MIT/LCS/TR-234

TRANSMITTING ABSTRACT VAIUES IN MESSAGES

Maurice Peter Herlihy

This research was supported in part by the

Advanced Research Projects Agency of the

Department of Defense, monitored by the

Office of Naval Research under contract
N00014-75-C-0661, and in part by the National Science

Foundation under grant MCS 74-21892 A0l

Tius blank page was inserted to preserve pagination.

- Transmitting Abstract Values in Messages

Maurice Peter Herlihy

© Massachusetts Institute of Technology 1980

This research was supported in part by the Advanced Research Projects Agency of the
Department of Defense, monitored by the Office of Naval Research under contract

N00014-75-C-0661, and in part by the National Science Foundation under grant
MCS 74-21892 AQl.

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge Massachusetts 02139

This empty page was substituted for a
blank page in the original document.

Transmitting Abstract Values in Messages
. by S
Maurice Peter Herlihy

Abstract

This thesis develops primitives for a programming language intended for use in a
distributed computer system where individual nodes may have different hardware or
software configurations. Our primitives are presented as extensions to the CLU
language. We assume that differences in hardware and in administrative policy require
that individual nodes be free to choose their own local representations for common
types, including user-defined types. Our main objective is to provide primitives to
communicate values of user-defined type. Our primitives support a large degree of
node autonomy, without requiring that communicating nodes have prior knowledge of
one another’s special characteristics. We argue that the precise meaning of value
transmission is type-dependent; thus the user, not the language, must control the
meaning of transmission for values of a type.

Thesis Supervisor: Barbara H. Liskov
Title: Associate Professor of Electrical Engineering and Computer Science .

Keywords: Abstract Types, Distributed Systems, Message Passing, Modularity,
Object-Oriented Programming, Programming Languages Programming
Methodology

This empty page was substituted for a
blank page in the original document.

Acknowledgements

I owe special thanks to my advisor, Professor Barbara Liskov, for her editing,
suggestions, . criticism, and insights. | would also like to thank the members of the -
Distributed Systems Group, most especially Russell Atkinson, Toby Bloom, Paul
Johnson, Eliot Moss, Eugene Stark, Craig Schaffert, and Robert Scheifler, who have all
listened to me with great patience, and whose ideas and suggestions were
indispensable. Finally, | would like to thank Ellen Laviana for her encouragement and
support.

Submitted to the Department of Electrical Engineering and Computer- Science on
April 25, 1980 in partial fulfillment of the requirements for the Degree of Master of

This empty page was substituted for a
blank page in the original document.

- 4-
CONTENTS
1. Introduction . SR —————— 6
1.1 MOdel O COMPULIHON ... |
1.2 Model of Commumcatlon SSRTESTS—— ORI ——— 8
1.3 Language PHMILIVESccoovovovmmemmmmnsinessssosnsensssssossssssssssssssessssssssses e 8
1.4 Multiple Representations , J— rveaenresras 9
1.5 ShAring ...oovveeeerecresecersnsnnene eeieeeier s saeepassanes 10
1.6 Why Type-Independent Schemes DOt WOTK ovoeoeooeocoeseeeeee 11
1.7 Related WOTK ... orveereecreesneeesecsesnesesnesessesssrsssesssnsasssssssensassssnne 12
1.8 Outline Of the TRESIScccevvereerevivereereeereenseseessesesesassnsassessssessssssssnans 16
2. The Language Definition 17
2.1 Goals Of the LANGUAGEccocovveeeenrirmeereennresssresesesssessnessusassasesssasssssnne 17
2.2 TEIMINOIOBY ...eoeeecreeeeeeererrereererereesensssessesensarsesssssssassssasssesersasssssssssassssase 18
2.3 Communication Primitivesccccoeeveeererne . 21
2.4 Transmitting CompOSIte TYPEScvveceeeeninereesrcreseensesarsssasessssssmassssenss 22 .
2.5 Transmitting Abstract Types reererreeenserssrenasnenen eeeereesesseeseessensasnassees 23
2.6 AN EXAMIPIEoceveeeneectrnenesreensrenencssasesssasssesasssssnssssssossssussssssosssasanssnns 26
2.7 SHACINE ...ecuceeeecceeceeinesnessessssesesssssssssessssssssessasnsssesassenassnsssassssss eevenenns 28
2.8 Two Examplescoeereeerenereereenennnes . veereresaesnene 32
2.9 Transmitting Cyclic Structures ceereererasssssnennnenes 36
3. An Implementation Design v 43
3.1 Some Useful Data ABSraCtionscceoveeee S 43
3.2 The Algorithm for Encoding Valuesc..cceeoveerresvecresceescecesenones 49
3.3 The Algorithm for Decoding Values verensessrersenesersnasesenss 53

34 AN EXAMPIE oot esemeeseesseessesmssssssseniesssssssssssossases 65

5.
4. Refinements and Optimizations 75
4.1 OVEIVIEW .eueeeeeneerereeeseernnsssssesssssosssessssnes revtesessssasennarensrensan 75
4.2 Translating Between Abst;act and Built-in Valum 76
4.3 Constructing and Transmxttmg Messagm 93
5. Conclusions ' 97
5.1 Summary and Evaluationccecueueunic... e 97
5.2 Transmitting Untyped Objects R———— |
5.3 IMPlications Of OWN DAvveeeeeemsreresscsssseisssmppsissssssssssssammspasssssssenss 102
5.4 Operation EX(ension by OVErloading.issmsmsesersessers 103
5.5 Operation Extension by Template S—————
5.6 Applicability to Other LANZUAEEScoucrererrverenecnenssmsiossaossassanss 115
5.7 Directions for Further Research evscnngispass U §

-6-

Introduction

Distributed computer systems have a greater potential for decentratized physical
and administrative control than do more traditional centralized systems. It is felt that
organizations consisting of co-operating, largely autonombus groups can best be served
by computer: systems consisting of colections:of co-aperating; -autonamous nodes,
‘where each node is contralled by a particular group [Reed 78; Svobed 79]. When' we
say that nodes are autonomous, 'we mean thatcthe .group controlling a node. has ‘4
certain amount of freedom to choose its hardware configuration, and to run specialized
or proprietary soltware Nodes may perform specrahzed tasks, such as prmtmg, or
high- prtcrsron floatmg point arrthmetle and may beneﬁt from spcc1al|zed hardware

.conﬁguratrons Nodes owned by groups mterested in specral apphcatrons may be

requrred to run pnvate software Rich groups may mamtam expenswe sophlstlcated

machines, while groups with smaller budgets may be lrmrted to srmpler devrces

Conflicting with the need for diversity and:specialization:is a need for individual
nodes to co-operate and commumcate The ekxsteace of :diversity - in- -hardware,
software and administrative policy threatens to complicate the task of des:gmng and

verifying programs that involve the participation of several nodes

A hrgh level programmmg language su1table for constructmg drstrrbuted
programs “should support the specrﬁcatlon of node behavror in a clear verrﬁable '
rmplementatlon-mdependent manner. Languages that support the use of data
abstraction, such as CLU [Lrskov 79] or Alphard [Wulf 76] already present a‘&
methodology for the construction of clean, modular mterfaces between layers of a
centralized system. To support commu mcatlon and co-operatron in a heterogeneous

distributed system, it is desirable to impose interfaces with similar modularity qualities

between nodes.

This thesis develops. communication primitives..for::a high-level language
intended for writing distributed programs in a heterogeneous system. Communication
among nodes is accomplished by message-passing, so that the behavior of a node can
be-completely characterized by the messages & sends and receives:: @ur primitives are
structured to faeilitate the . design of zdimibuted;psﬁ@ms in. terms of the
message-passing -behavior of participating nodes; -independently of: how the nodes
implement that behavior.

We assume that commumcatmg programs use the pnmmves developed in thls
thesis. Messages contam values such as mtegers, booleans, or values of user-deﬁned
type We shall see that 1t is a relatwely snmple matter o oommumcate values of
language-deﬁned type a node may send the mteger value 1 to another node even lf
the two nodes do not implement mtegers in the same way. In thls thesls we addrws the :
moge difficult - problem .of -developing a- welkstructures: lafigtrage: mechanism to

communicate values of user-defined type.
11 Model of Computation

Followmg [Lnskov 79a] the loglcal entmes correspondmg to individual
, admmxstranve groups are called guardlans jhe physu:al machm&s on WhICh guardlans
resnde are called nodes. There is not necessanly a one-to-one oorrespondence between-
guardians and nodes, although guardlans are abstracuons ol‘ mdwrdual ‘computers. A
guardian has an address space contammg objecls and processes. A process is an

execution of a seq uentxal program objects are CLU objects. |

1.2 Model of Communication

With the exception of ports, to be discussed below,. the. address :spaces of
guardians are disjoint; guardians only communicate by message passing.- Messages do
not contain objects, they contain the values.of ijects -The éesuit:of sending a message
containing an object’s value is to create,_a,ges;v:,., distinet, copy. of ithat. object at -the

destination guardian, having the same value as the ofiginal. ., =
1.3 Language Primitives

‘The programming . language used in this thes’ is' CLU [Liskov 79]; ‘with- new"
primitives and data types to facilitate distributed’ programming. For simplicity, we
ignore CLU’s own variable facility, although we niention some of the issues:it raises in

the conclusion.

Port objects permit general routing and- sorting of méssages. Messages are
addressed to ports, not guardians: 'Ports- accept and’storé messages of ‘pre-determined
type, and they are the only objects that can be nafmed across guardian boundaries.

The lémguage includes send and recgive prmutwes for Ec’pmmugiycatit‘l‘g values of
objects between guardians. ;:Bo,th send and (éggivg specify a port. ‘The send statement
causes a message to be sent to the indjcgftedgpqgt,g ang, ‘thg“;ec}gi‘yfe statement causes a
message previously received at the indicated. port t0 be. interpreted.” A port ‘objcct is
created by a guardian, and only that guardian can process messaggs reccived by that

port.

1.4 Multiple Representations

The CLU language provides a number of built:in data types, and permits users to
deﬁne'new"types, which we call abstract types. Fwo kirds of information are useful for
describing an abstract type T. Speeification information describes the behavior of T
objects in terms of a collection of primitive operations. Representation information
includes the data structures ‘used to represent-T 'obj'ects, and thc ‘code for the
procedures implementing the primitive operations. Representation information is
encapsulated within a cluster. Clusters are information hiding dévicéé; o’therr pr;)grarﬁs ‘
may use specification information about a type, but not representation information.
This restriction is enfq;ced;by»lirniting access to an object’s underlying fep:esentation

to.the primitive ,Qperét;ions of the type.

Differert guardians in the distributed system may implement the same abstract
type. We do not require that all the guardians implementing a given type use the same
representation. In fact, for many reasons it is desirable to:allow different guardians to
use different representations for a.common abstract type.. The most compelling reason
is to realize the large degreé of ‘autonomy péssible in a decentralized system. In a
system of physically and administratively indépéﬁdéﬁt‘guar‘didﬁs,*iridii/iduals will
invariably be tempted to "customize” the implementations of common data types,
while retaining the need to communicate their values with other guardians. For
example, an individual may wish to install a privately developed hashing function in a
guardian’s implementation of a symbol table type. =~ |

Different patterns of use may encourage specialized representations; for

example, a company’s sales division may wish to support a more space-consuming

representation of a telephone book, which, in addition to listing telephone numbers

-10-

and addresses keyed by names, lists numbers and names keyed by addresses,

permitting more efficient canvassing of neighborhoods.

Hardware characteristics may also encourage specralrzed representatrons A
guardian whose underlyrng hardware mterpreter dlrectly supports complex anthmenc
should treat complex numbers as a base-level type, and should not have to represent »
complex numbers in the same way as a guardian fesading’at a less powerful node.
Similarly, guardians provrdmg access to different kmds of photo typesettmg devrces
may use different internal representatrons for character fonts whrle guardlans that use
those servers should use a smgle abstract jbnt type, understood,by all the servers,‘

- regardless of the underlying hardware interpreter.

Secunty concerns may also prompt a guardran to keep secrct |ts representatlon
for a'type. The scheme developed m l.hlS thesrs oerm ltS mdwrdual guardlans to conceal
the representation used to lmplement a type from other guardrans rmplementmg that

same type.
1.5 Sharing

CLU Ob_]CClS may name other objects. When two objects name the same object,
we say the latter 1s shared The behavror of an object may depend, not only on the
objects it contains, but also on sharmg among them The semantrcs of value
transmission for such a type should state whether th|s sharing structure is preserved.
Any scheme for transmrttmg values must address the problem of preservmg (or not
preserving) the sharmg structure of objects The seheme presemed in this thesis takes
the approach that the degree to which sharing is preserved is part of each type’s

definition. The language provides the implementors of a type with the tools necessary

-1-

to control the transmission of shﬁing structure.
1.6 Why Type-Independent Schemes Don’t Work

A strarghtforward and general scheme for transmtttmg an ObJCCt s value is srmply

to transmit the value of the objects underlymg representatton m terms of valu&s of

B

.......

rf rt were acceptable to. force every guardtan to use the same representatron for each
transmrssnble type such a nalve scheme would be completely unsutted for a language

based on the use of data abstractron as we dtscuss in the next paragraphs

The underlying representation ¢f ano’bjéct’ ‘may be ‘transmissible, while the
abstract value of that object may not be For example a frle name may be represented
by a character strmg The stnng may be transmtssrble but the ﬁle name may be

meamngless outsrde of a partlcular ﬁle system belongmg to a parttcular guardlan

Conversely, there are a number of situations where an object’s abstract value is
transmissible, but where the object’s representation is unsuited as a vehicle for

communicating its value.. For instance:

An object s representatton may contam ’;nfonnauon meamngless
to éinother ' guardian, ‘such as'an indeéx intd a pnvafe table
maintained by the.original guardian,; # naive scheme could:not -
recognize (and compensate for) such oontext-dcpendent

© information. " - wnd

 An object's representation couldmcludeobjectswhose values
- are-not themselves transimissible, {e.g antlv@ stream):but which :
can be reconstructed by the recipient.

12-

What constitutes the "value” of an abstract object may not
always be clear from its representatlon For example, each -
- object of a type might be marked with its:time of ‘creation.

When the value of such an object is tmnsmqu, what creation
time shoald the new copy contain? Only the programmer can
make this decision. Cpen e, .

A type's representation'may contain redundant information that”
may be more economig;aj,ly recons{ructcdtbantransnmtth- -
We conclude that transmlssrbrhty is a charactenstrc of an Ob]CCtS type not of its

underlying representanon

L7 Rekted Work

We begin by providing a rather sur’nmar_y‘ description of our scheme ;6 lay a basis
for comparison with previ0u§ work. We assurné that thellq;r;guage implementations of
the various guardians are capable of c}cmrm4ur1}icating rélggs of builtfin typt?;. To
- communicate values of a user-defined type bgt;véen guardians tlrat.n‘lay use different
representations for that type, values are encbééd | into .a‘ standard interm_ediate
representation, called the type's external representation. At the language Ieével, this
external representation takes the form of an object of different-transntissible type. The-
external representation type may itself be user-defined, or contain user-defined types. -
When a value is sent in a message, a series: of translation-operations are invoked that
eventually reduce the user-defined value to values of ‘built-in- type, which can be
transmitted. ~Upon receipt, the inverse translations:are applied -to 'reconstruct the

original value.

An alternative to standard intennedraté-repre‘sentatiens is direct translation
between representations. [Fabry 76] develops a scheme for replacing ‘modules while

the ambient system continues to run. During the transjtion’ from-an old version to a -

-13-

new version it is possible that dlt’ferent representanons for obJects of the same type
may co-exist. In Fabry’s scheme, each object s tagged with a version number and
each module version mcludes a translation Qperal‘;gon f,ro,m thp represent;;tlon used by
the previous version to its own‘representation. Whenever an' object using an old
representation is encountered, a chain of granslatiqn‘,operat.ions is invoked to convert

the object into the current representation for that type.

It does not appear that direct translatibn can be appl“ied_ to the problem of value
transmission in a heterogeneous distributed system. Fabry‘s version numbering
scheme assumes that each new version makes a single predecessor obsolete, and thus it
suffices to provide a single translatlon operatlon In a heterogeneous system where
each guardian may use a different representatlon there is no such natural ordenng
among representations. When a new implementation of an exlstmg type is mtroduced;
how many translation opérations-mu’st be provided? Must all oth?r guafdiansbe

informed? How do guardians translate between hardware-depéndént representations?

A number of schemes have emerged that permit transmission of built-in values
between heterogeneous nodes - through the use . of - standard intermediate
representations : [Levine 78,Crocker 75,Postel 74, White 74,Neigus 73, Telnet 73]. Owur
scheme builds on the results of these works, since we assume that the underlying
language implementation can faithfully transmit such language-defined values as

strings, or arrays:of integers, independentlyof their machine-level representations.

[Levine 78] examines and evaluates different strategies for communicating values
such as real numbers, integers, or files of characters among heterogeneous nodes. It is
concluded that the use of standard intermediate representations best satisfies such

criteria as flexibility, extensibility, and efficiency.

-14-

A number of protocols have been developed for. transmission of typed
information across the ARPANET.! The Procedure CaHmetecol,developed for the
National Software Warks{Cmekér 75,Postel. 74, White 74] is the most-ambitious, being
capable of transmitting such values as character striags, integers, and lists. The
TELNET protocal [Telnet 73] is used for transfesring:character information;, and:the
File Transfer Protocol {Neigus 73] is used-to transfer. files: dn these. protacols; the
sender converts the .information to be sent lnto a standard representatlon Wthh is
either statlcally determined, or agreed upon by negotratnon Upon recelpt, the receiver

converts the standard representation into whatever locai representatlon ituses.

[Haber 78] discusses m;etkmés-.forz dynamz;mpmm of modules. managing
collections of long-lived objects. Each module.version-includes opesati
between its own representation and a "simple.canoninal” representation. When a new

ons totranslate

module encouaters an object in the old representation; the old:module version is called
upon to. translate the: object into its canonical. representation, and the new:version
translates the canonical representation into the current representatron lt is remarked
that canonical representatlons may be "used o commumcate values among

heterogeneous nodes in a dfstnbuted system

Our scheme differs from. ﬂ)at descnbed 'in-[Habet 78] in that'we explicitly state.
what constitutes a permissible external (canonical) repsesbntation. - As we shall explam
in detail in the next chapter, many of the modutanty propemes of our seheme are a

direct result of the partrcuiar way extemal representatlons ‘are deﬁned.

1. By "typed" information, we mean as other-than uainterpreted bit strings.

-15 -

The PLITS language [Feldman 79] defines a number of language primitives for
writing distributed programs. PLITS modﬁies ‘communicate by message-passing.
Messages consist of individual values -of nstructored primitive type.) The
mechanisms used to communicate these values between heterogeneous nodes are not
described. Users of the language who wish to transmit more 'c’otﬁplicétedvvamés‘ such
as arrays, or values of yser-defined type, are left to their own devices.

When defining ’vqylu‘e, transmission for a type, one must decide what constitutes
the "boundary” of an objeqt, and wh‘at, éffect trgnsngissiqn is to. :lflgyg on an object’s
sharing structure.- A relaied problem, that of defining copying operations for objects in
a distributed system is addsessed in:[Sollins 79]: The modél of communication-used in
this thesis is similar.to the copyfiff-local. operation described there. Our approach
differs in that our primary interest is: not in developing sophisticated copying
aperations; rather it is in- developitig: language constructs to' pérmit- usérs to define
transmissible abstract types in ways that.do'not compromtiise ‘giardian autonomy.

 [Giigor] discuss tchmigues for storing valye of objects on secondan
storage, using encrybtibn to avondcompromgﬂsmg}mg’secur;ty,of the mfonnatlon Thclr
encryption scheme is largely independent of the message construction scheme
developed in this thesis; it could bé used to- pravide security. and’ ruthentication to the
language primitives developed-here. : [e

Both the choice of language primitives and the guardian model of computation
used in this thesis have been taken from work done by the M.L.T. Distributed Systems

1. Integers, booleans, characters, and reals are suggested.

-16-

Project [Svobod 79, Liskov 79a].
1.8 QOutline of the Thesis

The plan of this thesis is to present the value communication scheme at
successively descending levels of abstraction. At the highest level, Chapter Two
defines the communication primitives as extensions to CLU, and describes how the

language user may define and implement transmissible abstract types.

