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ABSTRACT 

Synchronization code is necessary to control shared access of an abstract data object in 
a parallel-processing environment. This thesis explores an approach in which a 
synchronization property can be specified in a high-level nonprocedural language, and an 
implementation for the specified property can be 'Synthesized algorithmically'. A problem 
specification language is introduced in which synchromzation properties can be expressed in 
a structured but natural manner. A method is th'en p~ted for synthesizing an 
implementation. An intermediate form, called a solution s/J«ification, is first derived, 
representing an abstract solution to the problem. The derivation of the solution 
specification accomplishes the transformation of the specification from nonprocedural to 
procedural form. The solution specification can be translated directly into a source 
language synchronization mechanism, such as a monitor. 

Specifications for common synchronization properties, such as the readers-writers and 
bounded buffer problems, are expressed in the problem specification language. 
Corresponding implementations are then synthesized for these problems. In addition, the 
derived solution specification can be used in analyzing the soundness of the original 
problem specification with respect to criteria such as freedom from deadlock and starvation. 

THESIS SUPERVISOR: Barbara H. Liskov 
TITLE: Associate Professor of Electrical Engineering and Computer Science 
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Introduction ·and Saokgrou~cf ,. 

1.1 · Goals of the. 'thesla 

This thesis is concerned with the problem of synchroniiing accesses by concurrently 
. ' -~ ' . 

executing processes on a shared data object. Overall the thesis has two major goals. One is 

to design a high-level language in which synchronization properties can be specified in a 

nonprocedural form. The other is to devise a method for translating such specifications 

The reliability of computer software has received a great deal of attention in recent 

years. The reasons are both economic and intellectual. Rapid advances in hardware 

technology have dramatically decreued the cost of hardware relative to software, as wen as 

expanded the range of complex computer applications for which new software is required. 

As a result, the cost of producing and maintaining software has become more than ever a 

major concern. Since testing and debugging incorrect programs consume a large share of 

tot a 1 software costs, methods for improving the reliability of software are increasingly 

important from an economic viewpoint. At the same time, the intellectual difficulty of 

producing high quality software has become more generally appreciated. The study of how 

to produce compfex yet- reliable· software systems -represents •- f«tile area for research. 
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One productive approach in th• aJ~ ,\l~:Oeen the study of language support to 
:... - - - . 

enhance software reliabjlity. The range of current, work_ in the __ area is quite broad, as 
• . •, • ; ~ • .( ; ·, • ~ •· .,- A - ·t :· i.J ~-;._-- n ---~ -: ; ~ .t 

illustrated by [LDRS77]. A particular aspect of this approach that has received wide 

attention has been the idea of abstract data types [Lisifl::•MNg-Ct stJppOrt fQrt•bsttact 

data types gives programmers a facility for implementing data abstractions analogous to the 

capability provided by procedures for functional abstractions. Following a methodology 

using data abstractions has been found to be a significant aid in producing reliable 

software. 

A number of languages have beeft,develepeG. and·inr;fMftJ.,,0¥C irnpJemented, t~t 

include mechanisms supporting the concept of abstract data types (e.g. [Lis77l [Sha77l 

[Ges77]). Because of a lack of facilities in these languages for creation of multiple 
.. ' - ' - ,' ~,' ~ - _, -·-

concurrent processes and interprocess communication, their range of programs until recently 

has been restricted to single-process computations. However, it is obvious that many of the 

kinds of applications for which the reliability provided by data abstractions are needed, 

such as operating systems, require such mukiprocessing capabilities. In introducing facilities 

for concurrency and interprocess communication iftto these languages. it is necessary to do 

so in a manner that maintains the philosophy and methodology that such languages 
''•" 

support. 

This thesis explores a particular .,.,,.ch,to tkey prGA>11m~in,.this-uea. The iS1Ue is 

the proper synchronization mechanism for a language that supports an abstract data type 

mechanism. Specifically, it is assumed that objects of abstract types in the language are 

shared among different processes and can be acceued concurrently. This means that some 



sort of synchronization mechanism is r .. ecl a regulate, these concurrent accesses. 

Synchronizatioa may be ·required. both· to 'ilmintain. the<intemat consistency of the .objects 

and to ·implement htper4evel .sched'ulin~ deeisiona. 

The approach taken here involves specifying synchronization properties in a 
_,; ,· 

high-level nonprocedural language, and obtaining automatically an implementation for the 
'• .. 

specified property. Synchronizing concurrent accessei to data can be a complex, error-prone 

.rask. Since the.reliability of programs that access!lnaNthlata depends.upon the correctness 

of the-synchronization, it is highlyidmrable ttiat<the ~ndtmnization ttself be' itnplememed 

as rehably as possible. :if a specificatiOR languafe can be.deve~ that is'f)Owerfvl enough 

to expt7ess· synchroniution· properties of ·mterest, .UML·.for which itnpiementations.,can ·be 

synthesized automatically without tocnnuc:h effer:t,.thea·:tt can;b1t:inmrporated into a source 
• 

language that supports data abstractions. Programs in the source language can specify 

synchronization properties nonprocedurally at a high level, and the compiler can produce 

the actual code .using the synthesis algorithm. This would be a very attractive alternative to 
:'":' 

the range of synchronization mechanisms currently available, some of which are surveyed in 

the next section. 

Whenever concurrent processes share access to common resources, it is necessary that 

accesses by different processes be coordinated. The purpose of synchronization code, in the 

broadest sense, is to bring about this coordination·. One kind of coordination involves 

limiting the combinations of simultaneous accesses allowed on a resource. That ~s, it is 
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sometimes ReeeSSary' for certain accesses to exclude others from tak-iftg: place. at the same 

time, This may be because the resource can1mhereritly,support·1J1tlJ a limited number of 

concurrent accesses. For instance, a physicalidev~'ltldt-.1-a card ttader must~ dnoted 

to a single process at a time. Alternatively, the nature of the accesses may be such that 

certain kinds of accesses performed concurrently woukl lead to inconsiitent results, such as 

the case of two simultaneous updates to a database. 

When certain accesses are pt'"mtili from occurring Immediately, provision must be 

ma~ for these deferred accesses eventually to take plilc:e. This is another aspect of 

coordination that must be hand.ltd by the .syncbroaizatae code. ·Not onlJ . must a 

mechanism exist for deferring accesses. DeciaioRs must be made as to when deferred 

accesses should occur, and these a~sses must be acti¥ated in aome wa.y. 

In working on synchronization problems, it has been found that writing 

synchronization code is a conceptually difficult task, more difficuk in general than writing 

sequential programs. This difficulty arises from the non-intuitive nature of many problems 

that arise in synchronization, and the combinatorial problem associated with different 

possible sets of concurrent accesses on a resource. Therefore, several generations of 

synchronization mechanisms have evol• · reaafftg;·te the~ 1't9Cl'aling 'aJllnPllXity of 

concurrent programming applications, and to the resulting need for better, more 

well-structured synchroniiation mechanisms. 
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OrigmaHy. concurrent pr~esses commutlicatc<t ."'1ough · oommon shared storage. 

Access to this. common· atwage WH usually' tontrtJlWd>y. "~"~·which. were. set, prior to 

accesses and reset afterwards. Setting a ·lock wu acc:omp~ by means of an indwisi~le 

"test and set" instrumon. ·.usually :implemented ;in hafdwara:, l'ltus: mechanism · was quit~ 

unstructured. and <:ettainly did neh:provide•great1confidence ioiitt reliability. In additien; 

locking protocols involved,"busrwaiting", so.that.a.process prennted from performing an 

access because of an already set lock. was fot"dd to·perform~esstlltiattf' uselen computation 

while waiting for the lock to be reset. With the advent of multiprocess time1harmg 

systems, this became unacceptable. 

An important step forward was thedevetopment of the H1nraf1Aor1~medta1tism &Dtj&&l 

on wb.ich two. operations ar.e posstble. Operation P''8COmptishes a ~test afld decrement" 

instruction, similar to setting a lock. However, ttfe' resuk of en ut'flUh:eslf.u\;.~lest"" is to block 

the given process and place it on a queue bS«iated with· the temaphore. This eliminates 

the need for busy waiting. Operation V im:remeMS the· sem•pttore and dequeues a process 

from the associated .queue. Wtth processes communicaung Via ;semapho~s and ming just 

these two operat;ons; nearly· alt common synchrmitation problems can be solved. In 

addition t<>· solving the; busy W"aiting problem; semapttorn. umik-e locb; can be requtred to 

be fair. This means that serviee is granted in 5UCh a way thal·a·giv.n process is not kept 

waiting indefinitely whi1e.an·arbitrary number of other processes·proce«t. 



- II -

. . 
A complete generation Of alternative·mechamsms then ·•ppeared, an of them- in ·some 

way variaHons on tbe semaphore coMe"pt. The propesed akema"tives wer~ designed to 

improve somewhat on the power of the mnaptmre mechanism. A. difficuky czommon to 

semaphores and these alternative mechanismsJ1~·app1rent. howe.er~ They are at too 

low a level, comparable to gottt statements in the .ara "Of Olntrd structures. While 

sufficie_ntly powerful to -solve syndtronmtion problems, . they do not provide ·ai. 

programmer with enough-stnteture to make these soJutioni eaay to cOinstruct and reliable in 

operation. 

Recent ~mphasis on "structured programming" CDij72al and language constructs 

suitable for producing reliable software has mulled in a new generation of ~ynchronization 

mechanisms. Many of these- new constructs au.tpt to JntemaliH well·struaured disciplines 

developed for the use of semapbore-style mechanisms, tn mucli the same way that the wltll~ 

statement internalizes a structured style of writing loops originally developed using goto 

statements. Among the noteworthy mechanisms in this group are conditional critkal regions 

[Bri72] and monitors [Hoa74l both of which embody the idea of auesaing shared: data only 

in indivisible segments of code. Both also seek to r~late the; -scheduling mechanism for 

deferred accesses directly to properties of the shared data as anether step tQward better 

structure. More recent alternatives have attempted to improve ftlrther on these mechanisms. 

For example, serializers [Hew77] have drawn on experience with the use of monitOrs to 

build even more structure into the mechanism, and thereby correct certain perceived 

deficiencies in the monitor construct. 
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It is certainly easier to program solutions to non-trivial synchronization problems 

using these well-structured mechanisms than with semaphores or the like. However, 

synchronization remains an area of great complexity, and thus unreliability, in any large 

concurrent system such as an operating system or database management system. There is 

still a large conceptual gap between one's understanding of a synchronization problem and 

the code one must write to solve it. This has motivated recent work whose goal is to allow 

the expression of synchronization problems in a more natural form, and in s'ome cases, to 

obtain automatically an implementation for the specified property. Some of this work, and 

its relationship with this thesis, is discussed in the next section. 

1.3 Specifications and synthesis 

Originally, synchronization problems were exp~essed simply in natural language. The 

informality of such descriptions was a contributing factor to the unreliability of the 

"solutions" proposed, as well as a source of controversy over just what a problem description 

"really" meant. After the widespread acceptance of semaphores, many problems were 

expressed via a representative program using semaphores. The circularity inherent in such 

a description is obvious, since the solutions to the synchronization problems also used code 

involving semaphores, and the distinction between "problem" and "solution" became 

negligible. More importantly, the expression of a synchronization problem at the level of 

actual code, while bridging the gap between specification and program, left the same gap 

bet"1een people's intuitive understanding and the specification. The "correctness" of 

specifications remained problematic. 
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approac.h does not really . formalize .tM mean;ng:. of· 0 s)'IKhronllau.>R c;ode and 

in isolation from the procedures bei~ SfAChroniled .. 

Recent efforts to create structures through which to express synchroniz.ation _problems 

include [Rob75], [Owi76] and [Gri76l [Grj'16J~taiM :in •ddttieft·., SJIC.entfer, •~esidng 

solutions from the specification language automatically. However, in all these cases what 
. . 

can be expressed is not a synchronization problem itself, but rather the abstract solution to 

the problem. This is an improvement over a ·specifacation11 in the form of a concrete 

program using semaphores, but it still does not allow the specification of a synchroniz.ation 

problem independent of its solution. In order to do so, it is necessary to have a 

nonprocedural language for describing synchronization behavior that is independent of 

notions of how to implement that behavior. 

Path expressions [Cam7i] are a noppr~ural )¥1guag-e for express-.ng 

·synchronization problems.. In addition, implementatiam can be-derived cUr.ec:tly from path 

expression specifications. Path expremons rep~ •.IDQJt·nearly cCOmparable work to 

this thesis, both in overall goals and in basic approach. A .d~ and. evaluation of 

path expressions will be deferred until the approach of the thesis has been fully presented. 
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A comparison of this approach with that of path expressions is presented in Section 8.4. 

[Gre75] introduces a theory and notation for describing system behavior, including 

synchronization behavior. This tbeory involves the notion of events, over which a time 

ordering relation is defined. The notation introduced in [Gre75] is very general, in keeping 

with the abstract level at which events are discussed. The specification language used in 

this thesis represents one approach toward refining and structuring that notation. 

1.4 Overview of the thesis 

The view of synchronization taken in this thesis is illustrated in Figure I.I, which 

illustrates the sequence of events involved in accessing a synchronized shared resource. 

This view shares with a number of other recent approaches .the importance of 

encapsulation. The unsynchronized resource to be shared and the synchronization 

mechanism for that resource are encapsulated into a single "synchronized resource" module. 

The details of the coordination between the two are hidden from the outside world, which 

can only access the resource through this higher-level module. 

The distinguishing features of the approach here concern the structure imposed on 

synchronized accesses of the resource. As indicated in the figure, every access involves a 

certain fixed sequence of events. The process wishing to make an access first communicates 

this desire to the synchronization mechanism, and this is denoted as the "request" for the 

access. When the synchronization mechanism permits the initiation of the access on the 

actua I resource, the "enter" event occurs. The termination of the access is communicated to 

the synchronization mechanism in the "exit" event. 
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Figure I.I. Accessing a synchronized resource 
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The specification language of this thesis is designed to describe properties concerning 

the time order of these abstract events. Chapter 2 presents this language, both its syntax 

and semantics, and includes a number of examples of its use. The synthesis of an 

implementation for the specified property is described in Chapters 3 through 5. Chapter 3 

describes the abstract solution specification structure, in which events are implemented by 

abstract notions called "gates". The algorithm .for deriving an equivalent solution 

specification from a problem specification is presented in Chapter 4. Chapter 5 explains the 

implementation of a solution specification in actual code, where the abstract gates are 

replaced by procedures of a monitor. Several examples of complete synthesis for well-known 

synchronization problems are presented in Chapter 6. The detection of certain types of 

erroneous specifications, those that permit deadlock and starvation, is discussed in chapter 7. 

A summary and evaluation of the thesis is contained in Chapter 8. 
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Chapter 2 

The Problem Speelfl~•tloll ~Language 

2.1 Introduction 

The foe.us of this Chapier is on the language ·wed f()I'., expressing synchronization 

constraints orL accesses t() an ~b$tract ,qara ot)jea ... ,I:Wore the· Jang~ge itself can be 

,prese~te~ J~owever, it .. is n~~y. ~o )et the see~( Kl··tertN q{,~actly wha~ ~ind,of daia 

objects.are being .treated, what the nature ofacce~~to theseobjectsj~. afKI wbat.~iRd of 

synchronization of these accesses is possible. These issues are discussed in the Jirst, two 

sections of this chapter. Then an overview of the language is presented, including some 

. . . 
motivation. This overview should make it easier to understand the following two sections, 

which formally define the syntax and semantics of the language, respectively. The chapter 

conchldes with some examples of using the language to express common synchronization 

problems. 

The data objects wi.th which this thesis is GOncerae<l.•r• of the sort that are handled 

in a Janguage support~Qg tbe nooon .of :abstra.a d~a typa., s~h .as CLtJ([Lis77]) or 

Simula([Dah72]). A data object. in, one of .th~ lal)guag# is.strongly..typed. which i5 to say 

that Hs data type is an integral part of the object, apd r~~a severe restriction on how 

the object can be used. Jn partic1i1lar, there is associated wi.tb ttu!. 4bstract data type a set of 

basic procedures, or operations, An object-of the tyf)« can ,()Illy be accessed througJ;a. ~se 
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operations, or through higher-level proceduns-thaMhemselves_.make use of the operations. 

Furthermore, it is only .these op.erau905. dlat ~ ~,.Jo'manipUlate the lower-level 

representation of the abstract object. 

In general, an abstract object can be either mutable or immutable. An object is 

mutablt if it has state, so that its behavior can change over tirile. Immutable obj«ts do not 

have state, and once they are crea~ed theJ'are ftxed·rota11 time. Thui-tftey are not useful 

for communication betWttn paralld prOcessft, and ~y are not .,of great interest 

with regard to synchronization. The data objectS treated throupout this thesis, are 

genera~ly mutable. 

An operation of a data type whose objects are mutable can have the function of 

creating an object of the type with some (possibly parameterized) initial state, of accessing 

the object's state without modifying it, or of accessing and updating the state. Assignment 
_, . l-- .:· . 

of the object to a variable is not considered to be an operation on the object, but instead 

constitutes a (temporary) binding of the variable to the object See [Sch78] for a more 

detailed discussion of the semantics Of a language luch af CtU. ~-·· 

Synchronization is considered here to impose a constraint an the otherwise 

. unconstrained time ordering of accesses to an indt'YJdUa.1 'data objed. By this mOdel, the 

normal sequencing order Within each indmdua1 p~ · This means that if 

synchronization is required among actesseS to leverat objfds, then these obj«ts must be 

coftected together into a single composite object, with· the syndirOniiation applying to~ this 



- 19 -

new higher-level object. It is important to keep in mind that it is the accesses on an object 

itself, not on any particular variable that happens to be bound to that object, that are of 

interest. Concurrent processes that share access to a data object presumably employ 

different variables for the purpose of referring to it, but it is over the total set of all these 

accesses that synchronization is required. 

This thesis will not be concerned at all with the exact mechanism by which there come 

to be concurrent processes, or with how such processes gain joint access to a shared data 

object. It is not important whether the processes represE'.nt concurrent users of a 

time-sharing system, or are created from one process by some sort of fork-join mechanism in 

the language. Nor does it matter if the shared object resides in some form of central library 

to which a II processes have access, or if a reference to the object must be explicitly passed to 

each one. The issue of synchronizing accesses to an object by ~oncurrent processes is 

independent of such concerns, and the work here applies regardless of how these issues are 

handled. The important point is that there are processes executing in parallel that 

concurrently access the shared object. Consequently constraints must be put on the time 

ordering of accesses to the data obj!<:t, and this is the purpose of the synchronization. 

A basic assumption in the approach of the thesis is that the units upon which 

synchronization should be performed are the basic operations of the abstract data type. It is 

felt that the type's operations are the right level at which to impose synchronization 

constrain ts. Only these operations are allowed to access and manipulate the more concrete 

data representation of the abstract object, and so it is here that decisions by the implementer 

of the abstraction as to what pattern of accesses is necessary to maintain internal consistency 
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make sense. The -centralization of these ,-e>peratiOns ift a tf1* module (such as. a CLU 

cluster) permits a single expresion ef <enMnintl,to tvffr-all -~of ihe t'Jbject. Since 

the language ensures that an· accesses: to the ot>jett are ·--maae tht1Mlgh ·the baste type 

operations, the discipline- required for syndtrontartionCcat1·tae erlfomd ntversally, which 

would not be true necessarily if higher-level procedurU·were choSen fot'synchroni?ing. On 

the other hand, to the user of an abstraction these operations are basic and the details of 

their implementation are unknown (and in fact can be changed without his/her knowledge). 

Synchronization constraints at any lower 1ev~I. i.e. involving code internal _to these 

operations, therefore would not be meaningful to the user. It is exactly at the level of the 

basic operations of a data abstraction that the two viewpoints of the implementer and of the 

user can and should be resolved in a smooth interface. This is true for the synchronization 

component of the interface just as much as for the data component. 

A very strict division is assumed between the IJl'Chf'Ol'lilltton and data accessing 

functions involved in accessing a shared data objeet. This is based on the philosophy that 

the task of synchroniuUon belongs in a separate language amstrutt, whose so1e function is 

synchroniution. The operattons of the abstract ·data type, on the Other hand, should be 

completely unconcerned with . this synchronization, and written assuming that 

synchronization exists that is sufficient to prevent any conflicts between concurrent 

operation activations. Synchronization is taken to be uniform across all objects of the same 

type, renecting the belief that a type consists not only of data accessing operations but the 

synchronization on them as well. That is, all objects of a given type are synchronized in the 

same way. This means that the same (sequential) implementation of a data type and its 
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operations can be used with different synchronization constraints. perhaps embodying 

alternative scheduling policies or maintaining different levels of consistency, to create 

different data 'types. 

2.3 The guardian model of synchronization 

The model of synchronization that I use assumes there to be an abstract protection 

mechanism that conceptually surrounds each abstract data object on which accesses must be 

synchronized. (Recall the picture given in Figure I.I.) This mechanism ensures that the 

encapsulated synchronization mechanism, which I call the guardian of the data abstraction, 

monitors all communication with the object, in a similar manner to the "secretary" concept 

proposed in CDij72b]. Through this monitoring, the guardian is able to maintain the 

synclzronization state of the resource, an abstract representation of the history of accesses to 

the object. (This is to be contrasted with the "data state" of the abstract object, which is the 

state explicitly manipulated by the operations accessing the object.) The guardian uses the 

synchronization state information to temporarily block any process attempting an access that 

the guardian deems to be unsafe given its current state. The blocked process is allowed to 

proceed when the synchronization state has changed in such a way that the access can safely 

occur. 

Accessing an abstract data object consists ~f invoking a procedure impleme~ting one 

of the operations of the type to which the. object belongs. A given procedure activation 

generates three distinct events that the guardian includes in the synchronization history of 

the abstract object. The first event occurs when the guardian first receives notice of the 



- 22 -

. . 
in vocation of the given pl'QCeQure b.y the ~ ·~ , t. ~rm this'"'"' requett event Jor the 

.g;.ven proc:~ure_~a)vat-ion.;c~:fectllf$l tvent.-Olfl:-be:liMrMd CG: ta.act of; .•takffag ·• n""""9'· 

in a crowded bakery, and rtpresents the very first externally visible O«Uu.et'U aMOCiated 

with the particular procedure activat~on. 

The next event occurs when the process actually gains access to the object by 
- , - ":;: i:: ~ ; .; . ~ • _; t:. - t • ·: ; 

b~inning execution of the invoked procedure. I call this the _enter event for the activation. 

It is this event that often must be delayed by the guardian until it can safely occur. Once it 

has occurred, the process may be assumed to be executing the body of the procedure. No 
, . . r· •'."' . . , .. .- '· 

assumptions can be made as to the relative execution speeds of different activations. 

When the process has CQmpleled -=xegitioft ef .the ~ft: It indkateS this fact to the 

event for some other act;v~tion. 

This model o~ synchroniza~ion, of course, was not !conceived in a vacuum. It is the 

I 
result of a careful study of the kinds of synchronizatipn properties .that appear in the 

literature, which presumably reflect the nature of reai.wotld concerns. Procedure entry and 

exit are natural concepts to use,· since the basis of many synchronization problems is 

specifying which combinations of ~re activat.,... .• ,. .. be·'. allowed let execute 
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usuaHy regarded as "scheduling" properties, invot¥e decision's as,to wh~h 0M1 collectiGn of 

processes ea<h waiting to execute 10me procedure is ailowed to proceed first. In order to 

deal with such properties, it ii important to ·keep track of what activations have been 

requested, hence t~ need for retJUe&t evenu. My ift~igation of syncf'lroniiation problems 

has failed to discover any other distinguished events assoaate4 With •operation activatiOns 

that are as fundamental as these three. Since this model appears adequate for capturing 

synchronization properties of interest, there seems to be no need for using a more 

complicated one. The examples at the end of this chapter, written in the problem 

specification language that is based on the guardian model, testify to its generality. 

The guardian model assumes that the set of aff'ewnts concerniflg a particular data 

object is totaUy ordered. That is to say, while manJ·pt«edure activations can be executing 

concurrently. only one request, enter, or .exit event associated wittt :a given object can occur 

at a time. This total ordering property is comparable to the fact that the "arrival ordering" 

for any particular actor in [Hew73] is total, and relies ultimately on some sort of "arbiter" 

mechanism for each data object. 

2.4 Overview of the language 

The purpose of the problem specification is to express, in a clear and concise manner, 

an imposed constraint on the temporal order of accesses to abstract data objects of a 

particular type. To facilitate this goal, the language for expressing the specification has 

been designed to be as general as possible, subject to the requirement that it be compatible 

with the guardian synchronization model. That is, the guardian model paradigm of 
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req~est - enter - procedur.e becly exemtliDR-~ .exit·•farlos .-he,lllesls of the language, but 

ordering among integers is available. ·Because d·the. power ef· ~te.ukulus. any 

meaningful synchronization constraint thar operaca, m * lewl of the- til'M ordering of 

inclividual events <!ln -be e"fllead .. 

This power, in fact, permits specifications to be written that must be judged erroneous. 

Such an invalid specification may. for instance. place a constraint on the tircumstances 

under which a particular request event can occur, which would be incompatible with the 

guardian model. For certain kinds of erroneous specifications, the invalidity can be 

discovered in atcempting to apply the synthesis·. a4prililla .f"'"M""ld ilt Chapter t The 

detection of other undesirable properties,. namely -deadlock. and starndent can take' place 

A specification is written for an abstract data type, and is intended to apply 

independently to every object of that type. The specification expresses a constraint on the 

ordering of accesses to the object, and represents the only such constraint. This means that 

any ordering of events that is consistent wi&h the ·.,mficatioa is -valid;. and in particular 

that procedure activations are allowed to execute in parallel unless constrained otherwi5' by 

the specification. 
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The distinctive elements of the specification language concern events and their 

ordering in time. Time ordering between events is embodied in the "temporally precedes" 

relation, which is denoted by the infix symbol " ~ ", and which is adapted from [Gre75]. 

This relation is a strict partial orc}er, transitive and anti-symmetric. The parallelism in a 

computation prevents the ordering from being total, but the set of events associated with 

accesses of a particular abstract data object is assumed to be totally ordered, as explained 

previously. 

Each activation of a basic operation on a given abstract data object is identified by 

the name of the procedure being called and the activation number. Procedure activations 

are numbered uniquely for each data object according to the (total) ordering of the request 

events associated with the activations. The convention used here is that activation numbers 

are written as subscripts to the procedure name. The sixth activation of procedure p (i.e. 

the activation associated with the sixth request for p)_ therefore is denoted "p6". 

A particular event associated with an access is denoted by adjoining to the procedure 

activation formula the event type (request, enter, or exit) as a superscript. For example, the 

exit event associated with procedure activation p6 is denoted "p6•xit." Every event belongs 

to an event class, e.g. the penter event class consists of the events pi8"18', p2•nter, etc. 

Activation numbers appearing in a specification can be any integer expressions, with 

important special cases being integer constants and variables. Constant activation numbers 

can be used to refer to a specific event of a particular class, such as the first one in a 

history. Variable activation numbers are more generally useful, though, since they allow 
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reference to a general member of an eYent daa In the ·abset'lte of explicit quantification, 

activation number variables are assumed to be universally quantified. T·his · b a u~fal 

convention, permitting a specifica:tibn that refers to e¥ent Pt'*, for ~ample,· to represent a 

constraint on the enter event of 0111 activation of precedure p. The u~ of expressions as 

activation numbers allows a specincation°1:0 deal with r.elated ac:ti\lations, such as Pr and 

Pi+J· 

It is possible, but not necessary, to include the arguments to procedure activations. If 

not included, they are assumed to ~ unimportant, and the' specification 11ppties to any 

activation of the particular procedure. Inducting ttt~, ar1un~1tts-to an activation can be 

useful for constraining these arguments m-some wy; and therebif' timiting the applicability 

of the specification to those activations wh'oseargutnents meet the c:Onstraint. The Identifier 

of the process malling the procedure activation can-"4! usec:l"'ft ene of tM arguments of the 

procedure, so that if the identity of the particular'precess is nnportant, it can be included in 

this way. 

The actual abstract data object on which the synchrontntiOR is being performed is Jtot 

included as an explicit argument to any of the<-pr«edures'.,.ating on it. In this respect, 

this kind of specification resembles the "state nm:hine• specifications used by Parnas for 

specifying the behavior of the operations of an abstract data type (see [Par72], e.g.). It can 

be assumed that operations are called by a mechanism such as the "dot" notation of Simula 

([Dah72]), by which operation p on abstract object x with arguments a and b is called via 

the statement "x.p(a,b)". A specification referring to operation p might list arguments a and 

b explicitly, but no reference would be made to object x. The specification would implicitly 
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apply independently to each object x of the given type. 

. As an example of a specification expressed in this language, consider the following 

expression, which also appears as example I in Section 2.7: 

(pt''•' ~ q{nter) ::> (ptit ~ q/nter) 

This specification refers to two procedure activations, Pi (the i-th activation of procedure p) 

and qj (the j-th activation of procedure q). Variables i and j appear free in the expression 

and therefore are universally quantified, and since no constraints are placed on the 

arguments to the procedure activations, the specification in fact applies to any activations of 

procedures p and q .. The specification states that if the enter event for qj is preceded by the 

enter event for Pi• then it is also preceded by the exit event for th.e same activation of p. 

That is, a currently executing activation of procedure p (on a given object) excludes a 

subsequent activation of procedure q (on the same object) until the activation of p is 

completed. Notice, though, that concurrent activations of p and q are allowed, as long as 

the activation of q begins (i.e. ente~) first. 

2.5 Syntax of the language 

This section presents the syntactic rules for well-formed specifications. The notions 

identifier and. arithmetic expression are assumed to be basic. An arithmetic expression is a 

series of one or more identifiers and/or integer constants separated by the usual arithmetic 

operations. The other notions are defined in terms of these two and each other. In each 

rule the concept being defined appears in italics: 

(I) A procedure name is an identifier. 

(2) A term is an arithmetic expression. 
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(3) An activation numbtr is a t$'nt 

(i) An activation nawu is a procedure name, subscripted with an activation 

number. 

(5) An activatton expres~ton is ~ither an a~iv~.tion ll•l'.IJF •• qr. an iacUvatf~IJame. 
," ~ - ' - . - '• ~ ~ -

followed by a left . parenthesis, followed by om: or more terms separated by 
~ ~ .. 'i - ' 

commas, followed by a right parenthesis. 

(6) An 11nnU"lfR is one of, the MMml of dlttti!t~ {Ntfue5t • eater-, exitl. 

(7) An evtnt express~pn is an acti'll,tioQ e~~ion supt:r~i~. wiltt an -:v~ni 

type. 

(8) An ordering clause is an event exP..esslon followed · by the symbol ~ 

followed· by an(lther event e~ 

(9) An aritlawaetu rtlalf'>n is one of the.elemeftts oHhe set 

Rel • {• , 1111 , < , > , :S , ~} 

(10) Ali argument constraint is a term followed by an arithmetic relation followed 

by another term. 
(II) A clause is .either an ordering c~use or an .argument constraint. 

(12) A specification is defined by: 

(a) A clause is a specification. 

(b) If S is a specification, then (..., S) Is a spedfkation. 

(c) If S1 and S2 are specifications and op is an element of the set 

Op • f A , V i:> , .. }, . 

then (S1 op s2) is a specification. 

(d) If S is a specification and i ts-an·fllentifier, then V i (S) and 3 i (S) are 

specifications. 

The "argument constraints" defined in rule (10) may refer to the activation 11umbers 

and/or to the arguments to the activations (which are the "terms" in rule (5)). They may not 

,refer to the actual abstract data object in question, ho~ever, since' it does nOt appear as an 

explicit argument to any of the procedures. In fact. a geoeral rule is that the ·arguments of 
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procedure activations to which predicates may refer are limited to immutable. objects, such 

as integers. The interpretation of a relation on a mutable object would depend upon the 

point in time at which the relation is taken to apply, and might itself require 

synchronization on the given object. Rather than becoming involved in questions such as 

these, I choose to limit the predicates on activation arguments to immutable objects. This 

restriction does not appear to be severe. 

2.6 Semantics of the language 

The definition of the language whose syntax has been forma11y defined in the 

previous section can now be completed by means of a formal definition of its semantics. 

The purpose of the language is to express synchronization properties, that is, to constrain 

the order of accesses on an abstract data object. The semantics of the language therefore 

can be defmed by specifying the collection of access histories that are valid with respect to 

any given specification in the language. This is accomplished by defining a predicate 

Valid(h. s), which decides for any history hand specifications whether h is a valid history 

with respect to the constraint expressed in s. First, however, it is necessary to define the 

concept of a history, and to restrict the concept to histories that are physica11y possible. 

The first step in this process is to define the notion of "event". An event is a 5-tuple 

<p, t, x, n, a>, such that: 

(I) p E P, the set of basic operations of all types. 

(2) t E ET, the set of event types, where ET .. {request, enter, exit}. 

(~) x E Ob, the set of all data objects in the system, and p is a basic operation for 

the type of x. x is the data object on which the access is taking place. 
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· {4) n e N .. t~ set ar positive integers. n represenu'the activation number. 

,(5} a. is a veqor .Ea1, ... ••ml wllertJ~ element ._,.,-09 ... •·is the vector of 

arguments to p. 

The types of the objKts a1, ••• , •m must match the types of the parameters to 

Operation p; 

A partially ordered set of events forms a cornJIKtGfion ltistory •. provided that the partial 

order fulfills the condition that each object history is totally ordered. An objtct ltistOr'J for 

data object z is a subset of a computation ttlltory, -COt'WStirig Or aft events <p. t~ x. n. a> in 

the computation history such that x • L All events in an object .history are on the same 
. .. : ' . , 

data object, so that. the third component x of each event tuple can be eliminated, and each 

element of an object history is simply a 4-tuple <p. t, n, a>. Throughout the rest of th.is 

section, we will be concerned exclusively with object histories, ttwugtl the· simple term 

•history" will be used. 

Since the evmts in a history are totally ordered, the history may be considered to be a 

sequence of events. A sequtnet over a domain D can be defined as either the empty 

sequence [ J, or else the result of adding an e~t Cf E D to the end' of a 1equence s, which 

is given by the expression "add(s, dr, 

Not all histories are actually possible. Jn order to define what class of histories are 

possible, some further definitions are required. An tvtnt class for a data type dt is a pair 

<p, t>, where p e P and t e ET, and p is ~ basic operation of' data type dt. The set of 

occurrenus of an event c~ <p, t> m a history h is.a,Jet.of pair£ ef the form <n, a>, where 

n is an activation number and a is a vector of arguments, such that an eVent of the form 
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<p. t, n, a> occurs in history h. Formally, this is given by Occurrences(h, <p, t>), where: 

Occurrences([ l <p, t>) = { } 

Occurrences(add(h, <Pt• tt, n, a>), <p, t>) .. 

if (p .. Pt I\ t .. tt) then Occurrences(h, <p, t>) U {<n, a>} 

else Occurrences(h, <p, t>) 

With the aid of these definitions, we can now define when an history is possible .. The 

predicate Possible requires a request event to precede the corresponding enter. event, which 

in turn must precede the corresponding exit event. Also the ordering of request events for 

a given procedure must determine the numbering of invocations. 

Possible([]) = TRUE 

Possible(add(h, <p, t, n, a>)) = 

Possible(h) I\ 

((t = request I\ Occurrences(h, .cp, request>)= {<i, ai> 11 ~ i < n}) v 

(t = enter I\ <n, a> E Occurrences(h, <p, request>)) v 

(t = exit I\ <n, a> E Occurrences(h, <p, enter>))) 

A few more definitions are required before the validity of a possible history with 

respect to a specification s can be defined. An event expression is a 4-tuple <p, t, exp, V>, 

where p E P, t E ET, exp is an arithmetic expression, and v is a vector of arithmetic 

expressions, possibly empty. (The concept of arithmetic expression can be defined fomra lly 

in the obvious manner.) Let the set of arithmetic relations Rel .. {=, -. <, >, ~. ~} and the set 

of logical binary operators Op .. {/\, v, :>, "}. Then the set of event expressions in a 

specification s is given by Evexp(s), which is defined in the obvious manner: 
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Evexp<e.1 =>:e~ · • { e1 ''2'} 

. Evexp(exp1 rel exp2) - { }, for rel e Rel 

Evexp(-. s) • Evexp(s) 

Evexp(~I op 52> .. Ive~(sy y 
• • - ,,, > 

Evexp(l x (s)) • Evexp(s) 

Evexp(V x (s)) • Evexp(s) 

An interprttation is a mapping f from expressions to data objects that preserves the 

meaning of all constants and operations. That is: 

(I) f maps every constant expression to the corresponding constant object, 

e.g. f(I) ,;. I. 

(2) f is consistent with every operation, 

e.g. f(exp1 + exp2) • f(exp1) + f(exP2). 

(3) f maps a vector of expressioftltfttD;thecorresponding vector of objects, 

e.g. f(<ex.Pt• ... • exttm>.t -1·!Cf<8Xpf>.,-_r;, «npm»· 

An event e and an event expr~ss~_on ee mate/a un~er _an i~r~tion f if e and ee are 

of the same event class, and f maps the activation number expression and parameter vector 

expression (unless the latter is empty) of ee to the corresponding components of e. Formally, 
. .,, . 

Match(e, ee, f) is defined as: 

M atch(<p1• t1, n, a>, <p2• t2, exp, Y>, 0 • 

<P1 • P2> " (t1 • r2> " (f(txp) • n) A (Y • [ l v f(v) • a). 

·;.._ 

The validity of a history with respect to a specification s can now be defined by a 

predicate Valid. The definition of Valid recursively determines when a history is valid 

with respect to a specification. For a history to be valid, the previous history ~sisting of 

a II but the last event must first be valid. Furthermore the last event in the history must 
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satisfy the specification for all interpretations under which the event matches some event 

expression in the specification. 

· Whether or not an event added onto a valid history satisfies a specification under an 

interpretation is defined by another predicate Sat. The definition of Sat for a complicated 

specification is basically just a matter of breaking down the structure of the specification, by 

removing each logical operator and applying it to the recursive applic~tions of the 

definition, until one reaches the level of a simple clause. Satisfaction of an argument 

constraint is determined solely by how the components of the clause are embodied by the 

given interpretation, not by the event in question. Whether an event satisfies an ordering 

. ' 

clam.e depends upon whether the event matches one of the event expressions in the clause 

under the interpretation. If the event matches the first event expression under the given 

interpretation, then it is necessary that no event matching the second event expression 

occurs in the previous history. If the event matches the second event expression, though, 

then some event matching the first event expression must occur in the history. 

Formally, if h is a possible history and sis a specification, then h is valid with respect 

to s if and only if Valid(h, s), where: 

Valid([), s) =TRUE 

Valid(add(h, e), s) = Valid(h, s) /\ 

V (ee, f) (ee e Evexp(s) /\ f is an interpretation 

/\ M atch(e, ee, f) :> Sat(h, e, s, f)) 

The predicate Sat(h, e, s, f) determines whether event e added to history h satisfies 

specification s under interpretation f. It is defined by the following equations, giving all 

possible cases for specification s: 
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Sat('\~. :e, «Pt• t1, eXJii, Vf" ~ ic1>2, t2' ~ •2>}, f) • 

(Match(e, <p1• t1, exp)• Y1>, 0 ::> , , 

((v2 ;ie [ J I\ <f(exf>2), f(v2)> fl. Occurrences(h, <P2· t2>)) v 

(v2 "'! [ ] /\ V !J (•JIP.2)1,a> •• Occu.rren.ca(h_. <~ f2>})))) 

" (Match(e! <P2· t2' ex~ v2>, 0 ::> 
-'" -- - - '. ;;.;, 

{(v1 - [] " <f(exp1). f(v1)> E Occurrences(h, <P2• t2»> v 

<v1 ..; C l " 3-'a {<ffeXl>i>~ a>· ~~Octdrren'c'es<h. <Pi· t1>))))) . 
Sat(h, e, ~Pt rel ~XP2' f) • (f(expi) rel Ue92)), WM'd ~c.Rel · 

Sat(h, e, ..., s. f) • ..., Sat(h, e, s1, 0 

Sat(h, e, s1 op 52- 0 • Sat(h, e, s1, 0 op Sat(h, e, 52- f), for op E Op 

Sat(h, e, J- t (s), t') • ! m 5at(h, e, sCmlil n ... 
Sat(b .. e, V i .(5). t) "'· V m:Sadh, , . .r,,wa Q 

The notation sCm/i] in the last ~ equations represents the exp~ resulting from 
' - - • • ' ~ ·~ .-~ • : . :-; - :" • > - - -

substituting m for all free occurrences of i in a. 

2.'1 Bxamples 

This section presents a series of examples .of the use of the_ p~lem specification 
w' • • • .- -· ' • 

language. These examples have been chosen with two criteria in mind. First, together they 

iHustrate the range of features th•t the language of'ferl. Second, 'they specify realistic and 

representative properties, covering a significant portiGn of the classic synchronization 

problems that appear in the literature. 

Example l: Exclusion 

(p. enter ==> q . enter) ::> (p. exit ==> q. enter) 
I_ ~ I i ~ ; 

This specification h~s been discu.ssed previous.Jy in Section 2-'f: ~t state$ that an activa~ion 
'! < ' -' • ~-. • l 

of procedure p excludes a subsequent activation of procedure q _until t~e activation of p is 
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completed. 

Example 2: Mutual exclusion 

This specification is similar to example J, except that it is symmetric between procedures p 

and q. That is, an activation of either p or q excludes any:c0i1currerit·:Ut'ivafion of··the 

other. 

Ex~mple 3: Readers-writers property 

((write-•nter ~ write-•nter) :> (write.exit ~ write-•nler)) /\ 
I j I , J 

((writetit ~ readk enter) v (readk exit ~ writei•nter)) 

The so-called readers-writers property concerns two operations,.~ad• and •write•. It states 

that activations of "read" exclude those·of "write•,' and that an lt;Ctivation of "write" excludes 

aJI other activations of-either operation. Tms has ~ rMhaped mto an instat1ce of 

exampl~ I (an activation of "write" excludes au other act1Yattens of "write"), and an instance 

of example 2 (activations of "read:' and "writt" mutually exdude · one another). By 

combining this specification with an instance of example 4, giving one of the operations 

priority over the other, or of example 5, requiring an equal-priority first-come-first-served 

discipline, one can obtain any of the classic versions of the readers-writers problem (as 

found, for example, in [Gre75]). 

• 
Example 4: Priority 

(p{~uest ~ qtnter) :> (ptntw :::::) qt'~') 

This specification gives priority to activations of procedure p over those of procedure q. It 
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does this by requiring tha~ so long as the activation of q has not yet entered, .t-hen. any 

activation of p that has been requested must enter first, regardless of whether the request 

event for p came after the requett event for the activation of q. This is an example of a 

scheduling property making use of a reqtRtt event. 

This specification represents an alternative to giving either of a pair of operations priority 
~ : : ~ - " ' -~ ... 1 - : 

over the other. Instead it requires a strict first-comH'irst-served discipline between them, by 

stating that whichever activation is requested first is the one to enter first 

ExMnpJe 6: LCFS Khed~g 

(p .requesl. _.. n.request) ... 1 .... r .... - p· 
1 
. .n_~) - (p-- __.. · '"'.,) I . . __..., r1 . fl ~I . ; l""""I" •• , . - r ......... Pi .. 

