COPYING COMPLEX STRUCTURES IN A DISTRIBUTED SYSTEM

Karen Rosin Sollins

May 16, 1979

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and was monitored by the
Office of Naval Research under Contract No. N0O0014-75-C-0661

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSETTS 02139

This empty page was substituted for a
blank page in the original document.

COPYING COMPLEX STRUCTURES IN A DISTRIBUTED SYSTEM
by
KAREN ROSIN SOLLINS
Submitted to the Department of Electrical Engineering
and Computer Sceince
on May 16, 1979 in partial fulfillment of the requirements

for the Dégree of Master of . Science.

ABSTRACT
This thesis presents a model of a distributed system where the

universe of objects in the distributed system is divided intb‘mutually
exclusive sets, each set corresponding to a context. This model allows
ﬁaming beyond the context boundaries, but limits communications across
such boundaries to meésage passing only. Cepying of complex data
structures is investigated in this model, and semantics, algorithms, and-
sample implementatigns are presented.for‘three candidate éopy

operations. Of particular interest is a new operation copy-full-local

which copies a complex data structure to the boundaries of the context

containing the object.

Thesis Supervisor: Liba Svobodova
Title: ‘ Assistant Professor of Electrical Engineering
and Computer Science

Key words and phrases: copying, sharing, distributed system, message

passing, strongly typed objects.

. ACKNOWLEDIGEMENTS

There are three people without whom I could not have written this

thesis. I wish to thank Profeséor Libé Sva&adbvaffcr»thé'diligence\with‘

“which she has read and understood the nany dtafta of this'thesis. Her

"ability to help me extract and clarify my ideas has been invaluable. :

Mike and Peter, my husband and son, have provided the. moral and

. emotional support I needed through these many moﬁths, particularly the :
last two. They above all had the confidunce 1n meAthat I could and

~shou1d do this work.

- Im addition, I wish te thank Dave Cldtﬁ**ﬂlieﬁﬂﬁuﬁiéibki§ Jim
Peterson, Dave Reed, and Jerry Saltaer*for Heﬁpiﬁg me to clarify ny

ideas and writing. I wigh to thank uy~parznts, Axet aﬁéxxathy Rnsim,

“and sister, Susanna Bergtold'fot*ﬁhﬁir“Gamfidﬁnﬁa*inﬁﬁ61' Fiﬁalky,
" wish to thank all the wembers of the mmmswem Raseasrch Group for -
~ being themselves and providing a u&rrurimgféﬁvitﬁﬁh@ﬁtfiﬂ*ﬁ&ich%téldéx

‘research.

CONTENTS

Abstractcceeececas ceeesessscsansennonens ceevescsacscas eee 3
Acknowledgments «.ccoevesscscsoscsascscacasccscasssnsasnssnns o b
Table of Contents e rereeereaaaaas cecrecnarsanans 5
Table of Figures ceitesenees cresencsscnns ceseenaas 1
Chapter One. Introduction ..cesececcescoccncconccnnss cesssas 9
1.1 Model of a distributed sSystemccceecesecccccsss eees 10
1.2 The problem ...iceveeeccesccnccnans tesseesessssenennns 15
1.3 Related workcvvcveescanens cecessas eressecssassses 19
1.4 Plan for the thesis ...cco0eesececcccns essessescasssas 21
Chapter Two. Contexts I |
2.1 Naming envirommentccoceee. testcesessarsarsansas 23
2.2 Abstract networks ereeseessssssssscsescscaccean 29
2.3 Contexts as objects ..vececeaes T) |
2.4 Summary seescnannes ceceansceses cesesessasssasse 32
Chapter Three. The Copy Operations cerecstescane 33
3.1 Existing copying algorithmseeneceeevccccnccsncs 35
3.2 Proposed copy operations ...ceceieeeccccesnccscas seecenae 41
3.3 The copying algorithmseceveveeecceoccsnans veseenns 47
3.4 The recelver ...ceccvvecneoness essceacanns csesasceses 95

Chapter Four. Additional Mechanism for Copying ...cececceee. 39

4.1 Message-contexts and images cesecacsase veess 59
4.2 Layering in a nodecceeesesescscne ceesvssacanne s 64
4.3 The details of sample copy operations ceses 67
4.4 Preservation of sharingc.cevneeecnncsces ceecesess 15
4.5 The receiving end ..civeveeevecenncaccnscncne cevene oo 19
4.6 The local copying operations chesssascenccnns . 81
4.7 Additional issues teeceacserescssresaseaanncnons 85
4,8 SUMMATY .seveeverenonaneas T 90

Chapter Five. Summary and Conclusions

5.1 Summary ... eiicitieteannciranaoas
5.2 Conclusion about the research ...

FIGURES

1. Contexts and communication by message passing 11
.2, Communication within the distributed system 14
.3. Sharing of components within a data structure 16
4. An example of the copy-full-local operation 18
1. A mutable CLU object of extended type cesecsas 37
2. An example of an object ceassecsne cecsceseasena oo 43
3. The results of a COPY=0Ne .tiivcveesscssossessns coseees b4
4. The results of a copy=fulliievenenenceccececncnns 45
5. The results of a copy-full-localcveeeroenrcccnnes 46
6. Message-context and image for a copy-onec.c.... 49
7. Message-context and images for a copy-full 51
8. Message-context and images for copy-full-local 54
9
1
2
3
4
5
6
7
8
9.
.1
.1

. Receiving message-contexts .c....eeceeessassocecsnsses D7
. Layers In the system (on one node) serecases .. 67
. Operations in the T type MaNager .ccovesecesscesonnne e 712
. The generic copy operations A <
. The send operation for message—contexts ...ccseeseeess 74
. Sharing across context boundaries cesesssessesas 75
. Using copy-full-local for foreign components 76
. Using copy-full for foreign componentsceeoeceees 77
. The receive and receive-image operations 80

The generic receive operationseveeescecenes seese 80
0. The receive-message~context operationcceeeeee. 81
1. Modifications for local copyingceecercsscccecnnes 83

Chapter One

Introduction

Many aspects of computing are based on the ability to copy
information. The foremost of these is parameter passing by value; in
distributed systems, it is the only way to pass parameters between
program modules executing at different nodes., Since these parameters
may be abstract objects whose actual representations are complex data
structures, copying in this kind of environment is a non-trivial matter.
The second area 18 a more general sharing where copies of some objects
will be maintained at several nodes. Finally, copying is needed to move
an object from one location to another; this is different from the
previous, in that after an object is moved, there is still only one
instance of the object in the system. Each of these and possibly other
areas require the ability to copy objects., Each also requiris other

mechanisms, which have, in general, been topics of research. The

research reported here has concentrated only on copying, in particular

copying complex data structures.

In addition to the problems for which copying is a part of the
solution, there are a number of interesting problems that must be

addressed in developing semantics and algorithms for copying. For

1. For example, if several copies of a mutable object exist in a
system, a requirement may be that these copies be maintained in mutually
consistent states.

T I s AR e

example, consider .the situation im.whiich 3 structured object is being

copied. Of interest ‘here are thase components - that .are .contained by

nsming in more ‘than ome other ‘compoment, -in obher<uar&s»sharad.by.ccher

.component objects. ‘A decision .must-be made:as to ihather or not those

-ghared cwmpﬂaents Aare copind‘mnlywumne,.onae “far aanh coneain&ng objznt,

or once for each pointer- to the objnct. Anotkar qnestion that -must be
answered is whether or mot more: than one - kind af capy operation is
needed, -and, if 8o, what the semantics- of the. diffemant nperations are,
In order to addness thege problcms, A modal 18 neeeaaary. Thts‘ehapter
will introduce the model of :a distributed. uyttem nsed in this research.
Using the model, a discussion of . the-prablem tn he snlved and an
introduction to the solution Hill fnlbow Eeuearch related to this work

will then be surveyed concluding with the pLan far the thesis.

1.1 ‘Model of «adistributed systen

The model -of a distribﬁxed Bysten used in this research -assumes the
hardware of the system to b€ a mnetwork of ccnputers, each camputer
having its own private memoty’or nameepacé for objects Since a single
namespace in a computer provides~neitbetvenough,flexibility in naming
objects ‘nor enough protectien in accessing .objects, thie work first
developsua«madelfnfaéaﬂ&n&ﬁ:tathaxzﬁnﬁi&iﬁi&aaaiiagr»par;itioninguoffthe

namespace.

Each computer .or node in the distributed aystem supports one or
more contexts. The univcrae of abjecxs ona nade form- diajoint sets.

each set corresponding to a singlefcontext. Thus the context defines

- 10 -

FIGURES

Contexts and communication by message passing 11
Communication within the distributed system eees 14
Sharing of components within a data structure 16
An example of the copy-full-local operation 18
A mutable CLU object of extended type eeess 37
An example of an objeCtcciveiencencnccccensancens. 43
The results of a copy-one ...ecceeece - 1
The results of a copy=fullceiceencescossercnnaas 45
The results of a copy~full-localccccecevveancecss 46
Message~context and image for a copy-ome 49
Message~context and images for a copy-full 51
Message~context and images for copy-full-local 54
Receiving meB8s8age~COnteXts ..eeseccoccveacascsssaacnasse 37
Layers in the system (on one node)econseeecseass 67
Operations in the T type Managerceeceoesescossces 72
The generic copy Operationseesvseescsccceccsscces 73
. The send operation for message-contexXtseoeeee. 74
Sharing across context boundariescccceeeeecaa. 75
Using copy-full-local for foreign components 76
Using copy-full for foreign componentsceeseeeee 77
The receive and receive-image operations 80
The generic receive 0operation ..i.eeeeecsncsscsssasass 80
. The receive-message~context operationsc0e0c... 81
. Modifications for local copying ...ceeeceecescccsscss 83

protection of groups of objects.where a.group is .a subset of the set of

" all objects on :a.particular:machine.

The system model recognizes two:kinds éf:entitiés;'activé and
‘passive. The active entitiesware-calledfpiocésées,«aﬁd can be éxécuting
- in no more than one context at a time. “Sinéé proc§s§a§¥afe notjof
primary interest in this research,fao furtkéirasaumptiéng:;re“made abo;t

them. The passive entities .are objects. AAll~objgets<ﬁﬁvé ﬁhree
attributes, value or.state,ana#e;;and:type. 7Evé£§.o§jé§t has:a value
associated with it. An objectuwillxhaée thevvaluéfofgégggiiassociated
with it when it is created. fbb}ect:valuesﬁaievoflo#e?éf:ﬁwo:degfeeé‘of
permanegce,amaking.the.correapand#ug;ob}entawnﬁ;a&leéatwiamntablea ;Anr
immutable object can‘be;assignedgaﬁvakueaai@nqstwopéﬂ;vﬁhereas:asmunablé
object can be,aéaignedraavaluemmnre;&hanﬁoﬂuﬁ;irzhis;ié:not mgant-50’
imply that either of these@aeeeaaafilyfhagpana,ﬂgn}y;thag}ﬁhe.
possibility -exists. fAtathe3ievel~ofucentextﬁ,xeﬁery'ppjeét»will have at
least.one;name,'and\willﬂhmve¥exacelyfaaeninziés haﬁé:cﬁnﬁext. “(As
-mentioned previously, -an object -may be -namesable’ from .a foreign context,
-and in order to.do:.this:the fereign context must assign to the object:a

name that is local to the foreign;canﬁext.)

The third attribute of .an object is:its typa; every object is .of
exactly one type for its:whole life. t!yfea&séawdaséﬁiﬁﬁion:of&&hoae
characteristics that a collection of .objects have in common, ‘a set‘@fr
rules by whihh'thewa&ﬁec@szamdﬂnhenuaemsm&f:thﬁjﬂb}d&#&mmust abide.
There exists a typevhanageraurusﬂmeaonhetqﬁachaniam?ﬁo:laach type (there

may be one instantiation of the type ‘manager per‘oquct that may be

-.12 -

considered an integral part of the object, or there may be an overseer

of a particular type) that insures that only certaipvoperationskcen be
performed on the objects being maintained by it. In this work, Qe are
‘assuming a single overseer or type madager for all the objects oﬁ a type
at a particular physical node. Ekcepﬁ for the.mQBL ptimitiﬁe types
called base types, . ggich are provided by theuaystem to each context,
every type is defined“in termsmoﬁwothﬁr types;Jthgﬂrepreaentation of
such a type is in terms of the representations of other types, and the
operations provided by a type are defined in terms of operations on the
component types.. - ‘The types that are not base> types: are~knowu as

extended types. An extended type object contains a list of the names of

its compooeot object} Such an object conteine nothing but names locel .

e

to the context in which it resides The definitions of extended types ‘

SRS I

form a network of definitions that must be based in the final analysis

¥

on the definitions of the base types provided by the system.

Several Supporting mechanistis for this model of contexts are
necessary. Thase meehcnisﬁs fornhthe‘keraelrv:?or the. purposes. of this
research, only the message handler and stotage manager are of cencern.
Figure 1.2 depicts~thie»situation_ sThefnessage handler must be able to -
(1) pase'messages between contexts local’ to & single computer, (2) pass:
- messages from a local context out intowthe“mbtﬁott,éaﬁdi(3) receive -
messages and see that they are delivered to the correct local coatext..
The message handler transforms messages passed between contexts into the
kinds of messages that can be passed through the network hardware. The

message handler contains information about low level protocols. It ig

-.13 -

Contexts'

sl e
' ¥

- nede 1 cowoc nodes?

Figure 1 1.2 A nodel of . the cemnﬂniaatien within and between nodes of the
distributed system.

quite possible that the low. level ueasages of the network do not
correspond to the high level messase objects or iggggg uhich will be
discussed later in the thesis. These high 1evel measages may be
buffered and sent in groqps, or aplit into snaller packets. Whatever 1s
done by the message handler at such a low 1ewel 13;hiddéaafrom the '
contexts and users. The storage manager, as its name indicates,

oversees storage of objects. - For each objectfstored in the nbde, it
provides a unique name in orde;«thaz the phyaical'object may be accessed
{through the storage manager). Each‘atot§g§ name is known to a single
context and associated with the local name aaaigaed to that object by

that context.

=14 -

1.2 The prbblem

The problem that this thesis investigates is copying complex
structures within the model that has been sketched. The complex
structures in this case are objects of extended type, and the copying of
particular interest here is copying across context boundaries. As was
mentioned, copying is needed for a number of reasons. This research is
a study of how to provide such copying: what the semantics of copying
should be, and how to achieve them. 1In order to investigate copying
further, we have set ourselves four goals: (1) any sharing that exists
in the original structure must be maintained; (2) economy of mechanism
by using a single approach in all copy operations defined (there will be
three) is desirable; (3) since all communication between contexts is by
message passing, the amount of message passing should be limited; (4) it
should be possible to send and receive component images separately.

Each of these is discussed below.

The first goal to be discussed is the retention of sharing among
components when copying an objects. Although a more common concern is
sharing among processes or users, this research concentrates on sharing
within an object. In the model assumed for this research, objects can
have arbitrary structure, including recursive containment. The simplest
question is whether maintenance of sharing would be necessary in copying
objects if recursion were not allowed, but sharing components were, as
in Figure 1.3(a). If sharing does not occur in a copy where it does in
the originai, the behavior of the copy may be different from the

behavior of the original object under the same conditions. Now,

- 15 -

(a) Non-recursive sharing - (b) Recursive sharing

¥

{c) Recursive sharing across context .Bounda'r.ies'.

Figure 1.3 Examples of sharing of conpanents within a data structure.

considering the more ceuplax structure that «ienelﬁu_é“ v reﬁursive
containment of components such ‘a8 the s&u&ﬁ;ﬁre‘ ﬁ: Pigure 1.3(b), it
becomes even clearer that such sh;ttng guacibi¢eo§iod in order to
terminate a copy operation which copiles “‘l:hé complete “st'tactqrg. Sharing
across'context boundaries, as in Figure'1l.3(e), ’sddsv a m dimension to-
the problem of copyiag. It does not introduce any-new reason for
maintaining sharing, however, recursive structures sre much more
difficult to detect across context beunwiu - ‘Thus, there is aveérj a

greater need for a mechanism that detects .such sharing.

3
I
g‘x

L A L N N AL 1

e s

T Rt

the local private memory or namespace. In order‘to provide flexible
control of sharing and to limit ertotépropuga&ton, theonly means of
communication between contexts is by passing-measages. This censtraint
allows enforcement of arbitrary degrees of protection at the context
boundaries. It does not eliminate the possibility of sharing an object
across context boundaries, but does limit the means of access to that |
object' if an object is known beyond the houndary of 1ts local context,
the only means of operating on the object 15 by passing the name of such
a foreign object in a message requesting that some operation be |
performed on the object in the containing context. The user will see a'
collection of contexts with messages flowing between them as in Figure

1.1.

ContextA - .} ContextB cevronj ContextC oL

Figure 1,1 bontexts containing objiecis .and communicating by message.
passing ‘ : '

This modpl of a context providee §£;£é:£ion';l ahlevel not
generally proﬁided-innconputer:syetemoisaIt;iwscqunpn for a system to
enforceuprotebtionwof the system as a whole; the requirement of
passwords is pneusuch mechanism. At the:other extrems, ' individual
objects are f?equentlyvprotected; two common mechanisms to achieve this -
are capabilitﬁes and access control lists. - Contexts allow for .

- 11 -

, aperation. the Jy.f“ll"local, e

level of the structure, cepying pomters tn alit tﬁe cmponeuﬁs of t;he

original. In fact, the copy upera&im 1% deﬂned»by ealling cogzi on

the original object, and then cn.lliag m mr é&ch zmpumg:, mgnst,”

Lhrough ‘the stru&entc tmtil all the' em-pbmfta hav&ﬁ bm capitd. :Géng

provides the standard smues fm: %epy w evpy&ng aM af e object,
~and ¢ ggx 1 allows for crutim of smi&lby wlured% wpying, m which -

‘;not all t:he cmpomnts ‘need to' be tuy&ed itrw»tk&s -mteh t;he_-

operations sinilar to copyl and | .m m.m%“ -“

.. The model of the systen ptesanmd Ln this paper 18 much more -

complex s:hm cha:; crf cw, an : datg a&rmtuxes to crosn eontext

,boundaries. As & reault, thu rmarch haa }.ad m a third k:Lnd of copy

r.he boundary of the context contaiaiaz ‘ otvi;imll 6b3ect. Figure 1 4

"is an example of this. Oanly “%ﬁ“ﬁ f“f:‘;i‘ dix

P4 urellsAnexample of thec 3

original ‘v»copyﬁ'k

v'fulal-lcca oyeratim. The object
th ** and the:

TabeTlled with * is copied Into the object labelled i

- component labelled 1 is copied into 1°, The cmnénts labelled 2 and 3
‘are not copied , SR :

;1;3 -

top“level (directly or through other local components) of the structure

and in the original context are copied. This copy operation complements
the other two in such a way that the threeé ‘provide the user with a ‘great
deal of flexibility in copying complex data structures across context:

boundaries.