Chapter Three outlines an implementation scheme for a run-time system
supporting the language extension defined in Chapter Two. The mechanisms for
’,Constructing messages from objects and reconstructing objects from messages are
spelled out in detail. To present the scheme as simply as possible, we postpone

discussion of a number of efficiency-related issues.

Chapter Four addresses the issue of efficiency, describing optimizations to the

implementation described in Chapter Three.

Chz_lpter Five discusses the conclusions reached in the thesis, including the
applicability of the methods developed here to other problem areas. Among these
areas are: the storage of values on secondary memory, displaying values of abstract

objects on terminals, and copying objects.

- 17 -
The Language Definition

This chapter describes a number of programming language primitives to support
the communication of values among heterogeneous nodes tn a dlstnbuted system
These primitives are presented as an extensnon to the CLU language The extended
language deﬁnes the meaning of transmnssnon for bu:lt—m types as well as provndlng
the means to deﬁne and 1mplement transmxssnon for user-deﬁned types Some
problems that arise when defi mng transmlssmn for cychc user-det' ned types are also

addressed.

Rather than attempting to give a formal semantics for value transmission, this
thesis presents mfonnal deﬁmtlons of the pnmmves mtroduced A formal semanttcs
for the extended language is a major undertakmg in us own nght, and hes beyond the

scope of this thesis.
2.1 Goals of the Language

Before presenting the language design, we list a number of criteria that we feel -

any message-passing scheme should satisfy.

The scheme should support multiple implementations of a
single type without a combinatorial growth of complextty In
particular, the addition of new implémentations of" existing types
must not require changes to existing implementations.

The meaning of transmission for any given type should be
determined by localized, single-level operations within the
module implementing the type. Verification of these operations
should suffice to verify the correctness of the module’s
implementation of value transmission.

-18-

Message construction, transmission, and’ interpretation should
be performed by the language implementation, not the user.

The user should be able to indicate the objects whose values are
to beé transmitted, and the tanguage mrpiemenmﬁorr should do’
the rest.

Any useful scheme must give the ‘programimier a reasonably
simple means to control the eﬁ'ect of tgansmtssron on sharing
structure.

Any useful scheme must be efficiently implementable.
(However, we postpone discussing the’ é‘fﬁeleifcy of out scheme
.until a later chapter, aﬁgr gxaminiog . some , possible
lmplementattons.)

2.2 Terminology

In subsequent discussions we adopt the‘l'olloWinf; ‘typographical conventions.
Objects are denoted by letters in cursive script (A, B, C). Names of operation‘eS on
objects are written in ltallCS We use CLU S dollar-srgn notatton to mdlcate the type
assocrated wrth an operatlon where apphcable For example, T$s1mzlar and T$equa1

are operattons deﬁned onT objects.

As in CLU, the basic containers for information are objects ‘The behavror of an
object is determined by its type. Fach type has an associated cdllectron of operatrons to
manipulate its objects. Objects have both an identity and a' va[ue An object s 1dent1ty'
determmes whrch Ob]eCt 1t is, whrle 1ts value rs |ts mformatron content. Objects of
mulable type may change therr assocnated values, while objects of :mmutable type may
not. The ldentlty‘ of an object,_ cannqt ehange,; Objects may. ,refqr_ to Qﬂle&, ob;Jects._
When nn object refers to another lve sometimes say .the r‘l‘ormer contains the latter
When two objects refer to the same ob)ect we say. that the latter is shared For a more 4

complete descrtptlon of CLU’s model of computatton the reader i is referred to the

-19 -

CLU Reference Manual [Liskov 79).

We partition the types in CLU mto three disjrjjnt sets; primitive, abstract, and
composite. Primitive types are 'unstructured, language-defined types such as string,
char, int, real, and bool. Abstract types are uaer~deﬁned types. Composue types are
composed from language-defi ned type constructors of which CLU has six: array,
oneof, record, sequence, struct, and vanant Component types of a composrte type may
be either prrmmve abstract, or composrte Recard 'S, amy s. and vanant S are mutable; |
the other comWsrte types are immutable. Objects of co"mpos‘rte “'type serve primarily to
refer to collections of other objects. Prtmrttve and composite types are sometrmes
referred to as built-in types. Primitive types and type constructors are requrred to be
supported at every node, while an abstract type need only be supported at certain

A cluster encapsulates the 1mplementatton of an abstract type T by deﬁmng a
concrete represenlauon for T objects, and by defini mng T operattons in terms of
operations on T's concrete representation. The chorce of ‘concrete representatton
deﬁnes an abslracllon functton from values of the co,ncrete representatwn type to
values of the abstract type, denoted by T$qbsquct There is no T$abstract operation -

avarlable to users of the language

In our discussion of transmission, it is useful to deﬁne preclsely when we
consrder two objects to be identical, that s, when they have the same rdentrty The ﬁrst |
‘requirement we make of any such def mtron is that only o'bjects of the same type can
be ‘identical, Accordingly, we define T$Idenucal to be an operatlon takmg two T
objects, returning true if and only if the arguments have the same rdentrty Note that

identical is used only for explanatory purposes there is no correspondmg language :

=20-

operation currently defined in CLU. TSidentical is defined in the following way:

IfTis 'Aprinﬁtive then T$r'denticd1 is equivalent to TSequal, where
- the latter is defined by the CLU Reference ManuaL

If T is composite, then two objects are identrcal if they are the

If T is abstract, then two objects are idénticuliiiﬁmeir concrete
representations are identical. :
The identical operation is not quite the same as the CLU equal operation. For the
primitive types, and fo‘r'thetﬁutﬁble{i?coniboslte types identical and 'er}ual are indeed
equrvalent When defi ining an abstract type T the CLU ‘Réference Manual suggests

that proper usage of the T$equai operatlon requrres ‘Hhat:

the equal operation should be an equivalence relation satisfying

the substitution property; i.e. if two. objeets.are. egaal;-than.one -
can be substituted for the other wrthout any detectable
difference in'behavior [p.80} - ’

For types havmg well- deﬁned equal operatlons it follows that rf two ObjCCtS are

identical, then they are necessanly equal although the converse may not be true

" Perhaps the most important distinction between: identicat and: egual is that
identical is defined for every type, and is never defined: in“terms ' of: user-defined
operatlons If defined at all, the equal operatlons of abstract types are deﬁned in terms

1

of user-defined operations. The ldenucal operatrons for all types are deﬁned by the '

language, mdependently of any user-deﬁned operatlons. |

1. The equal operations of immutable composite types may also invoke equal
operations of user-defined component types.

-21-

In our subsequent examples, we use "A = B" as an abbreviation for

"T$identicalA, B)", and "A = B" as an abbreviation for "TSequaI(A,'B)".
2.3 Communication Primitives

We restrict discussion to messages consisting of the value of a single object
(which may, of course, contain ather objects)In Chapter Five.we will discuss some

more general kinds of messages, but we will see that 'the); introduce no new difficulties.

Objects of type port are used to ndentlfy the recnptent of a message Port.s, are
parametenzed accordmg to the type of value they recelve €8, a port of type port[mt]
can only receive the values of integers. The nfa(mes_qf ports maybesent in messages, -

however, only the node that created a port may receive messages sent to that port.

Users may cause-the value of an object to be sent’ to a piort by executing a send
statement, indicating the object whose value is te be oty and the po;t to-which it is to
be sent. A message may be recexved by executmg a recewe statement, speci fymg the
port from which a message is to be taken the vanable to whlch the resultmg ObjCCt isto
be assigned, and the amount of time the user is w:llmg to wait for the message to arrive.
The language implementation provides buffemg;ot?messages betwee& the time they

are sent and the time they arrive,

At the most summary level of description, the result of sendmg the value of a T
obJect is to create a new T object, whose value bears some relatlon to that of the
original. The meaning of transmission for T can thus be charactenzed by a transmit

operation, mapping T objects to T objects.

For a primitive type P, P$transmit creates a new P object hyaving the same value

as the original. For example: "abc" = string$iransmi"abc™), 1 = int$eransmif(1), efc.
We note that like T$1den11ca1 and TS$abstract, no explicit T$1ransmu operatron is
directly avarlable to users of the language. 'lhe T$lransmu operatron is a devrce that

serves to explam the meaning of value transmrssron
24 Transmitting Composite Types

'Ihe defi mtrons glven here concern only the valueg of objects by drscussmg
transmrssron in terms of values rather thzm object |dentmes we srdestep the problem
: of del' ining the relatron of sharmg structure to value Thrs problem is addressed ina

later section.

Transmission -for a value of ‘composi‘te‘itype’f“ is definied in terms of component
transmission. For example, transmission for the arr§[YTtype i§ déﬁﬁedml‘ol‘rﬁallya’s
follows: the result of transmitting an array[T] is to create ra;neygma;%ray["l‘]\ ijeet,__having
the same bounds as the old array. Furtherrnore, the values of the ‘newl arrayselements

are the transmitted valuesof the old array’sclemeats,

Transmrssron for the other composrte types can be defmed srmrlarly Let A be an
object of composite type T When the value of A is sent by a node A’s component
objects are transmrtted m some canomcal order (e g ascendmg order for array s,
lexrcogmphrcal order for record’ s) When the T value lS recelved the values of the

components are received in canomcal order component objects are constructed and a

new T object is created anvd:initialized from the ¢ompenent ébjects. - -

-
25 Transmitting Abstraet Types

The deﬁmtlon of a transnusslble abstract type specrﬁes the meamng of
transmrssnon for that type by deﬁmng a transmit operatlon Just as correct usage
demands that the copy operation for an \abstract type preserve the value of the object
being copied, correct usage demands that the transviz bperation for an ‘abstract type
preserve the value of the transmitted object In other words the mformatlon content
of the received object should be the same, in some sense as the mfonnatlon content of
the sent object “The problem of deﬁmng Iransmlt for an abstract type T 1s thus the
problem of decrdmg which propertles of T objects constltute thelr values and what
constitutes preservation of those properties. An important area where such issues arise
is t_he,guesﬁtion‘of the relation of value to sharing stzucture. Some of these issues are
discussed in the section on sharing,

25.1 Implementing Transmissibility

We say that a type is fransmissible if it has a iransmil-operation, For an abstract
type T, the transmir operation is defined in the followmg way. A transmnssrble type XT
is chosen, called the exlemal represemallon type of T along wnth a mappmg from
values of T to values of XT.. This mappmg is denoted by T$encode and the mverse
mappmg by T$decode The value of the object created by T$transmu is defmed by the
composmon of T$encode X’T$transmtl and T$decode‘ o

T$transmiA) = T‘dawda()éﬂtmnmlmmod%ﬁ}))t

The external representation of an abstract type T is specified by the definition of T;
thus all clusters implementing T use the same external representation. The external

representation type may be abstract, or composed from abstract types, but it must be

-24-

transmissible.

‘The meaning of tranémission for T values is défined only in terms of the
correspondence of T values to XT’ values (ercode’ and decode) and in the meanmg of
transmrssron for XT values (X’I’Strahsmtt) This defi mtlon is mdependent of any

cluster’s choice of concrete representation.

Each cluster lmplementmg a transmrssrble type T must supply operatrons to
im plement the encode and decode mappmgs The 'l$encode operatron takes aT object,

"L

and returns an object ol‘ the correspondmg external representatron type havmg the
corresponding value. The T$decode operation performs the inverse ma;)pmg from an
object.of the.external representation type 1q the carrespanding. abstract-object: The
encode and decode operations of a type are invoked. autamatically hy the language

implementatinn when a send or receive statement is executed.

A value of abstract type T is transmrtted by the Ianguage nnplementatron in the
following way (Frgure 1): When a node sends the value of aT object, T$encade is
applied to the object, and the value of the resulting external representatron object 1so
sent (possibly by invoking further encode's). When the. target node receives the
message, an external represeatation object is constructed from it, and T$decode is
applied to itto produce an object of type T; |

The encode and decode operatrons of a cluster encapsulate the translatrons'
between the concrete and external representatlons These operatlons are completely'
defined within the cluster, contributing to modularity. To verify that a cluster correctly
implements value transmission, it suffices to verify the cluster's encode and decode

operations. The external representation also allows new T clusters to be written

Fig. 1. Definition of T$transmit

D R + et +
| Guardian o) .| Guerdigm. . . - oo |
I B |) I
| +---* TSencode +----+ | XTStransmit | +v---+ T$4ecode. +-~~4 |
L R D I e N I
| 4ot #--oot | AR s

wrthout affectmg exlstmg ones, smce all T clusters commumcate by oonvertmg local
31

concrete representatlons for T values to XT values ina standard way as the values cro&

node boundams

Let T be a transmissible- type supported at twb giiardiahs. Let CT1and CT2 'be
the concrete representation types used by each, and XT the ‘ekternial repl'e'sentatibn
type. As usual, let TSencode and T$decode denoté the' n’rhiiﬁ?ﬁgsbétweenvaluesof T
and values of XT Let T$abstractl and T$abstrac12 denote the mappmgs between
values of CT 1 and CT2 and values of T 'l‘he functlonalrty of these mappmgs are
lllustrated in Frgure 2. |

The user of the T type needs to know the meaning of T$rnsmit, but he does not

need to know the nature of T's extertial representation The éxtérnal reépresentation of
a type T is only of interest to the implementors bf*néii’f'r clusters. The meaning of
transmrssron for primitive types and abstract typw can be spec:ﬁed in the same way,
wrthout reference to whether values are transmnted dlrectly or reduced to s1mpler‘

transmlss1ble values.

-26-

- Fig. 2. The Relations of Encoding Operations T

T T + e +
| Guardian | | Guardian o
| +---+ TSencode +----+ | XTStransmit ' | - #~r-=¢ J§docpde #--=+ | =

T > XT |-===mmmommm e > XT f=-oeemmm- > T |
| +---+ +---=+ i : ‘ :

| /

| /
T$abstractl /

I 7

”~

...\ Tsabstract2
L “\ } " l

" *——'}-———

2.6 An Example A R D T T R

To serve as an exampie of a typical abstract type, we ntroduce a single<key table
which stores pairs of objects, where one-object {the:key)k is-used to retrieve the.other
(the item). The single-key table type: has aperations for ¢reating empty- tabilés, inserting
pairs, fetch'm,gi the item paired with a-given kay,:deleting.pairs, :;ndfitatating through ali-

key-item pairs. SO St pnddeerd

To present the example, we define some:simple symastic canstructs. < As in CLU,
the. concrete representation for a type is declafed within: its .clustef "by ‘use of the .
dmngulsmequatc: i IS EER RS RO ERRTRTIS TR TN A PR

rep = type_spec
where "type_spec” stands for a type specification. In addition, the external

representation for a type is declared by-a similar distinguished equate:

xrep = type_spec
The interface specifications for the encode and decode operations of a transmissible
type T are: |

encode: proctype (T) returns (xrap) s*lgnals(not_bossible(stﬂng))
decode: procteym (xnp) retms {T) stumtﬂhm_pmwn(‘iu‘wﬂ)

where xrep is the external represematlon type of T.
When writing a cluster parameterized by a type T we use the syntax:

- ihoré T in transmissible _types

to mdtcatc that we requ:re value transmnssmn to be deﬁned for the parameter type
Transmnssxon is defined for the pnmmve types, and for abstract types havmg encode
and decode operations. Transmission is also defined for composite types whose

component types are transmissible.

Let us examine how a single-key table might be made transmissible. This type is
of general utility, yet it-admits many specialized concrete representations: a guardian
that rarely deletes bindings might choose a represéntation that permits quick insertion
and lookup operations, at the expense of the delete operation, while another guardian -

might use a proprietary hashing function, or a complicated list structure represeritation.

- The most obvious candidate for this type’s external representation is an array of
key-item pairs. The e}icode operation for the single<key table cfeatesanempty array of
key-item pairs, extracts each pair from the table, and inserts it in the sreay. The decode
operation creates an empty table, extracts each‘ pair from the external representation

object, and inserts it in the table. A sample implementation is shown in Figuré 3.

Fig. 3. The Single-Key Table Type

table = cluster [key_type, item_type: type] is °

create, % Create a new, empty table

bind, X Add & new key-item pair

lookup, % Given a key, return the associated item
delete, % Remove a key-item pa¥r = -
elements % iterate through all key 1tem pairs

uhere key_type. item_ type 1n transmrssible types

tab. = table[key_type. 1tem_type]

pair = struct [key: key_type, item: item_type]:
. rep = ... % compligated structure .

xrep = array[pair]

% Code for other operations ...

encode = proc(t: tab) returns (xrep)
ans: Xrep :s xrepknew() . i P
for k: key_type, it: item_type 1n tabSelements (t) do
Xrep$addh{ ans, pair${key: k, item:: it}) -
end % for
return (ans)
end encode

~ decode = prec (x: xrep) returns (tab)
"~ t: tab := tab$create()
for p: pair in xrep3¢lements(x) de-
- tab$bind (t, p.key, p.item)
end % for
return (t)
end decode

end table

2.7 Sharing

CLU objects may refer to other CLU objeets When an 6Bject ié referred to more
than once, we say that object is shared. Smce mutable ObjCCtS can be shared the

behavior of an object may depend not only on the values of 1ts components but on the

-29-

- way those components are shared. Consider an array of objects of some mutable type
T. If two elements of the array shage a single T obpct,«&en & change-to that object
through one element will be observable as a chaase tO ibc other Alternatwely, if the
two elements contain distinct T ob;ects then a change to@ne element wﬂl na affect the
other. Since the behavior of the two arrays is drfferent, one can plausnbly argue that

they have different values and that transmlsswn should dlstmgmsh between them

2 e‘-%! _‘

MR ReaT ¥

Although it may be useful to have the mmsmnt Dpa'a{m for a type preserve
L i i E
sharing when transmitting a single value, it does not appear useful to preserve sharing

LBy J ‘r

(S

between objects sent in dtstmct messages. To capture thrs aspect of transmission, we

redefine the transmit operatrons to take a second argument a message context that
EE RIS 3]

defines the scope of shanng preservatron by 1dent|f3ungWMessage bemgttansmltted :

{

A message context can be wewedas umquely Riant#‘ymgﬁa Wmaﬂar executlon of a

aodly

~u4,50nd statement.
Let M be a message context, and 1ét'A afid"8be T objects ' We further redefine
the transmit operations to satisfy the fRowing property. * ~ ™"

T1: A = B = TStransmiA, M) = TStransmikB, M)

In other words, transmit preserves identity; if the value of an object is transmntted twice
in the course of executing a single send statement, a single object is created at the

receiving guardian.

Usmg the new deﬁmtron of transmu we wrll ‘now specrfy the effect of value
transmlssnon on the sharmg structure of objects of composrte type, by mfonnally
statmg a number of propertles of array{T]Slransmu The notatron used to present theee »

propemes is used for brevrty In the followmg statements, A and B denote any array{T]

-30-

objects, and M denotes any message context. Fhe first two ‘properties state that the

resulting array has the same bounds as the original: - =

Al: array[T]$low(array[T]$ transmifA; M)): = array[T]8low(A)
A2: array[T]$size(array[Ti8ransmif(A, M)) = array[Ti8size(A)

The third property states that the value of each component of the new array is the
transmitted value of the corresponding_;component of the old array. Mror_eover.‘ sharing

of components is preserved..

A3: © (VK (kisa legal mdex of A) = T$transmu(A[k] M) = array[’l'lslransmu(A
MK} L foen

The transmit operations for the other composite types are defined similarly.

The language pnmmves developed in thts thesrs use, the thton of object ldenttty
as the basns for defmmg the effect of the transmu operattons on sharmg structure
ObjCCt tdentlty was by no means the only possnble ChOlCC One alternatlve s;mtlar to
that taken by the CLU copy operatlon for composxte types, is to tgnore shanng
completely The effect of applymg the copy operatlon to an arraym A (where T isa
mutable type) is to create a new, dlspmt array[T] A Correspondmg elements of A)
and A have the same value but any sharmg among elements of A 5 not reflected by

sharmg among elements of A’

A user w1shmg o preserve sharmg in such a scheme must expltcntly encode
sharmg ml‘ormatton when the value 1s sent, and reconstruct rt _upon recetpt. For

example to transmtt an array[“l] A preservmg sharmg among the elements one mrght y

create an array[T] B, referring to each T object in A only once, and an array[mt] C,

3] -

having the property that for every legal index k, B[C[k]] = A[k]. Sharing structure is

explicitly encoded in the integer elementsof C..

