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Abstract

Current methods of designing VLSI chips do not insurc that the chips will perform correctly
when manufactured. Because the turnaround time on chip fabrication varies from a few weeks to a
few months, a scheme other than "try it and sce if it works” is nceded. Checking of chips by hand
simulation and visual inspection of checkplots will not catch all of the crrors. In addition, the
number of transistors per chip is likely to increase from ten thousand to over a million in the next
few ycars. 'This increasc in complexity precludes any -manual verification methods; some better -
mecthod is needed. ' ’

A scrics of programs that use the actual mask descriptions for input arc described. These
programs perform various levels of checks on the masks, yielding files suitable for simulation. Some
of the checks are the usual "design rule” checks of looking for minimum line widths and adequate
spacing between wires. However, there arc many more constraints in VLSI circuits than are
expressed by the usual design rules. The programs check these constraints using the mask
descriptions as input. All of the errors mentioned so far can be classified as syntactic errors; in
addition, certain scmantic errors arce detected. The detection of scmantic errors requires various
levels of simulation. The input to the simulators is derived from the artwork.
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1. Introduction

Since this thesis deals with Very Large Scale Integrated (V1.8l) circuits, a dcscﬁption of the
basics is in order. A more detailed discussion can be found in Mcad and Conway.[1] The circuits to
be analyzed are composed of interconnected transistors.! Fach transistor can be viewed as a switch
with threc components: gate, source, and drain. When the signal on the gate is high, tﬁc source at;d
drain are connected together. thn the signal on the gate is low, there is no connection between the
source and the drain. For the purposes of this thesis, the terms soun»ce'and drain arc interchangeable.

gate

1

source l_l dnin

Enhancement Mode nMOS Field Effect Transistor

The actual circuit is specified by a scries of masks (or layers). The six masks we will be
concerned with arc metal, polysilicon, diffusion, contact cut, ion implant, and overglass. The first
three are conductors and are used for general wiring. However, whenever a polysilicon wire crosses a

diffusion wire, a transistor is formed.

B
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Schematic Antwork

Transistor with gatc A, source B, and drain C

In-channel, metal-oxide-semiconductor (MOS), field-effect transistor (FET)



The polysilicon wire is the gate and the diffusion on either side forms the source and drain. Metal
can ru;l ovef either polysilicon or diffusion without ahy connection being made. However, it is
sometimes useful to connect metal to polysilicon, or metal to diffusion: the contact cut is used in a
spc_ciﬁc way to accomplish this. In addition, it is possible to connect one end of a polysilicon' wire to
the end of a diffusion wire through the use of a butting contact. 'The ion implant layer is used to
alter the characteristics of transistors. An implanted tmtisistor, also called a deplelién mode transistor,
acts like a resistor. Finally, the overglass layer covers the whole chip with a protective oxide, except
* where connections must be made to the input and output pads.

Onc language for specifying integrated circuit masks is the Caltech Intermediate Form (CIF).
While this language can be ﬁad and written by humans, it is expected that in most cases it will be
processed -solely by computers. CIF supports commands that specify circles, rectangles, and
polygons in the various layers. In addition, there is a symbol definition facility in which a collection
of geomctrical objects to be uscd repeatedly is placed in a named symbol that can be instantiated
many times. Each instance can be reflected, rotated and translated.

The arntwork for a chip can be created ‘in a variety of ways. Somc designers use a
graphics-based system. Such a sy;tcm lets a designer manipulate shapes, define symbols, and call
symbols, showing what the chip looks like at each stcp on a graphics display. Another approach to
chip design involves writing a pmgrarﬁ that creates the artwork for the chip. This program is often
written in‘ a language cmbedded in a standard programming language, for example LISP. in
addition to all the usual language commands, there arc wmmnds to manipulate geometrical objects,
conncct certain points together with wires of a certain type, and so on. A third approach is to design
the chip on paper and digitize it into the ;:ombutcr. This method has been and is still very much

used in industry. It is hoped that the computer can assist in the design of VLSI chips, but so far



there is no system that comes close to peoplc's’c/xpccmtions or dreams_.

.The overall idea the reader should have about VLSI design is as follows. Currently, chips
are designed by hand, with computer assistance in kecping track of some of the dctail. The dc;signer
specifics his design in terms of geometrical objects and a certain number of hask& At a higher level
of abstraction, the designer is working with transistors and their interconnections. At an even highér
level, he may be thinking about logic gates, shift registers, memory cells, prbgrammcd logic arrays,
and so on. However, he still specifics cverything in terms of masks. The design is converted to a
standard format such as CIF and sent out to be manufactured. At somc. later point, a chip is
returned to be tested. 1t has some small number of inéuls and out»puts through which the dcsigner
must interface with the chip. It is not possible for him to look at arbitrary signals within his design,
unless he has provided for this beforchand. Typical chips bcing manufacturcd today have 10,000 to
100,000 transistors. Future chips will have 10 to 100 times the cuvrrent number of transistors.

There arc many chances for érmrs to occur in :sthe design of such a large chip. In addition,
there are maﬁy different types of crrors that can eccur, any onc of which may cause the whole chip to
fail, possibly without the designer having any idea why. Some tools are nccdcd. that will help
designers debug their chips before they arc manufactu}ed. so that the chips have a better chance of
working when they arc actually implemented. After a bricf discussion of some types of errors that
can occur in the design of VLSI circuits, the rest of this }thesis will describe some tools that have been

created and used at MIT to aid in chip design.
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2. Why VLSI Circuits Might Not Work

There are many rcasons why a particular design may not work. These range from very .low
fcvcl problems, such as two signals shorted togefhcr because they were top close to cach other, to
high nlcvcl "bugs” in algorithms. In another dimension, VLSI circuits may fail duc to production
problems or bonding errors. However, the latter class of errors is beyond our concern here. We will
concern oursclves with crrors that can be discovered from the mask descriptions that will be sent for

‘ fabrication. Any crmrs'that arc introduced after that are someonc elsc’s responsibility!

'The following list of design crrors docs not include all possible errors, nor all possible error
categorics. Mistakes are discovered by studying the design process, observing errors on actual chips,
and thinking about various consistency checks that might be violated. Some of these errors are

specific to a particular process or computer-aided-design system, while others are universal errors

that can occur in all designs.
2.1 Design rules

There are many low level rules that dcﬁnc various relationships within and -between masks.
These rules differ from one process to another. Mead and Conway have defined a sct of design rules ‘
that arc scalablé (within limits) and are bascq on a unit of leagth called lambda.! All their design
rules arc expressed in terms of lambda and are not ticd to a particular process. However, the design
rules are very conservatave, and there can be layouts that violate the design rules but still work.

The following is a description of the Mcad and Conway dcsign ru_les:' the first set deal with -

width and spacing within a specific layer. The width of a diffusion wiré cannot be less than two

11y 1980, lambda was 200-250 centimicrons.
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lambda and the distance between two diffusion wires cannot be less than threc lambda. The
minimum width and spacing for polysilicon and contact cuts is two lambda while the minimum

width and spacing for metal is threc lambda.

100

H:F AsF A F
Metal

43 b

Polygicon Diffusion
Contact cuts
Width and Spacing Design Rules

Next, there arc some rules for making transistors. Remember that a transistor is formed by
the crossing of a diffusion wire (rﬁinimum width two lambda) with a polysilicon wirec (mininum
width two lamb&a). The minimum distance between a polysilicon wire and a diffusion wire is one
lambda. When forming a transiétor, both the polysilicon wire and the diffusion wire must overhang

the gate area by two lambda.

B

Transistor Design Rules

When making an ion implanted transistor, the ion implant must overhang the gate arca by onc and a
half lambda in all dircctions. In addition, the ion implant must come no closer than one and a haif

lambda to a non-implanted transistor.
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lon Implantation Design Rules

The final set of design rules is for contact cuts. There must be a minimum of onc lambda
overhang of polysilicon, diffusion, or metal around a contact cut. Also, a polysilicon wirc must be
two lambda away from any contact 'cut in diffusion. Finally, there is a special method of connecting
polysilicon to diffission catled a butting contact. The end of the polysilicon wire overlaps the
diffusion wire by one lambda. A rectangle of mctal (four by six) is placed over thé whole

constriction, and a two lambda by four lambda contact cut completes the butting contact.
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2.2 Pullup ratios

Onc of the basic building blocks of integrated circuit design is the inverter. More
complicated versions of the inverter include nand and nor gates. The basic inverter is composed of
two transistors: a depletion mode pullup transistor and an enhancement mode pulldown transistor. The
gate arca of cach of these transistors has a certain channcl length and width. A design rule spmiﬁes
that under certain conditions (sce below) the ratio of the length to the width be four. While small

deviations from four arc allowed, numbers as far off as two or cight.represent errors. -

8x2
Output
put. ——][ 22

Basic Inverter (Ratio = 4)

This pullup/pulldown ratio rule can be extended to nand gates. In this case, the effective
channel length is the sum of the two individual pulldown channc! lengths. ‘ In reality, the
length/width ratio is the same as resistance, and a nand gatcr__contains two resistors in series.
However, in computing the correct ratio for a nor gate, it is as if only one pulldown is there; it is not

the same as two resistors ih parallel.
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AandB I—, ” AorB
A——-{E 22 A——-iizngl-—s
B—-”iz;z Nor gate "

Simple Gates

On a simple inverter, the pulylup/pulldown ratio should be cight if the pulldown is driven
through a pass 1rau§is10r. There is a voltage drop in the signal going through the pass transistor, and
so the signal will not turn on the pulldown transistor as much as when it was directly driven. This is
compensated for by making the pullup weaker. This can also be gencralized to nand and nor gates

that have inputs that are driven through pass transistors.

