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Abstmt
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1. Introduction

11 Motivation

In the devétopmént of our understanding of compflex :pbenbmem,the most powerfﬁl
tool available to enhance our comprehension s abstraction. - Abstrictien ‘arises from - the
recognition of similarities between certain objects or processes, and the decision to concentrate
on these com’spoham&s and to ignore, for the present, their Airm {Hoare 72b). In
focusing on similarities, one tends to regard them as mmmlmdmmte. and to'view
the differences as trivial. |

One of the earliest recognized and most useful aids ta abstraction -h@mgrﬁn*nlng is
the self -contained subroutine or procedure. Protedures appeared as early as 1945 in Zuse's
programming language, Plancakulus [Knuth 76)." Besides, early developers of programming
- languages recognized the utility of the eom:ept of 'a proceditre. Curry, in 1950, described the
advantages of including procedures in the programing lmg\lﬁges bl!lﬂg developed at that
time by pointing out that the decomposition mechanism provided by a procedure would aflow
keener insight into a problem bj*éermitﬁhg consideration of ‘its separate, distinct parts
[Curry 50). | ’

 The existence of procedures goes quite’ far' toward ctpturing the meaning of
abstraction [Liskov and Zilles 74]. At the point of its invocation, a procedure may 'be treated
as a "black box", that performs a specific function by means of an unprescribed aigorithm.
Thus, at the level of. its hﬁocatim,"a procedure separites ‘thie refevant detail of what it
accomplishes f.rom'the ir’refevdﬁt detail of how it is implemented. Furthermore, at the level

of its implementition, a procedure facilitates understanding of how it accomptishes its task
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by freeing the programmer from considering why it is invoked.

However, procedures alone do not provide a sufficiently rich vocabulary of
abstractions [Liskov and Zilles 75]. Procedures, while well suited to the descrlpnon of N
abstract processes or events, do notacmmm the description of abatract ob jects. To
alleviate this problem, the concept of a data abstraction was mmmm This comprises a__
group of related functions or operations which act upon a particiar class of objects with the
constraint that objects in this class can only be observed or modified h}theugpmnond s
related p’perations [Liskav and. Zﬂles'lS)

A typical example of a data abstractlnn is an integer push dewn stack. Here, the
class of objects consists of all possible stacks and the mm of W Wlm includes
the usual stack operations, like push and pop, an aperation to. create new stacks, and an
operation, lop, to return the integer on top-of .tfhe‘gta.ck, : ‘

. Thzsaofopermonsaswcmcdm:danmmmﬁgmﬂm |
operations to create objects of the data abstraction, eperations to :mdlty b jects of thg dats
 abstraction and operations to obiain information about the siouctuse or gnmmts of OPPC“ of
the data abstraction. The first two categories of operations, which. include push and pop, are
the constructors of the data ab.straction. Operations in the last category are inquiry
op‘eravttons as they provide information about the data abstraction. 7op belongs to this

category. |

Constructors can be f qr;her classified into two dif fgr.cgsz groups; information adding
operations and information .tmui,ug operations. Information adding epetatiom phce new
- information in the data abstraction. For example, push is. anmfcrmauon adding oéeration

for integer push down stack. Its complement, pop, is an informtton removing operation.
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This type of operation removes information from 'aﬁ"bbjed*of ‘the data abstndlen and -
results in a new ob ject of the data abstraction whose iw@mMmm is a subset of the |
information content of the original ob ject [Kapur:78). | 7

A data"k“abstracti.onv ‘provides the same aids tcabstrm aasi’tél;octdurel and iMo
one to separate the implementition detafs of a data abstraction from its behavior. The
behavior of a data abstraction can be decribed by i'specification. A specification of a data
abstraction specifies the names and dcfmes the abstract meanlng of the assoclated operatlom
of the data abstraction. It describes what the data abstraction does but not how it is done.

on. - M?implemam tion of a data
abstraction ‘describes the representation of objects  of -‘the - data abstraction und “the

This latter task is accompiis’hed by an im

implementation of the operations that act ‘upon these objécts. Though these: different
attributes of speciﬂc&tbn ‘and implementation are, in pnma, hlgMy interdependent, ‘they
represent- logica"y indepmdtnt ‘concepts [Guttag 75).
| - The main concern of this them is the specifination of data abstractions. -
Specification is important because it describes the abmm%m‘-\_vhkk has been conoeived
in' someone’s mind. - It can be used as a communication medium among designers and
lmplementors‘ to insure that an implementor und«mndsth!dum inmiemmm
data abstraction he is coding [Liskov and Zilles 75).

| Moreover, if a formal specification techmque. one wlth an explicltly and precisely
defined syntax and semantics, is used, even further bquﬁa ‘can be derived. Formal
specifications can be studied mathemancally 5o that quemom, wch as the equivabnce of two
different specifications, may be posed and rigorously answered. Also, formal. speclf ications

can serve as the basis for proofs of correctness of programs. If a programming language’s
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semantics are deﬁne_r} formnm (Miine and Strachey MW of a program wnmn in
this lengusge car be formally proved. Thccmm of the program can then be proved
by establishing the equivalence of these properties and the specification., Finally, formal
specifications can. be meaningfully pmeemd by » compuser. [Liskov and Ziftes 73, (Liskov
and Berzins 77). Since this processing can be mm,ﬁm of isvplamentation, it can

1.2 Parnas’s Approach to Bpniﬂutlon

The information containied in the specification of 4 dat abstsaction can de divided
into a syntactic part and a semantic part [Liskey and Zilles. 75). The syntactic.part provides
a vetabulary 'of ‘terms or symbols. that are used by the ssmantic patt to CRMMW
are used in
capturing this meaning; either an exphicil, kbsiract madel is. supgtind. for: the o of objids
‘and its associated aperm are defined in terms of Hiis model or. the class of objects i

meaning or behavior of the data abstraction. Twe diffetent approache

defined imphicitly via descriptions. of the operations [liishov. and. Z8iee- 53
Parias {Parnas. 721 has: .developed a technjque mmm for writing

~ following goals in mind [Parnas 72):

D The specification must providé to the intended user
the object specified, and nothing mere.
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2) The specification must provide to the implemenitor alt
the information about the intended use of the ob ject
specified that he needs to lmp!ement the specmuuon
and no additional Infbrmaﬂon

3) The specification should discuss theé ob ject specified
in the terms normally used by user and implementor alike
rather than in some other anﬁ& am :
When using Parnas’s technique, each data ebject is viewed as the state of an
abstract (and not necessarily finite) state machine and, in Parnas’s specifications, this state set

is implicitly defined. The basic idea Is to separate the operations of the data abstraction into

two distinct groups; those which do not change the stife bt afiow some ‘aspect of the stite to
be observed, the valué returning or V-functions, and those which change the state, the
6pleration"'or‘0-functtom; The specifications are then written iry!t:‘ﬂné’thee!'fed of “each

y defines the smaflest set of

O-function on the result of each V-function. THI ipHé
states necessary ‘to'distihguish the variations in the résults ofthe V-fanctions .:I{L'iskov and
Zilles 751. It also dgtérmi‘r‘i,es"t\he ‘triﬂsitiﬂﬁk among these mmuuudbyma.m; TN
Returning to the integer push down stackexzrﬁpﬁ.miﬂ!rﬂnnpmﬂm top and
pusk. Top is a Vif unction that is defined as forig ‘a3 the stiick is‘'not' empty, and’ push #s'am
O-function that effects the result of top. Wmopemﬁommﬁﬁf"ﬁewledu in Figuré 1,
where depth is anather V-function whose definition s Nkt shown m.bm:-enem the
number of integers in the stack. Q_uﬁti"s around ¥ V-function are’used to Mdtuteitsvﬂue
after the O-function is exécuéed.l"" o | | | |

A problem with this approach Is that certain O=functiohs may have delayed: effeéts

1. This interpretation of quotes dif fers from that in [Parnas 72, 5.



Figure 1. Top and Push

op - btmation ot g
Appiicabitity Conditio
mvmm
endtop

push = o-fuunmﬁ(a iq;gﬂ? o
Appiicabiitty ¢ o depth
Effacts Section Wp' « a

‘depth’ = depth + |
nd gush

t9 of the state Wil be observed by a
P, push has a delayed
 effect on fep.in the sense that after % ngw Elewont s bumy pushied on the tack, the formmer
#op of the stack element is no Janger observable by 2o but &t will by i _pop is used.

Partis used. an miborinel WogWage to egeem shere delege
In his specifications, be inchided 3 weion, SN matel o o dexcribing
effects in English, at times interlaced with simple frethmice

~on the V-functions. . In other werds, somie_proge

V-function only after some O-function has been wved. For ex

. »e:mmpb, to specify the interaction of push and mm; m. s, qug the phrase “The
uq,‘mﬂ:e PUSH(a);POP has, no net effect if noemrgl;qgwr (Par

One metiod to formalty decribe delayed ffects W Inroduc

[Price 73) to represent aspects of the atate. which are nar immadinely dbrervebie.

V -furictions are not operations associated with the data slistraction being def

inwoduced to store values of other V-functions and in T anmer they solve the

* representational problems caused by delayed effects. Since they mmm o ihe
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data abstraction, users of the abstraction should not be ‘able to use them. As 'ah’ example, in
the specification of a push .dvown stack‘. on_e'cop'Id in;rodqce ;a‘ hldden V-function stack to |
store the former top of the st#(:k element. | | |

This a-lpproach has beeh followed by resgar;hérs at the Stanford Research Institute
[Robinson 77], [Spitzen 76). However, their main concern ;vith Parnas’s. approach to
specification is its use in a general methodology for ‘the design; tmplementation and proof of |
large software systems [Robinson 751, {Neumainn 'Hl‘.' With this goal in mind, they have
desngned a specif ication language, called SPECIAL. for descrlblng Pamas—typc specifications

[(Roubine 76]. But, no formal semantics have' been provided for SPECIAL
1.3 State Machine Specifications

This thesis ‘dev?lops a formal specification technique based on Parnas’ ideas. The
specifications written using this technique ar}e_c;‘ll,erd state mguuc specifications aﬁd ‘employ
hidden V-functions. The spe;ifi#&ftio'ﬁ technlquc described in this thesis is similar to work
being done at the Stanford Research Institute. No attempt is made to formalize Parnas’
notion of a medular properties section. | | .

An example of a state machine specif ication is given below in Figure 2. Here, the
data abstraction defined is a bounded tnuger stack with the foﬁov)ing operations Topisa
‘V-function that is defined as long as the stack is not empty and retiirs the top of the stack.
Depth is another V-function that reflects the number of ‘integers in the stack. " Push and ‘pop
are O-functions that insert and delete, respectively, integers from the top of the stack.

Notice that there are three different types of V-furctions included in the

specification. The hidden V-functions are used to represent aspects of the state that are hot
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Figure 2. Bounded Integer Stack

~ bounded _stack = . state machine is pmh w top, daplh

depth = non-derived V-funetionl ) returns mceger o
' Appl. Cond i true. .~ RO
initial Veiue: 0
end depth

- stack - lﬂmn V-functios ;.m,mgq |
Appl. Cond.: 1 < | 5 depth
inite} Valus: undefiaed.

end stack

top = .dorlved V-fuaeihn( ) rewmugcr
Anpl, w ”‘m Qx,
Derivation: top = (Anpth)
end top

pop = O-function()
Appl. Cond.: ~depth = D)
Effects: Wh' =depth - 1
end pop

push = O-funetioniasnteger)
P" cm“ x ’.'»"57’x'
ggmu “epth’ » dig
'stack'(depth +D - L3
end push

end bounded_stack

/immediately observable. Recall the delayed effect of push on tep. When a new elemgmh
~ pushed.on.the stack, thie:former top of stack element is. no lopger nbaeruble by top but it wil
be if pop is used. This value is stored in the hlddqp V-fgqmm stack. Hidden V»fumttam
. Aare nat dlnectly acce;sjble to users of the data abstraction, but limited access to them .is

provided by the derived V-functions, which are defined in terms of the hidden and
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non-derived V-functions. Non-derived V-function; arelhoaccessibleto usersof ihe data
abstraction. . They are inquiry operations that reveal intrinsic aspects of the data abstraction
defined by the specification. | |

Note that the specification in Figure 2 uses two data abstractions, namely the

integers and Booleans, which are distinct from the datg abstractios defined by the machiﬂe

These data abstractions are called the. defining. abstractions. They are not rgsmcted to
contain only the integers and Booleans and can consist of an entire collection of data
abstractions. = The defining ib;trgcnqns are vgsqg!ly‘_slmpklei Ibmactlom that are used to
| éonstfuct more cmﬁplicated state machine specifications. |
' The defining abstractions, are used in- thg domain md fange of the V-functiom and
O functions. They constitute the lnfomatlon that the  O-fupetions, the constmcmn. add or
remove from the data abstraction. Th,cy} are also the results tbgt thﬂ V-f unctlom. the : i“@'“’ y
operations, return. The Aef ining abstractions mamqu 10 be defined elsewhere either by
state machines or some other formal specif icationtechn,iqbe | » o
The semantics of a state machine can be defined by giving the following
interpretation to the Vl-f unctions and O-functions. In every state of the machine, some
mapping is associated with each V-function. Thesemnppmgs characterflethe state. Tl‘i‘éy
represent the 1nform§tion tﬁat the V-tunctlm:mealabomeach State,. In fg@ since the
derived V-functions are defined in terms of the pon-derived and hidden V-functions, the

_state of a state machine-is. cdmpletely characterized by the mappings of the non-derived:nd

hidden V-functions. The O-functions change the state of the machine by redefining these

mappings.



