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ABSTRACT

A model for the auxiliary: memory function of a
segmented, multi-processor, time-sghared computer
system is set up., A drum system in particular is
discussed, although no loss of generality is implied
by limiting the discussion to drums, Particular attention
is given to the queue of requests walting fer drum
use, It is shown that a shortest access time first
queue discipline is the most efficient, with the
access time being defined as the time required for
the drum to be positioned, and is measured from the
finish of service of the last request to the beginning
of the data transfer for the present request, A
detalled study of the shortest access time queue is
made, giving the minimum access time probability
distridbution, equations for the number in queue,
and equations for the wait in the queue, 8Simulations
were used to verify these equations; the results
are discussed, Finally, a general Markov Model for
Queues is discussed in an Appendix,
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CHAPTER I. INTRODUCTION.

‘ Wwith the advent of more and more complex computing
systems it has become increasingly important to have some
reliable means for evaluating the performance of the system.,

In the Compatible Time-Shared System (CTSS) at Project MAC (2),
M.I.T.,, for example, the scheduling of users is a problem

that is receiving much attention, Patel (14) has considered
first-come-first-served allocation of processor resources

to users, and a multiple-level dynamic priority scheduling
algorithm which closely models the scheduling algorithm used

in CTSS (2), Heller (10), on the other hand, has considered
the more general problem of a multiple-processor time-shared
system. The purpose of the scheduling algorithm is to allocate
the processor resources as efficlently and equitably as
possible, minimizing processor idle time and user walting

time, Various schemes for scheduling have been tested at

MAC but the one described by Patel has proved most satisfactory.
Scherr (17) has made a far-reaching study of CTSS-like systems,
with particular emphasis on thelr Markovian aspects,

Before the user's walting time can be minimized 1t is
necessary to minimize the processor idle time, One of the most
inefficient operations is the swapping of information between
the core memory a2nd the drum or disc files, Oftentimes the
processor must stand idle during a swap, awaiting the arrival
in core of a block of data, One way to ease this diffioulty

is to use
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one or more processors and let several programs occupy core
at once, Then during the time that the swavping for one
program is taking place, the processors can dbe kept busy on
other probrams, In this way overall processor idle time can
be reduced, These ideas of multiprogramming and multiple
processors are not new; it 1is only recently that computer
hardware has become sufficiently sophisticated to handle the
task effectively,

Additional alleviation of the swapping problem can be
effected by making drum and disc file operation as effielent
as possible, In single-program systems efficiency of drum
operation is not a problem since only one program (the program)
can demand use of the drum at a time, Clearly, in a multi-
programmed system several programs can make simultaneous
demands on the drum and disc facilitles, making special
organization a must to minimize the waiting time of a given
program for its request to be serviced, and at the same time
minimizing 1dle time of the entire system, It is clear
that in a poorly organized drum system the inefficiency of
the drum system can seriously impair the operation of the rest
of the computing system because continued operation often
depends on the reading of informsthbn into cores a program
cannot begin to operate a segment until that segment has been
placed in core. For instance, suppose we had at our disposal
the means to reduce the average service time of a drum request

by two or three milliseconds. In the two or three milliseconds
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saved much computation can be performed.

In this paper we consider a model for a drum file
memory system, and in particular a model for the programs
in such a system. The model will describe the manner in
which a program (or more properly, a process) makes requests
for flle memory use. A computer simulation has been written
for the partiocular model described. In Chapter 4 a pertinent
mathematiocal model is given. In Chapter 5 the results obtained
from this model are compared with the results obtained from
the simulation, The interested reader 1s referred to
Scherr (17) and to Appendix 4 for an outline of the complexity
of even the most tractable of models, the Markov Model.



CHAPTER 2, BACKGROUND.

It is the purpose of this section to discuss some
of the concepts upon which this paper is based, One of the
problems of existing time-shared systems is that the oprocessor
must stend idle while the present and next user's programs
are being swapped in or out of core, One proposed solution
to the problem is to run one user's program in core, meanwhile
swapping the next user into a remaining part of core, Then
the processor would be switched to the next user, and the
swapping operation would begin anew. Of course each user
would not be arbitrarily assigned half of core, but programs
would be matched in some cpmplementary manner long ones with
short ones, This mode of overlapped operation in a time-shared
system is sometimes referred to as a ring (cf. Scherr (17)).
Again, idle processor problems arise 1f one program should
require all available core space, Then no simultaneous
swapping could take place,

A generalization of the above solution to the problem
has been considered at length by J.B, Dennis and E Van Horn (3,6).
It is known as segmentatlion. Under this scheme a user's
program would be divided into a set of individually named
parts, called segments, The user is assumed to have segmented

his program in the way which seems most appropriate to him.
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Segments may be classified roughly according to the
manner in which they may be accessed:

(1) Read-Only,

(2) Data,

(3) Pure procedure,

Some oombinations of these classes are permitted,

A pure procedure segment is a set of instructions
which directs a process* to operate on data but not on itself,
Thus we could ask the oompiler to extract all the symbols,
variables and so forth, from a program and group them into
one segmentj procedure segments would then be allowed to
modify and use this data., ‘Of course certain programs, notably
short ones, would be contained entirely in one segment, ‘

Read-Only data might be input data, format specifications,

‘and 80 forth, which are not altered by the processes in a

user's computation. Opsration of a vrogram might be in the
following manner, Some first segment would be brought into
core, together with all necessary date segménts, which may or
may not include read-only data, Then segments may act

singly or in groups (i1f several processors are available)

on the data, New segments are brought in as needed (when

a reference is made to a segment not already in core). The
programmer may wish to declare subroutine segments,

which might contain some of

*
A process is carried out by a processor under the direction
of instructions in procedure segments, (3,4.7).
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his often-used subroutines, and which for efficiency' sake
should be kept handy in core at all times., Of course certain
subroutines, such as printing or exponentiation subroutines,

might be kept in special common, or library segments, being

available for the common use of all users. In this way each
user would not need to be given his own copy of each and
every library routine., Figure 2.1 suggests the operation

of the system, showing a time sequence of groups of segments
operating on data, The time sequence may not be in the order
in which the segments were written, and the same segment may
appear many times in the sequence. Several processors might
be available to work for one user, so that several segments
might be active at once. Note that we have indicated that
the segments are in general of various lengths. Note too
that read-only data may not need to be present in core (ggig
memorx) but may be referenced from, say, a drum memory
(augziliary memory) as needed,

Clearly, by writing programs in segments, only a few
segments of a given program need be in core at once, the rest
being stored in auxiliary memory, perhaps on a high speed
drum. A segment in core which 1s being used by one or more

processes 1s called a working, or active segment. Segments

kept on the drum are called dormant segments. Many users,

or course, can have segments working simultaneously 1f there
is more than one processor available, When a segment is
working it can have one or more processes taking place in it,

depending again on how many processors are available to work
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symbols, constants,
variables, arrays,
ete,

Note that data segments:
may vary in length at
different times in the
prooess,
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Operation of one user in a segmented system,
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on it, Hence when talking of the computations within a

user's set of segments, we shall spesk of a user's processes

rather than a user's program,

Each segment will be named in some arbitrary manner,
When a process makes reference to a segment (by naming it
and giving the address of some word within it) which is

not in core, that process is temporarily suspended until

the required segment is brought into core, Since many users
may have simultaneous ﬁrooessea it will be necessary to have
some central control over allocation, swapping, and so forth,
The program which does this job is called the Supervisor
program, When a vrocess references a segment other than the
one in which it is taking place, the Supervisor will transfer
control to that segment if it is in core, Otherwlse that
process must halt until the Supervisor has brought in the
needed segment, With many processzes rumning there will be

a great demand for drum usage, We think of a process ocaunging
a rééuest to be made to the drums for information, rather than
the proocess itself meking the request, We can see that
references to other segments are at arbitrary points in time,
and may be to arbitrary segments, which mgy have arbltrary
length.
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If requests should be generated momentarily faster
than they can be serviced, then the walting requests must
be places in a walting line, or gueue, Tre order in which
requests are serviced (i.e., the order in which they leave
the queue) 1s not necessarily the order in which they arrived
at the queue, We can see three distinct parts of the data
transmission function of the computing system: the users'
processes, which generate requests (either to read or to
write on the drum); a gueue into which requests that have
to walt are placed, and which ﬁas a selection rule for next

out, ce2lled the gqueue discipline; and finally the drums,

One final word must be said, concerning the trans-
missidn of data to and from the drums. It seems both desireable
and convenient to have some standard unit of transmission
and allocation, which we call the page. It is always
possible to store pages consecutively on the drum (see Section
3.4). This requires that there exist some mechanism for
deleting unnecessary data from the drums, One possible

mechanism, using a percentage level of drum occupancy, 1is

discussed in Section 3.4, It is necessary for the Supervisor

to maintain some level of drum occupancy, and to have a
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deletion policy in order to keep the drum from overflowing,

We will see under our study of queues in Seotion 3.3
and Chapter 4 that for each request there is a certaln drum
positioning time, or access time, that must pass while the
requested starting page comes opposite the drum's read-write
heads. This access time 1s wasted time, We seek to
minimize 1it,

There are two general methods of handling ocore allocation,
and it 1s not clear which method is more desireable, One
method is called page-turning, the other segment-turning.,
Under both methods, a set of pages will be grouped as a
segment and given a name, Under segment-turning a whole
segment is brought into core and kept there at least until
the variocus processes are finished with it. Under page-turning,
one page of a segment at a time is brought in, and a new
page is brought in only when needed, Undef page=-turning
unneeded pages are deleted singly, while segment-turning
deletes the entire set of pages belonging to a segment 1if
any one of them is deletable, Page-turning seeks to minimize
wasted core space; segment-turning seeks to minimize owerall
processing time per user. Each method has its advantages
and disadvantages, There 1s some evidence that meither 1is
better (¢f Scherr's Thesis, where it i1s shown that the
scheduling and computational time quanta do not significantly
affect gsystem operation (17)). This paper assumes a segment-

turning system,
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In conclusion: when a user's process refers to
another segment that 1s not present in core, it willl ocause
the Supervisor to generate a request to the drums, Ordinsrily
a request will be a read request, but it might also be a write
request 1f the referenced.segment is one in core being declared
in the reference as "dormant™; or it may be a delete request
if the referenced ségment is being declared "dead", The
queue will contain the waiting requests, while the drums will
service them. A proper deletion policy is needed., PFinally
it is clear that the unit of information transmission ought
to be the page, but the core memory allocation question, namely
whether to allocate in pages or in segments, is open for

discussion,
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CHAPTER 3. THE DRUM SYSTEM.
3,1. Introduction.

