MIT/LCS/TR-197
ACTOR SYSTEMS FOR REAL-TIME COMPUTATION
Henry Givens Baker, Jdr.

March 1978

Tius blank page was inserted to preserve pagination.

MIT/LCS/TR-197

Actor Systems for Real-Time Computation

by

Henry Givens Baker, Jr.

March 1978

This research was supported by the Office of Naval
Research under contract number N00OI4-75-C-0522.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge Massachusetts 02139

Actor Systems for Real-Time Computation
by

Henry vaens Baker, Jr.

~ Submitted to the Department of Electrical Engineering and Computer Science
on February 14, 1978 in partial fulfiliment of the requirements
for the Degree of Doctor of Philosaphy.

ABSTRACT

Actor theory was invented by Hewitt and collaborators as a synthesis of many of the ideas
from the high-level languages LISP, GEDANKEN, SMALLTALK, SIMULA-67, and
others. Actor theory consists of a group of active objects called Actors, which communicate
by passing messages to one another.

This thesis explores several problems associated with implementing Actor theory as a basis
for computer systems design. First, we give a firmer foundation to the theory by setting
forth axioms which must be satisfied by any physically realizable message-passing system.
We then give an operational semantics for this theory by exhibiting an interpreter which is
a concrete model for the theory. Thirdly, we explore the implementation questions of
mapping this conceptual system onto current hardware in such a way that simple primitive
operations all take a (small) bounded amount of time. In particular, the issues of storage
and processor management are investigated and a real-time incremental garbage collection
system for both is exhibited and analyzed.

T kesis Supervisor:
Carl Hewitt, Associate Professor of Electrical Engineering and Computer Science

Acknowledgments

1 would like to thank my thesis supervisor, Professor Carl Hewitt, for his support and
encouragement. Carl’s thirst for simplicity and his wide ranging interests provided an
excelient sounding board for tny many half-baked ideas. Thanks also gb to my readers,
Professor Barbara Lnskov and Professor Stephen Ward, through whom 1 was able to gain a
different per spectlve on many topics. I enjoyed many fascinating bull sessions with
Professors Vaughan Pratt and Albert Meyer, and Dr. Peter Jessel provnded me with much
personal and professlonal support. In spite of MIT, the graduate students and staff are
superb; many thanks to Richard Greenblatt, Tom Knight, and Guy Steele and many others
for their help and for making some of the best engmeered computer systems in the world.
~ Peter Bishop, John DeTreville, Bert Halstead, Al Mok, and Eliot Moss also made
suggestions for improvement. Finally, my warmest thanks and gratttude go to my wtfe.
Carolyn, a doctor in her own right, for her love, support, a"n&; pmieme 'duting thgse past
seven years. B ‘ - A

This thesis was typed into the MIT A.L Lab. PDP-10 "TECQ" program (magmﬂcentty
- maintained by Richard Stallman), using "DOC", a set of TECO macros written by
Vaughan Pratt. It was printed on. the Al Lab. Xerographtc Printer, after being t‘ormatted
by Alan Snyder's document compiler "R"

This research was supported by the Advanced Research Pl’Othts Agency of the
Department of Defense and was monitored by the Office of Nayg_l Research under contract
number NOOOI4-75-C-0522. I |

Table of Contents -4-

CONTENTS

ACknowledgmentsl e 3
Table of CONENESttt et e et s cestsesas e b ras et sarananaees 4

1. Background R -

Ll Introduction T P PR 8
1.2 Distributed Computing ... e 9
1.3 Actors in Hardware ... eeeas 13
1.4 Problems with Shared Memory e, e e 16
1.5 Real-Time Systems Design e S P P PP PP 19
16 Why Actors for RealA-T‘imer Systems Design? teraerereaaias [ET 22
1.7 Continuation-Passir;lgl St;lle LT YRR PRRPPIITE crerereens 25
18 Outline of the THeSiscooovoorrvvrererrenn., e 28

2. Laws for Actor Systemsciccivvvevecercnccecceee. 30

21 Introductionc..ccoeeeeevieeennnn... e, 30
2.2 Event-based vs. Staté-bas&d Reasoning about'SystAgms S PITPIR I 3
23 Events and Actor Computations e S T 33
2.4 Partial Orderir’igs'on Events 35
241 Activation Ordeﬁné 36
242 Receipt Orderings e ter et ettt et ar et eeeneeer et ea et et n et e saneneaae e 38
243 The Combined Orderingccoeiiviiiimiiniiiniin e 40
244 ACVItIESoooiiiiie e eeeeeeeenes . rerrerereeeeeeeerrrr—arnnarnan 46
245 Actor Creation and the Laws of Localitycccoovvuiiiiiiniiiiininiiinninnnnn... 49
246 Laws of Locality ..ot rreeee e e e e e e e e 51
247 Actor INAUCLION ... 54
248 Cells ...t e a e 55

24.9 Busy Waiting and Fairness Veerreeenes et eeiarree et raeens 57

‘Table of Contents -5-

2410 Discreteness -- A CountereXamplec..ccoeieiiiiiieniniiiiiiiniiineeeeaneaes 59
2.5 Constructive Models for Actor Theorycccccoceviinvininnenn. e 62
P B O B 1 PPN 62
252 Constructive Models ... e 63
253 The Cell Model for ACtOrSc.iviiieiiiiiiiiii ettt reeiataneaeenn 63
254 Sets of Actor ComPULAtIONSouuiiiiiiiiiiiiiii i ees 75
258 The Pure Model for ACtOrSoo.iiiiiiiiii e e e 77

3. Storage Management and Garbage Collection 80

31 Advantages of List Memory over Random Access Memorycooooeiiiiiiinnenns 8l

3.2 Allocation Problems of Random Access StOrageooooviiiiiiiii e 84

4. List Processing in Real Timec.cccveeeeeceecs.. 87

4.1 Introduction and Previous Work ... 88
1.2 The Method ... e 92
4.3 The Parameter m (= 1K) oo e et et ees 102
4.4 A User Program Stackooiiiiiiiiiiii e 103
4.5 CDR-Coding (Compact List Representation)cc.ccoeueiuiinniieiiniiiiiiiinnanans 104
4.6 Vectors and AITAYSc.ioiiuiiiiiiiiieieen e iveneecneieeeeeeeeneneneneenenenneenesens 108
4.7 Hash Tables and Hash Links ... e 112
4.8 Reference Counting ..ottt 3
4.9 The Costs of Real-Time List Processingccoccooviiiiiiiiiniiiniiiiiiieeae. 116
410 APPHCATIONS L o i et i18

4.10.1 A computer with a real memory of fixed sizec 118

4102 A virtual memory COMpPULErooiiiiiiiiiiiiiiiiii e e 118

4.10.3 A database management SYSEEMo..oicoviiiiniiuiineiiiniiieiea e 119

4.10.4 A totally new computer architecturec.coviviiiiiiiniiiiiiiii i ieees 120

411 Conclusions and FULUTe WoOrK ..ovveiiirii it e e e ettt eeea e e aananas 121

Tabile of Contents -6 -

5. Garbage Collecting Activities Incrementally 123

51 Garbage Collecting Irrelevant Futures fereenes e S 126
52 Coroutines and Generatorscocoiuiiiiiiiiiiiiiiiiii i iieiiirreeiataiineaneiareeeanes 129
53 Time and Space et 131
54 The Power of Futures PPN e cevrenes 132
55 Shared Data Bases OSSO 134
56 Conclusions i S 134

6. Conclusions and Further Researchcccccccceece.. 136

REF@IONCES ...t e e e e e et eeteseresnesaeearaanaenans e 138

Tablc of Figures -7-

FIGURES
Fig. 1. Event Diagram of @ GIUerooiiiiiiiiiiiiiiiiiiiiie e 45
Fig. 2. Parallel Evaluation of an EXPressionccccooiiiiiiiiiiiiiiniiiiniininineaaneaene 15
Fig. 3. Busy Waiting on a Cell LR T TP R T PEPRPPPLLTITPITELRCTY 58
Fig. 4. Counter-example to the Discreteness of the Combined Order 61
Fig. 5. FIFO Actor Interpreterc.ooveiiiiiiiiiiiiiiiiniiiiiiriceeieie e e eaaeae 68
Fig. 6. The Cell Model for Actor Computationsccovevriiieniiiiinnininnes Ceeeneanes 72
Fig. 7. Constructive Example: t=0ooiiiii e 74
Fig. 8. Constructive Example: t=] ... 74
Fig. 9. Constructive Example: t=6c.ccooiiiiiiiiiiiiiiiiiiiciea SO 74
Fig. 10. Constructive Example: t=7ooiiiiiiiiiiiiiiiiiiii e 75
Fig. 1l. A Cell Model for @ Celliiiiiiiiiiiiiiieiie e e eeaens 78
Fig. 12. A Pure Model fOr 8 Cello.ovooeeooeoeeeeeeeeeeese e eee e eeeeeeeenee e, 79
Fig. 13. The Cheney Algorithmcccoooiiiiiiiiiiiiiiiiie e e 94
Fig. 14. The Minsky-Fenichel-Yochelson-Cheney-Arnborg Garbage Collector 96
Fig. 15, The Serial Real-Time Methodccovvviiiiiiiiiiiiiiirrieie e enee e 98
Fig. 16. The Serial Real-Time List Processing Systemc..cooeuiiuiiniinienioininannn. 99
Fig. 17. Real-Time System with User Stackccceeivuniinvinennennn.s et 105
Fig. 18. Real-Time System with CDR-Codingcccoiviieiiiiiiiiiniiiiii e 109
Fig. 19. An Infinite Sequence of SQUAresc..ccoeviiviiniunieiiniiieniiienieenaen. ... 129
| Fig. 20. A Lazy Sequence of SQUArescc.couuveruiieuiiuirinenneeensienenaeaeainnrnanns 130
Fig. 21. Examples of the EITHER CONSLIUCtccouvvuniiniiiiiieenreneineneinanernenenenenes 133

Background -8- Section 1
1. Background

1.1 Introduction

Hardware is cheap. Software is dear. These are the cliches of the computer industry
in the 1970°s. The proposals in this thesls will hopefully trade off shghtly higher costs in
hardware for greatly increased productmty in software. Systems savmgs should be
srgmfrca nt for several reasons. Better software producnvrty means less time in development
and more in the marketplace. Since this increase in productiwty results in part from a more
direct mapping of ideas into programs, costs of debugging and mamtenance should be less.
Because the underlying computational model (Actors) is closer to the conceptual ob)ects
(abstract data types) of the program, fewer approxlmauons and compromues have to be
4 made resulting in more robust programs. Greater soﬂware productlvrty means that
software costs are less, allowing for more specialized programs since decreased software costs
~ can be spread over fewer installations. In many cases, any increased costs in the hardware
will be offset by the increased emciency in the soﬂware-efﬁciency gamed by exploiting
global instead of peephole optimizations.

Ample evidence exists for the efficacy of this kmd ol‘ tradeoff. The ubrqurty of the
operatwnal amplifier instead of the srmpler (to make) cheaper and more effrcrent
transistor is a result of this "mind-over-matter” tradeoff Even though no slmple elegant
operational amplifier gate exists, it is a tribute 1o the mathematlcal elegance of this devnce
and its ease of use in design that integrated circuits having large numbers of circuit
elements are being made to simulate operauonal amphﬁers The existence of the " op amp”
allows this single concept to replace a wide vanety of real devices; a conceptual economy
that simplifies synthesis procedures, analyses, and inventories. Thus, the “op amp” is a
paradigm for what can be achieved when total system design costs are fully accounted for.

Of course, now that op amps are the accepted standard, their manufacturers will
diligerrtly search for new gates and devices to implement this mathematical model more
cheaply. Perhaps as a result of this research a single element op amp will appear which is

Introduction -9- , ‘ Section 1.1

simpler and cheaper than a transistor. Technology would then catch up with theory.

This thesis argues that current Von Neumann computer architecture is as iil-suited to
computer systems design as the transistor is to‘electronic circuit design; it is reliable and
cheap, but a poor match to the problem domain. The system designer would like to think
about high level objects like queues, data-bases, I/O | str’earhs. program modules “and
operations on those objects like "insert”, "print”, "delete”. - Current day computers offer oniy
bits, character strings, and numbers; and the size of the objects that can be conveniently
operated on is restricted by the fact that these objects must be examined or moved as a unit,
in their entirety. Thus, one can never “get off the ground®, so to speﬁk. because the
computer is destined to work only with those trivial entities. -

Actor theory was invented by Carl Hewitt and collaborators {49,85,43,44,51,50,52] in
response to these problems as a synthesis of many other ideas about abstract data types and
control structures [27,15,26,39). In this theory, actors and messages are the only two types of
objects. Actor systems exhibit behavior through acters ’sending4 messages to other actors,
which in turn send more messages. Actors can be created in the course of a computation,
and their names can be.communicated in messages without sending the actors themsetves in
the messages. Hence, elements of high-level data types can be modelled quite effectively as
actors which receive messages indicating the high level eperations that they shouid
perform--perhaps on themselves. The actor model also allows: for concurrent processing
because many actors can be receiving and sending messages independently of one another.
Thus, in addition to the actor theory being universal, which by itself is no great prize, it
matches very well (some of) our intuitions about how physical, ¢omputational, and
conceptual systems work. Thus, we propose to make the actor the "op amp” of computation.

1.2 Distributed Computing

In recent years, thete has been a shift from the centralized serial computing iystem to
the distributed parallel cowputing network. The large, general-purpose computer of the
IBM System/360 style is being replaced by numerous more dedicated mini and

Distributed Computing -10- Section 1.2

microcomputers connected together by phone lines, satellite links, Ethernets, and the like.

There are many driving forces behind this shift. Since information is often produced
at a different geographic location from where it is consumed, it must be transmitted. With
the costs of both digital communication and the smallest viable computer dropping, it is
becoming easier and more economical to digitize and edit the data at its source, so that only
the editted data need be transmitted. Response time for editting these trivial requests can
drop dramatically when there is a computer on-site. System reliability may also be
improved, because the loss of a particular node or link in the network need not completely
shut down the system; i.e. it becomes fail-soft. '

But centralized computing facilities are also undergoing change. The costs of CPU’s
have continued to drop until they are only a small sliver of the computer budget. The cost
per bit of memory has also dropped at the same rate, but instead of systemns how costing less,
the size of memories has grown to keep the overall system cost constant. The $64,000
question. is "How to take better advantage of all this memory to increase throughput?”
Faster CPU’s are not the answer since they require more expensive high-bandwidth
memories, and memory cost is already the largest single cost in the system. Neither are more
CPUs the answer, because in the current “"shared memory” p’aradigrﬁ they must still be
connected to the same memory, and the memory bus becomes the bettleneck.

The answer that is becoming increasingly clear is-to associate some computing power
closely with each chunk of memory and replace the "shared-memory” paradigm with the’
"saciety of computers” paradigm. The hope is that the computation of each CPU will be
local enough to reduce the communication bandwidth required between memory chunks by
at least an order of magnitude. This arrangement allows for better utilization of the s‘ca_t"cc
resource--memory--than any of the other alternatives. | ‘

The cost of the smallest viable computer goingi down, and its cost 1s fgoing dbﬁn faster
than its computing power. In other Vwor»ds, computing power hgs: gotten cheaper in absolute
terms. However, the optimum MIPSIS does not come at the fast end of the scale, with
sub-nanosecond gateS. but in the relatively slow range achieved by microprocessors on a

single chip. Therefore, massive parallelism may aliow performance from these chips equal

Distributed Computing -t - Section 1.2

to the performaﬁce of large serial computers such as the.-Cray-l. Mechanisms and methods
must be found which use this additional computing pewer to produce.the answer to a given
computing request faster. .

This thesis investigates several problems which systems. with- Jarge numbers of
independent computing elements must face. First, there are currently no good conceptual
models for thinking about these systems. Many. people are working on this problem and
offer models with widely varying degrees of generality. and. efficiency; it is not yet clear
-where the tradeoff lies between these two conflicting goals. Second, while we would like to
make programs run faster on cheaper hardware, it has become clear that for a vast number
of situations, the cost of programming--especially testing and veriﬁcation—-ii the limiﬁng
factor. Therefore, we wauld like to move to a message-passing paradigm, but not give up
the hard-won. gains in programmer productivity from advances in fh‘e serial computing art.

-We attack the problem of the lack of good conceptual models through advances in the
theory of Actors. We put this theory on a firmer foundation through axioms which specify
the behaviors of actor computations, We also present a constructive model for these axioms
which can.be used as a gedanken interpreter for actor computations. We argue that
event-based correctness proofs often avoid the exponential blowup of the classical “consider
all shuffles” approach.

We attack the problem of programmer productivity -on this new hardware
configuration on several fronts. It has become clear that one way of increasing a
programmer’s productivity is to give her the tools to think about her problem in a high
level way. In other words, instead of programming in terms of bits, bytes, and blocks, the
programmer should manipulate pictures, accounts, warehouse inventories, etc. as "first-class”
data types, and leave it to the compiler and/or interpreter to make it all work efficiently.

Actor theory provides a clear conceptual model for these types of programmer-defined
data types since it unifies the concepts of progrem and -data. . An account actor, besides
containing the data necessary to describe the account, also has a program called a script
which allows the account to respond to high level requests such as: "what is your 60 day
balance?” or "credit account with payment of $20.85". Once these high level data types have

Distributed Computing -12- ’ Section 1.2

been defined, most programs wither away to a few lines of code which send messages off to

these now-active data objects to perform the real werk. -

However, the trouble with systems which provide user-defined data types has been
that either the programmer has to know far more about the details of the implementation
than is healthy, or she has to put up with gross inefficiency and perhaps intolerable
run-time delays resulting from the automatic management of these objects.

This thesis helps solve one of the biggest problems in systems which take

. responsibility for these user-defined data’ types-the management of storage. = This is
significant because as we have argued it is not CPU €ime, but access to storage which is the
limiting facfor in computer performance. Since currently ‘pfogramt;ners are forced to
explicitly manage this scarce resource without much help from either hardware or software,
violations of storage management pohc:es are hard to detect and cause havoc when they
occur [I6]. We claim that a system which uniformly and efficiently managed storage would

- increase programmer productivity manifold, especially in the program debugging stage, and
would even tend to do a better job at it than the programmer could.

There are two reasons for this. First, even though for any particular task the
‘programmer can probably do a better job of storage management than the system, the many
small domains of explicit storage management which result can lead to an overall reduction
in total system efficiency, because storage can not be easily realfocated when some domain
becomes full. For example, a stack overflows when there is still plenty of room left in the
hash table. ' This is the classical fragmentation problem—"storage, storage everywhere, but
not a byte-to munch!” A uniform, glebal strategy would allow the system to aliocate storage
only where and when it is needed. ‘

The other reason why a uniform system can do a better job of storage management is

_ that while programmers can do a better job, they usually don’t, because they are pressed for

production, and it is not worth their valuable time to optimize storage utllization.l

By freeing the programmer from worrying about the management of storage
(alocation and freeing), it leaves her more time to worry about more important questions,
such as the correctness of the program or the scheduling of various parts of the program to

Distributed Computing -13- Section 1.2

achieve better response time. Time scheduling [24] is apparently a much harder problem
than storage management, or else it is not so well understood; hence it is more important for
the programmer to worry about the management of time than the management of storage.
(After all, human beings have many automatic systems to manage their fluids, their
energy resources, their ion balances, etc., but time scheduling for humans is still a very high
level function. In this analogy, automatic storage management functions less like the brain
than the kidney, which continually reprocesses the bodily fluids to maintain the right

environment for the more important functions.)
1.3 Actors in Hardware

A revolution is currently taking place in the computer industry. For the first time,
more CPU cycles are available than we know what to do with. This is due to the
availability of microprocessors on a single chip that can be turned out almost as fast and
cheap as copies from a Xerox machine. Some of these single-chip computers come complete
with on-board ROM (for program storage), RAM (for data storage), and 1/O capability,
requiring only a power supply and some I/O devices for operation.

Yet most computation remains expensive, far more expensive than these cheap
micro-computers would lead us to believe. This is because system design and programming
costs have remained high, or even increased, with the availability of these cheap computers.

There are many reasons for this. First, many of the lessons learned at great cost on
mainframe computers are being re-learned at the micro-level; e.g. high-level languages can
cut the cost of programming and maintaining large systems, yet micro-computer system

developers continue to use "assembly” languages, many without even crude macro facilities.

1. One will notice that exactly the same reasons hold for using a dynamic uniform paging
algorithm instead of manual overlays to manage programs that do not fit into primary
memory. The paging system cannot perform as well on any particular stretch of code, but it
is uniformly good on almost all of the code because it has access to dynamic run-time
information. Therefore in most situations, the paging system does much better than manual
overlays. :

Actors in Hardware ‘ -14- Section 1.3

Second, program development requires a quite different environment than the running
environment of the finished product; it requires editars, debuggers, sophisticated file
systems, compilers for documentation, etc. Again, micro-computer development limps along
using micro-computers themselves for editing, compiling, etc, tasks which méy be
inappropriate for these devices. ' o N ,

Third, old habits die hard. Faced with the prospect of cheap memory and cheap
CPU cycles, programmers continue to apply techniques to conserve memory and muitiplex
CPU'’s which are inappropriate for the current hardware/software cost ratios. Time, not
storage or CPU cycles, has always been of the essence, both in development and in product
performance, but systems are continually evaluated in terms of thelr ﬁardﬁare cost only, not
the software and opportunity costs which dominate.

Fourth, systems designers. have- missed seeing -the forest for the trees. The real
bottlenecks in computing are in communicating information between modules and not in the
internal operation of any of the individual modules. Mast CPU's spend a considerable
fraction of their time waiting for I/O devices such as disks or in serially searching some
small region in fast memory while the rest of the fast, and very expensive, memory sits idle.
Yet the angwer is not-in.simply adding more CPU’s, because the bottleneck is still in the
communication link between the CPU and memory, net in the CPU.

What is needed is some wiy'of designing a system with a larger ratio of CPU cost to
memory cost so:that a larger percentage of the memory.is being- utilized most of the time.

" The answer given by this thesis is not to.design systems using' CPU’s and RAM’s as
separated components, with caches, saphisticated instruction sets,.and clever algerithms to
get back some efficiency, but to design systems with large numbers of very simple actors, -
each of which combines both a CPU and a small- ameunt of RAM. These actors
communicate not by interrogating a shared memory but by sending messages to von_e
another. The best mechanism to transmit and deliver thcs'evmessages has yet to be
developed, but a full "telephone exchange” network like a Batcher sorting net [10] looks

promising.

Actors in Hardware -15- Section 1.3

The speed and power of actor systems depends not upon the speed and power of the
individual actors, which might be very dumb and slow, but on the massive parallelism of
thousands and millions of these devices working in concert. The clever algorithms which
have been developed for searching on serial computers to minimize the bandwidth required
between the CPU and RAM are not needed in an actor systerm ‘where hundreds of CPU's
can be searching their focal memories simultaneousiy. Even if each CPU is slow, and uses a
naive search method, the search cannot take very long because each local memory is small.

We conceive of chips in the near future on which the large majority of the area is
taken up by memory, and a CPU squeezed in around the margins. A few more years will
see large arrays of CPUs all on a single chip, giving the power of the ILLIAC-1V [9) but
with a good deal more flexibitity. o

The key to the current micro-computer revolution was the realization that one did not
need all the complexity of the big computer instruction sets to. !Jp“illd a Turing ‘univez_'sva'l-
device that was still fast enough for many sihbh apphcauons ‘Mé;king the CPU simple
allowed it to fit on a single chip. |

Making the CPU even simpler is the key to the next revelution. Rather than trying
to get a lot of power from one sophisticated CPU working alone, we plan to get that power
by the joint effort of many simple devices working together. Each CPU should be
universz_xl,2 but it must also be as simple as possible so-that many will fit on a chip. The
CPU does not need a clever instruction set, because it does not have to be speed or storage
optimized; e.g. ten to twenty instructions are sufficient to p_erferm the simple tasks that are
required.

The content-addressable memory fad of the 1960's had the right idea--increase the
memory bandwidth--but its advocates were slightly misguided.- They hoped that by adding

a little logic--a comparator, flag bits, etc. to a memary: cell, the proper tradeoff would be

2. Each element of an array of parallel processes need not be universal for the array to be
universal, viz. Conway’s LIFE game [38] or Hemnie’s iterative arrays [47). However,
universality can be achieved with only a few tens of gates [7], and is therefore relatively
cheap. ' o

Actors in Hardware : -16 - Section 1.3

achieved. However, the protocols in a content addressable memory are too simple to make
efficient use of the communication bandwidth.of the accessing mechanism. For only a “few
more” gates, one can add a complete microprocessor to each memory cell and have a
universal capability there. In this way, thé messages.can be much higher level than the
simple "match and respond” messages of the content-addressable memories. 4
There has been considerable interest. in how to. apply these large numbers of
processors to the solution of a single task [33). Since the efficient utilization of a horde of
processors will require a lot of communication, sorting networks have been devised [10,87]
which allow every processor in an N-processor system to both. send and receive a message
on every clock pulse. However, it is still not clear how to effectively utilize all of these
processors. Later in this thesis, we will maké one suggest,iowc('ullrbyffuture' or “eager

evaluation”) for keeping all of these CPU’s busy.
1.4 Problems with Sﬁgrea idimory

The hallmark of the Von Neumann computer model is its homogeneous array of
read-write memory cells, addressed by a set of contiguous non-negative integers. This
memory has been abstracted out from the computer -proper as a-single separate RAM
(random access memory) chip in many current microcomputers. The RAM chip has a set of
address lines, a- set of data lines, and a read/write lifie If 'tﬁc”cﬁip’ is presehted with a
non-negative integer on its address lines and-a "read" sigmal, the contents of the memory cell
addressed by that integer appears ‘on the data lines' after a short delay. If the chip is
presented wifh an address and a "write” signal, the data presented to the chip on the data
lines is written into the memory cell specified by the address.

A key property of this RAM design is that only one address can be presented to the
chip at one time, and that address refers 1o enly a-single memory cell. This means that if
one memory location is being addressed, the others must remain ldlc; | Thns might not be so
bad if 6nly a few memory cells resided on a chip.- '-"Houeﬁr, the trend ‘is to put more and

more memory on the same chip. A result of this trend is that the fraction of the memory

Problems with Shared Memory -17- Section 1.4

that is active at any one time is becoming smaller and smaller. This means that in a given
number of cycles, less and less of the memory stored in the device can be brought to bear on
the problem at hand.

QOne can counter this argument by saying that the speed of the memory chips has also
been increasing, and therefore that this will counteract the previous trend. However, the
speed is increasing at a slower rate than the capacity.?’ If we consider the minimum time to
examine every location as a figure of merit for a memory module (using parallel access, if
the memory allows it), then this figure is increasing with time.

The effect of this trend is to make memory less accessible than previously. Of course, it
has been argued that few systems take advantage of anything like the bandwidth allowed
by the smaller chips, since usually only one of the memory chips is enabled at a time.
However, this fact is not something to be proud of.

One can also argue that if the same information must by accessed from many places at
the same time, it should be copied into separate chips or separate computer systems to avoid
the accessing bottleneck. However, multiple copies of memory require multiple amounts of
hardware to store. True, the actual cost of the storage itself is very small compared to the
accessing network (this is true for the entire spectrum of memory devices from tape drives to
memory chips), and therefore copying the whole memory may be no more expensive than
copying only the accessing mechanism. Regardless of these costs though, multiple copies of
information create great difficuities in keeping those copies consistent, and the
communication bandwidth required for this purpose may cost more than keeping only a
single, but very accessible, copy. |

Multiport memories have been developed which achieve some degree of simultaneous
access to more than one memory location in a memory at one time; e.g. there exist small
register chips with two completely independent access channels as well as large interleaved

memory banks with arbiters, each of which multiplexes access from multiple sources to a

3. The speed of a memory chip is roughly inversely proportional to its linear dimension,
while its capacity is roughly proportional to its area.

Problems with Shared Memory -18 - Section 1.4

single memory bank. Computer systems using multiport memories and dual processors can
achieve a better processof to:memory match-and more throughput per dollar than a single
processor operating on a non-shared memory because the two slow processors are cheaper
than the single fast processor. However, the success of cache memories closely tied to CPU’s
indicates that considerably more can be done in matching CPU performance to memories.
This is because accesses from a CPU to a memory are not random and independent, but
show a considerable serial correfation. In other words, many of the accesses in a vgiven time
period tend to be close to one another. By remembering in ‘a’fast cache chunks of
‘information which are repeatedly accessed, the communication to the main memory is
reduced. This means that for a given memory bandwidth, more CPU's (with caches) can
have access to the same memory.

The problem of multiple copies of information raises its ugly head again, though. If
multiple CPU’s each have a copy of the same information, which is the current one? The
answer we propose is to have many CPU's ‘with caches, and ta have only one copy of each
unit of information and nro shared memory at al! Thus, if one processor is cacheing a
"memory cell”, and another wants 10 access it, it must either ask the first processor to
intercede for it, or the first processor must give it up to the ‘second. The first type of
interaction is reminiscent of the simple access of a'CPU to a memory, while the second is
reminiscent of the transferring into fast store a page of memory cells from a backing store in
a virtual memory system. The first type of interaction allows a CPU access to any memory
in the system, while the second allows the location of information in the system to be
optimized, depending upon who accesses it the most.

Thus, the complex address decoding logic of a serial computer which steer pulses from
one CPU to one of many memory locations and back can be teplaced by a more symmetric

arrangement whereby many CPU’s send 'musagd among themselves concurrently.

Real-Time Systems Design -19- | ‘Section 1.5
1.5 Real-Time Systems Design

Consider the problem of the designer of a real-t‘ime system, a computer system with
numerous stimuli which must be responded to Withlnstrict'time bounds. There are many
such systems in existence today, and their number is growmg daily. Some examples of
real-time systems are an airplane’s autopilot, whlch responds to changes in the plane’s
course, altitude, or speed; the 1gmnon and fuel mjecnon controllers in some automobiles
whlch respond to changes in throttle position and Ioad and the dlstrlbuted computer
message switching centers, which must process and re-direct thous_ands of messages per
second. _ | ’

If computers and all their I/O devices were matched in speed so that a computer could
handle exactly one task at a time and finish it before starting on the next--all the while
meeting the response times required of it--then there would be no problem in allocating
either time or space on the system. The currently running task would have the whole
machine--all the processor cycles and all the memory loeationsfuntil it finished.

