MIT/LCS/TR-218
VAL--A VALUE-ORIENTED ALGORITHMIC
LANGUAGE :
PRELIMINARY REFERENCE MANUAL
William B. Ackerman
Jack B. Dennis

June 13, 1979

Tius blank page was inserted to preserve pagination.

VAL - A Value-Oriented Algorithmic Language :
Preliminary Reference Manual
by

Wiiiiam B. Ackerman

Jack B. Dennis

June 13, 1979

The . language design reported herein was supported by the Lawrence Livermore
Laboratory of the University of California under contract no. 8545403, and is based on
work funded in part by the National Science Foundation under research grant
DCR75-04060 and in part by the Advanced Research Projects Agency of the Department

of Defense under Office of Naval Research contract no. NOOO-75-C-0681.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Laboratory for Computer Science
Cambridge |

Massachusetts 02139

This empty page was substituted for a
blank page in the original document.

VAL -- A Value-Oriented Algorithmic Language

1. INTRODUCTION

The programming language VAL (Value-Oriented Algorithmic Language) is designed for
expressing algorithms for execution on computers capable of highly concurrent operation. More
specifically, the application area to be supported is nﬁmerical computation which strains the limits
of high performance machines, and the primary targets for translation of VAL programs are data

-driven machines of the form under development by the Computation Structures Group of the MIT

Laboratory for Computer Science for high performance numerical computation.

Nevertheless, it has been our intention that the language not have idiosyncrasies reflecting the
particular nature of the application area or target machine. It should be reasonable for VAL to
evolve into a general purpose language appropriate for writing programs to run on future general

purpose data flow computers.

In the design of VAL we have given careful consideration to the recently developed body of
knowledge about program structures and language characteristics which support program
verification. We have found a natural consistencj between language design for support of
concurrency and language design for correctness and verifiability. This has made it possible, in the
design of VAL, to adﬁere to program structures and language characteristics that have been found
desirable for ease of understanding and verification, and ease of building a program by combining

separately specified modules.

We have undertaken the design of a new language because existing languages for numerical
computation have a serious deficiency: they reflect the storage structure of the von Neumann
concept of computer organization in that each language has some method of effecting a change in
state of the memory which cannot be modeled as a local effect. Fortran, still the most popular
language for large scale numerical work, is particularly blatant in this respect since it was conceived
as a high level notation for programs to be run on a machine of classical design (the IBM 704).

Key words: programming languages, applicative programming, medularity

The difficulty with-languages that aliow specification of giobal state changes is that programs
may be written which are very difficuk o impossible to analyze for parts that may be executed
concurrently. It is impossible in general to trace the flow of data with lexs than a complete amyu'
of the entire program. Onfly mmwunmmadnam imessenting

constraints on the sequencing of program parts.

In contrast, the Tanguage VAL is entirely free of side effects: each module or well formed
md:VALWMmaMIWMMWMdM
two parts together is to compose the corresponding functions. Such a language is functional o
applicative. Awmmwmeﬂ ,_,:,;mmmmmmm
‘an,thaehwbm&nmmmmammmim This is
due to the difficuty of incorporating file updates and_inputioutput operations within the
applicative framework, mmmdmdm The efficiency issue is
'memdmVAwamammm.mquyH
WﬂgnlemmmemM&rmma
programs expressed in funciional languages.

The file update and inputioutput issues will be addressed in fature versions of VAL in which
mammuuw”awmwmmm
modules. Modules that produce streams as output or accept streams a3 input can be wsed for
input/output processes. Further, the implementation of transactions on a data base may be viewed
as the processing of a mdmmbyamm'mq'm'guwhn'mw
holds the data base as internal data. If it is desired to realize more concurrency in processing
transactions, the data base may be divided into parts, exch with its own secretary module.

In developing the structure of VAL, it was natural for us to start from a language design
which is of high quatity, hweﬂdocumemed andiscbseinsp!mmwrgmh Suchalzmgun;eis
CLU {1, 2], developed at MIT by the Programming Methodology Group under Professor Barbara
Liskov. mpmar.uuudumdfmmmmmwmmmnm;mu
weﬂthwght-unmnhdﬁm&mqnndbaﬁ:daquumt%mdempﬂndﬂud
stmctured‘pmg_nming.‘ |

g While we have adapted many of the mmmmmcw VAL differs: radically from
.. GLU in that the latter, like many new Janguages, is- objest:oriented instend: of value-ariented. . In
keeping with this difference, the syntax and general structure of VAL are designed to reﬂaut.the
mnctional character of the language and our desire to xuppwt highly concurrent program

| - execunnn

1.1 Acknowledgements

‘Current work on the deéelopment of VAL is funded by a grant from the “Lawrence Llﬁermore
- Laboratory of the University of Califarnia:(LLL). We ate:thankful to Gus anglu Gevrge
Michael and Lansing:Sloan of LLL for.their eﬂﬂmﬂuﬂ andisuppert.

., Several people have worked with us during the: period .of design of VAL, and:have rhade
major contributions to the language and this report: they are James MeGraw -and. Gharles
Wetherell of LLL, and Dean Brock and Ken Weng of the MIT Computation Structures Group.
James McGraw also produced the Syntax charts appearing at the end of this report. Others have
influenced the development of VAL by suggesting features or requirements, and through their
criticism of our documentation. These are Chris Hendrickson and Tim Rudy of LLL, and Andy
Boughton, Randal Bryant, Clement Leung, Lynn Montz, and David Hirschman of the
Computation Structures Group.‘

The ideas in the language grew out of our gradual seif-education about data driven
computation beginning around 1967. The students and staff of the Computation Structures Group
who have contributed ideas include Earl van Horn, Peter Denning, Fred Luconi, Suhas Patil, Jorge
Rodriguez, Chander Ramchandani, John Fosseen, Prakash Hebalkar, Jeffrey Gertz, Austin
Henderson, Steve Zilles, Craig Schaffert, Eliot Moss, James Rumbaugh, David Misunas, David
fsaman, Paul Kosinski, David Ellis, Sheldon Borkin, and Glen Miranker.

We thank the National Science Foundation for their continuing support, and acknowledge
with appreciation the long period of support provided by the Advanced Research Projects Agency
of the Department of Defense. |

rmmunmmmwwwwmhsma -
' o:mmaq mxmammwmmmmMm

In addition, we thank Barbara Liskev and her students for providing in CLU 2 cofrvente
high quality starting point for our work e VAL.
12' Roforoneu
B} Liskor, B.H. ot ot, "TLU Refras mﬁmm wmm
R Mfuwmmamm”m L

2] Liskov, B.H. et a1, mmnm‘ mqm ncuzo

' langunges. there are no objacts thought of a raidigg in memo

o A program in VAL is a co“ection of separately tmuhtqi, gm; called quulu Each modub
contains the definition of one extemal funmon Thls fmctian] muhh to ail other modum of

the VAL program by use of its name. A moduh may. aho mm the deﬁniuons of inwrﬂal

functions. These mtemalmnctiaumused onlywitmmhemw.m“cnamhwm
modules

| The VAL Ianguage is apylicative. that I, valuc-omnwd In ~contrast to many. other

iy and belng u;dpted as t!se
“oompumion progresses. Even arrays and records are treated in VAL as mathomadal valpes.

A function computesoneormoredata valuazsamnctionofoneormnrgumuu values. |

‘ l-:xoept for invocations of other ﬁmcttons. a funcmn lnmtion , ;mxonly w s arguments;
'there are no side effects. Further a function retains no, stm tnfomution from one invocation to
‘another each f‘um:tion invooation is smctly tndopendm l-:huoe uhles retumed bya ﬁmctlon

: depend only on the argummt values pmemed to lt -a VAL mnction lmplements a true function

”in the mathematical sense

The data types of VAL inchude the basic scahr types booiun, lmegtr ml, and character
Data structure values are either record values or amx valuu. Reoords have a fixed format in
which each field hasaspedﬁedtype Anarraytypehmmimegertndexntwd itscomponenu

are of arbitrary but uniform type. Data structures of arbitrary depth may be specified-usitig nested
array and record types. . Union types may be formed in wblch ngt aflow discrimination among a

speciﬂed set of ‘constituent types.

Each data type has its associated set of 'operatbm and predicates. Array and record types are
treated as mathematical sets of valoes — just as the boolean, imeger real, and character types. The
gperations for arrays and records are chosen to support identification of concurrency for exegution
" on a highly parallel processor.

Exceptions are handled in VAL through special error elements in eich data type. The
elememmdof:tgmtsthatoneormeopmndntmmmtintheapodﬁeddmtnotm
operation. mmda_wdgmmnummtm oanmom
‘mmovided |ntmm:mmmnmm o

The design of VAL permits type checking %0 be performed by the translator. The type of
each argument or result vakue of a fanction i3 speciied in the function definition's header. Each
vahenamuudhthebodydafmhnmummmmm The operations of
"'VALamWwMMWd&eMmumﬁkmﬂMMm
“kniown. smmmaaummmmwmaamwmu'
determined.

SMVALﬁandﬂffmfthmeyhmmmym
‘»mafatmmwm mmmwuvamamm an
expression - mmdmmamﬁm mmmmm
”mdnmlexpmmmmmxmmmwm«xmmma
'thrmupmmmmlmm ummmmm
Mdmmmmﬁmmﬁtmmwdnhuwhemlym
‘eperator. Awmmmsm”mmmewmdummy'
simuttaneously. Amwwmmmwmwu
"MMemmhnmmmgmm

24 ‘Notublon

In the BNF presentation of the syntax, hrge curly bnm { } indicate zero. or mre
repetitions of the material within. Lasge brackets [..]Mhummemmmma“m,
. appear zero times or once.

3. PROGRAM.FORMAT

| Programs are written using the ASCH character set. No oontrol" cha;acters other than tab
and newline are used, except in chancm oonstants The of elements are opention and
punctuation symbols. real and mteger numbers. character mmm m;. and names.

The operation aod punctuauonsymbols are the following.:v ,‘
,] s , | .

u < > <z >= . - =

f
? s

(., r‘) :] ’ P

An integer number is a nquence of digits without a decimal point. Aml number is a
sequence of digits with either a decimal point or an exponent field. An exponent fiekd is the letter
"E” or "¢, an optional sign, and one or more dighs. .