Here another altffnat;~~ JChedultng policy, though -~ly a>lels ·likely one. is specified. 

This "last-come-first-served· propertf requim tbat . .ef all the requested and pending 

activations of a given ~ion p •. tbe one.most 1'9'm1tlJftCJU4!11ed•il ·allowed to enter. 

Example 7: Operation pairing 

(at"'•'~ bt''.,) .. <ct'..,~ d{"'.,) 

This specification requires that whichever order occurs between the entry of an activation of 
_:-,,"'-

"a" _and one of "b", the same order must hold for the corresponding activations of ·c· and 

·d·, respectively. Illustrated is the use of the same activation number· fer activation5. of 

different procedures, i for procedures "a• and ·c"~ ~-J for p~ures •b" and "d·. The 

specifica\ioll could be used:f« a data type in w.hidu11w~ a aad b oonflict. in the sense 



of updating the same part of th& objfct's state,,·~. do operatiOOf ' and d. If operations a 

etnd c, taker) ~s a pilir, updat' µ,4= state. cqn.s~ntly~ an~ ~ion$ b and d do likewise, - ' - . .. - . - .,,, '~ . ' ' - '-- ' ' -~ - ~. _. ·- -

For example, in [Esw76], an example is given for whi~ ~ 1~uons ha.ve .· the 

following meanings: 

a: x :• x+IO; 

c: y := y+IO; 

If the predicate (x. • y) is the criterion for c~q-oft~,1 data ~ject. thep this )V(Wld t>e 

part of the specification .reqµired. (Other ~r;utraints,_~1¥J.,~9L'ld ~- ~'ssary.) 

Example 8: Produ~er-consumer (single b~ffer) 

(depi•x1t ~ remt't~') I\ (remiexit ~ depi:l•nt•r) 

The "producer-consumer" problem is that producers ,.a,Dfl ;C9!JSU~S. must ~Jterna~e in 

depositing and r.emoving ·messages, reapectivelyr in a ~ared .Wffer. This means that each 

depqsit, repr~nted her.e by an awvat"3n of procedure .. ·~~-- mlut ·precede the 

corresponding remo~al or actiution of procedure "rem~r O.n, the other hand,;the.removal 

must .take place before t~ next deposit can occur. Thi£., speQf~calion ag~in illustrates the 

use of .the same activation number for a~tivat~i..ofA~ (ijffeiem, pr~ures, as well as the - . 

use of an expression ("i+I") as an activation number. Notice that this specification could be 

rewritten so as to make the relationships between activation numbers more explicit by 

means of predicates on the activation numbers: . 



(i • j) ::> (dei>txil =:::}. remj9'8 ')' t\ "iremJ.at ~ der*i+i.--, 

·This specificatiOn is exattrf 'e'quiVa:lent to 'ftte (riginal; it Ma~ifno ctttNrence whether su<:h 

re1ationlhips ·are rq>r6ented *!xp~lf di irnJ>iiClti'f. 

Exam.pie 9: Bt»anded buffer "·· 

(dept•it ==> remt"'.,) " (remt•it ==> depi+Nett'-) " . 

(dept•it ==> dep1.i9"'.,) " (remi•xit ~ remi+I.-, 

This example is a generalization of the previous one-, in that the aaivation number of the 

dep•"'•r event has ~n changed. from i+l to i+N, for some integer N. The specification is 

.for the same problem, except that the size of the buffer is now N. This. means that up to N 

operations can be allowed before''Otif has· to wait 'for a •rem•· ~ration. The last two 

clauses state that the individual "dep· activations must be mutually exclusive and execute in 
~ . ; . ' - ·,- ': -·- - ,. "' 

first-come-first-served order, as mu" the individ~al ·rem· activa~ions. 

Example 10: lntttvening activation 

(pi••it ==> Pj..a.r) ::> (] k (pi•••'~ qlt...., I\ Cfk _. ~ Pt~» 

This specification represents a weaker property th'at is implied by the pr&lucer-consumer 

constraint of ~xample 8. It requires that between any rifo lctivatiOns of procedure •p• there 

must be an activation of procedure •q•. This shoWs tM:05e Of an exiStemial quantifier in a 

specification to require a particular kind of event'to"ottarat a'given-point"in the history. 

Example 11: Threshold of requests 

Vi ((k Si)" (i < k+N) ::> (p{..-t ~Pk•~).·· 
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This specification places a threshold of N request events for activations of procedure "p" 

before the first one can execute. Since this appfies to any value of k., the result is that 

whenever an activation of procedure "p" is currently executing, there must be at least N 

processes that are waiting on requests to execute "p". 

Example 12: Exclusion on a restricted class of accesses 

(pi(a)•nler ~ qia)•nter) :> (pi(a)Hit ~ qia)•nler) 

This specification is identical to example I, except that a parameter has been given to each 

of the two procedure activations. By providing the same identifier as the argument to both 

activations, this specification conveys the information that the arguments to the two 

procedure activations are equal. Therefore the exclusion constraint expressed by this 

specification is restricted to activations with equal parameters. 

Example 13: Predicate locks 

C(a,b) I\ (pi(a)•nter ~ qj(b)•nler) :> (pi(a)•xit ~ qib)enter) 

This specification again represents a restriction of the exclusion constraint of example l. 

Here, though, the restriction is represented by a general predicates C on the parameters to 

activations Pi and qJ This suggests how a simple version of the concept of "predicate locks" 

might be specified. A specification of this form can be used to state the synchronization 

constraint, as long as the predicate C for which exclusion is required is known ahead of 

time. 



For example, iupp<t54 t~ .t~ ,~~t:;fiata el>jec:l.on:M'hidt-·~eclures :p· and •q• 

()per.ate is ·a ~''a r<:hi.ca.UiJ' wg•PiHci dafabue.,, The. .clataballlcmsists of .a collection of fils, 

·~ach of :Wh4EJ'l_,in ~urn C4>11~ o(.,i:oJ~ of,,r~u~prtdicateC:might eKpRSS the 

exclude procedure •q• only when they were operating on records in the same file. 

The general ~.-.J>f ·pr~t:.IQcks• ,_. ;j~'.if' [Esw76l The more 

compJ;c:ated ver~ons .of . the .. concept c:U1GUs_, ,daen WCIWd. ,reqQire· more complex 

speci(icat)ons. 

Example 14: Disk head 1eheduling 

((a.~.;,.,·~ a enter) ::> (~z••it ~ •y~) I\ z y 

((ai(x2)~1 ~ ak(x1r•it - ai(x2>9"'-> " 

(aj(x3)'..,..t ~ ak(x1r•it ~ aj(x3>9"'-};A . 

(~(~)1•it • aic:(xl)"~-i!)) ,,,.,. · 

..., J(n) ((a_(xor•it ~ a e1it ~ a (xl)Rit)) " -m- n k 

((xO <xi < x2 I\ (x2 < x3.v- x3c< xi)) v 

(xO >xi > x2 "(x2 > x3 v xl,> xi))) 

::> .(ai(x2)9"'•' ~ •f "-l~) _. 

The final example is~e ~dJ~ ~d scheduler• prqbitnJi.wit~h appearJ in (HoaMl among 

other places. The problem is to schedule disk accesses so as to minimize average waiting 

time. The way this is done is to have the disk head sweep in one direction, accessing each 

track it encounters for which an access has been requested, until no more requested tracks 

remain in the direction in which it is sweeping. The head then reverses direction and 
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sweeps back, again accessing requested tracks as it encounters them. The essential idea is 

that at any given point, the next track to be accessed is the one closest to the currently 

accessed track in the direction currently being swept. 

The specification for this problem concerns four activations of an access procedure "a" 

on a disk, with the parameter (xO, xi, x2, or x3) representing the number of the track being 

. . 
accessed. The constraint expressed is that of the two activations (ai and a j) requested 

during the time that another activation (ak) is executing, the activation allowed to execute 

first is the one accessing the track nearest to the track currently being accessed (track xi) in 

the direction currently being swept. The direction is indicated by the inequality between xO, 

the track that most recently accessed, and xl. Track x2 is accessed before track x3 either 

because it is closer to track xi (either xi < x2 < x3 or xi > x2 > x3), or else because it is in the 

right direction and x3 is not (x3 < xi < x2 or x3 > xi > x2). 
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Ch:apter · a·.· 

The Solu-tion. Sp~~ificat.iC:~· 

\i 

3.1 Introduction 

There is a ·vast conc.eptual distance sepal'9tmgt, •.'on the one ·hand, a problem 

specification written in the ·language ;dftc .... ·' lft ·(ltftpte"t ·2, · .. and : on the other, the 

synchronization code thaHmptements the spec;ihtatiOff.' This it 1b«ause the specifleation is 

a non-procedtiral, . reqmrements·oriented expres&idt .of> whet· thoUld happen with no 

indication of the means by which this behavmr moutd bf realfted: :Oerermination Of the 

procedural mechanism, that is how to accomplish the desired con~raint on the time order of 

accesses, requires a fundamental transformation in concepts. Once this determination has 

been made, ther~ are still a number of-:cletailsthat neecUo.&Je workea out, but the remaining 

work is basically that of the back end of .• vcompiltr, tran.sllning ·rrom an intermedjate 

language into actual c• 'tttough ·the target code ift; this case is .still in a· htgh .. Jevel 

language, not machine tanguag~). 

I have chosen to split the derivation process tnto two stages. The first stage is the 

transformation from procedural to nonprocedural form. It can be described· without 

reference to the exact details of particular source language constructs. The second stage 

constructs an actual implementation. The interm«liate form into which the problem 

specification is transformed by the. first stage is called the solution specification. This 

chapter presents an informal description of solution specifications, followed by a formal 

definition of their semantics. The method for transforming a problem specification into an 
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equivalent solution specification is the~su~~~er •· The translation of the solution 

specification into synchronization c~~ is tre,Jted in Ch,apser 5. 
: • i .- -,: -~~- ' ~ -· > - • ,:. : - :.· ~ ~-" ~. ( .- ~-: --> • 

Section 3.2 presents the "basic" structure of the solution specification. which is only a 

first approximation to the actual structure. The basic ·structure described is quite simple 

and elegai:lt, ClijG·inf.act tAe $0lut ... 5.~nJ~oni~probletns:can ~-expressed 

Within jt. u.,roru.matety. :thi5:itl0Ple 5trutture:la<.ks ·JUffpent ·elpl'CSSLtti.fK*er {or certain 

of the 50lutiQn specificatiof) appettrtin· ~ 3.i~ .. 

3.2 The basic solution speoifloatlon atruoture 

The structure of ttw solution specification. »li»f tht.flll'Clbllm apeciftcatiOn, is dictated 

that the guardian model distinguishes. Beyond this, there js~ Ghoice as· tO'how~ rigid a 

structure to impose on the solution specification. Since the solution specification is an 

intermediate form between the problem specification and the generated code, the degree of 

flexibility represents to some extent where it ~ on the spectrum between these two 

structures. A very general solution specification structure, corresponding to the generality of 

the problem specification language, would represent a decision that the solution specification 

be relatively dose to the problem specification. The price paid for this generality would lie 
i . : ·' ->._ ~ ·, 

in the difficulty of translating such a solution specification into target code. 
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The alternative choice made here is for the solution specification to have a rather 

rigid structure. This means that, as indicated in the introduction to this chapter, the 

fundamental transformation takes place in deriving the solution specification from the 

problem specification. 

The basic structure of the solution specification is for each guardian to consist of a 

collection of gates through which processes accessing the abstract data object must pass. 

The use of the term "gate" is takeg from [Rob75], though the concept as used in this thesis 

differs 'somewhat from the one introduced there. Specifically, the guardian for an object of 

abstract data type t contains a gate for each event class of t. This means that for each 

operation p of the abstraction, there are gates pr•quest, p•nter, and pexit. Each event 

associated with an object corresponds to the passage through a gate in its guardian. For a 

process to access the data object by activating procedure p, the process first must pass 

through the preqvest gate, then through the p•nter gate. At this point it executes the body of 

procedure p, after which it must pass through the pexit gate. 

Each passage through a gate by a process produces a (conceptually instantaneous) 

change in the state of.the guardian. Because of the.total ordering on the events associated 

with an object, the gate passages for a particular guardian are totally ordered. The 

ordering of processes passing through any single gate is first-come-first-served. This means 

that unless a specification explicitly requires a particular scheduling policy for activations of 

a given operation, the default policy assumed is first-come-first-served. The order of service 

among different gates of a guardian is assumed to be fair, in the sense that processes at 

different gates have equal chances of being chosen for service. That is, a requirement in 
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scheduling medtanism. 

Gates for request and exit event c1as~ are unconditional, so that processes cannot be 

blocked in passing through these gates. A gate for an enter event class is conditional. 

however. Associated with each eater pt.Hhere isi'90lne c:c:inditian on the guardian state. 

This condition must be· satisfied in order f.or the,-ceucmakblg the activation to pan 

through the gate. If a pr;oc:ess attempts to pass throagh.an ••''gate whose condition is 

not satisfied, then the proc'fls is blocked. and must Wait untit the condition becomes· true 

before proceeding through the gate. 

Schematically, then, an activation of operation· p on a data object is implemented by 

the abstract program below. Since gate passages represent events, which are totally ordered. 

the abstract code representing each gate can be considered an indivisible operation. 

p'.ciue•t: update guardian state 

penter: wait until entry condition is salisfied. 

then update guardian state 

execute body of operation p 

p•xit: update guardian state 

It would appear that to represent a given solution specification. it would be necessary to 

specify for each operation p the specific entry condition on gate p••r, and the particular 

updates to the guardian state accomplished in each of the three gates. In· fact, the form 

chosen for the synchronization state o( a data objeCt defines a priori the nature of the 

updates within all gates. 
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The history of a data object, and of the guardian for the object, consists of the totally 

ordered sequence of events associated with all accesses of the object in the entire 

computation. The state of the object represents some abstraction from the history that is 

sufficient for predicting its future behavior. An alternative way of saying this is the 

definition in [Gre75] that a state is an abbreviation for a class of histories. The 

synchronization state of the object is the synchronization component of the state, which is 

sufficient for the prediction of its future synchronization behavior. 

The decision made here is to express the synchronization state of an object as the 

number of events that have occurred at each gate of its guardian. The notation used is 

that count(g) denotes the number of events at gate g. So count(p'equest) is t~e number of 

activations of procedure p that have been requested, whether· or not those requests have 

been granted; count(p9
"

18') is the number of activations of p that have entered, whether or 

not they have exited; and count(pexit) is the number that have exited. 

This decision has a number of ramifications. The implications for the expressive 

power of the solution specification are discussed in the next section. The decision to use 

counts forms the basis for the method of deriving a solution specification from a problem 

specification, as will be apparent in the description of the derivation algorithm in Chapter 

4. With respect to the basic strw;ture of the solution specification, it means that in the 

schema.tic abstract program representing an activation of operation p, each update to the 

guardian state now can be defined to be simply incrementing the proper count. The 

abstract program therefore becomes: 



p'...,.': increment eount(p,..,...):by I · · · , 

p•nter; wa,lt tJl)UI e~try,~i!i~\)S,JaUSfic4,., :: 
.. ~. . -~ . - ' - -

then increment count(p.-,) by I 

execute body o{ope~ation p 

p•11~· increment -caultt(p•llit~by I· 

:;· : ::~ ~ 

•. O ~ .f • -= r " .- ~ : ... ·--

That is, the ·update -to the synchronization state within each gate consists simply of 

incrementing the.count'of event~·at that gate by I. (The ~antity count(g) i~ ~i~~lar to,·a~d 
; ~ . -. ~ ...... - " . - - . - - ' 

in fact can be implemented by, the ·eventcount• notion introduced in [Ree77]). 

t,·_ 

This means that the representation of a particular solution specification can consist 

simply of the entry condition on ·gate pent.r~-f~;;;,.c~-~~:O., ~".;,.;the abstract. type. ~~ch 

entry condition on the synchronization state must take the form of a predicate on the counts 

of gates. The other (non-enter) gates in the solution specification are indicated implicitly by 

the appearance of quantities of the form count(g) within the entry conditions. 

For example, consider an abstraction with one operation •op•. Suppose that the 

synchronization constraint for this abstraction requires activations of op to be mutually 

exclusive, that is, at most one activation is allowed to be executing at a time. Then the 

- " "'.{; ' 

solution specification for the abstraction can be expressed by stating the condition for gate 

op•nter to be 

count(op~ ~ ceunt(op"it). 

This is a shorthand way of saying that the abstract program for accessing an abstract data 

object via operation op is: 
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op'•quest: increment count(opreque&t) by I 
• 

op•nter: wait until count(op•nter) •,cotiif~,_;l)y 

then increment count(op.,) by· 1 · 

execute body of operation dp · 

op911i1: increment count(op91it) by I 

As a second ex~mp!e, conside~ an abstraqion wi~~ two ~~ons .f and g. AssuQle 
- - . .. ·- '" ~ ,:: . : '·, . .,,· ~ - - . ' .' 

that an activation of operation f is allowed to begin execution only if no activations of g 

have been requested and are waifing. Also; let an activation' 'o( g be able to enter only if 

exactly one activation or f is actively being executed~ .Then the. 5olution specification for 

this abstraction consists of the two entry conditions: 

For gate f-"t.r: co~11t(g~. c0unt(g~) 

For gat~ g•nter:' couht(r'*') - coU~t(rdt) ~ 1 

In other words, the following are the abstract progra;,_s for activations off and g: 

Abstract program for f: 

request: increment count(f'equest) by 1 

f9"'••: wait until co~nt(g'~ - c0unt(g~). 

then increment C811nt(~) by I 

execute body of operati~ f 

r-xit: increment count(f9xit) by I 
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Abstract program for g: 

. g'•quest: increment count(g'~1U>y I 

g•nter: wait until count(f9"1•'.)- eoutttfF)• I. 

then increment count(g•nt.) by;l 

execute body of operation g 

gexit: increment count(g••it) by I 

3.3 Additional· f'.eatures of the sol~tlon speolflcatlon 

As indicated in the introduction to this chapter, the basic structure presented thus far 
• - < ' - ~ - • • 

for the solution specification lacks sufficient pow~r.for expressing solutions tq a ~i~e class of 

synchronization problems. Two new features mu'! be addecl ~.~bis basic structure in !'rder 

to achieve the required expressive pow~. These aqdiUQnal f~tu~, which are the subject 
'-· 'r'_. - • 

of this section, provide the ability to sau an4 ~use ,pier~~,~ ~ information, and the 
- ~ . - ! ,- ~ . - ~ - + 

ability to use properties of parameters to operation a~ivations. The far~ to be discuuecl is 
·-, , ' 

the use of previous state information. 

In the previous section, the sync~ronization staW was d~fint;d as~ abstraction from 
• ~ + < • _- ·-' '. 

the history of a data object containing suffider\t in~mation fmithe prediction of the future 

synchronization behavior of the object. Unfortunately, the counu·'o( all event classes do not 

provide sufficient information. Sometimes it is necessary to know not only AooJ man' events 

of each class have taken place previously, but ln 'tllltat ordn certain of these events occurred. 
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There are a number of adnntages to using integer-valtJed· counts to represent the 

synchronization state. As i11ustrated in the previous section, it makes the abstiatt state 

update within each gate of the guardian particularly simple. As a result,. the actual 

implementation of a solution specification in ter~s of a source language syrachronization 
-,, 

mechanism, which is the subject of Chapter 5, can be both simple and efficient. This 
' '; ~: ~ - 0 • ~ -'; 

efficiency is important in ensuring that the synchronization code Uself does not significa_ntly 
·: . 
;. 

affect the concurrency of the computation. The use of counts is also important in terms of 
;:::_ -~ ·~ ~ -~ ~· ~ ~' -

the algorithm presented in Chapter 4 for deriving a solution specification from a problem 
• ~>- ~ ( ! : . ' "l : ! :'. ~ ~ ; ' : .,. ,.. . . -; r. ·,. . - ' .. 

specification. For these reasons, H is desirable to ~emedy the lack of expressive power in a 
'' ·). " ~ .. - ; " . ~ .' ~ " 

way that does not sacrifice the advantages of using counts of events as the basic form of the 

synchronization state. 

The way to accomplish this is to add to the basic sokition ·specification structure the 

ability to save the synchronization state at the time of an event. The state of the guardian 
'~ 

then includes not only the current synchronization state, but also each previous st~te that 

has been saved. Conditions on enter gates can be expressed in terms .of both the current 

synchronization state and any information saved from previous states. All the informat~on 

that is lost by abstractin~ from the mmplete sequence of events within the history to the 

counts of event classes can be regained by using the state at the time c:»,f prior events as well 

as the current state. Basically the reason for this is that when it is necessary to know 

whether some particular event e1 has preceded some other event e2 in the preceding 

sub-history, this information can be obtained by comparing information in the states when 

e1 and e2 occurred with the current state and/or each other. In Chapter 4 it' is explained 
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how previous stat~ information is derived to :et<press:.properties fGr which the current state 

is insufficM-nt. 

A notational extension is needed to represent previOus state information. Unless 

indicated otherwise, quantities appearing in a condition represent current state values. 
- . ~- . - } 

When a quantity is meant to represent a value in the state at some previous event, ~he 
., 

notation "• g" appended to the quantity is employed, w.here g is the name of some gate. 

This means that the quantity refers to the state saved. just prior to the most recent event 

occurring at gate g. For example, the number of activations of p that had been requested at 

the point at which the most recent exit event for procedure q has occurred is denoted 

[count(p'equest) • quit]. Notice that since the state is saved just before the indi~ted event, a 

quantity such as [coont(q .. it) • qexit] does not include the q•lrit event actually occurring at the 

point at which the state u .saved. 

As an example of a solution specification that uses previous state information, consider . . 

an abstraction with two operations u and v. Suppose that it is desired not only that 

activations of operation u be mutually exclusive, but that between any two successive 

activations of u, an enter event for operation v must occur. This can be expressed by the 

condition 

count(u•nl•r) • count(u••it) /\ [count(vent91 • u••it] < count(v•nter) 
• 

for gate u•"'•'. The second conjunct of the condition says that count(v•nter) must increase 

between the exit event for the most recent activation of u and the time the next activation 

of u is allowed fo enter. The corresponding abstract program for an activation of u is: 
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urequesl: increment cou.nt(urequesl) by l 

uenter: wait until count(u•nter) = count(uexit) I\ 

[count(v•nter) 11 uexit] < count(v•nter), 

then increment count(u8
"

18
') by l 

execute body of operation u 

u•xit: save the guardian state, in particular the quantity count(v•"'•'), 

and increment count(u•xit) by l 

Each event at gate u•nter uses the value of count(v8
"
1") saved at the most recent uHit event 

in its entry condition. 

As before, a solution specification is represented simply by the entry conditions that 

apply to all enter gates in the guardian. The state' information that must be saved is not 

listed explicitly. Instead it is indicated implicitly by the appearance of quantities of the form 

[count(ec) @ gl where ec is an event class and g is a gate, within entry conditions. 

There is another aspect of information that is lost by abstracti~g from the history of 

an object to simply the count of events in each event class. The history is a sequence of 

• 
events, each of which is described not only by its event class, which is to say the operation 

name and event type, but also by the vector of parameters passed to the operation. AH 

information concerning the values of these parameters is lost when considering only the 

cou~ts of event classes. For instance, it may be necessary for activations of an operation to 

be mutually exclusive only if an integer parameter of each activation is non-negative. Such 

a property can be expressed in the problem specification language of Chapter 2, but not in 

a solution specification with the structure presented thus far. 
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The solution is to "qualif( gates in tt•• ~--~~ A.gm It qualifitd by 

the attachment of some predicate on the ~-&rlM!ters -~(the ~~te!l'prbceduri activation. 

Only if the parameters of an activation sat~fJ the predicate does the process making the 
o.,'·· ~- -~J,,::,;L;f:.:~ :·:; :~:··:- :} < ' • 

activation pass through that gate. An unqualified ~.:wtUd.t\app1"J to ~.aivations of 

the given procedure, may ~considereatlflk~ly''a' spetta'ftise.of a qualified gate, with 
. ( .,_. ~' · .. · . ..t -

a qualifying predicate that is identically TRUE for all parameter values. 

Some new notation is needed in order to refer to gates. An unqualified ~ate, as before, 

is indicated simply by the event class it is in, such as the p...._ gate. A qualified gate is 

denored by appending the qualifying predicate 'to thtt ptoO!dure actfntion· expression. The 

notation used is similar to that employed' in Set thtiOtt~ with a vertiCitbar us'ed to separate 

the predicate from the activation exprrision. Th~ore.Tp(v) I c(v):r"*" denotes a gate in 

the p•nter evei1t class that is qaaDfied by the' pretiitate C ·on the"veaot''dt pan~rs' vto 

procedure p. 

As an example, consider·· the foHOwing· situation; Let an abstraction have one 

operation h, ta-king a single integer parameter lt. :Let itl activatiOns of h With non-negative 
. . 

parameter values be mutually exclusive. Then th~ so1ution Sp«ifkation contains the 

condition 

count([h(x) I (x ~ O)J-f91 • c0unt([fl(x) I (x ~-o>r*'> 

for gate [h'(x) I (x ~ O)J"°'. This rrieans thaf1~ptel''fbr both the h....., and hnit event 

classes are qualified with·the predicate (x ,2: 'O};-'lml that· any activation of h whose 

parameter does not satisfy this predteate need net 'pass thrOUgh theSt' gates. That is, the 

abstract program for an activation of h with parameter x is: 
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hrequest: inc~ement-cOIHlt(h'eque~ by t 

hent•r: if X 2'.: 0 then 
·, 

wait until count([h(x) I (x ~ 0)]9"t•r) • count([h(x) I (x ~ O):r•it), 

and then incremerif c~unt([h(xf1 (x fO)~ tiy f 
execute body of operation h with parameter x 

haxit: if x 2:: 0 then 

increment ~unt([h(x) I (x ~ O)rxit) by I 

Since gate hraquest is not qualified, all activations must' pass through it, regardless of their 

para meters. 

Allowing only one qualifying predicate for an event class would be ove~ly restrictive. 

It may be necessary to maintain counts of several different -.W:,•s of events in an event 

class, where each subset is distinguished by a dif'ferMt predicate on the operation 

parameters. These subsets may either be disjoint or oveflap. Also, different entry 

• 
conditions may be required for different subsets of the total set of activations of an 

operation, and again these subsets -may be disjotm or .overlap.- It is t.hcrefore necessary to 

generalize the above structure by ailowing more th•tt,ooe,pte for each event class. Each 

gate in an·event class is distinguished by a diff«ent:~ifyjng,prediQttC..and each gate of 

an enter cla5S may have a different entry condition as well.··When there is more than one 

gate for an event class, ·a process passes through exactly ~hat ~. of gates whoSie qu41lifying 

predicates are satisfied by the parameters of tilt activatiOR, jt u mJking. Th.ese gate 

passages are assumed to all occur in parallel. It is this simUfl•~ passage through a 

subset of the gates in an event class that implements the abstract notion of an event. 
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The implementation of each event class by' a 'whole-; set 'Gf: ptes iS. a fundamental 

change in the structure of the solution specification. It is ~haps· best understood by 

v: 

p'equest: in parallel for all gates g in event class p,.......: 
if v satisfies'ihe qualifying preclk&t~ Or g. 

then Jncrement ~n~{g~.by J 

p•"'•': in parallel for all gates g in event class p•111er, 

if v satisfies the qualifying predicate of g, 

then wait until the entry condition of g is satisfied, 

and then increment collnl(g)by 1 · ;u' 

exec~e body-of operation p 

p••it: . in par~Uel for all ga~es g in event c~JS p••it, 

if v satisfies the qualifying predicate of g, 

then incremmt count(pe.lj by 1! 

Since the events in an obj«t history·.are totally OfdlHd, eileh :e¥eflt must ~· an 

indivisible operation. This mtans'that aRtate ,...ps maldng up an .event Oc:cur, at Inst 

in a conceptual senw, in parallel and SiftMflbmeously. tn1:partimt&r; it .meam that a procas 

given e-v.ent class wl'Qe '41llatifylftg pr«liateJ ate· satllf_. t»y ;ib:paralMCerL, Only when all 

the enrry conditioni' on thee gates are satisfied may: ttae:•te:r eftat, in the form of the 
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As before, the processes that are blocked at a given enter event class are queued up in 

FIFO order. However, they need not be unblocked in this same order. Each process in the 

queue is waiting on one or more conditions, depending upon which qualifying predicates on 

gates apply to the activation. The process that proceeds first is the one closest to the front 

of the queue for which all entry conditions are satisfied. This may not be the one at the 

head of the queue, since that process may be waiting at a different set of gates than other 

processes further back in the queue. 

It is important that the distinction between qualifying predicates and conditions on 

gates be clear. A qualifying predicate can be attached to a gate of any event class, and 

represents a constraint on the parameters of the associated procedure activation. If the 

predicate is sa ti sf ied for a particular activation, then the process making the activation 

passes through the gate, while if it is not satisfied, the process bypasses the gate. A 

condition, on the other hand, applies only to an enter gate. This condition is on 

synchronization states, the current state and perhaps also one or more previous states. If the 

condition is true, then the process may pass through the gate. If it is not, then the process 

becomes blocked, and must wait in a queue for the condition to be true. 

As an example of a solution specification employing multiple gates, consider the 

abstraction discussed above with one operation h. Assume now, though, that h takes two 

integer parameters x and y. As before, activations of h for which parameter x is 

non-negative must be mutually exclusive. In addition, though, we want activations "for 

which parameter y = 5 to be excluded whenever there is an activation currently executing 

for which y > x. The solution specification for this example consists of the following two 
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conditions: 

·For gate [h(x,y) I {x ~ Q)]9nt ... : 

count(Ch.(x.y) I (x ~ O)Jd1et'),,, ~Qt([h~.J). l ~ ~,.o)r•it) 

For fiate [h(x,y) I (y • 5)1"1
•':. 

couot.(Lh(x~). I (y > .x)]"111•1 "': ~~-f ~I (y > x)r•it) 

These conditions 'require two gates with en.try conditions for ~vent class henter, with 
• 

qualifying predicates (x ~ O) and (y • 5). There must be"·g~t~ii~ ~hth; henter and h••it 

event da sses to, main ta ill counts for the ~lifyipg predica~ (x. ~ O) ~qd. (y > :11). The 

abstrcict progrt1m for an activati_on of.h ~µhjl~~s.g,and7,wosiJ&;S of: 
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hrequest: increment count(h'equest) by l 

henter: in parallel, 

if (x ~ 0), wait until 

count([h(x,y) I (x ~ 0))8
"
1") = count([h(x,y) I (x ~ O)]exit), 

and if (y = 5), wait until 

count([h(x,y) I (y > x)]•nter) '"' count([h{x,y) I (y > x)]8xit), 

and then in parallel, 

if(x ~ 0), 

increment count([h(x,y) I (x ~ 0)]'"18') by l 

and if (y > x), 

increment count([h(x,y) I {y > x)]•"'•') by l 

execute body of operation h 

h'xit: in parallel, 

if (x ~ 0), 

increment count([h(x,y) I (x ~ o)]exit) by 1 

and if (y > x), 

increment count([h(x,y) I {y > x)]•xit) by I 

That is, if both qualifying predicates (x ~ 0) and (y = 5) are satisfied for an activation, then 

both entry conditions must be simultaneously satisfied before its enter event: If only one 

qualifying predicate is satisfied, 'then only the entry condition corresponding to that 

qualified gate must be true. If neither predicate is satisfied, then the enter event can occur 

without delay. In any of these cas~s. count([h(x,y) I (y > x)]•"18') is incremented if and only 

if (y > x). 
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3.4 Semantics of. the solutioa $pe0ifloa•ion 

Thus far, the discussion in this chapter has retied on an informal, intuitive idea of the 

meaning of the solution sp«ification. This iection presents the formal definition of the 

semantics of solution. speci,fications. As.was the case.for: tb,,,P~lem specification language. 

whose formal definition was presented in Section 2.6; ·die ;semantics. of the solution 

specification structure are defined by specifying which histories are valid with respect to any 

pa rticu la r solution specification. 

A qualification is a predicate on a vector of pa~meters. The domain of qualifications 

is denoted Q One particular element of Q.is th~ predicate that alwa.ft retum5'T~UE. By 

considering this special predicate to be the qualification assoeiat«I with what until now has 

been called an "unqualified" gate, we are able to consider aH gat~ to be qualified. So, a 

gau is a pair <ec, q>, whose first componeht· « is an eftat class and whose second 

component q is a qualification. 

• 

A state is a function from gates to non-negative integers. A state maps each gate into 

the count of the number of passages ~hrough it 'A condUion is a predicate on a set of states. 

If the condition refers. only to the current state, then the argument to the condition is a 
' 

singleton set containing only the current state. When a conditiOn refers to previous states as 

well, each of these states must also .be in the set. 
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A solution specification consists of a set of gates, and a condition on each one of these 

gates. (It is simplest to take the view that a solution specification assigns each request and 

exit gate, and every enter gate not explicitly given an entry condition, the condition that is 

identically TRUE.) The set of gates in solution specification ss is given by the expression 

Gates(ss). For every gate g e Gates(ss), the condition assigned to g in ss is given by 

Cond(ss, g). The set of previous states that the condition on gate g in solution specification 

ss refers to is given by PrevStates(ss, g). 

A history is valid with respect to a solution specification if. for each event in the 

history, every solution specification condition that applies to the event is satisfied at the 

point in the history at which the event occurs. (Actually, only enter events have non-trivial 

conditions, but for the sake of uniformity, it is easier to define the concept in terms of all 

events in the history.) To define tnis formally, it is necessary to have functions that map 

histories into states, i.e. into functions from gates into counts. The function CurSt maps an 

object history, the sequence of events associated with a given object, into the current state of 

that object. Recall that an object history is either the empty sequence [],or else is obtained 

by adding an·event onto some other history. An event is represented by a four-tuple of the 

form <p, t, n, a>, where p is the operation name, t is the event type, n is the activation 

number, and a is the vector of arguments. The definition of CurSt is: 
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CurSt([ ]) • A («. q). 0 . 

· CurSt(add(h; ~-t. n. a>) • A (ec.'q). (if cp, t>_""~ "'' .-> 
tMn--{Cur4~~. <t> • I) 

else. ~r~(1'),(ec,; q)) 

The notation ~sed here is taken from A--calculuJ. Tile. form.u~ '1t :(•. y)... '.~· repres4mts the 

The function MosRecSt (Most Recent State) maps an object history and a gate into the 

state of an obj~t at thl' timeA:>f the ~t,r~.ev,.,c;at t!Jat ga-. 

MosRecSt([ l <u,-q>) • >. (ec,q), 0 

MosRecSt(add(h, <p, t, n, a>)..~. q>-) • jf <p, .t> • .ec I\ q(a) 

. · . -then .. Cur:St(h) 

• 

The current state after .history h becomes the most~~ itate fcx:.an7 gate &ha~ applies to 

the l'Vt'nt added onto h. 

It is now possible to formally define the va1id1ty of a history h with respect to a 

solution specification ss. This is given by ValidSS(h, ss), where: 

VahdSS([ l ss) • TRUE 

ValidSS(add(h, <p, t, n, a>), ss) • ValidSS(h, ss) I\ 

V (ec, q) (<ec, q> e Gates(ss) " ec • <p, t> " q(a) 

::> SatSS(h, ss. <ec, q>) 

SatSS(h, ss, <ec, q>), defined below, is a predicate that determines whether the state 

represented by history h satisfies the condition in solution specification ss for gate <ec, q>. 
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Therefore, the def111ition of ValidSS simply states that a history is valid with' respect to a 

solution specification if it was valid before the last event occurred, and if the history 

satisfies the conditions for all gates that apply to the .last event. 

The predicate SatSS is easy to define. A history satisfies a condition simply if the 

current state plus the relevant most recent states of the history satisfy the condition. Reca11 

that the condition on gate g in solution specification ss is given by Cond(ss, g), and that this 

condition is simply a predicate on a set of states. Formally, then, 

SatSS(h, ss, g) = C(States), 

where C = Cond(ss, g) 

and States = {CurSt(h)} U {MosRecSt(h, g') I g' E PrevStates(ss, g)} 

. The subject of the next chapter is the method for deriving an equivalent solution 

specification from a problem specification. Section 4.6 justifies the method presented. This 

justification relies on both the formal definition of the problem specification language given 

in Section 2.6, and the forma I definition of the solution specification in this section. 
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Chapter 4 

Derivation of the Solution Specification 

4.1 Introduction 

The subject of this chapter is the algorithm for analyzing a problem specification and 

deriving from it an equivalent solution specification. There are two aspects to the 

construction of a solution specification. Identifying the gates required in the solution 

specification is relatively straightforward. This simply involves identifying the event classes 

appearing in the problem specification. For qualified gates to be identified correctly, 

however, this must be done after all argument constraints have been incorporated into the 

ordering clauses of the specification, as explained in Section 4.5. · 

Constructing appropriate conditions to attach to the gates associated with enter event 

classes is the formidable task. The algorithm for constructing these entry conditions is the 

subject of this chapter. As explained in Chapter 3, the set of conditions on all enter gates is 

. . 
sufficient to represent the complete solution specification. The other gates in the solution 

specification and the saving of previous state information are indicated implicitly by the 

quancities appearing in the entry conditions. 

In constructing a condition for an enter gate, the basic strategy employed is to 

determine, in terms of the synchronization state, what distinguishes points in a computation 

at which an event at that gate should or should not occur. "Should occur" here can be 

interpreted formally as satisfying the predicate Sat, which was defined in Chapter 2, relative 
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to the given specif~cation. In ~aking thi$ deteimination, it is necessary to consider all 

relevant subsequences of ~istori!S, specifical~y t~~ 5'i'9seq~es ~taming the events 

mentioned explicitly in the specification. Each of these subsequences, or ·orderings·, can be 

classified as either valid or invalid with respect to the specifacatiOrt.: k~h 'potftt in ah 

ordei·ing at which an event occurs at the gate in question, it is possible to characteri,ze the 

synchronization state. These i~dividual characterizations can then be combined 

appropriately, based on the validity of the orderings, to form an overall condition for the 

gate. 

The paragraph above summariles-the main ~Ofthe 4eri¥ation algorithm~ The 

a "preliminary condition". For casa where the com!Ct con4itiGft;fot_a gat~:can 'be exptessed 

solely in terms of the current state, the preliminary condition is correct. When this is not so, 

the preliminary condition can be refined by iterating over another phase of the algorithm. 

This phase, which is presented in Section i.3, uses information saved at previous states in 

the orderings as well as the current state. Section of.'f contains an example of applying the 

algorithm of Sections i.2· and i.3. The one other aspect of the algorithm is some initial 

processing designed to make the specification suitable for analysis. Section 4.5 describes this 

processing. in which argument constraints are incorporated into the specification so that the 

transformed specification consists entirely of «dering dauses:, ·Tfte algortthm is summarized 

in its entirety in Section i.6, and: there a justilicalion-·i5'~ted for why it works. The last 

section of this chapter, Section •U. -discusses the clau -of',sp«ificatioM for which the 

algorithm fa11s. 
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An important feature of the approach to be presented is a property that I call 

extensibility. This means that the algorithm can be applied to each conjunct in a problem 

specification individually. If the specification s is of the form 

· s1 " s2 I\ ... I\ sm, 

then for each conjunct si of the specification, the algorithm derives one or more conditions 

for gates in the solution specificat~on. For each gate, the condition required for the entire 

specification s is simply the conjunction of the conditions obtained separately from the 

conjuncts si. This property can be proved in terms of the formal semantic definitions of the 

problem specification language and the solution specification. Informally, it is true because 

each conjunct_ in a specification represents a separate constraint that must be met by any 

valid history, so that the overall specification represents a set of constraints, all of which 

must be met. If each constraint is implemented by a different set of solution specification 

conditions, then the joint overall constraint must be implemented by conjoining all these 

conditions. This is because an event may validly occur only if it does not violate any of the 

individual constraints. For this reason, the analysis of specification scan take place on each 

relatively simple conjunct separately, rather than on ·the entire, more complex specification. 

With regard to any reference in this chapter to specification s, the reader should understand 

that s can represent a single conjunct that is being analyzed individually. 
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4.2 The derivation algorithm ,,, 

This section describes the essence of the derivation algorithm. It is assumed that the 

problem specification consists exclusively of ordering information, in that all clauses, as 

defined in Section 2.5, are ordering clau~ of the form ~~J 7 ~2), where eveqts e1 and e2 
. , .· . ·~ - . -~ ~ ' " ' ,_ 

refer to procedure activations for which arguments are not listed. That is to say, there are 
~ . . ,: . . ". . ' . ~ - . -:- . -

no argument constraint clauses, nor are arguments explicitly given for any procedure 
__ , f.,":: ., •• "1 ' 

activations. The conditions derived . for the solution s~i.fication in this phase of the 

algorithm refer only to the current synchronizatiOf\ state, and not to any previous states. 
- . '.' ' . ·;' 

When any of_ the preliminary conditions derived·by this ~hase is h1adequate, then ·previous 

state information must be used in order to refine it. The method for doing so is presented 
., . . -: . . 

in the section following this one. 

The algorithm is presented here on a step-by"'"step basis. Each step first is described as 

H works on a general specification s, and then illuStrated dn a ·particular specification. The 

specific example used for illustration purposes is example 'f ftOm ·Section 2.7, which will be 

denoted here as specification si: 

P{equett ~ qj...., ::> Pi....,~ q/"•. 

As discussed in Chapter 2, the effect of this speciflcatioh is 'to glw executions of procedure 

p priority over those of procedure ·q. 
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Giv,en a problem specifi~tion i •. the fitJt S:teP .in c\eriving the equivalent solution 

specif.icatiOfl is to identify £.vexp{s}..the set of ev~nt exp~9fll;·p~rillg ;ins. Informally, 

this set can be constructed .&imply by. noting 'ldli~h event ~XPf'SSi~ an~ contained in the 

specification. The re,ursiv~ d~inition,of Eve>tp(s) .. which \\IH pre~ecl.in Section 2.6 .and 

is repeated in Figure 4.l .,below, ~n. be. u~ .'9 f9rmaUy_ ,~- Evex_p(s) Jor any 

specification. For the example specification, 
' . ~ ' 

Evexp(s1) - {p{equ9st, Pi•"'•', qt"•'}. 

Once Evexp(s) has been constructed, th,, neKt $lep. is to con~truct ti)e ~t of pos~ble 

time orderings among the events represented .by these expressions. Supp0se a history 

contains events that correspond to the event nprMJions ·in the specification. Formally, 

using the definitions of Sect;on 2.6, this means that there !-s some mterpretation mapping 

-t~ event expressions in :Evexp(s)"ff'lto a ~bset ~f the- cevA~ in .th~ history. Then whether 

or not the. history. sati5fie£ the speci-9u«on under thit. in,ter;pr.ct~9!l 4epends upon the 

order among exactly these events. To analyze all-j>05fible histories that involve events 

corresponding to the expression$ in the $pftificatiQn. it is ;1uf(ic.ient. to analyze all possible 

subsequence£ of these events; A su~seqyeiKe of ,events in a .bistpr;y, is tailed a subrltistor1. 

