MIT/LCS/TR-241
PEPRESENTATION AND ANALYSIS OF REAL-TIME
CONTROL STRUCTURES
Rowland F. Archer, Jr.

Auyaust 1990

Tius blank page was inserted to preserve pagination.

REPRESENTATION AND ANALYSIS OF

(©) Massachusetts Institute ‘of Tethwology 1978

September, 1978

'l‘his research’ ‘was’ supported by the Atfvmed* ‘Resoarch ‘Profects Agency
of the Daparttnent of ‘Deéfense ‘and was mbiﬁwﬁby tﬁe B!!!Hee of
Naval' Researcn un&arc::maet w m« ?sietwm :

ixE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LAWY rém m SCIENCE -

CAMBRIDGE 7 MASSACHUSETTS 02139

REPRESENTATION AND ANALYSIS OF REAL-TIME CONTROL STRUCTURES

by
ROWLAND FRANK ARCHER, JR.

Submitted to the Depanment of Electrical Engineering
on August 18, 1978 in partial fnlﬁllmnnt of the requirements
for the Degree of Master of Science

ABSTRACT

A new notation is introduced for representing real-time
scheduling at the task and event level. These schedules are called
control structures. The primary comstructs included which direct the
flow of control are sequencing, iteration, amd preemption. Additional
notation allows the representation of interrupt masking, task
termination by external events, task restart as well as resumption
from the point of preemption and codestripping. Algorithms are given
forfmdingthemmmanrenfaglmwm;dmamm
the notation.

The types of representable control structures are classified by
the topology of their Control Flow Graphs. It is shown that although
branching is allowed in the preemption structvre, a tree-shaped
preemption structure cannot be represented. Both partial and total
orderings of tasks and interrupt priorities are supported, however.

- A terminology for describing. resl-time properties of control
stmctu:esis,dmlnpad, and it is seem thzt Without Wn ammpﬁons
abouttaskexecnﬂenﬁmau&event 3 v _'] be
drawn regarding real-time performance of a control structure. A series
of algorithms is presented which make use of these assumptions, and
find values for task execution times in the presence of preemption.
The algorithms can analyze control structures containing the principal
control features; suggestions are given for further development of
algorithms which can analyze any representable coatrol structure.

Thesis Supervisor: . | Stephen A Ward
Assistant Professor of mectrical
Engineering and Computer Science

Key words and phrases: Real-time, control structure,
control flow graph, scheduling, interrupts, latency, codestripping.

Acknowledgements

Primary thanks are due to Steve Ward for the germinal idea, and his guidance
in helping me to develop it. His resourcefuiness was responsible {ime and again for
;éep!ng this research in motion. N

Tom Teixeira's work in this area was also invaiuable, especially for his careful
and rigorous definitions of real-time properties of control structures.
| The excellent systems programming support of the DSSR m has prwcdad an
a*ceptionally hospitable environment in which to program and produce tInsadtJCU-
ment, o -

My wife Lizbeth deserves mention for her ennmqemest md for domq more

than her share so that my attention ceuld ahy W OR: mmmtm

TABLE OF CONTENTS

1: introduction

1.1: Related Research
1.2: Objectives
1.3: Outiine of the Thesis

2: A Notation for Real-time Control Structiwres

2.1: introduction
2.2: The Basic Control Structure
- 2.8+ Flow of Control
2.4: Closed Control Structuras
- 25: teration -
2.6: Preemption
2.6.1: Preemptible Control Structures
2.6.2: Muttiple Priority Level Control Structures
- 2088t Occurrence of Events -
2.6.4: Substructure at a Single Priority Laval
2.6.56: Detérmining the Interrupt Structure -
2.7: Non-preemptible Tasks
2.8: Stopping the Flow of Control
2.8.1: Breaks in Event Coupled Lists
2.9: External Termination of a Control Structure
2.10: Return of Control to a Preempted Task
2.10.1: Conditional Restart of a Control Structure
2.11: Codestripping

3: Representational Power of the Notation

3.1: introduction
3.2: Control Flow Graphs
3.2.1: Priority Levels
3.3: Interrupt Driven Control Structures
3.3.1: Globelly Cyclic Control Structures
3.8.2: Acyclic Control Structures
3.3.2.1: Branched Control Structures
38.3.3: Locally Cyclic Control Structures
3.3.3.1: Dynamically Decreasing the Range of LC
3.3.3.2: External Termination of Local Cycles
3.8.3.3: Restrictions on Local Cycles
3.4: CFGs at the Task Level

4: Real-time Properties of Control Structures
4.1: Introduction

4.2: Welghts of Task !dentifiers
_4.3: Properties of Event Variables

9.
11.
14,

16.

- 186,

16.
17.
18.

10.

at.

41.

&6: Algorithms

56.1: Introduction .
6.2: Latencies in the Absence of Preemptlen T
6.3: Latencies of Constraints in Cyclic Control Structures:

6.4: Latencies of Constraints in PreemptibleicoMStﬁmtures e

6.4.1: Definitions and General Approach

6.4.2: Finding Infinite Latencies

6.4.3: Delay Due to Preemption

6.4.4: Applications of PTIME. ST
6.4.6: Adding Phase Relationships to PT!ME AR

6.4.8: Task Execution Time with, Peewm:rééiwmes > 0

6.4.7: Latenclaes for Constraints at W} 0
-6.6: Special Cases and Extensions »
56.5.1: External Termination
6.6.2: Restart Control Structures
6.5.3: Codestripping
5.6.4: Non-Preemptible Tasks
6.6.5: Stopping the Flow of Control
.. 65.6.8: Constraints at More than Qne&brﬂ:y Level -
6.5.7: Finite Event Quevas

6: Conclusions and Directions fotFutmRosenmh
Appendix A: Summary of BNF for Real-time Coniro! Structures

References

62.

67.
‘70.
72.
74.
. 78.

81.

86.

-87.

gs.
100.

101.

- 101.
o1,

- 103.

108.

110.

LIST OF FIGURES

2.1. Syntax for task identifiers.

-2.2. Syntax for closed control structures.

2.3. Syntax for preemptible control m«

2,4. Computing the matribe .-

2.5. Initiating events fer: EWZJ
2.6. The | matrix for Exampie 2.1.

2.7. i+ for Example 2.1.

2.8. Preemption structure for Example 2.1. e
_&9. Syntax for event coupled pmenptible control atmctares.‘
‘2.10. Initiating events for Example Z:2&: - =~ .

2.11. Cmpuﬁnqlfacfsmmmm
2.12. Preemption structure for Examplé 2.2 - -
2.13. Syntax for non-preemptible tasks.

2.14. Examples of processor idling.

8.1. CFG for ({((A B)/e1)C)*.

8.2. CFG for Example 3.1.

8.3. CFG for Example 3.2.

AA4. CFG for the control structure «mmscm

8.58. CFG for the control structure (A/(e1 (Bl(ez-claammﬁ E)).

8.6. A tree-shaped CFG, for (A/(e1:Bje2:C)).

8&.2. A CFG which has no correspohding-control ‘structure.
3.8. A representable tree-shaped CFG

4.9. CFG for Example 34. . = :

3.10. CFG with an illegal back arc.

56.1. Breakdown of a finite task list into sublists.
6.2. Preemption structure for (5.9).

6.3. Partitioning the events of (5.0).

5.4. Partial execution of a critical window L

&.5. Partial execution of 31.

1: Introduction
In an article entitted "Toward a discipline of realtime programming" [Wwirth
77b], Niklaus Wirth has divided programming into three categories based on the.in-

creasing complexity of validating their programs:

1. Sequential programming
2. Muitiprogramming
3. Real-time. programming -

In a real-time system, a program may be attempting to control or to react to
certain external processes which cannot bé forced to cooperate with /progr'ﬁmmééd
processes through use of a synchronization primitive such as a sémaphote [Dijksfra
88] or a monitor [Hoare 74). In order to ‘coofdinate itself with these eXterhai,
non-programmable processes, the real-time program ‘miist Know something about its
own execution speed. Thus its correctness will be dependent on the speed of the
processor on which It is run; but this Is not’ & ‘property of ‘the program Itself; Wirth
identifios this as the essentlal distingulshing featire ‘of rea-time programming.

This thesis does not directly address the ls&iié of validating reak-time programs.
Instead, It ‘deals with the répresentation of schedules fof real-time programs called

control ‘structures, and’ some aspacts of ‘Measuihg ‘Teaktime properties of the

[t VTN

resulting control structures. In the sense that % of these real-time proper-
ties may be a prerequlstte Tor validation of 4 reaktiile program, the work presented

here does represent & contribution to one aspect of the validation problem.

introduction Section 1

1.1: Related Research | .

Most of the previous studies in the field of real-time programming have been
centered on one of two major areas, the design of languagesfor reak-time program-
ming, and scheduling to meet rea-time deadlines. | ‘ 4

The development of languages for reak-time prbgrammlng can be split between
two approaches; the extension of existing languages [Bénson 87; Freiburghouse
77; Ormicki 77; Phillips 76; Wirth 77a), and tha creatié 6f entirely new languages
tallored to the requirements of realtime programs [Henhessy 765; Kieburtz 75;
Schoeffler 70]. The essence of these afforts has been to provide some interface
between the realtime program and the scheduling of itself and other programs, el
ther through access to the processor’s interrupt system, clocks and/or timers, or
by influencing the processor's scheduling routines. Such fgaturﬂas' provide .only -a
‘low Ievgl capability for determining a process’ reak-time bahavior; in some cases it
may be possible to think of all the timing interactions that: could impact on the
correctness of a realtime system, but the burden of doing so has usually fallen
most heavily (and often totally) on the pragrammer. -Decisions ae basic as assign-
Ing priorities to different tasks must typically, be made by.manual analysis, in the
hope that nothing has been overicoked. As the size of the ;‘;_g,cvteug;jngrm the
complexity of the problem grows as well, until manual analysis becomes extremely
tedious and error-prone, if not impossible. . A |

Ideally, a programmer could submit his reaktime. response. requirements. along
with his programs, and either have .them scheduled.appropriately, or ha told that his
requirements cannot be met by that particular system. Some systems (such as the

CONSORT system of the Domain Specific Systems Research group at MIT) have

Related Research s Saction 1.1

been developed which can do this for .a limited class of ‘programs, but to the
author’'s knowledge no ona has yet mmd a’ system to do-this in genéral.” Howew
er, considerable research has been done on scheduling tasks In the presence of
hard reak-tine deadiines.

