbage collection approach is also advocated for this problem, and a 

method is found for garbage collecting "irrelevant" (useless) activities incrementaHy. 

6. Other researchers (37,28,89] also note that languages without side-effects, e.g. "pure" 
LISP, a re excellently suited for the purpose of representing many atgorit~ms intended for 
execution on a host of processors since th.eir tack of side-effects eliminates a great source of 
complexity in parat1et execution. However, this kind of parailelism does not implement the 
most genera I form of communication between activities. For example, an airline reservation 
system cannot be implemented in such a language, due to its nGn-determinate behavior. 
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2. Laws for Actor Systems 

2.1 Introduction 

Although there has been much previous work on actor theory [49,85,13,44,51,50.!>21 the 

precise semantics of the orderings of events in this theory, the fnodes ·or information 

propagation, and the role of non-determinism have not been clear. As a result, any attempt 

at a clean realization of the actor concepts in terms of a language was difficult, because 

these fundamental issues had not yet been resolved. This chapter• attempts to clarify actor 

theory by · presenting some axioms that we believe must be satisfied by computations 

involving communicating parallel processes. These laws restrict the histories of parallel 

(actor) computations to make them physical1y realizable. The laws are justified by appeal to 

physical intuition, and are to be regarded as falsifi~ble assertions about the kinds of 

computations that occur in nature rather than as proven theorems in mathematics. 

Since the causal relations among the events in a parallel computation do not specify a 

unique tota I order on events, actor theory generalizes the noti9" of a computation from that 

of a sequ.mce of global statts to that of a partial order of tVtnts. The interpretation of two 

unordered events in this partial order is that they proceed concurrently. 

Specifications for an actor and correctness assertions for a computation can be given 

very naturally in terms of events and partial orders of events because partial orders seem 

better suited to expressing the causality involved in parallel computation than the totally 

ordered sequences obtained by "considering all shuffles• of the elementary steps of the 

various parallel processes [741 Since inference rules can use these partial orders directly, the 

number of cases in proofs is considerably reduced.2 We demonstrate some of the utility of 

these pa rtia I orders by using them to express our laws for distributed computations. 

l. This chapter is an expansion of some of the ideas in the two papers "Laws for 
Communicating Parallel Processes" and ·Actors and ConUnuous Functionals" by Carl 
Hewitt and myself. 
2. A. Holt [57) and I. Greif [i3) were some of the .pioneers of event-based reasoning. 
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We present in this chapter axioms for actor systems which restrict and define the 

causal and incidental relations among events in an actor computation, where an event 

consists of the receipt of a message by an actor, and resu1ts in the sending of other messages 

to other actors. These' axioms do not postulate the existence arid fairness of some global 

scheduler or oracle, even though our constructive model for this theory will use such a 

global scheduler to ensure that the computations it generates satisfy aH of the axioms. 

2.2 Event-based vs. State-based lf,easonlng about Systems 

The application of the concept of state to sequential systems was a g~eat advance. 

This concept allowed the future beha·vior of a system to be completely determined by the 

abstract state of the system instead of the whole past history of the system. More formally, a 

state is an equivalence class of past histories of a system, all of which are equivalent in the 

sense that the future behavior of the system given any of these past histories wil1 be 

identical. ln some cases, the infinite (and perhaps uncountable) class of ~istories can be 
. . 

vastly reduced to a finite set of these equivalence classes, or stat~. Thus, the state of a 

system incorporates the "important" part of the past history, where •important• is defined as 

being relevant to the prediction of future behavior. 

Since the concept of global state is such an important and valuable too1 to the 

understanding of systems, why do we give it up? We reject it on both theoretical and 

practica I grounds. Relativity theory teHs us that the concept of a g1oba1 state for a spatia11y 

distributed system is ill-defined in the sense that the relative order of many events, and 

hc>nce the perception of the state, varies with the position (and velocity, etc.) of the observer 

of the system. Therefore, in order to consistently define a global state, we must specify an 

observation point and define the tim~ of an event as the instant that the observer observes 

it. Although this can be done, one would like a more observer-independent description of 

the behavior of a system. Relativity theory tells us that the direction of causality or the 

direction of information flow among events is the same for all observers, and hence 

diagrams of event causalities are theoretically more appropriate for spatially distributed 
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systems. 

Thus, although the concept of state allows us to factor out the irrelevant details of a 

sequential system's history, partial orders of events allow us to factor out the irrelevant 

details of the observer of a spatial system's position. velocity. etc. But we would also like to 

factor out the irrelevant details in the history of a spa,tiaUy distributed system u~ing a 

concept similar to that of state. While quite laudable, this goal is hard to achieve. Jn the 

case of a sequential system, the concepts of 'btne .. and •&etiaviOr" are both wen-defined; 

"time" is a linear order of transitions in the system while "behavior" is a mathematica.1 

function of the sequence of all inputs, or equivalently~ a function of the current state and the 

future inputs. But neither concept generalizes for a distributed system. 

The concept of a "space-like slice" through the causal connection diagram for the 

history of a distributed system may be the appropriate generalitation of an "instant of time" 

in a sequentia I system. These space-like slices are essentially collections of events that are 
- . . ' ' 

unordered by causality, i.e. they consist of events which could happen simultaneously. 

Given such a slice, one could identify the local states for each object in the slice. If another 

causal connection diagram over the same set of system elements were to contain an 

equivalent slice--namely, one in which the same Objects had the same local states--then the 

histories of both systems (the set of events ~hid~ preceded the slice) are equivalent, in the 

sense that the same set of "future" events could be generated. Thus, by defining arbitrary 

global states (the slices), we can regain the ability to factor out irrelevancies in the past 

history of a system. 

Using this technique, we can compose the histories of two systems using the same 
configuration of primitive elements. 

But we also reject the notion of a history of a system as being a sequence of global 

states on practical grounds. Suppose that our system consists of n totally independent parts, 

each having a local state set of size m. Then the global state set consists of mn different 

states, a number which for reasonable m and n is totally intractable if each state must be 

checked for some property. Of course, the parts in any interesting distributed system will 
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not be completely independent, but even so the size of the total state set will remain an 

exponential function of the amount of parallelism in the system. 

2.3 Events and Actor Computations 

In a serial model, computations are linear sequences of global states, and each state in 

the sequence determines the next state by consulting either a program text (Von Neumann 

stored program computer), or a finite state control (Turing machine model). In the actor 

model, we generalize the notion of computation to be a ~rtial order of events in a system. 

where each event is the transition from one local state to another; 

The theory presented in this chapter attempts to characterize the behavior of 

procedural objects called actors (active objects) in paraHel processing systems. Actors, 

messages, and events are the fundamental concepts in the theory. Actors interact through 

one actor sending a message to another actor called the target (of the message). The receipt 

(and processing) of the message by the target is an twnt, and these receipt events are the 

basic steps in the actor model of computation. 

New actors and messages can be .created in an event in the course of a computation.4 

Indeed, almost every message is newly created before being sent to a target actor. 

Events mark the steps in actor computations; they are the fundamental interactions of 

actors. Each event happens instantaneously, i.e. indivisibly, requiring no duration in time. 

Every event E consists of the receipt of a message, called message(E), by a target actor, 

ca lied target(E). We will often use the notation 

3. In Hegel's terms, our thesis is really an antithesis to the thesis of global state, especially 
the proving of properties of parallel systems based on global state transitions. Of course as 
Hegel pointed out, syntliesis follows thesis and antithesis, and we have indicated a possible 
direction for this synthesis in the equivalencing of certain space-like slices. However, since 
antithesis and not synthesis is our intent, we will argue here for a theory of events and local 
states rather than global states. 
4. The creation of an actor is not itself an event: actors are created as side-effects of other 

events. We denote the event which results in an actor x being created as the creation event 
for x. 
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E: IT<"""" Ml 

to indicate that event E consists of the receipt of message M by· target T. 

An event is the receipt of a message rather than its sending, because the message 

cannot affect the behavior of its target actor until it is received. If the sender wishes a reply, 

the message should contain as a componept a eorttln1'4tloft. t.e. an actor to whom· any reply 

should be sent 

Intuitively, the receipt of the message M at the target T makes M's information 

av.ailable to the target for the purpose of causing additional events by sending messages to 

other actors. The receipt of M by T does not tn its11f cause any change to either M or T; 

however, T may decide after receiving M to remember all or part of M. 

Due to the totality of the "r.eceipt order• for each actor (to be defined later), we may 

speak consistently about the local state of an actor. This local state is completely encoded as 

·a z>tctor of acquaintances, which encodes the names of other actors this actor knows about at 

this time. A 1lamt in this vector is just enough information to allow this actor to send a 

message to the denoted actor. 

Therefore, for each event E, we can define MlfllE(T) to be the vector of immediate 

acquaintances of T "just before" the event E. We now stipulate that this vector is of a fixed, 

finite length; i.e. that the length of an actor's acquaintance vector is fixed for the life of the 

actor. 

Law of Fmite Acquaincances: For all actors x and events E such that x•target(E), the vector 

acqsE(x) has finite length. For all events El' E
2 

such that target(E
1
)-target(E

2
)•x, 

length(acqsE (x))=length(acqsE (x)). 
I 2 

This restriction is not meant to discourage the use of arrays with flexible bounds. 

However, they cannot be primitive in our system because in order to satisfy real-time 

constraints, we want all primitive operations to be (in principle) time-bounded by constants, 

and all known methods for dealing with such arrays require time growing with the size of 

the array. 
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The A--expressions of Church's A-calculus [21,26] may be modelled by actors which 

receive their arguments as messages. In this case, the expressions bound to the 

free variables of the A-expression x become the acquaintances of the actor modelling x. Due 

to the properties of the A-Calculus, those acquaintances may not change over time; i.e. if 

actor y models a A-expression, then for all events E
1 

and E
2 

in whiCh y is the target, 

acqsE (y) • acqsE (y). 
I 2 

In order to implement interprocess communicatiOn between parallel processes, it is 

necessary to use actors whose acquaintance vector changes over time. One purpose of this 

chapter is to axiomatize the fundamental laws which govern the behavior of such actors. 

An important example of an actor whose immediate acquaintances change with time is 

a cell. A cell's acquaintance vector has exactly one element--its conttnts. When the cell is 

sent a message which consists of the rtqutst "contents?" and a continuation (another actor 

which will receive those contents), the cell is guaranteed to deliver its contents to that 

continuation. When the cell receives a message with the command "store y!" and a 

continuation, the cell forgets its previous acquaintance by updating its acquaintance vector 

to hold y, and then informs the continuation that the command has been obeyed. The 

behavior of cells will be discussed later in more detail. 

2.4 Partial Orderings on Events 

In order to develop a useful model of parallel computation, we have found it de$irab1e 

to generalize the usu a I notion of the history of a computation from a sequence of states to a 

partial order of events. Thus, a history of an actor computation is a partial order which 
; . ' 

records the causal and incidental relations among events. It, is an upper bound on the 

amount of parallelism that can be used in an implementation, e.g. any two unordered events 

could be executing concurrently on separate processors. However, there is no requirement 

that an implementation do this. An actor computation may be simulated by executing the 

events in any order which is consistent with the partial order defined by ~he history. 
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~.4.1 Activation Ordering 

One important strict partial ordering on the events in the history of a computation is 

derived from how events activate one another. Suppose an actor X. receives a message m1 in 

an event E
1 

and as a result sends a message m
2 

to another actor x
2
. Then the event E2 in 

which m
2 

is received by x
2 

is said to be activated by E
1
, i.e. E

1 
is the attivator of E2. We 

call the transitive closure of this "activation• relation the activation ordtring for a particular 

actor computation and if E
1 

precedes E
2 

in this order:ing thm we write 

2.4.1.1 Laws for the Aotlvation Ordering 

It is not possible for there to be an infinite number of events in a chatn5 of activations 

between two given events in the activation ordering of the history of a computation. Stated 

more formally: 

Law Qf Finite Activation Chains between Events: If C is a chain of events in the activation 

ordering from E
1 

to E
2
• then C is finite. 

The law of finite activation chains is intended to eliminate "Zeno machines·--machines 

which compute infinitely fast. F<?r example, corwder a PDP10 which executes its first 

instruction in I µsecond, its second in 1/2 "second, its third in lff "second, and so on. This 

machine not only could compute everything normally computable in less than 2 µseconds, 

but could also solve the "halting problem•. It could do this by simulating a normal PD~JO 

running on some input, and if the simulation were still running after 2 "seconds, it could 

conclude that the simulated machine did not halt on that input 

5. A chain is a totally ordered subset of a partial order. 
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It is intuitively reasonable that an actor can construct and send only a. finite number of 

mess;:iges in the instant that is an event. Therefore, one event can activate only a finite 

number of other events. The events directly activated by an event E are called the 

immediate .successors of E under the activation ordering, or immtdlate activation succtssors of 

E. The' set of immediate activation successors of E, written succ++>(E), has the formal 

definition: 

succ++>(E) e {E'I E++>E' and -.3 E" such that E++>E"++>E'}. 

Then we have the following law: 

Law of Finite Immediate Activation Successors: For all events E. the set succ++>(E) is finite. 

We also define immediate predecessors for the activation order in a manner analogous 

to that used for immediate successors. 

pred++>(E) e {E'I E'++>E and -.3 E" such that E'++>E"++>E}. 

We now postulate that an event is either an inttial event, in which case it has no 

immediate predecessors, or it is activated by a unique predecessor event. 

Law of Unique Activators: For all events E, the set pred.0 (E) contains either zero or one 

element. 

Each event E has at most one activator event activator(E), because message(E) is the 

only message received in the event E and because niessage(E) can only be sent by one event, 

which is required to be activator(E). 

What does this activation ordering look like? Since each event has at most one 

activator, and no infinite preceding chains, the ordering is a forest of trtes having the 

initia I events as roots. Since the branching is restricted to be finite at every node, each tree 

is finitary. 

Note that because an event has only one activator, the join part of fork-join behavior 

cannot be analyzed using only the activator ordering. We will see later that having unique 

activators forces an asymmetry in the analysis of joins because the last event to arrive at the 
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join is the one which activates the remainder of the computation. Thus, the symmetry of a 

"joiner" actor6 is not a foregone conclusion from the basic axioms of actor theory, but must 

be proven. 

2.4.2 Receipt Orderings 

Intuitively, the activation ordering can be identified with the notion of "causality", 

since each event is "caused" by its activator event. However, the activation ordering is not 

enough to specify the actions of actors with sid1~ejfects, wch .as cells. For this reason, we 

introduce the receipt ordtring ••>x for an actor x which records the_ order of receipt of 

messages sent to x after having been ordered by an 4rbltn. Note that there are only a few 

primitive actors such as celfs and synchronization primitives which actually care about the_ 

order in which messages arrive. 

2.4.2.1 Laws fo-r Receipt Orderings 

The receipt ordering for each actor x is required to be a total ordering on all events 

which have x as their target. This policy is enforced by arbitration, i.e. if two messages 

arrive in close proximity to x, its arbiter device wiH arbitrarily decide whkh is to be 

received by the actor first. 

Law of Total Receipt Orders: If E
1 

.,_ E
2 

and tarcet(E
1
) • target(E

2
) • x, then either 

El ••>x £2 or £2 =•>x Er 

This law states that either meuage(E
1
) is received before meuage(E~. or vke-versa._ 

We note that there is no necessary relation between the order of receipt of two 

messages at a target and the ordering of their activa,tors. Suppoae that events £
1 

and £
2 

both have the same target x. In a serial computation, E
1 

••>x E
2 

would imply that 

E
1
++>E

2
, but in a parallel computation, E

1 
and E

2 
could be paru of two separate processes 

6. Later, we introduce a particular kind of "joiner" actor called a "gluer". 

-------
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unrelated via ++>. Furthermore, the fact that activator(E
1
) precedes activator(E

2
) in the 

computation is no guarantee that· E
1 

••>x E
2 

because me.ssage(E
1
) could take a longer route 

than the mes.sage(E
2

), or be delayed by an arbiter. 

If an actor x is created in the course of a computation. then prior to any given 

message which it receives, it could .only have received finitely many other messages .. 

Law of Finitely Many Predecessors in th! Receipt Orderin&: If an actor x is created in the 

course of a computation, and target(E)=x, then {E'IE' ••>x E} is a finite set. 

The above law is used to guarantee that the process of repeatedly taking the precursor 

of an event will eventually stop, i.e. no receipt ordering is an infinite descending chain. 

Given an event E1: IT <"'""' M1] ·and an event E
2
: IT<''"'"' M2], there are only a finite 

number of events between the two in the receipt ordering ••>T . Stated more formally: 

Corollary: For all events El' E
2 

such that target(E
1
)-target(E

2
)-x, {EJE

1 
-->x E ••>x E2} is 

finite. 

This law eliminates anomalous behavior like the following: a cell receives an infinite 

sequence of "store!" commands: "store l!•, •store 1/2!", store 1/-t!•, •store 1/8!", etc. and then 

receives a "contents?" request. What is it to reply to the continuation? Zero? But zero was 

never explicitly stored into the cell! 

The Law of Finite Chains in the Receipt Ordering allows us to define immediate 

predecessors and immediate successors for this ordering in a manner similar to the one used 

for the activation ordering. Since the Receipt Order Law guarantees that the receipt order 

for each actor is total on its domain, immediate successors and predecessors are unique, 

when they exist. If an event E has an immediate predecessor in ••>target(E) , it will be 

called the precursor of E and will be denoted precursor(E). 

One of the simplest examples of an actor which depends upon ,its receipt ordering for 

well-defined behavior is the cell. The cell is the actor theory analogue of the program 

variable in modern high-level programming languages in that it has a value which can be 

changed through assignment. This value is encoded as the cell's single, changeable 
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acquaintance which is initiatized to the name of some actor when the cell is created. A cell 

responds to two types of messages, "contents?9 requests and •store!" commanc:ts. When a cell 

receives a request [contents? reply-to: c], the cell sends the name of its acquaintance to the 

actor c. When a cell receives a command [store! y reply-to: cl it forgets its previous 

acquaintance, memorizes y as its new acquaintance, and then sends an,acknowledge message 

to c. 

We will discuss cells more formally in a later section. 

2.4.3 The Combined Ordering 

Since the events in any legal actor computation must be consistent with both the 

activation and receipt orderings, they must be consistent with the transitive closure of the 

union of the two. Hence, we introduce the concept of the prtctdts relation, "-->", which 

combines the restrictions of both or these relations. 

Definition: "-->" is a binary relation on events which is the transitive closure of the union of 

the activation ordering "++>" and the receipt orderings "••>x ", for every actor x. In 

mathematical notation, 

--> • (++> u u -·>x r. 
x 

In order for "-->" to function as a precedence re~tion, the next law requires that the 

activation and arrival orderings be consistent. The Law}>f Strict Causality states that there 

are no cycles allowed in causal chains; i.e. no event in any history of any actor system 

precedes itself. Stated more formally, 

Law of Strict Causality: For all events E, it is not the case that E-->E. 

This law does not follow from the properties ofthe activation and receipt orderings, 

and counterexamples can be easily generated. 
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Now the immediate predecessors and successors of an event in the combined ordering 

are the unions of its immediate predecessors and successors in the· constituent orderings. 

Therefore, an event has at most two immediate predecessors--its activator and its 

precursor--and at most a finite number of immediate successors. 

We would like to formalize the intuition that between any two events which are 

causally related, there are only a finite number of events in the causal chain which links the 

two. We therefore have the following law: 

Law of Finite Intermediate Chains in the Combined Order (Discreteness of the Combined 

Order): Given two events E
1 

and E
2 

in an actor computation, there does not exist an 

infinite chain in --> between E
1 

and E
2
. 

This law has a corollary which is even stronger: 

Corollary: Given two events E
1 

and E
2 

in an actor computation, there do not exist an 

infinite number of events between then in "-->"; in other words, the set· 

{El E --C!: E --~ E } 
I 2 

is finite, for every choice of E
1 

and E
2

. 

Proof: For any arbitrary choice of E
1 

and E
2

, let S denote the set described in the statement 

of the corollary. Suppose that S were infinite. Now S has a spanning tree in "-->" with E
1 

as its root, so S contains an infinite tree. What is the maximum number of branches 

protruding from any arbitrary node in this tree? The immediate successors in "-->" of a 

node are the immediate successors of that node in "++>", plus the successor of that node in 

· the receipt ordering for that node's target, if such a successor exists. It then follows from 

the Law of Finite Immediate Activation Successors that the immediate successors of a node 

in "-->" must be finite, hence the number of branches in our tree protruding from any node 

must also be finite. Hence the tree is finitary. But then by Korrig's Lemma, this infinite 

tree must contain an infinite chain. Since this contradicts our Law of Finite Intermediate 

Cha ins in the Combined Order, the corollary stands. 
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Q.ED 

While this law and corollary would seem to be a consequence of the discreteness laws 

for each of the constituent orderings, plus the comistency requirement for the combined 

ordering, it is in fact independent of those laws, as the counterexample in a later section will 

show. 

2.4.3.1 Forl~-Join Behavior 

In programming languages for para11el processing, it is necessary to provide primitives 

by which a process can "fork" by splitting into several processes which can later "join" 

together again. This allows for the processing of one branch of the fork to overlap with the 

processing of the other fork, thus allowing for a reduction in the time to complete the 

overall task, assuming that sufficient hardware is available for such concurrent processing. 

The parallel (collateral) evaluation of the argumenu for a procedure call provides a 

very common and natural example of such fork-join behavior. Suppose, for example, that 

we are interested in computing the value of "a2+b2" for some a and some b. In order to 

reduce the computation time, we woukl like to evaluate a2 and b2 in parallel before 

summing the results. To evaluate these two arguments to "+" in parallel, the evaluation 

process must split into two sub-processes, each of which e~aluates one argument. When 

both have been computed, they must be brought back together to form an argument pair . .. . ' 

which is then sent to the ..... procedure. This process of combining the results of the two 

parallel processes is a form of s1ncltronization between the two processes, because more than 

likely one will finish its evaluation before the other and therefore have to wait. 

.We can simulate this form of synchronization with a primitive actor called a glutr, 

which accepts messages from two different sour~ glues them together into a single 

message, and then sends them to a continuation which was supplied when the gluer .was 

created. A more formal description of a gluer is given below. 
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Although a gluer requires an arbiter in front of it to keep from receiving two messages 

at the same time, and hence getting confused, its behavior is symmetrical. The particular 

order of receipt of those messages does not matter since the gluer does not activate any other 

event until it has received messages from both of its senders, i.e. the last message received 

activates the sending of the combined message to the continuation, regardless of the source 

of that last message. 

Gluers allow us to factor the work of an actor which receives parameters from several 

different sources into two parts: a gluer which receives the different parameters and binds 

then together into a single message, and the computational part of the actor which performs 

the intended operation on the multiple operands which the gluer has brought together. In 

an actor simulation of the datajlow computational model {28), every multiple-input operator 

would require a gluer to glue one toktn from each input arc into one composite token which 

would trigger the actual computation. 