1.3 Related work

The model of a dintributed”sYsteﬁ“uued*inithié;%esesrcp has been
influenced strongly by the work of Saltzer([18], Liskov et al.[10,11],
and Svobodova et al.[}9] 1In Saltzer’s work every object ‘is associated"
with a cOntext or nxuihg'envirdnuént;‘aii“the eanes~or pointers in an
object are resolved with reSpect to the context specified for that
objecti The purpoae of contexts in Saitddrgs ﬁork is to achieve what he
terms ﬁodular sharing. A number of ideas from the work in CLU of Liskov
et al. [10 11] have influenced this work.» First, the work on CLU :
presents a strong justification for abstractions»or strongly typed
objects and type extensiou. Second, the CLU syntax and approach to

odularity in programming has provided a basis for implementation of a

number of the most important procedurea for this research CLU also

provides approaches to the semantics of copying, the copyl and copy

operations for arrays and records,‘as mentioned previously. Both erraps
and records can be complex structures. The third sttong infiuence on
this research is the work on diatributed systens of Svobodova et al [19]
The model of a distributed system in that work assumes gd;rd na

communicating only by message passing. The universe of entitiee in this

_ wodel is divided into two kinds of entities, active, which are called

- 19 -

processes, and static, :called wbjects. A gnandian«;sfgqmposed of one or
moTe processes and the local address space (1he.dipectly accessible |
objects) of those processes. The local address spaces of guardians are
mutually exclusive sets of objects.‘ A peocesé or object can refet
directly only to objects within the same guardian. Across guardian
boundaries only processes may be naned ditectly, objects can be named
indirectly by using tokens, external namegefp;:nhgacts,fpassed to other
contexts by the context conﬁainins the<object;v The model used in thia
research is very similar to thnt of iwabodova‘et ni,, @xcept that this

work is concerned only with objectl,~nasm!£§hgareﬁﬁlupﬂt

It must be pointed out that a vntiety ai nopytng nlgorithms have
heen developedkby other peuple. Thene inciude thosa dnveloped simply as
copying algorithns (for example both 61ark [3] and Fiaher [5]) and those
with parciculer functions in mind sunh as gathnse collection (for
example McCarthy [12 13] and Baker[l] Althoush thesa works must be
iconaidered 1n a development of yet anothet copying algorithm they
present a common problem. They all use the copy thnt is being created
as part of the vorkspace needed to generate the copy. If copying is to
be petformed across context boundaries, such use of the cOpy 1mplies
increaaed message passing. Because of thefedst 1n ttﬁi"end greatef”
posaibiiity of failure due to the need for éeoéefafien‘Setveeﬁ7coﬁtextsg
for the purposes of’ this tenearch an alternative approech was chosen

SRR ruen

that avoids these problems.

The external marked database developed by Bishop[2] provides much
of the mechanism in his copying garbage collection for areas that our
message~contexts provide here. (Message~contexts will be discussed at
length in Chapters 3 and 4.) In our case the sending message-context is
the repository of the names of objects that have been copied (it also
has other functions) and the recéiving message-context holds the names
of the new objects containing the copies of the various components, in
copying from thé original object into an image and from an image into
the copy in the receiving context. Bishop achieves this in one phase

because he is not copying across naming boundaries.

1.4 Plan for the thesis

The remainder of this thesis can be divided into two parts. The
first is a further amplification of the model of the distributed system:
this is encompassed in Chapter 2. The second containé the discussion of
the copy operations proposed as a solution to the problem of copying

complex structures; Chapters 3 and 4 present this material,

Chapter 2 discusses in greater detail the nature of contexts.
Three complementary views of contexts are presented: (1) the context as
a naming environment, (2) the context as a node in an abstract network,
and (3) the context as an object. All three views are used throughout

the rest of the thesis.

Chapter 3 introduces the three copy operations. The mechanisms for
the copy operations meeting the goals discussed earlier are presented in

this chapter. This is then followed by a description of the algorithms

- 21 -

for sendiang and receiving im the contexts between which. the copying. is

being :done. . o P

cﬁapter 4 investigates in greétcr dacail-twofncw»typesbdf objécté,
proposed in ordet to achieve the copying diacucled in Chapter 3. vitlié
then recognized that the siupleat approach to providinz copying for o
typed objects is: to provide 3enaric opcrationa or procedures that can ba
invoked by individual type managers‘ Boaaihlc inplulentations of the
important operations are than,p:eaeut:dzr Onﬁseonelusionsto,be‘drawn ,
from this work 1is that‘nost-ofﬁthe nschanisia‘néidéé”fori¢opjin§ can be
prbvidedrhy the syatem»té the individual conmnxtgy;&n;;hezfogmnoi,the
generic operations, and that chezefore;inclaﬁinz thpm;ype specific copy

operations in particular typé nan&jers 1§f§§£~v§ty”diffi¢ﬁ1£,

Chapter 5 is the concluding chﬂpter of the thesis.,-lt summarizes
the thesis,'and then discusses poesible di:ectipna for»furthe: research

related to this werk. . - wr‘. fo Y e

-22 -

Chapter Two

Contexts

Contexts can be viewed as several different, but complementary,
classes of entities. As they were first presented, they appear to the
uger to be namespaces. A context is an environment in which local
objects exist and can name each other using only names local to the
context in which they reside. An extension of this view leads to
classifying contexts as nodes in an abstract network. The nodes can
communicate only-by sending messages. It 1s also possible to
extrapolate from the brief discussion in Chapter 1 to the point where
contexts are considered to be typed objects themselves. Their behavior
should be strictly circumscribed; their structure and the operations

defined on them must be carefully specified.

This chapter will discuss separately these three aspects of
contexts. It will conclude with a brief discussion of how contexts will

be viewed throughout the remainder of the thesis.

2.1 Naming environment

Names are fundamental to referring to entities in a computer
system, There are situations in which the value of an entity is used
for identification, such as in an associative memory; however, this has

not be shown to be practical when the value of the entity has a complex

- 23 -

structure. Thus, we will assume that each entity must have a name in

addition to its value or state.

A naming mechanism, if it isjdciignedaand implemented oroperly, can
provide»ﬁkexihiktﬁy'in-twuudimoetiouggénaéukatiﬁywSGdadhaxinss as
discussed by Saltzer{18]. Ihe achievoncnn ofﬂnndulaticy in a naming.
mechanism means that encities can be na-ed (con;;ined) hy other entities:
without concern for what pames are. chouan ﬂiﬁhin AlCH qntity. In
particular, if two object: 1 and 2 uae. tho a&nm n@ne A to imply.
different objects, 3 and 4 rugectivnly, then ob:}ect l should also be
' able to name Objsct 2 without cauﬂing a‘;xahlnu 'i‘hwth‘ taference A in
object 23 the reference A in objact l n&kL ce&lk xaddoa;e ob}ect 3,‘§p§,

the reference A in object 2 uill still Lnéﬁc&ﬁe ob;get h. AB n‘naioned,
in Chapter 1, Saltzer s eontextall&l yrov&d# ah&a ﬁacility. qu

contexts are modelled after hig in tlia r‘apcag,‘ i

N The other 1mportnnt goal of s nantng naehanilu ts sharing. Shpring
' 1mp11ea ma; thou is more thaa m murmﬂof m ‘name. tor an . objcct :
or that tbere 1s more than OR@ naaaxﬁer &h¢<ob§nc§‘ Laro;her uotdn
there 18 more than;one objent nan&ns the shared @b:aet and thertfoxe

S ek
havins some form of accoss to 1t.‘ Sinse we previaus‘_

ralied that
objects are . identiiiqd hy‘n&n&s. A€ lnunnnl«d&!u‘q;;,gugum~g:e nsed for.
a shaxed objocx, chey nnst&&n xhoifinﬁawunalxnﬁa,;gnnﬁvg,go nhquane
name. Thus at. tha :i.m & m&amnm ;Ln m mm A{W%ﬁﬂlr m, ‘the
naie must he nnanlyabls uniqualx¢‘hataditigxgnbrnchnaganﬂ‘can,hc-uﬂed

to provide this uniquenesa of name resolution. At one end of the range,

there is a mechanism such as tha reﬁﬁtanec cree developed by

- 24 -

Halstead{6]. Reference trees provide a basis for relative naming. A
reference tree for an object can be considered to be a connected acyclic
graph. The nodes of such a graph represent those entities that know
about the object in question. A given node knows for each object which
of its immediate neighbors know about the object. Using such a graph,
the object could have a different name for each arc in the graph as long
as each end of each arc maintains the necessary information. It is not
clear that this is a.useful approach to take, but it is possible. At
the other extreme, it is possible to have names that are unique for all
time. An example of such a mechanism is a capability system[4];
rapabilities are names that are unique for all time and unforgeable.1
Finally, it is sufficient to provide names that are all unique at any
specific time, but are not unique for all time. The standard use of

physical addresses is an example of this. At any one time no more than

one object can have a specific address in memory, but the same address

1. Some capability systems, have been proposed in which the object
name within a capability is a virtual address and thus is not unique for
all time. For example, Bishop uses this approach[2].

- 25 -

can he used by different objécts at different times. This last

dpproach is assumed in out model ali the objects on a node will be o
given names that are unique at any gi.vaa, tiu, ’ Tbe nanagtment and

resolution of names will be provided by:he ktmel of t:he node.

Within a node, even if the nede i.a a, pqul mmar, usgd by
only one person at a time, it may be. uyef.ul to hve qble to diavide the -
world of objects imto '_mllgr;vor‘l.da.. m; mbglmlyfm: ‘
convenience, or there may bs more prﬂtiagmm fox. it ‘such. as .
security or containment for 'verif‘ica;ieg:. Mmm;uaptqm S
overall uaning e,nviro'nge.n't in .;th.gj; uodg,mcu hwai,m smaller
environmeats called coagexta, Basically, s comtext will provide a name
resolving. ability for names known in the :gdggi,;gnv;mmt;m:o'thes& Vel |
names unique to the whole mde. 'mem;. of f@.‘lgéidheﬁwﬁ,;l:;be, divi,qeé;_,..__(

into contexts, such that every object will be in exactly one context.

1. As a matter of fact, in the Multics system, thate are names of all
three degrees of uniqueness. A segment that is shared by two or more
processes, probably will be kaown by a diffatent sagment number in the
KST or Known Segment Table of each process; thus there will be different
names for the same segment. At a different level {n naming the segment,
when a page of it is in primary memory, if two processes want to access
that page, their different names for the ‘informetion they want
(different because of the different segment. sumbers) must resalve to the
same physical address. On the other hand, if the segment is not used
for a period of time it may be moved from primary memory, and the :
physical space used for something else; the physical address now may be
an address of a page of a different segment. Finally, each segment has
a unique name by which it can be recognized. These last names are
capabilities; they are uanique for all time, and untom&ble. 'l‘hey are.
part of the information about a segment in an ent¥y 1fi 'a KST.” (Such a
capability exista in sddition to.the.full, innthgm o&;ghceggameng which
is a reusable name.) For a detailed diuwuion ‘the atg;giea syaten
see Organick{15]. S

2. Since this work is to a 1arge extent bued on Slltzer 8 work on
naming[18], the term "context" was adopted. :

- 26 -

When an object is created, part of the creation operation is the
assignment of a name local to the context in which the object is being
created to that object. The context is the repository for the knowledge
about whether or not a particular object exists within its domain. As
long as the context knows the local name and the storage name that is
associated with it, the object exists. Since it is the local name that
determines whether or not an object exists, and since the local name has
no meaning outside of the context boundaries, objects cannot move from
one context to another. An object can be copied into another context
but the resulting copy is a different object (even if the original

object is destroyed).

There are a number of reasons for using local names in contexts.
The first is that autonomy in naming is desirable, and often necessary,
if the distributed system can be partitioned or a node can be detached
from the system while continuing operation. 1If a centralized naming
mechanism were used, it would have to be accessed every time a new
object were created. If, on the other hand, the available namespace for
objects were divided, in particular, along context boundaries, eaéh
context could assign locally the name for a newly created object.N By
combining this with a globally unique context name, globally unique
naming can be achieved for objects. The second reason for using local
names for objects is in order to save space. Since the model of the

distributed system contains the assumption that there will be many

-27 -

contextse at least one per node and probably more, the namespace for

objects will be gattitioned andcthetequeztne,nnnee;nen be smaller.

As mentioned in Chapter 1, all objects are typed.;‘en'object of
bage type can be considered to contain itn‘valnes; while one of extended‘
type, any extended type, can be viewed ee liet of names of the ian
component objects. Since an object will reside in the same context for v
its whole lifetime, the names used for the conponents can and by
‘assumption, will be names that are local to thet context. 'Permitting
objects of extended type to contain only local names provides a simpler
and more elegant model than allowing two different kinds of names, |
depending on whether or not the named cenponent 18 local or foreign.

The simplification is conceptual ae;wel;.en #n'in@;gnentation.: Ia -
addition, using only 1ocel,naneegaLloyseﬁexgtnejpg;eiﬁi&i;x;oivu#tng;
capabilities provided hy the local mntexg.@ef'fedgditiqnﬂ,ep#e&%ceion,, '
beyond what‘misht be ptovided.by.nxeteetnonaeengtremnteukmposeﬂ;on SRR
message flow at the context boundary. - ;fwefe;e; an abﬁme of extended

type contains only a list of loeal_naneegﬂ.‘«

The function of the context is toiteeoinefthe'nanee.need by the
objectsiof extended type}' In thoee’caeesﬁwhefeiitdde deeireble;'u"
containment by naming foreign conponenta ehonld be available, that is,:
objects that reside in another context. Of conrse, eince, as wes stated
in Chapter 1, communicetion netween”eontexts ‘can only be done uaing
message pessing. the names of fareign conponents can only be received in
messages. It is also the case that such foreisn co-@onents can be

~accessed only by sending a message to the correét context containing a-

- 28 - .

request to perform a single operation on the object. If names of
objects can be passed outside the bounds of a context, objects can be

shared across context boundaries.

Now, it was stated that names within objects are only.local,
resolvable by the local context. This means that contexts must be able
to contain (map from local names into) two forms of names. One form, as

already stated, is the node-wide name to be resolved by the kernel of

the local node. We will call this a storage name. The other is the
foreign name that needs further resolution; the current context is not
capable of such name resolution. This kind of entry will consist of the
name of the foreign context and a name that is local to that foreign
context, The implications of this form of containment for sharing have

been mentioned in Chapter 1 and will be explored further later.

2.2 Abstract networks

We now have arrived at the following situation. We have a node
within a distributed system. The naming environment that it defines
contains objects that are all uniquely named. From the point of view of
the user this world of objects is composed of partitions which we call
contexts. An object exists in exactly one context. FEach context has
the ability to name the objects it contains independently of all other
contexts. All communication among contexts is exclusively by means of
message passing. Thus our contexts are taking on the appearance of
nodes in a network, resembling the abstract network postulated in the

recent work done by Svobodova et al.[19]

- 29 -

Contexts allow for two types of protection. First, they provide

a simple means of limiting error propagation. Second, they allow
iﬁpleﬁentation of arhitrary_pxq;;ationwcahaktatn&s:nn»the'context;

authorization to have message préééssed‘iﬁa'opéféti¢n3»perforﬁed in

oe’s behalf within a comtext can be consttained to any desired degree.

The second type of protactionwnakel thc7£i£§ﬁ‘péﬁﬂi&&QaAVAsilong as
messages are not sent outsida a cantext. any errors that may occur

inside the context will remain contained within 1t‘ If‘errors,aause

messagas to be sent, providing eonxex£3fwith~th§ abiliiyrtofpréiéct» o

themselves to auy desired dagrea means tha& they can pxotect thenselvea

from external errors.

Dfawing on the compariébn;bf'cchtéktﬁkéﬁ#inédes éf{é ngﬁypfk, if_
two proéésges iust comnunicate; 1tfis neéissarfAﬁé'cOnaidet whethér or
not they are runniﬁg within the'aane uoﬁtext.«.A"ﬁrééésd?éieéniesl
procedu:es, and since all pxocedures are chjec;s and exiat within some

context, the process must ba by daiinitiun axacu&ing 8, pxacednre fram

within a context. (Ve will avoid a diacussion about uhether or not . the_

context in which a. procesa Tung 1a.£1xed fo: the life of the process or

not.) Now if two processes are executing within the aane context, they
can communicate throuzh a,she:ed dntn object. Ihis 1: not to say that
this is the most deairable form of cnnnnnication, but’ that it is }
~available, Qn :he othct hand, 1f tuo yrnceaaaa 1n separate cpntexts -
wish to conmunicace, they have to do. 1: by m&aaage passing.‘ We ‘are
viewing contexts as abstraetiona of andzs. nnd have postulaced that

processes conmunicate betwaen nodea by sending aesnnges through the

-390 -

commuﬁication medium. Thus sharing an object across context boundaries
exaggeratés the differences between the two kinds of sharing; if an
action is to be performed on object 1, which is local to context A, from
context B, (1) a request can be sent to context A for the action to be
taken at conteit A or (2) a request can be sent for a copy of objgct 1
to be sent to context B in oder that the action be taken on the copy.
These two forms of sharing have existed in situations where direct
access was possible from both siteé, but message passing accentuates the

differences,

2.3 Contexts as objects

As mentioned previously, the contexts must be nameable by each
other. It was stated in Chapter 1 that an object has three attributes,
name, type, and value or state. In light of this definition it is
possible to éonsidef that contexts are objects, in the same way that
other types of data are objects. There is something inherently
different about contexts though; the domain of the names they can
contain is different in nature from those contained in data or procedure
objects. The latter two contain only names that are local to the
context in which the objects exist. A context, on the other hand,
contains storage names for those objects that exist within it, and pairs
of names (name of another context and name to be resolved within that
other context) for those objects that are known to objects it contains,
but are not local to the context. Thus, context is a special type of

object. It must be a basic type since it provides one of the interfaces

between the user and the kernel. We will see later that parts of the

- 3] -

‘kemel must be able to access parts. of ';hgg«,:.ggptgxtg;xpje,'m_anage~r oo In
Chapter 4 we will discuss these operations for. the type context that we

w11l need to achieve the copying dimm;edinmpms}qnd he oo

2.4 Sumniarl

This chapter has discussed three distincsly different possible

views of contexts. As will become clesr in Ghapters 3 and 4, we will

use all thfee sin,ultaneoimlj. A context contains the object we.#ibh to.
share by copying' In order to achieve the eopying, 1t 13 necessary to =
‘ perform some operm;ions on cont&xt;s as abjem aad mmetiues requeat:

that contexts send mwa teo uch «Qﬁbﬂt 20, muixn iore,ign cmaponenta
as part of copying. 'xahua, we: ml -8lip amongthe. Ad.f.ieunr. viewa of -

contexts without being explicit abqut it.

- 32 -

Chapter Three

The Copy Operations

In Chapter 2 we developed a better idea of what a context is. 1In
particular we can imagine contexta to be nodes ia an abstract network._

FIRRATN

Inside each snch node is a namespace contaiaing objects.‘ As mentioned
in Chapter 2 containment and sharing of componentaic;n‘occur across
context boundaries. It is also the caae that procedures can be invoked,
: AR ,
requiring parameter pasaing, across context boundaries.‘ Finally,
multiple copies of an ohject for reliability and accessibility must be ’
considered. In all these cases copying must occur when context

boundaries are croaaed. Therefore, the aemantics of copying needs

investigation.