Enable -
L - Qe
Input 1 L =2

Inverter Driven through a Pass Transistor (Ratio = 8)
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23 Two threshold drops

The following cquation relates the source voltage V; to the gate voltage Vs and the drain
voltage V: V; = max(0min(V4,V-V,,)). If we put V,y, through a pass transistor with a gate of Vaar
we will get Vaa-Vin out. However, if we put V-V, into a pass transistor with a gate of V 44, we get
Vaa-Vin 0ut, not V-2V, Consider what happens when there is a pass transistor driving another
pass transistor. The output of the first pass trénsistor is Vyq-Vip. The output of the sccond transistor

is V44-2V,,. This voltage is too small to be safcly used as the input to anything, and represents a

design error.
vdd Vdd Vdd vdd
_LV“'W' M1 vag-vin
Vdd-2Vth
Examples of Threshold Drops
2.4 Races

A race condition occurs whcn the output of a particular pigcc of logic depends on one of two
signals reaching a certain place before the other. A typical example is the outbut of a carry chain
being gated to some further piecc of logic by a clbck. There is a race between the carry output and
the clock ira_nsition. "The carry output should get there before the clock transition occurs, but the
speed of both signals might depend on the number of gate delays involved. Usually, races are
avoided through the usc 6f clocks with periods iong cnough to assurc that all signals have been

propagated as far as possible.
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2.5 High level design errors

The large class of errors that do not relate to the layout, but represent the wrong algoriﬂ\m
implemented corrcctly is referred to as high level design errors. An cxample of this is a PLA
auibmatically programmed from microcode when there is an crror in‘thc microcode. It is felt that
these errors should be caught by high level simulation, but sometimes they sncak lhrougil and end

up in the actual layout.
2.6 Editing errors

Each chip editor sccms to have its own peculiar types of errors that it introduces’ into the
design. The following arc some common crrors that have been discovered on chips gencrateéd at
MIT and Xerox PARC. ‘

A graphics cditor that makes it easy to lay a rectangle in the currently selected la}er, and
wﬁich allows displays at arbitrary scales, can place an unwanted fectangle on the chip. If cditing ié
done at a scale which is lérgc in relation to the size of the rectangle, this rectanglc may go unnoticed.

“With a graphics editor implemented on a display that does not have a gbod mcthod for
displaying the diffcrent layers so that they can be distinguished, it is possiblc for a rectangle to be
drawn in the wrong layer. |

Once all the subscctioné of a chip have been created, they must be wired together. When
this interconnect wiring is done using a graphics cditor, (fnc is forced ecither to use a small scale,
thereby not getting an overall view, or to use a large scale, causing thé current wire to shrink
drastically. Either way can lead to crrors. Another typical mistake is to wirc a trunk of bits from one
place to another and get the bits fchlscd. |

In layouts gencrated by computer programs, there have been various roundoff errors that
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have generated gaps in wire runs. Once these programs arce debugged, the problem gocs away, but it

still may happen the first time. Most of these errors show up as design rule violations.
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3. What Artwork Anaylsis Can Do For Us

The artwork is a very low level representation of the design. It contains no indication of
how the particular design was created, nor the function of the chip. However, it does contain the '
information necessary to manufacture the chip. In theory, there is ecnough information contained in
the artwork to extract the clectrical circuit along with its associated paramétcrs such as resistances and
capacitances. This information will help us check for zill the errors listed in the previous chapter.

It should be noted that the low level qf the information can causc problems. It is hard to
relate errors discovered in the artwork to the higher level entity that gcnemtcd'thc particular picce of
artwork. An crror in a replicated section of anv;ork will be reported many times by the analysis
program. The computation time necessary to analyze a whole chip may be much largcvr than that
necessary to analyze cach of its components. '

In its favor, an analysis of the artwork is an analysis of what is to be manufaictured; There
are design crrors that can show up here that will not cxist at higher levels of the design process. If
such a whole chip check can be performed in an acceptable amount of time, it will be worthwhile.

The tools liste& below perform artwork analysis. Each is described along with the types of

crrors it can discover.
3.1 Design rule checker

A dcsigd rule checker checks most of the geometrical constraims that arc imposcd by the
particular process. The ways in which this might be accomplished will be discussed in the next
chapter. Oficn, the design rule checker is implemented as a geometry enéine driven by‘commands
that implement the necessary constraints. th will be scen that the éhocki‘ng of dcsign rules is not as

straightforward as it might first appear.
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There is no formal language for specifying design rules. Whilc English and pictorial
descriptions of design rules intuitively make sense, there are many cases that a computer would
consider errors but the creator of the rules would consider correct. Once the rules have been
Spcciﬁcd; the checking can be'very time-consuming if performed on the whole chip. Even though it
may be very time-consuming, a check should be done on’thc whole artwork just before it is sent ofF
to be manufactured, if time permits. This check may reveal crrors that will not show up when design
rule checking is performed on a module at a time.

- There are some design systems that make desiga rule violati(_)ns muéh harder to construct. In
DAEDALUS [2], the user can spccify‘ constraints between pairs of objects. If one object is moved;
the other object may posSibly have to be moved or‘adjusted so that all of the constraints are still

obeyed. If the user specifies cnough constraints, it will be difficult to creatc designs with dcsign rule
violations. ‘ |

In the CABBAGE system [3] the individual cells are specificd in a symbolic description
language (“stick diagram™). ’I‘hc CABBAGé system will convert a stick representation to an actual

layout, compacting as it goes. The layouts' produced by CABBAGE arc free from dcsigh rule

violations.
3.2 Node extractor

Other verification programs necd higher level information cxtrac\tcd from the artwork by the '
node extractor. ‘The first picce of information to be extracted is a list of transistors. Each transistor
contains the namcs of threc nodcs: the gate, the source, and the drain. In addition, there is an
indication of the modc of transistor: enhancement or depletion. While extracting this infonﬁation,

there are some syntactic checks that can be performed.
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A céntact cut that contains no metal represents an error. It méy be argued that this type of
error should be specificd in the design rules; nevertheless, the node extractor will catch it too. At
some point, the designer may give symbolic names to some of the nodes. Names must be given to
VD_D and GND,! are usually given to all of th.c input and output pads, and are sometimes given to |
the moré important internal nodes (e.g. the outputs of a PLLA). Given these names, a syntactic check
can be made to be sure that no two nodes with different names are shorted togéther and that all
nodcs with the s:;mc name are rcally connected together. Somctitﬁcs, itis pqsiblc to hévc the design

‘system provide a list of signal names, layers, and coordinates, along with the artwork,

Further information can be extracted from the artwork. The circuil parameters, including
node cabacitanceg rcsistancc.s, and transistor gecometrics, would be uscful. It should be kept in mind
that the resulting output is likely to be very large. In addition, some of these parameters arc difficult

to compute.
3.3 Static evaluator

It might seem that the next logical verification step is simulation of the extracted circuit.
However, simulation is very time-consuming and any errors that can be dctected before simuiaﬁon
can save a lot of time later. Continuing with the compiler analogy of syntactic and semantic errors,
the static evaluator will look for _seman-lic errors.

Typical errors detected by this cvalua;or include transistors with gates that arc VDD or
GND, malformed superbuffers, incorrectly used depletion mode transistors, and transistors which if

turncd on would short VDI to GND. In addition, a check is made to ensurc that cvery node can

I'The node in the extracted circuit which will be connccted to V4 in the actual chip will be referred 1o as VDD. The node
that will be grounded in the actual chip will be referred to as GND.
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potentially be pulled up and pulled down. A check is also made to detect two threshold drops.
3.4 Dynamic evaluator

At some point, there arc certain errors that can be detected only through simulation. Using |
circuits derived from the artwork, there arc different levels of simulation possible. For checking the
actual function computed by the chip. a switch-level simulator is needed. ~ For checking the
performance of small scctions of the design, a SPICE [4] type circuit simulator wimld be best. Such
a simulator accepts circuit descriptions that include resistors, capacitors, and transistors, and performs
numecrical integration to find a solution to the circuit. A third simulator may be nccessary for
dctection of race conditions and for performing gross timing'cStimtes.

There are many simulators in cxistence5,6,7, 8,9] Few of them expect to have input
derived from the actual artwork, and most are based on gates instcad of transistors. Often they offer
facilitics for defining large objccté such as registers, memory, and PL.As. Most of thcse simulators are
unsuitable, since we necd a simulator that can handle the bi-dircctional natuk of pass transistors.
Fortunately, it is not too hard to create a simulator that can use the output of the nod-e extractor.

The design of such a simulator is simplified becausc of the uniform low level input:
transistors and nodes -- initially there are no gates, no PLAs, and no registers transistors. Also, there
is no hierarchical description of the input. This means that the simulator must simulate cach bit of a
mémory array, cach bit of a shift register, and cach term in a PLA. This makes it hard to write a
simulator that runs fast. Some of the spced problems can be overcome through the usc of clever
- algorithms, and some, through the use of fast computers. If switch level simulations of \&holc chips

are considered important cnough, special purpose hardware can be created.




4. Design Rule Checkers

One of the first verification tools that a chip designer usecs is a dcsign rule checker. Héving
designed and laid out a chip according to certain gcomct_rical constraints, a designer wants a tool that
will check the work. At first, this might scem like a simple though po&ibly time-consuming task.
All one must do is feed the rules into the computer and ask it to look for vjolations. We shall soon
scc that it is not that easy. |

The rcasoning bchind the design rules should be kept in. mind when thinking about
prdgrams that check for violations. One ur;deﬂying premise is that the various layers, when
manufactured, may be misaligned by as much as a lambda. This explains the onc lambda overlap
réquircd around contact cuts and the onc lambda spacing required between polysilicon and
diffusion. Diffusion must be spaced greater than polysilicon because the diffusion proccess is harder
to control, possnbly resulting in wider diffusion lines than desired. Metal is patterned last, and runs
on top of all the other layers. Since they have such a rough terrain to follow, metal wircs must be
wide and spaced far from other metal wires.

One construction that poses problems for the dcﬁgn rule checkers is the bufting conﬁct It
violates many of the design rules but is still considered legal. A butting contact can be viewed as two
normal contacts (one from polysilicon to metal, and onc from metal to diffusion) placed closer
together than is otherwisc allowed by the design rules. This is a space saving design "trick” that is
known to work. The design rule checker must make sure that butting contacts obey the butting
contact design rule and that the rest of the artwork obeys the other design rules.

There scem to be two basic approaches to design rule éhecking. The first, which was
rescarched for this thesis, is called the raster scan method and takes as input a bitmap represcntation

of the artwork. The second approach, referred to as the rectangle method, deals with the artwork asa
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scries of rectangles and performs opcrations on these rectangles. ~The latter method is the most
commonly used one in performing design rule checks. A discussion of the raster scan algorithm for
performing design rules checks comes next, followed by a brief discussion of the way a typical

rectangle method works.
4.1 Raster scan method

The raster scan algorithm is based on the assumpﬁon that design rules can be checked
locally, and that an cxamination of a small arca of the chip is sufficient to check the design in that
small arca. | A small window is passed over the chip, and if all design rules are obeyed in the small
window, then the 0\;crall chip also obeys all the design rules. The problem of checking design rules
overall is therefore reduced to the problem éf checking design rules in a small area.