However, a gluer is different from a two-input dataflow operator because it has only 

one input port through which it can process messages, and these messages are arbitrated to 

arrive in a total order. Therefore, although the gluer is entirely symmetrical in that its 

output is independent of the order of receipt of the two different flavors of messages, it is 

inherently a serial device, like every other actor, which is capable of receiving only one 

message at a time. Because of its abihty to glue together different messages which arrive at 

different times, i.e. it gathers together data presented to it serially, the gluer is a sort of 

"seria I-to-parallel" converter.7 

We now analyze an example of fork-join behavior using this glueing primitive. 

2.4.3.2 F~rmal Description of a Gluer 

There is a primitive actor, called create-gluer, such that whenever it receives a message 

of the form [sink:S reply-to:R], it creates a new gluer actor G, whose sink is S, and sends it 

to R. G then accepts messages of two forms: [left: x] and [right: y], where x and y are 

arbitrary actors. If G receives a message of the form [left: x) and has previously received a 
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message of the form [right: yl it sends a message of the form [reply:[x yJJ to S. If G receives 

a message of the form [right: x] and has previously received a message of the form [left: y], . 
it sends a message of the form [reply:[x y]] to S. Thus, a message of the form [left: x] is ·a 

"left-hand component" and a message of the form fright: y]is a "right-hand component" of a 

final message to the sink S. Note that if in a computation, m left-hand messages and n 

right hand messages are sent to the same gluer, then the gluer sends mm messages to its 

sink, these m:::n messages consisting of all the combinations of left hand and right hand 

messages. 

Figure I below shows an event diagram of the general kind of gluer described above, 

while Figure 2 shows the diagram for the collateral evaluation of the expression "a2+b2". 

We note that in the latter case we have two possibilities for the event diagrams, depending 

upon which multiplication sub-expression returns a value to the gluer first. 

7. Because of this restriction on actors that they can receive messages only one at a time, 
one might conclude that they are not as powerful or as fast as a data-flow operator, which 
·can accept data on all its input ports ·simultaneously". The truth is, in order to physically 
perform the synchronization required, whether in actor theory or datafl~w. the c~trol 
information about which operands are ready and which are not must all propagate to a 
single point in space at which, according to the assumptions of actor theory, the signals will 
a II arrive in some order and not simukaneousty. Normally, an aroiter that decides which 
signal arrives first takes time inversely proportional to the time difference of the arrivals. 
However, since the result of a gluer is the same in either c.ase, it shO\,lld not need an arbiter 
on its input; i.e. since a gluer does not reveal its decision about the order of arrival, it might 
be able to use a different circuit than a standard arbiter. This circuit might evm be faster 
because the theoretical arguments against fast arbiters would not applx to gluer:s. This 
argument is a gross simplification of some of the ideas of quantum theory, but it should 
retain some validity. 
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Fig. l. Event Diagram of a Gluer 
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Figure 2 requires some explanation. The original function x2+y2 is sent a message 

consisting of the arguments a and b and a continuation c to whom the final value of a2+b2 

should be sent. The function then creates a con~im,1ati9n act~_r R which will receive the 

ne·w1y created gluer and start the parallel evaluation going. The function also creates a 

continuation actor S which wm handle the message generated by the gluer when it has 

glued the two sub-results together. The sul>-prote.s5'$:are then started in parallel With small 

subsidiary continuations G
1 

and G
2 

which append a "left" or a "right" indication to the 

results of the first or second sub-computations, respectively. Finally, · the two 

sub-computations both reply to G through G
1 

and G
2 

and the glued result is passed onto 

the "+" actor by means of the continuation S. 

This example is more complex than absolutely neceuary because we wanted to 

separate out the synchronization handling .functions Gr G2' G, and S from the 

computational functions"(•" and"+". In fact, from the dataflow point of view G
1 

and G
2 

are 

acting simply as the left and right input arcs to the summq· operator ·+·. 
These gluers bear an interesting relatiolUhip. te the "tokenJ" of Ward and Halstead 

[96,45]. One of their tok.tns is an actor with two "ends", i.e. ports at which it can receive 

messages. One of the ends is the "input" port, into which messages are sent which are to be 

retrieved from the other end, the. "output" port. When tbe output port receives a message 

[output-to: SJ, S becomes permanently connected to the token as a sink. S will immediately 

receive the backlog of messages that have already been sent to the input port .of the token, 

and will henceforth receive every new message the token receives on its input port. 

Halstead claims that tole.ens can simulate gluers, but not via! versa, and hence ar~ mor-e 

primitive. See [i5] for more details. 

2.4.4 Activities 

Hewitt (i9,50] has shown how many types of program control structures such as 

procedure invocation, recursion, backtracking. and parallel evaluation of arguments can be 

easily analyzed as patterns of message-passing among the actor-like modules of a 

-------
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programming system. We would like to characterize one of the most common of these 

patterns, the request-reply pattern, as a goal-directed activlt,. 

Intuitively, a goal-directed activity starts with a request event, in which an actor 

receives a message containing 1) a request for a computation, 2) some arguments for that 

computation, and 3) the name of an actor--the continuatton--which is to receive the reply 

when it is ready. The acHvity then consists of aU events which result from the request, 

directly or indirectly, up to and including a repl'J event The repl' event consists of the 

receipt of a reply message by the continuation actor specified in the request event for the 

activity. 

More formally, let E--l!: denote the set of events which follow E (including E itse10 and 

--<!E denote the set of events which precede E (including E) in the computation. 

E--~ E { E' I E --> E' or E • E' } 

--C!:E • { E' IE'--> E or E' • E } 

Then the goal-directed activity AQ.. corresponding to a request event EQ. in a 

computation is the set of events which follow EQ.. but precede any reply ER to the request; 

i.e. 

AQ.. E EQ-l!: n U{--l!:ER I ER is reply to Eq] 

Goa I-directed activities embody the notion of the nesting of activities that is produced 
\,~ 

by the standard subroutine-calling of conventional programming languages. For example, a 

request to the "tangent" procedure might result in requests to the "sine" and "cosine" 

procedures, and replies from them, before the tangent of the argument is returned as the 

reply to the outer request. 

Several things should be noted from this definition. First, there may be no reply 

whatsoever to a request, which means that the goal-directed activity consists of a single 

event, the request. Since a goal-directed activity is meant to include only those events which 

eventually led to the reply, there may be none if no reply was ever made. This type of 

behavior is to be expected from functions which are partial, due to oversight or 
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incompleteness. 

However, just because the goal-directed activity is empty does not mean that no events 

are occurring. Many events may be taking place which contribute to no request's reply and 

hence are wasted. These lines of computation can by definition be eliminated without 

affecting the results of goal-directed activities. The problem of detecting and eliminating 

this wasted computation is considered in a later chapter of thisthesis. 

It should also be noted from the definition that some goal-directed activities consist of 

exactly two events, the reques~ and the reply;with no intervening events. This means that 

no requests to sub-activities needed to be sent in order to process the request; the answer 

was available immediately. We call these activities prlmlttve activities, because they cannot 

be further decomposed; the buck stops here. Primitive activtties are necessary, because they 

are where the rea I computational work is done. 

Finally. the definition for goal-directed activities allows the possibility that several 

replies may be made to the continuation of a request. This is because in some patterns of 

passing messages, an activity might act like a non-deterministic generator, returning every 

answer which was plausible, rather than a single correct one. However, this may not be an 

interesting pattern if the number of replies is unlimited, because since no acknowledgments 

are required from the receiving actor to continue the replies, the pattern allows for no way 

of stopping the replies. 

2.4.4.1 Concurrent Goal-directed Aotivities 

Intuitively. several activities _may be proceeding in a computation at the same time. 

We can formalize this through the notion of concurrent actiuitits. Two activities are 

concurrent if their request events are unordered, i.e. if their request events are concurrent. 

An interesting situation arises if concurrent activities overlap, i.e. share some events. This 

can happen if (and only if) the activities both involve sending messages to the same shared 

actor. If two concurrent activities involve only pure actors, and these pure actors are freely 

copied to a void arbitration bottlenecks, then goal-directed activities are proptrl'J ntsttd, 
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meaning that two activities are either disjoint, or one is a subset of the other. 

2.4.4.2 Homomorphisms of Computations 

The notion of activities allows one to vary the level of detail used in modelling a real 

system with actors. Whereas in a crude model an activity might be primitive, with no 

intermediate events between a request and the corresponding reply, a more detailed model 

could use an activity with a whole host of intermedtate events and sub-activities. If the 

internal workings of this activity were independent from the rest of the computation, then 

suppressing this extra detail should not detract from an understanding of the rest of the 

system. 

2.4.5 Actor Creation and the Laws of Locality 

In many models for distributed computation the ensemble of processes or actors is 

fixed at the time the computation is initiated. The communication patterns within this 

fixed collection of objects can be ascertained (or at least bounded) before the computation 

starts, and therefore every object knows at the time the computation is started exactly which 

other objects it may send messages to and which other objects it may receive messages from. 

As a result of this restriction, no actor names need ever be passed in messages. If an actor A 

ever needs to distinguish the messages It sends to an actor B from all the other actors which 

might also send messages to B, A need only include a small integer which would distinguish 

it from the other actors who might also send messages to B. Then B can use this small 

integer to look up in a small, constant, local table generated at initialization time to 

determine who sent the message. Thus, global actor names would not be needed at all. 

However, in the general actor theory presented here, new actors may be created in the 

course of a computation. This ability, while adding con&idt!l\ab&y to the power of act()r 

systems, also adds new dimensions to their subtlety. 
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The creation of new actors at run-time implies that the names for some actors are not 

known at initialization time. Hence, if these new actors are ever to be sent messages by any 

actor other than the one which created them, it must be possible to pass their names around 

in messages. 

By far the greatest use for these newly created actors is tha_t of continuations. To 

implement the standard call-return sequence in an actor system the caller of a "subroutine" 

will include an additional continuation parameter in the message it sends to the subroutine. 

This continuation is an actor which will receive the value computed and. returned by the 

subroutine; hence, it plays the role of the "return address" in less sophisticated systems. 

Since in most cases, the behavior required of the continuation for a particular call is not 

known until just before the call, the continuation must be newly created when the call is 

made (i.e. when the parameter-continuation message is sent). 

This ability to create new actors in the midst of an actor computation and pass their 

names around means that not only may new nodes be added to the network connecting the 

actors, but the topology of the network connecting the existing actors may change over time 

as actors a re introduced to each other and forget old acquaintances.8 But even worse, it 

makes no sense to ask of such a network what the global connection pattern looks like tvtn 

in tlieory. This is because the connection pattern changes over time and because there is 

relativistic ambiguity about the precise ordering of changes not a·lready ordered by the 

genera I precedes relation. One would have to define the relativistic notion of a "space-like 

slice" through the computation and speak of the connection pattern relative to one of these 

slices in order to gain a consistent meaning to the topology of an actor computation at a 

given "point in time". 

Definition: The target(E) and the message(E) and their immediate acquaintances will be 

called the immediate partitipants of the event E. The immediate participants of an event 

8. This does not contradict the fact that the ltngtla of an actor's acquaintance vector does 
not change over its lifetime. It only means that one acquaintance may be forgotten in the 
process of acquiring a new one. 
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are exactly those actors which can be "known" in. the event without the sending of any more 

messages. 

participants(£)= {target(E),message(E)} u acq5E(target(E)) u acq5E(message(E)) 

We then have the intuitive corollary of the law of Finite Acquaintances that only 

finitely many objects participate in a single event. 

Corollary: For each event E, participants(£) is finite. 

Intuitively, the creation of an actor must precede any use of it. In order to state this 

intuition as a law, we must be more precise about when actors are created. For each actor x 

which is created in th~ course of a computation, we shall require that there is a unique 

event creation(x), in which x was created. 

Let created(£) be the set (possibly empty) of actors created by the event E, i.e. the set 

of actors which claim E as their creation event. Note that x cannot participate in 

creation(x) because x does not come into existence until after creation(x) has occurred. 

Definition: created(E) e {xlcreation(x)=E}. 

Law of Creation before Use: If an actor xis created in the course of a computation and E is 

an event with target x, then creation(x) --~activator([). 

The intuition that a single event create only finitely many objects is formalized as 

follows: 

Law of Finite Creation: For each event E, created(E) is a finite set. 

2.4.6 Laws of Locality 

Our intuition tells us that causality in the physical world is local, that there is no 

"action at a distance". The actor model conforms to this intuition in the sense that all 

causality is mediated through messages. In other words, information in an · actor 

computation is transmitted by, and only by, messages. 
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The most fundamental form of knowledge which is conveyed by a message in an actor 

computation is knowledge about the existence of another actor~ This is because an actor A 

must "know about" another actor B, i.e. know B's name, in order to send B a message. 

However, an actor can know an actor's name only if it was either created with that 

knowledge or acquired it as a result of receiving a message. In addition, an actor may send 

a message to another actor conveying only names the first actor already knows; i.e. it may 

·not make up a name out of thin air and send it in a message as a genuine name. 

The rest of this section formalizes these intuitions as laws which legal actor 

computations must obey. In an earlier section, we introduced. the notion of an actor's 

acqua1ntances and stipulated that at no time could an actor remember the names of more 

than a finite number of other actors, i.e. its acquaintance, vector was finite. We now want to 

be more precise about how an actor's vector of acquaintances may evolve over the course of 

its loca 1 time. 

An actor is given a finite initial vector of acquaintances when it is created.9 We 

require that every element of this initial vector be a participant of the actor's creation event, 

since intuitively an actor can initially know about only its parents, acquaintances of its 

parents, and its siblings. Therefore, we have the following law: 

Law of Initial Acquaintances: If aff actor z is the target of an event E and E is the first 

event in the receipt ordering for z, then 

acq.sE(z) ~ participants(creation(z)) u created(creation(z)). 

The acquaintance vector of an actor may change as a result of the messages it receives. 

When it receives a message, it may add to (or replace one of the elements of) its 

acquaintance vector any actor's name mentioned in the message. It is also allowed to forget 

acquaintances at any time: An actor can also remain pure by refusing to change its 

9. Some actors are primordial; i.e. they exist at the beginning of the computation. If for 
uniformity's sake they need a creation event, the initial e\lent which started the computation 
will serve. 
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acquaintance vector. Most actors remember very little of what they have been told. For 

example, a cell has exactly one acquaintance, its contents; which it can be asked to divulge 

or replace on command. 

The following law encodes the intuition that the most an actor may learn from an 

event are the names mentioned in the message and the new actors created in the event. 

Law of Precursor Acquaintances: If an actor z is the target of an event E and E has a 

precursor in the arrival ordering of z, then 

acqsE(z) ~ participants(precursor(E)) u created(precur5or(E)). 

As we have noted above, an actor is restricted in what other actors it can send 

messages to. In particular, an event E may activate an event E' only if th~ target of E' is a 

participant of E or created in E and each actor menlioaal in the message of E' must also be 

a participant of E or created in E.10 This gives rise to the following Jaw: 

Law of Activator Acquaintances: For each non-initial event E, 

target(E) c participants(activator(E)) u created(activator(E)) 

and 

message(E) c participants(activator(E)) u created(activator(E)). 

These locality laws rule out "broadcasting" protocols 111 which messages are sent to 

every actor in the system.ll This is because the phrase "every actor" is not well-defined in a 

model which allows the creation of new actors, but has no global states in order to pin down 

precisely which actors are in existence at any given "time". Broadcasting protocols are not 

inconsistent with the other axioms of actor theory, but making their semantics precise would 

10. Recall that the participants of an event include the acquaintances of the target and the 
message. 
II. However, a message distribution center can be built so that a single message can be sent 

to every actor registered with the center. 
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add a source of indeterminacy in addition to that introduced by the arbitration which 

makes the receipt ordering total fer every actor. 

2.4.7 Actor Induction 

Using the different ordering relations on an actor computation-~the activation 

ordering. the receipt orderings for every actor, and the combined precedes ordering--one can 

prove properties about the computation through actor tnduction. Ac~~ induction, a form of 

structural induction on the structure or the actor computation, consisu of two parts. 

Su.ppose that one is trying to prove property P· of ner,y event in an_ ac&or computation. 

One must first prove that P is true of the initial event £
0
• Then if one.can prove that P is 

trl4e of E, assuming that P is true of every immediatei>red«essor of an arbitrary event E in 

the given ordering, then we may cendude that ·P is true of every event in the actor 

computation. 

For example, suppose that one wanted to prove an invariance property P about a 

certain actor A in an actor computation. One need only pTOVe that P is true of A 

"immediately after"12 A's creation event, creatio1!(A), and that if for every event E in which 

A receives a message, P is true of A immediately after precursor(£) implies that P is true 

immediately after E, then P is true of A immediately after every event in which A receives a 

message. Since events in which A receives a message am·tbe onJy enes which can affect A. 

P is true of A for the whole computation. 

This example makes use: or a~ important special cued the' following principle: 

Law of Precursor Order Induction: If property P is true of the initial event E
0 

in an actor 

computatio.n, and if for all E111E
0
, P(precursor(E)) implies P(~),,then P is true of every event 

in the computation. 

l2. If a prope1~ty is true "immediately after" an uent E, then' tt ·ts true for every· immediate 
successor of E in the combined ordering. 
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Recall that the precursor of an event E is the previous event in which target(E) 

received a message, or the creation event for target(E), if E is the first event in which 

target(E) receives a message. Hence the receipt ordering for every actor is a sub-ordering 

of the precursor ordering. Thus, in our example using the receipt ordering for A above, we 

let P be trivially true for all events in which A is not the target, and the other events (with 

the exception of creation(A)) form precisely A's receipt ordering. 

Precursor order induction is useful for doing "data type inductions" to prove that 

certain properties of data objects are preserved. ·_ .. Properties of a>ntrol structures and 

properties of computations which do not involve si~effects are proven using activation 

order induction. 

Law of Activation Order Induction: If property P is true of the initial event E
0 

in an actor 

computation, and if for all E,.£
0
, P(activator(E)) implies P(E), then P is true .of every event 

in the computation. 

For example,. every property of a serial computation--one in which the precedes 

ordering is linear--can be proven using only activation order induction. 

Complex properties or properties like synchronization which involve both the 

activation and receipt orderings require full actor induction over the combined precedes 

ordering. 

Law of Combined Order Induction: If property P is true of the initial event E
0 

in an actor 

computation, and if for all E111E
0
, P(activator(E)) and P(precu~r(£)) together imply P(E). 

then P is true of every event in the computation. 

2.~~8 Cells 

The behavior of cells can be axiomatized by positing a primitive actor create-cell, 

which generates new cells upon request. These generated cells are new in the sense that 

they are not shared with any previously generated cell, i.e. a change to the newly generated 

cell will have no effect on previously generated cells and vice versa. 
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Creation: An event of the form: 

E
1
: [create-cell <''"" [initial-contents: i, reply-to: ell 

activates exactly one event, which has the form: 

E
2
: [c <,.,,., [reply: nll 

Section 2.4.8 

where n is the newly created ceH. Furthermore, created(E
1
)-{n}, and creation(n)•Er which 

says that n is the only actor newly created in Er Thus, each cell returned by create-cell 

differs from all previously created cells beca~se thase cells have different creation events. 

Use: Cells recognize only messages of two types: 

[contents? reply-to: cl and [store! y, reply-to: cl 

Intuitively, a cell has exactly one acquaintance, its amtntts, which may be queried or 

updated by contents1 and store! messages. We wiff use the notation cohtentsE(n) to denote 

the acquaintance of the cell n for the event E in which n receives a message. 

The behavior of a cell can be completely characterized in terms of this contents 

function, as follows. 

contentsE(n) e 

if E is the first event in the receipt ordering for n 
then i, uhere 

(create-cell <NN Cinitlal-contents1 i, reply-to& ell 
is the creation event for n 

else if precursor(E): Cn <-[store! >e, reply-to: ell 
then >e 

e I se contenhprecur50rlE} (n). 
Contents: An event of the form: 

E
1
: [n <"""" [contents? reply-to: ell 

activates exactly one event, which has the form: 

E
2
: [c <,.,,., [reply: contentsE (n)Jl 

1 
and created(E

1
)-created(E

2
)-Jlf. 
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U p<iate: An event of the form: 

E1: [n <''"'' [store! y. ri!ply-to: cl] 

activates exactly one event, which has the form: 

E
2
: [c <"'"' [reply: done.]], 

2.4.9 Busy Waiting and Fairness 

Section 2.4.8 

Busy waiting is a synchronization method used in some multiprocessing systems where 

either the only communication between processors takes place through shared memory, or a 

processor cannot depend on the others to "wake it up" when the others are ready to signal 

it. 

Consider the example in Figure I below in which a process()r A must wait for a 

processor B to reach a certain point before processor A can proceed. A shared memory cell 

S is initialized to a value known to both processors. Then processor A goes into a tight 

loop, continually checking the contents of S for a change. When processor B is ready to 

signal A, it stores a new value into the shared cell S. Processor A will notice that the value 

of S has changed and wilt proceed out of its loop. 

Busy waiting requires that the memory shared between the two processors be 

arbitrated so that the one processor does not try to read the contents of the cell during the 

same cycle in which the other is changing those contents. {Otherwise, the read might 

produce garbage.) The axioms of actor theory imply the existence of such an arbiter. 

However, an arbiter can be unfair in the sense that it always gives priority to one processor 

or the other, and in the worst case, may lock out, or starvt, one processor completely. Much 

effort has gone i.nto the problem of specifications for the fairness of the arbiter y.rhich 

schedules the requests processed by the memory, and elaborate algorithms for fair 

synchronization have been developed. 
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Fig. 3. Busy Waiting on a Cell 
eel I S init~0), ~Sis initialized to zero •. % 

loop: 

Code for Processor A. 

if contents(S)..,0 
then goto loop 
else ••• proceed •.•• 

Section 2. 4.9 

-----------------------------------------------~-----------------------
Code for Processor B. 

Calculates something which A needs ••• 

s : IS 1; % Tel I A that we're done. i 
% Assume Bis the only processor writing into cell S. % 

The actor model requires no such notion of acheduling or fairness to prove that 

lockout or starvation is impossible, at least at the level of elementary message receipts. 

Why? By definition, a. completed actor computation has no undeUvered (i.e. unreceived) 

messages outstanding. Thus, every message "evemuaijy"l3 geu .through ("neither rain nor 

sleet ... "). That a message gets through within a finite number of steps follows from the "no 

infinite descending chains" property of the receipt order for evvy ictor. Therefor~. between 

any two messages which are received by a c,11, at mo,st a finite "'""ber of others can be 

received. ·In our example above, between a "CODtents?" message froin proceuor A and the 

'"store! 1" message from proceSSQr B, only-a finite number of other~meSAges will be received, 

and hence the cell's contents will eventually change. Furthermore, between the receipt of the 

"store! I" message from B and the next "contents?• message from A;. only a finite number Qf 

messages can be received and hence A will eventually detect the change in the ceJl's 

contents. However, the "length of time" (i.e. the number of receqyt.s pr<Q$$ed by the cell) 

required to synchronize using t~is simple method is not boupdeci by any computable 

function (using only these basic axioms of actor theory). SQ.,although busy waiting i$ 

guaranteed to work, it may not be a satisf~ry SJ'1Chl'.9l'lization method. 