Copying must be clarified, if a c0py of an object is to be created
it must be indicated precisely in which wsys the original and the copy
are the same and in which ways they are different. Clearly, the values
should be the same. But also, the behavior ahould be as similar as
possible. In other wotds, if an object and its copy are in the same
state and the same sequence of operationa is performed on both they

should be in the same ‘state afterwards. This means that any sharing -

. that occurs in the structure of the original should also occur in the

1
copy.

1. As we will see later CLU[ll] currently does not do this.

-33 -

As mentioned previously, we will provide several different copying
facilities. In a sense, the most basic copy Operation is what we will
¢all copy-one. This copies justﬁﬁhe top level of an object of extended
type. The other copy operations could in ‘essence be built up out of
copy-one operations, by»cxglicitly taqunsttns,eopy~ona for each
component object. The second is the most enconpassing. » -full, it
involves copying the whole object the ce-piete structure. The third is
something between the tue,,»ggz-fuli-laea&; It 1nvolves copying just
that patt of the 6bject that iS‘ldcdl eo;tge content containing the» |
object itself, there operatianstvdllrﬁb'dtacaéséd‘in‘detAil further on
in this'chapter and 1n ChaptetJ4‘_ Gonéid&ncﬁiéﬁdéfdfhe appar;nt
relative usefulness‘of thé three oéefaﬁions‘ié pés;poqed until Chapter

5.

There are a number of goals teo- keep in mind, while exploring
copying mechanians. First, since there Hill be more than one type of
copy Operation, we should econemize on mechaniam,,ané a;temptvto provide
a single mechanism to achieve all the copy opéraﬁions. Secoﬁd, since -
all passing of iniormatien fronﬂoaecqontext ﬁ; another ;nly occurs
through messages; the mechanisms shéﬁld keep déﬁh the quantity of
separate pieces of informetion that ﬁust ueve‘beéﬁéen tﬁé ﬁwb céntexts.
in order to keep the number o£,mesééges dﬁder»coﬁttol; Thus, the |
representation of'severai compounents cﬁﬁ.be;p§¢kédytégether 1n'avsi§§1e
message., On the other hand, it seems useful to copy aﬁ object
plecemeal. There are three reasons fof this. First, this will help

reduce the amount of buffer space needed at both ends of the message ,

- 34 -

passing facilitye Second, it will allow pfoceﬁsing at the receiving end
to overlap Qith sending. Thitd,,it'iey'redQEeithe eﬁodﬁf of information
that may need to be refranamitte&ffeiﬁeebtﬁedbigger fheﬁﬁEseaée, the

‘highef the poasibility_df‘an erfbf. ‘Both of thess become {mportant when

a large amount of informatfon 6&sé*bé‘pggse§”§§¥1£§ a copy operation.

It must be remenbered that since we are aseuning,th&t all objects
are Cyped. an object can only be manipulated through use of _operations
defined for fts fype.;vTherefo;e”the_gppy operations must be defined for
’ each-fype ofeebjecf that may eeer‘eeed to Ee cepiee'konifhe other hand,
a different kind of copy, an internal one (createaimage) which will be
diseussed later, is sufficient for type: that ure and will be only

components.

-

The chapter hasvthe follOVipg Plan. §ee§}9n 1 provides a b:fef
descfiption}ofvfheiceﬁy'operetions'fhat exiet for the basic types of
RECORD and ARRAX in CLU[11] eince our copy-one and copx-full are based
on them. It also discusses other copying algprithna._ Section 2
1ntroduces the algori;hus developed in this research. Sections 3 and 4
develop the details of the algorithms fq;.gge‘gganngiqujreeegviqg
contexta”iﬁvolved in a copy. %;defqi¥e§k$§qufg is preseoted in ;begg_::

- two sectiens.

3.1 Existing copying algorithms

As we have mentioned previously, CLU[11] provides a good base for
discusasing copy operations for extended types. CLU is-a strongly typad

language. This brings with ft‘tﬁéfi@plii?;fdﬁ't&égeq;i‘pbéfetigns are

- 35 =

SRS Ao

type specific. This means that thgre are no:generig operations that can
be used on an obje;t. On the other‘hénd; copy operations are defined
totr most of Fhe basic types of abstractions and ;ypé.genergtors.” The
two types ;hat have intéreatipg cqpyippeiat;¢ns,gye}atrays énd records.
These are aciually‘generafﬂrs“of infinite clasées'of‘mutable types of
ob‘ects.1 (This means that th@y can be usédfto'genéfate'tYpes based on
any other types.) For each, array and récdrd;‘the:e are two distinct {‘
copy operations, copyl aﬁd ¢opy.'fThe-éém#ntié§>(an4'i&pleﬁentatiou) of
 the array$copyl are the same as,thoée of the :ééofdséoﬁylg Tﬁe same 1is
true for array$copy and.recotd$copy. Thus it éuffiééé'for'ﬁﬁe temainder

of this discussion to use the ﬁefnsvéopyl and copy.

The simplest way to describe the behéVior of the t;o.copy
operations is to give an example. Figute a;ihdépiéfs'évmutaﬁie'objéct
in CLU. The objéct contains twb*parks;:fﬁeﬂﬁééaér;960ntgiﬁing the
description of what is to f0116ﬁ"(3peéifiéa11y;‘thg féﬁéypé; which
indicates the form of fhe~tepreséﬁfd€ibn Gfithe Ebjééﬁ;‘and:the leﬁgtﬁ);
and the actual reprgseniatioﬂgéf the object. This figure depictskan*
objec;'that is a list pf”referénces'to‘6tﬁet'ébjéit5. ‘A reféténce,is
composed of several flag bits, somethiing under 10 bits to describe the -
type of the object named by the reference (thidvactually is Qn index
into a table of pointers to deﬁcriptions of t;pgq);,ang ;ﬁe gd@tess of
the object. The copyl operation cfeateé-ﬁ‘hew object of the same type

having all the same references.: In other words, what is returned by the

1. We are proposing in this thesis three additional mutable basic>
types, contexts, message-contexts, and images. The latter two will be
.discussed in detail in this and the next chapters. . '

- 36 -

CLU object

_ reptype | length

‘flags typé address

. references

Global ‘table

Type description

Figutelé_l A mutable CLU object of extended type. The header containa
the reptype, in this case’ referenees. ‘and "the length, 'iu this case the
number of references. The repnesen tion of the object is the list of
‘references that follow thé header. ~The only place in which the type of
an object is stored is in a reference naning the object.

- copyl operation is a new reference having the same type as the original,
but a different address, ‘and the object at this addfess hasfthe same -
.contents as the original object i e. tha ‘new object points to all the
same objects the original does._ The copy worka as follows. First, a
copyl is pgrformed pn{the,qugct tp,bg q9pigd, Ihen egqh,fgferenécziﬁ,‘.

picked up from the new object, and a copy operatiah'1S'petformad>on this

- 37 -

1 :
component object. For each component, as it is capied the new

tlfirence is used to replace the old one in s;he cp.p;y of its coutaining
object. This process of copying con;mnent: emﬁium uatil copies have

been made of all the lowest level basic kypc obg_ocu.

There are several problems with tha"c-ofpy operﬁﬁiqn. Tl;e first om _ |
is a semantic problem. If sharing exists vi:l:t:hm a nmdmdthe '
record§copy operation is used, this shariag will mt;be p:éuﬁt_in the
newly creatgd object; an objeet that 1s ahnred by two components ﬁill be
copied twice. Thus the behavior df‘the c&py may not be the same as
that of the origzuml object under all mxm:inm fm: the pnrti.cuur
type. In order to achieve sharing that wﬂl ba cnpied, & diiftr&at copy ,

- operation must be implemented that takes c‘ogmzmlo,fv whs;g sharins is
to occur. The second problem u'i.su from thehplmtm uf"t:lm!‘:cnﬂ

environment in general. The lifetime of an object 1s mo war than .» the

lifetime of the process that created it. Aeapy fdmob@ect canbe
saved in some form in uconda:y etmgn. bat :Lf tlu mus chat cr:ga.ted
the object dies and a new px.joceais’ wants to ,r__et‘ruv": the Vinfnma«tion , it
vill by definition be in a new object. The name used to identify an
object 1s unique at a given time by virtue of {ts éb:?ft;;ihihs. ‘su*"‘addr'e‘fs*g.‘ -
When the state or value of an object is storedaruvod. all the |
addresses are ‘hoéifiad'”lo as to be féla“tﬁi!’"t:d‘" smm address

attachcd to the entity being etored mm tha nnec uced hy a proceu ‘

_ for objects can never gat into eecondary s&crm ﬁm ad objdct :I.a

1. This description conforms to the iuplmnmtion of GLH on the DEC20
gystem at the Laboratory for Computer Scimc, MIT.

retriéved from secondary storage, it will be given a new name or
reference (éddress) based on its new position in primary memory. Now
the object really has become a new object having the same structure as
the old one and which might be considered to be a complete copy of the
original. In this thesis, the assumption has been made that an object
can have an existence beyond that of the process that may have created
it. Therefore, the object must have a name that is not tied to the
creating process, such as an address in the primary memory allocated to
that process. If the name is not tied to a phyéical address, we can
arrange the naming mechanism and its interface to the storage mechanism
so that the physiéal location of an object can change without changing

the value or content of the object.

In ‘addition to the copying provided in CLU, other copying
algorithms must be examined before devising one to fit the particular
needs of this research. One approach that must be considered is the
copying dqne by various garbage collecting mechanisms. An important
such algorithm is that suggested by McCarthy[l2] and then later used in
LISP 1.5[13]), MACLISP[l4], and other list processing systems. This
algorithm passes over the information three times, first marking all
cells still accessible, second compacting or moving all the accessible
cells into contiguous storage, thus adding all the inaccessible cells to
the free list of available.storage, and finally updating all the
pointers, so they point correctly to the cells that have been moved.
There are two problems with this approach. First, because the algorithm

requires three successive complete passes over the structure, one in the

- 39 -

old 1ocation, one to.move the daia, and one in the ngwwlocagion, we
would not be abngto,achievg much.overlappipg,pivptqgegsing. Second,
this algoritbm‘rqquires ﬁnny-mg:e_g;ssqgas~;hqgﬁnggegga;y as will be
seen later. Another approach to garbage collection :hgs-,.‘be‘v.en_ dnv}elopeﬂ |
by Baker [1]: real-time ggrbage‘éelleg;igp,i Again, aquith the
algorithms mentioned above, :he‘origina}_ob;ggt,ég§ qogppnents are used
to store the name of the copieg; If weéw#rehto use an approach such as

this, additional message passing would be peceégary.

On the other hand, Bishop has developed.a'nqéﬁinisﬁ similar to
ours(2] for his compacting garbage collectb:;"Fét:iiﬁplicity he does
not modify the original quecclbging,copicd; bui'ratheéfﬁaiﬁtains~an
external marked database that aapa'therﬁghgg?gg oEJQctsziggpfthg.new
copies of theaevdhjects."An an;ryripfﬁkighdgtggpggg;fop,awgg;t;cglht
object 1qd1cgte§ that it has ﬁéan,cog;gﬂ Qn@'EEindﬁﬂ,éﬁﬁ,na!"9f the
copy. In ou:_mechgnisn,vthe{geapgggfggptqgg;ggggiQQ§?§191m§lar
function, although it also ,lnggga;qa;m% Listaf _those objecta to be
copied. The reason for this ié that Bishop félioga%gaghwﬁgth,to‘its
end, thereby copying the ngest.leye}_cnﬁpgngnts_f;fg;,”;nlfaét, and .
ending Qith the top level object. .Iﬂ Fhis.thgqiql°n§,°f,th9»3°alaviﬁgsp
send 1mageslas\qu1ckly as poasihlg,”nqg_igvok1§g the'qo?y;pg recur§1vg1y‘
on conponentg;“therefore.the‘nessaggfcongg;t §§‘;hg qeaqé,of ;at&ining:

the information about which cﬁnponpnts need copying.

Other algorithms for bopyidg list stfﬁﬁthres"the:heeh developed'byb-
Fisher(5] and Clark[3]. The purpose of these algorithms is to copy an

object of arbitrary size in a workSphce‘of bounded size. In both cases

- 40 -

" in order to achieve such a goal both the 6tig,inal object and the copy

are utilized by changing thefvaruqsf%ﬁfeﬁchadugtfpls*timéa;‘ These
algorithms have, from our point of view) probléms similar to thoge of -

the 3&rbage collection a;gorinhuﬂm,mwit necessary to.

W develop our‘owa: mechauiu for: wpym&g in the simtim in whieh all

communication takaa plact through uetsagﬁc, amn‘share it is désirable or
: even: neeessary to sead piem #f the: mopy*» atﬁgy in separate i

' meas,age;a .

,3;2”:Prqpntédrquzrqgcramianm

" This thesis will provide three varieties of capy operationa.» Two ,
of them are very oinilar to the tw prwi.ded y» cw as discussed 1n the)

preceding section.' 'I‘wo probleus were brou;ht up in relation to CLU,

3~ TR S A St RO BRI

IR first that CLU does not recognize any ahar:t.ns v:lt.hin an object and,

‘second that as can be seen in the ming uchaain uud in CLU an o

o«

object hac no e.xiatence without tha px.'ocen that cteated it. He are

s - R T e
;::,:g;; By o BE ‘~ el mrnEd

| assuuing tbat an objact has an existence tied to 1ts contaxt instead

It 1s the context that determines whe:her or not &n object exiats.

£ <0 ‘, 3 .-*,»..«1

“As we ».havg‘addmésbtdt; prt#iqui’l.’yﬁfsa‘-p,titeéf with each local nmina :
confext :vii]v.fif"ﬁe‘ a‘name of m ofm ﬁn&iﬁz?&; fuld: nage pair of &hév;féfl<
{context, "lbfcai“ ‘ﬂmf}",’-- 61*‘*& ‘st‘or&fgé“h“ﬁﬁ&@ﬁ#tﬁéi&%l‘y ideiitf!bi%’e:l the = -
.._object to the stétase umgtt 11& erdtr tha,t the- ebjeht éani’ actually ‘be
accessed. Also, as untiencd prﬁviousiy; when - an bhjéet: £é shaved: ﬁsy
" naming) by two ebnponnnts of«aanthér ebjéct ﬁﬁiéh@in Biing ‘copied thut

‘, ~.the sharing ;#hould B0% be.. 1091: tn M!ag &he ﬁep?‘ ST L SR

- 41 -

We will call the two copy operations that are modelled on CLU

copy-one and copy-~full, The third copy operation is the

copy-full-local. This operation LQ‘the:aana;asztheasopy»iﬁll except:
that only the~originai object and«thasegcegponan£a~aimit ia the same
conitext as the origimal object will be: cng&adg while for the foreign .
components only the ngnas.will<be sent, tgadn -the. best way: to explain

the details of these operations is to consider an example.

Let us first consider Figure 3.2(8}. thgm;h§utwthe remainder of
this thesis the abbreviation "L-N" will be used for "local-name" and
"S—N" will be used for "atorage-aame" in naning ob}cets duxing the
discussion of examples and figures. He wiah to capy the object in
context 1 having a local name of L-ﬂ 18 to eoabext 5. Figure 3. 2(b)
shows the structure of the object L—ﬂ 18 as a block diagram Kow, in
order to perfotm a COpy-one Operation on L-E 18 tu create a copy in
context 5, four names local to context 5 nutt be‘ch0ien (here L-N
31-34). Figure 3. 3 dﬁpicts uhat will be in context 5 after the copy»oﬁﬂ
operation; there will be a copy of L-N 18 of cantext 1 and fot each
local name used in the copy im eon&exx,s‘there;will¢be»a/raference back
to the original componeat. Thus the ftrbt-nnaé,fuhoiuﬁollpﬂad‘thr0ushg»'
points to L-N 8 in context 1, the second, to L-N.12 i@,cnntéxt 1, and
the third to L-N 9 in context 3. The first two. can hé,zeﬁplvad to
storage names in coatext 1, but the~thizdwcaa éﬂi]'iﬂ ﬂbnxex§~3. Figure
3.4 presents the copy~full on L-N 18 of aﬁatexx g in'ahia case all the

context 5. Now, there are no references back to the original objects,

- 42 -

SO ISR s AT e $2 0

St el M R T iy T G RN

context 1 ' context 3

L-N 18 | S-N 1 _ ,
L-N 8 S-N 2 ' L-N 9 =N 5
L-N. 12 | S=N 3 ’
L-N 17 context 3, L-N 9

L-N 7 S-N 4 '

L-N 18 . - L-NB8. L-N 9

=y IR vy Bl W e
L-N 12 :

LN 17

L-N 12 L-N 7

L-N 8] [value]

L-N 7

(a) The names {n an’ object, its ceuponents, and the ralevant contexts.
_The contexts contain mappings betwesn locai names:and. storage-or full

 names as well as objects."L-N" and "SeN" -aku-abbréviations for '
"1ocal—name" ‘and "storage-name" respectively.

(context 1) -

,‘-~F_‘§‘j(cont¢#t N

(b) Block diagram of the structure of the object L«N 18 of (a)

Figure 3.2 An example of an object.

- 43 -

context 5

L-N 31 S-N 6

L-N 32 | context 1, L-N 8
L-N 33 | context 1, L-N 12
L-N 34 | context 3, L-N 9

L-N 31

L-N 32
L-N 33
L-N 34

Figure 3.3 The results in context 5 of a copy-one on {contextl, L~N 18}

of Figure 3.2 to context 5. The.context centains objects as well as a
mapping between local names and storsge. or- fudk names. ML-N" .and "'S-N"
are abbreviations for: "lecal-nane ‘and "a;ornsg#anQ" taspectively.

but :also we have: lost the fact that-one of the: conpenaaté wae: in B
context separate from the rest. on the othar hand sharing has been
maintained. Figure 3.5 depicts the copy-‘fum.-—imr -on L-N 18 of context
1. Here again five local names &iélhéééﬁdyfﬁlcOnteit“S”'bnt‘the
component that was in context 3, sinca that 18 not the context that
contained the object originally being c0p1ed, was not cobied. Dnly the

name of that object has been passed‘tp the receiving coﬁ;ext.

At each physical node in the system, there muét be 1nraddicion to

the set of contexts reaiding there a kernel that .supports such basic

functions as message passing between contexts. cauuunication with the
hardware network underlying the systen, storage management, and
allocation of other>physica1 reboutcee thﬁtidié shared?aﬁéng;the:’

processes running in different concéxis'dﬁfthb’sane,ndde.' A kernel will

- 4h =~

context 5
L-N 31 S-N 6
L-N 32 | §=-N 7
L-N 33 | S-N 8
‘L=-N 34 | S-N 9
L-N 35 | s~-N 10
L-N 31 L-N 32
L-N 32
L-N 33
L=-N 34
_ , L-N 3
LN 33 |
L-N 32 ‘
L-N 35} ‘ L-N 35
|

Figure 3.4 The resulta in context 5 of a copy-full on {context 1, L-N
.18} ‘of Figure 3.2 to context 5. The centcxt contains objects as well as
a u‘app‘ing betwéen ‘1ocal names and sto - O FulY natdes, "Lau" and bt
MS-N't are wbreﬂaﬁ%ht for ”Iocﬂun " i ””itdragv—inme" R
respeccively. F o ’ : '

~ also provide mechanisme for enforcing security cowstraints of the

contexts it supports.