We reject this approach because we feel .that sharing structure -is part of an
object’s value, and so should be preserved by transmission.: :Mareayer; although it is
the responsibility of the language user to define and 1mplement the effect of
transmission on the sharing structure of an abstract type the language deﬁnmon-
should make the most common and useful del’mtlons easy to lmplement Just as for
-composite types, the sharing structure of an abstract type lS_ part of ns value. It is our
opinion that a well-structured definition of vallte,itrapfsmlssjpg for an ;_abstract type
should have properties analogous to A3; i.e., it will preserve |ts own ifiternal sharing

structure,

- Another approach is to use equal, rather than identical as the basis for preserving
sharmg This approach has the drawback that the equal operatlon for abstract types are
necessarily user-defined, whrle 1demzca1 is not. To 1mplement value transmlsslon SO as
to preserve equal each transmissible type would have to provnde an equal operatlon an
awkward requrrement. Moreover a language rmplementatlon that must frequently
mvoke user-deﬁned equal operatlons is llkely to be much lees efﬁcnent than one that
can perform an 1mplementatlon defmed check for ObjCCt 1dent|ty In a recent
' 1mplementat10n of thrs scheme by the author testmg l'or 1dent|ty of compos:te objects‘

Lot

is done by a simple test for pointer equality.

~ The descnptrons of the transmission algonthms glven in thls chapter sufﬁce to
determine the order of apphcauon of transmit operatlons when a value is transmltted
Invocations of encode and decode operatlons caused by the appllcatlon of lransmu

operations may be observable by the user, since encode and decode are user-deﬁned

-32-

and may have side-effects. ‘Accordingly, we specify that for each object whose value is
~ transmitted ‘in a given message context, encode is invoked'at the sending g"uardian'at
least once, and decode is invoked at the receiving guardian ‘at least once. The language

definition places no restrictions on the order or number of thoSe mvocatlons
2.8 Two Examples

We use the table type to 1llustrate the two kmds of sharmg propertres that are of
interest to the deﬁner of a type s transmu opemtlon The ﬁrst property concerns the
effect of transmrssmn on mlernal sharmg structures Suppose a smgle item I is bound
to two keys K and K in a table T. Let the value of T be transmrtted ina message
context M, and let T’V table$transmrt(Tjhl) For any reasonable deﬁmtlon of
table$transmit, T* will contain keys K" and K’ correspondmg to K and K inT. By
the effect of transmission on integnal. sharing we¢ ‘mean that the definition of

table$sransmit should specify whether K ; and K2’ continue to share a single item, or

whether they are each bound to disjoint items.

The second important sharing property con‘cérnskthieﬂe“?féc{' oF transmission on
sharing relations between distinct objects whose valu&e are ‘sent in the same message
By contrast to internal sharing, which concerns sharing relahons wrthm a smgle object,
we call the second sharing property external sharmg Tet f' and T be tab]es shanng a
single item /. Suppose the values of T, and T, e ’transmrtted in a single message,
where T’ = table$transmiKT |, M), and T, = tableStransmiAT ,, M). By the effect of
transmission on external sharing we mean that the: defimitich of: table$rransmit should
specify whether 7" and T, continue to:share o single-iterd, or' whether-they contain

disjoint copies of /.

-33-

The only way we have provided for tableStra_nsmil_,to preserve external sharing of
items is to have it invoke item$¢ransmit on those items. Accordingly, we define the
effect of transmission on the internal and external sharing structures of the table type

in the following way. Let M be a message context, T a table, and K a key in the table.

TABI: table$lookup(table$iransminT, M), key$transmidK,M)) =
item$transmidtable$lookup(T, K), M))

TABI1 guarantees two propertles Fll'St of all, lt guarantees that sharmg of rtems within
a gtven table is preserved Secondly, it guarantees that sharmg of |tems between
distinct tables is preserved when the tables’ values are transmrtted in a smgle message:
, context Let M be a message context, and let T and T be (not necessanly drstmct) ‘

single-key tables. Suppose:
= wble$lookup(T1, Kl) tableﬂookup(fz,)
Let:

T, = tableStransmiT |, M) _
T, = table$t_ransmir(rT2,‘M)
K 1’ = key$transmidK n M) .
K, = key$transmidK,, M)

By two applications of property TABI:

table$lookup(T ', K,’) = item$iransmi«{, M)
tableSlookup(T ", K,)) = itemS$iransmidl, M).

By property T1, the right hand sides are identical, so sharing is preserved:

-34-

tableSlookup(T ", K|’) = table$lookup(T ,’, K,)").

An informal verification that the single-key table implementation listed above
satisfies TABI is quite straightforvyard‘. By mspectmgthe code of the encode operatlon
we can see that if item /'is bound to keys K I and K, in tables T, andT2 fespectiyely,
then / is shared by two key-item pairs in the'e)ite”r'nz{frepresentdtion’s, having keys:K]
and K. By a similér'argumé’nt decode atso'preserves\“ sharing ‘of items. To ,Srbve
TABI, it suffices to’ obsérve that xrepStransmu preserves sharmg of ltems, an
observation that follows directly from the def'mtron ‘of irarismit fdr“the array types If
transmission of the extemal representation didnot pres\ervexshaaring;of items, then the
encode and decode operatrons of the abstract type would have o be written to dlscover

encode and reconstruct the sharmg structure

If ’(for some perveise' reason) the definition of the single-key table type had
specified that transmission shoutd not preserve externalshanng of items, that effect
could have been achieved by havmg the smgfe-key ‘table’s external representatlon

contain distinct copies of the item.

To iliustrate how the transmit operauon of 2 new type can be composed from the
transmi operations of subsidiary types, Iet us examine the |mp[ementatton and
venﬁcatron ofa two-key table. A two-key table differs from a smgle key table in that it
permits two types of keys to be used o retneve items. A smg]e item may be bound to
any number of keys of either type. Just as “for smgle-key tables we requlre that 1f a

single item’ lS bound to several keys, then that shanng is preserved by transmlssxon M

Since we already have a transmissible single-key table, let us choose, as an

external representation for the two-key table, a struct consisting of two single-key

-35-

tables, each accepiing one of the two types of keys.

xrep = stru'ct[tka_bl: ‘tablel, te_bzu: table2] . _
We define the correspondencelbetween valugs of the abstracttypeand values of the
external representation type in 'Athe most St"a,ig}}tf?léwafd:m}a@n?r; for each key-item
pair in a two-key taole, the approprjateiy typedsmgle-key Jftable component of the
extemal represenmtion contains thesame pair This deﬂniljon implies that if the same
item is pmred wnth keys of dnfferent types m the two-key table then Lha&—,object will be

shared by both single:key tables in the exteral representation.

We can verlfy informally that thls choace of external representauon preserves
sharmg of key item pairs. From the deﬁnmon of xrepSlransmﬂ we know that the
value of each single-key table component i transm:tted by 1ts own lransmzt operatlon
using the same message context. Propex:ty TABI ensures, tl;at shanpg of items both
wnthm a smgle-key table and between the two s:ng!ejkey tablej is preserved. We

| Obsefve that without property A3 to preserve sharing, we could not have constructed
and verified the sharing properties of either table type gsus;ly—,as wg:,pa\ge,v

To conclude the example let us sketch an nnplementatlon for the two-key table.
We choose a concrete representation identical to, the externa] representation, with the
add delete change and :etneve p;urs can be mplemented ;n a stralghtforward
manner. ‘The encode and decode operations are paticulrly situpl: they just retun
thei argument after performing an w or a dewn. The implementaion s ysuated i
Figure 4. . | m

Fig. 4. The Single-Key Table Type

two_key_table = cluster [ki_type, k2_type, item_type: type] is ...

tablel = table [k1_type, item_type} =~
table2 = table [k2_type, item_type}]
rep = record [tabl: tablel, tab2: table2]
xrep = rep

: P S IR SRS
encode = proc (x: cvt) returns (xrep)

return(x)
end encode

decode = proc (y: xrep) returns (cvt)
return(y)
end decode

end two_key_table

2.9 Transmitting Cyclic Structures

When an dbjé‘ct is created, CLU requires that it be giv’éﬁ a value; there is no such
thing as an ummuahzed object in CLU1 This restnctnon adds to the safety of the

language, since every object that can be named has a legal value

‘Let A be an object of abstract type, and let A’-be its external representation. We
say that A’ is. self-referential .if lt refers to. A. ~,;,;Vai,umwa:m9t-be-traﬁsmitted usixig
self-referential external . representations, as may be illustratéd by the following -
example. Consider the int_list cluster shown in-Figure S wh:ch 1mplemems linked lists -

of integers. The concrete representation is just a record with two components; the first -

1. Although there may be uninitialized variables.

-37-

Fig. 5. Linked List of Integers

int_list = cluster 1s ..

link = oneof [next: int_list, empty: oull]
rep = record[car: int, cdr: llnk] :
xrep = rep

encode = procg(x: cvt) returns(xrep)
return(x) .
end encode

decode = proc(y: xrep) returns (cvt)
return(y) '
end decode

end int_list

is an integer, and the second is either an mt_llst, or null. The extemal representatlon is
the same as the concrete representation. We encounter a problem when we try to;”
decode a message containing a circular Jist. To construct an int_list from a message, we
must ﬁrsr have constructed | 1ts externg! :representaﬂtvion,_f[o constryct t.he, external
representation object, we must ﬁrst cons_truct theobjectg 1{ names. However, in the
case of a circular int_list, tne external representation contains the decoded inLlisi itself.
The requirement that an object have a well-defined valire before it can be named
meéns that both the int_list and its external representation ‘must be- created before
being named by the other, and thus neither can be constructéd. ' Note that if the list is
acyclic, then the external representation is not self-referesitial, and no such problem

results.

It might appear reasonable to state that an external representation is not

-3

-well-formed if it is self-referential. Unfortunately, such a restriction makes the
transmission of cyclic objects. quite difficult. :Consider the problem of making
potentially cyclic int_list’s transmissible. -Whatewer'extemal representation we choose
for the int_list type cannot itself: contain an int.list cemipoenént; since otherwise we
cannot guarantee that the external. representstion: s not: self-reférentiak ‘Aesimple
strategy is to place the integer components: i’ an -array, ‘afong: With ‘some addltional
-information indicating the index in ‘the array of the elementto which the 1ast element
was linked (with a specnal value for a null Imk) What the user lS really domg here is
evadmg the CLU requu'ement that every named objec‘ta'have a value by dlsgmsmg an

object name ‘as an array index.

We can take two approaches to the :problem ‘of transmitting cyclic structures.
One option is to leave the implementors of cyclic types to their own devices when
writing those types’ decode operations. As a Justlﬁcatlon for thts approach we mlght
observe that language support for such transmtsslon requxres extendmg CLU S object
semantics to pemut nammg objects before they are constructed comphcatmg both the

~ language deﬁmtlon and its xmplementatlon

The other option is to provide some explicit support for the transmission of cyclic
structures. We have seen that either course forces the user to name obJects before they
have been given values. Without language support, the user must dnsgunse the nature
of such references from the language, a clear case of havmg the language hmder rather
than help the problem of program des1gn lt seems unreasonable and melegant to
require the programmer to take heroxc measures both to encode values and to

EILE

circumvent the language deﬁmtlon.

Whether transmission of selfreferential external represefitations is to be

-'39-

supported is primarily a question of programming convenience, in the same way that
-implicit transmission of sharing information is-a question of convenience. We have
scen that without the- ability to use self-referential’ external represcntations the
transmission of cyclic structures beeomesquiteawkward: For:this reason, we choose to
relax the requirement that an object have a: value before itcan:be named. However
such. references may only exist -while : a message is being ‘decoded, and’ the
implementation of the decedeoﬁeration: must satisfy:certain reStrictions. © '

The restnctron we rmpose on decode operatrons can be mformally summanzed as

_ follows Let A be an object of abstract type T, and let A’ be tts extemal representatron

- A’ may contain A if T$decode applied to A’ does not use the value of A. In other words,
we allow A’ to name A before A has béen initialized, but we: forbid T$devode t0 access
the value of A.

Let us make thrs notron more precrse Gwen a procedure P and an ObjCCt A of
abstract type T we seek to formulate a rule that ensures that P does not depend on the
value of A. We do not requrre that this rule be exact, but we do requtre that it be
conservative; whenever the rule is followed, we are safe although we do not mind if

the rule is-ovetly strict. .

~ Clearly, any procedure that operates on A s concrete representatron uses its value.
Moreover the only procedures that can operate on A S ooncrete representatron are the
operatrons of the T cluster Thrs suggests the followmg rule A procedure P uses the
value of an object A of abstract type T rf an mvocatron of P applies: a primitive T
operatron to A. This rule is safe, since wrthout invoking an operatron of the T cluster P
can only use the name of object A. The rule is conservative, since it is possible that an

operation of the T cluster might-not access the concrete representation of A.

.40. ’

If the decode operation constructing A uses the value‘of B by invoking a cluster
operation on it, then the construction of B must precede tite édnstruction of A We say
that A depends on the value of B if B is in’thé traasrtw% blosure of‘ tﬁ 4 "uses the value

of" relation induced by applymg decode to A if A dtpenids on’ B ﬂ'acn B must be
“decoded before A. If A depends on itsélf; then ﬂs censﬁucﬁbn must ‘ﬁﬁecegi'e*fitSelﬂ an

obvious impossibility.
We may now make precise our restriction on decode operations that operate on
. ' . seatigrnpden {3¥s oLk lounp L o g
self-referential external representations: A decode ;qﬁ§ﬁ;;§ﬂ is Jegal if the "uses the

T Y «

value of” relation of the object being decoded is acyclic. s tanags

This restriction permits an object tabenamgdby if;é\in;éxte}nak rcpresentatibn
facilitating the transmlssmn of cychc structures. Tl';% mgggt ;gluster as. shown above
will now legally transmit cychc hsts smce corre"ﬁy decodmg aﬂ mt._hst depends only
on the identity of the following int_list,.not on whether. jt has been jnitialized, as no

operations are invoked on the successor.

We can display an illegal decode operation. by x:hmsmg ai dlfferent concrete
representation for the int_list type (Flgure 6) Jg,tbxsﬁlgstcrfs eoﬁ;;et!égiepresenMUOn
each element’ havmg a suecesser comams t,he valﬂe of‘”the suocessor s mteger as well as
its own. The external representation is, the same as ;l;e one ,;}sgglf aboveg sEach int_list
object depends on its successor, since decode invokes an int_list opér%iiorf gEcar) on the
next int_list. [f the list is cyclic, an int_list depends on itself, and the deco_de operatlon
fails the restriction. When implementing a new cluster for an existing transmissible
type, it is the responsibility of the cluster wnter to choose a concrete representatlon

compatlble w1th a legal decode operatmn

-41-

Fig. 6. An Incorrect int_list Implementation ..

int_list .= cluster is car, ...

rep = record [car: int, cdr: link]. ;
Tink = oneof [non_empty: cdr_info, empty null]
cdr_info = record - [next.list: int_ list, -sext.car: int]

xrep = record [car: 1ag, cdr: xlink]. ~ :
xlink = oneof [non_empty: int_list, empty null]

car = proc(x: cvt) returns(int)
return(x.car)
eqq car PN e e

encode = proc(x: cvt) roturns(xrop)
© % Construct xrep's Tink
x1: xlink :
tagcase x.cdr
tag empty:
x1 := x1ink$make empty(nil)
tag non_empty{ti: cdr_info):
x1 := xlinkSmake non_empty(ti nqxt list)

~ end % tag
return(xrepS${car: x.car, cdr: x1})
end encode o ' o

decode = proc(y: xrep) returns (cvt)
% Extract record components
tk: Tink
tagcase y.cdr
tag empty: .
21k 1= 1ink$make_empty(nil)
tag non_empty(list: int_list): . 7
CU 3Kk e linkSmaké-non_empty{ o S
cdr_infoS{next_car: int 1ist$car(list)
- O pextiiist: Tistyy
end % tag

return(rep${car: y.car, cdr: 1k})

ond dacode

end int list

Cunously, we can encode and send a self-referentlal external representatlon w1th

no apparent dlfﬁculty The nature of this asymmetry between sendmg and recelvmg

-4)-

can be illuminated by observing that on the sending side, a self-referential external
representation names the argument to a pasr invocation of encode, whereas at the

receiving side, such an external representation names the result of a fizure invocation

of decode.

-43 -

An Implementation Design

ThlS chapter presents an lmplementanon desngn for the value transmnss:on
scheme described in the prevnous chapter We descnbe mn-tlme machinery to
construct messages from objects, and to reconstruct objects from messages. The
mechanisms introduced here are intended primarily as explanatory devices. As a
consequence, we have made no attempt to optimize run-time perfénnance or to
minimize the number of constructs used. Although we feel that questions of efficiency
are extremely important, we also feel that the structure of the implementation can best
be conveyed by postponing a discussion of efficiency-related issues to the next chapter.
By presenting the complete ’implcmentation design in two stages, we hope to
distinguish fundamental aspects of the implementation from details intended to

enhance performance.

Throughout this chapter, we refer to the construction of a messhge denoting a
value as encoding the value, and to the interpretation of a message denoting a valué as

“decoding the value,
3.1 Some Useful Data Abstractions

This section defines some data abstractions used to build the value encoding and
decoding mechanisms. Operation definitions follow the terminology of the CLU
Reference Manual: argl, arg2, etc. refer to the operation’s arguments. The interfaces
of some of the data abstractions used differ slightly according to whether they are
being used to encode or decode values. Where appropriate, we prefix the names of
abstractions used to encode values with the letter "e", and those used to decode values

with the letter "d".

3.1.1 Message Streams

A message stream is an abstractioh of the 'commuhiealtitdnl medium, encapsuladng
specific characteristics of the medium that are ifrélevant at the level of abstraction
addressed here, such as the protocols used, or when messages are really sent. There are
two kinds of message streams: eanding. ,s‘tre"arus.‘ whlch zlre used to send an object’s
value to a foreign port, and decodihg” streams, \}vhlch are used to receive a value

previously sent to a local port.

Information is transmittcd in discrete units called /okens.. When-a value is sent,

an-encoding stream is created, and the valtie i ns placed m the stream as a sequence of

ihsa

tokens. A decoding message stream releases tokens in thesaiuemder they were placed
into the original encoding stream. The external representation mechanism ensures that
the sequence of tokens used to encode a value is mdcpendent of, the concrete

representation used by aguardlan

Encoding message streams are implémented by the estream type:

open: proctype(port) returns(estream)

Creates an encoding stream used to send tokens to the indicated foreign
port, ~ ‘

insert: proctype(estream, token)

Inserts a token into an encoding stream.

current: proctypo(estream) roturna(straaa_addr)

Returns the stream address of the next token. Stream addresses (see below)
are used to refer to tokens already in the stream.

close: proctypef{estream)

..‘45,

Indicates that the user does not intend to use the stream for fusther output.
Decoding streams are implemented by the dstream type:

~open: proctypq(port. timeout) rotyrq;(ggggegg)isjggalg(tjmpput)

Creates a decoding stream: for reading tokens; previously: sent:to- the port
indicated by argl. If the message is delayed due to node failure or
communication failure, the timeout atgiment indicates tiow long'the user
is willing 1o wait. If the mdlq:ated amount .of time elapses without a
message, a timeout exceptxon is signalled.

extract: proctype(dstream) Eaturns(token) signals(timeout)
Removes and returns the next token from thé ‘stréam. If the next token
does not become available for the ameuat of:time specified in the timeout

‘argument to the open operatlon a tlmeout excepnon |s sxgnalled and the
stream:isdisabled. - i I L R :

‘peek = proctype(dstfeam)fretané(%Sﬁéh)

Behaves just like extract, except that it does not remove the next token
from the stream. This operation will not be usedtiinik the next chapter.

current: proctype(dstream) returns(stream_addr) . .
Returns the stream address of the most recently extracted token.
~ close: prqctypq(dstrea@)‘ . ,

Indicates that the user does not intend to use the stream for fuither input.