In a few fortunate cases, such a system design works Well. l-lowever, in most cases, this
kind of a system leads either to unacceptably long response delays, or ’unaccep;ably low
utilization of the hardware (ie. it is too expensive!). Thus, more efficient use of the system
resources can be gained through multiplexing processol' cycles and sharing memory among
the different tasks. The execution of several lasks can then be overl;pped with one another,

When many tasks must share the same memory some management scheme must be
instituted in order that this sharing be done harmoniously, and with the least amount of
hogging. What mechamsms can be used to ~manage the sharmg of memory'-’ If all the
different tasks must share the same address space, the snmplest method is fixed allocation. In
this scheme, every task is allocated its storage at system deslgn tlme, and the task may never
use more, regardless of the distribution of stimuli the system is subjected to. This scheme is
subject to storage fragmentation because a task always has enough storage for its worst case,

whether or not all tasks can achieve thenr worst cases slmultaneously

Real-Time Systems Design -20 - Section 15

A second storage management policy is that of the pool, where allocation is dynamic,
but its responsibility rests with a central facility and all tasks' request storage from it in a
umfonm way. However, even this policy leads to storage fragmentation. If the pool allows
for blocks of any size, it may reach a situation in which a block is needed and there is
enough free storage in total to satisfy the request, but that free storage is not available in
one contiguous block. Hence, the demand cannot be met. On the other hand, if the pool
allows only for blocks of certain sizes, then much storage is lost through roundihg requests
up to the next block size.

Therefore, for a system to make maximum use of its available storage, it must be able
to re-organize the storage, i.e. it must rearrange blocks of data in memofy so that free space
can be made contiguous and hence more available for allocation. |

In the simple system which had only one task ekecuting at any one time without
pre-emption, each task allocated storage as it saw fit. For example, if the task algorithm
were programmed in one of today'’s higher level languages, it would use a stack for local
variables and subroutine return linkages. which would grow from one end of the linear
array of storage cells. ‘ '

If the system were extended to use a well-ordered set of interrupt priorities, then it
could allow the simultaneous execution of mariy tasks, all sharing the same stack, so long as
the highest priority task finished before the next‘hig‘her priority one resumed. However,
this policy places great restrictions on the freedom of the hlgher prionty tasks to allocate
storage, since any object they allocate will be de-allocated before they finish. This means
that if they want to return some information--eg. a buffer of characters read in from some
external source--to some lower priority task, it is the lower priority task that must allocate
the space for the buffer. Hence storage is again fragmented since the lower priority task
must make a worst case guess as to the size of the buffer needed.

However, a static priority scheduling policy for tasks with hard response time -
constraints is known not to be optimal in the utilization of processor cycles (631 A “tightest
constraint first” policy can in many cases be very close to optimal [63], but this policy is not

a static priority scheme and would upset the delicate coordination of the LIFO storage

Real-Time Systems Design -2l - Section 1.5

allocation with static priority scheduling.

For these and other reasons, such as the desire for coroutines and other control
structures more powerful than simple subroutining, one is forced to abandon the single
stack method of storage allocation as too restrictive and hard to program. But storage
bmanagement with more than one stack is a problem. With two stacks, one stack can grow
from the bottom while the other grows from the top, but how does one manage three or
more stacks?

Some systems get around the problem of the One—d'imensionall nature of the random
access memory through memory mapping. This scheme allows every task the illusion that it
has the whole memory to itself whereas in reality it has only a whole address .;pate to itself.
This illusion is implemented by means of a memory map, which is a partial mapping from
the address space of each task into the real memory bf the computer system. This mapping
~ from an address space to the real memory is not done on a word-by-word basis, because the
cost of such a map would exceed that of the complete real memory for the whole address
space'*. Therefore, the mapping is done in larger blocks called pages. However, again
storage becomes fragmented because whole pages of real memory must be allocated even
when only a few words of virtual memory on that page arey being used.

The use of a memory map greatly reduces the amount of memory shuffling in
multitask systems since information can be contiguod; in virtual memory even when it is not
contiguous in real memory. However, to reduce such shufﬂing toa minimum. every task
should have its own map. But méps are expensive--both in terms of their hardware cost
and in terms of the storage fragmentation they produce.

It is for these reasons that list memory5 is so valuable--not only every task, but every

4. Such a map could be implemented far more effectively as a content addressable memory,
but cheap content addressable memories have yet to appear. |

5. We mean by "list memory” a memory whose cell adjacency relationships are indicated
explicitly with pointers, instead of implicitly through contiguity in the address space. We
include small objects having more than two pointers under the definition of list memory,
even though the paradigm of list memories, LISP, has only two pointers per object.

Real-Time Systems Design -22- Section 1.5

list is essentially a little map to the elements in the list, and the position of those elements
can be intertwined with elements from other lists or shared with other lists, or even moved,
so long as the "map” is updated. Since the list elements are of the same order of magnitude

as a word, there is very little storage fragmentation due to "rounding up".
1.6 Why Actors for Real-Time Systems Design?

We have already argued that the standard random access memory is far from
optimum as a memory model for a real-time system. We will argue here that the standard
process model for a task is also inadequate, hence the inadequacy of current hardware
scheduling aids such as interrupts. '

Most state-of-the-art real-time systems are interrupt driven, with interrupt signals on a
vectored interrupt bus causing a context-switch (attentiﬁn shift) in the CPU. Internally in
the software, however, th'ey\use a subroufine mechanism to communicate among internal
modules which uses a stack as a medium for information exchange and state-saving. On
the other hand, actor theory is a theory of message-passing among inany modules, and does
not distinguish between externally and internally generated messages. It therefore unifies
the concepts of interrupt-handling and subroutining. In this theory, an external signal and
its corresponding data are packaged together into a m;ssage, which is then presented to an
actor for processing. Whether the message is procéssed immediatély or not depends on the
scheduling algorithm, and messages generated externally afé treated the same as those
generated internally by that algorithm. A control stack is not needed because each “return
address” is represented explicitly in the nafhing environment as a continuation. A
parameter stack is also superfluous because messages are explicitfy constructed from heap
storage. The only system structure needed explicitly is the pending event structure, which
the event scheduling algorithm uses to keep track of messages in"transit. | _

Most existing real-time systems use a hardware static priority scheme to filter out high
priority from low priority requests for service. This scheme meshes well with the use of a

stack for saving the state of interrupted processes, because the priority levels are in a

Why Actors for Real-Time Systems Design? - 23 - Section 1.6

one-to-one relationship with the levels of saved st'ate-on- the stack. However, as we have
pointed out, this scheme requires that long-term memory for the higher priority tasks be
provided for in advance, and this is both wasteful and awkward. It is wasteful because
storage must be provided to satisfy the largest request and not the actual request. It is
awkward, because the higher priority tasks be programmed in a manner (and perhaps even
a language) different from that of the lower priority tasks. There will be little continuity
between interrupts to a task because no state for the higher priority tasks may be stored on
the stack. Hence, constructs such as "for" loops cannot be used in the programming-of these
higher level tasks because they store some temporary: resuks on the stack.

A better system would allow every task to be programmed relatively 'mdépendently of
the others, but in the same language. For example; one should not have to know the
relative prierity of a task at the time it is programmed but one shouid be allowed to use
every construct of the programming language. A system which uses a completely separate
address space for each task has most of these properties, but the separate address spaces
make it hard for the tasks to communicate with one another. In many such systems, tasks
communicate by means of messages which are sent and received in much the same way that
information is communicated between spatially separated nodes in a distributed system.
However, transmitting messages between different tasks in the same computer system boils
down to a glorified way of copying the contents of one area of nmnoryto.-ainother, and if a
large amount of information must be transmitted, the time to send such a mesSage is
proportional to the length of the message, including all of its components. -

It can be argued that all that copying is not necessary, if one only updates the memory
map for the receiving process to reflect the fact that a certain part of memory now contains
the message instead of what it used to contain. There are problems with this scheme
because mapping is not performed on a per-word basis, and this requires that both the
sending and the receiving buffers begin on a page boundary and occupy an integral
number of pages. Thus, the average message size will-interact with the choice of page size.

The result of working out all of these details is most inelegant.

Why Actors for Real-Time Systems Design? - 24 - Section 1.6

Worse is the fact that the message buffer is now shared between two maps, and if the
sender now tries to construct a new message in its message buffer, it will destroy the message
_ being processed by the receiver! So mapping the memory did not achieve what we wanted
at all, namely passing a message, but instead achieved the non-goal of passing a buffer of
memory celis. | '

Since we would like to construct and pass messages and not message buffers, we must
use a different buffer to construct the messages than the one the receiver is processing, and
this requires a great deal of protocol to agree on which buffers are being used and a great
deal of synchronization to change buffers. Furthermore, if variable-length messages are
being sent and the receiver does not process therﬁ, in a simple FIFO or LIFO order, the
problem of managing the message buffers becomes as big a headache as any in the whole
system. The final blow to this scheme is the fact that buffers not used by one pair ofA tasks
in their communication may not be re-used for another communication link.

Therefore, if messages are to be sent and received with a minimum of copying and a
maximum of sharing, message buffers must be allodted from a central pool of storage
shared by all tasks. (This pool must be shared by all tasks because a task may forward a
message or point to it as a subpart of another message) However, once message sharing
has gotten this complicated, the responsibility for reclaiming and re-using old message
buffers must be taken away from the individual tasks, and given to the central authority,
since the individual tasks are not in the best position to know when a buffer is no longer
needed. Thus, through a series of logical steps we are now back in the realm of list
processing for the management of messages between different tasks in a real-time system.

By proposing a real-time system based on separate tasks sharing a list memory and
communicating by passing messages which are stored in the list memory, we solve quite a
few of the problems of realtime system design. However, a large problcm ‘which results
from multiplexing many tasks on.a single computer remains. This is the problem of fast
context-switching. Modern "mainframe” computers tend to have a large number of registers
in the CPU which must be saved on an interrupt and restored upon resumption of that

task. In addition, many CPU’s have a cacke memory which is effectively saved and restored

Why Actors for Real-Time Systems Design? - 25 - Section 1.6

on every interrupt and resume, but perhaps not so obviously. These fast registers and
caches speed up the CPU in the execution of one task, but increase the time required to
switch tasks. Real-time systems, which must be able to respond quickly to external stimuli,
cannot afford to spend a long time saving and restoring the states of tasks, and must
therefore minimize the amount-of state information needed to represent that task.

Again, computer designers have responded to this problem by implementing multiple
register sets in the CPU, one per process--in effect implementing a map from task number
to register set. In fact, the Texas Instruments 9900 single chip microprocessor takes this
scheme to its logical conclusion by keeping all its “registers” in main memory, and switching
tasks by changing the CPU register which points to the block of storage allocated - for the
"registers” of the current task! In this CPU, task switching involves the saving and
restoring of only 3 words--the program counter, the task status word, and the register block
pointer.

This register mapping scheme certainly solves the problem of long context switching
time; a processor using it can switch contexts in only a few memory cycles. However, the
whole concept of a task as a process has become more virtual. Memory has been abstracted
into an address space and a register has become just another memory- cell with a shorter
name. One wonders where this process will eventually end, and whether it might be

simpler and cleaner to use another conceptual model for programming these systems.
1.7 Continuation-Passing Style

We have been arguing that the standard static-priority, stack-recursive control
structures of present day real-time systems are inadequate to deal with truly complex
situations involving dynamic' priorities and co-routines. The sfsiems that try to handle such
situations do so badly because they must allocate multiple stacks with all the problems that

they cause.

Continuation-Passing Style _ -26 - Section 1.7

A heading for all of these issues might be called focus-of-attention or the management
of attention because this is what a realtime system must do to respond to its stimuli. Over
the past 15 years, researchers in the field of Artificial Intelligence have concerned themselves
very much with this issue because for most of the problems in-this field, the total amount of
computation can be drastically reduced if the attention of the computer is focussed. Since
much of this type of computation involves searching, the mean search time over many
computations can be reduced if the search is performed by looking in the most likely places
first, then the next most likely, and so on.’

However, the orders of search which are easiest to program--e.g. depth-first search--do
not usually correspond to the most likely first ordering. Hence the computer must make
many shifts of context as drastically different alternatives are examined, one after another.
As a result of these needs, A.l. researchers have come. to the conclusion that simple recursive,
single-stack control structures are not adequate for their requirements. They have found a
need for co-routines, generators, and backtracking in order to focus the attention of the
computer program upon the currently most promising line to attack - its. most pressing
problem.

Landin [60], Reynolds [73], Hewitt [50}, Steele [81,82,84), and others [35,86] have shown
that all of these control structures can be modelled very elegantly in a form of .programming
called “continuation-passing”. In the continuation-passing style of programming, the control
stack of subroutine return points is not left implicit in the nested structure of the program,
" but is made explicit by providing an additional parameter in each subroutine argument
tuple called the continuation. When a procedure A is called from a procedure B with an
argument list including C as a cqqtinuétion argument, pfocedure A computes its value
using the normal arguments passed to' it, but instead of "returning" to A, it calls C with the
computed value as an argumént. But since the body of C encodes all the computations
which A would have done on the value returned by B, it is thé continuation of A after the
“return” from B. If one carries this form of programming to the limit, i.e. by everywhere
calling a continuation argument instead of returning, then the return points are only pushed

onto the stack and never popped. Thus, although the control stack grows to a depth which

Continuation-Passing Style -27- Section 1.7

is proportional to the length of the computation, it can be eliminated entirely since it is
never referenced again. -

The control stack is not needed when programming in the continuation-passing style,
because it duplicates information already stored in the variable binding environment
[50,81,82]. However, this variable binding environment should be a tree-shaped structure to
avoid the "FUNARG" problems which would otherwise result. The tree-shaped
environments required for the continuation-pa‘ssing style of programming can be easily
implemented in list storage. Since there is no .congrdl siack, all storage required by the
program can be satisfied by one mechanism--a gérbage-collected heap; i.e. one uniform
mechanism provides for both the implicit sforégg required for binding as well as the explicit
storage requested by the programmer. |

Although a little efficiency is given 'up by réplacing the stack push opération by a
continuation creation operation plus a variable binding operation, one immediately gains
the flexibility of non-recursive control structures ;uch as co-rohtines, generators, ‘and
backtracking. Furthermore, if one writes continuations in such a way that they accept
multiple arguments, then one also gets the effect of returning multiple values from a
subroutine essentially for free. In this style, a divide subroutine can return both the
quotient and remainder from the division process without the usual kludgery involved in
handling'multiple values.

Continuatioﬁ-passing style makes the programﬁ!ing of real-time contrdl systems easier,
since the logical event causalities of the various tasks are explicit in the text of the program
instead of being buried in some scheduler. When a routine is finished performing some
- computation, it has the flexibility to go directly on to the next computation, whether or not
that computation is to be done by the routine which qalled it. Since the state of the Con;rol
structure is explicitly represented in the envirohmem_ ir:ls’teadr‘of implicitly in a control stack,
there is very Iiitle state in the CPU to change in‘ 6rder to respond to external stimuli.
quickly. All of the tasks are on the same level, instead of hav)ing "interrupt-level" routines,
"high-priority” routines, and "background” ro(:tines. Finally, since the management of

storage for the continuations is handled by the system, the programmer need not worry

Continuation-Passing Style -28- Section 1.7

about where ail of these bits and bytes are being allocated, but only whether the total

storage used exceeds the amount available.
1.8 Outline of the Thesis

Chapter 2 presents axioms for actor theory and discusses some theoretical problems
posed by them. It also presents a Constructi?e interpreter which is capable of generating all
possible computations from an initial cohfigurition of actbrs. This interpreter is not
intended to be used in a real actor systeh, but only to illustrate more concretely a scheduling
mechanism which is consistent with the actor axioms. | _

Chapters 3 and 4 discuss one of the main problems in implementing an actor system
which is subject to real-time constraints--the allocation and recollection of storage. An
incremental garbage collection approach is 5dvocated, and a method is eihibited which has
the additional property that all allocation, iaccessing and updating primitives are
time-bounded by a constant. Hence, the events in an actor system which uses this technique
can also be time-bounded.

Chapter 5 deals with a new problem that comes up in actor systems with large
numbers of activities and processors. An activity may be started on the presumption that
the result it will eventually return will be useful. However, as other‘activities progress in
parallel with it, this presumption may prove false, and the acnvnty whlch is now deemed
useless must be stopped and its resources returned to the system. One of the best examples
of a system which generates activities which may later turn out to be useless is that of an
interpreter for an “"applicative” (expression-based) Iangbagé which .im‘plemepts
"call-by-future”, a parameter binding mechanism which is different from call-by-name,
call-by-value, call-by-need, call-by-reference, eté. Cali-by-futuré is lmplémented by an "eager”
interpreter, which spawns a new activity (a “future”) for every expression which is an
argument to a procedure. Eager evaluation may result in faster.rcsponse from real-time
systems, since an activity does not have to wait untll m relevancy is proven before it can be

started. The Church- Rosser theorem [2} 26], whlch ensures the invariance of the value of

Qutline of the T hesis -929 - | Section 1.8

an expression in these languages regardless of the order of evaluation, can be extended to
cover this new evaluation order. Thus, in a language like LISP which has been extended
with call-by-future, the value of an expression will be independent of the evaluation order
"most” of the time, i.e. whenever the side-effects do not,interfere.6

In Chapter 5, a garbage collection approach is also advocated for this problem, and a

method is found for garbage collecting "irrelevant” (useless) activities incrementally.

6. Other researchers [37,28,89] also note that languages without side-effects, e.g. "pure”
LISP, are excellently suited for the purpose of representing many algorithms intended for
execution on a host of processors since their lack of side-effects eliminates a great source of
complexity in parallel execution. However, this kind of parallelism does not implement the
most general form of communication between activities. For example, an airline reservation
system cannot be implemented in such a language, due to its non-determinate behavior.

Laws for Actor Systems -30- Section 2
2. Laws for Actor Sysfems
2.1 Introduction

Although there has been much previous work on actor theory [49,85,43,44,51,50,52], the
precise semantics of the orderings of events in this theory, the modes of information
propagation, and the role of non-determinism have not béen clear. As a result, any attempt
at a clean realization of the actor concepts in terms of a language was difficult, because
the;e fundamental issues had not yet been resolved. This chapterl attempts to clarify actor
theory by presenting some axioms that we believe must be satisfied by computations
ihvolving communicating parallel processes. These laws restrict the histories of parallel
(actor) computations to make them physically realizable. The laws are justified by appeal to
physical intuition, and are to be regarded as falsifiable assertions about the kinds of
computations that occur in nature rather than as proven theorems in mathematics.

Since the causal relations among the events in a parallel computation do not specify a
unique total order on events, actor theory generalizes the notion of a computation from that
of a sequence of global states to that of a partial order of events. The interpretation- of two
unordered events in this partial order is that they proceed concurrently.

Specificaiions for an actor and correctness assertions for a computation can be given
very naturally in terms of events and partial orders of events because partial orders seem
better suited -to expressing the causality involved in parallel computation than the totally
ordered sequences obtained by “considering all shuffles” of the elementary steps of the
various parallel processes [74). Since inference rules can use these partial orders directly, the
number of cases in proofs is considerably reduced.2 We demonstrate some of the utility of

these partial orders by using them to express our laws for distributed computations.

. This chapter is an expansion of some of the ideas in the two papers "Laws for
Communicating Parallel Processes™ and "Actors and Continuous Functionals™ by Carl
Hewitt and myself.

2. A. Holt [57] and 1. Greif [43] were some of the ptoneers of event-based reasoning

Introduction -3- Section 2.1

We present in this chapter axioms for actor systems which restrict and define the
causal and incidental relations among events in an actor computation, where an event
consists of the receipt of a message by an actor, and results in the sending of other messages
to other actors. These-axioms do not postulate the existence and fairness of some gilobal
scheduler or oracle, even though our constructive model for this theory will use such a

global scheduler to ensure that the computations it generates satisfy all of the axioms.
2.2 Event-based vs. State-based Reasoning about Systems

The applicaﬁon of the concept of state to sequential systems was a great advance.
This concept allowed the future behavior of a system to be completely determined by the
abstract state of the system instead of the whole past historj of the system. M‘ox:'e formally, a
state is an equivalence class of past histories of a system, all of which are equivalent in the
sense that the future behavior of the system given any of thesé past histories will be
identical. In some cases, the infinite (and perhaps uhcountablé) class of histories can be
vastly reduced to a finite set of thése equivalence‘ classes,ko_i" stafe_s. Thus, the state of a
system incorporates the "important” part of the past history, where “important” is defined as
beihg relevant to the pfediction of future behavior.

Since the concept of global state is’such an ivmpo;tant and valuable tool to the
understanding of Systems, why do we give it up? We reject it on both theoretical and
practical grounds. Relativity theory tells us that the concept of an global state for a spatially
distributed system is ill-defined in the sense that the felati\ie order of many events, and
hence the perception of the state, varies with the position (and velocity, etc.) of the observer
of the system. Therefore, in order to consistently define a global state, we must specify an
observation point and define the time of an event as the instant tﬁat the observer observes
it. Although this can be done, one would likeri more observer-independent description of
the behavior of a system. Relativity theory tells us that the direction of causality or the
direction. of information flow among events is the sarﬁe for all observers, and hence

diagrams of event causalities are theoretically more appropriafe for spatially distributed

Event-based vs. State-based Reasoning about Systems - 32 - Section 2.2

systems.

Thus, although the concept of state allows us to factor out the irrelevant details of a
sequential system’s history, partial orders of events allow us to factor out the irrelevant
details of the observer of a spatial system’s positioh. velocity, etc. But we would also like to
factor out the irrelevant details in the history of a spatially distributed system using a.
concept similar to that of state. While quite Iaudable; this goal is hard to achieve. In the
case of a sequential system, the concepts of “time" and "behavior” are both well-defined;
"time” is a linear order of transitions in the system while "behavior” is a mathematica!
function of the sequence of all inputs, or equlvalently. a functlon of the current state and the
future inputs. But neither concept gencrahzes for a dnstnbuted system.

The concept of a “space-like slice” through the causal connection diagram for the
history of a distributed system may be the appropriate generaliiatidn of an “instant of time”
in a sequential system. These space-like slices are essentially collections of events that are
unordered by causahty, i.e. they consist of events which could happen simultaneously
Given such a slice, one could identify the local states for each object in the slice. If anotherb
causal connection diagram over the same set of system elements were to contain an
equivalent slice--namely, one in which the same objects had the same local states--then the
histories of both systems (the set of events yrhict; prcceded the slice) are equivalent, in the
sense that the same set of "future” events could be generated. Thus, by deﬁhing arbitrary
global states (the slices), we can regain the ability to factor out irrelevahcies‘ln the past
history of a system. |

Using this technique, we can compose the histories of twb systems tssing the same
configuration of primitive elements. - |

But we also reject the notion of a history of a system as being a sequence of global
states on practical grounds. Suppose that our system consists of n totally indepgndént parts,
each having a local state set of size m. Then the global state set consists of m" different
states, a_number which for reasonable m and n is totally intractable if each state must be

checked for some property. Of éourse, the parts in any interesting‘distributed system will

Event-based vs. Statc-based Reasoning about Systems - 33 - » Section 2.2

not be completely independent, but even so the size of the total state set will remain an

exponential function of the amount of parallelism in the system.
2.3 Events and Actor Computations

In a serial model, computations are linear sequences of global states, and each state in
_the sequence determines the next state by consulting either a program text (Von Neumann
stored program computer), or a finite state control (Turing machine model). In the actor
model, we generalize the notion of computation to-be a partial order of events in a system,
where each event is the transition from one local state to another. 4

The theory presented in this chapter attempts to characterize the behavior of
procedural objects called actors (active objects) in parallel processing systems. Actors,
messages, and events are the fundamental concepts.in the theory. Actors interact through
one actor sending a message to another actor called the target (of the message). The receipt
(and processing) of the message by the target is an event, and these receipt events are the
basic steps in the actor model of computation.
New actors and messages can be created in an event in the course of a computatitm.‘i
Indeed, almost every message is newly created before being sent to a target actor.

Events mark the steps in actor computations; they are the fundamental interactions of
actors. Each event happens instantaneously, i.e. indivisibly, requiring no duration in time.

Every event E consists of the receipt of a message, called message(E), by a target actor,

called target(E). We will often use the notation

3. In Hegel's terms, our thesis is really an antithesis to the thesis of global state, especially
the proving of properties of parallel systems based on global state transitions. Of course as
Hegel pointed out, syntkesis follows thesis and antithesis, and we have indicated a possible
direction for this synthesis in the equivalencing of certain space-like slices. However, since
antithesis and ‘not synthesis is our intent, we will argue here for a theory of events and local
states rather than global states.

4. The creation of an actor is not itself an event; actors are created as side-effects of other
events. We denote the event which results in an actor x being created as the creation event
for x.

Events and Actor Computations -34- Section 23

E: [T <~~ M)
to indicate that event E consists of the receipt of message M by target T.

An event is the receipt of a message rather than its sending, because the message
cannot affect the behavior of its target actor until it is received. If the sender wishes a reply,
the message should contain as a component a cortinuation, i.e. an actor to whom any reply
should be sent. o

Intuitively, the receipt of the message M at the target T makes M’s information
available to the target for the purpose of causing additional events by smding messages to
other actors. The receipt of M by T does not in itself cause any change to either M or T;
however, T may decide after receiving M to remember all or part of M. ‘

| Due to the totality of the “receipt order” for each actor (to be defined later), we may
speak consistently about the local state of an actor. This local state is completely encoded as
‘a vector of acquaintances, which encodes the names of other actors this actor knows about at
this time. A name in this vector is just enough information to allow this actor to send a
message to the denoted actor.

Therefore, for each event E, we can define acqu(T) to be the vector of immediate
acquaintances of T "just before” the event E. We now stipulate that this vector is of a fixed,
finite length; i.e. that the length of an actor’s acquaintance vector is fixed for the life of the

actor.

Law of Finite Acquaintances: For all actors x and events E such that x=target(E), the vector

acqsp(x) has finite length. For all events El‘ E2 such that target(El)-target(Ez)-x.'
length(acqsEl(x))=length(acqu2(x)).

This restriction is not meant to discourage the use of arrays with flexible bounds.
However, they cannot be primitive in our system because in order to satisfy real-time
constraints, we want all primitive operations to be (in principle) time-bounded by constants,
and all known methods for dealing with such arrays require time growing with the size of

the array.

Events and Actor Computations -35- Section 2.3

The A-expressions of Church’s A-calculus [21,26] may be modelled by actors which
receive their arguments as messages. In this case, the expressions bound to the
free variables of the A-expression x become the acquaintances of the actor modelling x. Due
to the properties of the A-calculus, those acquaintances may not change over time; ie. if
actor y models a A-expression, then for all events El and E2 in which y is the target,

acqul(y) = acqsﬁz(y).

In order to implement interprocess communication between . parallel processes, it is
necessary to use actors whose acquaintance vector changes over time. One purpose of this
chapter is to axiomatize the fundamental laws which govern the behavior of such actors.

An important example of an actor whose immediate acquaintances change with time is
a cell. A cell's acquaintance vector has exactly one element--its contents. When the cell is
sent a message which consists of the request "contents?” and a continuation (another actor
which will receive those contents), the cell is guaranteed to deliver its contents to that
continuation. When the cell receives a message with the command “store y!" and a
continuation, the cell forgets its previous acquaintance by updating its acquaintance vector
to hold y, and then informs the continuation that the command has been obeyed. The

behavior of cells will be discussed later in more detail.
2.4 Partial Orderings on Events

In order to develop a useful model of parallel computation, we have found it desirable
to generalize the usu;l notion of the history of a computation from a sequence of states to a
partial order of events. Thus, a history of an actor comp,utzlyi,ion‘_is a partial order which
records the causal and incidental relations amongrevents. It is an upper bound on the
amount of parallelism that can be used iﬁ an implementation, e.g. any two unordered events
could be executing concurrently on separate processors. However, there is no requirement
that an implementation do this. An actor computation may be simulated by executing the

events in any order which is consistent with the partial order defined by the history.

Activation Ordering -36 - Section 2.4.1

2.4.1 Activation Ordering

One important strict partial ordering on the events in the history of a computation is
derived from how events activate one another. Suppose an actor X receives a message m, in
to another actor X

an event El and as a result sends a message m Then the event E2 in

2 2 .
which m2 is received by x2 is said to be activated by El' ie. El is the activator of 52. We
call the transitive closure of this "activation” relation the activation ordering for a particular

actor computation and if EZl precedes E_ in this ordering then we write

2

E‘0+>E2.

2.4.1.1 Laws for the Activation Ordering

It is not possible for there to be an infinite number of events in a chain’ of activations
between two given events in the activation ordering of the history of a computation. Stated

more formally:

Law of Finite Activation Chains between Events: If C is-a chain of events in the activation

ordering from El to E, then C is finite.

The law of ﬁnite2activation chains is intended to eliminate "Zeno machines™--machines
which compute infinitely fast. For example, consider a PDP10 which executes its first
instruction in 1 usecond, its second in 1/2 msecond, its third in 1/4 psecond, and so on. This
machine not only could compute everything' normally éomputable in less than 2 useconds,
but could also solve the "halting problem™. It could do this by simulating a normal PDPIO
running on some input, and if the simulation were still running after 2 useconds, it could

conclude that the simulated machine did not halt on that input. |

5. A chain is a totally ordered subset of a partial order.

Laws for the Activation Ordering -37- Section 2.4.1.1

It is intuitively reasonable that an actor can construct and send only a finite number of
messages in the instant that is an event. Therefore, one event can activate only a finite
number of other events. The events directly activated by an event E are called the
immediate successors of E under the activation ordering, or immediate activation successors of

(E), has the formal

E. The'set of immediate activation successors of E, written succ,,,

definition:

succ, , (E) = {E'| E++>E’ and =3 E"” such that E++>E"++>E’}.