Most of the aignificant results obtained have been based on:réstricting atten-
tion to limited classes of control- structure types. For exampls; in-a muitiprocessor
environment where thera -is a partial ordering: of tasks but no lteration cutside of
tasks, [Manacher 67] gives an algorithm which. will:construct near-optimal task Hsts
(execution orderings) for almost any combination of task run: times and desadiiras.
If the schedule Is full to capacity with:-tasks - whose: complietion times are
guaranteed, his strategy allows the systemifo take op additional ungusrenteed
tasks. without affecting the guaranitesd: status-of:thosé tasks aiready scheduted.
His schems does pot consider the effects of preemptich, however. "Serlin [Serfin
72] and Liu and Layland [Liu 73] have independently. studied the problem of

scheduling tasks which ate lterated but have no-relative -orderings. Serfin gives

scheduling algorithms based on fixed priorities, ‘time: slicing, .and relative -urgency.

The last is a dynamic priority scheme, where the processor re-evaluates the priorl-
ties of each task at every interrupt, and selects for execution the one wlth the
earlleat deadiine. This method is shown to produce a schedule wmch meets real-
time deadlines if any schedule wm, but Serlin’a analysis neglects the overhead of
context swltchlng - R

A different approach is taken by [Hennessy 75 Kloburtz 75] ln thelr mlcropro-
cessor language TOMAL; instead of using an mtarrupt system, they have a com-

pller insert calis to a tnsk control monitor (whk:h ls creatod along wlth the compua-

-

Related Research - Section 1:1

tion of a set of programs) at specific points in the compiled ¢ode. This provides
assyrance that the task comtrol monitor will get controf within a finite ‘and bourided
interval, after sach codestrip, as the code between monitbr ceils is'named. This is
similar to a time slicing system which aliocates execution time ¥ fixed amounts to
each task, but the time -slices are synchronized with program esxecution. The
length of the codestrip is determined by the response tme reguiremsts of the
task, and the compiler can determine: whether the programimer supplled require-
ments are in- conflict. The notation: given in thiis thests “has ' the capabiiity’ of
representing codestrips.

A work which is rolated to the: present one and in fact complementary is that
of Teixeira [Teixeira 78]. Much of the - terminology used here was ‘developed
there, particularly that of Chapter 5, where. algorithms for misasuring real-time pro-
parties are developed Teixelre aiso used the'regular ‘expression notation of
Chapter 2 to denote sequencing and {teration of tasks. MHis atudy centers, howev-
er, on finding schedules -to meet resitime’ oCodstraints; the orientation of the

present work is described in the following section.:

1.2: Objectives

The principal goal of this research is twofold, to deveiop a convonlont
representat!on for real-tkae contml structures, and to danonatrate how such a
representation is usefil as a basis for an&lyﬂng rea!—time propertaes for apeciﬁc
eontml structures.

o sl ,‘»!.' = B

Therepfesontaﬁonasdovebpednoda!seonhdstmcmruntmuskandh

-10-

Objectives - : Section 1.2

terrupt level; the tasks are assumed-to be seif-contsined program units whose ex-
ecution time is bounded, and interrupts are. representad as occufrences of event
variables. The event variables could- be used. io represent env.»event however,
which might be synchronous or asynchronous with respect to the executing task.
The notation can represent total and partial orderings among its tasks, ‘end,it:eretlon
of tasks at a single priority leval. or acress several priority laveis. -As well as
representing conventional single .and multHevel interrupt structures, the controt
structures,;qlven here can represent several unconventional preemption structures,
including branched . structures where each. branch-heas -an - individual preemption
structure which may itself be branched.

As well as representing this basic framewo?ﬁ “the capabmty is provided to

Topiih g

represent:

1. Codestripping as previously described.

2. External termination of a task or group of tasks by an event
occurrence (es opposed to temporer!ly preemptlng them)

a. Indlcetion that a task or group of tasks is not preemptlble by .
‘& set of everits.

4. The choice between reishrﬂﬁ¢~' a ‘piéempted task or group of
tasks from the beginning vs. resuming exeggggpq from the point of
: W.:' EEw N ier it S j},"';v;.—n;;‘,gk £, Ty SERe T B . 7

Thus a rather general notatlon is glven, whlch in addition represents all of thls in-
formatlon rather compect!y The notatlon may be used In any epp!lcatlon where it
is necessery to communicate somethlng ebout e control structure of thls sort be lt

human to human, human to machlne, or machine to machine In the second case,

the specific applications In mind are representation of a control structure for

11~ -

Objectives Section 1.2

analysis, and for describing to & reaktime systemi what sort of control structure it
should establish for a set of tasks with realtila constraints. in this vein, the no-
faﬂon is quite independent of machine architecture; and ‘thus a subset of the
language can be chosen for a target machine which supports the control features
included therein. .

This leads into the second goal of the investigation, which is to demonstrate
how eigorithms can be developed which ascertdln reaktiné propérties for control
structures of the language. There are severai time Intervals which are probably of

common interest to a large segment of users of reaktime programs, such as:

1. The maximum delay between the occurrence of an event and
the initiation of its program. . .

2. The maximum time required to execute a set of tasks at a
given priority, with preemption.

3. The maximum time that may elapse without there being an ex-
ecution of a given set of tasks.

This is not intended to be an exhaustive survey of reaktime propertles, but rather
an introduction to the usage of the notation as the foundaﬂon for euch qnalysls
Indeed, it is likely that each reaktime. systam hasg. its. mspocm requimments and
characteristics; it ls hoped that an approprtate subset of the lonw can be
chosen to model those chamcterlstlcs, and el_qoﬂthms developed whlch are suited

to an appllcation s special needs In addltlon mny appncetlons wul have netural .

restrictlons whlch Iead to simpler algorlthms. It ls with lntent of ﬂluatrating this

O TLE TS SR TN B A S

polnt that severel speclal case algorlthms are deveioped.

s

~-13~

Objectives Section 1.2

3: Outline of the Thesis

The next chapter presents a context.free:grammar for:the control strueture.
languege, as well as giving the semantics for each construct. Sequencing, iteration
and preemption are the principal features, with extensions added as descrlbed in
Section 1.2. Methods of determlmng the overall preemptlon structure of a control
structure are also presented o R l . ” |

Having lntroduced the notatlon, Chapter 3 prasents the concept of a Control
Flow Graph (CFG) [Allen 76 Fosdlck 76], whlchy:fglvies a graphlc representatlon for

the paths of control flow dictated by a glven;control ‘structure A deflnltlon of ab-

solute priority levels is dertved from ‘a ‘control’ gtructure's CFG rapresentation. Then

a classification of ‘control $tructure types repressiitable by the notation is given,

based on the topelegy of thelr CFe’s ln ed'dlﬂorr‘ s%ﬁe types o‘f control structures

which are not representsble arg descﬂbed
A terminology for.real-tine properties..nf. control structures is developed in-
Chapter 4; the requirements for knowing certain 4hinge:about event timings n ad-:
vance is also discussed here.
This leads into Chapter 5, where a hierarchical series of algorithms is present—

ed whlch are designed to find the worst cases for some of the real—tlme propertles

of lncreeslngly complicated clesses of control structures The most general algo-

rlthm given is appllceble to the set of control structures whlch lncludes the baslc

framework of sequenclng. lteratlon end preemptlon The types of modlﬂcatlons
Tt AR
which would be requlred to enalyze any representeble control structure are dls-
me o feny O gy Gy el
cussed although detalled algorlthms nre not glven

-13=

2: A dNotation for Real-time: Control Structures

2.1: lntroductiun

in this chapter a notaﬂon for representlng real-time control structures wm be
developed. The Intantbn is to provlde a genera! analytical tool which wm be suit-
able for represenﬂng most of the posslble ways to share a processor among the,

members of a set of tuaks This wm inciude

1. Sequencing: a total ordering of tagks to be exscuted.
2. Iteration: cyclic execution of some ordered set of tasks.
3. Preemption: a partial ord of tasks where the occurrence

of an event forces termination of execution of the currently run-
ning task and starts executlon of a new tagk,. .

A context-free grammar will-ba developed to defiie e syfitax of the representa-

tion. It is summarized in Appendix A.

2.2- The Basic COntrol Structure

The real-time system to be represented Is modelied as a set of proceduras to ‘_

s

be run, called tasks a control structure whlch speclﬂos the order (or posslble ord-

ers) In whlch the tasks my be run, and a prooessor whlch executes the tasks ac-

o TET HESESIT

cording to the schadullng constramts speciﬁsd by the control structure

Thus the ﬂow of data between taaks. lf thore ls any, need not be a concem, .

it is assumed that any execution ordedng needed to preserve the intended seman-

-14~

The Basic Control Structure “Saction 2.2

tics of the computation (data flow) will be embodied in'the control structura. - For
example, if an output of taslg ‘A !? an '“P“tf’tw Q.M;he control structure as-
soclat@d with their execution should ensure that task A qqmplﬁetegmawxeqy}loqibe’-
fore task B begins. | R ’ " |

Further, the défalléd ﬂow 6f lnfonhatbn ’ﬁnd control w’lthlnv a ta#k, l.e. among
its Interna! variabies and instructions respecﬂvely,g{need notbe rof: sc'tv)ncern ‘either.
It Is only. hecessary that an upper: bound on' the exectition e of a task be esta-
blished; this is discussed further In Section 4.2,

A task will be represented by a task identifier ("<task id>"), which in most of
the examples will be a single capital letter (though it need not ‘(be)_: _F'Q,“f‘,’ 2.1

shows the grammar which defines task identiflers.

Ktask 1d> = (iotter)‘l <task id> <alpﬁanumerlc)
detter> :ezna[m... ' |
<alphanumétic ::= Qetter> | <digit>
(digifif"::é’*b | 1121 19

“Hg. 2.1, Syntax for task ldentiﬂers i

Next to a slngle task the s&mp!est tMng to roprmnt la the sequenclng of two ,}

or more tasks whlch ara totally ordered Thls is done ln the natural way, by Hstlng

O S 1 1YY

the task identifiers in the order of executlon of thelr corroopondha tasks, separat-
od by blank spaces for parsing. A string of one or more tasks will be called a

basic control structure, or (basic cs) Note that it ls peﬂnlsslble to lfsf a task id -

more than once.in & Teasic €8>, torﬁ?:résdff‘tﬁ&*s‘l i tin

task Is executed more than once with zero or niore other task executions

-16-

The Basic Control Structure Section 2.2

sandwiched In between.! The syntax ie:
~ Cbasic cs)> = Ctask i) | <basic csd> ¥ <task id>

where "J* represents the blank space terminal symbol.