Assume that the artwork can be represented on a lambda grid with each pixel1 containing a
bit for cach layer. The small window is four lambda square, the smallest size it can be to check that
metal lines afe at least three lambda wide. The window is moved over the bitmap, such that every
pixel appears in every position of the window. This can be accomplished by buffering three scan
lines” plus four pixels in memory, and reading the bitmap in raster scan order. At each position, the

four-by-four square is checked for legality.

Ta Aterm meaning "picture element”, borrowed from computer graphics. We will use this to represent the smallest square unit
of resolution. : '
2lely, portions of four scan lines are buffered. The space used is equivalent to three whole scan lines.
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Buffer 'i‘hr’cc Scan Lines and Four Pixels

‘The problem has now been reduced to design rule checking of four-by-four squarcs. The
reader should pausc and conﬁdcr the problem; ariving at an accceptable solution required a great
deal of effort.

The design rules break down naturally into three types of checks: single-layer width and
spacing checks, transistor checks, and cdntact cut checks. The width and spacing chcck; will be
considered first. The sub-problem to be solved is finding an algorithn that, given a three-by-three
box consisting of zcﬁ)s and oncs, can check to determine whether any pbssible larger view containing
that box is legal; ie., whcther- the ones meet the constraint of being at least two wide. Since the total
number of three-by-three boxes is only =512 (including rotations. and reﬂccﬁons), they could be
enumcrated by hand. This would not help us solve the four-by-four casc, however. The algorithm
finally uscd will not find all the design rule violations, just those that are critical; ie thosc wires
through which current might actually flow. |

For an crfor to occur, at lcast a single "1" must be alonc. In some three-by-three box, this
"1" will be in the ccnter; Scanning around this ccﬁter "1", an altemation (A) of zcros and oncs will
be found. If the perimeter contained "10010101", then there Would be threc 1" to "0 altcrnations

and three "0" to "1" alternations, or six altcrnations total. 1f A =0, then the perimeter must be cither
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all zeros or all oncs, cither of which is acceptable. If A=2, the box will look like a group of ones
poking in from the outside to the center, which is finc. Four or more alternations will vlook like a
Juse, where a wirc enters from outside the box, gocs through the center (which is one widc) and exits

out another side. This last case is an error.

0 10 0 0 0 0190

10 0 10 0 10

1 0 0 1 0 0 0 10

00 0 0 0 0 0 O 0 00 0 10
00 01 0 0 0 1 0 P11
0 0 0 0 0O 0 1 0 0 10 1 01
Legal Legal Legal Error Error

Center =0 A=0 A=2 A=4 A=6

Examples of the Width of Two Checking Algorithm

With this algorithm, a bitmap that is 512 bits long can be created that indicates which
three-by-three squares are legal and which are not. This will allow width checks on polysiiicon and
diffusion. Sincc a spacing check on polysilicon is the same as a width check on white space, a
spacing check can also be performed on polysilicon.

The above algorithm uses three-by-three boxes to perfohn a minimum nfdlh of two test.
Using four-by-four boxes, the same method can perform a minimum width of three test, given that
the \.vidth of two test has already be,en passed. At some point after the minimum width of two test
has been passed four oncs will appear in the center of a four-by-four box. When such a box is
found, the alternation rules explained previously are used to check whether the width of three test
has been pasc}i. A four-by-four box that does nc;t have four oncs in. the center automatically passes,
because it does not give any additional information for the widlh of three test.

Given the minimum width of two test and minimum width of three test, we can perform the



following design rule checks:

1) width2(polysilicon) /* poly width */

2)  width2(not polysilicon) /* poly spacing */

3)  width2(diffusion) /* diffusion width */
4)  width3(diffusion)

5)  width2(not diffusion) /* diffusion spacing */
6)  width2(metal) /* metal width */

7) width3(mctaﬁ

8)  width2(not mctal) /* metal spacing */

~9)  width3(not metal)
10) width2(contact cuts) /* contact cut width */
11)  width2(not contact cuts) /* contact cut spacing */

The next sct of checks to be performed are those involving contact cuts. Contact cuts are to
be used in very constrained ways. Ignoring the butting contact for a moment, the only contact cuts
the author has cver scen have been cither 2x2 or 2x4 in size. Using a four-by-four window, there is
no way to constrain the contact cuts to be cither 2x2 or 2x4. ‘They can only be constrained to a size
of 2xn where n>1.! The casicst way to enforce this 2x# constraint is to crc'atc a bitmap for contact cut
width chcckiﬁg and change step # 10 above t(; usc this new bitmap. If the center of the four-by-four

window contains contact cut, then the whole window must contain metal. Also, in that case the

whole window must contain polysilicon and no diffusion, or diffusion and no polysilicon.

IWhilc there is no design rule for the maximum size of contact cuts, large ones are considered bad.
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Simple Contact Cut Rule

When butting contacts arc considered, there are a few more cascs to handle. 'There are three
views of a butting contact that have a contact cut in the center. A check is made to be sure that the

current view is onc of the three legal views.

DDDT DDT P DT PP
DDDT DDTUP DTPFP
DDDT DDTP DT PP
DDDT DDT®P IDTP P

" Butting Contact Extenstions to the Rule (T = Pand D)

Another factor that must be taken into account is a two-wide diffusion that desigticfs often extend

under the polysilicon in pullup resistors,

DDTP DDTZP DT PP DT P P -
DDTP DDTT DT PP DT TT
DDTT DDTT DTTT DT TT
DDTT DDTP DT T T DT PP

Morc Butting Contact Extensions to the Rule

Another contact cut design rule indicates that a contact cut to diffusion must be at lcast two



lambda from a transistor. ‘This is checked by looking for both polysilicon and contact cut present in
thc window. When that is fmjnd, a ncw spacing check of width two is performed on the new layer

created from the union of the polysilicon and contact cut layers. All of these contact cut design rules

arc summarized here:
10") special_width2(contact cuts) /* contact cut width (2xn) */
12) if (center is contact cut) contact() /* check special contact cut cascs */

13) if (contact cuts and polysilicon) width2(not (contact cut or polysilicon))
/* check distance from transistor */

The last set of checks is for transistors. Polysilicon must overlap diffusion by two lambda.
In addition, diffusion must overlap polysilicon by two lambda. Catching all of the cases in one
check is difficult. Consider the following case. A vertical, two wide diffusion wire is present. To its
left is a horizontal, two wide pulysilicm; wire whose right cnd’ is onc lambda away from the d‘iffusion
wire. There is no design rule error here because the minimum spacing between polysilicon and
diffusion is onc lambda. If the polysilicon wire is moved onc lambda to the right, a spacing error
occurs. If it is moved another lambda to the right, a transistor error occurs. Another one lambda
move to the right results iI; another transistor crror. - Yet another one lambda move to the right

causes the wirc to poke out the other side by only onc lambda and this is also an error. One final

move onc lambda to the right gives a legal transistor. All these cases must be detected.
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Examples of Transistor Errors

The onc lambda overlap can be detected by subtracting the diffusion layer from the
polysilicon layer and looking for an object which is one wide. The same check can be uscd for
diffusion extending past polysilicon.

The polysilicon to diffusion spacing can be checked by looking at a two-by-two box. Since
the number of legal two-by-two boxes is small, the list of all possible boxes was gencrated by hand.

This check handles the case where polysilicon and diffusion touch but do not cross. -




v w P P DD T T
i Middle of solid area
W W P P D D r T
P W D .

Inside bend in P or D wire
P P D D
P W D W

Outside bend in P or D wire

w W W .

WV W W W .

Straight section of P or D wire
P P DD .
PP DD
R R I:dge of transistor
r 1 r 1
P W .
T D comer of transistor
P W D W w D W P .
. Butting contacts
r w T W T D T P
P W D W W P W D )

Bends in transistors

P P DD LR W W

L.egal Two-by-Two Views of Transistors (W = Whitc)

The other two éascs can be checked by looking at a two-by-three box in which the lower left

and lower center cells contain both polysilicon and diffusion. The legal combinations of the rest of

the elements have been determined experimentally and entered by hand. To summarize the

transistor checks:

14)  widthl(polysilicon-diffusion)

15)  widthl(diffusion-polysilicon)

16) pdspace(polysilicon,diffusion)
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17) tcheck(polysilicon,diffusion)

Scaning at onc lambda per pixel will not allow the checkcf to verify that ion implantation
extends onc and a half lambda beyond transistors. However, it will allow the checker to look for at
least a onc Iambda overlap. If the center of z; three-by-three square contains T and 1, then a check is
made to be sure that the whole three-by-three square contains T. A design rule states that ion
implantation must be once and a half lambda away from a non-implanted transistor. Using the same
scheme, if the center of a three-by-three square contains T and no I, then the whole three-by-three

square should containno L.

18) checki(polysilicon diffusion,ion)

All the above checks performed at once will determine if a four-by-four window obeys the
design rules. Even if the function that performs these checks is slow, a caching scheme can be used
to speed up the program.

_ Though the raster scan design rule checking algorithm works, there are some probl'ch with
it. No checks with the ion implantation mask are currently made. Since all rectangies are rounded
to the nearest lambda coordinate and since the ion implantation -mask is dsually on a half lambda
boundary, some careful thought is nccessary to fit it into this scheme. - Rounding everything to .
lambda boundaries can cause other problems. Some designers make use of the half lambda grid to
avoid spacing crrors. The design ruic checker might report spacing crrors when these designs are
rounded to a lambda grid. Minimum width diagonal rectangles will contain width errors when
placed on a iambda grid. Trying to avoid these problems by moving to a half lambda grid docs not
work, for two rcasons. First, the design rule check would také four times as long. Sccond, the
window would be scven-by-seven and the current algorithms for looking at four-by-four windows

 and detecting errors do not scale up; - A new algorithm would be needed.
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Spacing errors are often reported when in fact none exist. This situation can occur when a
wire goes right, up a lambda, and left. At the bend, there is a onc lambda square of white space. It

looks like there arc two wires too close together, though they arc really both part of the same wire.

P PP
VW W
VwP

Spacing Error that Should Not be Reported .

