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The Serializability of Concurrent Database Updates*

by

Christos H. Papadimitriou
Massachusetts Institute of Technology

Abstract

A sequence of interleaved user transactions in a database system may not
be serializable, i.e., equivalent to some sequential execution of the
individual transactions. Using a simple transaction model we show that
recognizing the transaction histories which are serializable igs an NP-
complete problem. We therefore introduce several efficiently recognizable
subclasses of the class of serializable histories; most of thege syup~
classes correspond to serializability principles existing in the
literature and used in practice. We also propose two new principles
which subsume all previously known ones. We give necessary and sufficient
conditions for a class of histories to be the output of an efficient
history scheduler; these conditions imply that there can be no efficient
scheduler that outputs all of serializable histories, and also that all
subclasses of serializable histories studied above have an efficient
scheduler. Finally, we show how our results can be exténded to far more
general transaction models, to transactions with partly interpreted

functions, and to distributed database systems.

*
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1. INTRODUCTION

‘In many situations many users may consult and update a common data-
base. We can think of such independent user transactions as sequences of
atomic database operations, interleaved with computations that are local
£o the user, that is, they do not affect or depend on the current state
of the database. It is a function of dqtaﬁase management to handle the
update and retrieval requests made by the users in such a way so ‘that the
resulting overall process is in some appropriate sense correct. It is
generally accepted--seejnfo: example, [SLR], [SK], [EGLT], [BPR]--that
the right notion of correctness in-ﬁhis context is that of -gerializability.
A seguence of atomic user updates/retrievals is cglled serializable
Qqséntially if its overall effec; is as though the users took uuﬁnp,'tn
soms order, executing each their entire traﬁsaction indivisibly, The
simplest example of a non-gerializable sequence is a primitive form of a
"race". Imagine two users that'increment a counter by first sens;ng‘ité
value, and later registering an increased one. If both users retrieve
the value of the counter before either of them has updated it, the
resulting execution sequence--or history--is not serializable. This is
because both possible serial executions of these transactions would have
resulted in a larger total increment. Naturally, much subtler examples
exist. |

The appeal of serializability as a correctness criterion is quite
easy to justify. Databases are supposed to be faithful models of parts
of the world, and user transactions represent instantaneous chénges in

the world. Since such changes are totally ordered by temporal priority,



the only acceptable interleavings of atomic steps of different trans-
actions are those that are equivalent to some sequential execution of

these transactions. Another way of viewing serializability is as a tool
for enéuring system correctness. If each user transaction is correct--i.e.,
when run by itself, it is éuaranteed to map consistent states of the data-
base to consistent states--and transactions are guaranteed to be inter-
ﬁingled in a serializable way, then the overall system is also correct.

In this paper we consider transactions that consist of two atomic
actions: a retrieval of the values of a set of database entities--called
the read-set of the transaction--followed by an update of the values of
another set of antiﬁies--the write-get. This is exactly the kind of
transactions handled by the system SDD~1 [BGRP], [RG]. However, the
main reason for considering this model here is that it provides a nice
framework for understanding and comparing very different philosophies of
serializability that already exist in the literature-—e.g., (B8], [SLR],
[BGLT], [BGRP]. Despite its apparent‘siuplicity, it yields a theory of
gserializability that ié rich in combinatorial intricacies, and raises
interesting complexity questions. Since our model is the most general
common restriction of the models in the various references cited above,
our negative results apply verbatim to’those models. Furthermére, most
of our positive results and characterizations are also easily generalizable
to more general situations, althcugh their proofs--in many cases their
very statements--would be extremely cumbersome. Hence, we view our model
as a convenient language, of the right degree of conceptual complexity,
for developing and communicating our ideas about serializabilicy, rather

than a set of restrictions that enable the proofs of certain theorems.



We formalize our model of transactions in Section 2, where some pre-
liminary results are also proved.

- In Section 3 we prove that the question of whether a given sequence
of read and write operations corresponding to several transactiona‘(called
a history) is serializable is NP-complete [AHU), [Kal. This saqéests
that, most probably, there isino efficient algorithm that distinguishes
between serializable and non-serializable histories.

In Section 4, we study some efficiently recognizable subsets of the
set of serializable histories. 1In other words; we present polynomial-time
"heuristics" that approximate the NP-complete predicate of serializability--
in a manner quite reminiscent of efficient approximations of NP-complete
ephimisation problems [GT], [PS]. We show that the two-phase looking
strategy [EGLT] and the protocol P3 of [BGRP] are incosmensurate:special
caseé of two more general classes called Q and bnsnachezlatt-xais
related with the model of [SLR]. These two serializability principles
are’therefore very general (and applicable) new serialization methods. We
also introduce the class SSR of histories that can be serialized without
reversing the order of temporally non-overlapping transactions; it is not
known whether this class is efficiently recognizable. In Section 5, we
observe that the quite intricate interrelations among these interesting
classes are simplified considerably if some “static" restrictions ﬁre
imposed on the read~ and write-sets. We point out there that the simple
serializability theéry of [SLR] is due to such a restriction of their model.

For all efficiently recognizable classes of histories studied in
Sections 4 and 5 there is alsd an efficient schaeduler; an algorithm, that

is, which takes any history and transforms it to its closest (according




to some appropriate metric) history within the class considered. 1In
Section 6 we show that this is no accident: a class of histories has
an efficient scheduler if and only if it is efficiently recognizable,
plus a regularity condition, namely that its set of prefixes is also
efficiently recognizable. By this result, the complexity theory developed
in Sections 3 through 5 is practically relevn#t, because the practical
question of tﬁe existence of an efficient scheduler for a given class
of histories is explicitly linked to the complexity properties of the
class. Another 1-plica;ion is the n.gatiit result that, unless P = AP,
there is no efficient "serializer" of histories, and hence considering
efficient but more restrictive schedulers--such as the ones discussed
above--is a reasonable alternative. Finally, Section 7 concludes our
treatment of the subject. We discuss there a number of possible exten-
sions of our results such as to general (multi-etep) transactions and

distributed databases.



2. DEFINITIONS-NOTATION

‘A history is a quadruple h = (n,T,V,S), where n is a positive
integer; T ié a permutation of the set En =‘{Rl,wl,Ré,wz,...,Rn,Wh}--
that is, a one-to-one function ﬂ:Zn-*{l,Z,...,2n}--such that
W(Ri) <1r(wi) for i=1,2,...,n (a éermutation T is represented by
<“-1(1),W-1(2),...,w'l(zn)>); finally, S is a function mapping Zn to
2V, where V is a finite set of variables. Each pair (Ri’wi) will be.

called a transaction T,. S(Ri) will be called the read set of T,, and

i i’
S(Wi) its write set. We shall represent histories in a compact way by
exhibiting T, with the gsets S8(-) given in brackets following each
element of Zn. For example, the history h = (3,<R1,R2,W1,R3,WZ,W3>.
Ax,y},8) where' s(R)) = 8(R;)) = {x}, S(R)) = @, 85(W,) = {y}, and

Q(Wi) L S(Wz) = {x,y} is represented as
h = R, [x]R,W, [x,YIR; [x]W, [x,yIW, [y].

The set of all histories is denoted by H.

We can think of each transaction T, as starting with an instantaneous

i
reading of the values in the variables in S(Ri), performing a possibly
lengthy local computation and then instantaneously recording the results
in‘a different set S(Wi) of variables. We do not look into the details
of the exact nature of the local computation. In fact, we view each
transaction T, as a set of 'S(Wi)l uninterpreted IS(Ri)l-ary function
symbols '{fij:j=1,...,ls(wi)|}. T is the sequence in which these atomic
read and write operations take place. Thus, a history can be viewed as a

special case of a fork-join parallel program schema, in which the local
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computations involve a number of local temporary variables ti y and are
executed in parallel with other read-write operations (see Figure 1).

The concatenation of two histories hl- (n,ﬁ;v,S), h, = (m,P,V,T)
is a history h1°h2=- (n+m,T,V,P), where P(wi)‘-S(\Wi) if i<n, and
P(W)=T(W, ) for i>n. Similarly, P(R,)=S(R,) if i<n, and
P(Ri) =T(Ri-n) for i>n. Also T(Wi) -w(wi) if i<n, and
T(Wi) = b(Wi_n)-_i-z‘n for 4 >n, T (R{) = n (Ri) for 1 s n, jr(Ri);- pi(Ri__'n)'+2n for
i>n. 1In other words hih2 is a juxtaposition of the two histories, only
with the transactions of h -

2 renamed. Thus, if

hl = Rl [x] R2 [y] W2 iyl R3w1 [z]W-3 iyl

h2 = Rl[er]Rz [x]wl [Y]wz‘[z] ’
then

hy o h, = R [xIR, [y]W, [yIR,¥, [2]W, [y]R, [x,¥]R; [x]W, [yl¥lz].