3.1.2 Tokens

There are three kinds.of tokens (Figure 7). Header tokens'(Figure 8) mark the
start of a new value of composite or abstract:- type 'Blcy mzry -contain type or size
information. Back reference fokens contain the stream address of a token previously

placed into the stream. Sharing 1s_ indicated by back reference tokens.” Data tokens

Fig. 7. Token Type Definition

token = oneof [data: data_token, % Primitive type
header: header_token, =~ %.Composite or abstract
back_ref: stream_addr] % Indicates sharing

Fig. 8. Header Token Type Definition

header_token = onsof [
; . abstract_hdr:: - nul¥; % abstract:ivalue

oneof_hdr: int, % tag value

-varient_hdr: int, % :tag value

array_hdr: record [low, size: int],

seq_hdr: ing, o Xowdzer -

record_hdr: int, % number of selectors

struct_hdr: int % pumber of selectors
] , : , el

(Figure 9) represent values of prlmmve type such as mtegels stnngs, booleans, etc. A

stream address umquely ldenttﬁes a token ina gwm mmm

Fig. 9. Definition of Data Token Type

data_token = oneof [

bool: bool,
char: char,
int: int,

null: null,
real: real,

string: string]

-47 -
3.1.3 Maps

We recall from the previous chapter that if the value of the same object is sent
twice in the same message then a single correspondmg object is constructed by the
receiver. Objects of type map are used to ensure that transmission preserves sharing, A
map contains corresponding pairs of objects and stream addresses Thel:e are several
kinds of maps. When encoding values, the emap type is used to Iocate the stream
address of a given abjects enceded vaﬁ)e. When deeedmg Values the dmap type is
used to locate the ob)ect eonstructed from dte value enc@ded at»a given stream address.
The emap type has the fo"owmg operattoas

create: proctype() returna(ema'p)

Creates an empty encoding map.

enter: proctypef7: type](emap‘ stream addr T) signa]s(exlsts)

Enters arg2 as the stream address where the encoded value of arg3 starts. If
arg2 has already been eatered existsis signalled. -

seen: proctype[T: type](emap, T) returns(bool)

If arg2 has been entered, the result is true, otherwise the result is false.

lookup: proctype[T: type](emap, T) returns“(kstevam_addr),
signals(not_found)

If arg2? has been entered, the associated stream “address is retumed,
otherwise not_found is signalled. R T T : :

The dmap type has the following operations:

create: proctype() returns(dmap)

Creates an empty decoding map.

enter: proctype[T: type](dmap, T, stream_addr) signals(exists)

-48 -

Enters arg2 as the object decoded from the valie at the Stream address
denoted by arg3. If arg2 has already been entered, exists is signalled.

lookup: proctype[T: type](dmap, stream_addr) returns(T)
'signals(not_found) .

If arg2 has been entered, the' amociated ob]ect is returned, otherwise
not_ found is signalled. .

seen = proctype[T: typel(dmap, Stream_addr) ritbms‘(boo’t‘)

Returns true if an object of type T has been entered in the map with the
given streanr address. THis operttuozr wri] not be used untrl the next
“-chapter. '

ST B TR

Finally, we need a third kind of map that Just remembers the rdentrttes of the
objects that have been entered. We call this type the mmallzauon map, for reasons that
will be explamed later. The mlttaltzatron map 1s rmplemented by the rmap type and
has the following operattons | B |

create: proctype(). returns(imap)

- Creates an empty initia’l‘iéaﬁon'ma"p.”f ‘
enter: proctypo[T typo](map. T) signals(ensts) o

| Enters arg2 in the map If arg2 has already been entered. extsts rs srgnalled.
.eitements: itertype[T: type](imap) ytelds(T)

| Yields and removes all previous entries of type T.
empty: prbt:typto(_i'mapv) t‘eturns(boqu)i

Returnsﬂtrue it‘ the‘re_- are nqobjects,,of any type current_ly in the map.

is_initialized: proctype[T: type](imap) returns(bool)

Returns false the first time it is invoked with the given parameter type, and

e~

-49 -
true tltéreaﬂer. -

3.1.4 Contexts

Objects of type contexi serve 10 associate the message stream and the maps used
to encode or decode a single value. There are two kmcfsofeontextsencodmg contexts

and decoding contexts. The contgxt types are definedby-the foﬁewingﬁmaﬁes?

econtext = racnrd [emap emag, as;treaa. estrean] ..
" dcontext = record tdmap dmap, imap: imap, dstrew, nstream]

3.2 The Algorithm for Encoding Values

ERTERY T S D

The Ianguage lmplementatron encodes an object s value by recurswely traversmg
the object, rather hke a LISP map ﬂmetron As the pbject is traversed the
1mplementat|on creates tokens and places them in a message stream usmg a map to

keep track of sharing information.

o

B T

Executing a send statement on an gbject pf;type; T :is equivalent to-invoking the

procedure shown in F“tgure 10 The send statement creates a new context for the

CuBRE YTELL L THASGRI LY

, message openmg a message stream and creatmg an empty map. T$pul is then invoked

to p]ac e'the value of the T Ob_]CCt m the stream asa sequenceuof tokens Aﬁer T$put

T
Mr.,‘{,f fery {

returns, the stream is closed.

The language lmplementatlon provrdes every transmlsslble type w1th a put
r‘ \ ey oty .

- operation. The put operations are part of the Ianguage 1mplementat|on therr exrstence

is not visible to the user. The pur operation for ‘the type T has the followmg calling

sequence:

Fig. 10. Effects of the Send Statemeit :

send = proc[T: type](x: T, p: port[T])

% Create a new encoding context:. ' :

em: emap := emap3create() _

es: estream := estream$open(p)

cxt: econtext := econtaxt%{émap' em; estﬁéam es}

% Encode the value
TSput(x, cxt)

% Close the stream. . R A
estream$close(es)

ond send

puiﬁ proctyno(T econtex;)

The put operations for abstract and com'pos;te rypes preserve sharmg in the
following way. When put is mvoked 1t checkswhahér the eb]ect bemg sent has
previously been entered in the map. If it has, then the assocrated Stream wddress is
extracted. A token containing a back reference to that stream address is-put into the

message stream, and T$put returns. If the object has not been previously encountered,

it is entered in the map with its stream address. The put operatron proceeds dlfferently

depending on whether its type is composrte T

For an abstract type T, a-header toker is'placéd-in ‘the Strearn, and the external
representation is created by applying T$encode to the T*argtiment. "XT$put is then
invoked with the new external representation object and the old context. The put

operation for an abstract T is illustrated in Figure 11.

For a composite type, a header token containing type-specific information is then

placed in the message stream, and the put operations of the comporients are invoked.

-51-

Fig. 11. The Put Operation for an Abstract Type:T

put = proc(x: T, cxt: econtext)

% Has this object been seen befora?
if emapSseen[T](x, cxt.emap) then

% Find the stream address of the object.
back: stream_addr := emap$lookup[T](cxt.emap, x)

Z Output a back reference to the object.
tok: token := tokenSmake_back_ref(back)
estream$insert(cxt.estream, tok)

else
% A new object, enter it in the map. :
next: stream_addr := estream$current{cxt.estream)
emapSenter[T](cxt.emap, x, next)

% Create and output a header token.

htok: header_token := header_token3make_ abstract(nil)
tok: token := token3make_headét token{htok) =
estreaannsert(cxt estrean tok)

% Create the externa] rapresentation
y: xrep := TSdacode(x) - .
xrepSput(y, cxt)

end X% if -

end put

Figure 12 contains the text for array[T}$pu.

- KT is primitive, the object’s value is encoded directly into a data token. Figure
13 contains the text for int$put.

-52-

Fig. 12. The Put Operation for the Array[T] Type

uut =\proc(x- array[T], cxt: econtext)

% Has this array been seen before?
if emap$seenfarray[T]](x, cxt;emap) Shes

% Find the stream address of the object.
back: stream_ addr := emap$1ookup[arrey[T]](cxt emap. x)

% Output a back reference to the object
tok: token := token$make_back_ref(back)
estream$insert(cxt.estream, tok)

else , ‘ ,
% A new object, enter it in the map.
next: stream.addr := astream$current(cxt.estream)
,emapSenter[array[T]](cxt emap, X, next)

% Create and output a header token
htok: header.token :=
header_tokenSmake_ array(
array_hdr${low: array[T]$low(x),
size: array{T]$size(x)})
tok: token := token$make_header token(htok)
estream$insert(cxt.estraam, tok).

% Output each element.

for elm: T in array[T]Selements(x) do
TS$put(etm, cxt)

end % for

‘ond %X if '

end put

Fig. 13. The Put Operation for the Int Type -

put = proc(x: int, cxt: ecoantext) -
dtok: data_token := data_token$make_int(x)
tok: token := tokgn$make_data_token{dteék)

estream$1nsert(cxt estream, tok)

end put

3.3 The Algorithm for Decoding Values

The language implementation decodes a value by removmg tokens from the
message stream and building up an ob;ect havmg the vahle represemed The
implementation remembers the ~1dentmes of ijects wnstmewd so that when a back
reference token is encountered, the system can ldennfy the object mdlcated by the

back reference.

The scheme described suppons the use of self-referentiai external
representations. Fo keep the explanatlon as srmple as possi’ble we |gnore the question
of efficiency, and present a simple scheme that, in most cases, 1s‘1131‘9r5e,,powerful than is
strictly needed. In the next chapﬁ:r we _discuss WaysOf nihfing ﬂiis'scheme more

efficient.
3.3.1 Self-Referential External Representations

We recall that if A is an object. and A’ us extemal representanon A is
self-referential if it contains A. We stated in the prewous chapter that to decode an
object having a self-referential external representation it is necessary to name the ebject
before it has been given a value. The implementation scheme adopted here permits an
object to be named before its value has been reconstructed by creating a preliminary
uninitialized version of the object. The identity of ‘the: unminitialized version is the
identity of the object being decoded, dlthough its value is:undefined. .

We emphasize that uninitiatized vemons afe part of the Ianguage
implementation, not part of the language. The user can never observe, or operate on,

an uninitialized object version. Uninitialized versions can exist only while a receive is

in progress.

3.3.2 Order of Initialization

Let A be an object of type T. When should an uniniti;glized version of A be used,
and when should tpe corhpleted *version be used? As explained in the previous
chapter, A cennot be initialized unti»lv the all the objects whose values are needed to
initialize A have been initialized. This requirement has' diffefent implications for

i

built-in types than for abstract types.

IF T is primitive, then A is constructed from a single token. 1f T is composite, the
value of A consists of the idemitics of its _components, not. their values. Thus, the
mltmhzatlon of an Ob_]eCl of butlt—m type does not depend on any ather .object having

been prewously mmallzed

If A is abstract, then A canriot be decoded until all the objects whose values are
used by T$decode have been decoded. 1f 2 any ob;ect whose decode precedes A's refers
to A, it must refer to an umnitiahzed version. In pamcular no Iower-level decode
operation may invoke a T operatidn on an umnmahzed version of A Conversely, A
~ must be decoded before any object whose decode Operat;on depends on A can be

Reflecting the different degrees of depengdency, values:are decoded in two'stages.
In the first stage, called the setup stage, the:values of primitive and »toonrposite type
contained in the message are decoded. References to objects of abstract type are
constructed as references 0 t:'ninitia‘li;zed"oﬁjéCt vé?s‘ioﬁsﬁ'i'No userdel‘ned decode
operations are invoked at this stage. In the sccond stage called lhe mmalzzatmn stage |

all‘'uninitialized object versions are mltlallzed nf a safe order e

Values of built-in type are decoded before values of abstract type because the

-55 -

former can be ef‘ﬁciently decoded entirely by the language implementation. In
particular, uninitialized versions of objects of composrte type are protected from access
by decode operations, since user-written procedures are not mvoked until the

initialization stage, by whrch time all objects of burlt-m type wm haye been initialized.

How do we prevent decode operations from:operating on uninitialized versions of
abstract objects? The order in which abstract objects njust be decoded depends on the
order in which their values are used by decode operauons Although this order might
be determined by examining the text of all the Jecode operatlons mvoked in the course
of a receive, such an examination seems rmpractrcal We choose to detenmne a proper
order by initializing object versions only when an attempt is made to access the object s
value. - Since the values of the objects are constructed. only when they are needed, thls
control structure is a kind of lazy evaluation {Friedman 76, Hender 76]- We-call this
strategy Iazy decodmg When an opemtron of qbsgtact type T is invoked from a decode
operatron the language lmpiementatron checks wch argument of type T to see whether
it has been mmahzed If it has the mvocatlon _proggeds. H it has not, the current
mvocauon is suspended and the decode operatron of the uninitialized object is invoked
to mmahze it. As soon as a]! T arguments have been initialized, the suspended
invocation is resumed. This strategy guarantees that objects are decoded in an order
consistent with the dependency relationis described abiove. sifice an object is always
decoded before its value s used; and no object is decoded prématurely.

Executing a receive statement is equivalent to inyoking the procedure shown in
Figure 14. The receive statement creates a new decodmg context, opening a message
stream and creating an empty map. T$ges is then invoked to implement the setup

stage, and TSinitialize is invoked to implement the initialization stage. Finally, a

-56- '

cleanup procedure is invoked to reclaim some unneeded storage.
3.3.3 Representation of Uninitialized Object Versions

We assume the language lmplementatlon uses object references of fixed size,
[Snyder 79], as do all current CLU 1mplementat|ons Use of f xed-suze references
means that it is possible to determine the storage required.by an object from the
information in its header token. In this way, we can allocate storage for an object of
composite type before decoding that object. In this implementation, a reference to an
uninitialized object version of composite type is a reference to the storage that will

eventually be used by the initialized version. -

We construct the uninitialized version of an object of abstract type by

Fig. 14. Effects of the Receive Statement

receive = proc[T: type](p: port[T], time: timeout)
returns(T) signals(timeout) o

% The setup stage:

% Create an empty decoding map.

dm: dmap := dmapS$create()

% Open a message stream.

ds: dstream := dstream$open(p, time)

% Create an empty initialization map.

im: imap := imap$create()

cxt: dcontext := dcontext${dmap: dm, imap: im,
- dstream: -ds}

x: T := T$get(cxt) resignal timeout

dstream$close(ds)

% The initialization stage:
T$initialize(cxt) '

X := cleanup[T](x)
return(x) '

end receive

.5‘7 -

constructing rhe object’s external representation. The version is.initialized by decoding
the external representation. Unlike composite types, the uninitialized and‘ initialized
versions of an abstract object cannot use the sithe stérage, Since the latter is
constructed from the fomrer by a user-deﬁned operatron and the language

rmplementatlon has no way of knowmg how large the resuit wrll be.

~Sincewevcan'n0t-pre-aﬂocate storage, ever'y ‘object: Qf abstract type created during

a receive is referred to indirectly through a ufo’ (unfinished flitire object). The
representation-of a ufo is shown in Figure 15. The meanihgs of the four states are as
follows: The ufo is in the empty staté when it/ crésted The 4fo represents an
uninitialized object version while it is in the iinitialized state, whett it ‘contains the
object’s external representation. When the ufo enters the mmahzed state the object it
represents has been mrtlahzed by decodmg the extemal representatron The in pragress
state exists to detect |llegal decode operations. A ufo is in thrs state whrle the object 1t
represents is being constructed. If an attempt is made to access a ufo in thls state then

a cyclic dependency exists and failure is srgnaued, e T

In addition, three operations are provided to detest and manipulate uninitialized

object versions:

ufo_mask: proctype [T: typel(ufo) returns(T)

Fig. 15. The Representation of a UFO

ufo = variant[empty: null, % just created .
in_progress: null, % being mitia'lizad ,
uninitialized: any, % xrep of reproseated obJect,
initialized: any % represented object

]

-58-

Creates an uninitialized T object from the given ufo.

ufo_unmask: proctype [T: type](T) returns(ufo)
signals(not_a_ufo)

If argl is represented by a ufo, the underlying ufo is returned. Otherwise,
not_a_ufo is signalled.

ufo_test: proctype [T: type](T) returns(bool)

If argl is represented by a ufo, the result is true. Otherwise, it is false.

Lazy decoding is implemented in the following manner. Before the first line of
ahy T cluster operation is executed, the language implementation tests each argument
of type T to determine whether it is a ufo. If it is, an initialized version of the T object
it represents is extracted, possibly by decoding the object’s external representation. We
call this test the careful prologue of an operation, and we assume it is automatically

performed by the language implementation. A careful prologue is shown in Figure 16.

When receiving a value of type T, The setup stage is implemented by a T$ger
operation, which is provided to each transmissible type by the language
implementation. Like the put operation, get is part of the language implementation,
and is not visible to the user. The ger operation for the type T has the following

interface specification:

get: proctype(dcontext) returns(T) signals(timeout)

The get operation for an abstract type returns an wninitialized version of the object
being decoded. The ger operation for a composite type constructs the composite object
(however, components of abstract type will refer to uninitialized versions). The get

operation for a primitive type constructs the primitive object.

-59 -

Fig, 16. The Careful Prologue of a T Gluster Oeration. -+

T = cluster 1s op, ...

rep =
xrep =

= proc(arg: T)
% Assign the initialized T object to variable "arg”.

if ufo_test[T](arg) then
u: ufo := ufo_unmask[T](arg) % convert to ufo
tagcase u ,
tag empty, 1n_progress .
signal failnro("1llegal decods')

tag initialized(a: apy):
"~ arg := force[T](a)

'tlg'uninitialized(a any):
y: xrep := force[xrep](a) .
ufoSchange in_progress(u, nil)
arg := T$decode(y) . e s
ufoSchange initialized(u, argy
end % tag
end % if

% Now execute the user-written code.

end op

end T

To construct a T object when T is primitive, the corresponding data token is.
removed from the strcam and used to allocate and ipitialize storage. far, the object.

Figure 17 contains the text for int$get.

The get operations for abstract and compOSéie types présérve 'sharing in the

-60.)

Fig. 17. The Get Operation for the Int Type

get = proc(cxt: dcontext)
returns(int)
signals(timeout)

% Create a token and output it.
tok: token := dstream$extract(cxt.dstream)
resignal timeout
tagcase tok
tag data(dtok: data_token):
tagcase dtok
tag int(ans: int): return(ans)
others: signal failure("unexpected token type")
end % tagcase
ans: int := data_token$value_int(dtok)
others: signal failure("unexpected token type")
end % tagcase
return(ans)

end get

following way. When ger is invoked, the next token in the stream is extracted. If the
token is a back reference token, the object referred to is retrieved from the map, and
get returns. If the token is a header token, ger proceeds differently depending on

whether the type is abstract or composite.

For a composite type, the header token is used to determine the amount of
storage required. The necessary storage is allocated, and a reference to the
uninitialized storage is entered in the map to catch cyclic references by components.
An object created by a lower-level ger may refer back to A through the map, but no
attempt will be made to operate on A, as no decode operatidns ai‘e invoked until after
the sctup stage has initialized all of A’s component references. The text for

array[1]$get is shown in Figure 18.

-61-

Fig. 18. The Get,(')pera'tion for the Array[T} Type

get = proc(cxt: dcontext)
returns(array[T])
signals(timeout).

array_hdr = record [low, size: int]

% Examine the first token.
tok: token := dstream$extract(cxt. dstrean)
resignal timeout :

tagcase tok
tag back_ref(addr: stream_addr):
% ObJect is old, look it up:
return(dmap$lookup[array[I]](cxt dmap.,addr)) .

tag header(hdr header. token)
% Object is new, allocate storage:
ahdr: array_hdr := header_tokenSvalue_array_hdr(hdr)
ans: array[T] := array[T]Spredict(ahdr.low, ahdr.size)

% Enter the object in the map. ,
addr: stream_addr := dstream$current(cxt.dstream)
dmapSenterfarray[T]](cxt.dmap, addr, ans)

% Get the componeats.
for i: int in int$Sfrom_to(1, ahdr, size) do
arrayf T]Saddh(ans, T$get{cxt)) - -
resignal timeout
ond
return(ans) .

others: signal faflure("unexpected token“)
end %X tag

end get

For an abstract type T, an empty ufo representing A is entered in the decoding
map, bound to the stream address of A's header token. The uninitialized version of A4
is entered in the initialization map. XTS$ger is invoked, returning the external
representaﬁon (which may itself contain uninitialized object versions). The external

representation is placed in the ufo representing A, and the uninitialized version is

returned. T$

-62-

get is illustrated in Figure 19,

Fig. 19. The

get = proc(

Get Operation for an Abstract Type

cxt: dcontext)

returns(T)
signals(timeout)

%4 Exami
tok: to
resi

ne the first token. =
ken := dstream$extract(cxt. dstream)
gnatl ttmeout

tagcase tok

tag

tag

othe
end

end get

hack_ref(addr: stream_addr):
% Object is old, look it up:
return(dmapSlookup[T](cxt dmap. addr))

header(hdr. header_token).