These situations are examined more closely by another part of the program, so that only the real
spacing errors are rcported. ‘This part of the program needs knowledge of the conncctivity (ie.,
contact cuts). Currcntl} it does a ponds and islands check on the current layer using a sii-by-six
window. This removes most of the spurious crror reports. Perhaps the node finder described in the
next chapter should be run before the design rule checkér. |

it should be noted that all knowledge of the design rules is embedded in the actual code of
the program and in pre-gencrated bit tables. The design rules themsclves are not input directly into
the checker. The rules were intcrpret_cd by the author, not by a pn»gmh, to produce the necessary
checks. Wheén the design rules change, the programs will require modification. It is even possible
that some future design rufes cannot be checked with a four-by-four window.

The advantages of this method arc its speed, its ability to check entirc chips, and its ability to
report only Icgitimate crrors. In aﬂdition, this checker could possibly be implemented as a VLSI

chip itsclf, allowing the checking to be very fast.
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4.2 Rectangle method

The rectangle mcthdd can best.bc described as a gcometry engine that works on a sct of
rectangles and accepts commands like union, expand,' width, and so on. 'The design rules are
expressed in terms of these commands. To avoid spurious error reports, all the intersecting and
abutting rectangles of a single layer must be combincd together into a polygon. A width check is
then performed on this polygon, and spacing checks are performed between polygons. A typical
way to perform spacing checks is to cnlarge cach polygon by half of the minimum spacing and then
look for intersccting polygons.

Care must be taken in implementing the various opcmtiuns’of the geometry engine. The
simple approach for finding intersecting rectangles is to compare cach rectangle to all the others.
This results in O(nz) performance. Speed improvements can be realized by cither sorting or
partitioning the input. The expand opcration can be tricky to implement, since it may causc a simple

polygon to acquire an interior arca that did not exist previously.

= [

I

O

Original Expand 1 Expand 2 Expand 3

‘The Fxpanding Polygon Problem

The research performed for this thesis did not include the development of a rectangle-based

lExpand will enlarge a rectangle (or polygon) by a specificd amount in all directions.  This is useful in checking minimum
ing. .
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design rule checker. Most of the existing design rule checkers use the rectangle approach, and the
reader is referred to them for more information: McCaw [10], Wilcox [11]. Rosenberg and Benbassat

[12]. Lindsay and Preas[13], and Sciler [14].
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5. Node Extractor

This chapter discusses the program that has come to be known as the node extractor. It
extracts information about all the transistors along with their conncctivity from the mask
descriptions. In the process, certain types of errors are detected. First, a basic description of how the
node extractor works is presented. Following that is a discussion of some of the extensions that have

been implemented.
5.1 Basic algorithm

The node cxtractor has two tasks to perform. First, it must follow the connectivity of the
wires. Sccond, it must find fransistors. The original input format consists of a hicrarchical set of
symbols. Each symbol may contain both basic rectangles and calls to other symbols. A clever
program might be able to extract the circuit description from the lowest level symbol (i.e. a symbol
that contains only boxes), and using that, build up the whole circuit, following the symbol-calling
vhicrar‘chy and cxtracting cach symbol only once. Since CIF places no restrictions on the
combination of symbols and boxes, a program of this type would have many strange cases to
consider. The chip designer may run wires over a symbol. These wires might cause new transistors
to be crcated or certain nodes to be conhcctcd together (e.g. as in PLA programming). This
appréach seemed too hard to implcmént, cven though it would potentially run very fast.

If the CIF symbol hicrarchy is not uscd, it scems worthwhile to fully instantiate the chip,
creating a file of rectangles. The connectivity can be followed by finding all the rectangles of a given
layer that cither abut or intersect. A transistor is formed whenever a polysilicon rectangle intersects a
diffusion -rcctangle. Though it sounds like this method should work, there arc many problems.

Finding intersecting rectangles is a time-consuming task. Finding all the diffusion rectangles that
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intersect and calling them a node is not really correct, since a diffusion node becomes two nodes

whenever the original is crossed by polysiticon. The polysilicon rectangle could have been made up

of many smaller polysilicon rectangles. In genceral, the whole chip could have been made up of one ,

lambda squarc rectangles. This means that the rectangle method could not rely on the dcsigner
haw/ing specified cverything with "nice” rectangles, but must assume the worst possible case. The
gencral solution seems to require thc_ merging into polygons of all rectangles that interscct or abut.
Therefore, algorithms now deal with the unions :@nd intersections of polygons. This method seemed
. too complicated, so a simpler, but possibly slower method was sought.

Since the design rules were expressed in lambda, and since the designers with whom 1
worked designed in terms of lambda, a birmap-based appmach scemed feasible. In such a scheme,
the whole chip would be represented as a big bitmap with cach clement representing one square
lambda of the chip. The term bitmap is a little mislcading since cach "bit" really contains one bit for
cach layer; pixcl-map might be a better term. While it might be impractical to store the whole
bitmap anywhere at one time, there might be algorithms that can process it in raster scan order,
buffering only a few scan lines in memory at any one time. Raster scan order is lcft to right, top to
bottom.

Before moving on to some algorithms that deal with bitmap images, there arc a few words to
be said in their favor. Once the rectangle format has been converted into a bitmap, information
about which rectangle created what bit has been lost. ‘This is good because it has the cffect of
merging intersccting and abutting rectangles together with little effort,  All subsequent algorithms
arc insulated from gcometrical "features” such as arbitrary polygons, round flashces, and SO on,
Thesc have to be dealt with only in one place. The disadvantage of moving to a bitmap version of

the chip is that the run time of any algorithms will probably be proportional to the arca of the chip.



-37-

The basic algoﬁlhm for following connccted regions in a bitmap image comes from the
classic ponds and islands problem which is defined as follows. Givén a two dimensional array of
zeros and ones, where the zeros represent water and the oncs land, write a program that counts the
number of land masses and prints out the arca of cach one. Assume that land must connect

horizontally and vertically but not diagonally.

0 00 0 0 0 00 0O Answer for this example:
o1 1 1]o of1 1]o o 4 land masoes
0{11j0 0 0 0 O0}1 L}0 Areas are 1, 6, 8, and 20
of1fo[1fo[1 1 1 1]o
0{1{0 0 0]J1]0 0 0 O
01 1 1 1 1]0j1 110
0O 00 0 0 0 0 Of1L]0
0}j1§j0 Oofj1j0f1 1 1}0
oj1 1 1 llo 1 1fo o
0 0 0.00 0 000 ¢
Classic Ponds and Islands Problem

A common solution uses a procedure that places a foofprint on the current piece of land and calls
itsclf recursively for cach of the four surrounding squares, returning when the current square is water
or contains a footprint. The main driving program scans the whole array, calling the footprint
procedure for each piece of land that has not yet been walked on. This solution is simple to program
and easy to undecrstand. .For our purposes it is not suitable, since it randomly accesses the bitmap
array. This would result in many page faults when following a node like the metal layer that makes
up V4. [t would also require the whole bitmap to be part of the program’s virtual address space

(>224 pixels for large chips).




5.2 Ponds and islands

While I was thinking about the ponds and islands problem, the following algorithm came to
mind. The datacan be processed in raster scan order, with one scan line buffered in mc:mory.1 At .
cach point, access is necded to three bits of information: the curreat bit, the bit to the left, and the

bit above,

0 000G0O0OGO0GO0Q
0111001100
0100000110 .
010 10[ft 1110l Ji]* uw

One scan linebuffered = [0 1 0 0 0]1 0 0 0 0] [0]1] <+ Curent

o1 11110110 » L
0000000010
0100101110
0111101100
0 000000000

Buffer One Scan Line; Look Up and Left

Since there are three bits of information, there arc eight cascs to consider. Four of them can be
handled at once. (1-4) If the current bit is water, there is nothing to do. (5) If thé current bit is land
and the other bits are water, then the upper left corner of a new picce of land has been found. This
information is remembcred in an array, as big as the scan line, and the ne;v picce of land is assigned a
unique number, (6) If the current bit is lan& and the bit to the left is land, and the bit above is
water, then this is the top of a horizontal strip and the number is the same as the number to the left.
(7) When the top is .Iand and the lcﬂ is water, then this is the left edge of a vertical strip and the

nuimber is the same as the number above. (8) The interesting situations occur when all three bits are

1Really, portions of two scan lines are buffered. The total space used is equivalent to that of a single scan line.
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land. (8a) If the number above is the same as the number to the left, then that must be the number
for the current bit. (8b) If the numbers are different, the lower right inside corner of some shape has
been found, and two pieces of land which previously seemed distinct are found to be part of the

Same mass.

111 22

I 2]

1 3 41417X

X X

X X X X X X X
X

X X X X X

An Example of Case (8b), 2 and 4 Must be Mcrged Together

Some bookkeeping is needed to update the counts of one land mass number with those of the other

land mass.



l 1o No action required

0]
D " Assign unique number
0
I T Current number = left number

[,0 ] Current number = top number

Current number = Merge(lef.top)

{1]1

Basic Raster-Scan Ponds and Islands Algorithm

The same algorithm that works with land and water will also work with polysilicon,
diffusion, and mctal. For the purposes of following wires and finding transistors, four _derived layers
will be used. Mctal (M) and polysilicon (P) correspond t‘o the mask layers by the same name. In the
node extractor, diffusion (D) will be the diﬁMn mask minus the polysilicon mask and transistors
(1) will be the diffusion mask intersected Wit;l the polysilicon mask.

The basic algoﬁthm for following connectivity given a raster scan version of the masks can
be thought of as a ponds and islands search on four layers at once. The clectrical properties of
contact cuts can be qddcd by checking to sce if the current cell contains P, M, and C. If it does,
» merge the-numbcr of the polysilicon layer with the number of the metal layer. If not, check the
current cell for D, M and C, and merge the number of the metal layer with the number of the
diffusion laycr if this is the case. A simple design rule check can be pcrformcd at this time if desired.
If the current cell contains M and C but no P or D then it represents an unnecessary use of the

coﬁtac( cut and should probably be flagged as an ervor.
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5.3 Oh where, oh where, can my transistor be?

While aﬂ the above has been necessary, it does not find transistors. However, it docs give us
a good data base upon which to base a transistor detection algorithm. The following information is
a;/ailablc in the interior of a transistor: the node number of the T layer, the node number of the P
layer, and the ion implantation bit. However, edges of the transistor layer actually contain the uscful
information, namely the node numbers of the diffusions. At the center of the transistor, there is no
diffusion, and hence no diffusion node numbers.