13. Perhaps only after an unbounded amount of time. 



Busy Waiting and Fairness - 59 - Section 2.4.9 

We have just shown how the underlying message transmission mechanism of actor 

theory satisfies the weakest reasonable form of fairness: every message sent is eventually 

received by the target after it has received at most a finite (but a priori unbounded) number 

of other messages. However, this weak fairness of the actor transmission may not be shared 

by higher level protocols built using this simple mechanism. Thus. foi: more . complex 

objects such as monitors [Si] or seriali·zers [51], fairness properties must still be proven. 

2.4.10 Discreteness -- A Countere¥ample 

One question that comes up in relation to the Actor theory axioms we have presented 

is whether or not they are independent, i.e. whether any axiom can be proved using the 

other axioms. In particular, the question arises as to whether the discreteness of the 

precedes relation is a consequence of the discreteness of the activation and precursor 

orderings. 

The answer to this question is no, because there exist two finitary directed rooted trees 

over the same infinite set of nodes, such that the closure of their union is a strict partial 

order, yet the partial order is not discrete .. 

A diagram for this counter example appears in Figure 4. Figure a) shows the first 

finitary tree over the nodes, figure b) shows the second finitary tree, while f_igure c) shows 

their union. (Only a skeletal set of arcs actually appears; the rest are implied by 

transitivity.) The root node for both trees is called E
0
, and each tree spans all the nodes. 

Notice that there are no cycles in c), yet there are an infinite number of nodes in the partial 

order between E
0 

and E. Hence c) is not discrete, even though both a) and b) are. 

If we were to interpret c) as an actor computation, we could choose a) as the activation 

ordering and b) as the precursor ordering. However if we examine carefully the structure 

of c), we notice that there is something strange going on. E's activator event is E
1 

which 

must be preceded by E
2 

in the precursor ordering. Now E
2 

cannot be the creation event 

for target(E
1
) since the creation event for the target of an event must precede or be the 

activator for the event. Therefore E
0 

must be the creation event for the target of Er 
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Likewise, creation(target(E
3
)) must a1so be I

0
. Continuing in this manner, we see that the 

creation events for alt the Ei's must be E
0
. But this contradicts the axiom that E

0 
can 

create only a finite number of different actors. Therefore, the· locality and finite creation 

restrictions (to be defined below) rule out this diagram as a legitimate actor computation. 

(Notice that c) is almost symmetrical, so that interthangilig the interpretation of a) and b) 

· does not help.) 
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Fig. i. Counter-example .to the Discreteness o~ the Combined. Order 

• 

• 

• 
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This counterexample shows that the distreteness of the combined order does not 

necessarily follow from the discreteness of the activation and receipt orderings. The 

significarice of this is that if the discreteness of the precedes relation follows from the other 

axioms, it must depend on more than the discreteness, rootedness, and finitariness of the two 

constituent relations, and the irreflexivity of the precl!dea relation. 

It also prov ides evidenceH for the canjecture that no independent, local scheduling 

algorithm can ensure the fairness of the overall actor system. In' other words, a computation 

produced by an actor system with only local schedulng runs the risk of being either unfair 

or indiscrete.15 

2.6 Constructive Models for Aotor Theory 

2.6.1 Caveat 

The following description of actors, messages, events, and schedules will be quite 

unacceptable to the mathematician who is used to rigorously d«intng sets. then relations on 

sets, function on those sets, etc., because all of our ~ are recursively defined in termt' of 

one another. We violate the standard set theoretic axioms by not starting with a few sets 

like /d, '-> and a few operations on sets like x, 6' to preduce t~ domains for our relations 

and functions. Therefore, we cannot say a priori what these containing domains are, and 

cannot use the axiom of comprehension to restrict these domains to be exactly what we 

. want. As a result, our models turn out.to be.based on ;ro;ir cltuMs rather t:han stts. Scott 

[78,79) has considered the· problem of such recursivoly defined domains, and his work is 

considered to. put such things on a proper foundation. 

14. WHI Clinger {23) and Va:ldis Berzins 04) have recently discovered th~ the discreteness 
of the combined ordering is independent of all the other actor axioms. 
15. Although arbiters form a scheduling mechanisnl'that is locally fair, an arbiter cannot 

ensure that messages which are delayed in tr.ansmissiola;a.regi.Ym-friotityin~iftg received 
by the actor it arbitrates. (If it tried,·it would bave·to wair·arbitrarily long. since they have 
no idea what messages are in transit to iU actor.) Therefore. this mechanism cannot 
guarantee that every message will eventually be received. 



Caveat - 63 - Section 2.5.l 

Actor theory as a first order set theory is guaranteed to. have a model if it is 

consistent.16 However, the model guaranteed by this theorem is not very useful for 

understanding actors because it is produced from the pure1y syntact~c material of the 

defining axioms. We would like to produce more constructive, intuitive models which give 

more insight into the nature of actors, as wen as proving that this theory is consistent. 

Unfortunately, due to the extreme generality of the theory, with its mutually 

recursively defined sets, we are pushed to the limit in our ability to put the constructive 

models themselves on a sound mathematical baSis. However, we do have another 

· recourse--a computational model using recursively defined data-types such as LISP's 

S-expressions. Even though we may be hard pressed to give a proper mathematical 

interpretation to such objects, they certaiAly exist and· we may compute with them. Thus, if 

a computational model for actors can be produced, if wlH prove the consistency of actor 

theory, assuming that LISP (or whatever such language) is consistent. 

2 .5 .2 Construoti ve Models 

We conceive of two computational models of actor theory, one taking cells as primitive 

concepts, the other using only constructions which do not involve side-effects. While the cell 

model is simpler and quite intuitive for anyone who has programmed a computer, it does 

nothing to explain what a cell is, since it takes the cell as primitive. 

We will first present the cell model, and then the pure model. 

2 .5 .3 The Cell Model for Actors 

An actor in t~e cell model consists of a triple ~na11&1,scrt;t,acquaintancts>, where nam1 

is an identifier which uniquely determines the actor. script is. a constant program text in 

some language, and acquaintanets is a constant vector of s.tarap tals, each of which holds a 

16. This does not imply its completeness, as there may t,>e several models which disagree 
with each other on unimportant details. 



The Cell Mode I for Actors Section 2.5.3 

patlaname (roughly a pointer) to another actor. 

Names for actors serve to distinguish each actor in a computation from every .other 

actor. A convenient way to accomplish this is if the name of an actor is a pair 

<creation.index>, where creation is the creation event for the actor, or the distinguished 

indicator NIL jf it is an initial actor, and indlX. is a finite· ~Qll:-negative integer which 

distinguishes this actor from its siblings (other actor.s ~lai01ing the same cr~tion event). In 

addition to distinguishing. actor names also idtnU/71 in the sense that an actor's name 

determines the actor, hence its script and its vector of acq1Jaintanc:e cells.. (However. the 

actual acquaintances themselves can only be determined relative to a given event in the 

actor's receipt ordering, since they can change frem one event to another.) 

Scripts for actors are finite programs in . some programming language which are 

executed upon the receipt of a me$Sage by the actor. Upon in'locatiQn, the script may create 

a finite number ~f new actors and messages and send them off to other actors. It. may also. 

modify some of the cells in the local acquaintance vector to forget their current contents or 

remember some new contents. It may reference varioUs components of the message. 

However, it may not loop and it may not parameterize a reference to the message or one of 

its acquaintances; i.e. it may refer to acquaintance 3 but not acquaintance i. Therefore, since . . . 

the script is constant and finite, it can refer to only a bounded number of storage cells in the 

acquaintance vector and hence our restriction on acquaintance vectors to have fixed, finite 

lengths is no hardship. 

The acquaintance vector plays a role in actor theory similar to that of the local 

binding frame in current higher level language semantjca. The cells of an actor's 

acquaintance vector are initialized to hold the initial acquaintances of the actor when the 

actor is created. These cells may be updated as a side-effect of an event having the actor as 

its target, but are completely private to the actor and initc'cesslble to scrutiny or change by 

any other actor. Jn other words, the acquaintance cells are not actors themselves; they have 

no names and can receive no messages. When they are updated u a side-effect of an event, 

their updating is indivisibly tied up with the event; before the next receipt of a message by 

the actor, the new acquaintances are well ensconced in these storage cells. 
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An initial configuration. for an actor computation is a finite set of initial actors, i.e. 

actors which are primordial since they lack a proper creation event,· and a single pending 

event in which an initial message is sent to one of the initial actors. An actor computation 

C=<l:,"-->",E
0

> derived from an initial configuration is a set of events £, strictly partially 

ordered by the relation "--> ", with a distinguished ele~nt E
0

, which is the least element of 

& with respect to the ordering "-->". Each non-least element E .is a quadruple <T,M,A,P>, 

where T is the target actor which receives the messagf M in the event E, where A is the 

activator event which sent M to T, and where P is the prtciusor event, i.e. the previous 

event in T's receipt ordering (or T's creation event, if E is the first event in which T 

receives a message). Finally, E
0 

is the event in whith the iAitial message of the initial 

configuration is received by its intended target actor; i.e. E
0
-<Tinitial•Minitial•NIL,NIL>. 

The participants of the initial event E0 include the. actor target(E0)-T initial• which 

has no creation event because there are no ev~.before EO' yet this a<:tor must exist before 

it receives a message. However, there may be other· initial actorJ (the other participants of 

E0). and E0 can be conveniently assigned as their creation event without contradicting our 

axioms. This convention has the advantage that no additional Jaw iS required to specify 

that the number of initial actors is finite, since we already have a law requiring that only a 

finite number of actors may be created in one event. If more than one initial actor were 

allowed, a separate axiom to this effect would be required. 

Although we have described actor computations as static, already completed objects, 

they can be analyzed as having been built recursively, starting with E
0 

from the simple 

initial configuration. E
0 

creates some new actors, sends messages and activates ~ew events, 

which in turn send messages and activate other events, and so on. A complete actor 

computation is the limit of this process; it is the final structure which is achieved after all 

events have occurred and all messages have been received. 

This is entirely analogous to the construction of the natural numbers from the empty 

set. In this construction, we have an initial configuration--the empty set--and a process for 

taking one configuration to a new one--adding the successor of an element already 

obtained--and define the natural numbers as the limit of this process. 

-------· - ---------------------------------~-------
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However, unlike the situation with· the natural numbers, wherein the process for 

converting a configuration into its successor was uniquely' determined, the process for 

converting an actor configuration into its successor is not slngte valued, and the various 

possibilities may even be inconsistent (unable to coexist in the same computation). This 

means that there need be no single, unique actor computation derived from an initial 

configuration. This non-determinism is due entirely to the arbittation required to 

determine a receipt ordering for all actors. For example, if two unordered messages arrive 

at an actor, the order in which they are processed is net determined, Jet this order can 

drastically a.ffect the outcome. F<>r example, if the messages were requests to an airline 

system for a reservation on the last seat on a Right, the order Of reeeipt would determine 

who was assigned the seat and hmce who would be affected if the plane crashed. 

Therefore, ~e must either talk about the sit of possible c0mputations derived from _an 

initial configuration, or else talk of the computation as proceeding non-deterministically. 

We will initially take the second approach. 

2.5 .3.1 Partial Computa.tlons 

In order to see that an actor computation is isomorphic to the limit_of a process which 

starts from an initia I configuration and continually adds new events, we must consider what 

the intermediate states, which we call partial comf1Utations, look. like. 

Jn a partial computation, there are some messages which have been sent but not yet 

received, i.e. some events have been activated, but have not yet occurred. These messages in 

transit, these pending events, must be explicitly represented in the partial eomputati~s. 

There are several alternatives available in choosing a representation for these pending 
·' f ~ ,. 

events, such as sets, queues, etc., but we will ignore this problem for a moment. 

A partial computation is a triple <E,-->,P>, where E is the set of events which have 

already occurred,"-->" is the precedence relation built up so far among those events. and p 

is the "pending event" structure which represents the activated events that have not yet 

occurred. The initial configuration is then <{},{},P 
0

>, where P 
0 

represents the single 
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pending event wherein the initial actor is sent an initial message. 

The process which takes a partial computation to a larger romputation we call the 

interpreter. Intuitively, the interpreter r~moves a pending event from the pending event 

structure and causes it to occur, i.e. it adds to to the event set and adds the appropriate 

edges to the precedes relation. In so doing, it adds to the pending event structure all the 

new events that the occurring event activates. If the pending event structure becomes 

empty, i.e. if there are no pending events, then the computation is complete and the 

interpreter reaches a fixed ·point. 

In many cases. however, the c«nputation wtll be infinite and the pending event 

structure will never become empty in any finite amount of time. We would like to consider 

a II (finite or infinite) fixed points. of the interpreter for an actor system accesslblt from the 

initial configuration of the system to be the actor computations. which are derived from that 

initia I configuration. Since in general the individual steps of the interpreter are 

non-deterministic, there will be many of these different fixed points. 

Serious questions arise about the fairness with which the interpreter selects events 

from the pending event structure. If the interpreter picks an element from the pending set 

randomly and independently at every stage, then the probability that a pending event will 

never occur approaches zero. In other words, in the space of all possible interpreter choice 

sequences, the set of unfair sequences has measure zero. However, the set of unfair 

sequences is not necessarily empty! Therefore, this •random• interpreter cannot be a model 

for actor computations because it satisfies our actor axioins. only proba,bilisticall'J; i.e. it 

admits of unsatisfactory computations, although they have only measure zero in the whole 

set of generated computations. 

Suppose now that we choose a strict fir~t-in, first-out (FIFO) queue for our pending 

event structure. Then an event, once activated, will never have to wait more than a finite 

number of steps to occur, since the length of the queue is always finite, and the pending 

event cannot lose its place in the queue (i.e. be pre-empted). This model satisfies the axioms 

of actor theory, in particular the discreteness axiom for the precedes relation, and therefore 

is a logica I model of the theory. 



Partial Computations - 68 - Section 2.5.3.l 

Ward and Halstead [96] propose the FIFO model for the pending event structure of a 

restricted actor theory in which the precursor ordering is always tmptied by the activation 

ordering. This restricted actor theory requires no arbiters siace there is no freedom in the 

order of receipt of messages.17 Since the FIFO model is non~prHmptive, an event, once 

scheduled, will occur within a finite number of interpreter steps. Thus, the ,limit of this 

process will produce the (essentially unique) completed .actor computation which follows 

from the given .initial configuration. Figure 5 shows a FIFO e:vent scheduling algorithm. 

However, a strict FIFO queue rules out other modes of behavior, other scheduling 

strategies, which are also acceptable models of acmr tlteo1«y. For example; using the FIFO 

model makes the interpreter and hence every computation strictly deterministic, since there 

Fig. 5. FIFO Actor Interpreter 
t :• 0; ~Keeps track of last scheduled event. I 
5(0) :~ E0: ~Initial event is only one initially scheduled. I 
for i=0 to"' i The clock tick& forever. I 
do begin 

let T=target(S(i)), MEmessage(S(i}}, A•activator(S(i})s 
~ Find precursor for this event by seann-ing back. I 
for j=i-1 by -1 unti I target(C(j))•T or C(j)•creation<TJ 
do,nothing; 
I et P=C ( j) ; % This is the pr_ecursor event for the current event. % 
let E-=<T,M,A,P>; 
% Update Partial Order i..iith this new event. S 
PO:= PO u lA-->E, P-->EJ; 
% Compu.te new events to schedule. I 
let eventlist-match(M,T,Pl; 
% Scl:'ledu le these new evenht. i 
for eceventlist 

·do begin 
t := t+l; % Compute neKt open slot. I 
% Schedule it there uith E as the activator. % 
S ( t) : == <target (e;J .-meesaga(e) .·f>,l 
end 

C(i) :• E 
end; 

% Event E is co•plete. I 

17. They make the additional assumption that if an event dispatches two messages. they 
are appended to the FIFO queue in the order given by the script of the event's target. 
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is never any ambiguity about the order in which pending e11ents are processed. Since actor 

theory requires only that all messages arrive in a finite amount of time, but prescribes no 

.other conditions on the order of arrival of those messages (except when the receipt of one 

message precedes the sending of another), there may be computations derived from an 

initial configuration which are not isomorphic to that generated by the FIFO model, yet 

these computations still satisfy the axioms of the theory. Therefore, we would like a model 

for actor theory which is more general, i.e. which produces more computations than the 

FIFO model, without producing any unfair computations. 

The scheduling model for actor theory pre~ted below has the appropriate 

characteristics. 

Our scheduling mode1l8 represents the pending event structure by an instantan~ous 

sclitdule, which posts the scheduled time of execution for every pending event. At the time 

an event is activated, a time slot is non-deterministically chosen so as not to conflict with 

any previously scheduled events. This non-deterministic strategy purposely leaves gaps in 

which events may be scheduled which are activated later. It 4llso retains the property that 

once a pending event has been scheduled, it may not be pre-empted or re-scheduled. 

Therefore, at the time it is activated, a pending event is given a bound on the amount of 

time it must wait before it is executed. Hence, a pending event. is guaranteed not to wait 

forever for execution, and thus this scheduling strategy is free of individual starvation 

lfair). 

An instantaneous schedule consists of a non-negative in~g~r i, and a pair of partial 

functions Ci, Si, whose domains are subset$ of the non-negative integers. The integer i 

denotes the current event number, a crude clock which inciicates how many cycles the 

interpreter has been through since it started with the initial CQnfig~ration. The first partial 

function C. has the set of events C as its range, and for every interger Osj<i, C.(j) is the 
I I 

event which occurred at time j, if any. The second partial function s
1 

has the set of 

18. Some of the ideas for this scheduling model were formed during conversations with 
Eliot Moss. 
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pending events as its range. namely triples of the form <T,M,A>, where T is the target of 

the message M which was sent as a result of the activating event A, and S.0) denotes the 
I 

pending event which is scheduled for time j, if any. 

Now since the intended interpretation of the instantaneous schedule <i,C.,S.> is that 
I I 

the events in the range of Ci have already occurred, while those in the range of Si are only 

scheduled, we need a formal tonsisttn"1 rtq_uirtmmt on instantaneous schedules which 

ensures that this is the only interpretation. This consistency requirement states that an 

event occurs at time j if and only if it was scheduled to occur at time j. More precisely, for 

an j such that 0-Sj<i, either Si(j) and Ci(j) are both undefined, or they are both defined and 

they refer to the same event, i.e. target (S
1
(j)) .. target(C.(j)), meuage(S.0))-message(C.(j)), 

I I I 

and activator(S.(j))=activator(C.(j)). 
I I 

Our interpreter I takes as input an instantaneous schedule whose clock reads time i 

and non-.deterministicaUy produces an instantaneous schedule for time i+l. Thus, the 

computations which can be derived from an Jnitial schedule s
0 

can be characterized by the 

va-rious limits I"(S
0

) as n approaches infinity. 

An interpreter step consists of on!! of the following two cases. Let <i,C . .S.> be the 
I I 

input instantaneous schedule. If S.(i) is undefined, ihen no event is scheduled for time t•i, 
I 

so return the instantaneous schedule <i+tC.,S.>. In other words, the interpreter idles on this 
I I 

step. 

If S.(i)=<T,M,A>. then for time t=i an event is scheduled in which the actor T receives 
I 

the message M which was sent in the event A, i.e. A activated' this event. To complete the 

current event, we need its precursor. The precursor can be found by searching the C-vector 

from t=i-1 backwards to creation(T) until either an event P is found such that target(P)~T. 

or creation(T)' i's reached, in which case let P-creatfonm. In either case, let the new event 

E be <T,M,A,P>. 

Now the script for the actor T will tell how me5sage M is to be interpreted using the 

current acquaintance vector of T, i.e. the script will indicate what new actors to create, what 

new events to activate, and how to update T's acquaintance vector. The script creates thae 
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new actors, updates T's acquaintances, and produces a finite list L of n pairs <T.,M.> which 
I I 

specify the events which E should activate. The interpreter must now sclitdule these 

pending events by choosing a sequence <tl't
2
, ... ,tn> of distinct non-negative integers such 

that t.>i and S.(t.} is undefined, for all j, l:Sj:Sn, where n is the length of the list L. The 
J I J 

number t. indicates the time at which the pending event L. should occur, which may not be 
J J . 

earlier than the· current event, and which may not conflict with a previously scheduled 

event. 

Once these events have been scheduled, this step of the interpreter is done, and it 

returns the instantaneous schedule 

n 

<i+l, C.U<i,E>, S.u U {<t., <T., M .• E»} > 
I I j .. J J J J 

as its result. The interpretation of this interpreter step is that event E has occurred at time 

i, and •ctivated the n events which are scheduled at times tj, with targets T ., messages M .• 
J J 

and activator E. 

Figure 6 exhibits such a scheduling model for actor computations which uses arrays of 

cells for acquaintance ve{'.tors. 

Our scheduling model is not the most efficient possible for generating the legal actor 

computations from an initial configuration. In particular, the pending event schedule could 

probably be more efficiently implemented with a prlorlf1 qutu.t [1,921 which would allow the 

interpreter to skip over empty slots when nothing is scheduled. However, our model is 

simple and precise, and so it serves our purpose here. 

2.5.3.2 An Example of Constructive Interpretation 

We would like to illustrate the operation of the interpreter with a trivial example. 

Consider an actor system with only two actors, A and B.. In the initial event for the 

computation of this system, actor A sends actor B two different messages, M and M'. 