% Object is new, create uninitialized version
u: ufo := ufoSmake_empty(nil) . . .

ans: T := ufo_mask[T](u)

% Enter the object in the initialization map.
imap$enter[T](cxt.imap, ans). . 3

% Enter the object in the decoding map.
addr: ‘stream_addr := dstream$current(cxt.dstream)
dmapSenter[T](cxt,qup. addr,ians)

% Construct the external representation,
y: xrep := xrepSget(cxt) resfgnal’ timeout
ufo$change_uninitialized(u, y)
return(ans)

rs: signal failure(unexpected token)
% tag i

-63 -

3.3.4 The Initialization Stage

At the end of the setup stage, no objects of abstract type have becn initialized,
but all objects of composite or primitive type contained in the message have been fully
constructed. In the initialization stage, all uninitialized object versions previousiy

placed in the decoding context’s initialization map are initialized.

The initialization stage can be viewed as an -optimization, since it is-not necessary
for correctness to initialize all objects. The lazy decoding;scheme: guarantees that the
values of abstract objects will be available when needed.. Neverthele% smce decode
operations may contain errors or cause side-effects, 4§;§}§onyememf§0 assure the user

that all decode invocations have completed when the receive sta;ement completes

“Each transmissible type T is provided with an inilialize operation tike put and
gel, initialize operations are provncled by the langaage :mplementatwn aad may not be

. invoked by users. Initialize operatlons ha\e the followmg callmg sequence

initialtze: proctypo(dcontaxt)

T$mmallze iterates through the uninitialized objeCt versions of type T that had
previously been entered in the decoding con’fexts mmah‘zatlon map, as well as
invoking the initialize operations of %ubéidiafy types The ﬁmumltzed operation of
the imap type prevents infinite recursion by iietectmg the second and subsequent

attempts to initialize objects of a glven type.

The initialize operation for a composnte type T snmply mvokes the initialize

operations of its subsidiary types The text for an'ay[T]$1mnaIlze is shown i in Figure 20.

The initialize operation for an abstract type T iterates through the T objects |

-64 -

Fig. 20. The Initialize Operation for Array[T]

initialize = proc{cxt: dcontext)
% Check that the invocation is new.
if imapSis_initialized[array[T]](cxt. imap)
then return end

% Initialize the subsidiary type.
T$initialize(cxt)

end initialize

entered in the initialization map, extracts the ufo's, and initializes them if they are
uninitialized. When a ufo representing a T object is initialized, T$decode is invoked.
Lazy decoding may cause other object versions to:be initialized. TSinitialize is shown

in Figure 21.
The initialize operation for a primitive type returns immediately.
3.3.5 Cleaning Up

At the end of the initialization stage, initialized ufo’s remain in the representation
of the object received. Since we assume (for now) that every abstract operation has a
careful prologue, it is not necessary for correctness to remove ufo’s. Removing ufo’s
does improve the performance of abstract operations, so it may make sense to femove
them at the end of the initialization stage. For this. purpese, we use a cleanup

operation:

~cleanup = proctype[T: type](T) returns(T)

Cleanup performs a mark-and-sweep traversal of the machine-level representation of

-65 -

Fig. 21. The Initialize Operation for an Apstract T_x_pe‘(.T_

initialize = proc(cxt: dcontext)

% Check that the invocation is new. o
it imap$is_initialized[T](cxt.imap) then return end
% Initia]ize subsidiary types. A
xrep$initialize(cxt)

% Initialize subsidiary objects.
for x: T in imapSelements[T](cxt.imap) do
u: ufo := unmask_ufo[T]}(x)
tagcase u
tag initialized: % nothing to do

tag uninitialized(a: any):
% Extract external rep object.
y: xrep := force[xrep](a)
ufoSchange_in_progress(u, nail)
x := T$decode(y)
ufoSchange_initial ized(n, x)

others: signal failure("illegal decode")
end % tag
end % for

end initialize

its argument, replacing references to initialized wfo's -by :direct references to the

contained objects.
34 An Exémple

To illustrate how these mechanisms work, we trace how the value of an object
consisting of two simple (and rather useless) mutually recursive types is transmitted.
An engine object has a serial number and an optional caboose. A caboose-object has a

color and an associated engine.

-66-

The external representation of an engine is a record having a8 components a
serial number of type int, and a oneof which is either null or contains:a caboose. The
cluster we examire here (Figure 22) uses the same concrete' and “external

representations.

The external representation of a caboose is a struct, having as components a
string denoting the color, and an engine: The concrete represeéntation uséd by the
cluster we examine also contains its engine’s serial number in a caéhe component

(Figure 23).

We observe that no operations of abstract type zirgf iljvoked from the decode

Fig. 22. The Engine Cluster

engine = cluster is create, get_serial, ...

_train = onaof[empty: null, car: caboose]
rep = record[rear: train, serial: int]
xrep = rep IR

get_serial = proc(x: cvt) returns(int)
return(x.serial) B _ -
-end get_serial

encode = proc(x: cvt) returns(xrep)
return(x) " o ’
end encode

decode = proc(x: T) returns(cvt)

return(x)
end decode

end engine

-67 -

Fig. 23. The Caboose Cluster

caboose = cluster is create, ...

rep = struct[color: striag, front: engénd, cache: 1nt]-
xrep = struct[color: string, front: engine]

encode = prog(x:.cvt) . returng{xrep). . SRR TR
return(xrep${color: x.color, front x.front})
end encode C R P .

decode = proc(y: xrep) returns(cvt)
cache_val: int := enginelget_serial(y. front)
return(rep${color: y. color,
front: y. front, B T T L
cache: ‘cache va!}) .
end decode

and eabeeee

operation of the engine type. The eaboese cluSter’s dei'bde opemtwn iﬁvokes an engme
operation; thus, the caboose decode operatlon uses the value of the melateﬂ"*engme
From these observations, we conclude that the decode’s listed above are legal, since the
transitive closure of the "uses the value of" relation is acyclic. When decoding a linked
engine and caboose, the engine must ,b;e decodedbefqre thecaboose §igge its yg{l‘ue is
used to initialize the caboose. - e s

" Let e be a variable bound to an engiile, havmg Serial number 9, and lmked toa
red caboose Let p be a portfengine]. We will trace the effects of executmg |

,i;,i_

EOn IR TGS L)

send e to p.

First, a new encoding context is initialized. Then a number of put-operations are

-68- '

invoked. For brevity, when naming Ofier'étioxisdf'cc’))m(ibézi”te type we use names like
record$pul" when the particular record typeis cl&: ﬁromi e@nﬁext. Each mvocatlon is
listed with its depth from the top of the callmg stack, .

S i\, "‘ o

Level 17 engnne$pul c¢hecks the map o dete'rmi’ne whether the
engine has alréidy‘ been encoded. The: ehgihe ‘has ‘not been
entered in the map, so put enters it, and places a headef'token’in
the stream at address 0. EngmeSencode is invoked to (tnvnally)

" construct the extérnal representation; thefi fecord$pat is nvoked
on the result. .
Level 2: Since record$put does not find its argument in the map,

a header token is output at stream address 1 to indicate that the
value of a record-containitig wo stlestors is stireing. Theretond:
object is entered in the map, and the pur operation of the first
component (in lexicographical order) is invoked.

Level 3: After unsuccessfully checking :ithe. map, om:oﬁput
outputs a header ‘tokén at address 2 to indicate that the value of
a oneof with a tag value of 1 is starting. Put is invoked on the.~
caboose component.

Level 4: After unsuccessfully checking the map, caboose$put
outputs a header token at address 3. caboose$encode constructs
the external representat:on then structSpul xs mvoked on the
result. sl aniy gibaod el Lot T

Level 5. After unsuccessfully checking: thermap, struct$put
outputs a struct header token with two selectors at stream
address 4, then proeee&%mvoke putonits fi m &nhponent.

Level 6’ mmgsqwtf wepﬂts a token denotmg ﬁhe strmg value
"red"” at slream MS ST

Level 5 stmwput uwakes put on 1ts secoud (engme)
component. Lith Pt dnnn

-69 -

- Level 6: engine$put finds the engine in the map, with associated.
stream address 0. It outputs a back reference to stream address 0
at stream address 6, and retums. - Each of the: suspended put
operations at levels 5,4, and 3 also return.

Level 2: record$pur resumes and invokes int$pur on its second
(serial) component, which places:a token deneting-the;integer
value 9 at stream address 7.. All the mspemied put operations
then return,

When the highest-level invocation of engine$pur returns, thestream is closed, and the

send statement terminates.

To complete the example, we trace the effects of executing: -

receive e on p.
First a decoding context is initialized. In the setrp stage, the values of built-in type are
constructed.

Fig. 24. Tokens Produced by Sénding Engine Value

Stream Address Token Type ‘Token Information
0 header ; abstract value -

1 header record with two selectors

2 . header - . oneof with-tag valae 1

3 header abstroct walie ;-

4 header struct with two selectors

5 data -string value "red”

6 back reference stream address0 -

7

data int value 9 -

-70 -

Level 1: engine$get extracts the first token, and determines that
it is a header token. An empty ufo is entered in the encoding
map, bound to stream address 0, and in the mltlahzatlon map.
reemﬂget is mvaked to constfuetthe ext’emﬁ""’“ ' ‘

Level 2: record$ger extracts the next token, and dcterm‘mes that
it is a header token. Storage for a record having two-seléétors is
allocated. The uninitialized record is entered in the map, bound
to stream address 1. and the ger opefation of Hie'first compoénent
is invoked.

Level 3: oneof$ges extracts the next token, and determiries that it
is a header token with tag value 1. Storage for a oneof is
allocated: The unifiitialized oweol istritered in the ‘ap, bmmd
to stream address 2, and get is invoked b th& ebiiponent.

Level 4: caboose$ger extracts the Aext’ token,’ ant ‘determmes
that it is a header token:!‘An:empty iffo i‘entéred in’ the
decoding map, bound to stream address 3, and in the
inigiatization ' map. :structSger is Wér invoked 5 construct the
extemal reprﬁsentatlon . '

Level 5: struct$ger extracts the next token, and determines that
it is a header token. Storage for a struct having two selectors is

- allocated. . The usinitialized: struct . i catedéd ip:the:mup; ‘bound -~ -

to stream address 4, and the ger operation of the first component
is invoked.

Level 6: string$ger constructs a strmg havmg Lhe value
from the token at streant address S, N

[LEUR SR SRS

Level 5: struct$ger resumes, stores the Value “red” in it frst
mmponem, arrch S

Level 6: engine$ger extracts the fiext toketf anﬁ determmes that
it is a back reference to stream address 0. The empty ufo
representing the efigine‘is extracted fiom ‘the iﬁdp“ and returned.

-71 -
Level 5: after storing the ufo in its second mmponeai, struct$ger
returns.
Level 4: caboose$ges resumes execution. k.-chang@s; its ufo to the
uninitialized state by binding it to the external representation

returned from the lower level. ThlSramnmmzcéom«t vemon
is returned.

Level 3; aﬁe_r.,Storihg its component ujb; MGM'ma -

Level 2: record$ges/ resumes exccution, storing the oncof in its
first component, and invoking geron assecond component. .

‘Level 3: int$ger constructs an iat hamg the. value 9 from the
token at stream address 5. :

Level 2: record$get stores the value. 9 in its second component,
and retums. Engine$ger then retorns.

All the values of primitive and composite ,type,aent,in, the message have been
constructed. The result of the setup stage is shown schemaucally in ngure 25.

In the initialization stage alt the ufo’s created in the setup stage are initialized.

Level 1: engineSinitialize invokes record$initialize.

Level 2: reéorﬂSinilialize' invokés' thcmmahze ,@e@ﬁm:of its
first component.

Level 3: oncoﬂmmahze mvokes the zmualtze opemuons of its
component . types. null$initialize ~ returns immediately.
Caboose$initialize is then invoked. - S

Level 4: caboose$initialize invokes struct$nitialize.

-72-

Fig. 25. The Results of the Setup Stage

R e 2
————————————————— >| engine |
I | (ufo) |
| 4o mmeme +
| I
| e BT +
| | record |
I D +
| / \
| e el + Fommmmem - +
| [oneof | 1 int |
| b + o mme - +
I g
| e e +
| | caboose |
I | (ufo) |
| 4-cmmmmmee +
I |
| ommmmm e +
------ | struct |
Hocmmomm oo +
\
Hrommmmee—t
| string |
+ommm - +

L

Level 5: struct$initialize invokes initiafize on: its first (color)
component. string$initialize returns -immediately.
Engine$initialize is then invoked. S

Level 6: when engineSinitialize invokes imap$is_initialized, it
returns true, so engine$initialize returmns. - . -

Level 5: struct$ges returns.

Level 4: cabooscSinitialize resumes execution and invokes
imap$elementsfcaboose], which yields the ufo created at level 4
during the setup stage. The /o is found to be uninitialized, so
the external representation is extracted, and caboose$decode is
applied to it

-73 -

Level 5: caboose$decode invokes engine$get. serial. -

Level 6: the careful prologue of engine$get_serial determines
that the engine argument refers to a u/b The state of the ufo is
tested and found to be uninitialized. Engine$decode is invoked
to initialize the engine. (This is an example of lazy decoding.)

Level 7: engine$decode returns without invoking any operations
of abstract type. ; :

Level 6: engine$get_serial returns the integer9. - -
Level 5: caboose$decode resumes, r'ctuming a caboose.

Level 4: caboose$initialize returns, havmg miuahzed all’
uninitialized cabooses.

Level 3: oneofS$initialize returns.

Level 2: recerd$initialize resumes exeeution. It invokes
‘int$initialize on its second (senal) componem, which returns
immediately. record$initialize returns. :

Level 1: engine$initialize resumes execution and invokes
imap$elementsfengine], which yields the ufo created at level 1
during the setup stage. The ufo is found to have been lmuahzed
(at level 6 above), so engmeSmim{ize retums. :

After engme$mmalzze returns, cleanup traverses the: object arid removes the initialized
ufo’s from the representatlon The result of receiving, the message is to construct a
linked engine and caboose, having the'same valties-as the ‘originals: "Thé result is shown

schematically in Figure 26.

-74 -

Fig. 26. The Results of the Initialization Stage

I
I
I
I
I
I
|
I
I
+ _____
/
t-mmmmmm e +
| cache |
| (int) |
Foemmm e +

caboose
(struct)

e i +
>| engine |
| (record) |
Fommm————— +
/
\
R et +
| color i
| (string) |

=15 -

Reﬁnemenfs an00-Optimizations . . -

This chapter describes refinements to the implementation design presented in the
pfevio‘us chapter. We idemify.-akn'uml‘)iéflof common situations that do not require the
full generality of the mechanisms we have iﬁtroduceci For each situation, we explain

how to recognizé it when lt occurs, and how to takeadvantage of it.
4.1 Overview 5

To help describe these refinements, we iiiﬁdemhre*tfansmission into two parts:

value translation and message constmctron Value translatloms the task Of translatmg

g

between values of abstract type mévah&cs of built-in lype To tmhsnut an abstract
value, it is necessary to encode |t into valuts of built-in type, since the lowest-level
language implementation can only transmit built-in values. When sending a message,
abstract values are reduced to built-in values through successive application of encode
operatibns. When receiving a message, abstract values are constructed froni built-in
values through successive application of decode operations. In this chapter we address

how to optimize the translation task.

The second task comprises the construction and transmission' of messages
~containing values of built-in typé. The mechanisms described in the previous chapter
are 'designed to transmit values in a way that assumes as little as possible about the
implementations of built-in types used at the communicating guardians. In an actual
implementation, we may expect that some common patterns of communication will not
require the full generality of the hechanisms we have described. In particular, when
the sender and receiver reside on the same machine we may take advantage of the fact

that both sides of the exchange may share memory, and may use the same

-76-

implementations of built-in types.

Two preliminary definitions are in order: a module is the unit of com pilation, and

binding is the process of combining separately compiled modules to form a program.
4.2 Translating Between Abstract and Built-in Values: -

The greatest apparent th reat to efﬁcrency in the translatton task is the lazy
decodmg mechamsm mtroduced in the prevrous chapter VWe recall that lazy decodmg
requrres that each opcratron of abstract type execute a careful prologue to test whether
certam arguments are ummtralrzed Although we can make testmg ttself qurte efficient,

we would like to reduce its frequency.

There are two complementary approaches to reducing the expense associated
with lazy decoding. The first approach is to distinguish :’bét'wéen ‘those operation
invocations that may encounter umnttraltzed object versrons and those that cannot.
Ummtlallzed object versions can exrst only whrle a message is bemg decoded If we
make the plausible assumptron that most mvocatrons of cluster operatlons occur while
a receive is not in progress, then 1t beoomes attractlve to drstmgutsh between
1nvocat10ns that may need to perform careful prologues and those that do not. We
present a scheme that restncts the executron of careful prologues to mvocattons of

cluster operatrons that occur in the course of message decodmg.

A second approach is to identify data types whose |mplementatrons do not need
lazy decodmg For example we recall that lazy decodmg was mtroduced to permxt the
use of self-referenttal external representattons to transmtt values of cychc objects
Realrstrcally, we expect that only a mmonty of types mclude cycllc ob]ects suggesttng‘

that methods for statrcally recogmzmg types that only mclude acyclic objects may be

-77-

profitable. We present two schemes for recognizing -that-a given cluster does not

require lazy decoding.
4.2.1 Restricting the Use of Careful Prologues =

In this section, we discuss how to structure.cluster operations to execute careful
prologues only while a receive is in progress We recall that unmmallzed object -
versions are 1mplemented by addmg a level of mdrrectron to object references This
level of indirection goes ‘through an object we have callcd a ufo When an operatlon of
type T is “invoked, it must check whether any of rts T arguments is referred to
indirectly, and if so, it must extract a dlrect reference from the mtermedlate ufa. We
can increase the overall efficiency of abstract operatrons by ensurmg that mdu‘ect
references can exist only while a receive is in progress, and by executing careful

prologues on'y at that time. -

We divide modules into two classes careﬁll modules whrch are prepared to
encounter ufo’s in ob_|ect representatrons and normal modules whlch are not. Only
careful modules are allowed to execute when decodmg a value After the value is fully
decoded, all mdrrect references through ufbs are replaced by drrect references. By |
havmg the bmder create two versions of those modules that can be mvoked both when
a recelve is in progress, and when one is not we may avord the expense of executmg
unneeded careful prologues at the expense of the stomge requrred for the extra

module version,

The cleanup operatron prevrously mtroduced as an optrmrzatlon is necessary to
ensure the safety of this scheme Since normal modules do not expect to encounter

mdlrect references, all ufo s must be removed from the constructed object before any

-18-

normal modules resume execution.

The compiler only b‘egds to. produce one version of the object code for a module;
differentiation of normal and careful versions‘may be dorie by the binder. We assume
that the binder is aware of the _interfacef specifications of cluster operations through the
Library. In particular, the binder can detcfmi{ﬁe’which :i\rgUihénts to eaéh T operaﬁbn
are T objects. If, py' bingiing ﬁme, it has been’decided t‘ha‘t‘ln.azy: &ecoding is he¢essary
for a given T cluster, the binder can “enclose™ the careful versions of cluster operations
with dummy procedures that test and conditionally ‘initialize T 'a"rgniiments: before

invoking the actual operation,
When joining modules, the binder foHows these tules:

Careful modules are bound to careful modules, and normal
modules are bound to normal modules.

All decode operations are careful.

When the same procedure is invoked from both careful and normal modules; the
binder makes two copies of the procedure, placing a careful prologue in the careful

- version, if required.

. In summary, we have shown how ﬁohmit the r,ix_a-time penalty for lazy decoding
t0 invocations that occur Whiile,Aavvaluﬁg is: bﬂing (decoded, at the cost of using more
storage. . This scheme requires only simple changes to the binder, which must

distinguish between careful and normal modules. -~

.’]9 -
4.2.2 Information About Abstractions and Implementations -

In the remainder of this section, we discuss ways to detect that the objects
managed by a given cluster can be decoded wi;haut;creaﬁng uninitialized object
versions. Our basic strategy is to collect information both about data abstractions and
the modules implementing those.abstractions, in order to: establish that sufficient
conditions exist to eliminate lazy decoding. We:removye the: need _fﬂr‘ca'reﬁ_jl prologues
in cluster operations by substituting different. put,, get-,,ané;initializezopermions from

those described in the previous chapter.