1.4 Uses of SBtate Machines

As was previously discussed, formal specifications can B ‘siadied mathiemsaticatty.
So, state machine speclfk;tw can be used to prove properties dmmons or ﬂw
| e'q'un;aneﬁce of different specifications. Furthermore, they can e ustd a8 sn umambiguous
_communications medium among progrumtﬁefs due to'their precisely defined semantics. But
one of their most tmrum uses will be to serve as the badls for proofs of program’
correctness. | o

Estdblishing program correctness can be described as a two step process with the
overal goal of showing that a program correctly iigleinents a comcept that exlsts n
‘someone’s mind. First, a formal description of the conckg Bm This can be done by »
However, Hoare’s method requires some Wdaptitibns to mest the special heeds of

formal specification. Then, the program is prevéd WMNW

analytic means. [Hoare 72a] has describied a methiod 10

state machines. Accordingly, this thesis aiso discussés tha changes aind how to perore

“proofs of correctness using state machines.
1.5 The Outline of the Thesis

Chapter 2 presents a model for the semantics of state machine specifications. Firat,

‘components are used to develop a 'model for the semantics of ‘a stite macmne The

“discussion in this chapter is abstract, presenting only the objeas thiat tho basic mmp«mu of

any state machine must specify but not discussing an actual language to spaclfy these abjects.
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Hence, the model developed is quite general aud"not tied' wa particufar ‘spe&flatt(_in
_ langdage. However. this model is restﬂcmd to m maduinesthat 0“'7 contain v‘”.‘"’
~ operations on the data abstraction defined by the machtne. B
‘Chapter 3 details an actual specmmuon hngmgc for uatc macMnes. lt is a
' complement to the abstract discusslon in Chapm 2 lnd uses the modd devebped ln Clupur _
2tof ormalize the semantlcs of this concrete spec!ﬂation Ilngptge |

Chapters 4 and 5 discuss and illumw ) method to prove the correctpess of an
implementation of a data abstraction specified by a state mchm

Chapter 6 extends the model for the mndu of state machlnes ducﬂbed ln
Chapter 2 by lifting the restriction to unary opentlons. _

Chapter 7 concludes this thesis wlth an evaluquon of the work presented tud some

suggestions for extensions to the state 'machtne Mmﬁm hchalque. B
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2. A Model for Btats Mmhiw

' This chapter presents a model for the semantics of state m :pedﬁam ln'
Section 2.1, the basic components that every m ‘machine apcdfm ‘must eemm iu
discussed. Section 2.1 only defiihes the sytactic constrabinti thet o ikt fchine ip

~‘mnst satisfy. ‘Semantic issues concerning whgam the machine 15 well-defined or eomim

are discussed in Section 2.2, whkhanwsmmmwmumwm

H T
it

a model for mesemmucsonmzmme Hm.mdamhf deited by a set of

states, where each state is modeued by a set of fun&m wm w the Mdden uu! N
‘non-derivzd V-functiom, O—runctiom deﬁne mmmm m S

The discussion here ls abstract, Mw’”*ﬁ”&ﬂﬁnhﬁc T

of any state machine must specify but not discussing the setia) W nud to apoctfy_

these ob jects. Hence, the m::dz! dcvehped here is W ;ml and uppﬁubil to my #
machine specified using a combination of V-functions and O-functions. It is not, however, -

applicable to state machines specified using somethiing shniiar o Pirnes's modular p opertiés

section.
2.1 The Basic Components of a State Mashine

The state machines considered hﬁ'e are specified utlng V-functions and
O-functions. In principle, one could define a state mm without any V-functions. Such
a specif icauon., however, would be iiﬁguhrly uninteresting. VIM V-{unctions there
would be no way to observe the state of the machine and, hence, ho way to dlmm |

member of the data abstraction defined by the machine from any other member. So, we
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shall assume all state machines have one or more V-functions.
Furthermore, most interesting staitc machine specmcmons will contain one or more
O-functions since, without O-Tunctions a state mchine can unly speclfy a data abstnction

‘ contaimng exactly one e|ement
2.1.1 V-funotions

As was discussed In Chaptéf ], there are thu; types of V-functions; the non-derived
V functions and the hidden V-functlons, which are prlvnttive, and the derlved V-ftmctluu.

which are not primmve but are def ined in terms of thc other two

2.1.1.1 Non-deriygd and Hiddnn V-fmmaﬂ .

Non-derived and hidden V~functions are cpectﬁnd analogomly Each non-derived
or hidden V- function v has three sectiom n m def!nman a mapping descrtptlon an

applicability conditjon and an inttial value section.

Figure 3. Non-derived or hidden V-function v S

Mapping Description: Dy; Ry ,
Appucabmwconm! sx D »mﬂ
mitial Value: init, etD, +: ! W

First, Iet [A - B denote the set of partial fnnaiom from the set A to the set B In
each state S of the state machlne. some partlcuhr mapp!n‘ "S from [D -+ R ] will be

associated with v, where D and R, are specified by the V—fmhns mpﬂng dm:rtpmu
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This mappmg, of course, varies with the state of the mtcbine. ln gcneral. the mapping
dassoclated with v wmnotbe total. kun examqu ln szdmkm’mpﬂn@
| assoclated with :tadc isa member of [integer - intqerl

Thgsetsﬂv and R, ako mrythcfm Mdm

abstraction defined by the machine. In gm!. they will be tht am product
Gy X ... X G, of a group of sets. But the G, are restricted 10 that’ wo eﬁMtOf the data
-, abstraction defined by the machine may be an element of any of the G;. This restriction
Vonly a-llow's the d,efln.mon of .unary opemtlom on m mm apacifld bl the
machine, For example, in the deﬁnmon of chc dlt& m W set, it is not ponbh
to define a function which computes the union of twa sets. But, it is Mhtnduﬁm the

unary operation. has, whith® m if a lﬁ‘mg’ kit

[D -»R ]x x[D -an J
where{vl, s Hsthesetofnon-#cﬂvedmdhﬁdmv-ﬁun;umnfmemd‘m lam

cases, S is a proper subset of D. This occurs when an

Yo yabsh

of@gn‘np!m.ummv

167 <
. a runcnon that can never be associated with a non-derived or hidden v-fumtm. For
the integers can never be usocmed \dth .n«t; |

example in the boundtd stack exampbur Chap

The applicability condition of a V-function governs when a call of that function by
a user of the machine succeeds. This section spedﬂes a puﬂal fm ¥, from D x Dy,
lnto the Booieans Hence, the success of a  all depends on the state of the mnchine For’ my

.xeD and Se$ l (s,x) muatevahnatetotm- fonhev-fnmtmwnNm the valuc vs(x)
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‘ where vg denotes the mapping associated with v in state S. When ﬂv(s,xf equals fqlso., v
returns an error condition.

The initial value section of a noh;derived or hidden V-function v defines the
mabping associated with v in the initial state of the machine. This section spedfi?s one
member, denoted init,. of (D, » Rv.]. In priaice. for non-derived V-ﬁmdlom. init, is

usually a constant, total function.

2.1.1.2 Derived V-function§

A derived V-function v also has three sectbns in its definition: a mapping
description, an applicability condition and a derivation section. The mapping dcscrt'puou and
}zpplicability condition are defined Ih the saime manner and have the same lnterprétatlon as
the mapping description and applicabilty section of a non-derived or hidden V-fuh&ldn.

The derivation section is unique to this type of function.

Figure 4, Derived V-function v

Mapping Description: Dv; Rv
Applicabliity Condition: ¥ :D x D, -» Boolean
Derivation: der v such that (der vg)e[Dy -+ R ] for states S

The derivation section specifies the mapping associated with v in terms of the
mappings associated with the hidden and non-derived V-functions. This section defines a -

function schema, denoted der v, expressed as the composition of the non-derived and hidden
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‘,V ~f unctlons of the machine and other functiom asmciaeed vmh the eiements of D "The
particular mapping associated with the schema, denoted (der vs) w; on the mu S of
the machine whlch contains an interpretation for the m—dcrhed lnd hidden V-f unctions.
| As an example consider the derivation section of tap in Figm! d CMPM 1. In any state

S top returns the value stack(deptlc) This vnlue is. af ooune, w on the mpphg

associated with stack and depth in state S.
2.1.2 O-functions

O-functions too have three sections in their definition. . Theyare a mapping

description, an applicability condition and an effects section.

Figure 5, O-function o

Mapping Deseription: D, -
Applicabliity Condition: §: D x D - Beniesn
Effects Section: T : O x D, + D

In a given state, each O-funciion ¢.is ;mmeun, - 55, where D, is given

S PR

by the mapping description and S5 is the state set-of the

. As with V-functions, D
will, in general, equal the cartesian product of a group of sets Gy X ... x G,n. which are
_%gqn’strained‘ 5o that no elemeiit of the dau:bmetjm Mlyd bythemmhim may be an
element of any of the G‘The range ofthe O-funcugng not me’ mm

description since it is understood that the range of al O-functions js the state set.
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The applicability condition of an O-function determines when the O-function
changes ‘the state of the machine. As for V-functlom, ;hls sedlon def lnqs a partial function
¥, from D x D, into the Booleans. llo’m‘ust_: evaluate to true for the function to change
the state of the machine. Otherwise, an error condition It raised and the stile remains
unchanged. For exiample, the applicability condition of Mln Flgurei’ Of Chlp@ef 1
prohibits its execution Qhen the stack is empty. | ’ | v

The effects section of an O-function spgi:if ies how the f unctsonchangesthe state of

the machine. This section defines a p@rtial fgﬂcthn‘zo from ‘D§x ‘_Do into D. .
2.2 The Semantics of a State Machine -
2.2.1 The State Set of a Stgto‘mlql!o‘lytlp,__

As was pfeviously mentioned, a slateof a sme mchm ds modelled by mapplngs'
associated with each non-derived and hidden V-function of the machine. Hence, we view
the state set, 85, of a state machine in the foﬂuwing manner:

% c(D, +RyIx..xIDy - li‘v;'i -
where {v,,..v,} is the set of non-derived and hidden V-functions of the machine! Note
that D"i and R"i are specified by v;’s mappingdacﬂggim ,

Our purpose in this section is to define 5. Here, a cﬁnstructlve approach will be
‘used. Note that the initial state of a state machine is exphicitly défﬁndby the initial value
sections of the non-derived and hidden V—functiom. 'mnunhi;me. Q. can generate the

state set by means of the following construction:

1. Recall [A - B] = {f | f is a partial function from A to B}
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D Qis an element of 8. -

2 If Sisan element of 55 and o is ap O-fupction call, ,
then the state $* obtained by applﬂng oto§ is an element ol‘ 8.

_ 3 These are the only members of 55.
So, to define $5, it suffices to define the initial state of the machine and ﬂm to dmﬂn thl -
state changes caused by O-function calls or, in general, how an O-function call mp:one
member of D into another. | | |
The tnitial state Q Is the tuple ity - dnlty ) cantaining the mappings derived
 from the initial \;alue section of each of the non-derived and hidden V-functions (Vi,....vh}.
Furthermore, the next state function has the fojlowing definition.

Definition
Let o be an O-function with mapplng H In its nppllqbimy omdmon

and mapping T, in its effects section.

‘Let ac Do and’ Rc!&
Then,

T R i W RN =true
NEXT(R,0a) =

R if Hg(Ralsfalee

Thus, the state set is generated as follows.

D QedS.

2 If Re§ and o is an O-function, then if NEXT(R,0a) is defined,
NEXTR00) ¢S where aeD,,

3) These are the only elements of 55.
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In other words, the state set S5 is the closure of Q under the state transition function
assoclated with the O-functions. Note that in 2) above NEXT(R,02) may be undefined.
This depends on the functions T, and ¥, |

Recall that %;,!5.9 _partial function. So, it is possible for some state S and x¢D,
that T (S,x) is undefined. Then, if ¥ (Sx)=true, NEXT(S,0,x) would be.undefined.  This
situation is undesirable since when % (Sx)=trus, a state. change should occus. - Furthermore,
“o is .also a partial function. Here, it is possible. for somie state S° and x°¢D,, that ,!,,;s!.xa
is undefined, again making NEXT(S",0x) undefined. These two considerations lead .us %0
the notion of a well-defined state machine.

Definition '

A state machine is well-defined if for any S¢S and O-function o

NEXT(S,0a) is defined where acD,,

This definjtion gdarantegs that in a wejl-defined state machine, for every
O-func;ion o, ﬂo is a total function from S X Dy inte thcnoolunamd ?to is a total
function from {(S2)¢ S5 x D) W (Sa)} into . This can. be seen by inspection of the

definition of NEXT.
2.2.2 The Semantics of V-functions ind"b.’-'fun'otlons

With this definition of the state set S5 of a state machine speclf lcatlon itis possible
tof ormally define the meaning of the O-functions and V-ﬁmctlons. “This will be done by

defining mappings V-Eval for V-functions and O-Eval for O-functions such that
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Y—-Evalzs X NV - [A-=R]
and

O-Eval$h x NO = (A » $)

.where NV s the set of V-function nares, A is the set of Wl b the st of resuks
#nd NO is the set of O-fanction names. . . )
s wilt be used to ruise

ShesiEnl

has the vatue x 4f B i true and the valie y'if ' bs fabie This |
‘un error condition whven a function's apphicability coridition 1§ riof shtiitled.
O-Eval will be defined first. Now, given a state S and an O-function o, O-Eval

returns a function from Dy, into 55 U {error]. So, using lambda nomtion,
O-EvakS,0) = AaIW (Sa) + NEXTSanvgriae)

O-Eva#(8,0) is not mecessarily total umenhs'ofsm G’NE’C‘T(S,OA) can be

Legde tn oo F

| state machine.

undefined. However, O-EvalS,d) is always x totaf fumcti }

For any V-function v and state §; V-Eval' wil ‘resumn 'a Tinction from D, Inta
Ry U {error}. First, for a non-derived or hidden V-function v and a mﬂ.mﬂﬂu& vs
denotes the fqnctigp assocmgd with v in sute S 'l?hg! for @Jngn—d«h@ﬂhl@dg

V-function v with applicability condition ¥,

Y-EvaK§,v) - Aa.(‘v($a) -0 vs(a)m] ]
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Finally, for a derived V-function v with apphicability condition %, and derivation

V-Evaks,v) = 2al(5) -» (der vgha arsar)

‘Note that V-EvaKS,v) is not necessarily defined over the entire set D, si'nce;.:v'(s;a)
can be undefined or, 'deﬁénd.ing on the typeof V-funm,vs(a)or (g_g_r_ vs)(i)ici-lva be
undefinéd when W ,(Sa)=true. When this is not the case, we say the state miachine Is

L

-cofisistent.

Def lmtlon
A state machine is consistent if V-EvaKS,v) is a total function f rom D

into R, U {error} for every state S« and V-function-v.

Ina (:onsistenf state machine, ", is always 2 ml runction from 3 X D lnto the

Booleans and vg or (der vg) is always a total flmcuon from (xtD l ' (s,x)} into R
2.2.3 An Induction Principle

Since any state of a' state machine is geﬁented jbi mor more 6-!’ unction c;lls.sthe
structural induction principle (Burstall- 69].-holds; .m © jnigructural’ lnductlon proofs
proceed by course of values induction on the wmplexity of the strllcturc.!,2 whlch for state'ﬂ_'
machines, means that to prove the data abstramon dcﬂwd by the mchlﬂe has property P.

one must prove that the initial state has property: P, xnd ‘that-if al states produced by zero

through n-1 O-function calls have P, the P is true after n O-function cails. This is one

2. The general schema of course of values lndui:tim'ou; the natural numbers is:
P(O), ¥ {(Villicj A P(DD) - P(P) + VKP(K) :
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advantage of the generative approach used in this model to define the state set.
2.2.4 Proving Properties of Btate Machines

- Although it is not pessible to extablish tmm a mm specif ication i3
correct with respect to our intuition, there are certain m Il'l! a speciication should

Wﬂe& of a state

satisry to enhance our conﬂdence in its correctness. Two orts
’machine are wrhether or not it lsr well-defined or consistent. In.a. Wlmd mchm the

O-functions behave properly, either changing the state or iafmh‘ the user of an crmr In
a consistent machine, the same is true of the V-functions. They either return a2 value or raise
an error condition. |

A state machine is well-defined when NEX'T is & tota¥ fusictioh. THis occurs when,
for every O-function o, ¥, is a total function from 8 x D , inta the m; and T,
" total functmn from ((S,a)eﬁ X D | % (5,20 inw’m | |
Since S is defined generatively a state machine can be pmnd to be well-defined:
pei- firit showing that
NEXT(Q ,0a) is defined for all O-functions o and a¢D,, and then assuming

by using structural induction. As outlined in Section 2285 thild|

NEXT¢.NEXT(NEXT(Q 0ap.0089);..0,_1 g1
is defined for all aje D°i' n>2 and then proving that
NEXT(.NEXT(NEXT(Q o0j) 69a0)....002:)

is defined for all ajeDg. In practice, however, it may be necessary to strenghten the

inductive hypothesis.to.simplify the. proof.