+4>

Then we have the foliowing law:

(E) is finite.

Law of Finite Immediate Activation Successors: Far all events E, the set succ,,

We also define immediate predecessors for the activation order in a manner analogous

to that used for immediate successors.

pred,, (E) = {E'| E'++>E and =3 E” such that E'++>E”++>E}.

N

We now postulate that an event is either an initial event, in which case it has no

immediate predecessors, or it is activated by a unique predecessor event.

Law of Unique Activators: For all events E, the set pred,, (E) contains either zero. or one

+4+>

element.

Each event E has at most one activator event activator(E), because message(E) is the
only message received in the event E and because message(E) can only be sent by one event,
which is required to be activator(E).

What does this activation ordering look like? Since each event has at most one
activator, and no infinite preceding chains, the ordering is a forest of trees having the
initial events as roots. Since the branching is restricted to be finite at every node, each tree
is finitary.

Note that because an event has only one activator, the join part of fork-join behavior
cannot be analyzed using only the activator ordering. We will see later that having unique

activators forces an asymmetry in the analysis of joins because the last event to arrive at the

Laws for the Activation Ordering -38- Section 2.4.11

join is the one which activates the remainder of the computation. Thus, the symmetry of a

6

"joiner” actor® is not a foregone conclusion from the basic axioms of actor theory, but must

be proven.
2.4.2 Receipt Orderings

Intuitively, the activation ordering can be identified with thé notion of "causality”,
- since each event is "caused” by its activator event. However, the activation ordering is not
enough to specify the actions of actors with 3id¢4ej’fects, such as cells. For this reason, we
introduce the receipt ordering ==>, for an actor X which records the order of receipt of
messages sent to x after having been ordered by an arbiter. Note that there are only a few
primitive actors such as cells and synchronization primitives which actually care about the

order in which messages arrive.
2.4.2.1 Laws for Receipt Orderings

The receipt ordering for each actor x is required to be a total ordering on all events.
which have x as their target. This policy is enforced by arbitration, i.e. if two messages
arrive in close proximity to x, its arbiter device will arbitrarily decide which is to be

received by the actor first.

Law of Total Receipt Orders: If E « E, and target(E) « target(E,) = x, then either

El -y E2 or E2 ==> El.

This law states that either message(E,) is received before mes,agc(E?).'or vice-versa.
We note that there is no necessary relation between the order of receipt of two

messages at a target and the ardering of their activators. Suppose that events E’ and E2

both have the same target x. In a serial computation, El - }22 would imply that -

and E_ could be parts of two separate processes

E ++>E_, but in a parallel computation, E 9

i 2 I

6. Later, we introduce a particular kind of "joiner” actor called a "gluer”.

~ Laws for Receipt Orderings -39 - Section 2.4._2.!

unrelated via ++> Furthermore, the fact that activ-ator(El) precedes actiyator(E2) in the
computation is no guarantee that EI -—>y 1-32 because message(El) could take a longer route
than the message(Ez), or be delayed by an arbiter.

If an actor x is created in the course of a computation, then prior to any given

message which it receives, it could only have received finitely many other messages.

Law of Finitely Many Predecessors in the Receipt Ordering: If an actor x is created in the

course of a computation, and target(E)=x, then 4{E’IE’,-->XV E} is a finite set. |
The above law is used to guarantee that the process of repeatedly taking the precui'sor
of an event will eventually stop, i.e. no receipt ordering is an infinite descending chain.
Given an event El: [T <~~ Ml] and an event E2: [T <~~ M2]. there are only a finite

number of events between the two in the receipt ordering ==>1 . Stated more formally:

Corollary: For ali events E, E, such that target(El)-target(Ez)-x. {-EIEI ".""x E ==>, 1'32} is
finite. :

This law eliminates anomalous behavior like the following: a cell receives an infinite
sequence of “store!” commands: “store II", “store 1/21", store 1/4!", "store 1/8'", etc. and then
receives a "contents?” request. What is it to reply to the continuation? Zera? But zero was
never explicitly stored into the cell!

The Law of Finite Chains in the Receipt Ordering allows us to define immediate
predecessors and immediate successors for this ‘orde‘rihg in a manner similar to the one used
for the activation ordering. Since the Receipt Order Law guarantees that the receipt order
for each actor is total on its domain, immedfate successors and predecessbrs are u‘niyqvue,
when they exist. If an event E has an immediate predecessor in v""targct(E) , it will be
called the precursor of E and will be denoted precursor(E).

One of the simplest examples of an actor which depends upon its receipt ordering for
well-defined behavior is the cell. The cell is the actor theory analogue of the program
variable in modern high-level programming languages in that it has a value which can be

changed through assignment. This value is encoded as the cell’s single, changeable

Laws for Receipt Orderings - 40 - Section 2.4.2.1

acquaintance which is initialized to the name of some actor when the cell is created. A cell
responds to two types of messages, "contents?” requests and “store!” commands. When a cell
receives a request [contents? reply-to: ¢, the cell sends the name of its acquaintance to the
actor ¢. When a cell receives a command [store! y reply-to:], it forgets its previous
acquaintance, memorizes y as its new acquaintance, and then sends an-acknowledge message
to c.

We will discuss cells more formally in a later section.
2.4.3 The Combined Ordering

Since the events in any legal actor computation must be consistent with both the
activation and receipt orderings, they must be consistent with the transitive closure of the
union of the two. Hence, we introduce the concept of the precedes relation, "-->", which

combines the restrictions of both of these relations.

Definition: "-->" is a binary relation on events which is the transitive closure of the union of
the activation ordering "++>" and the receipt orderings " =-—>y ", for every actor x. In

mathematical notation,

-> = (+0> U U --->x)’.
x
In order for "-->" to function as a precedence relation, the next law requires that the

activation and arrival orderings be consistent. The Law of Strict Causality states that there
are no cycles allowed in causal chains; ie. no event in any history of any actor system

precedes itself. Stated more formally,

Law of Strict Causality: For all events E, it is not the case that E->E.

“This law does not follow from the properties of the activation and receipt orderings,

and counterexamples can be easily generated.

The Combined Ordering -41- Section 2.4.3

Now the immediate predecessors and successors of an event in the combined ordering
are the unions of its immediate predecessors and successors in the constituent orderings.
Therefore, an event has at most two immediate predecessors--its activator and its
precursor--and at most a finite number of immediate successors.

We would like to formalize the intuition that between any two events which are
causally related, there are only a finite number of events in the causal chain which links the

two. We therefore have the following law:

Law of Finite Intermediate Chains in the Combined Order (Discreteness of the Combined

Order): Given two events E, and E, in an actor computation, there does not exist an

infinite chain in --> between El and E2.

This law has a corollary which is even stronger:

Corollary: Given two events El and E_ in an actor computation, there do not exist an

2
infinite number of events between then in "-->"; in other words, the set.

{El El -2 E-2 l:'.2 }

is finite, for every choice of El and E2.

Proof: For any arbitrary choice of El and E_, let S denote the set described in the statement

o
of the corollary. Suppose that S were infinite. Now S has a spanning tree in "-->" with El
as its root, so S contains an infinite tree. What is the maximum number of branches
protruding from any arbitrary node in this tree? The immediate successors in "-->" of a
node are the immediate successors of that node in "u>",kplus the successor of that node in
“the receipt ordering for that node’s target, if such a successor exists. It then follows from
the Law of Finite Immediate Activation Successors that the immediate successors of a node
in "-->" must be finite, hence the number of branches in our tree protruding from any node
must also be finite. Hence the tree is finitary. But then by Konig's Lemma, this infinite
tree must contain an infinite chain. Since this contradicts our Law of Finite Intermediate

Chains in the Combined Order, the corollary stands. :

The Combined Ordering - 42 - Section 2.4.3

QED

While this law and corollary would seem to be a.consequence of the discreteness laws
for each of the constituent orderings, plus the consistency requirement for the combined
ordering, it is in fact independent of those laws, as the counterexample in a later section will

show.
2.4.3.1 Forlk-Join Behavior

In programming languages for parallel processing, it is necessary to provide primitives
by which a process can "fork” by Splitting into several processes which can later "join”
together again. This aliows for the processing of one branch of the fork to overlap with the
processing of the other fork, thus allowing for a reduction in the time to complete the
overall task, assuming that sufficient hardware is available fof such concurrent processing.

The parallel (collateral) evaluation of the arguments for a. procedure call provides a
very common and natural example of such fork-join behavior. Suppose, for example, that
we are interested in computing the value of "a2:b2" for some a and some b. In order to
reduce the computation time, we would like to evaluate a2 and b? in parallel before
summing the results. To evaluate these two arguments to "+" in parallel, the evaluation
process must split into two sub-processes, each of which evaluates one argument. When
both have been computed, they must be brouvgh‘t back together to form an argument pair
which is then sent to the "+" procedure. This procéss of combining the results of the two
parallel processes is a form of synchronization between the two processes, because more than
likely one will finish its evaluation before the other and therefore have to wait.)

-We can simulate this form of synchronization with a primitive actor called a gluer,
which accepts messages from two different sources, glues them together into a single
message, and then sends them to a continuation which was supplied when the gluer was

created. A more formal description of a gluer is given below.

Fork-Join Behavior - 43- Section 2.4.3.1

Although a gluer requires an arbiter in front of it to keep from receiving two messages
at the same time, and hence getting confused, its behavior is symmetrical. The particular
order of receipt of those messages does not matter since the gluer does not activate any other
event until it has received messages from both of its senders, i.e. the last message received
activates the sending of the combined message to the continuation, regardless of the source
of that last message.

Gluers allow us to factor the work of an actor which receives parameters from several
different sources into two parts: a gluer which receives the different parameters and binds
then together into a single message, and the computational part of the actor which performs
the intended operation on the multiple operands which the gluer has broughi together. In
an actor simulation of the data-flow computational model {28), every multiple-input operator
would require a gluer to glue one foken from each input arc into one composite token which
would trigger the actual computation.

However, a gluer is different from a two-input dataflow operator because it has only
one input port through which it can process messages, and these messages are arbitrated to
arrive in a total order. Therefore, although the gluer is entirely symmetrical in that its
output is independent of the order of receipt of the two different flavors of messages, it is
inherently a serial device, like every other actor, which is capable of receiving only one
message at a time. Because of its ability to glue together different messages which arrive at
different times, i.e. it gathers together data presented to it serially, the gluer is a sort of
"serial-to-paralliel” converter.!

We now analyze an example of fork-join behavior using this glueing primitive.
2.4.3.2 Formal Description of a Gluer

There is a primitive actor, called create-gluer, such that whenever it receives a message
of the form [sink:S reply-to:R], it creates a new gluer actor G, whose sink is S, and sends it
to R. G then accepts messages of two forms: [left: x] and [right: y}, where x and y are

arbitrary actors. If G receives a message of the form [left: x] and has previously received a

Formal Description of a Gluer - 44 - Section 2.4.3.2

message of the form [right: y], it sends a message of the form [reply{x yllto S. If G receives
a message of the form [right: x] and has previously received a message of the form [left: y),
it sends a message of the form [reply:[x y]l to S. Thus, a message of the form [left: x] isa
“left-hand component™ and a message of the form [right: y] is a "right-hand component” of a
final message to the sink S. Note that if in a computation, m left-hand messages and n
right hand messages are sent to the same gluer, then the gluer sends mn messages to its
sink, these m=n messages consisting of all the combinations of left hand and right hand
messages.

Figure | below shows an event diagram of the general kind of gluer described above,
2,p2",

while Figure 2 shows the diagram for the collateral evaluation of the expression “a
We note that in the latter case we have two possibilities for the event diagrams, depending

upon which muitiplication sub-expression returns a value to the gluer first.

7. Because of this restriction on actors that they can receive messages only one at a time,
one might conclude that they are not as powerful or as fast as a data-flow operator, which
can accept data on all its input ports "simultaneously”. The truth is, in order to physically
perform the synchronization required, whether in actor theory or dataflow, the control
information about which operands are ready and which are not must all propagate to a
single point in space at which, according to the assumptions of actor theory, the signals will
all arrive in some order and not simultaneously. Normally, an arbiter that decides which
signal arrives first takes time inversely proportional to the time difference of the arrivals.
However, since the result of a gluer is the same in either case, it should not need an arbiter
on its input; i.e. since a gluer does not reveal its decision about the order of arrival, it might
be able to use a different circuit than a standard arbiter. This circuit might even be faster
because the theoretical arguments against fast arbiters would not apply to gluers. This
argument is a gross simplification of some of the ideas of quantum theory, but it should
retain some validity.

Formal Description of a Gluer -45 - Section 2.4.3.2

Flg l. Event Diagram of a Gluer
[create-gluer <~~ [sink: S, reply—to. R} 1]

+
v
R <~a Ireply: Gl
+ +
+ +
+ +
v v .
G <vv lleft: x] ge== Genw {rights y)
+ .
v

© S <a~ Ireply: Ix yll

Fig. 2. Parallel Evaluation of an Expression

" Axy. x2+g2" <~~ largs: [a bl, reply-to: C]
&+
v :
create-giuer <~~ [sink: S, repiy-to: R]
+
v
R <~~ (reply: G]
+ ,
e B B A S R
+ +
v +
* <~~ largs: [a al reply-to: Gyl *
+ v
+ % <~~ {args: (b b) repiy-tos G5l
v ' ' +
Gy <~~ (reply: a2} +
+ v
+ Gy <~~ Ireply: bzi
v v
G <~ [left: al] ==x>G G <w~ [right: b2
+
v
S <~ [repiy: (a2 b))
+
v

+ <~~ [args: (a2 b2} reply-to: C]

Formal Description of a Gluer - 46 - Section 2.4.3.2

Figure 2 requires some explanation. The original function x24y2 is sent a message
consisting of the arguments a and b and a continuation ¢ to whom the final value of a2+b2
should be sent. The function then creates a conging,ati?h,actgr R which will receive the
newly created gluer and start the paraliel evaluat‘ion» going. The function also creates a
continuation actor S which will handle the message generated by the gluer when it has
glued the two sub-results together. The sub-processesare then started in parallel with small
subsidiary continuations G, and G, which append a "left” or a "right” indication to the
results of the first or second sub-computations, respectively. - Finally, the two

sub-computations both reply to G through GI and G and the glued result is passed onto

2
the "+" actor by means of the continuation S.
This example is more complex than absolutely necessary because we wanted to

separate out the synchronization handling functions G, G,, G, and S from the

4
computational functions "=" and "+". In fact, from the dataflow point of view G, and G, are

acting simply as the left and right input arcs to the summing operator "+". l ’
These gluers bear an interesting relationship to the "bken;' of Ward and Halstead
[96,45]. One of their tokens is an actor with two “ends”, i.e. ports at which it can receive
messages. One of the ends is the “input® port, into which messages are sent which are to be
_retrieved from the other end, the "output”™ port. When the output port receives a message
{output-to: S), S becomes permanently connected to the token as a sink. S will immediately
receive the backlog of messages that have already been sent to the input port of the token,
and will henceforth receive every new message the token receives on its input port.
Halstead claims that ‘tokens can simulate gluers, but not vice versa, and hence are more

primitive. See [45] for more details.
2.4.4 Activities

Hewitt (4950] has shown how many types of program control structures such as
procedure invocation, recursion, backtracking, and parallel evaluation of arguments can be

" easily analyzed as patterns of message-passing among the actor-like modules of a

Activities - 47 - Section 2.4.4

programming system. We would like to characterize one of the most common of these
patterns, the request-reply pattern, as a goal-directed activity. |

Intuitively, a goal-directed activity starts with a request event, in which an actor
receives a message containing 1) a request for a computation, 2) some arguments for that
computation, and 3) the name of an actor--the continuation--which is to receive the reply
when it is ready. The activity then consists of all events which result from the request,
directly or indirectly, up to and including a reply event. The reply event consists of the
receipt of a reply message by the continuation actor specified in the request event for the
activity. |

More formally, let E--2 denote the set of events which follow E (including E itseif) and

--2E denote the set of events which precede E (including E) in the computation.
E-2={E|E->EorE=E'}

-2Es{E|E->EorE=E}
Then the goal-directed activity A Q

computation is the set of events which follow E

Q in a
but precede any reply E_ to the request;

corresponding to a request event E

Q

ie.

Q, an Ut ?.EIE lsreplytoEQ}

Goal-directed activities embody the notion of the nesting of actlvmes that is produced
by the standard subroutine-calling of conventional programming Ianguages. For example, a
request to the “tangent” procedure might result in requests to the "sine” and “cosine”
procedures, and replies from them, before the tahgent of the argument is returned as the
reply to the outer request.

Several things should be noted from this definition. First, there may be no reply
whatsoever to a request, which means that the goal-directed activity consists of a single
event, the request. Since a goal-directed activity is meant to include only those events which

eventually led to the reply, there may be none if no reply was ever made. This type of

behavior is to be expected from functions which are partial, due to oversight or

Activities - 48 - Section 2.4.4

incompleteness.

However, just because the goal-directed activity is empty does not mean that no events
are occurring. Many events may be taking place which contribute to no request’s reply and
hence are wasted. These lines of computation can by definition be eliminated without
affecting the results of goal-directed activities. The problem of detecting and eliminating
this wasted computation is considered in a later chapter of this thesis.

It should also be noted from the definition that some geal-directed activities consist of
exactly two events, the request and the reply, with no intervening events. This means that
no requests to sub-activities needed to be sent in order to process the request; the answer
was available immediately. We call these activities primitive activities, because they cannot
be further decomposed; the buck stops here. Primitive activities are necessary, because they
are where the real computational work is done.

Finally, the definition for goal-directed activities allows the possibility that several

réplies may be made to the continuation of a request. This is because in some patterns of
| passing messages, an activity might act like a non-deterministic generator, returning every
answer which was plausible, rather than a sing]e correct one. However, this may not be an
interesting pattern if thé number of replies is unlimited, because since no acknowledgments
are required from the receiving actor to continue the replies, the pattern allows for no way

of stopping the replies.
2.4.4.1 Concurrent Goal-directed Aotivities

Intuitively, several activities may be proceeding in a computation at the same timé.
We can formalize this through the notion of concurrent activities. Two activities are
concurrent if their request events are unordered, i.e. if their request events are concurrent.
An interesting situation arises if concurrent activities overlap, i.e. share some events. This
can happen if (and only if) the activities both involve sending messages to the same shared
actor. If two concurrent activities involve only pure actors, ahd these pure actors are freely

copied to avoid arbitration bottlenecks, then goal-directed activities are properly nested,

Concurrent Goal-directed Activities - 49 - Section 2.4.4.1

meaning that two activities are either disjoint, or one is a subset of the other.
2.4.4.2 Homomorphisms of Computations

The notion of activities aliows one to vary the level of detail used in modelling a real
system with actors. Whereas in a crude model an activity might be primitive, with no
intermediate events between a request and the corfesponding reply, a more detailed model
could use an activity with a whole host of intermediate events and sub-activities. If the
internal workings of this activity were independent from the rest of the computation, then
suppressing this- extra detail should not detract from an understanding of the rest of the

system.
2.4.6 Actor Creation and the Laws of Loocality

In many models for distributed computation the ensemble of processes or actors is
fixed at the time the computation is initiated. The communication patterns within this
fixed collection of objects can be ascertained (or at least bounded) before the computation
starts, and therefore every object knows at the time the computation is started exactly which
other objects it may send messages to and which ofher objects it may receive messages from.
As a result of this restriction, no actor namé: need ever be passed in messages. If an actor A
ever needs to distinguish the messages it sends to an actor B from all the other actors which
might also send messages to B, A need only include a small integer which would distinguish
it from the other actors who might also send messages to B. Then B can use this small
integer to look up in a small, constant, local table generated at initialization time to
determine who sent the message. Thus, global actor names would not be needed at all.

However, in the general actor theory presented here, hew actors may be created in the
course of a computation. This ability, while adding considerably to the power of actor

systems, also adds new dimensions to their subtlety.

Actor Creation and the Laws of Locality - 50 - Section 2.4.5

The creation of new actors at run-time implies that the names for some actors are not
known at iniﬁalization time. Hence, if these new actors are ever to be sent messages by any-
actor other than the one which created them, it must be possiblé to pass their names around
in messages. '

By far the greatest use for these newly created actors is-that of continuations. To
implement the standard call-return sequence in an actor system the caller of a “subroutine”
will include an additional continuation parameter in the message it sends to the ’subroutine.
This continuation is an actor which will receive the value computed and returned by the
subroutine; hence, it plays the role of the “return address” in less sophisticated systems.
Since in most cases, the behavior required of the continuation for a particular call is not
known until just before the call, the continuation must be newly created when the call is
made (i.e. when the parameter-continuation message is sent).

This ability to create new actors in the midst of an actor computation and pass their
names around means that not only may new nodes be added to the network connecting the
actors, but the topology of the network connecting the existihg actors may change over time
as actors are introduced to each other and forget old at:quaintan‘ces.8 But even worse, it
makes no sense to ask of such a network what the global connection pattern looks like even
in theory. This is because the connection pattern changes over time and because there is
relativistic ambiguity about the precise ordering of changes not already ordered by the
general precedes relation. One would have to define the relativistic notion of a "space-like
slice™ through the computation and speak of the connection pattern relative to one of these
slices in order to gain a consistent meanin'g to the topologj of an actor computation at a

given "point in time".

Definition: The target(E) and the message(E) and their immediate acquaintances will be

called the immediate participants of the event E. The immediate participants of an event

8. This does not contradict the fact that the length of an actor’s acquaintance vector does
not change over its lifetime. It only means that one acquaintance may be forgotten in the
process of acquiring a new one. '

Actor Creation and the Laws of Locality - 5l - Section 2.4.5

are exactly those actors which can be "known" in the event without the sending of any more

messages.

participants(E) = {target(E),message(E)} v acqu(target(E)) v acqu(message(E))
We then have the intuitive corollary of the law of Finite Acquaintances that only

finitely many objects participate in a single event.

Corollary: For each event E, participants(E) is finite.

Intuitively, the creation of an actor must precede any use of it. In order to state this
intuition as a law, we must be more precise about when actors are created. For each actor x
which is created in the course of a computation, we shall require that there is a unique
event creation{x), in which x was created.

Let created(E) be the set (possibly empty) of actors created by the event E, i.e. the set
of actors which claim E as their creation event. Note that x cannot participate in

creation(x) because x does not come into existence until after creation(x) has occurred.
Definition: created(E) = {xfcreation(x)=E}.

Law of Creation before Use: If an actor x is created in the course of a computation and E is

an event with target x, then creation(x) --2 activator(E).
The intuition that a single event create only finitely many objects is formalized as

follows:

Law of Finite Creation: For each event E, created(E) is a finite set.

2.4.6 Laws of Locality

Our intuition tells us that causality in the physical world is local, that there is no
"action at a distance”. The actor model conforms to this intuition in the sense that all
causality is mediated through messages. In other words, information in an -actor

computation is transmitted by, and only by, messages.

Laws of Locality - 52 - Section 2.4.6

The most fundamental form of knowledge which is conveyed By a message in an actor
computation is knowledge about the existence of another actor. This is because an actor A
must "know about” another actor B, i.e. know B’s name, in order to send B a message.
However, an actor can know an actor’s name only if it was either created with that
knowledge or acquired it as a result of receiving a message. In addition, an actor may send
a message to another actor conveying only names the first actor already knows; i.e. it may
* not make up a name out of thin air and send it in a message as a genuine name. .

The rest of this section formalizes these intuitions as laws which legal actor
computations must obey. In an earlier section, we introduced the notion of an actor’s
acqu.éi}zlance: and stipulated that at no tirﬁe could an actor remember' the names of more
than a finite number of other actors, i.e. its acquaintance vector was finite. We now want to
be more precise about how an actor’s vector of acquaintances may evolve over the course of
its local time.) -

An actor is given a finite initial vector of acquaintances when it is created.) We
require that every element of this initial vector be a participant of the actor’s creation event,
since intuitively an actor can initially know about ‘only its parents, acquaintances of its

parents, and its siblings. Therefore, we have the following law:

Law of Initial Acquaintances: If an-actor z is the target of an event E and E is the first

event in the receipt ordering for z, then

acqsg(z) ¢ participants(creation(z)) u created(creation(z)).
The acquaintance vector of an actor may change as a result of the messages it receives.
When it receives a message, it may add to (or replace one of the elements of) its
écquaint_ance vector any actor’s name mentioned in the message. It is also allowed to forget

acquaintances at any time, An actor can also remain pure by refusing to change its

9. Some actors are primordial; i.e. they exist at the beginning of the computation. If for
uniformity’s sake they need a creation event, the initial event which started the computation
will serve.

Laws of Locality -53 - Section 2.4.6

acquaintance vector. Most actors remember very little of what they have been told. For
example, a cell has exactly one acquaintance, its contents, which it can be asked to divulge
or replace on command.

The following law encodes the intuition that the most an actor may learn from an

event are the names mentioned in the message and the new actors created in the event.

Law of Precursor Acquaintances: If an actor z is the target of an event E and E has a

precursor in the arrival ordering of z, then

acqsg(z) ¢ participants(précﬂrsor(E)) u created(precursor(E)).
As we have noted above, an actor is restricted in what other actors it can send
messages to. In particular, an event E may activate an event E’ only if the target of E’ is a
participant of E or created in E and each actor mentioned in the message of E' must also be

a participant of E or created in EI0 This gives rise to the following law:

Law of Activator Acquaintances: For each non-initial event E,

target(E) ¢ participants(activator(E)) u created(activator(E))

and

message(E) ¢ participants(activator(E)) v created(activator(E)).

These locality laws rule out "broadcasting™ protocols in which messages are sent to
every actor in the system.“ This is because the phrase "every actor” is not well-defined in a
model which allows the creation of new actors, but has no global states in order to pin down
precisely which actors are in existence at any given "time". VBroadcbasting protocols are not

inconsistent with the other axioms of actor theory, but making their semantics precise would

10. Recall that the participants of an event include the acquaintances of the target and the
message.

. However, a message distribution center can be built so that a single message can be sent
to every actor registered with the center. :

Laws of Locality - 54 - Section 2.4.6

add a source of indeterminacy in addition to that introduced by the arbitration which

makes the receipt ordering total for every actor.
2.4.7 Actor Induction

Using the different ordering relations on an actor computation--the activation
ordering, the receipt orderings for every actor, and the combined precedes ordering--one can

prove properties about the computation through ai:tor induction. Actor induction, a form of

" structural induction on the structure of the actor computation, consists of two parts.

Suppose that one is trying to prove property- P- of every event in an actor computation.
One must first prove that P is true of the initial event Eo. Then if one can prove that P is
true of E, assuming that P is true of every immediate prédecessor of an arbitrary event E in
the given ordering, then we may cenciiide that -P is true of every event in the actor
computation.

For example, suppose that one wanted to prove an invariance property P about a

certain actor A in an actor computation. One need only prove that P is true of A

“immediately after’2 A’s creation event, creation(A), and that if for every event E in which

A receives a message, P is true of A immediately after precursor(E) implies that P is true
immediately after E, then P is true of A immediately after every event in which A receives a
message. Since events in which A receives a message are the only ones which can affect A,
P is true of A for the whole computation.

This example makes use of an. important special case of the following principle:
Law of Precursor Orde; i;rdt;cijon: If properiy P is';rue 6f the iﬁitlal event Eo in an actor
computation, and if for all E-E P(precursor(E)) implies P(E). then P is true of every event

in the computatlon.

I12. If a property is true "immediately aftet™ an event E, then ﬂ n true for every immediate
successor of E in the combined ordering.

Actor Induction - 55 - 'vSection 247

Recall that the precursor of an event E is the previous event in which target(E)
received a message, or the creatioﬁ event for target(E), if E is the first event in which
target(E) receives a message. Hence the receipt ordering fbr every actor is a sub-ordering
of the precursor ordering. Thus, in our .examplé using‘ the recéipt ordering for A above, we
let P be trivially true for all events in which A is not the target, and the other events (with
the exception of creation(A)) form precisely A's receipt ordering. -

Precursor order induction is useful for doing "data type inductions” to prove that
certain properties of data objects are preserved. - Properties of control structures and
properties of computations which do not involve side-effects are proven using activation

order induction.

Law of Activation QOrder Induction: If property P is true of the initial event Eo in an actor
computation, and if for all ErEo, P(activator(E)) implies P(E), then P is true of every event
in the computation.

For example, every property of a serial computation--one in ‘which the precedes
ordering is linear--can be proven using only activation order induction.

Complex properties or properties like synchronization which involve both the
activation and receipt orderings require full actor induction over the combined precedes

ordering.

Law of Combined Order Induction: If property P is true of the initial event Eo in an actor

computation, and if for all E:EO, P(activator(E)) and P(precurwr(E}) together imply P(E),

then P is true of every event in the computation.
2.4.8 Cells

The behavior of cells can be axiomatized by positing a primitive actor create-cell,
which generates new cells upon request. These generated cells are new in the sense that
they are not shared with any previously generated cell, i.e. a change to the newly generated

cell will have no effect on previously generated cells and vice versa.

Celis - 56 - Section 2.4.8

Creation: An event of the form:

E; [create-cell <~~ [initial-contents: i, reply-to: c]]

activates exactly one event, which has the form:

E,: {c <~~ [reply: n]}, |
where n is the newly created cell. Furthermore, cmlted(ElHn}, and cmtidn(n)-E‘. which

says that n is the only actor newly created in E. Thus, each cell returned by create-cell

o
differs from all previously created cells because those celis have different creation events.

Use: Cells recognize only messages of two types:

[contents? reply-to: c] and [store! y, reply-to: cl.

Intuitively, a cell has exactly one acquaintance, its contcﬁis, which may be queried or
updated by contents? and store! messages. ~We.wm use the notation co'ntentsE(n) to denote
the acquaintance of the cell n for the event E in which n receives a message.