The system model described here consists of three
elements: the Users' Processes, the Queue, and the Drums.
The Users' Processes element models requests to the Drums
to read, write, or delete. The Processes will make requests
at certain intervals given by some inter-request-time probabillty
distribution; they will request some quantity of data in units
of pages, beginning at a specified location on the drum. Several
drums may be present, so each request will specify which
drum is involved, Delete requests will be sent directly te
the drums, while read and write requests will be entered in
the Queue. The Queue will contain a 1list of which processes
are requesting how much data from (or to) what drum, andthe
starting location of the drum, It will act according to
some queue discipline to declde which request is next to reach
the drum, and will assign the request to a free channel to
the requested drum, When a request is assigned to a channel it
is deleted from the Queue, When a drum is notified by the
Queue that s request is assigned to a channel it takes note
of what program has been assigned to the channel, what the
desired starting location and field are, and whether the
request 1s a read or a write. A certain amount of time
must elapse before the desired location has revolved into

position; this time is the acecess time, Once the deslred
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starting position has come opposite the drum heads the data
transfer begins, and ends after a certain amount of time,
the transfer time, has elapsed, The sum of the access time
and the transfer time is called the service time. The

channel idle time 1is the time during which the channel has

no reguest assigned to it. There may be some question whether
access time should be included in channel idle time. Since
access time directly affects a given request's wait before
the end of its service, we have included it in the service
time, Figure 3.1 shows the system in block diagram form,
as we have just outlined it.

We now gzive a complete description of each element
starting with the most basic, and most probabilistic, the

Users' Processes.

3.2. The Users' Processes Model,

In order for prover control of all computing facilitles
to be maintained, the individual processes in core do not
make requests directly to the queue and drums., As discussged
in Chapter 2, a request originates from the Supervisor, the
program which controls allocation and proper operation of
the system facilities, The Supervisor can prevent interaction

between processes, providing protection against such
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happenings as some process erroneously requesting to write
on top of another's information, The Supervisor will contain
the queue,

In order to »romote efficient operation, program seg-
mentation will be used (3,6). By breaking the program into
segments, efficient use can be made of core memory, since
those segments of a program in which no processes are presently
taking place should be stored on the drum and should not be
"cluttering up®™ core, wWhen a process references a segment
not in core, the Supervisor will request that the next
segment or segments be brought into core. Clearly while the
next segment or segments are being read into core, any waiting
processes are suspended; hence our first assumption:

Assumption 1. Once a process has caused a request for
one or more segments to be read in, it is temporarily
syspended until its new segments are brought in, In
particular a process will be unable to cause further
requests until at least the time when it is resumed.

On the other hand, during the course of computation a
process may generate some output data in core and request
that this data segment be stored on the drum, for example
so that it can reuse the same core space for further data.
Such write requests do not imply that the process must come
to a halt, hence our second assumotion:

Assumption 2, Upon generating a write request a
process may continue, and in particular it may cause
further read or write requests while a write

request is being serviced.
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From the above discussion, we may expect that a read
request is more probable than a write request, and so our
third assumption:

Assumption 3. The probabllity of a process causing
a read request is not the same as that of it causing
a Wwrite request, and in general the probability of

a read is greater than that of a write,

In order to simplify space allocation on the drums,
the surface of the drum will be divided into blocks, or
pages, consisting of some fixed number of words. Thus the
number of words per page is fixed, and

Assumption 4, The unit of information transmission
and storage will be the page,

We have no reason to assume that the number of pages in an
arbitrary segment is fixed; in fact all we can say is that
long segments (those with many pages) will be unlikely as will
extremely short segments (for example one or two pages).,

The number of segments in a block of n pages 1la & random
variable, and in particular the probability of finding

exactly n pages in s segments may be gilven by a discrete

Poisson Distribution:
P(S,n) = ‘n‘ N! e-n/N n=0,1|2,o¢¢ (1)

s! 8=1,2,3,4..
where the mean number of pages per sezment is N.
Consider this problem: if a process should reference
more than one segment not in core, so as in initiate the

read-in of several segments, should the Supervisor ask for
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the several segments in a single request, or should it

make separate requests, one for each segment? We are assuming
that it 1s always possible to store the pages of a given
segment sequentially on the drum, that is that we can always
read or write a segment without interrupting the transmission
between start and finish, How this is done is considered in
some detail in Section 3.4, For three reasons we argue that

in the event of need of several segments contemporaneously

- there should be a separate request made, one for each segment,
First, since consecutive segments may not be all written

at once, but may have been written at widely spaced intervals,
and independently or each other, it is unreasonable to assume-
that segments will always be stored consecutively; although
this could be done by the method of Section 3.4, Second,
there is no assurance that the requested segments will all

be on the same drum, or that the reguest will even be for
consecutive segments, Finally some queue disciplines
discriminate against long requests, servicing those requiring
the shorted service times first (Section 3.3); asking for
several segments in one request could well result in an
inordinately long wailt for service under such a gueue discipline,
We now make our fifth and sixth assumptions.

Assumption 5. Each request will be for one segment,
but at a request time a process may cause several
requests. The probabllity that s segments will be
requested will be exponential, that is

P(s) = ¢~ % 8=1,2,... (2)
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Furthermore at request time there is no reason for
all the requests to be either all read or all write;
they may be mixed, A read request, or course, will
cause suspension of the process.

Assumption 6. The number of pages in the single
segment of each request will have probability of
being n pages

P(n) = ﬁ-gé- e-n/ﬁ =0,1,2,... (3)

where N 1s the mean,
When a segment 1s active, that is, when processes are
referencing it, the probability that the next requests occur
at each successive time instant are independent so that we
expect the arrival times or requests to be Poisson
Distributed. A request 1s unlikely to be made immediately
after resumption of a process from the last request, and 1t
1s unlikely to be made an extremely long time after the
resumption of a process, The probability of exaotly k

requests in a time interval t 1s

k
P(k,t) = -(a—‘f;’-— e 2t t>0 ()
where a is the average number of arrivals per unit time.

We have then

Assumption 7. The inter-request times are taken from
the following distribution®

-at

P(t) = ae t>20  (5)

*See page 60,
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Something must be said about the starting position of
the drum a particular request will seek. We have no information
to allow us to assume anything other than that all drum
positions are equally likely to be requested.

Assumption 8. At a partiocular request time all drum
pogitions are equally likely to be selected; that is,
the density of angular positions requested will be

(o) = & 0<6 <2 (6)

Finally something must be sald about which drum is to
be requested, in the event that there are several drums in
the system, When a process is making requests for several
segments there 1s no reason to assume that all the requested
segments will be on the same drum, Henoe we are willing to
say that each of the D drume is equally likely to be requesteds

Assumption 9. Egoch request is equally ilkely to
be for any of the drums in the system,

Assumptions 3,5,7,8, and 9 are illustrated in Pigures 3.2
to 3.7.

Based on the discussion above, we are in a position to
construct a model for the request activity of a given

rrocess, This model 1s shown in PFigure 8,.+%

*A Note on Notation: A fork is a point at whioh one process
splits into two processes, which follow their owm paths., A
join is just the opposite, where two processes become one; each
time the jJoin is entered the pperations in the box of the
flow ochart are carried out, An arrow doing this
is a termination of a process, A note in brackets gives the
condition permitting a process to emerge from the corres-
ponding box, A function written with an srgument (.) denotes
a probability function for a set of identically distributed
random variableg,
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write requests,
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Figure 3.4, Relative probabilities of number of
pages per segment,
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request times,
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drmpos(,)

0 2n

Pigure 3,6. Relative probability of requested
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rdwr(,) = rd-wr distribution
nps(.; = no, pages requested
drm{.) = requested drum
drmpos{.) = requested drum position
n = no, pages this request
ns = temporary segment count

Figure 3,8, The Prooesses Model,
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The reader may be asking what justification there is
for assuming the particular probability distributions that have
been chosen; in partioular why we have chosen Polsson
distributions as epposed to other distributions, It will be
noted that these cholces are completely arbitrary, and cannot
be properly determined until some statistics are available
about the system we are discussing, It 1s felt that the

assumptions that have been made are reasonable,

3.3. The Queue.
The model of the queue is more straightforward and
deterministic than the model of the processes, When a request
is received from a process it is entered in a 1list within the
Queue Element, Each entry in the list contains fhe following
informationt an identification number of the process requesting,
the number of pages involved in the transmission, the desired
starting location on the drum, the identification number of
the desired drum, and whether the request is a read or a write.
The number of pages is an important plece of information since

it can be used to determine when the transmission is ended.
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A possible structure for the Queue's list, which we
will refer to simply as the gueue, is shown in Figure 3.9.
In this 1ist two pointers are used, one to indicate the lower
1imit of the number in the gueue (the shaded region), the other
to indicate the upper limit. Both pointers are periodically
incremented and are modulo capacity of gueue, The lower pointer
is moved down one position each time a new entry is made, and
the upper pointer is moved down one position each time a
request leaves the queue, If the next out is not the least
recent entry, then all items above are moved down one position
to 111 the gap. The shaded area represents the number in
the queue, frequently referred to as the length of the queue.
‘There is a Boolean signal received from each of the
drums indicating whether or not that drum is busy (all
channels to 1t in use)., Whenever all channels to a drum
are busy, any requests arriving for that drum must walt in
line, end a waiting line, or queue, is formed., If requests
arrive too much faster than they can be serviced, the length
of queue could become equal to its capaclty and any further
requests will be lost. Such a development is dilsastrous,
since it would render a process useless, Hence the average

arrival rate must not exceed the average service rate, where

the rates are defined to be the reciprocals of the

average interarrival and service times, respectively.



least recent
entry ——p

!
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l

latest entry—pm

—
next entry Direction

of push

Figure 3,9. A structure for the queue stack.
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When the Queue is aware that a drum is not busy, it
looks down the 1ist to determine which if any requests want
the free drum. It then chooses one of them according to the
queue discipline, assigns it to some free channel to that
drum, the deletes the entry from the list.

The queue discipline is simply the rule for selection
of next out, We consider four queue disciplines applicable to
our situatilon:

(1) Pirst come, first served.

(2) Shortest access time first.

(3) Shortest Job first,

(4) Mixed policy.

(1) First come first served.