Because of the totality of the receipt ordering for actor B. the messages must arrive either in 

the order M, M' or in the order M', M. 
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Fig. 6. The Cell Model for Actor Computations 
for i=0 tow % The clock ticks forever. X 
do if S(i) is defined X Is there an event scheduled for time i? X 

then begin 
let T=target(S(i)), M=message(S(I)), A·activator(S(i)); 
% Find precursor for this event by asking the target. % 
let P=if most_recent_target_event<T> is defined 

then most_recent_target_event (l) 
else creation(T); 

% Create the event node. X 
let E=<T,M,A,P>; 
% Update Partial Order with this new event. 'l 
PO :=PO u IA-->E, P-->El; 
% Apply script of target to message to produce new events and 

update acquaintances of target. X 
let eventlist=apply(script(T),M,acquaintances(T)); 
% Schedule activated events. X 
fore c eventlist 
do begin 

let jsi+guess(); X Guess a time in the future. % 
1.1h i I e S ( j ) def i ned 

do j:•j+l; 'l find first free siot thereafter. X • 
% Schedule e with E as activator. X 
S(j):=<target(e),message(e),E> 
end 

C(i) : .. E; 
end; 

A trace of the scheduling model on this computapon is given in Figures 7-IQ. The 

interpreter starts the whole computation with only .one event scheduled, the event in which 

A rer;eives a message M
0 

to initiate the rest of the computation. To execute this event, the 

interpreter scans backward through the previously completed even'5 (of which there are 

none) to find the most recent event in which A received a message. There is none, since 

this is the first event, so this event wilt have no precursor event. The first event E
0 

is then 

created having A as the target, M
0 

as a message, NIL as the a~ivator and NIL as the 

precursor. This event is then entered into the partial order with no relationships to any 

other events because there are no other events yet. The interpreter then matches M
0 

to A's 

script to determine what new actors to create and what new messages to send in order to 
-

activate more events. Since A is to send two messages to B upon receipt of M
0

, the 

interpreter schedules a time for the occurrence of these two future events, where B receives 
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M and B receives M'. Suppose for example that the pair «S,M> is scheduled first for time 

t=6. This means that there are still empty slots in the schedule for times t•l,2,3,4,5. When 

the interpreter schedules the pair <B,M'>, it can choose one of these empty slots or a .slot 

after t"'6, but it cannot choose the slot at time t .. 6 because <B,M> is already scheduled then. 

Suppose that the interpreter chooses the slot t .. 5 for the pair <B,M'>. Both new events are 

scheduled by registering them in the "S" vector. Finally, the event E
0 

is registered in the 

"C" vector, indicating that its execution is complete and the first cycle of the interpreter is 

done. 

The next four cycles of the interpreter (with t=l,2,3,4) do nothing because no events are 

scheduled at those times. On the fifth cycle, the pair <B,M'> is schedul~d to Oc:cur and the 

interpreter looks back through the "C" vector for events with B as a target. It finds none, 

and since B was not created in the course of a computation, there is no precursor for this 

event, either. The event E
1 

is created having B as its target, M' as its message, E
0 

as its 

activator, and NIL as its precursor. This event E
1 

is entered into the partial order with the 

single relationship E
0
-->E

1 
because E

0 
activated Er Then the interpreter matches B's script 

against the message M' to decide what new events E
1 

should activate, and these events are 

scheduled. E
1 

is registered as complete, and the fifth interpreter cycle is done. 

On interpreter cycle t=G, B is scheduled to receive M. The interpreter scans backward 

through the completed event list "C" looking for events having B as a target. The first 

such event it finds is El' which it just completed. E
1 

becomes the precursor event for the 

new event E
2

. which has B as its target, M as its message, and E
0 

as its activator. The 

partial order is updated to contain the new event E
2 

and the new relationship E
0

-->E
2 

(because E
0 

activated E
2

), and the relationship E(->E
2 

(because E
1 

is the precursor of E
2

). 

Any events activated by E
2 

are then scheduled, and the computation proceeds from there. 
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Fig. 7. Constructive Example: t•O 
S: 0 I <A,M9,NIL> I C: 

1 I I 
2 I I 

t: 0 PO: e111pty 

Fig. 8. Constructive Example: 1 .. 1 
S: 0 I <A,M0,NIL> I 

1 I I 
2 I I 
3 I I 
4 I I 
5 I <B,M',E9> f 
6 I <B,M,E9> I 

t: 1 ·PO: 

Fig. 9. Constructive Example: t-6 
S: 0 I <A,M0,Nll> I 

t: 6 

1 I I 
2 I l 
3 I I 
4 I t 
s 1 <B,M',Ee> 1 
6 I <B,M,E9> I 
7 I t 

PO: 

+ 
+ 

v 
El 

C: 

C: 

+ 

- 74 -

8 
1 
2 

e 1 E0 - <A,n9,NJL,NIL> 
1 I 
2 I 
3 I 
4 I 
5 I 
6 I 

8 I E;9 • <A,f1e,NIL,NIL> I 
1 I I 
2 I t 
3 I I 
4 t I 
5 I E1 • <B,M',~~NJL> I 
6 I I 
7 t I 

Section 2.5.4 
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Fig. 10. Constructive Example: t=7 
S: 0 I <A,M0 ,NIL> 1 

1 I I 
2 I I 
3 I I 
4 I I 
5 I <B,M' ,Eg> I 
6 I <B,M,Ee> I 
7 I ???? I 

t: 7 PO: 

C: 

Eg 
++ 

+ + 
+ + 

v v 
E1 ••>a E2 

0 
1 
2 
3 
4 
5 
6 
7 

Ee • <A,Mg.NIL,NIL> 

El• <B,M',E9.NIL> 
Ez • <8,M,E9~E1> 

.... 

2.5.4 Sets of Actor Computations 

Section 2.5. -t 

I 
I 
I 
I 
I 
I 
I 
I 

_We initially made the assumption that our interpreter I nondeterministically produced 

a new instantaneous schedule from an old one. One can define a corresponding interpreter 

I' which operates on sets of instantaneous schedules)9 For every instantaneous schedule S in 

the input set, I' produces all possible schedules I(S) in the output set. Furthermore, for 

every instantaneous schedule S' in the output set, there exists a corresponding input 

schedule S, such that S' is one of the schedules derived in one step from S by I. Thus, I' is 

a single-valued function on the power set of finite instantaneous sc.hedules. 

The complete set of 4lCtor computations derived from the initial schedule s
0 

may be 

described as the limit of l'"({S
0

}) as n approaches infinity, i.e. 

C .. limit I'°({SJ); 
n-+• 

Thus, C is a set of instantaneous. schedules which have bec()flle infinite in all possible ways. 

19. G. Plotkin [70] has investigated powerdomatns, similar to power sets, which can be used 
to make our recursively defined set.s of schedules well-defined. 
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We claim that I) every computation in C is a legitimate actor computation in the sense 

that it satisfies all of the actor laws; and 2) there are no legitimate actor computations 

derived from s
0 

that are not in C. Hence, we claim that our interpreter is a model for actor 

theory. 

An analogy to various subsets of the real numbers might help in understanding this 

limiting process. Suppose, for example, that we had a process which produced a string of 

digits in the range 0-9. Suppose further that this process operated non-deterministically at 

each step to choose the next digit to be output. · If we interpret the digits output as 

successive fractional digits of a real number, then the limit of the process would be the set 

of all real numbers in the range co.1120 
Suppose now that we have an actor system which is simulating the '"fair merge" 

operator of dataflow systems. This operator accepts inp~es fr0411 tw~ differe~ sources, and 

produces an output stream consisting of the merged sequence of inputs. However, if this 

merge operator is to be "fair", it may not decide after a. certain time to ipor~ all inputs from 

one of its sources and take inputs only from the ether. If weccode the decisions of the merge 

operator as a finite string of O's and l's; where a .o-.meam that the corresponding output 

came from the left input source and a· I means that the-«Ktespondmg output _came from the 

right input source, then the fairness criterion means that the decision string may never 

terminate with an infinite string of O's or rs. 

The set of computations derived from such- an actor aimufation of a 'fair merge 

operator will be in a 1-1 correspondence with the set of infinite strings of O's and l's. Again 

interpreting these strings as infinite fractions ·between 0.0 and tO, but this time coded in 

binary, we have a correspondence between the set of computations and the set · of 

non-terminating binary fractions. Since the terminating fractions are only of measure zero 

in the st>t of all real numbers, most arbitrary merge sequ~ att fair. However, the set of 

actor computations of this simulation is carefully constructed to avoid the non-fair 

20. This example requires only flnitt branching at each point, whereas our constructive 
interpreter effectively branches countably infinitely at every step. · 
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sequences. 

Since the arbiter on the front of every actor is essentially a fair merge operator which 

merges the unordered messages from a wide variety of sources into a single totally ordered 

sequence, the set of computations for almost every actor system must be constructed with 

same subtlety as the set. for the fair merge operator in order that they satisfy the discreteness 

requirements of the precedes ordering. 

2.5.4.1 Reduced Sets of Actor Com,putations 

Once the set of all actor computations which can be derived from an initial 

configuration has been constructed, the information about the pending event structures and 

the instantaneous schedules can be thrown away. The pending event structure is not 

needed because in the limit, there are no pending events. The instantaneous schedule is 

also no longer needed because all it does is encode an existence proof that the precedes 

order is capable of a monotonic embedding into the non-negative integers; the particular 

embedding does not matter. Thus, the set of all actor computations is· partitioned into 

equivalence classes of instantaneous computations that share the same partial orders. Hence, 

this partitioned set is isomorphic to the set of completed computations (partial orders) which 

follow from the initial configuration. 

2.5.5 The Pure Model for Actors 

We would now like to give a "pure" model for actors in which the acquaintances of an 

actor do not have to be kept in stqrage cells which are updated as the computation 

progresses. We do this to avoid the circularity of explicating cells in terms of acquaintance 

vectors of cells. We eliminate these cells (at some cost in "efficiency") by re-computing on 

each interpreter step what the current contents of the target's acquaintance vector should be. 

This is done through a procedure which recurses backwards along the target's precursor 

chain and when it reaches the target's creation event,.it gets the target's initial acquaintance 

vector. The procedure then unwinds by going forward along the precursor chain, 
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re-executing enough of the target's script at every event in order to compute the new 

acquaintance vector for the next event. Upon completion of this process, the target's current 

acquaintance vector is available so that the target's script can receive the current message. 

We illustrate this process by showing how it works in the case of a simple storage cell. 

Recall that a storage cell has exactly one acquaintance-its contents. It is created with some 

initia I contents, and it responds to two types of messages-•contentsr' and "store!'". 

Conceptually, in the cell model for actors, w~en a storage cell receives a "contents?" message~ 

it simply looks in its acquaintance vector and delivers up what it finds there to the 

continuation which was supplied. Again, in the cell model, when the ~II .receives a "store!" 

message, it smashes the current contents with the new value which was Ji.applied. 

Figure ll gives a script for such a cell which uses an array of cells as ~n acquaintance 

vector. 

Figure 12 shows a pure (side-effect free) model for a cell. It uses a subsidiary function 

"lookup"- which is not part of the cell's script, but is a meta-func~OQ used by the interpreter. 

(This is because a script cannot ref-er to tvtnts in the computation, only actors.) 

Fig. II. A Cell Model for a Cell _ 
ce I 1-1: (•> - [message: MJ 

(cases M 
(•> [contents? reply-to: CJ 

acfiY'ate <t/tacquaintlrK:e(8tJ>) 
(•> [store! >< reply-toi CJ 

acquaintance{9) :• ><; 
activate- <C.tdonell>l-)) 
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Fig. 12_ A Pure Model for a Cell 
'I~ Initial contents of cell-2 is NIL. % 
ce I 1-2: (=> [message: Ml 

(cases M 
(=> [store' x reply-to: Cl 

activate <C, [done! l >) 

(=> [contents? rep I y-to: Cl 
activate <C,contents(P)>))} 

% Pis precursor of this event. % 
contents(P) = if P=creation(cell-2} 

then NIL 
else if niessage(P}=' [store: x reply-to: CJ 

then x 
else lookup(precursor(P)) 

Section 2.5.5 
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3. Storage Management and Garbage Collection 

EXODUS 12 
22 And ye sha 11. take a bunch of hyssop, and dip U in the blood that is in the 
bason, and strike the lintel and the two side posts with the blood that Js in the 
bason: and none of you shall go out at the door of his house until the morning. 
23 For the LORD will pass through to smite the Egyptians; and w-hen he seeth 
the blood upon the lintel, and on the two side posts. the LORD will pass over 
the door, and wiU n~t suffei: the destroyer to come in unto your houses to smite 
'JOU. 

King James Version of the Bible 

In this chapter, we consider a problem which ari5es in the implementation of actor 

systems intended for real-time applications. This problem is the management of 

acquaintance vectors, messages, and the like. Although many ad hoc schemes could be 

contrived, we argue that since these objects contain namts (• pointers) to other objects, a 

more elegant etpproach would use a garbage-collected heap. But classical garbage collected 

heaps hetve the problem that the allocation routine occasionally calls the garbage collector, 

which takes an amount of time proportional to the size of the heap to finish. During this 

hiatus, the heap is unavailable to the rest of the system. 

The next chapter presents a new heap management algorithm which works 

incrementally, by performing a little of the work of garbage collection on every _call to the 

storage ·allocation routine. In this way, the huge varianct in the amount of time required to 

"allocate a block of storage is reduced to zero. This algorithm aids in the programming of a 

system with hard real-time constraints because the time required to allocate an object and 

access its parts is completely predictable. 

Because our heap management algorithm is essentia11y a real-time simulation of a ·list 

memory" ·(in the spirit of IPL-V [69) or a LISP machine [29.41,11)) on a ·random acc.ess 

memory", we will often use the phrase ·ust memory• instead of •garbage-collected heap·. 
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3.1 Advantages of List Memory over Random Access 

Memory 

The question arises as to why we go to so much effort to simulate a list memory on an 

automaton with a rand.om access memory. After al~ with a random access memory, one can 

access any memory cell in the address space in urnt time, whereas one must trace lists to 

access most of the memory cells of a list memory. 

The answer is that we rarely use the completely random access ability of t.he RAM. 

The actions of a CPU in executing an instruction stream are highly predictable, since most 

programs consist of lists of instructions with a few conditional and unconditiooal branches 

thrown in; in other words, most programs are list structure themselves! The run time 

systems of higher level languages include stack structured or tree structured variable 

binding envirooments which again do not make full use of the random access abilities of 

the memory. 

In fact, the only two constructs that do make essential use -of the random access 

property of the memory are FORTRAN-style array.s of memory cellsl and hash tables. 

However, even in applications which use arrays. we. often see more structure than a simple 

one-to-one mapping of indice.s to memory ceUs. Jf the arrays are multidimensional, many 

systems store them as vectors of addresses to other vectors--i.e. multilevel structures. If the 

arrays are sparse, they are sometimes stored as doubly-linked list structures or in hash 

tables, either to speed up processing or reduce storage..or both. Even arrays without such 

sophisticated structure are usually processed in row or column order, and rarely are accesses 

made to random array elements. In fact. most arrays which are not scanned linearly are 

being used to simulate list structure! Thus even array structures, for which random access 

memory should be ideal, do not normally take advantage of random .accessing. 

1. The semantics of an array_ require that adjacent elements of an array occupy adjacent 
storage locations so that a probe of a random element in the array takes approximately 0(1), 
regardless of the size of the array. 
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Hash tables, which simulate an associative memory by interpreting a key--suitably 

transformed--as an index to memory, make the most important' use of the random accessing 

ability of these memories. However, even this use is limited, since most hash table 

algorithms do a linear search of the bucket which is chosen by ha-shing. It is also difficult 

to extend hash tables, because doing so requires copying and rehashing every element of the 

table to a new, larger table according to a new hashing. function.2 This brings us to the 

primary problem of random accessed memory--it is extremely hard to ttorganize and 

re-allocate memory because much data must be physically moved, and thrs movement is 

expensive. 

List memory, on the other hand, satisfies a substitution propnt•j which has both a 

stronger and a weaker form. The stronger form of this ·property States that any single 

instance of a list node·or atom in a list stru~ture can be replaced by another piece of list 

structure or an atom, with only a minor, lbcal chartp to the list memory. This substitution 

reqtiires only a constant amount of time if the instance to be substituted for ·is •lready 

known and the change is to be permanent.3 These substitutions furthermore do not affect 

the access paths to the nodes of the memory which ltave .nOt been substituted for; hence 

there is much less need for synchronization among multiple pt'OCesses making structural 

changes to a list memory than among multiple' proeesses meving 'data·around in a random 

access memory. 

This substitution property is related to the phrase structure 1Jroperty of higher level 

languages such as Algol or LISP, 'Where a wt.Gle subexpr~, can also appear in most 

contexts in which a constant 9r variable can appear. This feature·Colltrasted with early 

FORTRAN experience which allowed fuH expressions in only a few contexts. The free 

substitution of an expression in contexts where mnstants or variables are allowed is atso 

ca lied referential transpart'R.C1 and is an artifact 'Of ~ ·e.aluatieft Of 8presslons in those 

2. This can be done incrementaUy, as the next chapter lndkates. 
3. A whole list can also -be subsdtuted for one·of Its own sublists, thus generating a 

directed loop in the structure of the list memory. 
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contexts only for the purpose of the value they produce, not the side-effects they cause. (To 

the extent that languages allow side-effects of e>cpresJions. they vfolaie the principle of 

referential transparency.) This substitution propert)' al» operates in contextfrtt languages. 

wherein a non-terminal generates the same sublanguag~ regardless of the surrounding 

context. 

The substitution property works in a11 these systems because they are based on tree 

and graph structures rather than on linear strings and 11«tors. A tree may sprout new 

branches from any limb without disturbing the other branches, but inserting new elements 

in the middle of a string or a vector will affect all accesses to the elements after the inserted 

part, because they are now further from the beginning (or the end) of the string. 

The weaker sense of the substitution property preserves the conceptual idea of subtree 

replacement, but instead of making a permanent change in the list memory structure, 

enough of the main tree is copied with the new subtree replacing the old subtree such that 

the new tree "looks like" the old one, except for the substituted subtree. The conceptual 

s~nse of substitution is retained, because each subtree except for the one replaced can still be 

accessed in the new tree via the same access path. that it had in the old one. However, 

because every node on the access path from the root of the new tree to the substituted 

subtree is a newly created node, the change is not local and the time to perform the 

operation is not bounded. However, in most cases the depth of the tree wi11 be only 

O(log N), where N is the total number of nodes in the ·tree, so that this type of 

reorganization is still much cheaper than re-organizing a random access memory, which 

would require time O(N). 

A pleasant result of the use of the substitution property--either in its strong or weak 

form--is that identical subtrees can be shared because list memory allows an arbitrary 

directed graph structure: Thus, where the concatenation of strings which are represented 

explicitly requires that the strings be copied into a new area of storage, a list memory allows 

the representation of a string as the fringe of a tree structure, where some of the subtrees 

can be shared with representations of other strings. In such a representation, concatenation 
< ·~ ' 

does not require the copying of the constituents, but requires only the formation of a new 
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node which points to the two constituent substrings. In actual practise in symbolic 

manipulation systems [40,76), such shared representations save a great deal of storage, and if 

processing algorithms know of such sharing, they can sometimes save a great deal of time 

by considering each shared substructure only once, when it ts first encountered by the 

algorithm, instead of every time it is encountered. 

3.2 Allocation Problems of Random Aeoess S*orage 

Computational complexity theorists have made great strides in the past ten years in 

identifying and proving ·certain tasks and problems "hard". While what_ constitutes a "hard" 

problem may vary somewhat depending upon your patience ar:id budget, nearly everyone 

agrees that if the time or space required to comp~te the answer goes up at least 

exponentially with the size of the inllut paramet~rs, then the problem is hard. Now there is 

a class of problems called N P-compltlt problems which have not yet been proved to require 

exponential . beha~ior on the standard deterministic serial computer, but for which all 

existing algorithms are exponential. One of the largest subclasses of the NP-complete class 

consists of allocation and scheduling problems, wh_ich for our purposes refer to storage and 

time allocation. In fact, almost all allocation and scheduling problems which involve 

discrete sizes and times are "hard" problems [90,241 

A real-time system requires response delays to stimuli which are guaranteed to be 

within specified tolerances. The resources required for such a response vary with the 

current stimulus and the history of preceding stimuli. Two of the most important of those 

resources are storage cells and processor cycles. Optimal scheduling of titian storage cells_ or 

processor cycles a lone is an NP-complete packing problem, and scheduling them both 

together is a two-dimensional packing problem which is surely just as hard. Now if we also 

r·~uire that allocated storage may not be moved between the time it is allocateQ and the 

time it is released, then we must also try to minimize storagt fragmentation, wherein a 

significant amount of free storage becomes unusable because it is spread throughout the 

address space in little pieces, none of which is large enough to be usable. 
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Many designers ignore the fragmentation problem and live with nailed-down storage 

by giving fixed allocation to all the tables thlit the systei:n needs and planning very carefully 

the sizes of the tables. However, this leads to systems which are not robust, which break 

down when faced with a situation slightly different from that envisioned by the system 

designers. These systems break down with a message indicating that some obscure table 

has overflowed and in many cases the problem is uncorrect.ab.le because the table sizes 

cannot be changed. However, even if the system designer wanted to design a fail-soft 

system--i.e. one which would fail totally only when all resources were uniformly 

exhausted--he w.ould find it very hard to do so and still stay within the real-time 

requirements of his application, because of the large amount of copying involved in the 

reorganization of random access storage. 

Enter the list memory and our real-time simulation of it on a random access memory. 

Using this scheme, the system designer can solve his problems with a 11\UCh more flexible 

memory paradigm than the random access rnelllQfy. lie can design his system with a list 

memory having a conceptually infinite number of cells, which are. all interchangeable, and 

hence only the total number required would matter, not the order in which they were used. 

Furthermore, so long as the total number of accessible cells remairu less than the maximum 

allowed by the memory, he need not worry about the memory becoming fragmented 

through combinations of allocations and deletions. If his cell requirements grew by a factor 

of 10 or 10 million, he need not change one bit of his program, since there are no addresses 

stored and hence no address space limitations.4 With current hardware (real) address spaces 

growing by approximately one bit per year, he need not worry that his program will become 

obsolete in only a few years. 

4. A user program need never know that actual size of a list memory pointer, since the 
program will never deal with on~ directly, but only through commands which change the 
state of a mot. Therefore, the program is unaffected by a change in pointer size. 
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The list memory eliminates the problem of fragmentation and table growth, thus 

reducing the allocation constraints under which real-time· systems must operate. The 

scheduling of time in these systems· remains hard, since real-time systems continue to be at 

the mercy of their stimuli, but at least we will have given them better control over their own 

interna I storage .. 

Although we show how a serial computer can do list processing in real time, no 

current state-of-the art computer is entirely serial. Most have hardware interrupt 

capabilities and external hardware OMA (direct memory access) J/0 devices. OMA devices 

cause trouble since they ignore the list structure that the system is imposing upon the 

memory and require that their buffers be nailed ·down for the duration of the OM A 

transfer. This lacuna can only be fixed by making the OMA device respect the list 

structure of the memory. 

A system using DM A devices is made most modular by using a separate processor as a 

memory controller which handles access requests from both the CPU and OM A devices and 

hence preserves the appearance of the memory as a list memory to all the world. Within 

the next few years, there will be room on a silicon chip to implement both a controller and a 

large number of memory cells to create a true "list memory chip•. Since non-standard 

memory chips such as FIFO (first-in, first-out) chips are becoming available, why not truly 

useful devices like list memory chips? 
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4. List Processing in Real Time 

In this chapter} we present and analyze carefuHy our method for incremental garbage 

collection. Although presented here in the terminology of LISP, the algorithm works 

perfectly well for SIMULA class objects {27,15,2] and CLU cluster objects [611 More to the 

point, the algorithm is perfect for the small acquaintance arrays encountered in an actor 

implementation. 