The behavior of a cell can be completely characterized in terms of this contents
funcfion, as follows. '

contentsE(n) =

if E is the first event in the receipt ordering for n
then i, uhere
[create-cell <~~ [initial-contents: i, reply-to: cll
is the creation event for n
else if precursor(E}): [n <~~ [store! x, repiy-to: cll
then x :

"else Conte"tspfecursor(E) (n).
Contents: An event of the form:

Eg: [n <~~ [contents? reply-to:)]

activates exactly one event, which has the form:

E; [c <~~ [reply: oontenuzl(n)]],
- and created(El)acreated(Ez)-z. |

Cells - 57 - Section 2.4.8

Update: An event of the form:

El: [n <~~ [store! y, reply-to: c]]

activates exactly one event, which has the form:

E: [c <~~ [reply: done.]],
and created(El)zcreated(E2)=z.

2.4.9 Busy Waiting and Fairness

Busy waiting is a synchronization method used in some multiprocessing systems where
either the only communication between processors takes place througﬁ shared memory, or a
processor cannot depend on the others to "wake it up” when the others are ready to signal
it. '

Consider the example in Figure 1 below in which a processor A must wait for a
processor B to reach a certain point before processor A can proceed. A shared memory cell
S is initialized to a value known to both processors. Then processor A goes into a tight
loop, continually checking the contents of S for a change. When processor B is ready to
signal A, it stores a new value into the shared cell S. Processor A will notice that the value
of S has changed and will proceed out of its loop.

Busy waiting requires that the memory shared between the two processors be
arbitrated so that the one processor does not try to read the contents of the cell during the
same cycle in which the other is changing those contents. (Otherwise, the read might
produce garbage) The axioms of actor theory imply the existence of such an arbiter.
However, an arbiter can be unfair in the sense that it always gives priority to one processor
or the other, and in the worst case, may lock out, or starve, one processor completely. Much
effort has gone into the problem of specifications for the fairness of the arbiter which
schedules the requests processed by the memory, and elaborate algorithms for fair

synchronization have been developed.

Busy Waiting and Fairness - 58 - ‘ Section 2.4.9
Fig. 3. Busy Waiting on a Cell

cell S init(8), %S is initialized to zero. %

% Code for Processor A. L3

loop: if contents(S)=0

then goto loop
else ...proceed...

e e e e e - —— - - - - - - - —— ———— — - —— -

Code for Processor B. %

«.. Calculates something uhich A needs ...

S := 1; % Tell A that we're done. ¥%
% Assume B is the only processor uriting into cell S. %

The actor model requires no such notion of scheduling or fairness to prove that
lockout or starvation is impossible, at least at the level of elementary message receipts.
Why? By definition, a completed actor computation has no undelivered (i.e. unreceived)
messages outstanding. Thus, evéry message "evemua{ly'fm gets through ("neither rain nor
sleet..”). That a message gets through within a finite number of steps follows from the “no
infinite descending chains” property of the receipt order for every actor. Therefore, between
any two messages which are received by a cell, at most a finite aumber of others can be
received. In our example above, between a "contents?” message from processor A and the
"store! 1" message from processor B, only-a finite number of other.messages will be received,
and hence thé cell's contents will eventually change. Furthermore, between the receipt of the
"store! I" message from B and the next “contents?” message from A, only a finite number of
.messages can be received and hence A will eventualy detect the change in the cell’s
contents. However, the “length of time" (i.e. the number of receipts _<pr0cessé_d by the cell)
required to synchronize using this simple method is not boupded by any computable
function (using only these basic axioms of actor theory) So, although busy waitmg is
guaranteed to work, it may not be a satisfactory synchronization method.

13. Perhaps only after an unbounded amount of time.

Busy Waiting and Fairness - 89 - Section 2.4.9

We have just shown how the underlying message transmission mechanism of actor
theory satisfies the weakest reasonable form of fairness: every message sent is eventually
received by the target after it has received at most a finite (but a priori unbounded) number
of other messages. However, this weak fairness of the actor transmission may not be shared
by higher level protocols built using this simple mechanism. Thus, for more complex

objects such as monitors [54] or serializers (51}, fairness properties must still be proven.
2.4.10 Discreteness -- A Counterexample

One question that comes up in relation to the Actor theory axioms we have presented
is whether or not they are independent, i.e. whether any axiom can be proved using the
other axioms. In particular, the question arises as to whether the discreteness of the
precedes relation is a consequence of the discreteness of the activation and precursor
orderings. A

The answer to this question is no, because there exist two finitary directed rooted trees
over the same infinite set of nodes, such that the closure of their union is a strict partial
order, yet the partial order is not discrete. .

A diagram for this counter example appears in Figure 4. Figure a) shows the first
finitary tree over the nodes, figure b) shows the second finitary tree, while figure c) shows
their union. (Only a skeletal set of arcs actually appears; the rest are implied by

transitivity.) The root node for both trees is called E_, and each tree spans all the nodes.

0’
Notice that there are no cycles in c), yet there are an infinite number of nodes in the partial

order between E,and E. Hence c) is not discrete, even though both a) and b) are.

If we were to interpret c) as an actor computation, we could choose a) as the activation
ordering and b) as the precursor ordering. However if we examine carefully the structure
of c), we notice that there is something strange going on. E’s activator event is EI which

must be preceded by E_ in the precursor ordering. Now E_ cannot be the creation event

2 2
for target(El) since the creation event for the target of an event must precede or be the

activator for the event. Therefore E. must be the creation event for the target of E

0 I

Discreteness -- A Counterexample - 60 - Section 2.4.10

Likewise, creation(target(E3)) must also be E . Continuing in this manner, we see that the

creation events for ait the Ei's must be E_. But this contradicts the axiom that EO can

o
create only a finite number of different actors. Therefore, the locality and finite creation
restrictions (to be defined below) rule out this diagram as a legitimate actor computation.
(Notice that c) is almost symmetrical, so that interchanging the interpretation of a) and b)

- does not help.)

Discreteness -- A Counterexample -6l - Section 2.4.10

Fig. 4. Counter-example to the Discreteness of the Combined Order

Discreteness -- A Counterexample -62- : Section 24.10

This counterexample shows that the discreteness of the combined order does not
necessarily follow from the discreteness of the activation and receipt orderings. The
significance of this is that if the discreteness of the precedes relation follows from the other
axioms, it must depend on more than the discreteness, rootedness, and finitariness of the two
constituent relations, and the irreflexivity of the precedes relation. .

It also provides evidence!

% for the conjecture that no independent, local scheduling
algorithm can ensure the fairness of the overall actor system. In other words, a cbmputation
produced by an actor system with only local scheduling runs the risk of being either unfair

or indiscrete.lf’

2.6 Constructive Models for Aotor Theory

2.6.1 Caveat

The following destription of actors, messages, events, and schedules will be quite
unacceptable to the mathematician who is used to rigorously défining sets, then relations on
sets, function on those sets, etc, because all of our sets are recursively defined in terms of
one another. We violate the standard set theoretic axioms by not startiné with a few sets
like &, @ and a few operations on sets li‘k'e,x. 07 to“ pro_duce‘ t!te,domains for‘our relations
and functions. Therefore, we cannot say A priori what these containing dorﬁains aré, and -
cannot use the axiom of comprehension to restrict these domains to be exactly what we
-want. As a result, our models turn out to be based chMu rather than sets. Scott
(78,79] has considered the problem of such recursivdj defined domains, and his work is

consideéred to put such things on a proper foundation.

14. Will Clinger [23] and Valdis Berzins [14] have recently discovered that the discreteness
of the combined ordering is independent of all the other actor axioms.

15. Although arbiters form a scheduling mechanism-that is locally fair, an arbiter cannot
ensure that messages which are delayed in transmissioniare given priority in being received
by the actor it arbitrates. (I it tried, it would have to wait arbitrarily fong, since they have -
no idea what messages are in transit to its actor) Therefore, this mechanism cannot
guarantee that every message will eventually be received.

Caveat -63 - Section 25.1

Actor theory as a first order set theory is guaranteed to. have a_model if it is
consistent!® However, the model guaranteed by this theorem is not very useful for
understanding actors because it is produced from the purely syntactic material of the
defining axioms. We would like to produce more constructive, intuitive models which give
‘more insight into the nature of actors, as well as proving that this theory is consistent.

Unfortunately, due to the extreme generality of the theory, with its mutually
recursively defined sets, we are pushed to the limit in our ability to put the constructive
models ‘themselves on a sound mathematical basis. ‘However, we do have another
" recourse--a computational model using recursively defined data-types such as LISP’s
S-expressions. Even though we may be hard pressed to give a proper mathematical
interpretation to such objects, they certainly exist and we may compute with them. Thus, if
a computational model for actors can be produéed, ‘if_'w‘m prbvé the consistency of actor

theory, assuming that LISP (or whatever such language) is consistent.
2.5.2 Constructive Models

We conceive of two computatnonal models of actor theory, one taking cells as primitive
concepts,-the other using only constructlons whlch do not mvolve snde-effects ‘While the cell
model is simpler and quite mtumve for anyone who has programmed a computer, it does
nothing to explain what a cell is, since it takes the cell as primitive.‘

We will first present the cell model, and then the pure model.
2.5.3 The Cell Model for Actors

An actor in the cell model consists of a triple <name, script,acquaintances>, where name
is an identifier which uniquely determines the actor, script is a constant program text in

some language, and acquaintances is a constant vector of storage cells, each of which holds a

16. This does not imply its completeness, as there may be several models which disagree
with each other on unimportant details.

The Cell Madel for Actors -64- Section 253

pathname (roughly a pointer) to another actor.

~ Names for actors serve to distinguish each actor in a computation from every .other
actor. A convenient way to accomplish this is if the name of an actor is a pair
<cr¢atibn,index>, where creation is the creation event for the actor, or the diStinguished
indicator NIL if it is an initial actor, and index is a finite non-negative integer which
distinguishes this actor from its siblings (other actors claiming the same creation event). In
addition to distinguishing, actor names also identify, in the sense that an actor’s name
determines the actor, hence its script and its vector of acquaintance cells. (However, the
actual acquaintances themselves can only be determined relative to a given event in the
actor’s receipt ordering, since they can change frem one event to another.)

Scripts for actors are finite programs in_ some programming language which are
executed upon the receipt of a message by the actor. Upon invocation, the script may create
a finite number of new actors and messages and send them off to other actors. It may also.
modify some of the cells in the local acquaintance vector to forget their current contents or
remember some new contents. It may reference various components of the message.
However, it may not loop and it may not parameterize a reference to the message or one of
its acquaintances; i.e. it may refer to acquaintance 3 but not acquaintanéé i. Therefore, since
the script is constant and fini.te, it can refer to only ab bounded number of itofage cells in the
acquaintance vector and hence our restriction on acquaintarncer vectors to have fixed, finite
lengths is no hardship. _ | |

The acquaintance vector plays a role in acfor theory similar to that of the local
binding frame in current higher level language semantics. The cells of an actor'’s
acquaintance vector are initialized to hold the initial acquaintances of the actor when the
actor is created. These cells may be updated as a side-effect of an event having the actor as
its target, but are completely private to the actor and inaccessible to scrutiny or change by
any other actor. In other words, the acquaintance cells are not actors themselves; they have
no names and can receive no messages. When they are updated as a side-effect of an event,
their updating is indivisibly tied up with the event; before the next receipt of a message by

the actor, the new acquaintances are well ensconced in these storage cells.

The Cell Model for Actors - 65 - Section 2.5.3

An initial bconﬁgumtion for an actor computation is a finite set of initial actors, i.e.
actors which are primordial since they lack a proper creation event, and a single pending
event in whigh' an initial message is sent to one of the initial actors. An actor computation
C=<8,“-—>",EO> derived from an initial configuration is a set of events &, strictly partially

ordered by the relation "-->", with a distinguished element E which is the least element of

£ with respect to the ordering "-->". Each non-least elementoE is a quadruple <T,M,A,P>,
where T is the target actor which receives the message M in the event E, where A is the
activator event which sent M to T, and where P i§ the 'prccunor‘event, i.e. the previous
event in T'’s receipt ordering (or T's creation event, if E is the first event in which T
receives a message). Finally, Eo is the event in which f,he_ini,tial message of the initial
o™<TinitiatMinitiapNILNIL>.

.include the. actor target(Eo)-T initial>- which

configuration is received by its intended target actor; ie. E

The patticipants of the initial event Eo
has no creation event because there are no events before Eo. yet this actor must exist before
it receives a message. However, there may be other initﬁial, actors (the other participants of
EO). and EO can be conveniently assigned as their creation event without contradicting our
axioms. This convention has the advantage that no additional law is required to specify
that the number of initial actors is finite, since we already have a law requiring that only a |
finite number of actors may be created in one event. If more than 6ne initial actor were
allowed, a separate axiom to this effect would be requil;g;i. ’

Although we have described actor computafidns as’static, already completed objects,

they can be analyzed as having been built recursively, starting with E_ from the simple

0
creates some new actors, sends messages and activates new events,

initial configuration. Eo
which in turn send messages and activate other events, and so on. A complete actor
computation is the limit of this process; it is the final structure which is achieved after all
events have occurred and all messages have been received.

This is entirely analogous to the constructibn of the natural numbers from the empty
set. In this construction, we have an initial configuration--the empty set--and a process for
taking one configuration to. a new one--adding the successor of an element already

obtained--and define the natural numbers as the limit of this process.

The Cell Model for Actors - 66 - Section 25.3

However, unlike the situation with' the natural numbers, wherein the process for
converting a configuration into its successor was uniquely determined, the process for
convertin'g an actor configuration into its successor is not single valued, and the various
possibilities may even be inconsistent (unable to coexist in the same mputation). This
means that there need be no single, unique actor computation derived from an initial
configuration. This non-determinism is due entirely" to the arbitration required to
determine a receipt ordering for all actors. For example, if two unordered messages arrive
at an actor, the order in which they are processed is net 'deeermined, yet this order can
drastically affect the outcome. For example, if the messages were requests to an airline
system for a reservation on the last seat oh a flight, the order of receipt would determine
who was assigned the seat and hence who would be affected if the plane crashed.
Therefore, we must either talk about the set of possible computations derived from an
initial configuration, or else talk of the computation as proceeding non-deterministically.

We will initially take the second approach.
2.56.83.1 Partial Computations

In order to see that an actor computatlon is isomorphic to the hmlt of a process which
starts from an initial conﬁguration and contmually adds new events. we must consider what
the intermediate states, which we call partial compuumons, look like.

In a partial computétion there are some messages which have been sent but not yet
received, i.e. some events have been activated, but have not yet occurred. These messages in
transit, these pending events, must be explicitly represented in the pamal computations.
There are several alternatives available in choosing a representatlon for these pending
events, such as sets, queues, etc., but we will ignore this problem for a moment.

A partial computation is a triple <€,-->,P>, where £ is the set of events which have
already occurred, ™->" is the precedencerelation built up so far among those events, and P
is the "pending event” structure which represents the activated events that have not yet

occurred. The initial configuration is then <{},{},Po>, where P represents the single

0

Partial Computations -67- Section 2.5.3.1

pénding event whereih the initial actor is sent an initial message.

The process which takes a partial computation to a larger computation we call the
interpreter. Intuitively, the interpreter removes a pending event from the pending event
structure and causes it to occur, ie. it adds to to the event set and adds the appropriate
'edges to the precedes relation. In so doing, it adds to the pending event structure all the
new events that the occurring event activates. If the pending event structure becomes
empty, i.e. if there are no pending events, then the computation is complete and the
interpreter reaches a fixed ‘point. '

In many cases, however, the computation will be infinite and the pending event
structure will never become empty in any finite amount of time. We would like to consider
all (finite or infinite) fixed points. of the interpreter for an actor system accessible from the
initial configuration of the system to be the actor computations which are derived from that
initial configuration. Since in general the individual steps of the interpreter are
non-deterministic, there will be many of these different fixed points.

Serious questions arise about the fairness with which the interpreter selects events
from the pending event structure. If thé interpreter picks an element from the pending set
randomly and independently at every stage, then the probability that a pending event will
never occur approaches zero. In other words, in the space of all possible interpreter choice
sequences, the set of unfair sequences has measure zero. However, the set of unfair
sequences is not necessarily empty! Therefore, this "random” interpreter cannot be a model
for actor computations because it satisfies our actor axio;msqom‘y probabilistically, ie. it
admits of unsatisfactory computations, although they have only measure zero in the whole
set of generated computations. |

Suppose now that we choose a strict first-in, first-out (FIFO) quéue for our pending
event structure. Then an event, once activated, will never have to wait more than a finite
number of steps to occur, since the length of the queue is always finite, and the pending
event cannot lose its place in the queue (i.e. be pre-empted). This model satisfies the axioms
of actor theory, in particular the discreteness axiom for the precedes relation, and therefore

is a logical model of the theory.

Partial Computations - 68 - Section 2.5.3.1

Ward and Halstead [96]) propose the FIFO model for the pending event structure of a
restricted actor theory in wh‘ich the precursor ordering is always implied by the activation
ordering. This restricted actor theory requireﬁ no arbiters since there is no freedom in the
order of receipt of messages.17 Since the FIFO model is non-pre-emptive, an event, once
scheduled, will occur within a finite number of interpreter steps. Thus, the limit of this
process will produce the (essentially unique) completed .actor computation which- follows
from the given initial configuration. Figure 5 shows a FIFO event scheduling algorithm.

However, a strict FIFO queue rules out other modes of behavior, other scheduling
strategies, which are also acceptable models of ae@_theomy. For example, using the FIFO

model makes the interpreter and hence every computation strictly deterministic, since there

- Fig. 5. FIFO Actor Interpreter

‘t 1= B % Keeps track of last scheduled event. %

S(8) := Eps % Initial event is only one initially scheduled. %
for i=0 to » % The clock ticks forever. %

do begin

fet T=target(S(i}), M=message(S(i)), A=activator(S(i));
% Find precursor for this event by scamning back. %
for j=i-1 by -1 until target{C{j)}=T or C(j)=creation(T)
do-nothing; o ' '
tet P=C(j); % This is the precursor event for the current event. %
et E=<T,M,A,P>;
% Update Partial Order uwith this new event. X
PO := PO U {A-->E, P-->E};
% Compute neu events to schedule. ¥%
let eventlist=match(M,T,P);
% Schedule these neu events., %
for eceventlist
" do begin
t := t+l; % Compute next open slot. %
% Schedule it there with E as the activator., %
S{t) := <target{el) ,messagele) ,E>;
end
Cli) :=E % Event E is complete, %
end;

17. They make the additional assumption that if an event dispatches two messages, they
are appended to the FIFO queue in the order given by the script of the event’s target.

Partial Computations - 69 - ' Section 2.5.3.1

is never any ambiguity about the order in which pending events are processed. Since actor
theory requires only that all messages arrive in a finite amount of time, but prescribes no
other conditions on the order of arrival of those messages (except when the receipt of one
message precedes the sending of another), there may be computations derived from an
initial configuration which are not isomorphic to that generated by the FIFO model, yet
these computations still satisfy the axioms of the theory. Therefore, we would like a model
for actor theory wﬁich is more general, ie. which produces more computations than the
FIFO model, without producing any unfair computations.

The scheduling model for actor theory presented below has the appropriate
characteristics. | -

~ Our scheduling modell8 represents the pending event structure by an instantaneous

schedule, which posts the scheduled time of execution for every pending event. At the time
an event is activated, a time slot is non-deterministically chosen so as not to conflict with
any previously scheduled events. This non-deterministic strategy purposely leaves gaps in
which events may be scheduled which are activated later. It also retains the property that
once a pending event has been scheduled, it may not be pre-empted or re-scheduled.
Therefore, at the time it is activated, a pending event is given a bound on the amount of
time it must wait before it is executed. Hence, a pending event is guaranteed not to wait
forevei- for execution, and thus this scheduling 'straiegy is free of individual starvation
(fair).

An instantaneous schedule consists of a non-negative integer i, and a pair of partial
functions C,, S, whose domains are subsets of the non-negative integers. The integer i
denotes the current event number, a crude clock which indicates how many cycles the

interpreter has been through since it started with the initial configuration. The first partial

function C, has the set of events € as its range, and for every interger 0sj<i, Ci“) is the

event which occurred at time j, if any. The second partial function S, has the set of

18. Some of the ideas for this scheduling model were formed during conversations with
Eliot Moss. ‘

Partial Computations -70 - Section 25.3.1

pending events as its range, namely triples of the form <T,M,A>, where T is the target of
the message M which was sent as a result of the activating event A, and Si(j) denotes the
pending event which is scheduled for time j, if any.
~ Now since the intended interpretation of the instantaneous schedule <i,Ci.Si> is that
the events in the range of Ci have already occurred, while those in the range of Si are only
scheduled, we need a formal consistency requirement on instantaneous schedules which
ensures that this is the only interpretation. - This consistenty requirement states that an
event occurs at time j if and only if it was stheduled to occur at time j. More precisely, for
~all j such that 0sj<i, either Si(j) and Ci(j) are both undefined, or they are both defined and
they refer to the same event, ie. target (Si(j))starget(ci(i)). message(Si(i))-message(Ci(j)).
and activafor(si(j))=activator(Ci(j)).
Our interpreter I takes as input an instantaneous schedule whose clock reads time i
and non-deterministically produces an instantaneous schedule for time i+l. Thus, the

compufations which can be derived from an initial schedule So

can be characterized by the
various limits l"(SO) as n approaches infinity.

An interpreter step consists of one of the following two cases. Let <i’,Ci,Si> be the
input instantaneous schedule. If Si(i) is undefined, then no event is scheduled for time t=i,
so return the instantaneous schedule <i4l‘,Ci.Si>. In other words, the interpreter idles on this
step.

If Si(i)=<T,M.A>. then for time t=i an event is scheduled in which the actor T receives
the message M which was sent in the event A, i.e. A activated this event. To complete the
current event, we need its precursor. The precursor can be found by searching the C-vector
from t=i-l backwards to creation(T) until either an event P is found such that target(P)-;T,
or creation(T) is reached, in which case let P=creation(T). In either case, let the new event
E be <T,M,AP>. '

Now the script for the actor T will tell how message M is to be interpreted using the

current acquaintance vector of T, i.e. the script will indicate what new actors to create, what

new events to activate, and how to update T acquaintince vector. The script creates these

Partial Computations “T- Section 2.5.3.1

new actors, updates T’s acquaintances, and produces a finite list L of n pairs <Ti’Mi> which
specify the events which E should activate. The interpreter must now schedule these

pending events by choosing a sequence <t t> of distinct non-negative integers such

Lo
l) 2' »
that tj>i and Si(tj) is undefined, for all j, Isjsn, where n is the length of the list L. The
number tj indicates the time at which the pending event L.i should oceur, which may not be
earlier than the current event, and which may not conflict with a previously scheduled
event. ‘

Once these events have been scheduled, this step of the interpreter is done, and it

returns the instantaneous schedule
‘ n
<i+l, CiU<i,E>, SiU U{<t., <Tj, Mj, E>>} >
as its result. The interpretation of this inte’nl:reter step is that event E has occurred at time
i, and activated the n events which are scheduled at times tj’ with targets Tj' messages Mj'
and activator E.

Figure 6 exhibits such a scheduling model for actor computations which uses arrays of
cells for acquaintance vectors.

Our scheduling model is not the most efficient possible for generating the legal actor
computations from an initial configuration. In particular, the pending event schedule could
probably be more efficiently implemented with a priority queue (1,92], which would allow the
interpreter to skip over empty slots when nothing is scheduled. However, our model is

simple and precise, and 5o it serves our purpose here.
2.56.3.2 An Example of Constructive Interpretation

We would like to illustrate the operation of the interpreter with a trivial example.
Consider an actor system with only two actbrs, A and B. ln the initial event for the
computation of this system, actor A sends actor B two different‘_messages, M and M
Because of the totality of the receipt ordering for actor B, the messages must arrive either in

the order M, M’ or in the order M’, M.

An Example of Constructive Interpretation - 72 - Section 2.5.3.2

Fig. 6. The Cell Model for Actor Computations

for i=B to o % The clock ticks forever. %
do if S(i) is defined % Is there an event scheduled for time i? %
then begin

let T=target(S(i)), M=message(S(i)), A=activator{S(i));
% Find precursor for this event by asking the target. %
let P=if most_recent_target_event(T) is defined
then most_recent_target_event(T)
else creation(T);
% Create the event node. %
let E=<T,M,A,P>;
% Update Partial Order with this neu event. ¥
PO := PO U {A-->E, P-->E};
% Apply script of target to message to produce neu events and
update ‘acquaintances of target. %
let eventlist=apply(script(T),M, acquaintances(T)); -
% Schedule activated events. %
for e ¢ eventlist

do begin
let j=i+guess(); % Guess a time in the future. %
uhile S(j) defined '
do ji=j+l; % find first free slot thereafter. %

% Schedule e with E as activator. %
‘S(j):=<target(e),messagele) ,E>
end

C(i) := E;

end;

A trace of the scheduling model on this computation is given in Figures 7-10. The
interpreter starts the whole computation with only one event scheduled, the event in which

A receives a message M to initiate the rest of the computation. To execute this event, the

0
interpreter scans backward through the previously completed events (of which there are
none) to find the most recent event in which A received a message. There is none, since
this is the first event, so this event will have no precursor event. The first event E,is then
created having A as the target, M0 as a message, NIL as the_apgivator and NIL as the
precursor. This event is then entered into the partiai order with no relationships to any
other events because there are no other events yet. The interpreter then matches M0 to A’s
script to determine what new actors to create and what new messages to send in order to
activate more events. Since A is to send two messages to B upon recelpt of MO’ the

interpreter schedules a time for the occurrence of these two future events, where B receives

An Example of Constructive Interpretation - 73 - Section 25.3.2

M and B receives M". Suppose for example that the pair <B,M> is scheduled first for time
t=6. This means that there are still empty slots in the schedule for times t-;l,2,3,4,5. When
the interpreter schedules the pair <B,M’>, it can choose one of these empty slots or a slot
after t=6, but it cannot choose the slot at time t=6 because <B,M> is already scheduled then.
Suppose that the interpreter chooses the slot t=5 for the pair <B,M’>. Both new events are

scheduled by registering them in the "S" vector. Finally, the event E_ is registered in the

_ _ 0 _
"C" vector, indicating that its execution is complete and the first cycle of the interpreter is

done.

The next four cycles of the interpreter (with t=1,2,3,4) do nothing because no events are
scheduled at those times. On the fifth cycle, the pair <B,M’> is scheduled to occur and the
interpreter looks back through the "C" vector for events with B as a target. It finds none,
and since B was not created in the course of a compu;ation, there is no precursor for this

event, either. The event lZl is created having B as its target, M’ as its message, Eo as its

activator, and NIL as its precursor. This event El is entered into the partial order with the

single relationship E.o-->15l because Eo activated El' Then the interpreter matches B’s script

against the message M’ to decide what new events E, should activate, and these events are

scheduled. El is registered as complete, and the fifth interpreter cycle is done.

On interpreter cycle t=6, B is scheduled to receive M. The interpreter scans backward
through the completed event list “C" looking for events having B as a target. The first
such event it finds is El’ which it just completed. El becomes the precursor event for the

_ new event E2. which has B as its target, M as its message, and Eo as its activator. The

partial order is updated to contain the new event E, and the new relationship Eo-->E2

is the precursor of Ez).

2

{because E -->E2 (because E

0 activated 152), and the relationship El 1

Any events activated by E2 are then scheduled, and the computation proceeds from there.

Sets of Actor Computations -74- Section 2.5.4
Fig. 7. Constructive Example: t=0
S: @ | <A.Mg,NIL> | c: 0] |
14 | 1]
Z| I 2 | |
t: 8 PO: empty
Fig. 8. Constructive Example: t=I
S: @ | <A,Mg,NIL> | C: 8 | Eg = <A,lg,NIL,NIL> |
1] | 1] ; |
2 | I 2 | I
3 | | 3| |
4 | | 4 | |
S | B,0,Eg> | 51 !
6 | <B.MEg> | 6 | |
t: 1 -PO: Eg
Fig. 9. Constructive Example: t=6 :
S: 8 | <A,Mg,NIL> | C: 8 | Eg = <A,MNg,NIL,NIL> |
1] - o1 - |
2| - 2 | o i
3| - 3| —--- |
41 - N |
S | <B,M ,Eg> | S | Ej = <B,If",Eg,NIL> |
6 | <B,M,Eg> | 6 | v |
7t 4 A | |
t: 6 PO: Eg
+
+
v -

Sets of Actor Computations -5 - Section 2.5.4

Fig. 10. Constructive Example: t=7

S: 8 | <A,Mg,NIL> | C: @ | Eg = <A,Mg,NIL,NIL> |
TR 1 el |
2] - 2 | |
N 3 | |
T B 4 | o '
S| <B,N,Eg> | S | Ep = B, ,Eg.NIL> |
6 l <B,",E8> ' 6 I Ez - <B'N|EalE1> I
-7 22?7 | 71) |
t: 7 PO: Eg
++
+ o+
+ +
v A
El ==>g EZ

2.6.4 Sets of Actor Computations

‘We initially made the assumption that our interpreter I nondeterministically produced
a new instantaneous schedule from an old one. One can define a corresponding interpreter
I’ which operates on sets of instantaneous schedules}® For every instantaneous schedule S in
the input set, I’ produces all possible schedules I(S) in the output set. Furthermore, for
every instantaneous schedule S’ in the output set, there exists a corresponding input
schedule S, such that S’ is one of the schedules derived in one step from S by I. Thus, I is
a single-valued function on the power set of finite instantaneous schedules.

The complete set of actor computations derived from the initial schedule S may be

0
described as the limit of I’"({So}) as n approaches infinity, i.e.

C = limit I'"({Se}).-
‘Nnow »
Thus, C is a set of instantaneous schedules which have become infinite in all possible ways.

19. G. Plotkin [70] has investigated powerdomains, similar to power sets, which can be used
to make our recursively defined sets of schedules well-defined.