We say that two histories h1= {n,7,v,8) and h2= (n,n',V,8) are
equivalent (written hy E h2) if and only if the correspohd:l,ng schemata are
(strongly) equivalent. In other words, given any set of | |V | domains for
the variables, any set of initial values for the variables from the
corresponding domainsg, and, furthermore, any interpretation of the functions
£,

ij
histories. Notice that our definition of equivalence requires that the two

, the values of the variables are identical after the exscution of both

histories involve the same set of transactions. Thus h1=R1[y]R2W2 [lel [x]

is not equivalent to h, = Rl[y]W:L [x], despite the fact that their corresponding
schemata are equivalent (essentially because T, is "dead" in hl)' This is
a matter of convenience, and little change to our derivations would be

necessary in order to broaden equivalence in this sense.




To give a syntactic characterization of equivalence, it is necessary
to first introduce some terminology. Let h= (n,7,Vv,S) be a history.
The augmented versionm of h is the history h= (n+2,T,V,S), where
T= Rl ™01 T Rne2 W42
and also S(Rn+1) 85(Wn+2) =g, SMW 1) =$(Rn+2) =V, 1In other words, h

> and S(R,) =S(R)), S(W,)=SMW,) for i<n,

is h preceded by a transaction that initializes all variables without
sensing any, and followed by‘ a transaction that reads the final values of
all the variables, without changing them. Suppose that x€s(l!i) . We

say that R

, reads x from W, in h if W, is the latest occurrence

3 3

of a write symbol before R, in kR such that xEs(wj). Notice that

since h _contains W, Wwith S(W )=V, sucha write symbol always

1
exists. The definition of a live transaction in h is as follows:

a. T ., is live in h.

b. If for some live transaction T reads a variable from W

R i

R

in h, then 'ri is also live in h.

¢. The only kinds of live transactions in h are defined by {a)
and (b) above.

The following is now a simple syntactic characterization of history

equivalence, essentially a restatement of the characterization of schema

equivalence in terms of Herbrand interpretations, [LPP]:

PROPOSITION 1. Two histories hl== {(n,m,V,S) and h2= {n,n',Vv,8)
are equivalent if and only if they have the same sets of live transactions,

and a live Ri reads x from wj in hl if and only if Ri reads x

from W, in h2. o

3




One of the implications of Proposition 1 is that, equivalence of
histories can be decided efficiently. ‘The sets of live transact;ions can
be found in O(n- |V|) time by applying the recursive definition given

above, and so can the reads from relation for transactions. Hence we have:

COROLLARY. Equivalence of histories can be decided in O(n- lVl)

time. o

The main theme of this paper is the notion of serializability. A
history h= (n,Tm,V,S) is serial if T(W,) =m(R,) +1 for all i=1,2,...,n

in other words, a history is serial if R, immediately preceeds W, in it

i
for i=1,...,n. A history h is serialisable (notation: h€SR) if and
only if there is a serial history hs' such that hZh_. In the next
section we shall present a syntactic characterization of serializable

histories analogous to (and based on) Proposition 1.
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3. THE COMPLEXITY OF SERIALIZABILITY

In order to examine the complexity of the serializability problem,

we need first to introduce some graph-theoretic terminology.

DEFINITION 1. A polygraph* P= (N,A,B) is a digraph (N,A) to-
gether with a set B of btpaths; that is, pairs of arcs--not necessarily

in A--of the form ((v,u) fu,w)) such that (w,v) €EA. o

Alternatively, a polygraph (N,A,B) can be viewed as a family D(N,A,B)
of digraphs. A digraph (N,A") is in v(n,i,n) if and only if A A,
and for each bipath (al.vaz) €B, A' contains at least one of a . a,.
Polygraphs will be represented schematically as in Figure 2a. Arcs in A
will be drawn as ordinary arrows, and pairs of arcs in B will be marked

by a circular arc centered on their common node.

DEFINITION 2. A polygraph (N,A,B) is acyclic if there is an

acyclic digraph in D(N,A,B). a

For example, the digraph of Figure 2b is both in D(N,A,B) and
acyclic; it follows that (N,A,B) of Figure 2a is acyclic. Notice that
for a polygraph (N,A,B) +to be acyclic, the digraph (N,A) must
definitely be acyclic.
Given any history h= (n,m,V,S) we are going to define a polygraph
P(h) = (N,A,B). N is the set of live transactions of h, the augmented version

of h. PFirst, A contains the arcs {(Tn+l,v) :v€N—{Tn+l}}, and also the

*
We insist on this terminology only because it has already become
notorious for its impropriety.
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arcs {(v,T }}. Secondly, whenever transaction u reads

n+2) v € N.{Tnd-

2
some variable x from v in h, we add the arc (v,u) in A. Further-
more, if for a third transaction w, x is in the write-set of w, then
v;e add the bipath ((u,w),(w,v}) in B. This concludes the construction
of P(h).

Intuitively, P(h) captures a partial order that can be interpreted
as "happened before”, and with which any history that is_ equivalent to h
must be consistent. Each’u:c (v,u) n\mm:*that Vu, re;’;om variable
from v and hence must follow i‘tir.mwh;:lg, a bipath ((u,w),(w,v)) means that
wwritizon,thouumiable.andhoncncmtbeinbctw«n.v and u; |

it must either precede v or follow u. This is stated as a lemma:

LEMMA 1. Two histories hl- (n,7,v,8) and h,= (n,7',V,S) are

equivalent if and only if P(h,) and P(h,) are identical. -

2)
Proof. Both directions follow from Proposition 1 and the definition

of P(h). ' a

LEMMA 2. A history h= (n,7,V,S) without dead transactions is seriali-

zable 1if and only 1if P(h) 1is acyclic.

Proof. If h is serializable, there exists a serial history hs
such that h.=.hs or, by Lemma 1, ?(h) -P(hs). However P(hs) = (N,A,B)
is acyclic. To see this, let ('rl,...,'rn) be ordered according to their
occurrence in h_. We construct a digraph (N,A') eD(P (h.)) as follows:
A' contains the arcs in A, and for each bipath ((Ti,Tj).(Tj,Tk)) in

B we add to A the arc (Ti-',Tj) if i<j, er (‘l’j,Tk) if j<k. To
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show that exactly one of these must occur, recall that in h, T4 reads

a variable x€S(wW,) from Tk’ and hence k<t-’., and not h<j<i.

3
Consequently the above construction yields a digraph (N,A') in
D(P,A,B). Next, notice that (N,A') is acyclic since it is a subgraph

of the total order ( ). So, P(h) is also acyclic.

Tn+l'Tl' e ,'1“",'1‘“’_2
Now, let (N,A') be an acyclic digraph in D(P(h)). The serial
history hs resulting from topologically sorting (N,A') is then equi-
valent to h. This follows from Pfoposition 1 and from the fact that
siﬁce one of the two arcs of each bipath in B is in A', all transactions

in hs read all variables from the same transaction in h as they do in

h_. , ' o
S

Unfortunately, the combinatorial chardcterization of serial répro—
dugibility shown in Lemma 2 does not directly suggest an efficient test.

In fact, the theorem below is strong evidence that no such test exists.

THEOREM 1. Testing whether a history h is aerializable is NP-
complete, even if h has no.dead transactionms.

In order to proceed with the pioof of Theorem 1 we first need another
lemma. It is well known (see [AHU],([Xa]) that the satisfiability problem
of Boolean formulas in conjunctive normal form with two or three literals
in each clause (abbreviated SAT) is NP-complete. We can show that a more
. restricted version of this problem is still NP-complete. Call a clause
mixed if it contains both variables and negations of variables, and call a
formula noncircular if at most one of the occurrences of each variable is

in a mixed clause.
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LEMMA 3. SAT is NP-complete even if the formulae are restricted

to be noncircular._

Proof. Consider any instance F of SAT and a variable x in it.
Let m be the number of occurrences of x in the formula F, and let
Xy i Xgreons Xy be new variables. We replace x in its first occurrence

by x4 in its second by x., in its third by Xy, etc. Finally, we add

2'
the clauses (x, VX)) A (x; VX,) A (X, VX;3) A (X, VX ) A ..., which is the

conjunctive normal form of x15§25x3 §4.=. .++. Repeating this for all
variables, we observe that the resulting formula is trivially noncircular,

and the construction requires only a polynomial amount of time. e

Proof of Theorem 1. The set of SR histories is definitely in NP,

since to show that h is SR, one only needs to construct a serial history

hs {(of length not greater than that of h), and check by Proposition 1 that

h and hs are equivalent.
We will next show that a known NP-complete problem, the noncircular
SAT problem of Lemma 3 above, reduces to SR-testing in polynomial time.
Given any such formula F, we are going to construct a polygraph

PF= (N,A,B) such that P_ 1is acyclic if and only if F is satisfiable.

F
We will then show that PF can be considered as P(h) for a suitable

history h, without dead transactions. In view of Lemma 2, this will

conclude the proof.