This 18 the "fair" or "equitable" gqueue disclipline,
where requests are serviced in the order of thelr arrival,
and is the case when the "next out® of Figure 3.9 1is the
“latest entry”. It does not result in the most efficient
operation, It is analogous to the normal situation encountered
in a post office, when one wishing to buy a single stamp
must walt behind a person with several packages, Certainly
the waiting time is greatly increased because af 11l fortune,
whereas the person ahead would not be significantly delayed
to give way, Since a process 1s equally likely to ask for
any drum position, and since the present drum position 1is
1ikely to be anything, with the first come first served queue

discipline the average mccess time is half the drum revolution



33

time, Lab us represent the time a request 1s in the servioce
system (the time from when a process makes a request until
the time service 1s completed) by Ts' Let the drum revolution
time be T, Let the average trgnster time be Tt' And let
the average wait in the queue be Hq. Then for first oome first
served,

Tg =Wy + Ty + 1/2 ‘ (1)

52[ Shortest Access Time First,
Under this gqueue discipline the next out is selected
according to fellowing rules

Choose the one for which the rotational positioning
delay until the desired starting address is minimum,

Now if more than one request for a given drum 1s in the queue,
on the average the access time wlll be less than half the
drum revolution time; this is so since with more in the
queue the probability that there is a request for the present
drum position 18 greater than for a2 queue of length one, It
wlll be shown later that the minimum access time 1s roughly
inversely proportional fo the length of the queue. Hence
for this queue discipline

Ts.wqwrt-wr/‘ﬁ (2)
where n 1s the average number in the queue, and Wg 1is
not the same numberically as for the first come first served
queue with the same n., Observe ﬁhat the shortest access time
queue is a dynzmic priority queue, one for which the priorities

of requests are changing randomly,
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(3) Shortest Job First.
Under this queue discipline the foliowing rule is
used to selest the next out:

Select the request for which the service time 1s
a minimum, The service time 1s the sum of the access
time and the transfer time.

A little thought should convince the reader that under this
queue discipline the access time 1z not minimized, but yet
it will in genmeral be less than T/2 for queues of length two
or more, Hence

Tg® Wy # T+ T (3)
where T/n < 7T' < T/2 , and Wq is not the same numerically
as for either a first come first served or shortest access.

queue having the same length n,
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{4) Mixed Policy Queues,
It will be noted that the shortest access time queue

and the shortest job first queue are queues in which a continuous
number of priorities exist, Suppose we become concerned

about requests which might have to wait an inordinately

long time, perhaps because of i1l fate, perhaps because its

Job time 1=z long. This could be a real probleﬁ in the shortest
job first case (what of the longest job of all?)., It ought

not to be too much of a problem in the shortest acoess time oase,
gince each time a request is to leave the queue, it has an

equal chance among all the others of being chosen, This is

only partially trme for the Shortest Job Pirst Case, where

the job time has a random component, the access time; and 1f

the transfer time component be very long, then the job time
depends almost entirely on the transfer time, Notloce that for
very short transfer times, the shortest job queue will approach
in operation the shortest access queue. One way of ciroum-
venting the problem of some request waiting inordinately long

is to introduce a gkip limit into our model, Each time a request
is skipped over as next out, a counter assotiated with that

request 1s incremented, If this gkip count ever exceeds the

skip limit then this request is next. What we have done

in essence 1ls to add a’first come {irst served oomponent to

the queue. As the skip limit is lowered a- shortest access time
or shortest job queue'behaves_moie,anjbmore likefg firest come
rirst served queﬁe. ‘In‘ract a queﬁe iith the skip limit set

to zero is just a first come first served gueue,
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We will include no more disoussion on mixed policy
queues 8ince the problem 1s in general complex and unsolved.
We will, however, mention the skip 1imit once again in Chapter 5
under the discussion of simulation results, PFinally, another
mixed policy queue is discussed in Appendix 3., PFor further
discussions on the matter, the reader is referred to the

literature (1,9,13,15,16).

{5) A Comparison of Queue Disciplines.

In Appendix 1 we have related the mean number in the
servioce system, which includes those being serviced and those
in the line, to the mean and variance of the service time
distribution, We will denote the number in the system by L.
The random variable of the service time, t_, is the access

time, t plus the transfer time, tf. The service distribution

a’
‘can be found from a oonvolution of the access distribution with
the transfer time distribution, We will show later that

both of these can be found, hence the service distribution

‘can be fourd, In particular, the mean service time, Ts, is

T, =T, + T, (4)
And the variance of the service time, o: s is
2 2 2
s =0 + o, (5)
since we are assuming independence of ta and tt. Let us
. denote the function relating L, Ta‘ and 082 by

L= F(Ts,ai ) = P(T,+T,, a:-i' af) (6)
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The function F from equation (6) 18 such that a decrease

2
s

in L., The transfer time distribution will remain the sane

in either or both of Ts- and ¢ will result in a reduction
for all queue disoiplines since it 18 a function of the number
of pages per segment, which is fixed before hand, and is
sssumed to be identical for all proocesses,
Let the total number of processes in all be N. Then
N=wae+lL (7)
where w ig the number of working processes, The efficiency
or a svstem can be measured crudely by the number of processors
working, and 1is
efficiency = % - ‘—‘—§—L =1 - %J-‘ (8)

To maximize the efficliency, L must be minimized, Thus the
optimum queue discipline is the one for which is minimized,
Notice further that the number of processors that can be
kept working is just the number of working processrs:

number of busy processors = w = N{1 = %) (9)
Por the simplest system, the single-processor system, w must
never be less than one if the processor is to be continuously
dbusy.

On the average the transfer time is the same for all
queue disciplines (because it relates directly to the number
of pages in a segment), On the average the acoess time 1s
explicitly minimized #nly by the shortest access time queue,
Therefore the service time for the shortest access queue will,

on the average, be a minimum, compared to other queues,
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We see that the shortest acoess time queue ilnimizes the
service time, while the queue which bears the ®"shortest jod
first® does not minimize theaverage service time, The
apparent oontradiction is resolved when we realize that the
shortest access queue chooses the shortest Job first on the

average, while the "shortest job first" queue selects the

shortest instantaneous Job. Nevertheless equation (6) tells

us that the shortest access queue must have minimal L associated
with it, and is therefore the most effiecient®*, In fact,

any queue which does not minimize the access time must be

less efficient than a shortest access time queue, when
efficiency is defined by equation (8). Chapter 4 is devoted

to a detalled study of this queue,

Based on the above discussion, we give the Model of the

Queue in Figure 3,10,

#This conclusion is verified by simulation. See Chapter 5.
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3.%4. The Drums.

Since the method of distributing pages on the
drum is of considerable importance, we will discuss it first,
Consider Figure 3.11, The drum, we suppose, 1s divided into
seotors as viewed from a oross-geotion, where the number of
sectors 1s an integer. The number of words per page is just the
number of words that can be written asround the circumference
of the drum divided by the number of sectors, The drum is
divided into rings, and the width of one such ring is a field.
A field 1s one word in width, and a word is typlcally 36 binary
bits, Each field is subdivided into a number of tracks, each

of which 1s assoociated with one read-write head., The same -
head is used for reading and for writing: a read amplifier
or write amplifier is connected as needed. The operation a;

head is presently performing is ecalled its status, and there

18 a delay associated with switching between read and write

status. This selection delay is about the same time as for
three or four words to pass beneath the head, so ordinarily
the first few words on a page will be left blank to allow
for this delay,

It was stated previously that it is possible to write
a segment of N pages on the drum contigu-usly., We indicate
how this can be done. The question 1s: suppose some of the
sectors in a fleld are used, how can a string of N pages be

written consecutively, especially if a page would have



n

Shaded squares are a consecutive
string of pages, each with a
pointer to the next,

1“4
/\'\g—- Fields

Figure 3,11, Organization of the drum.
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to be written on a used sector? The answer is that we

do not attempt to write the pages in the same field, We
require only that during a write operation there be at least
one free field per sector, First of all, suppose that each
sector was allowed to have all but C of its fields in use,
where C is the number of channels to the drum, and where

any channel can access any field, Suppose further that
whenever fewer than C fields were free on a given sector a
deletion occurred immediately, Then the drum could handle

C simultaneocus write requests because a free fleld can always
be found. In reality a delste might not ocoour when necessary,
and algo there is the possibllity that a segment 1is longer
than the number of sectors, which implies that more than one
of its pages would be written on the same sector. It would
be better to set a drum occupancy level, which is the ratlo
of allowed fields per sector to the aoctual number of existing
fields per sector:

occupancy level < 2_%_9 (1)

where P 1s the number of fields per sector, C is the number
of channels to the drum, Then whenever the occupancy level
1s exceeded, some sort of emergency condition would be set
up, and any unnecessary segments would be removed from the
drum (they would be deleted, or they might be moved to a
lower level of storsge, for example a disc r;1e). In such
a case the occupancy level would have to be less than the
upper bound set by the equality sign in (1) to allow for
statistical fluotuations, Simulation has shown that
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ocoupancy levels in exoess of 93% are possible with a proper
deletion palicy, for typloal parameters. See Chapter 5.
When a write request comes, the pages are written

on the drum on the first free field on each sector, and a pointer
1s left, to direot a read operation to the next field of a
consecutive string of pages, These pointers are indlcated by
arrows in Pigure 3.11, Thus it 1s possible to have a string
of consecutive pages written (and read) without interruption.
We require rapid inter-field switching, a feature available

on high+ speed drums. It is to be noted that if the drum is
be be operated this way it will have to maintain its own
“Pield Usage Table" similar in principle to the "Track Usage
Table” used in CTSS with the disc(2). When a write request
arrives, this table is consulted to lacate the nearest

free field on the glven sector,
» A8 long as the Supervisor's deleteion policy sees to

it there are always sufficient free fields on each seotor, the
drum operation is straightforward. The delete mechanism shown
in Pigure 3.12 determines how many pages are to be deleted from
the drum; it does thls whenever the desired occupancy level

i1s exceeded, We may model the behavior of a deletionn by
ploking a random drum address and deleting one page from each
gsector until N pages are deléeted, A "deletion" may be to
remove the offending pages to a lower level of storage, or

it may be to obliterate the pages entirely,
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Once a channel is assigned, the drum observes whether
the request is & read or a write, and switohes the heads assbclatﬁd
with that field to that status, as soon as the starting sector
is apposite the heads. Note that the set of heads agsocliated
with a given field may be in use by different requests from
seotor to sector, When the starting page is in positicn, the
data transfer begins, allowing time for the switching delay
at the top of each page, Three or four words left blank on
a page 13 sufficient time for this., At the bottom of each page
is an End of Page mark, with a pointer to to the field containing
the next page, which initiates switching to that field; of
course the heads there are put into the proper status.

Finally, at the end of the last page of thesegment, an'End
of File mark will be encountered, and the chammel is freed

for the next request,

The ideas for the drum model are embodied in Figure 3.13.
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CHAPTER 4, THE SHORTEST ACCESS TIME QUEUE,

4,1, Introduction,

In Section 3.3 it was shown that the shortest access
time queue discipline is the most efficient; it is the purpose
of Sections 4,2 and 4,3 to analyze this queue as best can
be done, The shortest atcess time queue 1s a special form of
the shortest job first queue. Solutions have been obtained
for shortest job first queues with the input rates indevendent
of the queue lensth, No solutions have been obtained for a
shortest job queue in which the input rate is dependent on
the queue length, that 1is, when there is onlv a finite number
of requestors, In the next two sections we do not attempt
to solve for the probability densities of gqueue length,
waiting times, and service times; rather we talk only of the
averages, which become time independent at equllibrium, when
the input rate to the system is the same as the output rate
from the system., In Section 4.2 we derive a probability
density function for the minimum access time as a function
of the mean number in the queue; then in Section 4.3 we combine
these results with the results of Appendix 1 to obtain some
approximate expressions for the mumber in the queue, and for

the walting time in the gueue,
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4.2, The Minimum Access Time Distribution.