-99-

A state machine is consistent when, for every V-function v, ¥, Iel a total function
from 85 x D, into the Booleans and, for every non-derived or hidden V-fltnction v and
state S¢S, vg is a total functiogr' from {a | ‘Dv and " (52} into Rv and for every derlver.l
V-function v, der vg) s a total function from {a | a¢D, and W,(Sa)) into Ry. All these
properties can be 'és;ablished by q;lng stmctunlinductton in the manner outlined above.

In general, for most practical specifications, the task of oro,vtng that a state machine
is well-defined or consistent is not extremely difﬁcult but 'rether'tedlotts due to the many
cases that must be verified. The hardest step ‘tn_av"proof usually involves discavering an
inductive hypothesis that allows the proof tofo‘lhw reﬁdtly These comments are illustrated
by the example in Section 3.3 of Chapter 3 where a specification of a qtteue is shown to be
well—det‘ ined and consistent |

Note, however, that both the probterm of determtning whether or not an arbttrary
| statehachine is well-fdef ihe¢ and determining whether or notm ?arl)iitrary ;tate machine is

consistent are undecidable. This situation arises since both problemscan be reduced to the

haltihg problem for Turing machines (Hennle 77). These two resukts are established for the

specification language of Chapter 3 in Appendix 1. However. they are not language :

dependent .
The reductions for both problems are stmihr Below, the reduction for the questton

of determining whether or not a state machtne Is well—deﬁmd ls sketched Here. we shall
actually reduce this problem to the blank tape halttng prohlem which is. in turn, reductb!e to
the haltmg probtem for Turing machines (Hennie 77). So, consider a deterministic, one-tape.

| one-head Turing machine T. T's computatton on blank tnpe an be slmulated by the

following state machine TUR.
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TUR comits o th fokowing foneons

 tapeli)

that correspené: 6 each st@hT’s computmbn S L R B LA T
It T’:mﬂ%mﬁm%mmmfmmnymha
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this corresponds to T halting. Thus, TUR is well-defined if and only if T does not halt

when started on blank tape.
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3. A Language for State Machine Specifieations

This chapter presents tl;e syntax and semantics af a spedﬂctﬂon hngmge 'fo"rlstatc
machines called ALMS (A Language for Machine §peclﬂat!mﬂ. Sactton 3.!_ describes the
syntax of ALMS and Section 3.2 di@m its semantics. | | |

The discussion here is coﬁcrete. dé|Mg with a specific lanéuage and its semantics.
This chapter is‘.a complement to the abstract discussion in Cfnpteri 1t shows how an i&ual
language can be used to specify state machines and how its semantics can be defined using
the ‘model in Chapter 2 as a guide. The chapter concludes with an example dl;cuning' a
proof that a particular machine is well-defined and eumtmﬂt

ALMS is similar in spirit and appmch to SPECIAL (Roubine 6], SRI'
specif lcatio'n language based on Parnas’ approach. Howew. there are slgmficant
differences between the two'languages, ALMS was developed soley to m\'ntnm‘h.dw to use
the model in Chapter 2 to define the semantics of a state machine spadicmlon lgngﬂage. It |
is a simple language and does not have the features nor the expteulvem that‘ would be
found in a specification ianguage intended for uie in the dﬂehptmm of software systemi. )
For example, when using ALMS to specify a. symbol table for a bbck stmcmred language.
one can not define a V-function that returns the attributes associated with an ldentmer in
the most local scope in which it occurs. This happem since ALMS contains no iteration or
recursion constructs. ALMS can be extended to have these fesmm but this would be
beyond the intent of this chapter. N

SPECIAL, however, was designed explicitly for speclfylnj sof tware sjstefns. It is

intended to be used in conjunction with a methodology for the design, implementation and
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proof of computer systems [Roubine 76). It naturally contains more features than A_LMS.. In
SPECIAL, there are mate constructs for defining: tln effects section ‘of - O-functions and the
derivation section of derived V-functions. Furtbermore. SPECIAL permlts the def inition of

greater than unary operations on the data abstnction dd‘M b; Mmchine
3.1 The Syhtax of ALMS

An example of a state machine MMM mmg ALMS is given below
in Figure 6. Here, the data abstraction deﬂned is a symbol tnble for use ln a block
structured Ianguage lt has the followlng m Add t L Y »O-‘ﬁ‘mction that places an
identifier and its attributes into the symbo! uble at the cum mpm level. We assume

here that an identlf ier.and its attributes. are character lﬂ'mlﬂd dengte this type by string.

The current scoping level ls given by the mn«dcrjm Vgimlon level. 1t can be
incremented and decremented by the O-functions tnc_level and dec_level, respgctlvely.'
Retrieve is a derived V-function that returns thea(mbugu 6( mldm:mer ln‘:;a“'glven level
of the table and present? is another derived V-funmttion that mdlam ‘whether or not an
| identifier has ailready been placed into a given scoping lgvelof glye gab.le.‘ ’,:ll'pe,,,(ynctkl!ﬁs Py
‘and Py used in these two derived V-functions's derivitigns are_prajection functions that
return the first andsecond compdnents, respectively, of an ordered pair ‘They simply permit
one hidden V-function instead of two. Finally, talle_storége s a hidden V-function used
‘for storage purposes. |

This specification illustrates the three major components of a sﬁte machine
described using ALMS: the defining abstractions, the interface. description and the

definitions of the V-functions and O-functions. The interface description provides a very




Figure 6. Symbol Table
- symbol_table = state machine is add, inc_level, dec_level, retriéve, present?, level

level = non-derived V-functton( ) rctums inma
Appl Cond.i true :
Initial Value: 0
end level

table_storage = hidden V~functionfa: intqet,l.urmg) returns string x Booleans
Appl. Cond,: . true
initial Value: (don't carefalse)
end table_storage

retrieve = derived V-funcMaJnteger,l.strhg) nhwm lmug

Appl. Cond.: Pyltable_storagelash)
Derivation: retrievc(a.i) - Pl(tablemga(a.m

and retrieve -

present? = derived V-functionta:integer, mw ng) returns B
App! Cond.. true i

iviition: presenta,l) = Pztm"" orsge

end present?

add = O-functlon(i, Jistring)
Appl. Cond.: ~P2(table..storag¢(level,m

Effects: tablg_;:gqgg«!hvem (i trun).
end add

inc_level = O-function( )
Appl. Cond,: true
Effects: 'level’ = level + 1
end inc_level

dec_level = O-function( )
Appl. Cond,: level > 0
Effects: 'level’ = level - 1
end dec_level

end symbol_table




brief eiescription ef the V-functions and O#fum:tﬁlt" users of.ime-mebm myempby
These functions, along with the hldden V-functlons. are fully defined in the body of the
machine. In these def inltlons the defining abstnctims are used Hel'e, they compose the
domain and range of the V-funcnons md O-functiom and further, through thelr

associated functions help specify the meaning of the V-functlons md O-funetlons.
3.1.1 The Defining Abstractions

As was discuesed in Chapter I a state meehlne uses data abstnctiom that are
distinct from the data abstractlon defined by the machme. These abstnctiom are caued the
defining abstractions. They are assumed to be defined eheWhere

In the remainder of this thesis, we shall use the lntegen, character strings and
Booleans as def ining abstractlons and assodate the uml operations with them.
Furthermore, the set {A}, where A is the empty smng, wﬂl be med a8 the domain of nulhry
V-f unctions and O-f unctions | “ ‘

ALMS can, of course, have other def lning abstractlom hesldes these three We wlll
however, leave the actual collection of deﬂnlng abstnctlom umpeclf led and only assume that
it at least contains the integers, character stﬂngs and Boolum |

Note also that the collection of defmmg abstnctiom an be augmented dymmlcally
in the sense that once a data abstraction is specmed ln ALMS such as bounded_:wch in
Chapter 1 it can be used as a deﬁning abstnctkm ln other speclflcatlom So, the
‘specification of a symbol table for a block structured hnguage could use bounded.;tcch in its

specification. We however chose not to do this for the symbol uble in Flgure 6
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8.1.2 The Interface Description

| In ALMS, the tnumzce dcscriptton of a state mchtne provides a very brlef
wdescrlption of the interface that the machine presems to the ouulde environment. lt oomlsts
of the name of the data abstnctlen deﬁned by the mchm and a Iht of the functlons that
users of the machine may emphy | o I _
symbol_table = state muchine is add, inc_jevel, det_level, rettieve; pnﬁﬁt?. ﬁ?él :
The Iist of functions contains the name of every mn-deﬂved V--fum:tion. derived

V -function and O-—function in the machlne The names of htdden V-functlom ma’y not-

appear in the interface description as they are not avatﬁbﬁe outside the mchine
'3.1.8 V-funetions

Thns section speciﬁes the symax for the three types of V-functlons of a state
machine, the non»derived Mdden and derived V-fumtims. In the next section the symax
of O-functions is given. Recall that non—derived V—fmctiom are prlmmve aspects of the
data abstraction deflned by the machine Hidden V-fuamom m used to represem aspects
of the state that are not immedlately observable and are Mmtble to users of the machine
However, limited access to them s provided by the derived v-rmm: which are def ined
in terms of the non-derived and hidden V-fum:tlons B N |

Throughout this section and the next, it wm benecesury to use éﬁcpmstons An
expression is formed through the composmon of the non-dched and hidden V-fum:tlons

of the machine and the functions assoclated with the deﬁnlng abstractions It may also

contain elements of the defining abstractions and formal argumems The formal arguments
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- . - oo ) L : e SRR st
_ serve as place holders in the expression. !

We now tum t the definiton of an Expr

thodgh all expressions were written f() o

infixes such as + in examples.

» Anel«nentofadefmlngabmwhnwanWhuum '

_7 *y '5 5”’ e PR

2 1If q, - e;an expresucns and f is 2 oo

V-function of SM_ or a fymction asociated mmgt%;_ﬁ

 Tequires n arguments, tm fley...e5) is an expresyi

'We shall also refer to expremom by the mnof valoe dvq m upon evaluathn

ﬁi 7 ape o SRR

mm«vw; Nmm  this

}3 o

definmon excludes derived V-functions fmm an «imnlen Thu mm s

For example, a Beohn'expmﬁon evalimtes

’!%i

* made to Simplify the seidntic defihition ms.am!ata ﬁm is no dnmmny n

a'llowing" derived V-functions to appear in expm
3.1.3.1 Non-derived V-funotiops =

’fﬁé"g eral fchema for defining LR ST e

Figure 7.
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Figure 7. Syntax of a Non-derived V-fupction

V-tutction 1), Xnty)
Appl. cm.: Boolean cxpm;m
hitie vitkie: it
end name

whiere t, and t, ate ames of defining abstrictions and hitet, 0 {undetined

for nullary V-functions such as level in Figure 6 and

iams - non-deFvel V-Yehetkomx K oty) m:, *‘

forf h-ary non-dérived v.fms Siith as has m« I8 of Chipier 4 o
wi, 1 e equivalent of R, of
., The x, are the formal

arguments of the v-funcuon They must be disginct. Alo, 4, again, Mnum,gf a deﬂmng

Herey o4 m name Of one Of m‘ 8 Ll TR LS g

Section 2.11. Itis mmenmes referred to as the type of the V-function.

Mabstraction, is caned thetytcofthe formai umummﬁ o .
For a nulhry nou—dermd Y-function, D, ;t m ,For an, n-ary M?dﬂﬂm
V-functnonv D lstlx X b T PO

For example, consider the mapping dexrw ef lm n Flgun 6.

level = non-doﬂwd v
Here, Dlevel = {2} and thd  integer and, in any. m,mjm ;me: level
is a member of ({7«) - integer).
; The appltcabtlit, comlttm of a non-dtﬂ\xgd . tim Lontains. a Boolean

expression that determines the success of a call to the fm Tis enp:

pn must be (ype
correct. This means that whenever an object i M m he expression,
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. ths expression st only

'.compaubie with the type expected at that m.m;-fw
contain formal arguments that appear in the V-fcmctim ] mlpping descriptlon

o The inmal value mtion of a non-derived V-fum:tion tpedﬂes one e!ement of R, or
contains the specnal symbol undef ined Tbls restrlcts thc mapping assochud vmh the
| V—function in the inmal state of the machine to be eithcr a oomunt, toul funcuon ora

‘ { ‘.1 ne

totally undefined functlon The httcr case is speclf ied by mm_e_g_

8.4.8.2 Hidden 'vquncmm

"Hidden V-functions’ are specified in an analogous manner to non-derived

- d M Mlﬁpﬁlg ‘description which
contains the special symbol hidden instead of m

V-functions. The only diffegenee occurs. in- the

Figure 8. Syntax of a Hidden V-function -

name = hidden V-funcﬂon(xl A ,xn-(n) rotlmn t,

Appl. Cond. i Bdalean bxpression
initial Value: init
- endnames -

where t and t; are the names of defining abstractions and initet, U {undefined)
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8,1,3.8 Derived V-funotions

The three sections in the deﬂnition of a derived v-mm are d!ﬂmd as folbm. .
“The mapptng descrtpmm only differs from the mppmg dewﬂption of 2 non-derived or
_.hidden V-function by use of the speciai symbel mm-dcmnd "ﬂw cpﬂmmy coudmon
exactly follows the syntax of the applicabﬁny mdmm d" a mn—deﬁved or hldden

V-function. The derivation section is untque for this type ef rmlm

e s - i ps 1o s _ P T
TEXS TR T &N p o 4 NOE LR B

Figure 8, Syntax of a Derived V-function

name = derived Y-function(xyty.. X it) retumes, -
Appl. Cond.: Boolean expression
Derivation: defining csuse .
end name

where t, and t; are names of defining abstractions;

The derivation section of a derlved V»tummh \!, ,’ s ﬁ m ﬂm deﬂtm v in

Its syitax fs

terms of the other non-dcrlved and hidden V-fmn m;”;_:_ -
described as folows.
If a derlved V-function v has formal arguments Xps o Xq and tjpe b, then the
derivation settion of v is of the form . . |
Derivation: v(x;,...x,,) = ¢
or |
Derlva'uqn: if b then v(xl....,xn) = ] eise v't(xl,...,xn) - ey

Here, b is a boolean éxpression and e and ey are expressions of type t;. Again,
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these expressions must be type correct and only use formal arguments of v.
3.1.4 O-functions

The general method ‘of specifying an O-function is shown below in Figure 10. -

Figure 10, Syntax of an O-function

name = O-funetlon(x‘tl. X ) o
" Appl. Cond.: Booleau cxﬁmsm
Effects: equation;

equation,,
end name

where t; is the name of a defining abstraction.