We. start from the construction of PF= (N,A,B). F has m ciauses

C,s+..,C_and involves n Boolean variables x,,...,x . Each clause C
1 m 1 n i

consists of three literals A 1Y A V)‘iB’ where A is either a variable

1Y %42 ik

or a negation of one. N contains the nodes .:-1j R bj’ ¢, for each variable

h|
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xj,' and ¥y, 240 k= 1,..,m for each clause C Vith m, literals. For

)»

i

each variable x, we add the arc (a ) to A, and the bipath ((b

b
k| 3’73
(cj,aj)) to B. For each clause Ci , we add the arcs (yik’zi,k-l-l)

1°%

(addition mod mi) to A. Final}.y, if }‘ik - xj , we add the arcs (cj’yik)
and (bj’zik) to A, and the bipath ((zik’yik)’(yik'bj)) to B. If A, = ;j’

then we add the arcs (zik’cj) and (yik,a ) to A, and the bipath ((aj,zik),

b

)) to B. For example, if the literal }‘ik, is xj,

(z the subpoly-

ix Yix
g-raph’ of Pigure 3 will appear in PF' »
.,‘Finally, we add to N the nodes By R, and nf,; together with the .
arcs (no,n),, (n,nc) and (n,nf) for all n€N~{no,qc.nf}, and also the arc
(nc,nf'). This concludes the comstruction of 'PF‘ In Figure 4a we lllustrate

the construction for the Boolean formula

F = (xlvxz)/\ “‘1""2""3“‘"‘2'"3)'

Por simplicity, in Figure 4 we have omitted the nodes n, and n

0 £’
'We will now argue that P, is acyclic if and only if F is satis-

fiable. Suppose that P is acyclic. This meéms that there is an acyclic

F
digraph (N,A') ED(PF) . Obviocusly, for each j, exactly one of the edges

(bj.cj) and (cj.aj) is in A'. Think the fact that (cj,a)EA'

]
means that xj is assigned the value true We may immediately note that

if a literal )“ik is given the value false by this assignment, the

corresponding arc ( ) 1is also in A', since oth‘erwi.se, a cycle of

Zik'Yix
- = % - 8 ' i ' ' .
the form (cj'yik'bj) -or (zik'cj'aj) if Xik x:i -would exist in (N,A')

Hencé, the only way for (N,A') not to have a cycle of the form

CIPRR FERLTPIARERS FP

) is that at least one literal in each clause is
assigned the value #rue, which meansvthat ‘!' is satisfiable.
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Conversely, suppose that F 1is satisfied by some truth assignment
T. We will construct an.acyclic digraph (N,A') €D(PF) . A' contains
all of A and the arcs (cj,aj) if T(xj) = true, (bj’cj) if
Zix'Yix
}‘iks’-‘j and T(xj)strue, and (ilj,zik 3
Obviously, (N,A') is in D(P,); the claim is that it is acyclic. We

T(xj)sfal'se, and the arcs ( ) if T(Xik)sfalse, (yik,bj) if

) if Ajk:xj and T(x,) = false.
first note that since F is by hypothesis noncircular, (N,A) is acyclic.
This is because by the construction of A, the clauses containing
variables only or negations only correspond to node sets with only in-

coming 6:, respectively, only outgoing arcs; node sets corresponding to
| mixed clauses have both incoming and outgoinq.arca, but no two such node
sets are reachable from each other in (M,A), by F's noncircularity; it
follows that (N,A) is indeed acyclic. It is easy to check that the arcs
in A'-2 can‘ harm the digraph's acyclicity only by introducing-a
(zil.yu....,yﬁ) cycle; however, this would mean that some clause has
no true (under T) literal, and hence T does not satisfy P, a contra-
diction. In Figure 4 we show in brokenlines the arcs of an acyclic
digraph in D(PF); this digraph corresponds to the truth assignment
T(xl) = true, T(x,) = false, T(x,) = false which satisfies F.

In order to conclude the proof we need to construct a history h

such that P(h) -PF. All nodes of PF correspond to distinct transactions.

To construct the read and write sets of the transactions (except for

ho,nc and nf), we start by having all read sets empty, and a variable x,
in the write set of each tramsaction v. For each arc (v,u) € A we add a
variable X to the write set of v and the read set of u, and for each

bipath ((v,u),(u,w))EB we add X, to the write set of u. Finally,
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R(n0)= g, W(n0)= {xv:VGN} {xuv:(u,v)EA} = R(nf), R(nc)- {xv:uGN},
W(ng) = g, W(n,) {xuv:(u,v)EA}. In order to sketch the construction of
h, we represent the read and write operations corresponding to the node

v of PF by R(v),W(v) respectively. We use v to stand for R(v)W(v).

We start the construction of h from left to right. First, for each clause
C, consisting of just negations we add the subhistory h(C,) =y, ...V, -

i i i1 imi
Next, for each variable x

3

C-" j)zx = xj) we add the subhistory h(xj) = R(aj)zimch(aj)R(bj)yzRW(bj) .

The =z ym PATt appears qnly if C i is purely negated and A P ij . Further,

that appears unnegated in the mixed clause

(1.2

if A = xj for some purely unnegated clause Cp then y appears also

P4 Pq
after y ok * Then follow subhistories corresponding to the remaining
variables. If xj does not appear unnegated in a mixed clause, then we
add to h the subhistory h(xj) - R(aj)zmch(aj)R(bj)ymW(bj). Again,

Y.g appears only if ;!.R - xj for some purely unnegated clause C 2 and 1if

?J also appears in a purely negated clause CP (qu = EJ) then qu comes
after Zim® Finally, we have h(C 1) = ZyqeeeZyn for each purely negated

i
clauge C 10 and at the end the tramsaction n..

To argue that PF = p(h), first note that all (y ) (mod mi)

13°%13+1
arcs are realized by h, and that the subpolygraph of Figure 3 is realized

for each xj = A:I.k’ and the symmetric subpolygraph for ;j = AiR'

Furthermore, it is quite easy to check that no other arcs and bipaths are

added by the construction. Hence PF = P(h), which completes the proof of

Theorem 1. ]
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4. EFFICIENTLY RECOGNIZABLE CLASSES OF SERIALIZABLE HISTORIES

Given that SR is NP-complete, it is reasonable to look for subsets of
SR that are efficiently recognizable. In this section we study several

such classes of serializable histories.

4.1 The Class DSR

DEFINITION 3. Let hls(n,'lr,v,s) and hz-(n,‘rr',v,S) be histories.

We write that h, vh, whenever T(0) =7'(g) for all O'EZn except for

two elements 0,0, € Zn with 'n'(al) =7'(0,) =3, n(uz) = v'»(ol) = j+1 for

some 1<3j<n-1, and either

a. 0,=R,, 0,=R, for some i, j<n, or

1 it T2 b
b. 0‘1=Ri, 62=Wj, i¥j3, 1, jfn, and S(Ri) nS(Wj)=¢, or
c. 0'1=Wi, 62=WJ., i, 3<n, and scwi) nsfﬂj')'=¢. C a

As an illustration, we have that

Ry [x} R, [x]W, [x]W, [y] Vv R, [X]R, [xIW, [y]IW, [x] ~
R, [XIR, [x]W, [yIW, [y] V R, [xIW, [yIR, [x]W, [x] ,

because at each step the next history is obtained from the previous one by
switching two adjacent symbols obeying one of the conditions (a), (b) and
(c) of Definition 3 above.

The following is a direct consequence of Proposition 1 and the above

definition:

PROPOSITION 3. If hl’\lhz, then h1=h2. . o




*
ILet -~ be the reflexive-transitive closure of ~. Since -~ |is

symmetric, % is an equivalence relation which is, by Proposition 3, a

restriction of 3. We can show that > is a proper restriction of =

by observing that for the two histories

hl - R3[xlklw“i£x]Rz[Y].w2w3[YJ
and

h, = R,[yIR,I[x]W, W3[y]R1V1[;]
we have

hl = h2 ’
but

hy ) h, .

We say that the history h is D-lca'iqlizablc (DSR) if there is a serial
history hg such that h £ hg. cbvibu.1y, if a history is DSR, it is
certainly SR.

We can associate with a history h= (n,m,v,S) a digraph D(h)
defined as follows: The nodes of D(h) are the transactions {Tl,...,’rn}
of h, and the pair (Ti,'I_‘j) is an arc of D(h) if and only if either

a. S(Ri) nsmj) e and ‘lr(Ri) <1§(wj), or

b. S(lli) nsmj) gP and 'rr(wi) <T7(R,), or

3

c. S(Wi) ﬂS(Wj) g and ‘n’(Wi) <m(wW,).