. | A character constant is a slngle charar.ter cncloled ln ungh guom. A character Strim
: oonmmlsamingofzeroormechanctersmhedhdwbhﬁ Wmmdm
tabulate, space, newline, percent, and all control chandn represegt then

mybepiooed inastﬂngbyushgtwodoubhmm

_ Areserved word is a2 word that always has a xpedal neaning
.uscd in any context for other than their special
and in the syntax are printed in boldface in this report.

The reserved words are: | S N T
s d M over
od else . in_ pus
Corith error elseif © integer posover
rer-ai 7 gy e R

arrey_adjust endif
array_emply endit
array_fill.
arvey. join.
array_Jimt:
array_remh.
array_set!
array_size
boolesn
character

A name is a sequence of letters, digits, and unierscores, of which:the first character muse bea
letter. Anammynotbethemuamvedm hnmmybeuuduavaluemma
finction name, a-defifved type-name,.a record: Mmuamdug name. ‘These uses alt
MvatMmmmhmem:mmyhmmmmr
mmlofthaepm ?ﬁrmq:ﬁ.armndé mmm-m:m:

ey g

specification or. recard mmwmhmﬁiﬂ m.ﬂu name:

Uppuandbmanlaminmaadmm:ammdmw but all uses
of a nmormvedmdmuuhuemmupmm qumuyhnofm’mbh

The sepanung characters space; tabulate, and: newline are equiuht (except in- delimitmg
comments), and mty appear anywhere exeept within a pmgm'n ellmmt. Hmthey may ‘not
appear within a number or bumtheﬁamﬁamehn@um%nnﬂﬁmhu D=,
A separating character is required mm«ndmmnmor mand ‘words. For
example, separatingch:nctersmnqutredtodwmnhthepmmmm'ﬂpth-naolua,
endif” from the name “ifpthen3elsedendif”. Sepmuqchmmnqmdm‘mmmu
punctuation symbols |

-10 -

A comment begins with a percent sign and continues to the end of the line. A comment is
equivalent to a space, and hence may be placed anywhere except within an program element.
Examples of names and constants:

ABC3_Q

34
.3141593E1
2.718282
5772157E-7
o

“abc""def"”

4. VALUES AND TYPES

The inputs and outputs of VAL expressions: and functions.are yalues. The entire collection: of
vaiues that may be: presented:to or produced by VAL progssmes: is:the- value. demmin of WAL, The
vatue domain is subdivided into.distinet disjoint subdomains: that: are the: date typas of VAL.
There are basic fypes which inchade the familiar- scaler values of computstion; seructurad types in
the form. of arrays and. pesords: as; defined by the Ragunge user i tvoms: of sin er dat types; and
discriminated union types. '

4.1 Type Specifications

A type specification in VAL is & syntactic. comstnct:that specifies.a data type.

Syntax |

type-spec 1:= basictype-spec

basic-type-spec ::= null | basiean | intager | rest: | character

| oneat [ug-spec.{ ;tagrapec | 3

field-spec 11« field-name { , fleli-name } s type-spec.

tag-spec 11= tag-name { , tag-name } [: type-spec]

field-name ::= name:

tag-name: t1=name

type-name 11 = name

For a basic type; the: specification. is simply the:name of the type. For a eompumd type, the
necessary additional information within: brackets:

-12-

The array type constructor gives the type of the elements of the amy
Examples:

~ array {integer)
_ ,n”[mfl:!’“n

" The record type constructor gives'the field mames and the type associated with .each field.
Fhe field ‘names used withinmyreoo?d mmum Wihiere sevéral field ‘names
are listed with one type, the fields are all of that type. v ‘ R

Examples:

record [I, J: integer ; TEWP : real)
rocord[l rocord[x orroy[boolun];v charoctor];TEw rool]

, Anamemybeusaduaﬁeldnmmdmanymhqm(wtnuawudm):
»wuhoucconmct since it is interpreted as a field name gnly in the recerd constructor and in record
operations Thesameﬂeldmmcmyhegaedlnmmlﬁmmmm

The oneof (union).type consizuctor gives the tags and the type associated with each tag. The

~ tag names must be distinct. Where several.tag names, ace lsted with one (ype, the tags all.indicate

that type. If.the colon and following. type specification. are omitted, the aull type s assumed.
Examples:

oneof [UP, DOWN.LEFT RIGHT]
oneof [FIX : integer ; FLO : real]
onoof[THls arroy[lntogor] THAT THE_OTHER : record [C : roolsD boolean]}

As in the case of field names, a tag name may coincide with any other nare without conflict, and
the same tag name may be used in several union types without conflict. =

Any type name used as a type specification must be defined by a type definition (see Section
4.5). | B B T oo PN M

4.2 Value Domains

Each data type is a domain of vakues as described below. As will:be-seen, ench data type
includes proper elements, and error elements whith occur as the -résult-of an- expression when
computation of a proper value of the type is impossible. &chdmmekﬁnﬂmchaml&dby
,MmaWMmyuMnmmmmsmm The.aperations
for each data type of VAL are defined in Section 5, as are conversion operations that: convert
values of one type into values of another.

4.3 Error Values

The error elements are included to support the unusual treatment of qu adopted in
VAL as discussed in Sections 5 and 7. The full name of an error value consists of an error name
foflowed by the type specification: enclosed in brackets, for example zore_dividefreull This is
‘because every value, ng:ﬁmvﬁuuaﬂhw&mﬁpemumw
zero_dividetreal] is a differant vatue from Zero iivide por’ ‘

Two error values are members of evefy data type: the element undefltype) resuits when
operand values are not in the domain of an operaior. for exainple; if the index of an array access
operation is outside the range of the arry; the siement iiss_SR{tppe] results If the index ofm
array access operation iswhﬁnmemyunge,h:tmdmvtmmumm '

4.4 Basic Types

The Null Type
proper elements: nil

- The null type occurs in a distinguished union {oneof) type where in one or more alternatives
no data value is required. -

-14-

The Boolean Type

proper element& true, false
error elements: undef{boolean), miss_eit(booiean)

The lntcgervapc Ty , :
proper clements: The integers between some ﬂmlu which are
implementation dependent. g E e R
error elements: undeflinteger), miss_eltlinteger],
pos_overiinteger], neg_overiinteger),

The elements pos_over[intagor] and mg_wuﬁdcw] mu that the meger value is
mohrge(pmnkvemnegauve)mbereprennumihemmm. The element -
u*nomﬂﬁemltndkm:themuhdamﬂmthnhumtheupmtyofthe
implemelmﬂon but whoeetmevahelsnotkmmbewtofnnge The element
zoro_d\'khﬁn(egar] indkammemultofa divimnormdum opuaumwnhmdivhor

The Real Type

proper elements Fbating point of real numbers
induding zero, with some m range which is
lmplememauon dependent.
error elements: undef(real], miss_eltiresl],
poc__over[rall. neg_wer&ull
u\dar(ndl n‘i.mwl
u*nown(ndl. ;uo,dvld'bodl._ |

| The elements pos ovor[roal] and neg_ov-rﬁcﬂ] lndm tbat the real value is larger
(positive or negative) than is repraemabie in dthew ﬂ;mg poim mhod of the implementation.
The elements pos_underireal] and neg_underireal] represent non-zero valies too smafl in
magnitude to be representable in the floating point method of the implementation. The element
mkﬁown[real] indicates the resuk of a computation that has exceeded the exponent range of the

implementation, but whose true value is not known to be out of range. The element -

zero_dividelreal] indicates the result of an attempted division by zero.

T he Character Type
proper elements: The 128 characters of the ASCIE chum set.
error elements: Undeficharacter], mies_siticheraster]

4.5 Compound Typee
Array Types

For each data type defined by same VAL tmem i m«m:ypm be defined
-bythetmwwm erraytTl N
PNP“M Apmmaymhmlﬂm«tw
WA range (LOH) mw m m mmgen md)
LO CHI+L Tlme are. imlmlvem:m the Mmd
clements. 1f LO = HI + | the array has no clements.
(2) A sequence of HI - LO + l-elements of type T.
morehumta Emy;mytmumﬂ'lmmm

Record Types

If ty,..., t, aré VAL type Wﬁmaom and "l' .<» Ny are distinct names, then
rocord[::i ATRIREE W tk]spmﬂaarmrdtype | o
proper elements: Eanhpfopertthleofthemardtypcisamofkpﬂﬂ

g vqd . ,(nk.vk)}whmmhviummnofti

errorelunerm tlldolﬂ'l!ﬂﬂ Clim”bue'risthemurdtype

-16 -
Union Types

- Eachielement.of a-union type is an element of one of several-constituent types, accompanied by
~8 tag ‘whick:indicates the constituent: type’ from wisich the glemens: was taken. :If t, .. I BEE type
:specifications,. and:ny,. . .oy are distinct:names;, then:-oneof-[ing 1) 1., 1wy s ty] specifiesa

-proper.elements: Each proper element of the unon:type-is & pair (n;; vi)
where I < i <hand v; isanelementof 3.
error elements: undef[T], miss_eit[T], where T is the union type

.46 Type Definitions

;. type-def 1+ type type-name = type-spec .
type-name i1~ name.

A function definition may contain a number of type definitions which specify
~‘programmer-nitmed types used in the function.“Each fjpe definition specifies that a type name
‘denotes the type represented by the given type-specifiation. "Fhe type specification part of a tﬁn
 definitivn may contain type names defined v the siimié of C deéfinitions. Recursich and mutual
?frecursioﬁ are permiited in’type definitions. Such typedeﬁvﬁtbmmy‘bé med to construct data

riposec ofamyofmstmurtsofhmdeﬁih o o

Eximple:
type STACK = oneof [empty : null ; element record | vatve : real ; rest : STACK 1} ;

The name of a defined type may be, used ar;ywl'g;g:_}l;ag‘; mmﬂmm is permitted, eg.
as the type parameter for constants such as niss_ol((type-apegl

A name may be used as a type name and as any other kind of name without conflict, since it
is interpreted as a type name only in well defined contexts.