The mapp!ng descrtplum speclf les the dmm of the O—functlon and identlﬂes the

'particular function as an O-function. Its synux ls o

name = O-function( )
for nullary O-functions such as poplin Figure 2 of Chapter 1 and .

name = O-function(x :ty;...xnty) |
for n-ary O-functions.such as add.in: Figure 6. . Hem,; tr’!l the name of a defining
.abstr'ac_u‘on,and the x; are the formal arguments of the O-function. - They ‘must wam
Also, t; is the type of the formal argument x,.

For a nullary O-function, D is {2). For an n-ary O-function @, D is t; X ... X t,.
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The range of the O-function is not specified by the ng. description since. it is

" understood that the range of any O-function is the state set of the state sachine.

The applicability condition of an O-function . contains ‘a Bm“ exprtésion.
Naturally, this expression must be type corract and enly contaln farmd acguments from the
O-function’s mapping description.

The effects section of an O-function containg 8§ group of. aquation: mamm how

the mappings associated with the m—dmv«i and iidden v-fmm are changed by anf

‘O-function call. Thcre are two types of W W

 and mml
equations. A stmplc equation in a state machine SM is JIHNES a3 Tollows,

D Let v be a nullary non-derived or kidden V-fuctias of SM having type t and
let e be an expression of type t. Then, |

Vee

is a simple equation.

2 Letvbea n-ary (n>0 non-derlved v-fm or hm V-fumthn of SM
having type t with form!hrguments x; of typet‘ mu.w«mﬁqpetm
€; be expressions of type t;. Then,

. 'viey,...e,) = €

is a simple equation.

Y

The quotes are used to. represent: the resuk: refrned by the V-function after

completion of the O-fumction call. An Wﬁm‘ ction - diwotes the vilue Teturnie

before the O-function call.
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A conditional equatioh employs simple equations in fts definition. Let eq; and eqo

be simple equations and let § be a Boolean expression. Then,
' b then eq;
" and
lf b theneq; else eqy’

" are conditionu! equations. Note that this defvitton profifbits nésted conditional equitlom and
;‘ wéfe‘made”oniy o simiplify
the semantic definition in Section 3.2. No probleins would' aitse if thc restrictions were lifted.

blocks of equations following the then orelu “These réiticliol

Finally, the effects section'of an Ofuriction contains a mtmg ‘of conditional and
simple equa‘tlohs. Its syntax is |

Effects: qu ’

The ordering is immaterial. Of course, all expressions in the effects section must be type |

correct and contain only formal arguments of the O-function.

et o .

3.2 . The Semantics of ALMS
3.2.1 The Btaté Set

As was prevlously mentioned in Chapter 2, a state of a state machlne is compmly

specified when the mapping. assocmcd witheach: nan-derived and, m V—funmon of me.
machine is. given. Hence, vge»;uiewatbc;»m&e set, B, of 2 m machine in the follo\)lsg

manner:
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SciDy, Ry I x 1D, :-on,) -
where (vl. .y} Is the set of non-derived and hidden V-<funciions. Nete. tlnt D'i and R,l =
are defined in Sections 3.1.3.1 and 3132, R

Qur purpose in this section is to define 8. Hefe, we shall use the same aﬁpéoach
outlined in Section 2.2.1, taking the transitive cmfeofm inktial state Q under the state
transition function. So, to define 85, it suffices to define the intfal state of the machine and
then to describe the state change caused by an O-functioncall.

The. initial state Q is the n:—tupk,;;(v%‘,...,m'“) where {vy,...v,) is the set of

non-derived and hidden V-functions of the machine and

~ containg the word undefined
inity =
o | ‘
{ab)laeD,} if v,'s initial value
Vi { :
v beR
contatms beRy,

Here, ¢ is the null set. Note that functions are repres‘emed as sets of ordered pairs

' To define the.next state function of a stilte: mm*m Mry to defifre, in
general, how an O-function call maps one member of D into another. This m‘a‘p_plng’is done
by the O-function's effects section and we,no;w turn to deschg ughe r;veanmg of this
section. |

The basic components of an 0—functhn’i§f?e&t ‘séction &re theupl‘éssiom that tt;e
used to build the simple eq’aatton; and the oondm:mﬂ eqmm‘rhmeupreﬁm are

formed by composing the functions associated with the defining abstractions and *the
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non-derived and hidden V-functions of the machiine. So, the first step in defining the next
‘state‘mapping is to specify the meaning of these expreisions. This will be done by defining
a function’ e that eviluates an éxpression. Thén, using g, i Wili be possible to describe the

effect of a single equation. ‘This wilf be dorié in the definition of a function E that specifies

NS
4 *

‘how atr equation changes the mappif ussociated with a V- n. Finally, the total effect
of the effects section will be specified by a functioh TE which, using E, combines the effect
of each equation in the effects section.

The meaning of an expression is

- particular O-function or V-function ¢all sipce, in general, the expressions will contain formal

55

arguments from the function’s definition. Actual vajues must be substituted for these farmal
‘ et FEREE N S A RPovhch AN AT N S YO T SRR - ¥ :

arguments. Second, the meaning of the expressions depends on the member, Re¢D since R
V-functians, Note that the functions

gives an interpretation to the non-derived and hidden
associated Qith the det;ining abstraction; have.a q;munt ﬁxéd interpretaglon and are
independent éf members of D. N

in @'s definition. " Finally, let (a...a)¢D,,. Then to find the meaning of expression E, we

) So, let ReD and let @ be an O-function or V-function wltbexpmﬂm I'_.'_?

can proceed as follows.

D First, substitute a; for every occurrence of its corresponding fvormall argument in
E, obtaining E*. . Note, if Dy, = {A}, this step is unnecessary since @ has no formal

arguments.

2) Now, to evaluate E*, we shall view R as an interpretation or environment. that

specifies, for each synibol A, the value Ap of A in R. If A is an element of a defining
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abstraction or one of their associated functions, then Ay js simply A. lt Alsa non—dcrlved
or hiddm V-function, then Ap is the function sssociated with A in R. Tlu value of
ed by ReE* amlbdeﬁmdby

“R» ME;, JEp) = Ag(l FEpRE Ek)

E* « Ay} in R, obaming (ra T, kb dv

ded *‘*ﬁmﬂumsm

Since the non-derived gnd b‘gd;den V-functions may not Q,g L430

R, it is possible that R P E* is undefined.

Thus, as outlined above, we can define a M function W(R.Emwa) for Re¢D,
expressm E in &'s definition and? ub such ihat |

WREwD « R b E*

We inchude the O-function or V-function iame @ 56 § parssesiv o @ since it describes how

to substitute the actual argaments for the formit

e s

appearing in an 0—f§nct’ion o's effects section. Then aivy. caf ol o o M . ﬁo, m |
change vy to the function : R
nRfox) if X = gﬁzw
A"_R'(’X) -
VR if % » R 02

Here, a new value is returned for the argument p(R.&08) and, otherwise, the old value is
returied. - . \
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To help indicate such a function, we shall use the notation "i—ox.y developed in
Chapter 2. Recall this notation ‘has the value * if i A8 MM vMy i lzls hlu So,
for "R above wehave , N o o

"R = Ax [(x-;n(R 2,03)) - p(R,ﬂ,o,a),vR(x)l
Using this notation, we def ine in Figure 11 an, effects functlon -
| E(RoaEqQ |
that specifies the change caused by an equation Eq on a V:-fooctioo. E returns the new
mapping associated with the V-function. It shows the ef fect of l'slngle‘ eqﬁation andm the
entire effects section. So, in general E can not be obneyed outside the machlnc

The definition of E characterlzes the expressive power of the effécts section. If one
wished to increase the expressive power of ALMS by adding comtructs such as a while or for
all statement, the definition of B would have to be extended. In fact, this is “i':h‘e_ only
definition that would. require modification. Both‘g and TE woild rem,aln. unchanged.
This new definition of E could use the definition in Figure 11 as its basis. The effect of the
new constructs could be defined.in terms of the effects. of their simplei' parts in much the
same manner as the effect of the {f-then-else smement in Figure 11 is given in terms of the
f irst two clauses of the definition.

To define the next state function, we must combine the effect of all the equations in
the effects section. This can be done by calcuhthg E(R,0a,Eq for everj equation in the

effects section and then combining these mappings into a new state.



Flgure 11. Eﬂects Function

. Def imti_qg
Given a jtate mackire specification SM and ReD,

let 0 be an O-function of SM with Eq appearing in o's effects section md uD
Then E(R,0a,Eq) is defined as follows; :

i) If Eq is a simple equation of ‘the fomi W = ¢ where v isa panmeter—less V-f unction,
ERoakq - m,.:m,e.o.am |

i If Eqisa simpie equation of the form 'v’(w) = ¢, then
EtR,o.a.Eq’) - AX [(x-p(l?f w,03)) - n(R,c,o.a),vn(x)] |

CHD If Eqisa conditional equation of the form gf ¢ u\m $ where sis 'v’ - or 'v'(w) -,

E(R,o,a,:) L u‘ p(l.c,o,l) - tn
' ) :r pr,c.e,a) - fdu

iv) If Eq is a conditional equation of the form: if.c tho &y slgmapethon. i1 oo

ERoasp if pReoa) = true

'E< R 0a,Eq) =

E(Roasy i MReoa) = false |
First, define the function |

LT R, N i 1gign .
U fa,...a)i0 = | |

(a..a,) . -if 10 or i>n:

where i-is an integer. and (a,...a) is an n-tuple. This function changes the ith component
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of the n-tuple to c.

Now, let 0 be an O-function with equations Eg;....

aeD,. Furthermore, assume

ReD - (D l-vR l]x .x (D, -onn].
Fmauy let £, = ERoa, Eqy) and et
k if E(R0a,Eq) changes V-function v\'s mapping

= | o o o
| m1 . if ERoaq) dosnt change any V-funciio’s mepping

Then:the total effect of the effects section is given by
TE(R0aEq,..Eqpy) = U LU U RGeS Jp [l Snd

mppingnocmed with it. f&lpﬁ&q[,...;%‘) -

g6 JRa) in Chapier 2. 80,

we can define the next state function as follows.

Definition '
Luouma-fumcmnwnamupmtm its appuusnxymdmm
and equatiom Eq;,.. ,Eqm in its effem nction

Let acB “and ReD.
Then,

TE(R 0a,Eq,...Eqq,) if w(Rboa)=true
NEXT(Ro0a) =

R ‘ if (R B02)=false

So, the state set can be generated as in Chapter 2.

e SR AL S i e L TR Tt e B et T T




D QeSS

o 2 If ReSS and o is ap O-function, then i NEXT®R ) is defined,
NEXT(R6%)¢ S5 where aeD,,

3) These are the only elements of ﬁ.

" Again, we must consider the queéstion of mm o ol NEXT. 45 well-defined.

This is depcndentonnand TE Rmuwmnﬁmt doessarih :wmm So, it is

possible for iome state S and xeD Mpemo.xwmm m‘f’ﬁ = mnecmarﬁy

total so we can encounter a similar situation. Tﬁm mmu edrmpead to the problem

discussed in Chapter 2, when ¥ (S.x) mi,f&xrm

have defined the ordertng of the equations qu,. .Eq” i it

wtq'(m)) where #
13 a permutation from 4,..m} onto (1,...o). T tils case; Tlloomonilt e

et uniquely. detined in sthe sense, that its value depens st the: chiatus:of - the srder of the

for some state S and aeD that T%,wa. l*“'iw " o T

equations Eqy,... Eq;,,.

To handle these situations, we must introduce the nam of a wcﬂ-dcﬁned m' '

machine. Due tothe last case, the definition. diffep, s ) %&zmmwz since we'

must explicitly guarantee that TE is tmiqse!y deﬂud wm iﬁ Qhw 2 tMS was’

unnecessary since:by definition T, was a function.



Definition
A state machine SM Is well-defined if for any Se’ O-—function o

| and aeD
both l) NEXT(S,0,) is defined

and 20 TE(s0aEq..Eqy = TE(S0aEqy)Eqg(m
where equations Eqp,. Eq, sppéat ih-o'y efTecs section

and w is any permutation from {1....m} onto (1,..m}.
3.2.2 The SBemantios of‘v-functloxu and O-funotions

With this deflnitisn of the s_taie set 35 of a state machine lpedﬂcatlon..tt' is now
possible to formally define the meaning of the O-Iungtldns anc.l‘ V-funcﬁom. As in
Chapter 2, this will be done by defining mappings V-Evaf for’ V-functions and O-Eval for
O-f unct;ons ’ |

| O- Eval will be defined first Now, glven a statc S and an O-functlon o wlth )
Boolean expression B in its applicabﬂity corudmon O-Eval mums a function from Do

S5 U lerror). So, using lambda notation,
O-EvakS,0) = Aa[p(S,5,02) + NEXT(S,03) error)

Again O-Eval$,0) is not necessarily total but in a well-defined state machine this is
always the case. |

For any V-function v and state S, V-Eval wm remrn a functlon from D, into

R, U {error) Flrst for a non-derived or hidden V-funaion v and a state S, recall that vs
denotes the funcnon associated wnh v in mte s Then for my nq—dcrlved or Mdd;n

V- runction v with expression ﬁ in its applicabimy condttlon

V-EvakS,v) = Aa.[p(S,bva) + vgla)error]
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- Finally, for a derived V-function v with expreision § miu pptickb condition,

there are two cases.
D If v's derivation section contains v(z;...a,‘):- s, toan. ..
V-EvakS,v) = Aalyp(SB,va) - nS.evaerror] |

| i If v's derivation section Mim if c then Rx,,...,z,‘) - ¢ olse v(x)....,xu) - 2

then
V-EvaKS,v) = Aaln(S,8,va) - [iScva) + ;”ﬂ”u)m’!p”m]

At was memtonedmcmpmz V-tnxsvmmmﬁnwmmfm
v into R, U {error). wmthtstsn«mmwayaqmmhmnm -m

~ definition 1s the safe as in Chapter 2.
8.3 An Example

In this section, we outline a proof that a plmt.t!ir stute mm i wﬂ-&eﬂmd and
‘consistent. . The full details of the proof are contaied M m 2 om enmpﬁ
specification is iftustrated in Figure 12. This data lbstnm is a queue wlth tﬁree
opcratiom, insert which adds an lmeger to the rear of an qum ddm whkh mma the
integer ﬂfﬁefromafthequmandﬂnt_dcmmmmwuﬂmrrmﬂ
the queue. The hidden V-function storage is used wm'e tﬁe m df tﬁe qum rrout
and back point, respectively, to the beglnning md end of ﬂw m  Note that this queut can

hold an arbitrary number of imagers



. Figure 12, Queue

queue = state machine is insert, delete, first_glement . . .

first_element « derived V-function( ) returns integer
Appl. Cond.: ~front = back - 1)
Derivation: first_element = storage(front)
end first elemem L

front = hidden v-amm; nmmm
Appl. Cond.: true :
initial Value: -1
end front:

back = hidden V~functiont ) mmx
Appi. Cond.: true
initial-Vaiue: 0
end back

storage = hidden v-funeﬂon(unuger) returns lnteger .
Appl, Condt-fromt -2 | gback - ~‘
initial Value: undefined

end storage

insert = O-functionti:integer)
. Appl. Cond.: true R
Effects: 'storage’(back — 1):-= |
'back’ = back - 1
end insert - '

delete = O-functlon( )
Appl. Cond.: ~Mfront = back - 1)
Effects: 'front’ = front =1
end delete

end queue
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We shall first show that the specification is well-defined. This- wilk be dowe: by
initially proving a lemma tmmmmm properties netesiary to insure that the
machine is well-defined. Informally, MMMMMMMMMM

integer vahse. mmwwmmnﬁ“ oty euablio |

‘well-defined.