There are two kinds of information that wiﬁ p;o’ven usef(xl. Speéﬂi;atibn
information about a module concerns the abstraction it- implements. Speciﬁcatioh
information includes such items as the names and argument types of procedures, and
the external representation used by a data type. Alm;;lémgjrirtéiionfihtil_ﬁpation concerns
the way that a module imp]ementéla}l abstractlon lmpleménmﬁon information
includes details such as a cluster’s concret:e‘:“'r;epfese‘ﬁtétidﬁ,;df the source code for a

procedure,

We may also classify information by the ways it can be acquired.. Compile-time .
information about a module is information that can be collected du}ing or after the
c_empilaﬁon-of the module.. Such information ¢an be derived from: implementation
information about the particular ‘module being -compiled; along with s;’:u‘s(’:ti'ﬁ'(:’a"t‘i;oxié |
information about the modules it uses. = Biding-time information concerns
implementation information about‘more«'thaﬂﬂohéfmddul’e. “Such information cannot

be acquired until it is known which implementations are being bound together.

Information about modules and abstractions is managed by the Library. The

-80-

CLU Library [Liskov 79] contains the interface specifications of abstractions needed to
type-check inter-module references. The Library for a CLU - extension incorporating
the oommunication . primitives - developed- herewouid contsin the external
representations of transmissible data abstractions, since the external representation is
the interface between distinct ciusters implementing:tlie same: abstraction.: The Library
also maintains information about individual implementations. We assume that both
the compiler and the binder can access and update: information in the Library. =

4.2.3 Elliminatingvastract Value Headers:

ln thrs sectlon we show how to lower the number of tokens transmltted at the
cost of shghtly complrcatmg the control structure of the get operatrons In rtself thrs
reductron is not very 1mportant however rt permrts us to optrmrze the case, dlscussed

below where the encode and decode operatlons of a type perform no actual work

In the implementation presented in the previous""bhapter; ‘the start of an encoded’
abstract value wrthm a message stream is marked by a header token. In fact, the
mformatron conveyed by thrs kmd of header token is redundant, smce the type of a

message is known in advance from the type of the port.

- The optimized ger operation acts in the following way. ‘Let T be an abstract type
having external representation type XT. When T$puf encoutiters an object that has not
previously been encoded, it invokes XT$pur without placing a header token in the

A

stream.

At the receiving guardian, care must be taken when a back reference token is
encountered, since an encoded abstract value now. starts at the same stream address as

the encoded value of its external representation, and it is necessary to determine which

-81 -

value is indicated. Accordingly, when TS$get is invoked, it examines the next token in
the stream without removing it. If the token is hot a bisck reference; XT$ger is invoked.
If it is a back reference, the decoding map i checkéd 1o asemam whether a T objéct
has been entered with the given stream address: If:such ancobjéct is found; the token is
removed from the stream, and the object is extracted fom the map and returned. If no
associated T object is found, then one must be constructed, so TSget invokes XT$get,
leaving the back reference token in the stream. T$ger is showsi:ivi Figure 27.

To illustrate how this scheme differs from:the previous;one; let us compare how

the two schemes would transmit a glven value Let A be an obyect of abstract type T,
havmg the same object R as concrete and external representatlon For the purposes of
this example let R be an arny[mt] with a smgle element_ We suppose that A has an
"exposed representatlon that is, rts concrete representatron may be accessed and
mampulated by programs other than T cluster operat:ons. Let us transmlt the value of

astruct containing both A and R.

The tokens produced by the unoptrmrzed scheme appear in Frgure 28 At the
‘sendmg guardran stmct$pul outputs a header token at stream address 0, and mvokes
array[int]}$put, which outputs the tokens at stream addresses 1 and 32$ V}S.‘truct$put then
invokes T$put. TSput does,noti find A in the map, so it outputs a header token at
stream- address 3, and invokes arraylint]$pus. Anayﬁnt]&mﬂndsx in.the. map, and
inserts a back reference to stream address.1 at stream addyess 4. At.the feceiving
guardian, array[int]$ge: constructs an object R from the encoded value of R, and.places
R’ in the decoding map. T$get extracts the next token from stream address 3, discovers

it is a header token, and invokes array[int}$gei: Arrayﬁnt]tget discovers that the next

token is a back reference, and returns R" from themap

-82-

Fig. 27. The Get Operation Without Abstract Header Tokens

get = proc(cxt: dcontext, time: timeout)
returns(T)
signals(timeout)

% Peek at first token.
tok: token := dstream$pesk(cxt.stream)
resignal timeout
if token$is_back_ref(tok) thon
addr: stream_addr := token$Svalue_back_ ref(tok)
if dmapS$seen[T](cxt.dmap, addr) then
% Object is old, remove token and look it up.
dstream$extract(cxt.dstream)
return(dmap$lookup[T](cxt. dmap, addr))
end % if
end % if

% Object is new, create uninitialized version. -
u: ufo := ufoSmake_empty(nil)
ans: T := ufo_mask[T](u)

% Enter the object in the initialization map.
imap$Senter[T](cxt.imap, ans)

% Enter the object in the decoding map.
addr: stream_addr := dstream$current(cxt.stream)
dmapSenter[T](cxt.dmap, addr, ans)

% Construct the external representation.
y: xrep := xrep$get(cxt, ttme)
resignal timeout
~ufoSchange_uninitialized(u, y)
return(ans)

end get

The tokens produced by the optimized scheme appear in Figure 29. At the
sending guardian, the only difference between the two schemes is that instead of
placing a header token in the stream, T$pur immediately mvakf:s array[int]$pur. At the
receiving guardian, when T$ger peeks at the token atstreamaddress 3, it discovers the

token is a back reference to steam address 1. When T$ger looks up the stream address

-83-

Fig. 28. Tokens Produced With Abstract Headers - |

Stream Address Token Type Token Information

0 header struct with two selectors
1 header array with one element.

2 data S intvalue

3 header - abstract T value

4

back reference ~ stream address 1

in the decoding map, it does not find an associated T object, so. it invokes

array[int]$ger. The latter proceeds as before.
4.2.4 Assumptions

To eliminate the need for careful prologpc;sn-fin the oper_atiqns of an abstract type
T, T objects must be decoded before they are refcm:d to by other objects. This implies
that values are decoded in an order such that :all values used by T$decode are available
when it is invoked. In the previous chz;bter, lazy‘ decoding ensured this property by
determining a legal order at run-time. For mostitypes, a legal order can'.b_e.detennined

statically, elivm-inating the need f(_)r lazy decoding and for careful prologues.

Fig. 29. Tokens Produced Without Abstract Headers

Stream Address TokenType: ~ Token Information

0 header . | stl"rl‘n‘c:tvwit_h <fwo;se!ectom,
1 header - ~ array ‘with 'onc-element
2 data ~intvalue

3 back reference stream address 1

- . B T . R

.-84-1

We divide irnplementationsf of data abstractions into two classes: well-behaved
clusters are those whose objects may be completely decoded before: being referred to;
the unpredictable clusters are those for which run-time lazy decoding is required. The
implementation described in the previous chapter protects objects of built—in type from
- premature access by decoding them bef'ore objects of abstract type. Srmrlarly, the
implementation developed in this chapter decodes values in two passes values of
buitt-in type and well-behaved abstract type are both decoded in the ﬁrst pass, and

values of unpredictable abstract type are decoded in ihe second pass
4.25 Trivial Encodca“d Decode Operations

~ Clusters whose encode and decode operations perfonn:type com"e_rsions%on their
~arguments, but no other operations, form the simplest class of well-behavedvclusters.
We call such operations trivial encode’s and :decade’s,\sﬂhen:*aﬁ type T has trivial encede
and decode operations, the task of translating a T value into built<in values is
simplified. If all the encade or decode operations invoked i the course of enceding or
decoding a T value are trivial, then the translation tesk for T values is itself trivial, as it

suffices to transmit the underlying representation of a T object as a built-in object.

If T is a type having trivial encode and decode operations, then there is no need to
use lazy decoding for T values; furthermore there is no need for the put and get

operations to check for sharing Normaﬂy, when put encounters aT object whose

encodmg map. If xrep$pur discovers that -the xrep value has already bfe.en_encoded, it

inserts a back reference to the start of that encoded value. Since we have eliminated

-85 -

abstract header tokens; the stream address of the encoded xrep value is the same as the
stream address of the encoded T value, so it suffices to have the lower level put place

the tol;en in the stream.

An analogous argument suffices to show that, T$ger does not need to check for
sharing, since any sharing that exists will be detected at é‘ _lowcr levei, Furthermore,
there is no need to create an uninitialized version of the T object, since the uninitialized
version of its external représentation wilrlA do as well. Finally, since no uninitialized
versions of T objects are created, T$initialize does not need to iterate through the
initialization map. In summary, the pus, get, and ‘initéatize ‘operatiotis for T can be
reduced to simple invocations of the put, get and initialize operations of T's external

representation.

'The compiler can-easily detect trivial encode and decode operations. As a further
optimization, the binder could replace the invocations of the trivial TSpur, T$ger, and
T$initialize operations by direct' invocations of - the ‘xrepSput, xrep$gef, and

xrep$initialize operations, eliminating levels of procedure linkage.

4.2.6 The External Type Closure

A second way to eliminate the need for lazy decoding is to recognize types that
cannot have self-referential external representations. In this section we describe a
fairly simp]e way to recognize statically that no objects of a type will require_lazy

\

decoding or uninitialized versions.

Let T and S be types. We define the ET (extemal type) relation among types.in

the following way:

e BB D et TR AR B,
-86-

If T is a primitive type, then there is no type S'such that (T, -
S)€ ET.

If T is a composite type then (T S) € ET lf and only ifSisa
component type of T. R :

If T is an abstract type, then (T, S) € ETif and only if SisTs
external representat:on type

We use ET(T) to denote the set of types S such that (T, S) € ET. For example,

ET\string) = & |
ET(oncoflitem: T, empty: nuhlj) = {T, nul}.

If set[T] is a parameterized, abstract type having as external representation type

sequence[T], then:

ET{(set[int]) = {sequénée[int]}.

The ETC (external type closure) relation among types is defined to be the
transitive closure of ET. Intuitively, ET((T) is the set Qf types whose values will be
included in a message containing a T value. The external type closure is similar to the

concept of type closure found in [Atkinson 76]. -

ETC(string) = @.
ETC(oneoffitem: T, empty: null]) = {T, null} U ETC(T)

. ET((set}int]) = {seguencefint], int}.

Before discussing the use of the external type closure, let us introduce some
convenient terminology. For an abstract type T, we state that T is recursively defined if
it belongs to its own external type closure. For example, we recall the int_list type

introduced in Chapter Two, whose extemalsrepresen-tation'r.issdeﬁned by:

~

xrep = record[car: int, cdr: 1ink]

-87-

link = oneof [next: int_list, empty: ny11].

It is easy to verify that:
ETClint_list) = {int, int_list, link, null, xrep},

where xrep and link are abbreviations for the record and oneof types. Since int_list isa

member of its own external type closure, it is recursively defined.

We say that a procedure P directly calls procedure Q if the text of P contains an
invocation of Q. We say that P calls Q if Q § i8, in tl;e trzmsmve ‘clesure’of P's "directly

calls" relanon.l

The basic claim we make in this section is that if a type is not recursively defined;
then it does not require lazy decodmg Itis possrble to optrmrze the task of decoding
values of such types in the following way. T$gel may |mmedrately decode a T object’s -
external representatron as ‘shown in ‘F’gure 30, rather than using a u]‘o to create an

ummtrahzed object version. We will refer to thls operatron as the s:mple get

Our argument that the simple ger may be used for types that.are not recursively
defined takes the following form. To show that the srmple get is safe for
non-recursively deﬂned types, we show. that 1f the srmple TSget attempts to use a value
prematurely, then T must be recursively' éefme& r‘-ihissafgumeatf\i&presemed in three

steps:

1. The "calls" and "directly calls” relations are static: when we say that P calls Q, we
do not mean that each: invacation of :P. will: cause an-invocation.of Q. For example,
although the ger operation for a oneof calls the ger operations of all its component
types, only one component ger will actually be invoked by the oneof’s get.

~88-

Fig. 30. The Get Operation for a Non-Recursive Type

‘ Qet = proc(cxt: dcontext)

returns(T)
siguals(timeout)
% Peek at first token, S
tok: token := dstream$peek(cxt.stream) resignal t1meout
if token$is_back_ref(tok) then
addr: stream_addr := tokensvalue_back_ref(tok)

it dmap$seen[T](cxt.dmap, addr) then
% Object -is old, remove token and look ft up.
dstream$extract(cxt.dstream)
return(dmap$lookup[T](cxt.dmap, adde)) =~
end % if

end % if

% Object is new, remember steam address and decode xrep.
addr: stream_addr := dstreamScurrent(cxt stream)

% Construct and decode the external representatlon
y: Xxrep := xrepSget(cxt) resignal timeout -

x: T := T$decode(y)

dmap$Seater[T}(cxt.dmap, addr, x)

return(x)

end get

Claim One: if T$get invokes T$decode, and the latter attempts'to-
use the value of an S object, then S € ETC(T).

Claim Two: if T$ger invokes T$decode, and the latter fails when
trying to use the value of an S object, then T € ETC(S). ’

Claim Three: if S € ETC(T), and T € ETC(S), then T € ETC(T).

To establish the first claim, we observe that for an S object to be accessible from
T$decode, S$get must have beeh invoked by T$get, implying that T$get calls S$gel. By
inspecting the code for the get operations, one ¢an’see that T$get directly calls S$g'et_ if
and only if S € ETT). It follows that T$ger calls S$ger if and only if S € ETC(T).

-89 -

To establish the second claim, we observe:that an attempt to use the value of an
uninitialized S object can fail only while the first S$ger operation constructing it has
been invoked but has not yet compfeted for only then is the »u}o representing the S
ObjCCt in the empty state. If T$decode can access an S ﬂbgect, then T&get must have

been invoked by S$ger, thus Te ETC(S) |

We may illustrate this last point by mcalﬁng‘ithe cyciic ﬁngine an;i caboose types
used as an example in Chapter Three. ln that .\‘emsple,-" wé:i&ed:#ﬁﬁﬂetail how an
engine-caboose pair is decoded. Let us replace the usual caboose$ger éperation by a
simple get operation, and briefly retrace the: steps miheexampie All goes weﬂ until
the simple caboose$ger invokes caboose$decode "The latter mvokes engme$get_senal
which fails because the ufo representing the:-emgine is in- ﬂne émply state, since the
engine$ger operation constructing the engine object has: been mvnked bwt has not yet

terminated.
To establish the third claim, we make use of the fact that for all tyi)es T, and T,:
T, € ET((T,) = EF(Ty) € ETAT,)

which follows directly from the definition of the ETC relation as a transitive closure.

Therefore:
S € ETC(T)and T € ETC(S) = T € ETC(T).

Having established that S € ETC(T) (Claim 1), and, F€ EFC(S) (Claim 2), we
therefore have T € ETC(T), demonstrating that T-is recursively deﬁnéd,

As a final remark on the simplé T$get opexﬁtiéh, we note that when decodinga T

-90-

object A, it is not necessary to enter an uninitialized version of A'in the decoding map
before A’s external representation is constructed. - In the:general case, an uninitialized
version is placed in the map to catch cycles of reference However no such cycles can

exist when T is not recursively defined, for otherwrse T$get calls T$get, and

T € ETC(T).

The external type closure of a type T 1 may be computed statrcally By deﬁmtlon
external representations, unlike concrete representations, are the same at every
guardian. Since the external type closure of a type T is, defined entirely in terms of
e'xternal representatiorrs it is the sume for all T implementations. Furthermore, we

ay assume that external representatlons are, changed mrely. if at all, since changing a
type s external representatron requrres modafymg every implementation of that type in
the system. This implies that once ETC(T) is computed, it is unhkely to change. -

Since the external representation used by a type is known to the Library, it is a
simple matter to compute the external type closure once the requisite specrf cation
information has been oolleoted The external tipe closure df an ‘abstract type T should
be part of the specification mfonnation about Traititaned 6y the Lii)rary

The cluster-dependent optrmtzatrons Just d%cnbed, may. ;nteract with the
drstmctron between careful and normal modules in the following way. If the compiler
recognizes that a particular-cluster 'tsffvrell-be’haved; cither becuse it *has trivial encode
ety defined, then it mfonns the

and decode operations, or because: it is Hot reirsiy
Library of that fact. When the binder constiuets a prograin it extracts mformatron |
about each module being bound from the Library. The bindeér does not need to insert ,
careful prologues .in the -careful versions of operations of ‘well-behaved clusters.

Moreover, it is easy to.detect the special casé in which evéry module implementing a

-91-

type in ETC(T) is well-behaved, meaning that there is no need to use separate copies to

distinguish between normal and careful versions of those modiiles.
4.2.7 The Function of the Binder

The put and ge! operations of an abstract type T can be constructed by the
binder, since the only type-dependent aspect of put or gel is the choice of external

representatlon type.

Only the binder can determine whether an inStanti'atijo‘n of an abstract type
parameterized by type is: ecursively dcﬁned since tﬁe parametenzed type s external
type closure cannot be determined ‘without knowiedge of the mstantnated parameter;
type. For example, the set[T] abstraction descnbed above has the followmg extemal'

type closure:
ETC[T) = {sequenceTL. T} U ETCAT).

Thus, set[T] is recursively defined for all and only those types T such that set[T] is a
member of ETC(T). For each instantiation, the binder can decide which pur and gef to’
use, and whether careful prologues are required. Like any other type, a parametenzed

type having trivial encode and decode operatnons does not requnre lazy decodmg.

When binding thev garcful version of-a T cluster, the. binder: decides whether to
place careful prologues in the cluster..opem&ions,:and-;whichf of the three kinds of ger
operations» to use for T. The binder first checks whether T has trivial encode and
decode operations. If so, invocations of Thget nmyf;be;rephccdwby invocations of the
get operation of T's external representation. If the encode and decode operations are

non-trivial, the binder then checks whether T is recursively defined, using type -

-9

information in the Library, and information about instantiated tybe paramefers. IfTis
not recursively defined, it can be given the simple ger operation that directly invokes
T$decode on the external representation. If either optimization applies, the careful
versions of the T cluster operations are bound: without careful prologues. If the T
cluster has a non-trivial decode, and if T is recurswely deﬁned then the general get
operation must be used, and the binder must place carel'ul prologues in the operations

of the T cluster,

To make these decisions, the binder recjulres two kinds of information from the
lerary To determine whether an abstract Ti 1s recurswely deﬁned the llbrary must
mamtam T‘s external representatlon type, and T’s external type closure The Library

must also keep track of Wthh T clusters have trmal encode and decode operations.
4.2.8 Optimizing The Initialization Stage

The initialization stage is another part of the -translation task that can be
optimized. One refinement suggests itself immediately: if the initiatization map is
empty at the end of the setup stage; there is no néed to initialize object versions, or to
remove ufo’s. It is only necessary to incur the expense of initialization and :'clea'n-u'p

when uninitialized versions have actually been créated.

~ We can also determine at binding-time that objects of a given type cannot
contain ufo’s, rcquiring no initialization stage or cleanup traversal. If every type in a
type T’s external type closu re is implemented by a well—beha\(ed cluster, then there will
be no ufo’s to in-itiavlize or femove. If ETC(T) contains no recursively defined types, the
condition can be established statically from specification information in the Library. If

ETC(T) does contain recursively defined types; then when particular 'implementations

.93 -

of those types are chosen at binding-time, the binder can check whether those types
have trivial decode operatiqhs. If we can determine, either statically or at binding-time,
that objects of type T cannot contain ufo's, then TSinitialize can be replaced by a

dummy procedure that simply returns,
4.3 Constructing and Tiansxhil'ting Messages

In the previous section, we discussedl ways to optimize the translation between
abstract and built-in values that takes place both before and after the actual message
transmnssmn ln thns sectlon we dlscuss ways to optlmlze the constructlon and
trzmsmtssnon of messages containing the bunlt-m values We are pnmanly mterested in

reducmg the amount of storage requtred to send and recewe me&sages

When transmlttmg a very large message, we may reduce the amgtmt of storage
needed for buffering by transmitting mfonnatnon before the message is completely
constructed. In the scheme described in the previous chapter, the tokens placed in an
encoding stream comprise the transmitted message. . Tokens age.plaged in the encoding
stream as the object referred to by the. send statement.is traversed. The encoding

stream absgraction, has the property that a token can be.transmitted any time after it has

transmit the tokens as soon as a certain number have accumulated, perhaps
asynchronously. Encoding streams allow stomge use to be economnzed by mterleavmg
value translatlon and message transmission. A dlsadvantage of this interleaving is that
the receiver has no way to deterfnine the size of a message before it is completely

received.