-17-

4.7 Equivalence. of Type Specifications.

Type checking is performed by the VAL translator. by testing that.the type of each:expression
or subexpression matches the type:required: bythe context-is-wiich it appesrs: Thiﬂqpe “of an
expression or subexpression is.determined by kscunpm from eperators:and elementary:terms
as described in Sections 5 and 6. This must match the type required: by its context: an-argument: to:
a function must match the argument tmmm inthe fumction’s definition; and an expression
on the right hand side of a definition:(see Section' 7.2) must. match the declared type of the name on
the left hand side. |

The necessary test is to determine if- two. type specifications are equivalent, that is, if they
denote the same type. Two basic. type specifications are equivalent if they are the same. Two
array specifications are equivalent if their element typu are equivalmt Two record or oneof
type specifications are equivalent if their ; nattied” componen types of constituent
types are equivalent; the order in- which they are listed. umsigaﬂféant Amwm is
equivalent to the type appearmg on the:right hand side of its definition.

A compound type specification can bevswamdzs a.-tr_ee'wmr'mduxan abeled arvay,
record, or. oneof, whose arcs from record or oneof nodes are jabeled with field or tag. names,
and whose leaves are basic types. Equivalence can: be fasmulated i tesms of - this characterization:
Two type specifications are equivalent if their trees.are identical, disregarding.the order of arcs.. If
a type specification uses recursion, this tree is.infinite; two such WWINMVM“‘ Lthese
infinite trees are identical.

Examples -- assume the following type definitions: -
type NM = real ;
type STACK = oneof [empty : null ; element : ITEM];
typeITEN = record { valve : rel’; rest : STACK J;

-18 -

Then the following pairs of type specifications are equivalent:

real (A defined type is exactly equivalent
NUM to the type that it is defined to be.)
record[a:real ;b :integer] (order of fields is not significant)

record [b : integer; a:real]

oneof [empty : null ; element : record [value : real ; rest : STACK]} ;
STACK (The (infinite) trees implied by these
type specifications are equivalent.)

S. OPERATIONS

In thls secuon mspdfythemdmmw to each data typeotm In the:
examples ofmtm. P and 'Q stand-for:boolesn: valdes;] and'X: for integers, X' aMYﬁr realy, C
and D for charucers; A andB-for- rreys, R for records; Ufer union (Gnedf) values, and V' for

5.1 Error tests

A number of’mran;provtdedafw?m;m‘ The following three-are defined. for all
types:

operation o notation functionality
test for miss_elt any -+ bool
test for alt.errors any -+ beol

The test is error is satisfied by all-error values for the type-to: which it is appiied: undef,
miss_eit, and aaymemmhawcjv&tm«mmmem Addm!m‘
tests, such as is over, mdmmmmm

AN error test operations always return true or falve; nenr an error value. They must be
used for testing for errors in preference to-the-equaiity operator (eg. "X = undefiresiT), since the
latter returns undefiboolean] wien. X is an error vatie:

5.2 Null operations

The null type is used to provide a case in a umion type for which the-value: is irrelevant.
There are no operations.for this type except the error tests is:undet, is miss_sit, and is:error.

5.3 Boolean operations

The boolean operations are the following:

operation notation functionality
and P&Q bool, bool -+ bool
or , PlQ bool, boo! -+ bool
not ~P bool -» bool
equal ' P=Q bool, bool -+ bool
not equal Pr=Q bool, bool -» bool
test for undef is undef(P) bool -+ bool
test for miss_elt is miss_elt(P) bool - bool
test for undef or miss_elt is error(P) bool -+ bool

If an error value is an operand to a boolean operation other than an error test, the resuk is
undef{boolean).

5.4 Integer operations

The integer operations are the following:

operation notation functionality
addition J+K int, int - int
subtraction J-K int, int - int
multiplication JxK int, int - int
_division J/7K int, int - int
modulus mod(j, K) int, int - int
exponentiation exp(J, K) int, int - int

negation -]

3
:

-9 -

int:+ int

neg_over, unknown, or zero_divide

magnitude .abs(])
maximum MX(J K) int, int - int
mintmum min(J, K) int, int - int
equal J=K g, int - bool
not equal J~=K nt, int - bool
greater, less. - J>K,J <K int, int -+ bool
greater/equal, less/equal J>=K,J <=K int, int -+ bool
test for pos_over is:pos_over()) int » beol
test-for heg_over i neg_over()) int - boo!
test for unknown is.omknowsy)) int -+ bool
test for zero_divide is zere, divide(]) int - bool
test for pOS_Over or neg_over ts.gver()) int -+ hool
test for pos_over, neg_sver, iswith error) int- bool
unknown, or zero_divide - |
test for undef is undef()) it -+ boot
test for miss_eit is miss_sit()) int - bool
test for undef, miss_eit, pos_over, hM)

The error value zero_dividefinteger] may rewlt from the division or mdulm operations.
The error values pos_overlinteger] or neg_overfinteger] may result from the arithmetic
operations if the result exceeds the range of numbers representable on the target computer.

If the error value undeflinteger], miss_eltlinteger] or zero_dividelinteger] is an
operand to any integer operation other than an error test, the resukt is undef of the appropriate

type.

The integer operators have the following special behavior with respect to the error values
pos_over, neg_over, and unknown. These rules are of course symmetric with respect to
exchange of the arguments to +, x, max, and min. These rules do mof apply if any operand is
undef, miss_elt, or zero_divide.

la. . pos_over+] = pos_over if]>0or] =~pos_over,
unknown otherwise

ib. neg_over +j = neg_over if] <O0or] -neg_over,
unknown otherwise

Ic. unknown +] = unknown

2a. - pos_over = neg_over

2b. -neg_over = pos_over

12 - unknown = unknown

3. J-K = J+(-K), so, for example, by rules 2a and 1b,
J - pos_over = neg over if] <Oor]=neg _over,
unknown otherwise

4a. J xpos_over = neg_over if]<-lor]=neg_over,
 pos_over if}>lor]= pos_over,
.0 if]=0,
unknown otherwise
4b.] xneg over - -(]xpos_over)
4c. Jxunknown - 0 if]=0,
~ unknown otherwise

5a. J<pos_over = true unles] = pos_over or unknown,
in which case the result is undef
5. neg_over <J - true unles] - neg_over or unknown,
in whkh: case the résult is undef
- The preceding two rules also yield true if the connective is <=, and false if the connective is > or

-3

>=. They are alo of course synunetric with Mwmaﬁ the arguments. and. reversst of
~ the connective. S : o |

6a. | .aba(pbc_.m - ‘ahe(neg_over) - pos_over
6b. abs(unknown) = unknown

Ta inax(pos_ovu._})' - po._m
™ min{pos_over,) -]

T max(neg_over,]) =]}

. minineg_over,) « neg_over
Te. maxiunknown, J) - unknown

n. - minunknown, J) - -unknown

an error value, the resuk is umdet of the appropriate type.

5.5 Real operations

The real opentiohs are the following:
addition X+Y . mlreloreal
subtraction X-Y. . - o ipgal, peal - peal
mukiplication X*¥Y alpestepal
division X7Y eal ronl-+raml
exponentiation , oxpiX,Y) ~eon gkl peal - resl
exponentiation with integer ' oxp(X,)) real int - real
negation o X releal
magnitude | CabeX) . pelerel
maximum - menlX,Y) o eml peal «pepl

minimum mnX,Y) . realrealoreal

-9 -

equal X=Y real, peal - bool
not equal - XweY realreat wbgol -
greater, Jess X >V XY ‘real, peal +:bool
greater/equal, less/equal X>Y,X<=Y . rgalpeat + bool
test for pos_over - is pos_over(X) . .yeal - bool

test for neg_over is neg_over(X) . - real- bool

test for pos_amder. s pm_mdor(xy . -real + ool

test for neg_under is neg_under{X) - real- bool

test for unknown is unknown(X) -peal » bpol .
test for zero_divide . is zera_divide(X) real -+ bool -
test for pos_over or heg_over. - is over(X) . , real + bool

test for pos_under or neg_under is under(X) . | - peal» bool
test for pos_over, heg_over, , e .. feal -+ bool -

~ pos_under, neg_under, mkmn,or zem_divid.

test for undef is undef(X) real » bool -
test for miss_elt is miss_elt(X) real - bool

test for undef, miss_elt, pos_over, is error(X) rea] -+ bogl

neg_over, pos_under, neg_under, unknown, or zero_divide .

The error value zero_dividelreal] may result from the division operation. The error values

pos_overireal], neg_over{resll pas_underireal) or. neg.underirest} may resukt: from the
arithmetic operations if the result exceeds the range of numbers repressntable on the target

computer.

If the error value undefireal), ‘min_‘olt[rqal]. or zero_divide(real] is an operand to any

real operation other than an error test, the result is undef of the appropriate type.

-g‘

The reat aperatess have the following specie) ‘behavior with respect to the error valwes
pos_over, mﬂm These rules. are of course symmetric with rept’ 3o
exchange of the-srgumenisto +, ¥, TRE aniloan mmunmxwm :
undet, mhee_olt, or sermisivide.

la. pos_over: X = :pos_sver X 2G0orX - Pos_over o m. -
Ib. . negover+X s Nogover iPX SOBdFX - neg_ever or neg.iinder;

id. pos_under+X » X if X w@lundiva proper value

le. negunder+X = X ifX «0Csilitaproper valee

th. pos_under +neg under - uMiheww < - B T

p-} -pm_m = ARg_bver
2. -negover - pov.wer:
‘% -pos_under « negunder
2. -negumder - pes_under
. - ok -

X=¥ o X6~V) 0,000 cxmmple, by sl Qi ind W,
""N neg_ever Wguwwwm
unknown otherwise

o]

pos.over it X D10orX = phe.sver,. -
00 ifX =00,
unknown otherwise

4. X = neg_over = -(X xpos_over) .
X x pos_tnder - neg_under if-10<X <00°rx-nu_mdor

4c.
pos_under if 00 < thﬁﬂ%i@”ﬁm.* -
00 ifX =00,
unknown otherwise: =
4d. 'x*neg__undar - -(x:poa_mdor)
4e.

x:mimm'- 00 if X =00,
" unknown otherwise

52. X <pos_over = true unles X = bbb;_ov« or wlmovm.

| in which case the resuk is undef |
Sb. neg_over <X - true unless X's ek over or v
" in which case the resuk is undef