Lemuma For any S¢S, backgef{x} - wkm ﬁm&ﬂx)‘: -+ integer] and
backg #&nfmlsmﬁﬁwmﬁ

This lemvma can ummuwmmmmzn
The basis of the mmmmmw ¥ lefined to return: -1 and:
0, mem&mﬁmm mwwwww
For any state, m:wtdccmmubcd bytmmmw Furthermore, delsts
leaves beck mm«i mtonly mmnrwmmmw
satisfied.

We can now pme that the mmwmwm above femme. This
lemma is: heipful because: MMWMMEWM insert’s: and delete’s
applicability condition and effects section. Themmm tels evaluation’ carr be
done. | | |

To prove that the machine is mﬁm m properties must be mm i
the appiieability conditions of the O-functions insert: md MWMM; i) the next state:
function is. defined for both insert and delete; and, fimully, 4 memmnfof the equations:
in both insert’s and delete’s 'eﬂ‘ects sections is immaterial. MNote that i) ‘is" triviaily |

established since delete has only one equation in its-effects mmd the two - equations: in
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insert’s effects section modify different V-f unctinns. Thus, it is onlj necessary to deal with
i) and ii). We now complete the prooi‘ | - ”

Since insert’s applicabiiity condition isa constant and delete’s applicability oondition
only involves front and back, which were shown by the lemma always to return an integer
value i) is established. The second part of the proof is aho established by appealing to the
lemma. Since insert's and delete s ef fects sections only evaluzte Jront and bach, it is clear that
the next state function is defined for both these O-functions.

We will noiw show that the specification is consistent. This involves proving that
the four V-functions are total. First note that the Iemma gimnntees that fnmt. and bdck are
total. Storage and first_element, however, require more attention. Agaln, we must introduce a
lemma and then prove the desired results directly from the lemma. The lemma hows that

storage’s applicability condition accurately describes its domain.

Lemma

For any S¢S5, if frontg 2 k 2 backg, then storageg(k) is defined.

This lemma can also be established by the' inductive approach outlined in Section
2.2.4. The basis is vacuously true since. in the initial state, back is greater than front. Now
assume the lemma is true for any state S. We must consider the ef fect of tmctMnd delete on
S. Smce delete decreases front by 1, the result immediately follows from the inductlve
hypothesis. Now let 5° = NEXT(S,insert,x). There are two cases. Either frontge = backs-.'
in which case storageg.(frontg.) evaluates o X, or frontg. u!'backs.. ln’ the latter case,
frontge > backge and  frontge = frontg and  backge = backs‘- L So  for

frontge > k 2 backge + 1, storages.(t:)lﬂ ,:is defined by the inductive hypothesis. Also,




sm;ges.(buhs.l wahma to Xx.
Tmmwmmwxwummmms
Teseethat.v Enns.muemmammmms.mm&mmmm Fixst,
_ﬁmmwswmmmnmum@mmm |
error is retwrned. mmmmm«“umwmsams
'nguymm m«w-mummhm
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4. An Implementation Language for State Machines

_Chapters 2 and 3 have focused on: formalizing the ‘semantics of state ‘machine
specifications. The work accomplished in these:two:chAptovs #¥iuws efie to write prétise and
fons

unambiguous specifications.of data abstractions using state miichirtes.' But these abistra
are only mathesmatical ob jects. They-can mummmwupm thany progiimening
language, They.must first-be: :imphmmﬁ. “Fhus, mfih\puhm'ﬂpett n any formalizition
is to be able to describe formaily when:a dats-sbatrietion; sisecified by a state Triachine; is
properly implemented in some programming llw. thﬂs deftnlﬂon mvolves
the followlng First a programmlng language . for implemmting statc mchlm mqst be‘
described.  This topic is discussed in this chapter. Then a mcthod of provlng the
. correctness of an. imphmmdm must be fined. - This-topic: i!“'ﬂetwd in' the next chapter ‘
In this cham the - general pnpmm w amy progmnming langthge for
implementing. state .machine specifications ave m«m e pﬂticular. the  basic data :
abstractions to represent the specified objucts‘ and: the cohtiof constructs 1o Wmplement the
V-functions and Q-functiens. Thbwsﬁﬁmw Mnmdm‘ecméuis vatid
since any programming language for: immmm “must ‘include these
unimportant here.. Accordingly, this thﬁrwm this dupter R‘ather |
" control. ‘constructs. to be used. wnhuacmwnﬁau are introdisced. S;o.‘
..'implementatiom of state machine specifications will be written in terms of other, slmpler mtc
*macmm specifications. For mstance. a speclﬂution of a mck oould be. implemmted utlﬂg

state machine specifications of variables and arrays to repment elemenu ol' the dau
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abstraction and the control construc‘ts to realize the Y-functions and O-functions.

To develop a definition of program correctness, it is only necessary to def ine the
relation between the objects of the specification :;n_d the objects of the implementation.
Hencé. since this chapter contains a general discussion of the ob jects of an implementation, it
is possible in Chapter 5 to give a general definition of program correctness. To prove that
this definition holds requires involvement with the semantics of the programming language
and identifying correspondences between ob jects of tﬁe Ianguage‘ and terms used. in the
definition. But these issues are not a major concern for only stating the def(nition of a

correct program that involves state machines.
4.1 An Example

An example state machine specification and its corresponding' implementatibn are
given in Figures 13 and 14, respectively. The data abstraction specified in ‘Figure 13 is a
finite integer set. Insert and remove are O-functions that insert and remove, respectively,
integers from the set. Cardinality is a V-function that returns the number of integers in the
set. Has is another V-f unction that determines whether or not a given integer is in the set.

Figure 14 contains an implementation of finite_integer_set. The set is stored as an
ordered sequence of integers in the array A. INSERT,. REMOVE, CARDIN ALITY and
HAS are the corresponding implementations of insert, remove, cardinality and kas] Each of

these operations uses SEARCH, which performs a.binafy search on the array A. SEARCH

1. Throughout this thesis, lower case letters will be used in the names of V-functions and
O-functions of a state machine specification. Capital letters will represent their
corresponding implementation.
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" Figure 13. Specification of Finite integer Set

finite_integer_set = state machine is cardinality, has, remoye, insert

cardinamy = non-deslye u.fmpn( )ms integer
 Appl, Condys true.
- Initisl Vlus: 0
end clrdlmllty

has = non-derived V-fmtlmﬁ-lnug«) returns Boolean
Appl. Cond.: true . ‘ ‘
initial Value: false
end has

Insert - O—functionﬂ integer)
Appl. Cond.: urdimlitydoo
Effects: 'has'l) = true . -
if ~has(i) then ard!m!lty’ - ardmlny +1
- mod-insert : .

remove = o—tmmw) o
Q”‘L QMQ"M
Effects: ‘has'(}) = hln

it hasti) M«QMy’ ntgmlity 1

‘end remove

sy

end finite_jnteger,_set
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Figure 14, Iimplementation of finite lnteger set »

FlNlTEJNTEGER SET = lmplemcntlﬂonlslNSERT REMOVE,HAS, CARDINALITY

A: array of integers initially undefined
COUNT: integer variable initially 0

~ SEARCH =« procedure(a,f kinteger) ratums integer

¥ fuk
then return k
dise it azK read(Lf+kK72D) '
then retumﬁﬂkﬁ%,f .L{hk)/ 2
eise return SEARCHG if!«r‘k’lfﬂc»l.k)
end SEARCH SR

INSERT = procedurel(i:integer)
it COUNT .read=0

then begin

A.change(0,i);

COUNT change(D)

end o

elsc i COUNT read<100 v
"1t COUNT.read = SEARCH(1,0,COUNT .read)
then begin .

A change(SEARCH(1,0.COUNT rea
COUNT, changetébvﬂ'r readal)
end
wise it A. mﬁ(SEAR@Hﬂ O’,COUNT read)) =i
then return

else begin
for :=COUNT .read step -1 M’smxtmmcounr.md) do

it j>1 then AWWH»
A.change(SEARCH({i,0,COUNT read) ;
COUNT .changelCOUNT read+1);
end
else signal error
end INSERT’
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REMOVE = procedurefi:integer)
if COUNT .read=0
then return
else
_if A.read(SEARCH(i,0,COUNT .read)=i ‘
then begin -
for 1= = SEARCH( O,COUNT read) mml COUNT read-—2 do
_ .Achange(}A.read(j+1));: :
COUNT chmge(COUNT md-l)
~end : ;
else return
end REMOVE

CARDINALITY = procedure( ) returns integer
return COUNT .read
end CARDINALITY

HAS = procedure(i:integer) returns Boolan
if COUNT read=0
" then return faise ' a
- alse it A. read(S&ARCH(tﬂ,CQUNde)M
then return true
L else return faise
end HAS N ' -

end FINITE_ INTEGER_SET

returns the index where the biﬁary search stops.
An implementa.tionv consists of three parts an 'lmerflce desc}lptlon, an ob ject |
. description and operation definitions. ’ |
The interface description of an implementation provlde: a very brief descrlptlon of
the interface that the implementation presents to the outside envlronmem. It comlsts of the
~ name of the data abstraction belng implqmented and a Ilst of the operatkms that users of the

implementation may employ.
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1~31

FINITEJNTEGER_SET mmmmnmszn’r RWO‘V{,}IAS CARDJ}-‘&LITY

Operations such as SEARCH whose names do not appesr in 1hié iidrie

proyafet ety

not be accessible by users of the m-phnmm I

represent theob bein MW” v
P ki

:;.n*a 3Ty

representation of the spedﬁod m. mmw%vmm will be

AT L 3 3 wgis
specified as a state machine and ALMS will be wsed for W ghbigde” ilthough any
specification language could be used. N ‘ L

In the exampl, the object description consits of S

A: array of integers initially yndefing
COUNT: integer variable initiaily 0

& a.-:iiue“?

These phrases are syntactic sugar for the state machine

EulB T purtan “Mh

array given In Figures 15 'ahd- 18, resphiet ety 1 SO zﬁ*%y A are used o

P 5L R

represent the data abstraction. COUNT refww*m L & M o lhe set. These

Thebodyofthemvplemmtaﬁonmm.f )

provlde wmmmacmmmmm?nmmm the
v hiaen yratdst et el X
O-functions and the non-deﬂved md dermd V-fm ¢ hm)tmﬂ b implement
- 5 JECIIE xS AR T
the hidden V-functiem smce they are uﬂkm to users. Au apesation tion should, be
PPN AN % ARG DRI wiOs At R

given for every opention that appears in the m«fau

6 TERIEMEIN Y {‘t o ik e 3- Lol

S ::‘!

In our cxamptes. apermon deﬁnmnm uﬂ be writhn m V-fmhm Qﬂd

g 4% ‘iig‘!m “ﬂ}%ig;& it ‘ }

[

o functions grouped together by the uml mmi Ww ﬂm wwﬂ be fmd in, say,

I PR R IATR

ALGOL 60 or PASCAL Thm V-ﬁmmon and O-Im eat should bc ummmed as
' w W g



Figure 15, Variable

X : type_t variable initially a is equivalent to -

X = state machine M'Xfxéld,?x:xﬁ e TR

- RKorend = mwwwamm lype..t
Appt. e«ﬂ*ﬁﬁ
Initial VW i

end X.read
Mf'ﬁm
mum 'Xm-i
end X.chmg! ‘

end X

where type_t i the name'of a’ deﬂhm ib%i:ﬁm atALNIS
~and a is an element of type_t or:ti

i

fms.- Assume that the implementation maifitains a rétord of the current state of the
machines in- the objéct description: - For example; It no O-functions hiive been catied, the
Iniplem'entatlon would view each state machine as being in its initial state. Now, e_ac!i
:V-f unction call v(a) should be interpreted as B |

| | V-EvakS,via)

where S, remembered by the lmplemeﬁiatlon, is' the current state of the V-function’s
machine. An O-function call ola) is interpreted as |

O-EvakS0)(a) = §*
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Figure 16, Array

X:type_t array initially a is equivalent to

X = state machineis X.read  Xchange

~ X.read = non-darivad wmm’ returns type.
Apgk Cond.: true
Initial Value: .-
end X.read

X change Q-«ﬂmctbn( init
Ama. Cond.: trus. .
Eﬂnﬁ: X. M’l’ wi

end XW

énd X

where type_t is the | name of a defining. M‘IMO!‘ m
- and a is an eletﬁemof type_t or Inge :

where S is as before. Furthermare, the implementation now updates S to-§* and maintains
S* as the current state of o's machine until mothero-fmdwmh calied:



6. Proving an Implomontdtlon'(}oréoof

To formally establish the correctriess of a prognm, one must prove that the prognm
is equlvalent to a speciﬂcatlon of its intendod behlvlor by formal. amlytlc meam Thls
chapter is concerned with this process. dlu:omng how to prove the oorroctneu of programs
that implement data abstractiom specif |ed by mte machlnes. |

Here, the homomorphlsm property wm be used n the proofs In general thls
involves showing the following [Hoare 72a1. Assmm there is a class of abstract ob jecu K
with abstract operations F urthermore. suppoue that x* ls the ooocrete ob ject representlng an
abstract ob ject betongmg to T Let € be the collection of aH suich x* Flnally suppose that
‘w isa concrete operatlon that purpom to be an hnpkmuum of an obltract operatlon 0‘
Then, the homomorphlsm property involvel deﬂoh\g an abstracﬂon ftmctlon A mapplng
from C onio K and showing for every operation that | -

| >"aa'("A(x")) - A(a (xl'))' o

Before attempting such a proof, three mps must be performed Flrst, the concrete
ob jects used to represent the elements of a dau abstractlon must be chnracterlzed Thls u
discussed in Section 51 Then the class of aburact objects R must be identifed. 'nm "
done in Section 5.2. Flnally. the abstraction fmion mmt be dexribed Sectlon 5.3 is
concerned with this Issue and the problem of odtpuug the homomorphim property to the

particular needs of state mcmm spedf k:attom.