The simplest control structure Is just a basic control structure:
{control structure> ::= <basic cs>

Thus the grammar given so far is sufficient to represent single task execution and

sequenced task execution control structures. .

2.3: Flow of Control
it is useful to formalize the notion of controlﬂow with res;)ect to contrd struc-
ture execution. The processor follows the “instructions® supplied by a control
structure, doing both "applications-oriented" work (wt;en it I actually executing the
statements of a task), and "systems-oriented” work (when It is dgtermining which
task to execute next according to the constraintsi,embedge:d jn thecontrol -struc-
ture). In either case, the actual machine lnstruct!pna belng executed at any time
will be associated with a particular symhol ln the control structure representation
Rt will be sald that at that time the locus of control (abbreviated LC) ls at that A

ERRY

symbol. For example ln the foMng control structure

1. Every occurrence of a tdsk id ln a control structisre represants a separate in-
stantiation of that task, with its gwn private state. This s ssed ta.model reen- -
trantly codéd routines.

-16-

Flow of Control Section 2.3

AB

when Instructions of task A are executing, LC is af A; when instructions of task B

are executing, LC is at B.

2.4: Closed Control Structures

it is deslrablg to ihtroduce parenthesfzatlon fbr the grouping of task id’s in the
natural way. In particular, this will be neaded to Indicate the scope of the various
special symbols which will be used for iteration, piéemption, etc. It will also be
helpful in constraining the class of iegal cohtrol structures to exclude nonsensical
ones, such as those in whict:v\‘ some tasks can never execute, regardiess of preemp-
tbn timing considerations. Paranthesized . (subr)control structures will be called
closed control structures, and the class will be added to as necessary for addition-
al representational power. At the top level, closed control structures will be includ-
ed in the set of Ieggl control structures. flgure 2.2 gives the syntax for closed
control structures; a syntax is alsé glvéﬁ for cl&;d control strﬁcturé lists, which

will be needed later to represent more compiex control structures.

<control structure) ::= <basic cs> | <closed cs)>
{closed cs> ::= ({basic cs>) | ({closed cs> {basic cs>) | (closed cs list>)
<closed cs list> ::= {closed cs> | <closud os list> {closed cs> -

Fig. 2.2. Syntax:for olosed comtrol structures.

17~

Closed Control Structures Section 2.4

2.5: Iteration

Most real-time process control applications ‘mqulr_g the periodic rppgﬂtbp of a
éertaln task or ﬁmncc of tasks. Borrowina from the mﬂon ‘_of_rom‘_oxprqo-
sions, the asterisk is used to indicate a endless repetition of a control structure.

its BNF:
Citerative cs) ::= <basic csd>* | {closed cs>* | <basic cs) Citerative cs>
The use of "*" is most easlly expisined by examples:

AB*:NMB)*:ABBEBSEB..
AR =ABABAB..
From a flow of control viewpoint, when LC réachis an’ asterisk foliowing a right
parenthesis, It returns to the matching léft paiénthesis. If ft reaches an asterisk
following a task Id, it repeats that task.
The final expansion of the top-level definition of ‘cotitrol structure ls:

<eontrol structure ::= <basic cs> | <closed cs> | <iterative cs>
2.6: Preemption

2.6.1: Preemptibie Control Structures
With the class of control structures defined: aco far, the enly execution se-
quences possible are those in which the order of task execution is entirely

predetermined (static). In many situations, & processor will need to respond to

-18-

Preemptible Control Structures coe Section 2.6.1

esynchronocs events.such as interrupts, which may not occur at' predictable times.
It may be,desirable to have-such svents:trigger the execttitn of a different part
of m; cantrol structiye than' was previously in contrel. ' Informally, this will be
modelled by placing sub-control structures into the overall control structure in order
of non-decreasing priority. Demarcation of the priority levels is achleved by indi-
cating that a control structure is preemptlble Figure 2 3 glves the syntax for

[Laa

preemptible control structures. Preemptlon Is ln!tlated by occurrence of a particu-

[Fe .

f E T

Iar event (which may be cc:amplex)1 so an event varlable Is lncluded which standg

for the event.

<preemptlble cs)a 1= (cqntrol structure> / <event var> .

<event var> ::= edinteger>

Cinteger> := (qmlt) | (integer),v (dlgit) -

<closed ca) = (<basic cs)) | ((closed cs) (basic cs>) | (Kclosed cs list>) |

((preemptlble cs)) | ((closed cs) <preemptible cs))

Fig. 2.3, Syntax for preemptible ggntrol structures..

Conslder the fdloMng slmple example. whlch models a control structure wlth a

5o ¢ RE

single leve! of interruption:
((aryet)E)

The interpretation of this controt structure Is- that A runs repeatedly with évent e

1. The event variable itself is not complex, but it may represent a complex event. .

-19-

Preemptible Control Structures : EE PR 1 Saction 2.8.1

happens; this initiates B, which executes once; then LC returns to A*.

The next section will describe: how more compiex tontrol structures are
represented {using the above syntex), such -as those having sultiple levels of
interruption.

2.8.2: Multiple Priority Level Control swcturn

Informaily, event variables lie at the mtsrfnca betwoon contro! structures of
different priority, the control structure to tho left of the "I(ovont vnr)" construc-
tion having the fower priority. lfLCiskuﬂmlowwprlodtymtmtstmctunwhm
the event happens, it will move tomeoontmlatrucmremantdytotmnghtof
the event variable. ‘

Thus a control structure with three priority levels mlght appesar as:
(((((A 8)‘Ie1) D)Ioz)e)"

The preemption structure (for each event, the tasks which it may preaempt) is fairly
straightforward here; el preompts A or B, 62 praeapta A B C or D But the nota
tion is capable of representing more comphx contml structuros, and a method of
precisely doteminfng tho preemption atmctuw is nceded ‘ g '

The "interrupts® or "proempts® relation is transitive; "' ;1 interrupts A, hnitiat-
ing C, and C ls interruptible by e2, then A is interruptible by e2. Moreover, al
tasks of a single basic control structura will run at the Same priority tevel, su basic

control structures can be considered as units, rather than sxamining the preamp-

1. Although a later section will introduce the capabuity of masking specific inter

Multiple Priority Level Control Structures o A ‘Section 2.6.2

tion of Individual tasks.’

The "interrupts" reietibn witt now be ferﬁieiized ie Tt wm be established clear
ly for each event in a controi structure which basic control structuras it may
preempt. The set of tasks which are Interruptible by a certain event wiil be re-
ferred to as the scope of that event. The “ihte_rrupts“ reiatign fora control struc-
ture wilt be represented i)y a Boolean matrix i with n rows and columns, f{vhere nis
the number of basic controi stmctures iri the cohtroi structure Belng analyzed. A
single basic cs. is'euechted w‘tt!r aach row T amf cdiumn iy fo; 1 s 1 s n. The
basic cs associated with row (and coiumn) zm Bfrefeired to°ad "basic cs /."

The first event to the left of each baste cs wit-be called that basic cs’s /ni-
tiating event. 1f I[i,j] = 1, it means that basic cs / runs at a higher prbﬂw,.;hgng
basic cs j; in particular, it means that basic cs l’s initietmq event can preempt
basic cs i The matrix I Ie computed acccr;ihg to the cigorithm gwen in Figure 2.4.

This matrix speciﬂes which events cause preemptions across the bhorder.
between adjacent priority levels. Since the "interrupts" relation is transitive, the
transitive closure of this initial relation is: the i'c’ii'.iiiiji:ﬁai'f'e';p‘i'ﬂeempi:ion stroctirs; “Yhis
specmes, for each event in the control structure, exactix which basic cs’s it can

Py T
preempt Computing the transitive ciosure of the reiction regrecented by 1| lst
straightforward Let 1 be the tr!nsitive ciosure of I Then b+ = | + 2.+,

.j..;

where + is normal mhﬁix -dditien ~Booie:n mtﬂx matipiication Is performed like

regular matrix multiplication ‘xcept mc is aubstitutod for ‘TINES® and ‘OR’ for

rupts while a particular task is executing.

-21-

Multiple Priority Level Control Structures] : “Saction 2.6.2

Algorithm 2.1:

1. Lat 2 be the number of basic:-ce’s In.the control atructure. As-
sootateauntquahtagerfm1tonmhuchbulecs

2. Initialize | to be an nxp matrix of zorooa
8. For each basic cs i, do atops 4 .nd 5. ;

4. If basic cs / has no Inltlating aevent, lnw row / of i equal to
all zeroes. . v

6. If basic ca / has an initigting .avent ¢, find the control struc-
ture Immediately preceding the construction “/e." Call this “con-
trol structure K." By the syntax of preaemptible: oodteol structures,
control structure Xk will be either a basic, closed or iterative cs.
For each basic cs | in contrel structure-&; set ([/,/]) squal:to 1.

‘PLUS’.
~ Consider an example of a control structura which contalns preemptlble control

structures, and which can be used to mustratc the conatructlon of the "lntnrrupta"

relation:

Example 2.1, (A B)*/e1)C) 82X (D/RIENH

vie

Notice that this control structure contains four buslc contml structures, A B C, D

;e

and E. The Inltlating evants for thase baslc css are as apeclﬂod m Figura 2 5

Basic CS Initiating Event

AR i 1

- - c .1 i DY 2
B - a2 3
E a3 4

Fig. 2.5. Initiating events for Example 2.1,

sed
ERSE

The matrix 1 is formed following Aigorithm 2.1, and it appears in Figure 2.6. -

—za- .

Multiple Priority Level Control Structures Section 2.6.2

1. ABhas no Inltiatlng event sorow 1 = [0 00 0]

2. C’s initiating avent Is e1 The _control s&ueture preceding e1
is (A B)*, which contains the basic s A B. fThu:zlEZ 1] := 1.

3. D’s initiating event is 92 The gontrol structure preceding e2
Is ((A B)*/e1)C)* which contains the basic cs’s A B and C. Thus
I[3,1] := 1 and I[3,2] := 1. .

4. F’s initiating event is e3. The control structure preceding e3
is D. Thus 4,3 := 1.

| |laB ¢ D _E
AB| o 0 o0 o
c|1 o o 9]
D 1 1 o 0
EJo o _ 1 0.

Fig. 2.8. The | matrix for Example 2.1.

Now, to get the overall: preemption structure, compute I+, the transitive closure

of |, as shown In Figure 2.7.