The access time is defined as the time from the exit
of a request from the gqueue until the reguested starting
sector has come opvosite the read-write heads, It is simply
a positioning time, - We have shown in Section 3.3.5 that a
queue discipline which minimizes the access time is the most
efficient; we wish to derive the access time distribution
in this section, and in a later section we will determine the
waiting times in queue using the Pollaczek-Khintchine Formula
(Appendix 1). We define the filowing quantities, given
that n are in the queue:

th

Ri = requested starting sector of the drum for the 1

request in the queue,
D(t) = The angular drum position at time t.
A (t) = required access time at time t for the yth
requ?sg given that the present drum position
is D(t).

a = random variable of minimum access time, which
takes on values 8,

T = drum revolution time.

The model of the shortest access time queue discipline showmn
in figure 4.2.1 best 1llustrates what is going on.

The comparators compare the requested starting sector
with the present drum position and give as an output the
required access time, The Min(.) box selects the minimum of
its inputs and sets its output to this value, To simplify
the derivation we will assume that the Min(.) box normalizes

its output with respect to the drum revolution time T, so
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P owparatons
R L——Aﬁﬂ————w
. Ay(t) — -
| Min(,) }——p—a
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Pigure 4,2,1. Operation of shortest access queue,

that a 1s a fraction between 0 and 1, We have

a = § Min [A)(£),8,(¢),... A (t)] (1)
where 0 < a<1l, We are interested in the probabllity
dengity of a &8 a funoction of n, the number in the queue,

It was stated in Section 3,1 that the probability density
of the R, 1s uniform, that is, all drum seotors are equally
likely to be requested., Further we are assuming random
segment lengths, If segment lengths and starting positions
are random, the present drum position, which 1s the drum
position just at the finish of the last request (so that
the next request is about to be assigned), is random, and by
symmetry and the independence of requests, we may assume that

it is uniformly distributed.*

#This is not true in the case of short segments because the
drum will have rotated only a short distance, This matter
1s discussed further in Section 4,2, page 63,
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But Af D(t) and R, for each 1 are uniform, then Ai(t) must

be uniform for each ij that is, the 1°P

request's access time
i1s equally likely to be any fraction of a drum revolution.
Figure 4.2,2 shows the density function for Ai(t), which has

been normalized with respect to the drum revolution time, T,

P, (t/T)
Ay

et

a, 1

Pigure 4,2,2, Access time for ith request,

Now, the probability that a > a_ is juat

o
Pa > a.] = A (t)>a ,...,A (?)>a ] =%
But the R, are independent, so that the Ai(t/T) are also
independent, and
Mla>a] =4 (t)>a ). 2lA (L)) t* = F
But PLAI(t')>a°] 1g just the shaded portion of Figure 4.2.2,
and 1s simply (1 -~ ao). Then

oa > a°] = (1 - ao)n (2)
equivalently Pla < ao] =1 - (1 -‘ao)n
and P (a) = a%; Plagal

Pa(ao) = n(l - ao)n"1 (3)

Equation (3) 1s the probability density of a, given that n
are in the queue, Pigure 4.2,3 shows Pa(ao) for a few values

of n.
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1 -

Figure 4,2,3. Shortest Access Time Distribution.

By the definition of conditional probability:
Pan(2gm) = B, (8 /n)By(n)

where N 1s the random variable of the number in the queue,

which takes on values n, Then
n-1
PaN(ao'n) = n(l - ao) PN(n)
The mean access time, a , 1s

- s 1l n-l1
a = nil Io aon(l - ao) PN(n) dao
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Integration by parts over 8, leads to

©
= L

-y 2
a Py(n) (5)
n=1 n+l °N
The second moment, ;E, is
=2 _ 2 12 n-1
ac = nil é aon(l - ao) PN(n)da°

Integration by parts over a, leads to

- N 2

The variance of the access time distribution is then

2_2Z2_2. % 2
9= e -2 = L rTi(me) Pe()
n=1

-LE Aep ) ()

n=l n+l
Note that we have not specified PN(n), the distribution of
the number in queue, Note too that it is not the same as the
time distribution of n, It is the distribution of number
in queue as seen by the departing requests--we need PN(n)
taken over instants when the next request is extracted from
the queue, which does not happen at uniform intervals., It
18 a reasonable assumption®* that PN(n) 18 a normal distribdution.
This is only an approximation, since the normal distribution
would allow for some probability of nagative n, which is
physically meaningless; thlis must be used carefully when

#Based on the Central Limit Theoren,
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n is small enough so that the portion of the normal curve
extending below n=0 1s appreciable, especially when the variance
of Py(n), cf‘. is large, so that o >>N, Py(n) gs

1 =2, 2
Baln) = o= exl-bin - /0] 1 (8)

Putting (8) into (5),

—— oy exl-bn - D621 (9)

°n

a =

b
n=l
And putting (8) into (7),

2 h Y 2 i =2, 2
G = L e r———TT!——T expL-%(n - n)“/a ] (10)

a n=1 Jiﬁbn n+l) (n+2 n
Equations (9) and (1) cannot be reduced further, even if

the summations are taken to be integrations over the infinite
interval, These equations do, however, yield readily to a
comouter, and families of curves for & and o °

a
assembled and are showm in Pigure 4.,2.4 and 4,2,5, The

have been

axes are normalized so that, given the drum revolution time
T, values of access time can be found,

We wish to note the limiting forms of equations (9)
and (10)., These occur for n >> 1, and for o, << n., Pigures
4,2.4 and 4.2.5 show that for n > 8 we may ignore the effects
of L for %, of interest (see Section 5,2), with only a
small error, Now if On is very small compared to n then

the normal curve approaches a unit impulse in the limit,
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and the summations of equations (9) and (10) reduce to a

single value, taken at n = n, Thus for g, << n:

a = E%T atn=n (11)
1 =
Oy = T Jn/In¥2) atn=n {(12)

It 13 to be noted that (11) and (12) are evaluated at
n = 5, and that the approximation is very good if the conditions
are mét; this is evidenced in Figures 4.2.4 and 4,2.5, where
equations (11) and (12) have been draﬁn. One of the prime
assumptions of this derivation is that the drum positions
at successive request-granting times are independent, If the
drum positions at successive request-granbing times are not
independent, then the access distribution is in error, This
is the case if the average length of requests is small compared
to a drum revolution, See the discussion on page 63.

In Appendix 2 one further result of interest 1is
obtained., The form of the probabllity density for the walting
time in queue is derived and 1s shown to be exponential, This

1s in excellent agreement with the simulation results dlscussed

in Section 5.2,
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4.3, Examination of Shortest Access Time Queue.

The solution to a queueing problem in which the policy
is based on a continuous number of prlorifies, such as the
shortest job first and shortest access time queues, 1s not
easily obtainable., In particular no solution has yet been
obtained for a finite requesting population, under a shortest-
job-first type queue discipline, since the arrival rate of
requests tends to depend heavily on the size of ‘the gueue
and the service time, As the queue become full, the rate
of arrival of requests tends to slacken because there are fewer
members of the requesting population outside of the service .
system., In this section we will derive a set of approximate:
equations for the number in thé queue as a function of 1nputm
and service parameters, and indicate an iterative procedure .
for solving them,

We suppose that the queue 1s in statistiocal equilibrium,
that is, the system has been in operation sufficiently long
that the time average of mumber in the system is constant,

We shall use the following notation:

n = the mean number in the queue.

Hq = mean walt on a request in the queue,

T = drum revolution time.

Ts = mean service time,
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Tt = mean transfer time,

'I‘a = mean access time,

a = mean arrival rate,
b = mean service rate,
A = mean interval till the next request from one

process, from the time it resumes,

s = mean number of pages per segment,

m = number of sectors around the drum,

N = population size, 1.e,, the total number in
the queue, plus the number in service, plus the
nunber generating requests,

r = traffic intensity ratio, i.,e., the average
number of busy channels,

In the previous section we saw that due to independence
of requests, random segment 1lengths, andrandom present drum
position, that at each request-granting time, each request
was equally likely to be next out. We have a series of
Bernoulli trials, then, with a probability of % of a particular
request being picked at a given trial, and probability
(1 - %) of being overlooked, where k 1s the number in the
queue at the time of the trial. On the average we can say
that the probability of being chosen on any trial is approximately
1

o where n is the average number in the queue., Therefore
the probability of being chosen on the kth requesting-granting
time after a request enters the queue is, on the average,

given by a geometric distribution, which we denote by P(k).
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Then P(x) = (1 - HF (1)

We wish to determine the waiting time of a request in the
queue, The z-transform of equation (1), which we denote

by p;(z), 1s
t = 1,k-1,1, _k
po(z) = £ (1 - )77 () 2
k k=1 n n
which can be reduced to the closed form

() =TT (2)

The mean number of trials before the given request is next

out 1is

K= opi(2)],; =n (3)

And the wvariance is

. a2 ;
02 = Lf—z' pplz) + £ pi(z) - [£ pE(2)1%]_,
z

akz- n(n - 1) (%)

The average walt 1s just the average number of service
intervals that must pass while a request is in the queue,
If a request arrives just before a service begins it must
walt only (n - 1) intervals; if it arrives just after a
service begins, it must walt n intervals, as glven by
equation (3). On the average, then it must wait (n - %)

service intervals, The wait in the queune is therefore

Wy = (n-3%) T, (5)
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We suppose that each interval is of duration T, . where T
is the mean service time, and

Ts-Ta‘D-Tt
and where '1‘a is the mean access time, For n in the queue,

we can use equation (11) of Section 4.2, so that

T
Tszm +Tt . (6)

It is recalled that T, = T/(n+l) is an approximation, becoming
more accurate with increasing n, The mean transfer time is
the time to service the mean number of pages per segment,
which 1is
T, =T2 (7
where 8 = mean number of nages per segment,
m = number of sectors around the drum,

By putting (7) into (6) we obtain

« £ (8)

Tg = I E%T n

8
We have noted that the shortest access time queue is a
random output queue, so that we can use the result of

Appendix 1, which says that

Mean number in the service system o Zean nuaber in _gueue
mean servioe rate mean arrival rate

(9)

where the mean service rate is b = 1/(mean service time),

and the mean arrival rate 1s a = 1/(mean arrival time).®

*
We are assumling as in Seotion 3.2 that arrivals are Poisson,
and that segment lengths are Polisson distributed. That is,
the probability of exactly k requests in a time t is
P(k,t) = (at)¥ %% t 20

. {(continued)
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Equation (9) 1s exact only when the arrival and service rates
are independent of the number in the queue, which is not

the case in the finite population system we are discussing.