3
LEMMA 4. Suppose that for two histories hl== (n,m,v,8) and
h, = (n,m*,v,S) D(hl) and D(hz) have no cycles of length 2. Then

* . .
hl ~ h2 if and only if D(hl) = D(hz).
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Proof. It should be obvious from the definition of D(h) and the
~ relation that whenever hl ~ h2 , also D(hl) - D(hz) . ‘ Conséquentiy}

* : .
hl ~ h2 implies D(hl) =D(h2).

For the other direction, assume that D(hl) -D(hz) . We shall

transform h2 to h1 by a sequence of ~ transforinations as follows;b

Take the symbol in Zn that is the first symbol in‘ h, (i.e., 1r_1(1))

‘ 1
and bring it to the first place of h, by successively switching it with all

symbols preceding it in hz;‘ then take “-1

(2) and bring it to the
second position by switching it with all symbols precodiné it, except |
17_1(1); and so on, until h2 is transformed to hl. It remains to show
that all these switchings have been legai ~ transformations. Suppose .

1 2
allowed by Definition 3; that is either

that at some time we had to switch 0. with 0. in a manner not

1 71" T2 i
is not a history.

a, O.=R O,=W,; this means, however, that in h,, !!1 precedes

Ri' and hence hl

b. g =Ri' o =WJ. and -S(Ri)ns(w )5 # @. This would mean

1 2
however, that (Ti’ T

3

j) is in D(hzy) and (T,,T;) isin D(h,). Since

D(hl) and D(hg) have no cycles of length 2 we can conclude that

D(h,) # D(h,).

c. Similar}.y for 01=W r G, =W

o Op=Wy and s(wi)ns(w)#ﬁ- o

3

We can now prove the following Theorem.

THEOREM 2. A history h= (n,w,V,S) is DSR if and only if D(h)

is acj'clic .

Proof. Suppose that D(h) is acyclic. We can thus sort

_topologically the set {Tl,...’,'l‘n} of nodes of D(h). Think of this




order as a serial history hs. It is imediate that D(hs) =D(h), and
hence, by Lemma 4, h z hs. It follows that h is DSR.
For the other direction, assume that h is DSR. We have two cases
a. D(h) has a cycle (Ti’Tj'Ti) of length 2. This means that
T(R;) <T(W,) <W(W;), and S(R)NSW) # @, SN (SMYUSRY)# 8. It 1a
easy to show that in all histories h' for which h 2 h' .we will also
have T'(R)) <T'(W,) <T'(W,), as othervise h &h', and: h ¥ n', by

Proposition 3. Hence there is no serial history h_, such that h Xn

S s’

a contradiction.
b. D(h) has no cycles of longth 2. By Lemma 4, there is a serial
history hs such that D(h) -D(hs) . However, serial historiés hs

have acyclic D¢h and hence D(h) - is acyclic. a

s)'

Theores 2 suggests that histories that are DSR can be detected

efficiently by checking D(h) for acyclicity:

COROLIARY 1. Checking whether a history h= (n,7w,v,S) is DSR can

be done in O(|Vln2) time. o

Also, we can rephrase Theorem 2 as follows (compare with

Definition 4 below):

COROLLARY 2. A history h= (n,m,V,S) is DSR if and only if we can
find real numbers {Sl,...,sn} such that
. . ) < . . < 8..
a If S(Wi) ﬂS(RJ) # @ and W(Wl) 'n'(RJ) then Sl SJ
- < . . < ..
b If S(Ri) ﬂS(Wj) # @ and W(Ri) 'rr(wj) then S:L SJ

Cc. If S(Wi) ﬂS(Wj) £ @ and ‘n’(Wi) <TT(Wj) then Si < Sj. 2]
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4.2 :The Class O

DEFINITION 4. A history h= (n,m,V,S) is in Q if there exist

non-integer, distinct real numbers § 'sz""'sn with the following

1l
properties:
a. TT(Ri) < Si<‘n'(wi)
b. If S(Ri)nS(Wj) ¥ @, i¥j and ﬂ(Ri)<‘n’(Wj) then Si<Sj |
C. If S(‘Wi) n-S(Wj).#Q and TI'(Wi)<ﬂ’(W') then §,<S,. 0O

3 O
The real numbers Syreees8 in Definition 3 are called geriali-
sability points. Their intuitive meaning is that the history h is the

same as though transac.tion T. had executed indiv:Lsibly at the time

1

instance S (during which, by (a) above, it was active), transaction

l
',ﬂa [ 1 82, and so on. As an illustration, the history

h = R, [xIR, [z]W, [Y]IR, [2]W, [x]W, (y]

is in the class Q, since the values S =3.5, 32-2.5, and 83-4.5

1l
satisfy, as the reader can check, the requirements of the definition.

The class Q was independently introduced by [Wo].
THEOREM 3. If h is in Q, then h is DSR.

Proof. Conditions (b) and (c) of the definition of the class Q
above are identical to (b) and (c) of Corollary 2 to Theorem 2. Hence
bit suffices to show that condition (a) above implies condition (a) of
Corcollary 2. But this is immediate, because if 'n'(lli) <1T(Rj) we have

that Si<'n'(Wi) <m(R,) <S

3 3

. NO matter what S(Rj) and scwi) are. o
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Given a history h= (n,7,V,S) we can construct another digraph
D' (h)--a superdigraph of D(h)--with node set again ' {'1‘1,. .o ,-rn} and
('ri,'rj) an arc if and only if one of the following holds

b. w(ni) <7m(w,) and s(ni) NsW,) ¥ @

3 b
c. w(wi)<1r(wj) and stwi)ns(wj) ¥ @,

In other words D'(h) contains all the arcs of D(h) and possibly some

other arcs for the cases in which ‘u‘(wi) <'u'(nj) ‘and S(Rj) ns(wi) =g,

THEOREM 4. The histoxry h= (n,7,V,8) is in the class Q if and

only if D'(h) is acyclic.

Proof. Suppose that h€Q, and let sl""’sn be appropriate

numbers. Without loss of generality sl<82< ese & sn' We shall show that

wheanever ('J.'i,'rj') isin b'(h), then 1i<3j. Suppose that i>j.;bythe

definition of D'(h) one of the following must hold:

a. w(ﬂi) <1r(Rj). 'However, S <w('12 <m(R,) <S,, which contradicts

i 3 p|

our assumption that Sl<sz<--~<sn and 1 > j,

b. W(Wi) <T(W,) and S(Wi) NS(W,) # #. By (c) of Definition 4,

3 3

however, S:.L <s 3 again a contradiction.

- ‘Ir(Ri) <7(w,) and S(Ri) ns(wj) ¥ @. Similarly, a contradiction

3
is reached by (b) of Definition 4.

Consequently, D'(h) is acyclic, since it is a subgraph of a total order.
For the other direction, suppose that D'(h) is acyclic. We can

sort topologically its nodes to obtain the order, say, (Tl'Tz"' . ,'rn) .

We can define the real numbers S_,S {for convenience)

1 '--.,Sn, and Sn+

2 1

as follows:
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a. sn+l = 2n+1

b. sj = mih{sj+1,1r(wj)} - Ki'f , j=n, n=1,...,1 .

k'I‘t is clear that the sj 's are distinct, increasing, non-integer
real numbers, and that they satisfy (b) and (¢) of Definition 4. It
suffices thus to prove (a) of Definition 4, in particular that s, *M(R,)

i

for all i. Suppose that, for some i, S, < T(R,). Let J be the

i
smallest index, no smaller than i, for which W) <8, +1 Thus
- st 5 § -
s, = ) -t -1

Consequently Tw(R,) >7(W,) - 1, or 'lr(Ri) >W(W,). Hence (TJ'T;L) €A,

3 3
which contradicts the fact that j2i in the topological sorting of

pD'(h). ‘ 4]

COROLLARY. Testing whether a history h= (n,m,V,S) is in Q can

be done in 0(|V|n2) time. o

4.3 Two-Phase Locking and the Protocol P3

A very influential proposal for guaranteeing serializability of
“update systems has been the two-phase locking mechanism of [EGLT]--also
discussed extensively in [BS]. Also, the essence of a quite different
serializability principle (which was used in the develophent of the S8D~1

distributed system [RG], [BGRP]) is captured by the so-called protocol P3
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(see [BS]). In this Subsection we show that these two different
philosophies of serializability are reduced, in our model, to two
efficiently recognizable incommensurate subsets of our class DSR.

The two-phase locking strategy requests and releases actual locks--
i.e., mechanisms that guarantee exclusive data access--during the execution
of the different operations of an update. The rule that is proven
sufficient for guaranteeing serializability is: never roquut' a lock
after a lock has been released. We have, therefore, two phases: one
during wvhich locks may only be requested, followed by one during which
locks can only be released. The first release of a lock delimits the
two phases. In our model of two-step updates the authors of [BS] note
that two-phase locking for a higtory h= (n,7,V,S) essentially amounts

td dividing the interval from w(R,) to ‘""5’ into two intervals:

3
one during which no symbol w, with S(Rj) ﬂS(lliH‘ @ can exist, followed

by one during which no sysbol OEL, with 5(0)NS(M) ¥ @ can exist.