I+ 1AB C D E°
IABf O 0 ©0 O
c}l1 o o0 o0
‘D1 1 0 o
E] 1 1 1.0

Fig. 2.7. ‘lf for Exampie 2.1.

The preemption relations of the control structuré are summarized In Figure 2.8.

Multiple Priority Level Control Structures Segtion 2.6.2

LC at Promtlblo by initistes
Aor8 . e% S IR R
AorB - e2 . B
AorB 3 E

c o2 D

D e3 E

E none none

Fig. 2.8. Preemption sttuéturé for Emat

2.6.3: Occurrence of Events v

The notion of an event “happening™ la purpoufuny left vague; each applica-
tion of the notation can nttach its own meanirja._ pr \thc purpose at hand it is
sufficient to assume that an event variable is like a m Mﬂch gets set when its

associated event occurs. The processor chacka all the ovent variables before be-
ginning execution. of every instruction.. The following informally. describas what hap-

pens if any flag is found to be set:

1. In the case where LC is to the right of the event variable
which has been set, no immediate effect on mBxecution of the
currently running task resuits. The cumently ruhning task is of a
higher priority than that which is mmd Wie interrupt,
!

2. The event vafiab!a remalns sat untli mn time as LC is to the
left of it and in a basic cs whlch is pmﬂble by It, at which
time It will cause a pmnpﬁon

3. If more than one event correspondtng to event variables to
the right of LC has happened, then the rightmost one represents

1. Generally, a queue of requests Is assoclated with a given event variable, so
that additional occurrences of the svent will be remembered if they occur before
the initla! occurrence is noted by the processor, By specifying a length for this
gueue, a system which remembers an arbitrary number of event occurrences can
be modefiled.

Occurrence of Events Section 2.6.3

of it (assuming, of course, that LC was within a basic cs preempti-
ble by the event).

4. Completion of the control structure at a given priority "resets"
the event variable which triggered its execution; note that this
must be done at completion rather than at initiation so that if the
control structure is preempted before it completes, then LC will

return to it when it is once again the highest priority control
structure requesting processor service.

2,6.4: Substructure at a Single Priority Level

A useful extension to the scheme is to provide for arbitrarily many control
structures1 to reside at the same priority level, but to be initiated by different
events. During execution of one of these control structures, occurrence of events
In the other(s) at the same priority level will have no (preemptive) effect. The

principle syntactic change is to allow replacement of an event variable by an event

coupled list, as shown in Figure 2.8.

<preemptible c¢s> ::= {control structure> / {event list>
<event list> ::= {event var> | (event coupled list>) |
(Kevent coupled list>)*
<event coupled list> ::= {event var>: {control structure> |
<event coupled list> ‘|’ <event var>: <control structure>
where ‘' means the terminal symbol |.

Fig. 2.9. Syntax for event coupled preemptible control structures.

1. Of arbitrary complexity, e.g. there may be additional local priority structure.

Substructure at a Single Priority Level Section 2.6.4

Consider an exampie:
(A*/(e1: B | @2: C))*

Preemption rights are as follows:

LC at | Preemptible by | Initiates |

A al B
A a2 C
Bor C none I XY oone. . |

Execution of B or C continues uninterrupted to termination. Termination of B or C
returns LC to A (unless et or e2 has happened again).
A slight modification in the position of the termind! ‘™ leaves the intertupt struc-

ture the same but results in different behavior on tefnination of B or C:
(A*/(e1: B je2: C)*)
The idea here is that once either B or C has been initiated (through occurrence of

el or e2, respectively), control is never again returned to A. Instead, B and C will

be executed every time e1 or e2 occurs.

2.6.5: Determining the Interrupt Structure

Since arbitrary control structures may reside in.ap event coupled list, it follows
that such structures may contain additional avents {(or event coupled lists).which
trigger even more deeply nested control structures,

This ability to nest control structures raises a new semantic issue; what
should be the scope of events which are not-at the top leve! h&omat coupled |

list? The choice made here is to let any event In an event coupled list have the

-268- .

Determining the Interrupt Structure Section 2.6.5

same scope external to the event coupled list that an event variable would have if

it were substituted for the event coupled list. Consider the following:
Example 2.2, (A/(e1:((B/e2)C)|e3:((D/ed)E)))*

The scope of el, e2, e3 and e4 external to the event coupled list

(e1:((B/e2)C)|e3:((D/e4)E)) is the same as that of e5 in:
(A/e5)

namely, the control structure to the left of the slash in the construction "/(<event
coupled list>)".

The initiating events, as shown In Figure 2.10, are determined as before: the
first event variable to the left of each basic cs. The internal scope of the event
variables is somewhat different, though. Events in event coupled lists may not
preempt any task in the list which Is separated from the event by a "|". Thus in
the above example, e3 and e4 may not preempt B or C. Therefore Algorithm 2.1

must be modified to reflect this. Figure 2.11 shows the resulting algorithm.

Basic cs | Initiating event
A : none
B el
C e2
D ed
E el

Fig. 2.10. Initiating events for Example 2.2.

-27-

Determining the Interrupt Structure : Section 2.6.6

Algorithm 2.2;

1. Let n be the number of basic cs's in the control structure
under examination. Associate a unique integer from 1 to n with
each basic cs.

2. initialize | to be an nxn matrix of zeroes.
3. For each basic cs /, do staps 4 and 5.

4. If basic cs / has no initiating event, leave row / of 1 equal to
afl zeroes.

6. If basic cs i has an initiating event e, then this event appears
in either a "/e" construction or a "je" construction.

a. If e appears in a “/e" construction, calil the
control structure Immediately preceding "/e"
"control structure k." For each basic cs J in con-
trol structire K, set [/,J] equal to 1.

b. If e appears in a "je" cornstruction, then e
cannot preempt any other basic cs's in the
event coupfed list of which it is a member. [ts
scope starts at the control structure to the left
of the */* i the construction */(<event coupled
list>)". This wil be the control structure
preceding the first unmatclied feft parenthesis
to the left of e. Cali this "control structure k."
For each basic cs J In control structure k, set

i{/./] equal to 1.

Fig. 2.11. Computing | for cs’s qontalrﬂng event coupled lists.

The control structure of Example 2.2 has the following preemption relation-
ships:) :

LC at | Preemptible by
et, €2, 03, e4
e2

mooOow>»

none
e4
none

Determining the Interrupt Structure wotnti T T g antion 2.6.6

Since two or more tasks may reside at the same priority level, such as B and C

above, a natural question arises; what happens if both e1 end ea occur “srmultene-d

1 Most systems. adopt.

ously," at least wlthln the resolutlon of the Interrupt system
some arbltrary metr'c to resolve such sltuetbns A typlcel one Is the dlstence of.
the interrupting devlce from the CPU A olmller epproech ls teken here if more

yi“"’

‘than one event is found to heve occurred at the seme prlor_lty level then control is..
arbltrarlly glven to the ﬂrst (leftmost) one ln Athe event coupled Ilst

However, with the addltlon of event coupled llste "forks" are Introduced lnto
the preemptlon st::ucture, ee shown ln Flgure 2 12 A dlogrem guch as, this ls called:
a COntroI Flow Greph and will be deflned formelly end ueed extenslvely in the next
chepter For now It is sulﬂclent to note that thls dlogrem “unravele" the preemp-
tion structure so that the relative prlorlty levele of each task are dlspleyed If two
or more avents happen together, prlorlty ls nlven to the event whlch lnltlates the
task having higher priority, as was done before ln the ebove example, If el and

\

ed happen simultaneously control is glven ﬂrst to E (whlch e4 mltlates)

Flg. 2.12 Preemptlon atructure for Exemple 2 2.

1. Typlcally the praesence of interrupt requoeto wili be checked for once per In- .

struction: cycle, 50 ‘any-interripts appening bétween two Buch chécks will be indis-
tinguishable as to their ordering In time.

-28=

Determining the Interrupt Structure o -Section 2.6.6

2,7: Non-presmptibie Tasks |
It i1s occasionally necessary to perform all or soma subset bf arciontro! structure’s
tasks in a non-preemptible mode, even though in the Iatiétfldtnlée oth;r tasks at that‘_
priority level may be preemptible. smmy indkzat#ng that a task ls non-preemptlhle
is equivaient to saying that the Interrupt system is "tumed oﬂ’" while that task is
in execution. For genenﬁty, the notation aaows as an altemaﬂve the spec:ﬁcatlon
of exactly those events which are not allowed to interrupt the task Both capablln—
ties are provided with the augmented syntax, shown in Figure 2 13 The scope of
the symbol for non-preemptibility extends to closed eontrol structurea in the natural

way, l.e. every task In the cioeod cs ls non-preamptkle

<baslc cs> ::= (task) | (baslc cs> ¥ (taskd>

<task)> ::= (task Id> | <non-preemptibie tid>

<non-preemptible tid> ::= ‘(task)rl '({ev list>)<task>

<av list> ::» {event var> | <ev list>,{event var>

<{non-preemptible closed c8d> ::= ‘(closed csd> | *(Kev lht))(closed csd>
<closed cs) ::= ...(same as before pits:)...]} <non-preemptibie closed cs>

Fig. 2.13. Syntax for non-preemptible tasks.

Prefixing a task Id (or a closed cs) with an npostrophe {e.g. *A) indicates that that
task is not preemptible by any event. If there Is an event Hst after the apostrophe
(e.g. ‘(e1)A), then that task is not precmpﬂbte by nny evant ln the event list.
Furthermore, It is not preemptible by any mmwm topmmtim by

an event in the event list. For example:

Non-preemptible Tasks Section 2.7

(((((A*/e1)(e3)B C)/e2)D/e3)E)*

Here if LC is at B, it is not preemptible by 3 or e2, sinée e2 initiates D which /s
preemptible by e3. o

Algorithm 2.2 can still be used to determine‘ the MGnal preemption structure
for the control structure’s set of basic cs’s. However, the output of Algorithm 2.2

must then be modified by removing preemptibility relations as specified.

2.8: Stopping the Fiow of Control
Although the emphasis has been on how LC moves within a control structure,
there may well be times when there Is sliph/ nd work 'to ‘be ‘dofie for the moment.
It is worth pointing out how the existing-notation’ indicates this with some exam-
ples.
Basically 1.C will hait when it either:

1. Reaches the "end" of a control structure, énd finds ‘no > or
2. Reaches a slash (/') beyond which no events (which are ca-

pable of interrupting Athe,_gontml structure to the left of the siash)
have occurred. ’

Several examples are given in Figure 2.14 to clarify this concept; for conciseness,
a typical (but not unique) task string which may be generated by each control

structure is given. Additional notation should be self-explanatory.