The node extractor finds pieces of transistors and writes them into a file. These pieces will
be processed further by another program. A piece of a transistor consists of the node numbers for T,
P, and D, along with a bit for ion implantation. During ihe ponds and islands processing, the
transistor finder looks for one Qf four cases: (1) current cell is transistor and left is diffusion, (2)
current ccll is diffusion and left is transistor, (3) current ccll is transistor and up is diffusion, or (4)
cumrent cell is diffusion and up is transistor. For cach match (and there may be more than one), a
transistor record is generated.

D] 1] B 0
{+]1] |2]p] [p]7] [T]D

2 3

D = diffusion minus polysilicon
T = diffusion and polysilicon

Basic Transistor Finding Algorithm

After the node finder has finished, some further processing is necded on the transistor pieces
to turn them into transistors. Since some of the node numbers may have changed from the time the

transistor piece was written out until the time the node finder finishes running, all the node numbers

in the transistor picces must be updated to reflect the final node numbers. The pieces are then
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sorted by their transistor node numbers, bringing all the picces of a particular tmqsistor together.
Rcading through the sorted file, all the information on one transistor is gathered, making sure that

the polysilicon numbers are the same for each record, and a list of diffusion numbers is created. If .

there is only one diffusion number, then a degencrate transistor (i.e. a MOS capacitor) has been

fouhd; these are currently ignored. Most of these are caused by the onc lambda overlap of

polysilicon and diffusion found in butting contacts. If there arc two diffusion numbers, then a

normmal transistor has been found, and it is written out to the circuit file. If there are three or more

-different diffusion numbers associated with one transistor, then an wnusual transistor has been
found. While these transistors arc theoretically possible, I have not yet found one on an actual chip.

These unusual transistors can cither be flagged as errors or converted to some number of normal

transistors.
1 . 2
@ O 1 L 2
o [P ] L H

HAVEEEE

3. 4 T

Example of an Unusual Transistor

While this scheme for finding transistors might seem too simple at ﬁ;st, it has worked on
many designs, including some constructed with the intent of confusing it. Even butting contacts and

butting contacts in thc middlc of depletion mode pultups do not causc confusion.
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5.4 Further processing

There is an opportunity here for some further checking. Assuming that the designer has symbolic
names for some of his nodes, the program c¢an make surc that two different symbols do not have the
same node number. If there is a provision for the designer to pass symbolic names through the CIF
language and if he gives symbolic names to many signals (including the same name at many di[‘fcrc;lt
locations), then this check will éatch shorts. A similar check for the same name having two different
node numbers will catch open connections,

The program that writes the final transistor file keeps tl'qck of some illf()mation for each
node number. It knows whether that node number has been used as the gate of a transistor, and
whether the node number has been used as the source or drain of a transistor. After all the
transistors have becn processed, a check can be made for material that is not connected to any
transistors, nodes that are defined but not referenced, and nodcs that are referenced but not defined.

A nodc that is not connected to any transistors indicates a piece of material on the chip that
is not connected to anything. These picces occur for many rcasons, the most common of which is
caused by the designer’s name or logo.l Extraneous pieces of material on the chip can also come
from the usc of library cells that have unused busses. Some graphic§ editors make it easy to
accidentally drop small picces of material in the chip. Somec designers use certain layers for
align4mcnt marks. The node finder will detect all these cases.

A nodec that is referenced but not defined is a node that has only the gates of transistors

connected to it. This must represent an error, since such a node will be floating in the manufactured

Irhese logos cause problems in all phascs of artwork analysis. [lowever, it is probably best (o include them, just to check for
the case when a misplaced logo interfercs with the rest of the circuit.



chip. Input nodes will not be reported as "referenced but not defined” because the standard input
pad has a transistor with gate and source connccted to grou nd! and drain as the input. This
transistor protects the rest of the chip from static induced overvoltage.

When the transistor file is created, there are some single transistor checks that are performed.
Any transistor with a gatc of VDD or GND is flagged as a possible error. In addition, any trgnsistor

which, if tumed on, would connect VIDDD and GND togcther, is flagged. -
5.5 Extensions

For further checking and simulation, it will be useful to gather some additional information
during node cxtraciinn. 'lhé extraction of any complicated information may significantly degrade
the performance of the node extractor. The approach taken was to extract some simplc parameters
about cach node, and scc what could be derived that information. For cach of the layers on which
the ponds and islands search is performed, three numbers are extracted: the length of the left edge,

the length of the top cdge, and the area.

9]
o Increment left count of M
[mlm
M|
Increment top count of M
B
[y |
- Increment area of M
1M

~

Simple Parameter Ixtraction Algorithm

1By this point in the processing, the designer has received checkplots of his chip that have cach nodc labeled. He has told the
node extractor the numbers of VDD and GND. '
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Area =15

Example Using the Simple Parameter Extraction Algorithm

From this information, we can dcrive the cdpacilance of cach node, and the lcnglh/widlh ratio of
cach transistor. The capacitance of a node is one of the factors that influences the overall speed of
the chip. The length/width ratio of a transistor will allow certain ratio checks to be performed by
the static evaluator.

The capacitance of a nodc depends on its area and, in the casc of diffusion, its perimeter
(side-wall capacitancc); Most of the capacitance will be between a node and the substrate. Although
when metal crosses over polysilicon there is a small capacitor created between the metal and the
polysilicon, those cases will be ignored. Al capacitance will be assumed to cxist from the node to the
substrate. This assumption breaks down when the designer specifically constructs a booistrap
capacitor by placing polysilicon over diffusioa. |

While there is insufficient information cxtracted to compute the length/width ratio of an
arbitrarily shaped transistor, most transistors fall into one of three classes which cqn be computed
from our simple numbers. The gaté arca of most transistors is rectangular and therefore can be
calculated exactly and casily. If the top (T) times the left (I.) is cqual to the arca (A), then the gate
arca must bc rectangular, sincc this formula only holds for rectangles. »

If the gate arca is not rectangular, the resistance can be cstimated. To know which way the
current flows through the transistor, two orientation bits (OB’s) must be added to the transistor

record. Onc bit indicates a vertical iransistor( i.e., diffusion was found above or below the gate area)



and the other bit a horizontal transistor (i.e., diffusion was found to the left or right of the gate arca).
If both bits are sct, the transistor has bends in it (as in the output pads). Usually, thesc transistors are
two lambda wide. The length can be guessed as the arca divided by two, minus one for each bend.
Since the number of bends is unknown, only one is assumed. The cquation is Length = A2,
Width = 2. 'There is really not enough information for obtaining exact length/width ratios, so some
other method would be required if exact numbers were needed. For now, the above approach scems
to work.

The last case to consider is that of a non-rectangular transistor with only one of the two
oricntation bits set. Expericnce indicates that these usually occur in depletion mode pullups with
butting contacts. Here, the gate area is two widc at the top, changing to six wide at the bottom. If
the gate arca is two widc at onc end and the general shape has once change of width over its length,

we can calculate the resistance from our top, left, and area information. The equation is Length =

(L*W-A)(W-2), Width = 2.

X X X X
X X X X

X X X X XX X X X X X
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L=8  L=8 L=6
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A=16 A=20 A=22
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Transistors whose Resistances arc Calculated Correctly
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Currently, no attempt is made to extract the resistances of the various nodes. This
information would be useful but is hard to obtain, as mentioned before. The length/width ratios of

the transistors will be used by the static evaluator described in the following chapter.
5.6 The output format

No attempt has been made to create a network definition language suitable for all the
diffcrent levels of dcscrip[iuqand simulation. Instead, a simple format with four different types of
records is used. ‘There is a scparate record type for cach of the following: cnhancement mode
transistors, depletion mode transistors, input nodes, and node dimension records. Both types of
transistor rccdrds cm.ltain the names of the gate, source, drain, channcl length, channel width, and
coordinates on the checkplot of the transistor. The input records contain the names of the nodes
that arc inputs, for later use by the static cvaluator. The node dimension records contain the area
and pcri’metcr information for each layer of cach node, for later use by the simulator. There is no
declaration entry in the output file for each node. Instead, the names of all the nodes can be derived
from the transistor information.

The node extractor should be able to produce output suitable for input to the SPICE
simulator, if nceded, since all necessary information is extracted. If bootstrapping is used, the node
extractor would have to be chéngcd to detect capacitance between nodes (as opposed to capacitance

from a node to the substrate).



6. Static Evaluator

The development of the node extractor allowed easy conversion from artwork to a circuit
description. The obvious next step scemed to be simulation. In the process of simulating various '
designs, it became clear that there were some errors detected by simulation, which could have been
detected carlier by a program that analyzed the circuit. Such a program would perform a static
analysis of the circuit, looking for anomalous configurations of tmﬁsismrs. In addition, there are
various crrors which switch level simulation docs not detect, but for which the static evaluator could
check.

An analogy to compilers can be drawn here. The crrors that the design rule checker finds
arc like the errors detected by the syntax phase of the compiler. Errors detected by the static
cvaluator are similar to crrors detected by the semantic phase of a good compiler. Finally, errors
discovered during simulation correspond to errors discovered during exccution or interprctatjon ofa
program. A compiler miéht wam the uscr that his program contains variables which are set but not
used, or used before given a value. It might also wam the user that there arc statements in the
program that can never be reached. Similarly, the static cvaluator will find parts of the circuit which
depend on nodes that can never bc given a value, and it will locate nodes yhiéh can never be turned
on (or oﬂ).