This is captured by the following definition:

DEFINITION 5. A history h= (n,m,V,S) is two-phase locked
{(notation: hE€2PL) if and only if there exist distinct non-integer real
numbers £,,...,% (the lockpoints) such that

- & “(Ri) <21(N(W1) for i=1,...,n

b. If S(Ri) ﬂS(Wj) ¥y g, i#j and T(Ry) <1r(Wj), then R,i<2j

c. If S(Wi) nS(Wj) # g and W(Wi) <1|'(Wj), then 1T(Wi) <£j. o

To understand Definition 5, consider a transaction (Rj,wj) in a
history h€ 2PL, and its lockpoint R’j' The intuitive meaning of the

lockpoint is the following: during the interval [1r(Rj) L.1 all

3
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variables in S(R,) are "protected" from writing by other transactions,

3

by virtue of (b). Also during the interval ([% ,‘rr(wj)] the variables

3
in S(Wj) are protected from reading and writing. Conditions (b) and

(c) therefore essentially say that the interval [%,,T(W,)] overlaps

3 3

no int.grval ['Q'k'“(wk)] with S(Wk) Ns(W,) ¥ # and no interval ['rr(Rk),R,k]

3

with S(Wj) nS(Rk) # $. Thus, the second lock is granted before the first

is released, in accordance with the two-phase locking principle.
Although Definitions 4 and 5 differ only slightly in condition (c),

thé latter is a substanti;l restriction. First, we notice that 2PL c Q.

Indeed, if h€2PL then the lockpoints 21,. e rf are automatically

valid serializability points S in Definition 4. To see this,

1,...,Sn

just notice for that condition (c) of Definition 5 (1T(Wi) <f.) together

3
with (a) (2i<1r(Wi)) imply (c) of Definition 4 (namely, sy < Sj).

70 ghow that the inclusion is proper, notice that for the histqry

h = R,R,R, [x] W, [x]w2 [y.z]W3 iyl

we have that h€Q (see Figure 5a for D'(h)) but h £ 2PL. The ex-
planation for the iatter fact is that transaction 3 has no lockpoint 13.
since, if it had, £, should obey f£,<%, <4 (by (b)) and also 2> 5
(by (c)).

We can, however, chéck very efficiently whether é history h is
two-phase locked. Given any history h= (n,w,V,S) w;e define the history
h* = (2n,7*,V,S*), where h* is obtained from h by inserting a
)=9,

1 *
transaction Rn+ after Wj in h for j=1,...,n; S (Rn+

3' "+ 3

and S*(Wn+j) = S(Wj). For example, the history h* for h of the

example above is




~258..

Figure 5
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h* = R)R,R, [x]W, [X]R W, [x]W, [y, 2]R W [y, 2]V, [YIR W [y] .

THEOREM 5. For a history h= (n,T,V,S) hE€2PL if and only if

h*€Q.

Proof. Let {2 ,...,Ln} be a set of distinct non-integer real
numbers, and let a(j) be the number of positions to the right that the
symbol T T(j) was shifted in h*; in other words a(3) =2-|tugsmew,) <3}
Consider the set ’{Sl,...,szn}, vwhere S =% +a([%1) for i<n, and
Sy=mW,_ ) +a(mW,_)) +3/2 for i>n. We claim that {2} is an

acceptable set of lockpoints satisfying Definition 5 if and on;y if

'{Sj} is a set of serializability points according to Definition 4. Both

directions follow from the definitions. The formal derivation is

| omitied, ' 9

To illustrate the theorem, the history h above is in @, since
D'(h) 1is acyclic (Figure 5a). However, it is not in 2PL, because D' (h*)

is not acyclic (Figure 5b). Naturally, Theorem 5 ylelds

COROLLARY. Testing whether a history h= (n,w,V,S) 1is two-phase

locked can be done in o(nzjV|) time. o

We now turn to formalizing and studying in our model the protocol P3
of [BGRP] and [BS]. Recall the digraph D(h) defined for any history h

in Subsection 4.1--see Figure 6a for an illustration in the case of

h = Rl[z]R3W3[x]R2[x]W1[z]R‘W2[y,zlw4[x] .



-27=

Figure 6

DEFINITION 6. Let G(h) be the undirected graph corresponding to
D(h)--Figure 6b. A cycle in G(h) is a sequence (!‘i- o Ty ) of

1l m

R > 2 transactions such that [T ,T are edges of G(h),

]
, 1774
j=]1,...,m~1, and 80 is [Ti ,1‘1 ]. Notice that all edges are cycles
- m 1 ' X
according to this definition. A cycle (T, ,...,T, ) is bad if

1l m

[B(R, YUS(W, )INSs(w, ) ¥ g,
i- "n "1

S(R, )NS(W ) ¥ g . ' a
4 L,
Notice that in the above definition the first node of a cycle and
the order of listing of the nodes are important. For example, in
Figure 6 (’1‘1,‘1'2) is a bad cycle, whereas (Tz,Tl) is not. Bad cycles
are, intuitively, those cycles that can correspond to a directed cycle in

D(h') for some other history h' involving the same transactions.

DEFINITION 6 (continued). Let h= (n,m,V,S) be a history. We say
that Ty is a guardian of T, if there exists a bad cycle
(Ti,'rj,....'rk) in G(h). We say that h obeys the protocol P3 (notation
h€P3) if whenever 'rj is a guardian of T, we do not have T(R,) <?r(wj) <TW,).

o
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For example, consider the history h of Figure 6. The only bad
cycle in G(h)--Figure 6b--is (Tl,'rz) , and hence the guardian relation
is simple: Jjust T, is a guardian of '1‘1. Since '“(Wz) >1[(W1) , we have

that h€P3,

THEOREM 6. Suppose that h= (n,m,v,8) is in P3. Then it is also

in DSR.

Proof. We shall show that h€P3 implies that p(h) is acyclic.

Suppose that D(h) has a cycle (Tl’TZ""’Tm)’ m>2. Consider the arc

(T j’T j +1) of D(h) --addition mod m; we have three cases:
a. S(W.) nS(Wj+1) # @ and TI‘,(Wj)‘<'n'(Wj+1).
b. SMWINS(R,,,) #8 and TH) <TR,,,).
1) S(R ) NS(wW, +1) #@ and W(Rj)<1l'(wj+1 .
‘Notice that in both cases (a) and (b) we have that w(w )< w( j+1)’ and

that moré than one case may be applicable td the same arc. Case (c) is
split into two subcases.

(cl)l Cases (a) and (c) do not apply to the arc (Tj_l,Tj).

(e2) 3 =1, or case (a) or case (c) applies to (Tj-l’T ).

b
In case (cl) we have that w(wj_l) <1T(Rj) <‘1r(wj+1). In case (c2), however,

"we notice that Tj +1 is a guardian of Tj' Consequently, since w(Rj) <
m( j+l) we must necessarily have that TI’(Wj) <nw(W j+1)
Now, consider the operations Oj,j 1,...,m, where Oj = Rj if

case (cl) is applicable to the arc (Tj j+l) , and Oj - Wj otherwise.
We have shown that w(Oj) < 1r(0j+1) for j=1,...,m (addition mod m).

This 1s a contradiction, since it implies that n(wl)q(wl). O
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Theorem 6 implies the following, independently proved in [BS].
COROLLARY. Histories that obey the protocol P3 are serializable. O

Our next result concerns the complexity of recognizing those historieé
that obey protocol P3. By tﬁe definition of this class, this complexity
is determined by the complexity of computing the guardian relation among
the transactions in a history. We shall show how this relation can be
computed efficiently. For each transaction T 3 let T(T j) be the set
i that satisfy S(Rj) ns(wi) ¥ §. Thus, I'('rj)
is the set of all ttanuctioné that are possibly gquardians of T 3 To

of all transactions T

determine whether a transaction 'I.'iEI‘('r ) is indeed a guardian of 'rj.

3

we delete all edges ['rj,'rkl such that S(Wj) n (S(llk) US(Rk)] =g from

G(h), and then determine whether 'i‘i and Tj

component of the resulting graph. This can be done in o(n?) time by

are on the same b_icoanected

the algorithm of [Ta]. If Ti and Tj are on the same biconnected

component, this means that there is a bad cycle ('rj,'ri,...,'rk) in G(h),

and hence '1‘i is a quardian of Tj; otherwise,-it is not. Repeating this
2

for all Tj's, we get an algorithm of total complexity 0(n2(|V| +n7)).

Hence we have



THEOREM 7. Testing whether a history h= (n,m,V,S) €P3 &an be

done in 0(n2(|V|+n2)) time. o

4.4 The Class SSR

Certain histories, though perfectly serializable, have a curious--and,
according to some, undesirable--property. Consider, for example, the

history

h = R [XIRW,[XIR M, Iy, 2]W, [y] .