We can use eguation (9) because there must exist an equivalent
infinite-population system whose equilibrium arrival rate 1is
the same as the arrival rate to the shortest access system
when it 1s in equilibrium, We proceed to substitute the
appropriate quantities into (9} and then solve for n, the
mean number in the at equilibrium,

First note that r, the traffic intensity ratio, 1is

where a 1s the arrival rate at equilibrium. The probability
of finding exactly k segments in a block of n pages is

k
P(k,n) = 126)_ e-n/s n=l,2,3,...

where s is the mean number of pages per segment, The
walting time between polsson arrivals is
P(t)dt = P(no arrivals during time interval t)

X P(one arrival in time interval dt)
k
= .(.al_':i!.)__ Q-ath-o (a)(at)

t

80 that P(t) = ae™® t >0,
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also the time average number of busy channels:

r = & - Rean arrival rate
bc T mean service rate

where ¢ = number of channels,

b = mean service rate

a = mean arrival rate,
The mean number in the service system is just (n+r). Now
if the interarrival time for one working process is A, then

at equilibrium it must be, for all working processes,

A 1
W-n-"a (20)

Because (N-n-r) are not in the service system, and are therefore

making requests. We can now fill in (9) to get:

n+r n :
/T = N-n- (11)
A
We define a quantity R to be
T ,
S . X 21,8
R = cA T ©A ( n+*l *a ) (12)

Note that R is an intensity ratio for one process, and

T,=RAc (13)

Then the intensity ratio r is

T
r = é% = S —~ =R (N -n -r)

LR (14)

Solving (14) for r, we find

r=(N-n) 72y (15)
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After putting (15) into (11) and performing the appropriate
algebraic manipulation, we find

n= X (16)

The form of equation(l6) has been chosen because it 1is

solvable by a process known as relaxation (or iteration),

in which a guess at n 1s put into the right side of {16), keeping
in mind that R = B(n). A new value of n is obtained, This

new value of n is placed into the right side of (16) as

before, yielding yet another value of n, This process is
continued until the new value of n is the same as the previous
value, It was found that (16) converges rapidly, within

five oycles,

Collecting the results,

N
n= TRy 2 (172)
B
1+ sy
wq =(n-%) BAc : (17v)
T, =RAoc (17¢)

A simulation has been carried out to test equations (17).
The value of n was found to be within 1% of the simulated values;
the value of Hq wasg within ¥, These answers were considered
satisfactory in view of the approximate nature of the
derivation,

Due to the nature of this problem we are unable to
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say anything about the standard deviation of our results,
Simulation has shown that the standard deviation of the number
in queue 1s less than 1.0, while the standard deviation of
the walting time was in general somewhat larger than the
mean, In particular, one simulation reported a maximum
walt of about ten times the mean,

As a final note we want to point out that one of the
bagic assumptions of this section and the previous section
is that the drum position is random at each reguest-granting
time, This meansthat the drum positions at successive request-
granting times are independent. But this need not be the
case, Suppose for instance that the transfer time, Tt, is
a small fraction of the drum revolution time,T (for example,
suppose the average transfer time, '1‘t ~ 0,17). Clearly,
if this 1s the case, the drum positions at successive request=
granting times are dependent, because we can say that the
probability of the drum being only 0.1T away is much greater
than being, say, 0,57 away. This is obvxoﬁsly contradictory to
the assumption of independent drum positions at suceessive requestw
granting times, Consequently we expect the accass time to be
below the predicted values, since the probability of finding a
request wanting the present drum position is greater than
if the drum position 1s random, If the access time were
smaller than the predicted values, then both wq and n would
be smaller than predicted, T, would be smaller, and the
systen operationshould be more efficient, Simalation has

shown that this is the case, that efficlency is increased



64

when segments are short. In particular, since (N-ni=r)
processes are working, then the fraction of processes that

are working is

(N - § -r) _ _K-n (18)

If n substantially decreases, by (18) the efficiency sub-

gtantially increases, The greater the efficiency, the

greater the number of processors that can be kept busy, It

is to be noted that when Tt is of the same order of magnitude

as T, or larger, then the drum positions at successive
intervals become independent, and the analysis of this

section 1is valid,



65

CHAPTER 5. THE SIMULATION RESULTS. CONCLUSIONS,
5.1, Introduction,

In order to observe the operation of the model of

the entire drum system, which is discussed in Chapter 3,
it was decided to simulate the system. Project MAC computation
facilities were used; the gimulation was written in SIM, a
new simulation language conceived and implemented by A.L. Scherr
at Project MAC (17). SIM is an augmented version of the
MAD programming language, adding several new statements to
those already existing in MAD, It has the powerful advantage
that the loglcal flow of the simulation is the same as the
logical flow of the actual system, Each element of the system
(see Pigure 3.1), namely the processes, the queune, and the
drums, 1s specified in the simulation as an Element (which
iz translated into a MAD external function by a SIM pre-
compiler), The inter-elemental signals shown in Pigure 3,1
are implemented in SIM by system variables, which allow a
signal to be transmitted from one eélement to another, A
main program oalled SIMSYS coordinates the activity of the
elements.

Three simulations were run, One was a simulation of
the entire drum system discussed in Chapter 3, Another was
a simulation of the shortest access time queue discussed
in Chepter 4, Section 5,2 discusses the drum simulation, and
Section 5.3 discusses the queue simulation, A third simul-

ation was used to develop Appendix 2, and is discussed there,
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5.2, The Drum Simulation.

The three elements oflthe simulation were the Users'
Processes, the Queue, and the Drums, These elements and the
signals that were passed among them are shown in Bigure 3.1,
The logical flow of each element 1s the same as shown in
the flow graphs of Figures 3.84, 3.8B, 3.10, and 3.12, where
the models of the Processes, the Queue, and the Drums are
depicted.

CTSS has available a random number generator, which
is useful in the simulation of the Processes to generate
the probability distributions discussed in Section 3.2.

The random number generator returns a number between zero and
one from a uniform distribution, This can be used to get
numbers from other distributions in the following manner.
First the cumulative distribution of the given distribution
is found, which will have probabilities varying between zero
and one, The randcm number generator can be used to select
one of these values of probability. This value is substituted
into the cumulative distribution which has been solved for
the random variable, In the drum simulation numbers from
exponential distributions were needed. Such exponentially
distributed random variables can be obtained in the following
manner, Suppose we want to select a random number from the

exponential distribution of interarrival times, which has
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been showm to be
P(t) = ae-8% $20 (1)
Denoting the cumulative distribution by Q(t), we have

t
Q(t) = J ae®t gt = 1 - 8t (2)
0

Solving for t,
t=-21n-a) (3)

But in Q(t) all probabilities in the interval (0,1) ocour
uniformly, so we can use the random number gensrator to
select a probabilty Q{t); substitution into (3) yields
the desired exponentially distributed random variabdle, t,
Equation (3) was used in the Process Model to select
walting times til the next request, and to select the
number of pages in a segment.
. The following data were taken during a typical

simulation, for each queue discipline:

{1) per cent process idle time;

{2) wailting time in the queue:

(3) number in the queue;

(4) service times;

(S) access times;

(6) channel idle times;

(7) number of fields used per sector on the drum,

The following set of parameters was considered typical.
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Practional dArum OCCUPANCY ccccosoreenss 90
Number Of PrOCeSSES.....ceecceacsssses 204

Mean inter-request time.....ceecsscees 15, mBeEC,
Mean number pages per segment.,....ccc. 10.

Read-'rlte r&tlo........-.......-....- 3.
Number Of AYUMS, e occsasrersonososacs 3.
Number of channels each druM,..cccvece 3.

Number of fields each ATUM.......-+.0s 256,
Number of sectors on ArtM..c..ceeesees bbb,
Number Of WOrds Per DPAEG.......ceccees  Olte
Drum revolution time,....ceeeseeeveees 16,7 msec,

The following per cents of process 1dle time were found for
each queue discipline:

Pirst come £irst Served....eoeoecscses 55%
Shortest JOb fITst....eeeecrecascsosss  4HE
Shortest Access time first............ 1%

Other simulations using modifled sets of parameters
(for example, two drums with two channels each; or longer
service times, that is, more pages per gegment) showed the
same result--the shortest access time queue discipline results
in minimum idle time. This point hae been discussed under
our comparison of queues in Section 3.3.5.

Probability distributions of all data were taken,
Three of them were of particular interest, and are reproduced
here. These were the waiting time in queue, the number in
queue, and the number of flelds used per sector per drum,
These are plotted in Figures 5.1, 5.2, and 5.3 for each

queue discipline. The means and the maximum points are
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indicated, It is notable that the mean wait for First Come
First Served was 17.1 msec, while for Shortest Access Time

Pirst and Shortest Job Pirst it was signifiocantly less,

6.8 msec for Shortest Job First snd 6,3 msec for Shortest

Access Time Pirst, Again the Shortest Access Time Queue

lead to the minimum wait, It is slso of significance that the
shape of the waiting time in queue distritution is exponential
as predicted by Appendix 2., The number in the queue (Pigure 5.2)
was about 8 for Pirst Come Pirst Served, and half that for the
other two queue disciplines., The number of fields per

seoctor per drum (Figure 5.3), is not dependent on the queue,

but is dependent only on the deletion policy, which is shown

in Pigure 3.12, It is interesting to note that it 1s

normally distributed, and that at desired occupanocy level of
90% the maximum data point was 242 out of 256 fields used (95%).
The mean was 230 fields used (90%). Tnis wax for a sample

of 24,500 points, We conclude that ocoupanocy levels in excess
of 907 can be maintained without overflow,

The . remaining three distri‘butlona are not plotted here,
but we will discuss each briefly. The service distribution
was found to have approximately the same shape as the
number of pages per segment distribution, but it was distorted
due to the inclusion of the access.time in the service time,
The mean service time was found to be the sum of the mean
access time and the mean transfer time, as expected.