In copying an object from ome context .to another, images are .
created within the sending context as previously described. They are
thep passed to the kerﬁg;ydf the sendigg context. We will postulate. a

mesgage handler that deals with all the problems of passing messages

'among contexts on the local node and into and out of the network for the

- 45 =

context 5

L=-N 31 S-N 6
L-N 32 | S=N 7
L-N 33 | s-N 8
L-N 34 context 3, L-N 9
L-N 35 | 8-N 10

L-N 31 L-N 32

[t-n32 [value]
L-N 33
L-N 34

L-N 33 L-N 35
L=N 32 value
L-N 35

Fig b;;; The results in gcnxax; 5 of a>cog§-gul"»¢a\l on Lgonxext 1.
L+N 18) of Figure 3.2 to contex; 5.. Thﬂ»@ﬂﬂ&ﬂi& wontaing. ohjects a8 »
well as a mapping between local names and storsge or full names, . nLeN"
‘and "S-N" are sbbreviations for "local—nama" and "storage-name"
respectively. : S S

-r

local contexts. The message handler must determine how to find the

receiving context. If the receiving context is on the gsame node, the
network need mot be fnvolved at all. The bessagés passed out of the
sending context will simply be passed directly to the receiving context.

1f the recelving context 13“h6t‘6n”€héfi&é§1“ﬁba¢,7£§;1ﬁéééégé handler

1. We are assuming not only that the architectures of all the nodes
are the same, but also that the specification and implementation of the
extended and base types of objects that can be copied are the same on
all machines. By this we mean that the representation of an object of
extended type will be composed of the same component types on all nodes
between which the object can be copied. The problems caused and avoided
by such a restriction will be diacualed in Chapter 5.

- 46 -

must prepare each message for transmission through the network to the
' : :
correct node.

A3.3 The copying algorithms

The procedure that will be follouedeill‘Be*siﬁiiar“for all three
types of copy operetions. When it hasfbeénfaeeidid that an object is to

be copied, the first step will be to“cteate‘iénésidgg-éontéxt;” A

message-context ie’an entity thdt is growableé and?ﬁfii have only a short
lifetime.' It isle mapping between the fndeéx of ‘an entry and the value
of thatAentry. An entry is created as follows: each ‘name in the
original object will be examiced*to~fﬁ&&*the*full:hamé;‘{contekt name,
'Loca'rname)“pur;.for 1:.'- This will become ar entry in the
ﬁessage-context 1f 1t 1is cotﬁthere'alnéeﬂi.‘\The»éntfy associated with
index 0 will be'the.fullicaﬁe of thie top level object being copied.
Meanwhile an igggg of the object wilffﬁe*creited"haVing‘iﬁ’plecetof"'
each naﬁe in the object the index of the*entry‘ih~fhe message-context
containing the full name of the conponent object. The image of each
\ component will have attached the 1cdex ueed 1n the nessage—context.
Each object will also have the type attached When an image of the
original has thus been created and an- entry for 1t has been made in the
meseege-context, it 18 ready to secd ‘ At this point an image of the

next object named in the measageecootegt io createdwin the same manner

1. This work does not deal with the conmnnication protocols of the
network, although of course the message handler must know them. The
copy operations can know nothing about these protecols nor -about the -
degree of reliability they provide. We will discuss reliability at a
later point. ' - B o T

- 47 -

2s the top level object using the same message-context, thus adding
entries to the end of the message-context when necebsary. This‘is
fépeated until an image has been created and seatjféi eVery object:name&
in the meeaage-eonregt that is to,pe;cogigd.:,The;ngaa;geeconrext-will
provide,tﬁe,names;of ;hpee%qbiectsgtg,bg copied as companente. For a.
copy-one operation, the copying. is sﬂiyvpetfbxméd;én?tﬁe‘tﬂpfl%Qel
objecr. Once the image. of the nbject.hagcheeﬁ‘eent,;ap;image‘of the -
message-context must,aleo be sent, in order to.crxeate the correct .
entries in the receiving congex:wforfhhaqnanes‘in &hﬁ ehject,being}
copied. For a copy=full, once images for all :heécgapqnen;s,have.been
created and sent,‘nothiqg noreggeeee,gphbe;gpnr.W;The_neasageecnetext?ie
of no mdre,uee.,,Finally,ﬁfor a,capy—fgllzloeelquerarien,;ell the
cemponents that are in the sending context eill‘be;cobted,;and a,partiall
image of the meseage—cdntext cop;aining thejindicee’audﬁertrias‘for,the,'

foreign\referencea must be sent.

The image creeted for each bbsecr copied‘ﬁili have ; two part
header. One part is the index of the objett?s'hame in the l‘
message—contert. This.weuld not‘bernebeeeary ifrﬁe eould,guarantee thar
all messages would be received in the eahe'order’rhey were sent, |
however, such an assumption would be tqorree:rictive.lrzThe other pert
of the header is the type of the particﬁier ebject‘te whicﬁvtheiheeder'

is ettached Again this should not be neceasary 1n mOost cases assuming

that messages are received 1n the order sent. :he reaeqn fqr,this is

1. This assumption would put additional burden on the lower level
protocols, and since the overhead of sending the index ia low, such an
assumption is not considered necessary.

- 48 -

that if the order of arrival is predictable and the types of the

components are a}réadyiknaun,Vauuchefinagésfarriv¢?€heirftypes will be:
kn'm; .iﬂowevar, ‘4f the nucaive? 151'&#&@&1&; mitahgémzt ~»ofr-type' any, the
object being receiv«d must have. ita typc ltttohed e K tm; An-order that
the receiver . caa: ‘hand it to the conrw& nypn mson- In ‘any cese;. m
if we could ignqre tha zetaoning jmc £olkow¢d fov includiang betzh,»paru
 of thq;hgaden.;;heyrgqa¢baadu§tiﬂie¢.gnuxhgxaxeueds»thatzth%x.prOVid&us

redundancy that :rcaa-r'b;.e -used for -.:re'uthi\kztya. o

We will now examine some examples for a better understanding of the

algdrithms. The object to be copied again will be L—N 18 of Figure 3 2

7,Figure 3 6 depicts the cOpy—one operation. The massaze-context is set

FERN 1 TR IS S fo)s Glomn

messaggrcontext .

0 context 1, L=N 18

o Lzl~c0n£ext B qu I
12 COntext 1, L-N i2

.‘t’-y'pe 1.0 l

o o b

'Figure 3.6 For the copymang oparation, the images. of object 0 and the
mesaage-context (without its first entry) will be sent in copying

" {contextl, L-N 18} of Pigure.3.2. The ahbreviation "L-RK" 1s used for. - -
"local-name". B ‘ ' ’

——————

up with. the entry for the objec.t. being& qoptfed !a cmm& 1, L—N 8 is :
first looked up and found to be local to chst conﬁgnxp chcﬁ 1&& full

name 13 (cantext 1 L-N. 8}. Ihis entry ia puc in;o the nnasssg~con$q;; :

- 49 -

an since it has index 1, a |l is put into.the first position in the
imageiof L-N 18 being created for sendinsgv‘Then the full nawe is found
for L=N 12 in context 1, and, since it ‘is met alveady in the
nnsaasz-eoneext a second entry is nade, and. anothﬁt Andex 18 put 1&&0
'thd image. BNow, when L-¥ 17 is ﬂollaﬂnd, Bt i# d&aauvuﬂad ‘that ramher
than ‘a ‘storage name in the context, ﬁhere A anathet {context" nsne,
local name} pair. This, then; is nﬂad as’ the*fnil nawe Lo put 1nte ‘the
-eesage—context in the same way as the ocher full nanes. The headex for
the image of object L-N 18 contains both the type and ; zero.‘ Row, the
image and the message-context can be sent (1n se@trnte nesaages, if
desired, as long as there is some means of tellin; the receiver that the
two really belong together).1 |

The copy-full operation is the most enconyaaains of che three copy
operations, and as such uncovers problems noi znaaﬂgnqrdﬂ with the other
two. First, the problems asaociated with shared,coapenents appear.
(This was not a problen in the cOpy-ane, slthough we will see it also in
the*copy-full—local operation.) We want to be 5ure':hat all such
sharing is maintained if that is desired. The messggédcoutext will do
this for us.' Second we must cunsider the pmubiﬁua«af hanéling fortisn

components. {(This 4is not a prublem in eibher et ﬁhe:other operationﬁ)

1.: Some optinizatton could 'be done here. First, since,’ anly ‘one
object is being copied the zero in the header is unnecessary. Second,
if no component ‘names the original dbjeéct; the entry for it in the ‘
message-context need not be sent. Third, we really do not need to. send
the message~context separately. Instead, we could use the full names
for the references, thus including the message—contnxt infornatian in
the image of the object.

- 50 -

e S e e i s R

In this case, in addition to the problems associated with acquiring a
copy of a foreign copponéﬁt; we also musf:be:cérefﬂi to maintain shﬁrihg
-ﬁomponents across context boundaries. 1In order to do this, a copy-one
operation should be‘peffotméd on any foreign comporient. This means that
only the top level of any foreign compdtient plis ‘the names it uses will
be acquired. By this means the message-context will discover éll

sharing, even that 1nvolving‘fofeign cdmpdhéﬁts}

- The cqpy-full‘opetgtion-iswexgmplified in Figure 3.7. Again, as

mesag&e—context
0| context 1, L-N 18"
1 | context 1, L-N 8
27 context 1, L-N 12
3 context 3, L-N 9
3 context 1, L-N 7
type 10] - [Type I1
value
3
‘ type |3
value
type | 2 S
: 1
4 ' " |type] 4
- 'value

~ Figure 3.7 For the copy-full operation images of objects 0, 1, 2, 3, and
% will be sent, but no imdge of the message-context need be sent in
copying {contextl, L-N 18} of Figure 3. 2 ~ The abbreviation "L-N" is
used for “local-name s R

in the copy-one, the message-context is created with an entry for -
{context 1, L-N 18}. Alsv, ‘sgain, an image is created of L-N 18. Onece*

this has been done, and the header of type and index Q0 have been

- 51 -

attached to this image, it can be sent off. Now, the next entry in the
message-context, {context 1, L-N 8}, is picked up and an image of that
object is created as with the first. It is of a base type, and
therefore its value will be copied. Again, the header will be attached
to it, this time containing the type of this 6bject and an index of 1
(which is the index of its entry in fhe message-context). Now this
image can be shipped. Once an image of L-N 8 has been created, we can
pick up the next entry in thé message~-context. This is {context 1, L-N
12}, vwhich is an object of an ex;ended type. It contains a list of two
names. The first is L-N 8. When the full name i8 found for this,
{context 1, L-N 8}, and it'ia compared wifh the entries already made in’
the message-context, it will be discovered that there already is an
entry for that ébject. Its in&ex is picked up for the image of L-N 12,
but no new entry is made in the message-context. Now the next name in
L-N 12 is handled. It is found to have a full name of {context i, L-N
7} which is not yet an entry in the message—cqntext, 80 an entry is
created and the index of 4 is used. Once the header con;aining the type
of L-N 12 and an index of 2 have been attached to the image of L-N 12,
this step of the operation is complete. The next object to be copied is
{context 3, L-N 9}; a copy of this must be acquired frém context 3.

Once that has been done, an image can be created for this oﬁject having
in its header the name of the type of {context 3, L-N 9}.aﬁd én index of
3. The copy operation from context 3 must be a copy-one, although for

an object of base type as in this case, it makes no difference.

- 52 =

There are'sevéral issues that need mentioning here. First, the
copy of {context 3, L-N 9} will not be kept iﬁ context 1. If such a
copy were kept in the sending context, we would have a situation in
which the copy~-full operation would have side~effects on the sending
conteXt;“this is clearly undesirable.1 Second, there may be problems
with acquiring that copy from a foreign context. It wil}, At least,
cause some delay; at worst, it may be impossible, causing the original

copy-full to fail. It is for this reason, and we will discuss it

further later, that we have added the copy-full-local operation.

To resuﬁe our example, we will assume ﬁhat the copy-one on {context
3, L-N 9} into context 1 has been completed successfully. We now can
proceed to {context 1, L-N 7). This is another object of a base type.
The value will be copied as with L-N 8, and the header attached. Now
when we look at the message-context, we see that all the objects named
in it have been copied and their indices attached to them in their
headers. Therefore wé do not need to send any part of the
message-context to the receiver of the copy, and the message-context is

expendable.

As was mentioned before, the final copy operation is the
copy-full-local. This seems to be particularly useful when one cannot
or does not want to involve other contexts. An example of the
copy-full-local operation is depicted in Figure 3.8. It 18 quite

similar to the copy-full operation. First, the message-context is

1. Of course, copy-full operations will always have temporary
side-effects.

- 53 -~

megsage-context

context 1, L-N 18
context 1, L-N 8
context 1, L-N 12
context 3, L-N 9
context 1, L-N 7

type 10 [erpe T1]

value]
2

3

PLWN—O

type | 2
= |
4 type [4]

value -

Figure 3.8 8 For the copybfull-lecal operatiou imagea of objects 0, 1, 2..
‘and 4, and a partial iasge of the message-~context contadning the fourth
entry {3, {context 3, L<N 9}) 5 will be sent in copying {context 1, L-N
18} of Figure 3.2. The. ahbuvuum *‘u—u’ Ads «ud zﬁnr "1ma1-am".

created. .Thefinagea of’LéHsIB@‘LﬁK-&,ﬁgﬂ&Lﬁ?ﬂ;iz dre created. When it~
is discovered that the~eext<Qnﬁnypin;thewgeseagewcqhtexi,{coﬁtext'Swa~ﬂ5»‘
9} names an object in a foreignfcoetem§;:thg;&ﬁngeeﬁar:;hiswohjeet is -
not created, but the entry in thefmeseAge—context is marked'for,futurer~‘
reference, Finally, the image of L-N 7 18 created. Any time after each ‘
‘image has been created, it may be sent. An tmage of a partial
message—context must also be sent containing all those entries 1§ the
message-context that were marked as not copied Once all this has been .
sent, the message—context can be deleted and the sender has finished his

T

part in the operation.

3.4 The receiver

‘As mentiannd?ptdvidnbly; the‘messagé hanafér*fbt‘theféending ‘

context will be pasne& inagan ftom the aending;context. and pass them to

xt is‘on the ‘same node in

the receiving eonzext; 1 the receivtng cf
the distributed syrmm as the sanﬂing cuﬁtgxt,’"’éht‘ rw cOn‘texta'will

make use of the same measage handler.A If the receiving context is on

another node, the sending nesnage handler will pass)the ipages out 1into |
the netvmrk;*a fozfej.gn nes,aase hand«ltr‘ wﬂ;l' :a‘kg‘ care ot them. Whether
.',°r not the network was’ used it 1s in the t%ceiving context that the
inages ere&ted by the sending coatext munt be' ﬁse@ Fo create the actual
copies of abjecus. He u&ll ptésent the reee!#iﬁgxpfacodures as a set of
' cases eaah to- be handiea diffemt&y, a8 tﬁue areé'so’ many poasible
Vordezﬁngs of the arrivals ef the parts of a copy,‘anﬂ’wé want processing
to: begin as soon a8’'a receive eonnand has Bneu 1asued aud at least one

image has arrived

He ‘must be able td 1deutify each piece of a cOpy as part of that
“c0py., Each piece vill be lsbelled with® fts own cype cnd 1ts index 1if it
is a copy of a.gqnponent or‘thexfaq; gh&g ig';s:apneasage-gqq;ex; or a
pért‘fhn:e¢£;’if'£he cqpyyns;gftop%~§§éié:lafgop§f£3¥lﬁiqé§1. The

procedure is as follows.

1. When the first image (component or message~context {mage) is

ready to be: grocessed; a 1oca1 regeiving_messa e-context

is created. 1t will contafn; fn’additfon tothe fndéx for

each object; the local name for thnt object once that n&me‘
 has been determined. '

© 2. When the’ hesuége~Edﬁtext"im&é%‘irfivesi“ifh“éntritﬁ:dre'\

processed sequentially. As each entry is processed, the
receiving messagé<context 1§ first checked. “If there is a

- 55 -

local name there associated with the index of that entry,
this local pame is used to find. the location in the local
context to place the full name carried by the _
message-context image. If there. 18 no local name in the ,
receiving message-coantext for ‘that envtry, the context must
find a local name to refer to the foreign object, this.
entry is created in the local cmweu’t;, ‘and an entry is
created. in the receivi. ptaxt. for.. ‘the. -~
appropriate local name miag t:ht ameprhte index.

3. men a component inaga arrives, che receiving mssage—context.
is checked for a local-ngme to be used for the new object.
If a reference to the arrivir "‘mpenut ‘has already been
received in another imsge, 2 loral mawe will have bgen
assigned. If not, one must be mmad £rm the context.
Using the appropriate loc.el name, the Me As. grmfemd,h
into a copy of the original ah:;act. 1f the object 18 of a
base type, its value is tskea from sthe imege. 1f it is of
extended type, each me s piﬁhd up out of the inage

Using this name as. an index: iato;the Wﬁemuxa,

look up is dome. If either that cbject’s image itself hns o

arrived previously, or m:hcr vefexence to.that object
has arrived in yet another W then timre already will

be an entry in the receiving messagercoutaxt comtaining a
local name for the refereace. 'i‘h,ic will be used 1n the
copy. of the compenent being crested, If there. is no local -

- name for the refereace yet, the @oate:t must provide one. .
Thus an entry will be created in the receiving.
message-context, haviag the Wpthta index and the ‘
local name provided by the cemnt. Also ‘an entry must be
made in the context, althbpugh e cbjeqt will.be assj.saed
as yet; i.e., there will be t Iméal name in the context
having no other pame. (c:mmr mmga 9: full, name)
associated with it. ‘

4. Images are recei\ied' until there are no . eatries in the coatext
that do not have storage names or £ul1 names associated
with them. At this point, the copy haa been completed and
the receiving message-context 18 no - lmgor needed. ;

When the message-context depicted in Figute 3.‘9 (a) 1is gdded to Figu;ea :

3.3, and message~context in Eigm?e 3 & €b); t.o I’i.gn:jtxf thand 3.5, we

can see the receiving contexta fox the cop;-ou, mx—rfull, and
copy-full-local operatione after all the. nngpa d&pic,md in Figures 3.6,

3.7, and 3.8 respectively have been received.

- 56 -

me ssage—context)

10 L-N 31
1 L-N 32 : |
2 L-N 33
3 L-N 34

(a) The message-~context that must be added to Figure 3.3 in order that
it depict the receiving context after it has received the information
sent in Figure 3.6, the copy-one. .

messagg—context :
0 L-N 31
1 L-N 32
2 L-N_33
3. L=N 34
L4 L=N 35

~(b) The message—context that must be added to Figures 3.4 and 3.5 in
order that they depict the receiving context after it has received
respectively the information sant in Figures 3.7 and 3.8, the COpy-full
and copy-full-local. -

i

- Figure .9 Message—context in the receiving context. The ahbreviation
TL-N" 18 used for "local-nane" .