5.1 The Conorete Bc‘peooo;;‘ta@io;n

jed bg * sttm machine will

yyyyy

A concrete impmnentttlon of a data abum:tlonj\

usually consist or a couectton of objecu to repment the lme set and a group of ops

§0% }"‘% o

that purpoft to impiement the varlous funcﬁm; of :he maehhe. Sme of these operations
wiil implement O—functiom and others wm Implemem dcﬂved and non-derlved

V—functions Note that it is unneoemry to tmpnnmt m V—fm sipce they are
| lnaccesstb'e and not 2 an tntrlmic part of the dm Mu&m |

All of these operattom will access of moda‘y the concrete objects that are med to

represent the state set of the sme mhm We Mdmche nt of m conaue objecu
by C lf a concrete operatlon lmpiement: tn O-ﬁmeﬂua 0. M we view the operation,
'denoted wc. as a mapping from C X D intoc lf * We V-fungton go. then it is»

) a mapping from C X D into R, By adopdug thh vuw. we are mkin c lu rexphicit

W ‘Y’ ’\ WY T

parameter of each operation. This may differ fmm W‘ ?ux of the imphmenution

language but claﬂﬂes the opent!on of proeedurel M dpeml 'ﬁ ough
accessing global varhbles For example. in the ﬁxm

ﬂde effects or by

corresponds to the states of A and COUNT remembered b;! the

We shall now describe C in more denﬂ En ' '

collection of objects For examp%e in theﬂwc ufqer mtxmphnf Chapter 4,
T tp GR Ly

Cc %, x Bcount |

A set such as 85 4 X S coUNT I8 too large to use as the domain of the abstraction function

since it usually contains elements that do not correspond to any clement of the data
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abstractionbeing implemented.  So, it {5 necessary to describe M expllcitly. H

The siandard way to dd this is to use a concrete (nvefidﬁt. l;. THI; is a .pr_ed,kate
‘defining some relationship ‘between the concme'varhb%es md thus placing a amstra.im on |
the possible combinations. of vahies that they risy take. “Thien, ﬁ

C - ixi 1N, |

For the finite integer set implementation, 1. is . _

0.s COUNT.read 5100 A (¥1 POgi<j<COUNT read -+ A.read(i)<A.read N
‘This 'predktte states that tﬁe imphmuthﬁ“of ﬂmu.nmpr_m ‘éot‘m,‘lm at Mt 100
integers-and that the elements between 0 #nd’ CG!‘:!N’I’ n ﬂ:e tmy A are all’ cﬂstinct and
ordered. This latter condition is recessary to insure the correctness of SEARCH. The
ordered piir

IO € B 4 x BCOUNT

satisfies I, above This ordered pair corresponds to both machines A and COUNT being in

their initial sta!es
5.2 The 'A_bstrgpt‘; Obj.ots

The elements of the concrete representation lc should lﬁlplamnt or represent the
entire state set of a state machine speclfic:tieie; However, a concrete object need not
represent a single state but rather a set of states. ‘Tthls ooam b&euse certain states may have
no observable differences. When this happem, we ny the States are ¢quwal¢nt So, a
concrete ob ject actually implements the equivalenoe clags of a state and we identify the class
of abstractobjects 7 ‘with the set of equivalence classes of the state set. | |

For example, consider the specification of bounded_steck in Chapter 1. Its state set is
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a subset of [Dy,cp = Rypaepd X [Ddepth - le, Nwmm two states
Sl = ({20
and
Sz = ({(LD) ((A.O)))
Here, ¢ is the null set. The first state ;. wmﬁmﬂ, smm&ma MJ‘M
s0 stack is totally undefined and deptk returns 0. (Résall our previous convention that the

domaln of nullary functions is (A}.) The mdm ! ornds ta stack(D) rétusning the

value 1 and for x#l, stack(x) is undefined. Abe-in &Q. &ﬁm the vakie 0. Thus 82 -
NEXT(NEXT(Q_.push,l),pop,A) where. Q, is. the m state of dounded_stack: These two
”sta.tes, Sy and Sy, are equyvg!ettt as far.as amgﬁemm concertied since-stuck is
- hidden from a user and depth returns 0.in either state, . . .. .

Equivalent states are defined below. Intuitively, two states are equivalent whew it is

impossible for a user of the specification to deterimipe m;ﬁfmm them.
Definition
Two states Sy and S of a state machine specification SM are equivalens
if for any

Sl = O-EvaK..O- EvauO—EvaKS,, ol)(tl)),og(azﬁ )on(a"))
So* = O-Eva..O-EvaKO-EvaKss i agRagh..

where o, is an ‘O-function of SM, 2;¢D, . and nx0
either. N P T :
Sl - 52 = error
or : i
both Sl and 82 are undeﬁned
or’

V—Eval(sk V) = V- Evaﬁsz‘,v)
for any non—deﬂved or derived V-fuinction v of SM.

This definition guarantees that if a series of O-functions m applied te two equivalent

states, then two new states are obtained where the non-derived and derived V-functions
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behave identically. Furthermore by applying a series of O—functiom to the two states, we
make certain that all delayed effects become apparent. We shali denote the equivaience chu
of a state‘s by £s3. |
For example, for a state S of finite_integer_set in Chapter 4, LS simply contains the
state S. For the initial state Q of bounded_itach, - h
£QF - {F{0,0De Bpounded _mcki
where F is a mapping associated with the hidden 'V-function stack. In otber words, [Q] is
the sét of all states where depth returns the value 0. Not_e that [Q) is infinite. This occurs
since the data abstraction infegers used in bounded stack contains ini‘initely many elements.
If bounded.;tack used a data abstraction for the integers that had a bound on the number of
elements (such as the integers used in prognmming hnguages) then [Q;l and all the other
equivalence classes of bounded_stack would be finite. Furthermote bounded_;lack': state set
" would be finite. | o
The equivalence classes of the state set un be enumerated by using a nomal form |
generation of 2 state as the representative of each equivalenoe class. A normai form
'generation of a state is either Q the initial state, or generated from Q by oniy using
.information adding O-functions. Recall that an information removing O-function deletes
information that was previously added by an .ini‘ormation et‘i'ding O'-i‘unction. The same
effect can be achieved by initially not adding this informtion Thus, this representation is
valid since every state either equals a normalformgenention oris e@iiv;lent "to‘ a nnt'mal
form generation. For example, in finite_integer_set, N
NEXT(Q ,insert,l) - S

- is a normal form generation but
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NEXT(NEXT(NEXT(Q .tnnn.v.rmvwmn

s not However. it ts equivnlem to 8.
s.a The Homemorphism Property

¢ It is now possible to state what the qrmm;u _d ) W“"" means.
Informally, the impienmmn of a data abm ts mm when. the ms of the

implemematlon and of m cormpondm thba bdpu ﬂ . ;nd -;here is at least

one object of the lmplemematton oormpmdhg to every !bpn of lhg m ;bmlon This
is the usual meaning of a homtmorphum in mthumfiu (Fra}l_l‘ll 6.

.,~: s ;,‘

Formaﬂy, to prove the correctness of an mphe wme must first define an

abstracnon f unction A from C onto the equivaleme ch:la of '. the state, set of the State
| machine belng implemented A simp!e nnd natural way to do this Is to first dcﬂne a
| function f from C lnto 5 (eg. into the normal fmh’)mdum“mwmum.
functton a; A(x) - [f(x)]. A must map ma tbe m eb’H ﬂ,ﬂgo@lm classes of
one-to-one mapptng from c ‘onto the equlnleme cluap ol‘ ’ &o, many concrete ob jects
)‘can represent one abstract ob ject N ,
« Now, after deﬂmng 4, one must show for every ctc and O-function ®,
£O-EvakHC) w)x)] - Eflw (c.x))l‘
where xeD,, and for every non-derived or derlved V-fmcuenu

V-Eval{C) #)x) = & (Cx)

1. This is a slight abuse of notation. We assume LCetrord = errgr. -
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m-

where xeD,, _
' The above definition assumes that an lmplemulutlon of a V-function does not
modify the concrete representaﬂm M does. we must add the coadition o
LROT = Lo XY, ' o |
This could occur in an imglementation of finité integir_set where iMSreordm the elements
of A. e R
We shall:iliustrate these ideas using tﬁe exampk in Ch:pter 5 Again we assume |
CC,AX’COUNT ; o

and

smmﬂﬁ C [Dhll - Rhul kX b Mmm’ -» Rcardlmmy]'

First, let (c,ci,nc S0C) isamteofthelmyAdezlsa state of the variable . -

COUNT. It is helpful to define the predicate IN(C L3, which 1 true f the integer | is a  7
member of the concrete set, as follows:

IN(C},Co.i) & (IPIV-EvaKCy,A.read)( = i A O5)j<V-EvaKCo,COUNT.read)l.
| Informally, this predicate is true if there exists an ‘lnuger ’j su'c'h‘tha in the state Cj of A,
A.rc.;ad( J returns i and j is greater than or equal to zero .md -leu than the value‘ret_umed by
'COUNT read in state Cg of COUNT. Then '

f(<Cl.Cé>) - |

(((i,true) | IN(C}Coi)} U taise) | ~1&(c,,c2.;)) , {(A,V-EvaKCq,COUNT .read)))

Now to establish the correctness of th; implementation it is necess:ry to show that 4

is onto K. This can be established b'y shdwing for every.SGS that there exists a C¢C such
that £H(C)3 = ES3. Then one must prove that

1. [O-Evak#C), insert)(x)] = LHINSERT(Cx))




2. [O-Evak#C) removel] « EXREMOVE(C)]

S, V-EvaM#(C)has)x) = ms(c.;) ;

4. V-Evakf(C)cardinality) =
Comider proving 8. Here, it. hw@o”“ﬂ ﬂ!m x is or lsuot in
- the set, then HAS, respectively, returns trwe or-falon.. This. poapaety sowid: be shown by First
éroving.a lemma stating that SEARCH(x 0 COUNT Mmmmm where X
should appear in the array A. TMM@MM ¥ j M 1. and 2.
Furthermore, in proving 1. and 2, it woukd be #gonmsp 1o Show that beth preserve the

concrete invariant since A's domain is C.
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6. An Extended Model for Btate Machines

The model of a state machlne developed ln Clupter 2 does not allow the
specification of V-runctlons or O-functions tlngqpetﬂeon two.or more elemenu of the data
- abstraction defined by the machine. In this chapter, tlm rul!ldlon is lifted and the model is
extended to allow the specification of these greater tlun mty opentlom.

To specify greater than unary operatlam. tlac ms of the O-functions and
V-functions must first be extended.’ O’-’funct'lbhs' and derived V-functions will now be
allowed to have more than one argument of the data abwu;tm specll‘led by the machine
For example, this allows the definition of an O-functlm, muoa which computes the union
of two sets, or the definition of a derived V-funcmn. MJMJ. which returns true
or false if two sets have or do not have, respedlnl; my m elements.

O-functions will still retain their lnterpretatlon of clnnglng the state of the machlne
but now this state change can be dependent on more than apemte Derived V-functions
will also have their previous lmei'pfeta“tlon’ expanded Now.lnstead of allowing tlne user
limited access to only one state, they will permit slmnhneom acclm to mofethanone state.

Non-derived V-functions and hidden V-functions wil, however, still be restricted
to their previous interpretation. So, they can only specify ilniry operations on the data
abstraction specified by the machine. This conforms to tll'elf interpretation as f ully
characterizing a single state of the machine. | |

An example of a state machine specification i\llth greater tha‘h. unary operations Is
given in Figure 17. This is the specification of an fnfeger set that cin contain an irlillfify

- number of integers. The specification defines the usual operltmm insert, remove and Aas as




7
Figure 17. Specification of Intager Set .

‘integer_set = state micmne la has. remové. imen. m'm m;.elqmm.?

has = non-derived V-fmmmm m Boolean
Appil: Conds trie
initial Value: fatss
ond s

commom_element_? = dertved Vatunetionisysy
Appl Coml W o

insert = O-fmuon(l sttte,i'imag«)
Eﬂ'cctc "has'(s{) =
ondinsert

remove = O-function(s:state,i:integer) -
Appl. Cond.; true
| Etfects Rai'ti) - fules
=

union = O-fmthn(sl.s?mw ’
" Appl. Cond.: true
Effects: (Vil{’hm'(:.l) W} \'4 W]
end union .

end integer_set

well as the operations union and common_element_? described shove, Union’s effects uﬁﬂm
defines the mapping of each non-derived V-funciion in_the new. staje that it creates. Note
that a for all statement has been added for this purpase. Any. gester than,unary O-function
must define tﬁe mapping associated with every nom-derived.or hidden V-mna!on in the

~new state that it creates so that this new state is fully characterized.
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We shall now formalize this type of specification by making a few extensions to the
model in Chapter 2. As inthat chapter, eacth machine is Metled by a set of states, where
each state is modelied by a set of functions corrésponding to the hidden ‘and ‘non-derived

V -functions; O-functions define transitions betwggn states. . .
6.1 Extensions to the Basic Components
60161 V-funotions , ' = B e

6 1.1.1 Non-derived and Hlddcu V-fpgygggns

Non—denved and hidden V-functlom  are s specif led as in Figure 18. Note that 9 is
now included in the mapping desqipuon to ;ndm that. xhe V-function Is a unary
operation on the data abstraction defifed 'by the'machine. 1’*he remiander of the definition
is defined in the same manner and retains the same mmbn as in Section- 2.l.l I of

Chapter 2.

. T i % s d
>R . i Fafrid

Figur’e 18. Non-derived or hidden V-functionv

 Mapping Description: D; B,iR,

Applicability. Congition: ¥ s ® X D¢+ Boolean
Initial Value: M_VGID -+ R}

So, the sets D, and R, in the: V-function N's mppitig description may not contain
any element of the data abstraction deﬂmd by the:fmthine. And as before, slnce the state

of the machine is characterized by a set of mappmgs associated with each non-derlved and
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hidden V-function, we view the state set 55 as a subset of
(D, = Ry X . xm, Ry~ D -
where {Viu¥py } is the set of non-derived and hidden V-functions o Ahemachine.

A derived V-function v also remm the three sections in its definition. Hmvu.

these sections’ definitions and meanings are not the same as in Sectlosi 2442 of Chapter 2.

Figure 19, Derived V-function v

Mapping Descrlpﬂon: Q", Dy R,
‘Apphicabiity Condition: W, " % D, » Booleas
Derivation: der v such that (et ygneID, -+ R,] for states 5"

. As before, the dertvation section defines a function schema, denoted der v, expressed
as the composition of the non-derived and hidden V-functions of the machine and other
functions associated with the elements of D,. But, ifvisa gmw than umary operaﬂun.

der v alsozspeclﬂes the state in which each m—dertsulmbﬂdm V-function should be

interpreted. For any states §° the mapping usociuti m the schema is denoted by
(der vgn). | ?