The precedlng two rules ahoyield true if the connective is <=, and fals® if the connective is > or
>=. They are akodmmsmmkwnhmmudwdﬂwngmand reversalof
“the connective. '

6a. abs(pos_over) - abs(neg_over) - pos_over
6b. abs(pos_under) - abs(neg_under) - pos,_uudor
6c. dn(mlmown) = uUmnknown

Ta maxtpos_over, X) = pos_over
) min{pos_over, X) « X

Tc. max(neg_over, X) = X

| Td min(neg_over, X) =« neg_over
Te. max(unknown, X) = unknown

7. minfunknown, X) = unknown

© Other than the abpve cases, if ariy operand to a real operation other than an error test i3 an
error value, the resutt is undef of the appropriate type. |

T M vy TR R e I gl L e

5.6 Character awdtom

The character m are.the following:

operation notation functionality

not equal | C~=D . sharchar - bool

test for undet . isundefic) ghar » bool
test for miss_elt o izm_mc) char -+ bool
test for undef or miss_elt _iserror(C) m-'m

lfm error vamuanmﬁwammﬁerﬁummn&MMh
undeficharacter]

87 Amy operastions

The operations for the array data type. lfﬁ‘ﬂ‘] inciude: greation: ef new. areays, selection,
pmdmingmamyumbymmwmmymumdMWhy
concatenation. Recall that an array value consists ofa-range defined:by.a low.inglen - LO, a high
index HI, and 2 mdﬂt&@ﬂmammmmtm may-be
‘miss_elt(T] : : ‘

operation _ notation - functionality

create

select A mﬂ‘l‘lm oT |
append A :V] arrafT) it T -+ azraglT)
create by elements g:vi (int T -+ ammayfT] |
index of highest | array_Jimh(A) uny(Tl+mt

.28 -

index of lowest array_Jimi(A)
number ofciemems - array_size(A)
set bounds errey_sdjustia,J, K) ArradiTl int.
extend high | ~ array_sddhA, V)
extend low erray_addi(A, V)
remove high B srray_remiiA)
removelow : - orray_remiA) -
setlowlimt o array.,ﬂi(A.J)
concatenate N AHB a
merge defined elements meMA; B)
test for undef is undef(A)
.mtrormias eit - ismiss eltiA)
test for undefor miss_elt iserror(A)

In general, the resuk of an array operation is the error element undef of the appmpmte type
if either an index operand is an error valie or an array operand is Undef or miss_eit. The
remaining cases in which the resuk is an error are specified below for each operation.

Create &ray_my[typesped

‘ Thls is acwally a oonmnt It is an amy of the indiated type. whoee low index is one, high
index is zero, and which therefore oonuim o elements. -

Createlfill array_filLO, HI, V)
This creates an array with the given range and all elements equal to the given value If

[,0 > Hl4l, the result is undof(mayﬂ']l This operation yields a proper array even if Visan
error value such as undef or pos_over.

Example:
array_fillk1, 10, 6)
1 an #rray with 10-elements; all equatto 6.

- Select Afj)

Thuopemmmmmmamemnnmj if]umwnhmﬂlenngeofthe
amy.themulttsm Mmmuﬁmmhmebemy,Mmybe
.nmumm.;mutm«mn -

Append Al]:V]

ThlsmanmymlwAmmmmnmjmmrq:hudby

- value V. ThenngedAuup:ndedtsMmej.Mmmmmm

expanded range are given thcubem_ﬂm'l Fwamh.if:\hubmdslmds,m.)u |
10, elements 4 through 9 will be miss_sit{T] tn the resuit.

Crm‘:b-y'dcmts {j:v]
This returns an array with low and high indices both J, and one element V at index .

Al

There are abbrevmed notations for c«nposmom of uloct c"md and create by elements
operauomtomnpufymumdmmmmamysmdfwmm
muiti-dimensional arrays. See Section 6.4. ‘

Index of highest, lowest array_Jimi(A), array_Jimi(A)

These functions return the high or low index of A, respectively.

Number of elements array_size(A)

This returns array_JimixA) - arcay_limKA) + 1.

Set bounds erray_adjust(A,},K)

This returns an array with range (J, K), containing. the same dita as A where postible. lf.!é} o

greater than arny_liml(A) or K is less than array_Jimh(A), some elements of A will be absent in
the. resuk. If] is less than array_Jimi(A) or K is greater, than @7
positions are set to miss_eltiT]

Extend m. low array_saddhiA, V), arrey_sdddA, V)

TmrpmmuwarnyAwnh iuhighmmmh]mm’mh"m
me,and;begj,mvakuvuﬂnmm

Rdwv? Mgh, low mm;amm mwm .

These return the array A with its high index decreased by one or-its ‘low Sdese inersiised by
one. An element of A is lost in the resuk. If the array A has size zero, the resuk is Undef.

Set low limit array_.satl(A.)

This adds J - mayJiml(A) to_all element indk:uandm both o
ylelding an array similar to A but with the shifted. Is low index is }.
array_setk[2:%,Y,235)
denotes the same value as | |
{5:%Y,2}

where the abbreviated notation is defined in Section 64. ~

Concatenate A||B

This returns an array whose size is the sum of the sizes of A and B, formed by conecatenating
A and B. Thehwmdexdthemhhthemutmmmduefs\.m\ﬂﬁnm&ﬁ
retain their original indices. The indices of B are shmed as necessary.

Merge déﬁnld elements array_joinfA, B)

" This merges the arrays by elements. The low index of the result is the mimimum of
array_limi(A) and array_limkB), and the high index is the maximum of ‘arrdy_lim(A) and
- grray_lmi(B). ‘Thaose elements of the result that are not within the range of either A or B are set
to miss_eit. Thmmatanmmmwamargmmmmmwm
element of that argument. Those that are within the range of both are set to the corresponding
element of ‘A if the corresponding element of B is'hiss_sit, to the corresponding element of B if
the corréspmding element of A is miss_elt, and to iniss_oit otherwise. This ‘operation is
intended to be used to merge partially defined arrays, such as an array with only even elements
defined (the others being miss_sit) and an array with énly odd elemerts defined.

5.8 .Recerd operations

The operations for a record type specified au T = record(N, : T, . Nk:’f*],mk the
following. N ... N are the field names,and T ... T, are the corresponding types.

operation notation functionality
create rmwl :“Vl.;...;‘Nk :'Vk']

. Tl""'Tk*T ‘
select, 1 <i<k R.N T-T,

replace;, 1 <i<k | R replace (N, : V] T,T;»T

-32-

 test for undef is undef(R) T - bool

test for miss_elt is miss_sit(R) " T -+ bool
test for undef or miss_elt s error(R). T - bool

Create recorle:Vl;...;Nk:Vk]

This builds a record value (N, V p Vi .. » (N, Vi) 1. Al of the field pames associated with
the type of the record being constructed must appear in the list, though some may ppear_ with
error values such as undeflT,] or miss eitiT;)

Selet R.N
| This returns the vakie of the ﬁamed field, that is, ViEN =N,
Replace R replace(N:V]
This returns a record similar to R except that tth-ﬂcld is changd to. V.

Abbreviated notations are provided for oompound selectors and muldple values in roplle.
operations. See Section 6.5.

5.9 Operations for union types

The basic operations for a union type specified 25T = on@of{ N, : Ty ;...; Ny : Ty Jare a
create operation and a test of a tag. The tagcase control structure explained. in Section. 73 is the
mechanism for accessing constituent values from a value of union type. In the following, N, ... Ny
are the tag names, and T ... T, are the corresponding oonstimanttypes.

gperation notation -functionality

create;, 1 <1<k make TIN,:V] T;+T
tag test, 1<i<k _ is N; (U) T -+ bool

test for undef is undeiU) ~ T-bool
test for undéf or miss_eit isever(U)y T bool

The operations make T [N : V]andisN(U)mtype—mmwlyifNiungnmofthe
type T and V' is of that constituent type. mmwmrm Vlnthepairm; vam
any element V of T, Therest of is N; (U)kﬁhﬂw (ﬂ,. y
undef(T] or miss_eit{T], or falee otherwise. S

5.10 Type conversion operstions |

characters.

operation | notation functionality
real-to-integer iﬁthX) el
lmager-to—rul _ - reak) int -+ rea
integer-to-character character()) it - char

In each case:an argument value-of undef or miss_eit: mmmm For otiver values
memwmmum “ * :

lnt‘_c:or(X).

If X is larger in magnitude than is represemtable as a proper element of integer, the result is
pos_over or neg_over. If X is zero_ &w&.m_mwwmmmu
undef. Ilespos_mdu'orm themtism M&em‘&h&lﬂmﬂh
mmmmfmﬁxmzm

‘real(]k

All proper values of] are converted to the cormmdmg reals. lrJ is zoro_dlvido
r‘fpo.__onr m_m or mu‘em& um o

!ugnmcr -
This operation yields the ASCI code for the character C.
character()):

This operation is the inverse of integer(C). Its resuk for values not in the range of
integer(C) is not specified.

i

5.11 Type correctness of operations

In VAL the type of value produced by each expmsion can be determimd by the transiator
from the propertiet of the opentiuns as specified in thls sectm An epention in a program is type
correct if and only if the types of its argument expmﬂom lre thc nme u t,he argument types
specified for the operation. Note that for ach opemor the typu of the results are determined
when the types of the arguments are known. :

-5 -

| 6. CONSTANTS, VALUE NAMES, AND EXPRESSIONS

An expression is the basic synfactic unit denpting.a %ﬂﬁggﬁsf a&u
of an expression is the size-of the tuple of values it: S

The s g%i%&rﬁi 3«‘ %igigns%c«

COMmMas.
m~ Oo..!»la

A constant is a syntactic unit of arity one whose v: zﬁi%-ﬁ%gag
, Syntax:

constant 11~ nil | true _i_-u

* | unknownitype-spec] | zero_divideitype-spec]

The values undeftype-spec] and miss_eltitype-spec) are constants denoting the undefined
value and missing array element value of the type indicated in the type-spec. For example,
A E&o%mg?.%igiaﬁéiw These two constants

. . exist for all types, inchuding array, record, and union: types. Kgggﬁnsg .

type are as follows:

The only constant of the null type is the reserved word nil.