-31~

Stopping the Flow of Control Section 2.8

((A*/e1)B)* —~—> AAAaiBAAAelIB..
((A/e1)B)* —> A (wait) o1 B A (wait) o1 B ...
((A*/e1)B) ——> A AA el B (hait)

(((A*/e1)B)/e2)* -—> AAAel B (walt) @2 AAA..

Fig. 2.14. Examples of processor ldfing.

2.8.1: Breaks in Event Coupled Lists

In light of the interpretation given to construets which result’ ln stopping the
flow of control, it will be noted that there is no way to apply.iteration to a portion
of the control structure which includas all of a lower: prierity control structure and
part of an event coupled list. What is neaded s the concept of a break, which is
essentially a restricted “go to* statement; it directs LC to jump over the rest of
the event coupled list to the right pareﬁthesl;awtehlne the initial left parenthesis
of the event coupled list. Thus it e.naﬂb_les._the itsrat!on at the end of the event
coupled list to be applied to any Intermedigte_ part of the list as needed. The syn-
tax for a break is the up-arrow (1) at fha point where the h;eax is deii};id; it al

ways follows a basic control struéture, so It can be incorporated Into that BNF:
<basic cs> ::= {task> | <basic cs> ¥ (taslo'[<basic cs> 1

As an example, consider the control structure of Example 2.2 modified to Include

two hreaks:

(A/(e1:((Bt/e2)C)|e3:((DT/e4)E)))*

Breaks in Event Coupled Lists : - Section 2.8.1

Now, when LC reaches the and of B or D, It returns to A instead of waiting for e2

or e4, respectively.

2.9: External Termination of a Control Structure

Consider the cohtrol structure?
Example 2.3. ((((A*/e1)B*)/e2)C)*.

Since B* is non-terminating and runs at a higher priority than A*, A will never be ex-
ecuted again once e1 occurs.1 There is nothing wrong with this per se, but with
the given notation it is not possible to.represent ‘the case where occurrence of e2
aborts the repetition of B, and returns control to A* after executing C rather than
- e eai o
To do this, the notation must be able to Indicate that occurrence of an event

termlnétes execution of'a'particular control strucfn.;fe, and ”thu's LC does not return
to that control structure untli fts initiating é\ient occursv >agaln. Thé modified syn-
v : \ L 1 B .

{task)> ::= (tas!(id> | (nmprqemptlb!e tlg) | (gbort tld) ‘

(abort tid> ::= @<task> | G((ev list))(task)_;

Cabort cs> ::= @<closed cs> | @(<ev jlst)){doggdys)

<closed cs> ::= ..(same as before plus:)... | <abort cs>

Thus it can be specified that any event abaorts a task (e.g. @B) or set of tasks

1. Recall that an event "flag," in this case ai, is pot turned off untll the end of
the control structure which its occurrence Initiates, B* has no end.

Extornal Termtination of a Control Structure : Section 2.8

(e.g. @A B C)) or that any set of svents causes termination (e.g. @(e2)B). The'
event which aborts the task(s) need not be the same as the one which causes
preemption in a particular case; execut!or\ is terminated as long as the aborting
event occurs sometime after preemption and before Lc rotums to the task

It the control structure of Example 2. 3 Is changed to make B an <abort tid)>,

the desired behavior is obtained:
((((A*/e1)@(e2)B*)/02)C)"

Now the string ‘A A A et BBB &2 CAAA.’ can be generated, where raepetition

of A and B ia for an arbitrary number of times.

2,10: Return of Control to a Preempted Task

There are two distinct choices of what to do when LC returns to a task which
was interrupted durmg |ts execution elther rasume executlon from where it Iaft4
off, or start over again from the beginnlng of the task These two strategles will
be referred to as resumption and restarting respectlvely Each strategy has lts
advantages and may be the best choice in different situations. A task which is in-
terrupted often enough may never comp!ete lf it le ulways restarted from the begln-
ning. On the other hand, in a process control sltuatlon the Inputs to an Intarruptad
task may have changed rndlcally slnce It was preempted and resumlng tha compu-
tation started with the old Inputs may lead to anachronistic outputs which are not
relevant to the current control sftuation. Therefors, it s desirable to lhcorporate
means of ropresenﬂng both strateoiec ln the notatlon. For cbmplete generaﬂty it :

must be capable of handllng a sltuntlon where two diffarent tasks In the same con-

Return of Control to a Preempted Task Section 2.10

trol structure may follow the two different strategies. Furthermore, it is necessary
to remember the point of interruption in the case of resumption, so the processor
will know where to resume execution.

When the problem of restarting a control structure is examined carefully, it is
seen that there are really two sub-cases which are of interest. First it must be
recognized that the actual unit which is restarted is the task. At the next higher
level, a task appears In a control structure as part of a basic control structure.
Thus the problem is really how to restart a <basic cs>. If there is only one task in
the <basic cs>, the problem is easlly solved--simply restart that task. If there is
more than one task In the <basic cs>, then the entire <{basic cs> could be restart-
ed from the beginning of Iits first task, or it could be restarted from the beginning
of the task which was partially finished when the preemption occurred. For exaﬁt—

ple, consider the following control structure:

(((A B)*/e1)C D)*

If event e1 occurs, and C D executes, (A B)* must be restarted (or resumed).

Here are the possibilities:

1. Resume from the point of Interruption, in either A or B.
2. Restart from the beginning of A.
3. Restart at the beginning of A if LC was at A when el oc-

curred; restart at the beginning of B if LC was at B when el oc-
" curred.

The first case will be the default case, and !s assumed for all basic control struc-

tures as they have been so far deflned. The second case will be called glfobal

-385-

Return of Control to a Preempted Task ‘ -+ Section'2.10

restart; the third case /foce’ restart. If a syntix is-defitied for the concept of gio-
bd restart, it can be used 1o synthesize local restert as ‘a ‘special case. Thus a
syntax will be given called "restart cs", and It Wil have -semantics of ®global res-

tart”, the second case above.
Crastart cs) ::= > <basic csd>

To control the scopc of the restart symbo! rcstart contro! structures are lntro-
duced Into other control structuras strlctly through thdr appearance ln closed con-

trol atructuroc

(closed cs> ::= ((bask: cs>) | (<preemptible cs) i
(<closed cs> <preemptible cs>) | (<closed cs> <(basic ¢8>) |
(<closed cs list>) | (<restart cs>)

Here is an example of a control structure contairing restarts: -

(({OA BXC DXOEYOFN) e 1)6)*

Execution of this. control structure proceeds identically to that of the basic control
structure (A B C D E F) until event e1 happens. This causes execution of G; after

G completes:

1. If LC was at A or B when el-happensd, LC retums to the be-
ginning of A (global restart of (DA B)).

2. lch wnut(:ernwhaaﬂ happmot,wr«umwfromthe
point of interruption in either C or D.

3. If LC was at E or F when e1 happened, LC retuins to the be-
ginning of E or F respectively (note that local restart of (E F) is
equivalent to ((>E)OOF))). :

Return of Control to a Preempted Task Section 2.10

2.10.1: Conditional Restart of a Control Structure

There is another possibility which should be represeﬁted. In some instances, a
task should be restarted if it was preempted by one event (or one of a set of
events), but resumed if it was preempted by another. This is handled by explicitly
listing the events which would cause restart of a task. Thus a restart cs without
an event list is unconditionally restarted, while one with an event list is only res-

tarted if an event in its event list occurred since it was last run.1

Srestart cs> ::= > <basic cs> | > (ev listd) <basic cs>
Example:
(((((>(e2)A)*/e1)(>B))*/a2)C)*
Here A is restarted If elther

1. Ais preempted by e2 or

2. A ls preempted by e1, which starts B. B is then preempted by
e2 before completion.

B is unconditionally restarted, and A is resumed if e2 does not occur between the

time of A’'s preemption by e1 and the resumption of A.

1. Note that this means that the restart causing event need not be the ona which
caused the task's preemption; there may have been a chain of preemptions which
included the restart causing event, and this Is deemed sufficient cause for restart.

-37~

Conditional Restart of a Control Structure Seaction 2.10.1

2.11: Codestripping
7 A time-gliced aliocation of processor time can be representpd with the existing
notation by letting the event va’vdables' st‘avnd‘ for timer-generated Interrupts. 6ne
additional form of preemption which will bé e)ﬁpﬂcltly ‘re‘;'»resante;i here is codestrip-
ping, as outlined in Section 1.1. | |

Vln codestripping, calls to the operating system are Inserted into a task by the
compller at ‘calculated intervals, resdlﬂnﬁ in preempﬂoﬁ of the task when they are

executed. The syntax is as foliows:

<{codestripped cs> ::= {basic cs?> / <Cinteger>

<preemptible cs> ::= {control structure> / <event list> | <codestripped cs>

Thus codestripped control structures are Introduced Into other control structures
under the same syntax as praemptible control structures. An example of a codes-

tripped control structure:
((A B/6)C)*

The meaning here Is that the basic control structure A B Is executed 1/6 at a time,
based. on its total (estimated) execution time; it is then preempted and C is exe-
cuted. When C finishes, LC returns to the point of preemption, and executes
another 1/6 of the wu& through A B (whether this Is actually In A or in B depends
of courss on their relative lengths). Thus C will be executed five times for every
single execution of A B.

Notice that control structures such as (>{A B/10) are syntactically lilegal; the

notion of globally restarting (or locally restarting, for that matter) A B is incompatt

Codestripping Section 2.11

ble with the semantics of codestripping. Furthermore, codestripping of closed con-
trol structures could lead to highly ambiguous or meaningless structures and is
disallowed. This prevents such structures as ((A B/5)/10) and (({(A B*/e1)C)/5).
Structures which execute until they either finish a codestrip or are Interrupted by
an event are allowed, as they should be, e.g. (({A B/5)/e1)C)* which executes C

for every 1/5 of A B executed and whenever e1 happens.

~-39-

3: Representational Power of the Notation

3.1: introduction

This chapter presents a catalog of control structure types which the notation:
of the preceding chapter is capable of representing. It is not claimed that every
conceivable type of representable control structure is included, but the list at-
tempts to be comprehensive as to general forms. Some examples are also given of

types of control structures which are not representable.

3.2: Control Fliow Graphs

Control structures can be conveniently categorized by the topology of their
Control Flow Graphs, or CFG's. A CFG is a directed graph; more precisely, it is a
set of nodes and directed arcs, where a node repraesents a basic ¢s and an arc
represents the movement of LC between two nodes. The nodes bear the names of
the basic cs’s which they represent.