This history is serializable. However, the only serial history equi-

valent to h is easily shown to be

What is interesting ig that in h transaction 2 has completed
execution before transaction 3 has started executing, whereas the order
in hS hasv‘ to be the reverse. ' This phenomenon is quii:e co_unterintuiti‘ve,
and ‘it has been opined that perhaps the notion of correctness in frans-
action systems has to be strengthened so as to exclude, besides histories

that are not serializable, also histories that present this kind of

behavior. This leads to the following definition:

DEFINITION 7. A history h= (n,w,V,S) is said to be seriglizable
in the etrict sense (notation: hESSR). If there is a serial history
hs-a (n,n',V,S) such that hEhS, and H(Wi) <1r(Rj) implies

’n"(Wi)<TT'(Rj). < . ' ‘ o
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It is not hard to verify that all histories in the class Q satisfy

Definition 7. To see this, recall that a history h in Q has a set of
iali ili i ese < = s =z h.
serializability points sl < 82< Sn' say, such that hs lel Rnwn h

Now, if w(wi) <1r(Rj), we have, by the definition of si, S <1r(Wi) <'n‘(RJ.)

i
< Sj' and therefore i< j. Hence transactions i and j have the same o
order in hs that they have in h. It follows that Q c SSR.

Nevertheless, the classes Q and SSR are not the same, as con-

jectured by [Wol. A counterexample is

" h = R, [2]R, [2]W, [x,Z]R, [x]W, [x,yIW [2]R, [yIW,[x] .
This history is equivalent to the serial history
h, = R.l[z]wltx.ylkzlzlwz[x'z]R3[xlw3[z}R4[Y1W4[xl ’

satisfying Definition 7. However, h is not in Q; to check this, just
notice that the digraph D'(h) shown in Figure 7 is not acyclic. It is

not known whether the class SSR 1s efficiently recognizable.
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4.5 Summary

The topography of the set of all histories H and its subclasses
SR, S (the serial histories), Q, SSR, DSR, P3 and 2PL is depicted in
Figure 9. The inclusions shown either follow from the results of this
section, or are straight-forward. We also show below an example of a

history for each of the 12 regions in this diagram.
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Pigure 8

'1 [xlwl [xll'k2 [x]w2 [x]

’1 (::Jl!2 [!lkl [a:l!l2 yl

’1‘2‘3 [x] LY le_lz Iy.slw3 fyl
nl {x] R2w2 [x.ylwl [z]n3w3 [y.,z]

h, o h

3 4

R, [z]R1W2 [x,21R3 [x]W3 [z]W]_ [:mr]R4 [ylw4 [x]

R3 [x]lﬁwl [le2 [Y]W2W3 {yi

R2 [z]Pi {z]w2 [x,z]R3 [x]wl [x,y]w3 [21R4 [y]W4 [x]
31R3w3 [x]R2 [xlwl [x]W2 [x]

h7 ° h4

h, e hy

R1[x1R2[x]w1[x]W2[XJ
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5.  RESTRICTIONS ON THE READ- AND WRITE-SETS

It turns out that if we impose certain restrictions on the structure
of the map S of a history--i.e., the read- and write-sets of the trans-
actions in the history--the topography of H (shown in Figure 8 for the
genez?il""case) is simplified considerably. The most striking éubﬁfrékulf
is that of [SGLR]. A basic assumption in the model of [SLR] -—which is
otherwise more general than the present in that it allows more than two
steps-~-is that no database entity (or variable) is updutel, unless it has
been previously read. In our model and notation, this means that

S(W,) € S(R,). What is surprising, is that serializability, an NP-complete

3 3 v
predicate in our model, is efficiently decidable in theirs. We explain

this in view of our previous discussion as follows:

PHEOREM 7. Suppose that for a history h= (n,T,V,S) we have

s(w,) € s(R,) for j=1,...;n. Then h is serializable if and only if

3 3
h is in DSR.

Proof. It suffices to show that if S5(0;) NS(0,) # @ and

w(ol) <1|"(02) for 01. O'ZEZn such that at least one of -Gl, 62 is a

write symbol, then n'(ol) <1r'(0'2) in any history (n,m',V,S) equi-

valent to h. Suppose that O, =W, Oy=W,. s(wl) and s(wz) share

a variable x, which, by hypothesis, is also in S(Rl.): and S(Rz).

Consequently, in h T, reads x from either Tl

transaction which, by the same argument, reads x from another, ;nd 80

or from another

1
that in any serializable history there can be no dead transactions. Hence,

on, up to T. . Now, notice that the S(Rj) > s(wj) asntmption} iﬁplies




by Proposition 1, in any history (n,m',V,S) equivalent to h we must
also have ' (Wl) <7 (Wz) . The other two cases are settled very

similarly. _ o

It turns out that the rest of the classes of histories discussed
previously have a considerably simpler structure under the assumption
that S(wj) c S(Rj). We show below, without pmofn_th. corresponding

diagram. T

Qssse.

B

Figure 9

Under a different restriction on S, the class SSR coincid;s with SR.

THEOREM 8. Suppose that in a history h= (n,m,v,S) there is a
S\Iblat x- {ﬁ'lesnotxn}sv B\I.Ch mt for j-1'2'.-o'n we ha.VQ
(a) X E S(R )l (b) b 4

3 3
serializable if and only if h € SSR.

ES(wi) if and only if i=j. Then h is

Sketch of Proof. Imagine that the variable xj is a Boolean sig-
nalling whether transaction 'I'j has completed. Therefore, if Tj completed

in h before Ti started, the same must hold in any other history equivalent

to h. a
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6. SCHEDULERS OF HISTORIES

The practical importance of the classes of histories 2PL and P3
discussed in Section 4 stems from the fact that they are known to
correspond to simple s8chedulers. A scheduler for a class of histories
(to be defined formally below) .is generally an algorithm that takes as
an input an arbitrary history--possibly non-serializable--and returns a
history which is the "closest" to the given one among thpsg belonging to
the class. If the class is a subset of SR, therefore, the scheduler
guarantees that its output history is serializable. Such a scheduler
can be used in the serializability component of the database mag*genént
system. Of course, in practice one would expect that a scheduler operates

on-line and is reasonably efficient.

The history-input of the scheduler 19 the sequence of arriviné.
user requests; The output of the scheduler ié the actuﬁl execution
seqﬁence. The basic fact that makes our approach very different from
previous work on concurrency control which was motivated by operating
systems (e.g., the notion of determinacy of [CD]) is that the supplier
of this input history 1s a population of usera,‘eggh user being unaware
of the actions of the others. This impligs tﬁat ;hevorder of a;rival
of these requests has no gemantic conteq; whatsoevgr,.and therefore
the scheduler is not bound to produce an output which is equivalent
(or related in any prescfibed way) to the input. In fact, the operation
of the scheduler becomes interesting and important exactly when the
scheduler must necessarily transform the input to an inequivalent output,

because the input is non-serializable, say.
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There are, however, certain performance criteria that the input-
output mapping of a scheduler should satisfy. For example, a trivial
scheduler which guarantees serializability is the one that outputs
only serial.ﬁistories. This is, however, too restrictive a mechanism
to be of practical value. Intuitively, the richer the output class,
the more powerful the scheduler, beéguse a less restrictive class
of histories will require less reshuffling of the operations and will
cause fewer and shorter unnecessary delays. Idaally, we would like to
have a seriacliszer, whose output spans all of SR. Unfortunately,‘ we
shall soon see that the existence of such a practically useful device

is very improbable.

DEFINITION 8. The netricv d(.,.) on the set H 1is defined as
follows:

a. da((n,mV,8), (n,0,V,5)) = n-max{§:m +(i) = o 1(1), i=1,...,3}.

b. d4((m,m,v,8), n,p,W,T)) = if any one of my¥n, VW,

S¥ T holds. o

The distance between two histories defined on the same set of
transactions is therefore n minus the length of their longest common
prefix. Notice that d(.,.) satisfies the metric axioms. A variety of

other metrics would suffice for what follows.

DEFINITION 8 (continued). Let C be a non-empty subset of H.

A scheduler for C is a function A :H*C such that

a(h,A_(h)) = min{d(h,h'):K'€c} . a
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Thus, A can be thought of as projecting H onto C under the
metric d(.,.). Notice that Ac(h) and h will not be equivalent in
general. The metric d(.,.) requires thatk Ac leaves histories in C
intact, and, in fact, ‘it leaves intact as long prefixes of arbitrary

histories as possible.

Let us restate now the assumptions of our model of schedulers

(a). A scheduler Ac minimizes the d-distance between its input
and its output. This intuitively means that the scheduler operates on-
line, and, furthermore, that it acts in an optimistic way: As long as
the history seen so far could possibly be.extended5t0'a’correc£’history
(here by "correct history" we mean one which the scheduler, in its lim-
ited sophistication, recognizes as correct, or, equivalently, an ele~-
ment of C = AC(H» the scheduler does not intervene to rearrange read
and write requests. As a corollary, if the scheduler is fed wiﬂhvigl
own output, it leaves it intact; it is therefore idempotent, or a projéction.