A real-time list processing system is one in whith the time required by the elementary 

list operations {e.g. CONS, CAR, CDR. RPLACA, ~PLACD. EQ, and ATOM in LISP) is 

bounded by a (small) constant. Classical implemeflt.iltions. of list pr-OCeSSing systems lack this 

property because allocating a list cell from the heap may cause a garbag1 coll~ction, which 

process requires time proportional to the heap size to finish. 

A real-time list processing system is presented which contirnlously reclaims garbage, 

including directed cycles, while lineari,iing and comp~ng the accessible cells into 

contiguous locations to avoid fragmenting the free storage pool The program is small and 

requires no time-sharing interrupts, making it suitable: fOf. m4cfo:code. Finally, the. system 

requires the same average time, and not more than twice the space. of a classical 

non-copying implementation, and those space requirements can be reduced to approximately 

classical proportions by compact list representation. 

Arrays ,of different ~izes, a program stack, and l;lash linking are simple extensions to 

our system, and reference counting iJ.found to be.inferior for ~ny applications. 

1. This chapter is essentially the same as the paper •Li$t PraceS$ing in Real Time on a 
Serial Computer" [5). 
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4.1 Introduction and Previous Werk 

List processing systems such as LISP [64] have slowly gained popularity over the years 

in spite of some rather severe handicaps. First, they usually interpreted their programs 

instead of compiling them, thus increasing their running time by several orders of 

magnicude. Second, the srorage structures used in such systems were inefficient in the use of 

storage; for example, compiling a program sometimes halved the amount· of storage it 

occupied. Third, processing had to be haked periodically to reclaim storage by a long 

process known as garbage. collection, which laboriously ·traced and marked every accessible 

cell so that those inaccessible cells could be recycled. 

That such inefficiencies were tolerated for so long is a tribute to the elegance and 

productivity gained by programming in these languages. These languages freed the 

programmer from a primary concern: storap management. The programmer had only to call 
' 

CONS (or, its equivalent) to obtain a pointer to 'a fresh stOrage block; even better, the 

·programmer had only to relinquish all copies· or th-e pointer and the storage block would 

automatically be reclaimed ·by the tireless garbage"co11ect0r. The pr0grammer no longer 

had to worry about prematurely freeing a block or storage whkh was still in use by another 

part of the system. 

The first problem was solved with the advent of good 'COmpilers [67,88] and new 

langu:1ges such as SIMULA especiaRy designed for· tffacient compifat~on [27,15,21 The 

second was atso solved to .some extent by· those same compiters because the user programs 

could be removed from the list storage area and freed from its inefficient constraints on 

representation.2 Other techniques such as compact list representation c·cnR-codingj 

[il,11,22] have been proposed which also offer partial solutions to this problem. 

2. In many cases, a rarely used program is compiled not to save time in i~ execution, but 
to save garbage-collected storage space. 

----------
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This chapter presents a solution to the third problem of classical list processing 

techniques and removes that roadblock. to their more general use. Using the method given 

here, a computer could have list processing primitives buik in as machine instructions and 

the programmer would still be assured that each instruction would finish in a reasonable 

amount of time. For example, the interrupt handler for a keyboard could. store its 

characters on the same kinds of lists--and in the same storage area--as the lists of the main 

program. Since there would be no long wait for a garbage collection, response time could be 

guaranteed to be small. Even an operating system c0u1d use these primitives to manipulate 

its burgeoning databases. . Business database designers no longer need shy away from 

pointer-based systems, for fear that their systems will be impacted by a week-long garbage 

collection! As memory is becoming che~per3, even microcomput,~s could be built having 

these primitives, so that the prospect of controlling one's kitchen stove with LISP is not so 

far-fetched. 

A real-time list processing system has the property that the time required by each of 

the elementary operations is bounded by a constant independent of the number of cells in 

use. This property does not guarantee that the coll#ant wm be small enough for a 

particular application on a particular computer, and hence has been . ca11ed 

"pseudo-real:-time" by some. However, since we are presenting the system independent of a 

particular computer and application, it is the most that can be said. -In all but the most 

demanding applications, the proper choice of hardware can reduce the constants to 

acc.,ptable values. 

E}Ccept where explicitly stated, we wiU assume the classical Von Neumann serial 

computer architecture with real memory in this chapter. This model consists of a memory, 

i.e. a one-dimensjonal array of words, each of which is large enough to hold (at least) the 

representation of a non-negative integer which is an index into that array; and a central 

processing unit, or CPU, which has a small. fixed number of registers the size of a word. 

The CPU can perform most operations on a word in a fixed, bounded amount of time. 

3. Work is progressing on 106 bit chips. 
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The only operations we require are load, store, add, subtract, test if zero, and perhaps some 

bit-testing. It is hard to find a computer today without these operations. 

As simple as these requirements are, they do exclude virtual memory computers. These 

machines a re interesting because they take advantage of the locality of reference effect, i.e. 

the non-zero serial correlation of CPU accesses to memory, to reduce the amount of fast 

memory in a system without greatly increasing the average access time. However, the time 

required to load a particular word from virtual memory into a CPU register is bounded 

only by the time to access the slowest memory. Since we are more interested in tight upper 

bounds, rather than average performance, this class of machines is excluded. 

Since the primary list processing language in use today is LISP. and since most of the 

literature uses the LISP paradigm when discussing these problems, we will continue this 

tradition and center· our discussion around it Due to its small cells, which consist of 2 

pointers apiece, LISP is also a kind of worst case for garbage collection overhead. 

There are two fundamental kinds of data in LISP: ltst twls and atoms. List cells are 

ordered pairs consisting of a car and a cdr, while atoms are indetomposable. ATOM(x) is a 

predicate which is true if and only if x is an atom (i.e. if and only if x is not a list cell); 

E~x.y) is a predicate which is true if and only if x and y are the same object; CAR(x) and 

CDR(x) return the car and cdr components of the list ceU x, respectively; CONS(x,y) returns 

a new (not EQ.. to any other accessible list ceH) list cen whose car is initially x and whose cdr 

is initially y; RPLACA(x,y) and RPLACD(x,y) storey into the car and cdr of x, respectively. 

We assume here that these seven primitives are the only ones which can access or change 

the representation of a list cell. 

There have been several attempts to tackle the problem of rea1 time list processing. 

Knuth [57, p. 122] credits Minsky as the first to consider the problem, and sketches a 

multiprogramming solution in which the garbage c:ol1eaor shares time with the main list 

processing program. Steele's [80] was the first in a flurry of papers about rn.ultiproctsslng 

garbage collection which induded contributions by Dijksera [31.321 and Lamport [58.591 

Muller (68) independently detailed the Minsky-Knuth-Steele method, and both he and 

Wad1er [93] analyzed the time and storage required to make it work. 
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The Minsky-Knuth-Steele-Muller-WadJer (MKSMW) method for real-time garbage 

collection has two processes running in parallel. The list processor· process is called the 

mutator while the garbage collector is caJled the collector (these terms are due to Dijkstra 

[3l]). The mutator executes the user's program whiJe the collector performs garbage 

collection, over and over again. The co11ector has three phases: mark, sweep, and relocau. 

During the mark phase, all accessible storage is marked as such, and any inaccessible 

storage is picked up during the sweep phase. The relocate phase relocates accessible cells in 

such a way as to minimize the address space required. Since the mu~ator continues running 

while the mark and relocate phas~ proceed, the free list m~st be long enough to keep the 

mutator from starvation. During the sweep phase, cells must be added to the free list/aster 

than they can be taken off, on the average, else the net gain in. cells from that garbage 

colJection cycle would be negative. 

Muller [68] and Wadler [93] have studied the behavior of this algorithm under 

equilibrium conditions (when a cell is let go for every cell CONS'ed, and when the rates of 

cell use by the mutator, and of marking, sweeping, and relocating by the collector, are a1J 

constant). If we let hl be the ratio of the rate of CONS'ing to that of rnarking, s be the ratio 

of the rate of CONS'ing to that of sweeping, and r be the ratio of the rate of CONS'ing to 

that of relocating, then we can derive estimates of the size of stor:age needed to support an 

accessible population of N cells under equilibrium condlti()Ps.i l{sing, ~hese assumptions, we 

derive: 

. 111+ hn+U (r+U 
Maxihlum MKSMW Storage Required :SN----------~-+ size of collector stack 

1-s(r+U 

We note that r=O if there is no relocation (i.e. it happens instantaneously), in which 

case we have the simpler expr~sion: 

i. Of course s<I, or else the storage required is .infinite. 
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1+2• 
Maximum MKSMW Storage Required s N ----+size of collector stack 

1-s 

Section 4.1 

The collector stack seems to require depth N to handle the worst case lists that can 

arise, but each position on the stack need only hold one pointer. Since a LISP cell is two 

pointers, the coUector stack space requirement is .SN. Thus, we arrive at the inequality: 

1.5+2•-.Se 
Maximum MKSMW Storage Required s N ----------

·· 1-s 

These estimates become bounds for non-equilibrium situations so long as the ratios of 

the rate of CONS'ing to the rates of marking, sweeping, and relocating are constant. In 

other words, we relativize the rates of marking, sweeping, and relocating with respect to a 

cons-counter rather than a clock. 

The Dijkstra-Lamport (DL) method (31,32,58,59] also has the mutator and collector 

running in parallel, but the collector uses no stack. h marks by scanning all of storage for a 

mark bit it can propagate to the marked cetrs offspring. This simple method of garbage 

collection was considered because their main concern was prOVing that the collector actually 

collected only and all garbage. Due to its inefficiency, we will not consider the storage 

requirements of this method. 

Both the MKSMW and the DL methods have· the drawback that they are parallel 

algorithms and as a result are incredibly hard to analyze and prove correct. By contrast. 

the method we present is serial, making·analyses and proofs easy. 

4.2 The Method 

Our method is based on the Minsky garbage collectian algorithm (66], used by 

Fenichel and Yochelson in an early Multics LISP [3i], elegantly refined by Cheney [20], and 

applied by Arnborg to SIMULA [2l This method divides the list space into two 

semis paces. During the execution of the user program, an list cells are locat~ in one of the 

semispaces. When garbage collection is itavok~. iitaccenible C:e11S"are traced, and Instead 
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of simply being marked, they are moved to the other semispace. A forwarding address is 

left at the old location, and whenever an edge is traced which points to a cell containing a 

forwarding address, the edge is updated to reflect the move. The end of tracing occurs 

when all accessible cells have been moved into the "to" semispace (tospace) and all edges 

have been updated. Since the tospace now contains all accessible cells and the "from" 

semispace lfromspace) contains only garbage, the collection is done and the computation can 

proceed with CONS now allocating cells in the former fromspace. 

This method is simple and elegant because I) ir requires only one pass instead of three 

to both collect and compact, and 2) it requires no collector stack. The stack is avoided 

through the use of two pointers, B and S. B points to the first free word (the bottom) of the 

free area, which is always in the tospace. B is incremented by COPY, which transfers old 

cells from the fromspace to the bottom of the free area, and by CONS, which a11ocates new 

cells. S scans the cells in tospace which have been moved, and updates them by moving the 

cells they point to. S is initialized to point to the beginning of tospace at every flip of the 

semispaces and is incremented when the cell it points to has been updated. At all times, 

then, the cells between S and B have been moved, but their cars and. cdrs have not been 

updated. Thus when S·B all accessible cells have been moved into tospace and their 

outgoing pointers have been updated. This method of pointer updating is equivalent to 

using a queue instead of a stack for marking, and therefore traces a spanning tr.ee of the 

accessible cells in breadth-first order. 

Figure 13 shows a diagram of this algorithm in operation.· 

Besides solving the compaction problem for classical LISP, the 

Minsky-Fenichel-Yochelson-Cheney-Arnborg (MFYCA) method allows simple extensions to 

handle non-uniformly sized arrays and CDR-coding because free storage is kept in one 

large block. Allocation is therefore trivial; to allocate a block of size n, one simply adds n to 

the "free space pointer·. 

Copying garbage collectors have been dismissed by many as requiring too much 

storage for practical use (because they appear to use twice as much as classical LISP). but 

we sha II see that perhaps this judgment was premature. 
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Fig7 13. The Cheney Algorithm 
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-1-- ----

' REGISTER BANK 
I 
\ --------------------------------------------------------------
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\ --------------\-------------~-----~-------------------~-------
\ t \ FROMSPACE 
' I I \ I I 

\ I v I I 
-V--l--------l--V---------------------------------------------
1 I-> free area <-I 
--------------------------------------------------------------

t t 
5-> B-> 

TOSPACE 

We present the MFYCA algorithm here as Figure Hin pseudo-Algol-BCPL notation. 

The notation "O'.[j3)" means the contents of the word whose addrm is the value of a plus the 

value of 13. i.e. the contents of a+l3. If it appears on the left hand side of":•". those contents 

are to be changed. Thus. p[i] refers to the i-th component of the vector pointed to by p. 

The function size( p) returns the size of the array pointed to by p. The notation ·a Be 11· is 

similar to the notation "a;13" in that a and 13 are ex~ted in order; however. "a Be 11· returns 

the value of v.. rather than the value of 13. Thus.";" and "&"are the duals of one another: 

·a1;0'.2; ... ;an" returns the last value (that of· an) whereas "a
1
&a

2
& ... Bca

0
" returns the first 

value (that of 0'.
1
). 

Our conventions are these: the user program has a bank of N R registers 

R[l], ... ,R[N R]. T lie user program ma1 not "squl.rrtl at1Ja1" pointers outside of tl1.e bqnk R 

during a call to CONS because such pointers would become obsolete if garb~ge collection 

were to occur. (We will show later how to deal with a user prograi:n stack in such a way 

that the real-time properties of our system are not violated.) Pointers either are atoms or 
.. I 

refer to cons cells in fromspace or tospace. _A cons cell c is represented by a 2-vector of 

pointers: car(c)=c[O], cdr(c)-c[I]. FLIP, FROMSPACE and TOSPACE are implementation 
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dependent routines. FLIP interchanges the roles pf. fromspace and tospace by causing 

CONS and COPY to allocate in the other semispace and the predicates FROMSPACE and 

TOSPACE to exchange roles. FLIP also has the responsibility of determining when the 

new tospace is too small to hold everything from the fromspace plus the newly CONS'ed 

cells. Before flipping, it checks if size(fromspace) is less than (1+111)[size(tospace)-(T-B)], where 

m is a constant parameter and T is the top of tospace. If FLIP finds that fromspace (the new 

tospace) is too small, either it must extend the space, or the system may ·later stop with a 

"memory overflow" indication. 

In order to convert MFYCA into a real-time alg0rithm, we force the mark ratio m to 

be constant by changing CONS so that it does k iterations of 'the garbage collection loop 

before performing each a !location. But this means· that both semispaces contain accessible 

cells at almost all times. In order to simplify the algorithm and the proof, wt trick. tht ustr 

program into believing that garbage collection ran and flnislttd at t~ time of the last flip; i.e. 

we assert that, as before, the user program sees addresses only in tospace. 

Some slight effort must be made to keep up this appearance. When the semispaces are 

interchanged, all the user program registers must be:t.Jpdate<t. immediately to point to 

tospace. This gives the collector a head start on the mu~ator. SiJ1ce the only operations that 

might violate our assertion are CAR and CDR, we make sure that CAR and CDR cau·se 

forwarding addresses to be followed, and cells to be moved, when necessary. This ensures 

that the mutator cannot pass the collector. It turns out that preserving our assertion is 

much simpler than preserving the corresponding assertions of DL [31~32,58,59]. Jn 

particular, R PLACA and RPLACD do not cause any trouble at tll! 

There is another problem caused by interleaving garbage collection with normal list 

processing: the _new c.ells that CONS creates will be interleaved wit.ti those moved, thereby 

diluting the moved cells which must be traced by CONS. Of course, new cells have their 

cars and cdrs already in tospace and therefore do ndt need to be traced. We avoid this 

waste of trace effort through the -use of the pointer T, which points to the· tt>p of the free 

area, where we will allocate all new ce11s. 
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Fig. Ii. The Minsky-Fenichel-Vochelson-Cheney-Arnborg Garbage Collector 
pointer B; l Bottom; poinU to bottom of free area. '£ 
point er S: l Scan; points to first untraced cell. 'i 
point er T; l Top; points to top of tospace. 'f. 

't Assertions: S :S B :S T and T-B is even.'f. 
'f. AHocate the Im 001 (x , . y). '1 pointer procedure CONS(x,y) • 

begin 
if B-T 

then 
begin 

fllpO; 
for i .. 1 to NR 

do R [ i } : =move (RC iJ ) ; 
x:=move(x); y:-move(y); 
while S<B 

end; 

do begin 
SC0J:~move(5(0J); 
SClJ:-11avetSllJ}; 
S : • S+2 

end 

if B~T the~ error; 
Bl0l : .. ><; BCll :• y; 
B & (B : .. B+2) 

end: 

pointer .procedure CAR(x) • >d0J; 

pointer procedure COR{x) • x[l]; 

procedure RPLACA(x,y) e x[0] :• y; 

procedure RPLACO(x,y) & x[l] :• y; 

boolean procedure EQ(x,y) • x•y; 

boolean procedure ATOM(x) • 
not tospace (x); 

pointer procedure MOVE(p) a 
if not fromspace(p) 

then p 
else begin 

if not tospace(p[8]) 
then pC0l :• copy(p); 

p [0] 

end; 

pointer procedure CQPY(p) a 

'f. If there is no more free space, l 
l collect all the gar~e. 'f. 
l This block is the ·•garbage collector·. 'f. 
i Interchange semispaces. S 
'f. Update all user registers. 'l 

l . Update '.our arguments. 'f. 
'f. Trace all accessible ce11s. l 

'l Update the car and cdr. 'f. 

'l Point to next untraced cell. 'f. 

l Memory is full. l 
'f. Create new cell at bottom of free area.l 
l Return lhe current value of B 'f. 
'1 after. 'lteppillf it to· next cell. '1 

'1 A cell consists of 2 words; 'l 

t car is lst; cdr is 2nd. '1 

l car(x) :• y 1 

i cdr(x) :• y 1 

'l Are x,,y are the same object? 1 

1 Is x an atom? '1 

1 Move p .if n~ed; retu.rn new address.'1 
'1 We only need to move old ones. 'l 

. 'f. This ha~$,~ lot. '1 

i We must .move p. I 
l Copy it into the bottom of free area. l 
I, Leave and NtUm fOrwarding address. I 

'1 Create a copy of a cell. '1 
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begin 
if 8~T then error; 
El[0J := pE0l; 8(1J .- p(l]; 
8&(8:=8+2) 

encl; 

'7. TOSPACE, FROMSPACE test whether a 

'1. Allocate space at bottom of free area.'7. 
'7. Memory fu 11? '7. 
'1. Each cell requires 2 words '7. 
'7. Return the current value of B '7. 
'1. after moving it to next cell. '7. 

pointer is in that semispace. 1. 
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Figure 15 shows a diagram of our incremental method in operation, while figure 16 

presents the code for our real-time list processing system. 

The time required by all of the elementary list operations in this algorithm, with the 

exception of CONS, can easily be seen to be bounded by a constant because they are 

straight-line programs composed from primitives which are bounded by constants. CONS 

is also bounded by a constant because the number of mutator registers is a (small) fixed 

number (e.g. 16), and the parameter k is fixed. In principle, giYen the number of registers 

and the parameter k, the two loops in CONS could be expanded into straight-line code; 

hence the time it requires is also bounded by a constant 

The proof that the incremental collector eventually moves all accessible cells to tospace 

is an easy induction. Upon system initialization there are no accessible cells, hence none in 

tospace, and so we have a correct basis. Suppose that at some point in the computation we 

have just switched semispaces so that tospace is empty. Suppose further that there are N 

accessible cells in fromspace which must be moved to tospace. Now, every cell which was 

accessible at the time of flipping eventually gets moved when it is traced, unless lost through 

RPLACA and RPLACD, and as a result appears between Sand B. Furthermore, a cell is 

Fig. 15. The Serial Real-Time Method 

I I 
-l--

1 

+--------------------------------------------- . 
REGISTER BANK 

I 
\ --------------------------------------------------------------
\ I I 

\ --------------\-----------------------------------------------
\ t \ FROMSPACE 
\ I I 
\ I I 
\ I v I I I I I 

I 
I 

I 

-V--l--------l--V-V-----------------------------------1----V--
I I-> free area <-I new cells I 

t 
5-> 

t 
8-> 

TOSPACE 

t 
<-T 

( 
I 
I 
I 
I 
I 
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Fig. 16. The Serial Real-Time List Processing System 
integer k; ~ Global trace rati~ parameter: the 

number of cells to trace per cons.~ 
pointer T; '1 Top; Points to top of free area. ' 

pointer procedure CONS(x,y) • 

begin 
if B=T 

then begin 
if S<B then error; 
f I ipO; 
for i • l to NR 

do R C i l : .. move <R [ i J ) ; 
x:a111ove(x}; y:••ove(y) 

end; 
for i • 1 to k while S<8 

-do begin 
SC0J:•lllOvefSC9J); 
SCll:•move{S(lJ); 
s l .. 5+2 

endi 
if B=l then error; 
T : • T-2; 
H0J : .. x; HU i .. y; 
T 

endl 

pointer procedure CAR(x) • 
>d0J : • move ( x {0)) ; 

pointer procedure COR(x) • 
>< U J : = move ( x U]) ; 

i Do some collection, 
then allocate . (x . y). l . 

l .Check if free area is empty. i 
I Switch semispaces. Memory is full I 
'1 if tracing ,is not finished. l · 
'1 Flip semispaces. l 

l Update user registers ' 
l and our arguments. '1 

'1 Do k iterations of gc. I 

l Update car and eek l 

'1 Go on to next untraced ce1l l 

'l Aau&Dy create the tell. i 
i Nov.C! in ca.c and cdr. '1 
I Return address of new cell. l 

I MoYe. update and return x{OJ. '1 

'1 Mwe. update and return x{I]. '1 

Procedures not redefined here are as before. 

moved only once, because when it is moved it leaves behind a forwarding address which 

prevents it from being moved again. When the pointer S reaches a cell, its edges are 

traced--i.e. the cells they point to are moved, if necessary. Finally, only cells which hav~ been 

moved appear between Sand B. Therefore, the number of those accessible, unmoved cells in 

fromspace decreases monotonically, eventuany resulting in no accessible, unmoved cells in 

fromspace. At this point, the collector is done and can interchange the two semispaces. 
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It should be easy to see why the other Hst operations cannot adversely affect the 

progress of the collector. A CAR or CDR can move a cell before the collector has traced it, 

but since moving it increases B bl.it not S, it will be traced later. RPLACA and RPLACD 

can affect connectivity, but since all of their arguments are already in tospace, they have 

already been moved and may or may not have been traced. Consider RPLACA(p,q). 