Figure 4.1. Definition of Evexp(s) 
Evexp(e1 ~ e2) • {el , e2} 
Eve~p(exp1 rel exp2) • { }, for rel e: Rel 

Evexp(-. s) • Evexp(s) 
Evexp(s1 op s2) • Evexp(s1) U Evexp(52), for op e: Op 
Evexp(J x (s)) - Evexp(s) 
Evexp(V x (s)) - Evexp(s) 
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Since t'ach relevant event is represtntetl by an ;event''expttmOR appeari'ng in 

spttificarion s; the sub-histories Of ihttmr mrMpoltd to·· the possible sequences of the 

expressions · m Evexp(s). &ch· ~uence~ -bf ewnt 'd~resiidtfs 'tltjt1 npr~ts a· posftb1e 

sub-history is called an ordermg. Ewry hiStofy =coniatnirig 'events riipmented by the ~ent 

expressions of Evexp(s) corresponds· tO exattty· oM'Of tM OflJertngs. 

If the size of Evexp(s) is~. the~ there, ~re_~! permutations of these n events, but not all 
: - "'" ,~~. . - ;_ 1 ~ 

of the corresponding sequences are necessarily possible time orderings. To be a possible 

ordering, a sequence must obey the basiC cooittaint . 

for every procedure activation um. Fer example, constdft a case where 

EveHp(s) • {xa'..-st, Xa ••.,"a .. it~ Yb....,...• Tb...,• Yb•itJ. 

While there are 720 pmnutaoom of these me riehts;•Only 20' ~ represent (>OSSiblie 

·time orderings. An additional constraintthat imnt bt'mer· by any Ordering~is that · 

since the numbering of procedure activations· is ·based •on· ttn! order of the respective request 

events. ThUs, for a Spec:ifit:atiOh in wldch xj'...-·afkt-'ri';1,..,...,both appear, x1,.._t must 

pre~ede xi+i'equest in every ordering. These constraints are exactly the ones embodied in the 
- . 

predicate Possible defined in Section 2.6. Ruling out all orderings that are impossible 

corresponds to restricting attention to object historit$; ~hit are" poSsibie< according to that 

definition. 
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Formally, the construction of the possible orderings among the elements of Evexp(s) 

can be carried out in two stages. The first stage consists of generating all permutations of 

the elements of Evexp(s). Then every permutation that violates one of these basic 

constraints is eliminated. 

For the example specification s1, Evexp(s1) contains three events, as already noted. 

Although there are six permutations of these three events, only three are possible time 

orderings, since the other three violate the constraint that Pirequest ==> pt"18'. These three 

possible orderings are: 

(I) p/equest ==> Ptnter ==> q/nter 

(2) P/equest ==> q/nter ==> Pienter 

(3) q{nter ==> p/equesl ==> Ptnter 

That is, in any possible history in· which there are events corresponding to the three event 

expressions in Evexp(s1), these events must occur in exactly one of these three orders. 

Once the possible orderings of the events associated with specification s have been 

constructed, it is necessary to separate them into two classes. Those that satisfy the 

specification s are termed valid orderings, while the rest are invalid. Validity of an 

ordering with respect to a spec'ification s can be determined by simply evaluating the 

formula s. In this evaluation, either TRUE or FALSE is substituted fot each expression of 

the form (e1 ==> e2), depending upon whether or not event e1 precedes event e2 in the given 

ordering. Since it is assumed that by this point the specification consists entirely of 

ordering information, the result of this evaluation must equal either TRUE or FALSE. 
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The ordering- is valid· wben the formula·evaluata te;TRu£, lmnnva1id' when it is FALSE. . . 

· In tenns·of t•;fOrfhaluntattics ~·iM'-pNIJJlm-. ~tatiittrtinplp presented 1n Ct.ilprer 

. ~.this corresponds to;.naluatlftgno.e.;pnNhtatt ·sat for· an 6ffMtwtse 'Hlid, ·histoty 'that 

contains the given ordering as a sub-history under an arbitrary ·1nterprfi1tton: 

For the example,subltitUtion ofut~tmg (t):inte spedfialttori sl jietdS tM formula . 

'.•TRUE1'rrRuE; ' . . I 

which evaluates to TRUE; "'Subllie8tlnf2 ordtRlft(l>J...._,sr'J'elUWilttfMifarM\ila 

FALSE::> FALSE, 

which also evaluates to TRUE. Orderings (I) and (3) are therefore both valid with respect 
_,_, i;-, ,.:._ -· '- - ·- - ':'f-

to s1. Substituting ordering (2) into s1, however, yields 
• -·t> •• 

• TRUE::> FALSE. 

which Is FALSE. so ordering (2) is invalid. 
'. :-;, 

In describing thenext·SNp,ofthe algorithm, -*'tlefitfiftons·•re needed. A fJrtftx of 

a sequence is simply any initial subsequence. A special case is the empty sequence. which is 

a prefix of every sequence. Any two sequences have a unique long1st matclatng fJrtfix which 
·' .;- .. . ;., '-

they share. Given two different orderings of n events, ther~ is a uniq_ue Jc., where 0 < k < n. 

such that each of the first (k - I) events in the two orderings are identical. and the k-th 
~ ; i . 

events differ. The shared prefix of length (k - I) is the longest matching prefix of ,the two 

orderings. 
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It is necessary to compare each invabe ordering with all of the valid' orderings in tum. 

In eacb, case, there wUtbe a longest matching: p£eftx tAat thee twu ·antenngs, share, which 

·.may be the empty sequeACe. Of al~ these tongest matching prefixes, we ·choose the one with 

the greatest length. If this prefix is of length (k - I), then the k-th event (more precisely, :the 

k-th event expression) in the invalid ordering is the offending event of that ordering. The 

offendi_ng event is the one at which the invalid ordering first ·goes wrong• in the sense of 

violating the specification. That is, it is at this point in the history that the Sat predicate is 

first violated for the specification. Assuming that the offending event is in an enter event 

class, a condition must be attached to the gate for that event class in the solution 

specification, so that the SatSS predicate for the solution specification is also violated at this 

point. 

Jf the offending event in the in-valid ordering is onot an. •ter .:event, then the 

specification is illegal, in that it does not agree with the basic ... guardian model being 

employed here, According to the model, oalf euter-·ff8Jtlc• can be -conditional and so. be 

delayed from immediatelx taking place. If a specifica-lioft'impfies that smMFeqtteSot or exit 

event s~ould be delayed. then it rep,resents a property that·ilincompatible>with:this model. 

Such a s~cification cannot be analyzed by the method preMRted here. (Th~se cases are 

discussed in section 1.7.) 

Returning to the example spetifkation ~1 • onitdngs (I} and (3) have already been 

shown to be valid, and ordering (2) to be invalid~ For or'dednp (1) and (2). the kmgest 

matching prefix consists of the sequeace of length one whose only element is Pirequest; for 

orderings (2) and (3), th4! longest matching prefix is the.,empty seqt.tmce. The longest prefix 
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of ordering (2) that mate.hes some valid ordering is _therefore the one-element sequence 

[pi request],· The offending evenMn (2) is the eftftt immecUately fOltowing this prefix, namely 

q/nt•r. Thus a condition is required on the gate for she q.nter eNDt dass. to pre~t!'llt this 

invalid ordering. 

In the general case, a condition must be derived for each event class that contains an 

offending event in one or more invalid orderings. When this condition is placed on the 

gate for that event class in the solution specification, it muat prevent any sub-history 
. . 

corresponding to one of these invalid orderings, but allow any of the valid orderings as 

sub-histories. The derivation of the condition requjres the ·state, i.e. the synchronization 

state of the object, to be characterized for each innlid ordering at the point at which the 

offending event occurs, so long as the offending event belongs to the given event class. The 

method for charaa«iling the ·state ii explatned below.. A· disjtmetton of these state 

characterizations is formed, to be denoted here· as Di. Di represents a general state 

characterization of when the occurrente of•"' event th the givtn eventdass .would fail to 

satisfy the spectftcation. Similarly, the state must be t1'aracterittd for sch valid ordering at 

the point at which an event in the class occurs.· The dtsjunctJOn of t1wse characterizations is 

denoted Dv, which is a general characterizatton of When the occurrence of such an event 

would satisfy the specification. 

The expression given by the formula (Dy I\ (-. D1)} represents a prelimtnary possibility 

for the condition required in the solution speciftcatton. Tbe term ( ... D1) guarantees that the 

expression is strong enough to exclude every in'Ylhd ordering. Con.Joining the term Dv 

a.ids in the simplification of the formula. Since any conditions that are triviatly true in all 
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orderings of interest appear ~h in Dv- and in'Di• such cond1tlom cancel out in the 

conjunction of Dv with the negation of Di. These:COfldltions may,a:rise from the fact, for 

instance, that at the poinrjust before an event in the penter dass occurs, it is atways true that 

count(p'eq..,est) > count(p•nter), since there is at least one activation (rhe one under 

consideration) for which the request event, but not the enter-event, has occurred. Thus, 

this clause is a component of every ·state chatacteriaatiOA, whethel' the ordering is valid or 

inva1id. The conjunct Dy guarantees that the negation of this clause is eliminated from the 

conditi0n. 

The preliminary condition given by (Dy f\ (-. Di)) is known to be at least as strong as 

the condition required; since tM term (-. Dj) exctud'e~d iit'ftlid OR:letings, te. all histories 

wit-h sub-histories corresponding to an invalid otdering. ·The condition· must be tested 

against all the valid: orftl'ings., h<>wem, to check that it ii weak enough to allew all of them 

as sub-histories. · This checking is accomplished. bY' determining that the condition is 

satisfied at the point at which the appropriate .vent occurs m each valid ordering. If the 

condition is satisfied at a.It thae points, then the;<Ondition is c:orrect, and the task is 

compteted. If this is not so, then the <e>nditwn is coo "ttnmg; ·m.···that it ru~" out some 

orderings that are valid according to the specification. Whe:Hhis·happens, steps must be 

taken to refine the condition by weakentng it:a.pproprtatety. This weakening procen wm be 

described in the next section. 
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In characterizing :the $ff1chr-0t1ization· Slate- ot lhe-;objel!t;at • "'°t in a.a wdering, the 

ordering must be considered to, repr.esenlr'a subtmstory; ,,~ ..... ti ,emt.dpet w;tQirJ, 5CNl4e 

possible history. :Except for what canpe-deduced ftDn;thtt.-*f'ing'itself, nothing can be 

assumed about .the history or about the interpretation by, whidf the·eiV!!nt. exp~smns: in ~ 

sub-history. It is knoWJt. however. taat the histOJJ~i...,.palfib~ Also. the- hmory can be 

assumed to be compatible with the solution specification structure, since if it is not, l:JJ,en.tlte 

algorithm cannot succeed in any case (see Section i.7). 

The characterizatiofl of ,the •e :Aherefor:e-. relies entirely QI\ 1 "he ·.etJaer · ev:ents ~ ~ 
' ' 

involves actual events.in• hiltory. rather thaft~the '"91-•pr.-iQa.s in,._,. OJcienng..eida 

replacements ia -arbitrary, however •. nething •am be:·utpnllflt abQut cthe values .. All tbat is 

known is that for any gjven..histor·Y and interpr«ation. dHlre is tOme paracular vah.le for 

each variable. For this reason. in the state ~raaerilatioo .each ,yanable is existeattally 

quantified. That is, ev.ery state cllarmerization fonaula is~ef-theJorm . 

J (ii, ... ' im) ( S ), 

where fi1, ... , iml is the set of variables appearing free in formula S. 
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The body S of the state characterization formula consists of placing bounds .on the 

c~unts of event classes, based on which of these events occur before and after the point at 

which the characterization is being made. It is assumed that the characterization is made 

just before the enter event of interest occurs, so that this event itself has not yet taken place, 

but every preceding event has occurred. The characterization contains a clause 
• 

corresponding to each event in the ordering, that is, to each element of Evexp(s). For each 

e e Evexp(s), the count of the event class containing e is given either a lower bound if e 

occurs prior to this point in the ordering, or an upper bound if e occurs subsequent to this 

point. The bound in either case is the invocation number of e. 

For eumple, let e be. the event expression Xm enter. If ev~, cXmenter ~"'rs .prior to the 

enter event in the ordering being comidered, then the state char~~terization contains the 

conjunct 

count(xenter) 2: m. 

The reasoning is that if xmenter has already occurred, then so have each of xkenter for (I ~ k 

< m), so that count(xenter) is at least as great as m. The count may be greater than m, as 

other events in the x•nter class may have taken place in between· event xmenter and the 

current point, but it is not less than m. On the .other hand, if xm enter occurs after the point 

' 

at which the characterization is made, then the clause becomes instead 

count(xenter) < m. 

If "m enter has not yet occurred, then neither has xk enter for any k > m, so that count(xenter) 

must. be less than m. Again, other xenter events may occur in between the point of the 

characterization and xm enter, so that the count may be less than (m - I), but it is certainly 



less than m. 

This method of state characterization relies on a first-come-first-served scheduling 

discipline at each gate. That is, it assumes that any history occurring prior to event Xm enter 

contains exactly 

[x enter X enter X enter] 
1 • 2 • ··· • m-1 

as the subsequence of events occt:1rring at the xenter gate. This scheduling policy is built 

into the structure of the solution specification, and so it may be assumed that if a correct 

solution specification can be derived for a specification, then it must fit this structure. 

There are specifications with which this first-come-first-served scheduling policy is not 

compatible, and the derivation algorithm fails to derive a solution specification in such 

cases. This point is discussed more fully in Section i.7. 

Since every state characterization formula is of the form 

the construction and manipulation' of the formulas Dv and Di must make use of logical 

properties of existentially quantified expressions. Because of the negation of Di in the 

preliminary condition, universally. quantified expressions must also be manipulated. A 

surnma'ry of the important logical properties used for simplifying these formulas appears in 

Figure i.2. Properties (El) through (ES) are equivalences applicable to existentially 

quantified expressions, and properties (Al) through (AG) are their dual forms for universally 

quantified expressions. (QJ) and (Q.2) apply to formulas involving both types of quantifiers, 

and (DI) and (D2) are the distributive laws for I\ and v. 
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Figure 4.2. Logical properties of quantified expressions 

(El) 3 i (S1) v 3 i (S2) 

(E2) 3 (i,j) (A(i) I\ B(j)) 
(E3) 3 (i,j) (A(i)) 
(E4) ..., (3 i (S)) 

(E5) 3 i (x ~ i I\ y < i) 
(E6) 3 i (x < i) 

(Al) V i (S1) I\ V i (S2) 

(A2) V (i,j) (A(i) v B(j)) 
(A~) 'rf (i.j) (A(i)) 
(A4) ..., (V i (S)) 
(A5) V i (x < i v y ~ i) 
(A6) 'rf i (x ~ i) 

(OJ) 3 i (S) f\ V i (-. S) 
(Q2) 3 i (P A S) A V i (Q.. v ..., S) 

(DI) ((x f\ y) v z) 
(D2) ((x v y) f\ z) 

... 3 i (S1 v s2) 

... 3 i (A(i)) I\ 3 j (B(j)) 

... 3 i (A(i)) 

... V i (-. S) 

... (x > y) 

... TRUE 

... V i (S1 " .s2) 

... V i (A(i)) v V j (B(j)) 

... V i (A(i)) 

... 3 i (-. S) 

... (x ~ y) 

... FALSE 

... FALSE 

... 3 i (P f\ Q. f\ S) 

... ((x v z) I\ (y v z)) 

... ((x I\ z) v (y " z)) 

Let us return to the example for an illustration of the above discussion. Recall that 

the offending event in the invalid ordering is q{nter.'and so a condition must be derived for 

the qenter gate. In ordering (1), the event q/nter is preceded by events p/•quest and Pt"'•', 

and has no events following it. Therefore, the state characterization cl is: 

3 (i,j) (count(prequest) ~ i f\ count(p8 nter) ~ i f\ count(q8 nter) < j), 

where the first two terms in the body·are obtained from the events preceding qt"'•', and the 

la st term from the fact that q/nter itself has not yet occurred at the point at which ·the 

characterization is made. In ordering (2), the event q/nter is preceded by Pirequest and 

followed by Pienter, so the state characterization c2 is: 

3 (i,j) (count(prequest) ~ i f\ count(p•nler) < i I\ count(q•nter) < j). 

In ~rdering (3), qj enter precedes both p/8quest and Ptnter, and the state characterization c3 is: 
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These individua.1 c~raderizat~c>ns ,~n now be combined to .~~.the. t~ms ,Ov and 
• • • • • • • ~ ~ . • ' 1 

~ . ~ 

:i • '._ ' ~· 

Di. The disjunction for the valid orderJ~gs Dv ~s equal to (c1 v '3). or 

3 .(ij) (c,9unt(q~) < j " 

((count(p'eques~) ~ j " ~count(p"ter) ~ i) v 

(count(p~ < i I\ count(p"18') < i))). 

The disjunctio~ for the invalid orderings Di is simply c2, so that(_, Di) becomes 

V (i.j) (count(p'eque•t) < i v count(penter) ~ i v count(qent•r) 2: j). 

The formula for the preliminary conditi6n is th~efore given by Dv ·~ ( .... Di)• or 
~ -, ,- - ~ · ..... 

3 (i,j) (~nt(qent•) < j I\ 

((count(p'..,.at) ~ 1 I\ count(penter) ~ i) v 

(count(p'ft!W'1) < i I\ count(p.,..91 < i))) I\ 

V (i.j) (count(p'equest) < i v count(penter) ~ i v count(q•nter) ~ j). 

This formula can ·be simplified. Since the terms involving i and j are ind~pendent in 

bo~h of the quantified expressions, they can be separ-ated, using;logka1 ptopertieS (E2) and 

(A2) from Fagure 4.2. This yields the formula: . 

(count(p'equea1) < I f\ count(pe1111ier) < i)) I\ 

J j (~nt(cf""'> < j} I\ 

(V j (~.,)~ j) V. 

V i (count(p'..-st) < i V· eeunt(p-""} ~ i)). 
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By distributivity propmy.{D2), th_is is equivalent to 

(J i ((count(p'..,.'') ~ i I\ count<p-"'tlt) i'!: i) v 

(count(pNCIUMt) < i I\ coant(p•nt~~ < i)) I\ 

J j (count(qent•r) < j) I\ 

V j (count(q•nt.,) ~ j)) 

v 

(J i ((count(prequeat) ~ i I\ cou11t(p•nt•') ~ i) v 

(count(prequeat) < i I\ count{p•n'•') < i)) I\ 

J j (count(q•"'-') < j) I\ 

V i (count(p'•queat) < i v count(p•nter) ~ i)). 

The first disjunct is simply FALSE, since it contains the conjunction of 

J. j (count(qent...) < j) 

and 

V j (count(q•nter) -~ j}; 

This means that the formula reduces to the second disjunct, 

J i ((count(p'•que•t) ~ i I\ count(p•"1.,) ~ i) v 
- ' 

(count(p'equest) < i I\ count(p•"'•') < i)) I\ 

_J j (count(q.nt•r) < j) I\ 

V i (count(p'equeat) < i v count(p•"'•') ~ i). 

Each of the first two conjuncts simplifies to TRUE, so the entire formula reduc~s to 

V i (count(p'..,.81) <·i v count(p•"'.,) ~ i), 

which is equivalent to 
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by property (A5). Using the a priori fact that ciouat(fi~) .~· eOiti~\ the 1We1imlnar1 

condition can be simplified finally to: 

To determine whether the preliminary condition is indeed correct and not overly 
'~-1 .. 

strong, it is nt'cessary to test it at the appropriate point in nch of the valid orderings. The 

valid orderings are (I) and (3). At the point of ~ven~ ~enter ~n each.~ these orderings, the 

condition 

count(p'equnt) • count(pent•) 
. ' .; 

is satisfied, showing that it is weak enough to permit both valid orderings. Because of the 

conjunct (-. Di) in the condition, it is guaranteed to be strong enough to prevent the invalid 
... 

ordering. Thert'fore, it is exactly the condition required for gate qent•, and a correct 

solution specification has been constructed. 

4.3 Use of previous states 

In the example presented in. the last section, the current state alone was sufficient to 
. . "'' );· ; ;. 

derive the condition required in the solution specification. The purpose of this section is to 

explain the method employed when this is not the case, and one or more previous states 

must be used as well. Information from previous states is used to refine a preliminary 

condition that is too strong so that one or more valid orderings do not satisfy it. 
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An overly strong· preliminary conditi&rr·is weakened by disjoining one or mote tertris 

to it. The n~w.condition that resub·ilstrietly·watefthari·ttte'J)~litninaty condition,1inee 

it is the disjunction· Of the preliminary amdiUan an<t'othet ·retms; : AU va~id' orderings that 

satisfy the preliminary condition therefore automatically satisfy the new condition. __ The 
• I • < • • • • • t' • - :, ,~ ,~ '0 :•-: '. ~ • ~ '. 

purpose of the weakening terms is to include the remaining valid ord~rings as well. For 
, c , • - ~· I ~ , .' • 

this reason the analysis for constructing a weakening term can diS!"egard the valid orderings 

satisfying the preliminary condition. Only the remaining valid orderings not permitted by 

the preliminary condition need be considered, along with all invalid orderings for which the 

event in question is the offending event. 

Each weakening term shares the propetty with the p1elil1fmary· cOftditiOn that it is at 

least strong enough to exclude every invalid ordering. Therefore, all that need be checked 

for each weakening term is which valid orderings that have thus far been excluded are . ., 

permitted by the given term. The method terminates when the condition is weakened so 

that all valid orderings are allowed, or else when no further weakening terms can be 

constructed. 

In deriving a weakening term; ifis n«essary first to find sOtne event that.precedes the 

enter event in question in each ordering being considered, i.e. all of the valid orderings not 

satisfying the preliminary condition plus all of the invalid orderings in which the enter 

event is the offending event. This event may be in any event class, and is not limited to 
:: r,' ;-

enter events. Once such an event is found, the weakening term is constructed in much the 

same way as the preliminary condition, but using state characterizations at this previous 

event. The state is characterized at the point of the preceding event in each of these 
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orderings (but not in any of the other valid orderings). Notice that each of these 

characterizations, rather than involving ordinary counts of event classes, concerns quantities 

of the form [count(ec)@ g], i.e. counts of event classes saved at the event at gate g. 

At this point the characterizations from the valid orderings are disjoined to form a 

new expression Dv'· and the characterizations from the invalid orderings are disjoined to 

form D/. The formula (Dv' I\ (-. Di')) is constructed and used as a weakening term by 

disjoining it to the preliminary condition to form a new condition. This new condition is 

tested to determine whether the va.lid orderings excluded by the preliminary condition are 

allowed as a result of the weakening term. If al1 these orderings are permitted by the 

weakening term, then the new condition constitutes the solution specification condition. 

If there are still some valid orderings not a!lowed, then the process is repeated on the 

valid orderings stilt excluded. Here, however, each characterization refers to both the 

current state and the previous state. That is, each characterization involves both current 

counts and counts in the previous state. The weakening term (Dv' I\ (-. Di')) is formed in 

the same way. This term is again tested on the excluded valid orderings, and disjoined to 

the condition if it is satisfied by any of the excluded orderings. 

For example, consider the specification 

(ptx" => P/nter) ::> 

3 k (ptit => qk enter => P/nter). 

When the preliminary condition is formed for gate penter, it is found not to satisfy the valid 

ordering 
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(I) Pt"" _.1i_.., ~';:Pj~· 

A weakening term must ·therefore-· be constructecf fOt-,this otciering. ·. The two invalid 

orderings are 

(2) Pi exit ~ P'j~.,, ~ilk...._. 

<3> qk..,. ·==> Ptit =¥ Pjflfltfif 

in both of which the offending eYent is Pt'.._· T~~ event that precedes Plnter in each 

of these three orderings is Ptit· The state c.JtaratterizatiOh ati ·thfs''~vent in each of· the 

three orderings is: 

er J (i, j, k) ([count(pexit) • p•11it1 < i I\ [count(qenter) • PHit] < k 

" .{eount(p•~> • p••itr.( j) 

c2: 3 (i, j, k} ([couttt(puit) • p•llitJ < i rt [count(tf"*> • p••it] < k 

I\· [count(p_.., •p••it] ·<j) 

c3: J (i, j, k) ([count(pexit) • pexitl < i I\ [count(q•"'•') • perit] ~ k 

I\ [count(p•nter) • pexit] < j) 

However, the formula (Dv' I\ (-. Di')) given by 

Cl I\ (-. ('2 V c3)) 

is equivalent to FALSE, which is obviously useless as a weakening term. 

Therefore, it is necessary to form new characterizations of both the current and 

previous states. These are given by: 

c{ 3 (i, j, k) (count(p•xit) ~ i I\ count(q•nter) ~ k I\ count(p•nter) < j 

I\ [count(p••it) • pexit] < i I\ [count(q•nter) • pexit] < k 

I\ 1count(p•nt•r) • p•xit] < j) 



c2': J (i, j. k) (count(,,-}~ i. ~~*t--~:;c: ~;" count(pent•) < j 

· ·· " [covRt(p•~it·)·•-p.'1itl~ tv~: ~·~•:p•!~l:~ k. ,, · 

I\ [count(p.,.'•') • p .. il] < j) 

c3': J (i, j. k) (count(pltllit) ~J- h~~ -~ :.t-. I\ eount(penteP) < j 
~ ' ~ -

" [count(p•-4J,• p•~it] <; ~Aco1illt~ • pnit] ~ k 

I\ ,_...{p""'-)~;.p?~it~ ~ j 

Thtt nttw wea~eningterm(l.).y',1\,(--~ Qf~»J$~~- _,,' 

which simphfies to 

disjoining this term to the prelim;nary conditiUrf.: · 

,· .. 

If neither of the weakening terms obtained as a result of a given previous state is 
. (~,. /"-

sufficittnt to includ~ all of the r~aining -onterings, then another previous event must be 
., .. ; 

found and the entire weakening process is repeated using the stare at that event. Since this 

may involve using the next-to-most recent, etc. event at a particular gate, a notational 

extension is needed to refer to such quantities, such as [count(ec) • gl etc. 

-' ,_ ~ ~ . 

The idea behind the method is to find some property that distinguishes the valid 
• < •• 1 i ~ 

- ... ""' - ' -
orderings from the invalid ones. Unless the specification is one that violates the underlying 

model, it is always possible to find such a property. A valid ordering that cannot be 

distinguished on the basis of the preliminary condition must differ from an invalid 
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ordering by the exact ordering of previ~s events, xat.Mr than~ by their absolute number. 

At some previous event, then, certain other events must have occurred in the valid ordering 

but not in the invalid one, or vice versa. Using the state at that point allows the two to be 

distinguished from each other. Usij'lg only the previous state allows a weakening term to be 
, - --

constru'cted that involves only the relationships among quantities at that previous event. 

When this is not sufficient to distinguish all valid orderings, then characterizing both the 

current and the previous state permits relations to be formed between current and previous 

quantities. 

The weakening process is repeat«& until-.one ofc:two thing• happens. If every valid 

ordering is allowed, by either the preliminary cqndUion,involvin.g the C'\lrrent state or else 

by a weakening term involving some previous state as well, then a correct solution 

specification condition is thereby obtained. If instead, one or more valid orderings are still 

disallowed, and no event can be found that precedes ~he enter event in question in both the 

disallowed valid ordering(s) and all the invalid orderings, then the algorithm fails in 

constructing a condition. A discussion of situations i{'I which the method fails will be 

postponed until Section 4.7. 

4.4 An example using a- previeua.. sta.*49 

This section contains an example of applying the algorithm as it has been presented in 

Sections 4.2 and 4.3. The example chosen is ont for which the current state is insufficient 

for expressing the solution specification conditions, and previous states must be used. The 

specification to be analyzed here is example 7 from Section 2.7, to be denoted 52: 



The first step in the derivation process is to identify the set of event expressions in the 

specification. The set of event expressions in this case is given by 

Evexp(s2) • {ai•nter, b/"'.,, ci•nter, djent•J. 

The next step is to construct all possible orderings among these event expressions. In t.his 

example there are no two events associated with the same procedure activation (such as 

pj'equest and Pi"'•'), nor are there two request events for the same proceclure (such as 

p/•quest and Pi•lrequest). Therefore· any of the 24! permutations of the four events in 

Evexp<s2> represents a pOSSible ordering among them. These 2't orderings are listed in 

Figure i.3 and num~ered for the ~ake of future metence. 

Each of the constructed orderings is tested against the specifieation . to determine 

whether it satisfies the specification and is therefore valid, or fails to satisfy it and is 

invalid. For example, in ordering (6), (ai"'., ~ b/"'.,) and (cjnter ==> dl"'.,) are both 

FALSE, so that specification 52 evaluates to the expression 

• 
FALSE .. FALSE, 

which is equal to TRUE. Ordering (6) therefore satisfies the specification. When the 

specification is evaluated for each of the first 12 orderings, 'it evatuates to TRUE, showing 

each of these orderings to be valid. Each of the last 12 orderJngs causes s to evaluate to 

FALSE, though, so that these orderings are invalid. 
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Figure 4.3. Possible orderings for specification s2 

(1) a . enter ==> b. enter ==> C. enter ==> d . enter 
I J I J 

(2) a .PnlPr ==> C·Pnter ==> b.enter ==> d .enter 
I I J J 

(3) a . enter ==> C. enter ==> d . enter ==> b. enter 
I I J J 

(4) b.enter ==>a.enter==> d.enter ==>,.enter 
J I J I 

(5) b enter ==> d .enter ==> a. enter ==> ,.enter 
J J I I 

(6) b .enter ==> d .enter ==> ,.enter ==> a .enter 
J J I I 

(7) 

(8) C. enter ==> a . enter ==> d . enter ==> b. enter 
I I J J 

(9) c. l'nter ==> a. enter ==> b .enter ==> d .enter 
I I J J 

(10) d . enter ==> Center ==> b. enter ==> a. enter 
J I J I 

(II) d . l'ntf'r ==> b. POier ==> C. enter ==> a. enter 
J J I I 

(12) d .Pnler :::::> b .enter ==> a .enter ==> (·enter 
J J I I 

(13) a . enter ==> b . enter ==> d . enter ==> C. enter 
I J J I 

(14) (t POier ==> d .enter ==> b ,enter ==> (·enter 
I J J 1 

(15) a enter ==> d .enter ==>,.enter ==> b.enter 
1 J I J 

(16). b.enter ==>a.enter==> (-enter==> d.enter 
J I 1 J 

(17) b . enter ==> C. enter ==> d . enter ==> a. enter 
J I J 1 

(18) 

(19) (-eOIPr ==> d.enler ==> b.enter ==>a.enter 
I J J I 

(20) center ==> b.enter ==> d·enter ==>a.enter 
I J J I 

(21) C. enter ==> b .enter ==> a. enter ==> d .enter 
I J 1 J 

(22) d . enter ==> Center ==> a. enter ==> b. enter 
J I I J 

(23) d. enter ==> a .enter ==> C· enter ==> b .enter 
J I I J 

(24) d .enter ==>a.enter ==> b.enter ~ c.•nter 
J 1 J 1 
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The offending event in each innlld Ol"defing cn "·1d1Rtifiedd'>y iompatittg the 

ordering with. all the valid orderings to determine·'ai what poinr~ the ilivitlkf'ordering fint 

fails to satisfy the specification. For example, invaJief«dertng;(t3) matches vaUd -~eting 
: ·;; - ' • . ' . - _::: . "; i -'- • ~ -· . . ·- t' ·, _, ·. 

(I) as far as the first two events are concerned. Sinu-this is Che longest prefix that does 

match the prefix of some valid ordering, the next e~ent iri-'(13), na~ly dtnt•r, is the 
-~ .•• '! - ' . . -:-~ . :~. :: .. 

offending event. When this is done for each of the 12 invalid orderings. it is found that the 
• .;. • • "' : :; -~ .-- ·, ~-' :-. ' • fa -- ~ • ' • 

offending event is d/"'w in orderings (13) throug~ ,{15)~ ~'enter in (I~) t,hrough (18), bt"'• in 

(19) through (2l), and at"'•' in {22) through (24). 

. .. ,, 
A condition is needed for each of the four mter gates mentioned in the specification. 

Here the condition for the a•ntw gate will be derived. To deter~l~e the condition for this 

·' 

gate. it is necessary to characterize the state at event ~ienter in ~ch of the 12 valid ,o.rderings 

as well as in each of the orderings in which it is t~ offendirtg event, namely ~22). {23), and 

(2i). The characterizations one obtains for all of thae.orderJDgs. using Che characterization 

method described in the previous section, are hstea i~ Figure -'l.~ witti· d,aaracterization ci 

applying to ordering i. 

The formula that is obtained from disjoining Jh~ cha,rac.terizations c1 th~ugh c12 is 

given by 

((count(b•nter) < j I\. count(c•"'•> ~- t)' v 

{count(b•"'•') ~ j I\. cot1nt(d--, ~ j) v 

(count(c•ntw) < i I\. count(d"'-} < j))). 

This formula is Dv, which represents a characterization of when the occurrence of such an 
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Figure 4.'4. 'State characterizations at event aient.r 

Va lid orderings 

er J (ij) (count(a•nter) < i I\ count(b•nter) < j I\ count(ceftter) < i I\ . count(d.m.,) < j) 

c2: J (i,j) (count(a.-') ·< 1 " count(bfft., '<->J' 'I\ ~count(c-., < t · I\ _,.ant(d•nter) < j) 

c'3: J (iJ) (coutU(il•"'•~) < i A COU;ll t(b•.~tlJr) \C j A . .cewt t(~1".'~) < i , f\ cou•t(d•"'•') < j) 

C4: l {i,j) ('!ount(a•"'.,) < i I\ c~nt(b,•"'~') ~ j I\ ~t(c9"'er> < i I\ co~nt(d•nter) < j) . 
. : . ~ ·. ' " . '. 

c5: J (i,j) (count(a•"'•') < i I\ count(benter) ~ J I\ co~nt(~enter) < i I\ count(denter) ~ j), 
''• 

cs: J (ij) (count(a•nter) < i I\ cou11t(benter) ? j I\ cou11t(c•"ter) ? i I\ count(denter) ~ j) 

C7: 3 (i.j) {com1t(a•"1'') ci (\ couat(b~nt•r) < j I\ C01lilt(cnlf~) ~ i I\ couht(q•nter) ~ j) 

cs: J (i,j) (count(a•nter) < i I\ count(b•nter) < j I\ count(c•11ter) ? i I\ count(d•nter) < j). 

cg: J (i.j) (count(a•nter) < i I\ count(b•11'9:> < j I\ count(center) ? i I\ count(denter) < j) 

cm: J (i,j) (count(a•nt•r) < i I\ COUJll(be~ter) ? j " .~ot(c•11'•') ? i I\ count(d•"'•') ~ j) 
: ~ -

cu: J (i,j) (count(a•"'•') < i I\ count(b•"1") ? j I\ count(cent•r) ? i I\ count(d•"'•') ~ j) 

c12= J (i,j) (count(a•nler) < i I\ couut(b•nt•r) ? j I\ count(center) < i I\ count(d•nter) ? j) 

Invalid orderings 

c2~: J (i~ (count(a•"'•') < i I\ cou11t(b•"1•') ..,,; j I\ ~nt(c•"'~') .~ i .I\ count(d•nler) ~ j) 

c23: J (i,j) (count(a•"1•'). < i I\ count(b•111•') < j I\ co~nt(c9111•') < .i I\ count(d•nter~ ~ j) . "'. 

c24: J (i,j) (count(a•nter) < i I\ count(b•nter) < j I\ count(c•nt•r) < i I\ count(d•nter) ~ j) 
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event satisfies the specification. The diljW1£tioll .~ c22~,fU• ~n,ci .c_a4)$ Di~}epre~etiting~a 
~ - . - . ~ 

general characterization of when occurrence would not satisfy the spec~~ic~~~i~- Tbjs 

formula- is ~I to: ...... •• '': .i-. 

- J;{l.j) (COJIA~~) < i /\ .C:qQftf(b....,,c;j: /\ 'count(r•)-~_j). 

The body of· 1tttis •expression.'·CGftfains the "th~rNl~tl 'th'jt".appeit·' lit aH three 

charact~rizatioos. wttereas ~'oun«t...,> is greater tR~n or ~attc>t ~t~ C22; tiut' ten ttaan i in 

~ ~ ··~ 

the other two, sO that these terms cancel out. 
' ~ ! , ~ 

The· preliminary condition that one oetalns .then u given tif· (Dv"" (.-. D;)). which 

rquals -

. . . 

((count(b~) < j /\ -couaat(c._,) ~ i) v 

(count(bem9') ~ j I\ count(d~ ~ j) v 
j. • .__·, 

(count(c•"'-') < i I\ count(d""..,) < j))) I\ 

V (ij) (count(a•nter) ~ i v count(b.., ~ j v count(dentW) < j). 

The terms involving i and j in the universally'quanttfied expremon can be separated. 

applying logical property (A2) from Section ot.2:· This.resUlts iri the formula 
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3 (iJ) (count(a~1•') < i ·/\ 

((count(bent•') < j I\ count(c'"1~) i!'. i) v 

(cou11t(b•nl•r)_i!'. j I\ ~unt(d'"t.9. ~ j) V 

(co\lnt(c•111er) < i I\ count(d9
"
1!1) < j))) A 

(V i (c:punt(a•11
'•') ~ i) V. 

V j (count(b91119
') ~ j V count(d•"''') < j)). 

Using distributivity, this can be expand'4 into 

(3 (ij) (count(a•nter) < i I\ 

((count(b'11!f) < j. I\ count(c•111
") ~ i) v 

(count(benter) ~ j I\ ~(cl•~'•') ~~j~ V 

.(count(c'"''') < i I\ couat(d9
"
1
'') < j))) I\ 

V i (~ount(a'"1") ~- i}) 

v 

(J (i,j) (count(a'"1
") < i " 

((count(b'"1") < j " count(~•nter) ~ i) v 

(count(b•"''.'> ~ j I\ count(d'"1") ~ j) V 

(count(c'"1") < i I\ count(d'1119
') < j))) I\ 

V j (count(b'111") ~ j V count(d'111") < j)). 

The first disjunct reduces to FALSE, due to the conjunction of 

J i (count(a•nt•r) < i) 

and its negation. This leaves the formula 



- 9'l -

J (i~j) (count(a-*')"lli; "" 

«count(betttery:«j" count(c....,,~:tr y 

(com1f(b•"'~ ~ j " count(d-.,;~ j)' v 

(count(c.nt-, < 'i " 'codnt(d-'*1 < J») " 

v j (cou,nt(o.-, ~ J • V', ~t(dtlllter) < j). 

This can be simplified to 

V j (count(bent91 ~ j v celintfd.-, <j), · 

or simply 

count(b•'-> ~ count(d•fttw) 

using logica I property (A5); 'Fhis ·ii the. prettminaFJ condirien ift simplified form. However, 

when one checks this condition against each ofthe valid ordeiings, one finds that there is 

one ordering. namely (7), that violates the tonditfon. ', This means that the, preliminary 

condition is too, strong, and must be weakened sufficiently so as to permit ordering (7). 

It is at this point that the weakening method described in Section 4.3 must be 

employed. An event must be found that precedes ajHt.r, the enter event in question, in 

ordering (7) as well as in each of the invalid orderings for which at•t•r is the offending 

event, those being (22), (23), and (2·f). The single event that occurs before at"'., in all these 

orderings is d j enter. Thus, an attempt is made t~ find a condition at this event that 

distinguishes the valid from the invalid ord!fings. 
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The state characterization at dj"nter in otdtiing ("1) is' given by: 

3 (i;j) ([count(a•nter) • ttenlW!J < i I\ [cO\lnt(b...,) e d•t-] < j I\ 

[count(c•nter) • dent•'] ~ i I\ [count(d•nter) • denter] < j). 

Since all quantities refer to the' state at the ~'e'lent, the nOtatlOn "•dent.,.. Is used on all 

counts. This becomes the term Dv'• the disjunc~ion of previous state characterizations for 
, <- _, ':, '· ' : :·, ·-, ' ' :. ' . ' ·, 

valid orderings. The characterization for.,eac~ of orderi,ng,$.,(~). (23), and (24) is the same, 

namely 

3 (i,j) ([cou11t(a•nt.,) • (lenter] < i I\ [count(benter • denier] < j I\ 

so the disjunction of characterizations Di' is equal to thi~ a.swell. The proposed weakening 

term is given by (Dv' I\ (-. Di')), which equals 

3 (i,j) ([count(a•nler) ct dent•r] < i) I\ [count(beftter) 111 denter] < j I\ 

[count(c•nter) 61 dent•'] ~ i I\ [count(den191 e denier] < j) I\ 

V (i,j) ([com1t(a•nter) 8 denter] ~ i V [count(benter) • denier] ~ j V 

[count(c•nter) @ d 911ter] ~ i V [count(denter) • dent•r] ~ j). 

Simplifying, this formula becomes 

3 i ([cou11t(aen~ • d~ < 1) " [count(e'°') • 11•nt91 ~ i), 

which reduces to 

by logical property (ES). 
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When this condition ~. teste(i m .(){~'1jqg i7)i-it ~ ipu,ra~ to-~- satisfied. Therefore, 

condition: 

The method illustrated in deriving the''condition (or g~te a• ~st be applied again 

for each of the other gates b•nter, cent•, and d~.,· nUe to .the symmetry of th~ s~ification, 

these derivations are completely isomorphic. 

The previous sections have presented the method for deriving a solution specification 

•>;><> 

from the problem specification, under the assumption that each clause in the specification is 

an ordering clause of the form e1 => e2, for some eveo'ts e1 a-;.c(~ When a specification 

also contains other clauses in the form of argument constraints, these constraints must first 

be incorporated into the ordering clauses of the specification before the algorithm described 

previously can be used. 

To simplify the discussion, it will be assumed ttt.i .argu""'9'tqautraint clauses appear 

only as conjuncts in the hypothesis of an implication. A specification that do.es not satisfy 

this condition can be -transformed into an equ~v~"~,~~ does as follows: Any 

specification can be put into conjunctive normal form (CNF) by well;kno~A -UK:bniq~s of 

first-order logic. Each conjunct (which· is analyzed separately, as explained previously) then 

. . 
consists of a series of disjuncts, some of which may be argument constraint clauses and at 

least one of which must be an ordering clause. The general foml of such .a conjunct is 
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therefore: 

where each Ni is a (possibly negated) argument constraint clause and each Oi is a (pos.sibly 

negated) orderingclu1,se,,ana}~-Oartd·k tr I. ·Thiu!tti'be<~,llsing the tautology 

(x :::> y) " (-. x v y), into: 

((-. N1) "(-. N2) A ... Ab Nj)) ::> (01 v ... v Ok). 

In this way, all of the argument constraint clauses of the specification, some in negated form, 

are brought into the hypothesis of the implication, while all ordering clauses are in the 

conclusion of the implication. 