Sets of Actor Computations -7 - Section 2.5.4

We claim that 1) every computation in C is a legitimate actor computation in the sense
that it satisfies ail of the actor laws; and 2) there are no legitimate actor computations
derived from S 0 that are not in C. Hence, we claim that our interpreter is a model for actor
theory.

An analogy to various subsets of the real numbers might help in understanding this
limiting process. Suppose, for example, that we had a process which prdduced a string of
digits in the range 0-9. Suppose further that this process operated non-deterministically at
each step to choose the next digit to be output. CIf we interpret the digits output as
successive fractional digits of a real number, then the limit of the process would be the set
of all real numbers in the range [0,1120 3

Suppose now that we have an actor system which is simulating the:’f"fair merge”
operator of dataflow systems. This operator accepts inputs from two differeqi sources, and

_produces an output stream consisting of the merged sequence of inputs. However, if this
merge operator is to be "fair”, it may not decide after a certain time to ignore all inputs from
one of its sources and take inputs only from the other. If we code the decisions of the merge
operator as a finite string of 0’s and I's, where a O:means that the cofreSponding output
came from the left input source and a | means that the corresponding output came from the
right mput source, then the fairness criterion means that the decision string may never
terminate with an infinite string of 0's or Is.

The set of computations derived from such an actor simulation of a fair merge
operator will be in a 1-1 correspondence with the set of infinite strings of 0's and I's. Again
interpreting these strings as infinite fractions between 0.0 and 10, but this time coded in
binary, we have a correspondence between the set of computations and the set of
non-terminating binary fractions. Since the términating fractions are only of measure zero
in the set of all real numbers, most arbitraty merge sequences are fair. However, the set of

actor computations of this simulation is carefully constructed to avoid the non-fair

20. This example requires only finite branching at each point, whereas our constructive
interpreter effectively branches countably infinitely at every step.

Sets of Actor Computations -T- : Section 2.5.4

sequences.

Since the arbiter on the front of every actor is essentially a fair merge operator which
merges the unordered messages from a wide variety of sources into a single totally ordered
sequence, the set of computations for almost every actor system must be constructed with
same subtlety as the set for the fair merge operator in order that they satisfy the discreteness

requirements of the precedes ordering.
2.56.4.1 Reduced Sets of Actor Computations

Once the set of all actor computations which can be derived from an initial
configuration has been constructed, the information about the pending event structures and
the instantaneous schedules can be thrown away. The pending event structure is not
needed because in the limit, there are no pending events. The instantaneous schedule is
also no longer needed because all it does is encode an existence proof that the precedes
order is capable of a monotonic embedding into the hon-negatiVe integers; the particular
embedding does not matter. Thus, the set of all actor computations is partitioned into
equivalence classes of instantaneous computations that share the same partial orders. Hence,
this partitioned set is isomorphic to the set of completed computations (partial orders) which

follow from the initial configuration.
2.56.6 The Pure Model for Actors

We would now like to give a "pure” model for actors in which the acquaintances of an
actor do not have to be kept in stqragé cells which are updated as the computation
progresses. We do this to avoeid the circularity of explicating cells in terms-of acquainténce
vectors of cells. We eliminate these cells (at some cost in "efﬁclency") by re-computing on
each interpreter step what the current contents of the target’s acquaintance vector should be.
This is done through a procedure which recurses backv:rards along the target’s precursor
chain and when it reaches the target’s creation event,,ii gets the target's initial acquaintance

vector. The procedure then unwinds by going forward along the precursor chain,

The Pure Model for Actors - -78 - Section 255

re-executing enough of the target’s script at every event in order to compute the new
acquaintance vector for the next event. Upon completion of this process, the target’s current
acquaintance vector is available so that the target’s script can receive the current message.

We illustrate this process by showing how it works-in the case of a simple storage cell.
Recall that a storage cell has exactly one acquaintance--its conterits. It is created with some
initial contents, and it responds to two types of messa'ges-"contems?' and “store!”.
Conceptually, in the cell model for actors, when a storage cell recelves a contents’ ‘message,
it. simply looks in its acquaintance vector ‘and delivers up what it finds there to the
continuation which was supplied. Again, in the cell model, when the cell receives a “store!”
message, it smashes the current contents with the néw value which was supplied.

Figure 1l gives a script for such a cell which uses an array of cells as an acquaintance
vector. ' »

Figure 12 shows a pure (side-effect free) model for a cell. It uses a subsidiary function
"lookup™ which is not part of the cell’s script, but is a meta-function used by the interpreter.

(T his is because a script cannot refer to events in the computation, only actors.)

Fig. 1l. A Cell Model for a Cell .

celi-1: (=> [message: MI
{cases M . ’
(=> [contents? replg—to. €l
activate <C/lacquaintance(8)>)
{(=> [store! x reply-to: C] -
acquaintance(B) := x;
activate <C, {donell>}))

The Pure Modcl for Actors -79 -

Fig. 12, A Pure Model for a Cell

% Initial contents of cell-2 is NIL. %
cell-2: (=> [message: M]
(cases M

{=> [store! x repty-to: Cl
activate <C, [donelil>)

{=> [contents? reply-to: Cl]
activate <C,contents(P}>)))

% P is precursor of this event. %
contents(P) = if P=creation(cell-2)
then NIL
else if message(P)="I[store: x reply-to: Cl]
then x

else lookup(precursor(P))

Section 2.55

- Storage Management and Garbage Collection - 80 - Section 3

3. Storage Management and Garbage Collection

EXODUS 12

22 And ye shall take a bunch of hyssop, and dip it in the blood that is in the

bason, and strike the lintel and the two side posts with the blood that is in the

bason: and none of you shall go out at the door of his house until the morning.

22 For the LORD will pass through to smite the Egyptians; and when he seeth

the blood upon the lintel, and on the two side posts, the LORD will pass over

the door, and will not suffer the destroyer to come in unto your houses to smite

your. "

King James Version of the Bible

In this chapter, we consider a problem whiéh arises in the impiemcntation of actor
systems intended for real-time applications. This problem is the management of
acquaintance vectors, messages, and the like. Although many ad hoc schemes could be
contrived, we argue that since these objects contain names (= pointers) to other objects, a
more elegant approach would use a garbage-collected heap. But classical garbage collected
‘heaps have the problem that the allocation routine occasionally calls the garbage collector,
which takes an amount of time proportional to the size of the heap to finish. During this
hiatus, the heap is unavailable to the rest of the system.

The next chapter presents a new heap management algorithm which works
incrementally, by performing a little of the work of garbage collection on every call to the
storage allocation routine. In this way, the huge variance in the amount of time required to
‘allocate a block of storage is reduced to zero. This algorithm aids in the programming of a
system with hard real-time constraints because the time required to allocate an object and
access its parts is completely predictable. | '

Because our heap management algorithm is essentially a real-time simulation of a “list

memory” (in the spirit of IPL-V [69] or a LISP machine [29,41l1]) on a “random access

memory”, we will often use the phrase "list memory” instead of “garbage-coliected heap".

Advantages of List Memory over Random Access Memory - 81 - Section 3.1

3.1 Advantages of List Memory over Random Access

Memory

The question arises as to why we go to so much effort to simulate a list memory on an
automaton with a random access memory. After ail, with a random access memory, one can
access any memory cell in the address space in unit time, whereas one must trace lists to
access most of the memory cells of a list memory.

The answer is that we rarely use the completely random access ability of the RAM.
The actions of a CPU in executing an instruction stream are highly predictable, since most
programs consist of lists of instructions with a few conditional and unconditional branches
thrown in; in other words, most programs are list structure themselves! The run time
systems of higher level languages include stack structured or tree structured variable
binding enviroaments which again do not make full use of the random access abilities of
the memory.

In fact, the only two constructs that do make essential use of the random access
property of the memory are FORTRAN-style arrays of memory celis! and hash tables.
However, even in applications which use arrays, we often see more structure than a simple
one-to-one mapping of indices to memory cells. If the arrays are multidimensional, many
systems store them as vectors of addresses to other vectors--i.e. multilevel structures. If the
arrays are sparse, they are sometimes stored as doubly-linked list structures or in hash
tables, either to speed up processing or reduce storage, or both. Even arrays without such
sophisticated structure are usually processed in row or column order, and rarely are accesses
made to random array elements. In fact, most arrays which are not scanned linearly are
being used to simulate list structure! Thus even array structures, for which random access

memory should be ideal, do not normally take advantage of random accessing.

1. The semantics of an array. require that adjacent elements of an array occupy adjacent
storage locations so that a probe of a random element in the array takes approxnmately O(l).
regardless of the size of the array.

Advantages of List Memory over Random Access Memory - 82 - Section 3.1

Hash tables, which simulate an associative memory by interpreting a key--suitably
transformed--as an index to memory, make the most important use of the random accessing
ability of these memories. However, even this use is limited, since most hash table
algorithms do a linear search of the bucket which is chosen by hashing. It is also difficult
to extend hash tables, because doing so requires copying and rehashing every element of the
table to a new, larger table according to a new hashing.function.2 This brings us to the
primary problem of random accessed memory--it is extfemely hard to reorganize and
re-allocate memory because much data must be physically moved, and this movement is
expensive.

List memory, on the other hand, satisfies a substitution property which has both a
stronger and a weaker form. The stronger form of this property states that 'any single
instance of a list node or atom in a list structure can be replaced by another piece of list
structure or an atom, with only a minor, Ibcai»cﬁange to the list memory. This substitution
requires only a constant amount of time if the instance to be substituted for ‘is already
known and the change is to be permane’nt.s"These substitutions furthermore do not affect
the access paths to the nodes of the memory which have.not been substituted for; hence
there is much less need for synchronization among multiple processes making structural
changes to a list memory than among multiple pracesses moving ‘dataaround in a random
access memory.

This substitution property is related to the phrase structure ‘property of higher level
languages such as Algol or LISP, where a whole subexpression. can also appear in most
contexts in which a constant or variable can appear. This fegmi'ev-'contrasted with early
FORTRAN experience which aliowed full expressions in ondy a few contexts. The free
substitution of an expression in contexts where ‘constants or variables are allowed is also

called referential transparency and is an artifact ‘of the evaluation of expressions in those

2. This can be done incrementally, as the next chapter indicates.
3. A whole list can ‘also-be substituted for one of its own sublists, thus generatmg a
directed loop in the structure of the list memory.

Advantages of List Memory over Random Access Memory - 83 - : Section 3.1

contexts only for the purpose of the value they produce, not the side-effects they cause. (To
the extent that languages allow side-effects of expressions, they violate the principle of
referential transparency.) This substitution prop.erty also operates in context-free languages,
wherein a non-terminal generates the same sublanguage, regardless of the surrounding
context. ' .

The substitution property works in all these systems because they are based on free
and graph structures rather than on linear strings and vectors. A tree may sprout‘new
branches from any limb without disturbing the other branches, but inserting new elements
in the middle of a string or a vector will affect all accesses to the elements after the mserted
part, because they are now further from the begmmng (or the end) of the string.

The weaker sense of the substitution property preserves the conceptual idea of subtree
replacement, but instead of making a permane‘ntchange in the list tnemory structure,
enough of the main tree is copied with the new subtree'rephcing the old subtree such that
the new tree "looks like” the oid one, except for the substituted subtree. The conceptual
sense of substitution is retauned because each subtree except for the one replaced can still be
accessed in the new tree via the same access path_that it had in the old one. However,
because every node on the access path from the root of the new tree to the substituted
subtree is a newly created node, the chnnge is not local and the time to perform the
operation is not bounded. However, in most cases n{e depth of the tree will be only
Of(log N), where N is the total number of nodes in the tree so that this type of
reorganization is still much cheaper than re-organizing a random access memory, which
would require time O(N).

A pleasant result of the use of the substitution property—-either in its strong or weak
form--is that identical subtrees can be shared because list memory allows an arbitrary
directed graph structure. Thus where the concatenation of strings which are represented
explicitly requires that the strings be copted into a new area of storage, a hst memory allows
the representation of a string as the frmge of a tree structure. where some of the subtrees
can be shared with representations of other strmgs In such a representatlon concatenation

does not require the copying of the constituents, but requrres only the formation of a new

Advantages of List Memory over Random Access Memory - 84 - Section 3.1

node which points to the two constituent substrings. In actual practise in symbolic
manipulation systems [40,76], such shared representations save a great deal of storage, and if
processing algorithms know of such sharing, they can sometimes save a great deal of time
by considering each shared substructure only ofice, when it is first encountered by the

algorithm, instead of every time it is encountered.
8.2 Allocation Problems of Random Access Storage

Computational complexity theorists have made great strides in the past ten years in
identifying and proving 'certain tasks and problemsv"hard"'. While what constitutes a "hard”
problem may vary somewhat depending upon your patience and budget, nearly everyone
agrees that if the time or space required to compute the answer goes up at least
exponentially with the size of the input parémetgrs, then the problerﬁ ls hard. Now there is
a class of problems called N P-complete problems which have nét_ye_t been proved to require
exponentia'l .b>eha\}‘ior on the standard deter;'hinistic serial computer, but for which all
existing algorithms are exponential. One of the largest subclasses of the NP-complete class
consists of allocation and scheduling problems, which for our purposes refer to storage and
time allocation. In fact, almost all allocation and xhé&uling problems which involve
discrete sizes and times are "hard” problems [90,24] |

| A real-time system requires responsé delays to stimuli which are guaranteed to be
within specified tolerances. The resources reqdired for such a response vary with the
current stimulus and the history of preceding stimuli. Two of the ‘m'osti important of those
resources are storage cells and processor cycles. Optimal scheduling of cither storage cells or
processor cycles alone is an NP-cohpleie packing problem, and scheduling them both
together is a two-dimensional packing ﬁroblem whicﬁ is surely just as hard. Now if we also
raquire that allocated storage may not be moved between the time it is éllocated and the
titne it is released, then we must also try to hiﬁimize stordge fragmentation, wherein a
significant amount of free storage becomes unusable because it is sércad throughout the

address space in Iittle’pi'eces, none of which is large eﬁough to be usable.

Allocation Problems of Random Access Storage - 85 - ‘ Section 3.2

Many designers ignore the fragmentation problem and live with nailed-down storage
by giving fixed allocation to all the tables that the system needs and planning very carefully
the sizes of the tables. However, this leads to systems which are not robust, which break
down' when faced with a situation slightly different from that envisioned by the system
designers. These systems break down with a message indicating that some obscure table
has overflowed and in many cases the problem is uncorrectable because the table sizes
cannot be changed. However, even if the system designer wanted to design a fail-soft
system--i.e. one which would fail totally only when all resources were uniformly
exhausted--he would find it very hard to do so and still stay within the real-time
requirements of his application, because of the large amount of copying involved in the
reorganization of random access storage.

Enter the list memory and our real-time simulation of it on a random access memory.
Using this scheme, the system designer can solve his problems with a much more flexible
memory paradigm than the random access memary. He can design his system with a list
memory having a conceptually infinite number of cells, which are all interchangeable, and
hence only the total number required would matter, not the order in which they were used.
Furthermore, so long as the total number of accessible cells remains less than the maximum
allowed by the memory, he need not worry about the memory becoming fragmented
through combinations of allocations and deletions. If his cell requirements grew by a factor
of 10 or 10 million, he need not change one bit of his program, since there are no addresses
stored and hence no address space limitations.t With current hardware (real) address spaces
growing by approximately one bit per year, he need not worry that his program will become

obsolete in only a few years.

4. A user program need never know that actual size of a list memory pointer, since the
program will never deal with one directly, but only through commands which change the
state of a root. Therefore, the program is unaffected by a change in pointer size.

Allocation Problems of Random Access Storage - 86 - Section 3.2

The list memory eliminates the problem of fragmentation and table growth, thus
reducing the allocation constraints under which reai-time 'systems must operate. The
scheduling of time in these systems remains hard, since real-time systems confinue to be at
the mercy of their stimuli, but at least we will have given them better control over their own
internal storage. . _

Although we show how a serial computer can do list processing in real time, no
current state-of-the art computer is entirely serial. - Most have hardware interrupt
capabilities and external hardware DM A (direct miemory access) 1/O devices. DMA devices
cause trouble since they ignore the list structure that the system is imposing upon the
memory and require that their buffers be nailed ‘down for the duration of the DMA
transfer. This lacuna can only be fixed by making the DMA device respect the list
structure of the memory. '

A system using DM A devices is made most modular by using a separate processor as a
memory controller which handles access requests from both the CPU and DM A devices and
hence preserves the appearance of thé memory as a list memory_ to all the world. Within
the next few years, there will be room on a silicon chip to implement both a controlier and a
large number of memory cells to create a true “list membry chip®. Since non-standard
memory chips such as FIFO (first-in, first-out) chips are becoming available, why not truly

uﬁefu_l devices like list memory chips?

List Processing in Real Time -87- Section 4

4. List Processing in Real Time

In this chapter,l

we present and analyze carefully our method for incremental garbage
collection. Although presented here in the terminology of LISP, the algorithm works
‘perfectly well for SIMULA class objects [27,15,2] and CLU cluster objects (61} More to the
point, the algorithm is perfect for the small acquaintance arrays encountered in an actor
implementation. '

A real-time list processing system is one in which the time required by the elementary
list operations (e.g. CONS, CAR, CDR, RPLACA, RPLACD, EQ, and ATOM in LISP) is
bounded by a (small) constant. Classical implementations VOf. list processing systems lack this
property because allocating a list cell from the heap may cause a garbage collection, which
process requires time proportional to the heap size to finish. . _ '

A real-time list processing system is presented which continuously reclaims garbage,
including directed cycles, while linearizing and compacting the accessible cells into
contiguous locations to avoid fragmenting the free itorage;pool.: The program is small and
requires no time-sharing interrupts, making it suitable. for micro-code. Finally, the system
-yequires the same average time, and not more than twice the space, of a classical
non-copying implementation, and those space requirements can be reduced to approximately
classical proportions by compact list representation. _

Arrays of different sizes, a program stack, and bash linking are simple extensions to
our system, and reference counting is found to be inferior for miny applications.

l. This chapter is essentially the same as the papex "List Processmg in Real Time on a
Serial Computer” [5]. o .

Introduction and Previous Work - 88 - Section 4.1
4.1 Introduction and Previous Werk

List processing systems such as LISP [64] have slowly gained popularity over the years
in spite of some rather severe handicaps. First, they usually interpreted thei'r programs
instead of compiling them, thus increasing their running time by several orders of
magnitude. Second, the storage structures used in such systems were inefﬁciem in the use of
storage; for example, compiling a program sometimes halved the amount of storage it
occupied. Third, processing had to be haited periodically to reclaim storage by a long
process known as garbage collection, which laboriously traced and marked every accessible
cell so that those inaccessible cells copld be recycled.

That such inefficiencies were tolerated for so long is a tribute to the elegance and
productivity gained by programming in these languages. These languages freed the
programmer from a primary concern: storage management. The programmer had only to call
CONS (orits equivalent) to obtain a pointer to a fresh storage block; even better, the
‘programmer had only to relinquish all copies- of the pointer and the storage block would
automatically be reclaimed by the tireless garbage collector. The ;pregr.ammer no longer
had to worry about prematurely freeing a block of storage which was still in use by another
part of the system. |

The first problem was solved with the advent of good «compilers [67,88] and new
languages such as SIMULA especially desigried for efficient compilation [27152). The
second was also solved to some extent by those samme compilers because the user programs

could be removed from the list storage area and freed from its inefficient constraints on

representation.2 Other techniques such as compact list representation ("CDR-coding”)

[41,11,22] have been proposed which also offer partial solutions to this problem.

2. In many cases, a rarely used program is compiled not to save time in its execution, but
to save garbage-collected storage space.

Introduction and Previous Work - 89 - Section 4.1

This chapter presents a solution to the third problem of classical list processing
techniques and removes that roadblock to their more general use. Using the method given
here, a computer could have list processing primitive# built in as machine instructions and
the programmer would still be assured that each instruction would finish in a reasonable
‘amount of time. For example, the intei'rupt,vhandler for a keyboard could store its
characters on the same kinds of lists--and in the same storage area--as the lists of the main
program. Since there would be no long wait for a garbage collection, response time could be
guaranteed to be small. Even an operating system could use these primitives to manipulate
its burgeoning databases. - Business database designers no longer need shy away from
pointer-based systems, for fear that their systems will be iinpacted by a week-long garbage
collection! As memory is becoming cheaper3. even microoamputg‘fs could be built having
these primitives, so that the prospect of controlling one’s kitchen stove with LISP is not so
far-fetched. ‘

A real-time list processing system has the property that the time required by each of
the elementary operations is bounded by a constant independent of the number of cells in
use. This property does not guarantee that the constant will be small enough for a
particular application on a particular computer, and hence has been called
"pseudo-real-time” by some. However, since we are presenting the system independent of a
particular computer and application, it is the most that can be said. In all but the most
demanding applications, the proper choice of hardware can reduce the constants to
acceptable values.

Except where explicitly stated, we will assume the classical Von Neumann serial
computer architecture with real memory in this chapter. This model consists of a memory,
i.e. a one-dimensional array of words, each of which is large enough to hold (at least) the
representation of a non-negative integer which is an index into that array; and a central
processing unit, or CPU, which has a small fixed number of registers the size of a word.

The CPU can perform most operations on a word in a fixed, bounded amount of time.

3. Work is progressing on 108 bit chips.

Introduction and Previous Work -90 - Section 4.1

The only operations we require are load, store, add, subtract, test if zero, and perhaps some
bit-testing. It is hard to find a computer today without these operations.

As simple as these requirements are, they do exclude virtual memory computers. These
machinés are interesting because they take advantage of the locality of reference effect, i.e.
the non-zero serial correlation of CPU accesses to memory, to reduce the amount of fast
memory in a system without greatly increasing the average access time. However, the time
required to load a particular word from virtual mndry into a CPU register is bounded
ohly by the time to access the slowest memory. Since we are more interested in tight upper
bounds, rather than average performance, this class of machines is exciuded.

Since the primary list processing language in use today is LISP, and since most of the
literature uses the LISP paradigm when discussing these problems, we will continue this
tradition and center our discussion around it. Due to its smalil cells, which consist of 2
pointers apiece, LISP is also a kind of worst case for garbage collection overhead.

There are two fundamental kinds of data in LISP: list-cells and atoms. List cells are
ordered pairs consisting of a car and a cdr, while atoms are indecomposable. ATOM(x) is a
predicate which is true if and only if x is an atom (i.e. if and only if x is not a list cell);
EQ(x,y) is a predicate which is true if and only if x and y are the same object; CAR(x) and
CDR(x) return the car and cdr components of the list cell x, respectively; CONS(x,y) returns
a new (not EQ to-any other acce#sible list cell) list cell whose car is initially x and whose cdr
is initially y; RPLACA(x,y) and RPLACD(x,y) store y into the car and cdr of x, respectively.
We assume here that these seven primitives are the only ones which can access or change
the representation of a list cell.

There have been several attempts to tackle the problem of real time list processing.
Knuth {57, p. 422] credits Minsky as the first to consider the problem, and sketches a
multiprogramming solution in which the garbage collector shares time with the main list
.processing program. Steele’s [80] was the first in a flurry of papers about multiprocessing
garbage collection which included contributions by Dijkstra {31,32] and Lamport [5859])
Mmler {68] independently detailed the Minskj-Knuth4Steglg method, and both he and
Wadler [93] ahalyzed the time and storage required to make it Wk. |

Introduction and Previous Work -9] - Section 4.1

The Minsky-Knuth-Steele-Muller-Wadler (MKSMW) method for real-time garbage
collection has two processes running in parallel. The list processor' process is called the
mutator while the garbage collector is called the collector (these terms are due to Dijkstra
[31)). The mutator executes the user's program while the collector performs garbage
vcollection, over and over again. The collector has three pha;es:' gn;a,rk, sweep, and relocate.
During the mérk phase," all accessible storage 1s marked as such, and any inaccessible
storage is picked up during the sweep phase. The relocate phase relocates accessible cells in
such a way as to minimize the address space required. Since the tﬁutator continues running
while the mark and relocate phases proceed, thé free list must be long enough to keep the
mutator from starvation. During the sweep phase, cells must be added to the,f‘ree_ list faster
than they can be taken off, on the average, else the net gain in. cells from that garbage
collection cycle would be negative.

Muller [68] and Wadler [93] have studied the behavior of this algorithm under
equilibrium conditions (when a cell is let go for every cell CONS’ed, and when the rates of
cell use by the mutator, and of marking, sweeping, and relocating by the collector, are all
constant). If we let m be the ratio of the rate of CONS’ing to that of marking, s be the ratio
of the rate of CONS'ing to that of sweeping, and r be the ratio of the rate of CONS’ing to
that of relocating, then we can derive estimates of the size of storage needed to support an
accessible population of N cells under equilibrium conditions.* Using these assumptions, we
derive:

- m+{mel) (r4l) :
Maximum MKSMW Storage Required € N —————eceeuae + size of collector stack
1-s{r+l)

We note that r=0 if there is no relocation (i.. it happens instantaneously), in which

case we have the simpler expression:

4. Of course s<l, or else the storage required is infinite,

Introduction and Previous Work -92 - Section 4.1

142m
Maximum MKSMW Storage Required < N ---- + size of collector stack
‘ l-s

The collector stack seems to require depth N to handle the worst case lists that can

arise, but each position on the stack need only hold one ’pointejr. Since a LISP cell is two

pointers, the collector stack space i'equirement is 5N. Thus, we arrive at the inequality:

1.5+2m~.58 .
Maximum MKSMW Storage Required s N ———-—-—- ----

These estimates become bounds for non-equilibrium situations so long as the ratios of
the rate of CONS'’ing to the rates of marking, sweeping, and relocatiﬁg are co;nstant. In
other words, we relativize the rates of marking, sweeping, and relocating with respect to a
cons-counter rather than a clock.

The Dijkstra-Lamport (DL) method [31,325859] also has the mutator and collector
running in parallel, but the collector uses no stack. It marks by scanning all of storage for a
mark bit it can propagate to the marked cell's offspring. This simple method of garbage
collection was considered because their main concern was proving that the collector actually
collected only and all garbage. Due to its inefficiency, we will not consider the storage
requirements of this method.

Both the MKSMW and the DL methods have the drawback that they are paraliel
‘algorithms and as a result are incredibly hard to analyze and prove correct. By contrast,

the method we present is serial, making analyses and proofs easy.
4.2 The Method

Qur method is based on the Minsky garbage collection algorithm [66], used by
Fenichel and Yochelson in an early Multics LISP [34], elegantly refined by Cheney [20], and
applied by Arnborg to SIMULA (21 This method divides the list space into two
semispaces. During the execution of the user program, all list cells are located in one of the

semispaces. When garbage collection is invoked, all accessible cells are traced, and instead

The Method -93- Section 4.2

of simply being marked, they are moved to the other semispace. A forwarding address is
left at the old location, and whenever an edge is traced which points to a cell containing a
forwarding address, the edge is updated to reflect the move. The end of tracing occurs
when all accessible cells have been moved into the "to"’semispacev(tospace) and all edges
have been updated. Since the tospace now coﬁtains all accessible cells and the "from”
semispace (fromspace) contains only garbage, the co“gction is done and the computation can
A proceed with CONS now allocating cells in the7 former fromspace. |

This method is simple and elegant because 1) it requires only one pass instead of three
to both é_ollect and compact, and 2) it requires no collector stack. The stack is avoided
through the use of two pointers, B and S. B points to the first free word (the bottom) of the
free area, which is always in the tospace. B is incremented by COPY, which transfers old
cells from the fromspace to the bottom of the free area, and by CONS, which allocates new
cells. S scans the cells in tospace which have been moved, and updates them by moving the
cells they point to. S is initialized to point to the begmmng of tospace at every flip of the
semispaces and is incremented when the cell it points to has been updatcd At all times,
then, the cells between S and B have been moved, but their cars and cdrs have not been
updated. Thus when S=B all accessible cells have been mbved into tospace and their
outgoing pointers have been updated. This method of pointe} updating is equivalent to
using a queue instead of a stack for marking. and therefore trace§ a spénning tree of the
accessible cells in breadth-first order. . |

Figure 13 shows a diagram of this algorithm in operation. -

-Besides solving the compaction problem for classical LISP, the
Minsky-Fenichel- Yochelson Cheney-Arnborg (MFYCA) method allows simple extensions to
handle non-uniformly sized arrays and CDR—codmg because frge storage is kept in one
large block. Allocation is therefore trivial; to allocate :a: block of :size h, one simply adds n to
the "free space pointer”. N

Copymg garbage collectors have been dlsmnssed by many as requiring too much
storage for practical use (because they appear to use tw;ce as much as classical LISP), but

we shall see that perhaps this judgment was premature.

The Method -04 - Section 4.2

Fig. 13. The Cheney Algorithm

I I

REGISTER BANK

\ e N\ ————— ——— e ————e e —————
\ FROMSPACE) ‘

——— i ——— —————————— —— T " " - ———— - >

TOSPACE

We present the MFYCA algorithm here as Figure_ 14 in pseudo-Aigol-BCPL notation.
The notation "«[B]" means the contents of the word whose address is the value of o plus the
value of @, ie. the contents of asg. If it appears on the leﬂ hand side of ":=", those contents
are to be changed. Thus, pli] refers to the i-th component of tﬁe vector pointed to by p.
The function size(p) returns the size of the array pointed to by p. The notation "o & g is
similar to the notation "a;8" in that o anbd B are executed in order; however, "o & B" returns
the value of <« rather than the value of 8. Thus, ™" ind "&" are the duals of one another:

"al;a2;...;an returns the last value (that of -an) whereas "o &a &...&an" returns the first

P2
value (that of cxl).