This i8 a quite reasonable assumption to make. Although we cannot
totally exclude the possibility of schedulers that operate otherwise
(for example, anticipating future requests that will make the history
non-gserializable), all schedulers proposed in the past satisfy this
assumption. Any scheduler implemented by natural comstructs such as locks
[KP], [EGLT] or queues has this property.

(b). Among all histories in C that have the longest possible common
prefix with the input history, Ac selects any one as its output. Clearly,
in practice this choice would be made so as to minimize some more refined

metric d'. However, the results obtained below for our weaker metric
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d' would apply to more relaxed metrics, too.

We say that A_ is an efficient acheduler if A is computable in
polynomial time. Our goal in this Secticn is to understand which classes
of histories have efficient schedulers. It is tempting to conjecture
that if a class is in P, then it has an efficient scheduler. This

conjecture is noﬁ.plausibla, because, consider the following:

EXAMPLE. Let E= {hehg:h, is serial, and hZhg}.
Obviously, E can be recognized in polynomial time; the algorithm
involves splitting a given history in two halves, testing whether the

second half is serial, and whether the second half is equivalent to the
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first. However, it is also easy to see that E oamot have an efficient
sch;duler, unless P=NP. Suppose that E has an efficient scheduler
AE. ' Then we could test whether an arbitrary history h 1is serializable
by first computing A_(heh), and then checking whether Ag(heh) starts
with h. Since AE is supposed to leave unchanged as long p::eﬁ;xes of
its input as possible, it will alter the first half of heh only if h
is not serializable. Since serializability is known to be NP-complete, E

cannot have an efficient scheduler unless P=NP. ! : <]

Our next result essentially says that efficiently recognizable =
c1;ssels have efficient schedulers, unless they are as p&thological as
our example E above. Let h= (n,7,V,S) be a history, considexed now
as a string of symbols representing n,V,S and the permutation T, |
A prefix of h is an initial segment of this representation, containing
the encoding of n, V, S, as well ﬁs an initial part of 1r--.i.e".,.'
€ﬁt-1(l)rw-l('z),...,'n-l(j» for some 0< 3 <2n;, If C is a class of

histories, then PR(C) is the set of all prefixes of all histories in C.

THEOREM 9. Let C be a subset of H. C has an efficient scheduler

if and only if PR(C) €P.

Proof. Suppose that C has an efficient scheduler A,. In »Q;Qer
to determine whether a string g is a prefix of a history h€C we may
) a.ctla‘ls follows: we first verify that g contains _encodings of n, \{,'
and 8, together with an initial segment ‘of_ a permutation T of L.
Yo vth,on_ generate a completion P of p by juxtaposing to p thq

but not W

‘symbols wj such that R 3

3 is present in 0, and then the
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strings ijj for all j's such that neither Rj nor wj appears in
p. We then calculate h' -Ac((n,E,V,S)) . It is straightforward to see
that g is a prefix of h' if and only if g€PR(C). Thus we can
efficiently determine whether g E&PR(C).

For the other direction, suppose that PR(C) €EP. Based on the
recognition algorithm for PR(C) we design an efficient scheduler: A
shown in PFigure 10. A, ocmputes A (h) = (n,p,V,S) Dby determining P
element-by-element. It should be obvious that Ac‘ operates as
prescribed within a time bound of 0(n°C(n,|V])), where c(n,|V]) is

the complexity of recognizing PR(C).. m Theorem follows. a

It is now easy to link the discussion of Sections 3 and 4 with the

sxistence of efficient schedulers. We get two types of results:

COROLLARY 1. Unless P=NP, SR has no efficient scheduler. a

schedulers.

Proof. We have shown that these sets are in P; it is usually
straightforward to show that their sets of prefixes are also in P (this
is not a general property of P; there are. languages in P that have
non-recursive sets of prefixes). As an illustration, we will sketch a
proof that PR(P3) €EP. Pirst, given an encoding of n, V, S, and a
segment p of T, we first compute from S the digraph F of the guardian
relation among {'1‘1,... ,'rn}. We next make sure that whenever Tj is a
guardian of T

and p(W,) is defined, then either o(wi) < p(Wj)' or

i 3
p(Ri) > p(wj), or p(Ri) is undefined. Firally, we make sure that 0
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Scheduler Ac

Input: a histoxry h= (n,w,V,S)

Output: a history h'= (n,p,V,S) €C such that d(h,h')

smallest possible, if such an h' exists.

begin
if (n,< >,v,S) £ PR(C) then return
comment < > 1s the empty permutation;
else begin
p=< >;
for j=1,...,2n do
begin
done: = false;
for i=3j, j+l,...,2n do until done
if  (n,<pem T(i)>,V,8) EPR(C) then
begin
done: = true;
intarchange n"l(i) -and Tr_l(j);
pt = <p,w_l(i)>;
end;
end;
end;
return (n,p,V,8);

end

Figure 10

is the
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can be completed in a manner not violating P3. It turns out that this
amounts to verifying that the restriction of F to the transactions
that are active (i.e., O‘(Rj) is defined but p (Wj) is not) is acyclic
(a discussion of this part follows the proof). Hence we have an

efficient algorithm for PR(P3). a

We show in Figure 11, without proofs, styiizod versions of efficient
schedulers for the classes 2PL (11lb). P3 (1la), DSR and Q (llc; for Q
we also include the two statements labeled Q). Besides serializability,
these algorithms must also guarantee the absence of deadlocks. The
issue of deadlocks appears to be orthogonal to that of serializability,
and, in fact, clever sarializability methods are known to introduce
increased danger of deadlocks.of the "circular waiting” variety ([CDI],
pp.40-60). A unified treatment of serializability and deadlocks in a
restricted data model is attempted in [SK]. In all cases of interest to
us, deadlocks can be prevented by testing a dynamically changing deadlock
graph for acyclicity. For example, in two-phase locking deadlock can
occur if a number of transactions have each locked their read-set, and
are awaiting for each other to release their locks. Hence, in this case
the deadlock graph has variables as nodes, and has an arc from x to ¥y
if and only if some transaction currently on phase 1 reads x and writés
y. In P3 the deadlock graph is the restriction of the guardian relation
to the currently active transactions--this was mentioned in the proof of
Corollary 2 to Theorem 9. Finally the deadlock graph in DSR (resp., Q)
has as nodes the active transactions and includes the arc (Ti'Tj) if
and only if there is a path from Ti to Tj in D(h)~--resp. D'(h)--

and stwi) ns(wj) * 2.
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Our notation in Figure 11 assumes that the process Rj or Wj is
initiated as soon as a corresponding read or write requests arrive.
We use constructs such as when (denoting the awaiting for a condition)
and tbegin...ilend (bracketing statements that are to be executed
indivisibly). It should be obvious that these algorithms can be

implemented deterministically and efficiently on any standard model of

computation.
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process R 3
when the deadlock graph with T 3 is acyclic do

output (R j)

process W J

when T 3 is not the guardian of an active transaction do

output (Wj)
(a)

prooess ﬁ.j

when the deadlock graph with T, is acyclic and

3

no variable is s(Rj) is read-locked do

thegin

write~lock all variables in S(Rj) '

output (Rj)
tend; |
when a process W, with S(W,) nsmj) ¥@ or i=3j has been initiated and

no variable in S(W,) - S(Rj) is writelocked do

3
ibegin
write-lock and read-lock all variables in S(Wj):
unwrit;e-lock ‘all variables in S(Rj) - S(wj).
iend
process W 3
when R, has terminated do

3
tbegin output (Wj )

unlock all variables in s(wj)
iend
(b)
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prooess R 3

declare Ly 8equence of symbols in L uig}
comment Lj contains all R, or Wi such that T, 1s reachable by a

path from Tj in D (resp. D'), up to this point;

when the deadlock graph is acyclic and for no T, # Tk

with S(R

j) nS(Wi) ¥ @, S(Rj) nS(Wk) £ g is ‘W‘iELk do

ibegin
output (Rj)
: = R,
Ly, { J}

add R, to all L_ containing W, with 8(R )NsW,) # 8

3 3

Q:  add Rj to all Lk containing £

iend

process W,
when the deadlock graph contains no arc (Ti,'r j) do
ibeai

output (W j )

add W, to all L containing O such that S(Wj)ﬂS(O') 70

3
Q: add f£ toallLk containing R:l or Wj
set Lj: =@

iend

(c)

Figure 11
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7. DISCUSSION

We shall consider extensions of our results in three directions:
general multi-step transactions, interpreted transactions, and

distributed databases.