The constants of the boolean type ase the reserved: werds true and faise.
-The principal constants of the integer and real type are integer numbers and real numbers,
the format of which are given in Section 3. There are also the:following arithmetic error constants;

pos_over(integer) pos_overireal)
‘neg_underirest])
unknown{integer] unknowniresi)

zero_dividelinteger] zero_dividelreal]
The constants of the character type are the characters enclosed in single quotes.

A character string enclosed in double quotes i5 a constant of type srrayicherscter)
containing the individual characters of the string as elements. The it ¢haracter s at ifidex one.

" The array constant may__mptyttypc] denotes’ the amy orme indicated element type whose
rangels{l O).andhmcehasmebmems. o ‘

“There are no othet array, record, or union constants, but various constructing operators may
be used with constant arguments to denote "constant” arrays, records, or union elements.

Examples: |
(1:1,23,4,5] (array constant, seo SOC“M\ 76.4)
record [A:6;8:73) (record constant) |
meake T[A:6] - (comlmtofm\iqntypeT)

6.2 Value names

A valie name is a name which denotu a slngle oomputed value of a spedﬂc type. Every
value name is introduced eithier in the header of a function definition (if the value name is a
formal argument of the function being defined) or in a program construct such as a let block or a
for block. In either case, each value name has a scope and a type, and has a unique value of that
type for each instantiation during execution of the function or block with which the value name is

.97 -

assoclated. The scope-of a value name:is the region of program:tent in which a refevence to the
value name denotes its value. The scope and type of any value name may be determined by
inspection uemmmmmmnwmdmwumm
present during. Wewmm ’ ’

The scope of a vakie name intracsed as.a forma] asgument of :a fumction s the entire
a value name is given by'a type déslaatisrin serifumction header. Its valve is the value of the
corresponding argument for the relevant inveration:of the function. ~ -
Example: o
function F (X : lntq-rmtmu real)
<expression>

endfun
Mwmum»mxmmwmmmumwmmr
was invoked. Its type is intager.

The scope of 2 vakue name introduced 10 2. paogiam constract sich &3.2 Lt or for block is
‘some region of tive construct: that depends.on. the nature-of She. son a3.my. nner scopes. that
re-introduce the same valie name. mmmmmmmmam yakse name are
established wmmmamm '

Example:
jet
X:roel =30;
<snother decidef> ;
<snother decidef> ;
<another decidet> ;
in <expressiorn>
ondiet »
The scope of X is the entire block, inchwding the. expression amrin.w any inner scopes that
re-introduce X. ltlt’peisi‘lﬂ;iutm,kﬁ-ﬂ mldmsw n mu E
this block had appeared muanmempeofx Wbymmmthmm
wtthmvahnandtype.mhdhppurmmmmulﬂm

6.3 Expressions

Expressions are buikt out of smaller expressions by means of operation syinﬁols.
Syntax: B | |
expression ::= level-l-exp | expression , level-i-exp (the arities ate added)
In the next 8 lines, the operators may only be used if all operands m.'ofarity one.

 fevell-exp 11= kve|-2-;ip Ikvél-l-ekp | level-i%xp (boo!ean “or”)
level-2-exp 11 = level-3-exp | level-2-exp & level-3-exp ‘(boolean "and”)
level-3-exp 1:= level-4-exp | ~ level-exp - -~ -(bodlean "not")
level-4-exp ::= level-5-exp | level-4-exp relational-op levekbiexp
level-5-exp :: = level-6-exp ' level-5-exp | level-6senp:5* - (array concatenate)
level-6-exp-11~ level-T-exp | level6-expadding-op levet-Texp -
level-T-exp 11= level-8-exp | level-T-exp mukiplying-op level-S-exp
level-8-exp 3:= primary I unary-op primary

refational-op 11= < | <= | > | >=| = | ~=
adding-op s3= + | -

‘multiplying-op ::= * |‘/ |

unary-op ::= + | - ‘

primary :t= constant l value-name (these have arity one) |
| (expression) (sithe arity as expreision in parentheses)

larray-ref l array-generator

l record-ref I record-generator (These eight forms

| oneof-test | oneof-generator have arity one)

| error-test | prefix-operation o

: | conditional-exp W |
| tet-in-exp ~_ (These five structures are
| tagcase-exp F ducﬂbed in Section 7.
| iteratton-exp ©They have arbitrary arity)
value-name 32« name

In an invocation, theamyoftheexpmmuwamummbemlmmenmof

© arguments required by theﬁmcuon

invocation 't:-m(!xm) '

function-mame t:= name .

array-ref ss= ptimary [expression}

array-generator :: = (expression : W{ ;expression : m}l
| primary [expression.: expresion.{ ; mm}l

record-ref :1 = primary . fieki-name o

In the next 7 forms, all expressions must have arity one: except as otherwise noted, and the resultant
expressions always have arity one. - R - '
record-generator 13= racord [fieki-name : expression { .mw} P
" | primary replece [fiek : expeeasion. { ; fiekd : expuession } 1
field :: = flekd-name { . field-name }
. fieki-name 1: = name
oneof-test st I8 tag- mmm)
oned—generator tte m type-spec [tag-name : expression }
- tag-name = Aame
error-test u-hmww s oit
| s error (expression) | is 2ero_divide (expression)
| is pos_over (expresion) | is neg_over (expeasion)
|iam_wu(mm)|hmmun)
| is over (expression) | is under (expression)
| is arith_srror (expression) | is unknown (expression)

The arities of the argument expressions for a prefix operition are as shown, and the result irlty is

always one.
prefix-operation 31 - integer (expression) (arity = 1)
‘ | resl (expression) (arity =)
| character (expression) (arlfy I) |
| abs (expression) | (arny) -
I exp'(expression)v (arity =-4)
l mod (expression) (arity =2)
| max (expression) (any arity)
|mm (exﬁfesiion) (any arity)
| array_fill (expression) (arity = 3)
| array_limh (expression) (arity = 1)
| arvay i expression (aky.«
| array_size (expression) iy =1)
| array_adjust (expression) (arity = 3)
| arrey_addh (expression) (arity = 2)
| array_eddi (expression) (arity = 2)
| array_remh (expression) {asity =D,
| array_remi (expression) (arity « 1)
| array_join (expression) o darity «8)
| array_setl (expression)

B = > ST g BREEE S b S S ARV
™ '

(arity = 2)

Note that operators oﬁey the cquy precedm rules: unaty plus and minus have highest
priority multlphcative opemon (=, /) are next; addttive operators (+. -) are next; " .is next;
relational operators (< <=, >, >=, = ~-) are next; dl Is next. l: Is next, ang:'r has lowest
prlority

Examples of expressions.of arity one:
A
true
3.7e-02
kg :
Yz i1 - CYH POR®

X>287<Fwk "

-X+3=B

3x(X+Y) . | -
[3:2) ' TR P E IS
A[3:7]

Al4J]) ,

R.X.Y.2l

record [A:P;8:Q]

Rreplace | x.xnmfmv :QJ

s:A (L)

make T [A]:3

icmm ,

upm“hum e Setin 7y

8.4 Abbreviations for srray aparetions

The syntax provides abbreviated forms for the selat, sppwnd, and creste by elewents

smnmaklﬂmmlammmmumudmmw“yu
sefect an-clomint-ts With an espresslonsuchas T

ALTKHL]
This-may be written
ALY K, L

-42 -

- The append operation can be used for muki-dimensional arrays by using an expression of
arity greater than one for the subscripts. Thus
AL4KL:V]
is equivalent to
ALJ:AJILK:ALKI[L:V]]
that is, A with its J» K, L element replaced by V.

~ Several values may be appended at consecutive lndlces by us!ng an exprwion of arlty gruter

than one. a : :
AfJ:v,W,X]

is equivalent to |
A JV; HIW; J2:X]

If mukti-dimensional arrays are being used, the last index is the one that varies when multiple data

items are present.

 ALLK LV, W,X]

is equtvalent to
ALLKL:V;LK L :W; 4K Le2:X] ’

These expressions need not be constructed by listing expressions of arity one separated by commas.

Other forms of expressions with high arity will be described in Section 66. For example: |
A[J:TRIPLEX, Y, D)]

fills in indices J, J+I, and J+2 if TRIPLE is a function returning three values.

Finally, append operations may be composed by writing the] : V pam in sequence within the
brackets, separated by semicolons.

A[Jl:Vl;Jz:Vz;...;JN:‘VN]
is equivalent to
A[JI:VIIJz':Vzl...[JN:VN]

where, as noted above, }; and/or V; may be expressions of any arity.

-4

AR wmmm&nﬁxﬁnaﬂcﬁm:uwhﬁmb
elements operation.
Examples:
[3:X:5:Y,2]
is an array with range (3, 6), and elements X, miss_olt, Y, snd Z.
(1 :‘A.] a
is a "singleton” array. with-low and high indices both one:

6.5 Abbrevistions for record.operstions

There are abbreviated forme: for' the replace: opsration: to allow convenient | sing of

MMWWMWMHﬁ" 1
R.A.8.C

Compound selectors. may- thWWWM&M”W
bypeﬂodt
Rreplose{ AB.C:V]

" is equivalent to
R replace [A : R.A replace 8: R, A.Bnphn{t: vm
that is, R with-its A. B: CWWW V.

replmopemmunybemmmmﬁ vmmwmm
bnckets.saptrmdhym)
Rreplesef A:V;B:W;CD: X]
is equivalent to
((RW[A vnrqlnt‘[a W])WI%JI:X]

- 44 -

. 6.6 Expressions of higher arity

The program structures provided in VAL for conditioml [

P \,,;tation and itmtlon are
expressions of arbitrary arity, and are described in Sectlon 7. Such expressions, or function
invocations, may occur in program text in places that require a. tuple of vaties-of spetified types:
the argument list of an operation or function invoatiw the body of a function deﬁnmon a list of
array indices or elements in an arny operation or in’ Suifdlng the | prognm structures pruentad in

- Section 7.

'6.7 Function invocations

A function invocation consists of the name of the function foflowed by an argument list within
parentheses. (The syntax is the same for internal and external and external functions) The
argument list is an expression, whose arity and types conform to the arguments required by the
function. This information is given in the header of the function definition. See Section 8. The
argument list is usually written as a series of expressions of amj one separated by commas, but it

may be any expression.

| A t‘uncﬁon invocation is itself an expression whose arity and types are the number and types
of the values returned by the ﬁmction. which information also appears in the function’s header. An
invocation that returns one value may appear in expressions with complete generality, such as an
argument to arithmetic, array, and record operations. An invocation that returns several values
may only be used where expressions of higher arity are permitted.