Chapter 4 will explore in gréate: detail the supporﬁ Ehat must Se

. provided to achieve what has been discuased this far. In particular, itv
will investigate the - types: message-context and image and how they can be
used to provide those facilities the uset needs while hiding what the
‘user does not need to know. Chapter 5 will compare the three copy
operations and point out prqblems_and‘some»inieresting possibilities for

further research in similar directions.

- 57 -

- 58 -

Chapter Four

Additional Mechanism for Copying

In Chapter 3, ‘we discuased algorithms for copying to be used in an

D B S

~environment of contexts as . described in Chapter 2. We muat now explore

’l"

PR RIS

the implications of these algorithms in terms of what new basic types
5..

are needed in contexts, what mechanisns are needed as supports below the
level of the contexts in order to achieve such copying between contexts,

and the interdependencies among theae entities.' We will alao extend the

copy oparatione to include local ¢0pyiog.

4. neaagge—eontuta and impges

P Y
£ LRV

' Two special tYpes of objecto were’uaed in Chapter 3 to describe the
copying operations that must be defined within the contexts. | -
'mgsaage-contexts anéviulges. These two types:are basiec:types and
therefore providé an interface with the: lowerilevel or keznel of the
node hdpportihg the context. This section clarifies their
_charactetistica by deacribing the Operations defined for these types.
Language constructs siniiar to those of ﬂLﬂ{ll}.will ba used tor this

purpose. e T

As mentioned previously, me%sggeueontéits re hinilar 1n.many ways
to contexts. Each is a mapping from one kind of names, - local to and
unique within® the context T other kiﬁdtwéf ntnctz Hessagz—canxexts

are used specifically for ptepating fmﬂgee when copying an object. A

- 59 -

message~context, as used in Chapter 3, is a mapping between the indices
for entriesein the message~context aed‘the cdﬁééﬁié*of those entries,
that is, the full names‘for'ebiects. We will nodifﬁ cﬁis definition
s8lightly later in this chepter when discuising an cptinization for local
copying within one context. A nesnaye~euﬁ$ext not only must keep track
of the component objects, but also ‘mast de seue other bookkeeping. '
First, it must renember how msny Lndicea have been uﬁed.f Second, 1£
also should remember which couponentn,have baen copied and which have

not. We will depend on the message-context to provide the name of the

next object to be ccpied. In order to do thf', the neaaage-eontext must

remember which type of copy operation it ts h&ndliﬂg.' The
message-context must also oversee ‘the sendéa; -pf; aa image - of a partial
,message-context in the caees of the eopy-ona and nopy—full—local

operations. Finaliy it must nelf-destruct.

Ten operatians are. neededefor the nesaege—ean&ext. SOne~af'these'

are used only for: 1ocal copyins. ead therefote vill npt be used until

later in the chapter. The messggevcpntex;‘opetgtiggg,ere as follows.

1. create (object-name, op-name) returns (message-context-name):

. takes as arguments a:locsl pame of a local gbject and the name
of a copy operation (copy-one,. copy-full, copy~£u11~local,
receive), creates a message-context, and returns the local name -
for that message-context. . o

2. delete (message-context-name): takes as an argument a local name
for a local nessage—context. dEIetes it fruu tﬁe context, and
returns nothing. D, . VR :

3. next~send (aesaasn~con£ea¢~uﬂnc$ yielda (abggct—nane, L
context-name, indexl, object-local): is a CLU-1ike iterator. On
each invocation with-the same msssage-gontext-name it produces
another object-name from the mesgage-~context until it has
exhausted its supply, so that the name of each object to be

- 60 -

copied has been given to the invoker exactly once. For each
object name produced it also returns the name of the context
containing the object, the index of the object in the
message—-context, and a boolean which is true if the object is
local and false if the object is foreign. If copy-one is being
executed, only the name of the first entry in the
message-context will be returned. If copy-full is being
executed, all the names will be returned. If copy-full-local is’
being executed, the names of all the local objects will be
returned.

create-image (message-context-name) returns (image-name): takes
the name of a message-context and creates an image of it to be

sent to another context. This transformation uses the

- information about the type of copy operation being done using

this message-context, and the name of the local context. The
image created will have its type specified as message-context.
The index field can have any value since it is not used for this
kind of image. If the copy operation is copy-one, all of the
entries in the message-context except the first will be copied
into the image. If the operation 18 copy-full, this is an
error, because no message-context image is sent, and this should
have been discovered before this operation was invoked.

Finally, if the operation is copy-full-local, only those entries
for which the context is not the local context will be copied
into the image along with their indices. This then is the image
that is sent to the receiver,

send (message-context-name, receiver-name) : takes as arguments
a message-context name and the name of a receiver, to receive
the copy. This operation manages the copying; it does the
following for each component to be copied including the original
object. The index in the message-context of the object is
found. If the object is foreign, a copy of it is obtained.

Now, regardless of whether the object is foreign, its type is
found, create-image is invoked for that type. Then the index
can be added to the image header, the names in the image
translated into indices using the message-~context, and the image
gsent. If the object was foreign, the copy of it created locally
will be deleted. Once all this has been done for each object,
an image of the message-context can be created and sent if that
is appropriate. See the later sections of this chapter for more
details of this operation.

local-send (message-context-name, receiver-name): takes as
arguments local sending and receiving message-context. It
generates the appropriate kind of copy of the object named in
the first entry of the sending message-context. It is invoked
when the receiver is local to the sending context, and achieves
for local copying what the combination of send and receive

- 61 -

achieve for distant copying. A sample implementation of it is
presented later. . '

7. name (message—context—name. index) retuxns (object—name)° takes
as arguments an index, and & meﬂsagenqqngex; -pgme and returns
- the name associated with that index in the message-—context. If
there is no. such name, the contest is regueated to provide a
local name which later will have asaociated ‘with it an object.
This operation is.used in receiwing

8. receive (nessage—eqn&axt*ﬂﬂne, aende&*gama) takes ‘as arguments
a receiving message~context and an identifier for the arriving
copy (sender-name). This. operaciqn 1s the;tevexse of send- it
receives images and mansges the creation of the gomponents of
the copy using the 1nasas._ It_egpeg;g\ig an example later in
the chap&er. O T i]

9. receive— Egg (image-nama, message-context-name) takes as
argumente an image of & sending weesage-context and a. receiving
- context and updates the receiving messs encan;axt,and ‘the
context with the contents of the 1mqg .. This is used -only in
the receiving context.. , ‘

10{ nexe-raceive (message-cantext, sendet—name) yields (image-name,.

typel, indexl): takes as arguments the ‘name of A reqeiving

message-context and a sender, from vhom a copy is coming. It is
an iterator that yields the name. of an image to be received, and
the |

the type aad index that have been. extracted .from the image.
‘header. It prOViﬂes the reverse . Enae&iaa £ram nezc~aend.

As long as mesaage—contexta are. u&ed qnly fot sending an& receiving

coples of objects. these oyeratians ‘are . auﬁficient;‘

The other new type is imag . we-have dil:uéaed téfﬁéﬁg etteﬁt the
use and form of an image, but more musi‘be eaid; An:image,hea a'header,
and is of vatiable;siie, it has twelve eperEtiéﬁs defiﬂed"devii'as'
follows:

1. create (type). returns (image-name)' ‘takes. as. an argument the

type of the object for which an image is being created. The
operation creates the image, whigh will grov as 10¢al names and

values are stored into the image. This operation returns the
local name of the image that has been created.

- 62 -

¢

2. gstore-name (image-name, index, next-name): takes as arguments
the name of an image, an index into the image, and a local name
for an object to be stored there. These names will be
transformed later. This operation returns nothing. It is used
only in the sending context.

3. store-value (image-name, index, value): takes as arguments the
name of an image, an index into the image, and a value to be
stored there. Such a value will not be transformed before
sending the image. This operation returns nothing. It is used
only in the sending context, but not in the examples presented
here.

4, store-index (image-name, message~context-index): takes as
arguments the name of an image and an index which the operation
will store in the header of the image. This operation returns

nothing. It is used only in the sending context.

5. translate~out-name (image-name, message-context-name): takes. as

" arguments an image and a sending message-context, and uses the
message-context and sending context to transform any names
stored in the image by the store-name operation into indices,
adding entries to the message-context when necessary. This
operation returns nothing. It is used only in the sending
context. ‘

6. send (image-name, receiver-name): takes as arguments the names
of an image and a receiver for the image and passes them to the
message handler. This has the effect of deleting the image from
the context. This operation returns nothing. It is used only in
the sending context. ' -

7. receive: is the reverse of send. It is not invoked in any of
the sample programs, but is included here for completeness. It
would be invoked by message-context$next-receive.

8. translate~in—name (image-name, message-context-name): takes as
arguments the names of an image and a receiving message~context
and translates all the indices put into the image by
translate-out—name into local names in the receiving context
using the message-context and receiving context. This operation
returns nothing. It is used only in the receiving context.

9. get-next-name (image-name) yields (next-name, index): takes as
an argument the name of an image in the receiving context, for
which translate-in-name has been invoked and returns one at a
time the local names in the image, each with its index in the
image. This operation is an iterator. It is used only in the
receiving context.

- 63 -

10. get-next-value (image-name) yields (value, index): takes as an
argument the name of an image and returns one at a time each

value in the image with its index in the image. This operation
is an iterator. It is used only in the recelving context, but

not in the examples given in this thesis,

11. transform-names (image-name, message-context-name,
receiver-name): takes as arguments the names of an image, a
sending message-context and a receiving message-context in the
same context. -This operation translates the local names in the
image into the appropriate local names for a local copy
operation. This operation returns nothing. It is used only for
local copying.

12. delete (image-name): takes as an argument the name of an image,
and deletes the image from the local context. The operatiom
returns nothing. It is used when receiving a copy.

These are the operations needed for sending and receiving images of

objects. 1Images are the only base type objects that have the send

operation defined for them.

4.2 Layering in a node

Now that we have a better idea of the two new basic types that are
the basis of the interface between contexts and the system, we can
explore the layering again in more depth. At the system level, we need

to clarify the function of two entities: the storage manager and the

message handler. In the kernel of a node, objects are named by their

storage names, Storage names are used by the storage manager to name
uniquely every object that the storage manager must handle. It is not
clear that storage names have to bé unique over all time, although they
obviously should be unique at any one time. A storage name must not
appear in more than one context at a time, becausé that would imply
direct sharing of the object; two contexts would have an alternative

form of communication to message passing. Depending on whether or not

- 64 -

storage names are to have other functions such as providing some of the A
crs ivoaed e
security wanted, they msy be capabilities, but they also may be just

physical addresses (if ohjects are not physically noved), or possibly ,‘J

names that hide the physical locationa of the objects, but provide no

security (in other uords thay are forgeable) "hdues that are local to a{

context have no meaning at this level' they ars Sslfwstrings or nu-bers:

or very simple entities that hopefhlly NI not‘ﬁe nsnipulstod in any

4».5";,3? GRERNRRM Pl v

way that 1is damaging to the objects and contexts.

The storage mansgex is the interface betumugfmgsigal storage and. -
all the Fest. of the synxen,Tﬁthexe 18 0o, ;squ%n&j\p all the nodes. in a -
di“fib“tei system need to have, ﬂ‘- asme, implemencation pf the storage

mapager. The stofage managers will be protsctsd frgm each other by the. .

. ~ message handlers and type managers. on: the;various.apdes. It 18 these
tﬁatsmuﬂt agreew;nd;coq;snaga, nctstkf,ggg;q;gég@gg;p:g,ygibg storagg;ﬁ'
manager may be quite cleyerly wtitt‘nsgn ;gkg,sdvgnpaag o; all sorts of
optimizations, such as sharing 1mnutabla ohjscts bstwecn contexts by
providing separate s:orase nanes ﬁhat usp into the sane object.. It may
use the typas of objects to help in utills;nk space to gtester advantage'
or reduce tiue reqaire-ents fot moving objects Eetveen different levela

' bf‘ﬁéﬁbry.l The inplensntation of the stotage mansger, houever, 1s not

TR
Bl R

of concern in this thesis.

1. These optinizations, however, lead to a cyclic dependency that ise
undesirable from the point.of system.vexifficakion,:se.the developesx. of
such a storage manager would have to take extra precautions. See

Janson[9], Chaptex 3, section 3 f@ﬂk!r!’sailggwdblsgﬂﬁiﬂg of cyelic
dependencies and many of the problems related to them.

- 65 -

The other important entity is a message handler. ‘As mentioneo
above, the message handlezs must cooperate. The message handler will
take the storage name of an image, and the name of the recaiver, and see
that the message handler for the receiver recoives the image. Assuming

the receiver is at anothat node. the sending message handler will

prepare and send the inage through the network. Thus the message

handler will have to knov network addreaaes of all relevant contexts and '

the network protocols for sending,images. As far as the information
about locations of contexts 13 coﬁcerned, ‘this infotnation ‘can be kept
in a table that is internal to the neasage haaﬂlet* 1: is infotmation
about which nothing~elle-in:fh&”nvd& d&oul&*ﬁee&'cu'kndW'

Alternatively, a pratOcol such as ﬁﬁe one suggeiteﬂ by Reed [16) could be

used to find the reeeiver uane by 1ntetrogutin; directcries at different'

nodes. The network protoeoiﬁ*wtii be diséussed fio furtker'than to eay

that the various message handlers must agrée upon thei. =

If we wereAtowpeta;lel the‘aeodingiepdhrece;etng in the case in
which the two contexts ate'oo the ’?“939°d9',th3'3#99,?953§3é,P‘“dle?
would be,used for the two,abut It would-call o@ the imaée type oanaget
in the receiving context to create a new image in the receiyinn context.
The image object that was created in the aending context should be

deleted. The image should never appear to be in two places at once,

On top of‘the-ke:ne; containing the storage manaéer’and the wessage

handler are the coutextn@ A8 diaeasaed iﬁ Cﬁkpter 2, contexts are

namespaces, the ouly uauespaces available to the user of such a system.

Figure 4.1 depicts one view of this atrangement. When a context is

- 66 -

context 1 ’ | context 2
- user .| local-name storage-name _ , 7
environ-) 1 local-ngme fullename ' “f -~ - e B S
ment ' . .
‘ » ' .
kernel storage manager : meesage handler ove

Figure 4.1 Layers in the system (on. ope.node)::

L : bi P
R ¥ R

.created it will heve a certaie‘ﬁenber of lecal naues;preassigned to
~Aimportant objects, such as the type menageta of all the base types
including the context type manager, and all other resources that, in the
'finﬁl'antlysingxnust,be shared: among the coptexts. {for ‘example the
kemmel andiail%the>hirdunre tﬁat is-to be5used<5yfnere-than one:
coetext);v It is also possible that a- comtext will 'need to have a locdl’
name assigned to itself, to do some forms of name translation, or

receive responses from type‘manegers,‘for example.

e b

4.3 The details of sample copy operations

In this aection we will present” the details~of the cOpy operationa
for a type manager of a specific extended type.‘ We will demonstrate
this on an example of a hypothe:icai tyﬁe, T} we idau-e ehat objects of

type T are mutable and can be created with’ 8 vaiue of ail; “‘There are

several other assamptions we need’tb“mqkeﬂdbodt'eﬁjeeﬁa%of'type'T.

- 67 -

First, we need to be able to creaﬁe ob}ecfs of type T. Secbnq, we will
also find a need to delete ijecﬁs of tjﬁé izin.drggrvto avoié side
effec;s in the sending contexﬁ when copying under cértain ciréumstan#es.‘
This is a special féﬁmlpf délete, #s is diséussed below in thé
descripﬁion ofltﬁe operation. Thitd we will need to be able to get the
names of the componeuts of an object of type T one at a time. Fourth, '
we will need to be able to create images based on objects of type T, and
receive images and translate thenm 1nto ijects of type T. Fif;h, we
will need to be able to assisn coiéonents:ofwna object of type T ome at
a time, This means that it nust be possible to create an object of. type
T with a value of nil and 1nsert 1nto it conéoﬁe;t; one at a time. B

This 1mp11es a need for storing a conponent into an object of type T.‘ :

To achieve-the copy. cperations zhezfoilewing snypnvtiag opgrations
will be assumed ﬁor type T. . {(The operatigns copa~aaﬁ. acpy~full’ B
copy-full-local, and receive-copy will be éineg;scd and axenplified ,.,,b

later.)

1. create () returns (object-name): thkes no érgnments,‘but‘créates
an object of type T and returns a local name for 1it.

2. delete-copy (ohject—naae)' cakas the uame of an ebject of type
T, calls on the context to delete that local name-and all the
 local nsmes contsined in the.object ften the ccntext, and .
returns nothing.

3. 3gt—next-name (object-nane) yields (naxt~nane, index)' takes as

© an argument the name of an object of type.T and returns one at a
time the names and indices within the object of each of its
conponents.” This, operagion 1! ﬁq ‘iterator, . fe

4. create-image (abject-uana) returas (inaaaonamqg. takes as an :
argument the name of an object of type T and returns an image of
that object containing local names that will be transla;ed

- 68 -

later. The image may also contain values that will not be
translated.

5. receive-image (image-name, object-name): takes as arguments an
image name and an empty object of the type any. There must be
only names local to the receilving context or values in the
image. The state of the image will be put into the object.
This operation returns nothing.

6. store-name (object-name, index, next-name): takes as an argument
the name of an object, an index to a component of the object and
the name of that component to be installed This operation
returns nothing.

This is a 1ist of only those operation needed in type T in order to
achieve the copying. It says nothing about what other operations there

may be in type T.

A number of additional details must be specified. We will assume

only two operations on contexts:

1. request-copy (object-name, context-name) returns (new-name):
takes as arguments the two components of the full name of a
foreign object, obtains a copy (copy-one, to avoid any loss in
sharing) of the object, and returns the local name for the newly
created local object, which is a copy of the foreign object. It
guarantees that a new local name is assigned to each non-local
subcomponent name.

2, local (object-name) returns (boolean): is a test operations that
takes an object name as an argument and returns T if the object
named is local to the context, and F otherwise.

In order to implement the procedures described below, some modifications
are needed for the CLU type any. This work assumes two operations on

the type any: (1) type, which produces the actual type of the object in
the any object, and (2) force, which forces the any object to the object

inside the any. CLU provides no operations for the type any, although

it does provide a force built-in function. Another type that is assumed

- 69 -

in this work is type. No operations are needed for it in the sample

implementations in thig work.

Now that ﬁe have a better understanding,df the relevant aspects of
contexts, and the full complement~of operations available for images éud
message~contexts, ﬁe'can cbnsideryihe détailé offajpoasibie
implementation of the three forms of copying diséuésea in Chépter 3. Ve
will begin by néticing the similaritieér;ﬁbng;the oﬁeratiﬁns. Iﬁ |
particular, the messagef¢Ontekt appears to be a focal pbinﬁ. Since‘the
messége—context contains the name of the copy operation being perfofmed
(copy~one, copy-fulL; COpy-full;lncal) and‘:he identi;y of the top level
object being copied, it contains enough information tq5begat the core of
all three copy operation, Ihé message-conﬁéxt$send operation provides‘
this central fumction on the neasage+cén£e#t.. Tﬁaﬁhe;aﬁge~édn£ext is
created containing two piecas.of infonmaiion,vthe>ﬁémé'of:the oiigiﬁal
object being copiled a;d:the.type of thercopywopefatiog.v»(Later
message~contexts will alsb bevcreated'with "reéeive" as iﬁé n&me’of.the
operation using them.) - uaasage-contextSsénd invokgﬁAthg,Créété~im§ge :
operation of the type manéger for each component to be copied. When all
components that‘should be éent ﬁave been seht;rényimage bfbthe paft 6f
thé message-context naming those components not séni is created and

gsent. After some cleaning up the copying is compléte.