Suppose that p has been traced and q has riot. But since q has been moved but. not traced, 

it must be between S and B and will not be missed. Suppose. on the other hand, that q has 

been traced and p has not. Then when p is traced, th~ o1d CAR of p will not be traced. 

But this is all right, because it may no longer be accessible. If it stiH if.the target of an edge 

from some accessible cell. then it either already has, or will be, traced through that ~dge. 

Finally, if either both p and q have b~ traced or both hoe"~· l;>een, there is obviously 

no problem. 

This algorithm c"n also be proved correct by the methods of D~ [31,32.58.591 because 

this particular sequence of interleaving collection with mutation Is only one of the legal 

execution sequences of the DL algorithi>i: on a serial machine. ·· Th~refore, if the DL 

algorithm is correct, then so is this one. The correspondence is this: wlaitt nodes are tltose 

which reside in fromspace, i.e. those which have not yet been ,moved; 1''1 nodes are those 

which have been moved but have not yet been traced, i.e. those between S arid B; and blaclt. 

nodes are those which haYe been moved and traced, and those which have been allocated 
. . f. .• _·;_ 

directly in tospace (cells below S or above T). Then the assertions are: 

A) each node will only darken monotonically; 

B) no edge will ever point from a black node to a white one; and 

C) th.e user program sees only grey or bla<:}t nodes. 

We can now see why the burden is on CAR and CDR rather than RPLACA and 

RPLACD--the latter will not violate B so long as the former.do not vio~te C. Using these 

assertions, we see that the mutator and the mark phase of the collector are -:ssentially doing 

the same thing: tracing accessible cells. The difference is that the ~llector goes about it 
,;. . . - - .- : 

systematically whereas the mutator wanders. Thus, only the collector knows for sure when 

all° the cells in fromspace have been traced so that the two semispaces can be interchanged. 
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Assertion C also allows CAR and CDR to update a cell in which a pointer to fromspace is 

found, thus redu.cing pointer-chasing for cells which are accessed more than once. 

We must now analyze the storage required by this algorithm. Suppose that at some 

flip of the semispaces there are N accessible nodes. Then the collector wi11 not have to 
move or trace any more than N cells. If it traces (makes black) exactly k cells per CONS, 

then when the collector has finished, the new semiSpace will contain s N+N/k • N(l+m) cells, 

· where we let m=l/k. If only N of these are ac<;essible, as in equilibrium conditions, then the 

next cycle of the collector will copy those N cells back to the first semispace, while 

performing Nm CONS'es. Hence, we have the inequality: 

Maximum SRT Storage Required s Nl2+2111} • Nt2+2/k) 

Therefore, for a program which has a maximum cell requirement of N cells operating 

on a fixed-size real me":1ory of 2M cells, the pa~ameter k must be greater than N/(M-N) to 

guarantee that tracing is finished before every flip. 

If we compare the bound for our algorithm with the bound for MKSMW, using the 

unlikely assumption that sweeping and relocation take no time (s•r-0), we find that they · 

are quite similar in storage requirements. 

Maxi mum MKSMW Storage Required < NCl.5+2111) 
Maximum SRT Storage Required s NC2+211) 

If m=l (which corresponds to one collector iteration per CONS), the two algorithms 

differ by only I part in 8, which is insignificant given the gross .assumptions we have made 

about M KSMW's sweeping and relocation speeds. It is not likely that the storage 

requirements of a MKSMW-type algorithm can be significantly improved because it cannot 

take advantage of techniques like stack threading or CDR-coding. Stack threading cannot 

be done, because accessible cells have both their car and cdr ln use.5 CDR-coding using 

MKSMW is very awkward because CONS must starch for a free cell of the proper size and 

location before allocating a cett, since the free space ii fragmented. On the other hand, our 

5. The Deutsch-Schorr-Waite coUector (57, p. it7-i18l .threads• the stack but temporarily 
reverses the list structure, thus locking out the mutator for the durati9n. 
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algorithm can be easily modified to use CDR-coding and thereby reduce storage 

requirements to approximately N(l+m). 

4.3 The Parameter m (= 1/k) 

If k is a positive integer, then the parameter m (•1/k) will lie in the interval O<m:Sl. 

Th~refore, the factor of l+m in our bounds must lie between I and 2. This means that the 

storage requirements for our method can be adjusted by varying k, but they will not vary 

by moi·e than a factor of 2 (so long as k is integral). Now, the time to execute CONS is 

proportiona I to k+c, for some suitable constant c. Therefore, one can trade off storage for 

CONS speed, but only within this limited range. Furthermore, as k rises above i the 

storage savings become insignificant; e.g. doubling k to 8 yields a storage savings of only 

IOf, yet almost doubles CONS time. Of course, if storage is limited and response time need 

not be fast, larger k's might be acceptable. 

If the method is used for the management of a large database residing on secondary 

storage. k could be made a positive rational number less_ than I, on the average. For 

example, to achieve an average k•l/3 (nt•3), one could have CONS perforn:- an iteration of 

the collector only every third time it was called. The result qf tbis would double the storage 

required (n1+l=i), but would reduce the average CONS time by almost 2/3. Of course, the 

worst case time performance for CONS would still be the same as if k were I. 

This improvement is significant because each iteration of the coUectpr traces all the 

pointers of one record. This requires retrieving that record, updating aJl of its pointers by 

moving records if necessary, and then rewritin,g the record. If there are t p(linters to be 

updated, then t+J records must be read and written. This sc;Mmds like a 1ot of work, but this 

much work is done only when a record is created;if there are no record creations, then with 

the exception of the first acces.s of a record via a pointer stor.ed in another record. the 

accessing and updating functions will be as fast as on any other file management scheme. 

Therefore, since secondary storage is usually dMr.lp bUl. s1ow.. choosing k<I in a file 

management system a Hows us to trade off storage space aga'inst average record creation 



The Parameter m ( .. Ilk) - 103 - Section 4.3 

time . 

. With a little more effort, k can even be made variabl1 .in our method, thus allowing a 

program to dynamically optimize its space-time tradeoff. For example, in a database 

m.anagement system a program might set k•O during an initial load of the database because 

it knows that even though there are many records being created. none are being let go, and 

therefore the continual copying -0f the ~Hector will achieve no ~ompaction. The function 

READ in LISP might want to exercise the same prerogative, for the same reason. Of 

course, any reduction of k should not take effect until the next flip. to.0avoid running out of 

storage before then. 

4.4 A User Program Stack 

If the user program utilizes its own stack as well as a ·bank of registers, the stack may 

(in theory) grow to an unbounded size and therefore cannot be wholly updated when the 

semispaces are flipped and still preserve a constant boUnd on the time for CONS. This 

problem may be trivially solved by simufating the stack in the heap (i.e. 

PUSH<><> E tONS(><,stack) and POPO • CORCstackl); this simulation will satisfy the 

bounded-time constraints of classical stack manipulation. However, this simulation has the 

unfortunate property that accessing items on the Stack requires time proportional to their. 

distance from the top. 

In order to maintain constant access time to elements deep in the stack, we keep 

stack-like allocation and deallocation strategies but perform the tracing of the stack in an 

incremental manner. W.e first fix the stack ac.cessif}g routin~ so that the user program 
, ' ,, ' ' ' 

never sees pointers in fromspace. This change requires tbat the MOVE routine must be 

applied to any pointers whiGh ue .. picJr.~ up from the pser stack. We must then change 

CONS to save the user stack poinW when the semispaces are flipped so that it knows 

which stack locations must be traGed-. Finally, the Qser .Jtaek POP routine must keep this 

saved pointer current to avoid tracing locations which are ,no laoger on the user stack [68). 
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The only remaining question is how many stack locations are to be traced at every 

CONS. To guarantee that stack tracing wilt be finished before the next flip, we must 

allocate the stack tracing ratio k' (the number of stack locations traced per CONS) so-that 

the rario k' /k is the same as the ratio of stack locaUons in use to cons cells in use. We 

recompute k' at each flip, because the "in use" statistics are available then. Due to this 

computation, a constant bound on the time for CONS e'Xists only if the ratio of stack size to 

heap size is bounded, and Is proportional to that ratio. 

Figure 17 exhibits these changes. 

Barbara Liskov [62] has suggested tracing the user stack from the bottom instead of 

from the top, as we have done here. The rationale behind this is that many of_the pointers 

at the top of the stack will have been discarded by the time the collector gets there, and 

those discarded pointers may never be traced. Space requirements may be slightly ,reduced 

as a result, since some garbage may be detected earlier. However, since the mutator must 

continue checking (and possibly tracing) e_very pointer it a~s frOfll the stack, the change 

results in only a marginal improvement in time. 

The complexity involved in this conversion is essentially that necessary to make the 

seria I rea I-time method work. for several. different ~pa.&ts [61~ ht such a system, each space 

is a contiguous area in the address space disJOil')t from the other spaces, and has its own 

representation conventions and allocation (and deallocation) strategies. The,system of this 

section thus has two spaces. the heap and the user stack, which must be managed by 

cooperating routines. 

4.5 CDR-Coding <Compact List Representation) 

Jn this section, we discuss the interattion of our algorithm with a partial solution to 

the second big problem with li5t structures: their tneffieitlnt U$e of storage. Whereas a list of 

5 elements in -a language like' Fortran or APL would reqeire only' a 5'elemenl' array, such a 

list in LISP requires S cells ,having two pointert apiece;; So-caltftl. .. CDR-mding· [il,11,22] 

can reduce the storage cost of LISP lists by as much as SOi. The idea is simple: memory is 
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Real-Time System wirh User Stack Fig. 17. 
1. The user stack resides in the array "ustk" and grows up:ward from 

"ustk[O]". The global variable "SP" is the user stack pointer and 
points to the current top of the user stack. The global variable "SS" 
sea ns the user stack and poirits to the highest stack level which 
has not yet been tr.aced by the collector. i 

integer SP init(a);. 
integer SS init(0); 

procedure USER_PUSH(x) • 
begin 

SP : = SP+l; 
ustk CSPJ : = >< 

end; 

pointer procedure USER_POP() • 
move(ustkCSPJ) & 
begin 
· SP := SP-1; 

SS : .. min(SS,SP) 
end; 

po inter procedure USER_G£TCn) • 
us tk CSP-nl : .. move (us tk CSP-nlJ; 

pointer procedure CONS(x,y) e 
begin 

if B=T 
then begin 

if SS>0 or S<B 
then error; 

N := flipO; 
SS :=SP; 
k' : = cei I (k*SS/N); 
for i = 1 to NR 

do ACil:=MoveCRCil); 
x: =inove (x); y: •mov~Jy) 

end; · 
for i - 1 to k' ~hile 55>0 

do begin 
ustkCSSJ:=move(ustkCSSJ); 
SS := SS-1 

end; 
for = 1 to k ~hile S<B 

do begin 
s (01 : a move (5 (0}) ; 
S ClJ : = move (S Ul); 
s : = 5+2 

1. User stack pointer. 1. 
·s User stack scanner. i 

1. Push x onto user stack. 1. 
'l Not~ x wiU not be in fromspace. i 

1. Pop top va1u~ from user stack. 1. 
1. Move value if necessary; 1. 

~ then update· stack pointer. 1. 
1. Keep stack scanner current. 1. 

1. Get n'th element from top of stack. 1. 
i Move and update if necessary. '1 

i Collect some, then allocate (x . y). f. 

~ Check if free area is empty. 1. 
f. Interchange semispaces. '% 
~ Check for m~ry. ov,erflow. '1 

'1 Set , N to nurober of ceUs in use. f. 
1. Start stack scan at top of stack. 1. 
l Calculate stack ttace effort. 1. 

't Update user registers 1. 
f. aod our afguments. 't 

1. Move k' user .sraclt elements and f. 
f. update scan pointer. 1. 

f. Do k iterations of gc. 1. 

f. Trace & update car, cdr. 1. 
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end; 
if B=T then error; 
T : = T-2; t Actually create the cell. i 

t Install car and cdr. t 

Section -t.5 

T C01 : "' ><; · T Cl J : .. y; 
T l Return address of copied cell. '% 

end; 

divided up into equal-sized chunks called Q:S. Each Q.is big enough to hoid 2 bits plus a 

pointer p to another Q The 2 bits are .decoded via the following table: 

00 - NORMAL; 

01 - NIL; 

CAR of this node is p; CDR is tn the following Q 

CAR of this node is p; CDR is NIL. 

IO - NEXT; CAR of this node is p-, CDR is the following Q 

11 - EXTENDED; The cell extension loCated at p holds the car and cdr for this node.6 

CDR-coding can reduce by ~ the storage requirements of a group of cells for which 

CDR is a H function whose range excludes non-nil atoms. This is a non-trivial saving, as 

all '"dot-Jess" s-expressions read in by the LISP reader have these properties. In fact, Clark 

and Green [22] fcnmd that after lihearization 981 of the non~NIL .cdrs .in several large LISP 

programs referred to the following cell. These savings are du·e to the fact that CDR-coding 

takes advantage of the implicit linear ordering of addresses in address space. 

What implications (ioes ~~s coduig scheme have for the elementary list operations of 

LISP? Most operations 'must dispatch on the CDR-code to compute their results, and 

RPLACD needs special hamlling. Consider RPLACD(p.q). 'If p has a CDR code of NIL 

or NEXT, then it must be changed to EXTENDED, and the result of CONS(CAR(p).q) 

placed in p.7 

The number of memory referentes in the elementary apera.tions has ~een minimi1ed 

by making the following policies [.tf2]: 

6. These conventions are slightly different from those of [<fl.lll 
7. We note in this context that if RPLACD is commonly used to destructively reverse a 

Jist--e.g, by LISP's "NRE'V:ERSE":.-the system could also ha¥e·a' -PREVIoUs• CDR-code 
so that R PLACD need not call CONS so often. 



CD R -Coding (Compact List Representation) - 107 - Section 4.5 

l) every EXTENDED cell has a NORMAL extension; 

2) the user program will never see a pojnter to the extension of an EXTENDED 

cell; and 

3) when COPY copies an EXTENDED cell. it reconstitutes it · without an 

extension. 

CONS, CAR, CDR, RPLACA and RPLACD must be changed to preserve these 

assertions, but EQ. and ATOM require no changes from their non-CDR-coded versions. 

Since an EXTENDED cell cannot point to another EXTENDED cell, the forwarding of 

EXTENDED pointers need not be iterated. These policies seem .to minimize memory 

references because each cell has a constant (between flips) canonical add.ress, thereby 

avoiding normalization [80] by every primitive list operation. 

CDR-coding requires a ·compacting, linearizing garbage collector if it is to keep 

allocation simple (because it uses two different cell ·sizes) and take fu11 advantage of the 

sequentia I coding efficiency. The MFYCA algorithm presented above compacts, but does 

not linearize cdrs due to its breadth-first trace order. However, the trace order of a 

MFYCA collector can be easily modified at the cost of an additional pointer, PB. PB keeps 

track of the previous value of B (i.e. PB points to the last cell copied), so that tracing the cdr 

of the cell at PB will copy its successor into the next consecutive location (B), thus copying 

whole lists into successive contiguous locations. 

The meaning of the scan pointer S is then changed slightly so that it points to the 

next word which must be updated rather than the next cell Fin,.uy, the trace routine iJ 

modified so that tracing the cdr of PB has priority over tracing the edge at S and the 

condition on the trace loop is modified to amortize both the copying effort (measured by 

movements of B) and the tracing effort (measured by-cmovements ofS) over all the CONS'es. 

These modtfications do not result in a depth·f.ir.st trace' -order,· but· they do result in 

cdr-chains being traced to the end, with few mtem1ptions. Thus arf' MFYCA collector can 

minimize the amount of memory needed by CDR-coded lists. 
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Figure 18 presents a real-time list system which utilizes CDR--coding. 

The size of the tospace needed for CDR-coding is {l+lli) times the· amount of space 

actually used in fromspace. With a coding efficiency improvement of e over the classical 

storage of USP cells, and under equilibrium conditions, we have the inequality: 

Maximum SRTC Storage Required :S Ne(2+2m) 

Since we have claimed that e::::.5, we get the following estimate: 

SRTC Storage Required :::: N(l+m) (!) 

But this latter expression is less than the bound computed for MKSMW. Thus, 

CDR-coding has given us back the factor of 2 that the copying garbage _collector took away. 

The real-time properties of our algorithm have not been affected in the least by 

CDR-coding; in fact, good microcode might be able to p_rocess CDR--coded lists fas~er than 

nor ma I lists since fewer references to main memory are needed. 

CDR-coding is not the final answer to the coding efficiency problems of list storage, 

because far more compact codes can be devised to store LISP'~ s~xpressions. For example, 

both the car and cdr of a cell could be coded by relative offsets rather than ~lJll pointers 

[221 However, a more compact code would repr~sent some cells in so few bits that the 

pointer we need for a forwarding address would not fit, renderil'lg our scheme unworkable. 

Part of the problem is inherent in LISP's small c_ell size; sma11 ara;ays qm perform much 

better. 

4.6 Vectors and Arrays 

Arrays can be included quite easily into our framework.. of incremental garbage 

collection by simply enclosing certain parts of th~.rollector progAm .In loops which iterate 

thro1,1gh a II the pointers in the array, not just ·.the fint and $8COt1d. The convergence of the 

method with regard to storage space can also be proved ancil bound$ deri•ed. However, the 

method can no longer claim to be real-tirlu because neither .the ,time taken by the array 

allocation function (ARRAY-CONS) nor the time taken by the array element accessing 

function is bounded by a constant. This unbounded behavior has two sources: copying an 
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Fig. 18. Real-Time System with CDR-Coding 
pointer S; 
pointer PB; 
pointer L,H; 

pointer procedure CONS<~,y) • 
begin 

if T-8<2 
then begin 

if S<B then error; 
flip(); 
for i .. 1 to NR 
do RCiJ: .. move(RCil}; 
><:=movetx); y:•move(y} 

end; 

· Section 4.6 

1. Next cell whose car needs tracing. 1. 
1. Pointer to previous value of B. 1. 
1. Low and high limits of tospace. 1. 
1. Assertion: L :s S :s PB s B s T :s H.'£ 
1. Create a new cell in tospace with '£ 
1. car of x and cdr of y. 1. 
'?. Flip when free area is exhausted. '£ 
'?. This part is the same as usual. '£ 
1. Copying is not done; memory overflow~ 
1. Interchange semJspaces. 1. 

1. Update user registers. 1. 
1. Update our arguments. 1. 

t..1hi le (S+B)/2-L < k~dH-T-2> and S<B 1. Trace and copy a measured amount'£ 
do i f PB<B 1. Extend current list. if possible. 1. 

then PB : .. (8 & COR (PB)); 1. CDR wj1J trace this edge for us. ~ 
else begin 

SC0l:•move(5{0]); 
S : .. S+l 

end; 
if B=T then error; 
T := T-1; 
if y=ni I 
then code(T} :•"NIL" 
else if y•T+l 

then code(l) :• "NEXT" 
else begin 

if B-T then error; 
T :• T-1; 
code(T) :• "NORMAL"; 
Tell :- y 

end; 
TC0J :• ><; 
T 

end; 

pointer procedure CAR(><) • 
brplaca(x, move(bcar(><})); 

procedure RPLACA(><,y) • 
brplaca(x,y); 

pointer procedure BCAR(x) a 
if code h<l •"EXTENDED" 

then (x C01) (0) 
e I se >< [0]; 

1. Update this edge. 1. 
11 Step S over this cell. 1. 

1. Check for memory overflow. 1. 
1. Create new cell ·at top of free area.( 

1. If y is special case, 1. 
1. then ·create a short cell 1. 
1. with appropriate cdr-code. 1. 
1. Otherwise, create a norma I cell. 1. 
~ Need more space for the e<lr. '1 

1. Set in "NORM AL• e<lr-code. 1. 
1. Set in the cdr.- '% 

1. Set the car in the new cell. 1. 
1. Return the new cell. 1. 

1. CAR must move cell it uncovered. 1. 
1. Update this edge. 1. 

1. x[O] :• y. May require subtlety. '£ 

1. Basic car; dispatch on CDR-code. '£ 
1. Type "EXTENDED" means 1. 
1. indirect car. 1. 
1. All other types have normal cars. 1. 
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pointer procedure BRPLACA(p,q) E 

if code(p)="EXTENOED" 
then {p[0}) [0} :• q 
e I se p [0] : = q; 

pol nter procedure COR he) • 
brp I accl (x, move (bcdr (x))); 

procedure RPLACO(x,y) • 
begin 

if code(x)="NIL" or 
code (x) ,.!'NEXT" 
then 

begin pointer p; 
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p := CONS(CAR(x),"OUMMY"); 
x :• move(x); y :• Move{y); 
x[0] :a p; 
code he) : • "EXTENOEO" 

. encl; 
brplacd(x,y) 

end; 

pointer procedure BCOA(x} • 
i f code ( x) ="NORMAL" then >< UJ 
else if code(x)="NIL" then nil 
else if cocle(x)•"NE><T" then x+l 
e I se ( >< [01 ) Cl J ; 

pointer procedure BRPLACO(p,q) • 
if cocle(p)="EXT£NDED" 

then {p[0J} [lJ :• q 
else if code(p) .. "NORMAL" 

then p Cl] : .. q 
e I se q; 

integer procedure SIZE(p) • 
if code(p) .. "NORMAL" 

then 2 else l; 

pointer procedure COPY(p) • 
begin 

if PB=B-2 and bcdr(PB)•p 
then begin 

code(PBl :• "NEXT"; 
8 : • B-1 

end; 
. if bcdr(p)=nil 

then code(B) := "NIL"; 

Section 'i.6 

f Basic rp1aca; dispatch on CDR-code. 1. 
f If extendeq cell, clobber in~irectly. '£ 

f All others have normal car. 1. 

f CDR moves uncovered cell, but updates '£ 
f only if still possible after move. '% 

f x[l] :• y. May require brute force. 1. 

f Test for screw cases. '% 
f Cannot have code(x)-·ExTENDED". '% 

'1 Extend the cell x. 1. 
'1 Construct guaranteed NORMAL cell. 1. 
i Update arguments in case CONS flipped. '£ 
'% Leave forwarding address in old cell. 1. 
1. The old cell ftas now been exrended. '% 

1. Finally replace the air. 1. 

'1 Basic cdr; dispatch on CDR-code. 1. 
'1 NORMAL cells have a second word. 1. 
'1 Interpret NIL CDR-code. 1. 
1 Interpret NEXT .CDR-cocle. 1. 
1 EXTENDED cells point to NORMAL 

cells. I 

1 Handle easy cases of R PLACD. I 
f. We have extended cell; 1. 
f. doJtber .the ·NORMAL indirect. I 
f. The easiest case of all. 1. 