Our conventions are these: the user program has a bank of NR registers
RM]),...RINR). The user program may not "squirrel away" pointers outside of the ba,nk. R
daring @ call to CON'S because such pointers would become obsbléte“if garbage collection
were to occur. (We will show later how to deal with a user pi'ogr#rp stack in such a way
that the real-time properties of our system are not violated.) P(?inters ejtﬁér are atoms or |
refer to cons.cclls in fromspace or toSpéce. A ?:ons cell ¢ fs ;ép(eseﬁted by a_?—vector of

pointers: car(c)=c[0], cdr(c)=clil. FLIP, FROMSPACE and TOSPACE are implementation

The Method -95- Section 4.2

dependent routines. FLIP interchanges the roles of fromspace and tospace by causing
CONS and COPY to allocate in the other semispace and the predicates FROMSPACE and
TOSPACE to éxchan‘ge roles. FLIP also has the responsibility of determining Qhen the
new tospace is too small to hold everything from the fromspace plus the newly CONS'ed
cells. Before flipping, it checks if size(fromspace) is less than (l+m){size(tospace)-(T-B)], where
m is a constant parameter and T is the top of tospace. If FLIP finds that fromspace (the new
tospace) is too Smai!,» either it must extend the space, or the system may later stop with a
"memory overflow” indication. ' " :

In order to convert MFYCA into a real-time algorithm, we force the mark ratio m to
be constant by changing CONS so that it does k iterations of the garbage cbll_ection loop
before performing each allocation. But this means thttboth semispaces contain accessible
cells at almost all times. In order to simplify the algorithm‘ and the proof, we trick the user
program into believing that garbage collection ran and finished at the time of the last flip; ie.
we assert that, as before, the user program sees addresses only in tospace.

Some slight effort must be made tﬁ keep up this appearance. When the semispaces are
interchanged, all the user program registers must be updated immediately to point to
tospace. This gives the collector a head start on the mutator. Since the only _operations that
might violate our assertion are CAR and CDR, we make sure that CAR and CDR cause
forwarding addresses to be followed, and celis to be moved, when n.etessary. Thfs ensures
that the mutator cannot pass the collector. It turns out thét presérving our assertion is
much simpler than preserving the corresponding assertions of DL [31325859] In
particular, RPLACA and RPLACD do not cause any trouble at ail! -

There is another problem caused by interleaving garbage collection with normal list
processing: the new cells that CONS creates will be interleaved with those moved, thereby
diluting the moved celis which must be traced by CONS. Of course, new cells have their
cars and cdrs already in tospace and therefore do not need to be traced. ‘We avoid this
waste of trace effort thr-oughf the -use of the pointef T, whiéh painté to the top of the free

area, where we will allocate all new celis.

The Method

-96 -

Section 4.2

Fig. 14. The Minsky-Fenichel-Yochelson-Cheney-Arnborg Garbage Coliector

pointer B;
pointer S
pointer‘T;>

pointer procedure CONS(x,y} =
begin
if B=T
then
begin

flip();
for i = 1 to NR

do Rli):=move(RI[il);
x: =move (x): y:=movely);
while S<B -

do begin
SI[8]:=move(S(B]);

S{l):=movelS{lil);

t= S42
" end
end;
if B2T then error:
Bi{B] := x; BIl) := y;
B & (B := B+2)
end;

pointer procedure CAR(x) = x[8];
pointer proéedure COR(x) = x(1];
procedure RPLACA(x.g) e x[8] := y;
procedure RPLACD(x,y) = x[1] := y;
boolean procedure EQ(x,y) = x=y;

boolean procédure ATOM(x) =
not tospace(x);

pointer procedure MOVE(p) =
if not fromspace(p) -
then p
else begin
if not tospace(p(B8])

then piB] := copylp);
p i8]l B
end;

pointer procedure COPY(p) =

% Bottom; paints to bottom of free area. %
% Scan; points to first untraced cell. %

% Top; points to top of tospace. %

% Assertions: S < B < T and T-B is even®
% Altocate the list cell (x . y). %

% If there is no more free space, %

% collect all the garbage. %

% This block is the “garbage collector™. %

% Interchange semispaces. 4

% Update ail user registers. %

% Update our a_lrguments.' 3
£ Trace all accessible cells. %

1 Updafe the car and cdr. 4

% Point to next _untraced cell. %

%2 Memory is full. %

% Create new cell at bottom of free area.%

% Return the current value of B %
% after stepping it to next cell. %

% A cell consists of 2 words; %

% car is Ist; cdr is 2nd. %

% car(x) =y %

% chx) - y %

% Are x,y are the same object? %
% Is x an atom? %

Move p if needed; return new address.%
We only need to move old ones. %

We must move p. %
Copy it into the bottom of free area. %
% Leave and return forwarding address. %

%
A
% This happens.a lot. %
%
%

% Create a copy of a cell. £

The Method -97 - Section 4.2

hegin
if BT then errorg
B{d] := pldl; BI1] Each cell requires 2 words %
B & (B := B+2) » Return the current value of B %

end; % after moving it to next cell. %
% TOSPACE, FROMSPACE test whether a pointer is in that semispace. %

Allocate space at bottom of free area.%
Memory full? %

i

plll;

PSR

The Mcthod -08 - Section 4.2

Figure 15 shows a diagram of our incremental method in operation, while figure 16
presents the code for our reaf-time list processing system.

The time required by all of the elementary list operations in this algorithm, with the
exception of CONS, can éasily be seen to be bounded by a constant because they are
straight-line programs composed from primitives which are bounded by constants. CONS
is also bounded by a constant because the number of mutator registers is a (small) fixed
number (e.g. 16), and the parameter k is fixed. In principle, given the number of registers
and the parameter k, the two loops in CONS could be expanded into straight-line code;
hence the time it requires is also bounded by a constant.

The proof that the incremental collector eventuaily moves ali accessible cells to tospace
is an easy induction. Upon system initialization there are no accessible cells, hence none in
tospace, and so we have a correct basis. Suppose that at some point in the computation we
have just switched semispaceS so that tospace is empty. Suppose further that there are N
accessible cells in fromspace which must be moved to tospace. Now, every cell which was
accessible at the time of flipping eventually gets moved when it is traced, unless lost through

RPLACA and RPLACD, and as a result appears between S and B. Furthermore, a cell is

Fig. 15. The Serial Real-Time Method

| | | I I | 4————mrrmemeen- -- -—— ---—'-; :
| REGISTER BANK :
|
L |
\ | I
\ e N e e e I
\ T\ FROMSPACE /
\ I /
\ Lo /
\ | vV i 1 | /
SV P S (R V--
| |-> free area <-| neu cells |
T 1 T
S-> B-> <=7

TOSPACE

The Method ' -99 - ’ Section 4.2

Fig. 16. The Serial Real-Time List Processing System

integer ki . % Global trace ratio parameter: the
number of cells to trace per cons.%
pointer T; : % Top; Points to top of free area. %
pointer procedure CONS(x,y) = % Do some collection,
then allocate (x . y). %
begin : _
if B=T % Check if free area is empty. %
then begin % Switch semispaces. Memory is full %
if S<B then error; % if tracing is not finished. % '
flip(); . % Flip semispaces. %
for i =1 to NR ‘ o
do Rli):=move(R[i]); % Update user registers %
x: =movelx); y:=moveiy) % and our arguments. %
end; : ’
for i = 1 to k while 5<B % Do k iterations of gc. %
do begin
S(8):=move(S{0)); % Update car and cdr. %
S{1):=move(SI11); '
S 1= S5+2 % Go on to next untraced cefl. %
end; : ‘
if B=T then error; ‘
T = T-2; : % Actually create the cell. %
Tl := x; T{1] 2= y; % Move in car and cdr. %
T % Return address of new cell. %
end; :
pointer procedure CAR{x) = % Move, update and return x[0]. %

x{8) := move {xIB});

pointer procedure COR(x) = - 4 Move, update and return x{i]. %
x[1] := move(x{l]); -

% Procedures not redefined here are as before. %

moved only once, because when it is moved it leaves behind a forwarding address which
prevents it from being moved again. When the poiﬁtér S reaches a cell, its Zedges are
traced--i.e. the cells they point to are moved, if necessary. Finally, only cells which have been ;
moved appear between S and B. Therefore, the number of those accessible, unmoved cells in
fromspace decreases monotonically, eventually resulting in no accessible, unmoved cells in

fromspace. At this point, the collector is done and can interchange the two semispaces.

The Method - 100 - Section 4.2

It should be easy to see why the other list operations cannot adversely affect the
progress of the collector. A CAR or CDR can move a cell before the collector has traced it,
but since moving it increases B but not S, it will be traced later. RPLACA and RPLACD
can affect connectivity, but since all of their arguments are already in tospace, they have
already been moved and may or may oot have been traced. Consider RPLACA(p.,q).
Suppose that p has been traced and q has not. But since.q has been moved but not traced,
it must be between S and B and will not be missed. Suppose, on the other hand; that q has
been traced and p has not. Then when p is traced, the o!d CAR of p will not be traced.
But this is all right, because it may no longer be atcéssibie.l If it still is the target of an edge
from some accessible cell, then it either aiready has, or will be.vtrac,ed',through that edge.
Finally, if eit'her both p and q have been traced or both have not been, _‘theie is obviously
no problem. S

This algorithm can also be proved correct by the methods of DL [31,32,58,59], because
this particular sequence of interleaying collection with mutation is only one_of the legal
execution sequences of the DL algonthm on a serial machine. Therefore, if the DL
algorithm is correct, then so is this one. The correspondence is this: white nodes are those
which reside in fromspace, i.e. those which have not yet been -moved; gey nodes are those
which have been moved but have not yet been traced, i.e. those betweeri S and B; and black
nodes are those which have been moved and traced, and those whlc’hghayg been allocated
directly in tospace (cells below S or above T). Then the assertlons are: | |

' A) each node will only darken monotomcally.
B) no edge will ever point from a black node to a white one; and
C) the user program sees only grey or bhck nodes

We can now see why the burden 1s on CAR and CDR rather than RPLACA and
RPLACD--the latter will not violate B so long as the former do not violate C. Using these
assertions, we see that the mutator and the mark phase of the oollector are essentially doing
the same thing: tracing acceséible cells. The dlfference is that the collector goes about it
systematically whereas the mutator wanders. Thus only the collector knows for sure when

all the cells in fromspace have been traced so that the two semispaces can be interchanged.

The Method - 101 - Section 4.2

~ Assertion C also allows CAR and CDR to update a cell in which a pointer to fromspace is
found, thus reducing poihter-chasing for cells which are accessed more than once.

We must now analyze the storage required by this algorithm. Suppose that at some
flip of the semispaces there are N accessible nodes. Then the collector will not have to
‘move or trace any more than N cells. If it traces (makes biilck)'gxactly k cells per CONS,
‘then when the collector has finished, the new semispace will contéin < N+N/k = N(lom) cells.’
" where we let m=l/k. If only N of these are :accessibie,'as in equilibrium conditions, theh the
next cycle of the collector will copy those N celis back to the first semispace, while
performing Nm CONS'es. Hence, we have the inequality:

Maximum SRT Storage Required < N{2+2m) = Ni2+2/ki

Therefore, for a program which has a maximum cell requirement of N cells operating
on a fixed-size real memory of 2M cells, the pai:ameter k must be greater than N/(M-N) to
guarantee that tracing is‘ finished before every flip.

If we compare the bound for our algorithm with the bound for MKSMW, using the
unlikely assumption that sweeping and relocation take no time (s=r=0), we find tl_iat they
are quite similar in storage requirements.b

Haximum MKSMW Storage Required < N{1.5+2m)
Maximum SRT Storage Required < N(2+2m)

If m=1 (which corresponds to one collector iteration per CONS), the two algorithms
differ by only 1 part in 8, which is insignificant given the gross assumptions we have made
about MKSMW’s sweeping and relocation speeds.k It is not likely that the storage
requirements of a MKSM W-type algorithm can be significantly imyroved because it cannot
take advantage of techniques like stack threading or CDR-coding. Stack threading cannot
be done, because accessible cells have both their ¢car and cdr in use’ ‘CDR-codingv using‘
MKSMW is very awkward because CONS must search for a free cell of the proper size and

location before allocating a cell, since the free space is fragmented. On the other hand, our

5. The Deutsch-Schorr-Waite collector [57, p. 417-418) “threads” the stack but temporarily
reverses the list structure, thus locking out the mutator for the duration.

The Method - 102 - v Section 4.2

algorithm can be easily modified to use CDR-coding and thereby reduce storage

requnrements to approximately N(l+m).
4.3 The Parameter m (= 1/k)

If k is a positive integer, then the parameter m (-llk) will lie in the interval O<msl.
Therefore, the factor of l+m in our bounds must lie between land 2. This means that the
storage requirements for our method can be‘ adju;ted by varying k, but they will not vary
by ‘moie than a factor of 2 (so long as k is”intégral). Now, the time to execute CONS is
proportional to k+c, for some suitable con‘stva'nt c; 'i’hex;efore, one can trade off storage for
CONS speed, but only within this limited rang?. Furthermore, as k rises above 4 the
storage savings become insignificant; e.g. doubling k to 8 yields a storage savings of only
107, yet almost doubles CONS time. Of course, if storage is limitéd'and response time need
not be fast, larger k’s might be acceptable. o

If the method is used for the management of a large database residing on secondary
storage, k could be made a positive rational number less_than ‘l on the average. For
example, to achieve an average k=1/3 (m-3) one could have CONS perform an iteration of
the collector only every third time it was called The result of this would double the storage
required (m+i=4), but would reduce the average CONS time by aimost 2/3. Of course; the
worst case time performance for CONS would still be the same as if k were 1. ,

This improvement is significant because each iteration of the collector traces all the
pointers of one record. This requires retrieving that record, updating all of its pointers by
moving records if necessary, and then rewriting the record. - If there are ¢ pointers to be
updated, then ¢+1 records must be read and written. This sounds like a lot of work, but this
much work is done only when a record is created; if there are no record creations, then with
the exception of the first access of a record via a pointer stored in another record, the
accessing and updating functions will be as fast as on any other file management scheme.
Therefore, since secondary storage is usually cheap but-slow, choosing k<l in a file

management system allows us to trade off storage space against average record creation

The Parameter m (= I/k) - 103 - Section 4.3

time.

With a little more effort, k can even be made variable in our method, thus allowing a
program to dynamically optimize its space-time tradeoff. For example, in a database
management system a program might set k=0 during an initial load of the database because
it knows that even though there are many records being created, none are being Ie; go, and
therefore the continual copying of the collector will achieve no compaction. The function
READ in LISP might want to exercise the same . prerogative, for the same reason. Of
course, any reduction of k should not take effect until the next flip, to-aveid running out of

storage before then.
4.4 A User Program Stack

If the user program utilizes its own stack as well as a ‘bank of registers, the stack rhay
(in.theory)' grow to an unbounded size and therefore cannot be wholly updated when the
semispaces are flipped and still preserve a constant bound on the time for CONS. This
problem may be trivially solved by simulating the stack in the heap (ie.
PUSH(x) = CONS(x,stack) and POP() = COR(stack)) this simulation will satisfy the
bounded-time constraints of classical stack manipulation. However, this simulation has the
unfortunate property that actessing items on the stack ré(guircs time proportional to their.
distance from the top. o

In order to ma'intain constant access time to elements deep in the stack, we kéep
stack-like allocation and deallocation strategies but perform the tracing of the stack in an
incremental manner. We first fix the ;t_a.ck,}acggssi_gg;routinesi so that the user program
never sees pointers in fromSpace; This cﬁangé feqla“i;'es fhat tl;ae MOYVE routine must be
applied to any pointers which are picked up from the user stack. We must then change
CONS to save the user stack pointer when the semispaces are flipped so that it knows
which stack locations -must be traced. Finally, the user stack POP routine must keep this
saved pointer current to avoid tracing locations which are no longer on the user stack [68].

A User Program Stack - 104 - Section 4.4

The only remaining question is how many stack locations are to be traced at every
CONS. To guarantee that stack tracing will be finished before the next flip, we must
allocate tﬁe stack tracing ratio k' (the number of stack locations traced per CONS) so-that
the ratio k'/k is the same as the ratio of stack locations in use to cons cells in use. We
recompute k' at each flip, because the "in use” statistics are available then. Due to this
computation, a constant bound on the time for CONS exists only if the ratio of stack size to
heap size is bounded, and is proportiomal to that ratio.

Figure 17 exhibits these changes.

Barbara Liskov [62] has suggested tracing the user stack from the bottom instead of
from the top, as we have done here. The rationale behind this is that many of the pointers
at the top of the stack will have been discarded bythe time the collector gets there, and
those discarded pointers may never be traced. Space requirements may be slightly reduced
as a result, since some garbage may be detected earlier. However, since the mutatar must
continue checking (and possibly tracing) every pointer it accesses from the stack, the change
results in only a marginal improvement in time.

The complexity involved in this conversion is essentially that necessary to make the
serial real-time method work for several different spaces [67). In such a system, each space
is a contiguous area in the address space diﬁjqiqt from the other spaces, and has its own
representation conventions and allocation (and deallocation) strategies. The system of this
section thus has two spaces, the .heap and the user stack, which must be managed by

cooperating routines.

4.6 CDR-Coding (Compact List Representation)

In this section, we discuss the interaction of -our algorithm with a partial solution to
the second big problem with list structures: their inefficient use of storage. Whereas a list of
5 elements in a language like Fortran or APL -would require only a 5°element array, such a
list in LISP requires 5 cells having two pointers :piecg:b&-cilfe&’%l)k-ooding" [(41,11,22)

"can reduce the storage cost of LISP lists by as much as 50%. The idea is simple: memory is

CDR-Coding (Compact List Representation) - 105 -

Fig. 17. Real-Time System with User Stack

Section 4.5

% The user stack resides in the array “"ustk” and grows upward from

"ustk[0]".

The global varjable "SP" is the user stack pointer and
points to the current top of the user stack. The global variable "SS

scans the user stack and poirits to the highest stack level which N
has not yet been traced by the collector. %

integer SP init(@);
integer SS init{(@);

procedure USER_PUSH(x) =
begin
SP s = SP+1;
ustk [SP] :1= x
end;

pointer proceduré USER_POP () =
move {ustk {SP}) & '

begin
"GP := SP-1:

SS := min(SS,SP) -
end; .

pointer procedure USER_GET(n) =
ustk [SP-n] := move(ustk {SP-n]);

pointer procedure CONS(x,y) =
begin
if B=T
then begin
if 55>8 or S5<B
then error;
N := flip();
SS := SP;
k' 3= ceil (kxS5/N};
for i =1 to NR
do Rlil:=move(R[il);
x: =move {x); ys:=movely)
end;)
i =1 tok’
do begin
ustk [SS] s =move (ustk [SS]) ;
SS := S§S5-1
end;
for i =1 to k wuhile 5<B
do begin ’ :
S[8) := move(SiBl);
S{1) := move(SIil11);
S 1= 542

for uhile SS>8

% User stack pointer. %
‘% User stack scanner. %

% Push x onto user stack. %
% Note: x will not be in fromspace. %

% Pop top value from user stack. %
% Move value if necessary; %

% then update stack pointer. %
% Keep stack scanner current. %

% Get n’th element from top of stack. %
% Move and update if necessary. %

% Collect /some'.'then allocate (x . y). %
% Check if free area is empty. %

% Interchange semispaces. %

% Check for memory overflow. %

% Set.N to number of cells in use. %
% Start stack scan at top of stack. %

" % Calculate stack ‘trace effort. %

% Update user registers %
% and our arguments. %

% Move k' user stack elements and %
% update scan pointer. %

% Do k iterations of gc. %
1 Trace & update car, cdr. %

CDR-Coding (Compact List Representation) - 106 - Section 4.5

end;
if B=T then error;
CT o= T2 % Actually create the cell. %
TIBl := »; TI1] := y; . % Install car and cdr. %
T ‘ % Return address of copied cell. %

end;

divided up into equal-sized chunks called Q's. Each Q. is big enough to hold 2 bits plus a
pointer p to another Q. The 2 bits are decoded via the following table:

00 - NORMAL; ' CAR of this node is #; CDR is in the following Q,
Ol - NIL; CAR of this node is #; CDR is NIL.
10 - NEXT; CAR of this node is #; CDR is the following Q.

Il - EXTENDED:; The cell extension focated at p holds the car and cdr for this node®

CDR-coding can reduce by 50% the storage requirements of a group of cells for which
CDR is a Il function whose range excludes non-nil atoms. This is a non-trivial saving, as
all "dot-less” s-expressions read in by the LISP reader have these properties. In fact, Clark
and Green [22] found that after linearization 98% of the non-NIL t:drs in ‘several large LISP
programs reférred to the following cell. These ﬁavings are due to the fact that CDR-coding
takes adva ntage of the implicit Vlinear ordering of addresse; in a&dress space.

What implications does this cod:'m"g scheme have for the elementary list operations of
LISP? Most operations must dispatch on the CDR-code to compute their results, and
RPLACD needs special- hamnmg Consider RPLACD(p,q). If p has a CDR code of NIL
or NEXT, then it must be changed to EXTENDED, and the result of CONS(CAR(p).q)
placed in p) , _

The number of memory referentes in the elementary ’opera'tidns has been minimized

by making the following policies [42}

6. These conventions are slightly different from those of [4111].

7. We note in this context that if RPLACD is commonly used to destructively reverse a
list--e.g. by LISP’s "NREVERSE™-the system could aiso have a “PREVIOUS" CDR-code
so that RPLACD need not call CONS so often.

CDR-Coding (Compact List Representation) - 107 - Section 4.5

1) every EXTENDED cell has a NORMAL extension;
2) the user program will never see a pointer to the extension of an EXTENDED

cell; and ' |
3) when COPY copies an EXTENDED cell, it reconstitutes it withopt an
‘extension. ' | _

CONS, CAR, CDR, RPLACA and RPLACD must be changed to preserve these
assertions, but EQ and ATOM require no changes from their non-CDR-coded versions. |
Since an EXTENDED cell cannot point to another EXTENDED cell, the forwarding of
EXTENDED pointers need not be iterated. These policies seem .to minimize memory
referénces because each cell has a constant (between ﬂips) canonical address, thereby
avoiding normalization [80] by every primitive list operation. A

CDR-coding requires a compacting, linearizing garbage collector if it is to keep
. allocation simple (because it uses two different cell sizes) and take fuli advantage of the
sequential coding efficiency. The MFYCA algbrithm preseﬁted above compacts, but does
not linearize cdrs due to its breadth-first trace order. However, the trace order of a
MFYCA collector can be easily modified at the cost of an additional pointer, PB. PB keeps
track of the previous value of B (ie. PB points to the last cell copied), so that tracing the cdr
of the cell at PB will copy its successor into the next consecutive rlkocation (B), thus copyingv
whole lists into successive contiguoﬁs locations. o

The meaning of the scan pointer S is then changed slightly so that it points to the
next word which must be updated rather than the next cell. Finally, the trace routine is
modified so that tracing the cdr of PB has priority over tracing the edge at S and the
condition on the trace loop is modified to amortize both the copying effort (measured by
movements of B) and the tracing effort (measured by-movements of S) over all the CONS'es.
These modifications do not resukt in a depth-first trace order, but' they do result in
cdr-chains being traced to the end, with few interruptions. THhus an MFYCA collector can
minimize the anmvount of memory needed by CDR-coded lists.

CDR-Coding (Compact List Representation) - 108 - Section 4.5

Figure I8 presents a real-time list system which utilizes CDR-coding.

The size of the tospace needed for CDR-coding is (l+m) times the amount of space
actually used in fromspace. With a coding efficiency improvement of e over the classical
storage of LISP cells, and under equilibrium conditions, we have thé inequality:

Maximum SRTC Storayge Required s Ne(2+2m)

Since we have claimed that ex.5, we get the following estimate:

SRTC Storage Required =~ N{l+m) (!)

But this latter expression is less than the bound computed for MKSMW. Thus,
CDR-coding has given us back the factor of 2 that the copying garbage collector took away.

The real-time properties of our algorithm have not been affected in the least by
CDR-coding; in fact, good microcode might be able to process CDR-coded lists faster than
normal lists since fewer references to main memory are needed.

CDR-coding is not the final answer to the coding efficiency problems of list storage,
because far more compact codes can be devised to store LISP's s-expressions. For example,
both the car and cdr of a cell could be coded by relatiyé offsets rather than fgll pointers
[22). However, a more compact code would rcprgsé_m some cells in so few bits that the
pointer we need for a forwarding address would ho_t fit, rendering our scherﬁe unworkable.
Part of the problem is inherent in LISP’s small c§ll size; small arrays can perform much
better.)

4.6 Vectors and Arrays

Arrays can be included quite easily into our framework of incremental garbage
" collection by simply enclosing certain parts of thecollector program in loops which iterate
through all the pointers.in the array, not just the first and second. The convergence of the
method with regard to storage space can aiso be proved and bounds derived. However, the
method can no longer claim to be real-time because neither the time taken by the array
allocaﬁon function (ARRAY-CONS) nor the time taken by the array element accessing

function is bounded by a constant. This unbounded behavior has two sources: copying an

Vectors and Arrays - 109 - “Section 4.6

Fig. 18. Real-Time System with CDR -Cading

pointer S; % Next cell whose car needs tracing. %
pointer PB; % Pointer to previous value of B. %
pointer L,H; - % Low and high limits of tospace. %
% Assertion: L < S < PB < B < T s H%
pointer procedure CONS(x,y) = % Create a new cell in tospace wlth %
begin . % car of x and ¢dr of y. %
if T-B<2 % Flip when free area is exhausted. %
then begin % This part is the same as usual. %
if S<B then error; % Copying is not done; memory overflow!%
flip(); : % Interchange semispaces. %
for i =1 to NR
do Rli]:=move(RL[il}; % Update user registers. %
x:=move{x}; g:-move (g) % Update our arguments. 7
end; Co :
while (S+B)/2-L < k*(H-T—Z) and S<B % Trace and copy a measured amount.%
do if PB<B % Extend current list, if possible. %
then PB := (B & COR(PB)); % CDR will trace this edge for us. %
else begin
S1(0]:=move(S5(0]); % Update this edge. %
S 1= S+l % Step S over this cell. %
_end;
if B=T then error; . % Check for memory overflow. %
T := T-1; % Create new cell at top of free areaf
if y=nil
then code(T) := "NIL"™ % If y is special case, %
else if y=T+l % then create a short cell %
then code(T) := "NEXT" % with appropriate cdr-code. %
else begin % Otherwise, create a normat cell. %
if B=T then error; % Need ‘more space for the cdr. %
T := T-1g
code(T) := "NORMAL"; % Set in "NORMAL" cdr-code %
TI1] =y % Set in the cdr: %
end;
Ti{B) := x; % Set the car in the new cell. %
T % Return the new cell. %
ends
- pointer procedure CAR{x) = % CAR must move cell it uncovered. %
brplaca(x, movel(bcar(x))); % Update this edge. %
procedure RPLACA{x,y) = % x[0] := y. May require subtlety. %
brplacaix,y); '
pointer procedure BCAR(x) = % Basic car; dispatch on CDR-code. %
i f code{x)="EXTENDED" % Type "EXTENDED" means %
then (x(81) (8] % indirect car. %

else x[81; % All other types have normal cars. %

Vectors and Arrays

pointer procedure BRPLACA(p,q) =
i f code(p)="EXTENDED"
then (plB1}iB]) := q
else piB8] := q;

pointer procedure COR{x) =
brplacd(x, move(bcdr{x)));

procedure RPLACD(x,y) =
‘begin
if codelx)="NIL" or
code (x) ="NEXT"
then
begin pointer p;
p 1= CONS{CAR(x), "DUMMY");
x := move(x); y := movel(y);
- x[B8) 1= p; :
code(x) := "EXTENDED"
. end;
brplacd({x,y)
end;

pointer procedure BCOR(x) =
if code(x)="NORMAL" then x{1]
else if code(x)="NIL" then nil
else if code(x)="NEXT" then x+1
else (x[8))(1};

pointer procedure BRPLACD(p,q) =
if code(p) ="EXTENDED"
then {(plBl1)I1] := g
else if code(p)="NORMAL"
then pll) := q
else q; :

integer procedure SIZE(p) =
i f code{p)="NORMAL"
then 2 else 1

pointer procedure COPY(p) =
begin
if PB=B-2 and bcdr (PB)=p
then begin
code(PB} := "NEXT";
8 := B-1
end;
.1 f bedr(p)=nil

then code(B) := "NIL";

- 10 -

-Section 4.6

% Basic rplaca; dispatch on CDR-code. %
% If extended cell, clobber indirectly. %

% All others have normal car. %

% CDR moves uncovered celi, but updates %
% only if still possible after move. %

% x[1] := y. May require brute force. %

% Test for screw cases. % '
% Cannot have code(x)="EXTENDED". %

% Extend the cell x. %

% Construct guaranteed NORMAL cell. %
% Update arguments in case CONS ﬂlpped %
% Leave forwarding address in old cell.

% The old cell his now been ‘extended. z

% Finally replace the cdr. %

% Basic cdr; dispatch on CDR-code. %

% NORMAL cells have a second word. %

% Interpret NIL CDR-code. % .

% Interpret NEXT CDR-code. %

% EXTENDED celis pomt to NORMAL
cells. %

% Handle easy cases of RPLACD. 1
% We have extended cell, %
9% clobber the NORMAL indirect. %
% The easiest case of all. %

% In all cases, return q as value. %

% Find the size of p from its CDR-code. %
% "NIL", "NEXT", and EXTENDED
all have sue(p)al %

% Copy the cell p; append to current %
% train if possible. %
% See if we can hop this NEXT train. %

% Convert NORMAL cell to NEXT cell. %
% Reuse extra space now available. % :

% Create a NIL cell, if appropriate. %

Vectors and Arrays -1 - Section 4.6

else code(B) := "NORMAL": % Otherwise, all cells are NORMAL. %

BIB] := bcar(p); % Copy over car; 7%

brplacd (B, bcdr (p)); % and cdr too, if necessary. %

PB := B; % PB is end of current NEXT train. %

B := B+size(B}; % Step B over newly copied cell, %

if B>T then error; % check for memory overflow, %

PB % and return pointer to new copy. %
end;

% Procedures not redefined here are as before. %

Vectors and Arrays -h2 - Section 4.6

array and tracing all its pointers both require time proportional to the length of the array.
Therefore, if tﬁese operations are included in a computer as non-interruptable primitive
instructions, hard interrupt response time bounds for that computer will not exist. However,
an arbitrary bound (say 10) placed on the size of all arrays by either the system or the
programmer, allows such bounds to be derived.