An argument constraint claute can •imolv4f eifhei'\it'tvoca«en number variables or 

arguments to procedure activations.,. WMn a claUJe in'fol~•·ttt"'ation number variables, 

it simply represents a constraint on those variaWel .appnt#lg: m the speeif-ieatiQll.. ·This 

constraint must be incorpora~"into·evecy statt!'~ilation. Otherwise, the clause can 

be ignored.in the~Ollm' steps;of the derhat.Mpn~·· 

As an example, consider the first conjunct of the alternative producer-consumer 

specification of example 8 in Chapter 2: 
'. ' [ ~- ~ 

(i - j) :::> (dept'it ~ remt''•'). 

The clause (i = j) is ignored for the moment, and the ordering clause is analyzed by the 

ordering (deprit ~ remt''''): ts .nlidJ while .t)te 1>tlter; ordering (re"'(''., ~ dept1it) is 

not The offendmg event is clearly .remJ""'''. and a cOnctttion tnust be conscructed for· the 

rem•"'•' gate. The state characterization at event remj•nter in the valid ordering would be 



J (ij). (count(rem•nt•r) < j I\ count(depexit) ~ i), 

except that here the clause (i • j) ~st be- added' as a conjunct of the characterization, 

giving: 

This expression represents Dv. 

For the invalid ordering, the state characterization at event remlnter also must incfude 
c ~- • ' ·~; .c;. • : - • .• • . -· ' • 

the clause (i • j). This formula is: 
. ~ . . -

J (i,j) (count(rem•"'•') < j I\ count(dep••it) < i I\ (i • j)), 

which constitutes the formula Di. The preliminary condition is Dy I\ (-. Di)• or: 

3 0.j) (eeunt(rewnentel) < J " count(dep••,_ ~ t. ~ :o, • j)) '' 

v (iJ) (ceunt(remen'-')·~ j v· count(dep~) ~ i-· v · (i "j)). 

·When this condition is simpWied, it reda<:es to: 

which is the condition on the rem•"19!'1gate.rftP11red in the soluUen specification; This same 

condition is obtained when analyzing the specification 

in which the same property is specified, with the equality between the invocation numbers 

of the two activations indicated implicitly. 

This illustrates the generat technique for ftandlng telittonal ·clauses that involve 

invocation numbers. As it shoWs,· such c.fau&es aremcegrated ilt a;relativeJy,aimple manner 

into the method previously given for -consiructing a ·solutiOn sptcificati!Dl't• since they simply 
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represent additional information that must be included in each state characterization. For 

predicates on arguments to procedure activations, the matter is not quite so simple. The rest 

of this section is devoted to discussing how to handle such clauses. 

An additional assumption that will be made concerning relations involving the 

arguments to procedure activations is that all such relations are made explicit. An example 

of an implicit relationship is a specification involving two pr-0eedure activations Pi(x) and 

qj(x). Here the implicit relationship is that of equality of the arguments to the two 

activations. This can be made explicit by changing the argument of qj to some new 

identifier y, and adding the predicate (x .. y) as a hypothesis of the specification. The 

situation would be handled in a similar manner if the argument to qj were not x but 

instead (x+l) or any other function of x. 

Argument constraint clauses . are incorporated into the ordering clauses of a 

specification by qualifying all affected procedure activations. Once a clause has been 

incorporated by means of qualification, it can be eliminated from the specification, so that 

.the result of the qualification phase of the algorithm is to transform the specification into 

one involving only ordering clauses. After this transformation has been accomplished, the 

specification contains some procedu,re activations that are qualified. Q.ualified activations in 

a specification result in a solution specification containing qualified gates. Specifically, a 

qualified gate is required in an event class for each event expression in that class appearing 
• 

in the .specification and involving a qualified activation. The conditions required on a11 

enter gates in the solution specification, qualified or unqualified, can be derived by the 

method already presented. In the derivation of these conditions, the qualifying predicates 
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on procedure activations .are transferred to tbe associated ptea; aoth the enter gat•s for 

which cQnditions are .Q>flstructtd, and the. gates, on, which counts are taken, may be 

qualified. 

The general.form of a qualified procedure-activation is:.. 

Ip1(Yl i C(v. t .. - • tm)l 

where v js the .vector: of.flarameters &cproceclara:nttva~an p~;aacLC is some predicate 

involving these parameters and Mier, possibly some new ftriables'tfdtrough tm that do not 

appear in the speciOtZalion. ('Fhe use,« these -n.r, variables is explained below.) The 

qua lifyigg pr~icatc C r.epr._,ts an implicit restmaion on llhe;~urriversal quantilication of 

the inv00ttion number i ""the exprnsion. reetriding, i, to •those ,fnvocatton numbers for 

which the corresponding activations satisfy condiiion :C This ,means that this event 

expression can only represent events whose arguments satisfy predicate C. 

Each clause that invelns.. only the arpunent to a single procedure activation is 

incorporated- into the specif1Qtion by attaching_ the clause -tO: the given aeti..•ation as a 

quaJjfying predicate. For example, let·y,t be the' vector of •rguments t.D:'proaedure p, and· v2 

be the vector of arguments to procedure q. 'Consider the follewing specificatien, where Ci· is 

a predicate only involving'•t and'~ is a.:preclicall!JonlfilWOlvtnf v~ 

(ct("f) I\ ~Yt)) !> 

((pi(v1)reque•t i:::$ qj(Y2~ ::>"(p~"I,..., ._. qj•2.,,.,»· 

Pr-edicate c1 can be incorporated iftto.the speaificatU.-by qualifying preced11re activation 

Pi• so that Pi(v1) becomes 
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This transforms the specifiqdon itself to: 

([pt(v1) ~ c1(v1)l'eq~st ~. ~j(v2H ~·~:r,nt~'). :> 

([pi(v1) I C1(v1)l8"1
•' ~ [qj(~r)J~'2)l"'"~ 

The meaning of this specification is that any activation of p satisfying qualifying predicate 
.. ":;. > 11 ·, 

c 1 and any activation of q satisfying c2 must obey the ordering constraint gi~en, but other 

activations of these operations need not. This is exactly the meaning of the original 

specification: If c1(v1} and c2(v2} are both true, then the evenu must satisfy the ordering 

constraint in order for the history containing those events to be valid. If either of the 
. ! 

qualifying predicates is not true, then the history is valid according to the specification 

regardless of the order among the events. 

In deriving a solution specification for this specification, ;tbereunust be ga;tes with 

qualifying predicate c1{v1} in the p'•que•t and p""'•' event classes, and a gate with qualifying 
'· • ;, )·. 1 ... 

predicate c2(v2) in the q•nter event class. The entry conditions in the solution specification 

are derived just as if the activations were unqualified, except that the enter gates for which 

the conditions are derived, and the gates on which counts are taken, must be qualified 

appropriately. Without the argument constraint predicates, this specification would be s1. 

the example analyzed in Section 4.2, where the condition 
., . 

count(p'9Cl119*1) • count(p•nt•'), 

: ' :, 

wa~ derived for gate q•nt•r. With the predicates included in the specification, the same 

analysis results in the condition 
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count([p(v1) I c~v1n....,..~ ··tount(Cp(v1H Cj~1)J9"'-): 

for the qualified gate [q(v2) I c2(v2>r""'. Tflat is, the qualification c1(v1) on activation 

Pi(v1) results in qualifying the gates p'equest and p•llter~ on ~ich the courits are taken, with 

this same predicate. The qvatification Vf.v2) on activation qf"2) is attached to the q•nt•r 

gate for which the condition is derived. 

A predicate involving arguments to more than one procedure activation is converted 

into a conjunction of different predicates, each of which only involves the arguments to a 

single activation. This is accomplished by parameterizing the original predicate in terms of 

some new variable t. Once this is done, then the same method of qualification as discussed 

above can be used. For example, the predicate (x • y), where x and y are arguments to 

different procedure activations, is transformed into the two predicates (x • t) and (y • t). 

Each of these two predicates is then incorporated into the specification by using it to qualify 

the appropriate activation. 

As a rt>sult, the specification 

{x • y) :> 

((pi(x)'equest ~ qj{y)9"'•') :> (pi(x)•nler ~ qj(y)enler)). 

is transformed into 

((x • t) " (y • t)) :> 

((pi(x)'equest ~ qly)enter) :> (p;(x)•nter ~ qly>9"'.,)) 

by parameterizing the predicate (x • y). Incorporating the two predicates (x • t) and (y • t) 

into the appropriate procedure activations further transforms the specification into 
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([pi(x) l{x•t)]'equest => {qfy):t(y•r)~) =>· . 

([pi(x) I (x•t)]enter ~ {qj'<y):J(yat))Mte'} 

Since· this is again simply specification 51· with' qualifying '-fi'Ndicates on the proqecture 

acti'vations, the Hsultihg sdlution specification contaifl.5 <onditicwt 

for the qualified gate [q(y) I (y•t)]8
"

18'. 

The meaning of this solution specification is the following: For whatever value of t is 

equal to parameter y of an activation of operation q, the enter event for that activation 

passes through the gate [q(y) I (y=t)J8"18'. The condition for that gate is given by 

. count([p(x) I. (x-t)]'equest) • count([p(x) I (x-t)]•"1•'), 

for this same value oft. Therefore, the "gate" [q(y) I (y•t)] actually represents an entire set . . 
. - , '-,, . 

of gates, one for each value oft, which is to say each possible value of y. 
.. 

~-..,,.-;~ 

. An argument constraint predicate can atways be patametetited into sev~al predieates, 

each of which involves only the arguments to on. pr.oc:edvrtc·actmtion~ In fact, many such 

ways of parameterizating a given predicate are possible. For realOftS hawving to do with the 

implementation that are discussed in Chapter 5, it is desirable that at most one of the new 

parameterized predicates be a non-functional relation between the activation parameters 

and the parameterizing variable(s), and funhermore that this possibly non-functional 

relation apply to the arguments of the activation whose enter event is the offending event. 

This restriction can always be followed in practice. 
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Once a predicate has been parameteriied, the resuking precilcates then can be used to 

qualify the corresponding prOcedure acttvations. When all· predicates have been so 

incorporated, the specifKa4on . consists mtittlf of, ordering ~tuua mvolving qualified 

procedure activations. Thl$ spectfitation can be anjllyud ibf the methed presented 

previously, resulting in a· solution s~i{katiOR cantfihing ·qu•Wi!Jd~1ates. 

4.6 Justificatio~ of the derivation method 

Both the problem specification language and the solution specification structure have 

been defined formally in terms of a common basis, the validity of histories. This means 

that the equivalence of a problem specification and the solution specification that is derived 

from it can be discussed in terms of the same set of histories being valid w~th respect to 

each. Rather than attempt a formal proof of correctness for the derivation method, this 

section will present an informal justification of the method. The justification will rely, 

however, on the formal definitions given for vahdtty of histories. . The COfRP1ete derivation 

algorithm is presented in. Figur« ib.. with the indtv.idual ~ :ttumbered for nse of 

reference throughout this Jeetion. 

In discussing the validity of histories with respect to both problem specification s and 

solution specification ss, we can refer to the definitions of the predicates Valid from Chapter 

2 and ValidSS from Chapter 3. They are repeated here: 
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Figure 4.5. Derivation of solution specification ss from problem specification s 

(I) Tramform s into a logically equivalent specification in which all argument constraint 
clauses are in the hypothesis of an implication and all ordering clauses are in the 
conclusion. 

(2) Parameterize each predicate on the arguments to more than one procedure activation 
into two or more predicates, each of which applies only to the ·arguments of a single 
activation. 

(3) Incorporate each argument ·constraint clause that applies to the arguments to a 
procedure activation by qualifying each appearance of that activation using the given 
clause as the qualifying predicate. The result is a transformed specification, to be denoted 
s'. Specification s' consists entirely of ordering clauses on qualified events, except possibly 
for clauses involving invocation number variables only, appearing in the hypothesis of the 
implica.tion. These clauses are ignored until step (8). 

(4) Construct the set Evexp(s') consisting of all event expressions, including qualifying 
predicates, that appear in s'. The set of (possibly qualified) event classes associated with 
these event expressions represents the set of gates required in solution specification ss. 

(5) Construct a II possible orderings of the elements of Evexp(s'), by generating all 
permutations of this set and then eliminating all those that are not possible. 

(6) Evaluate specification s' for each ordering, denoting each ordering that evaluates s' to 
TRUE as valid, and each that evaluates it to FALSE as invalid. 

(7) For each invalid ordering, find the longest matching prefix that it shares with some 
valid ordering. and identify the event following this prefix in the ordering as the offending 
event. If the offending event is not an enter event, then the specification is regarded as 
erroneous, and the algorithm terminates without being able to derive a solution 
speci fica ti on. 

(8) For each enter gate (either qualified or unqualifi.ed) that applies to the offending event 
in at least one invalid ordering, characterize the state at each event to which the gate 
applies that appears in a valid ordering, and disjoin these characterizations to form Dv. 

Also. characterize the state at each offending event in an invalid ordering to which the gate 
applies, and disjoin these characterizations to form Di. Any clauses in s' constraining 

invocation number variables must be included in each state characterization. 

(9) For each enter gate for which step (8) is carried out, form the preliminary condition 
given by (Dv I\ -.(Di)). Test whether this condition is satisfied at every event to which the 

gate applies that appears in a valid ordering. If so, then the preliminary condition is the 
condition for that gate in solution specification ss. If not, then proceed to step (10). 
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(10) Find. an event thilt p~, the given· .eater· e~eot in·.Vetf valid orderil'lg that is 
excluded by the condition so far, and also in every invalid ordering whose offending event 
applies ,to. the gj~en gate. , .. 

< • ~ • • • f ' .: -

(II) Characterize the state at each of these points, and form disjunctions Dv' and D1~ of; these 
characterizations analogous to those formed in step (8). 

(12) Test all vahd orderings stitl e.tecluded~odemmintwhkh satisfythe.1term·(D~~ I\ -.(Di')), 
If at least one such ordering does satisfy this term, disjoin the term to the current condition~ 

(B) If some orderings stin·•·~t ;;alisfy tl\W conclitftft,) theft' ...-t St'eps (II) ftd (12) ·but 
using the cha racterttattens- both'. f01<ttielt\ttHll!t«a~llft~M·t,_, ptt•ktuS'e•ftlt~ · 

(H) Repeat steps {10) through·{l3) ttfttil either ··n··.alid orderings satisfy the conditioo or the 
weakening term·in step'(l2), ot-no p~·~ ~be·fcM11cf:Dt 'step·UO>.:: ff:the former; 
then the condition formed by disjoinin~fdJt,prt!MMnary tendtftdN''itid ,,.n;:the wealtetting 
terms from step (12) is correct and is attached to the gate in solutic>n specification . ss. If the 
latter, t+.en themiffhod,fads totlei'ift'a''SoMHfn lfi!dlbtioft~ffil:'~ lpectfkation s. 

- - - .. -. ..-
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Valid([ ls)• TRUE 

Valid(add(h, e), s) • Valid(h, s) I\ 

V (ee, f) (ee e Evexp(s) I\ f is an interpretation 

I\ Match(e, ee, f) ::> Sat(h, e, s, f) 

ValidSS([ ], ss) • TRUE 

Va1idSS(add(h, <p, t, n, a>), ss) • ValidSS(h, ss) I\ 

V (ec, q) (<ec, q> e Gates(ss) I\ ec • <p, t> I\ q(a) 

::> SatSS(h, ss, <ec, q>) 

It is straightforward to comp~re these two definitions. They are both recursive formulas in 

which the basis case is the empty history []and yields a value of TRUE. Als~. both of the 

terms for the inductive case, which is add(h, e), are a conjunction of the given predicate 

applied to history h, and some term involving h and the last event e. Therefore, by 

recursion induction ([McC62]), the two definitions are equivalent if and only. if these last 

terms are equivalent for all histories h and all events e • <p, t, n, a>. That is, it must be the 

case that 

V (ee, f) (ee e: Evexp(s) I\ f is an interpretation I\ M atch(<p, t, n, a>, ee, f) 

if and only if 

::> Sat(h, <p, t, n, a>, s, f) 

V (ec, q) (<ec, q> e Gates(ss) I\ ec • <p, t> I\ q(a) 

::> · SatSS(h, ss, <ec, q>). 

The first term requires predicate Sat to be true for all interpretations under which the e\Pent 

matches an expression in the specification. The second one states that for all gates in the 

solution specification "matched" by the event, predicate SatSS is true. These two terms must 

be equivalent for problem specification s and solution specification ss to be equivalent, in 
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the sense that they allow th_e exact same subset of possible objett-histories to be valid. 

Steps (1) through (3) ef thle·-dtri¥alitilf·~'~ the original specification s 

into a new specificati~ s'. -' :t~ JustlrY;1 t'l~')'t~~sf;,..mation, it must be shown that 

specifications s and s' are equivalent with respect to -ti*~ialtdit,-:: p..~r.Valid, which 

·, ·~' -~~;-~1: ~- \.,.· .,., _\ .~- _ .. : ~l'l ~' . -~ >~J~~0_:.. ~{_ ;..: . ;~~ · .. 
rea.Jly means with respect to the satisfaction predate Sat. Step (I), in which all argument 
;;,, __ .. -.~::t;·_,~: -~ ;~l ·--'lo~' (.:;~:··/ 

-~~-rai!",t ~~~- ar.e brought into -the hypothesis of an implication simply involves 
·:,· - ••• t •• -; • "--

properties or·..fttllHfder:ldgki, swp·c2~;1tt Whidf fJfttiNIM 1~:at19~-u;~tffeh!nt 

:-activatioM•repai'Mnetirllecifit'tllc>~llrttt1dg'titml'-Wd.;:, -<' '~ - · -·~· - --

To justify step (3), let us look at the transformation that it accomplish.es. We start 
:. :;:_ '· -.~~h\ ii ~ -,·>~--~-:·1~ ;~~1"::!'~ )t.~(.,•1 ~~~!F -·'-;oil \Lr~ -~-~~ 

from a specification of the form Q.(v) ::> 11, where Q. is a -~lifyi~g predicate on some 
.. - .. ·"'~:~ · ~> -~-: ~ - , . f . - •. :·: J--. .~ .. -:,_,,~;~~~":-:_ ... , t'·,_.: .. ..:.6: .. ;;~~''-c.f--._'°·!~\:;) .-:;t~i.L-~; .t~· -~~):=- ·-;~-· 

parameter vector v and s1 ls some specification involving only ordering clauses. According 
'· , . • ~- t-_ -~ ~ •· • ·,. -·;;·."'!' ;~~- 0-·~;; r' z~i-.:--.,~,t _ _irt H;,- ,~<l :n:i?-· - 'f°' ~ · .-~.-~"' 

to the definition of Sat, 

Sat(h, e, Q.(v), ~ s1, O • (Sat(h, e, Q.(Y), f) ::> Sat(h,_ e, s1, !)). 
- ~ ~- ~ ,-;'"' .·:~~-.i'\:·' -·_; < ; ----.,: ;- ·'· ~_)}f.~_l' ·.r~~ :::. -l. 

Furthermore, Q.. must be some combination of arithmetic relatiOns, which are invariant 
. ~ ·. - . 

·{. , ; .. 
under the Sat predicate, since 

Sat(h, e, exp1 rel exp2' f) • (f(exp1) rel _ ftex1>2»· 
~ r ,--, :: ""'.:JE;.~_i :~ _-_~".-. ~ ~ •-'" 

This means that if the interpretation of Y by f satilfaes the qualifying predicate Q, then the 
•• "'< .;/ :' :.~?J;.7 -~:~: 

ordering specification s1 must be satisfied by event e and hiltory h under interpretatiC>f'.I _ f. 
: _. :, ... ~--. ··-.:·,::-: ~ ~ .. -~ ~,, - >-- :;,~ ,·· :_:.,'" __ :'. ~~~J .~£,:~ .~-~ ::iJ,:q ~::-~~;-~ . .:s'· .-- ; :~ :<·:: 

If Q.. is not satisfied by the interpretation of v by f, then it does not matter whether sa is 
- - • , _I~ • -~ ';~;__) ;·>-'·;~·:··.-c.~- ·:.:-~ -. .-- -·:)j]f.")~·'h:1~~{i. 5;;~~ -'.1·• :~·~-!!::- :~·-::. ~fz, :, 

satisfied under f, since the overall spedfacation is satilfied regard~ This is exactly the 
-· _: -.· -,~· . ·.~ ·:::··· :·: ,.~;;""·: .. ~·.-. ~1~ ~~~~-t\:-;;· -.. r;l ",.'~~ ·:.:""'\~)}~.,·~-,- --~ · -~ f--·::;-~_ i<· ; .. ,~ 

result or qualifying the appropriate procedure activaUon in 'I with predicate Q..on v. The 
- ~~ ,_ ; -.. ::·-·· ·~ . ._t;:_~,_-:; :.-f:_;.<"- --~;:~:· ·~'1 ~ ·_--:;_ 1-;Ci.J,;,;.}i-;._,..;"};-:<j ~'r1-~~~~::·:q -.~ti' ·>:-"-:-.~ :--/~ -·~· -r 

constraint represented -by 'I must be satWied only if the quaUf)ing predicate itself is 
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satisfied.. Therefore •. the tramformation · re1ukiftg f...n\ s-:(a) j& ·wrtJisteut with preservtl'lg 

when applied to the transformed specification s' as to the original $. • ; , · . , , 

which the specification centaim. expressions;. Theat or ... ,tepr:esent ·Sul>·sequences 

orderings is required to distinguish all valid histories from invalid ones. 

gates, since it is these dasses of n~ .ihat t"-•g..,dii'\fl .mtllt ~ trac;k, of in; order to 

implement the specified constraint. 

In step (5) all pQSJible or~ing• all'Ollg ,~h~ts- of &v•~') a:, constructed. 

Each .orGertng act~lly. ~~senu .a .~seq~. of:: • 'Ri•,n· ~ning, e~cUy t~ose 

~ i& no restriction. at all on the quantif~noe._. the :f.,..,pf,, the interpretaUon is •the 
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. complete set of an interpret1tti0ft1;' T1'1s meana-1hat ·the 'Ofdtriftgs1 together constiWte the 

under any interpretation-: ; - · 

enter event precedes. Us requat.event, or whose-ex4t event pRCedes its enter event; or (.O) 

This step correspencts·.co-the restrictiOft·:·ofsthiMclomli• of.nV:alickto< histories ~Usfying 

· pred it:a~ Posstble, which-enbodies· thele lame· reSlfiGlieU.~ 

In Step (6), each ordering is used to evaluate specification s', resulting in a 

which the event expressions correspond to actual eventa·ts unmtritted, an ordering is v~lld 

only if, under;1lny iftt.erpretatiorPwhatsoever, eadf event h'l lt-Atisfles the spedfiCllt1on. An 

interpretation does ftOI: · sat-isfy :the specifttation;>.,Thit ig, eqmvatent to the definition of the 

Valid predicate,' where for a history tO='bf 'l'alid:,: ei:h event in it must . satisfy the 

specification for all interpretations: 

The idenUfitation of the offend1rtg e~ent for each irwaMd ordering in,. step (7) is 

straightforward; The vaUdity Of a hfstery with respect tva·sptldficatlon ii defined· in terms 

of each successive event in the -histoty satisfying the 4pecificatiort. Since the history in 

which the ordering is embedded iS vaUd · otherW-ise, the ·first· event at Which ·a" iftft'lid 



- 109 -

ordering fails to match some valid ordering is the "offending" one. All events preceding 

this one must satisfy the specification according to the predicate Sat. The definition of the 

validity of a history with respect to a solution specification similarly is in terms of each 

event satisfying the solution specification conditions. This means that the offending event 

must be the point at which SatSS is first not satisfied, and therefore a condition must exist 

that is violated here. 

Step (8) requires the state to be characterized at each point representing either a valid 

or offending occurrence of an event of the given (qualified) event class. As described in 

Section 4.2, this characterization is made by existentially quantifying all variables and 

putting bounds on the counts of all gates involved in an ordering. The existential 

quantification of variables signifies the fact that the event expressions correspond to actual 

events under some unknown interpretation, and that every variable is therefore replaced by 

some unknown value. Each bound on the count of passages through a gate is either a 

lower or upp.er bound depending upon whether the event at that gate precedes or follows 

the point at which the characterization is made. If event xm•nter precedes this point, then 

count(x""1er) is presumed to be at least m, while if xm•nter follows this point, then 

count(xenter) is presumed to be less than m. For an event involving a qualified activation, it 

is the cou.nt of the appropriately qualified event class that is bounded. 

This characterization is accurate because the scheduling at each gate is 

first-come-first-served. According to the solution specification structure, two activations 
• 

whose parameters satisfy the same set of qualifying predicates must pass through exactly the 

same set of gates. Since the queue for each event class is FIFO, these activations must 
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proceed in first-come-fint-s,erved order. The rest· of CH state charactetizatiOn method 

simply invoiv_es introd"tjng .the existential.'.-ntmcatiM ;on· in¥ocation number· values 

ins'. 

The characterization that is formed for each ordering represents the most general 

expression possible of the current state following the occurrence of a sub-history 

except what can be dedµced d:ir«:tly from"·•lae ~ertts .in-the• ordering itself> AU unknown 

capsmg a ,sob-history to.corr~$p0fld to Jhts ordering .. Thetefore, Dv;the•disjunction of the 

definitions of SectiOIU 2.6 and 3.4, -it isc the moat pneeal characterization of. CurSt(h) for 

histories h wbicb. when 'fellowf4., by•'.~ tv"1t .:e: ::i& the .given · class,.. satisfies the 

specificatjon s' -(by ~- detlniOon of:,$at) Jor ·any iate1prera.tim ·:f. Similat"fy, D1, the 

disj.unction of the c.haracterizations from· a» the invalid orderings, .. represents the most 

ge~era 1 expression of when iUCh an event ~09t vaUGly occw., Thil mean~· that it is the 

most general characterization of CurSt(h) for histories that under some interpretation do not 

satisfy the specification when followed by an event in the class. 
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The prehminary condition formed by (Dv I\ -.(Di)) in step (9) represents an attempt to 

incorporate all histories with which an event of the given class satisfies the specification for 

all interpretations, and to rule out all those with which it does not. It is the conjunction of 

two terms, one of which is the negation of Di, the expression of when the event cannot 

occur. For this reason, it is guaranteed to be a strong enough condition to exclude all 

invalid orderings, and therefore all histories that do not satisfy the Sat predicate for the 

specification. Therefore, no history that does not satisfy Sat will satisfy SatSS for the 

solution specification containing this condition for the given gate. Testing the condition 

against a II valid orderings determines whether or not it is weak enough to allow all histories 

satisfying Sat. If so, then it is the correct condition, in that it causes exactly the correct set 

of histories to satisfy the SatSS predicate as well. If not, then there are some histories that 

satisfy Sat but would not satisfy SatSS if ss contains the given condition. 

Progressively weakening the condition allows more histories to satisfy SatSS. This 

weakening is accomplished by repeating steps (10) through (13) using previous states, each 

time disjoining the resulting terms to the previous condition if they allow more valid 

orderings to satisfy the conditiqn. The weakening term constructed from the first 

application of steps (II) and (12) involves only quantities in the previous state. If this is 

found in step (13) to be not sufficient, then repeating steps (II) and (12) allows a term to be 

constru.cted that involves relations between quantities in the previous state and those in the 

current state. Since each weakening term is of the form (Dv' I\ -.(Di')), just as the 

preliminary condition is, no invalid orderings can become allowed as a result of this process. 

By choosing each time an event that precedes the given point in all remaining valid 
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orderings stiH not •Uowt'd by th~ condifion, ihe wa-lt.emng ~'oonsnvcted haive a good 

chance of -including most·if. not·aQ>.of·tne'tetUfntwg nliderdertngs:iThefefbre, sttj:IS (IO) 

through <ll>.m practiet rattly: n.ct to be repeated "'9re 4:nlf1 einte'-tir twice! · E-'ttntu~'lly,' atf 

which this the algorithm faiis are the subj«t ·of theJIHt S«tkn of this 'chapter. 

4.7 Failure of the derivation algorithm 
,. 

The structure of the solution specifkatien -ii :~lHe·enough tOft~ the 'SOltJtions to 

a large dass er synchromzatiOn protdeins.; •HOWner:;'Eel'taitt' liatum do limit s6rnewhar dre· 

range of synchrooitiUlon constr1tinti' that fin · ~'~; 'The sohltion s~ification · 

structure is less general .t-han 'the 'J>l'ob""1 · tpetifidlfMft ~age, ~'stF tlrlat'' fOt some 

specifications the derivation algorithm is unable to construct equivalent solution 

spt'cifications. As noted in Sectioll 4.2, this sometimes is manifested by finding the 
.-. ·;,-I .'--':· _ ... -;t~ ·<-:;_; : ·-~. r":•,~;;i :: ; :), ;<:' .- .. i 

offt'nding evt'nt i.n an ordering to be other than an enter event Since this would imply a 
I ·: .. • .! • I~-';,;._. ' "" ; • $ 

condition on a rt>quest or exit gate, such a specif~cation is incompatible with the solution 
:(_f ~f ~-'"irt 't >~ •'}' 

specification structure that only places conditions on enter gates. The algorithm therefore 
• - ' ~, ~ f ! ~~. : , ~ ; , ' . 

fails whenever an invalid ordering is found for which the offending event is not an enter 
~ • -; )' -~ _:, ~"'.),:j .: d_ ' :,,. ·-,..--_ ' \: 

event. 
"f , • 

. ! '.; 
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"last~come~first~served" (LGFS} 5'hedukng specif\QtiQD. of.E~mp~ 6 iR ~ction 2.7: 

:i. 

or-<ltring. however,.namely p{"'•' in the,~alj"' onier~, 

P{equest ~, Pfquest ==- P{'!•' ~ ·Pt~nt•~. 

Tbis must be disting.u•lb~ f~.the offeo~ing e:veJtt Pf •11
••' iQ ,tf1~jnvaliq prdering 

on the basis of previous state information. Since these orderings differ only in the identity 

of which of the two p•nter events occurs first, and the id~~~i~~,: is not reflected in any 

predicate on the parameters of the two activations, it is obvious that the two cannot be 

distinguished. In applying the algorithm, there are two previous events at which possible 

weakening terms can be constructed: the most .recent, a~d next.:to-most recent, p'equest events. 

However, the state characterizations for the two orderings are identical in each case, 

resulting in potential weakening terms that are identically FALSE and thus not useful. As a 

result, the derivation ends in failure, since no other possible weakening terms are available. 



The Feason for the fa1lutt of the atgerittwm •thiS:'tpedfiltUIOrt:is that the property 

specified requires· t:wo diffennt·amvatioris td be AtihgUishM{ltot"OR the ·basis of their 

patameters/ but simpJ1-~b.y their idftttity.' A:,·SONtiOft speaMatfon'~itidn fOr this 

constraint would have-·to depend-:on nor:omy the auflahit·of. pH¥tE.us evients, 'whieh wotlld 

involve the current synchronization state, or' even 'tfie'O,-lir :ot"~th* events, since this 

ihformation can·a1ways ~·obt~ff6m pmriOUs-~fnf01..Wtitiftiin ftp&Htled irr1S«ti0n 

3.3. Instead, the constraint relies on distinguishin{the;Ulnaifa,!or·t#OitM'ferent atti•ations. 

However, since there is no paramet~reti~ ·p~,, 1bt ifhich to distinguish the two 

through the same gate or set of gates fOr tfie "P~~ ftent dats ht FIFO order. The 

requirement in the specification Of ·non-FIFO sched'*'fis ·in d'irtct contradiction with the 

solution specif teat ion· structure. This is· why the-' :deti¥atWil i ~ cannot possib1y 

succeed in deriving a solution specilieation for this spectfacati0n. 

Synchronization constraints such as the LCFS specification_,th~t rely on th~ identity of 
._; 

particular events are rather unusual in practice, and their incompatibility with the solution 
. " .. ~ ,.,, ~ .. ~ -. ~" - - .. 

specification structure is not terribly distressing. A second kind of incompatibility, though, 

is demonstrated by a very commonly desired property, the first-c~first-served (FCFS) 

specification of Example 5 in Section 2.7: 

(pi'9quest ~ qj'tqWS') " (ptnter ::::::=> q{''-1. 

This specification, somewhat surprisingly, is also one for which the derivation of a solution 

specification fails. The reason is that this synchronization constraint cannot be implemented 

using one queue for each event class and one entry condition for each queue. An 
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implementation .using the- serializer construct appears in [Hew7'l for a FCFS scheduling 

·property on two operatmns ·l!ead" and •wr,ite•, buN+Ms rtlres on the' two operations sharing 

the same: queue1 though with differtnt tntry· -conditions. A monttor implementatkm was 

devised in an unpublished note [Bro76], but here again the two operations shared a single 

queue, with one of the operations lUing a sec0nd,ll9Xi1iarfqUM as-well. 

The reason that a solution specification cannot be constructed for this property is that 
:}_:_,_ 

it would be necessary to save information at a previous state that is arbitrarily far bac~ in 

the history. The solution specification structure allows states to be saved at the most recent 

event at a gate, and by extension, at the ,next~ r«8tt, etc. However, the FCFS 

which the corresponding reqw&t evennoek -pktU. whiotnna~ be atbittarily far back. That 

previous statts1ndiVidua11y applicable to each pr-ocess; .$p«ifxally:··let 

be a quantity that for any particular :a:aav;ttiat't "Of· opemtion:'p repreMnts rhe value of 

ex-pressed· as: 

That is, there must be as many q•nter events at the time of a p•n.ter event as there were 

q'equast events when the given activation of p was requested. 
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The use of this kind of informat~ that is "priYate" to eacla ·pmoce5S appears in 

[Owi76] to specify solutiens to synchronir.atic>n probh:ms. lftt$'atingJJ, ~•e LCF:S property 

can .also be ~xpressed with the we pf private- .infGJmat-.. Ttae~ ~ition. Ofl; gale penter 

becomes: 

(count(p-'~'')·- [co'iat(p'eques'} pdvate• p~'» • 

(count(p•nter) - [count(pent•') private • p,..,..1]) 

In other words, all requests for p since this activation of p was requested must first be 

fulfilled. 

The solution specification can only save stata at. ca "ftftd:' distance back from the 

current $late, where "fi.xed~ is reJaWle to Jhe n~r .Af, .e~ ~ ll gate. Info~ 

privately -saved by ~ach process must be 51.Ved at~ arlmr&r~ly far Mk in the history. 

W·ithout such privately saved. iAformatioB.1; the IGlutia,t~ speciftcatten· structure u unable to 

express certain properties, indudiflg tbt rather Jtrai~rd FCES pmper•J· This must 

be considered a weakness of the solution specifiqltioltaact:therefore of the synthesis method. 

However, it is·nevertheltss true that=moR.lp&llifications.are cempatible With the solution 

specification structure.; so .U.at ·the· deriv•tien.--algtorithtft d .. ·MICICet!li in ·construcling 

equivalent solution specifications in most cases. The next chapter describes the, la.st.step in 

the synthesis for these easel, th.e~tiao Qfthet----~ication iri actual code. 
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Chapter 5 

The Source ··Languap liiai>haaeutatlon 

- \' -- . ' t,. 

The derivation of an equivalent solution specification from a problem specification, 

·. , '-' ~ " . 
using the algorithm presented in Ghapter 4, constitutes the major conceptual task involved 

-~ • .J •• 

in synthesizing actual synchronization code. The derived solution specification is a 
.,. 

proc~dural representation of the same ~rd~ring constraint that is expressed non-procedurally 

·by the prob le~ specif i~ation. The final step in the synthesis is implementing the solution 

specification in terms of an appropriate sou~~e-~ngu~~e,ts;~hronization mech~ni~m. The 

~-.·· it. . ,,, .-,.~1~-~-'~'!--/: ., ~,~·.; •f ,,.. ·- 'f·:._.._j • 

translation from solution specification to source language ls the subject of this chapter, and 

while relatively straightforward, it is not completely obvious for all case&. 

The·str.:ucture e>f the solutio~ specification .is g~IM!ra)eoough for it to be translated into 
-. - . 

any one of a wide range of source language sypch,r:omzati°"" mecha::nisms. For purposes of 

explaining and mustrat!ng . ~he "translatiOn. ~~e,, .file . rnonilt)r ,construct of Hoare 

([Hoa7i)~ will ~. uM4 .thrOl.lghout the thesis. .An ~t~· using, an alternative 

high-lev«'.J s.)'nchronization. mechanisfl'l such .as cooclitiona:I 'ritiClll · regicms (UJtri72)), or 

serialiien ([He~77]) would be quite sifl1ilar. Jf.a.Jower:-lev,d.,~ism ~ch,as semaphores 

([Dij68]) is preferable, then .a11,~lgoritbm givl()dn,[Hoa'Hlcan be used to further trarulate - . . . 

the monitor implementation given here into semaphor.e code. 
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A fundamental assumption of the mGdel used here is that all synchronization for a 

This does not cause any problems with an implementation in terms of monitors, or any of 

.: •<' ' 

the other constructs cited above. However, it does make the solution 'spettfitation' struetun 

somewhat incompatible with situations in which a data object is distributed throughout 

some decentralized system, and where it is desirable for the synchronization control similarly 
" . : . . . . - ~ . . . , 

to be distributed. The structure of the solution specification does not give much aid in 
. i c - , • - o. • •• :-- • • • ! - - - - ~ ~ ,_ • • , . , I ~ ; 

deciding how to perform the message passing required in a distributed system to implement 
. ·' :· ·. -. 

r .-•· ' 

the synchronization constraint. For centralized synchr:,~ization mechanisms sue~ as 
. • ' • • " - • - i ',;', ;·, • - .·:· ,.i.,; :.:: .. ~~ .. ' .• - .'tr: - ' : : . ' 

monitors, though, the implementation is not too difficuk, as wiff be demonstrated once the 
- .- . ... . ' ; . . . :, - ' ~ - - . 

monitor construct itself has been introduced in the next section. 

5.2 Monitors 

The monitor is a synchronization mechanism that was first described by Brinch 

Hansen in [Bri73] arid defined more formally by Haart' in'lHoa'Hl ft·trew our·or ·the 

"secretary" t:oncept proposed by Dijkstra In lDiJ12bl A manitor]s;an exten~lon of the Class 

construct of Simula [Dah721 with one important difl'em1te: ·A-monttor;' lilie a· Simula class, 

consists of some local data and a ~ion of'pl'ocedum fOr mallipiltatmg d1&t da'ta. The 

major difference=:is that exetutions of the procedum'Df a mtinitotire"mutUilly exclunve, ln 

order to pr0teet the integrity of tbe local data. Prcxessell·•tri!mptiirg.tc:incur-renr executions 

of a monitor's P.rocedures must wait tdpin extlushi ac:tess to:tthf MdftttOt; This waiting is 

defined by ·Hoare to be fair, and can be assumed to follow a first-come-first-served 

discipline. 
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Monitors also contain features for explicit process synchronization. As defined by 

Hoare, this takes the form of a condition data type, which represents a FIFO queue of 

waiting processes. Two operations are defined on a condition for queuing and dequeuing 

processes: "wait", which causes the process executing the operation to enter the queue; and 

"signal", which dequeues the process at the head of the queue; if any. Both operations cause 

the process executing the operation to relinquish possession of the monitor. A process on a 

queue that is dequeued via a "signal" operation by some other process regains possession of 

the monitor. It resumes execution of the monitor procedure it was executing at the point 

immediately following the "wait" operation that it. performed. An additional operation 

"queue" returns a boolean value, indicating whether any processes are on the queue: 

The notation used here will be based on the language CLU [Lis76] rather than the 

Simula-based notation introduced by Hoare. Thus, a "wait" operation on condition variable 

c is written 

conditionSwait(c); 

rather than 

c.wait; 

as in [Hoa74). 

Hoare advocates associating informally with each condition variable a boolean 

predicate on the local data of the monitor. This predicate indicates what condition on the 

monitor state a process on the queue is awaiting. Making this association aids in proving 

properties of monitors. As indicated in the next section, this association makes condition 

variables suitable for representing the entry conditions in the solution specification being 
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imp~ented. 

5.3 The basic monitor implementation 

• 
A comparison of monitors With the -SQlanion : specific:atkwi' JttUcture discussed in 

Chaptt':l· 3 reveJ ls a close correlpOOdence betJlfftn feituta: ofi:oM; llltd 'the Odtet: The f«al 

t;iata of a monitor is sufficient for representing' tilt ,Jtate,itaformatiOh reqt.ftrEd in a solutlon 

specification, since this state information can be:~,by'I. t;l(lllec:tion;of"integer:..vallled 

quantities. A condition nriable in a monitor is a FIFO.,_ of ftiting ,processes, and as 

advocated by Hoare, has associated with it:;infermdy_ :8 booli!aR-predkate on the monitor 

data. These are exactly the features requin!dc0for conditkllu aaociated¥ith enter gates in a 

solution specification. Passage through a set of gates associated with a given event class 

must be indivisible and produce a state change in the system. Monitor procedures are ideal 

for implementing gates, in that they manipulate the local data of the monitor, and because 

the enforced mutual exclusion on their executions makea them indivisible operations. 

Monitor procedures can take parameters, which is important since -the beha.vior of gateJ 

sometimes depends on the arguments to the associated procedure activation. 

It should be emphasized here that the monitor is being used to implement only the 

synchronization code, not the abstract data type as a whole. The monitor was originally 

conceived in [Hoa7i] to implement a shared data abstraction itself. Criticism of the monitor 

construct has appeared in some recent technical literature (e.g. [Hew77l [Hadnl, [jam77]). 

The basis of this criticism has been that the use of monitors to implement abstract data-

types leads to such problems as reduced concurrency, lack of modularity, and a potential for 
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deadlock through hierarchical monitor calling. As used here, however, the monitor is 

employed within a data abstraction, for the sole purpose of implementing the 

synchronization code required by the operations of the abstraction. The monitor procedures 

a re kept sma II in size, so that their use does not significantly affect the degree of 

concurrency possible. Modularity is enhanced by implementing the synchronization code 

separately from the abstract data operations. Since lower-level abstractions are called from 

the bodies of the operations, not from the synchronization code, the problem of hierarchical 

use of monitors is avoided. (See [Blo78] for the advocacy of a similar discipline in the use 

of monitors.) 

The monitor for a data type contains three procedures for each operation p of the 

type. These procedure.s represent the three event classes associated with p. and are named 

• 
p_requ~st, p_enter, and p_exit. It is necessary that the procedures of the derived monitor be 

ca lied cit the proper points within the data abstraction operations, in order to ensure that 

the monitor is used properly and the synchronization constraint is embodied in the data 

abstraction. The form that operation p must take is illustrated below in Figure 5.1. The 

identifier "m" is the name of the constructed monitor, and v is the vector of parameters to 

operation p. This vector of parameters actually must be passed to the monitor procedures 

only for implementations involving qualified gates, as explained in Section 5.5. 

The monitor implementation of a "basic" solution specification that involves neither 

previous state information nor qualified gates is straightforward. Recall that the abstract 

program for an activation of operation p of the data abstraction in such cases is given by: 



Figurr 5.1. Mo11itor eaJb "ititin operation p 

·P •·/>Tot ... ; 
call m.pJequest(v); 

·call m.p_enta(y~ . 