It is important to keep in mind that the tools provided for the
system users. should be as simple as possible .and should not.cbntain~any
mechanism for which there is no apparent need on the particular level of

abstraction. Message-contexts‘may'well fall into this category, but

- 70 -

they can be hidden from the creator of an extended type manager or
cluster. A method of achieving this is to make available three generic

operations or procedures named proc-copy-one, proc-copy-full, and

proc—copy-full-local. These procedures will simply see that

message-contexts are properly created and sent. There is one other
-place at which the programmer might come into contact with
message-context; when the images are sent, they contain only names
generated by the meésage-context, yet the creation of the image of an
"object of extended type should be controlléd by the extended type
manager. The reason for image creation being in the type manager is
that what actually is sent should bé type specific. There may be
information which is node specific, that the receiving type manager will
have to acquire later. There may be components such as temporary
workspace that it would be a waste to send, and perhaps for security
reasons should never be sent. Whatever the reason, image creation
should be under the control of the type manager. For this purpose, the
programmer will be required to write a'create—image operation, which
will see that the image is created and write values and only names local
to the context into the image using fhe image$store-value and
image$store~-name operations. The message-context$send operation will
later, unbeknownst to tﬁe programmer, invoke image$translate-out-names,
using the appropriate message-context. Thus the programﬁer never knows

of the existence of the message~context.

- 7] -

The only other pieces of code the programmer must write are
*defini'tions of which copy opera-;imtéw are to be defined for the ty.pg.
These operations will do nothing but invoke the appropriate geseric copy
operation passing along the paraﬁr‘e-teté. Figures 4.2 and 4.3 provide a
_possible coding of the procedures describied in this section for objects
such as the top level object used in the examples in Chapter 3. They

are written in a subset of a language based on t;hé"céu('éutioﬁs of CLU.

copy-one = proc (obj ect-name: I, receiver-name: any);
proc—-copy-one (obj ect-name , receiver-name);
end copy-one; .

c0py—fu11 = proc (object-name: T, reeeiver-nm any);
‘proc-copy~full (object-uue, meivar-m)" ‘
end copy-full;

copy-full-local = pro (object-—nm, I, receivet-name _a_gx_),
proc=copy-full-local (objecthnm, ret:ei:v%r-nm) :
end copy-full-local;

create-image = proc (object-name: T) returns (inage),
image~name: image := imsge$create ("TV); - :
for (next-name: any, index. 1nt) in get-next-name
(objectvnane) do . .
image$st;ore—name (image—nane, index, neart.—»nane),
end;
return (image-name);
end create-image;

Figure 4.2 Operations in the T type manager

Figure 4.4 presents an implementation of bmessage—context%end;'
since message-contexts are base type objects, the neﬁsage—-context type
manager with all its operations is provided in every context.

Message-context$send is somewhat involved. It iterates over all the

- 72 -

~ proc~copy-one = proc (object-name: an any, receiver-name: any);

message—context-nm ne §84 e-ctext 3
" meéasage-contentéereate L4b3 lame 5 *Edpy-one
~ message-context§send (nauage-cqn;ext-—nane, receiveréme),'
' message-contextSdelete (nqsgdge-ﬁemﬁ %dnf) -
end proc-copy-dne; v

proc-cOpy-full = proc eah;ect-name - any, ‘rec‘i’wef-me. any);
message~con amd ! e sssge~dén FaRt i
message-context$create (ObTSct~nane, "copy-full');
message~contextisend” (ﬂeéﬂfwcén%iﬂ?f_ 8, receiver-name);
message-context$delete (unuge—cantex “Hane) ;
end proc-copyﬁfﬁll‘ RS T

proc-copy-iull—local - groc (v.ﬂ:;;]eu:t;-‘mll\'m‘f“I m; receiver-nm any) ;

messagedébntat&cra L
neaaage-concextssend (mass
message-contéxt$delete ‘(masisy
end proc-cnpy—!ullwlncal

2 &p'y—full-local")
ik, recaiver-name),

h‘ 'feﬁw

Figure 4.3 The ‘generie copy ofneutim or pmedures ptovided to each

tmin—

context by the Mml , , _ ¢

names in the message—concext. While this is happening, additional
entries are made int;o the meesage-context by the
imageStransléte—out-nsﬁbﬁ -opefat‘tun gFm: eaeh aijact, the

message-context$send operation requests a.copy.of the object. if that

object is not ‘local to the sending context. Once there is a local copy

of the object (if the obfect was local no additfondl dopy will have beén

created), the type of the object can be determined and the appropriate

create~image operation can be ‘invoked. This Opemidavill create an

 image containing possibly a subset (this will’te'discussed liter) of the -

same local names that were fn the object itself. Therefore, ‘the
programmer’ does not need to know about ‘Heéadage-contexts in order to

write the create-image operatifon. Once the‘fmége has béen created, ‘the

send = groc (,mes,aage,-context—nm'* XL, r'ecéiveréname:
for (object—nme.,m. congext-nm context, ;Lndex. int,
" object-local: boolean) in next—send fyneesage-cont;ext-name)
do ‘ ‘
1f (object-local aqual F)

new-namet gny ;= context.;“ :"'wefb;«copy (object—name,

caﬁwx:-nmé) $ 0 A

object—nme "'ﬁnew-nm,

end; . '
typel type := any$type tobject{-nam). :
‘image-name: image := typel$cteate—1mage (any$force
. . (ocbject-name)); . . - S
1mge$store-index (an, imiex},
imazestram:n;a-, uhr

if (object—loca}. equal F}
typel$delete~copy (an xce éo;bject-name)), L
end; ;
end;

1if (op-code (umge—cnnmt-nm) not equal copy-full"). then
image-message-context:. image ;= ctut;»Me : £

(message~context-name); _
inageSsend (inage—mlase-cont.ext, receiver-nm) ;
end'

end send;

Figure 4.4 The send operation of the message~context type _mngge:.

index in the message-context of th‘"é'jébjact from which it was created can B
be placéd in t:he header of the innge. Also, che names in the image musx:'
be translated frcn local names to indicea :I.n the . nessage-context. This
may involve creating new entries in the message-context, -_and therefore
also may involve the context. After .t:h;Ls-,,t‘#analat,‘ipp. fggs ’been c_on;éleped
the image can be sent. If a cop& of the object was aéquired from'a
foreign context, the. copy will now M:@L@&gd.,,,hn.r_l,,_.nhe.-ﬂiqla ;pm:ad#:e_ -
can begin for the fiext component. ﬂl;én Wh&vahen .8ent, ‘fdp ,al],..

. the components to be c0pied, 1f the oberation‘ was not a copy-full, an

-7 -

image of the message-context must be sent. This completes the

message~context$send operation.:

4.4 Preservation of sharing

An interestingv'situatien now exists sith ‘respect: to the copying of -
foreign .c\mnp'onents. At the context lx.mé]';",': we ¢an control how much i
sharing within an object we wish. to worry -about: enroaxyeo‘tzkext
boundaries. If we wish to maintain albmingfrms ?of»:c"ohtex’tf’
boundariee, the context wili_.-reqmt aeupy-tmeof ?the,tnreign .

component. We will use Figure 4.5 as the -bagis of further discussion. -

. Figure 4.5 An example of sharing across context baundaries. The 'm‘mbers
in the boxes represent values of objects. _ ST '

When a context requests only copy-one for each foreign cmiponenc‘,
' exactly one object image and a message-context 1mage will be acquired

for each foreign conponent. Thus the nemae-cmbem: for the whole copy_

-75 -

rh e epm—n et o ot e

operation will keep track of all possible sharing even across context ‘
boundaries (because for every component the globallf unique name is
found) . ‘The result is thaﬁ the structure in the reéeiving context will
he exactly that in Figure 4.5 except that it all will be in.one,coﬁtext.
The proqun'witﬁ this is that a request must-be sent‘out for a copy of

every foreign subcomponent of the original foreign component named in

the objeét being copled. If instead it is decided that we care about

most sharing but are willing to trade losing some in return for the
saving in time and messages, a~copy—f§11-local caﬁ-Be used instead. >Xn
this case, we will lose the identity of,suhconpqnénts of a foreign
component that are local to that foreign context. Tﬁﬁs.geqﬁeS;ingva
copy-full-local of the foreign components would lead to a final

structure of the form depicted in Figure 4.6. In this cesé, many fewer

Figure 4.6 The resulting structure of a copy of the object shown in

Figure 4.5 when copy-full-local is used across context boundaries. The
numbers in the boxes represent values. Thus we can see clearly where
extra copying has taken place.

- 76 -

ﬁesaagea will be required if the foreign components are large (that is,

have manj'sdbcamﬁﬁﬂenhs) but 1if fheré”is'ﬁﬁcﬁﬁéﬁﬁrfﬁgdéétOssfcﬁntext.'h
| boundaties there will be a greater expense "fn terms of space needed for

:the additiﬁﬁal copies of the subcéuyoueats. If there is no 1nterest in

maﬁhtaiﬁing’shafiﬁg aéstB'ﬁdnééktfﬁéuhdiéféb;“Eﬁ§7éab§4fﬁil'cpéfatfdﬁ

_can be favoked. In this case, only sharing that is Yocal to a context
‘or ia mm two local conpames ‘Hime the sanef"oreign component will be
preserved. Figure 4.7 ptavides an example of the structure in the

receiving context for the case in which cqpyvfull is. used to requeat

copies af foreign conponents in ordar to _prepare ingggg.x Using the

“copy-full may have serioua drawbacka althouap iq»quy @gses 1t may save

Figure 4.7 The resulting structure of‘a coPy of the object shovn n
Figure 4.5 ‘when copy-full is used across centext boundaries, The .
pumbers 1in ‘the boxes ¥epresent values. Thus we can aee clearly where
extra copying has taken place. -

- 77 -

much in time and many messages. The proylem is that the foreign
component may contain foreign components, which may contain foreign
caﬂponengs} 1f such a structure has loops pbt!nniy across context
boundaries, but across node bounda;ies, thg infinipg:gggutsionimigﬁ: be
very diffiqﬁlt to discover, ang even more difﬁi¢ﬂl§¢FQ handle. Thus,
although ﬁhis may be a very’témptingJapptqachlpecqu;gibf its‘simpliéity,

it is probably something that ought to be avoided.

-There is an 1s;ue that has not yétfbeeﬁ hﬂdtﬁss&&? although it §§h~
considered in determining the operations éarliér"iﬁ”this‘cﬁépter, When
a local copy is made of a foreign couponent in arder to create an inage‘
that will be part of a copy-full opéeration, tuch a local copy must not
have any side-effects on the local cantgxt. In other words, smot only
must the copy itself be deleted, but>a1§u the local ﬂhﬁns used to

identify any foreign components of the capy ‘must be dcleted. It is for

this reason that the delete-copy operatioa ﬁor the type T was defined ta.

delete not only the object itself, but aleo all the fo:eign'components
of the copy, from the local context. Using?the oiher tipeq‘bf éopying‘, '
when requesting copies of foreign componeuts,sblvea-these;prqbleﬁé, the
copy-full-local to some extent, énd_the‘copy—full conplétély; The
reason for this is that by usiﬁg these, fewar or no local names wili-bé
associated with full names of foreign subcanponents before copies of .

them are acquired. As we have seen there are other tradeoffa. Perhaps i

the decision as to which form of copying is used in tequesting copies of

fareign components should be left to the peraon on ihqse behalf the

context is created.

- 78 -

4.5 The receiving end

The operations needed to receive ‘an object of type T are similar to
those for sending except.that rather than;fﬁ¥ﬁé:kiﬁ3§“&f-opd¥htions
there is just one. Hhen the bits tepresenting the sent images arrive

over the netvork, the message handle: fécefves than aﬂd places them in

'something called a pseudo—image. The messag¢<han&1ﬁr’must extract from
incoming measages identifiers to be used in assenbling the images
_belonging to the same pbject. When the receive request has been issued
py the‘approp:iate typghnanageg,v}p_ogrwcqse ty?e 2,::he prqc;ss of
creatiﬁg the copy in thg_#ppr;priate context can begin.l The
| implementation of reeeiving is similar to ssadiag; again, a generic
.. operation 1s provided to be invoked By the reédive-copy operations of
particular types. Again most of the contiol i fh the memssge-context,
in this case in message-context$réceive. ﬂéﬁ;f;ﬁifit?raﬁpr used to
ﬁrive the whole operation of receiving’is next-?éceive which yields
images acquired fran the message handletr The uperationa of 1ntereec
for this thesis are recelve-image an;(r;éeive-copy for type T, the
genaric tgge;yqrpgqqf:qceivg, and gesggge—gqa;g;gﬁ;gceivg. For an

inp;emen;aiion of these see figures 4.8, 4.9, and 4.10. -

It 18 in the ¢reate-image and receiveé-image operations of type T

that the deécision as to what is copied ‘and tow ‘it ‘is made. These two

1. 'As a check that the copy was’'performed corréctly, perhaps type
checking ought to be done on the complete structure. The
message—context can ‘be used for this ‘to’ avoi& ‘anly Yoops . This is simply
a matter of checking that all the conponents of each component are of
the correct types.

receive-copy = proc (seader-name: any) returns (T);
 object-name: 2_ := create(); .
proc-receive (object-name, sender-nm),
return (object-name);
end receive; '

receive-imge -2 c (image-name: Mg._, object—nm T3
object-name := create (); . . -: ..
for (next-name: any, index: __n_t_) tn inasasget—nent-nme
(inage—m) do._ .
store-name . (object-nm, mdex, naxt-m),
end; v : I .
end receive—iuage,

Figur e 4 8 The receive-copy and receive-inage eperﬂ:ions of the T type
manager.] ‘ , _ e

proc-receive = proc (objactg ggz, saadcr-na-az ﬁu¥)s -
message-context-nm
_ mesmage-context$create
message-context$receive (m lage~context- ‘
message-context$delete (mm B

eud proc-receive; o

Figure 4.9 The generic receive operation or procedure.

operations together provide the type specific qual:lt:i.u of copying. It
18 here that we can decide not to copy sm conpontnts wit.hout causing
the whole copy operation to fail.. For mnanca, if smue conpoman: of an
object is context ‘specific, the create-imn .straticm nisht. n@netate a
special signal or value to the receive rather t;han the neme of a =
component even in a ‘c-opy,-fv,ull.‘ The s;}Lgn@J».- mmt be. ‘;kin&;atpt»e‘tvegj by _th'e
receive-imase, so’thaﬁAif ﬁill_ﬁefabiéit&ﬁ%ﬂfi i§ %§§ﬁ§§§n§§£1§£éiLvwg “

component. This is just an eiampl'é ‘of the téa?ao'ﬁ‘ihg that mishtaccur.

receive = proc¢ (message-context-name: message-cggggxt, sender-name:
any) ;- | |
for (image-name: image, typelt type, indexl: int) in
next-receive (message~context-name, aender—name) do
1if (typel not equal "nessage<context') ithen.
image$translate~in-name. (1mage~name,
‘message-context«nang); T
object-nsme any s nane(measage-context—name,
“indexl); . :
typelsreceive-image (image—name, anysforce
‘(cbject-+name)); ... =
else receive-image (image-nane,
" message-context-name);

end ,
image§de1etex(image~name);
end;

“eftd ‘receive;

| Fi ure 4&. 10 The receive operation of the message~context type manager.
It I; similar to the message-context$send operation.

This completes the discussion of copyiag across context boundaries.

o]
IR

but there is still one more form of copying that must be discussed

"4.6' The local copying operations -

: Thevlaét situation ﬁhat must;be;cogﬁiéefedxis vhen the copying is
done within @ single context, For thngNB Mi11~u8e1lM$h.0f the
~mechanism already in place, modifying. it shere neceesary. The semantics
‘ df’tﬁg éopy—qne, copy-full, and cOPY*fullelneal;fgi the local situatian.
should be the same. A8 a matter of fact’ the operations:can be invoked -
by using the same operation names. Thé*onlyfchangasiheeded are changews
to pleces of code that the programser never sees, in:particular the
generic operations and message-context$send. To méke these operations

work for a copy within a single context, it is necessary to simulate the

- 81 -

important parts ef both the send and the receive aides)of»a'copy
operation, handled in a aingle opernkion, neﬂaageneencextSIOCal—send
Fot this we will use. two message-cen;exte, although we will see later
that this is not always necessary. When the egpy operation is invoked,
~ the receiver—name will be the 1ocal name of ﬁhe copy that is to be
“created. The first message-couﬁext vill r&u‘&n ehe same as previously,
associating with the index used for a- compotent the fukl name of the
component. The second message-context will be ueed 2°-3 qaseciate, for
each component, the index that it had in the firstAnessage-context with
the local name for the copy, 1if. thnc is a@praptiate, fhus the first
entry will be the name peseed as the receiver-name A At ‘this point the\
receiver—name will be reassigned ‘to contain the nane of the second
message—context. For any conponent that will net be ccpied (as with
some components in copy-one and copy-fullulocal), the 1ocal name of the'

original will appear in the second measgg;&cyuzc;tw3,'

Since, as we said before, the 8eﬂd1n3‘neuetgewebﬁheet;canube
thought of as representing seanding of the copy,. the eeceiving
megsage-context, or in this case the secoud4neqsa§hremhtaxt“ean-heu'
thought of as representing the reception afetheyeepya.~fhe;e£e:e,jmakihs~
the second message—context the receivexrnameyQQQ;p;geingn;n it the-leealv
name of the new object are reesoneble.;Lf@e,p:pcadmgg§7th§; mysﬁ be

changed to achieve this are the generic .copy. operations and

- 82 -

proc-copy~-full = proc (object-name: any, receiver-name: any);
mesaage-contexc-name.,messa e~context :=
" message-context$create (object-dame, "“copy-full™);
receive-local: boolean := contextslacal (receiver—name),
if receive-local then : :
second~-message-context: nessq&e—context i=
message-context§creaté (fefdiver-name, '"copy~full'); -
receiver-name ;= second-message-—context;
message—contextslocal—send (message~context-name,
receiver-dame); o oo
else message-contextSsend (message—context-name,
, receiver—nane), .
end; :
message-contextSdelete €mesaage~context-dame),
if receive-local then
g message-contextsdeleCe {zEceiverﬂname),
, end; :
end proc—eopy—full

ok

message-context$local-send = proc (message-contéxt=-name:
message-context, receiver: any);
“for (object-name: any; ‘contextsfiame:: icontext, indexl: int,
object-local boolean) "in next (mesaase—context-name) do
if (object-10cal equal ¥) then™ ' :
new-name: any := contextsrequest-copy (object-name,
' context-name); -
object-name := new—name,
end; : (o :
typel: type := any$type (object—name),
image~-name: image := typelscrtate-image (any$§force
(object-name));
image$transform-names (image—name, message—context—name,
receiver—name),
new-object: t:ypel ;= any$force(name (receiver-name,
indexl));
typel$receive-image (image—name, new—object),
image$delete (image-name)}
end;
~ end local-send;

Figure 4.11 The proc-copy-full modified ‘to take into account local
copying and the message-contexts1ocal—send procedure. Proc~-copy-one and
proc-copy-full-local are identical to the proc<copy~full except for the
creation of the message—contexts where the appropriate opetation name
must be used. ‘

- 83 -

message-contextslocal-send_nuaﬁiﬁe«cteéted.;fifhiﬁ,coqld bé"inéluded in
message-contextssend but for ease in undensbqnding gng programs has

not.) Figuwe 4. 11 depicts these :gvisians.,;\ "’

There is a great deal of mechanian huzﬁ‘ﬁn{achaege something

appatently sinple. There are sevetal rcatons fﬂ:%ihis,nufi!lt,Of-ﬂll»
one of the prinarr 8Pals -of this work.ues. to; 55;4&3 any slzmriu in the
Sgcoqg, using the

structure; message-contexts sre needed. ‘ﬂméﬂ th&t.
mechanisms already in place to perfomm distgutxq?p;*ﬁ;ﬁﬁgqgogiggﬂ‘on

mechanism. Third, as mentiaoped. previnualy,\qabagge~cqgggxts can and

s

‘“to think about copying.