Guy Steele [82] has devised a scheme which overcomes some of these problems. He
gives each vector a special link word which holds either a forwarding pointer (for vectors in
fromspace which have been partially moved), a backward link (for incomplete vectors in
tospace), or NIL (for complete vectors). MOYVE no longer copies the whole array, but only
allocates space and installs the forward and backward links. Any reference to an element of
a moved but incompletely updated vector will follow the backward link to the fromspace
and access the corresponding element there. When the scan pointer in the tospace
encounters such a vector, its elements are incrementally updated by applying MOVE to the
‘corresponding elements of its old self; after the new one is complete, its link is set to NIL.
Element accesses to incomplete vectors compare the scan pointer to the element address;
access is made to the old (new) vector if the scan pointer is less (greater or equal). Tracing
and updating exactly kn vector elements (not necessarily ali from the same vector) upon
every allocation of a vector of length n guarantees convergence.

Steele’s scheme has the following properties: the time for referencing an element of any
ceil or vector is bounded by a constant while the time to allocate a new object of size n is
, for some constants ¢, and ¢,. Hence, a sequence of list and vector

2 1 2
operations can be given tight time bounds.

bounded by clkmc

4.7 Hash Tables and Hash Links

Some recent artificial intelligence programs written in LISP have found it convenient
to associate property lists with list cells as well as symbolic atoms. Since few cells actually
have property lists, it is a waste of storage to allocate to every cell a pointer which points to

the cell’'s property list. Therefore, it has been suggested [I8] that one bit be set aside in

Hash Tables and Hash Links - 113 - Section 4.7

every cell to indicate whether the cell has a property list. If so, the property list can be
found by looking in a hash table, using the address of the list cell as the key.

Such a table requires special handling in systems having a relocating garbage
collector. Qur copying scheme gives each semispace its own hash table, and when a cell is
copied over into tospace, its property list pointer is entered in the "to" table under the cell’s
new address. Then when the copied cell is encountered by the "scan” pointer, its property
list pointer is updated along with its normal components. A "CDR-coding” system with two
"scan” pointers should also keep a third for tracing property list pointers to prevent

property lists from destroying chains of "next"-type cells.
4.8 Reference Counting

In this section we consider whether reference counting can be used as a method of
storage reclamation to process lists in real time; i.e. we try to answer the question, at least for
the real-time context, is reference counting worth the effort, and if so, under what
conditions?

A classical reference count system [25,97] keeps for each cell a count of the number of
pointers which point (refer) to that cell; ie. its in-degree. This reference count (refcount) is
continually updated as pointers to the cell are created and destroyed, and when it drops to
zero, the cell is reclaimed. When reclaimed, the refcounts of any daughter cells it points to
are decremented, and are also reclaimed if zero, in a recursive manner.

Reference counting appears to be unsuitable for real-time applications because a
potentially unbounded amount of work must be done when a cell is let go. However, if a
Sfree stack is used to keep track of freed objects instead of a free list, the newly freed cell is
simply pushed onto the free stack. When a cell is needed, it is popped off the stack, the
refcounts of its daughters are decremented, and if zero, the daughters are pushed back onto
the stack. Then the cell which was popped is returned. In this way, only a bounded

amount of work needs to be done on each allocation.

Reference Counting -4 - Section 4.8

We now consider the storage requirements of a reference counting (RC) system. In
addition to the memory for N cells, we also need room for N refcounts and a stack. Since
the refcounts can go as high as N, they require approximately the same space as a pointer.
So we have:

Maximum RC Space Required < 1.5N + the size of the "free 'stéck’f

The worst case stack depth is N. 'H‘m‘\'r‘ever, Qhenever a cell is on the stack, its refcount
is zero, so we can thread the stack through the unused refcounts! So we how have:

Max i mum RC Space Réquired < 1.5N - - h

Reference count systems have the dréwbac:l;tﬁé'\t directed .cycles of pointers cannot be
reclaimed. It has been suggested [57,30] that refcounts be: used aS:the:” i)rimatzy* method :of
reclamation, using garbage collection (GC) as a fallback method when that fails. Since RC
“will not have to reclaim everything and since the average refcount is often very small, it has
also been suggested that a truncated refcount (a bounded counter which sticks at its highest
“vatue if it overflows) be used to save space. | | '

We say that garbage in a combination RC and GC system is ref-degradable if and
only if it can be reclaimed by refcounts alone. Cells whose truncated refcounts are stuck are
therefore non-ref-degradable. ‘ | , | v

What is the effect of a dual system in terms of performance? Whatever the RC system
is able to recycle puts off flipping that much longer. By the time a flip happens in such a
two level system, there is no ref-degradable garbage left in tospace. Therefore, the furnover
of the semispaces is slowed. '

How much memory does the dual system require? If truncated refcounts are used, the
free stack cannot be threaded through a celi’s refcount because it is not big enough to hold
a pointer. Therefore, using this method and assuming only a few bits worth of truncated
‘refcount per cell, we have: ’ | |

Maximum SRT+RC Space Required < N(2+2m) + RC free stack < N(2.5+2m)

Reference Counting - 115 - Section 4.8

So it appears that we have lost something by adding refcounts (even tiny ones),
because we still need room for the free stack. .

Let us now examine more closely the average timing of CONS under a pure RC
versus a pure SRT system. The average time for CONS under the RC system is the same
as the maximum time since there is no freedom in the algorithm. The time for CONS in
SRT is €k where ¢ and ¢, are constants. Now ¢, is simply the time to allocate space
from a contiguous block of free storage. Certainly incrementing a pointer is much less
complex than popping a cell from a stack, following its pointers, decrementing their
refcounts, and if zero, pushing them onto the stack. Therefore, we can choose k small
enough8 so that the average time to perform CONS with our SRT method is smaller than
the average time to perform CONS in an RC system.g This analysis does not even count
the additional time needed to keep the refcounts updated. Of course, the storage required
for our "pure” SRT system may be many times the storage of the RC system, but SRT will
have a smaller average CONS time.

Since this seems counterintuitive, or at least reactionary (given the current penchant
for recycling), we give a rationale for why it is so. Reference counting traces the garbage
cells, while normal garbage collection traces the accessible cells. Once the number of
garbage cells exceeds the number of accessible cells in an region of storage, it is faster to
copy the accessible cells out of the region and recycle it whole. When m>l, reference
counting cannot compete timewise with garbage collection because RC must trace a cell for
every cell allocated while GC traces on the average only a fraction (I/m) of a cell for every
cell allocated.

On the other hand, if we wish to minimize storage by making m<l, a dual scheme with
truncated refcounts should reduce the average CONS time over that in the pure scheme.

However, CDR-coded lists and other variable sized objects cannot be easily managed with

8. Section 4.3 deals with non-integral k's.

9. We can discount the additional time occasionally required by CAR and CDR in our
method because any relocation and pointer updating done by them is work that we have
already charged to CONS, and does not have to be repeated.

Reference Counting - 16 - Section 4.8

reference counting because the object at the top of the free stack is not necessarily the right
size for the current allocation. Thus, CDR-coding can reduce the storage requirement of a
"pure” scheme below that of a "dual” system with the same m. But even on a system with
objects of uniform size, we are skeptical whether the increased average efficiency of CONS
in the "dual” system will offset the increase in k needed to keep the storage rgquiremems the
same as the "pure” system. We conclude that, at least on a-real memory computer, reference
counting is probably not a good stbrage management technique unless one a) has uniformly
sized objects; b) uses full counts; and c) guarantees no cycles.

This is not to say that reference counts aré not useful. If the LISP language were
extended with a function to return the current refcount of an object, and suitabl'y clean
semantics were associated with this function, then oné might be able to make use of this
information within the user program to speed up. certain algorithms, Such as structure
tracing or backtracking, a'fa Bobrow and Wegbreit {17). This author is not aware of any
language which makes this information available; if it were available, good programmers

would certainly find a use for it.
4.9 The Costs of Real-Time List Processing

The amount of storage and time used by i real-time list processing system can be
compared with that used by a cléssical list processing system using garbage collection on
tasks not lequmng bounded response times. The storage required by a classical
non-compacting garbage collector is N(l+g), if the system uses the Deutsch-Schorr-Waite
(DSW) [57, p. 417-418] marking algonthm. and N(l Sept) if u uses 2 normal stack, for some
positive pu. If CDR- codmg is used, copymg must be done, the storage requnrement is then
Ne(2+2p), where e is the efﬁcnency of the coding. Smce e is- near 5 [22], the requirement is
about N(l+y), so that CDR-codmg requires approxlmately the same space as DSW.
Comparing these expressions with those derived -earlier for our real-time algorithms, we
find that processing LISP lists in real-time requ,irés no more space than g non-real-time
system using DSW. If larger non-uniformiy-sized: objects like arrays must be managed,

The Costs of Real-Time List Processing - 117 - Section 4.9

real-time capability requires no more space than the MFYCA system, since a copying
collector is already assumed.

The average time requirement for CONS in our real-time system is virtually identical
to that in a classical MFYCA system using the same cell representation and the same
amount of storage. This is because 1) a classical system can do uN CONS‘es after doing a
garbage collection which marks N nodes--thus giving an average CONS/mark ratio of u
and allowing us to identify g with m--and 2) garbage collection in our real-time system is
almost identical to that in the MFYCA system, except that it is done incrementally during
" calls to CONS. In other words, the user program pays for the cost of a cell's reclamation at
the time the cell is created by tracing some other cell.

CAR and CDR are a bit slower, because they must test whether the value to be
returned is in fromspace. However, as noted above, any cell movement done inside CAR or
CDR should not be charged to CAR or CDR because it is work which the collector would
otherwise have to do and therefore has already been accounted for in our analysis of
CONS. Therefore, CAR and CDR are only slower by the time required for the semispace
test 10 '

Since RPLACA, RPLACD, EQ, and ATOM are unchanged from their classical
versions, their timings are also unchanged.

The overhead calculated for our serial system can be compared to that in Wadler's
parallel system [93]. According to his calculations, a parallel garbage collector requires
significantly more total time than a non-paraliel collector. But this contradiction disappears

_when it is realized that his parallel collector continues tracing even in the absence of any

cell creation activity. Since our system keys collector activity to cell creation, the collector

effort is about the same as on a non-reai-time system.

10. In Greenblatt’s LISP machine [41], the virtual memory map performs the semispace test
as an integral part of address translation. Thus on this machine, a successful semispace test
requires nary an additional microinstruction!

Applications - 118 - Section 4.10

4.10 Applications
4.10.1 A computer with a real memory of fixed size

This application covers the classicalr 7090 LISP [64) as well as a LISP for a
microcomputer. We conceive of even 16-bit microcompiiters utilizing this algorithm for
real-time process control or simulation tasks. Each of therllisi processing primitives is
intended to run with interrupts inhibited, so0 that all mterrupt processmg can make use of
list stoxasfe for its buffers and other needs. Multiple processes may also use these primitives
s Iong as CONS, CAR, and CDR are used by one process at : a time. ie. they are protected
by one system-wide lock. Of course, the system must be aware of the registers of every
process. ‘ |

For these real memory apphcations we want to put as much of the available storage
under the management of the aigorithm as possxblc Thus both atoms (here we mean the
whole LISP atom-complex, not just the prmt name) and list nodes are stored in the.
semispaces. CDR-coding is usually a good idea to save memory, but unless the bit- -testing is
done in microcode, it may be faster to use normal cells and increase the parameter k to keep
the storage size small. | |

The average CONS time is reduced by putting off ﬂippmg until all of the free space
in tospace is exhausted, ie. B=T. Thus, after ali movmg and tracmg is done, ie. S=B,
" allocation is trivial until B=T. Asa result, the average CONS time in our real-time system is
approximately the same as that in a classical system. Of course, wiih a mei'nory size of 2M,

the maximum number of cells that can be safely managed is still Mk/(k+1).
4.10.2 A virtual memory computer

The current epitome of this application is Multics LISP with an address space of 236
(~ lO") 36-bit words, room for billions of list cells. The ,probiem here is not in reclaiming
cells that are let go, but keeping accessible celis compact so that they occupy as few pages of

real memory as possible. The MFYCA algorithm does this admirably and ours does almost

A virtual memory computer - 19 - Section 4.10.2

as well.

Qur scheme is still real-time on a virtual memory computer, but the bounds on the
elementary list operations now have the order of magnitude of secondary storage operations.

There are some problems, however. Unlike MFYCA; wherein both semispaces were
used only during garbage collection, our method requires that they both be active (i.e.
partially in real memory) at all times. This may increase the average working set size. A
careful analysis needs to be made of our algorithm in order to estimate the additional cost
of incremental garbage collection. Brief consideration tells us that the active address space
varies from a minimum of N(l+m) just before a flip to N(2+2m) just after. Since at a flip the
user program registers are updated in numerical order, relatively constant pointers should
be placed in the lower numbered registers to keep the trace order of constant list structure
similar between flips. If the average size of an object is much larger than the size of a
pointer, the working set may also be reduced by storing the forwarding addresses in a
separate table instead of in the old objects in fromspace [i6).

In a virtual memory environment, the active address space will automatically expand
and contract in response to changes in the number of accessibie cells if 1) FLIP re-adjusts
the size of fromspace to (l+m){cells in tospace] just before interchanging the semispaces; and
2) flipping occurs when tracing finishes rather than when B meets T. 'This policy, plus a
smaller k than a real memory computer would use, should give both a fast CONS and a
tolerable working set size. The parameter k can also be dynamically adjusted to optimize
either running time (including paging) or cost according to some pricing policy by following

an analysis similar to that of Hoare and others [55,19,3].
4.10.3 A database management system

We conceive of a huge database having millions of records, which may contain
pointers to other records, being managed by our algorithm. Examples of such databases are
a bill of materials database for the Apollo Project, or a complete semantic diciionary and

thesaurus of English for a language understanding program. Performing a classical

A database management system - 120 - Section 4.10.3

garbage collection on such a databank would be out of the question, since it might require
days or weeks to complete, given current disk technology.

Some of these large database systems currently depend on reference counts for storage
reclamation, and so do not allow directed cycles of pointers.. . Since our method performs
general garbage collection, this restriction could be dropped. Moreover, given enough
space, our algorithm can take even less time than a reference count system. When compared
with a classical garbage collection system, ouy.,mcthod wowld- not. save any fofal time in
processing transactions against such a data base, but it. would avoid the catastrophic
cansequcnces of a garbage collection during a period of heavy demand.

This case is very much like case 1, the real memory computer, because we assume that
the database is orders of magnitude too big.to fit into primary memory and thus that there
is little hope for a speedup.from the locality of reference effect. "Read memory™ and “store
memory” instructions here apply to secondary storage; the constant bounds for the
elementary operations are now on the order of -milliseconds rather than microseconds.
Therefore, almost everything that we say about real memery implementations also applies to

large database implementations, except that space-is cheaper and:time is: more dear.
4.10.4 A totally new computer architecture

We conceive of an architecture in which a CPU is connected to a list memory instead
of a random access memory. Machines of this architecture are similar to "linking automata”
described by Knuth [57, p. 162-46';'»] and “storage modification machines” described by
Schonhage [77]. At the interface between the CPU and the memory sits a bank of poin?er
registers, which point at partiéular cells in the list memory. Instead of a bus which
communicates both addresses and values, with read and write commands, the memory
would have only a data bus and commands like CAR, CDR, CONS, RPLACA, RPLACD,
and ATOM, whose arguments and returned values would be in the pointer registers. The
CP1] would not have access to the bit strings stored in the pointer registers, except those
which pointed to atoms (objects outside both fromspace and tospace). This restriction is

A totally new computer atchitecture - 121 - : Section 4.10.4

necessary to keep the CPU from depending upon memory addresses which might be
changed by the management algorithm without the CPU's knowledge.

An advantage of such a system over random access memory is the elimination of the
huge address bus that is normally needed between the CPU and the memory, since
addresses are not dealt with directly by the CPU. As the number of bits on a chip
increases, the number of address lines and supporting logic becomes a critical factor.
However, since address lines are not available to communicate with other memory chips, we
have not yet been able to find a satisfactory way of scaling this memory up.

Our method of garbage collection can also be used with a random access write-once
memory by appending an extra word to each cell which holds the forwarding address when
that cell is eventually moved. Using such a system, the cells in tospace cannot be updated
until they are moved to the new tospace after the next flip. In other words, three semispaces
need to be active at all times. In addition to these changes, RPLACA and RPLACD must
actually perform a CONS, just like RPLACD occasionally does in our CDR-coding system.
Perhaps the write-once property can eliminate the need for transaction journals and backup

tapes.
4.11 Conclusions and Future Work

We have exhibited a method for doing list processing on a serial computer in a
real-time environment where the time required by all of the elementary list operations must
be bounded by a constant which is independent of the number of list cells in use. This .
algorithm was made possible through: 1) a new proof of correctness of parallel garbage
collection based on the assertion that the user program sees only marked cells; 2) the
realization that collection effort must be proportional to new cell creation; and 3) the belief
that the complex interaction required by these policies makes parallel collection unwieldy.
We have also exhibited extensions of this algorithm to handle a user program stack,
"CDR-coding", vectors of contiguous words, and hash linking. Therefore, we consider our

system to be an attractive alternative to reference counting for real-time storage management

Conclusions and Future Work - 122 - Seclion 4.11

and have shown that, given enough storage, our method will outperform: a reference count
system, without requiring the topological restrictions of that system.

Our real-time scheme is strikingly similar to the incremental garbage collector
proposed independently by Barbacci for a microcoded LISP machine [81 However, his
non-real-time proposal differs in the key points above. Our system will itself appear in
microcoded form in Greenblatt's LISP machine {41,1]. '

There is still some freedom in our algorithm which has not been explored. The order
in which the cells are traced is not important for the algorithm’s correctness or real-time
properties. The average properties of the algorithm when run on a virtual memory
machine need to be extensively investigated. " '

The space required by eur algorithnt may be excessive for some applications. Perhaps
a synthesis of ‘Bishop’s -area concept [16] with our‘me_thbd could reduce the memory
requirements of a list processing system while preserving the bourided-time properties of the
etementary operations. ' |

A garbage collection algorithm can be viewed as a means for converting a Von
Neumann-style random access memory (with “side-effects” [64]) into a list memory (without
“side-effects”). Perhaps a list memory can be implemented directly in hardware which uses

considerably less energy by taking advantage of the lack of side-effects in list operations [12].

Garbage Collecting Activities Incrementally - 123 - Section 5

b. Garbage Collecting Activities Incrementally

This chapterl

presents a method by which active objects like actors may be
incrementally garbage-collected. This method solves a problem which arises when multiple
activities are started in an actor system, and later it is determined that some of them are no
longer useful. Rather than allow them to continue wasting system resources, we would like
to identify and stop these activities which are no longer relevant to satisfying the current
goals of the system.

The best example of this problem occurs when an actor system is used to evaluate an
expression in "future” order, which is different from call-by-name, call-by-value, and
call-by-need. In future order evaluation, an object called a "future” is created to serve as the
value of each expression that is to be evaluated and a separate activity is dedicated to its
evaluation. Future order evaluation allows for more parallelism than even the paraliel
evaluation of arguments discussed in chapter 2, because an argument to a procedure
commences being evaluated before the body of the procedure. This argument evaluation
procceds in parailel with the evaluation of the body of the procedure until the procedure
finally requires it. As a result, several levels of a recursive procedure may be evaluated in
parallel, and many loops written as recursive procedures will be automatically "unrolled”
and the different incarnations of the loop body will be evaluated concurrently! Future order
evaluation raises a new problem which did not exist in systems with only call-by-name or
cali-by-value, namely that some futures which were created in the course of evaluation may
become irrelevant, i.e. an activity is started to evaluate a future because its result is needed,
but after further collateral computation, the activity is deemed unnecessary. - This
unnecessary activity should be stopped and garbage collected, so as to return its resources to

the system.

1. This chapter is based on the paper "The Incremental Garbage Collection of Processes”
by myself and Carl Hewitt [6].

Garbage Collecting Activities Incrementally - 124 - Section 5

The problem of irrelevant activities also appears i multiprocessing problem-solving
systems which start several processors working on the same problem but with different
methods, and return with the solution which finishes first. Thie parallel method strategy
also has the problem that the activities whlch are Investlgattng the losmg methods must be
identified, cleanly stopped and their resources re- asslgned to more useful tasks.

The solution we propose is that of mcremental garbage collectlon If the dependency
structure of the evaluation plan is exphcntly represented in memory as part of the graph
memory (like Lisp’s heap), a garbage collection algorithm can discover which activities are
A performing useful work, and which catn be recycled. o o

Call-by-future is implemented by an "eéger beaver” evaluator. When an expression of
the language is given to the evaluator by'the user, the evaluator evaluates it and all of its
subexpressions as soon as possible, and in paraliel. The evafuator does this by creating and
retummg for each subexpresston a future, which |s a promtse to dehver the value of that
subexpression at some later time, if it has a value Each future can evaluate its
subexpression independently and concurrently wnth other futures because it is created with
its own evaluator activity, whtch is dedlcated to evaluatmg that subexpress:on When the
value of a future is needed exphcntly, eg by the prtmltlve functton " the evaluatton of the
subexpression may or may not be complete. If it s complete, the futures value is
|mmed|ately available; if not, the requestmg acttvnty is forced to wait unttl the evaluation of
the subexpression is finished. ‘

Futures are created recursively in the evaluation of an expression by our eager
evaluator whenever it encounters functionial application. A new future is created for each
argument, resulting in the parallel (collateralr) evaluation of those arguments, while the main
activity tackles the job of evaluéting the '-functionﬂposition and applying it to the tuple of
argument futures. We call the main evaluator activity the parent, while the futures it
directly creates are its offspring.

More precisely, a future is a triple (activity, cell, waiting room), where activity is the
activity charged with evaluating an argument expression in its proper environment, cell is a

cell actor, private to the future, which will save the value of the argument when it is ready,

Garbage Collecting Activities Incrementally - 125 - Section b

to avoid recomputing it, and waiting room is a set of activity continuations which are
waiting for the value of this future.

When the future is created; its activity starts evaluating the subexpression in the given
environment. If any other activity needs the value of this future before it is ready, the
requesting activity puts its continuation in the waiting room of the future. When the value
promised by the future is ready, its activity stores that value into the future's cell, sends
wakeup messages to all of the activity continuations in the future’s waiting room, and goes
away. Henceforth, any activity needing this future's value can find it in the future's cell,
without waiting or performing any further computation.

Notice that eager evaluation is different from lazy evaluation [94,91,46,50,36] of the
expression in that the latter is designed to delay evaluation of the expression until the value
is needed while a future immediately dedicates an activity to evaluating the expression.
This difference is both a strength and a weakness of eager evaluation.

The main problem with our eager interpreter is that it can be wasteful, because it
anticipates which values are going to be required to compute the final result. For example,
an activity may be assigned to the computation of a future whose value will never be
needed; in this case, we say that the activity is irrelevant. However, since the a priori
determination of irrelevancy seems undecidable, all activities must proceed until irrelevancy
can be proven. If there were no way to determine irrelevancy a posteriori, these irrelevant
activities could tie up a significant amount of computing power. For example, if an activity
were assigned to evaluate a non-terminating expression, its computational power would be
lost to the system forever! We argue in the following sections that the "garbage collection™
of passive storage can be extended to the reclamation of these irrelevant active activities.
Furthermore, we show that this garbage collection can be done incrementally, thus

eliminating the long delays classically associated with garbage collection.

Garbage Collecting Irrelevant Futures - 126 - Section 5.1

6.1 Garbage Collecting Irrelevant Futures

A classical garbage collector for passive storage starts by marking the root of the heap
of passive storage nodes, and proceeds by propagating marks from: marked nodes to their
offspring, until there are no unmarked nodes with-a marked parent. Upon the completion
of this process, any nodes which are still unmarked are not accessible from the root; hence
they are declared garbage and returned to the list of available free nodes.

The key to garbage collecting activities is that an activity's continuation is addressable
as a vector of words in the common address space of all the processors, but: distinguished
with a special type code. This vector stores the: ahquaintaneerof .the continuation. We
claim that activities whese continuations become inaccessible from the root are irrelevant
and should be reclaimed. The top-level activity—-that-assigned to the top level future--is
always relevant since .the user expects- an answer, and therefore it is always directly
accessible from the root of the heap. Any offspring of this future whose values are still
required are accessible to it. Hence by induction, relevant activities remain accessible from
the root. If a future becomes inaccessible from the root, then ne other activity can access its
value--even when it is-finally ready--and hence the future and its activity are irrelevant.

In arder that all irrelevant activities be identified as soon as possible, we must ensure
that all activities classified as accessible are. truly relevant to- the computation. An example
of an activity which is accessible but irrelevant is:that of a loiterer, i.e. an activity whose
continuation is accessible only through the “"waiting-room”™ of some future. A loiterer is
waiting for the value of one er more futures, but the loiterer’s value is not needed by any
other activity. Loiterers cannot be immediately garbage collected because of the outstanding
waiting-room pointers to them. However, when the loiterer is eventually restarted and
forgotten by the waiting room, it will then become inaccessible fram the root of the heap
and will be picked up by the next garbage collection. Hence, waiting-room accessibility is a
second-class form of accessibility which will not protect a loiterer from eventually being

garbage coliected.

Garbage Collecting Irrelevant Futures - 127 - Section 5.1

If busy waiting is used, waiting rooms are not necessary, and thus there will be no
loiterers. However, busy waiting requires that a high price be paid for communication
channels between the waitor and the waitee, because the incessant queries clog these
channels.

Garbage collection is made incremental by using some of the ideas from the previous
chapter. The mark phase of our incremental garbage collector process ehwploys three colors
for every object--white, grey, and black. Intuitively, white nodes are not yet known to be
accessible, grey nodes are known to be accessible, but whose offspring have not yet been
checked, and black nodes are accessible, and have accessible offspring. Initially, all nodes
(including actors) are white. A white node is made grey by skading it; ie. making it "at
least grey” [31]. while a grey node is marked by shading its offspring and making the node
black--both indivisible processes. Marking is initiated by stopping all message transmission
and shading the root. Marking proceeds by finding a grey node, shading its offspring, then
making that node black. When there are no more grey nodes, garbage collection is done; all
still-white nodes are then emancipated and the colors white and black switch interpretations.

Althougﬁ all activity must be stopped when garbage collection is begun, an activity
can be restarted as soon as it has been blackened by the collector. Since the top-level activity
is pointed at directly by the root of the heap, it is restarted almost immediately. It should be
obvious that when an activity first becomes black, it cannot point directly at a white node.
We wish to preserve this assertion. Therefore, whenever a running black activity is about
to violate it--by accessing a white acquaintance--it immediately shades the white actor before
proceeding. Furthermore, every new actor the activity creates is created black. The
intuitive rationale behind these policies is that so far as any black activity is concerned, the
garbage collection has already finished. Furthermore, the actors which are found accessible by
the garbage collector are exactly those which were accessible at the time the garbage collection
was started.

We prove the correctness of this garbage collector informally. The garbage collector is
given a head start on all of the activities because they are stopped when it is started. When

an activity is restarted, it is black, and everything it sees is at least grey, hence it is in the

Garbage Collecting Irrelevant Futures - 128 - Section 5.1

collector’s wake. Whenever an activity attempts to catch up to the collector by accessing an
acquaintance, that actor is immediately shaded. Therefore, the activity tan never pass or
even catch the collector. Since the collector has already iraced any actor an activity may
have as an acquaintance, the activity cannot affect the connectivity of the graph that the
collector sees. Because white or grey activities are not allowed to run, any created actors
are black, and since actors darken monotonically, the number of wnite actors must
monotonically decrease, proving termination.

Our garbage collector has only one phase--the mark phase--because it uses the Cheney
algorithm which marks and copies in one operation. This algorithm copies accessible list
structures from an "old semispace™ into a "new semispace”. As each node is copied, a

“forwarding address” is left at its old address in the old semlspace ‘A "scan” pointer linearly
scans the new semispace, while updating the pomters of newly moved nodes by moving the
‘nodes they point to. The correspondence between our colorin’g scheme and this algorithm is
this: white actors aré those which reside in the old semlspace, grey actors are those whlch
have been copied to. the new semlspace but whose acquamtances have not been moved to
the new semnpace (ie. have not yet been encountered by the scan pointer in the Cheney
algorithm); and black actors are those which have been both moved and updated (ie.-are
behind the scan pointer). When scanning is doné (i.e. there are no more grey actors and all
accessible actors have been copled) the old and new semlspaces ‘then mterchange roles.
Reallocating processors is simple; all processors are withdrawn at the start of garbage
collection, and are allocated to each activity as it is blackened. Thus. when the garbage
collection has finished, all and only relevant (=accessible) activities have been restarted.

The restriction that white or grey activities cannot run can be relaxed to allow white
activities to run so long as a white activity does not cause a black actor to point to a white one.
This can only happen if the white activity is trying to perfo'rm a side-effect (eg. a "store!”
operation) on a black actor. If operations of this type are suspended until either the acuvuty'
either becomes black or is garbage-collected then proper garbagc collector operation can be
ensured, and convergence guaranteed. Under these conditions, a activity creates new actors

of its own color, i.e. white activities create only white actors. When a white activity is

Garbage Collecting Irrelevant Futures - 129 - Section 5.1

encountered by the garbage collector, it must stop and allow itself to'be colored black before
continuing.

The notion that actors must be marked as well as storage may explain some of the
trouble that Dijkstra and Lamport had when trying to prove their parallel garbage
collection algorithm correct [31,32,58,59]. Since their algorithm does not mark a user process
by coloring it black (thereby prohibiting it from directly touching white nodes), and allows
these white processes to run, the proof that the algorithm collects only and all garbage is

long and very subtle (see [59]).
5.2 Coroutines and Generators

One problem with our "eager beaver” evaluator is that some expressions which have
no finite values will continue to be evaluated without mercy. Consider, for example, the
infinite sequence of squares of integers 0,,49,.. We give in Figure 19 a set of LISP-like
functions for computing such a list.