. (bod7.ofp) 

ca.II m.p2..e1dt<•k­
end p; 

pt'...,..1: -mcmnent~ttdp.....-, bf·I· 

p•nler: wait until ~tri~( .. ~#IP~ 

then increment count(p.-, by I 

execute body of operation p 

p•1tit: increment count(putt) by I 
~ " 1 

.• r_ 

; '::_!~':.. ; . 

For each quantity of the form count(ec) that appqrs in one or more entry conditions 

in the solution specification, there is. a co~responding variable of type intege~ in t~e monitor~ 

This variable is initializect to 0, and is incremented by I in ·thi'procedure that ref,resents 

event class ec. 

An alternative implementation could e~f ~ a ~Ate varia'* for: -eac;b 

qua11t4ty of the form ~1t(ec1) -: cowat(~a)l. since a.~~~~'.a~ contern&·the 
. . 

purposes of explanation. It does, however, incur the possibility of integer overflow, since 
~ ~~ F. ~··~·.:-~~ ~~~r~:·t:-\f'!-~·": ·· _, .. , ~,·.. . tr, 

each variable is constantly increasing over time. Although techniques can be used to avoid 

overflow by dynamically extending the precision of integers, the alternative might be 

preferable in practice. 
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For each enter gate with an entry condition,w tl:te ~lutioe specification, the ,~onitor 

colltains .. a. con~ition var,iable. Tl!e boolean P.J'edica~e infoimally, associated . w~th this 

replaceq by the .corresponding ¥.ariable. Let the condition.,varia.ble €Qfcr~ondjng to gate 
r·• • - . ,._ . . 

p•nter be pentry, and denote the predicate associated with it as Cp~ Then th,e first statelJlent 

in procedure p_enter is 

,., 

if(--. Cp) then conditionlwait(pentry); tnd; 
; " 

Whenever control of the monitor is relinquished, it is nece51ary ,to ffieck the pr~c.._t~s 

associated with a11 condition variables on which processes are queued. If QO.e or more of 

these predicates are salisrteCI, then a "signal" ~mn 'is1 p~rformed on one of the 

conditions. The condition to be signalled mu.st be chose~· in ,a fair manner, so that no 

process starves because the condition on which it is queued is never chosen Jor signalling. 

This can be accomplished by using a variatibrl of DijkStra's ~guitd'ed c0mmands~·[Dij75l to 

implement a new kind of statement ca11ed a "chtiite" $tatement. Changing Dijkstra's 

notation so as to distinguish choke statements from ordinary tf statements, 'll · choice 

statement looks like: 

choose 

end; 

where the· number of guarded commands n ~ I. The meaning of this statement is the 

following: The "guards~ Bi are simply bOofeari exprNions: If ~ or more of these guards 
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are true, then one of the trite guuds Bj is (rion-detenntnltely)· ·.selected and the 

co1'responding statement sj 'is executed; There ·are twO impOrQ.nt ~ifference between tMs 

statemt-nt and Dijkstra's versiOn. ,.hemetffoct:forimaldngth'e"1ei!cttori~~ ~•~true 

guards is unspecified but must be fair. Also, if ·Jlane. of the pints· is true,' then· t~ 

statement is simply slipped. 

• 
If the condition variables in the monitor are pentry, qentry, etc. ·with corresponding 

·· ~ · - ·~., ~---'--;;... ~ Y•'·i ~~ • 0 • 

boolean predicates cp• cq. etc., then the following choice statement must appear at the end 

of every monitor procedure:-

choOst · 

end; 

condittonlq\,leUe(pentrp I\ Cp: conditioJl~o~l(p~ntry);_ 

conditi~lqueue(CJl'fltry) I\ Cq: condU~l(qentry); 
'. . - ~ , ,,_ , 

This ensures that whenever one or more waiti~ proc~ ~-be deqlJC!ut!d. due to the 

satisfaction of the predicates on w1"cb they aJe waiting. , one o( them , will iJJ fact be . . . . 

deqlleued. The fact that the predicates in the gu~ incJu<le. t~~'.conjunct of the fo.rm 

conditionlqueue{pentry) ensures that the condition that is signalled d~ in fact hav~ a 

waiting process. As long as the selection is made fairly, the monitor wilt be a faithful 

implementation of the solution specification. 

A property of the monitor construct that is used here is that a process that is dequeued 

from a condition variable via a "signal" operation gains possession ofthe monitor ahead of 

any process that is attempting tQ. cal' a monitor pioc;edure. T,h,is ensl.lres that a process that 

has been waiting f~r an entry. conchUon to ~ ~it#~ iJ. allowed to proceed as soon as 
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the condition is in fact satisfied, and is not overtaken by a later-arriving process. This 

property is necessary for the faithful implementation of the FIFO scheduling that is part of 

the solution specification structure. 

In practice, it is often possible to optimize the signalling statement by eliminating some 

of .the options in the choice statement. The basis for such eliminations is that the 

corresponding guards cannot possibly be satisfied at the given point in the monitor, due to 

the rest of the monitor code. In fact, for many simple examples, at most one guard in the 

choose statement can ever be true at any given point. However, in general the analysis 

required to perform this optimization is difficult. Rather tha~ becoming involved in the 

details of when a given option can or cannot be eliminated, the simple-minded 

implementation of always testing all conditions will be used here. (In practice, it might be 

simpler to make a separate procedure internal to the monitor for this signalling code. Each 

·or the regular monitor procedures could then call on this internal procedure.) 

An optimization that can be_ made easily is the elimination of unnecessary monitor 

procedures. If no reference is ever made to the quantity count(prequest) or count(puit), then 

the body of the corresponding procedure is empty. The procedure itself, along with the call 
• 

to it w!thin the data abstraction operation p, then can be eliminated. Similarly, if there is 

no entry condition associated with gate penter, and no reference to the quantity count(p•"1
•'), 

then procedure p_enter can be eliminated. 
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((pirequesl ~ qlnler) ::> (pi..._ =*'lj~~)) A . 

((q.•nler ~ p·•nler) ::> (q.Hil ~ p.en*}) 
~ I ~ I ' 

- "'.. • -:;' ~ l 

There are two ~lauses, one g.iving tlperation p priority over operation q, the other excluding 
. . ·F. -:r:·--_. ~:-- --~ '{(,,d '{ ( > , 

new activations of operation p during active executions of operation q. The solurion 
: :f;~:_j __ -~ :· <.ilf...,._1 ·- ·-· - ;,~" 

specification for this example consists of the conditions 

·, ' '!• .. =' . '··· .. i 
For gate q•nler: count(p'..,..1) • count(p-'-> 

For gate penter: count(qen*) ~ count(q•iiil) 

The monitor imp_!ementatiQn of ,tbis M>I~ ~i~ . contain~ fouc integer 

variables, representing cqu.nt(p'equest). ~~~~. co1111t.(q;~ -~ ce,1uat«t••it). TM.le 

variables arena~ pi:.pn. qn,and 11x. r~:vety,, ~-vAr~lfl.must.beJnitiali~ te.O. 

and increment~. l?Y .l in the Q>rr~P9'KH• ,~. ~46'~' ;[1-eo ar.e t1'0:'.umdiliQn 

variables, pentry and qentry, for the entry conditions on gates p.nt•r and q•nter. The 
~ ~. - . 

predicates associated with these condition variables are the analogues in terms of monitor 
'. ; : _·., : ! ~; ~ 

variables to the s0Jution specificatio~ ent~y conditions: (pr • pn) for qentry, and (qn • qx) 
' , < '.j: ": ';,_ ·~ ·~. ~·~~--') -~ 0;.• T 

for 'pentry. The monitor "ex" that is obtainfd for this example ap~rs in Figure 5.2. The 

monitor procedures p_exit and q_~equest have been eliminated as unnecessary. Operation p 

of the data abstraction must call monitor procedures ·~x.pJequest and ex.p..;.enter (in that 
-~.' ; -

' ' 

order) before executing its body, while operation q must call procedure ex.q_enter before 

executing its body, and ex.q_exit afterwards. 



Figure 5.2. Monitor for example 
ex • monitor; 

pr, pn, qn; qx: integer; 
pentry, qe~tJY: .condition; 

p_request • proctd:Urt; 
pr; .. pr+ l; 
choose . 

-·~ -

conditionlqueue(pentry) I\ qn • qx: condtttonlsignal(pentry); 
con~ttio11Scp,teue!Qentry) " pr ~po: c.ona~..,a,l(qen..try); 

end; 
end pJequest; 

p_eqter • proced~trt; 
· ·if 'fn ;II! qx tlttn conditionlwait(pentry); ind;· 

pn :• p,o .,- l;,. , 
choose 

co71d~ionlq,ueue(pentry) /\ ,q11 ~,qx~ conclUll~Jsignal(pentry); 
conditionlqueue(qentry) I\ pr • pn: condittonlsignal(qentry); 

end; 
end p_enter; 

q_enter .. proceclurt; . 
if pr :i pn tlttn conditionlwait(qentry); end; 
qn :• qn + 1; 
choose 

, , , conditionlqu~J¥ry) I\, 'ID:• ql(: ~~<'ft~~"~~triy); 
conditionlqueue(qentry) I\ pr • pn: contlitionlsignal(qentry); 

end; 
end q_enter; 

q_exit = procedure; 
qx := qx +I; 

clioo.11 . . . 

end; 
end q_exit; 

conditionlqueue(pentry) " qn • qx: condmonlsignal(pentry); 
conditionlqueue(qentry) I\ pr • pn: conditwnlsignal(qentry); 

pr, pn, qn, qx :• 0, 0, 0, O; 
end ex; 



---
5.4 Previous state information 

When a solution specification contains references to quar\-'ridt onty:in the C!urrent 

state but also in previous states, these quantities must be maiR~fHa;i"in fhj trtonitor in a 
- ~ - " ~ : 

different manner. Specifica11r. a separate monitor variable, is reqpired for ~ch quantity of 
e-, - • .. · ~' .; ,· •• ·~. •, -~~~ -"\. ··._~· r--.:~·r-~;--'.:·-<j.::"i~fi.""'t··:~·~-· .. ~~::-::-; 

the form "Ccount(ec) •·;gr(,,;.,eri g 'is SOfr1t gate. •11u:1iftrta~;gftype l1tl'.1~' saves ~he 

current value of the· variable representing count(ec) in the monitor p~UYe cbrt~ding 

to gate g. That is, it is set in the pr,ocedure,,~~~~- P.te;;-~l~Y~'.·~~~int' to it the 

current value of the variable representing count(ec). It can be'; u• 'in :!he boolean 
'l:f1 -.. 

I • ~ - • -•. . < .: ' • '."" •• •• • ~ •• ! !J . • ·. ~ ~ , . 
predicates associated·wifh·conditiofl·varilbla lb tlutsame·way'B'.'a''fartable that represents 

. , ; ·'. i j -;l•': '·} /~. ·-'~ -~p-"~~ _'•<:··,'..~~~,·"· -"." -

a quantity in the current state. 

• 
Consider example 7 from Chapter 2. t~e specifacat!OO for •opettttorr pairing .. : 

'._ '-, ,.-.·; _:·;:,~;:::f;· . .J·,,·.-t~~:-:)};-~ -_· .. ~: - ·, ... ~ ·_·; ~< :'· 
(a.•nt.,. ~ b enter) .. (c.enter ~ d ~ .! Y' ' 

I j I j . 

The derivation.ofttie:Sdlutioti specthcatiOn for this ~"'14¥~nect in Section -t.2. The 
- - .• ~-:. ···.: • ~ ·.~: '_.:·· •j''. ! -~ '.;-o ·, -1.·; ){~,)':-:·_>'\•. :· ~f' ./~l~-'."l(! ~ 

overa II solution specification is: 

For gate a•nter: 

For gate dent.,.: 
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Since the entry conditions do not involve any request or exit gates, only four procedures are 

needed in the monitor, one for each enter event class. Each of the operations a, b, c, and d 

must ca II the appropriate monitor procedure prior to executing its body. The variables an, 

bn, en, and dn can be used to represent the current counts of the four enter event classes. 

In addition, eight other variables are· needed to save the values of counts in previous states. 

Variable amrd, for example, represents the count of gate a•nter saved at the most recent 

denter event. This variable is set in monitor procedure d_enter to the va.lue of an, which 

represents the current value of count(a•nter). Similarly, variable cmrd represents the count 

of gate center saved at the most recent denier event. The predicate for the condition variable 

aentry on which procedure a_enter performs a wait operation is: 

bn ~ dn v amrd < cmrd. 

The predicates for the other condition variables bentry, centry, and dentry are analogous. 

The complete monitor appears in Figure 5.3. 

5.5 Qualified gates 

The remaining issue to be handled is the implementation of qualified gates, which 

arise in a solution specification from the presence in the problem specification of predicates 

on the arguments to procedure activations. Recall from Chapter 3 the abstract program for 

an activation of operation p in a situation involving qualified gates: 



pairs = monitor; 
ctn, pn,_~n.,,Qn.: t1lMgt1;. 
·amrd •. cmrc(bmrc; dmrc::\inieger; 
.amrq, ~01r,b. ~rnr•.• 9,ll.lf~;,i,.~<pr; _. .. 
'a entry, bentry, centry. dentry:- condition;'' 

' . ' 

a_enter = procedure; 

: : ? 

: • f ~ . : -~ ' ~ 

_ . , , if (bf1. <, dn"~ a~d ... ~. Cll)fd) ~ 4;0114Ui4J~l)V•~entrJ);.f!ld; 
an :=an +I; · 
bmra :• bD; 
dmra :· dn; 
choose , . _.,,,._ . . _ ·"· . - . . 

. con<litionlqueue(aentryf /\ (bn ·~ dn v ~m~d < ~mrd}. :condUionSsignal(aentry); 

. : C:~,nt{tti~Jq~~~y~~~~~-CR ~;~>f ~}-;~~l(t-ntry): •. 
conditionlqueue(centry) /\ (dn ~ bn v cmrb < amrb): teftdttionlsigna1(centry); 
COl:lflitl01J~~ .. 4mlt:,y) .Ht. (en ~~-~n1V•~ -'!\_.~ ...,.~~~~,-. 

end; · 
end a_enter; -~·· 

b_enter = procedure; . • . _· ... _ .. 
if (an <en " bmrc ~ dmrc) tArn condUionlwait(~try); ~; 
bn :• bn +I; 
amrb :•an; 
emrb :•en; 
choose 

conditionlqueue(aentry) " (bn ~ dn ~.amfd .,:: qnrcl): ~ig~iry); 
condiuonlqueue<bentry> " <an ~ en v mnri < (t.:nR:>: ~u~Ssigna·l(~ntry); 
conditionlqueue(centry) /\ (dn ~ bn v cmrb < amrb): coaditionlsignal(centry); 
conditionlqueue(dentry) /\ (en ~ an v dmra < b~~lnf~try};_ -~· 

end· · '· 
' 

end b_enter; 

c_enter "' procedure; 
if (dn < bn r. cm_rQ ~_amrb) tl&tu qm4it'*~try~~'4-
cn :•en +I; 
bmre : .. bn; 
dmre : .. dn; 
choose .. _ ._ • . .. _ ._._:,-· ,. . . _ - --'.· . _ . 

conditionlqueue(aentry) /\ (bn ~ dn v amrd < emrd): conditio?llsignal(aentry); 
conditionlqueue(bentry) /\ (an ~ en v bmre < dmrc): condlttonlsignal(bentry); 
conditionlqueue(eentry)" (dn ~ bn v emrb < amrb): '°1!dltionlsignal(centry); 
conditionlqueue(dentry) /\ (en ~ an v dmra < bmra): condUtonlsignal(dentry); 

end; 
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end c_enter; 

d_enter = prncedure; 
if (en < an I\ dmra ~ bmra) tlien conditionlwait(dentry); end; 
dn := dn +I; 

amrd :=an; 
cmrd :=en; 
choose 

conditionfqueue(aentr]!) I\ (bn ~ dn v amrd < cmrd): conditionlsignal(aentry); 
conditionfqueue(bentry) I\ (an ~ en v bmrc < dmrc): conditionlsignal(bentry); 
conditionfqueue(centry)" (dn ~ bn v cmrb < amrb): conditlonlsignal(centry); 
conditionlqueue(dentry) I\ (en ~ an v dmra < bmra): condittonlsignal(dentry); 

end; · 
end d_enter: 

an, bn, en, dn := 0, 0, 0, O; 
amrd, cmrd, bmrc, dmrc := 0, 0, 0, O; 
amrb, cmrb, bmra, dmra := 0, 0, 0, O; 

end pairs; 
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· prequest: in .parallel for all gates g in event class prequest, 

if v satisfies the qualifying predicate of g, 

then increment count(g) by I 

p•nter: in parallel for all gates g in event class p•nter, 

if v satisfies the qualifying predicate of g. 

then wait until the entry condition of g is satisfied, 

and then increment count(g) by I 

execute body of operation p 

p•xit: in parallel for all gates g in event class pexit, 

if v satisfies the qualifying predicate of g, 

then increment count(pexit) by I 

How this abstract program is implemented in a monitor depends to some extent upon the 

nature of the qualifying predicates. In all cases, though, it is necessary that each of the 

monicor procedures ·p_request, p_enter, and p_exit take the same vector of arguments as the 

data abstraction operation p itself does. This allows the monitor. procedures to test the 

qualifying predicates on the arguments, thereby determining which gates apply to an 

operation activation. Each monitor procedure implements the entire set of gates for the 

given event class. 

Qualified request and exit gates are easier to implement than qualified enter gates. 

Since these gates consist only of incrementing integer variables, it is merely necessary to test 

the qualifying predicate before incrementing. The simplest case involves a predicate 

concerning only the arguments to the associated data type operation. A qualified count, like 

an unqualified one, is represented by an integer variable initialized to 0. The update to this 

variable is preceded by a test of the qualifying condition, and is only made if the condition 
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is true. For example, let the qualifying predicate be ~v), i.e. the quantity to be updated is 

something like count([p(v) I ~v)]9xit). If x is the monitor variable repr,esenting this 

qualified count, then the update statement in procedure p_exit is 

if Ojv) then x:=x+I; end; 

There may be more than one qualified gate for an event class, in which case a 

separate state variable is required for each gate. The update of each state variable xi must 

be preceded by a test of its corresponding conditiol') ~· Because more than one of these 

conditions may be simultaneously satisfied, it is important that the tests be made in a series 

of statements of the form 

if ~(v) then xi :"" xi + I tnd; 

rather than in one statement such as 

if ~(v) then x1 := x1 + l 

elseif ~(v) tlitn x2 :• x2 + l 

tlseif ... end; 

that could only increment one variable at mOst. 

A qualifying predicate may be parameterized, and so involve not only the arguments 

to the associated operation, but also a parameterizing variable t. (There actually may be 

several parameterizing variables ti• but they can be combined into one composite variable t 

= <ti, ... , t11 >.) For each possible value oft there is conceptually a separate gate, which means 

there must be a separate quantity in the state. For example, suppose that a solution 

s.pt_ ·_ll tc.alion contains a quantity of the form count([p(v) I ~v. t))"•it). If the parameterizing 

variable t were of type integer and could only take values from a restricted range~ say I to 
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IOO. then this quantity could W, implemented by .an ... ,.., ,Wittt,that: subscript range. The 

n-t h :element in 'tn~ array would repmenuhe .ffUlnlity ~v) l'fil¥,' w>-ril). 

In general, of course, variable t is not necessarily an integer, and it is impossible to 

know ahead of time all possible values for t. The same idea can be used in the 

paramet~rjzed type "-cQWlls[TT,. where T represents· the ~~-'~'tanbliM~ -for an 

possible •aloes of .t. at-least conmpwallJ.' TJimCOUDIB;ift,•1111tro-Ottnltilllly when a~ae1~r -

incremented by the operation "incr· with to as argument. 

In the actual implementation of the type countsCTl. the count for any particular value 

of t is created and added to the object of type countsCT] only as it becomes needed. The 
~ ~ .""'\:·:"' ;: < ~ .. ·: ... I \.' . 

implementation of this type in a langu~e- -~it~ df!l~~·~- ,'1>'lP. ,such as CLU is 
• .'#' . 

straightforward. However, the dynamic creation of countS • tl!17 ·are needed is an 

,·!•->•' .. - •. ~ ~ ....... -. - ':~.,~·· .• , :~-- -~' . - ·~ -. ' -

implementation detail; users of the type can ignc>te'thii iifd' use tlif abStract c0nception of 

all counts that are ne~ed ~~~ng c~eated as pa_~ of the ~jec!)ni~iaHy ... 
. . -' . ~ - ~ -. ~ - ·- . , . : - . ' -. . - ' 

- For the puri;po5e of tr~nsbtlng a· solurioo specificati'5n irito a inonitor. each state 

vatiab1e representihg'a qua'1ttieci ti>tinl'whme pre<lbi~is l>i~~~riiec1-byva~ia1>1e rimust. · 

be 1n1p1eme~rea by an o6.Ject or'tyPl 'cOl.antsrrt :A •create• of>erafion- ror th:is object is 

req.'.dred in the· iniuaniai:iOn code e>r the moniilir. The' qualitying p¥ectkate 'mu~t take th~· 

forth o( a func:tf(jti~1 ~eliti;. t>etwee:.' Variable t ina')"the'" 'igu~ts of the procedure 

activation, fe. the qualified qu'a~-tity must be 'Of th'~ fcSrtn c00nttt1><vJ f t. ~ f(v)J-"it). It is 
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always possible to parameterize a predicate so that at most one activation is non-functionally 

related to the parameterizing variable t.. This activation should be chosen to be the one for 

whose enter event the condition is derived. This means that only one value of t can apply 

to any given activation, and so only one count needs to be incremented. Incrementing the 

proper count is accomplished by the statement 

countsCTllincr(cou, f(v)) 

where T is the type oft and cou refers to the object of type counts[T]. 

There must also be an operation ·get•, analogous to the ·retch· operation on arrays. by 

which the count for any particular value of t can be retrieved. This operation is used 

within the predicates for conditiona associated with parameterized enter gates, as explained 

below. The quantity 

count([p(v) I (t - f(v))r•il) 

in a solution specification entry condition is implemented by the operation call 

countsCTJlget(pexitcounts. f(v)), 

where the object referred to by variable pexitcounts represents count([p(v) I (t • f(v))r•it). 

Q!Jalified enter gates are more complicated to implement than other types of gates. 

Not only must a quantity of the form count([p(v) I Q!v))r'91 be updated, but first some 

entry condition must be satisfied, which means that waiting must be implemented. The 

simplest case is when there is a single qualified ga,te for the event class, and where the 

qualifying predicate is only on the parameters to operation p. Then there is a single 

condition variable "cond·. just as for an unqualified enter gate. The wait operation on 

"cond" is preceded by a test of the qualifying predicate Q!v) as wen as the associated 
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predicate C: 

if QJv)" (-. C) then conditionSwait(cond); end; 

When an enter event class contains more than one gate, each with a different 

qualifying predicate and entry condition, then there must be a separate condition variable 

for each possible subset of gates ~hose qualifying predicates may be satisfied by an 

activation. The boolean predicate associated with each condition variable consists of the 

conjunction of the entry conditions on all gates in the subset of gates to which the condition 

variable corresponds. An unqualified gate, of course, applies to every activation, so if there 

is an unqualified gate, its condition must be part of every predicate. In cases where two 

qua·lifying predicates are contradictory, or where one implies another, some subsets of gates 

will be impossible and can be elim.inated from consideration. 

For example, assume a solution specification contains the following entry conditions: 

For gate penter: cou 11 t(a enter) = cou nt(benter) 

For gate [p(v) I QJ(v)]•"t•r: count(a'•quest) = count(a•nter) 

For gate [p(v) I Q2(v))9 "t•r: count(bexit) • count(c•nter) 

Assuming that predicates QJ and. Q2 are not contradictory, and that neither one implies the 

other, then there must be four separate condition variables. These must cover the 

activations satisfying neither Q.l nor Q.2. both Q.l and Q.2, and either one but not the other. 

The unqualified gate applies to all four cases, of course. Let variables ar, an, bn, bx, and en 

repr~sent the quantities count(a'9Cl1199t), count(a•"'•), count(b•nter), count(b•11 i1), and 

count(c•nter). respectively. The predicates associated with the condition variables are then 

cO: an = bn 
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cl: an = bn I\ ar = an 

c2: an = bn I\ bx • en 

c3: an = bn I\. ar =an I\ bx .. en 

Th,e code involving these variables at the beginning of monitor procedure p_enter(v) is: 

if Q.2(v) " QJ(v) I\ (an .,,. bn v ar .,,. an v bx .,,. en) 

then conditionlwait(c3); 

elseif Q.2(v) I\ (..., QJ(v)) I\ (an .,,. bn v bx .,,. en) 

then conditionlwait(c2); 

elseif (..., Q.2(v)) I\ QJ(v) I\ (an .,,. bn v ar .,,. an) 

t Ii.en conditionlwait(cl); 

elseif (an .,,. bn) 

then conditionlwait(cO); end; 

It <...!) and 0_2 are contradictory, then condition c3 may be eliminated, while if one implies 

the other, then either cl or c2 is not needed. 

A qualifying predicate on an enter gate that involves a parameterizing variable t 

presents the most difficult implementation problem. Since this construct actually represents 

a separate gate for each possible value oft, a separate condition variable is needed for each 

possible value of variable t. To implement this, what is required is something like an array 

of conditions, but with a dynamic range, so that new conditions can be created and added to 

it. 

The implementation uses a type called ·conditionsITr. An object of this type contains 

an object of type condition for each value in its domain. The initial domain of the object 

returned by the "create" operation is empty. In general, the domain consists of the set of 

values oft that have been explic~tly added by means of the ·add" operation. The ·add• 
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operation creates a new condition only if one does not yet exist for the given·value oft, so 

that subsequent calls on "add• with the same value of t have ~'~ed. The predicate 

associated with each' condition is parameterized by the'~ss0ciitecl vatu~ oit. a~d s0 Is of the 

·_ - _1' .- ~- ~.;:·: - --~ ..,,·-·· ~- -· •. _ _- .~ 

form Cp(t). Notice that while the ~Jcact 5et of Conditions 15 .determinect dynamica11y by the 

"add" operations, the form orthe'pr~icate for tiac" on~ is fii~. ddi;ft for the .• alue of the 

parameterizing variable t. 

The first step in imple~n.~in' ~~~e~i~_.e't~~,-eat~ ~·~~\:'~~~~.all the enter 
" - . --- -- ' ,."' . ~ 

gates in the event class into all possible combinat~~atnfJWIWe,..aWying predicates. If 

there is an unqualified gate for the event class, then its entry ~itiofi'bc!torries a conjunct 

of the parameterized. condit~1 ,;CpW· ,;~h~n ~h~ _~re ,~i,V~~"'1t.~~~".-e~r~terized) 
' >. • - - -· - -

qualified gates, then the same analysis as to possible_~~~~$, ~t~f,~ Fat~~/;llust_ be r:pade 

as was discussed above and illustrated by the example involving predicates Qi and ~· As 

before, there mus(be a condition rep~tmgeadt.po5St11le:si:ablet ofgates'through which a 

given procedure activation·rlray.:pass:·smce th~e:'lr1:,pa.ratrWtetiz~'gate5: this requires ·a 

sep~rate ~bject .. or t fypi; 'condmotistTJ. ; for ·• ea&t· .d.mbliiation' Of r'gates '. indciding a 

parlmeterized"''ga'te:·' ''The ·rema·frOng discu5Si&f focuies·· on a single oojttt. of type 

con'"tfuns£TI bur notes hm,do generaliie to'ea1es"itav&wihg:ma'.nystich ob~s~ . 

Given an enter gate qualified by some predicate parameterized by v~riable t, the 

relatron R betw~err vanab~ r-and pan.neter·vlitt6r v ·or tM'q>eratlbia~it.g"qua1ified may 

or may nof 'be a ftinCtron. ff tns' a funttlon, tt.f'qc)iHfyiht ptedicate 't.kes ;-<the 'rorm t • f(; ). . 

The condltfan on which tt>·posstbfy wait is tlleti'foUricfby caitifit tt.e•get•'-ope~iltion on the 

objett 'conds of type conc:titionsCTlwitlf argument f(v): 'Ifie 'iet"'ol*''t&On, similar to the · 
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"get" operation on counts[Tl retrieves the condition corresponding to the value of its second 

argument. The- code for waiting in the monitor "enter" procedure is therefore: 

if(--. Cp(f(v))) then conditionlwait(conditions[Tllget(conds, f(v))); tnd; 

To _guarantee that the object conds does in fact contain a condition for the associated value 

oft, the statement 

conditions[T]Sadd(conds, f(v)); 

is used to add the appropriate condition to the set of conditions in object conds if it is not 

already there. This operation must precede the waiting sta~ement, a fact that can be 

ensured by placing it at the beginning of the "enter" procedure. 

An optimization that is possible is to only add the condition to conds if a "wait• is 

actually performed. That is, instead of locating the "add" operation at the beginning of the 

momtor procedure, instead it can be placed inside the tlatn clause of the if statement 

immediately preceding the "wait" .. In addition, after the process finishes waiting on the 

condition, i.e. after being signalled, the condition created may no longer be needed. If no 

other processes are waiting on the condition, then it could be deleted from object conds. 

These .optimizations would increase efficiency by keeping the size of conds as small as 

possible. However, they will not be performed in the examples here. 

Note that" in certain situations, the range of possible values of the parameterizing 

variable t ma-y be quite limited. If this is so, then it might be more efficient to add all 

possible values to the domain of conds initially, and eliminate the need for adding (and 

deleting) new conditions dynamically. This optimization, however, relies on extra 

information that is not contained in the specification but would have to be supplied in 
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addition by t~ specifier. In an actuat system, this might be accomplishl!d by having <the 

system interact with the user to find Obt about the-nmge er yafues era- gWen pataineter. 

In order to signal the conditions contained in an object of type conditionsCTl the type 
,~ > - ... ' ·;.., -" ~ ' -

must have an iterator "domain" for accessing one by one (in an unspecified order) all values 
- ;··.4~-}"'--'.-'. :> ',' 

of t for which conditions exist. By iterating through these values, all conditions on which 
~ ·_·: ., - . i "' - . 

processes may be waiting are tested. The code for signalling that appears at the end of 
, • L. ~::.; - - . . - . 

each monitor procedure is: 

for t:T in conditions[TJldomain(conds) do 
f.~;.-···. ~. - . :~·-· -

if conditionlqueue(conditions[Tllget(conds, t)) /\ CP(t) 

tlren condit~onlsignal(conditions[T~conds, t)); end; 
-- - -- - : • ' •. -1 'i~_.,->_: ( ·' .,.. J °"'~f';'. ·-:,;-·~-. E '. • 

end; 

Th is serves to srgna 1 a process on any of the eondltidb q~ iri Cbrids 'w~ predicatenfre .. 
~ 

true.' -where there. are $hera1-·aitferent ·:~Obj«tt:d"!fype~ c:Ondi~ due to 'ditfereni'· 

combinations of gates With mistiab1e qualifying prtidktt~'; th.erft'his must'be generalized so 

that- the conditions tontaintcf'jti aff'of them are'telf!d -~tw'sigWMkdi' (Noflte·that if tt'ae. 

opt!m1zatiorl ment'roned earlter';of deteting uhneeaetf EOhdtttons· #ere' app•i~. then the 

implemehtatidn of the "dorma'in*;'treratt>r'WC>uld' ha've·t0'funat0n c:orri!Ctly in a situation in 

which conditions could be deteted ·while the iteritar'-WasdiUspe;.dew:J ·due to a "signal" 

operation.) 
,.._•: 

For an ~xample to illustrate· the abo've discumon, suppo54f ·that '-the "solution 

specification consists ofrlle following parametmtta ·enttf condition: 

For gate Ip(y} fly + I • t)J"'-': 

·. coan1(tq(x) t(Jf.a't)}""-t• C9Unt([~lr1'til'.;.:·r)]Hit) 
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where variable.t is an integer. Then the parameterized quantities count([q(x) I (x .. t)]enter) 

and count([q(x)· I (x "' t)]exit) would be implemented by objects of type counts[integer], as 

explained previously, named qentercounts and qexitcounts. They are created conceptually 

containing counts for all possible values of t, with all counts initialized to 0, and are 

updated by "incr" operations in procedures q_enter and q_exit, respectively. 

An object pentry of type conditions[integer] cari be used to hold the conditions 

required. The predicate corresponding to the conditi9n for any t0 is given by 

counts[integer Jtget(qentercounts, to) - counts[integer Jlget(qexitcounts, to> 

Conditions are added to pentry by the statement 

conditionsCinttgnJladd(pentry, y+l) 

appearing at the start of monitor procedure p_enter, which takes the same parameter y as 

operation p. The waiting in procedure p_enter then is accomplished by a wait on the 

appropriate condition, retrieved via a •get• operation: 

if countsCinteger Jlget(qentercounts. y+l) ~ counts[integer Jlget(qexitcounts, y+l) 

then conditionlwait(conditionsCintegerJlget(pentry, y+l); end; 

The signalling code at the end of each monitor procedure is: 

for t:integer in conditions[integnlldomain(pentry) do 

end; 

if conditionlqueue(conditionslinttgtr Jlget(pentry, t)) " 

counts[integer Jlget(qentercounts, t) = countsCinteger lSget(qexitcounts, t) 

then conditionlsignal(conditionsCtntegnllget(pentry, t)); end; 

The overall monitor for this example appears in Figure 5.4. 
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Figure 5.4. Moniter for fQnctionaft>arameterlud exa~ 

parafun .:mcmttot; 

qenrercodnts, qexitc:ounts: counts[itttt'pf]; 
pen try: conditions[inttger]; 

q_enter = procedure(x:integtr); 
cou n ts[i nlignltin&(qieftt~rcounts; x); 
for t:integer in conditions[integerlldomain(pentry) do 

if conditionlqueue(c?flditiOIU[lntegnllget(pentry, t)) /\ · · 
: · '00unrsfimlgt'r~~Wi.t~tgWJtget(qexltcounts, t) 

then condUionlsignal(conditionsltnt1pr::lget(pentry, t)); nid; 
end; · · ' ,·,.. ' ' __. .. _ > . ., ~· ,·:r · ---- -

_ end q_ent~r; 

q_exit .. procedurt(x:integtr); 
counts[integer llincr(qexi~counts, x); 
for t:inttger in conditionsCintegerlldomain(pentry) do 

if conditionlqueue{t~a(piritr,;;t)) "· 
counts[integerltget(qentercounts, t) • countsCt11t1gnllget(qexitcounts, t) 

end; 
end q_exit.; 

I/ten rontl~~tioiitlhu#fW~. t»; 1n:d~- . 

p_enter = procedure(y:integer); 
corid it ions[inte ger lla dd(pentry, y+I); 
if counts[iiite~llget(qenterct1unts; y+J) - countsfmtrpr:Jfg~ltcounts, y+l) 

then conditionlwait(conditions[integerJtget(pentry, y+I); end; 
for ~nugtr: tn ~omUtfeftskWtt"gWJMoh*'"~~V0>t•'' · ·' · 

if conditionlqueue(conditions[inteierllget(pentry, t)) /\ 
counts[inte ger llget(..,Maiiftt5r"ft·J ~nttfffllgt!t{qexitcounts, t) · 

then conditionlsignal(conditionsCintegn llget(pentry, t)); end; 
end; . . 

tnd p_enter; 

qentercounts :• ooantsfiftttgnlkteate(}. 
qexitcounts :• cpun~s~f{trilP:~ . 
pentry :• conditionsClnttgtillcreate(); 

end parafun; 
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If the relation R(t, v) that q_ualifies an,,c:qte,r pte is.not fu~ional, U~n the enter event 

must wait until- the entry condition represep~ by preclic.ate Cp(t) is satisfied for all values 

of t such that R(t, v) is true. That is, the entry cnndiPon for an activation of p with 

argument vector v is given by the formula 

v·t (R(t. •) =>--- Cp(t)). 

This is considerably more complex than-the entry~ Cp(f(Y,}).for t~ t.dse wherethe 

relation between t and_ v was of the f.,.octi~l form t .. f(Y), as <UKUS$ed above. -

,.-
As discussed above in connection with parameterized qualifying predicates that are 

functions, information about the range of possible values of the parameters could be used to 

optimize the implementation. - Such info~tion would make a much greater difference here 

where the predicate is ~,:nonfu~tional rei.tion. In~.~ of such jnf(lf~tion, which 

would have to be suppb.ed by the user Jn_adcijtiop to the ~Kation, lhe i~ntation 

to be_ presented her~ m\JSt work YOdeJ' t~ a~ f.bat the,~np of possit>le values of 

each parameter is infinite. The reall\ ~s _a se_vere ~ky ,ilJ.-~ ~l'Xil.J agd effjeiency. 

It will be noted where user-suppliep ,range informatiolp ~"1, be ~ to simplify and 

An assumption is made here that the predicate Cp(t) is initially true for all values of t. 

That is, it is assumed to be something like 

co"nt([q(x) I (x = t)~ • ~•t<~ca(x) l (x - t)J'•~ 

rather than 
• 

count([q{x) l (x • t):r"'9tJ > •nt([q(x) I (x - t)J.'•il). 

If this were not the case, and assuming there aie "° inf&nite :11Ufl'ber of possib~ values of t 



- IH -

satisfying predicate R(t, v), then the entry cond1tibn 

could never be satisfied, since there w0uld always be some values of t (in fact, an infinite 

number) not satisfying the body of the quantified formula: 'Her~ iS one example of where 

information as to the range of ponib~ va4ues or t weuld be helpful, since in fact t might 

assume only a s~all number of f>OSSible v•tues. ''Jffi tM a~' of an, ·exptitit range, 

however, the range must be assumed to be 11\fihiti. · lttlafySis 'to,dflermine What subset of 

the range could satisfy the relation R is clearly beyond the scope of this work. The 
... ~.f' '~ '!. -,~ ,· ,, • ~ ~;,-··t_j 

assumption made here appears to be satisfied for all cases of interest, such as the disk head 

scheduler discussed in Chapter 6, and therefore not to be limiting .. 

In implementing a solution specificatiOn in 1\fhictl an'ftter;gate' is qualified with a 

nonf unction a I pa'ra meterized predk:ate, we apin~me: the type COl'ldttbrSlTl The type T ·by 

which this type is parameterized, howem,'fs'not ttietype Of the'pat~meterizing variable t, 

but rather the type of the at'gtiment vector v, or fuolre }fn!ci~ly of'some' sub,vector of v. 

The specific sub~vector · choseri 'consi~s of" exactly ~ 'tOi'npohenti of' v · thaf'are involved 

in relation R, which can be determined by syntactic inspection of R. The 'type of this 

sub-vector will be denoted "vtype". 
' ,_ 

Because of the solution specification structure, thei'e ·muSt be a separate conditi6n 

variable for each subset of gates that totifdapptyto a~givefl actri"atiOft. :tr processes making 

diff_erent activations pass through the same subset of gate1, then they must do so in' FiFO 

order. This is implemented by' havtng'tfie proce$seS 'wa.it 'on the same condition, thus 
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gates when 

Ideally. this formula should determine whether two activations wait on the same condition 

• 
variabl_e. However. the logical power necessary to perform this analysis in general is beyond 

the scope of this thesis. Here again, information about the range of parameter values could 

overcome the problem. 

The implementation therefore makes a simplifying assumption, which is that two 

activations of an operation pass through the same set of gates only if the sub-vector of 

components involved in relation R are equal for the two activations. When the argument 

vectors to different activations share the sub-vector to which R refers, though possibly 

differing in other components, then they must pass through the exact same set of gates. 

This means that in the imp_lementation they must wait on the same condition. For this 

reason, there is one cond_ition for each value of the sub-vector of arguments involved in 

relation R. What is assumed here is that two activations with different sub-vectors always 

pass through different, through possibly overlapping, subsets of gates, so that in the 

implementation they can wait on different conditions. This assumption is true for the disk 

head scheduler of Chapter 6, for instance, and where the relation R is something like 

t < X, 

where x is one of the arguments in v. This is because if two values of x are unequal, then 

there exists some value of t that is less than one but not the other. An example of where 

the assumption breaks down is if R is of the form 

t .. absolute_value(x), 
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since x and (-x) satisfy this.relation for the exact same set of values oft 

The object con<;ts of type conditionsCvtypel is different from the cqrreJpond_ing obj~ct 
~\ ; .~ · __ ~ .. -··. :· .. : , · :_- . <~> -:.._.r~~ '.j~:-::~c-i·~~-_to ~}L~~;-1.J · · '-_. __ ? - =• · . 

of rype._cqndi.tior:is[T) in the c_ase of a functional relation. ··As before. t_he object is cre;tted 
~--;~ . ~ .. - ''.'·' ·_.{·." ', _____ -~~-.-:· -~ -- -;;~ ·, - _: 

initially empty, and conditions are. added to it dynamically in the monitor "4!!lter" procedure 
·_. • - ;. '" • ' < • :-~ • ~ - _! ..... ~ ·- :s---~. ,-.·:-, ", _:-,;~ . ~i - - ,- "; . ·-: . 

prior to the code for waiting. However, since the predicate associated with ~ch .c~dition 

in conds is of the form 

v f(R('t, v> ':> cptt»; 
it is nec~ssary also to malniih1 a'tecord Of iti~ valu&-o'rt~ panrrH!tttrrtn'g varfabte t that 

ha ,;e occurr'ed. sirice these are the vaiues ·,~ wiatcWCplt1. JhlCff 'bf 'a~mpttbri iS in1t1ally 

rru~. may ha\,e bec!ome'h1se: Tii1s1srjcd>inptid\iia by sivtng t»·sei or·a11 relev~nt values 

of t in an object "{~et•: of \y~ setcTl(wtt~ t •l'apln ?M~typi';C)f'~. Ttt~. Objett tset is" 

initially created ·as the tmpty set. l:leinentS are adctecfiO~~:~"bf rhe 'inm-t'"' operation.· 

An •insert• opera ti()n must bl petformecf ln 'eadf 'moiiaot protl'tldte in Which quantities 

involved in the predicate 'Cp(tt are updated: ""There' ii abh; an':'ft~tOt · 11e1ements• ·for 

accessing the ~lements .. ohhe set. c 

As was the.~ase me~-~ioned ea~~i,er forty~ ~~i~~~~~ inf~~!~°" from the user as 
- ~ - . ' - "' . ' . - - - ~ .. 

to the range of possible values of t would permit an optimization to be performed with 
>- -

respect to the. object tset. If the range is relatively small then all relevant values can be 
,- • . '. . , ~. ~.-,:- I~ _ . ...£ii _--,1~_-;: ~; ;-:~ • - '~ ~-;~ .::.";~-~--·-:', -- --. • ~-- •:-- " .-

inserted into the set beforehand. This would eliminate the need to dynamically insert 
::-·. _.,, ~' -.-;. ;.---h_, ; ;;:-~ t~- .;:~ ;_-~- --, ~t~ "-' ~; --~~: ' 

values. Note that another optimization mentioned -in connection with condltionsCTl rhat of 
--~ ·' > ~ i ... - . . . • 

deleting elements when no longer n!eded, cannot _be applied to tset, since any value of t that 
.. -.. :. : . ~ • ? 

has occurred may be relevant and must therefore be saved. 
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The code in procedure p_~nter(v) for testing and waiting on the condition in object 

conds is given by: 

for t:T in set[T]Selements(tset) do 

end; 

if R(t, v} I\ (-. Cp(t)) then 

conditionlwait(conditions[vtypellget(conds, v)); end; 

This code implements waiting on the entry condition· 

V t (R(t, v) :::>' Cp(t)). 