S B

‘Thus, although the nechanisn appenra co;flex‘izam‘bhg system point of

view, the progranmer’s. job hss boca :iapliiisd

Tee R

'As mentioned eﬁrliet;ﬁfﬁéiiﬁéiévizz;ij;ppiii. pgtinizationa. One

has already been included in Figure 4.11. If we €6 duplicate

S SN T Lyt e e e !

strictly what is done at'a“diéii;cé,?vagﬁpgiﬁrhﬁ%;gw“ ,iﬁhses, one for

sending and one for receiving. We have éliéadithggg;g?ﬁfinto‘one. A

second is that it should be apparentfthat'for the'cdpydbne'opérétidn'the =

two mossage-contexts will ba«idencical;axcept for the. nrigiaal entry. ;

Hence, only one mesanse—con&axt 13 nacanaa;y

" could get away with none, and simply perform a*%ifugiiiii;cahy‘fron f§é',»

original to the copy of the object.

C - B4 -

S F R iy BRI Gt Wy R e e el

_Actually, for copy-ohe we

4.7 Additional issues

“This section addresses several additioual 1ssues that arise in the

‘ implementation of the contexts and communication between contexts.
1. Global naming for contexts and'cypes of 6bjects.

A’problem'withigldbally uniq#é»naﬁes?dftawy sort is that they impiy
‘atVleQSt,coépéﬁattam’amangQﬁhgpént&tiesnneadiig ee;gake;use‘of.name
| géﬁenatioﬁ ahd.possibly;a 1o£s«q£~autonamy%£onwshoae entities. One
approach to generating glohally nnique names isﬁto provide a single name
.sg#vgr.v This certainly can be uade toguareatee unique ngpes.

Uhfqrtunately; no»ngw“nanesfcanwbezaequ&nedabywaaname client«wheﬁ:he is

‘ ”.déthéhedvftémfﬁhe*némé“serVeff,1&‘30lﬁtiéa*ﬁb*thts¢ﬁs?to,dtétribﬁhefthe?‘

 name server, by partitioning the namespace and providing each potential
client with a piece or subset of the whole namespace This 15 what has;
been. done for objects 1n the model: unedzin tbts zﬁaearch. Each context
"has a par; of the namespace of the whole distributed system. By }
combining the locaily‘unique%nane-effan;nbjnct'yiﬁh‘tho,globally-unique
éqntext*néme,‘bbjectsAcan be aﬁéignéd*élohgliy unique names. But this
is ba#éd on the assumption that,contexf#ﬁhqve;g&aﬁ;lly‘uniquesnamgs‘a
'The’samejprocedureLoffpartizionins tke;context:namespace,by‘nadesvoi the
distributed system could be used, so ﬁhan-aanodegaould»be.detacheﬁ from
thévsystem'and‘stiil be‘able;toicreaxe;new contexts. Auow; the‘ngdeé~-
need £6 be globally uniquely named, ;t'aenEupoin;:thejprocess of
d‘viding‘che namespace must stop andﬂthéregnﬂst~bé:dnpendence on.a -

central name server. It is quite reasonable to expect this at‘the levgl

- 85 -

of naming the nodes, because this may very will be encoded into the
hardware interface to the éomunicatioh ﬁetwbﬂ: sﬁjpypo’rti'ng ‘the

distributed system.

The assumption of giobal ﬁames ‘has a'lso 'b'e‘e;n ;lactlevfovzj"“ﬁlﬁes. | 'fhe -
situation here 18 a little differeat though. ';Ihm_,ﬂ;1¢»=a>»~\cu;tzmaanotnit
of negotiation that -must oceur m:—:otdct(::iton:fﬁwf.m‘twm»mf‘ agree that -
they both have correct versions of the type manage: ; ‘There. 18 mo reason
that part of this agreewent caanot be to agree on gnrcnﬁetu&lm ,\,.ﬁm:-‘\
the type. Neither context needs-to use .me»;éemern(l .:mdniernallys
but both must know it vin»;orden:.gté :'ﬁuns{an~.31::;-§nﬁor;:bhe@koc;gl names. It
is still p ssible that a centralized name m;;:m;hé -ABCB8ATY.

2. ‘L:Inifon/nity among mchinesdinéd;a»fini;g typucopiedbetveen émiéhiﬁes -
- We have assumed- thut when nns‘ohdect%:lq Mpi;ﬁ ﬁmuane anu# 00
another, not only will there be zhé':right n:,;-u€f,;m;%,n§msg£s or . |
clusters at the receiving coatext to recaive: th;s;.aminnof‘ the object .
and its componeats, but: also that: the type m≫i—,?mulﬂhe‘, defined in .
terms of the- game component types. In otinrfwntd‘t.gmgrepzeunta,ﬂon ovf»
any type that is to be copied will bde thef'ainhfiaf';,t&u‘ of -its component
types lin the contexts betwean which it tﬂ.llbtmmd.ltmmt have
been completely apparent that this assuaption: uﬁ;.MQ‘i~;but‘,_as.;a long as
we permit the partially copying operations, coyyn—ou and ;
copy-full-local, compoment t;pes\nust;he;.thjg mmu regongider
the object L-N 18 of Figure 3.2, Let L-N 18 bc of tm Tl. In comtext

1, let its third component be of type T2. 1If in context 5 (the

- 86 =

‘receiving context) an object of type Tl is implemented as having the
third component of type T3, we have a problem. For the copy=one and’
copj—full—locél operations the copy should have the third component’ ™ '

_‘pointing to an object of type T3, but has a componeént of type T2. A

moiéidifficuit occurs 1in ‘cases 1n{ﬁﬁlgh'fﬁ3%féb%%sédidtldﬁ’ofia'type-has»f

differéhf‘nuﬁbers of cbﬂp&ﬁénts‘in~dif£ef€§t'c&ﬁfeitb;i’Tﬁuﬁ‘wﬁe;ﬁer or
not a':é.dnipori'enft (or several honipdne"tité) ‘weéed to ﬁé"iﬁdﬁvéﬁéa into a
different typé éaﬁ'be detetmiﬁed'éu;y“by5éxaiiﬁg‘dthﬁ¥?ébmponents. To"
splvé fhié a different gpproaéﬁ:tOVCOpyiﬁg Géhfd‘EEVé”tO"ueed,'6neéwifﬁ‘f

A BT I T TS

much - less overlap.

,Tﬁg;g.;g.g}so a more vatlg,gtebigg,sggg»Qtﬁgiiéé ;ﬂé cqpyvag‘the;
recéiver (in the.eases<whg:e{agye:g;’igﬁggngrqQgggée;,’qégy-f;ll an~ T
: copy-full-local) if the yqriqugrrepregggggg;oqgéogaaygygg‘gre diff;{eﬁt
in terms of type of components 1@ ﬂiiﬁeg;ggﬂggn;ex;g.’ Sometimes when a
. cdmponent of a specific type e.g. T2 above, is receifed it will be |
- transformed into an object of another type e.g. T3 as above and Other

times not, Whether or not this should ggﬁdqnefmaywan‘be,yngwnuuptil
all the images have been :egeivgd_gnq:prOng?gd, ¥u¢p Fengcegsin3 may
need to be done. 'As with the PreviQQEgPO{ﬁt p;@gdgboye; some degreé of N

autonomy is at stake if type ;gypesén;ggioqs‘mus;.gonfprmvto each other.
3. Sharing code between contexts on the safie node
This ptoblemlcan be broken into two problems depending on whether

or not the code in question is pure code or not. If the code can be

e

impure, each context must have its own copy of every piece of code, in

- 87 -

particular type managers. If tbis were not the case, the;e would be
anotheremeanayof communicaeion beeyeen contexts beeieeg message passéqg,
and that has been excluded from ?Q::“ngl' 1f, oo the oeher_haod,'c°€e
can be guaranteed to be pure, even thohghvtwo eonteits may 1n fect haoe
different storage names for a Plece of cade the storage manager may ‘
actually map these different names into the same object :epresenting tee
piece of code. In particular, at Fhe'b0t599;9f{Fh9 eetwork;ofntxpe~
managers, the type managers oﬁ;hevoasevgypg%fﬂe;gefgpgqewghaer@eywbe
implemented in hardware) will be pure, end‘therefore can oe ehated' Ae
a matter of fact, those in hardware must be shared, unless there is a
separate processor for each context, which aeens Iiﬁe ‘an unredscnably
severe limitation. Looking at this problen slightly dtfferently,

must consider whether or not’ imnutable objects ‘can be ghared. We €an

conclude that thie form of sharing is inviaible.'?“*“‘”
4. Synchronization

Coneepfhelly the siﬁbleSELAné ﬁoét‘Ettaighffotﬁira*ﬁehﬁiniSmfto
guafantee consistency is locking. fTﬁeiexi?eiieveiaiip?%ﬁieaéﬁﬁiiheéhie‘
Fifst,'it requires en”ad31t10neiVpeee?%vei:tﬁewosﬁgétmin oé&eivto‘
discover andyiock'ailythe conpooehts:' Second,’ tﬁere'is'a more’ serious
problem vwhen components are fo;e43p4>k;n:;E}gweeeeuogggweogglicat;opswvv
arise. There is a problem of responaibilityvfof fofeién locks if they »
can be held by foreigners. 1f this 1""'5"’ allowed, then outside forces may
impinge on the autonomy of\e context. %ﬁiﬁi{fof£;¥§ﬁifeeiﬁii”VEilfea
secﬁrity reasons, locking mey ﬁoi'be.cﬁé“céﬁiéét"ééiafioﬁ; th*gpprééch‘

deveioped by Reed[17] appears to provide a better solution to this

_88-

T I e R G LR ST e

o A i

‘problem. Reed proposes that when mutable objects are modified new

- versions of them are created and time-stanped. Thhs. a8 long as the

older versions are aaved it ie poesible to refer to and use a

~consistent vereion of the object. This aleo eolvee the problem ‘of

lockinglforeign components.
5. The size of message-eontexte

The size of meaaage-context ie a potential prohlem. One.of the
requirements that Fiaher[S] and Clerk[3] put on their copying algorithma

was bounded buffer ‘space to achieve the copy. We have traded that for a

smaller number of meseagea and the ability to proceea in parallel.

"{c

'although we have considered the problem of the size of neseage—context

,’?',

in deve10ping the elgorithms presented here. Firet of all we have

eliminated, as much as possible, ectually copying the neesage—context.

Second we expect that the system will aupport a larger quantity of and

more useful base typee than CLU[11), some of which will be larger in

order to avoid having to break every object into the immutable base
types of CLU. For inatance, it may be uaeful to consider arraya and
records of baee types to be base types. As nentioned in earlier
chapters, we conaider contexts and’neeeage-contexte to be base typee.
This means that when a meeeege—context is sent as part of a copy—one or
copy-full~local it need not be broken epart into onaller pieces. More

reaearch needs to be done to determine additional base types._

- 89 -

6. Types of component objects that should not be copied

An object of a particular type may include components that should
not'be.copied, élthough the object itself may havéjaZCOpy‘operationl‘
defined on it. The reasons for this may be nuﬁét&LﬁJ’wFor éxample, oﬁe
of the components of a procedure may be its workspace. This certainly
should not be copied. Or, a table that is to be éuatoaized-for thek‘
local context is to be copied. Some of'tﬂeieohpoﬁents.éhould bétéoéied,
but in place of others flags should be éént,‘sorthatﬁthg type:ménaget in
the receiver will insert the correct compongntrin tﬁese‘spoté. Ve havé
provided the hooks for handling this problem, in the form of the
create-image operation that the implenenter of the type manager must
provide. This means that type apecific inage craation is performed, and |

therefore can be written to provide the desired flexibility.

4.8 Summarj

This chapter has préaehted,in greﬁtét Aetaillthé sending and -
receiving operations needed to copy an object. To this end we defined
two types of objects, the image and the message—context. Thg image 1is
the vehicle by which we pass the value or state of the object froﬁ the
sender to the receiver. Other work[ll]'hsééAthé terﬁs ;ncdde and decode
to describe the operations of creating ftom the otiginal an image in f
order to create a copy. The measage-context is the ueans by which we’
retain any sharing in the crigingl atructure in the copy. In‘addition,
it is the means by which we avoid looping infinitulf wﬁeﬁ copYing cydlic

structures,

- 90 -

The remainder of the chapter detailed how one might implement the
copying making allowances for foreign components and for local copying.
In order to do this, a number of operations were assumed to exist for
both the context and the hypothetical extended type for which copy-one,
copy-full, and copy-full-local were then defined. An important result
of this chapter is that what needs to be written by the implementer of
an extended type, in order to provide these copying facilities, is

minimal.

- 91 -

- 92 -

Chapter Five

Summarx and Conclusions

5.1 Summary

We are now at a point to review what has been sccomplished in this
thesis. We began with a model of a dietributed system. It has as a
" hardware base a network of computers. :Each-nede -in this network

supports-a kernel, the local system software. On tap of this we

postulate ‘one or more contexts at each node. (A centext can be viewed in

several ways: as a nanaspace=inrwhich‘procne:etaeaausxecute. 88 a node
in an abstract network (with communication among Such abstract nodes
only by mesasage paasing), and finally as objects in a world of typed
objects. ‘We also asaune that the typed objects contained in contexts

- may not migrate among contexts. Given thia nodel of the system, we
investigated sharing. Since we do allow naning across context
boundaries, sharing 1is possible. However, sharing of foreign components
is limited to the following two ways. paasing uesaages requeating
operations to be done on the object in the foreign context, or by
acquiring a local copy and performing operations locally on the copy.
In the first case, the physical object is shared and any mutations of
the object caused by one of the sharers will be visible to the other.
In the second case, since a c0py of the object ia passed although the
information content of . the object at the tine a copy is made is shared,

the physical object is not and therefore any changes made by one of the

- 93 -

P T O

sharers will not be visible to the other. 1Imn spite of this, since all
communication must be domne by‘measage‘paasing; ogaring by copying may be
the more desirable approach for a number of reasons. First, message
passing is likely to be expensive in terms of both time and space.
Second, if the two contexts between which mesoages are passing are on
different computers, siacevwe-havexasouned ag -much. autonomy as possible
for the nodes and cannot predict failure of either the nodes.or the
‘communication network, we have no-guaremtes that the node containing the .
object will be available at any particular time. Thus, sharing by
making a copy may be: the only reasonéble' slternative.. .In any case, it

certainly is an alternative:that~shou1&-beaprovidedt,g

In order to achieve this sharing by copying, we have defined three
copying operations that we think ought to be considered The first is
the copy-one, copying just the top 1eve1 of the object 8 structure. |
Second, we considered the copz—full, which copies the complete structure-‘
of the object including any components that reaide 1n another context. |
Finally, we have looked at a novel approach to copying, the

copy-full-local which copies a complex data object to the boundary of

the context containing that object,-but no further.' In devising a
mechanism for achieving these copy Operations, aeveral goals were set.
First and most importantly, we want to naintain any sharing that exists
in the original structure, because we believe this to be an important
part of the information contained by the object. Second we want to
economize on mechanism by using a single approach in all three

operations. Third, since all communication between contexte is by

- 94 -

'meéaage passing, we want to limit the amount of message passing
'.nééeaaaryg“that is, copying Bhoﬁld reQuité*&s little communication back
and forth between the two contexts asﬁposaible.?fFipally,fwe vnnt»tb
allow for parallel processing at the sending and receiving ends of these
copy operations. The mechanism Jiseusned«1h Chapt§ms“3 and 4 achieves
these goals. In order to‘db’this;~ua«ﬁaviepnsau%pxedrtvn.newgtypeé of
objects, the image and the mesgage-context. :saw,unéying.si-plyunequirea
creéting-a.mesgage-contextvtowhe usu&'tavruaunsﬁrhct%nhe sharing within
'the strucfute~and determine which objects ere to be copied as
'coﬁpongnﬁs. Ihe type image 1is the typé of object that actually can be -
senﬁ in a nessage.‘ Thus for each object that the message—context
detetmines must be copied, an. 1mage ia created and sent.! At the
;receive:, the reverse is‘done. The measage-context agpin is the means
of handling sharing ﬁiihin the‘structure and 1mages are the objects that
ére‘received'and that bear the information that is use& to creaté thé

copy.

vThé-procedures that hdve baenvdevelope¢‘iuxahnp£er 4 indicate that
éopy operations~canAbeMimplementeéninwauch3nuway'that the creator of a
new extended type must do very little in order to jprovide these three
operations for his type. First, he must define :the operationcAsinply‘as
invocations of generic pzoceduressof similar names. - These procedures -
are to be provided 1n»each context by the kernel. /‘The other chore laﬁi
‘ for the programmer is ﬁo define how an image is created from an object
of his type, by implementing the create—iggg operation for his type.

Thus the actual contents of the image can be type Specific, yet the

- 95 -~

implementer need never know about message-contexts and other details of
the éopy operations at all. In order to receive copies, similar
operations must be written by the programmer; receive, which invokes the
generic recelve operation, and recelve-image, which transforms an image
into an object of the type being implemented by the programmer. We have
also shown how the mechanism can be extended to provide the three copy
operations within a single context (in addition to copying across
context boundaries) without requiring the implementer to distinguish

between these calls.

Thus, assuming our particular model of a distributed system, this
thesis developed a solution to the problem of copying. The following

section will assess the relative utility of the three operations and

mechanism developed.

5.2 Conclusion about the research

Now that we have developed a mechanism to solve the problem
presented in Chapter 1, we must examine.what has Beén achieved. This
discussion will be divided into two parts. First we will consider the
relative usefulness of the‘three copy operations.. Second, we will
consider in what ways the mechanism might be simplified 1f we were to

relax our goals as initially stated in Chapter 1.