1. In all cases, return q as value. f. 

f. Find the size of p from its CDR-code. I 
1 "NIL•, •NEXT•, and •EXTENDED• 

all have size(p)-1. I 

1 Copy the cell p; append to current I 
'l train if possible. '1 
'% See if we can hop this NEXT train. 1. 

1 Convert NORMAL cell to NEXT ceH. ~ 
f. Reuse extra space now available. I 

1. Create a NIL cell, if appropriate. I 
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else code!Bl :="NORMAL"; 
B [0] : = !Jcar (pl: 
!Jrplacd(B,bcdr(p)); 
PB := B: 
B := B+size(B); 
if B>T then error; 
PB 

encl; 

Section 1.6 

'7. Otherwise, all cells are NORM AL. 1. 
'7. Copy over car; '1. 
'1. and cdr too, if necessary. 1. 
'1. PB is end of current NEXT train. 1. 
'7. Step B over newly copied cell, '7. 
'7. check for memory overflow, '7. 
'7. and return pointer to new copy. 1. 

1. Procedures not redefined here are as before. '7. 
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array and tracing all its pointers both require time proportional to the length of the array. 

Therefore, if these operations are included in a computer as non-interruptable primitive 

instructions. hard interrupt response time bounds for that computer will not exist. However, 

an arbitrary bound (say IO) placed on the size of all arrays by either the system or the 

programmer, allows such bounds to be derived. 

Guy Steele [83) has devised a scheme which overcomes some of these problems. He 

gives each vector a special link word which holds either a forwarding pointer (for vectors in 

. fromspace which have been partially moved}, a backward link (for incomplete vectors in 

tospace), or NIL (for complete vectors). MOVE no longer copies the whole array, but only 

allocates space and installs the forward and backward links. Any reference to an element of 

a moved but incompletely updated vector will follow the backward link to the fromspace 

and access the corresponding element there. When the scan pointer in the tospace 

encounters such a vector, its elements are incrementally updated by applying MOYE to the 

corresponding elements of its old self; after the new one is complete, its link is set to NIL. 

Element C1ccesses to incomplete vectors compare the scan pointer to the element address; 

access is made to the old (new) vector if the scan pointer is less (greater or equal). Tracing 

and updating· exactly kn vector elements (not necessarily all from the same vector) upon 

every a llocCI tion of a vector of length n guarantees convergence. 

Steele's scheme has the following properties: the time for referencing an element of any 

cell or vector is bounded by a constant while the time to allocate a new object of size n is 

bounded by c 
1
kn+c

2
, for some constants c

1 
and c

2
. Hence, a sequence of list and vector 

operations can be given tight time bounds. 

4.7 Hash Tables and Hash Links 

Some recent artificial intelligence programs written in LISP have found it convenient 

to associate property lists with list cells as well as symbolic atoms. Since few cells actually 

have property lists, it is a waste of storage to allocate to every cell a pointer which points to 

the cell's property list. Therefore, it has been suggested [18) that one bit be set aside in 
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every cell to indicate whether the cell has a property list. If so, the property list can be 

found by looking in a hash table, using the address of the list cell as the key. 

Such a table requires special handling in systems having a relocating garbage 

collector. Our copying scheme gives each semispace its own hash table, and when a cell is 

copied over into tospace, its property list pointer is entered in the "to" table under the cell's 

new address. Then when the copied cell is encountered by the "scan" pointer, its propercy 

list pointer is updated along with its normal components. A "CDR-coding" system with two 

"scan" pointers should also keep a third for tracing property list pointers to prevent 

property lists from destroying chains of "next"-type cells. 

4.8 Reference Counting 

In this section we consider whether reference counting can be used as a method of 

storage reclamation to process lists in real time; i.e. we try to answer the question, at least for 

the rea I-time context, is reference counting worth the effort, and if so, under what 

conditions? 

A classica I reference count system [25,97] keeps for each cell a count of the number of 

pointers which point (refer) to that cell; i.e. its in-degree. This reference count (refcount) is 

continually updated as pointers to the cell are created and destroyed, and when it drops to 

zero, the cell is reclaimed. When reclaimed, the refcounts of any daughter cells it points to 

are decremented, and are also reclaimed if zero, in a recursive manner. 

Reference counting appears to be unsuitable for real-time applications because a 

potentially unbounded amount of work must be done when a cell is let go. However, if a 

free stack is used to keep track of freed objects instead of a free list, the newly freed cell is 

simply pushed onto the free stack. When a cell is needed, it is popped off the stack, the 

refcounts of its daughters are decremented, and if zero, the daughters are pushed back onto 

the stack. Then the cell which was .popped is returned. In this way, only a bounded 

amount of work needs to be done on each allocation. 
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We now consider the storage requirements of a reference counting (RC) system. In 

addition to the memory for N cells, we alsa need rOoin for N ·refcounts and a stack. Since 

the rercounts can go as high as N, they require approximately the same space as a pointer. 

So we have: 

Maximum RC Space Required s 1.SN +the size of the •free stack" 

The worst case stack depth is N. However, whenever a cell is on the stack, its refcount 

is zero. so we can thread the statk through the unused refcounts! So we now have: 

Maximum'RC Space Required s 1.5N 

Reference count systems have the drawback that directed cycles of pointers cannot be 

reclaimed. It has been suggested (57,30] that refcount~,~uml JIAhe.:'primal!J".methOd.of 

reclamation, using garbage collection (GC) as a fallback method when that fails. Since RC 

will not have to reclaim everfthirlg ahd since the average reftOunt is oflen very small, it has 

also been suggeosted that a truncated ref count (a bounded counter 'which sticks at its highest 

· vaiue if if overflows) be used to save space. 

We say that garbage in a combination RC and GC system is ref-degradable if and 

only if it can be reclaimed by refrounts alone. Cells whose truncated, refcounts are stuck are 

therefore non-ref-degradable. 

What is the effect of a dual system in terms of performance? Whatever the RC system 

is able to· recycle puts off flipping that much longer. By the ·rime a f1ip happens in such a 

two level system, there is no ref-degradable garbage left 'in tbspaee. Therefore, the turnover 

of the semispaces is slowed; 

How much memory does the dual system require? If truncated refcounts are used, the 

free stack cannot be threaded through a ceH's refcount because it is not big enough to hold 

a pointer. Therefore, using this method and assuming ·onty a few bits Worth of truncated 

refcoum per cell, we have: 

Maximum SRT+RC Space Required s N<2+211l +RC free stack s N(2.5+2m) 
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So it appears that we have lost something by adding refcounts (even tiny ones), 

because we still need room for the free stack. 

Let us now examine more closely the average timing of CONS under a pure RC 

versus a pure SRT system. The average time for CONS under the RC system is the same 

as the maximum time since there is no freedom in the algorithm. The time for CONS in 

SRT is c/+c
2

, where c
1 

and c
2 

are constants. Now c
2 

is simply the time to allocate space 

from a contiguous block of free storage. Certainly incrementing a pointer is much less 

complex than popping a cell from a stack, following its pointers, decrementing their 

refcounts, and if zero, pushing them onto the stack. Therefore, we can choose k small 

enough 8 so that the average time to perform CONS with our SRT method is smaller than 

the average time to perform CONS in an RC system.9 This analysis does not even count 

the additional time needed to keep the refcounts updated. Of course, the storage required 

for our "pure" SRT system may be many times the storage of the RC system, but SRT will 

have a smaller average CONS time. 

Since this seems counterintuitive, or at least reactionary (given the current penchant 

for recycling), we give a rationale for why it is so. Reference counting traces the garbage 

cells, while normal garbage collection traces the accessible cells. Once the number of 

garbage cells exceeds the number of accessible cells in an region of storage, it is faster to 

copy the accessible cells out of the region and recycle it whole. When m>I, reference 

counting cannot compete timewise with garbage collection because RC must trace a cell for 

every cell allocated while GC traces on the average only a fraction (l/m) of a cell for every 

cell allocated. 

On the other hand, if we wish to minimize storage by making m<I, a dual scheme with 

truncated refcOLlnts should reduce the average CONS time over that in the pure scheme. 

However, CDR-coded lists and other variable sized objects cannot be easily managed with 

8. Section 4.3 deals with non-integral k's. 
9. We can discount the additional time occasionally required by CAR and CDR in our 

method because any relocation and pointer updating done by them is work that we have 
already charged to CONS, and does not have to be repeated. 
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reference counting because the object at the top of the free stack is not necessarily the right 

size for the current allocation. Thus, CDR-codtng·can reduce·the storage requirement of a 

"pure" scheme below that of a •dual" system with ttie same •· But even on a system with 

objects of uniform size, we are sk~pticai Whether the increased average efficiency of CONS 

in the "dua I" system will offset the increase in k needed to· keep the storage requirements the 

same as the "pure~ system. We conclude that, at least on a.mt ·memory computer, reference 

counting is pro/.l{Jbl'j not a good stbrage ·managemmt ttdtniqv.e unltrs one a) ltas uniform/' 

stud ob.fr<ts; b) usts full counts; and c}guara1tltes no C'JCles. 

This is not to say that reference counts are not U$eful. It t-he LISP language were 

extended with a function to return the current· ~nt" of an Object,. and suitably dean 

semantics were associated with this function, then one: might be able to make use of this 

information within the user program to speed up. certain algorithms, $Uch as structure 

tracing or backtracking, a ta Bobrow and' Wegbfeit tl7l This author is not aware of any 

language which makes this information available; if it were available, good programmers 

wou1d certainly find a use for it. 

4.9 The Costs of Real-Time List Processing 

The amount of storage and time used by a real-time list processing system can be 

compared with that used by a classic~I list processing system using garbage co11ection on 

tasks not requiring bounded response times. The storage ~equired by a c1assica1 

non-compacting garbage co11ector is N(I+µ.), if the system uses the Deutsch-Schorr-Waite 

(DSW) [57, p. 117-118) marking algorithm, and N(l.5+µ) if it uses a normal stack, for some 

positive µ. If CDR-coding is used, copyi~g must be done; the storage requirement is then 

Ne(2+2ft.), where e is the efficiency of the coding. Since e is· near .5 [22], the requirement is 

about N(l+p), so that CDR-coding requires approximately the same space as DSW. 

Comparing these expressions with those derived earlier for our rea1-time algorithms, we 

find that prou.ssing LISP lists ln real-ttJM r1q_ulr1s no mor1 ~/HU' tlaan a non-rtal-liJM 

s1stem using DSW. If larger non-uniformly-siled- obj«ts like arrays must be managed, 
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real-time capability requires no more space than the MFYCA system, since a copying 

collector is already assumed. 

The avaage time requirement for CONS in our real-time system is virtually identical 

to that in a classical MFYCA system using the same cell representation and the same 

amount of storage. This is because 1) a classical system can do µN CONS'es after doing a 

garbage collection which marks N nodes--thus giving an average CONS/mark ratio of µ 

and allowing us to identify µ with m--and 2) garbage collection in our· real-time system is 

a I most identica I to that ln the MFYCA system, except that it is done incrementally during 

calls to CONS. In other words, the user program pays for the cost of a cell's reclamation at 

the time the cell is created by tracing some other cell. 

CAR and CDR are a bit slower, because they must test whether the value to be 

returned is in fromspace. However, as noted above, any cell movement done inside CAR or 

CDR should not be charged to CAR or CDR because it is work which the collector would 

otherwise have to do and therefore has already been accounted for in our analysis of 

CONS. Therefore, CAR and CDR are only slower by the time required for the semispace 

test.10 

Since R PLACA, R PLACD, EQJ and ATOM are unchanged from their classical 

versions, their timings are a Isa unchanged. 

The overhead calculated for our serial system can be compared to that in Wadler's 

para I lei system (93). According to his calculations, a parallel garbage collector requires 

significantly more total time than a non-parallel collector. But this contradiction disappears 

. when it is realized that his parallel collector continues tracing even in the absence of any 

cell creation activity. Since our system keys collector activity to cell creation, the collector 

effort is about the same as on a non-real-time system. 

10. In Greenblatt's LISP machine [41), the virtual memory map performs the semispace test 
as an integra I part of address translation. Thus on this machine, a successful semispace test 
requires nary an additional microinstruction! 
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4.10 Applications 

4.10.1 A computer with a real memory of fixed size 

This application covers the classical 7090 LISP [64] as well as a LISP for a 

microcomputer. We conceive of even 16-bit microcomputers utilizing this algorithm for 

rea I-time process control or simulation tasks. Each of the l!st processing primitives is 

intended to run with interrupts inhibited, so that all interrupt processing can make use of 
.. 

list storage for .its buffers and other needs. Multiple processes may also use these primitives 
- ' ' -~. ; ~ - • • . ~ ,- 1 

so Jong as CONS, CAR, and CDR are used by one process at a time; i.e. they are protected 
; _-"' . 

by one system-wide lock. Of course, the system must be aware of the registers of every 

process. 

For these real memory applications, we want to put as much of the available storage 

under the management of the algorithm as possible. Thus, bOth atoms (here we mean the 

whole LISP atom-complex, not just the print~~a~e) and list ncxles are stored in the 

semispaces. CDR-coding is usually a good idea to save memory, but unless the bit-testing is 

done in microcode, it may be faster to use normal ce,ns and increase the parameter k to keep 

the storage size sma 11. 

The average CONS time is reduced by putting off flipping until all of the free space 

in tospace is exhausted, i.e. B· T. Thus, after all moving and tracing is done, i.e. S-B. 
. . 

· allocation is trivial until B= T. As a result, the average CONS time in our real-time system is 

approximately the same as that in a classical system. Of course, with a memory size of 2M, 

the maximum number of cells that can be safely managed is still Mk/(k+I). 

4.10 .2 A virtual memory computer 

The current epitome of this application is Multics LISP with an address space of 236 

<~ 1011) 36-bit words, room for billions of list cells. The prob~m here is- not in reclaiming 

cells that are let go, but keeping accessible cells compact so that they occupy as few pages of 

real memory as possible. The MFYCA algorithm does this admirably and ours does almost 
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as well. 

Our scheme is still real-time on a virtual memory computer, but the bounds on the 

elementary list operations now have the order of magnitude of secondary storage operations. 

There are some problems, however. Unlike MFYCA, wherein both semispaces were 

used only during garbage collection, our method requires that they both be active (i.e. 

partially in real memory) at all times. This may increase the average working set size. A 

careful analysis needs to be made of our algorithm in order to estimate the additional cost 

of incremental garbage collection. Brief consideration tells us that the active address space 

varies from a minimum of N(l+m) just before a flip to N(2+2m) just after. Since at a flip the 

user program registers are updated in numerical order, relatively constant pointers should 

be placed in the lower numbered registers to keep the trace order of constant list structure 

similar between flips. If the average size of an object is much larger than the size of a 

pointer, the working set may also be reduced by storing the forwarding addresses in a 

separate table instead of in the old objects in fromspace (IG]. 

In a virtua I memory environment, the active address space will automatically expand 

and contract in response to changes in the number of accessible cells if I) FLIP re-adjusts 

the size of fromspace to (l+m)[cells in tospace] just before interchanging the semispaces; and 

2) flipping occurs when tracing finishes rather than when B meets T. This policy, plus a 

smaller k than a real memory computer would use, should give both a fast CONS and a 

tolerable working set size. The parameter k can also be dynamically adjusted to optimize 

either running time (including paging) or cost according to some pricing policy by following 

an analysis similar to that of Hoare and others (55,19,3). 

4.10.3 A database management system 

We conceive of a huge database having millions of records, which may contain 

pointers to other records, being managed by our algorithm. Examples of such databases are 

a bill of materials database for the Apollo Project, or a complete semantic dictionary and 

thesaurus of English for a language understanding program. Performing a classical 
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garbage collection on such a databank would be out of the question, since it might require 

days or weeks to complete, given current disk technology. 

Some of these large database systems currently depend on reference counts for storage 

reclamation, and so do not allow directed cycles of pointers,., Since·our method performs 

genera I garbage coll~tion, this restriction could be ~· Moreover, given en~gh 

space, our algorithm can take even l~ss tim, thaQ a refer.enc.: .count-system. When compared 

with a classical garbage collection system, -OUr .. method w~ not save any total time in 

pr~essing transactions against such a data ;base. but it wetffd avoid the catastrophic 

consequences of a garbage coUection during a ~iod of, heavr ·demand. 

This case is very much Uke case 1, the r~I memory tompUJer, because we assume that 

the database is orciers of magnitude too big_.to.fit into primar~unei.nory1Mld thus that there 

is little hope for ~ spe~up fr.om tb.e locality of reference effect. •Read memory" and •store 

memory" instructions here apply to secondary storag~ the constant bounds for the 

elementary operations are now 011 the order of .miQisa;on<h rather than microseconds. 

Therefore, almost everything ,that we ny about real JnenlGf:Y implesnentations also applies to 

large database implementations, e~cept that space.,§ cheaper and,time·iS:more dear. 

4~10.4 A totally new computer architecture 

We conceive of an architecture in which a CPU is connected to a list mtmor7 instead 

of a random access memory. Machines of this architecture are similar to iinking automata" 

described by Knuth [57, p. 462-i63] and "storage modification machines" described by 

Schonhage [77]. At the interface between the CPU and the memory sits a bank of pointtr 

registers, which point at particular cells in the list memory. Instead of a bus which 

communicates both addresses and values, with read and write commands, the memory 

would have only a data bus and commands like CAR, CDR, CONS, RPLACA, RPLACD, 

and ATOM, whose arguments and returned values woukl be ia the pointer registers. The 

CPt I would not have access to the bit strings stored in the pointer registers, except those 

wfrn: h pointed to atoms (objects outside both fromspace and tospace). This restriction is 
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necessary to keep the CPU from depending upon memory addresses which might be 

changed by the management algorithm without the CPU's knowledge. 

An advantage of such a system over random access memory is the elimination of the 

huge address bus that is normally needed between the CPU and the memor.y, since 

addresses are not dealt with directly by the CPU. As the number of bits on a chip 

increases, the number of address lines and supporting logic becomes a critical factor. 

However, since address lines are not available to communicate with other memory chips, we 

have not yet been able to find a satisfactory way of scaling this memory up. 

Our method of garbage collection can also be used with a random access write-once 

memory by appending an extra word to each cell which holds the forwarding address when 

that cell is eventually moved. Using such a system, the cells in tospace cannot be updated 

until they are moved to the new tospace after the next flip. In other words, three semispaces 

need to be active at all times. In addition to these changes, RPLACA and R PLACD must 

accua lly perform a CONS, just like RPLACD occasionally does in our CDR-coding system. 

Perhaps the write-once property can eliminate the need for transaction journals and backup 

tapes. 

4.11 Conclusions and Future Work 

We have exhibited a method for doing list processing on a serial computer in a 

real-time environment where the time required by all of the elementary list operations must 

be bounded by a constant which is independent of the number of list cells in use. This 

algorithm was made possible through: J) a new proof of correctness of parallel garbage 

collection based on the assertion that the user program sees only marked cells; 2) the 

realization that collection effort must be proportional to new cell creation; and 3) the belief 

that the complex interaction required by these policies makes parallel collection unwieldy. 

We have a Isa exhibited extensions of this algorithm to handle a user program stack, 

"CDR-coding", vectors of contiguous words, and hash linking. Therefore, we consider our 

system to be an attractive alternative to reference counting for real-time storage management 
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and have shown that, given enough storage, our method will outperform a reference count 

system, without requiring- the topological restrictions of that system. 

Our rea Hime sch~ is strikingly similar to the incremental garbage collector 

proposed independently by Barbacci for a microcoded- LISP machine [8l However, his 

non-real-time proposal differs in the key points above. Our system will itsetf appear in 

microcoded form in Greenblatt's LISP mat:hin~ [11,Hl 

There is still some freedom tn our algorithm which has not been explored. The order 

in which the cells are traced is not important for the algorithm's correctness or real-time 

properries. The average properties of the! algorithm when run on a virtual memory 

machine need to be·extensiwty inv~stigated. 

The space required-by our algorithm maybe excessive for some applications. Perhaps 

a synthesis of ·Bishop's a-rea concept [16] with our method could reduce the memory 

requirements of a list processing system while' presernng· the bourided•time properties of the 

elementary operations. 

A garbage collection algorithm can be viewed as a means for converting a Von 

Neumann-style random access memory (with ·side-effects" [64)) into a list memory (without 

"side-effects")_ Perhaps a list memory can be. implemented directly in hardware which uses 

considerably less energy by taking advantage of the lack of side-effects in list operations [12). 
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5. Garbage Collecting Activities Incrementally 

This chapter1 presents a method by which active objects like actors may be 

incrementi'llly garbage-collected. This method solves a problem which arises when mulciple 

activities are started in an actor system, and later it is determined that some of them are no 

longer useful. Rather than allow them to continue wasting system resources, we would like 

to identify and stop these activities which are no longer relevant to satisfying the current 

goals of the system. 

The best example of this problem occurs when an actor system is used to evaluate an 

expression in "future" order, which is different from call-by-name, call-by-value, and 

ca It-by-need. In future order evaluation, an object called a "future" is created to serve as the 

value of each expression that is to be evaluated and a separate activity is dedicated to its 

evaluation. Future order evaluation allows for more parallelism than even the parallel 

evaluation of arguments discussed in chapter 2, because an argument to a procedure 

cornmencl's being evaluated before the body of the procedure. This argument evaluation 

proceeds in parallel with the evaluation of the body of the procedure until the procedure 

finally requires it. As a result, several levels of a recursive procedure may be evaluated in 

parallel, and many loops written as recursive procedures will be automatically "unrolled" 

and the different incarnations of the loop body will be evaluated concurrently! Future order 

eva lua t1on raises a new problem which did not exist in systems with only ca 11-by-name or 

call-by-value, namely that some futures which were created in the course of evaluation may 

become irrelevant, i.e. an activity is started to evaluate a future because its result is needed, 

but after further collateral computation, the activity is deemed unnecessary. This 

unnecessary activity should be stopped and garbage collected, so as to return its resources to 

the system. 

I. This chapter is based on the paper "The Incremental Garbage Collection of Processes" 
by myself and Cart Hewitt (6). 
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The problem of irretevant activities also appeats irr multiprocessing problem-solving 

systems which start several processors working on the same problem but with different 

methods, and return with the solution which finishes. f.irst. This txzrallel metliod strategy 

also has the problem that the activities which are investigating the losing methods must be 

identified, cleanly stopped;and their resources re-assigned to more useful tasks. . . . 

The solution we propose is that of incremental garbage collection. If the dependency 

structure of the evaluation plan is explicitly represented in memory as part of the graph 

memory (like Lisp's heap), a garbage collection algorithm can discover which activities are 

performing useful work, and which can be recycled. 

Ca II-by-future is implemented by an "eager beaver" evaluator. When an expression of 

the language is given to the evaluator by the user'. the evaluator evaluates it and all of its 

subexpressions as soon as possible, and in parallel. The evaluator does this by creating and 
' . .. 

returning for each subexpression a future, which is a promise to deliver the value or that 

subexpression at some later time, if it has a value. Each fut.ure can . evaluate its 

subexpression independently and concurre,ntly with other futur~ because it is created with 

its own eva tuator activit'J, which is dedicated to evaluating that subexpression. When the 
' ' ) ; ·~ -:., ,• ' .. ' 

value of a future is needed e~plicitly, e.g. by the primitive function"+", the evaluation of the 

subexpression may or may not be complete. If. it i~ complete, the future's value is 

immediately available; if not, the requesting activity is forced to wait until the evaluation of 

the subexpression is finished. 