7.1 Multi-step Transactions

We shall briefly discuss how our entire development of Sections 2
through 6 can bs easily extended to a far more general multi-step model of
transactions. We consider transactions that consist of sequences of
steps; each step may involve both reading and writing. The values written must
be considered as uninterpreted functions of all variables read at the
present or previous steps of the same transaction. Our definition of
liveness now applies to individual stepe of transactions. No further
modifications are necessary for stating the analog of Proposition 1.

Serializability is obviocusly NP-complete in this model, as it-
subsumes ours. Assuming that no transactiqn reads intermediate results
of another or reads two different versions of the same variable at two

different steps--in which case the history is not serializable--Lemma 2

is also valid. The four serializability principles discussed in Section 4
remain virtually unchanged--in fact, twé-pt;ane locking was initially pro-
posed for a similar model in [EGLT]. For another example, we shall describe
in a somewhat more detailed manner the generalized P3 class of histories.

In the multi-step model a step s of a transaction can be an (Z,J)-guardian
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of another transaction, where i<j are steps. This means that s
interacts with i--i.e., either its write set includes variables of i,

or vice-versa—-and there is a chain of interacfions from s to j. If
this is the case, s is not allowed ﬁo occur between i and j. Thig
P3 protocol always yields DSR (and hence serializable) histories.

For the classes DSR and Q, we have simi1ar graphs D(h) and D'(h). An
a’rcf (Ti,Tj) is in b(h) if a step of T, interacts with a Qubsequént
step of Tj' For D'(h), it may just be that the last step of Ti |
precedes the first step of Tj' The acyclicity of D(h) again gﬁarantees
seiializability, and that of D'(h) strict'serializabiliﬁy. Hence, these
remain two most general serializability techniqﬁes,,subsuming two-phase
locking and P3, in this general setting, too.

Pinally, it is easy to see that the results of Section 6-w§hg
necessary and suffiéient condition for the existence of efficient
schedulers and its corollaries--apply even more directly to multi—étep
histories. We hope that the reader is by now convinced that introducing’
general multi-step transactions would have resulted in an unmanageably

cumbersome notation but in very few new important ideas.

7.2 Interpreted Transactions

A significant departure from our model would be to look more‘CIosely
into the computations performed by the‘transactions'and exploit ihair
details for studying serializability--or correctness, in generai. If
only syntactic information about the transactions is available (e.g., the

read- and write-sets) then serializability can be formally proved to be
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the right concurrency concept [KP]. If, however, semantics of the

funétions perfotméd, or even the integrity constraints, are known, then

it may be the case that more liberal concurrency principles than seriali-
zability are applicable. An example is the correctness theory proposed

in {Lal], where the concurrency control mechanism takes into account in-
formation about the semantics and integrity constraints supplied by correct-
ness proofs of the individual trannaction;.' The extent to which such
information is helpful is investigated in [KP].

It 1is doubtful whether complete semantic 1n£;rmation can be used
effectively for concurrency control. Any reasonably complex domain of
interpretation (e.g., arithmetic) would soon make the serializability
problem undecidable. There should be, howeaver, ways to use partial
semantic information in order to improve our understanding of seriali-
zability. One ponaibili;y is to use the fact that two transactions
perform btacincly the same function; one of the implications is that they
comtmite. .It is not too hard to see that this adds nothing to the model
developed thus far. Incidentally, this allows us to extend our original
model so as to permit multiple occurrences of a transaction in a history.

Another possibility would be to selectively consider certain very
simple transactions to be interpreted. A good example of a very common
transaction that performs a well—underscood function is the
a transaction that reads x and later records its value at y. Serializa-

bility become trickier. For example the history

h = Rl [x] R2R3 [::]W2 [x] W, [y]R4 [y]w4 [x] Rg [x]W5 [zm1 [z]
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is not serializable in our ordinary sense, but becomes eqqivalent to the
serial history hs--T5T1T2T3T4 once we assume thﬁt irahsactions 3 and 4
are copiers. Proposition 1 becomes somewhat more complex in the
presence of copiers. However, it is interesting to note that if copiers
are restricted not to read variables from other copiers, then the
introduction of copiers adds no strength to our model, ahd Propbsition 1l
and Lemma 2 remain unchanged under this assumption. This remark plays

an important role in the next topic of our discussion.
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7.3 Distributed Databages

fhere is a large body of literature aiming at the understanding of
the quite elusive notion of distributed computing (see, for exarple [La2]).
Distributed databases have inherited some of the intricacies of this
area tRG], [Th]. We shall limit our discussion to the case of two
complete copies of the database in different locations, although there
are difficulties which first appear in the cases of three copies or Bf
selective redundancy [BSRG]. A major problem is, what happens when a
transaction is run in one location, thus changing only one of the two
copies. A simple technique for solving this would be to send an update
message [BGRP] to the other location as soon as the transaction has
coiplet.d. We have therefore a sequence of genuine transactions and
update messages running in the system, and we can thus view the two .
copies of the database as a single database--think of the two copies of
the variable x as two variables X and x,.
A difficulty appears when we try to define a history. The distributed
nature of our computation, the communication delays and imperfect clocks
make temporal priority--on which our ordinary notion of history was
based--less tangible. The observation here is that mistakes in our
arrangement of the events which are due to the above factors preserve
history equivalence. Hence, we can put together a history--the global
log of [BGRP]--as long as it is consistent with local priorities and
arrivals of messages. Now, the update messages are in fact just copiers,
and they only read variables that were updated by ordinary transactions.

Hence the last remark of the previous Subsection is applicable, and the
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serializability problem has been reduced to the one already studied! oOf
coufse, we are not just looking for serializability, but for the
"existence of an equivalent serial history in which an update message
immediately follows the corresponding transaction. This, however, does
not change the essence of the task. All our special case results hold
with very minor modifications.

What is considerably more complex in the distributed context ié
the subject of schedulers. There is no obvious neat way to compile
syntactic restrictions on the global higto:y into distributed algorithms
that achieve'them; It therefore appears that distributed history
schedulers must concern themselves with the details of tﬁe underlying
model of distributed computation in order to implement the inténded
serializability principle;‘thg formidable algorithms of [Th] and [BSRG]
i1)uetrate this point. Nevertheless, it is still natural to agnjegture
that the more general ideas related to the classes DSR and Q would

prove advantageous in the distributed environment as well.
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7.4 Open Problems

Qb have proposed a formalism for the concurrency control problem for
databases. There aie two aspects of this formalism that may limit its
applicability, and must therefore be modified iﬁ a second attempt. One
is 6ur basic assumption, manifested throughout the paper, that the syntactic
description of all tramsactions to occur in the history is known to the
scﬁaduler a priori. It is not clear how to remove this assumption, and
still retain the wealth of available solutions. One way would be to have,
following [BSRG], a certain number of prototype transactions——or al@sses -~
to one of which any arriving transaction can be matched. Another way out
would be to adopt only tramsaction-driven comcurrency controls. Two-phase
locking [EGLT] is an example of such a concurrency control, and so would
be any other locking schen?. The limitations of such approaches are
atuﬁied in [KP]. On the other hand, it is possible that variants of the
schedulers presented here could also be implemented in a transaction-driven
manner.

Secondly, our way of evaluating the performance of schedulers is also
in need of an improvement. We proﬁose only a qualitative measure of the
performance of a scheduler--namely the set of all output histories. This
leads to only a partial order of schedulers. This was shown to be a
reasonable and useful approximation of reality when the goal is to derive
indicative results or compare general principles of serializability. It is
clear, however, that a more concrete méasure of performance is needed for
more practical applications. One promising direction would be to somehow
count the total number of delays imposed on requests-—at a first approximation,

the number of transaction asteps that cannot execute immediately upon arrival.
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This would be a refinement of our measure: our measure, roughly speaking,
assigns a perfect score to all histories that remain the same, and zero
score to all histories that are changed, however small the change. A

more refined measure might even put to test some.of our assumptions, like
the "optimistic scheduler" assumption (Section 6): in certain cases it

may be preferable to int;rvena and modify:slightly.thé:history,*uhon,
serializable completion becomes extremely unlikely, although not impossible.
Naturglly, adopting a more concrete measure of performance for schedulers
will most likely require the introduction of specific and pragmatic details
'of,ﬁhc particular application, and the overall approach may have to be |
probabilistic.

«3y conslidering on;y serializability as our notion of correctness we
have somehow limited our scope. Examples of concurrency control techniques
more general than serializability can be found in [Lal] and [KL]. They
are arrived at by assuming that the scheduler has more than syﬁtictic in~-
formation about the transaction system that it handles--e.g., semantic
information or underétanding of the integrity constraints. It is pointed
out in [KP] thﬁt serializability is just one point in the trade-off
between information and performance of schedulers. However, we feel that
there is something natural about the use of syntactic information for con-
currency control, and the importance of concurrency techniques stronger
than serializability is of limited practical value.

Finally, we recall two other problems that are left open here: the
complexity of recognizing the class SSR, and developing techniquas for

dllilninj distributed schedulers from syntactic specifications.
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