Consider an arc A which originates at basic ¢cs o and has as a destination
basic cs d. If o occurs to the left of d in the control structure, then arc A is a
forward arc; otherwise, it is a backward or back arc. Either type of arc may bear

labels:

1. An arc which represents the uninterrupted flow of control due
to termination of a basic cs is a forward arc, and is uniabelled.
Note that this includes breaks as detalled In Section 2.8.1.

2. An arc which represents the flow of control due to preemption

~40-

Control Flow Graphs Section 3.2

by an event occurring is a forward arc (an event arc) and is la-
belled with the corresponding event variable.

3. An arc which represents the flow of control due to iteration is
a back arc and Is labelled with an "*",

It may seem that tasks rather than basic cs’s should be at the nodes of CFG’s,
and in fact the algorithms used for determining real-time latencies must sometimes
deal with control flow at the task level. However, this additional detail adds noth-
ing to the breadth of representable control structure types, and in fact detracts
from the readability of the CFG’s.]

Figure 3.1 gives an example of the CFG for a simple control structure.

AB

el——>C

Fig. 8.1. CFG for ((A B)/e1)C)*.
A string naming the tasks and (optionally) the events encountered in a path taken
by LC through a CFG is called an execution of the corresponding control structure.

ABel CABand Ael CA el C are both executions of the above cs.

1. If, for example, a basic c¢s is preemptible by event ei, then every task in the
basic c¢s would have a forward arc labelled e/.

Control Flow Graphs Section 3.’2

3.2,1: Priority Levels

As an extra benefit, the CFG notation provides a convenient mechanism for for-
) . . o : S 7: . ,iz e . .
malizing the concept of priority level, which has been tsed somewhat Intuitively

thus far. To find the priority level of basic cs ./, do. the following:

1. Let the leftmost basic os in tha control striscttire have priority
0 by definition.

2. Find the acycllc path from the priorlty 0 baslc cs to basic cs i/
having the jargest number of avent arcs.”

3. The priority of basic cs i is equal to thc numbeér of event aics
in this path.

3.3: interrupt Driven Control Structures

The CFG’s for control structures uslng only scquenclng and iteration are fairly
straightforward and do not expand the catalog of representable control structures
by much. The sequence of tasks within a basic cs is lmpllcltly represented, and
forward control flow from one baslc cs fo another slmply translates to an unlabelled
arc in the CFG. : - |

"The morée Interesting CFG’s are those which are derlved from control structures
having event variables. It is readily apparent that ﬁne notatlon has conslderably
more flexibility than that which is needed for representing traditional priority inter-
rupt schemes. This flexibility is derived principally through the placement of the
"2" Heration character and by use of the branching introduced by event coupled
Hists. The latter has been mentioned briefly; the former bears clarification.

A back arc can be originated from any basic cs by following It with an "*».

Interrupt Driven Control Structures Section 3.3

However, there Is a degree of freedom in specifying the destination of the back
arc; t_his will be exercised in erlarging the catalog of control structires. Funda-
mentally, the back arc may return to the same priority level, a lower one, or the
lowest one. If it does not return to the Iowest level, a certain "shrlnkage“ ln the
future range of LC is experienced Thls wil bc >;t;t)orated on shortly. Additlonal
variations: on the fundamental types are achieved through-tse of the interrupt mask

(non-preemptible tid), external abort and rostart/résumeé: capabilities.

3.3.1: Globally Cyclic COntrol Structurcs , ,

7 Under this category is Included all control structures with CFG’s such that
every back arc, regardiess of Its originating priorlty Ievel goes to the first task of
the lowest priority level. Informally, this means that upon completion of the tasks
at a given priority level, the processor will scan all the event variables In the con-
trol structure from the lowest Icvel to the highest, and begin execution of the
highest level task pending. Thls :is as cupgaed tc .control structures with local cy-
cles, where the lower priority eveﬁts atc‘ _u_ot neccssarlly considered .ln each such
situation.

The traditional interrupt systems. avallable on most processors fall into this
category; such systems are furthér subdivided into two' types, which are called
here the weak priority system and the strong priority system. In the weak priority
system, aithough arbitration betweewn lhterrupts fiom two or fiore events Is provid-
ed, there Is actually only teilngile--tmehv“c‘t%of' interruption. There is a "user" or

"mein" program which runs at the lower priority, and any number of events may

Globaily Cyclic Control Structures . Section 3.3.1

each preempt It; however, no event may -interrupt. any task. which gained coatrol-it-
self via an Interrupt. .This type of control structwe is. represanted using event

coupled lists, as in Example 3.1.
Example 3.1. (MAIN/(e1: AJe2: Bje3: C))*

The CFG (Figure 3.2) has an interrupt branch from “main® for every interrupting
event, to the basic c¢s it initiates. Completion of A, B:or €. forces LC to retumn to
~ MAIN, so there is a back arc from each of them. For the sake of keeping the CFG’s
readable, muitiple back arcs with the same dosﬂnntions wﬂl be comblnad as is
done In Figure 3.2. It is worth keeplng in mlnd however. thatthla doea not Imply

that another type of node (juneﬁon) hac been ndded

MAIN—a2

Fig. 3.2. CFG.for Example 3.1,

. A strong priority system. supparts a processor: priodity;-the currantly running
task has a priority & assoclated with it, and-any events interrupting with priority m
> n may preempt it. With the exception of the ahility provided for masking inter-
rupts, the processor runs the highest priority .task .walting for service at any time.
This type of muitiple priority level interrupt system is repreasnted by strict nesting

Globally Cyclic Control Structures Section 3.3.1

of preemptible (and iterative) control structures, as shown ih Example 3.2.
Example 3.2. ((((A*/e1)B)*/e2)C)*

The general form can be recursively constructed; each "layer” looks like:
((Kiterative cs>/<event var>)<{basic éé))*

which is itself an iterative cs. The (baslc cs> ru,rig at thawnext'highér‘ priority than
. the rightmost basic cs in the_(pree@ptible qg}. .
A CFG for Example 3.2 Is glven In Figure 3.3; it can be seen that the proper-

ties of nested interrupt systems have natural analogues in the graph:

1. Let a and 8 be basic c¢s’s in the CFG. If there is an acyclic
path from a to 8 whose last arc is labelled e/, then there is an
arc from « to B labelled e/. This property atems from: the transi-
tivity of interruption In a nested, multiple priorlty aystem

2. There is a back arc from the last basic cs at each priority lev-
el to the beginning of the lowast priodty basic.cs. After comple-
tion of the control structure at a given priority level, LC returns to
the highest level with a pending request.

N Aé—m——a:z——ea——\?c
L/

Fig. 3.8. CFG for Example 3.2.

Globally Cyclic Control Structures » Section 3.3.1

3.3.2: Acyclic Control Structures

At the other end of the spectruin are founfi _control structuraes wlth no back
arcs; these represent completely non—lteratlve systams where the flow of cbntrol
terminates when it reaches the end of any path. Such control structures are furth-

er subdivided into two types:

1. Uinear control structures - control flow is straight-line and thus
entirely predeterinined, as in the example of Figure 3.4.

2. Branched control structués - realfime decisions based on

event occurrences determine the lctuql ﬂgw of control; see Fig-
ure 3.5., which provides an oxmpie

The subject of linear control structufes does no;: leave much room for discussion
and I Included mainly for completeness. Howeyai, there are some Interesting ob-
servations that can be made ahout branched control atmcmarepraswtuble with
the notation, and which apply Indepgf:tdenﬂyv of\lghatherthnm are cyecles present;

these will be considered in the fdlowlng secﬂon

A——el >8 C >D

Fig. 3.4. CFG for tha control structure ((A[§1 B C)D).

Acyclic Control Structures Section 3.3.2

a2—>C

at——2B< o
/ B\ea—>|3
K ——e3 A

N

Fig. 3.56. CFG for the control structure (A/(e1:(B/(e2:C|e3:D))|e4:E)).

3.3.2.1: Branched Control Structures

It is Interesting to note that while tree-shaped CFG's such as the one In Figure
3.8 can be represented, allowing arbitrary tree—shaped Interrupt structures is not
compatible with the trensitlvlty of mterruptlon In fact the notation cannot
represent any tree of depth greater than one where the forward arcs are all event
arcs. Thus a CFG such as the one in Flgure 3.7 has no correspondlng control struc-

ture.

e1 —>B

\.z_._>c

Fig. 3.8. A tree-shaped CFG, for (A/(e1:Bje2:C)).
For example, consider an attempt to derlye,e control structure for the CFG in
Figure 3.7, a tree with a depth of 2. By Mgorlthm 2. 2 It ls found that slnce Cin-

terrupts B and B Interrupts A C must elso Interrupt A. Thus an arc labelled o2

—47-

Branched Control Structures s Section 8.8.2.1

must be added from A {0 C, and the tree structure Is lost. Event e2 (and e3) can
bamaskedfroulntumpmﬁ MM@‘&“M&,WGRMB
Mdch!smmpﬁbiobyoz. mmmdmmmwmaﬁ
mtmmauwmwmmwwmmt

A—— 1

sl

Fig. 3.7. Acremmmmmmcmm
Emnth!y ﬁﬂsmﬁcﬁmaysﬂntmwbamustmctwesm

atﬂnmeﬁnebekiﬁated

£

Mwonwhtdybcdpmﬂonmm andyet
bymemt Tohwmtamstypoofmwmmnmﬁonof“b‘
cal® and "global® events, with suitable restrictions on their scope. The additional
complexity this would introduce may be Incompatible with the attempt to keep the
notation concise, but this may be a logical extension of the language for some ap-

Mnmesmeamp&ammaammsaCFe
mchhmﬂnrtomanfﬂmraaj' butuhid)lsuprum;ndbythefom

CA amwc]az~ D)}

Macfmaml!repnsantsemudmmmumofa.buts\cmtboh-r

terrupted.

Branched Control Structures e . v S8action 3.3.2.1

Q2 e C

<

e3——2D

Fig. 3.8. A representable tree-shaped CFG.

3.3.3: Locally Cyclic Contrel Structures

Included in this class are all those: control structures having back arcs which
do not return LC to the lowest priority level task. ' This group is furthet subdivided
into strycturas which never return control to: the lowest priority task, and those
which may or may not make the return at some’point.” Whitle the emphasis-here is’
on returning to the Jowest priority level, the same sort of distinctions can be made

about any priority level and its superiors. Examples of each case will be given.