In the following examples, SINGLE, DOUBLE, and TRIPLE each take 3 arguments and
return 1, 2, or 3 values, respectively:

K:=3+ZxSINGLE (X + 1, 3, SINGLE (X + 2, 4, W) ;
In the following example, if P is false, F and G are defined to be DOUBLE (X, Y, Z), while
H is defined to be W: '

F, G, H:= if P then TRIPLE (X, Y, Z) else DOUBLE (X, Y, 2), W endif ;

Since the argument list for any functien may.be any expresion; it may Yo x willtiplevaiuit iphe e
function invocation or other prugnm structure.
3 + SINGLE mms ix. Y.

3+ SINGE®P, wumm

4+ SINGLE MPM*&MW&;Q‘%W 30

‘The last enmple invokes SINGLE ‘with three-arguments, of-which the first two are eithver 4-and 5
or the two values returned by DOUBLE. "The third argoment to SINGLE is stways X.

LA e R L e S R e AT SRR U TR e R T gy M T AR e

7. PROGRAM STRUCTURES

~ The pregram structures described hmunwnmmmdm& If their

arity is om.they Ay appesr in nml;mmm:. :
Example:
it P then x else Y endif + 3

This expression has value X+3 or Y+3, depending on P.

7.1 The IF construct

'rhe conditional expression selects one of several. expressions, dependmg on the values of
boolean_ expressions.

Syntax: |
nondit!onal—exp 1= If expression then expremon
| ~ { oseif expruuan !hon cxprumn 1
~ elge expression
endif

The expmsions followlng it and elso“ are fest cxpm:blu Tlnlr arky must be one and their
type. boolean. The expressions foﬂowing then and else are the arms. They must mnform to
each other, and the entire construct conforms to the arms.

- The entire construct is an expression whose tuple of values is that of the fiist arm whaose test
expression is true, or \,the'_ﬂnal arm if alt mt expressions are false. If any test expression -needed to
-evaluate the construct is an error value (undefiboolean) or miss_eit{boolesn]), the value of the
entire construct is a tuple of undef values of the appropriate types. {If a test expression has value

‘tme Iater test expressions are not needed and may bave errqr values without affecting evaluation
of the construct).

The if construct introduces no value names. All value name. scopes pass into an if constre.
If the scope of a value name includes an if construct, it includes all of the expressions of that
construct, so that value name may be used anywhere inside the omdltiunal construct.

7.2 The LET construct

The purpose of this: construct is-to: introduce: one: or-mere: Mnmm,mtheir values;
‘snd @valuate an expression within:their scopedtiint:is; Trmiimg e of thelr-defined 'values). -

Syntax:

let-in-exp :i=
.|.d decidef-part
in expression
endiet:
 deckiet-part 1= decket{ ; deckd) [;]
 decldef 11eded |
| dect { , deel } ;= expression ’
dect 11 valbename { , valoename } : ype-spec
def 11~ valoename {, Mm}' ST

Every value name: introduced:in-a:Jet block must be-declared exactly mmd defined exactly
once inthat block. The declarasion mey.be pa of the defiition; or. it may be by.itsef preceding
the definition. N e e
X : integer ; (docleration)

X3 (dafintion)
Y:resl =47 +Q; (déclaration s part of definition)

The declaration of a value name must precede or be part of its definition. Each: value name
must be defined before it is used (om:the right. hand’sidé of ancther definition). Diclarations and
definitions may be mixed in any order-as long as these.requirements are met:

Several value names may be declared at once:
XY Z:red;
This dectares all 3 names to be resl.

- s everal value names may be defined. at once, The number.and. types. of the. names must
eonform to the arity and types ef the expression on the right hand side.. .

X, Y, 2:=10,2030;
P, Q, R := TRIPLE(X, Y, 2) ;

Several value names may be declared and defined at once. In this case, each of a group of
"'valuenamenamesprecedlngatypespecmwimmdechmdmbedthatqpe
" X:integer,Y, Z: el :=3,40,50;

This decla_res X to be integer, and both Y and Z to be real.

'The declarations; definitions, and ‘combined déclarations md deﬂnimm are npanted by
semicolons; a semicolon after the last is optional.

The scope of each value name introduced in a lot block Is the entire block less any inner
constructs that re-introduce the same vﬂue nanp However. a vglne name must not be used in the
deﬁnitions preceding its own definition.

All scopes for value names not introduced in a given IQ! I;lock pass into that block. Hence, if
the scope of a vaknemme(lntrodumd bymmmmua)m;lotghckmdthunm
name is not re-introduced, it maybereferrad mmmmmm

Example-
Tot X :real;T:real;
TimP4+37; - -
X:=T+24;

inXx7T
. endlet

L In this example, the value of P_is jmported from thgmym context. The scopes of T and X are
| both the entire block. A reference tox in the definjtion of T m;d hem@lbqauseuu vmhm

thescopeofx butdounotfollwthedeﬂnmmwx Theuupnmmume.m its
type is real, because X«T hasarityoneand typercd

49 -

Since a value name may not-be used untif after it has been defined, and must be defined only
once in a block, it may not:appear in'its own definition. ' Herice definitions such as B
I:=1+1;

ate rever legal in fet blocks {though they may occur in ier clauses of for blocks; see Section 7.4)

mexmmfmmmtnnmmmdmufmwm value mmes.tud
hence can make use of their definitions. Tmmmmmmmm

7.3 The TAGCASE construct

This selects one of 2 number of expressions, depending on the tag of a aneof value, and
extracts the constituent value, '

Syntax:

tagcase-exp 1:~
tagoese [valve-name = | expression [;]
tag-list : expression
{ tag:tist : expression }
endtag . ‘
| tag-list 11 = tag tag-mame { , tagname }

The entire construct is an expression whose vakues are those of the expression in the arm whose tag
name matches that of the value of the test expression. HMMRM&WM‘M
word otherwise is used. All arms must conform to each other, mdthtmremmamform
to the arms.

The expression following the word tagcase must be of arity one and of 2 oneot type. The
'tagnam:ppeaflngintheamofthemmuumbeugsoﬂmmhype lftﬁeyooﬂlpme
anmngsormmype,mMuamumwwmm tharwis “amiinqnmd

If a value name and ":=" appear after the word tagcase, that name is introduced for each
arm of the construct except the otherwise arm. Its scope in each case is the expression in that
arm, and its type is the constituent type indicated by the tag name for that arm. If an arm is
evaluated (meaning that the tag of the test expression matches the tag name of the arm), the value
name is defined to be the constituent value from the test expression. If the value name and "=" do
not appear, the constituent value is not made avaiiable inside the arms.

Example:
Let X be of type
oneof [A : integer ; B : array(integer]; C:real ; D : boolean]

If X has tag A and constituent value 3,
tagcase P:=X;
tagA:P+4
tag B : P[6)
otherwise : 5
endtag ‘
has value 7. The first arm is taken, and P (whose type is integer in that arm) is defined to be 3,
the constituent value of X. If X has tag B and constituent value some array whose sixth element is
2, the value of the above construct is 2. In that case, P is defined to be the array. If X has tag C
or D, the construct has value 5. In that case the constituent value is not avaitable, since the value
name’s scopes do not include the otherwise arm. (This is because the otherwise arm can

encompass different constituent types, so the type of the value name could not be determined.)

More than one tag name may share the same arm if they indicate the same type. In this case,
the tag names are all listed, separated by commas, after the word tag.
Example: ' ‘
Let X be of type
oneof [A : integer ; B : real 3C: integer]

Then the following is permissible:

tagcase P:=X; .
tag A, C : expression; (P is integer here)
tag B : expression, (P Is real here)
endtag

B -

AW scops of vahie mames aiher than Wmmmmwmmmm

‘ wmmammmnmmmmwwwnmmuaﬁ'

7.4 The FOR constnxt

Thhpeﬁmmtﬁalhmﬂmh%qumwwummg
PNVMS ch- TM w m &m * }»‘i‘;-av RIS iy

Syntax:
~ Heration-exp 1=

[otherwise : er-end] ondiag

| Hot deckdef:part: in ier-end- endist:
| upmdou
| iter def-part enditer

defpart 1= def {;der) []

memmammmWMgmmmmmmm.mmm
for. Thueaechmmmmmhmuummumaldm o

-52-

The behavior of the for construct is as follows: The loop names are initialized, only once, to
the values indicated in the definitions appearing after the word for md thc first ltention cycle
beglns During each iteration cycle these names have ﬁxed values.

‘ The iteration body is then evaluated, using the current defimitions of the loop names. The
result of that evaluation is either a decision to terminate the iteration, with values to be returned, or
a decision to iterate again with new definitions for the loop names. |

_ The iteration body consists of an if construct, tagcase construct, or a tree of if, tegcase, and
let constructs, with a slight modification: the arms may either be conventional expressions, of may
consist of iter, some redefinitions, and enditer. There may be many arms of each type.

If the arm that is chosen for evaluation is an expression, the iteration terminates, and the 7
" values of the expression are the values of the entire for construct. All such arms must oonform to

each other, and the entire construct conforms to these arms.

If the chosen arm consists of iter, some redefinitions, and enditer, those loop names are
redefined according to the the right hand sides of the redcﬁniﬂms, and evzluauon of the body is
repeated.

Examples: ‘
for ¥ :integer:=1;P:integer = N;
do if P ~=1 then iter v := YaP; P := P-1 ; enditer
else Y
endif
endfor
This computes the factorial of N. It introduces loop names Y and P, which are both integer. Their

initial values are | and N, respectively.