The .static cvaluator takes, as its inp(:t, the list of transistors and input nodes output by the
node cxtractor. Each transistor is identificd by the node numbers of the gate, source, and drain,
along with its lcngtﬁIWidth ratio. In addition, there are assumed to be two distinguished nodes:
VDD and GND. No éssumption is made about clocking. The identification of input nodes is
necessary to distinguish them from undefined nodes. An input node is assumed to be potentially

pulled up or pulled down (grounded).
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6.1 Reading in the network

As cach cnhancement mode transistor is read, it is added to the program’s data base of
transistors. Certain checks are made immediately, based solely on the information contained in that
transistor. A diagnostic is generated if the gate of the transistor is cither VDD or GND. A

diagnostic is also gencrated if any of the gate, source, or drain nodes arc the same,

Gate=VDD Gate=GND Gate=Dnain Gate =Source Source=Dmain

Illegal Enhancement Mode Transistors

Deplction modc transistors arc handled in a slightly more complicated way. A dcpletion
mode transistor is typically used as a pullup resistor, in which case the drain is connccted to VDh and
the source and gate are connected together. Sometimes deplction mode transistors are used as
superbuffers, in which case the drain is still connected to VDD, but the source and gate are not
connected together. The final use of a deplction mode transistor is as é “yellow transistor”, one in
whigh the designer wants the polysilicon and diffusion wires to cross, but without creating a
transistor. If it is impléu.lted (usually indicated as a ycllow layer), a depletion mode transistor is |
crcated. That transistor is liké a resistor, in which the two wircs cross cach other at the cxpense of
some speed. The classic use of ycllow transistors occurs in multiplexors. A yellow transistor can be
detected because neither the source nor the drain are VDD, something that is never true for a

depletion mode transistor used as a pullup resistor.




Must be VDD vDD not VDD

Pullup Part of Yellow
supperbuffer transistor

Types of Depletion Mode Transistors

When a depletion mode transistor is read, a check is made to see if the gatc is the éame as

cither the source or the drain. If so, the other node must be VDID; othcrwise a diagnostic is

‘ gencrated. ‘This detects unpowcered pullup resistors.  If this transistor is a ycllow transistor, it is

converted into an cnhancement modc transistor with a gate of VDI). At this point, a check is made

to detect whether both the source and drain a‘rc VDD. All non-ycllow transistors arc entered on a
list of pullup resistors.

When an input nodc is read, it is marked as being possibly pulled up, and possibly pulled

down. This completes the initial processing of the circuit.
6.2 Depletion mode transistor checks

Once yellow transistors have been converted, there are only three ways in which depletion
modc transistors are used: nomngl pullup, inverting superbuffer, and non-inverting supcrbuffer.
While there is no rule that says these are the only uscs of depletion mode transistors, these three are
the only oncsI which have been encountered in practice by the author.! As other uses are found, they

can be added to the list of legal ones.

lone designer has depletion mode pulldowns to ground on some of his input pads. Cuirently these would be flagged as an
error. '
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Legal Uses of Depletion Mode Transistor (T)

To check for proper use of depletion mode transistors, the list of these transistors is scanned.
For cach transistor, a pattern match is performed against the set of legal uscs. Any that do not match
arc flagged as potential crrors.  In addition, the total number of cach pattern found is reported as

information for the designer.

6.3 "Stuck at” checks

For a particular node to be uscful, there must be some way to give it the value 1 and some
way to give it the value 0. In gencral, it is impossible to determinc if a given node can ever takcon a
particular value without simulating the circuit. However, a simple check can be made by assuming
certain transistors can be turned on and verifying that for each node, a path exists to a pulled up
node and to ground. |

A secrics of passcs is madcy over the enhancement transistor data basc' until no more
propagations occur. At cach transistor, a check is made to sec if one side of the transistor is pulled up
and the otﬁcr unmarked. If so the unmarked side is marked as pulled up (this counts as a
propagation). The same test is made for ground. When this proccs scttles, a scan is made of all the
nodes. A node that does not have both the pulled up and pulled down bits sct is flagged ;\s an crror.

In an actual chip, especially ones designed cither by a computer or with librarics of cells,
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these “stuck at" conditions often occur and arc not considered crrors. Typically, certain parts of a
PLA come in pairs, with two pullups in cach pair. If one of the mintenn lincs is not used, there will
be no way to sct it to zero; it will be stuck at one. If a designer uses only part of the function of a
predefined ccll, the unused part may contain some “stuck at” errors. Even though a spurious error
mcésage might occur, the checks scem worth performing. It does not take long to review all the

warnings output by the program.
6.4 Threshold checks

Eardier, the problems of driving a pass transistor with a signal that is one or more threshold
drops below V gy were discussed. The database that has been built so far can be used to check for
that type of error. Two items must be detected: (1) a signal one threshold drop below V 4. and (2)
what a pass transiélor looks like. ‘

In the previous section, multiple passes were made over the network during which each
nodc was marked as potentially pulled up. To determine threshold drops, more care in our marking
is nccessary. Any node that has a depletion mode pullup resistor attached to it will bc'marked
"pulled up”, as will any node that is an input node. The nodes that can be reached from pulled up
nodes will be marked “indirectly pulled up”. This indicates that thcse nodes are at least one
threshold below V4. A pass transistor with a gate driven by an “indircctly pulled up™ node is an
error.

Currently, the method for detecting pass transistors is not foolproof; some of them might be
missed. Pass transis‘tom must be distinguished from transistors in pulldown chains. One '

distinguishing characteristic of transistors in pulldown chains is that therc arc no transistor gates

connccted to the intermediate nodes in the pulldown chain. For a pass transistor to be uscful, the
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gatc of some other transistor must cventually use the value passed through it, which means that there
must be a node with gates connected to it somewhere down the line. The current scheme does not
implement the "down the line” check. Ifit finds a transistor with a gate conncected to an "indirectly
pulled up” node, a source connected to a node that is "indirectly pulled up”, and gates connécted to
the drain, the transistor is flagged as a possible error.

Though depletion mode pullups used in superbuffers should have their gates connected to

nodes that arc "pulled up”, this check is not currently made.

6.5 Ratio checks

The ratio of; the size of the pullup resistor to the size of the pulldown resistor should be
four{l1] The effect of driving a pulldown transistor with a V4,-V,, signal is to double its resistance.
Since the node extractor makes an attempt to calculate the length and width of cach transistor, an
attempt can also be made to check the pullup/pulldown ratio. The first problem is locating the
appropriate transistors on which to perform the check. Finding the pullup transistor is easy; from
there it is necessary to look for possible pulldown paths.

The following scheme for finding pulldown paths was devised after much experimentation.
A pulldown path is a path from a pulled up node to ground that passcs through pulldown
transistors. Each pulldown trénsistor is visited no more than once. There are no gatcs connected to
an intenncdiate node, and nonc of the intermediate nodes are pulled up. No pulldown path is

longer than seven transistors (or some other arbitrarily chosen small number).



Possibic pulidown paths are:
AB
- AD
CB
CD

Examples of Possible Pulidown Paths

After finding a pulldown path, the ratio calculation is fairly straightforward, though it
should include the fact th;ll transist(;rs with gates that arc “indirectly pulled up” arc twice the
resistance of those with gates that are "pulled up™. One problem pertains to ratios that are not
exactly four. Most chips will work if the ratio is off by a small amount. The ratio affects both the
switching spced, and the thresholds at which certain voltages are said to be zero or one. Onc point of
view allows for accepting a range of legal ratios instcad of an absolute ratio of four. On the other
hand, a chip designer who very carcfully made surc that cach ratio was cxactly four might be
interested to know where a mistake occurred. Currently, the program checks }‘or the cxac.t value,
Experience indicates that chips cither contain almost no violations or very many. The outpu't can be
sorted on the ratios so that the extremes can be cxamined first, and multiple occurrences of the same
crrors are listed together.

A nor gate contains several pulldown paths. The ratio check is performed for cach path
indcpendently.  If both pulldown transistors were turned on at once, the node would be pulled
down faster than if only onc were turned on. ‘This is not bad, and corresponds to a ratio of cight to
onc. Each of the pulldown paths in a nor gate could have a different resistance. These will be

considered onc at a time and any that are in error will be reported.
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7. Simulators

After all the crrors thét can be detected through static analysis have been rcmovéd. it is time
for dynamic analysis, or simulation. Though the rcsearch performed for this thesis did not result in
the creation of a simulator by the author, it did result in some further simulation rescarch by other
people. An in-depth discussion of simulation docs not belong in this thesis, but an overview ;)f
simulation is appropriate, aloﬁg with a description of two possible algorithms for pcrf()nning'
switch-level simulation. For decper coverage of simulation issucs, the rcader is referred to Bryant

[15] and Terman [16].
1.1 Different types of simulators

There are many different levels at which simulation of VLSI circuits cal; be performed.
- Usually, simulation at a low level implics circuit simulation. The input is a sct of circuit elements:
resistors, capacitors, transistors (with length/width ratios), voltage sources, and input signals (eg.,
square waves of a specified frequency). The output is a scries of graphs, showing thc waveforms of
cach signal. The algorithm performs many scparate integration stcps for cach unit of simulated time.
This type of simulator is exemplificd by SPICE which is usually run on small circuits (on the order
of an output pad) and is expensive to run.

The next level up from cin:;xit simulation is switch-level simulation. In this type, transistors
arc modcled as switches that are cither on or off. Fixed delays are associated with the transmission of
signals and With the changing of state of transistors. This will be the level of simulation emphasized
in the rest of this chapter.

One level up from switch-level simulation is gate-level simulation. (A gate is composed of

two or more transistors.) The input to a gatc-level simulator consists of a list of objects with their



inputs, outputs, and information describing their intcrconncections. Typical objects include nand
gates, inverters, and possibly registers and memories. This level of simulation is used for debugging
TTL circuits. It is not a good method for modeling componcnts of VLSI circuits, because there are
certain circuit configurations which occur in VLSI circuits that cannot be modeled as objects with
inpﬁts and outputs. Examples include pass transistors and circuits with charge sharing.