The required condition is added to conds by the statement 

conditions[ vtypelSadd(pentry, v); 

at the start of the monitor procedure. 

Notice that the "elements" iterator may be suspended in the middle of execution due to 

the execution of a "wait". While it is suspended, new values of t may be added to tset by 

other monitor procedures. The iterator must be implemented so as to function correctly in 

such a situation. 

Signalling at the end of each monitor procedure is complicated. The signalling code 

must iterate through all values of z (a sub-vector of v) in conds, for each one testing 

whether its predicate is true by iterating through all values of t in tset This ~ode involves 

an iterative loop within an iterative loop, with a "signar operation performed at the 

completion of the inner loop if all values oft for which R(t, z) are true satisfy the predicate 

Cp(t). (We take the liberty of saying "R(t, z)" rather than "R(t, v)", since z contains all the 

components of v that are involved in R.) The code is of the form: 
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for z:vtype in cooditi6ns[vtypeldomain(conds) d~, 

ind; 

if conditionlqueue(conditionsCvtypeJlget(conds. z)) tlatn 

ok:boolean :• tnu; 

for t:T tn setITJlelements(tset) ~ 

. ,, ft)~,<£,,,),/~ :~~.~~ .. ,J~ft~· . ' 
ok :•/al.st; nul;-

md; 

if ok tlatn condUloftlsignal(conditionsCvtypellget(conds. z)); md; 

md; 

Th.e boolean variable ok keeps t~c~ of whether}~.,J!r.~~~ <:p(t) is true for all values of 

t for which R(t, z) is satisfied. If ok is stUI true after the ~ . .,C t~.in~ '9op. then 
·-· ~ r " : ~ •. - - ~ - .. 

V t (R(t. z) ::> Cp(t)), 

is true ror the gi'Ven va1ue or i.-and t11~cri1t1'e~·diiditibn' s1t0ul<ft>e' 1ignailed .. Notii~ that 

if tliere is a proeess waiting on' the ci>ndiUon~q~~rot l t~ musftie'at leas~ one vafoe of; 

t for ·which R(t,';t) ls tru~ btcau~-~iire· there woold .. hav~ ~:(n6 n~a~ tor the 

process to have performed a ·wait•. Al before, in a situation in which there is more than 

one obj~~ of type conditionsp-~ _the con~i.ti()ll~ if1. ~~~ ,~p .~~ lllµst be t~~ed and 

signalled by code. of the a~~e. f~rm. 

As an example; consider a -'solution specifltation cOftsiSting' ""' t~ eondltion: 

For gatetp(y) nf{\)1"19': ,, ·,; '"·=, ' 
',..tj . . ' . - - , __ 

count([q(x) f (x • t)J*"'-> . .;. eouat((q{x) I (x :. t)J'*") 

where variable t is an Integer. Then as in. the previous- example. ~~t([q(x) t (x • t)J9"'•') 

and count([q(x) I (x - t)J9•it) are implemefated by objects of -type- ~ntSUnttgtrl named 

qentercounts and· qexitcounts, respectively. An object pentry of type conditionsltnt1gtr] is 
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used to hold the conditions requP:,ed. th~ sin:Jle :'~~ J. ~r.yiJlg ~s the_ sub-vector of v 

involved in relation R. An Object fiet-c:t:fyplt,~P,-l'holds tile 'Valua of t, to which 

values are added by the statement 

-in monitor procedures q_enter and ~- -Ttw~ for waiting i'1 procedure p_enter is 

given by 

for t:integn in $etlmt~ga~~~~) "°'' 
if y < t " countsCint11n]lget(qentercounts, t) ;11 

countsfl1lt1f" llget(qexitcounts, t) 

tlitn 

conditlonlwait(conditionsUnt11n llget(pentry, v )); nid; 

tnd; 
' '~:. 

As before, the required condition is added to pentry at the start of the p_enter procedure by 

the operation 

conditionslinttpr ~(pentry. y); 

The signalling code at the end of each monitor procedure is: 
' .,. J 
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for z:integir in cQnditionsfintegtrlll~penttyftlO'·- - · 

if anulitiodq11et1e(co1llii.....,•t~I}) t'6n 

ok:booltan :• true; 
: -, '3·_ 

for t:integer in set[inttgtrllelements(tset) do 

if l < t ",_ caun1ts*1dr-tMlf etc ... ifrcounts, t) -

> - ,., ... .rtnt"""~~'.t}, 

tlttn ok :• falst; tnd; 

end; 

if ok tlatn conditionlsitn~l(oond~~~tty~ -z)); end; 

end; 

end; .:.;-i, ' •• 

The monitor for this example appears in Figure 5.5. 
-.:-z -

A number of examples of the translation techniques discussed here appear in Chapter 

.. ~' 

6. These examples actually illustrate the entire synthesis process, starting 1'."ith problem 

specifications of the type described in Chapter 2, proceeding to the construction of 
-,,'. 

' equivalent solution specifications via the method presented in Chapter 4, and finally 
~ . ,,: >~~- -- -.~ ', ;:j-· "•)-t·;r ~~ __ , ;h~ - -- : ---_ :-~-.:: . -~ 

translating these solution specifications into monitors as discussed in this chapter~- In 

particular, the last" example or Chapter 6, the •disk. head scheduler·, illustrates the 

implementation of qualified gates involving parameterized predicatet. 
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Figure 5.5. Monitor for nonfun<'.tional parameterized example 

paranon = monitor; 

qentercounts, qexitcounts: counts[inttgtrl; 
pen try: conditions[inttgtr]; 
tset := set[integer ); 

q_enter = procedure(x:integer); 
counts[integer JSincr(qentercounts, x); 
set[integer )linsert(tset, x); 
for z:integer in conditions[inttger]ldomain(pentry) do 

if conditionlqueue(conditions[inttger)Sget(pentry, z)) tlitn 
ok:boolean := true; 

end; 

for t:integer in set[inttgerJlelements(tset) do 

end; 

if z < t I\ counts[integer)lget{qentercounts, t) ;if 

countsCintegn llget(qexitcounts, t) 
tlien ok :• falst; tnd; 

if ok tlien conditionlsignal(conditions[integnllget(pentry, z)); end; 

end; 
end q_enter; 

q_exit = proetdure(x:integer); 
counts[integer Jlincr(qexitcounts, x); 
set[inttger JSinsert(tset, x}. 
for z:integtr in conditions[integtr1tdomain(pentry) do 

end; 
end q_exit; 

if conditionlqueue(conditions[integnllget(pentry, z)) tlam 
ok:booltan := trU;t; 

end; 

for t:integtr in set[inttgnllelements(tset) do 

end; 

if z < t I\ counts[integerllget(qentercounts, t) ;if 

countsCinttgn llget(qexitcounts, t) 
tlien ok :=false; end; 

if ok tlien conditionlsignal(conditionsCintegnllget(pentry, z)); end; 

p_enter .. procedure(y:integtr); 
conditions[inttger )ladd(pentry, y); 
for t:integer in set[integerllelements(tset) do 

if y < t I\ counts[integn Jlget(qentercounts, t) ;if 

countsltntegn llget(qexitcounts, t) 
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t litn conditio~lwa it(conditionsCinttgtr ltget(pentry: v )); end; 
tnd; 
for z:integtr in conditions[inttgtrlldornain(pentry) do 

if conditionlqueue(~onditionsCtJpltf~~ti;Jt~YlP•~ 

tnd; 
tnd; 

tnd p_enter; 

ok:booltan :• trut; · · , 
for t:inttgtr in setltnttgtr llelements(tset) do . "'' . . .. 

if z < t " countsCtnttgtrllget(qentercounts, t) 1111 

countsCtmtgnlll#(p~'t.J. t) 
tit.rook :•falst;tntl;. ;~;- .. r- >"·:·. 

end; c . ,_,., • -, .. , . .:: ~,,_ _._ ._, 

if ok t/r.tJ'l ~n.dilipdsipaJcqnditioml#DU,g11)tg~rx. z)); end; 

qentercoun~ :"" c~~n\sMP''"'~'~ 
qexitcounts : .. countsCintegtrllcreate(); 
pentry :• conditions[inttgnllcreate(); 
~~ :- ¥t£#nttg;(1~~!~, 

end paranon; · - · - · ~ · 
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Chapter G 

Complete Examples of Synthesis 

6.1 Introduction 

This chapter presents a series of examples of the complete synthesis method. Each 

example starts with a problem specification, and derives an equivalent solution specification 

via the method presented in Chapt~r 4. This solution specification is then translated into a 

monitor implementation in the manner outlined in Chapter 5. The examples chosen for 

this chapter are problems that · commonly are addressed in technical literature on 
• 

synchronization. These are the bounded buffer, two different versions of the readers-writers 

problem. with writers' priority and alternating priority, and the disk head scheduler. 

6 .2 Bounded buffer 

The first example in this chapter is the specification of example 9 from Section 2.7, the 

·bounded buffer". The problem specification given in Chapter 2 is repeated here, to be 

denoted bb: 

(dep·exit ==> rem-•nten I\ (rem.exit ==> dep· enter) I\ 
I I I I a+N 

(dep· exit ==> dep· enten I\ (rem· exit ~ rem· enter) a a+I ' 1 a+I · 

The specification bb consists of four coojuncts, and the solution specification is constructed 

by analyzing each conjunct separately. Since each individual conjunct is quite simple, the 

analysis is straightforward. For purposes of reference, the four conjuncts are denoted bbl, 
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The first conjunct to be analyzed is bli1, 

This conjunct specifies that the i-th "deposit" activation must finish before the i-th "remove" 

activation can start. This constraint ensures that no attempt is ever made to remove a 

message from the_ buffer before it_ JI.as. ~en d~posited in_. ~i~te th.ere ar~ no a,rgument 

constraints in the .cqnjunct~ the first stepJn tb~ an.aJJJ,if ii, thejd.,ufacatiqli of w~ich e~ent 

expressions are f1lentiof'ed. 1he set of ev~t expressi911J irtt.~ <;Wl~~ .-'5. gi~~ by 
- < - '< - . -- . - '.to • 

The next step is to construct the possibte oiderings 'among· ttte' e•ents represented- in 

the set Evexp(bbl>· With just two such events, only two ordermgs are p0ssible; 

CO (depinlt ~ ·~~ Jtt-, - -!. 

(2) (remt'* tj depi•1 il) 

In evaluating whether each is valid or invalid, it is obvious th~t the first is valid, while the 

second is not. Equally ·obvious is th~ fact t~ the off~di~g -~~:~t in ~d~ring.~(2) must be 

the tirst event, namety remi..,..,· This means thai~.,~~ ~acation conclit~ must be 

derived for the rem~nter gate. 

Characterizing the state at each event in the rem.., evmt class.. one obtains 

characterizati0J1.~.c:1 and t2 for ev~t rem;•* in orderi11&5 (l)aod (2). r~v,11: 

c1: J ~ (eopa~(cke••il)_~ i (\ ~t(r~~ ~.il 

-~ J i_(cou-.t(clep••~ <.i :"- ~·,~~--, <i) 
• 

With Qnly one valid ordering. the disjunction of valid ordering characteripttions. Dv is 

simply c1. Similarly. the disjunction of invalid ordering characterizations Di is ~ The 
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preliminary condition, given by (Dv I\ (-. Di))• then becomes 

J i (count(dep81it) ~ i I\ count(rem•nter) < i) I\ 

V i (count(dep•xit) ~ i v count(rem•nter) ~ i), 

which reduces to 

J i (count(dep•xit) ~ i > count<fem•nter)). 

The quantified variable i can be eliminated, resulting. in the simplified formula 

count(depexit) > count(rem•nter). 

When tested, this condition is found to satisfy the single valid ordering, ordering (1), 

showing it to be the correct condition obtainable from conjunct bb1. 

Each of the other three conjuncts can also be analyzed quite easily. The second 

con juncc is bb2, 

(rem. exit => dep. enter) 
I l+N • 

This prohibits more than N consecutive "deposit" operations without at lease one ·remove· 

operation, preventing overflow of the buffer. The set of event expressions for this conjunct 

is 

Evexp(bb ) • {rem.exit dep- enter} 2 I • . 1+N · 

The two possible orderings are: 

(2) (dep· enter => rem.exit) a+N 1 

Of these, the first is valid, while the second is invalid, with the offending event in (2) being 

depi+Nenter. A condition must be derived for gate dep•nt•r. 
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are given by c1 and c2: 

. ci: J i (count{rern-,-~ 1 " · count(Jiep1'*") < i+N) 

c2: J i (count(rem••it) < i " count(dep.-, < i~N). 

The preliminary condition, (Dv f\ ("'T Di)}~ is equal to (cf/\ ~~-·'2))! 

Ji <eo11nt<rem••> ~ i '" 'canf(&!f••r .t't~> ·I\ 

which simplifies ta • 

This is the correct solution s~ification COfldition for conjunct b~. Notice that variable N 
~ ' .__.:. ~ -•. -?.i. - ',~ . _ .... ;, ~ .. f-"'~-i: -

in the above formulas is treated as a constant, since it is the parameter to the ~bstract data 
~:<!{j .J ~- .. ' ' 

type itself. For this reason, it is not.q.t,tantified anq.. ~nnot be eliminated u variable i is. 
- .;.:. ·. - < ... ,._'111 

' 

The last two conjunct$ are identical,' except that'~ ;tpp'tiftto 'Opttatioft;"dep" #rtd 

bbi to operation "tern·. ' Therefore, •hat~vtt tanditioR ·~ts 'C'JbtihW' 'f'rohf~ bbj "for gate 

dep•nter applies in corresponding form for rem.., due to bb_.. The constraint specified by 

each is that activations of the gt~4!ilqi;bpieratiGn'tnUst bi: ~Uy exclusive and must proceed 

in first-come-first-served order. This prevents interference &y 'tmmlftnt adi:Y:atmns ot the 

same operation manipulating the .me:'·local data~ and guarantees that messages are 

deposited and removed in the p··Order. FOi·eorijfnKt~ 
Ev!Xp(bby···fC1ep1 ... ;·aep1.t•r 

The two possible orderings are: 

•lit ~ (1) (depi => depi+I .. I 

\ 
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.... ~ -(2)(depi+I ==> depc I 

Ordering (l) is ·valid~. but ,..(it tJ, 1'0L T• .rr...-..."-.:.;,t (2) biGept..i'!"' .... so a condition 

is required for gate depenter. 

are given b~ c1 anq ~2: _ i't_. )_-' 

•. A;fc 3J ~~u.~.·~ ~,~~,/\ .... ~,...J ~J+l) 
~,~J,(~·~\~·· ~d!!lld~<"l) ... 

The preliminary condition, (Dv I\ (-. Da)~"i,t, Ci"''"'~t~ h,:f2)): , ""·· 

3 i (count(dep"1
) i!! i A"~·~ .. 1'f1Mt'fll'~l) , I\. 

This reduces. to simpll 

correct condition for bb-t is 

for gate rem•nt.r. 

The overall solution sf>eciric.atb. f0r ..,.Uicmon -.., ii CllRlb'Uded by conjoining for 
- ;~~-- '.,., ' '-~·~ :'i~·.:.c·(_:: (-\-~;"; "){~· ,~kt.1!~~·- ;; .tj i~-:-)/!~':~;~·.i rrt ;>.:_':. -'-< '>·" .:~ ~··-

each gate the conditions obtained separately fran the indiWdual mnjunctl. This obtains 

the follo~ing overail cOnditiG-.s: 

For gate dep....,:- ·. 
- !-,_,t,._·i-: :· .... ,, -~ '•---~- .'· '·:~-.--" '-~-~-. > j .. ··:' ·;.:_lff:;_ , ~ - ~., ~ / 

count(~-1) > count(d~...., : N I\ C9Ut{dcp......, • couat(dep••il) 



-158-

For gate rem•nter~ 

The monitor to implement this solution specification must have four integer variables, 

count(rem•nter), and count(rem••it). There also must be two condition variables, depentry 

and rementry, corresponding to the. entry ·cOm:lttiOnt'-for''ptt!S dtp•nt• and rem•nt•r, 

respectively. The boolean predi~aSSOC'iated with t-h8*'tonaidons ate 

depentry: remx > depn - N' "'dtjJt1'~ depx · 
..... 

rementry: depx > remn /\·Jretnri1i'fertix 

Since the request events for the twi>~ttons are ftot used iri'the specification, there is no 

need for procedures to implement the corresponding gates. The monit6ftor 'the bounded 

buffer is presented in Figure 6.1. Since the' int~~tion It ·fbr'.the monitor to be contained 

within the type module for the' abstract tJP!itiUffer(ff), the -viar~&w '14-Hnside the monitor is 

bound to the parameter of the type. 

8.3 Writers" priority database 

The second example in this chapter is a problem that wu introduced in [Cou71].. The 
~:· . -~ ;;; - _r: ' : 

data abstraction in question is a database, on which two operations are defined:. "read" 
.._.- ·'·:· 

accesses the database without changing it at all, and "write" updates the database. In order 
. . -: ., . 

to ensure consistent accessing _and updating, these two ope~ions must obey the 
. , . 

"readers-writers" property embodied in example 3 of Section 2.7. In addition, the scheduling 
. .-~ 

policy desired is for activations of operation "write" to have absolute priority ~ver those of 



Figure 6.1. Monitor for bounded buffer 

bb - monitor; 
depn. depx, remn, remx: integer; 
depentry, rementry: condition; 

• dep_enter = procedure; 
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if (remx ~ depn - N v depn - depx) tlam condUionlwait(depentry); tnd; 
depn : .. depn + I; 
choose 

end; 

conditionlqueue(depentry) f\ remx > depn - N f\ depn • depx: 
conditionlsignal(depentry); 

conditionlqueue(rementry) f\ depx > renm f\ remn • remx: 
condittonlsignal(rementry); 

end dep_enter; 

dep_exit = procedure; 
depx : .. depx + I; 
claoost 

conditionlqueue(depentry) f\ remx > depn - N I\ depn • depx: 
conditionlsignal(depentry); 

conditionlqueue(rementry) I\ depx > renm I\ remn • remx: 
conditionlsignal(rementry); 

end; 
tnd dep_exit; 

rem_enter • procedure; 
if (depx ~ remn v remn -. remx) tlam condltiodwait(rementry); end; 
remn :• remn + l; 
clt.oose 

end; 

conditionlqueue(depentry) I\ remx > depn - N I\ depn • depx: 
conditionlsigna l(depentry); 

conditionlqueue(rementry) I\ depx > renm I\ remn • remx: 
conditionlsignal(rementry); 

end rem_enter; 

rem_exit • procedure; 
remx :• remx + l; 
clt.oose 

conditionlqueue(depentry) I\ remx > depn - N I\ depn • depx: 
conditionlsignal(depentry); 

conditionlqueue(rementry) I\ depx > remn I\ remn • remx: 
conditionlsignal(rementry); 



end; 
end rem_exit; 

depn, depx, remn, remx := 0, 0, 0, O; 
end bb; 

- 160 -
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operation "read", in order to en~ure that each "read" operation accesses the most current 

version of the database. Therefore, to the "readers-writers" specification of example 3 must 

be added an instantiation of the priority specification embodied in example 4 of Section 2.7. 

The overall specification is the following, to be denoted wpdb: 

((write-•nter ===> write-•"'•') ::> (write-•xit ===> write-•"'•')) /\ 
I J . 1 J 

((writetxit ===> readk enter) V (readk exit ===> writet"'•')) I\ 

((write- request ===> read _enter) ::> (write· enter ===> read. enter)) 
I J 1 J . 

The specification contains thre~ conjuncts to be analyzed. Of these, the third conjunct 

has already been treated in detail in Section 4.2, with the names "p" and "q" used for _the 

operations instead of "write" and "read". By the analysis in that section, this conjunct 

contributes the condition 

count(write'equeSI) - count(write9"'-> 

to the gate read•nler. 

The other two conjuncts of the specification remain to be analyzed. They will be 

referred to as wpdb1 and wpdb2, respectively. The first conjuna wpdb1 is 

((write-•nter ===> write-•"'•') ::> (write·••it ==> write·enten) 
1 J I . J /· 

As with the bounded buffer example~ there are no argument constraints in this or any other 

conjunct. The set of event expressions contained in the conjunct is 

Evexp(wpdb) = {write-enter write-•xit write.enter}. 
· ·I 1 ' I ' J 

There are three possible orderings among these three events: 

(I) (write-•nter ===> write-•xil ==> write·•'•) 
1 I J 

(2) (write:enter ===> write-enter ==> write-•it) J I I 



-162 -

(3) (write·.,;,.,':::> 'w~ite·~kif ·~· ~rit~·~xit). 
I J I 

When ordering (I) is subStituted i~to t~ ~~net wpdb1, th~- r~k is -the fo~mula (TRUE :> 
,-: _, .. , ·- .· "'-, ·; - ... _· .~ 'n' ..•• .,,,," _,_ ~.,,,..+~ ~ .. '<') t>-;;f'>1~fl•~- .; ,- .;; ·"· :-: _ :•,1 

TRUE), or simply' TRUE, so th~t orcte'ring·(l)-is valid.'''ordering '(2) is~·~ ~~lid, since it 
-. -- .. '.- :.:_ ·._·.: ~?- . :.i·i·-~-:~ •' . .._,, -,~:.~ ; :·f. 3. -~· ; .'.~~ ~ l 

evaluates wpdb1 to the formula (FALSE :> FALSE). which similarly reduces to TRUE. 

Ordering (3) substituted into ~pdb1 ev~l~~~' to.(T~UE"':>. FA{sE), or FALSE, so that 

ordering (3) is invalid. 

Comparing invalid ordering (3) with the valid orderings (I) and (2), the longest 
- .\"!: ~,---. , -- )~ --r~-t_:. ,;, :~ ,,-:~ -,~L:h~;~ r '~~ .:.~r ~ --

matching prefix is the one-element sequence [writet*1, matching ordering (I). The 

offending e~ent in (3) is therefore the ev~t r~a<;~inc"-"this pr~~. -~~~h- is wri~~/~~. ·Thi~; 

mea'ns that a condition must be derived for the ~ri~ g~~~-

either occurs within a valid ordering or is the offending event in an"fnv.alid .orderifJg. 

There are five such events, writet''., and writelntet in each of the two valid orderings (I) 

and (2), and writetnter in. invalid ordering;Cl), wh~~ it is~ the'o!f~)ng e~ent Denoting the 

characterization at event ~ritei•*'lli; in or~e~in~ (l):~;:cj~". ~: ·~· i·· 

cu: 3 (i, j) (count(write•"'ef) < i · " count(~~~t~~ <,J /\ ~~t(~rite••it) <. i) 

c1i 3 (i. j) (count(write•ntef) ~ i I\ count(w~ite~ «j. A ~~t(write••if) ~· i) 

c2J J (i, j) (count(w~ite9"'•) < i I\ count(write~ ~ j !.. . count(wri~~exit) < i) 

c2i: J (i. j) (count(write•nt•) < .i /\ ~nt(w~it~*"1•~f~ j /\ ~nt(writeexit) < i) 

c3J J (i, j). (count( write-., ~ i /\ count(wri~~ ~' j . ~ . -nt(wriie•~it) <. i) 
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The four characterizations from the valid orderings are disjoined to form Dy: 

J (i, j) ((count(write•nter) < i ·/\ cou11t(writeexit) < i) v cou11t(write•nter) < j) 

Since there is only one invalid ordering, the disjunction of the invalid ordering 

characterizations Di. is simply c3j". The preliminary condition is given by (Dv /\..., (Di)): 

3 (i, j} ((count(write•nter) < i I\ count(writeexit) < i) v count(writeenter) < j) /\ 

V (i, j) (count(writeenter) < i v count(writeenter) ~ j v count(write••itj ~ i). 

This reduces to 

V i {count(write•nter) < i v count(write .. it) ~ i), 

which in turn simplifies to 

count{writeent91 ., count(writeexit). 

When this condition is tested for both writeenter events in each of the two valid .orderings, it 

is found to be satisfied in all cases, showing that it is the correct condition. 

The other conjunct in the specifu:ation ts wpdb2: 

((writet•it ~ readk ent91 V (readk exit ~ writet"'e')). 

The set of event expressions contained within wpdb2 is given by 

There are six possible orderings of these four events: 

{I) write· enter ~ write· exit ~ read enter ~ read e•it 
I I . k k 

(5) read enter ~ write-enter ~ read ••it ~ write· exit k I k I · 
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When wpdb2 is evaluated for each or these ordering$. the results. for ~rderinJs (I) and 
' . . ~ ~.?.,..'-: . ·~: ::,_•iii,~!~ - ~>:"' ·i -·-:-"'~t·~ .- : ' -

(2) are (TRUE v FALSE) and (FALSE v TRUE)~ .~v~. eac.t, C>f which equals 
• .: • • ~ ~ . - . ' ·-; -..F._; : • '{ ~ • s_-;: :· :~~ ; ~ . , '· - "r~ ;l: ; • -·, 

TRUE. This means that orderings (I) and. (2) are valid,.,".F~ ~~h !!! .u,e other four 
. . ·:~·-·~~- . . ... ::-"5'.~-"J- ~~_;:_;:,¥~.-: +.:-: ' .· ~ .· .q.,; _,..1_~ ~.Ji-~;-·. . ~ • 

orderings, the resukin~ formula is (F~µE v ~~!;5~~ ~~~~~~~·~ Jhowing ~ch· 

of these orderings to be invalid. 

The next step i•'tci identftY~·bftending;.~~'lri'iat:ft'Of'tie· four invalid orderings. 

Both orderings (3) and (i) match valid ordering (I) as far as the 'riri'ietiftt·wr.it~i.....,~ fhe 

Qffending event in each is the-~"~t, ~hic:Yr'tW~cases is readk-~· Similarly, 

-ordntngt (5)-Mld (f»'batb ~~ermg'(2f~1fa't"ai~ lttst~C FUN~.-~-thaf the 

offending event fltheach':cue·is: iHitei-*:~~it"'Wit~'lifi ihf 1wa-~ing~ SOJiltioo 

In order to derive<; t1ie eonditiOO 'fbi·ga'fe ff'..d,-.;'ii]s -~rY to characterize the 

state at certain events in the·tead ..... dad.'™ riehts "tlf tffe;;dau··Oc(gfring in valid 

orderings are t~ r~dk ...... ~vents·1n''Onierlbgs''or•~~:-::~""·~ events in the 

class are the occurrences or readk..._ ln ··ia·Cledngr '11)ciWf "'(41.'"wbenoting these 

characterizations as ~Jr.4~ ielt., if.9 «re "' 

c1r: l<J. k} <eou'nt(writf 1") ~· t'.1' Coilat(~.-., ~:i I\ 

.'-.dt{reaa~-<~1 '/t~d•).c·'iJ"i .·· 

c; :r(i.·1>-~•~_.,-< i;.'ft···t.ti••<~••illJ ~-. I\ 

·. · 'M~ '< t A; U.ad(riadeilf c~'f- ·" 

. ..... ;· 
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c3r: J (i, k) (count(write•nt91 ~ i I\ count(write••il) < i I\ 

count(read•nter) < k I\ count(read•xil) < k) 

c4r: 3 (i, k) (count(write•nt•') ~ i I\ count(write••it) < i I\ 

count(read•"1"') < k I\ count(read••it) < k) 

The two disjunctions are given by Dv = (cir v c2r>• and i • (c3r v 'ir): 

Dv: 3 (i, k) (((count(write•nt91 ~ i I\ count(write••it) ~ i) v 

(count(write•nter) < i I\ count(write••it) < i)) I\ 

count(read•nte') < k I\ count(readexit) < k) 

Df 3 (i, k) (count(writeent91 ~ i I\ count(write••it) < i I\ 

count(read•nter) < k I\ cou~t(read .. it) < k) 

The preliminary condition is formed by the expression (Dy I\('"' Di)), 

3 (i, k) (((count(writeentel) ~ i I\ count(write••it) ~ i) v 

(count(write•n191 < i I\ count(write••it) < i)) I\ 

count(readent91 < k I\ count(readexit) < k) I\ 

Y (i, k) (count(writeen'-} < i v count(write••it) ~ i v 

count(readen1-, ~ k v count(read•1it) ~ k). 

This can be simplified to 

V i (count(writeentel) < i v count(write••il) ~ i), 

which in turn is equivalent to 

count(writeen191 • count(write••it). 

This condition satisfies both valid orderings (1) and (2), and so is correct. 



• 166 -

Because of the symmetry qf ~ speclficlation .~ •Dd, ttler~re of the orderings, 

the derivation of the. condition for; gate wr~e911•· ii «JfflPletelY isomorphic to the above 

derivation. Rather than repeat usentially theame,dmvation, lwm s~ply state the result. 

that the condition for gate wr·tte9"1
•' as a r'5UIJ of this cpnJu.-tt ii 

The overall solution specification for specification wpdb is constructed by conjoining 

the conditions from the individual conjuncts. The composi1' conditions are: 

For gate readenter: 
.. . 

cou11t(writi ... 1) • c0unt(write.,..et') /\.· c0u~t(write-'-} ~ count(write••it) 

For gate write•nf•r: 

~ • i • -I' : .• 

In the monitor into which th.is so1~tion specification is translated, -there must be integer 
·,· 

variables wr, wn, wx, rn, ~~d rx, ~epr~ting ~ntC~rite,..,..1), count(write•n'•'), 

' .,_, < -··, ~~ ~ • ~).:' '• ::~.; :·-f . 

count(write••it), count(read•nt•r), and count(read•1
"). respectively. · There must a1So be 

. ' ' 
condition variables writeentry and readentry corresponding to the conditions in the solution 

specification. Their associated boolean predicates are 

readentry: wr • wn I\ wn • wx 

writeentry: wn • wx I\ rn • rx 

Notice that count(read'eqwa1) does not appear in the solution specification, so that no 

variable is needed for it, and thus a procedure readJ~ is not required. The resulting . 
• • ,,/: l' 

monitor appears in Figure 6.2. 

' . 
1 
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Figure 6.2. Monitor for writers'. priority database 

wpdb .. monitor; 
wr, wn, wx, rn, rx: integer; 
readentry, writeentry: condttilm; 

writeJequest ~ proc~u.rt~ 
wr :• wr +I; 

claoost , ... , . . ,, ... :, , . 

end; 

conditionlqueu••~J},·: (,, :.ftflr-, .. ,,-1\ wn • wx: 
condittonlsignal(readentry); 

conditlonlqueue(writeeRtrJ) I\ wn • wx I\ m • fXt\ 
condltionlsignal(wrtt.ntry); 

end write_request; 

write_enter • proctdurt; 
if am ;ii! DIX v rn ii rx tltn ~t(writeentry); nd; 
wn :• wn +I; 
cltoost 

end; 

condltlonlqueue(readentry) I\ wr • wn I\ wn • wx: 
conditinl~); 

condltiodqueue(writeentty) I\ wn • wx I\ -m • rx: 
coUUIOJilsipal(•itmatrJ); 

nu/. write_enter; 

write_exit • rocedurt; 
WX:•WX+I; 
c/tJJo11 

end; 

condltlodqueue(readentry) I\ wr • wn /\ wn • wx: 
~); 

condltionlqueue(writeaatry) /\ wn • wx I\ m • rx: 
condUiodsipal(wrilaentry); 

mtl write_exit; 

read_enter - rocedu.rt; 
if wr ;e wn v wn 1' wx tltni toftflUlnlwait(readentry); end; 
m:-m•I; 
c"'1ou 

contlUlodqueue(readentry) I\ wr • wn I\ wn • wx: 
condUtonlsignal(readentry)r 

contlitlodqueuewriteefttrJ) I\ wn • wx /\ m • rx: 
. contlltiodsignawru.ntty); 



end; 
end read_enter; 

read_exit = procedure; 
rx := rx + I; 
choose 
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condition$queue(readentry) I\ wr = wn I\ wn = wx: 
condition$signa l(readentry); 

condition$queue(writeentry) I\ wn = wx I\ rn .. rx: 
condition$signa l(writeentry); 

end; 
end read_exit; 

wr, wn, wx, rn, rx := 0, 0, 0, 0, O; 
end wpdb; 
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8.4 Alternating priority database 

The next example is a variation of the previous one. Again the data abstraction is a 

database, with operations ·read• and ·write• obeying the •readers-writers• property. In this 

case, though, the relative priority of the two operations is to alternate. so that in a situation 

in which activations of both operations are being continually requested, the result is that 

first a single ·write• activation executes. then all waiting ·read• activations, then the next 

·write•, etc. This scheduling policy is the one followed by the readers-writers example in 

[Hoa74], and is referred to as the ·rair database· in [Gre75l 

The specification for the ·alternating priority• database is given by: 

((write-•nter ~ write.ent8t) ::> (write·811it ~ write·ent8tJ) I\ 
I J . I J 

((writet•it ~ readk•nt-> v (readkexit ~ writeient91) I\ 

((writet"'•' ~ readj'equest ~ writet'~ ::> (read{''•~ writei+ .. "'->> I\ 

((write{equest ~ readjreqvest ~- writei8''ter) ::> 

3 m (readjrequest ~ writem••it ~ readj-'81). 

The first two conjuncts express the ·readers-writers· property and are the same a·s for the 

previous example wpdb. The analysis of the previous section need not be repeated here. 

The last two conjuncts state the ·alternating priority• property. The third conjunct apdb3 

requires a "write" activation to wait to enter until all ·read• activations that were requested 

during the execution of the previous ·write• have done so first. The fourth conjunct apdb4 

prevents an activation of ·read• from entering_ until an activation of •write• has exited. 

assuming that there is at least one ·write• that is waiting at the point at which the ·r-ead• is 

requested. This prevents new •read• activations from continually entering. Solution 
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specification conditions must be derived Tor tltese two dinfonCtl. 

The first conjunct to be analyzed is apdb3: 

((writet"ter ~ readj,...st ==> wrttei•itf :» (md{.._ ~ wrttei+I-'.,)) 

The set of event expression'! in the conjumf'iS · 

E p(. pdb) { .......... . •lit .... ....,, ,···.d....... d ..... ,} vex a 3 • wn .. "'i , wntei , wrn"'i+I , rea j , rea j . 

' With these five rients to be orderid~ there are eighteen pOISibleordertngs. They appear in 

Figure 6.3. 

When each of these orderings is used to evaluate the specification apdb3, orderings (I) . 
through (15) are found to be vaM, while ordtti111gt (16'' through" (18) are· invalid. Since 

ordering (16) matches ordering (l) through the first thrt!!! etents in each~ the offending event 

in (16) is the fourth event writei+l-.,· Each Of the Other tWo lnvalicf 0r4erings (17) and (18) 

matches orderings (I) through (3) as far as the first two ·e~en.,;·10 tlie offending event in 

each is the third event, ~•so wrttei+ ..... · This-means that a ,caridifion must be found for 

gate write•nt•r. 

The characterization of the state at the poi".lt of the offen~ing event writei+Jenter in 
-. - • . -· • ·:-i ~· ; ? :; ~ , .,.__ ' .. -

ordering (16) is given by: 

J (i, j) (count(write•nter) ~ i I\ count(writeem•) < (i + l) I\ count(write••it) ~ i I\ 

count(read'equett) ~ j I\ count(read•nter) < j). 
' ' 

The characterizations for orderings (17) and (JS) are identical, namely 

J (i, j) (count(write•nter) ~ i I\ count(write•"'•') < (i + I) I\ count(write••il) < i I\ 

count(read'equeat) ~ j I\ count(readenter) < j). 
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Figure 6.!I. Possible ordering_1,f~ •P4bs _-_ 

(l) .write.t"'• ==> readj~ =>i!!.~~.~ ~ rea0.1ent-..,~ write,.1enter 

(2) writet"• ==> readj,.._.. ==> radj...,, =+ wrttet.a ==> writei•I....., 

(3) writei~· ~ feadj,.,_.,,_. ltid,...._,,~'+l..._._,_Writei•il'.· 

(4) writet'~·· .. wnter'il •tttllJj""""!"-..~"""' --!~;.-••* 

(5) · enter ___.. · nil ___..-..a ___.. --a..~-- ...., _ ....... -~.., wnte1 _ _ -. wr1te1 __, • .,....j~· - · ---i+I- - ,_ ·~j -

(6) writet''., ==> write1nil ==> Jlritew·~~-~-·J~ ~ r•dj"nt• 

(7) re~dj'equest ==> readt"~'!-,,~ "J-f*';,~ ==> lf!;tllr••it ~ wri~+I....., 

(8) readj'..,.at ==> readj-:*6 ==> !'fitl!j~ ~ ~'i·~~ ==> writet•it 

(9) readj""'W.t ==> writei--,_~ .~l'';': • ---~· ~ wr:~tei•l~ 
(10) read ,.._. ==> write....,. ==t ~ ---=+ write ...._ ==> write ••it J i J . ' i+I i 

(II) readj,..,.St ==> writet•~ ~ -~~~ ~ ~il.i• ==> write;9'" 

(12) teadj,....... ==> writei.., ==+ -~.:._,,,, st *itet"' ·~ rad/*' 

(13) read·,.._.. ==> w~--- ~Write-·~ :iilcl.._ ==>write I.., J. . I i ) - i+ · 

(H)ttadj'..,.._ ==> writea,.- •wtlltj'11iJ •'Wrkj~1~·=-Wilildf'!''"'' 
(15) write1enter _==> ~ •• ~ ==> . .,.,-~,..,f..,..S • radj.., 

{16) writetnt• ==>read{~'-~-~~=> ~+I~ ~ ~j~ 

(17~ writetnt• ==> ~~j,..,... => ~.,e,,~ .'!fl~;t- ==> mdj-­

(18) "'rite1enter ==>_ rsdj,.._. ==> ~~-- ~ ffMJ~,,~ ":'~ile~uit 

;: '. 



-rn-

The disjunction of these two characterizations is~•f to Dj: 

Df J (i,-j) (count(wri~ • i A •nt(read~~~ j '/\ -~t(rea<f91l'•) < j). 

The &rate aJ~_mwt ~~r~~ertHd~cevewts" ..... ~~lftd·wrMj.i-'~Jer in each of 

the 15 vatid orderings. TIUI,~ that;_»-__.,.,.te_ dlantft1·rat;on1 -must be formed. 

However, triany of-ttle cfiara<b!f'lintions fos: dlffftent Ofdetmp-are'Kl*k:ai: In fact -there 

are only nine distinct charaqer-tUtions, wlMdfare listecf hete: 

(a) J (i, j}(count(write•*) ~ f " ~rit(writ;..:t;; <(i + I) " count(write91it) ~ i " 
- -~ - -~~ "' ~ ·-'"' 

. ~~dl(read,..,..1) ~j :A count(~d.., ~ j) 
• .~, :-1 

(b) J (i, j) (count(write.....,) ~ i " cou;~(~rite9~-< (/+ ;) I\ ~nt(write~•it) ~ i " 
- c..., - .) : ' . ··- • ~~ • 

. ~e>unt(readrequlS~) ~ j I\ ~1&iread..-., <j) 

(c) J (i, j} (count(write"1.,) ~ i /\ -count(write~ '.< (i+ l) A- _.8»(Jf'rite••it) ~ i " 
; ,.._ -· - ~ .,, - - -- . ' -

ceuat(r~~~) <j /\ COllM(~~., ~-;;>--

(d) Ju. j) (Geuat(~m.r~ <,t A eou•~ c::(i-+ t)· k-~wrt.,•it> < i " 

(e) J ct' j}. (munt(w~it~~ <'i I\ ~tf\trit~~;(j "E/ I)" I\ ~ilt(writ~ .. it) < i " 

--- ._,._ -.-:··<:.' ,__._ ~ _.--_ -~--~~~ .. ---~- ~~-"'}C"J!"~ ·:-_ - /_ ··"~-. - cotl'nttrei-d,..,..,_~ J. I\' count(read""et') < j) 
c- • - - - -.~l~·-'i. ~~._-·..,' ·._-.:·_ "'~:- ~" - ~-·:: .... .;£!""} .. ;. c .......... ;: -

(f) J (i, j) (count(write•il19t} < i " ctiu~1tlwrite"'.,) < ~i ~- i> ,-" cou'~t(write••it) < i " 

count(read,..,..1) ~ j I\ count(read.-, t! j) 

(g) J (i, j) (count(write•nter) ~ i I\ count(writeent•) < (i + l) I\ count(write••it) < i " 

count(read'equett) ~ j I\ count(read .... .,) ~ j} 

(h) J (i, j) (count(write•nter) ~ i I\ count(write•ntet') < (i + I) /\ count(write••it) < i I\ 

cou11t(read'equea1) ~ J I\ count(read•nter) < j) 
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(i) J (i, j) (count(write•nte') ~ i I\ count(write8
"
1•') < (i + I) I\ count(write811it) < i I\ 

count(read""1',..1) < j I\ count(read•nt•r) < j) 

The disjunction of these nine charcfcterizations is Dy, which reduces to: 

Dy: J (i, j) ((count(write•nt•r) ;?: i v count(write••it) < i) I\ 

(count(read'equest) ~ j v count(read•nter) < j)). 

The preliminary condition is (Dy I\ (-. Di)), 

J (i, j) ((count(write•"'•') 2: i v count(write••it) < i) I\ 

(count(read....,..') i?: j v count(read•nte') < j)) I\ 

V (i, j) (count(write•"18') ~ i v count(read'equeat) < j v count(read•nt•') ~ j), 

which when simplified reduces to: 

count(read~ • count(r~d•"18'). 

This condition must be tested for both write.mer events in each of the fifteen valid 

or~erings. In doing so, it is discovered that the condition is not satisfied for the following 

events: 

writei enter in orderings 13 and H 

writei+tnt• in orderings 5, II, 12 and 13 

An event must be found that precedes each of these events, as well as the offending 

ev~nt in each of the invalid orderings. The only such event is readj....,..t· The state is 

therefore characterized at this event in each of the orderings in question. In .ordering (5), 

the characterization at event readj'..-st is: 
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l (i~ j) ([count(write.-, • read'~ ~ i I\ 

[count(writr-) • read~ < (i • I) I\ 

Ccouat(retd....,...) • read...-}< J A 

[coiint(radtlider) • read'..-l • j). 

In each of the other valid orderings in question, it is: 

J (i, j) ([c0unt(write.-, • readrequeSt] < i I\ 

[count(write•"'-') • readrecfU91tJ < (i + I) I\ · ·-- -. .,_ .. \-

[count(write••it) •read,..,..]< i I\ 

[count(readrequett) •read,..,..•]< j I\ 

[count(read•nt•r) • readrequdt] < j) . 

• 
This means that the formula Dv' is given by the disjunction of these two, or: 

Dv': 3(i.j)(({coontfw~•r~~ i /\. 