The body of this construct is an ifithen/else construct whose first arm is a redefinition and
-.whose second arm is the expression "Y". Aecordmglx.»a;t the beginning .of each iteration cycle P is
tested. If it is not one, the iter arm gives Y the new value YaP and P the new value P»|, and
another cycle begins. If P is one, the iteration terminates with the value Y.

for T:redl:=X;
do et D:real ;= (X/T - TV/2;
n D <ops'thonT
olse Ror T := T + D;-ondiler
ondif
endiet '
ondfor '
This computes the square root of X, using Newun’zmhod “The iteration body uses a ot block

‘The next example reverses the lkt given as"'lﬂﬂfl".by initially defining T bbclﬁ?UT
has been defined: by
type LIST = oneef [emply : m;m WIM r“;n‘t LsTy
A “LIST" is a chain of records containing an arbitravy number (perhaps 2evo) of reats.
for T, U : LIST = RPUT, meke-LIST [:emply. .0l 5
do tagcoss 7 := 7
tag emply : U
tag norempty :
ter
T, U := Lrest, muk® LIST.[nonempty ; record [-item.: Zitem s.rest : U J);
endteg
endfor

The loop vatwe:names:must ail be different. Fheir'scopes are the entire for constract less any
inner blocks that re-introduce the same name. mmmmmmunum
manner as in a lot block. As in a let block, each name must be declared exactly once and defined
mmmmwmmwmmmumwum Each
iumm&mmmmmwmn:m
except the last, for wiich the semicolon:is optiomal

R At o B e D s T e e A Tl Tt e T e L TR LU ST

Within each iter arm the redefined value names must be?t,.umioﬁ the loop -names. These
redefinitions may make use of the previous values of all names, including the one being redefined.
These redeflnitions do not include decharations, since the types of the loop names were declared at
the beginning of the for construct. Each udeﬁnmmhm by a semicolon except the
last, for chh the semlmlon is-optional

- - Unlike the definitions in a let/in block or-the initial joop: value definitions in a for block, a
redeﬁnmon in an-iter clause may contain, on.its right hand side, loop names. that appear on the
left hand side of the same or later redefinitions. In such a case, the."oki” yalse is used, thtzh.the
value that the name had on the iteration cycle just ending. If the name appeared on the left hand
side of an earlier redefinition, its “new" value is used, that is, the resiit of that redefinition. |

Hence a redeﬁnitlpq such as
Jimdel; '

is legal and means that the next iteration cycle is to begln with a value of } which is one gmter ’
_ than its value on the cycle just ended. In the factorial example.given above, the iteration clause
iter Y := YaP ; P := P-1 ; enditer |

multiplies Y by the old value of P. If the order had been reversed:
iter P := P-1; Y := Y&P ; onditer

Y would be multiplied by the new value of P, and the example program would compute the
factorial of N-1.

The simplest way to redefine (two or more loop variables in terms of each others’ old values is
to use a multiple assignment. For example: -
iter X, Y := v, X ; enditer

exchanges the values of X and Y for the next iteration cycle.

A loop name not appearing in a redeﬁnitidn after iter retains its old value.

The: scapes: of sny-valee numes oier than' the Joop names pass from outer blocks into the for

mmnwtmmmmummmmmmum
v;mamﬁwmdwmm Mmmmmmupm’
‘dees not cause speciit-sctiow: ‘I Risriows ‘ ‘

“retdrived, Mmmwwwmm
75 ‘ﬂu qum

ThummMWmmmwmdmmemMmme
themuamysmmmwufmmmm»tmm)mm The former case
ummmu,mmmmammmm“mumemam
‘operator. rmmmynawmmm mmum&qum
-Wﬂymayﬁ%mﬁ&mﬁkwwn o -

This construct introduces one-or move: index value names of type integer and 2 number of

optional nemponry value names, the latter iy the the same aiiiher ## in- 2 lol Block.
foralt-exp 32 .

forall vzhe—nameki[won]{ value-name in [expression 1}
[dectdetpart] -
forali-bedy-part
{’ forall-body-part }
endail

| forali-body-part n-mlﬂle!wrm‘ﬂd Wwapfm
forali-op u-plu[ﬁ-n}ﬁulmlwfﬁ |

~ The index names are those appearing before the word 4. The teiporary names are those
appearing in the declarations and definitions. R e R

The index and temporary names must all be different. Their scopes are the, entitc oomtmct
fess any inner blocks that re-introduce the same value name. Thetypaoftl\gjmmmw
The types of the temporary names are specified in theirmm #s-imn lot expression, a
temporary name may not appear in definitions preceding:tyown.- * |

Each expression appearing in brackets after the word in is of arity two with both types
“Wteger.: Thie two components e’ the Kow ‘and' Nigh Wbk, inchiivel Tor the Index. For eath
number within those limits, the index is defined to be that narbef, the définitions of the temporary
names are made, and all the parts are evaisated. When more than one index is given, this is done
- for each pom n the "Cartesian m«uﬂammm&mﬁmm of index
“values. - E

“In a construct part, the expression is eviluated for each ‘index valie, and for each
comporrent of the expression, an array is formed having the same Wilts a8 the Hmns given for the
index and elements equal to the values obtained. If more than’ ‘ofe index Bglveﬂ. ‘a
multidimensional array is formed, that is, an array of arrays, with the first index referring to the -
outermost array. If some component of the expression is an error vakue Ybrwme m value, that
amy element is simply set to that error value.

Example:

forall Jin[1,4)

X : real := square_root(reak)))

construct J, X, X+1.0
" creates 3 arrays, all with range 1 to 4. The first is integer and contains values |, 2, 3, and 4. The
second is real and contains 1.0, 1414, 1.732, and 20. The fast is real and contains 20, 2.414, 2732, and
30. This forall block is an expression of arity three whose values are these three arrays.

~forali Jin[ABlKin[CD]
construct <expression>
endall
is squivalent to
forall Jin[A8
forall K ia {CD)
- coMStruct <exprassion>
ondall
endall | , ;
and constructs .a twordimensional array, that. !»mma;mmm EA, B }and whose
‘elements are arrays-whose limits-are [M 1 '

Inan cvdparnmammbemm; “ﬂ»m:!r.mﬁ The avity
.dmemsmmwmmmwmuwmmmmmwm
plus, times, min,-orimex, boslean for o or:end. The expression is evatuated for esch index

value, and the aperation is. perMmWM#;M»Mmm !f multiple
lndlces are used, the: W&Mm ‘the satice .collestion: of alues; ~foe- oMl
zombinations of fdex vakses, '
Example:
~ forall Jin[4,N]

-aval plus Jx)

N
retumsEj’.

- The result of an entire forall biock is.an expression constructed by concatenating g the results
‘of all.of the parts. : : -

Example:

forall Jin[1,N]
- X; real.;=square_rootiresl(s) ;
eval plus JxJ

construct J, X, X+1.0

endall

is an expression of arity 4 and types integer, array[hiegor].arnﬁrod). and aruy[rodl

If one of the bounds is an error valuc. or the lower bound is gmm than the upper bound |
plus one, the result ot‘ thc emire forall block is a tupie of undof vaiues of approprlate type& If the
lower bound is equal to the upper bound plus one, the rem& of ach eondmct part is an array
with no elements, and the resuk of each oval part is0,1, po:_ov.r. m;_ovw, fdu. or h‘uo if
the operator ts plus times, min, max, | or or ond. mpecuve!y “

The scopes of any value names other than the lndex and uemponry namu. introduced in
outer constructs, pass into the forall block.

5
ks

A SRR e e i

8. FUNCTION DEFINITIONS

A VAL program consists dammmdmmmmm wmmf

. ‘M fittmber of "‘m functions:. Each function: i&mfs”ﬁf ;t e ’ Y
plece of text consisting of: REE A

() The word: functinn ‘
(2) The function.name.and mmm“ymmwmw\ |
and returned values. This information s called the hesder”.
| _ (3) The type deﬂnm:undiathem‘dw K umnm ﬁmm N
thedecimthnsdmhuewmﬁgﬁg cdae
@ The defmmnem mmwmm'm fmmi
(5) The expression giving mmmmmmm “This s the body”
of the function definiion. |
(6) The word endfun.

The definition of an- external function is an entice:module in VAL. Definitions of internal
functions appear within. fanction-definitions initem.4-of the above list. |

Syntax:-
module ::= externak-function-def
external-function-def :: =
function function-header
[type-externatdef-part |
{ internal-function-def }
expression
endfun
internal-function-def :: =
function function-header
[type-def-part]
{ internal-function-def }
expression«

endfun

- type-extermal-def-part. u-type-extcrmt-def[Wm}[]
o typnmaﬂ«def;--qpe-deflexmam ceow
 type-def-part-s: = type-def {'; type-det [;]
< externabdef 3: automlmmm«r ' o
- function-header 11 = function-came (dect {; e«r}mw{ type-spec}rf -

function-name :: = name

Example:

function sum_of_squares (X, \£ roal rcturm l’ol')
XX + YxY :
endfun

Only the external (outermost) function defined in a module is mmble toother modules.

Optional type definitions may appear at’ter the header to give names to ‘types. These
user-defined names may be used anywhere in’ the'function definttion; “including its own header.
The type definitions (and external declarations) are upnmed from each other by semicolons. a
semicolon after the fast is optional.

Example

» !unction complex_multiply (X, Y: comp!ex rettmc complex)
" type complex = record [re, im : : real];
record [re : Xre x Y.re '~ Xim % Yim ;im : Xim % Y.re 4+ Xre % Yim)
endfun

8.1 Th_e header and value transmission

The list of formal arguments and their type specifications appears in the header between the
left parenthesis and the word returns. These declarations are separated from each other by
semicolons. Each declaration may contain ‘several vﬂue names, which are’ upurated from each

~“other by commas.

© . external decharation. ?..%%aasﬁza&?:&

<8l -

The scope of ithe formal arguments is the body-of the function ({the-expression); less any inner

constructs which re-introduce the same value -name. - ._...l_.f.n are.as given dn. the header ,

declarations, and their values are the valyes of ; :
types of géi%ﬁ@i??n&i%i&i’
appearing after the word returns. This list:of types-miint-confrm 40" the:bady. In every
invocation of a §%§§§§i§§§ -
those of the definition. SRR

The meaning of a function invocation i as follows I the function F is &.3.3 |

functionF (a; : t;. :£e.z§~ £.
BODYEXP
. endfun

then, a .Ea.m 3§=§=§§§§8§§§=&8§
_ . F(ARGEXP)

_.,.3.3_38_: ; : }
o detag sty ... ey dy = ARGEXP.in BODYEXP sadied

A.,Fn The EXTERNAL declerstion

AN functions used in a medule that Bi%gg;ggngig

function’s header, which is u ic«?gﬁu&aw’
Example: |
function tan (X 3_._3.58 real)
x?:s_:io resl returnsredl);
external cos (Q : real returns vl) ;
- . sindX) [costX)

This medule .isa, the external fuaction fen. . Since it Jises the g&:&ﬁa% are

Rk &%!.taiﬂ. The

not defined here, they must appear in external decharations. (They must be defived 4n sther

modules or accessed in a a subroutine library) ﬁxgiggw!?g?

n and cos, just as they might appear Sgaaﬁg&nigg u.ro?i.,
,Qnﬁiaa%aaa_ the headers ("Q" saxﬁgxﬁifzs%gg |

-62 -

incmded only for syntagtic consistency. The intention is that the headers be copied verbatim from

the modules defining sin and cos into the module defining tan.