The highest level of simulation is usually called functional simulation. This level of
simulation docs not have any information about the underlying circuit (since the circuit might not
-have been designed yet). Instead., it tries to model the input/output behavior of the component
modules. For example, if the chip is going to have a finite state machinc as the main controller, then
that will be simulatcd as a single module. Program variables are used to represent the chip’s
registers.  Subroutines are used to model particular picces of the chip. This type of simulation
usually runs very fast, allowing the designer to simulate many clock cycles. The clever designer will
develop test data with a functional simulator and use it to test the final chip. Idcally, the output

from the functional simulator should agree with the output from a switch-level simulator.
7.2 A possible design of a switch-level simulator

For simulating the information derived »from the artwork, wi&h-level simulation is the
appropriate level of simulation to use.. Circyit level simulation is too low a level, since the user is
usually not interested in the acfual waveforms that occur at cach node in the chip. If all of the
conscrvative design rules have been obeyed, the chip should work (though it might logically
compute a result different from what is desired). [n addition, today's designs are too large to be
simulatcd as a whole at the circuit level. On the other hand, gatc-level simulation is too high a level,

since this type of simulator docs not model all of the possible nMOS circuits well. The output of the
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-node extractor would require additional processing to group transistors into gate information, which

could be used as input for a gate-level simulator. This would be difﬁcult. howevecr, since it is not
" always pos.éible to form gates from all transistors. Often a gate-level simulator contains an ex;cnsive
uscr interface, including macros and cditing capabilities, which allow an casy and concisc method for
entering a circuit. When the input is computer-gencrated, such capabilities are not needed. The
programmer of a simulator might spend so much time providing an casy method for cntering input
that he becomes distracted from the real problem of simulation. Somc attempts have been made to
modify a TTL simulator to work with nMOS, but with little success. Starting with a switch-level
simulator would probably have given better results,

Before a discussion of some possiblc implementations of a switch-level simulator, it is first
necessary to consider some issucs which arisc in typical circuits. Transistors are u§cd not only as
switches, but also as pullup resistors. This mcans that a pulled up"nodc has a valuc of 1 unless it is
also connected to ground. Charge can be stored on the gates of transistors and on nodes with
enough capacitance (such as long wires). This charge will retain the state of that node, even when
the driving force is removed. In the simulator, the assumption is made that the chargc lasts forever,
though in reality, the charge lcaks away_s!owly and must be refreshed (dynamic logic). Charge
sharing can also occur, Le., two isolated pools of charge can be merged if the pass transistor between

them is turmed on.
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Example of Charge Sharing

The difficult question to answer is what happens when a zero is merged with a one: is the result zero
or one? Often it is neither. If charge sharing is not handled, or if it comes from two cqually sized
pools of 0 and 1 merging, the resulting value will be undetined (X). Charge sharing can be cither
ignored, since most designs do not make use of it, or handled by the simulator using the capacitances
reported by the node finder. Initial values for the internal nodes must also be considered. Three
possibilitics are (1) initialize all intemai nodes to zero or one, (2) set cach node to zero or one
randomly, or (3) introduce another value (I) that indicates an initial value. The simulator should
treat X's and I's in the same manner (both as "undefined") when computing new values,‘ but the
distinction can be useful in notifying the designer if any problems occur.

Two possible methods of switch-level simulation will be presented. The first one, the
equivalence class method, is casy to cxplain and casy to implement. The second one, the event driven

method, is slightly mbre complicated but runs much faster.
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7.2.1 The equivalence class method

In the equivalence class method of simulation, three picces of information arc associated
with each node: an old state, a new state, and a bit which is set if there is a pullup transistor.on the
node. The uscr scts all the input variables to the desired values and instructs the simulator to
simulate the .circuit until it settles, at which point the values of the nodes (cither internal or output
pads) can be displayed. |

The simulator makes repeated passcs, called microsteps, over the circuit. When a pass is

- made and 1 0 morc changes take place, the simulation has scttled. A microstep consists of the

following steps.

1)  Place each node in its own equivalcnce class.

2)  For cach transistor that is turned on (i.e. its gate has a value of 1),
merge the equivalence classes of its source and drain.

3)  For cach equivalence class, determine the valuc of the equivalence
class by looking at the old valuc of cach node in the cquivalence
class. ‘The valuc is determined from a collection of nodes that may
be connected to VDD, connected to GND, pulled up, charged 1,
charged 0, initial, or undefined. Once this value is determined, the
new value of each node in the cquivalence class is sct to this value.

4)  For each node, copy the new values to the old valucs, noting if any
changes occurred.

5)  If any changes occurred, rcbcat from step 1. Otherwise, the circuit
has settled.

Somc issucs arc ignored in this simple statement of the algorithm. The two major points to
consider are the merginé of equivalence classes and the determination of the new value for the
clements in an cquivalence class from the collection of old values. What should happen when the

user connects VDD and GND together? What docs it mean when a pass transistor has a gate of X?



'The real problem with this algorithm is its speed. At cach microstep every node and every
transistor must be examined, whether a change has occurred or not. If the simulator only took action
when a change occurred, it could compute its work much faster. A good test cxample is an inverter .
chain 1000 inverters long. To simulate a signal propagating through the inverter chain, the
cquivalcnce class algorithm requires 1000*1000 opcraﬁons. However, an algorithm that recomputes
only when something changes should take only 1000 operations.

- ‘Though an inverter chain 1000 long does not usually occur on a real chip, and though many
chips contain many signals moving at the same time, an improvement in speed can be realized by an
algorithm that does not recompute the whole chip at each microstep. The cvent based simulator

incorporates such an algorithm.
7.2.2 The event vased method

In an event based simulator, each node has a bit that is set if it is pulled up, and a variable
- that contains its current state. fn addition, an event list is used to store a list of actions to be taken.
Initially, the circuit is in a consistent state (possibly all I's) and the event list is empty. The user
changes thc value of some node (usually an input) and instructs the simulator to perform
computations until the circuit settles. Once it has scttled, the va!ucs of any nodes can be examined.

When the user changes the value of a node, the simulator enqucucs on the event list an
event that contains the name of the node and its new value (i.e., forced 0 or forced 1). 'lﬁcn, the
following algorithm is exccuted until the event list is cmpty.

1)  The first event is removed from the cvent iis‘t, A ncw potential is

calculated for the node, based on the potentials of all the other
nodes connected by turncd-on transistors to this node.
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2)  If this new potential is the same as the old, then this event has no
cffect. No further processing is performed on this cvent, and the
cxecution continues from step 1. ’

3) A scan is made of all transistors with sources or drains that are
connected to this node. If the change to the new value could
possibly change some other node (that might be on the other side of
a transistor with a gate of "X"), that node is cnqucued on the event
list.

4)  If the change in value would affect any transistors with gates that
arc connected to the node, then all such transistors are cnqucued on
the cvent list.

S}  The valuc of this nodec is updated to reflect the ne\\} value and
processing continucs from step 1.

Computations of new valucs based on old oncs are performed with table lookups. The
network is stored so that it is casy to find all transistors with sources and drains (or gates) that afe
connccted to a particular node. The net result of this algorithm is that simulation is performed only
on the picces of the circuit that change.

Many simulation schemes are possible, but the abovce two should give the reader some ideas
about selecting an implementation of his own. The specific details of the simulation step have been
found to be particularly sensitive; a slight change in a functioning simulator often causes it to stop
working. It is important to have a set of test ecxamples to verify that the simulator still works after a

modification has been made.
7.3 Possible speed improvements

Therce are many possible ways to spced up the simulator. A few ideas which have been
partially implemented [16] arc discussed here,
Though it has been indicated here that a circuit should be viewed as a collection of

transistors by the simulator, oftcn an actual designer thinks in terms of gates.- An improvement in
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speed could be made if it is possible to find all the gates in a circuit, and if it is faster to simulate the
gates rather than the individual transistors which make them up. Any tmnsisiors that arc not part of
a gate would still be simulated in the usual way.

A gate can be recognized by finding a node that is pulled up and then is simply pulled down, '
ie. ﬂ1cre arc paths from the pulled up node to ground, through transistors with intermediate nodes
that are not used anywhere else. The output of the pulled up noqc may go through pass transistors,
but cventually it can only be conncected to a tmn;im‘s gates. Output from such a nbdc is a strict
function of its inputs (the gates of the transistors in the pulldown chain), and it does not i'cquin:
simulation of its component transistors to determing its value. |

A common method 'of implementing combinational circuits. and rcad-only memory uses
Programmed Logic Arrays (PLAs). If a PLA can be recognized, it can be replaced by a table lookup.
The general form of a PLA is some number of inputs connected to a number of minterms, which are
in tum connccted to outputs. The minterms arc pulled up and potentially pulied down by various
inputs. - The outputs are puncd up ahd potentially pulled down by various minterms. Such a
structurc can be recognized by one of two methods.

A check can be made for structures that fit the specific shape of a PLA. This will work, but
‘additional optimization is possible. Most PLAs have superbuffered outputs. An algorithm that
looks for blocks of logic with outputs 'that can be computed from their inputs would not only find
the PLA, but would detect that the real output is on the far side of the supcrbuffers. In addition,
such a program may find piéccs of logic that were not implemented as PLAs, but nevertheless can be
converted into tables. For cxample, it might be possible to convert an in;rcrting supcrbuffer into a

simplc inverter.



7.4 User interface

An area that is oﬂeﬁ overlookéd in simulator design is the user interface. A poor user
interface can make the fastest algorithm uscless. Unfortunately, there is no sct of rules to follow to
create a good user interface. A few of the interface-related issues to keep in mind when dcesigning a
simulator are mentioned below.

The circuit input format is not really ‘a problem when a simulator is driven from extracted
circuits, though it should be readable by the user. Many errors that are discovered during simulation
can be patched in the circuit file, using a text editor. This means that it is not necessary to re-extract
the entire circuit before simulating it again.

It should be possible to specify different step sizes during the simulation. When debugging
a circuit for the first time, the user might discover an unclocked fecdback loop resulting in a cincuit‘
that nevér settles. This user needs a command to execute a single niicmstcp or cvent ;t a time, letting
him examine values in between. After completing that process, he might want to step through the
various clock phases of the circuit himself, examining variables at each step. When the user is sure
that everything is working correctly, he nceds a commanq to execute a full clock cycle. When
individual cycles work, he will want to set up certain input vectors and run the chip through many
cycles. Some chips designed to interface with memorics may require an interface more complicated
than vectors of inputs, since they req;:im simulation of a piece of the outside world. This leads to the
- next capability.

Smﬁc chips usc a straightforward two-phasc clocking scheme, while others ﬁsc a more
complicated onc. It sccms that the only way to handle all the possible clocking and input/output
requirements is by providing the user with a facility for writing macros or programs that can call the

simulator. Such a language could be embedded in LISP. This would allow the user to tailor the



simulator to his own needs, writing routines for reset, clocking, input, and so on.

Designers often create families of custom chips. In the future, there will be a need for a
simulator to accept the circuits from a family of chips along with an interconnection list, and to
simulate the entire family at once, making sure the interface between them iscorrect. This technique
may also be useful to the designer of a chip who has not yet completed the final wiring, but who has
completed and simulated all the major picces. He may want to simulate the entire chip by hooking
up the individual picces. This facility would allow final simulation to be performed at the same time

as final wiring.