The access time distribution was uniform for First
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Come FPirst Served, with a mean of 16.7/2 msec = 8,34 msec, as
expected, For Shortest Access Time First this distribution
wag found to follow closely the predictions of Seotion 4.2,
The access distribution for Shortest Job First was somewhere
bstween the First Come First Served and Shortest Access Time
distributions, as expected,
Finally the chamnel idle time distribution showed
that there was an insignificant amount of channel idle time,
Let us mention what the maximum waits in the queue
were, First Come First Served had the smallest maxinum
wait, as expected, and Shortest Job First had the largest.
Some rnumbers are, for the typical parameters listed on page 68,

Pirst Come First Served.......... 62, msec
Shortest Acoess Tim@.......ce000s 65, msec
Shortest Job First....ccvee200s0. 100, msec

Note that the Shortest Access Time does not cause waits
too much longer than the First Come First Served Queue,
Other simulations were run, in which the Shortest Job
Pirst queue was observed to have a maximum walt of 4 sec,
for parameters not too different from the ones listed on
page 68,

A last point: queues in which the skip limit#*
was used have a "First Come First Served® component, and
are accordingly less efficient than a Shortest Access Time
queue, A skip limit of ten in a Shortest Access Time queue

caused its efrfieiency to be only slightly greater than

#Section 3.3.4.
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Pigure 5.4, Probability density of number of
fields used per sector.
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a PFirst Come First Served queue,

5.3. Shortest Access Time Queue Simulation,

This simulation was composed of two elements, one
to make requests, and the queue, With Section 4,3, the

arrival rate of requests at equilibrium is

a=§;§A (%)
Where

Beog (pig+2) (5)
and = dyum revolution time,

T

A inter«request times per working process,
¢ = number of channels,

s = mean number of pages per segment,

m = number of sectors per drum,

n = mean number in the queue,

The simulation was seeking to test equations (17) for
Section 4,35 which are

n = N — (6)
+
1+ Rc!n + ﬂR’
Wq ={(n-%) RAc (7)

Four single-channel (¢ = 1) simulations are considered here.
The parameters were:

Parameter

set number -1 2 3 b

o 16,7 msec 16,7 msec 16,7 msec 16,7 msec
A 15,0 msec 5.0 msec 0.5 msec 1,0 msec
s 4,0 8.0 40,0 2,0

m 64,0 64,0 64,0 32,0

N 20,0 10.0 25.0 5.0
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The results, were, for simulation samples of about 3000 data

points, as follows,

Parameter n wq

get number predicted simulated préedicted simulated
1 12,85 12.97 27,78 msec 26,91 msec
2 7.96 7.99 29,48 * 29,00 *
3 24,00 23.68 260.98 * 259,12 *
b 3.98 4,00 15.30 ¥ 16,54 "

It is apparent that the agreement is good,
One last point: in Section 4.3 it was mentioned that
Af the drum position is not random, that 1s, when short
segments were used, tﬁen the access times should decrease,
and in particular the number in the queue and the waiting
times Bhould decrease, The following simulation verified this:
Parameters:

T « 16,7 msec

A=17,0 msec
s = 3.3
m = 64,0
Results: Random Function of time
n W n W
q q
3.86 17.11 msec 2,48 11.40 msec

There is a significant difference, and fortunately the
errors are in favor of much increased operational efficlency.

From Section &,3 the efficiency 1is

N-n
N{T + R)
Efficienoy: Random Function of time

~ 32% s 46%
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5.4. Conolusiong.
In this paper we have shown that for a segmented

multiprogrammed, multiprocessor computing system, the

following i1s truei proper maintenance of auxiliary memory

can greatly improve system efficisncy, We have shown how

this can be done., 1In particular:

(1)

(2)

(&)

It is generally possible to store pages consecu-
tively on the drum, and proper deletion policy
can be used to maintain oocupancy levels in

excess of 90%.

The Shortest Access Time queue discipline is

the most efficient queue for an auxiliary

memory, where time 1s spent waiting for mechaniecal
parts to move into some proper position, \

If request sizes are large, that is if segments
oontain many pages, then it is not diffiocult

to derive equatiorsfor the average number in
quesue, and for the average walt in the queue,

If the segments are short, these equations break
down, but provide an upper limit for the average
number in queue and the average walt in queues

The error is in favor of increased efficisncy,

A reasonable probabilistic model for the processes
in a segmented computing system has been given

in this paper,
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(5) Simulation is a particularly useful tool for
analyzing problems of the complexity of computing
systems, for it is frequently helpful in providing
a starting point for analysis.

(6) Mixed-Poliey queues may be used in drum (or
disc) auxiliary memory systems when we beoome
concerned that some requests might hive to wailt
inordinately long. A "skip limit" gueue was found
to be more efficient than a “window® queue (see

Appendix 2).

5.5. Suggestions for future study.

(1) The deletion policy of the Processes model.
Although it is possible to prevent drum overflow,
and to maintain 90% occupancy, exactly what deletion
policy 1s the best, if any? See chapter 2 and
Section 3.4 for discussion,

(2) The "page-turning® vs, “segment-turning" allocation
problem of Chapter £ should be considered in
detail.,

{3) The finite population, shortest job type of

queue 1s yet to be completely analyzed.
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APPENDIX 1, THE POLLACZEK-KHINTCHINE FORMULA.

In this aprendix we will derive an equation which
Sansty (16) refers to as the PollaczekiKhintchine Formula
{Sasty, pp 40-43), Saaty has derived it for the poisson
input, single channel, equilibrium-queue, We will extend the
reasoning to imelude the c-chamnel server, Since we talk
only of the number in the system, the queue discipline is
irrelevant to our discussion, until we begin to talk of
walting times.

Suppose that arrivals ooccur at random according to
a poisson process at a rate a per unit time, to a waiting
line in statistical equilibrium, before a c-channel facility,
They are served according to some arbitrary service-time
distribution at a ra®e b per unit time per channel, We assume
that 1f the service rate of one channel is b per unit time,
then it 1s bec per unit time for all ¢ channels operating
together, Suppose that a departing request leaves q in the
system behind, including those in service, and that some time
t will elapse before the next departure, Let the walting
line increase in length by(k requests during this one
service interval, If the next departing request leaves q'

behind in the system, we can relate q and q' as follows:

Q' =max (q -1, 0 )+ k=qgq=-1+ada+ %k (1)

where d(q) =0 if q > 0
d{q) =1 if q = 0

By intwvoducing d(q) we eliminate the max expression.
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We assume that equilibrium wvalues for the first and
second moments E(q) and E(qz) of the number in the system
exist, where we are treating q as a random variable. We note
that E(q) = E(q*) and E(qz) = E(q'z) since both q and q' are
assumed to have the same equilibrium distribution, We observe
that since equilibrium, eadh departing request must leave
behind 1dentioai time~independent queues, each having the
same probability distribution, Now, from the definition,

a? = d, and q(1 -~ 4) = q. Thus, taking the expected value of

(1) we have

E{(q') = E(q) = E(1) + E(4) + E(k) (2)
but sinece E{q) = E(q') we have
E(d) = 1 - E(k) (3)

During an inter-departure interval of length t we have

w K
E(k) = & k-%‘-".)-— e~8% = at (1)
k=0 X

E(kz) = ; k2 L%%lf e”8t o (at)z + at
k=0 ) (5)
Let us denote the combined service distribution for all
¢ channels operating in parallel by S(t), Taking the
expectation of E(k) with respect to this service time
distribution we gee that

E(k) = éw(at) 5(t) at

= aé t S(t) at (6)

E(k)=§-€=r
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gince the mean of S(t) is 1/bo, But since se have not
specified S(t), E(k) = r is unaffected by the type of service
diatribution. Then

E(d) =1 -r (7)
Now, 1f the probabllity of the queue increasing by k is
independent of the length of queue, q, and of &, which
depends only in q, any expectation over products of r, q,
and 4 18 just the product of the respective expected values,
Therefore

(-]
E(k?) =/ ((at)? # at) S(t) at
0
which 1s an average over all time. But

E(x?) - Iu(at)2 8(t) at + I“(at) s(t) dt
0 0

2.2, =
= a ts + ats
But the variance of S(t), 082 s i
2 _ 2 =2
°s = ts - ts
Therefore
2 2, 2 =2 -
E(k“) = a (cs + ts) + at,
Finally,
E(K?) = azasz +r° 41 T = B% (8)

If we square both sides of equation (1)
0¥ = (q-1)2+2(q-1)(a+ k) + (4 + x)?

q'2 = q2 -2q(2 - k) + (k - 1)% 4 a(2k - 1) (9)
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Equation (9) was obtained by using qd = 0, and d2 = d,

Because of equilibrium,

E(qZ) - E(q'?) = 0 = 2E(q)E(k - 1) + E((k - 1)?)
+E(4)E(2k - 1) (10)

Recall that the validity of (10) depends on the independence
of q and k, Solving for E(q) and using equations (6), (7),

and (8), we have the Pollaczek-Khintchine Formulas

2
E - + E(2k -
B(q) = Bl = 1)2) + B()R(2K = 1
azo: + T2 4T -2r+14+ (1 =r)r-(1-r)
= 2 - 2r
rl + aza: a
E(q)=r+m-—r)— T =% (11)

Thus, once we know the variance of the service time distribution,
the average number in the system, E{(q) is determined, It
is important to note that E(q) i1s an average taken over
instants just following departures, and is not the time
averare, If Et(q) 1s the time average, all we can say
without further argument is that
E(q) < E.(a) < E(q) + 1

In general the average number 1n the service system equals
the sum of the average number of busy channels (here it 1is
r = ﬁ% } plus the average number in line.
To obtain the average wait in the waiting line, whish
1

we will denote by E(w), we observe that a(E(w) + be ) is the
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expected number of arrivals during the expected time of one
request in the service system, if the gqueue discipline 1is
first come first served, because g: is the mean service time,
But this must be just the number in the system immediately

after a customer departs, that is, E{q), so

a r2 + 32052
aE(W)+S-E=r+—(——)—21_r
but r = 2, so
be? r2 + 8.2082
Wq = E(w) = m {12)

We have pointed out that r 1s just the number of busy channels
and that E(q) 1s the expected number in the system. Inspec-
tion of (11) will show that the number in line, Iﬁ’ must be

r2 + aza:
Lq =201 - T)
We have the interesting and important result
Za_
¥y = "a (13)

Notice that this is exact only if the number in the system,
E(q), 1s independent of the service time or the arrival

rate, as pointed out after equation (10)., We also note that
if (Wq + g;) is the time of one customer in the service
system, then bc(wq + g: ) is one more than the number in

the system, E(q)., This 1s so because if E(q) are in the
system, then E(q) - 1 service Intervsls pass while one request

1s in the system, Therefore bcwq = E(q) and we have the
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second result

w =Ela) (14)

In words:

W = average number in the line
q average arrival rate

_ average number in the system
~  average service rate

These are true for arbitrary service distributions.
It 1s interesting to note that if the service times
are exponential, that is, the service follows a polsson

law, then the interval between departures is given by

S(t) = boe™PCt

t>0
It 1s a well-know fact that for this type of distribution

the variance eguals the mean squared, that 1is,

o =1 t%boe”Pt at - [["tbo e™°* at)?
0 0
= (1/0e)?
Substitution of this into (11) ylelds
r2
Lq +r=r+3s (15)
From which it follows that
2
Lq = T -7r (16)
T (17)
and E(q) = i -+