[ceu1t«w~)9.~l~i) v 

([count(writeent91 • read....,...] < i I\ 

[count(write••it) • readr"1tflll'J < i) rt 

[count(read'equeSt) •read....,...] < j I\ 

[count(read911'•) • read'..,..'] < j). 
- ' .... ~ ' 

The characterization at readj:• in each of the three. inv~lid ;orderin.gs is the same, 



.... ;.-

- l'l&.-

{-.•(w~• r.ead~•d):,A 

·lc:eut1t{wr~Nellll~(t"' I) A· . . -.,.~ 

This formula is theref'ore,Df. The ~ tttm11 ,._,.. byl>~/" <~ Dy'): 

J (i, j) (((coullt(wri...-, • read.....-tJ ~ i I\ 

~.: ~}-· -::.o;;::~---~·-"}t· ; . .-,. .·' 

[~at(wr~ •~...-et]~ i) v 
., -

([couat(~ • reac1.....-t] < i I\ 

[couat(w~~ read'~;-~< i) .I\ 

[couat(write9""') • r-a...-ti < (i + 1) I\ 
.. ~ • . • -',!f' - • '.' ~ ,: . -. 

[couat(read........, • reac1...-t:J < j I\ 

[couat(reacr--> ••ll~~•'l.cj), J\y· .. 

v (i, J>~-· ... be~"'' "': 
{. . ,, 

~ ..... ·,•·ht ...... ~iCft+I)" 

.~1--~~-j1V. 

c .. ...,..~ ..... ~. 

_When simplified, this reduces to: 
i-' :·' .. ·,_i.-~··. -·, •',;:--:.~· ;.~.:;. ~- ·lh::1~.:-·:~·:, ,;.:- .. :;' 

Cceuat(wrW: 11 ) • read....-tJ • C-.at(wa--) •· rad...,... __ ... J. · 

)._ 

- ;p, 
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This weakening term. is tested in each of the slx events in valid orderings for which 

the preliminary condition is nor.satisfied. It is founcl-<that the·wakening term is satisfied in 

each case. Therefore, disjoining the weakening. 'term ·10 ·t-tte ··preliminary condition obtains 

the correct condition. Th~ conclition fot gate wrJte.- fnMna'tjunct apdb3 is: 

~ . : 

This condition makes sense intuitively. The first disjunct states. that there are no 
' '"'t ···-.: - ~ i;.·, _, 

unfulfilled requests for activations of ·read•. The second says that the most recent request 

event for "read" took place at a point at which no activa~ion of •write" was active. 
~.' l - __ ----"" • 

Therefore, a "read" activation is allowed to proceed ahead of the next waiting "write• 

activation if it was requested during the previous ·write• activation. 

There remains conjunct apdbi to analyze: 

({writei,.._. => readj'•••••-~wrtcei..,_ ::> 

3 m (read j,.... ~'wriaem ~ .. teadrtl•')). 

Unfortunately, the analysis of tins wnjunct-'fs ·even ·ftilOrt: 'tOnlpticated than that of the 

previous conjunct, owing tO' tlte-cftlcfthat thtrtcare 30~ orderings of the 5 events 

contained within it. These 30•4erings"ue.·tut«i in'~'M, 

Rather than go through the details of the ~erivation, the complete process will simply 
"··- ...:·:; - ~-~ .. - •t°'·- '-~~:if;':: "'-~ - - . ""i, "-'. -

be summarized. Of the 30 orderings, the orderings numbered (I) through (23) are found to 

be valid. Orderings (2i) through (30) are !"valid, with the offending event in each being 

readtn•er. A condition _must therefore be derived for gate read..,. When the preliminary 
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Figure 6.4. Possible orderings f_or apdb4 

(I) read-request ==>write-request ==>write-enter==> write exit==> read-•ntar . J . I I m J 
(2) read-request==> write-request==> write-•nter ==> read·•ntar ==>write exit 

J I I J m 
(3) read· request ==> write- request ==> read .enter ==> write· enter ==> write exit 

J I J I m 
(i) i:-ead.requeSt ==> read-•nter ==> write-requeet ==>write.enter==> write exit 

J J I I m 
(5) read.request ==>write-request ==>write exit==> write-•nter ==> read-•ntar 

J I m I J 
(6) read _request ==> write exit ==> write.request ==> write-enter ==> read .enter 

J m • I I J 
(7) read. request ==> write exit ==> write· request ==> read .•nt•r ==> write· enter 

.J m I J I 
(8) read _request ==> write· request ==> write axil ==> read enter ==> write· enter 

j I m j I 

(9) read-request==> read.enter==> write·requeSt ==>write exit==> write.enter 
J J I m I 

(10) read _request ==> read .enter ==> write exit ==> write·requdt ==> write-•ntar 
J J m I I 

(11) read· request ~ write exit ==> read .enter ==> write requeSt ==> write· enter 
J m J i I 

(12) read.request ==>write-request==> read.enter==> write exit==> write·•nter 
J . I J m I 

(13) write exit ==> read· request ==> read· enter ==> write· requeSt ==> write· enter 
m J J I I 

(Ii) write exit ==>read.request==> write·requeat ==>read.enter==> write-•nter 
m J I J I 

(15) write exit ==>read.request ==> write.r.quest ==> write·•nter ==> read·enter 
m J I I J 

(16) write exit ==>write-request ==> write-•nter ==> read·requdt ==>read-enter 
m I I J J 

(17) write·requeSt ==>write exit ==> write-•nt•r ==> read-requeSt ==>read enter 
I · m I J j 

(18) write·ffqUdt ==>write.enter==> write exit ==> read·requdt ==> read·•nter 
I I m J. J · 

(19) write· requeSt ==> write· enter ==> read. requeSt ==> write exit ==> read .•nt•r 
I I J m J 

(20) write-request ==>write.enter==> read-request ==>read.enter ==>write exit 
I I J J m 

(21) write· requeSt ==> read· request ==> write· enter ==> write axil ==> read .enter 
I j· I m J 

(22) write.requeet ==> read·requeSt ==>write exit ==> write-•nter ==> read-•nter 
I J m I J 

(23) write.request ==> read.requeSt ==>write exit ==>read.enter ==> write-•nter 
I J m J I 

(2i) write- requeSt ==> read. request ~ read .enter ==> write •xit ==> write· enter 
I J J m I 

(25) write· request ==> read· requeSt ==> read _enter ==> write· enter ==> write exit 
I J J I m 

(26) write.request ==>read.,..... ==> write·enter ==>read.enter==> write exit 
I J I J m · 

(27) write-request ==> write •xil ==> read·'equdt ==> write-enter ==> read·•nter 
I m J I J 

(28) write-'equeSt ==>write exit ==> read·requdt ==>read.enter==> write·•nter 
I m J J I 

(29) write ••it ==> write·requeSt ==>read·,..,...==> write·....., ==> read-•nter 
m I J I J 

(30) writem ••ii ==> write{equeSt ==> rea.djrequdt ==> rea.djenter ==> writet'ter 
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condition is formed, it reduces to FALSE. This is the extreme case of an overly strong 

condition, ·in thar n~nt of the '23 valid. o~~ings is allowed. 

The onq. event that pr~es read1..,.., i,n all 30 .. order~•""* ·-readirequett. The 

weakening term obtained- by coftildering the state It event ·readj ...... atOnets: 

[count(write'~) • read~1l • [count(wr~). • reacl,....'l. 

This condition ii·sattsfted by. valid· orderings (I) thre>Ugh (!())~ but no((2fY through (23). 

This means that the. cha.._~rizations of b.Qth the current. state and· tbe,_pre~iOUJ state at 

read{equest most be:uted -anhe safM'"4:ime t6 ot>eatn another wettentng t~ ~ these three 

! ,' 

orderings. The weakening term obtained is: 
•• :, > 

which is satisfied by each of the orderings (21) through (23). 

The solu_tion. specifica~. ~itior\ f°!' l~~e ~4~ frcnn .~bili~unci .is .therefore 

the disjunction of the two w~~ening terms: 

[count(write,...,..1) • .read'..,..'l • [count(wr~) • r~dNqUdt] v 
- . ; ,, . - ~ ~ 

• < ' •• 

Again this a>ndition makes intuitive sense. The first disjunct states that no 'activations 
'"!:' ._ -r-

' 
··i,"· 

of "write" were reg.uested_ but-waiting at the poilJt.at whic~t.~~ ~erad":-~ 7~eration 
- .- ' f- . .. - • . . - ,;:: • - ' . ~ 

was requested. The secOnd says that·~ acttvition of "wrtte• has e~ited since the' point at 

which this "read" was requested. One oft,hese.,nust be--~fore ~ "rea<l"-~n .eoter. 
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The overall solution specification for specification apdb is given by the conjunction of 

the individual conditions obtained for each of the four conjuncts: 

For gate read•"'•': 

(count(write•nter) s count(writeexit)) I\ 

(([count(write'equest) • read'eqwa1] • [count(write•nt•r) e readrequest]) v 

([count(write••it) • read'eqwat] < count(write••it))) 

For gate write•"'•': 

(count(write•"'•') • c:ount(write••it)) " 

(count(readent91 • count(read••it)) I\ 

((count(read'equdl) • count(read•"'•')) v 

([count(write•"'•') •read'..,...] - [count(write••il) e readrequeS1])). 

The monitor implementation of this solution specification requires three variables wr, 

wn, and wx, to ·represent the current values of count(write,..,.st), count(write•"'•'), and 

count(write .. it), and three variables rr, rn, and rx, to represent the values of 

count(read'eques1), count(readenteF), and count(readexil). In addition, three variables are 

required to save values at a previous state: wrrr for [count(writeNqUeS1) • read'9CIUd'l wnrr 

for [count(write•"'•') e readrequestl and wxrr for [count(write••il) • read'equea11 The values 

of these variables are set in the monitor procedure readJequest corresponding to gate 

read'equest by saving the values of the variables representing the corresponding current 

quantities. For instance, variable wrrr, representing [count(writerequeat) • readr9qUdtl saves 

the value of wr, which represents count(write~. The two mndition variables, and their 

associated predicates, are: 
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readentry: wn • wx " (wrrf ~ wntf v ~x'rr < wx) ' 

writeentry: wn • wx " . rn - rx I\ {tr • m v wnrr • wxrr) 

The monitor that is obtained appears in Figure 6.5. 

6.6 Disk head scheduler -.. 

The final example of this··chapter is the '"disk-=taead
1SC:Ja'ectu1er· problem. Actually, the 

specification used here is a simplificatiOn of the actual disk h~d :~~ulfng specification 

that appears as Example H ill ~fbn 2.f The rut ;cr.sk head icheduler keeps the disk 

head sweeping in one· dtrectitift ·uiltft an ;~~-·~ in that direction have been 

~ - ;>·~~, ~,· - -<_, •• ~ .·~' 

made, then reverses the directtbn and-repeats. A~ artrnade as the requested tracks are 

encountered in the sweep, satffat lhe not track rc{W .~-is tfie >t.ne that is closest to 

the curre~tly a~c~_sed . trac~ in the ~ir~~ ~ s~ .. T~. ~"?ftlJfacati~. -~re involves 

d-i~~eg~,r,ping the direct~Of! .i~·Lwhich t~e_ ~isk c~d if~~~~i~: W~,~ly wish th.~t t)le 

next track to be accessed is closest to the currently a~~ track_~ ~II r~e~tr~~~$ in a 
-\ ,. ' r • .! Z ~*-~o,,f~, ~'I..;" '~::· •• .::-. .\._·'~" • -> • '.r • ' 

until no further accesses have been requ\!Sb!d in that direction is ~itted. This _,nows th~ 
• ' ~-- ~ ' ' c;· -~--- -; ;· ·~;.-; -~ _<:.:~- -::>le-- :"'"""L~-, ~-, ·!_-, «:.,:}-'.::: • ·~-· ~· 

s~ificati~ ~9 ~. ~si~er~:blr_ si{npl~~ud (t~~~ ~ !! :~ a,llq._~~~-,t~ _ ~'~~~ity o~ 

starvation, as noted in Chapter 7). 
- ;...,- .t 

We assame: here that atauing- a disl. ;Mel ls ilccoinplilhect by 'means of 'an operation 

named ·a" on ·the ·disk• ciatf 'tjpi · This 0 ~tic>rr take5 a slnlae · :p~rameter x of type 

•tr.aa..:.no·. giYttigthe'va~-'ortf\~l~ck numb~t6efnl;~~. 'AHivai:i~s'of ·;t· must be 

mutually exclusive, since only one access can occur at a time. · The hisCconjunct of 
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Figure 6.5. Monitor for alternating priority database 

apdb = monitor; -
wr, wn, wx, rr, rn, rx: integer; 
wrrr, wnrr, wxrr: integer; 
readentry, writeentry: condition; 

writeJequest ... procedure; 
wr := wr +I; 
claoose 

end; 

conditionlqueue(readentry) I\ 

wn ... wx I\ (wrrr .. wnrr v wxrr < wx): 
conditionlsigna l(readentry); 

conditionlqueue(writeentry) I\ 

wn .. wx I\ rn ... rx I\ (rr • rn v wnrr .. wxrr): 
conditio~lsignal(writeentry); 

. end writeJequest; 

write_enter • procedure; 
if wn ~ wx v rn 'II- rx .., (rr ;e rn I\ wnrr ;e wxrr) 

tlaen conditionlwait(writeentry); nul; 
wn := wn +I; 
claoose 

end; 

conditionlqueue(readentry) I\ 

wn .. wx I\ (wrrr • wnrr v wxrr < wx): 
conditionSsignal(readentry); 

conditionlqueue(writeentry) I\ 

wn - wx I\ rn - rx I\ (rr - m v wnrr • wxrr): 
condUionlsignal(writeentry); 

end write_enter; 

write_exit = procedure; 
wx := wx +I; 
claoose 

end; 

conditionlqueue(readentry) I\ 

wn - wx I\ (wrrr • wnrr v wxrr< wx): 
conditionSsignal(readentry); 

conditionlqueue(writeentry) I\ 

wn '!"' wx I\ rn ... rx I\ (rr - rn v wnrr - wxrr): 
conditionlsignal(writeentry); 

end write_exit; 



readJequest • proc1du{1; 
rr :• rr + I; 
.wrrr :• wr; 
wnrr :• wn; 
wxrr :• wx; 
claoos1 
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condtttonlqueue(readentry) I\ 

wn • wx I\ (wrrr • wnrr v ·liVIU'f,<JiX): 
conditionlsignal(readentry); 

conditlonlqueue(writeentry) I\ 

. '._" ~ -~ 

wn • wx I\ rrt •;tll• A-hr .. ra:·\if, ~- wxrr): 
• • r4 • • .-

~nal(wr~. 
ind; . 

end readJequest; 

read_enter • procedu.r1; 
if wn ie wx v (wrrr If wnrr I\ wxrr ~ wx) 

tlatn conditionlwait(readentry); nul; , ., 
rn :• rn +I; 
claoost 

end; 

conauw~reaclenlry) · " -
wn • wx ·A. (1111-ur .. ~ .~ \I ..,war< w.x): 

condit~signal(readentry); 
condtttonlqueue(writeentry) I\ 

wn • wx " rn •·IX· "'·Vr.i- ra v warr •. wxrr): 
~nalU¥riteeAtrJ)a 

end read_enter; 

read_exit • procedure; 
rx :• rx +I; 
claoost 

conditionlqueue(readentry) I\ 

. wn • wx I\. (wrrr • wnrr v wxn ~,w~-. 
conditionlsignal(readentry); 

conditionlqueue(writeentry) I\ 

end; 
end read_exit; 

wn • WX I\ rn • t:K A·· (1T·li!_,.,,y wntr • wxrr): 
cndutonlsignal(writemtry)i 

' . ·~ .. 

wr, wn, wx, rr, rn, rx :• 0. o. O. 0. 0, O; 
wrrr, wnrr, wxrr, :• 0, 0, O; 

end apdb; 
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specification dh specifies this mutual exclusion, and the second specifies the scheduling 

policy desired: 

((ai(x2)'equest => ak(xt}••it => a1(x2)9nt91 I\ 

(aix3)'•qvest => ak(xl)exit => aj(x3)9nt•) I\ 

(xi < x2 < x3 v xi > x2 > x3) ::> 

The analysis of the first conjunct has been carried out already in Section 6.3, where the 

same property was specified for operation ·write• as part of the •readen·writers· property. 

Here we will consider the scheduling property conjunet dh2" 

First, the argument constraint predicate (xi < x2 < x3 v xi > x2 > x3) must be 

incorporated into the conjunct. The predicate already appean in the hypothesis of an 

implication. It can be incorporated by pa~meteriiing it and then qualifring the 

appropriate procedure activations. The parameterized form of the predicate is 

(xi • u) I\ (x2 • t) I\ (u < t < x3 v u > t > x3). 

This means that activation ak(xl) must be qualified with the predicate (xi • u), activation 

ai(x2) with the predicate (x2 • t), and activation aj(x3) with the predicate (u < t < x3 v u > 

t > x3). The transformed specification then becomes: 
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· <Cap2)·t {x2 •-t)l',...1 
• lat(xt) t<x•-vr •o~2)t("2• t)r"~" 

{[aj{x3) I {u < t < x3 v u > t > x3),..- ==> [ak(xl) I (xi • u)]9•it 

~ Cafx3l I (11 < t <~vu >l > •r••'f 
::> {[ai(x2) I (x2 • t)r:"9' => [aj(~~) I (u < t < ~!v, ~ ~ t > x3):r"'-). 

- ~ - -

• 

Now that the argument coriStraiRt infUrrnatian,habMt"Waq>arated into the conjunct 

by means of qualification, the a.nalysts:~can -prace911 >ID'nuily. There are five events 

mentioned in tt~e conjunct: 

Evexp(d.f¥. ffat(x2) HJt2•t),....., c'-i<x2>·tht2 -.t>~ ·f.ak(d) l(XI •u)J-•it, 

Caix3} I (u <·t < x3 v u-~ t >i .~;-,iafi3H<u-<<tic: d Y•·> t > x3>r"'-}. 

There are 30 possible orderings among dMme<ftve~s;tRlldaW thao lilt all,J(hn them, 

only the two invalid ones are given here: 
•· ~ ",•ro.' !~~;·:"""¥ .}~ ;(.~ ,,, 

(I) [ai{x2) I (x2 • t)~1 => [aix3) I (u < t < x3_ ~- u > t > x3)~1 ==> 
0 ~ ' .; - ~. ~ :~ -:-.;:· ... :·. .. •• ~£ ! ~ . ":" . . . 

[ak(xl) I {xi • u)r•it => Caix3) I (u < t < x3 v u > t > x3)r'9' ==> 
, - .• ··-.;~ ·~' ' ( =::_': .. ~~ ~· 

[ai(x2) I (x2 • t):r"'-. 
. _ . ,. '._, ": .' '·t ,~ ; ~~ . ._ ~----:-:; .: ~ -

(2) [aj(x3) I {u < t < x3 vu > t > x3)Y..-1 => Ca,(x2) I (x2. t)J911Ud1] ==> 
~- .- : . ·-; .-- -· ; .< -

[ak(xl) I (xi• u)]9Sit => Caix3) I (u < t < xl v-u» t > x3):i-t-' ==> 
;_ . ·. \ ~ - ; ~ 

[ai(x2) I (x2 • t):r"'-'. 
- ~ •• c • • l • : 1 _ _:,,. ' , ' 

The offending event in each is Caix3) I (u < t < x3 v _u > t > x3):r"'-. This means that a 
<• '' ' - • .; ~ ~ -~ ; ' 

condition must be derived for gate [a(x) I (u < t < x v u > t > x)rt-'. Since the state 

characterization is the same at the point of the offending event in both orderings. this 

characterization becomes the term Di: 
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count([a{x) I (u < t. <xv lt > t > x}J''J'_.)'~;j' i\ l?OIMl(ll(x}t (x-•Q~) ~ i -A 

count({a,x) t (u -c. t < x vu >t > ~-•f I\' ... tCIMx)f·(Jt'"" ·ti)~))< i·) 

The term Dv• being the disjunction of 23 characterizations. is quite complicated. 

However, when the expression (Dv /\ (-. Di)) is consti'ucted, the formula can be simplified 

considerably. The. result of the simplification is to arrive a~ the following preliminary 

condition: 

v i (count([a(x) I (x • t)]'~ < i v couat([a(x) I (x - t)r'-}) ~ i). 

ThiS is equivalent to the'effh simpler 

This conditiolt -is found to satisfy alt the valict erdenngi.' and tha~ i1 corn!Ct as it 

stands. 

The overall solution specification for specifacation dh consists of the following gate 
• 

conditipns: 

For gate a•nt•: count(a~ --c:imat(a•il) 

couat([.a(x); I (x .. t)J04~ .... at(a(x) • (x .. t)J"'-> 

A monitor must now be constructed to, .......... tlitil......,.. apeeifteatbL 
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The monitor must .contain tW- pr~.- .. a~ a_enter, and a_exit, to 

correspond to th~. three, event .. c.-... S.intf'·thef't ·-are; ~lifild- gar. in' the solution 

specification, each of the monitOr prwedurp 1TdJSU•• the same parameter :IC •'-operation a. 

There must be variables an and ax to represent couat(a""'-) and count(aexit), respectively. 
·.:>1:,. 

In addition, there must be a local variable u of type track...no, the ame type as· parameter t, 

representing the value of the parameter of the most recent call on procedure- a_exit. This 

variable should be initialized to an appropriate va~~ such as the minimum possible track 

number. 

In order to implement the parameterized counts, thGe:BlUlt De;two objects atreq and 

atent of type counti[trac\.JKIJ. to holclLitbe -veitdet'M .,..~,··~<x • t))"equest) and 

count([a{x) I (x •· t)J'"'•rt for. all: ¥ahm ·of&.· P~• ~-·~ a: CGUnt ·in 

atreq, and procedure a_enter increments a count in atent Each of these objects mUSC.·he 

created in the initialization code for the monitor. 

The qualifying predicate on the p.., gate 

is a non-f unctiona 1 relation. The entry comtiaians fNllt be>implelnented by itll 'Dbject a entry 

condition for·~ g.iven value ot\xds.addt!d 1D aentrJ~bJ 911 !acte·..,...tion at the start of 

procedure a_enter. The predicate associated witiJ~'tenditimt·~'value tis given by 

combining the predicates associated with the unqualified and qualified gates. It is also 

necessary to have an object "tracks" of type setCtrackJlol to maintain· the set of relevant 
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track numbers. Elements are added to track by "insert" operations within procedures 

a_request and a~enter. The resulting monitor appears in Figure 6.6. 
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d h • monitor; 

an, ax: integer; 
u: track_no; 
atreq, atent: counts[track_no]; 
aentry: conditions[track_no]; 
tracks :- set[track_no]; 

aJequest - procedurt(x:track_no); 
counts[track_noltincr(atreq. x); 
set[track_noltinsert(tracks, x); 
for z:track_no in conditionsCtrack_noJldomain(aentry) do 

if conditionlqueue(conditionsCtrack_nollget(aentry, 1)) tlten 
ok:boolean :• true; 
for t:track_no in set[track_nolletements(tracks) do 

if (u < t < z v u > t > z) /\ 

end; 

• (an .. ax v countsCtrack_no:lget(atreq, t) " 
countsCtrad.JK>Jlcet(atent, t)) 

then ok :•Jal.st; end; 

if ok tlaen conditionlsignal(conditions(track_nollget(aentry, _1)); nid; 
end; 

end;. 
end aJequest; 

a_enter ,;. procedurt(x:track_no}, 
conditions[track_nolladd(pentry, x); 
for t:track_no tn setltrack_no]lelements(tracks) do 

end; 

if conditionlqueue(conditionsCtrack_nollget(aentry, x)) /\ 
(an " ax v countsCtrack_no::lget(atreq, t) " countsCtrack_nollget(atent, t)) 

th.en conditionlwait(conditionsCtrad....l'Ollget(conds, v))i nul; 

an :•an + I; 
counts[track_noltincr(atent, x}. 
set[track_nollinsert(tracks, x); 
for z:track_no in conditionsCtrack_no]ldomain(aentry) do 

if conditionlqueue(cond itionsCtrack_noJtget(aentry, z)) t laen 
ok:b0ol4an :• triu; 
for t:track_no in setCtrack_no]lelements(tracks) do 

if (u < t < z v u > t > 1) /\ 
(an 1111 ax v countsltrack_nollget(atreq, t) ,. 

countsCtrack_noJtget(atent, t)) 
tlaen ok :•/al.st; end; 



·end; 
end; 

end a_enter; 
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end; 
if ok then conditionlsignal(conditions[track_no]lget(aentry, z)); end; 

a_exit = procedure(x:track_no); 
ax :=ax +I; 
u := x; 
for z:track_no in conditions[track_no]ldomain(aentry) do 

end; 
end a_exit; 

if conditionlqueue((:onditions[track_nollget(aentry, z)) then 
ok:boolean : .. true; 

end; 

for t:track_no in set[track_no]lelements(tracks) do 
if (u < t < z v u > t > z) I\ 

(an .., ax v counts[track_nollget(atreq, t) "'" 
• countsCtrack_nollget(atent, t)) 

th.en ok :=false; end; 
end; 
if ok tlren conditionlsignal(conditionsltrackJ101lget(aentry, z)); end; 

an, ax :=· 0, O; 
u := track_nolmin(); 
atreq := counts[track_nollcreate{); 
atent := counts[track_nollcreate(); 
aentry := conditions[track_no]lcreate(); 
tracks :"" set[trackJ10Jlcreate{); 

end dh; 
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Chapter 7 

Detecting Erroneous Specifications 

7 .1 Introduction 

The flexibility of the problem specification language makes it possible to specify a 

wide variety of synchronization constraints. Unfortunately, this flexibility also permits 

erroneous specifications to be constructed. Certain kinds of errors in specifications can be 

detected in attempting to derive equivalent solution specifications. As noted in Chapter 4, if 

a specification constrains when in a history, say, a request event can occur. this results in an 

invalid ordering being found in the derivation algorithm for which the offending event is 

of type request. Since this is erroneous, in that the underlying model requires events other 

than enter events to be unconditional, the derivation algorithm detects this error and fails 

to construct an equivalent solution specification. 

There are other kinds of erroneous specifications. however, for which equivalent 

solution specifications can be derived. These specifications are compatible with the 

underlying model. but the synchroni.zation constraints they specify display certain forms of 

undesirable behavior. Two such forms of behavior are the potential for .deadlock and 

starvation. Deadlock results from a situation being overconstrained, so that each of a set of 

waiting processes is prevented from proceeding by the presence of all the rest. Starvation 

means that the constraint that is specified may be too rigid, in that certain processes are 

prevented from proceeding indefinitely. 
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A problem specificatiQn that manifests ·one- Gf-~ forms of behavior results in the 

specification makes the analysis required to detect these erroneous behaviors much more 

tractable than for the problem specification itself. This chapter prisehis:aJlorithms for 

performing such ~"~!ysis. They ca~~~ u~·.:~C.::~i~~t~::~f~~~ ~~s1~~ .d!rived 

from a problem specification, as a check on the .soundf!!15}~f the orig~~l,,specif~~tion. 
, · ~ • ~', •.,; •, "' .. '"'..:· t ·, ~ :·c -' '< • ~,; ! ';, •._! · " -. - < 

By the argument in Ch~ -i justifying the derintiOh''atgOtithM,the set of histories 

allowed by a derived wlution spedflcatiOri is eXScny eqtlalto'the Set a~ ·by the original 

problem spetif'ication~: · This tnftfii·· ttiat -a··. paa!11fla1 'f&f 'aeaftd'l>r :SC.r~ition cannot be 

introduced into the solutiotrspttifitiadon t>rt~dert•atton'.'lbd, llnaHftb1s were pwlble, 

then there would have ·t:o·"'be ·one 'or mote hbtorfes' valid" With' ~ to the prObWM 

specification but nor.· to the solutiorr- spedtimfon. · ft-athei,· smte ·ttte · SMutioft lpetifttation 

corresponds exactly to the problem specification in hhtorf411l!dMk~-,any potenda1 for 

deadlock or starvation in the problem specification is mirrored in the ~tion specification. 
~ . . . -~ .-~ - • ,'! ·; .' ... ~· ""':.: , . ~- .-: ~;; :.fl .:,.;.;f:",: ._)_:· ~ . ~ 

For example, a potentia I for dead10ct wt>uld' be teflected by tffe exlstente' . in ·a valid 

history of request events for wfdth': the ~iii'fbiwr ~er.ts 'could ·nev~ 'sansfy the 

spec•ficatioh. Assume the existettte ·. of 5udi "a history' Wd 'kt 'valtcftty With respect· to a · 

solution specificnion. ·Then' tfris:ame"histoty mlist btf"fatid wftfr'~·fif·tfie pfubleirt 

specification, and the ent~ event$ mUit °fail it) satiny the 'probl~nf spe(ificatton. ~s well. or 

cou·rse, the re\ferse is similarly true. Thus tfie sOtutiOR ~fititlan · mmt ctmtain exactly the 

same potential for deadlock as the problem specification. ln a' slfMlat way. starvation 

implies that there are valid histories in which the requat and enter events for a particular 
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operation activapon are separated b.y ~n arbitrarJ ~ of ot.her:- RQf,l,CSl:-enter event 
. . 

Since the solution specification. is state-oriented,. it ls a convenient forr:n on which to 

perform the analysis for these ·properties .. ·.'the. ~- ~ificat~ ~n be used to 

determine under what conditions, if any. dea<ficd ·a~ ··rvatioo are possible. Such a 

possibility, though, arises due t0 the original ~..m· lpedftc.tion, and it is there that a 

correction must be ·made. 

7 .2 Deadlock detection 

In a survey paper ([Hof72J),~ .tW ~~-,~~~;JI.,~: ~:~'lae _siq.latklA .. ip 

which one or more processes in.a sy_,., arc;~ ~-~-of.~.that 

can never be satisfied.· In the c:Ontext oC l\tb t..._,l~ ariseJ,;when a problem 

specification overconstrains the order of events in certain situations so as to prevent any of 

a groop of requested accesses from e¥er ocXurring. >:The entry. conditioM in the derived 

solution specification form a basis for cha~~ung poUibie'~lod ~~~in terins·or 

the synchroniiation state of the objed. 'rt' GGdlock" .s· ~ then. each such 

,-, ' ,· "" : i·~. ; < :-~ •• ·,; ~, ~ 

characterization can be proved to lead to a c::oOriadktbi. 

The p~oblem of deadlock.det~ ~~ ~-~~ ~rtJ ex~v~tx. pan,ic'-'~rly for 

operating systems (e.g. CHav68l [Hab69D and daiab~•~v~;~Cha7~D- T~ ~Jk ~ this .. 

work has used a common scenario for deadlock: Each process in a collection of concurrently 

executing processes holds exclusive aa:ess to one or more scarce resources. and is blocked 
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because of a request for resources held by ot~ p~ ·in ·ttwe co11ecti()ri~ The scarce 

resources are commonly viewed as ~ in the tare: Of Operating systems. and locks in 

database systems. Unfortunately, shared abStract data objecti, ire not reaDy similar to 

peripheral devices, which are serially reusable and must be ·owned· by one .process at a 
~ • ' f - ·:,-· -·~ ·:: .'- ·: - ~-~. c 

time. Nor is the database paradigm of setting. and releasing locks on parts of the database 
• - = 

very applicable to most _situations involving data abstractions. Blocking of processes 

competing for access to an abstract data object more often resu~ from cal~ on particular 
• •• ' -- - < • - • -·: ~ • , .- .._~ : ~ ~-· - • .::_ • - • 

operations of the abstraction, rather than the subcomponents of the data. object they access. 
'- ,._ .-- r 

Closer to the mark, from this point of view, is the work by Hok ([Hol71l [Rob75]). 
~ , .. . ' - -

Using a Petri net-based model, HC!lt views a system as a set of states with transitions 

between them. With· this approach, a process· Is "b1ockttt• tn:'•· 1tatt· when· there is. no 

transition it can make to-anOther state. J)mff0tk'resu1U;from a p~ bemg blocked in all 

reachable states of the system. The approach to'~dadibed in this M!C!ion Is similar.· 

The solution specification into w.hich the specification is transformed is a convenient 
:: . - : ' ; ~ '· - ~ ;. ' 

form on which to perform deadlock analysis. The control.poin~ at which processes can be 
' . \ ·- -· - -. -~ -;: . : ' -,; . : , ' . - : ; . ' -. 

blocked are the enter ~tes, and tile conditions the pnqsses ar~ awa,iting .to become 
i ' - : ~ - ' . c ': - : - • , ' - • .: ;- - - - -

unblocked are the corresponding entry concjitions. A ~eadp:k cor~s. to one or more 
,,~..,,- . ~ .. - _,:..,. :__ -"'·-- ·- - 'o: .,.-;_·..-.: 7<.l ·..: ~ 

processes waiting at each of one or more gates, on conditions that can never become true. 

(It ts assuriled thr0ughout that all ~nan actif'atidKs termma~: so that· processes can 

deadlock only via the synchronization 'code itself.) 
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For example, consider a da~ abstraction with two operations p and q. Suppose that 

in deriving the solution specification from the problem specification. it is discovered that a 

condition for passing through the p•nter gate is 

count(q'equest) • count(q•"'•'). 

Now suppose also that a condition for the q•nter gate is 

count(p'equest) • count(p•~'.,). 

Obviously then. whenever there is a process waiting at each of the two gates p•nter and 

q•nter. these two processes are deadlocked. Each prevents the other from proceeding and 

the.reby enabling the condition that it itself is awaiting. This means that the original 

problem specification is in error, in that the constraint it expresses prevents either activation 

in the given situation from ever proceeding. 

In the general case, a necessary but not sufficient condition for a collection of processes 

to deadlock over access to a shared data object is for each of these processes to be waiting at 

an enter gate for a condition to be satisfied. Whether or not this situation is a potential 

deadlock depends on whether the conditions on which the processes are wa.iting .can be 

enabled by subsequent events associated with the shared object caused by other active 

processes. The idea behind the deadlock analysis technique to be described here is to 

characterize the synchronization state of the object at a potential deadlock. point. a point at 

which processes are waiting at enter gates. This characterization then contains sufficient 

information for determining whether the entry conditions can be enabled by other active 

processes, or whether the waiting processes themselves prevent the conditions from ever 

becoming satisfied, in which case the.situation represents a deadlock.. 
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·Each potential deadlock situatioo is distinguisbed by the_ subset ot enter gates in the 

system at ·which one or mare ·proces5es are waiting. The .terminology usaf here is that an 

operation is blod.td if there are processes waitirig at the associated· ~nter gate to e~ecute it. 

If there are n operations defined on an abstract data type, 'then there are (2" - I) potential 

deadlock situations, since any subset of the 0perationi may be bsOCked: except the empty 

subset. An empty set of blocked operatioils could mi of° course, represent a deadk>ck 

situation. 

A complication arises from the use of qualified gates in solution specifications. When 

there are two or more enter gatel for a parti_cu_lar OJ!eration, with a different qualifying 
, ·, 

predicate on each, the easiest point of view to take is tt@t_t,bey beh-,y~ li~e_,ates C()fltrolling 

completely different operations. In the context of deadlock analysis, it is simplest to consider 

two qualificatioos of ·an operation p. [p(vi I Qi(v)l and rP<vrl ~~11. ~s If ·they were 

separate operations p1 and f>2. since each distinct ·qualifieatloll of p can independently be 

blocked, just as different operations can. The catch is that the qtlali(ying predicates <Q. and 

~may not be independent, and if, for example, Qi:> ~-then ~henever fP<v> l<Q(v)] is 

blocked, [p(v) I ~(v)l must be as wen. In general, however, it is not always possible to 

determine when one qualified ~class is a subset of a,nother. Always treating different 

qualifications of an operatioo as separate operations ii a conservative approach which is 

guaranteed not to overlook any potential case Of ;deadlOck. Throughout this chapter, 

th~refore, when reference is made to a data abstraction 'having- n 0ptrati0ns, the reader 

should understand that the intention is for different quaflfiations of an actual operation to 

be treated as separate operations. 
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It is straightforward to characterize a situation in which an operation is blocked. If 

C(p) is the condition for gate p•nt•r, then the condition of operation p being blocked is 

expressed by the formula B(p): 

(-. C(p)) I\ count(p'equest) > count(p•nter) I\ count(p•nter) • count(p•xit). 

That is, when p is blocked, there are no active executions of p, but one or more activations 

have been requested and are waiting because the entry condition C(p) is not satisfied. 

Assume that the potential deadlock situations are numbered I, 2, ... , (2n - I), and let W i 

be the set of blocked operations in situation i. Formula Ui will denote the characterization 

of the synchronization state of an object in situation i, by expressing the fact that all 

operations in W i are blocked. 

ui - "(B(p) 1 p e w1). 

If Ui is equivalent to FALSE, then there is a contradiction in the information in the 

formula. This means that the potential deadlock situation is impossible, and that a 

condition on which an activation of one of the blocked operations is waiting must be 

satisfied. If U i is not equivalent to F Al.SE, then it represents a characterization of the 

circumstances under which the situation can occur. 

For a potential deadlock situation that is possible, the formula Ui can be used to 

determine whether or not the situation in fact represents an actual deadlock. This 

determinatjon can be made by checking whether any of the conditions on which blocked 

operations are waiting involve operations that are not blocked in the given situation. If 

not, then the conditions can never become satisfied, and the situation in fact does represent 

a deadlock. If one or more conditions involve non-blocked operations, however, then there 
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is not a dead Ioele., since a subsequent event tnvo1vlng one ef these Operations can •unblock• 

the situation and enable Otte of the waiting processes. At thei wry wetst, such an event may -

change the situation to a different potential deadlock situation{to be analyzed> separately. 

Therefore. it is suffk:tent to ·rind a ~ingle non-blacked operatiDft· that 'is :uwetved in the 

waiting cOnditians tG disproYe deadkd·for a given sitUatlOn; 

As an example of deadlock analysis, consider the solution specification for a writers' 

there are three potentiaf deadlock situatiOrts--prci!IMi·-'W.illhf only at the md-'er gate, 

only at the write'9"'.,. ga~. and at borlt gateS. In the-'first·situartoft, W(I) • { ttad, J. The 

description of this situation u1 is given by the "blockecr conditiOlt Ott the' ·read" operatieh, 

B(read): 

(count(writer._eqwst) - ceunt(wfit~ v f!OHt(Wrlte~ .r colltU(write9•~). I\ 

count(read'..,..') > count(rea~' I\ count(m~ • coattt(read .. a). 

The condition on which "read· activations are waiting involves events associated with 
~ .,_ ~ 

the non-blocked operation ·write•. This is not an actual dead~k situation, since the "read· 
··-

activations themselves are not causing the blocking. This- does not necessarily mean ~hat 

the processes"block.ed at the read•nw gate·wift eventtmfr-preded:· -~1nli!l'tt'Xitt histories 

in which these processes are blocked forever, i.e. they may face the' possi&Hity 'of statvat-ion 

(see the next section): What the analySis here shows;i's'lhat circumstances exist,1 involving 

possible futurt events a5Sociated with operatiOn "wrtte• •. that make ,tlftblocking of these 

processes possible. Thetr being blocked need not be- a -permanent condition for all possible 

histories. ·' < •-. 
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The second situation· is w_hen only ·write~ is olotked, t.e. W(2) - { write }. The 

description here is ~ .• B(write): 

which can be simplifiecho 

count(write'equeS'> > count(write9"'-> I\ count(write9"'->. eouat(write .. it). 

Since the blocking condition involves the 11M+bkikecl .,.._, ·read·. this is also not an 

actual deadlock. 

The third potential deadlock situation for the abstract object involves waiting readers 

and writers, so that W(3) • { read, write }. This situation is characteriUd by U3 • (B(write) 

I\ B(read)): 

(count(readent ... ) iiie. count(read .. -, v coaat(write9"'-> .- couat(write .. it)) I\ 

•• ' 1 ~ • 

count(wri~ > count(write.., I\ couat(write9"'-) • couat(write .. it) I\ 

(couat(write,..,.st) r# count(write.-, v count(write9"'-) 111 couat(write•11~) I\ 

Here there is a contradiction, between the farll·difjURGtiYe dameat,the one hand, and the 

situation to be impossible. Sintit this ditpoles 6f'1ail,t--potmtia1. fJeadtack: situations. 

deadlock is proved to be impossible for this abstraction. 
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Once again. there are two operations, and therefore three~ ci~lock situations for 

this abstraction. The Jiril i.t' wherH,nly operation ~~:tsrbladted; *>that W(it-·• { rem }. 

This is described.bp,-cMfomm•-Ur•'IWmnf. · · ·· · · · · , .. · '·' 

(count(dep•xit) :S count(rem"'.,) v count(rem"'-1 .-~it» 4\ 

t( requeSt) -~------\. ~------) t( exit) coun rem >:'~tn\'AIW'::-'-"., ./\. 11NU•a..-• ~·>· • coun rem , 

which red~.Jlighdy to: f_' -

Since the formula is not equivalent to FALSE, the situation ls possible. However, the 
- .. _:; ::~i.;.'."- ~ -· ~{· ,_...., .• -,; ~ 

condition on which "rem" activations are waiting, namely 

involves operation "dep" that is not blocked in the situation. This means that the condition 
" •,• "> ·~ ,_,' .;:~:·:: . ..: s..,'' - T~~it;.s ... ~,J;.:..-1• ... ' .~~ .: ... ,-,~·r.. ·'.-.,.: :~~.:.;.~ .. ~- _, .' 

need not be prevented from ever being satWied, and so this does llOt represent an actual 
~ - .... -_,' - -.:•,:· ·:---=::~f ~·~-,..._.,_,~~-·- c 

deadlock. 

cbaracterizatioll of thil aituatimois 14ven~.f Vt• 1B(Gep)E•, '''.' · · ,, ' 

; .. 1~t{r~,.tt) S ~,,Jll-:,v .. GJlant(dep.., ~~ep!llit)) /\-

. COJUtt(ch!p'~}*~:A·_....,,g'J • ....,•¥), ·· > 

which simplifies to: 
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count(rem••it) S count(dep•nter) - N I\ 

count(deprequest) > count(dep•nt•') I\ count(dep•nt•r) - count(dep••it). 

This formula also is satisfiable, but once again, the waiting condition. involves a 

non-blocked operation, in this case ·rem·. This means that the potential for deadlock is 

averted. 

ahe third inactive situation involves both· •dep· and ·rem• being blocked. · W 3 • { 

dep, rem }, and u3 = (B(rem) I\ B(dep)): 

(count(dep••it) S count(rement91 v count(rem•nter) 1' count(rem••it)) I\ 

count(rem'equest) > count(rem•"'-) I\ count(rem•nt•') • count(rem••it) I\ 

(count(rem••it) S count(dep•nt9') - N v count(dep•"19') ~ count(dep••it)) I\ 

count(dep'equeSt) > count(depent9') I\ count(dep•nt9') • count(dep••it). 

For any value of N > I, this formula reduces to F Al.SE, since it implies that 

count(dep9
"
19') = count(dep••it) S count(rement9') • 

count(rem••il) S count(depent-1 - N. 

Therefore, the situation is impossible. In conjunction with the previoos analysis of the 

other two situations, this means that no deadlock. is possible for the "'buffer• type. 