Futures are created recursively in the evaluation of an expression by our eager 

evaluator whenever it encounters functional application. A new future is _created for each 

argument, resulting in the parallel (collateral) evaluation of those arguments, while the main 
' - -

activity tackles the job of evaluating tile ·function position and applying it to the tuple of 

argument futures. We call the main evaluator activity the parent, while the futures it 

directly creates are its offspring. 

More precisely, a future is a triple (activity, cell, waiting room), where actiVit'J is the 

activity charged with evaluating an argument expression in its.proper environment, cell is a 

cell actor, private to the future, which will save the value of the argument when it is ready, 
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to a void recomputing it, and waiting room is a set of activity continuations which are 

waiting for the value of this future. 

When the future is created, its activity starts evaluating the subexpression in the given 

environment. If any other activity needs the value of this future before it is ready, the 

req11rsting activity puts its continuation in the waiting room of the future. When the value 

promised by the future is ready, its activity stores that value into the future's cell, sends 

wakeup mess<1ges to all of the activity continuations in the future's waiting room, and goes 

away. Henceforth, any activity needing this future's value can find it in the future's cell, 

without waiting or performing any further computation. 

Notice that eager evaluation is different from lazy evaluation [94,91,46,50,36) of the 

expression in that the latter is designed to delay evaluation of the expression until the value 

is needed while a future immediately dedicates an activity to evaluating the expression. 

This difference is both a strength and a weakness of eager evaluation. 

The main problem with our eager interpreter is that it can be wasteful, because it 

anticipates which values are going to be required to compute the final result. For example, 

an activity may be assigned to the computation of a future whose value will never be 

needed; in this case, we say that the activity is irrelevant. However, since the a priori 

determination of irrelevancy seems undecidable, all activities must proceed until irrelevancy 

can be proven. If there were no way to determine irrelevancy a posteriori, these irrelevant 

activities could tie up a significant amount of computing power. For example, if an activity 

were assigned to evaluate a non-terminating expression, its computational power would be 

lost to the system forever! We argue in the following sections that the "garbage collection" 

of passive storage can be extended to the reclamation of these irrelevant active activities. 

Furthermore, we show that this garbage collection can be done incrementally, thus 

eliminating the long delays classically associated with garbage collection. 
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5.1 Garbage Collecting Irrelevant Futures 

A classical garbage collector for passive storage starts by marking the root of the heap 

of passive stornge nodes, and proceeds by propagating mar.ks from marked nodes to their 

offspring, until there are no unmarked nodes with· a marked parent. Upon the completion 

of this process, any nod.es which are still unmarked are not accessible from the root; hence 

they ai-e declared garbage and returned to the list of available free nodes. 

The key to garbage collecting activitus is that an ac;tivity's continuation is addressable 

as a vector of words in the common address space of an the pr«.es&Of'S, but distinguished 

with a special type code. This vector stores the acquainta~··of the continuation. We 

claim that •u:tivities whose continuations become ma«aaible .from the root are irrelevant 

and .should be reclaimed. The top-level activitr-that 'assigned to the top level future--is 

always relevant since the user expects an answer, and therefor4? it is always directly 

accessible from tbe rQOt ef the heap. Any offspr"" of this .fuwre whose values are still 

required are accessible to it. Hence by induction, r•vani activities remain accessible from 

the root. If a future becomes inaccessible from t~.root;. then net other activity can access its 

value--even when it is finaJly ready--Md hence theofuture and it& activity are irrelevant. 

In order that all irrelevant activities be identified as soon u possible, we must ensure 

that all activities classifioo as accessible are. truly relnant to. the-computation. An example 

of an activity which is accessible but irrelevant is,that of a loiterer, i;e. an activity whose 

continuation is accessible only through the ·waiting. room· ef JOme future. A loiterer is 

waiting for th€ value of one w more futures, but the loiterer's value is not needed by any 

other activity. Loiterers cannot be immediately garbage tollected b«ause of the outstanding 

waiting-room pointers to them. However, when the loiterer iS eventually restarted and 

forgotten by the waiting room, it wiH then become inaGGellible from the root of the heap 

and will be picked up by the next garbage collection. Hence, waiting-room accessibility is a 

second-class form of accessibility which wi11 not protect a loiterer from eventualJy being 

garbage collected. 
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If busy w<1iting is used, wa·iting rooms are not necessary, and thus there will be no 

l01terers. However, busy waiting requires that a high price be paid for communication 

ch<1 nnels between the waitor and the waitee, because the incessant queries clog these 

channels. 

Garbage collection is made incremental by using some of the ideas from the previous 

chapter. The mark phase of our incremental garbage collector process employs three colors 

for every object--white, grey, and black. Intuitively, white nodes are not yet known to be 

accessible. grey nodes are known to be accessible, but whose offspring have not yet been 

checked, and black nodes are accessible, and have accessible offspring. Initially, a11 nodes 

(including actors) are white. A white node is made grey by shading it; i.e. making it "at 

least grey" [3I]. while a grey node is marked by shading its offspring and making the node 

black--both indiviioible processes. Marking is initiated by stopping all message transmission 

and shading the root. Marking proceeds by finding a grey node, shading its offspring, then 

making that node black. When there are no more grey nodes, garbage collection is done; a11 

still-white nodes are then emancipated and the colors white and black switch interpretations. 

Although all activity must be stopped when garbage collection is begun, an activity 

can be restarted as soon as it has been blackened by the collector. Since the top-level activity 
I 

is pointed at directly by the root of the heap, it is restarted almost immediately. It should be 

obvious that when an activity first becomes black, it cannot point directly at a white node. 

We wish to preserve this assertion. Therefore, whenever a running black activity is about 

to viol;:ite it--by accessing a white acquaintance--it immediately shades the white actor before 

proceeding. Furthermore, every new actor the activity creates is created black. The 

intuitive rationale behind these policies is that so Jar as any black activity is concerned, tlze 

garbage collection has already finished. Furthermore, the actors which are Jou.nd accessible by 

the garbage collector are exactly those which were accessible at the time the garbage collection 

was .started. 

We prove the correctness of this garbage collector informally. The garbage collector is 

given a head start on all of the activities because they are stopped when it is started. When 

an activity is restarted, it is black, and everything it sees is at least grey, hence it is in the 
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collector's wake. Whenever an activity attempts to catch up to the collector by accessing an 

acquaintance, that actor is immediately shaded. Therefore, the activity can never pass or 

even catch the collector. Since the collector has already traced any actor an activity may 

have as an acquaintance, the activity cannot affect the connectivity of the graph that the 

collector sees. Because white or grey activities are not allowed to run, any created actors 

are black, and since actors darken monotonically, the number of white actors must 

monotonically decrease, proving termination. 

Our garbage collector has only one phase--the mark phase--because it uses the Cheney 

algorithm which marks and copies in one operation. This algorithm copies accessible list 

structures from an "old semispace" into a "new semispace". As each node is copied, a 

"(orwarding address" is left at its old address in the old semispace. A "scan" pointer linearly 

scans the new semispace, while updating the pointers ~f 'newly moved nodes by moving the 

nodes they point to. The correspondence between our coloring scheme and this algorithm is 
,. 

this: white actors are those which ~eside in the old semlspace; grry actors ate those which 

have been copied to the new semispace, but whose acquaintances have not been moved to 

the new semispace (i.e. have not yet been encountered by the scan pointer in the Cheney 

algorithm); and black actors are. those ~hich have been both moved and updated (i.e.·ue 

behind the scan pointer). When scanning is done (i.e. there are no more grey actors and all 

accessible actors have been' copied), the old a~d new semispaces then interchange rotes. 

Reallocating processors is simple; all processors are withdrawn at the start of garbage 

collection, and are allocated to each activity as it is blackened. Thus, when the garbage 

collection has finished, all and only relevant (•accessible) activities have been restarted. 

The restriction that white or grey activities cannot run can be relaxed to allow white 

activities to nm so long as a wliitt activity d0ts not caust a blaclc. actor to point to a wlaitt ont. 

This can only happen if the white activity is trying to perform a side-effect (e.g. a "store!" 

operation) on a black actor. If operations of this type are suspended until either the activity 

either becomes black or is garbage-collected, then proper garbage collector operation can be 

ensured, and convergence guaranteed. Under these conditions, a activity creates new actors 

of its own color, i.e. white activities create only white actors. When a white activity is 
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encountered by the garbage collector, it must stop and allow itself to ·be colored black before 

continuing. 

The notion that actors must be marked as well as storage may explain some of the 

trouble that Dijkstra and Lamport had when trying to prove their parallel garbage 

collection algorithm correct [31,32,58,59). Since their algorithm does not mark a user process 

by coloring it black (thereby prohibiting it from directly touching white nodes), and allows 

these white processes to run, the proof that the algorithm collects only and all garbage is 

long and very subtle (see [59]). 

5.2 Coroutines and Generators 

One problem with our "eager beaver" evaluator is that some expressions which have 

no finite values will continue to be evaluated without mercy. Consider, for example, the 

infinite sequence of squares of integers 0,1,4,9,... We give in Figure 19 a set of LISP-like 

functions for computing such a list. 

The evaluation of "(squares-beginning-with O)" will start off a future evaluating 

"(cons ... )", which will start up another future evaluating "(squares-beginning-with I)", and so 

forth. Since this computation will rtot terminate, we might worry whether anything useful 

Fig. 19. An Infinite Sequence of Squares 

squares-begining-with = 
(i\x. (cons(•:• x x) (squares-begining-with (+ x I)))) ; Compute an element. 

cons = (i\x y. 
(i\msg. 

car = (i\x. (x 'car)) 

cdr = (i\x. (x 'cdr)) 

(if("' msg 'car) x 
(,,, msg 'cdr) y))) 

list-of-squares = (squares-beginning-with 0) 

; Define CONS function. 

; Ask for first component. 

; Ask for second component. 

; Start the recursion. 
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will ever get done. One way to ensure that this -computation will·not clog the system is to 

convert it into a "lazy" computation [91,91,iG,36] by only allowing it to proceed past a point 

in' the infinite list when someone forces it to go that far. This can be easily done by 

performing a lambda abstraction on the expression whose evaluatiOn is to be delayed. (See 

Figure 20). Since our evaluator will not try to furtMr' evaluate a A-expression, t~is will 

pror~ct its body from evaluation by our eager beavers. 

However, this technique is not reaUy necessary if we use a11 expontntial sch.eduler for 

the proportion of effort assigned to each activity. This scheduler operates recursively by 

assigning 1001. of the system effort to the top-level future, and whenever this future spawns 

new futures, it allocates only 501. of its allowed effort to its offspring. While an activity is in 

the waiting room of a future, it lends it processing effort to the CQmP~ticm. .of that future. 

However, a future which finishes returns its effort to helping the systefT)--not its siblings. 

Now the set of futures can be ordered according to wtio created whom and this ordering 

forms a tree. As a result of our exponential scheduling. the further d~wn in this tree a 

future is from the top-level future, the lower its share of the computational resources. 

Therefore, as our eager beavers produce more squares, they become. exponentially more 

discouraged. But if other activities ~nter the waiting roc:mLfor the square of a large 

number, they lend their encouragement to its computation. 

Fig. 20. A Lazy Sequence of Squares 

squares-begining-with' = 
(1'.x. (cons (::: x x) 

("1'.msg. ((squares-begining-with' (+ x 1}) msg)))) ; Protect from early evaluation. 
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Ca II-by-future evaluation provides for the maximal concurrency possible in evaluating 

the expressions of a language. It can provide more parallelism than current data flow 

machines [28,4) or "eventual values" [53). For example consider the following program 

which computes the square root of the sum of the squares of its arguments: 

f = (Ax y. (square-root(•(=:• x x) (•:• y y)))) 

Note that in computing the value of an expression such as the following 

(k 3 (f (h 3) (g· 4))) that the square of (h 3) can be performed in parallel with the square of 

(g 4). In addition the square root of the sum of these values might be performed after the 

function k has been entered! Thus there is a great deal of potential concurrency in the 

evaluation of the above expression. 

In an evaluator which uses call-by-future for CONS, the obvious program for 

M APCAR (the LISP analog of APL's parallel application of a function to a vector of 

arguments) will automatically do all of the function applications in parallel in a "pipe-lined" 

fashion. However, with an exponential scheduler the values earlier in the list will be 

accorded more effort than the later ones. 

This scheduler is not omniscient, though, and system effort will still have to be 

reallocated by the garbage collector as it discovers irrelevant activities and returns their 

computing power to help with still relevant tasks. 

5.3 Time and Space 

"Lazy" evaluation [91,46,36) is an optimal strategy [91,13) for evaluating ~.-calculus 

expressions on a single processor, in the sense that the minimum number of reductions 

(procedure calls) are made. However, when more than one processor is available to evaluate 

the expression, it is not clear what strategy would be optimal. If nothing is known about 

the particular expression being evaluated, we conjecture that any reasonable strategy must 

allocate one processor to lazy evaluation, with the other processors performing eager 
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evaluation. We believe that our "eager beaver" evaluator implements this policy, and unless 

the proceiosors interfere with one another excessively, a comp\ltation must always run faster 

,with an eager evaluator running on mu.kiple processors than a taiy evaluator running on a 

single pi·ocessor. If there are not enough'processoruo allocate one for every future, then we 

believe th<1t our "exponential scheduling" policy will do a good job of dynamically allocating 

processor effort where it is. most needed. 

Although the universal creation of futures should reduce the time necessary to 

ev.aluate an expression• we must consider· how the space requirements of this method 

cqmpare with other methods. The· space r~irements of futures are hard to calculate 

because under .certain schedules, future order .evahRtion apptoximates ·cafH>y·value, while 

with other schedules. it is equivalent to· call·brneed (the same as caH--by-value, but an 

argument is evaluated only once). In the worst case, the space n!qltiremei'lts or futures·can 

be arbitrarily bad, depending upon the relative · speect of tM processcrs aS'signed to 

non-terminating futuresc 

5.4 The Power of Futures 

The intuitive semantics associated with a future is that it runs asynchronously with its 

parei1t's evaluation. This effect tan be.,ach'ieved by eith~r ~~gning a diffe~nt processor to 

each future, or by multiplexing all of the futures on a few proeessors. Given one such 

implementation, the language can easily be extend.ed C65l with a construct having the 

following form: "(EITHER <ei> <e2> -·<en>)" means evalu .. t~; .. ~ ~"J)f.e~~s <ei> in 

parallel and return the value of "the first one that finishes". Ward (95] shows how to give a 

Scott-type lattif::e semantic~ for • generalization of this construct.., Fie 1tarts with a power-set 

of the ba.se domain and gives it· the usual subset ta.wee structure; then extends each 

primitive function to operate on sets of elemeMs from tM''bate domain in the obvious way, 

and fjnally.defines the result of his construct to· be the l«lst uf1rr bound (LUB) of all the 

<ei> in the subset lattice. Our EITHER construct is .approximated2 by spawning futures 

for au the <ei>, and polling them with the parent aaivitieS until the firsr one fimshes. At 
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that point, its answer is returned as the value of the "EITHER" expression, and the other 

futures become inaccessible from the root of the heap. 

In Figure 21 we give several examples of the power of the "EITHER" construct: 

The first example is that of a numeric product routine whose value is zero if either of 

its arguments are zero, even if the non-zero argument is undefined. The second example is 

an integration routine for use in a symbolic manipulation language like Macsyma, where 

there is a relatively fast heuristic integration routine which looks for common special cases, 

and a- genera 1 but slow decision procedure called the Risch algorithm. Since the values of 

both methods are guaranteed to be the same (assuming that they perform integration 

properly), we need not worry about the possibility of non-determinacy of the value of this 

expression (i.e. non-singleton subsets of the base domain in Ward's lattice model). 

One may ask what the power of such an "EITHER" construct is; i.e. does it increase 

the expressive power of the language in which it is embedded? A partial answer to this 

question has been given with respect to "uninterpreted" schemata. Uninterpreted schemata 

answer questions about the expressive power of programming language constructs which 

are implicit in the language, rather than being simulated. For example, one can compare 

the power of recursion versus iter~tion in a context where stacks cannot be simulated. 

Hewitt and Paterson [48) have shown that uninterpreted "parallel" schemata are strictly 

more powerful than recursive schemata. The essence of this difference is that parallel 

Fig. 21. Examples of the EITHER Construct 

(multiply x y) =(EITHER (if x=O then 0 else (loop)) 
(if y=O then 0 else (loop)) 
(::, x y)) 

(integrate exp bound-variable) = 
(EITHER (fast-heuristic-integrate exp bound-variable) 

(Risch-integrate exp bound-variable)) 

2. This implementation is only an approximation because only singleton sets of elements of 
the base domain can ever be returned. 
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schemata can simulate non-deterministic computation without becoming side-tracked in 

some infinite branch of the computation. This simulation is ·possible because the parallel 

schema can follow a II of the non-deterministic branches. In pa'rallet 

Abo. Ward [95)has shown that the •EITHER• construct strictly increases the power of 

the :>..-calculus [21.26) in the sense that there exist functions over the base domain which are 

inexpressible without "EITHER .. , burare trivially e~pressible .with .it. 

6.5 Shared Data Bases 

The ad v_a ntage that .. garbage c.o1lecti.on has over the ex_plicit ~illing of activiti~s 

becomes apparent when parallel activities have access to !l shared.dat~ base. These data 

bases are m.ua1ly protected from in~onsistency (due to simulta~s update) by a mutual .. '·.' ., : . 

exclusion method. However, if some activity were to, be. killed w.Jt4~ it _was inside such a 

data base. the data base would remain locked, and. hence unresponsive to the other activities 
- . _ . .,., . 

requesting access. 

The solution we propose is for the data base to always keep a )ist of pointers to the 

activities which it has currently inside. In this way, an ot_herwise irrelev~nt activity will be 
' - . 0; ' ~- -. - ' . • . 

accessible so long as it is inside an accessible da!a base. However, t~e moment it emerges, it 

will be forgotten by the data base, and subject to reclamation by garbage collection.. The 
, . - • - ,t;_,,:_ :--. :· . •; . . ' ...,· 

crowds component of a serializer, a synchronization corutruct designed- to manage parallel 

access to a shared data base [51), automatically perrorms such bookkeeping. 

5.6 Conclusions 

We have presented a method for managing the allocation of processors as well as 

storage to the subcomputations of a computation in a way t!Jat tries to minimize the elapsed 

time required. This is done by anticipating which subtompu~tlcms will be needed and 

starting them running in parallel, before the results they compute are needed. Because of 

t_his anticipation, subcomputations may be started whose results are not needed, and our 
' -

incremental garbage collection method identifies and revokes these allocations of storage 
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and processing power. 

Some of the early thinking about call-by-future was done several years ago by J. 
Rumbaugh who was one of the first to realize that futures offer a maximum of concurrency 

in the execution of a program without introducing the usual pitfalls of timing errors, 

starvation, and deadlock. Unfortunately he did not have time to include this material in his 

thesis [75). Peter Hibbard [53] has independently discovered these virtues of futures. The 

ma in origina I contributions of this chapter are our proposal for an exponential scheduler 

for "eager" evaluation and the methodology for using incremental garbage collection to 

reclaim irrelevant activities and redirect the scheduling priorities of activities working to 

produce the values of futures. Concepts similar to that of "futures" have been 

independently proposed by Friedman and Wise [37] and implemented by Hibbard [53).3 

Henry Lieberman, working on implementations of actor language PLASM A [50], has 

actually implemented several of the suggestions of this chapter. 

The scheme presented here assumes that all of the processors reside in a common, 

global addi:ess space, like that of HYDRA [98]. Since networks of local address spaces look 

promising for the future, methods for garbage collecting those systems need to be developed. 

3. However, since Algol-68 does not support "returned functional values", A scheme in the 
language need not use garbage collection to discover irrelevant "eventuals". They can be 
coerced into values before being returned as the value of a procedure, and hence processor 
allocation can use a LIFO scheme like that used for storage of the activation records on the 
stack. However a certain amount of concurrency can be Jost by enforcing this coercion. 
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6. Conclusions and Further Research 

This thesis has been concerned with a precise specification of the Actor theory and 

with possible mechanisms for mapping a system having Actors as primitive objects onto 

current hardware. 

The Actor theory does not try to accurately describe every detail of a distributed 

system, because in creating a model for some phenomenon, one must choose which of its 

features to emphasize and which to suppress. The actor model ignores the sending of 

messages and concentrates instead on their rtcttpt, because the receipt of messages is more 

interesting due to the non-determinacy involved: Our mode1 a1so ignores unreiiabilities in 

the network by assuming that every message is eventually received, because we believe that 

the issue of transmission errors is separable from our current concerns. The actor model of 

computtttion as a simple partial order ignores the issue of "real time", i.e. time which can be 

measured, and concentrates only on the orderings of events. However, in this thesis we are 

implicitly assuming that the receipt of a message by an actot requires only a bounded 

amount of computation. Hence, each everit should require only a brief instant of real time 

to complete. Finally, issues of representation have been neglected in favor of issues of 
' 

behavior; e.g. a particular concrete representation for actors and messages has not been 

presented. 

However, no matter what representations are chosen for the implementation of an 

actor system, certain problems in the management of system resources will arise. In chapters 

3 and 4 we argue that such an implementation will require a garbage-collected heap for 

storage management and that for real-time performance an incremental method of garbage 

co11ection will be necessary. Such a method is presented together with. an exhaustive 

comparison of it with other alternatives. 

In chapter 5, w~ argµe that in a distributed ~raUel procesling system the resources of 

the CPU's can be squandered exploring avenues of computation that have ceased to be of 

relevance to satisfying the main goals of the. system, We a<ivocate; a garbage coUection 

approach to this problem in which the garbage collector discovers and stops these irrelevant 
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Imes of computation. As the number of CPU's in parallel systems continues to rise, 

programmers will want to use more of this computational power for such speculative 

computation, and the need for our garbage collection methods will grow. 

Looking into the future, a major problem to be overcome in the management of the 

resources of a distributed system is the garbage collection of objects in separate address 

spaces. Before this problem can be solved, however, the issues of object naming in a 

distributed system must first be resolved. In systems where names have global significance, 

Bishop's area concept [16] may be appropriate, in which case his algorithms for garbage 

collection are of interest. Reed's proposal for objectjamilies [72] may also provide a proper 

model for naming in distributed systems. 

Now that we have provided a firm foundation for the implementation of real-time 

actor systems by showing how the basic events (message receipts) can be performed in a 

bounded amount of time, research into good scheduling strategies for such systems should 

follow. Also. techniques will be needed for deriving and proving time bounds for complex 

activities requiring many hundreds of events. 
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