Consider for a moment the geometric distribution

P(k) = r(1 = r) (18)
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It is kmown that this distribution describes the number
in a service system with exponential input and output

(Saaty, 17, pp 38ff)., The expected number in the system is

- Kk
L= Z kXxr (1-r)
k=0
4 - .k
=(l-r)ra= I
ar k=1
__r
T 1l-rx

which is the same as (17)., Then we can find the variance

of (18) which is

[ ] o0
2 Xk 2 d .4 kK _ .2
kK r (1 -r)=L=(l~r)ra=r Er -L
k=0 dr dr k=0
2 _ r r2
op = + >
(1L -1) (1 -1)
of = L(L + 1) (19)

We hﬁve the result that for the exponential input, exponential
output system the number in the system is given by (17),

the number in gqueue by (16), and the variance of the number
in the system by (19), The results of this section will hold
for queues in which the discipline 1s random as well as for
first come first served, They hold for random disciplines
because, on the average, the number of service intervals

that must pass before service 1s the same as for first

come first served, This 1is seen in Section 4,3, In fact

the equation for the mean number in the queue, Lq is accurate

if the following conditions are satisfied:
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(1) all requests stay in the queue until served;

(2) the service time distribution for all channels
18 the same, with parameter bj

(3) ohannels serve one at a time;

(4) a ochannel serves the next request, if any are
are walting in the queue, as soon as it finlshes
with the last request,

A 1ittle thought will show that Af these four rules hold,
the length of the queue is the same for all disciplines,

although the mean wait, Wq, will vary, (Morse, 13, p. 117).
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In this appendix the probability density funotion for
the waiting time in a shortest acess time queue 1s derlved.
We define the following random variables;

A = r,v, of access time, taking on values a,

N = r.v. of number of requests to exit the queue
before a given request exits, taking on values n,

P = r,v, of number of pages per segment, taking on
values p.

R = r.v., of number of requests in the queue, taking
on values r,

T = r,v. of transfer time, taking on values t,
W = r.v. of walting time in queue, taking on values w,
Since at each trial (request-granting time) all requests
are assumed to be equally likely to exit next (Section 4,2)
the distribution of N 1s geometric. As on page 58,
equation (1), the conditional distribution of N given bhat

R are in the gueue 1is

Pyp(n/r) = (1 - D) (1)

where R is the random variable of the number of requests
in the queue, Denoting the density function of R as PB(r)s
Pyg(n,t) = Py p(n/r) Pylr) (2)
We are interested in the wait in queue, so we have defined
the random variable of wait to be W, Then
PHNR("’n’r) = Pw/NB(w/n,r) PN/B(n/r) Pn(r)

(3)
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For a single channel queue the wait in the queue is N access
times plus N transfer times, As in Section 3.2 we assume the

number of pages per segment to be a random variable, F, where
2 _=-0p 4
Pp(p) = o“p e (%)

and ¢ 1s a constant proportional to the mean number of pages

per segment, If T' is the drum revolution time and §

the number of sectors around the drum, then the transfer time
for one pages 1is T*'/S, Denoting the random variable of transfer

time by T, we have for the density function of Ts
Pp(t) = kPt e7XF (5a)

with the constant k defined as

k= =S (5v)

and Hs is the average number of pages per segment, The wailt

in the queue 1s, from above

W=N(A+T) =NA+NT =y 4+ 2
with y = NA and z = NT,

From Section 4,2, the cumulative distribution of the
access time is
: 1 =1 = - N

Hacal=1-(Q1 a,)

But y = NA, Then

Hycal=PMacfl=1-0-p"

=1-[-§Veye (6)
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Now let u = -a/N, Then
My < a] = 1{(1 + wl/® ]2 (7)

For large N, u approaches zero and we know

I B A (8)

Thus for large N}

a

y<alwl-e

and the density function for the access time component

of the walt in queue is
P(a) =& Py<alwe™ (9)
y da -

Using an elementary probablility transformation, the density

function for z = NT is

2
1 b X -(kb
P(b) =g Pp( ) = o p o~ (KDIN

Defining K = k/N = S/T'Nﬁs we have

- k24 o-Knb (10)
P (b) =K‘be

Since A and T are independent random variables, the conditional

density function for W, given N and R 1is

PW/NB(W) = ImPy(w-x) Pz(x) dx

-0

the convolution of g}a) and Pz(b). This evaluates to be
2

®, - 12

*This approximation is surprisingly good for N > 10,

Puna(v) = v (12)
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Recalling equation (3),
Pung(¥om,r) = Py o (w/n,r) Py /p{n/r) Pglr)

Putting (1) and (12) into (3),
2

Py (9ms7) = [ mii? e L -2 ) Le, ()]
-

2
Panp(¥on,r) = —EBL o o= (o Lyn-1(d) p (1)
W S e ¢ 0P T

If N 13 large, as it is assumed to be, then PR(r) is
approximately Normal by the Central Limit Theorem, and

2 =2 2
(x/n) - lyn-1 1 -(r-R)“/2
Pa(emes) e ¢ T A

(13)
which i1s the required joint density function of waiting time
in the queune. The simulation has shown that for the mean queue
length, H, greater than about 10 with cr<<§ (which is the case
when R » 10) thils approximation is valid. Thus in the
steady state situation, 1t is clear that the probability
density for waiting time in the queue 1s approximately

exponential, a fact verified by simulation (Section 5,2).
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APPENDIX 3. DESCRIPTION OF A MIXED-POLICY QUEUE.

The queue described in this sectlon has been proposed
as a shortest access time queue, but one for which we are
concerned that a particular request may be continually over-
looked due to the random nature of selection, Consider for
example a queue which has many requests in it (at least thirty).
Such a queue might occur if it were declded to request
pages singly instead of in segments, In Section 4.3 it
is shown that the waiting time of a request until it leaves
a random output queue is given by a geometric distribution,
with the expected wait equal to n service intervals, where
n is the average number in the queue, Now if n is large,
then it is conceivable that a request might have to walt for
a very long time: the variance of the geometric distribution
18 (n)(N - 1) =~ n? if n is large,

Consider the queue shown in Figure A3.l, A new request
is always added to the bcttom of the stack, A section of
the stack, of length N, is considered, the remaining requests
in the queue being ignored for the while., We shall refer to
the portion of the queue under consideration as being viewed
through a window, of size N, The top of the window is
always at the top of the stack, The requests in the window
are labelled RI'RZ""’RN , and are considered according to
the shortest access time first queue discipline, Whenever
the request marked Hl is removed, the window is moved down

until its tep coincides with the next request Rl. It
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32 R, e \
= -
Ry
3
) Ny winpow
By — Yy /
7/ I

Next in-——>»=

Figure A3.1. Structure of a Mixed-Policy Queue.
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h service

appears that R1 might have to wait until the Nt
time before it leaves, but no longer (by then 1t would be
the only regquest in the window)j thus it seems that an upper
bound can be placed on the waiting time in the window,
namely (N - 1) service intervals, But thils is not so.
Consider the request marked BN. Suppose by some gquirk of
fate that requests are serviced as follows, Rl,ﬁz,...,
RN-I’BN+1""’RzN’RN' This would happen if Rl""’RN-l
were serviced before RN; but then the window has become
positioned at BN, and the next (N - 1) requests could be
serviced before RN' It is clear that the maximum wait in the
window is 2(N - 1), Since the arrival rate is given by
an average, the expected walt before reaching the window 1s
M; an upper bound to the wait is M 4+ 2(N - 1) service intervals,
We are assuming M > N,

To find a lower bound on the waiting time, consider
the following argument. Suppose a request enters the queue
just before the window makes a jump of N, then suppose the
window moves one position at the end of each service interval,
The request in question would then wait only (M - N) service
intervals to reach the window. Then suppose it were let
out immediately, The minimum wait 1s therefore M - (N=-1)
= (M -N+ 1), We have set an upper limit on the waiting time:

Wooe = (M4 2(N - 1)) Es (1)
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and the lower limit of walting time 1is

wml

Equations (1) and (2) assume that M > N,

n= (M- (N-1))E (2)

On the average the window is not full, We can think
of the vroblem as a flow problem, with requests flowing lnto
the bottom of the wondow at the rate of one per service
interval, and filtering out through the window at the same
rate, Let us imagine one of the requests being tagged so
that we can keep track of it, If we know on the average how
far down the window a request moves before it exits then
we know the mean wait in the window, Simulation of the
problem for several window gizes was carried out, and it
was fouhd that on the average the tagged request went
half way down the window before exiting. Then we can write

N -
W,y = (Me3) E (3)

Figure A3.2 shows the probability densities of a request

being at'various positions in the window, It is to be noticed
that the tagged request spends considerably more time at the
upper and lower ends of the window then at the center.

The standard deviation was found to be 0,8 of the mean, so

the contention that the request is a % on the average 1s

not too certain, This implles that the probabilities of

wmax and wmin are not small, Figure A3.3 shows the procbabllity

density of window jumps. The average window jump 1s about

%. Figure A3.4 shows the following: the mean position reached
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by the tagged request, and the mean window movement when it
moves, both as a function of window size,

Recall that for efficient access time queuneing the
mean in the queue had to be at least eight., Hence we would
require that the window length be N > 16, But since M > N,
the overall queue would have toc have an expected length M + N > 32,

It appears that the use of the minimum access time
queue without the window, but with the "“skip 1imit" mentioned
in Section 3.3.5 is better for the following reason., The
skip 1imit could be set to an upper limit of 2(N = 1) so that
the maximum walt for that queue would be the same as given
by eguation (1), but with M = 0, Since the “skip limit*
queue with the same maximum 1s longer than the corresponding
"window" queue, the access time is shorter, and more efficilent

queuelng is had,
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APPBNDIX 4, A CONTINUQUS-TIME MARKOV MODEL.

With Howard (11, pp. 92ff) we define a rate Matrix [A],
having elements aij‘ The rate matrix 1s similar to the
familiar Markov transition probability matrix except that the

th

elements aij represent transition rates from the 1 to the

Jth

distributions. A transition matrix, then, is a discrete form

state, The rates are assumed to be taken from exponential

of a rate matrix, Since we consider an equilibrium systenm
the overall rate of change must be zero, Define a state
probability vector P, where P = [pl,pz,...,pmj and p, 1s the
probability that the system has 1 requests in 1t, Because

of equilibrium,
(rilal =0 (1)

We make the following assumptions,

(1) All requests join the queue and do not leave
until service 1s complete,

(2) Each channel serves one request at a time, and
does not begin the next request until the present
request is finished.

(3) As soon as a channel becomes i1dle, the next request
enters service, provided there are some in the queue.

(4) The queue discipline is first come first served,
or else random, For any other queue discipline
that satisfies (1) through (3) the expressions
for state probabilities and average number in
line are the same, but the waiting time in the
queue 1s not the same. See closing remarks of
Appendix 1.