7 .3 Starvation detection 

A related problem to deadlock is the notion of starvation. Starvatioo means that while 

a process that is waiting to access an object is not necessarily blocked permanently, a pattern 

of accesses exists that prevents the process indefinitely from proceedin-g. The opposite of 

starvation is fairness, which indicates that every process is guaranteed eventually to have its 
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request for ac(:ess fulfilled. A method analogous to that used for deadlocks can indicate a 

large class of possible starvation situations, specifically those that are independent of 

parameter values. 

Unfortunately, not all starvation possibilities can be easily detected. For example, the 

disk head scheduler example of Example 14 in Section 2.7 is starvation-free, but the 

simplified version analyzed in Section 6.5 is not. The fairness of the former specification 

depends upon (I) the range of track numbers being bounded, and (2) the set of track 

nurnbers being well-ordered. The proof that these are sufficient conditions for fairness 

involves non-trivial properties of well-ordered sets. In general, properties related to 

activation parameters, specifically to predicates qualifying gates in the solution specification, 

involve analysis that is too complex for the relatively simple starvation detection method 

outlined here. Such properties do not cause similar problems for deadlock analysis, since 

there the issue is simply whether an1 activations of an operation can proceed under an1 

circumstances. Starvation analysis must determine whether an arbitrary activation 

eventually can proceed under all circumstances. This means that interactions among 

different activations of an operation become more important. For those starvation 

possibilities that can be detected by the method to be presented, the same approach to 

qualified gates is taken as for deadlocks. Different qualifications of an operation are treated 

as distinct operations, and each is analyzed independently for starvation. 
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The motivation for the staryation analysis presented below is as follows: For a process 

to starve, it must be kept waiting jndefinitely at the enter gate for some operation. Since 

the synchronization mechanism itself is fair in scheduling activations whose entry conditions 

are satisfied, this can only happen if the condition on which the process is waiUng is never 

allowed to be ~atisfied, due to the presence of other operation activations. (As before, all 

operation activations are assumed to terminate.) Therefore, it must be possible for processes 

executing other operations of the data abstraction to ovtrtalu the waiting process. 

"Overtaking" refers to the fact that even though the given process is waiting at an enter 

gate, processes making other activations whose request events occur later proceed through 

their respective enter gates ahead of it. 

If operation q cannot overtake operation p, then whenever an activation of p is 

blocked, eventually all activations of q that were requested prior to the request for p must be 

completed. Under circumstances in which the activation of p starves, therefore, no 

subsequent activation of q can proceed either. Thus the first step in the starvation analysis 

for a particular operation is to determine which other operations of the abstract data type 

can and cannot overtake it. The characterization of a starvation situation then states that 

the given operation is blocked, and that no ·non-overtaking• operations are currently active. 

This characterization reduces to F Al.SE if there is a contradiction in the situation, meaning 

that starvation is impossible. 
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Forma11y, the method.of analysis for each opeiation pis the foliowi~g: As before. B(p) 

, ': 

denotes that p is blocked: 

'<..., C(p)) I\ .count(p'..,..~ > count{p~: I\ cou~t(~~...-) • cou~t(p••it).' 

For all q - p. construct the formula i(q:p) given by·.··· ' 

s<p> · " 'e<q> " <c8unt(~·r; ~·~,tel~>. · 
·-~. ·:-·:·-~ .-.... ~; ):-: .. ~ 

This formula indicates under what circumstances a proceu executing operation q can 

ov~rtake the process blocked, at gate p.ftt.., i.e. when there ~re .ed activations of q and 

the entry condition for ·q is satisfied. lt T(q~: p) is 'at~ than false. ·then u is (>ossible for an 
• ,,_ : ; -.~ - _;>)- ! -, . ~ - . : '. . .. ~ !j" ; 

activation of q to overtake the waiting activation of p. Therefore nothing can be assumed 
.. 

about operation q in a starvation situation for p. If T(q, p) reduces to FALSE. however, 

then this .ov,ertakiRg. c.aRRQt 4"Ur, and a pr«ea,;wa&Ufll-•l .. ~~ wtll ca.use a. process 

subsequently arriving at qenter to be l>~_~J¥.L; 1~,..,.J:~~ne>:·~tiv.atiom of q 

f~. each q for. which T(4\. p) is F AU~ · T~ ~ 

. S(g) • /\ (count(q•nter) - couat(q .. ~) lJ{q,p);•.F~~:f) I\ .B(p). 

If S(p) is FALSE, then starvation of processes attempting to ex~ ,P. is .• ~le. ill. t~ 

the hypothesized starvation situa1ion for p contains a contradiction. Otherwise. S(p) 

characterizes a possible starvation situation. 
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Again, consider the·writers~ priority database as an example. The condition for gate 

write•nter is 

(count(read•nter) = count(read••it) I\ count(write•nt•r) • count(writeexit)), 

so the blocked condition for operation ·write• is B(write): 

(count(read•nter) ;ie count(read•xit) v count(write•nter) ,,. count(write•xit)) I\ 

count(write'equest) > count(write•nter) ./\ count(writeen19F) • count(write••i'). 

The condition C(read) is given by 

count(write'equest) .. count(write•"'•') I\ count(writeen19F) - count(writeexit). 

This makes the overtaking condition T(read, write): 

(count(read•"'•') ,,. count(readexit) v count(write9
"
19F) ,,. count(write••it)) I\ 

count(write'equest) > count(write•nt•) I\ count(writeen'eF) • count(write••it) I\ 

count(write'eques1) - count(writeen19F) " count(writeent•') • count(write••it) 1\ 

count(read'equea1) > count(readenter). 

Since the second and fourth clauses contradict each other, the formula reduces to FALSE. 

This means that the clause 

count(read9
"
19F) • count(read••it) 

is conjoined to B(write) to form S(write), the starvation condition for operation ·write•: 

(count(read•"'•') ,,. count(read••it) v count(writeenter)' ,,. count(write••it)) I\ 

count(write'..,.81) > count(write•"'-> I\ count(writeen1eF) • count(write••it) I\ 

count(readenteF) • count(read••it). 

This formula in turn is FALSE, since the last two conjuncts together contradict the first 

disjunctive clause. Starvation of writers is therefore impossible. 
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· If a similar analysis is performed for the "rmt• .,.Horr~ •md).is tonltracted as: 

(count(write'equest) 111 count(write.m.) v count(write..-, 111 count(write••it)) cl!\· 

• 

The condition of "write" overtaking "read".·T(write, md7/is:then·formed: 

(count( write~·- C8Unt(writ,-, · V coant(~Jll! count(w~» A 

count(read~f> co~nt(rmP"'•) A t:otln'ttfta~;.; eount(FM~) A 

count(write9"*> > count(*t~; · 

This formula is not identically FALSE, hoWe\ter;· ·iO 'that• uperatiGn "wnte" can indeed 

overtake "read". This means that the itarvation•.rconattiian &(lad) Is simply ..-1. to the 

blocked conditian B(read): · Sinee S(i'fttl)'iS'not F'AUi ~ of' m~· is. indeed a 

possibility, as expected. and can take pa under the ca~ given bt-

That is, as Jong as there are activations of "write" that are either ........... and'pending •. or 

active, then requested activations of' •reac1• may sea"e. , r 

.··; 



8.1 Summary of the thesis 

This thesis has,explQred one_~j>p~h_tp.,~ pi:oble,n."~~.J.ypcbroni~liQn 

properties and smt.he~izing source la_ng~~-~ t& ~t;~.,-T."appf~h'..~n 

has depended on a basic.moflel of"~b~4 ~--~~~~qation. wldcp, W~$ 

described in Chapter; 2. The prjnqpal (eaturt!' qf ~ ~ -.rr;, 
. . 

(I) Every data Qt>,Ft is stl'9Ag)J ~ped~a.Jld a.QI~ of-~~ ob~ must ~ via a 
- . . . ~ . . . . - . 

basi~ operaoon of the type of_ttte_•Ject. , , _ . 

(2) Certain pqints in_ t~me. r,;1.,lecl,. ,._,s .. ,.pe,. J:\~qi~~- in • ~ 

_hi~orx)~olvmg_ ,a~1,~, a Jif~•·~~-.,~j!q.. :In ,~lar~ ~ ;ire -. , 

three t}'pes of events= -~aest "•"~ 4~ p~- making known . . . - . '" : -· . . ' ,, . - __ , 
• 

gaining access; and exit events. which denote relinquilhing access. 

(3) The temporal precedence relatiOn among events associated with a given data 

<~ • • • , ····:-,"'.'"-. '-'. ; "-•• '.'·J~li~~:·,.,!::··~<_ :Jt-",(\. ~-r.:,;;: __ · ·,~ _ _. f.' ~"...\_., 
object is a total ordering relatiOn. 

(-t). The fu~ or synchronizattan ~'.co ~fu kl. certa~ ,_ways . the• ti~ 

ordering retai~ona da1a-ObJett, b;'~rikuaa~ t~,ocai~ ofent~ events 

' . ' . ;" ·' __ ., - - :.' -~ :·,~- ';,,::; _.;.!.,,;,~,;;;;_' -._,~;;~.;"! 5· ~ : '' ' 
within the total ordering. Thu fUnc:tion is orthOgonal to the meaning of the 

'· .... ~_\~_:;;-~ .. < .. -::,:,~.t"·.._.:{:.·~;'"'"' ~ '~ ' 
Operations by which processes acc:ess the object. and therefore can and should 

be impiementecl separately f~ ~-~ 



(5) Individual synchronizatioft:; a'JRIRlfifHSr itkist for each object in the system. 

applies independently to each object of that type. 

Using this model as a basis, a specification language was described in Chapter 2 for 

expm!Mg~nchl'Ofiitatttwt··;pr~···or. :iSSttaef•ti,~'1 A"fkbttt.n· •ifr ae~tseti' for 

dehofmg everils, 'aM' the;"nttix 1:1ymbof' -~·'iftt~' tor'therj~ ·~~ing relati0n. 

Spticlficattdril exptm cUtsrinti & this.~latiin V&' ;ptiditate'tiiulli~:totmll1aS rfil'ot~ing. 

the time ordering between oniversa11j 'q\J&Rfiflecf' eVettl''d~ ·:-rne. quantification 

causes tht> cOn'stramfto apply roa1t'ef~ df a'glm disi it\ I h~. By expfacitly stating 

the arguments to procedure invocations inVUWecfirl'·a'~1~UOri and using predicat~s to 

comtratn 'these arguments; .. Cotfttraint~ th~ ·~~tiOl'a carr ~ maae td ~~iiely apply 

to a ·:sub~lass bf·eveiiis. ''T~'fortnal"semantiis ·bfthtS"~fiC!i~'~hpage consisted of 

d~ntng the va hdity -Of histOrtel with · ·r~ 'to ~' -gi.,!"'1lpkifkit.O.I.· .. A."; number of 

exa~ of the ose'-of'the langtiage't(iexprm syrichnmtzatioir~r.·ts aj>peared at the 

end of Chapter '2. 

To synthesize source language code imp~t!~~.t~~l~,i~i~f~f· ~t \\fa5 found to be 

desirabk! to use an int~rmed~~e form. T~is. for,m. ~~.,_th~, ~~~-;s~fiPC4tion, was 
-"• :, r - •. ·---• • •- • •• - • 

described in Chapter ,3. It is a~ abstr~ct rep~~t~ .. °{:,, t~ .~!~.to _a ~ification that 

is procedural in nature but independent of the part~lar ~c;t l.lsed ,for .i~plenientation . 
.-- ,;,_, .. ~ ;'~<~---~-J-~-;-.' ··;ft~ "': ~-· .. ~ .. :_-.,_q')i!:. ~p:~>-

. . 
A solution specification consists of a collection of pt1s, which are abstract impk!mentations 

• • • ' • ~ • - :' • • .- : , r • < '; ~ • ~ - • • ;, 
~. ' ;; . -· - ,;; . ~ . 

of event classes. Synchronization con~.i~ are ifl)P~~. b,y}i~~~int. ~onditions on 
': ' • '•. ~. ; - < •• - - •• • • ..._ 

the synchronization state to gates for enter event classes. Processes are only allowed to pass 
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through gates when the correspQnding conditions are satisfied. The semantics of a solution 

specification, as of the problem specification, were defined in terms of the validity of 

histories. Translating a solution specification into an implementation using a 

synchronization construct such as a monitor is quite straightforward, as explained in 

Chapter 5. Therefore, the difficulty in synthesis is deriving the solution specification from 

the problem specification. 

This derivation was the subject of Chapter 4. Besides simply identifying which gates 

are needed for a specification, this consists of constructing appropriate conditions on the 

synchronization state to associate with enter gates in order to implement the specified 

constraint. The construction of these conditions is accomplished by an algorithm that can 

be broken into several phases. First, constraints on the arguments to activations are 

incorporated into the rest of the specification by a technique called •qualification·. Once 

this has been done, an possible orderings of relevant events are formed, and each ordering 

is identified as either valid or invalid with respect to the specification. The synchronization 

state at particular events in both valid and invalid orderings is characterized, and these 

characterizations are combined to form a preliminary condition. This condition is tested 

among the valid orderings; it either succeeds in ·satisfying them an and is therefore correct, 

or else it fails in one or more cases, and must be weakened by disjoining to it one or more 

other terms. These weakening terms are derived in much the same way as the preliminary 

condition, except that a smaller class .of orderings is used, and the characterizations involve 

synchronization ~ates saved at previous points in the orderings. 
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ChaPter 6 · p~ted. srierat. examples: ·or···'~ly · adliressed synchronization 

ptoblems. which are specified ·anti' then 1yntMsiUtl Bf' tlfe:ipf>joi:ch aestribed." The~ 

examples· certaihly db llbt· eonstlfute 1f tont~'tt!snt# an 'a~di, t>ut: they do represent ·a · 

.fairly broad range Of di~ ktndS':ar s~i.zalitiit'"~~-~i tcr~· of .. teat interest. 

The topic "of Chapter 7 was~ thiF\'rlalysts'OI' • synChronlution''eonstraint' for possibte 

deadlock and starvation. The solution specification is a conventent f6rM on ·'Which ·fo 

perform this analysis. Algorithms were present~ .t~at for any given specificati<>o can 
' ' . : :. . - - • ' - - jJ . - . .; ; . - l - (. ~ ",. ~, .J t. -' ,;;.-_ , ,_ 

disprove the possibility. of certain linds of d~dlock or stanation, or derive the c;onditions 
• - -:-:i:'·~- -~ ~: ~_,· __ ·- -~y -,: ,,..;;.._~ -,~: :·,~.; .- ·-u::;;;; _,-..:-~,- -- -~,-,_ :""";~ --

under which they can. take place. 

There are a number of ways of evaluating the spec~~~ca~~ .. laf!~age de~ri!'ed in 
•. - ' " • _- ' '. [, ' - . - c' - ._ - • -; ._. ... .. · :-,-_ "'-" ~ • - ' - - ~~-. -

Chapter 2. The example specifications in Section 2.7 attest to. its ~ to express a wide 
, '"" :-'.' -~ ."1 ~·it.: '· ~"~~· , ."-~- ·_··~~-~ :·· ··<'it -.;::-rt:;~··or~ :~i.', - 't' . 

range of synchronization properties. The derivation method d~ in Chapter <f and 
. ' ' . - ' ~ .. "".• ~. - . - . ~ .-:~ ,:_' :'~;-" . ""'. : -

further illustrated by the examples of Chapter 6 demonstrat~ iU suitability as an . input_ 
: ,- •.. :·' , . _:;,J :- .,._ .. ·':;::_-~- ~- ·.·~ .... ,! - _;.~~- '. _, :. - .. 

language for the synthesis algorithm. Two other related criteria are especially important, 
- ··_, .. . .. ,.. . . ,,--:~ . • _: ~·:· -~ . .-, ~,--._ ~_;_ e;-·:;· ~ -· ~-~- - ~-- '!·,. 

though subjective in nature: the constructabilit1 of the language, how ,easy is it to writ.e 
. -, ~ - . . . : - , • - - ~' ~- ~- .... : _, -.· - -· -~-~f:; ,;~:.~ ; ; ~ •· . -

specifications; and its comprd1nsibUtt1. how easy is it to understand specifications. 
,-' . -·,- - .·- : ._- •:. . -· .._ - ·-.··..;,;, '. _-. _,_. ~~-;:;-..-[:~ -; :_.~ ~(''.-:_:. ;' . 

Within. the frame'WOtk or the rnodil' of·synch~izatiob upariAirhich the language is 

basal, the leff'tgUage it-self rs quite -cOrtventent· fbf"Wtlttftg·'sjndirommton -'.Specifications. 

Since all of the standard logical operators of predieate caku1Us can be-1.lsed, and fOrmttlas of 

arbitrary complexity constructed, any constraint on time ordering can be expr.essed. These 
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specifications are relatively easy to write and to understand, since each logical operator has 

a natura I interpretation. The extensibility of the language permits a complex specification 

involving many constraints to be expressed as a conjunction of individual clauses. each one 

specifying a single constraint. This feature, illustrated by the differ~nt versions of the 

readers-writers problem considered in Chapter 6, enhances both constructability and 

comprehensibility. 

· There may exist grounds for criticizing the language based on disagreements with the 

underlying model. For example. consider the choice of which points in time to be 

designated as events. Each of the three event types request. enter. and exit has a uniform 

meaning. and each is necessary for expressing a wide class of synchronization properties. 

Properties concerning exclusion of operations involve enter and exit events, and scheduling 

properties use request and enter events. 

Disagreement may exist, however, over whether these three types constitute a sufficient 

set. In particular, assume that some operation p may be blocked from proceeding, not 

initially before the activation begins. but rather at ~ point in the middle of execution. 

That is, suppose p performs a certain amount .of computation. then must wait for some 

synchronization condition to be satisfied, after which it completes execution with some 

further computation. There is no straightforward mechanism in the model (and therefore 

the language) for denoting this ·intermediate• event Such a situation must be handled by 

splitting operation p into two subsidiary operations pl and p2, which when executed serially 
• 

constitute the whole of operation p. The intermediate point within p is represented by the 

exit event for pl and request event for p2. The condition oo which it may be blocked is an 
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entry conditien for gate p~~. 

While this may not be considered an aesthetically satisfying solution to the proble~. it 
;'.•i' '- ' -, .~:#' --,.,_~'.'>1iJ~~d~l-0.:~·: •.• <J,· 1 .,--:., ., _·- -

can be justified. The event types request, enter, and exit ~ere chosen in part because they 
'.'-it--:-;~ .-_,•' i - . .-·~·- --::_ ~~t.d1 -~r;~.G,<r;:1-.~-~--. '~i;::---c: '." ~";:;,. -'~~-~ 

possess a uniform interpretation independent of the meaninl pf the particular operation. If 
- - - ' ,:. - . ~'":_ -. :_,~~l~~~~~;:,__:-~;_i ~-:'>:'.';;f::···~ • ... _ -! • -

a new event type intermediate were employed, its meaning (the intermediate point at wh~ch 

the operation may pause) necessarily would be operation-dependent. Moreover, a single 

intermediate event type would not be suffktent-·for 1\irielliitf O()Wattons '.that' may be 

blocked at more than cme tntetmediate point. For twe uke Or geMratiiy, th~~ 'it Wt>utd be 

necessa rr to have an oh bounded' number Of 'evenf fypes''intittftMiatj.1,' intennediate-2, .... 

Whatever such an appraach might gatn in ~litf itt' tht tlnguap;w0u1d sUfetf be.· 

lost ln reduced comprehensibility. The solution cW'11erfmithd'M-¥ftttng the operation p 

into component segments pl, p2, etc. seems at least as sattsfadofy., .· ., · · · 

T~~re is anortier important aspect ofrt.e spetifttatm magaage uSed he~: Tttat is the 

abiUty to use synchronizatton specifialtlons,'a1ong with the bodies' Cf the ~ations, to 

prove properties ·or~the data abstractions. One tincfOf prw is Of'tite'{$eril1) eorrectrtess'o(. 

an operation, with the syncftrontzatiOn ,;"Sp«'lf(catior( used tO ~how that an 'possibly 

interfering operation activations are · exdottaf.0

' Warn concumnt . ·executi6n. The 

syn~hronitattm specification a1Io can be ustd to denitinstfatt that dttain type$ ot exeeptlon · 

handling are unn«essaty. An example ·1s the· botiftdtd buff«!f tpeeiflcatiOn analyzed in 

Sectton 6.2, by which it can be showri that an actiVatiOri ~of t11e •re.n• '<JPeration 'never 

operates on an empty buffer. 
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One limitation of the speci(ication language is an inability to refer to the state of the 

abstract data object to which a specification applies.. There are good reasons for restricting 

the language in this way, as explained in Chapter 2. It is also true, at least theoretically, 

that any state information can be expressed -iQ..terms of events in· the history. However, ·- . 

capturing state information via histories can make the specification of certain properties 

rather awkward. For example, the disk head scheduling specification of Example Ii in 

Section 2.7 could be simplified significantly if reference could be made to whether the disk 

head is moving up or down (at the point at which a certain event occurs). This limitation, 

however, does serve the purpose of maintaining a clean separation between the 

synchronization aspect of the data abstraction and the actual operations. 

8.3 The . synthesis method 

The method for synthesizing synchronization code from specifications was presented in 

Chapters 4 and 5. The justification of the algorithm for deriving a solution specification, 

and a discussion of cases for which it fails, is presented at the end of Chapter i. Failures of 

the algorithm really reflect an inability of the re1ati9ely rigid solution specification. to 

capture certain synchronization properties of i~ For example, the algorithm fails on 

the first-come-first-served· specification because this property cannot be implemented using a 

separate queue for each operation of the abstraction. On the whole, though, and 

particularly with the use of qualified gaEeS to capture parameter-related properties, the 

solution specification structure is able to express the solutions to almost all synchronization 

problems that can be specified in the problem specifKation language. 
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The monitor imp~tion of the,sekation-sp«i(KadGR ii Telatively Sti'a-ightforward 

il\;most cases. TM exceptiQn to.-tMUs the hltlldlAlf*~ ptd"using,the types­

coums(TJ and amditionsCTl . <Thi! i•¥..._..atatioft·: of;i>,_..fftetMHd eat« 1-"a in 

pnucular, esp«iaUy ·wbft ·rM ·quatifytllf"'jlfldiQte IJ nor·'•· fenarenaf ·t'elatten; becomes 

quite. complicated. As noted iW·-etapter' r.. 'a' m1ftl·..:....,._t er ~H:anan would h 

"'--. 

Chapter 6 contains a small set of examples in which implementations a.re completely 

synthesized from prOblem specifications. In fact, a clMa.SlnAMy ~fftumber Gf examples 

have been worked out, including all of the specifica~ions present~ as examples in Section 
~ .. ~ ::- ',L:: -' '~ • ' :· _..;-:,._: J • 

2.7, with the exception of those explicitly cited in Chapter i as failures. The method 
.-_ .. :.. U ·~·~ _._ •• __ ,;:t~~---~iE .:·;:'f]·-~~ t1H-~-~j:h>(~ '->,~.~:' -~r~~ .. .:· ;- ,-~---~ -

appears to satisfact0rily synthesize implementations for a wide class of Specifications, except 
:- -- ~-._j, '·s r - ... _: ,i".f"\:. __ -~ -> :~ ~-~ ~~ .. .t1 -~} :-::-;.zi--- - ~ ~;- r_ • -

for those properties for which solution specifacations ~nnot be obtained~ ~s ~ed above . 
. - - ~ ,;.,;•.. - .. :,:<· ... •,.~ -·~-:·.·· ~- ·"~.'~~'f,j1; ~-: J':<~~-;J-_ ~"-'-{ .. 

Two· other meastrres of ttte' synthem Method are· ..... tlftt'tO dtscun he're. ·The fii'St 

of these, the · priKtb1tty'' d · ttu{ tyWtfNsfs algolllftm; lippbn :o'pi!!ft to· question. In the 

derivatiOn of the sOlutlon sp«if"!MIM;: .u-~ pestibti ~ of- the· ·ev8": · 8Cpres5ftms 

coittained 11Ftt\e specificatiW1M.latlW~;'antt~11 li¥eMI IMf haft as·many as 

n! orderings, the Mgoritftm iS m!O!Stllrily ecpenetttial. Jti·• Jmcrotmaf-.-58t1e, the practica1itt 

is weakened by the c~'ofi:~,f'Jf the'-,. or:the ~ltm.'partiCUlarly those 

requiring a logical simplification of formulas. Compensating somewhat is the fact that the 
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formulas involved are of a restricted form. Therefore, a small collection of special-case 

simplifications,. such as those appearing in Figure 4.2, rather than the power of a 

general-purpose logical simplifier, would probably be sufficient for implementing a system 

based on the method proposed here. Also, the apility to analyze each conjunct of the 

specification separately helps reduce the overall complexity. 

Still, improvements in the algorithm are required to make it practical in, say, a 

compiler. The algorithm as it stands can be used manually by a person to implement a 

synchronization constraint expressed ·in the specification language, or to informally check a 

hand-coded implementation. Further work, as discussed at the end of this chapter, is 

needed to automate the algorithm. 

With respect to the other measure of evaluation, the efficiency of the synthesized 

source code, the method can be judged to be quite respectable. There are certain 

inefficiencies that necessarily result from the use of a relatively fixed structure. Two aspects 

of the fixed structure here are particularly restrictive. One is the use of separate condition 

variables for different enter gates, which prevents the queuing of processes waiting to 

execute different operations on a common queue. The other is the derivation of a single 

entry condition applicable both initially when a process first attempts an access and 

subsequently when testing whether to allow the deferred access. 
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As a result, the synthesized monitor for the "alternating priority database" example of 

Section 6.1 is awkward compared to the rather elegant monitor coded by hand to solve the 

same problem in [Hoa7i]. Much of this awkwardness, however, is due to the simple-minded 

implementation of testing for possible signalling all condition variables at the end of each 

monitor procedure. As indicated in Chapter 5, optimtzation of the signalling statements by 

eliminating provably unsatisfiable options is often possible. 

On the whole, synthesized implementations approach hand-coded ones in terms of 

efficiency for a large class of problems. The fact that all synchronization code manipulates 

only integer-valued quantities, and that entry conditions always consist of linear equalities or 

inequalities of such quantities, keeps the implementations efficient. The efficiency can be 

enhanced if other obvious optimizations are applied to the results of the straightforward 

synthesis, such as using a single variable for a quantity of the form 

count(ecl) - count(ec2), 

rather than two separate variables for the two different counts. 

Where the efficiency of the synthesized code becomes unacceptable is in cases 

involving parameterized gates, such as the disk head scheduler of Section 6.5. In order to 

accommodate the structure of the solution specification, the parameterized types counts[T] 

and conditions[T] must be employed to implement what amount to entire arrays of counts 

and conditions. Here, the fixed structure of the synthesized implementations becomes a real 

barrier to an efficient implementation, since "good" implementations of such properties make 

use of special mechanisms such as priority queues. With the exception of parameter-related 

properties, though, the performance penalties paid for most specifications seem to be within 
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the limits of what can be reason"'bly expected from an automatic synthesis system. 

8.4 Comparison with path expressions 

As noted in the introductory chapter, the work on path expressions ([Cam74], [Hab75], 

[Flo76]) most nearly matches this thesis in terms of overall goals. In evaluating the thesis, 

then, it is instructive to compare it with the path expression work to see to what extent each 

meets these shared goals. In ter~s of this comparison, the path expression language is 

restricted to its original description in [Cam74l Later versions have added successively 

more features to the language, with questionable results. The original language simply 

contains the basic features that make path expressions analogous to regular expressions. 

namely the s~quencing operator • ; •• the alternation operator • , •• and the repetition 

operators "{ ... r and •path. ... end·. The analogy with regular expressions embodies the 

basic philosophy underlying path expressions. 

The approach both of this thesis and of path expressions is to constrain the ordering 

relation on accesses to some shared abstract data objeCt. Access of the abstract object is 

limited to a collection of basic operations associated '!'ith the type of the object, and so each 

language specifies a sub5et of possible object histories involving these operations to be 

valid. For path expressions, activations of the operations are treated as units, while this 

thesis has denoted three particular points in time associated with each activation as events, 

and dealt with these events rather than the activation itself. 



sequence of accesses represented by the overall hist~y. The ,specification_s of this thesis.._~ 
:-:-~:<;ili:~.~.-!<~~.:-;~·1~;;!:- .,._·~~;,:; . ..... ~-~,,.J.-.f< -c-- 5ll}>-~·· '·-- c:- • .' ,,·-

the other hand, represent local constraints for individual operation aaivations; because the 

activations invew«t · in · *':\petlficMloft ·•re'•Mlfftfliitfie ~iilb '•flt>ty 'individually to 

each acttvation in the· hktc>ry; My:itmlWan :w niaf~?tiorisltadftts:are ~~ stnipter, 

bolh to construtt-aooto<omprehttffl, and·lhaf·peeple mull~ g'k>bal .. C01'1'itmnts into 

The path expression language uses as basic netiom the concepts of mutual exclusion, 
· :I·- · ?·!_~ 5 - :~_-.·:~ ~::-~ d~-\•t '""''~~-~·ii · .~ ~ -

sequencing, and concurrent repetition. These are at a· higher level than the more primitive 
: ~·A • - .... ~·-~·, •"./ ' < :.·,~ ;,;• ',,- • "' • .,.., •• , • •• • 

temporal ordering relation =>. Use of -such higher-le.~el ~cept_S facilitates the expression 
_, ·""':- ;; '> :} -'.~ i.'I 1)1 < }'"'··1~' . _. " }. 

of .properties that are based , closely· on them. For. example, the. rac:lers:~ritqs p~rt~~ 
• , : ,<j • . ., . .• . ·.• . 

appearing as Example 3 in Section 2. 7 in the form 
.. _,,- :- ." 

i ·-

((write.enter => write-••) ::> (wme.••it => write..._)) " 
. I . J I j · 

(~iter~ llliil>'~~'V ·~--~tti~· 

can b~ specified by tft'e pattt expressiOA 

f>atA { reacft; write l'IRf. 

The.gain in tomprettensibilit:y' ahtl mnstrudabiltfis ~\tiOUs. · 

• 
However, the same result can be achieved by using some sort of macro facility with the 

• -'; .... ~ '.· :-;-~~; 0: -_ - ·~~}q ~- ~ _,,,r-- .. <1 .,..}~--; .·.- ·-~-:i · .~.-~~ · 

language of this thesis. For example, MUTEX(p, q) could be employed as a shorthand 
: - 1:.- -_,.--- ... :~ t: --- :--:_1 -:·, ---:-)'- __ ·: -- .... ~' ~~.::~~-.'.' : -· 

abbreviation for the mutual exclusion specification of Example 2 in Section 2.7: 

(pi•xit ::::> qj•ntw) V (qjexit => Ptlt•), 

and the readers-writers property then couid be expressed as 
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MUTEX(wr_-ite, read) I\ MUTEX(write, write). 

Such a macro facility would also be useful in identifying specifications for which 

implementations have already been derived in the past, thus eliminating replication of 

previous effort. 

The use of higher-level concepts as basic to the path expression language has the 

disadvantage that properties not closely related to these basic ones can be rather difficult to 

specify. For example, consider the writers' priority database example analyzed in Section 

6.3. There the property was specified by adding to the readers-writers specification above 

the following conjunct, giving priority to operation ·write• over ·read·: 

(write·'equeSt ~ read-•nt91 ::> (write-•nt•r ~ read-ent91 
I J I J . 

The"path expression specification for the same example appears in [Cam74] as: 

pat Ii readattempt md 

patli requestread, { requestwrite} md 

patli { openread; read }. write md 

where 

readattempt • btgin requestread md 

requestread • btgin openread md 

requestwrite "" btgin write md 

READ "" btgin readattempt; read md 

WRITE-= btgin requestwrite md 

There is quite a lot of extra effort involved in adding the single property of priority to the 

readers-writers specification, and in terms of comprehensibility it leaves much to be desired. 

Even more discouraging is the fact that giving priority to ·read· over ·write• is done in a 

slightly different manner. Little wonder, then, that in the next version of path expressions, 

appearing in [Hab75l priority becomes another pre-defined operator in the specification 
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lan.guage. 

The languages of both this thesis and path expressions claim the virtue of 

' .' f.. ,-: .. 7 .::;_ •. ~ . 1.-.. ;_ ' c - ~· - < '---' ~ "··-. !~ c 

extensibility, meaning that further constraints simply can be added onto previous. ones 

without changing the existing specification. As the above example illustrat~s. this is not 

quite true of path e"pr~ yn~ the ac;kl~of.tf!\;~rs~~J~f~rt,y r~res a 

change in the ex~siOR .w; .. tile ~pers-wr~r~ p~y ;~ ,~,Jfl th~ Jtl~i\. new 

constraints can always ~~ioed,lO exislM\g-One$. 

The writers' prio~·ity database examplef.a1si>· illust.:at~s . ·the fact fhat with path 

• n• ~ "-" _;, • >~ •".• .p,•·: ... -;, -~ ~; ">/{·_.·_. ,.,_.,.q._,_ ~: ·.~ 

expressions new operations sometimes must be invented for the specification of desired 
_ _ :. .-· • -'.:-_ __.~ f ·--~ ..... " "~~·~r·1" .. ~~:l··,~--· _ 

properties. In this thesis, this is also true, but here«it ·is Jimit~ tcr the. 'single category of 

} ---- :-:-]:~. ';[~.:..,.;-::_<; _ _,.-..._,._i _{_,·_. -~ ·- ~ 

breaking an operation into serial'sections of code in between which the process executing 

the operation may be blocked, as explained i~;~i@l,f~c;~~th ,,,.~'._expr.qsioniS, blocking 

within operations must be handled in the sa~;'!'ifit,·th·:fitt.·' FMffit; ·if' mly also be 

necessary to construct a new operation whose only purpose is to call an existi~g 'one, such as 
- £._ ~ ti: - ' ~ , ~ 

•requestwrite" in the example. Other exa(Dl~,-io,.-},~t,.,~[~~·;"'~ 1Q-lab75] contain 

numerous other such •hidden" operations ui!i:J, fft · vatl8tis"''tfil11'- :JW-"general, a dean 

;; ;".' - • .- , )-.;. • ~ ' 4' • ~ - ~ •• • 

separation of synchronization code from the data ·abstraction operations themselves seems 
. ;_,:;r ·< "r '....; -.0:"'9-<~;- ,.._ __.": ~ ~-- ... :.~ ·t~ 
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The final comparison with respect to the specification languages themselves is that 

path expressions contain no facility for expressing properties that involve the paramet~rs of 

operation activations. The only way to handle such properties would appear to be for the 

operation body to call different hidden procedures based on the satisfaction of different 

predicates by the parameters. Path expressions could then express synchronization 

constraints on these hidden procedures. There is no straightforward mechanism, however, 

as there is in the language of the thesis. 

The main thrust of the discussion in this section so far has b~n that the specification 

language of this thesis is superior, particularly in terms of criteria such as constructability 

and comprehensibility, to the path ·expression language. With respect to synthesis, however, 

there is no question that the path expression approach is better. A simple recursive 

algorithm in [Cam74] can automatically implement any constraint specified by path 

expressions in terms of semaphores and integer counters. 

In general, there is a tradeoff between expressive power of a specification language. 

and relative ease of synthesizing implementations from it Because the path expression 

language is designed around a few built-in properties such as mutual exclusion, ·cannecr 

implementations of these properties can simplify the task of synthesis. The greater 

generality of the language of this thesis results in a far more difficult synthesis problem. It 

is interesting that in later versions of the path expression language ([Hab75], [Flo76]), 

additional features are added to increase the expressive· power. These later papers do not 

include automatic implementation algorithms. and the problem of synthesis would appear 

far more difficult for these more complicated versions of the language. 
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There a re a number of areas in which the work of this thesis could be extended in the 

future. Generally, the specification l~nguage itself seems souncl as it stands, with the 
- • • ;r - • ~, -· c - -· ; • • .,' ,• • i• ~ • • : • •_: • ~ 

possible exc~ption of the inability to refer to the data state of the resource, which is an issue 
• • • <. ::·-· • - ~ ,...;;'.· • ;.;'¥-'. ·; ~-~~-- :. .: ~ ~-- -- :';~ . - ' . 

that should be investigated. Further work is also needed on using spec~fications in proving 
-· -~!'.._ - - - ,, .'l ·- ~:' :.::. • . '.\-- -· -· .• 

properties of data abstractions. 

As noted in Chapter 5, information about the range of values of certain parameters 
- - ~- J_"'j ~-: "' - ;;:- .--:-_· ·_,.: !_,""':~. --:_-~:._··:~-. 

would be very helpful in constructing implementations of argument-related properties. An 
..• '-i·· -.... · ~---~-~1,.:::-.06 > .. i~..,_-='_""~ ~ ' 

automated system could interactively ask for this information from the user. However, it 
. ·:·~- ~ ::_,::_, _; ~J '::: '.f. ~ .·~- . 

could also be supplied as pa~t of the original specificat~. if the specification language were 
-· · . . - -- .... _._ · ·. · · _ ~~r:~.~ .. -is ~:- " · · i-i: ~·:d1 ~- t · .: .. :c.; ~- · . ·, ~ · · -

extended to handle it. 

The synthesis method descr.ib«f here' can. onlf bt-~ '*5 ;,a : starting ·pornt for 

pursuing this general approach. Th~, syn~hesi~ ~~.c>~!t~!!l is _very com_p~i~t~, and while 
- . .-~; ~ ·.:!, ~- -.,••"-i - ·.'-,':,<.~.;;;.;; .... --~-4,_;;_~:~..J-1''':;. .. ' '."I_·.•">'"':··,·-:·,• 

t~~s is dictat~ to so.me e~~ent by.the g~~lity ~tt~.Jrc~:~~~~~~~~~g~;.;~e COlllplexit,Y 

almost cer~inly could be reduced, perhaps dramatically, by looking at alternative strategies. 
· ~ - . _.. • " · ,.,· . ~~-;; ~ ,-.;_. :;~~.~-:.· o,;t.;: /'.~ ·-.~~~,--• .- ·:;:-,,·· ' ~·· _ .'.- ' 

One area that could particufarly benefit from a different· ipproach · is flle use of 

quali.fiecI gateSl~r .irgument-r~lated p~: Ai' ttiliiCa~'~afjj'V~;·trf Section 8.3, th~ 

'implementations resuking from st.ch cases a~ utlacclptaGIY Wtert"iti~l It is unreasonable to 

have to perform a detailed ~rch ifi ·determining tb'i St.te·j•iriiibft to be· updated 6r the 

condition on' which to wait. A changt rn thi baslC'sOrutiOn ~tkm structure would 

probably be necessary to' i\chie\re 'acceptitiiy emtient;'tmpteiitettrattons df argtlrtient-reb.ted 
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properties. Unless some alte~native were found, it might be better to eliminate 

argument-related predicates from the specification language entirely, even at the cost of 

reducing the power of the language. 

The use of information private to each process: as discussed in Section 4.7, represents 

one possible direction for extending the power of the solution specification. Private 

information would permit each process to look back in the history to a point whose state is 

important only to that process. This would increase the range of applicability of the 

derivation algorithm. Of course, adding this feature to the solution specification requires 

modification of the algorithm so that such information can be derived. This issue would 

have to be investigated. 

An alternative to private information would be a more flexible solution specification 

structure. As noted in Section 8.3, the ability to employ different queuing strategies and to 

have different entry conditions for a gate depending upon context would add expressive 

power to the solution specification. Again, the impact on the derivation algorithm would 

have to be considered. 

Another idea that might bear exploring is the use of more powerful data types than 

simple integers in both the solution specification structure and the source code 

implementation. Specifically, sequences of events may be a more natural concept by which 

to translate properties from history-theoretic to state-theoretic terms. One potential difficulty 

is the fact that there is no theory of sequences as rich as number theory, and no good 

analogue for sequences to the < relation on integers, which is so basic to the synthesis 
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~J~~rithm. Al~. the prob~ of source;:~vel optim,J~~ w~h has .been addreued 

priefly in the thesis. WQt.1,ld become .much mQre. ,Je{~S •. 
~ .- ~ ; - ·= . - - .,,_ , - ', 

' -~· .,_ 

A limitation of the work here that has been mentioned earlier is its dependence on a 

situations w~~!~-~~ta ob~~,p>aY be ~str~~U~,l'~~Y.~ ~-;SY~ of g~r~phically 

distant pr~essors, It wouJd be intere,$ting to -~~p)91e, ,~, wJ-aJ ext• this ~t~aljz~-(OQ,ti;°'I 
- ~ .• ·_,_ ,. j,_~,-•. ~-~ --=··,~ -- . 

bias is built into the ufl.d.erlyi~& ~ei and ~ ,wt.~ problems have to be over,come in 
- - ' . - - -- . - - ~ . . ; ~ _, ._ 

devising an jmplementation suitable for distri~ sy~. 
~ ~ - . . --· - ' 

An interesting prOblem grow'illg·'ool ·~ the -~pproach ·here is whether or not 

synchronization constraints for an abstract data type can be derived a~fomatically from the 

implementation of the. type. Obviously, questi~s A,Kh as W~her ~e oper~tion should 
, -- - "' . .. ;. _ .. ,~.,..,, s'",.:''· .- ~~ \-~ "-' ·-- . 

ha\le pri~rity over_ an()th~r can only be ~ec~~ by a per.JC>P •. .sif)Ce there is no inherent 
: - - ~ .. .. .. ~ .,,.. - -" ' - , -." - . ~ .. - - : ; ' • ,, > ' ... .- ; . ' 

r~a_son to ch~se one pr.i.ority sch~ o~er. ~not~~":: J-10•!~"' ,th~ ~t irpple~ting th~ 
~ . • - • ·' f ' • ... • • - • "'. ,,... " ... - • _; .,.._ ...... ( ~ ' - - '-.· .. • ~ 

operations of a type, p0$Sibly aug~n~edby ~ jn\ef'na~ con~istency_ req.,irement for the 
• .,,..~- ' ·'' ·: . .,. ~- . i.-~.J i> :.· ~-.; ...,~-,.-. :1t ·'":~~---· ;~ ·<C:-'~- - .. , - " 

lower-level representation of objects of the type, ·can provide en~g,ll );~fo~riat~o!1. J? 

determine many classes of synchronization constraints. Which operations must be mutually 

ex~lusi~e of each other can often be determined 'by an~iyzing the ri.a'~ipulatioo of shared 

variables used in the implementatioo or the type." A ·num~r or'iechnique5 ·employed in 

optimizing compilers can also be used: Heuristia SUch as d~d code elimination. 'and 

requiring a variable to be initialized bef0re being med . can' reveai ctrtain required 

dependencies in the ordering of operations. SuCtess in investigating this area' could lead to 

the partial elimination of the need for synchroniiation.cOde itself. 
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Of all the areas open for. future work, however, the most obvious is the need to 
• 

implement in an actual system a method such as the one described in this thesis. Many 

ideas look good on paper, only to founder when actually put into practice. A certain 

amount of system design has been done on paper, in order to help determine the feasibility 

of the system. Nothing has been actually run and tested, however, and only an actual 

implementation ultimately can be convincing as to the feasibility of automatic synthesis of 

synchronization code. 
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