As an exam'ple, consider the derivation section of common_slement ? in Figure 1.
_Fér any two states Sy and So, mm_ﬂmm_rmum thve vaive

(Gidhasisyd) A hastsg, ).
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This value is, of course, dependent on the mappinigs associated with Aas In state S, and Aas
in state 82. ~ | - T |

Now, for any states S", the mapping;usocia.ted with der yois a member of
[Dy - R,] where D, and R, are specified by v's mapping dcscﬂpaon These sets D and

R, can not contain any elements of the dati hﬁ‘nﬂctifon deﬂmd by the machine

Finally, the applicability condition specifies a

the Booleans.

6.1.2 O=functions

. L L

O-functions too have the meaning and Interpretatloan the three s.ja@tioqs\:ln their

definitien changed.

Figure 20. O-function o

Mapping Description: D™ D
Applicability Condition: ¥ ; ﬂ)" X Dy - Boolun
Effects Section: T ;D" x D, + D

As with derived V-functions, the mappmg descrt!uonnow contalm D" 'anri D, to
reflect the O-functions’ extended capability. Fm;mermore. Dy is constrained so that it
contains no elements of thé data abstraction defined by the ﬁmichine. The applicability
condition and effects section are also extended to reflect the O-functions’ new interpretation.

The applicability condition of an O-function how defines a partial function ¥, from
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D" x Dy, into the Booleans. Similarly, the ¢ffects seciion of a0 Mm now defines a

partial function T, from D" x D,, into D.
,8‘;2 The Semsantiocs of Sth%‘éi u”h!no
8.2.1 The State Set of » State Maschine

Our purpose in this section is to define 5. Here, we shall use the same approach
outlined in Section 2.2.1, taking the transitive-closure of the ml state Q,under the state
transition f-unctlon. The initial state Q is the tuple (init, l,....!_n_& ")mbﬂ'! mappings
. derived from the initial value section of each of the non-derived and hidden V-functions

(V).V} ‘Furthermore, the next state funaionhu the folmw dlﬂnitm '

Definition |
Let o be an O-function with mapping dexripuon Q"' D,

mapping ¥, in its applicability condition and mapping !g W its efFects section.
Let ac D, and Re D" '

Then' . i
T Ra i W (Ra)etrue

NEXT(R02) = | - |
R . if N (Ra)=false

Thus, the state set is generatéd as follows.



e

D QeSS

2) If o is an O-function with mapping dexctiption D% D, 'and S"c 5",
then if NEXT(S"0a) is defined, NEXT(S"o)e 5 where a¢Dg. . .

3} These are the only elements of 55.

Note that in 2) above NEXT(S":u.g) may beugdeﬁmd. As mexghlned in Chapter 2, this

~ depends on the partial functions T, and ¥ - To .guarantee that NEXT is alwayx defined,

we lntroduce the notion of a well—def inied state machtne

: x4 N (¥

Definition
A state machine is well-defined if for any O-function o with mapplng description

. D% Dg.and far any S"¢ 8", NEXTIS"pal is.defined where a£D,.
This definition guarantees that in -a- welMefhedmmm:hine. for every
O-function o with ‘mapping description D" Dy, U, is 2 total f&hctionfrom’“ "Do lmo

the Booleans and T is a total function from {(S"a)e SB" x Dg AMs'gm into 5.

6.2.2 The Semantics of V-functions and O-funotions

With this definition of the state set S5 of a state maCMne speclf lcation,lt is posslble
to formally define the meaning of ‘the O-functions and V-functions. - This will be déne by
defining mappings V-Eval for \./-fu‘nctlf.;ns and O-Eval for O-functions such that

V—Evalx" X NV a2[A-R]" o
and

O-Evat:S5" x NO - [A = %)

. where NV is the set of V-function names, A is the sct of argumems, R is the set of resultsl ,

and NO is the set of O-functnon names. Note that the domum of V-Eval and O—Eval'
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have been changed to reflect the extensions made to the V-fum;jnd§0-fumm;,
O—,Eval witl be MM&”" Now, .given. MO-A?W tion 0 with mappmg‘
igfﬂ’ 3‘”‘% O-Eval returns a

‘function from D, into 85 U {error}. So, using limbed l% 5 wﬁ.

dmriptlm.'ﬁﬁ; D, aid 3?&%&%

O-Evaif$o) = xal¥(s%a) » REXT(03) grres)

O-Eval$"0) js not necessarily mlsmqﬂmw@ﬂ or NEXT(S"0) can be |
undefined. However, Q-‘-E\?_uKS",o) is always a total l'uhetkll in a well-defined state
machine ‘ ’ ‘ o | ,

For any mm-derived or ﬁidtien V-function v and tﬁﬁ s, V-Evﬂ will return a
_ | functlon from Dy into R, U {m}So for any m—deﬂnd or M?Qm Y-runm v with

 applicability condition ,,
V-Evarsy = aaif,Sar 4 va el

i B, 15, apphcabile

Finally, for a de*r}ivéd V-furiction on v with app

| q‘:pn‘c_llltion ,‘v awhgl_qeﬂvfatloﬂ’ g_g_:; v, .

V-EvaK$"y) = Aaf¥W (5% (det Vg4

where S"¢ $" .’ .

Note that the function that V-Eval evaluates to is not necessarily deﬁmd over the
entire set D, since the applicability conditloqfca'n be undefined nr.depmdmg 0'_\' the tYPC of
V-fu.n‘ction‘. vs(a)b or (der vs»)(a‘)‘ can be undeﬁmd when the appﬂcqbﬁity conditlou

evaluates to true. When this is not the case, we say the sme machine is consistent.



Definition

A state machine is consistent if, :
for every state S¢ 36 and non-derived or hk!dm V-;unctlon v,
- V-EvaKS, v) ts'a"topal finction from D, it Ry U lm}

and if,

for every derived \&i unction v with mappmg ducﬂption p D and S" $"
V-Evalis"v) js a ml function from: D mmwu teryor). ‘

In a consistent state niachlne for non-derived and htddcn V-functiom. "S is always’
a total function from (st i V(S X} into R, and for dtrlnd V-functions. (m vsn) is

. alwaysa total function from (xtD lll (S".x)) inmR
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7. Coneclusions ’ .

The aim of this the_us has beenmedg\; gf n,fm wmmn technique

for data abstractlms based on Pamas ldeas. Flm. s m{l
o Gl

state machine specif iontion was daebped “This ‘model: gave ﬁf*m ’connructlm for the
'state set of a state machlne and then used the state set to femlue the semantics of the
iyt s A MR )e A

V-runctlons and the O-functiom Mso the notions of a veli—deﬂmd and of a comlstem

RS EER SN EURVEE LRI
t state machine were introduced Next thts ubstract model m used to formﬁxe the semamics

:!,;;; ‘*i 'ﬁl;ﬁ a0 R

of a concrete specification languagc fer state mchinu This hagange was used to specify a
number of data abstractions and also to illustrate how to pmc a fuﬂwhr state machine is
well-defined and consistent. = Then a proof methodology te use with state machine
specifications was discussed and ttk_nstr_ated. . This methodelogy empioyed the homomo;rphism
property to establish the correctness of an lmplemenntinn of a m mchm specification.
Finally the model for the semantics of a state machine wm was extended. This new
model allowed the specification of a greater class of data abstractions than the previous one.
In this final chapter, the usefuiness of the state machine specification technique is
evaluated and reviewed. This evaluation is then foflowed by mmggesﬂons for further

research on state machine specifications.
7.1 Evaluation

The state machine spedf ication technique is best suited for the speclf ication of data
~abstractions. Its conceptual basis of a group of functions opertﬁng on a state set matchu

quite well the notlon of a data abstraction where a group of funwom operate ona collectlon |

fprthcsemanttcsofa_-
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of objects. To construct a state machine specification of adau abstraction, one mtstt model
the objects of the data abstraction uslng the V-functlom of tbe machine Ina sense. this

corresponds to modelfing the ob jects of the data abstracthn by using Inﬂnite arrays So the

~ state machine technlque is a variant of the abstract model ¢pprmh [Berzlm 78], [(Yonezawa

77} ‘where one is restricted to niodelling‘:rnbpcts of thcdltalbstnction by using infinite
arrays. o ) |
~ In the abstract model approach, the ob jects of a data abstractidn are represented in
terms of other data abstractions with known propemes eitabllshe'djby fbr‘malws‘peclf lccttons
given in. advance. Then the operations of the data abﬂnctionbelng defined can be
specified in terms of the operations of the known ab;traetlom selected as thc reprcsentatlpn.
So, a model for the data abstraction is devéloped. Thlsdiﬂ‘ersf rom axiomatic :]m'qﬂcadom
(Ziltes 74), tGogucn 75]. [Guttag 75] where the behavior of a data abstraction is given by
axioms ‘refating its operations. ‘Currcntly research is beingdoneon both the_setechnlques.
Since any comparison made between. abstract model and axiomatic specifications will apply to
state machine specifications, we shall limit the f‘oliowiug ducumon to a comparison of the
abstract model and state machine techniques.
In using the abstract model approach one is free to choose the data abstractions used‘
to represent the speclned ob jects Thus it appears that abstract model speclflcatiom wouid_

be easier to construct than state machine specifications. In fact, one can encounter diff lculty

in using the state machine technique fo specify an abstraction whose objects can not be

modelled well by arrays such as lists or trees.
Another issue in cnnstructing state machine specif ications is that one usually wishes

to write a specification that is well-defined and consistent. So it will be necessary to prove
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that these two properties hold. 'Studying the proofs lnv Appendix 2, it appears, at first glance,
that the proofs of these two _’prl\'o,perti‘es are rather comphx Hm&whib the [m)o(s in
Appendix 2 may indeed be smwh§t cumbersome, they arebagh;am qgme simple and
straight ..forward. ' They érlmarﬂy m&y on the defmm in Chapter. 3, The most 'émuve'
‘step in the proofs was the mtroduction of the lemmas Even Imn, however, the creativity |
| involved was minimal. For example when l mmd work on showing that the specif imﬂon |
’of queue was well-defined, I did not begin with the first lemma. It was qnly when | was
f orced to show that both front and back could he enltmed in any sate that | reglized ti\at 1
had to prove this lemma. So, in carryipg out the method outlined in Section 224, 1 found |
the extra condmon I needed to simplify the proof. ‘This experippce was repeated whw 1
attempted to show that V-Eval(s first_element) was ml

I feel $hat in moftncasgs‘it will be necessary to prove simple Jemmas to. help in
cqlrrylng out proofs of. properties of mtz m;chlm M@tm Mver. lt appears that
' V | weps in the proof will

thesg Iemmas are usually qune"_jccasy'!to discover md M SM;
involve one in time consquiﬁg. but not difficult, work. .

2 property, holds but
one must also show that the abSiractlon fu"‘“"“ is an onlo mapping. Ih!fs;!ﬂ!cr»,task is not

However. it ';ppg;rs that proving the Cof

atign. will be more

difficult. Here not only is it necessary to show that the he

s‘imple. One must first characterize every equivalence class of the state set and then show
that there exists an element of the concrete ob jects that "‘P‘WEMA element. |

To prove that some property holds for an abstract m Wﬂa ton of 2 data
abstraction, one must show that the property holds in the d‘”‘mﬁb!!'&mudd The

difficulty of this proof depends on how well chosen the mgdells. Thus ngmg that a
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property holds in a state machine specification can be easic’rﬂor harder than proving that the
same property holds in an abstract model speclﬂmlon acc&rdlng to the aptness of the latter

- specificiation’s model. However proving the correctness of a data abstraction specif Ied by

either technique appears to involve equal difficulty.
7.2 Topios for Further Research

One area for further research is to determine the usefulness of tﬁe state machine
- specification technique: Specifically, can state tachine :pedﬂatiom be useﬁ successfully in
the design and development of Iarge scalle software systemis? Research that should help
answer this quésﬁon -.iséurtemiy'being"dﬁhé“at'ﬁsR“l’. They have used state machine type
specifications in the design of a provably secure opentmg system [Neumann 1 and are
&evielopmg a methodology for the development of sortware that uses state machine type
specifications. Theirpreﬁnﬁmry resuh’it’i‘fthlifarﬁ‘ﬁﬁé Ben encouraging. », |

Another research area is the extension of the state mac.h'ine' speclf ication téchnlque’s'
error handling capabilities. At present, when the applkaﬁllity condition of an d—f unction or
V-fﬁnct,ion evaluates to faise, the~f0nictton rﬁum the\ special symbol m Clearly, this
does not give the user any clue as to what has caused the error. More information shoul@ be
giv.en. Furthermore, the nﬁnlng of returning an error message has not been discussed.

The specifications could be extended to ‘atluw one ﬁo define more descriptive em;r
messages. lForl example, cardinality in the finite set meum of Chapter 5 could return
an error message such as "too many elements” when one attempts to add more fhan 100
integers to the set. Parnas has noted that more informatlon is needed to describe how his

specifications handle errors [Parnas 72, 75).




Anothier extension to state machifie specifications. can B, fidde e ih the class: of dati
“’""“'m’l’“ﬁm T“Wmm“m , e Have ahatied thab et denk. b

| spedﬂed by a state machine are immutable. In an immitalile sty

RRPRp— m

behavior of the states ln a state machine specmmim An o-rem o, wmm glven 2 mté

7 abstrictivh are cohstants; 1.6, théir

S aid xe Dy does hot feliry S, but instead retarfis a “ew m & Fum-érmon. n‘ the
tioh amamim*'- Similar
behavior is also éxh’lbitiﬂ By & V-fufiction. However in & el M*m ethon the

behavior of thie objects may chinge, An atton

O-functﬁm' ois agam g-ivtn 8 ma ,* At 1, % corgitib

passed 4 fiutiblé object may return a diﬂm L,
computation history. T, an obvious tople fer furiiéh, RN 146/
‘_ machine techmque to aﬂow the Wf‘ ,

studylng how abstract model specifications can. be s .t m ki i, sbsirsiatons
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Appendix I - Undecidable ,Propetties' of State Maﬁhhies |

In | this appendix, we shall show that it is impossible to decide algorlthniiéilly
whether or not a state machine, specifed in ALMS, l.s’ well—deﬂned o”r’obr‘uistem. "This is
established by reducing both. problems to the blank tapl Aalttng problm for Turing
. machines. The blank tape halting problem is the problem of determimng. glven & particular

Turing machine T, whether or not T halts when started on blank tape This problem is
undecidable [Hennie 77]. |
The definition of a Turing machine used here is given by [Hennie TN. A Turing
machine consists of an infinitely long tapé coupled to a finite u;ﬁtrol uiﬂt. The “t’apie. which
acts as the machine’s memory unit, is ruled off into squares. Each square may‘be lhkrlb‘ed
with a single Symbol'ffqm a finite alphabet 2. or it may be bhnk CTh‘e special syﬁl;ol ﬁ is
used to r?presént a 'bla;nk: The control unit can shift the tape b&tk and forth and lsable to
examine one square at any time. | R
The control unit is capable of assuming any ene of a fixed, finite numbéf‘of states.
We shall only consider deterrhinistic Turing machines. So, at any given time, the state of the
.control' unit, together with the currently scanned: tupe"sfm”bol‘. uniqute determlne; the
behavﬂor of the Turing machine. The Turing machine has two actions: it m;y'éitﬁer halt
.or carry out a move. Each move consists of writlag a symbol on the currehtly'stinhed tape
square, shifting the tape one square to the left or right, and causing the ‘control unit tg enter

a new state.] The action of the Turing machine is characterized by the successive moves that

1. The symbol that the Turing machine wrltes need not differ form the symbol that is
already there and the new state need not differ from the current state. :




occur when, initiatly, the control unit assurmes mw mm and sore

finite number of the tipe squares are inscribed m;' wbol i the remainder are Tt

© blank.