In the special case where the communicating guardians seside on the same

-94- -

machine, use the same language implementation, and where the implententation
permits shared memory, message transmission can be accom:ptished quite easily. As we
have stated before, the messages that are actuaﬂyl"constrdcted'and ‘transtnitted by the
language implementation contain only values of buﬂt-m type In the general case, a
“guardian wishing to transmit an mteger value \s;ould encode that value mto an mteger
data token. The receiver would then construct a new mteger object from the recelved
token. In the local case, the sender can just copy the mtegcr dlrectly mto the receiver’s
address space, since both use the same representatlon for mtegers Slmrlarly,
guardian wishing to transmit the value of an arravy[:vnt] colgld just ,copy;the array into
the ‘receiver’s address space. Thls scheme benefits both gtjardians: the sender may
economize storage use, since it is not necessary to construct a message stream, and the
receiver may economize processing, since’ it begins with ‘a’ fully constructed

representation object, instead of a stream of tokens thag mys; be deciphered.

Now suppose the sender wnshes to send a set[mt] where set[T] isa parametenzed
abstract type havmg sequence['l] as its external representatlonﬁ The sender can apply
dlrectly mto the receiver’s address space, where decode can be apphed to construct a

setfint] object. ,

Finally, suppose the sender wishes to send a set]set[int]). The first application of
encode returns a sequence[set[mt]] T’he next step lS to create a new sequence by
replacing ‘each element with its external representation, der-lvtng a
sequencefsequence]int]l. Since this is an »object of built-in type, it can be copied into
the receiver’s address space By successrve apphcatlons of decode operatlons a copy of

the orlgmal ob)ect is then reconstructed byﬁ:le receiver.

-95 -

These examples suggest how local message transmission can be optimized. ‘The
value of an object of built-in type is transmitted simplyby c_opying that object into the
receiver's address space. ,lrf ‘the object is not of built-in_type_, it is reduced to built-in
type by successi»vely reptacing abstract objects by their extem_al representations, until
no abstract objects remain.” The resultmg btult—m object Is then copted The decoding
process is the reverse of the encoding process, external representations are replaced by
the abstract ob__yects they represent. The remainder of this section describes the

construction and interpretation of message objects in more detail.

We define the message represcmanon l)pe ofa type T, denoted by MR(T) in the

fo!lowmg way. 1

If T is primitive, MR(T) = T.

If T is composite, then each component type is replaced by its
message representation type, e.g. MR(array[S]) = an'ay[MR(S)].

If T is abstract, having extemal representatlon type XT MR(T)
= MR(XT). .

We introduce local_put and local_ger operations to cdhstr‘uct”message representations
for objects. Since most of the structure of ldcal_put and local_ge! operations is
identical to the corresponding pur and get operations, we will not describe them in

great detail.

The local_put and Jocal_get operations have * the following interface

specifications:

1. The message representation of a recursively defined type is a dlrectly recursive
type, which is not an expressible type inCLU, -

<96 -

Tocal_put: proctype(T, map) returns(any)
local_get: proctype(any, map) returns(T)

For a type T, T$local_put acceptsa T object as'an argument, and returns an object of
type MR(T), encoding the value of that argument. T$/ocal-get accepts an object of

type MR(T) as an argument, and returns a T object constructed from that argument.

All local_pu! and Jocal_get operations check for sharmg in the usual way. Map
types similar to those used in the general scheme serve to detect sh.mng Where the
maps in the general 'scheme use stream addresses to refer to the encoded values of

objects, the maps in the local scheme use standard obJect references '

The local_put and Iocal_gez operations for primitive types simply copy their
arguments into the receiver's address space. The Iocal_pul operatron for array[T]
constructs an array[MR(T)] in the recervers address space, where the latter object is
constructed by replacing each array[T] element wrth the result of its local_put
operation. The /ocal_get operation constructs a new array[T] by replacmg each
element in the received array[MR(T)] with the results of rts.local_get operation. The
local_put and local_ge,t operations of the other compasite types,behave analogously.

The local_put for an abstract type returns the result of applymg xrep$local put 1o
the argument’s external representatron The local_gel operatron mvokes xrep$local_get

on its message argument.

If every type in the external type closure of a type T has a trivial décode, then the
underlying representation of the T object is the MR(T) object, and there is no need to

perform any translation.

-97 -
Conclusions

In this chapter we evaluate our results, suggest so_meextensiom and list some

areas for future research.
5.1 Summary and Evaluation

The scheme developed in this thesxs lS mot:vated by the clalm that value

3 e

transmission. for programmer-deﬁned types should be under the control of the

v

programmer. As evidence for thxs clalm the mtroductlon descnbes a number of

situations in which the representatlons of values used w:thm a guardlan are

inappropriate for communicating those values befwegn guardians. .- -

We propose the external representatton scheme 3 a means for deﬁmng
transmission. To evaluate the merits of thls scheme, let us rev:ew the goals set forth in

Chapter Two and examine how we have met them

Our first goal was to permit communicating guardians to use different
implementations for a common data type, without 'caﬁéiii‘g‘aitoﬁmmatdrih growth in
complexnty as new 1mp|ementatlons are developed The extemal representatlon
scheme accomphshes thls goal by servmg as an mformatlon-hldmg mechamsm Smoe_

all guardlans commumcate by encodmg mfomlatnon m a common extemal
- representation, no guardian depends on another’s concrete representzmon, and the
introduction of a new implementation is indistinguishable: from:duplication of an old

implementation.

The ease of implementing and using a particular data type depends to a certain

extent on the simplicity of its specification. We feel that the external representation

-08-

scheme provides a simple way to specify the meaning of transmission for a type. The
specification for a programmer defined type T has two parts. The first step is to choose
an external"repfresenmtion type XT, for which transmission is defined. The second step
is to define abstract encoding and decoding opérations, which translite between values
of T and values of XT. Transmission is defined for'T by the triple composition of the
encoding operation, the previously defined transmission operation for XT, and the

decodi’ng operation.

Since the correctness of a type's implementation depends on correctly
‘implementing the translation operations, the progratns that perform the translation
should be easy to locate and verify. The programmer implementing a transmissible
type must provide encode and decode operations to translate between concrete and
external represeﬁtations. The inbutbutpﬁt bél:\avior" Q‘f the encpde and decode
operations com plétely characterizes thré transiqtibn érocess. To verify '_that.transmission

is implemented correctly, it suffices to verify the encode and decode operations.

‘The responsibility for message construction and interpretation is given to the

language implementation, facilitating the task of thé progfammer.

Although the scheme can be used without mechanisms to preserve sharing
structure and to transmit values of cyclic objects, we feel that the availability of such
mechanisms is a major strength of our scheme. Later in this chapter we will compare

our scheme to a simpler one that does not provide this kind ‘of support:

Finally, we require that our scheme be acceptably efficient. Rather than attempt
to define "acceptably efficient,” let us examing the areas where efficiency may be an

issue.

-99-

The first efﬁeiency question we address concerns the expected complexity of the
user-defined translation operations. We may assume that programmers will attempt to
make the operations as efficient as possible. ‘In: patticular, it scems reasonable. to
suppose that many transmissible types will be implemented having identical concrete

and external representations, requiring trivial translation operations.

The shanng preservatlon mechamsms increase the amount of work to be done,
since objects must be entered into and retrieved from maps. On the current CLU
: implementation, it is possible to compare object identity; through a simple pointer
comparison, meaning, that standard hashing techniques-can be used to make the map
types quite efficient.

The mechamsms used to facnhtate transmnssnon of values of cyclic objects
| mtroduce a potential source of ineffi c1ency in the form of an extra level of indirection
in certain object references. This meff c:ency can be reduced through a number of
optimizations described in Chapter Four A stratghtforward optlmlzatlon permits us to
restrict the mn-ﬁme expense of using inadire:c,t, .references.. t0 _certain procedure
" invocations, at a cost in stnrage.‘ Slrightlyd_mose eomphcated optimizations permit. us-to
eliminate indirect references entirely for certain types, through the maintenance of
televant information ina libIary~acces§ible both to themmpi"ler and the bindef.‘

_ Finally, there are several special cases that we. e&pect 0 be common enough to
optimize specially. By Tecognizing elusters using: the - same - concrete: and -external
representations, it is possible to make me&sage co,nstrnctron and interpretation more
efficient. When all the translation cperationis tsed to construct a fiessage are trivial in
this way, the expense of constructing or ifterpreting a n"lessage is comparable to

copying the object whose value is being transmitted. When communicating guardians

T TR e
- }w - '

reside on the same node, it is possible to reduce the work associated with message
transmission to a significant degree by taking advantage of shared memory, as we

discuss in Chapter Four.
5.2. Transmitting Untyped Objects

Our scheme may be extended to pemut guardlans to recerve messages wrthout
decoding the contamed values. For example a f Ie server guardlan may provnde
reliable storage for information belongmg to other guardlans wrthout regard for the
content of the mf‘ormatlon In partlcular lt should be possrble to store and retrleve the
value of an abstract T object usmg such a server even 1f the T type is not supported at
the server’s guardran To prowde thts capablhty, we mtroduce an lmage type An
1mage object may be viewed as an undecoded message contammg value of
transmissible type. An image is constructed from a transmissible object usmg the same
value encoding mechanism used to construct . messages, The value decoding
mechanism is used to reconstruct a copy of the object originally used to construct: the

image. Images are immutable and transmissible, and have the following operations.
encode_value: proctype[T: type](T) returns(image)
Encodes the value of argl into the result.

- decode_value: proctype[T: type](image) returas(T)
stgnals(wmng_type)

Returns an object constructed from argl.-

Let A be an object of type T. The relation of images fo transinission mechanisms can

-101-

‘be summarized as follows:

1mage$decode value[“[](lmageSencode value[T](A)) T$lransmu(A
message_ context$create())

Images resemble CLU any's, in that they are- useful for managing objects
mdependently of their types However “there are several important differences
between any 'sand i lmages First of all, "any" descnbes the be.havror of vanables not
objects. Unhke rm'rge any is not really an object type Secondly, 1mages are
transmlssrble whlle any does not have a transmu operatron F inally, there is no shanng
between an mmge, and any other object. An object, an image created from it, and an
object created from tne image are atl disjoint. AB/y contrast, yztten an object is assigned
to an any, and when that ,any is forced, the originat object, the any, and the result of the

force are identical.

’lm'ages can serve as a convenient way to store values on secondary storage. By
making images storable, the same encoding and decoding operations can serve both for
storage and transmission. Furthermore, the representnﬁon ‘in storage of a value is
independent of the concrete representation used by the creating guardian. A guardian
may store an image constructed from a T object insecondary storage, change the
concrete representation used by its T cluster and strll be able to retrieve the stored

value (as long as T's external representatron remains unchanged)

The most convenient way to encrypt vatues kept in secondary storage may be to
provide the image type with encrypting operatrons, rather than provrdmg each storable

type with its own encrypting operation.

Images also provide a way to copy transmissible objects. An object may be

~102-

copied by encoding its value in an image, and then decoding the image. The result will
be a completely disjoint ebject, having the same value as'the original.

5.3 Implications of Own Data

The principal result of extending the communication primitives to a language
including own data is to make the optimizations described in the previous chapter more

difficult.

By distinguishing between modules that may encounter objects represented by
ufo’s, and those that may not, we were able to restrict the execution of careful
prologues. This optimization depends on our ability to guarantee that two conditions

hold;

No indirect references to objects exist while normal modules are
executing (i.e. when a receive is not in progress).

Only careful modules can execute while a receive is in- progress. -

Since. normal and careful modules share own variables, unrestricted use of own
variables may subvert the dichotomy between the two kinds of module versions. For
example, the careful ve,rsior_i of a module may store a reference to.a ufo in an own
variable, which may latcr be operated upon by the normal version, violating the first
condition. Another kind of problem arises when a normal module stores a procedure
in an own procedure variable. The careful version of the module may violate the
second condition by invoking that .pfocedure, supplying an indirect reference as an

argument.

We can avoid these problems by brute-force methods, perhaps. by traversing own

-103 -

variables at the end of a receive, or by requiring that procedure variables always refer
to careful versions of procedures. More refihed: methods undoubtedly exist, but their

pursuit is best left to individual implementations.
5.4 Operation Extension by Overloading

.. w,\,l:al'u,e transmission for an object is performed by the transmit operation of its
type. The mcthcd used to provide an abstract type with a transmit operation: differs -
significantly from the way abstract operatlons are usually provnded in CLU. In this
section we examine the reasons for this dlffcrcnce In the followmg sectlon we suggest
ways in which the method used to implement transmit 'may be geperalized into a

methodology for im plementing other operations of abstract type.

Certain operations, such as identical, copy, and lransmzt are useful to a wide
variety of types. The language provxdes these operatlons for a collcctlon of built-in
types, and it is frequently useful to provnde them for abstract types We will identify
three approaches to prov:dmg such operations., The first approach whlch we call the
.automatic approach, s to have the language implementation pr’ovide the operation for
the abstract type, usually in terms of the operations of the concfeté representatioh‘type.
The identical operation was defined in this way. In general, this approach is
unsatisfactory, since the exact meaning of a type’s '6per‘atidn.s (eg., cbpy) depend on the

abstraction, not on the type’s implementation.

~ The second approach, which we shall call the overloading approach, is the one
currently used in CLU. The language provides the built-in types with a collection of
standard operations; the cluster implementing an abstract type may include procedures

to implement the ocorresponding opemtionsﬁ “The language réqu’irés that these

-104--

operations have standard interface specifications; for example, T$copy should have the

form:

copy: proctype(T) returns(T)
CLU suggests guidelines for. appropriately defining T$copy, although the language
does not attempt to impose. further restrictions. either on the meaning or on the

implementation of the operation. .

In Chapter One, we observed that an abstfacf tvypey’vs ;tmns}mit obgration chnnot be
provided automatically. One of the main conclusions of this thesis is that it is equally
undesirable to provide.abstract transmit operations ?byulawefgloading;_;-We.claim that.if
users are given complete freedom to implememnt-ransmil, then. the problems of sharing
preservation and- representation standardization remain. ﬂasuived, in any practical

$nse.

Let us briefly examine the problems that arise in an altem(ate scheme u'_sing
overloading to provide abstract transmit operations. The inéage stream scheme used in
the CLU reference manual to store values on secondary storage is used to-construct

~messages. Image streams behave like the message streams used. earlier in this thesis.

All of the built-in types are given encoding operations. to .insert-a:value:into an image -
stream, and decoding operations to extract a value from an image stream.

Implementors of abstract types are 'expg:_é’teﬁ toprovnde their types with encoding and
decoding operatioﬁé, consfmcted frcm;'thé entodmg mid ‘d;ecoding—:operations of
subsidiary typ&s;

The first problem with the overloading scheme is that it is muéh more difﬁcult to

verify that information is being transmitted in the correct format. In any scheme,

- 105 -

communicating implementions of the same type must agree on an intermediate
representation for values of the type. Using image streams, the compiler cannot.check
whether an encoding operation that may invoke a number of subsidiary encoding
operations produces a correctly typed intermediaté representation. On the other hand,
the transmit operation permits static - verificition that the 'correct external
representation type is used by a cluster, simply By type-checking the encode and decode
- operations. Of course, neither scheme can completely efiminate - the -possibility ‘of

error; however, the rransmit scheme offers greater protection.

The second problem with the overloading scheme is the difficulty of preserving
sharing. The encoding and decoding: operations of the objects being sent must collect
_sharing information and encode it expicitly ‘ifito the stream. One might think that the
task could be facilitated by providing the programmer with aceess to encoding and
decoding maps. In fact, we have considered many such schemés. Unfortunately; we
have been unable to develop a scheme that dld not seem excessxvely comphcated and

“awkward.

Transmit is only one of a class of operations that are difficult to extend using
overloading. We suggest copy as-an example of another such operation. In CLU, the
copy operation is intended to haVe‘the-followi‘ngefFec‘t: o }

the copy operation should provide a copy ' of its input ebject,
“such that subsequent changes made to either the old or the new
- object do not affect the other. [Liskov 79, p.80} . -

Let us examine an abstract type whose copy operation does not readily’ lend ‘itself to

extension by operator overloading.

Consider a file system organized as a directed graph where non-terminal nodes

-106 -

are directories, and terminal nodes are files. A file is named by-specifying a path from
a distinguished root directory to the desired terminal node. Files and directories may

be shared, since a given node may be accessible tﬁr’tiqgh one or more paths.

| Consider the problem of defining and implementing.a directory$copy operation

that is to be used to create backup versions of directories. Given a directory, we wish
to make a copy of the directed graph rooted at that directory. We use A’ to denote the
results of copying a graph node A. We wish copy ta preserve the sharing structure of
this subgraph: i.e., if A, B, and C are nodes in the subgraph and if B and C share a
node A, then 8" and C” should share A", ‘

These specifications cannot be implemented in a satisfactory manner using
operator overloading. The problem is essentially that the user is given no way to detect
non-local sharing structures. The dlrectory$copy operation could conceivably be able
to detect when a single dnrectory has two links to the same ﬁle but there is no
straightforward way to detect that two distinct dlrectones share a file. Fu rthermore, it
is difficult to prevent the copy operation from recursing forever when it is 5pplied to a

subgraph containing cycles.
5.5 Operation Extension by Template

The third approach to operator extension, which: we :call the template approach, was
used to provide abstract transmit operations. Using this approach, an operation
provided for built-in types may be ‘extended to abstract types but the language

imposes a rigid structure on the form of the operatnon s implementation.

For an abstract type T, we can informally describe the T$lran,smit 6peration in

terms of the following five steps:

- 107 -

Step 1. Check for sharing. ~

Step 2: Encode the T value into its external representation.
Step 3: Transmit the external representation. ’
Step 4. Check for sharing.

Step 5: Decode the external representatnon mto a T object.

~Steps One and Two are perfmmed at-the sending *?guar*dian;fvihiie steps Four and Five
are performed at the receiving guardian. - The langiage contfols the form of transmil,
while the user controls its meaning through- the provision of the encode and decode

- operations used in steps Two and Five.

In the remainder of this sectioh, we will examine how. this approach can be
generalized to extend an arbitrary operation, ahd we will review a number of
operations whose implementations are better effécted by usifig templates than by using
- overloading.

We assume that some collection of built—in types and ‘type constructors is
provnded with an op operauon For each such type §, SSap has the followmg mterface

speci ification:

op: proctypu(ATi,AT,) returns(RTj,... ETm) :s‘i;gnaii()
where each argument type and each result type (both aumlal and exceptional) is either
a built-in type, or S. We use | to denote the set of indices i such that AT, = S,and J to
denote the set of indices j such that RT, = S. -

To extend the op operation to an abstract type T, the T cluster must provide
translation operations, denoted here by T$op..encode and T$ap_decode. ‘The op_encode
operation encodes the value of an argument of type T into a value of a special

representation type ST, where ST has an op operation. The op_decode operation

-108 -

accepts an argumeht of type ST, and returns:a result of type T.

op_encode: proctype(T) returns(ST)
signals(encode_error(string))

op_decode proctype(ST) returng(T)
signals(decode_error{string))

T$op is defined in terms of ST$op in the follr)Wing way. An invocation such as

Y1se+os¥m = TS0p(x),...,xp)

causes the invocation of®

Y1'seeos¥m' = STSep(x)', ..., %,")
where the values of the arguments to STSop are defined by:
= T$op_:_encode(xi) fori€el .
X, = x; otherwise,
The translation between the arguments to ‘T$op and the arguments to ST$op is also
'sensit%ve'to sharing, in the foltowing way: “Afl'invocations of dp take place with respect
to a given context, where a context is analogeus’to’'thie miessage context defined in
Chapter Two. ‘The scope of a context is defined as follows. When ‘T$op is invoked
directly from a user program, a new context 1§ creatéd. ‘When an invocation of T$op
causes the invocation of STSop, the latter occurs with resjsect to the same context as the
former. For all mvocatlons of T$op occurrmg w1th respect to the same context, the
followmg condition holds if two arguments to T$op share a T object A then the
corresponding arguments to STSop wrll share a ST object A’ where Ais constructed

from A by a single application of T$0p_encode.