The evaluation of “(squares-beginning-with 0)" will start off a future evaluating
"(cons ..)", which will start up another future evaluating "(squares-beginning-with I)", and so

forth. Since this computation will ot terminate, we might worry whether anything useful

Fig. 19. An Infinite Sequence of Squares

squares-begining-with =
(Ax. (cons (= x x) (squares-begining-with (+ x 1)))) ; Compute an element.

cons = (AX y. ; Define CONS function.
(Amsg.
(if (= msg 'car) x
(= msg 'cdr) y)))
car = (Ax. (x 'car)) ; Ask for first component.

cdr = (Ax. (X ’cdr)) ; Ask for second component.

list-of-squares = (squares-beginning-with 0) ; Start the recursion.

Coroutines and Generators - 130 - Section 5.2

will ever get done. One way to ensure that this computation will not clog the system is to
convert it into a "lazy” computation [94,91,46,36] by only allowing it to proceed past a point
in: the infinite list when someone forces it to go that far. This can be easily done by
performing a lambda abstraction on the expression whose evaluation is to be delayed. (See
Figure 20). Since our evaluator will not try to further evaluate a A-expression, this will
protect its body from evaluation by our eager beavers.

However, this technique is not really necessary if we use an exponential scheduler for
the proportion of effort assigned to each activity. This scheduter opefates recursively by
assigning 1007 of the system effort to the top-level future, and whenever this future spawns
new futures, it allocates only 50% of its allowed effc)rt to its offspring. While an activity is in
the waiting room of a future, it lends it processing effort to the computation of that future.
However, a future which finishes returns its effort to helping the system--not its siblings.
Now the 'set of futures can be ordered according to who created whom and this ordering
forms a tree. As a resdlt of our exponential scheduling, the further down in this tree a
future is from’thé top-level future, the lower its share of i,hc computational resources.
T herefore, as our eager beavers produ;e more squares, they become. exponentially more
discouraged. But if other activities gnter the waiting room for the square of a large

number, they lend their encouragement to its computation.

Fig. 20. A Lazy Sequence of Squares

squares-begining-with' =
(Ax. (cons (= X x)
(Amsg. ((squares-begining-with’ (+ x 1)) msg)))) ; Protect from early evaluation.

Coroutines and Generators - 131 - Section 5.2

Cali-by-future evaluation provides for the maximal concurrency possible in evaluating
the expressions of a language. It can provide more parallelism than current data flow
machines [28,4] or "eventual values” [53]. For example consider the following program

which computes the square root of the sum of the squares of its arguments:

f = (Ax y. (square-root (+ (x x x) (x y y)))

Note that in computing the value of an expression such as the following
(k 3 (f (h 3) (g 4))) that the square of (h 3) can be performed in parallel with the square of
(g 4). In addition the square root of the sum of these values mighti be performed after the
function k has been entered! Thus there is a great deal of potential concurrency in the
evaluation of the above expression.

In an evaluator which uses call-by-future for CONS, the obvious program for
MAPCAR (the LISP analog of APL's parallel application of a function to a vector of
arguments) will automatically do all of the function applications in parallel in a "pipe-lined”
fashion. However, with an exponential scheduler the values earlier in the list will be
accorded more effort than the later anes.

This scheduler is not omniscient, though, and system effort willv still have to be
reallocated by the garbage collector as it discovers irrelevant activities and returns their

computing power to help with still relevant tasks.
5.3 Time and Space

"Lazy" evaluation [94,46,36] is an optimal strategy [91,13] for evaluating A-calculus
expressions on a single processor, in the sense that the minimum number of reductions
(procedure calls) are made. However, when more than one processor is available to evaluate
the expression, it is not clear what strategy would be optimal. If nothing is known about
the particular expression being evaluated, we conjecture that any reasonable strategy must

allocate one processor to lazy evaluation, with the other processors performing eager

Time and Space -132 - : Section 5.3

evaluation. We believe that our “eager beaver” evaluator implements this policy, and unless
the processors interfere with one another excessively, a computation must always run faster
Wwith an eager evaluator running on multiple processors than a fazy evaluator running on a
single processor. If there are not enough-processors to allocate one for every future, then we
believe that our "exponential scheduling” policy will do a good job of dynamically allocating
processor effort where it is most needed. '
Although the universal creation of futures should reduce the time necessary to
evaluate an expression, we must consider how the space requirements of this method
compare with other methods. The space requirements of futures are hard to calculate
because under certain schedules, future order evahsation approximates cafl-by-value, while
with other schedules, it is equivalent to- call-by-need. (the same as call-by-value, but an
argument is evaluated only once). In the worst case, the space requirements of futures can
be arbitrarily bad, depending upon the relative - speed ‘of the processors assigned to

non-terminating futures.
5.4 The Power of Futures

The intuitive semantics associated with a future is that it ruﬁs aiynéhfdnously witﬁ its
pareit's evaluation. This effect ¢an be achieved by enther assngmng a different processor to
each future, or by multiplexing all of the futures on a few pr&ées#ors Gwen one such
implementation, the language can easily be extended [65) with a construct havmg the
following form: "(EITHER <gp <eo> ... <g;>)" means evaluate. the expressions ‘<e;> in
parallcl and return the value of "the first one that finishes”. Ward i.[95] shows how to give a
Scott-type lattice semantics for a generalization of this construct. .- He starts with a power-$et
of the base domain and gives it the usual subset ‘fattice strecture, then extends eéch
primitive function to operate on sets of elements from the base domain in the obvious way,
and finally defines the result of his construct to be the least upper dound (LU B) of all the
<e;> in the subset lattice. OQur EITHER construct is .appmximatedz by spawning futures
for all the <e;> and polling them with the parent activities until the first one finishes. At

The Power of Futures ‘ - 133 - Section 5.4

that point, its answer is returned as the value of the "EITHER" expression, and the other
futures become inaccessible from the root of the heap.

In Figure 21 we give several examples of the power of the "EITHER" construct:

The first example is that of a numeric product routine whose value is zero if either of
its arguments are zero, even if the non-zero argument is undefined. The second example is
an integration routine for use in a symbolic manipulation language like Macsyma, where
there is a relatively fast heuristic integration routine which looks for common special cases,
and a general but slow decision procedure called the Risch algorithm. Since the values of
both methods are guaranteed to be the same (assuming that they perform integration
properly), we need not worry about the possibility of non-determinacy of the value of this
expression (i.e. non-singleton subsets of the base domain in Ward’s lattice model).

One may ask what the power of such an "EITHER" construct is; i.e. does it increase
the expressive power of the language in which it is embedded? A partial answer to this
question has been given with respect to "uninterpreted” schemata. Uninterpreted schemata
answer questions about the expressive power of programming language constructs which
are implicit in the language, rather than being simulated. For example, one can compare
the power of recursion versus iteration in a context where stacks cannot be simulated.
Hewitt and Paterson [48] have shown that uninterpreted "parallel” schemata are strictly

more powerful than recursive schemata. The essence of this difference is that parallel

Fig. 2I. Examples of the EITHER Construct

(multiply x y) = (EITHER (if x=0 then 0 else (loop))
(if y=0 then 0 else (loop))
(= x y))

(integrate exp bound-variable) =
(EITHER (fast-heuristic-integrate exp bound-variable)
(Risch-integrate exp bound-variable))

2. This implementation is only an approximation because only singleton sets of elements of
the base domain can ever be returned.

The Power of Futures - 134 - Section 5.4

schemata can simulate non-deterministic computation without becoming side-tracked in
some infinite branch of the computation. This simulation is'pdssibie because the paraliel
schema can follow all of the non-deterministic branches in "p'a:ftallel.\ *

Also, Ward [95] has shown that the “EITHER" construct strictly increases the power of
the A-calculus [21,26] in the sense that there exist functions over the base domain which are

inexpressible without "EITHER", but are trivially eitpieSsib!e with it
5.6 Shared Data Bases

The adv\amage' that garbage collection has over the explicit killing of activities
becomes. appanient when> paraliel activities have access to a shared data base. These data
bases are usually pretected from inconsistency (due to simultaneous __update) by a mutual
exclusion »methqd. However, if sqfne activity‘ vvve_re/ u;i be. killedrw__’hjle it was inside such a
data base, ’the data base WOuld remain locked, and hence unres@sive to the o_.therbactivit_ies
requemng access. _ L o ,

The solutnon we propose is for the data base to always keep a lnst of pointers to the
activities Whlch it has currently mslde In this way, an otherw:se melevant activity will be
accesslble 50 long as it is mslde an accesslble data base However, the moment it emerges, it
will be forgotten by the data base, and subject to reclamatlon by garbage collecnon The
crowds component of a Jenahzer a synchronu.atmn construct designed. to manage paraliel

access to a shared data base [51], automatically performs such bookkeeping.
5.6 Conclusions

We have presented a method for managing the allocation of processors as well as
storage to the subcomputations of a computation in a way that tries to minimize the elapsed
time required. This is done by anticipating which subcomputations will be needed and
starting them running in parallel, before the results they compute are needed. Because of
this anticipation, subcomputations may be started whose results are not needed, and our

incremental garbage collection method identifies and revokes these allocations of storage

Conclusions - 135 - ' Section 5.6

and pl'UCF.'SSiI'Ig power.

Some of the early thinking about call-by-future was done several years'ago by J.
Rumbaugh who was one of the first to realize that futures offer a maximum of concurrency
in the execution of a program without introducing the usual pitfalls of timing errors,
starvation, and deadlock. Unfortunately he did not have time to include this material in his
thesis [75). Peter Hibbard [53] has independently discovered these virtues of futures. The
main original contributions of this chapter are our proposal for an exponential scheduler
for "eager” evaluation and the methodology for using incremental garbage collection to
reclaim irrelevant activities and redirect the scheduling priorities of' activities working to
produce the values of futures. Concepts similar to that of "futures” have been
independently proposed by Friedman and Wise [37) and implemented by Hibbard (5313
Henry Lieberman, working on implementations of actor language PLASMA [50], has
actually implemented several of the suggestions of this chapter.

The scheme presented here assumes that all of the processors reside in a common,
global address space, like that of HYDRA (98] Since networks of local address spaces look

promising for the future, methods for garbage collecting those systems need to be developed.

2. However, since Algol-68 does not support "returned functional values”, A scheme in the
language need not use garbage collection to discover irrelevant "eventuals”. They can be
coerced into values before being returned as the value of a procedure, and hence processor
allocation can use a LIFO scheme like that used for storage of the activation records on the
stack. However a certain amount of concurrency can be lost by enforcing this coercion.

Conclusions and Further Research - 136 - Séction 6

6. Conclusions and Further Research

This thesis has been concerned with a precise specification of the Actor theory and
with possible mechanisms for mapping a system having Actors as primitive objects onto
current hardware. |

The Actor theory does not try to accurately describe every detail of a distributed
system, because in creating a model for some phenomenon, one must choose which of its
features to emphasize and which to suppress. The actor model ignores the sending of
messages and concentrates instead on their receipt, because the receipt of messages is more
interesting due to the non-determinacy involved. Our model also ignores unreliabilities in
the network by assuming that every message is eventually received, because we believe that
the issue of transmission errors is separable from our current concerns. The actor model of
computation as a simple partial order ignores the issue of "real time”, i.e. time which can be
measured, and coricentrates only on the orderings of events. However, in this thesis we are
implicitly assuming that the receipt of a message by an actor requires only a bounded
amount of computation. Hence, each event should require only a brief instant of real time
to complete. Finally, issues of representation have been neglected in favor of issues of
behavior; eg. a particular concrete representation for actors and messages has not been
presented.

However, no matter what representations are chosen for the implementation of an
actor system, certain problems in the management of system resources will arise. In chapters
3 and 4 we argue that such an implementation will req'uire a garbage-collected heap for
storage management and that for real-time performance an incremental method of garbage
collection will be necessary. Such a method is presented together with. an exhaustive
comparison of it with other alternatives.

In chapter 5, we argue that in a distributed parallel processing system the resources of
the CPU's can be squandered exploring avenues of computation that have ceased to be of
relevance to satisfying the main goals of the system. ‘We advocate a garbage collection

approach to this problem in which the garbage collector discovers and stops these irrelevant

Conclusions and Further Research - 137 - Section 6

lines of computation. As the number of CPU’s in parallel systems continues to rise,
programmers will want to use more of this computational power for such speculative
computation, and the need for our garbage collection methods will grow.

Looking into the future, a major problem to be overcome in the management of the
resources of a distributed system is the garbage collection of objects in separate address
spaces. Before this problem can be solved, however, the issues of object naming in a
distributed system must first be resolved. In systems where names have global significance,
Bishop’s area concept [I16] may be appropriate,.in which case his algorithms for garbage
collection are of interest. Reed’s proposal for object-families {72] may also provide a proper
model for naming in distributed systems.

Now that we have provided a firm foundation for the implementation of real-time
actor systems by showing how the basic events (message receipts) can be performed in a
bounded amount of time, research into good scheduling strategies for such systems should
follow. Also, techniques will be needed for deriving and proving time bounds for complex

activities requiring many hundreds of events.

References - 138 -

References ' /

o

10.

1L

12.

13.

Aho, A. V., Hopcroft, J. E, and Ullman, J. D. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass,, 1974.

Arnborg, S. "Storage Administration in a Virtual Memory SIMULA System”. BIT 12
(1972), 125-141. ' '

Arnborg., S. "Optimal Memory Management in a System with Garbage Collection™.
BIT 14 (1974), 375-28L.

Arvind and Gostelow, K. "Some Relationships between Asynchronous Interpreters of a
Dataflow Language” IFIP Working Conference on Formal Description of Programming
Concepts. 31 July to 5 August, 1977.

Baker, H. G, Jr. "List Pxocessmg in-Real Tlme ‘on a Serial Computer™. Al Working
Paper 139, MIT Al Lab.; Feb. 1977, also to appear in CACM.

Baker, H. G. Jr, and Hewntt C. "The lncremental Garbage Collection of Processes”.
AGM SIGART-SIGPLAN Symposium, Roch, N.Y., Aug t9‘n

Banks, E. R. "Information Processing and Transmnssnon in Cellular Automata”. TR-8i,
MIT Project MAC, Jan. 1971

Barbacci, M. "A LISP Processor for Cai". Memo CMU-CS-71-103, Computer Science
Dept., Carnegie-Mellon University, 1971.

Barnes, G. H, et al. "The ILLIAC 1V Computer”. [EEE Transactions, C17,8 (Aug. 1968).

Batcher, K. E. "Sorting Networks and their Applications”. 1968 SJCC, April 1968,
307-314.

Bawden, A, Greenblatt, R, Holloway, J., Knight, T., Moon, D., Weinreb, D. "LISP
Machine Progress Report”. Memo 444, MIT Al Lab,, Aug. 1977. :

Bennett, C. H. "Logical Reversibility of Computation™. /BM J. Res. Develop. 17 (1973),
525. ‘

Berry, Gerard and Levy, Jean-Jacques. “Minimal and Optimal Computations of
Recursive Programs™. Record of 1977 Conference on Principles of Programming
Languages, Jan. 1977, 215-226.

References - 139 -

4. Berzins, Valdis. "An Independence Result for Actor Laws". Computation Structures
Note 34, MIT Lab. for Comp. Sci., Dec. 1977.

i5. Birtwistle, G. M., Dahl, O.-]., Myhrhaug, B, and Nygaard K. Simula Begin. Auerbach,
Phil, Pa, 1973.

16. Bishop, P. B. "Computer Systems with a Very Large Address Space and Garbage
Collection”. Ph.D. Thesis, M.1.T. Department of Electrical Engineering and Computer
Science. Also TR-178, MIT LCS, May 1977.

17. Bobrow, D. G. and Wegbreit, B. “A Model and Stack Implementation of Multiple
Environments”. CACM 16,10 (Oct. 1973), 591-603.

8. Bobrow, D. G. "A Note on Hash Linking". CACM 187 (July 1975),413-415.

19. Campbell, J. A. "Optimal Use of Storage in a Simple Model of Garbage Collection”.
Info. Proc. Letters 3, No. 2, Nov., 1974, 37-38. .

20. Cheney, C. J. "A Nonrecursive List Compacting Algorithm™. CACM 13l (Nov. 1970),
677-678. ‘

2l. Chwrch, A, "The Calculi of Lambda COﬂVGl’SlOﬂ Annals of Mathematics Studies,
Princeton University Press, 1941 . :

22. Clark, D. W. and Green, C. €. "An Empirical Study of List Structure in Lisp". CACM
20,2 (Feb. 1977), 78-87. _

23. Clinger, W. Unpublished 6.835 class notes, MIT EECS Dept., Dec. 1977.

24. Coffman, E. G. Jr. (ed) Computer and Job-Shop Scheduling Theory. Wiley and Sons,
New York, 1976.

25. Collins, G. E. "A Method for Overlapping and Erasure of Lists". CACM 3,12 (Dec.
1960), 655-657. ' ‘

26. Curry, H. B, and Feys, R. Combinatory Logic, Amsterdam, 1958.

27. Dahl, O.-}. and Nygaard, K. "SIMULA--an ALGOL-Based Simulation Language”.
CACM 99 (Sept. 1966), 671-678.

28. Dennis, J. and Misunas, D. P. "A Preliminary- Architecture for a Basic Data-Flow
Processor. In 2nd IEEE Symposium on Computer Architecture, N.Y. Jan. 1975, 126-132.

References - 140 -

29. Deutsch, L. P. "A LISP Machine with Very Compact Programs™. 1JCAI 3, Stanford,

Ca,, Aug. 1973

30. Deutsch, L. P. and Bobrow, D. G. "An Efficiem;"lnCrémental, Automatic Garbage

3L

32.

33.

34

35.

37.

Collector™. CACM 19,9 (Sept. 1976), 522-526.

Dijkstra, E. W., Lamport, L., Martin, A. J., Scholten, C. S., Steffens, E. F. M. "On-the-fly
Garbage Collection: An Exercise in Coupmtlon E. W DUkstra note EWD496 June
1975.

Dijkstra, E. W. "After Many a Sobering Experience®. E. W. Dijkstra note EWD500.

Erman, L. D. and Lesser, V. R. "A Muli-level Organization for. Prablem Solving using
Many, Diverse, Cooperating Sources of Knowledge®. ‘IJCAI-75, Sept. 1975, 483-490.

Fenichel, R. R., and Yochelson, J. C. "A LISP' Carbgg&ColkCtor for Vmual Memory
Computer Systems”. CACM 121l (Nov. 1969), 611-612. "~~~

Fischer, M. J.© "Lambda Calculus Schemata®. Proceedings of ACM Conference on
Proving Assertions about Programs. SIGPLAN Notices Jan. 1972.

. Friedman, D. P. and Wise, D. S. "CONS shotild not evamate its arguments In S.

Michaelson and R. Milner (eds), Automata, Languages and Programming, Edinburgh
University Press, Edmburgh (1976) 257-281

Friedman, D. P. and Wise, D. §S. "The Impact of Apphcanve Programmmg on
Multiprocessing™. 1976 Int. Conf. on Parallel Processing, 263-272. Also /EEE Trans. on
Comps., to appear: IR R SR o ’

38. Gardner, M. (ed) "Mathematical Games". ‘Scientific American, New Yofk, Oct. 1970.

39.

40.

4l

42,

Goldberg, A. and Kay, A. (eds.) SMALLTALK-72 Imtruction Manual SSL 76-6, Xerox
PARC, Palo Alto, Ca., March 1976. ' :

Goto, E. and Kanada, Y. "Hashing lemmas on time comglexny wnth apphcatlons to
formula manipulation.” -SYMSAC 76 {ACM), New’ York: :

Greenblatt, R. "The LISP-Machine”. Al Working Paper 79, M.LT. AL Lab,, Nov. 1974.

Greenblatt, R. Private communication, Feb. 1977.

References - 141 -

43,

44

45.

16.

47.

18.

19.

o
>

54,

Greif, 1. "Semantics of Communicating Parallel Processes, PhD Thesis, TR-154, MIT
Project MAC, Sept. 1975.

Greif, 1. and Hewitt, C. "Actor Semantics of PLANNER-73", ACM SIGPLAN-SIGACT
Conf., Palo Alto, Ca,, Jan. 1975.

Halstead, Robert H. Jr. "Multiprocessor Implementations of Message-Passing Systems”.
S.M. Thesis, MIT, Feb. 1978.

Henderson, P. and Morris J. H. "A Lazy Evaluator” In Proceedings of 3rd ACM
Symposium on Principles of Programming Languages. (1976), 95-103.

Hennie, F. C. lterative Arrays of Logical Circuits. MIT Press, Camb., Ma,, 1961.

Hewitt, C. and Paterson, M. “Comparative Schematology”. Record of Project MAC
Conference on Concurrent Systems and Parallel Computation, June 1970.

Hewitt, Carl, et al. "Behavioral Semantics of Non-recursive Control Structures”. Proc.
Colloque sur la Programmation. Lecture Notes in Computer Science No. 19.
Springer-Verlag, 1974.

0. Hewitt, C. "Viewing Control Structures as Patterns of Passing Messages” WP 92, MIT

Al Lab., Dec. 1975. Accepted for publication in the Al Journal.

. Hewitt, C. and Atkinson, R. [Parallelism and Synchronization in Actor Systems.

Record of 1977 Conference on Principles of Programming Languages, Jan. 17-19, 1977,
L.A., Cal, 267-280.

. Hewitt, C. and Baker, H. "Actors and Continuous Functionals”. Memo 436A, MIT Al

Lab, July 1977.

. Hibbard, P. "Parallel Processing Facilities". in New Directions in Algorithmic

Languages, (ed.) Stephen A. Schuman, IRIA, 1976, 1-7.

Hoare, C. A. R. "Monitors: An Operating System Structuring Concept”. Stanford
University, 1973.

. Hoare, C. A. R. "Optimization of Store Size for Garbage Collection”. Info. Proc. Letters

2 (1974), 165-166.

- Holt, A, et al. Final Report of the Information System T heory Project, TR-68-305, RADC,

Griffis AFB, N.Y,, Sept. 1968.

References - 142 -

57.

58.

61

62.

63.

64.

65.

66.

67.

68.

69.

70.

Knuth, D. E. The Art of Computer Programming, Vol. I, Fundamental Algorithms.
Addison-Wesley, Reading, Mass. 1968.

Lamport, L. "Garbage Collection with Multiple Pracesses: An Exercise in Parallelism”.
Mass. Computer Associates, CA-7602-2511, Feb. 1976.

. Lamport, L. "On-the-fly Garbage Collection: Once More with Rngor Mass. Computer

Associates, CA-7508-1611, Aug. 1975.

. Landin, Peter ‘j. "A Correspondence between ALGOL 60 and Churchls

Lambda-Notation™. CACM 82-3 (Feb. and March 1965).

Liskov, B, Snyder, A, Atkinson, R, and Schaffert, C. “Abstraction Mechanisms in
CLU". CACM 208 (Aug. 1977), 564-576. -

Liskov, B. Private communication, Feb. 1978.

Liu, C. L. and Lagland, J. W. "Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment”™. JACM 201 (973), 16-61.

McCarthy, John, et al. LISP 1.5 Programmers Manual. MIT Press, Cambrldge Mass,
1965. ,

McCarthy, J. "A Basis of the Mathematical Theory of Compﬁtation" In P. Braffort and
D. Hirschberg (eds.) Programrmng Systems and Lamguages. McGraw-Hill, New
York(1967), 455-480. :

Minsky, M. L. "A LISP Garbage Collector Algomhm Usmg Serial Secondary Storage”.
A.l. Memo 58, M.1.T. Al Lab., Oct 1963.. :

Moon, David A. MACLISP Reference Manual. Project MAC, MIT Cambridge, Mass.,
December 1975.

Muller, K. G. "On the Feasibility of Concurrent Gafbage Collection”. Ph.D. Thesis,
Technische Hogeschool Delft, The Netherlands, March 1976, (In-English).

Newell, A, et al. Information Processing Language V Manual. Second edition,
Prentice-Hall, Englewood Cliffs, N_J., 1964. ‘

Plotkin, G. D. "A Powerdomain Construction”. SIAM J. Comput. 53 (Sept. 1976),
452-487. : o -

References - 143 -

71

4.

76.

77.

78.

8l

82.

84.

Pratt, V. R. "The Competence/Performance Dichotomy in Programming”. Memo 400,
MIT Al Lab,, Jan. 1977

. Reed, D. P. "Naming of Objects in a Distributed Autonomous Computer System”. PhD

thesis proposal, MIT EECS Dept., July 1977.

. Reynolds, John C. “Definitional Interpreters for Higher Order Programming

Languages”. ACM Conference Proceedings 1972.

Rivest, R. and Pratt, V. "The Mutual Exclusion Problem for Unreliable Processes”.
17th IEEE Symp. on the Founds. of Comp. Sci., Oct. 1976, 1-8.

. Rumbaugh,]J. E. "A Parallel Asynchronous Computer Architecture for Data Flow

Programs” Ph.D. dissertation, M.1.T. May 1975, MAC TR-I50.

Sassa, M. and Goto, E. "A hashing method for fast set operations.” Information
Processing Letters b, 1976, 31-34.

Schonhage, A. "Real-Time Simulation of Muiltidimensional Turing Machines by
Storage Modification Machines”. MAC TM-37, Project MAC, M.L.T., Dec. 1973.

Scott, D. "Outline of a Mathematical Theory of Computation”. 4th Princeton Conf. on
Inf. Sci. and Sys., 1970, 169-176.

- Scott, D. "Data Types as Lattices,. SIAM J. Comput. 53 (Sept. 1976), 522-587.

D. Steele, G. L. Jr. "Multiprocessing Compactifying Garbage Collection”. CACM 18, 9

(Sept. 1975), 495-508.

Steele, G. L. Jr., and Sussman, G. J. "LAMBDA: The Ultimate Imperative”. Memo 353,
MIT Al Lab., March, 1976.

. Steele, G. L. Jr. "LAMBDA: The Ultimate Declarative”. Memo 379, MIT Al Lab., Nov.

1976.
Steele, G. L. Jr. Private communication, March 1977.
Steele, G. L. Jr. "Debunking the 'Expensive Procedure Call’ Myth or, Procedure Call

Implementations Considered Harmful or, Lambda: the Ultimate GOTO". Memo 443,
MIT Al Lab,, Oct. 1977.

References - 44 -

85.

86.

87.

88.

89.

Steiger, R. J. "Actor Machine Architecture”. S.M. Thesis, E.E. Dept,, MIT, May 1974.

Strachey, C., and Wadsworth, C. P. "Continuations: A 'Mathematical Semantics for
Handling Full Jumps™. Tech. Monograph PRG-I, Oxford U. Computing Lab., Jan.
1974. e ' S

Suilivan, H. and Bashkow T. R. "A Large Scale, Homogeneous, Fully Distributed
Parallel Machine™. Proc. of Fourth-Annual Symposium on Computer Architecture.
March 1977, 105-117.

Teitelman, W. et. al. INTERLISP Reference Manual. Xerox PARC, Palo Alto, Cal,
1974 : '
Tessler, G. and Enea H. J. "A Language Design for Concutrent Processes”. In Proc.

91.

92.

93.

94.

95,

96.

97.

1968 $JCC.

. Ullman, J. D. "Polynomial Complete Scheduling Problems". Proc. 4th Symp. on Oper.

Sys. Princ,, Oct. 1973.

Vuillemin, Jean. “"Correct and Optimal51mplé"rhe’ntaiﬁéﬁ$'of"ket‘ursioﬁ in a Simple
Program’ming Language™. JCSS 9 (1974), 332-354.

Vuillemin, Jean. "A Data Structure for Manipulating Priority Queues”. TR 182, Dept.v
d'Informatique, U. de Paris-Sud lSHOS-ORSAY, France, March 1976.

Wadler, P. L. "Analysis of an Algonthm for Real-Tlme Garbage Collecnon CACM 19,
9-(Sept. 1976), 491-500.

Wadsworth, C. "Semantics and Pragmancs of the Lambda- Calculus Ph.D. dissertation,
Oxford(1971).

Ward, S. A. "Functional Domains of Apphcatlve Languages". MAC TR-i36, Project
MAC, MIT, Sept. 1974.

Ward, S. A. and Halstead, R. "A Syntactic Theory of Message-Passing”. in progress,
MIT LCS.

Weizenbaum, J. "Symmetric List Processor™ CACM 69 (Sept. 1963), 524-544.

. Wulf, W_ et al. "HYDRA: The Kernel of a Multiprocessor Operating System™. CACM

17,6 (June 1974), 337-345.

Biographical Note - 145 -

Biographical Note

Henry Givens Baker, Jr. was born in Hutchinson, Kansas on June 8, 1947. He
graduated in 1965 from Wainut Hills H.S. in Cincinnati, Ohio, and got his baccalaureate in
Electrical Engineering from the Massachusetts Institute of Technology in June, 1969.

Mr. Baker then received a commission in the Public Health Service and was stationed
at the Northeaster Radiological Health Laboratory in Winchester, Massachusetts. In
February of 1970, he assumed a fuil time position as operations research. consuitant and
systems designer for the Palm Beach Company of Cincinnati, Ohio, for which he had done
prior consulting.

In September of 1971, Mr. Baker began graduate work in Computer Science at M.L.T.
- and received his S.M. and E.E. degrees in June, 1973 with a thesis entitled "Equivalence
Problems of Petri Nets". After a one year hiatus as Instructor of Computer Science and
Engineering at the University of ‘Pennsylvania, he resumed his graduate studies at M.L.T.
and received his Ph.D. degree in June, 1978, with'a minor in pure mathematics.

Dr. Baker is a member of Tau Beta Pi, Eta Kappa Nu, Sigma Xi, and the Association
of Computing Machinery. His interests include running, folk dancing, bicycling, personal
computers and chess. ' |
Dr. Baker will now join the faculty of the University of Rochester as Assistant

Professor in Computer Science.

L ¢