3.3.3.1: Dynamically Docriulng the Range of LC

Consider the following general form of control structure:
Example 3.3. (... {preemptible cs><{closed cs>*/<{avent var)> ...)*

This has a non-terminating "<closed cs>*" construction, which corresponds to a
back arc In the CFG from the end to the beglnning of the closed cs Although the
rightmost "*" forces LC to return to the beglnnlng of the control structure (lf the

w"x® s reached), the (preemptible cs> wIII not be resumed slnce the followlng ,

Dynamically Decreasing the Range of LC " Section 3.3.3.1

<cilosed cs> runs at a higher priority, and Is non-terminating.
Figure 3.9 gives the CFG for the eonn'olm

Example 3.4, {({AJe1){s C)*/e2)D)*

which has the above general form. It can be seen that once a non-terminating oop
is entered, although it may be preempted by higher priority tasks (either momentari-
ty or permanently), control will not return to any task %:its teft. Thus ‘the ‘control
structure has effactively "shrunk®, in that certain tasks are no longer executable.
This shrinking may occwr in stages, if there are severel events which inftiste Ttera-
tive control structures, and which occur in succession; or it may occix afl-at once,

Fig. 3.9, CFG for Exampie 3.4.

3.3.3.2: External Tmaﬂonotl.ncd Cychs
Abcdcydonoedmtdqukﬂcateadeamﬁmcmﬂdwmctum lfthe)_

'(abortcs)'mtmcﬁonhmd,ﬂwnmntrduymtammw
time in a given sub-structure (local cycie), and finally return to lower priority levels

External Termination of Local Cycles Section 3.3.3.2

when the aborting event occurs. The control stiucture of Example 3.4 canh be

modifled by the addition of a single "@" symbol:
Example 3.5. (((A/e1)e(B C)"/eZ)D_)"

Now when e2 occurs, it "shuts off" el as well as infiating D. This is a dynamic
behavior and as such Is not well suited to representation by a CFG; however the

3

reaktime latency algorithms must cefthlnly take account of it.

3.3.3.3: Restrictions on Local Cycles

_ A back arc can be. formed from-the end to the beginning of ‘any closed control
structure, and hence.therg Is litle restriction on its range of possible destinations.
One notable exception. occurs in the presence of event couplod lists. Figure 3.10
gives a CFG which does not have a corresponding control structure; its ilegality is
the presence of a back .arc which cuts across the *|" syntactic boundary In an

event coupled list.

1
<-2———>:3-$.\‘l

Fig. 3.10, CFG with an illegal back arc.

01—*\

-51-

Restrictions on Local Cycles ‘ Section 3.3.3.3

Essentially, this says that the forking caused by -event coupled lists forms two
or more independent sub-controi structures, and LG ‘cannot move freely from one to
the other. However, it is possible that an event external to all the branches may
preempt any of them; thus a CFG identical to m;t of Figure 3.10, excépt that it

has no back arc, corresponds to the legal control structure:-

(((A/(e1: Ble2: VC))Iea)D))

3.4: CFGs at the Task Level

There are several variations on. the general clasaifiéations presented here
which arise principally when control flow at the inter-task fevel is considered. As
previously mentioned, the complexity of the resulting CFG’s limits their usefulness.
Thus these variations are more sultably discussed in the context of latency algo-
rithms; furthermore, they do not introduce new general classes of controf structure
types as far as the topology of thelr CFGs is concerned, but instead résuit In per
turbations of those already consldered.

However, It is reasonable to examine thé changes which would be Induced on a
CFG which has single tasks at its nodes, rgther than basic cs’s. Use of the “<non-
preemptible closed cs>" or "(non-preéilflptivble tid)"; ébastrpctlons results In the re-
moval of the appropriate event arcs. In Addltbﬁ,- W the task immediately prior to
the "/<{event var>" construé’tion Is masked, an unlabelled forward arc is added to
show the flow of control which occurs on termination of the masked task.

The default mode of control return to a preempted task is resumption, as dis-

CFGs at the Task Level Section 3.4

cussed in Chapter 2. Thus any arc (backward or forward) to a preemptible cs of
this type must be dynamically relocated ‘to. peint to the task which was in execu-
tion when preemption occurred. Agaln, this is not easlly representable with a static
CFG, and in fact corresponds to the need to store some "state" information yvhlle a
task is dormant.

If a task Is to be restarted, thle; problem does ‘not arise; In 4fact, if an entire
closed cs Is of restart type, there vﬁll be no arcs polntlnd to tasks internal tq the
closed cs which originate outsld'e of it. The only entry point from the external

world’s point of view is the'beglnnlng of the Initial task.

4: Real-time Properties of Control Structures

4.1: Introduction

A primary motivation behind developing the hnguaga pro;qntad in Chapter 2 is
to provide a representation of control stmcturos suitth for use as an analytical
tool. Specifically, it provides a convenient fonut for convcytng preamption and
control flow Information to an algbﬂthm which thon detorminas raval—tlmgr properties
of the given control structure. | S |

The aigorithms to be given hera are not intended to provide an exhaustive
analysis of a control structure, but rather to be reprasentative of the types of
analysis which may be performed. The real-time properties messured here are of
common interest; however, it will probably be the case that, depending on the
needs of the particular user, different realtime properties may be of special In-
terest. in many cases, the given ailgorithms can be adapted for measuring different
Intervals with minimal changes. in other cases totally new aigorithms may be need-
ed, but parts of those given will still be useful.

Much of the terminology used hers was developed in [Teixeira 78] and the
reader is referred there for a complete discussion.

A principal goal here will be to deveiop aigorithms for determining the worst
case /atency of a list of tasks in a given control structure. Informaily, the worst
case latency of a list of tasks « (written i(s)) is the longest time that can elapse

without there being a complete execution of each task in the list in the order

Introduction Section 4.1

glven. The list of tasks whose latency is being measured will be referred to as a
constraint. The latency of a constraint is measured with respect to an execution
of a glven control structure, where an execution is a list of tasks in the order in
which they are executed by the CPU in a particular invocation of that control
structure. Each selement (task id) of the execution has a weight assoclated with
it, written as |<task id>]. The welght represents an upper bound on that task’s
execution time on a particular processor.

Note that depending on event timings, a number of different executions (of
finite or infinite length) may be generated by a single control structure. Consider

the control structure:
(((A B)*/e1)C)* (6.1)

Possible executions include:

ABABAB..
ABCABC..

ABABCABABC..

among many others. Also note that in the case of preemption a task may be
suspended and restarted, and thus partial weighting (or its effective equivalent)
must be accounted for.

The weight of a list of tasks is the sum of their individual weights. The worst
case latency of a constraint a« with respect to an execution 8, is the sublist of 8
with greatest weight which does not contain «. The term "contains" as used here

means that the elements of a occur in order and with their full weights; there may

Introduction Section 4.1

be arbitrarily many other tasks interleaved. -For example, (A B C D) contains (A C)
as well-as (A B), but it does not contain (C B).

The provision that the tasks be Included with their full weights is emphasized
for the following reason. in many reaktime process control applications, the lnpdts
to a task may change at any time, but the scheduling of task initiation may not be
synchronized with the arrival of new Inputs. Thus It Is entirely possible that new
inputs may arrive immediately after the initiation of a t'ask,4l'.e';, after it has already
read the cutdated inputs. Given this possibiitty, it may be that nearty two complete
occurrences of the constraint may be executed in an Interval which stifl does not
contain (in the strict sense defined above) a single occurrence of the list. For ox-
ample, given the control structure (A B C)",ﬂ consider the execution ABCABC. If
ﬁn input to A arrives immediately after A reads its old input;‘ then it is only after
the second occurrence of C has completed its execution thiit afi tha tasks In the
constraint will have been executed in order (the constraint is satisfied by such an
execution). Thus a way Is needed to represent an execution whose end-tasks are
weighted just less than their nominal values; the notation chosen is bracketing
such a task on its "short side”; [A means "begin just after the start of A", and C]
means "stop Just before the finish of C". The weight of such a task is its nominal
weight minus ¢, where ¢ is arbitrarity smalf. Yhus the wotst case latency of (A C) in
(ABC)*is|][ABCABC]|

The list (A B C A B C) is an example of a critical window for (A C), where a

1. Unless It is known that the timings of such data arrivals can be synchronized
with task initiation, it must be assumed that this could occur atmytimeafterAis
initiated.

Introduction .. Section 4.1

crliglcal window Is defined as a list « such: that «.costains two occurrences of a
constraint C but [a] contains no occurrences of. C.. In-many cases.the-worst case
latency of a constraint will turn out to be the weight of a critical window {(the most
_ critical window). The worst case latency of a constraint with fespect to a control
structure (as opposed to an execution) Is taken over all. the possible executions
that may be generated by thea control structure — no matter wm&»theeeweﬂtsthnlﬂlasz
(within specified limits), there can be no.longer iaterval which does not coatain the
list. Thus part of thé problem faced s to clessify the types of executions which.
may be generated by a control structure .and. narrow the .choice among them for
finding the worst case, since otherwise the combinational explosion: in the: number.

of possible executions would make the problem intractable.

4.2: Weights of Task ldentifiers

It was mentioned briefly above that a welght is asspclated -with every task
identifier, representing an upper bound on its execution time. -Naturally this must:
be with respect to a particular. pracessor, but aven with this restrigtion there are
some difficulties in determining a meaningful upper bound on execution time. Aside
from input dependent computation tlmas, there are processor dependent variables
such as memory access time In a virtual storage system. The worst case time
would occur when all memory raferences werq.to the slowest storage device, but
the prpt?gplllty of such a case actually occurring. may.be nearly zero. On the other.
hand, there may be an uncomfortably large variance assoclated with-the mean ac-.

cess time when critically time-dependant processes are .involved.. it seems then

-57-

Weights of Task identifiers Section 4.2

that in such a case one must either arrive at a statistically reasondbie upper bound
on memory access time or change the storage aflocation parameters of time depen-
dent tasks to ensure their residence at a particular level of above (in access
speed) of the storage hierarchy. |

if an upper bound on the sxecution time for a task does not exist, this would
imply potentially infinite worst case latencies and there would be no purpose to ap-
plying the algorithma given here. If there is any question of the vakie of an upper
bound, then it must be chosen carefully n light of the particular application of the
latency Information. The weight of each task will be an Input to the latency algo-
rithms along with the control structure, and it will be assumaed that a function (table

look-up) exists which returns this weight in response to the notation [<task id>].