If ST$op retumns normally, then T$op returns normially, and the values of its

results are defined by:

-109 -

y; = T$op__decode(yj’) forje€l.

y; = yj’ otherwise.
Sharing among the results is preserved in the same wayas sharing among the
arguments: for all invocations ol‘ ST$0'1) occurrmg svith respect to)the Same context, if
two results of ST$op share a ST object B, then the oorrespondmg results of T$op will
share a T object B, where B is constructed from B’ by a single apphcatlon of

T$op_decode.

If ST$op raises an exception, then T$op raises the same Eexceptlon, and any
objects returned by the exceptions are .treated as; Tesults; ie., if ST$ops exception
returns a ST object, then T$op’s exception Feturns a T object constructed from the
corresponding ST object by an application of T$op_decode. Finally, if op_encode or
op_decode signal an exception, then T$op sighals that same exceptton

Templates are_useful for defining opetat;ons that are sensitive to shanug
structure. Since the op_encode and op_decode operaﬂoas asspciated ‘with such.an
operat;on are_)applledq,by the language implementation, not by user programs, the
language implementation can.do the boekkeepu;g required to recognize and keep track
of sharing. As we have repeatedly argued in the case of the transmit operation, this
kind of bookkeeping is tedious and error-prone if performed by the user.

Template “definition may be vxewed as a control abstractton the cluster wnter
who defines an operatlon usmg a template deﬁnmon need not be concerned wnth the
mechanical detalls of shanng preservatlon but the fact that sharmg is prcserved may
be quite important. The programmer is free to concentrate on the mdwndual
translation operations, while the language implementation. ensures that they are

applied correctly.

-Ho-

5.5.1 Revising Standard CLU Operations

The first examples we will examine are standard. CLU operations. As illustrated
in a previous section, the problem of sharing preserxatiogzhm;;kes the copy operation
difficult to extend satisfactorily using overloading. By using a template structured copy
operation, the language implementation can detect sharing, wh’ite the meaning of the

‘operation can be controlled by user-defined copy_encode and: copy_decade operations.

For some types, copy will just copy the underlying concrete representation object
In that case, copy_encode and;copy_decode may just perform up and down ‘con‘vetsions.
As an example of a type requiring more sophisticated translation operations; consider a
PT (protected T) object consisting of a T object protected-by an -associated semaphore.
‘When the PT object is copied it would make no sense to copy-the state of the
semaphore which may contain a collectron of v altmg processes The PT$copy_encode
operatlon retums the T component wrthout the assocrated semaphore while the
copy_decode operatlon accepts a T object, creates a new semaphore and then combmes

them to construct a PT object.

CLU’s similar operation is used to determine when two objects of -the‘same;type‘
have the same information content. Precisely what constttutes the mterestmg
"information content” of an object is quite type—dependent. For instance,
,axray[f[']tis_imilar is defined to check whether the two arrays being compared have the
same bounds. If so, then Tsimilar is used to.test pairs of corresponding elements for
similarity. 1fall of these tests succeed, then the two arrays.are deemed to be similar.

' The definition of array[T]$srm|Iar could be altered to encompass the shanng

structures of the arrays bemg compared Two objects may be compared as directed

-111-

graphs of objects,' where nodes represent companent objects, ;and;,.edges represent
logical containment. Let us define a globally_similar operation for the built-in types to
test for similar objects having the same structure as directed graphs. - Individual node

similarity is tested in the usiial manner.

- globally_similar: proctype(7. T) returns(bool) |
Global sharing structure is recognized by;g:aceumala-t;ing -.afht&ble’ of corresponding
components of the objects bemg compared If at any time, a component of one object
corresponds to more than one component of the other then the objects are not

globally_srmtlar.

We observe that sinee globally_similar returns. no-objects of T type, there is no
need for-a decoding translation operation.

When companng the values of objects of the protected T type mtroduced above,
let us assume we only wish to compare the values of 1he T com ponents‘ we do not wish
to compare the states of the associated semaphores. Under this assumptlon the
encodmg translation operation only needs to extract and return the T component of its

PT argument.-
5.5.2 170 Operations

We have observed that template definition imposes a figid structure on the form |
of an operation’s implementation. A benefit of this rigidity is that it becomes possible
to use template structured operations to define ‘interfaces between autonomous
domains such as guardians. We have already seen how the structure of the transmit

operation permits a division of labor between the communicating guardians, and

-112-

between the language implementation and the cluster writer. A large class of
operations that not only ‘involve sharing detection, but that' require a. degree of
standardization among autonomous guardians, are operations to perform input or

output activities using the values of abstract objects.

The first I/0 operations we will exaﬁrirreare used to store and retrieve the values
“of objects on secondary storage. ‘Let us define store and' retrieve operations for the
built-in types, having tht: following interface specifications: -
store: proc(T) returns(file_name) ,
retrieve: proc(file_name) roturns(T)
Mechanically copying objects’ concrete representatlons to secondary storage is nota
sattsfactory way to rmplement store and retneve To tllustrate this pomt we recall the
’protected T type. When storing the va]ue of a protected T object, it makes llttle sense
to store the state of the associated semaphore Srmrlarly, over loadmg is not a
satisfactory way to implement srore and retrieve, for two reasons. First, we would like
“to control how sharing structure is preserved. Second, we would like to use static
type-checking to ensure that values of a type are stored jn a standard format, since we
would like to share stored values with other guardians that might use different concrete

representations. for the type.

We mayextend siore and retrie"ve' to abstract types by selecting for each abstract
type T, a stable represenlatiorr type ST, with app‘ropgrliate translatioh operatiOns.‘ We
recall that by using a standard external representation, T | values coo‘ld,' be
communicated between different implementations of T. Similarly, the use of a
standard stable representation permits different implementations of T to store and

retrieve one another’s values. This may be particularly useful when replacing one

-113 -

version of the T cluster by another; by leaving the stable representation unchanged, the

- new version can read values previously stored by old versions..

Another operatlon that should be sensrttve to shanng structure is the dlsplay
operation to display values of objects to humans Dtsplay requtres an encodmg
translation operation, but no decoding translation, operation. . The- display operation is
particularly useful for debugging. When debugging a program that uses a data
abstraction T, the best way to display a T object’s value is'net necessarily (o display the
value of its representation. For instance, when debugging a program that uses a
symbol table, a simple display of associated key-item paifs will be more useful than a
more complicated display of hash‘tables and ilist structures. ’l‘his kind of display is
parttcularly appropnate for remote debuggmg, where an object of mterest resrdes ona
V‘forergn guardran using a concrete representatron unknown to the debugger On the
other hand, when debuggmg the symbol table clusler the value of the representatron is

ofi mterest.

We do not intend to explore the difficult question of how values are to be
represented to users; however, one could nnagmedrsplaymgan object’s value as a
directed graph on a high resolution cathode-fay scréen. “The built-iri types and type
constructors may be given a standard display representation; which rnay" be extended to
abstract types by selectmg for each abstract type T a dtsplay representanon type DT,
wrth a translatton operation from T to DT The inverse translatton from DT to T mlght

be used to del' ine T literals.

-H4-

55.3 Conclusions'

Operation extension by template definition appears to have two advantages. It
serves to implement sharing-sensitive operations for abstract types in a way that is not
currently possible in CLU. Furthermore, template definition eases the standardization
problems that arise in a distributed system; a‘hﬁbugh' we cannot guarantee that the
information being released by transmit, store, ot di‘sﬁla} is correct, \’ave. ‘c':an guarantee

that it is in the corfect format.

When ideﬁning template operations that operate on cyclic «ijeéts, one encounters
the same problems we . encountered . earlier . with: - self-referential external
represéntations, If we make the same choice we.made for transmit, we may operate on
arbitrary cyclic objects by imposing restrictions on ep..decode operations. The language
- implementation must then introduce uninitialized object versions in the manner

described above.

. On the negative side, there may be an etf;cicﬁcy,penaltytg’go having the language
implementation apply translation operations and check .for sharing. A programmer
having semantic information about an abstraction can detect optimizations that: the
language implementation cannot. By expending more human effort, in is undoubtedly
possnble to improve individual implementations. ﬁhﬁre 1s a c11aracfenst|c trade-oﬂ'
between the mcreased convenience and rehgbllxty provnded by templatz-structured
operatlons, and the ablhty to construct optlmlzatmns on an mdmdual baS|s prov1ded

by overloaded operatlons.

-115 -

5.6 Applicability to Other Languages

Since we have presented our communication primitives as an extension t6 CLU,

it is natural to ask how readily our primitives-can be adapted to other languages.

One aspect of CLU that is essential to our scheme is the notion of data

abstraction. One of the principal‘;motivatiops is mg;pﬂigi.;bag,diﬁgrmtpgmmmﬁohs
of information are appropriate for different purposes. . The..representation used to
transmit é value between guardians may be different from the 'rep(esentaﬁon used
within a particular-guardian, and different reprwentaﬂonsﬁjrob)ecm ‘of a type may
used at different guardians. If the language’ contsins no facilities for encapsulating
representation information, then commiunication among differing’ implementations
must be based on veluntary conventions, net»oﬂangmge features.

The fact that CLU is an object-oriented language, as opposed. to . a
~ variable-oriented language, is not crucial to our scheme. Although we have spent
much of our effort defining the effects of transmission on sharing structure, the same
problems arise in- languages having explicit reference types; dnd the same solutions are
applicable. | | SO |

5.7 Directions for Further Research

Defining value transmission is only the ﬁrst of many dtfﬁcult problems in the

development of commumcatxon pnmmves for a dlstnbuted apphcatton language A

comprehensive survey of the outstanding research areas in thls fi eld could easnly fill
another chapter; accordingly, we mention only those questions that arise directly from

this research.

-116 -

Rather than limit messages to the value of a single object, it may be convenient to
mtroduce explicit message types. One possnblhty 1s to deﬁne a message type as
consnstmg of a tag followed by objects whose values are transmltted together Port

types would consnst of a list of message types Examples of message types are:

employee(name: string, salary: int)
error(message: string)

If two objects whose values are sent in a message islmte,, a component, it must be
decided whether the objects constructed by the receiver should also share. If that
effect is desired, all the objects in a message should be encoded and decoded in the
same message context. Alternatively, if the opposite effect is desired, a distinct

message context should be used for each object.

An alternative to explicit message passmgls to. support inter-guardian
communication by remote procedure invocation. The value transmission mechanisms
developed here can be used to pass arguments from the Jinvoking -guardian to the
guardian where the requested action is carried out, and to retusn.any results. This kind
of remote invocation differs from usual , pr;oceduryet;invo_‘catio'n_ in CLU, where
procedures pass arguments by sharing objects between. the caller apd the called
procedures. Remote argument passing resembles traditional call-by-value schemes.
“We feel that value transmission is better suited to remote invocation, as node failures
and inherent unreliability in the communication ‘meédium ¢afi cailse remote invocations

Loat

to fail in ways that are not possible for local invocations.

In summary, the value transmission scheme developed here can be adapted to a '
number of different communication primitives. Determining the best scheme (or

schemes) to incorporate into a language is an area that would benefit from further

-117 -

research.

The send and receive statements used in thls thes:s were deﬁned as snmply as

possible. Such simple send and receive statements are probably not the best choice of

primitives. Actual language prlmmves would probably have to be more sophlstlcated
and would certainly have to address issues that-we have avoided. For.example, it may
be useful to provide primitives to support patterns oTcommumcauon such as remote
procedure invocation, paired requests and' responses; or forwarding of requests to other
guardians. More research is needed to determine which of these patterns, if any,

should be supported in a hlgher-levet Ianguage .

We have made no mention of the degrce.oﬁ;zeliqhil;;yx, provided by the send and

receive primitives. The send primitive may or may not attempt to retransmit messages
that-appear to have been lost, and it may or may not cause the same message to be
received more than once. The degree of reliability built into a primitive undoubtedly
depends on its form: a remote invocation primitive Would have to be fairly reliable,
while a simple send need not be. The inherent unreliabificy ‘of a distributed system
may complicate ‘the programmer’s task; the degree towmch the proper choice of
communication primitives may- ease such i)rolbiét'néi is ‘an important area for future

We have used ports to indicate the destination of messages, and to insure type
correctness. We have not addressed how, ports are acquired, or whether ports are really .

the best way for guardians to name one another. The question of inter-guardian

‘?:.

organizations of guardians.

-118 -

We have not given a formal semantics for\ value transmission. A number of
approaches to formal description of object-oriented languages exist [Berzins 79,
Schaffert 78, Scheifler 78]; it would be interesting to extend these descriptions to value

transmission.

The scheme developed in this thesis permits guardians to change the concrete
representation used for a type without that change being visible outside the guardian.
We have not provided any easy way to change the external representation used by an
abstraction, as such a change requires changing implementations at all guardians
supporting the type. Changing a type’s external representation is a special case of the

general problem of replacing programs in a distributed system.

Finally, we have noted that the template scheme used to implement and define
transmit can be extended in a very straightforward manner to implement and define
such operations as copy, similar, store and retrieve, and display. It is natural to enquire
whether other operations may be defined in this way, and whether other kinds of

templates may be useful for defining other operations.

This empty page was substituted for a
blank page in the original document.

-119--

References

[Atkinson 76] R. Atkinson, "Optimization Techniques for a Structured

[Berzins 79]

Programming Language,” S.M thesis, Massachusetts
Institute of Technology, May 1976.

V. Berzins, "Abstract Model Specifications for Data
Abstractions,” M.LT. Laboratory for Computer Science

- TR 221, July 1979.

[Crocker 75]

[Fabry 76]

S. D. Crocker, "The National Software Works: A New
Method for Providing Software Development Tools Using
the ARPANET," Proc. Meeting on 20 Years of Computer
Science, Pisa, Italy, July 1975.

R. S. Fabry, "How to Design a System in Which Modules
can be Changed on the Fly," Proceedmg of the Second
International Conference on Software . Engineering, San
Francisco CA, October 197€, pp. 470-477.

[Feldman 79] J. Feldman, "High Level Programming for Distributed

Computing,” CACM 22, 6, June 1979, pp. 353-367.

[Friedman 76] D. P. Friedman and D. S. Wise, "CONS Should Not

[Gligor 79]

[Haber 78]

Evaluate its Arguments,” In S. Michaelson and R. Milnor
(eds), Automata, Languages and Programming, Edinburgh
University Press, Edinburgh 1976, pp. 257-284.

V. D. Gligor and B. G. Li‘ndsay, "Object Migration and
Authentication,” IEEE Transactions on Software
Engineering, Volume SE-5, 6, pp. 607-611.

N. Habermann, "Dynamically Modifiable Distributed
Systems,” Proceedings of the Distributed Sensor Net
Workshop, Carnegie-Mellon’ Umversnty, Pittsburgh PA,
December, 1978, pp. 111-114.

[Hender 76]
’ '[Levine 78]
[Liskov79]
: [Liskov 79a}
[Neigus 73]

[Postel 74]

[Reed 78]

-120-

P. Henderson and J. H. Morris, "A Lazy Evaluator,”
Proceedings of the Third ACM Symposium on Principals
of Programmmg Languages, 1976, pp. 95-103.

P. Levme, Facrlrtatmg Interprocess Commumcat:on ina

Heterogeneous Network’ Fleroament, “M.IT. Laboratory
for Computer Science TR 184, July 1977.

B. Liskov, R. Atkmson T. Bloom, E. Moss, C Schaffert, B.
Scheifler, A. “Snyder, CLLU Reference Manual M.LT.
Laboratory for Computer Science TR 225, ‘October 1979.

B. Liskov, "Prrmmves for Dlsmbyted Computmg, '

Proceedmgs of the Seventh Symposmm on Operating
Systems Prmcrpd.ls Pacrﬁc GroveCA December 1979, pp.
33-43.

N. J. Neigus, File Transfer Protocol N[C \17759 August

1973.

J. Postel, *“NSW. Protocols Version 2w Stanford Research
Institute, 1974.

D. Reed, "Naming and Synchronization in a Decentralized

Computer System,” M.LT, Labocatary for Computer
Scrence TR 205 September 1978 | «

[Schaffen 78] J. C. Schaffert, "A Formal Deﬁnmon of CLU,” M.LT.

Laboratory for Computer Sciénce TR 193, January 1978.

[Seherﬂer 78] R. W Schenﬂer "A Denotauanal Semamlcs of CLU "

[Snyder 79]

,,,,,,

1978

A. Snyder "A Machme Archrtecture to Support an

~ Object-Oriented Language " MIT. Iaboratory for

Computer Science TR 209 Man:h 1979

[Sollins 79]

[Svobod 79]

[Telnet 73]

[White 74]

[Wulf76]

-121-

K. Sollins, "Copying Complex Structures In a Distributed
System,” M.LT. Laboratory for Computer Science TR 219,
May 1979.

L. Svobodova, B. Liskov, D. Clark, "Distributed Computer
Systems: Structure and Semantics” M.I.T. Laboratory for
Computer Science TR 215, March 1979.

Telnet Protocol Specification, NIC \18639, August 1973.

J. White, "The Procedure Call Protocol Version :2,"
Stanford Research Institute, 1974.

W. A. Wulf, R. L. London, M. Shaw, "Abstraction and
Verification in Alphard: Introduction to Language and
Methodology," Carnegie-Mellon University and USC
Information Sciences Institute Tech. Reports, 1976.

e TR T T RN AR L T T

SECURITY CLASSIFICATION OF THIS PAGE (Whan Daia’Entared)

REPORT WTAM PﬁGE ‘

TR NG B E A

MTI‘/I.CS/TR—234 .) L
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Transmitting Abstract Values in Messages M.S.Thesis-April 25, 1980

, 6. PERFORMING ORG. REPORT NUMBER
- MIT/ICS/TR~234
7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(S)
. . . N00014-75-C~0661
P.

Maurice P. Herlihy | MCS74-21892 AOL

3. PERFORMING ORGANIZATION NAME AND ADDRESS . 0. FROCRAM ELEMENT, PROJECT, TASK

MIT/Laboratory for Computer Science A & WORK UNIT NUM

545 Technology Square
Cambridge, MA 02139

1. CONTROLLING OFFICE NAME AND ADDRESS /NSF/7Associate Prog 12. REPORT DATE

ARPA/Dept. of Defense ‘Birector/Office.6f:-{ May 1980
1400 Wilson Boulevard ng;tmg Activites n. NUMBER OF PAGES
Arlington, VA 22209 Washington, DC 20550 123

[T4, MONITORING AGENCY NAME & ADDRESS(I! differant from Controliing Office) | 15. SECURITY CLASS. (of thia report)
ONR/Department of the Navy ‘ ‘e
Information Systems Program Unclassified
Arlingon, VA 22217 TSa, gg’%&s‘s_glc;\ﬂowoowucnmmc

16. DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale;
its distribution is unlimited i

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

[}

19. KEY WORDS (Continue on reverae side if necessary and identify by block number)

Abstract types Programming Languages
Distributed Systems Programu:mg Methodology
Message Passing

Modularity

Object=Oriented Programming

[20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This thesis develops primitives for a pProgramming language intended for use in 3
distributed computer system where individual nodes ‘may have different ha.rdwaxe
or software configurations. Our primitives are presented as extensions to the
CIU language. We assume that differences in hardware and in administrative
policy require that individual nodes he free to choose their own local
representatlons for common types, including user-defined types. Our : main
objective is to provide primitives to commmicate values of user-defmed type
Qur primitives support--a large degree -of node auboncewy ; -with .

DD . 52:”73]473 EDITION OF 1 NOV 68 (S OBSOLETE

: ‘SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

icati: mdeslnveprmmﬂe&geofmmﬂnrsspecml
*dmxacbermues.mamﬂutﬂ'eprecmémmvaﬂmtmmssm
1stype-dependent,ttmstheuser,x’nt’thelanguage rmstcontrolthe\
neannxgoftransmssmforvaluesofatype .

2.

i

. SRCURITY CLASMCATION GF THIS PAGE{Wen Date Butored)