We use the following notation:

M = the size of the finite number number in the
total population being considered--it is the
sum of the number in the service system plus the
number making reocuests,
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a = mean request rate per requestor, where 1/a =
mean interarrival interval per requestor.

b

]

mean service rate per channel, where 1/b = Es’
the mean service time,

¢ = the number of parallel channels providing service,

P, = the probability of the service system having n
of the M possible requestors in 1it.

If the system in in state n (indicating that n requests are
in the service system, and that (M - n) are remaining outside
in the requesting population) then the rate of exit to the
state (n+l) i1s nb for n < & and is ¢b for n>c. We have the

rate matrix

-Ma Ma 0 0 coe ces
b -b-(H-l)a (M“l)a 0 see LI §
2b -2b—(M-2)a (H’z)a L ] eee
[A]B see eoe es e s so e Py
ces oes cb -cb=28a 2a 0
) s s e 0 cb =cb-a a
e e s s 0 0 b - b
L ¢ c c A
th
At the ¢ row the matrix is
ve. (e=1)b «(c-1)b-(M-c+l)a (M-c+l)a O .o
ves O chb -ob-{M-c)a (M-c)a .o

ee. O 0 ob ~cb-(M=c-1)a ..
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Because of equation (1) we can write
~Map_ + bp, =0

Map - bp1 - (M-l)apl + 2bp2 =0

o
and in general

(M-n+1)apn_1 - nbp - (M-n)apn + (n+1l)bp =0 1<n<c

n+l
(M-n+1)apn_1 - ¢bp, - (qu)apn + cbp,, =0 e<n<M

th

Adding the n and the (n-l)th etuations, which is equivalent

to adding adjacent columns in [A], we have by recursion

P = Mrpo
M-1 M(M- 2
Pp =73 T = 21rpo
’ M(M=-1)(M=-2 Men
Pn = n! T Py
so that
M! n
Pn = nt(M-n)? F Po O<n<e
s (2)
! n
Pn = el (M-n)T T :;c P,  o<nzM
c

where r =% - Py is found from the requirement that

z )
2 p. =1 (3
n=0 »
Py = =51 % (%)
° cE Mg rn + i H rn 1
n=0 n!(M-n) ! n=o c(M-n)? ch-c
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If h is the average number of processes actually in operation,

k the number being serviced, and Lq the number in line, then

k+heL =N (s)
and because of equilibrium

-!l-:-s%=r (6)

The number being serviced is
c-1 M c-1 ( ) (7)
k= £ np +c6Xp =¢6« & (c-n)p 7
n=0 n n=c ° n=0 n

The number in line is
M
L = I (n-o) Pn (8)
and as usual the waiting time in the line is

L
Wy = = (9)

The number in the system is

M
L=L +k= & np (10)
q n=0 n
The efficiency 1is

number of working processes _ E_:_Eg_:_f

M M

M
M= XZnp
= n=0_ 2

M

The summations can be evaluated on a computer without too

much difficulty if the factorials are expressed as logarlthms,

and use is made of the fact that

n
nt =exp[ £ In (1)]
i=)
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It is interesting that a closed form for (10) can be
obtained when there is one channel, i.e., when ¢=l, In this

case equations (2) become

M n

Pp = Tﬁf;TT rp, n=0,1,...yM (11)
and (4) becomes
P, = 1 r=% (12)
M
M n
z r
n=0 Me-n)?

Then L i1s the number in the system, and L-r-Lq is the number

in the line.

M
L=po z

n=0

[
ey (13)
Consider
M M
M-L (M-n)M! n M n
2= - 3z r = I r (14)
Po  neo (M-D)C n=o ‘M-n-1J:
expanding (14) we find

!‘S'i- =M + M(M=1)r + M(H-l)(!‘l-z)rz + .ee (15)
o]

But
pi = 14 Mr o+ M(M-1)T? + M(M-1)(M-2¥7 4 .,. (16)
[o]

Cemparison of (15) and (16) reveals that

ML _ (L L 1

b= (o =) % (17)
Solving for L, 1-p

L=M- 2 (18)
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All that 1s needed to find L is an evaluation of Py not
an evaluation of each P, as well, The number in the queue is

1-p,
Lq =Ler=sMa-r-——70 (19)

So that the walting time in queue 1is

L M 1l -~
w=—-g-=-—-£-- po
q a a a ar
l-0p
=1 -—9).%
wq-a(n = ) tg (20)

where Es = %, the mean service time,

The interested reader is referred to A.L., Scherr's
Doctoral Thesis, in which it is shown that Multiprocessor
time-shared computing systems are in general, agcurately 1
described by Markov Models,



105

BIBLIOGRAPHY

1. Churchman, C.W,, et al, Introduction to Operations
Research (Chapter 14, ¥Queueing Models“;. New York,

John Wiley, 1957.

2, Corbato, F.J., et al, The Compatible Time-Sharing
System: A Programmer's Guide. Cambridge, M.I.T.
Press, 1963, Also 2nd Edition, 1965,

3. Dennis, J.B. Program Structure in a Multi-Access
Computer, Cambridge, M.I.T., Project MAC Memo
MAC-TR-11,

4, Dennis, J.B, An Example of Intersphere Communication

And Asynchronous Parallel Processing. Canmbridge,
M.I.T., Proiect MAC Memo MAC-M-189: September, 196L4.

5, Demnis, J.B., Automatic Scheduling of Priority Erocesses.
Cambridge, M.I.T. Project MAC Memo MAC-M-187:
October, 1964,

6, Demnis, J.B. Segmentation and the Design of Multi-
Programmed Computer Svstems. Cambridge, M.I.T.
Project MAC memo: January, 1965,

7. Dennis, J.B., and Van Horn, E,c, Nesting and Recursion
of Procedures in a segmented Memory. Cambrldge, M.I.T.
Project MAC memo.

8, Feller, W. Probability Theory and its Applications,
New York: John Wiley, 1950,

9. Flores, Ivan, Derivation of a Waiting-time Factor for
a Multiple-bank Memory. Journal of the American
Assoclation for Computing Machinery, Vol., II,

No. 3 {(July, 1964), pp 265-282,

10, Heller, Nelson B. Stochastic Models of 2 Multiple
Access Computer, M,1,T. March 1965,

11. Howard, R.A. Dynamic Programming and Markov Frocesses.
Cambridese: M.I.T. Press, 1960,

12, lLee, Y ,W. Statistical Theory of Communication, (chapters
3-6). New York: John Wiley, 1964,



106

13, Morse, P,M, ueues, Inventories, and Maintenance,
"New York: John Wiley, 1963,

14, Patel, Nitin R, A Mathematical Analysis of Computer
Iime Sharing Systems, Cambridge: M.1.T. Operations
gesearoh6uenter nterim Technical Report No. 20,

uly, 1964,

15. Riordan, J, Stochastic Service Systems, New York:
John Wiley; 19862, )

16, Saaty, T.1. Elements of Queueing Theory. New York:
Hoérau-HilI Book Company, 1951,

17. Scherr, AL, An Ana;zsiﬁ £ T;g%-Shared Computer
S séems. Cambridge: .%TT., ourse h.D., Thesis,
June, 1965, Published as Projeot MAC Techniocal
Report MAC-TR-18, August, 1965,

18, Witsenhausen, H., A Note on Asynchronous Parallel
giggﬁgfégg. cambriaget M.I.T. Project MAC Memo
-M-186, July, 1964,

An extensive bibliography for the entire fleld of queueing
theory 1s to be found at the end of Saaty's book, reference
(18) above,



CS-TR Scanning Project
Document Control Form Date: /2 / !l /35

Report# _Lc 5-TR- )

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
7&\ Laboratory for Computer Science (LCS)

Document Type:

X Technical Report (TR) [ Technical Memo (TM)
O Other:

Document Information  Number of pages: 108(1/3-imrCE)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
[J Single-sided or O Single-sided or
Xf Double-sided \B( Double-sided
rint tyre:
Typewriter [J oOftsetPress  [] Laser Print
[0 inksetPriter [] Uninown [0 Other

Check each if included with document:

ﬁ\ DOD Form ﬁ Funding Agent Form h Cover Page

O spine O Printers Notes [0 Photo negatives
[J Other:
Page Data:

Blank Pagesiy pegs numben.

Photographs/Tonal Material ey rege numben

Other (note description/page numb«):
Description : Page Number:

Tmagx maf (11 ng W ED IR f’/qcx—,gﬂﬁ;uwom)qsa - Jog

J

(18- 115 ) SeanconTRoly oot T, FunDipG AGKWVY,
Oop TRET 502

Scanning Agent Signoff:
Date Received: [d4¥ Il / O Date Scanned: 118456 Date Returned: _[ /11 . 126

Scanning Agent Signature: (}VMKM o ot DSILCS Docurment Gonirol Form cstorn.vsd




UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA - R&D

(Securlty classification of title, body of abatract and indexing annotation muat be entered when the overall report iz classitied)

1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION
Massachusetts Institute of Technology UNCLASSIFIED
Project MAC 25. GROUP

8. REPORT TITLE

Queueing Models For File Memory Operation

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Master's Thesis, Electrical Engineering

8. AUTHORI(S) (Laat name, firet name, initial)

Denning, Peter James

8. REPORY DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
November 1965 108 18
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR’S REPORT NUMBERI(S)

Office of Naval Research, Nonr-4102(01)

b. PROJECT NO.

MAC-TR-22 (THESIS)

e. Nr-048- 189 9b. OTHER REPGRT NO(S) (Any other numbers that may be
: assigned this report)

de

10. AVAILABILITY/LIMITATION NOTICES

Qualified requesters may obtain coples of this report from DDC.

1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Advanced Research Projects Agency
None 3D-200 Pentagon
Washington, D.C. 20301

13. ABSTRACT

A model for the auxiliary memory function of a segmented, multi-
processor, time-shared computer system is set up. In particular, a
drum system is discussed, although no loss of generality is implied
by limiting the discussion to drums. Particular attention is given
to the queue of requests walting for drum use. It is shown that a
shortest-access-time-first queue discipline is the most efficient, with
the access time being defined as the time required for the drum to be
positioned. Time is measured from the finish of service of the last
request to the beginning of the data transfer for the present request.
A detailed study of the shortest-access-time queue is made, giving the
minimum-access-time probability distribution, equations for the number
in queue, and equations for the wait in the queue. Simulations on CTISS
were used to verify these equations; the results are discussed. Finally,
a general Markov Model for Queues is discussed in an Appendix.

14. KEY WORDS
Computer On-line computer systems Time-sharing
Machine~aided cognition Queueing models Time~shared computer systems
Multiple-access computers Real-time computer systems

DD f2%. 1473 (M.LT.) UNCLASSIFIED

Security Classification



Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the ML.I.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94