A module‘s external declarations must appear following the header of the outermost ﬂmcﬁon
definmon of that module, even if the functions being declared are used only by lmema_! funguom.

The external declarations may precede, foliow, or be mixed with the type mmd the
outermost function definition.

8.3 inheritance of deta. type definitions, and external declarations

~ A'function has access only to the data presented to it in its invocation. No data values ‘are
imported from any enclosing function definition. Type definitions made in one ﬁmmﬂeﬁnmon
are inherited by ali functions subsidiary to it. A redefinition in an internal finction. of uype mme
already defined in an outer context is not permitted.

External declarations made in the outermost function definition are inherited by all internal
functions. :

8.4 Scope of function definitions

The scope of an external function definition consists of all modules of the program except the -
module deﬂning the funcnon That is, aﬂy external function may be lmroked from anywhere
except in the module gmng that ﬂmctions deﬁnmon 'l'he scope of an internal function consists
solely of the immedlate!y enclomng mnctim deﬂmtlon Note that this pfecludes any recursion or

mutual recursion.

B3 -

Thempemksrcrfmmm wmmmwwmmw
function F (<header>) '
.xt‘fﬂd FF(%C&" ,’
type T = <type-spec>;
function G (<header>)
type U = <type-spec>;
feinetion M (<header>)
function N (<header>)

‘function H (<header>)
!MMP(W)

the-body-of | may-iveke: functions

FF(eermal) G, HGnternal)
' FF (axternal), M (imernal)

FF (externat) N Ginsernal)

. “FF {external)

FF (eaternal), P (internal)

v T ZZTO ™

the body and header of : may use defined types

- I Z X2 0Om
-
c

The modules comprising a program are mnslated sepamely The manner in which their
“names are used to access them in fibraries and the manner in whkh they are lmked into a complete
program is dependent on the implementation. No recursive invocations Aamggxterml or internal -
mnctimsarepgﬁnined. | B

Appendix | ~ Formal Syntax

module :: = external-function-def
external-function-def 1t =

function function-header

[type-externat-def-part]

{ internal-function-def }

expression

endfun
jntemakﬂmcﬁon—d;gf H T

[typederpar]

{ internat-function-def }

expression

endfuy
type-external-def-part :: = typevxteml-dd‘{ .!'fpe-exmm&dd‘} [;]
type-external-def 1« type-def | external-def
type-def-part 1:= type-def—{ ; type-def} [.]
type-def 1:= type type-name = type-spec
external-def :: = axternal function-header -
function-header 2= function-name (dect { ; dect } returns type-spec { , type-spec })
function-name :: = name '
expression 3= level-l-exp | expression , leveH-exp |
Tevel-l-exp 11» level-2-exp | level-l-exp | level-2-exp
level-2-exp 11 level-3-exp | level-2-exp & Jevel3-exp
level-3-exp 11 = level-4-exp | ~ level-fexp
level-4-exp 1: = level-5-exp | tevel-4-exp relationat-op level-5-exp
level5-exp 11« levelGenp | levelbexp Nlevebbexp.
level-6-exp :: = level-T-exp | level-6-exp adding-op leve-T-exp
level-7-exp :: = level-8-exp l Ieveiﬂ?-eip ‘multiplying -op level-8-exp
level-8-exp :t = primary] unary-op primary

refational-op :: = !_(l,(w l_) l hs} =_‘| ~e
adding-op 1: = +‘-

multiplying-op 3:= x l /

uhary-op itm 4 IJ"

primary ::= constant l value-name
| (expression)
I invocation
| array-ref | array-generator
| record-ref | record-generator
!oneof-test |oneof-gemrator
] error-test | prefix-operation
' conditional-exp-
| let-in-exp
l tagcase-exp
l iteration-exp
l forall-exp
value-name :: = name
invocation :: = function-name (expression)
array-ref :: = primary [expression]
array-generator :: = [expression : expression {

| primary [expression : expression {: exps expsuslnn }J

record-ref ::= primary . field-name

record-generator :t = record [fiekd-name : expression { Mdm upmﬂm |3
‘ |primaryrqﬂm[ﬁeld mpmnm{ mu }]

field :: = field-name {. field-name}

field-name ::= name

oneof-test :: = ig tag-name (expresslm) . ,
oneof-generator :: = make type-spoc[&ag nare : expmsshu 1l
tag-name 1: = name

 error-test 1: = is undef (expresslon) |1 mhs et (exprm)
| I8 error (expression) | is zero_divide (expression)

| is pos_over (expression) | is neg_over {expression)
| is pos_under (expression) "i‘:w (expression)
| is over (expression) | isumder (expression)
prefix-operation : :‘-}W'(GXPMYI‘ |
| rest (expression)
| character (expression)
l abs (expression)
| exp (expression)
| masc (expression)-
| Pwimy (expression)
| erray_fill (expression)
| arrey_size (expression)
| array__adjust:(expression).
| array: addt (expression)
| array. addi texpression):
| array_remitexpression).:
| array_remi (expression)
| erray_join (expression)
| array_setl {expression)
constant 11« nif | true | télse- ~
| integer-number | reat-number- |mm]mmmm
| ervay_emptyftype-spec]
| undefitype-spec] | miss_eltitype-spec]
l pos..om&vpmed | m...ﬂmkwi |
| unknownitype-spec] | M..d"id!ltyp&md
type-spec 11 = basic-type-spec
| compound-type-spec

| type-name g
basic-type-spec :: = null | boolean | integer l!.d lchtrutu k
compound-type-spec :: = array ftype-spec) S
: |record[ﬁe|dspec{,mmpec}l -
I oneof [tag-spec { ; tag-spec }}
field-spec :: = field-name { , field-name } : type-spec -
- tag-spec ::= tag-name { , tag-name } [type-spec]
| type?name $t= name | :
conditional-exp :: = if expression then expression
{ elseif expression then expression }
else expression
endif

let-in-exp 2=

tet decidef-part

in expression

endiet
decidef-part :: = decidef {; decidef } [;]
decidef :: = decl

| def

| dect {, dect } := expression
decl ::» value—name‘{ , value-name } : type-spec
def :: = value-name { » Value-name } = expression
tagease-exp i

tagcase [value-name :=] expression []

tag-list : expression

{ tag-list : expression }

[otherwise : expression]

endtag
tag-list :: = tag tag-name { , tag-name }
iteration-exp :: =

for decidef-part

do iter-end

endfor
iter-end ::= If expuwhw«tlnnm
{ tagtist - nerems:} |
[otterwise : iter-end | endiag
| tet decidef-part i iter-end:andiut
detpart 1= gt 1ot }]
forall-exp ss =
forall value-name iiv [expression J-{ ,

FunctimikModule

Function
FUNCTION by

o e] e [y

Function Header

i

Function
- name

Formai)
parameter . < . > : Type-spec
O

Type and Function Definitions

— 1 y s——m——
name ‘ Type ':' *©

Function
header

EXTERNAL

y e

o Type: L
. hame |
g #

Null type
abbreviation-

T——

Expression*
» - Unary
> operator
i » 1 > Multiplying
Expression operator
Adding
"1 operator
" Retational
» operator
1 .
EE—— .
Expression A
n
Expression
—

1

Expression

am——— [

Primary

1
Expression

Expression

*The precedence levels for these infix operators is

itllustrated by their position in the chart; “‘unary
‘operator’ is highest precedence, comma lowast.

The superscript following “‘expression’’ indicates

the number of values that must be represented
by the term replacing that box in the program.
- an exact number >’

—
- K

that arity is the only legal one

any arity is valid

arity must match arity of other
expressions in some chart

Primary

il Constant A
Value -
neme
.] ' n
> Function]
name _ Expression
Array ref Pri N
H rimary - | .
. : Expression
Record ref ‘ . .
—p»{ Primary —_‘O——__q Field -
‘name
One of .
test Tag
neme
Error) '
tost Error
name
Prefix op ol Prefix | "1
name Expression
G i n
rouping op
(:) Expression
Array
} -generator
Record -
generator
— Oneof]
generator
- Conditional >
exp :
Lﬁ-in
> exp i
. Tagcase >
exp
Iteration i
exp :
; Foral! >l

exp

iteration Exp

Iter-end

Decl-def-part] Iter-end

Vs

Value

-74 -

name

n

Expression

.\
%

ENDITER. Jr—r

Jo ¢

Conditional Exp
- -{conditional iter-end)

' 1
; c) Y Expression

i i

Expression }

Conditional .

iter-end
TagbA)
iter-end >
Let J
iter-end

e
[~ ELSEIF. Expression

Forsll Exp

Merge -

operator |

Expression

Definition

» \(a|ue

-Expression

Declaration

: Value . .
e »O a4 Typespec

Multiple Definition

) []
4 Declaration : ’@ 3R . ’,‘Em

Decl-Def Part

I w—-b Decluration . P@

l———»t Definition

——— M\flt.ip_la
definition

One of Generator

| Typespec £

CEXP B

MIN >

. ARRAY-LINH

{ ARRAY-FILL
bl ARRAY-SETL P

Constant

z
r

>< TRUE \F
" FALSE }——

|

¢

Integer
number

Real
number

String
constant

09 |

Character
constant

-O—
O

'

gt

ARRAY-EMPTY

MIS-ELT
POS-OVER
NEG-OVER

ZERO-DIVIDE

POS-UNDER

L

' Type-spec |

Function name, formal parameter, type name,
value name, field name, tag name:

= they are all simple identifiers '