A Tuﬂné mmm.gwby x groug:o

%3 % d 9,
where g, is the current state |
| s; Is the symbo!m the tape head
8, Is the symbot to bem on the tape
dyelright , left) 13 the direction of the M,m |

qy, is-the next state

Each qﬁihmph' must have w distinct preﬁg qsy The WW Q “;: mm cantrol
\umt. is in a state q and is scanming a symbol s mch :m | qs ’ hmnhe pnflx of any
‘quinmple. | | |
- Sd, assume we are given a Turmgmﬁﬁt& o

%y By ey By Oy

Wi ey Sy
ahd initial state G,
Now, consider the state machine given in Fighre 2L
For the notation &d), -
1 if d = gight
b = |

q0 ifdejefi
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Figure 21, Turlno_m-chlm_ﬁ_i

Turing_machine_R_1 = state machine is tape, state, head_pos, move

state = non-derived V-function( ) returns character string
Appl. Cond.: true :
initial Value: q

end state

head_pos = non-derived V-function( ) returns lmgger
Appl. Cond.: true _
Initial Value: 0
end head_pos

tape = non-derived v-funcﬂon(l Integer) rutums chancter strlng
Appl. Cond,: true : . o
initial Value: #
end tape

well_defined_? = hidden V-function( ) returna integer
Appl Cond.: true
initial Value: undefined
end well_defined_?

move = O-function( )
Appl, Cond.: true-
Effects:
lfsme-q, N tapelhead_pas) = 3 then 'state’. -q,,

if state = =g A tape(head_pos) « 5, then ’Imd_pos - head_pos + l(d,
it state = q, A tapelhead_pos) = 5, then 'tape'(hud_pm’ S,

if state = q n tape(head_pos) -5 then mte’ qh

if state = qi A tapeihead: pos) u, then W_pos = head_pos + S(d,

if state = q. n tape(head_pos) -5 then, 'W‘(hgd,.pqn) =% )

it ~{(state = q, A tape(had_pos) - s ) v...v (state -4 A tape(hud_pos’ - s,n))
| mhpém&a_pw welt defined ?

~end move

end Turing_machine_TR_1
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Turing_machine_B_1 simutates T by having a mgwq?Maﬁ@‘mm'nﬁ'
compuﬂ‘ﬁoﬁ. . - PR s e B TTREPE S R | | |

Now, Turing_mach J ugm

Turing_machine_R_1 cotrelponding to the final swep in m W InS,
| MGstate - ¢, A nmwws, LA L% Wﬁﬁﬁwwe 3

F1 I

evaluates to true. But, the equation
hpe‘(hud_’oﬁ - ﬂmj

ok b AT Ay L sy e
¥ oL g

is undefined since the V-function wﬂmj WN g’

Turmg_ma‘chm_;‘(_l is not weli-defined. O

only be caused by w,“ ' &
apetherd_pos) - well defined ?
since the other equations only use total V-functions, T 1 , , :
~((state q‘ /\Wﬂ #s, ’V‘i— W5%SW- - ‘1.” ,

w3 et o - ity b

is sztlsfied so ” (mm halt

!‘; TN T

Now, consider the state machine tpedﬁcmen in l'igun 2. 'ﬂm state machine is

not consistent if and oniy if ﬂ halts wim\ mmu on m upe

Lo hesd FAEY 3 3

Firse, assme W M&w! bieak wu:;mmm m%w which
‘”-s,)v i?mﬁ’ ‘A%M-ﬁ”
» S’ Q&Mumwmntm

~((su‘te {Q‘

‘evatuates to: trm Gﬁnplﬂ« Q K6.m

V-function consistent_? is not total. By revcmng this :mt. it s mt ﬂut if

‘..I‘.' ot

Turing_machine_M_2 is not conmtem, "N mm on blank elpe
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Figure 22. Turing_machine_R_2

Turing_machine M_2 = ita_te machine is tape, statc. consistent_?, head_pos, move

state = non-derived V-function( ) returns: chnmr string
Appl. Cond.: true '
initial Vaive: %,

end state

head_pos = non-derived V-function( ) returns integer
Appl. Cond.: true
Initial Value: 0
end head_p‘os '

tape = non-derived V-function(i integer) returns character string
Appl. Cond.: true
initial Value: #
end tape

consistent_? = non-derived V-function{ ) returns integer
Appl. Cond.: switch '
initial Vatue: undefined
end consistent_?

switch = hidden V-function( ) returns Boolean
Appl. Cond.: true
initial Value: faise
end switch




SRR R A

‘move = O-fmiwd )
Appl. Cond.: true
Effects: |
Wﬁm-q,' Aupe(hud_pu)-s then "stite’ -4, -
Hsme-q‘ A tiptihead_pos) "i mww ﬁud_ym¢ Nd,

'lﬂm&-q Amﬁdd_pw ',‘m

H date = § ,\mww‘., e - G,
| "m.*k g

If state - g AMMM"; o R < A

n«tmn-q. AWWM ‘r””’@ #4, { pethesd_po

end Turing_machine N_2 , e
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- Appendix II - lPrgo‘fs

This appendix contains the proofs of the hmmas and the theorems in Section 3.3 of
Chapter 3. We shall f lrst show that the spedﬂauon ls well—deﬂnod Thls will be done by
inmauy proving a Iemma that captures the key properties necessary to insure that the
machine is well-defined. Then, with the aid dmm m we \m! Jlmly establish that the
specification is well-def lned o | | |

First, some nouuoml details must,hc handled. We. shall dénote the initial .mtc of

queue by Q.. its state set by 55 and adumé

S Cc (DStOI‘IgC - nge] X{Dmk -» ij X [Dfm - Rfmt]

gmr_n__ For any $¢8%, backstwd ﬂW] and. fmtgd(?d > Imeger] and
backg ,.¢ # frontg where ¢ is the null set. :

Proof by induction:

" Basis: By definition,
MQ-{(A 0F and fromQ (o .

Inductive step: Assume for all
S« NEXT(. NEXT(NEXI(Qlel?W..‘,n“,l,an_lk’
where a¢ DQ‘. n22 and oy {insertdulete) that.backgeLia) -x inmger) and
frontgel{n} —» integerl and backg » $ ¥ frontg, : :Wea st show for all
= NEXT(S,0,x)¢ S5
where xeDg, and welinsertdelete} that backgeel{a} muger] and fronts-d(xl - integer]
and backg. C X fronts. ‘ '




Case I: backge
Case la: w = insert
Then S* = NEXT(S , insert , x).
g Since (S , true , insert , x) = trye, :
8- TEs, inert, x , storagetback - 1 = 1, back’ = back - D o
- EB(s | insert, x, storage'(back Dat),insert,x, 'back' back -
=S o
Since S°¢ 8§, S; is defined and. hence
Sy = = E(s , insert, x , 'storage'(back - l) - i) is deﬂned
Then §° « E(S, , insert, x , back’ = back -1
- (storagesz , X, oS, , back - 1, msert, ), rf’ﬁ)_msz)v
- (storages {2, Sg b back. +M m} :
- (storages {(x backs -m, frev;ts )
Now backs - bat‘ks and so by. the vae hypnthesll.
itisa member of [{2} > integer] - (é)
Thus, backg«€¢[{X} -+ integer) - ($}. -
Case 1b: @ = delete ‘
Since $* = NEXT(S , delete , A) is by asmﬂptim deﬂned there are two
cases relating to ¢5(S , ~front « back - ), delaae M ‘
Case 1bl: (S, ~ifront = back - 1) , delste , ). = false. .
Then §° = $ and by the inductive hyposhesis,
backgel{A) - integer] - ($}.
Case 1b2: 15(S , Mfront = back - D, detete , 2) = true.
Then 8* = TE(S , delete, 2 , 'front’ = front - 1.
So bickg = backg. which, by tﬁ%mﬁm hypothém.
is a member of [(A} - intsgerY - €9y

Case 2: frontge.
Case 2a: @ = insert » :
Here, 5* = TE(S , insert, x , 'storage'(back - D) = #, 'back’ = back - 1),
So, frontgs = frontgel(A) - integer] - ($) by the inductive hypothesis.




Case 2b: @ = delete

Case 2bl: p(S , ~(front-back D, delete , A) = false.

Then S* = S and by the lnductlve hypothesls,

frontgel{a} - integer] - {$). ;

Case 2b2: (S , a&frmt-b;l;k l) deiete k)-tru.

Then 5* = TE(S , delete, A, front’ = front - )
- Ecs, delete , 2, 'front’  front - 1
-(storages.backs {(J\ p(s front l delgne A))}) '

= (storageg, backs {a, Sk front - l)))
-(stonges backs {(A frmts l)))
By the lnductive hypothuu. fromst[{:\) -» inwger] - (é) o
fronts.c[(:\} - lnmger] - (0) | o '

We can now prove that the machine is well-defined using the above lemma. Three
properties must be established: 1) the appliabmty conditions of the O-functions tnsert and
delete are defined; i) the next state functlon is dﬁ‘imd fur ‘both ‘tnsert and delete; and,

ﬂnally. il the ordering of the equatiom m both umru urd ddm: eﬂ'ects secttions ls
/

immaterial. Note that iii) is trivially estahmln& singe dM»fhu»only one matlon in s
effects section and the two equations in insert’s effects: nctlun modify dlffcrem V-functions.

. Thus, it is only necessary to deal with 1) and ll) Wer now eomplem the proof

Case I: The Applicabllity Condition
' Case la: Insert’s Applicability Cmdition
(S , true , insert x) - S P truo
= true
Case Ib: Delete’ AppHicability Condmon
(S , ~Mfront = back -1, delete , M - $ l' ~(from back - 1)
.= ~Afrontg = backg - D
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By the lemma, both frontg and backg are members of [{A} - integer] - (¢}
so ~frontg = backg - 1) is defined.

Case 2: The Next State Function
Case 2a: NEXT(S, insert, x)
By Case la, (S , true , insert’, x) = true
So,
'NEXT(S , insert , x) = ‘I’E(s insert , X , storag e(back - 1) = i, 'back’ = back - D)
= E(E(S insert, x , storagc'(back Db , insert , x , 'back’ = back - 1
Now, :
E(s , insert , x , 'storage’(back - 1) = )
- OxL(x = n(S back-Linsert,x)) -+ p(S.i imert,x)mages(aﬂbuks.f rontg)
= Ox.[(x = backs -Dax, storages(x)] b&cks fronts) :
=S°*
Note that backg is defined by the lemma 5o §° is defined.
Ecs*, insert, x , 'back’ = back - I
= (storagegs , {(x , po(5°, back - 1, insert, x))) froms)
= (storageg. , (A, backgs - D}, frontg)
- (storagegs , (A , backg - Y, frontg)
By the lemma, backg is defined and hence NEXT(S , insert , x) is deﬁmd
Case 2b: NEXT(S , delete, 2) '
Case 2bl: 4#(S , front = back = 1), delete , ) = false
Then NEXTI(S , delete , ) = 5. .
Case 2b2: (S , ~front = back - 1) , delete , A) - true
Then NEXTI(S , delete , A) - TE(S , defete, A , 'front’ = front - D
« E(s, defete, A, front’ = front - D
= (storageg , backs m a(s from 1, delwe »m
= (storageg , backg , o, S ¥ Front < DD '
- (storageg , backg , {(% , frontg - DY)
So by the lemma, NEXT(S , delete , 1) is defined. B
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We will now show that the specification is consistent. This involves proving that

the four V-functions are total. For front and back note that

1) back

V-EvakS , back) = Aalp(S , true , back , 2) -+ bldis  error)
= Aaltrue - backg , error) |
- Aa.b‘Cks

2) front

V-Eval(S , front) = Aa.[;a(s true, front A) = fronts m]
= Aaltrue - fronts m]
‘m Ad. fronts

By the lemma, both backg and frontg are defined.

To see that both V-EvakS , storage) and V-Evak§, first_element) are total, we
must"‘again introduce a lemma and then pmvé thcduiredmuks vdlrectly’fran the lermma.

The lemma describes the domain of storage. - -

Lemma
For any SeS5, if frontg > k > backg, then storageg(k) is defined.

.Basis: Since frontQ.;- ({x~1) and bad:Qw((a,O».'tﬁe:’mMVthﬂhm.

Inductive step: Assume for all ‘ :

S = NEXT(.NEXT(INEXT(Q, °l"l)-°2"2)" "°n-l"n-l)‘s
where a;e Do, n22 and oic(imert.delete) that if froms 2k 2 backs. then nonges(k) Is
defined. We must show for all '

$° = NEXT(S,0x)¢ S5 | |
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where xeDg and we{jnsert,delote) that if - Erontige a-k 2 Satkgs, Shan sansgtys(h) is defined.

RPN

Case I: o = insert
Note xe¢Dp ot
Case la: frontgs = backg.
Then storageg«(frontg.) evalaates to x
due to the equailnm worage'(back. ~ B =i and Dok’ « budk ~ L
Case 1b: frontg. = backs.
Then froms. > backg. _
and frontge = frofitg and backge = backg - 1.
So for f rontge > k 2 backge + L storsgeg«k)
is defined by the inductive hypotlmh
Also, storagesfbacﬁs.) evakntu to T
dué to the équations storige’(back i - tmm aw L

Case2:oi'o-delgete |

for !r%; 2% 2 bathgy ; storagag 4. -
Is defined by the inductive hypothests.

To see that V-Evals , storage) is total, note thig -

~ V-Eval($ , storage) = Aalp(S, froh,tzizhd{ , storage , ah) - Wﬂ.m)

The  desired. result - immediately. foﬂﬂm Fo::sve that

V- Eval(S first_element) is total, note that for any S¢ 5§

V- EvaKS first element) R
- Aa[gt(s ~Afrofit = back - D first element,M -+ p«swfmﬂcy A
= Aal~frontg = backg - 1) -» storageg(fronts) , ggror]




- 99 -

If ~(fronts = backg - D is false, then

V-Eval§ , first_element) « Aa.error.
Otherwise,

V-Eval(S , first_element) = Aa.storages(f ronts)
Now frontg > backg so, by the lemma, storageg(frontg) is

defined. Thus, we conclude V-Eval(S , first_element) is total.
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