As stated earlier in the thesis, the copy-one may be considered the
most basic of the three copy operations we havé presented. In theory
the other two operations ought to be achievable By a repeated

application of copy-one. 1In practice, in order to maintain the sharing,

- 96 -

the programmer ﬁould have to take on the function of‘discovering most of
‘the sharing fron the message~context. Thes-ensigevcontext'willfonly y
 discover sharing among couponents.ofve;stngle obﬂect;x’Sinulatin3’they~
,copy—full and cepyeiull-local using tknace@ymoneﬁubuid‘al:oAinvolyesnukh;
more message passing than we have found necessary. It is not clear how
useful the copy-one Operation is, 1f the objeet. to’befcopied is’ of an .

~ extended type, then copying only the top level dpes not sppear to. be
very useful, as theaactual-state’ofuthe'ohg!tt im still only accessible.
by passing more messages across content boundarieehx.cﬁf course, there
"may well be situations in which it is desirable to allow the names of

components to be passed around without actually copying the components)

" On the oother hand if the object is a base type object, there 1s no

difference among the various copy operetions'; all three should have the
same effect. The only difference in this case is whether or not
extended types using the base types as conponents can have defined on
them one or another of the copy operations. As uill be discussed
further later, in order to define the copy-full end copy—full-local
operations for an extended type, it must be clear that the relevant
operation is defined for each component type. This will be considered

further in the discussions of verificstion and exception handling.

‘Now, when coasidering the copy—full,operstion, we find this to be .
vhat is most frequently considered to-beithe standerdécopy Opetetiee.
In our’model, severe‘couplicetione,nsyeerise:bccanue contexts may |
support arbitrary authoriiation conscraints. nsdelaney.dtsessociate

themselves at any time from the system,-and the communication network aa

- 97 -

well as the 1ndividuai nodes may not be reliable. (We are not
considering the reliability issue related to whether.or not an
individual message is lost orAscranbied;‘but:tniheruhqugoeful the
copy~full operation is if the network has a high probability of being
unavailable at any given time.) T§e~copyr£u;1=gilnﬂreaairepfthe extra
commitment in time and space to aoquine.copieewof~gil foreign components.
in order to create ioages, - Thus we:are led to comclude that perhaps the

copy~full is too.general. -

The copy~fu11—10cal is a new operation developed 1n this thesis
that appears to strike a middle ground l Itmeoproaches a solution to the
above criticisme of the other two. operations. Assuning some or moat of
~ the components of an object are 1n the same cootett, most of the state
of the object can be copied. In addition, if the full state of the
object is the objective, there is a eavings 1n nunber of messnges (copy
requests) and message-contexts (one returned for each copy requeat) over
those needed if only copy-one operetiono are executed At the same time
if the foreign components are unavailable for whatever reason the |
copy-full-local operation does not fail where the copy-full wouldt of
course, if instead we have the situation 1n which moat or all the‘.> |
component objects are in other contexta, porhape on.ather nodes then
the copy-full-local ‘may not represent much oﬁ}g;eegiggwtofthe-receive: -
of the topy. Since the other co-ponente=munt;oluo-be;£equesteo in thiei
case, it will be neeesaary'to»aoeeaexahe'ﬁerﬁisaaaégpooonta:anyway. ;It

also means that some sharing 1nwthe»structore;aey ee lost, because once

images have been created, the globally unique identities of‘their

- 98 -

originals are no longer attached to them. On the other side, in this

case of-widely‘dispetsed conponent objects, the copy-full may be more
expensiVebin terms of use\of‘resourcesiédd”tine; gince sach of the
foreign components really will be copled twice. We suspect this is an
unusual situation;‘but,the‘only*ttueftest'is experience. Thus we

| recommend that all ‘three operations stould be svailable in a system -
siﬂilat;to‘the one we have\nodelle&,*alshoush‘ue.snspect‘that-ths

copy-full-local will be the most useful,

‘The mechanism presented appears to be-faitly complicated. It is

"_ worth considering whether it could be sinplified if we relaxed some of

our goals for the copy operations. Our goals or constraints on the copy
operations were listed in Chapter 3 and again earlier in this chapter.
The most important one was to maintain sharing among components. We
have already discussed relaxing this in acquiring foreign components to
create the apptopriate images for a copy—full. If we were to eliminate‘
considerstion of any sharing, we must consider whether we could
eliminate messsge-contexts. The answer is that we could not entirely.
It would still be necessary to pass to:thevreceiver the names of
'components not copied in the copy-one and copy—full—local Operations and
these uould have to be collected someuhere. The ptoblem is that objects
only contain names local to their containing context for a number of
_reasons discussed in Chapters 3 and 4. If only names local to the |
sending context are sent in images, the naning network would become much

more complex. Foreign components of an object might become inaccessible

because one of the intermediate contexts was unavailable, when, in faut.

- 99 -

the context containing the component was available. On the other hand,
using only the globally unique names would solve this.prohem. Inatead
this would cause a waste of space. Using either local pames or .yglvchal,}kly o
unique names causes another prdblem;‘iﬁjallcss_cneylgcal,nageajfpn the
components within the seading context on;aide.the¢§9&nda of-bhatA
context. -For secutity reasons, this may be undesirable, There is also -
the problem of circular lists or recureive coatainment. If that were
not to be handled by message~contexts, there wculd have to be some other
mechanism. It is poesible that if locking were uaed as the - .
aynchronizing mechanism, it could alao be used to detect circularity.
Unfortunately, as we have mentioned, there are other problems with
locking. Thus it is quite 1ikely thet, even: if we were not to conaider
sharing, meaaage-contexta would provide the sinplest approach to solving
these other problems. A relaxation of the aecond and third goals of s
economizing on mechanisn and limiting the nunber of messages needed to
copy a component would only lead to a more complex nechanism because of
the nature of the model with which we are working. The final goal of |
allowing images of components to be sent, received, and procesaed ‘
separately, if relaxed, might allow for some simplification, although
not at the sending context. A simplification wnuld occur in type
checking the structure as it is created rather than needing to wait |
until all the components have been created. (This type checking was not
included in the procedures presented in Ghanter 4, aince it 1s necessary
only for reliability, an issue not addreased in thia thesis) The
mechanism we have presented would still need images and ’

message-contexts. At the receiver, the components could be processed in

- 100 -

the most convenient order, which is probably the order im which they

were sent. This would sinplify”thoee'functtons,prayided’by the'eystenr
dn the other hand;‘the>meseege‘hendler mfjht“hnve~to be more complex and.
_ certainly would need more buffer space,‘since it would have to collect
and order ell the appropriate pseudo—innses before the execution of the
receive command could start. This approach uould simplify receiving a |
complete copy (copy—full) in thoee cases in uhich the representations of

it

the type are different in the sending and receiving contexts. It would

~ mot be of much help in the case in which the representations are

different but only a partial copy is occurring. The tredeoffs are such
that it is not clear there is any benefit to be had from relaxing thie
goal, Thus we are led to conclude that the copy operations as defined
in this thests solve the problenm presented.within the realm of the model

postulated.

3.3 Suggestions for further research

Since we have used CLU as a basis for -much ef our:work, it is
‘reasonable to coneider'the~poesibilit§fofriﬁeluding»tﬁe?propoeed
operations in CLU. As CLU’stande currently, it is based on a different
‘model from ours. It aesunee‘a user environnent in which there ie‘a
single process and a single nanespace (addresa apace) HoweVer, work is
'currently progressing in the direction of extending CLU for a

1
distributed_environnent. Operations sinilar to the prOposed copy

X R P . :
1. This work is taking place at the Laboratory for Computer Science,
M.I.T., Cambridge, Mass. under the direction of 8. ’'Liskov and D. Reed,
however, there is as yet no published work. :

- 101 -

operations of this thesis need to be conside:ed to facilitate sending

values of abstract objects betueen processed in such environments.

This thesis has dealt with some parts of ﬁhe copying problem ina
dietribured system. There are related areas that need research
3enera11zations of the work presented hare are alao possible. In
accordance with this, we have a number of augsestions. They fall into
three categories' 1tems i, 2 and 3 address additiOnal details that have
to be aoived uhen 1mp1ementing the acheae preaented 1n this thesis, B

items 4, 5, and 6 are extensionstto»the wnrk, end iten 7 is a

generaliz&tion.

1. This research haaraddreaaed ouly the pzobﬂ@n of: sending typed piacea
of information. It is clear that there are other entities that can he ;'
in messages names, commands or requeets, additional control information,

type information, to name a few. Further raaoatdh iato vﬁ “Rinds of

messages, other than images, is Qﬂﬂdﬂdn Thiaﬁnmnt»he,done in the ﬂi

context of a more detailed model. of the distribyted systea.

2. We have nentioned very‘little‘abont-;erificationi u§£§ Gerifiégéién
should take place at caupiiaiiéﬁ'éiueﬁéf“£§§§”iiﬁ£§¢é;. fhe receivi5§9?
context should be able to verify ‘that. all received components ‘are of

appropriate type, possibly even check value ranges. In ‘the eﬂvirbnnent?
of autonomous nodes, it ia inportant to dc aone run-time checking. fﬁgjﬁ

mentioned. if a c0py-fu11 or eopy-full~local is defineﬁ for a type, 1t

had also better be defined for ita cnnnnnaa&sp* Thia can be Qhecked at

compilation time for the 1oca1 type nanaseta.‘ Nov, there are two"

- 102 -

possible interpretations of a type being the same in two different

'eoetexts.' In the first case, in additiom-to the type being composed of
the.eame'cemponent,types, all the same operations gre defined. 1In this
casey eyen for a cOpy-iulrlﬁuhich ellovs.-ﬁomisn,t‘emmaen&&r type
cheéking can all be done at eempdleetine;¢;1n;thefueQdeocgsé. two -types
beiﬁg-coasideted the same neane:that,theyﬂhaseaehegﬁnme represantation. ..
in terms of conipenent types, and the oparatipns of one axe a subgset. of
the ope'tetions of the other: In other :jwords».;, .for»«;sbgseéovpe:atiione that
are defined on both, the operations have the same effect, but net all .
operations need be supported in every context. The effect of this is
that during a copy~full operation, run—time type checking for the
availability of operations must be done 1n the %oreign contexts.
Although as previously discussed, a type ahould be composed of the same
‘component types at each site between uhich“eopying is to occur, this o
does not guarantee that cOpying is defined for a Specific type at each
node on which on the type occurs. Regardless of the definition of two
versions of a type managerlbeing the same, permissioe to eopy'a
patticular object must be checked. This can only be checked at.
run~-time. Work must also be done on guaranteeing that two type managers.
at different nodes really are implementing the same type if they claim
to be, repardless of which definitieh of being equivaleat is used. This
is easy 1if type}ﬁ;anager-s ‘are writtes in ».&vh-:l.ish -level language and are .
simply distributed to ‘and installed (compiled) at individual nodes.
This is a great imposition on nodes and directly threatens their
autonomy and abitity to operate while dimsasociated from the distributed

system. It is clear that work must be done in this area.

- 103 -

" 3. We have not addressed any issues of exception handling, except

obliquely. We have pointed out several places at which exceptions might
occur: the context boundary (insufficient authorization), unavailable
operations (discovery that‘a‘particular~openationfis not defined for a
component type in a foreign context), an unavailable node (the node has
been detached from the system), an unreliable network.. Itvmay~be
difficult to distinguish some of these, but thought must be put into

vhat to do when exceptions occur.

4. It might be quite useful to be able to pass images to a context
without requiring that the context use tham to create cOpies, but rather
be able simply to assemble a collection of inages for storase or passing
on to a third context. In this case what may be needed in addition to
the receive command at the receiving site- 18 a command that would imply
just collecting images. Possible uses for such a facility might be to

support a file server or back up storage.

5. This thesis has explicitly excluded the issue of moving objects. ‘We.
have assumed that an object reeides permanently within one context. 1If
it is necessary to create the appearance that an ob}act»haS‘moﬁed, this
should be handled at a higher level by creating a copy of the pbject,at
the new location, deleting the original, and #aing gxhigher.hevel name
to point, first, to the original object and -then, afnet.the_"move" to
thé new object. There are problems assoeiated vith moving objects, .One
is the question of resolving names of'ohjecis. -Since in our model the
name contains the name of the context, theve,waId:have to be some

policy and mechanism for how to resolve outstanding references to the

- 104 -

moved object. Further questions relate to éecurity policies, such asiif
there is an outstanding reference to ‘the object before it moved, should -
tha;-teference‘be'upd#tgd,?who has the right to: update it, when should
this occur, and the list goeS‘bn;"This;1s§aa~axca for much more

research.

6. It mighc be intérestiug to exten& ﬁhe ;sﬁrbééﬁyuged in this theéis as
follows. Each time a new entry is made in the seﬁding:message-cdhieit‘a
new procesé:is~creacad to copy that new component. The processes all
would use the same message~context, 80 no sharing would be lost. There .
would be a master process adsociated with the message-countext, and one . .
forke;ac-h -eoﬁp’oﬁeﬁt to be copled. In ‘this way, much more parallelism
mightfbeaachieved:ifrthe hardwgne could support it. -If‘proceases'g:g._w
not expensive, not much has'been lost in overhead, while allowing for as
much parallel processiang as:possible..-Of course, activities involving |
vtﬁe message-context would have to be synchronized, buf that could be
‘'managed by the process associated with the-message—conteit. This
approach 1s an extension in‘the direction puraued‘by Atkinson, Hewitt,

and Baker [7,8].

7. The approach we have taken in this ;hesis to copying is to translate
every object into an image. Images are'ﬁhe only objects that can be
gent in messages. This ajproach can be generalized so that we have,
instead of images, message-images, display—imagga, p;inter—images; etc.
In other words, for each physical device'théré i8 a form in which it
expects information. This can be used to create the appfopriate

abstractions as we have done for the network by creating our images.

- 105 -

This should simplify the task of transferring objécts‘;o other devices.
Theé programmer must specify which operatioﬁs are to be defined for his
type and write the operation to transformuone of his objects 1nn0~thé
image appropriate for the device. At this point thefprogrammérfé‘
responsibilities should halt and the system should take over. This puts

responsibilities where they belong.

One of the most important comsiderations in looking to the future
will be to learn more about how this kind of model would be used.(how it
relates to -the characteristics of real dis&mihut&dragpltgaﬁions),and coA
assess the costs (performances) of the cp&natinhéﬂptopo§ed~in~chis;az‘
thesis. It is possible that e*x’peri&ﬁée will ‘iadicate that different
operations or even a different model is ues&ed: The research ﬁtgnente&;:
in this thesis must be tested by»experiﬁacaﬁaﬁé'&hﬁﬁpﬁ@@osal,af

31Cefnatives.

- 106 =~

{11

(2]

{31

(41

[5]

18]

(71

(8]

- Eogineeting SE-3, 1 (Januai‘? 979, PP

References

Baker, H.G., Jr.,Actor Systems for Real~time Computation,

M.I.T Laboratory for Computer Science Techrnical Report TR-197,
Cambridge, Mass., March 1978. (Also Ph.D. Thesis for the
Dept. of Electrical Engineering and Cm;mter Science, M.I.T.
Cambridge, Mass.- Hatch 1978.) :

Bishop, P. B., Computer Systems with a Very Large Address Space
and Garb. 651 ’uuoa, M.T1.T. I.ab*ora‘tﬂry« for Computer Science

- ; pé; Maes., May '19%7. - (Alsc Ph.D. Thesis
for the Dept. of Electrical Engineering and ‘Computer Science,
M.1.T., Cambridge, Mass., May 1977.)

Clark, D.W., List Structd%t:“ulasqggnentog Algorithms, and
Encodings, Ph.D. Thesis, Dept. of Computer ‘Stience,

‘Carnegie-Mellon University, Pittsburg, Pa., August 1976.

Dennis, J.B. and V&:i iimm, E Gy "™Progremming semantics for -

- multiprogrammed computations," Comm., of ACM 9, 3 (Narch 1966).

pp. 143-155.

Fisher, D.A., "Copying Cyclic List Structures in Linear Time
Using Bounded Workspace," Comm. of ACM, 18, 5 (May 1975),
pp.251~252

Halstead, R.H., _lgpltiple Processor Im g}.uei\tations of

Messa e—Pusin& Systems, M.,1.T. Laboratory for Computer
o %1#

¢ Techmical REport RIS, ‘Caijridge, Mass. Jshuary

1978, (Alo ‘S.M: Thesis for ‘the Marmﬁt of ‘Electtrical

Engineering and Computer Sciefnée, M.I.T.," G'anbridge, Masgs.
January, 1978.) .

Hewitt, C. and Baker, H., "Lavs for cmicatiug Parallel

Processes," gtoc. IPIP Congress 77, North-Holland Publishing

- CO., Rew York, Auiust 19‘_'7,‘pp 9 -992

Hewitt, C. and Atkimson, R., "Specification and Proof
Techniques for Serializera," azs Trms tions on Software

- 107 -

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16)

[17]

(18]

Janson, P.A., Using Type Extension to Organize Virtual Memory

Mechanisms, M.I.T. Laboratory for Computer Science Technical
Report TR-167, Cambridge, Mass. Setpember 1976. (Also Ph.D.
Thesis for the Dept. of Electrical Engineering and Computer

Science, M.I.T., Cambtidge, Kass., August 1976.).

Liskov, B.H., et al., "Abst;racciou Mechanisms in CLUR," Comm.
of ACM 20, 8 (August 1977), pp. 564-576.

Liskov, B.H., et al., The CUI &eie; m‘, CSG Memo #
161, M.I.T. Laboratory. fm: Ccugm:ef Im, Cambridge, Mass.,
July 1978, : .

McCarthy, J., "Recursive Functions of Symbolic Expressions and
Their Computation by Machine" cm uf A_Lg 3 4 (April 1960) ,.
pp-184-195. .

McCarthy, J., et al., LISP 1.5 Programmer’s Manual, 2nd
edition, The MIT Press, Cambridge, Mass. 1965.

Moon, D.A., MACLISP Reference Manual, Project MAC.
Massachusetts Institute of Technology, Cambridge, Mass.,
December, 1975.

Organick, E.I., The Multics System: An Examination of Its
Structure, The MIT Press, Cambridge, Mass., 1972.

Reed, D.P., "A Service Addressing Protocol for the Local
Network," M.I.T. Laboratory for Computer &Qience Local Network
Note #5, Cambridge, Mass., December 1976.) _

Reed, D.P. Naming and Synchronization in & Decentralized
Computer System, M.I1I.T. Laboratory. ter Gmp\gte: Science

Technical Report TR-205, Cauhr;c;gc, uass., 'Sey;e&bet 1978.
(Also Ph.D. Thesis for the DBepartment of Electrical
Engineering and Computer Science, JI.T., Cambridge, Mass.,
September 1978.)

Saltzer, J.H., "Naming and Binding of Ohjects," Lgcture Not:es
in Computer Science 60 (Ch. 3), Springer Verlag, New York,
1978, pp. 99-208.

- 108 -

[19] Svobodova, L., Liskov, B., Clark, D., Distributed Computer
Systems; Structure and Semantics, M.I.T. Laboratory for
Computer Science Technical Report TR-215, Cambridge, Mass.,
March 1979.

- 109 -