-65-

8. How Does All Of This Relate To The Real World?

Even if the work in ihis thesis were applicable only to dcsigns following the Mcad and
Conway approach, it would still be useful to a group of university researchers. The hope is. that it
can be applied to a much larger selection of designs than those used so far. In this chapter, we will
touch on some of the problems that might occur with this design verification when other types of
designs are used. |

Some overall obscrvations can be made before looking at each program in detail. The
undecrlying assumption that was used in this tﬁcsis is that dcsigqs arc expressed in tenns of lambda
(or fractions of lambda) and that the designs arc expressed in terms of rectangles.  While most
designers use some basic unit of resolution, it is often much smaller than lambda and certainly too
small to use as 'a scale for rastcrization. Most design systems support additional primitive shapes in
addition to the rectangle. Examples include round flashes (ie., circles), wires (a locus of points a
specified distance from a multi-segment line), and polygons (both convex oncs a:md others). In
industry, the assumption of orthogonal geometry does not hold.

‘The assumption that there are only six layers is not a valid one in industry. Some common
additional layers that must be handled include buried contacts,! a sccond layer of metal, a second
layer of polysilicon, and two or three more layers of ion implantation.2 None of these cxtra mask
layctﬁ add any new concepts. Thm;gh the node finder will contain more layers to follow and the
circuit file will have more types of transistors, the basic algorithms will remain the same.

When a change is made in technology (i.e., from nMOS to cMOS or bipolar), larger changes

1A method of connecting polysilicon to diffusion that does not use metal. This allows metal to be run over poly-diffusion
contacts without any interaction.” _
2The different ion implantation masks are used to control the thresholds of the transisiors.




will have to be made. While the author has never seen a design in cither of these other technologies,
the assumption is that the basic transistor finding algorithm will have to be changed. Chang [17]
presents an algorithm for performing higher level checks on bipolar devices. He claims that it is
possible to design many devices that pass all -the design rule checks, but are still incorrect. Perhaps a
sch;:mc similar to his can be used to recognize and extract the transistors in bipolar circuits.

The different design vcn’ﬁcat_ion tools will be considered onc at a time. - Any limitations that

can be forescen will be discussed, along with possible solutions to these problems.
8.1 Design rule checking

This algorithm suffers the most when brought to bear on real world problems. ‘The one
lambda grid no longer applics. The complexity of the current design rulc checking algorithm scales
up very poorly when a window larger than four-by-four is used. Also, the design rules used in
industry arc much more complicated than those stated in this thesis. This complication comes from
the need to save space in order to increasc yicld and, in the long run, decrease costs. Typical rules
specify one particular spacin'g unless some other condition occurs, in which case the spaciné can be
reduced a little. While industry has whole-chip design rule checkers, they are based on the geometry
engine approach, with the Cray 1 as the engine.

Even using the Mead and Conway design rules, the raster scan design rule checker cannot
handle diagonal lines. When these are converted tb a rastef image, an error occurs in cither width,
spacing, or both. Losleben and Thompson [18] also usc a raster scan algorithm for performing
topological analysis. Though they restrict their discussion to orthogonal gecometrics, they present a
clever method by which 459 rectangles can be handled. Each "bit” is now represented by four bits,

with 0000 representing white and 1111 representing black. The bit pattern 0101 represents a square
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in whicﬁ the lower left is black and the upper right is white,
*
KN AN
NSEW o101

Losleben and Thompson 459 algorithm

'The codes have been constructed such that logical operations (such as "and™ and "or”) have the
samc results on the codes as on the original single bit. It may be possiblé to use this algorithm to

implement a raster scan design rule checker that uses a small window,

8.2 Node extraction

o

The granularity of the rasterization should not cause the node extractor any problems.
Wires must have some minimum width. If the basic pixcl is made somewhat smaller than half the
minimum width of a wirc, then each wire is sure to be detected by the node extractor.

The effects of differing technologics has already been discussed. Currently, the changes
nccessary to process cMOS are not considered to be much of a problem, though bipolar might
requirc more work. As more exotic technologics are invented, the hardest part of node extraction
will be transistor recognition. As long as transistor in.foxmation is directly related to the mask layers,

this should not be a problem.




8.3 Simulation

The simulator is the program lcast affected by "real world” designs. The input is still just a

file of transistors, and the only difference might be in total size of the file,  As designs become larger, -

the simulator will run slower. Currently, its spced depends on the number of transistofs that are
changing and the depth of the circuit. Faster simulation algorithms will no doubt be developed, and
since simulation presents an opportunity for multiprocessing, there may ﬁc some very fast simulators
in the future.

| Differing technologies may require small changes to the simulato_r, but no major changes are
anticipated. The current simulator [16] is table driven and could be made to read in a set of

technology-dependent simulation rules.
8.4 What happens as chips get even larger

The speed of the node extractor is dependent on the size of the chip. As dcsigns get larger,
the node extractor slows down. This effect will be offset by faster computers and better algorithms.
In addition, the node extracting algorithm is simple enough to be implemented with a small amount
of special purpose hardware. At some point, chips may become too large for such a brute force
approach. Some of the other methods considered for this thesis, but rejected as too comblicated,
may be necwéary. ’

The static analyzer will also be slowed down by larger circuits. Since it never took very long
to run, however, its sbccd should not be a factor when compared to the speed of the node extractor
and simulator.

The scali;ng problems of the simulator have already been mentioned. In addition to

multiprocessing and better algorithms, cxtnﬁction of additional higher level functions from the
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circuit (memories, registers, alu’s) should improve the speed of simulation.  Other ideas being

considered include the generation of complied code that will perform the simulation and the

creation of special purpose hardware that takes advantage of the parallel aspects of simulation.
Designs are going to get larger. but the approach taken in this thesis should be able to keep

up with the larger designs for at fcast the niext few years,
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9. Conclusions And Directions For F uture Research

Most of the ideas contained in this thesis have been implemented, and used to verify ovér 30
designs. The gencral reaction of designers is that the time spent running the programs, checking
cach of the error reports and performing simulation, was time well spent. Few designs cmerged
unscathed. Many of the ecrrors dctected would have prevented the chip from working after

manufacture.
- 9.1 The Scheme79 chip

The chip for which thesc tools were originally written and for which the most cxperience has

been accumulated is the Scheme79 chip.[19] This chip implements a 32-bit L.ISP microprocessor,

| complete with an on-chip evaluator and garbage collector. ‘the chip is 3000 lambda by 2375 lambda

and contains 7811 cnhancement mode transistors, 1637 depletion mode transistors and 2411

electrically distinct nodes. The circuit for the Scheme chip can be cxtrzicted from the mask

information in about 5 hours of CPU time on a PDP-11/70. This ‘includes the time necessary to
produce a plot that shows all the node numbers which the the simulator will use.

When the designers considered the chip to be finished and ready for fabrication, 11 errors
were detected through artwork analysis and simulation. The initial errors were discovered by
symbolic nahing of the input and outputrpads and subscquent detection that some pads really
belonged to the same node. Next, some named internal nodes were disco&crcd to have the same
node numbers. Aﬁcr this, most of the errors were discovered during simulation. By the time the
dcadlinc for fabrication came, the simulated Scheme chip had both performed a garbage collection
and interpreted a simple LISP program. Though this did not constitute an exhaustive test, it was all

that time allowed.



“7-

After the Scheme chip was manufactured and returned, its tests were successful; the chip
worked. During further testing of the actual chip, two more errors have been discovered. One, a
"bug” in the garbage collection algorithm, could have been detected if the particular casc had been
simulated. The other, a race condition in some of the logic added to an output pad in an attémpt to
make it latch a signal, was not detected, because the simulator was not designed to detect race
conditions. Fortunately, the correct value of this pad can be determined by other means, so that the

chip is usable.
9.2 Design errors that are not checked

Other dcsiéns have been run through all the checks and have been fabricated, but none
have been tested cnough to determince if they work. It would be nice if we could be sure that any
design that passes all of the tests described in this thesis wouldrwork when fabricated. Such a
statement cannot yct be made; thercforc some mention should be made about the kinds of errors
that might slip by all the checks and cause a chip to fail.

The largest area in which no checks are performed is timing. The simulator docs not have a
good idea of timing, nor is therenany analysis of critical paths, nor checking for race conditions or
hazards. In dynamic circuits, no checking is done for stale bits, bits that were not refreshed often
cnough. More work is necdcd in these areas.

Another unchecked problem area is power and 'ground bus sizing. When large DC currents
flow through small aluminum wircs, the aluminum atoms migrate. This causcs the wire to become
- ecven thinner, which incrcases the migration. Eventually, the wire breaks, causing an open circuit. A

scheme has been developed by the author for checking power/ground bus sizing, but it has not yet

been implemented.
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Further thought is needed in the gencration of fest cases for the simulator. It is hard for the
designer to create exhaustive test cases. The simulator can aid in this task by keeping track of nodes
which have never changed state and reporting them to the user. He can then try to devise better test _
cascs that would cause those nodes to change state. If the user identifics all state vectors (ie., PLA
fccdi)ack terms) to the simulator, an additional picce of uscful bookkeeping can be performed. The
simulator could keep track of the states that have been visited and report on thosc which have not.

This concludes the list of currently undctected problems that could Icad to non-functional
chips. As the relationship between the Mcad and Conway design style and the actual analog
functions of the chip is better understood, more arcas can be checked. At some point, it will not be
worth investing more eomputer time in the extraction or simulation of difficult cascs, and the best

approach will be actual fabrication and testing.
9.3 Better design tools

If the tdols used to design the chip were better, then nonc of these design verification
programs would be necessary. This thesis has attacked the easy probiem of design venﬁcalio;z. The
computer-aided creation of the designs is a harder problem. Currently therc is little agreement in
the field about the right way to do design automation in VLSI. The computer should be able to help
the designer control some of the complexity, but the amount of help it can provide in the actual
design process remains to be seen.

Although predictions can be made about the operation of design tools of the future, it scems
more profitable to look instead at how some of the circuit extraction softwarc can be integrated into
an overall design system, both in the present and in the future.

Integrating the current software with a design automation system will have the effect of
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"closing many loops”. The output of simulation based on circuits extracted from the artwork can be
compared with that of functional simulation. Individual cells can be design rule checked, circuit
extracted, and simulated as they are created. Al these different representations can be made
available to the designer. There will still be a final check perforined on the whole chip, but the
number of errors detected should be very small if all these other checks have been performed along

the way.
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