4.3: Properties of Event Variables
In order to arrive at worst case latency times for a‘controf structure contilnlng
event variables It is necessary t6 know something more about the timing of the

events represented. To Hiustrate, consider the control structure:
(A B)*/e1)C D) (6.2)

if @1 never occurs, the only possibie execution of this cmtrol—structdra is(ABAB
A B ..). The latency KA B) in this case is 2(|A[+[B]) - +, aince the longest sublist’
which does not contain A B wouid be [A B A B]. On the other hand, If e1 occurs at
leas: once every [C[+Dj seconds, then KA B) is Infinite, since the only execution

generated is (C D C D C D ..) (ignoring possibie iitial executions of A and B). If

Properties of Event Variables Section 4.3

the control structure contains more event variables it may become difficult to deter-
mine the worst case latency (the largest I(A B)) by inspection, and the need for
additional information about the event variables is clear.

In particular, what is needed is the following:

(ei): the minimum period of event e it Is guaranteed

(e,-)

1. Tmin

that e, will not occur more than once in any interval of Tmin

seconds.

2. 'max(ei): the maximum period of event ;i it is guaranteed
that there will be at least one occurrence of e in any interval of
'max(ai) seconds.

It is entirely plausible and indeed likely that In some situations » (ei) will be

min

the same as 'max(ei). This Is the case for all regularly occurring cyclic events,

such as data sampling, processor time slicing, etc.

In general, It is impossible to distinguish a » (ei) which is less than the pro-

min
cessor instruction cycle time from an infinitesimal one since the processor could not
possibly respond to an event which occurred at that rate in any meaningful way.

In fact, for a reasonable system, one would have to pick a » (ei) considerably

min
larger than the Instruction cycle time, but the actual value will be application
dependent. For most events of interest it will be possible to determine a reason-

ably tight » (el.); e.g., if the event represents an 1/0 service request, it cannot

min
occur more often than some time interval dependent on the 1/0 device’s maximum
character transmission rate.

Unfortunately, finding a good value for » (ei) is more difficult in many cases.

max

-598-

Properties of Event Variables S Section 4.3

An event often represents an exceptional condition, which may never arise in par-
ticular executions. - Fortunately, most control structures will not pﬁt time critical

tasks in such a position that their initlation depends on ¥, (ei)2 but rather It is

more Hkely that the completion of a constraint miy be inmﬁéed by ﬂme loét'after

such an event occurs; and the time fost will be & fum‘:tion of ¥, (e), not
M(e,). If a good value of » (ei) s not available for a particdu svent, then

it is more ﬁke!y that the interval of interest wouid beé the maxmun time from the

occurrence of e, to the Initiation and/or completlon of Its mhted oontrol struc-

ture, rather than the longest time. between such executions (a latency value),

5: Algorithms

6.1: Introduction

A series of hierarchically related algorithms will be presented in this chapter,
which will be directed at the problem of finding the worst case latency of a con-
straint with respect to a given control structure. Each algorithm in the hierarchy is
applicable to a larger subset of the set of all representable control structures, and
may call upon the algorithms designed for solution of the problem on a lesser sub-
set as subroutines.

The overhead due ta context switching is not explicitly taken into considera-
tion here. It may be accounted for by a fractional reduction of the effective pro-
cessing power of the CPU, when computing the worst case task weights. If this is
not satisfactory, then the algorithms could be ;djusted so that each event oc-
currence and corresponding initiation is counted, and the overhead due to each
could be added to the delays attributed to interruption.

As the worst case latency algorithms are developed, it will be seen that the
determination of algorithms to measure several other real-time properties, Interest-
ing in their own right, ’is required. Finally, speclal cases may result in substantial

simplification to the algorithms, and examples of this effect are included.

Introduction Saction 6.1

6.2: Latencles in the Absence of Presmption
 The fwst step taken here toward the general solution of the worst case laten-
cy problem Is the development of algorithms to determine the latenclies when no
preemptlon‘ Is present, l.e. when there are no event variables or codestrips in the
control structure. This leaves control _strqqturqs wblcb generate_ finite. and.infinite
lists of tasks, in which all tasks execute to completion ouce initlated.

Since only non-terminating iteration is rsp:Mgd (ln the absence of preemp-
tion), all ﬂnlte lists must contain no lterative components. Furthermore, any finite
list L of tasks which contalns at ieast one occusrence of & constraint ¢ may be

broken down into a serles of possibly overlapping sublists:
Byoay oy e B (6.1)

with respect to a.constraint € where:

1. By mpz each contain one instance of C, butﬂ,]md[az
contain no inatances of C. : - ,

2. The 'l” are critical windows for C.:

The sublist p1 is the head of the list L having mtnhnum welght and whlch also
contains one instance of c- 52 Is the taﬂ wlth Ienst welght whlch contains one ln-
stance of C. The list &, is the critical window which starts -at the firet instance in
i. of the first task in C; o is the critical window whicl; starts at the /th instance

in L of the first task in C. If L contains no critical window, there will be no "l”‘

1. If L does not contain C, then the latency of C in L is infinite.

Latencies in the Absence of Preemption , Section 5.2

similarly, if L begins or ends with a critical window then: #,, or !2 respectively may
also be empty.

Figure 5.1 gives an example of the breakdown for ‘thg’,li,s‘t (ABC bBCBC E)
and the constraint (B C). Note the overlapping of the sublists, and that in this

case |a,| # |-2]

—f— —a—
A B C D B C B € E
: .1 ‘{ % ‘2 |

Fig: 6,1. Breakdown of a fiiite task list Into sublists,

Theorem 5.1. The latency of' a constraint ‘C with respect to a finite list'L which
contains at least one occu;ronca of Cis.the mecd sublist in
the set _of subfists. {51. oy ot "n&’e}! mre‘ﬂu "i ; m B,'a are as

defined above.

Proof. The proof will be given in two parts; first, by showing that any list which
contains at least one occurrence of. C can bg oken, o in -the, abqvo manner to.
obtain such a set of subfists ‘which Inciudes ali the tasks In the original Hst; and.
second; by showing that: no-othér sublist- notaﬁi"!hd Me&n hve a"ﬁreatlr latency
for C. . L : i -

~ The proot of thc first part is given by“skiowing ‘a’ mathod of constructing the
sat,{’-'u ‘11-‘2; A ’a} given such.a list: Lm.mtc_&) B ‘

Find each sublist of L which exactly contains one lnstance of C (i e., a subust
v such that y contains C but [y and y] do not contain ,(;){}k!ghgl each such sublist
v, forl =1 ton svhérﬁ n 18 the numbef‘bfjns,;ﬁ) 'C inL The ll&tL can.

thereby be consldered as a sorlos of sublists, ,

TR 2T YR PYURRNY FUPTE PR EL N L - 82y

Latencles in the Absence of Preemption ‘) o ‘Section 6.2

where the ¢,'s do not contain C and may be empty. ‘if 4, overlaps v, 4. then ¢, ,

will be empty. This set of sublists inciludes every task in L, and wlth no permuta-
tion of the original ordering. Then:

1. l1 Is¢1 nppondod to 11

2. « is the list startlng at v and continulng to the and of 1“1,)
Including ¢,+1 Note that since 7 and’ V.1 WAy overlap “i
not their concatenation.

3. 8,1s T,-1 @PpPended to ¢ .

Now for the proof that the worst case Iatency of C In L ls the maximum of
(83l legl ezl -~ - eyl oA)- 7o n

Since the al's are all the critical windows in L, they represent all the lists «

such that [«] cannot be expanded in either direc! fesulting interval
containing C. Simifarly, 8,7 and [8, cannot be expamfed on bucketad sides

without introducing € to the interval. Since the concatenation of
(By: @42 &g - - < 2%70 B) contalans:L,.and mons. of these subliéts can be“expanded
without the nmc*m contalriing €, the ‘Only pogsth %/ for the. existence of a
sublist: with: greater latency ‘is that:therd is such®a 8t Whi¢K Wncludes parts of two
of the above sublists. That such a sublist with greater lateacy doss not aexist Is
demonstrated by case analysis.

lﬁd md &l > ja, _ The. tubllgt vk eanmt bnﬂia im‘»,.sor mm m eoawn W
thing past v, (without containing C) and hence | < [8,]|. But if § starts at the
beginning of.v4, It could include no more.than e, and theretare. W< juyl. . If & be-
gins past the beginning of .y, it -cannot contain afytiing pastv,, and hence | <
|¢1| Thus such a subnst i does not exist.

The same ﬁne of regsomng ‘will ahow tiat, a amht m greater welght than
any of {f,, ay. ., !2} Gannot being conatructed fron\ parts of adjacent «," s,

L o Baeabio

or «, and B,. Thus the worst case Iatency ofCinL “Wifl be the maximum of (|p1 1,

I"' l’ I. I W2D a s = ‘ - oo "is”

Algorithm 5.1, FLATENCY, summarizes the procedure to be followed in finding the

-84~

Latencies in the Absence of Preemption S : Section 5.2

worst case latency of a constraint C with respect to a finite list-L.
Algorithm 5.1. FLATENQY(L, C) S AR

inputs: L, a list of tuk ldmo (a basic control sﬂuetura), I:Il] is the /th task
nL

E

c, the conetulnt (aho a llst of tnk identmfs). CU} is the :th task in C.
Outputs: (I(C), stnrt_lndex, ﬂnlsh_lndex),
l(C) is the worst case Iatency of C in L

start_index is the index of the first task of the sublist of L which displays
the worst latency for C.

finish_index Is the]ndex of the last task of the subllst of L whlch dlsplays
the worst latqncy for C. e ;e v e ool e

Method: _
1. Scan L to find:

01, the head of L withnlea,st: weloht wméh (':'o'hvtdlns'(C.

., { =1 to n where n Is‘ the number of occurrencas of C in L
minus 1. ’

’2’ the tail of L with least welght which contains C.
This is accompﬁshad as follaws MI scans start from the mark polnt, initial-
ly L[1]

8. Reset the mark point totbve- the first occurrence of C[1] found
during each scan.:- i no:ocoutrenos of Bf¥}: e found; the mark
point is set to the task past tho ond of the current :can

b. ﬂ, is found by scannlng untll a complete occurrence of C has
been found: e -
c. The «;'s are the fists which’ exattlj contain two occurrences

of C; thay are- found. by acanping:from. the: merk point for one oc-
currence of C, and then scanning from the new mark point for the
second occurrence of C.

d. ’2 is the result of the final soan if-no tail.of L is a critical win-

-'w" -

Latencies in the Absence of Preemption _ - Section 5.2

dow.

e. If no occurrence of C is found in L, return (e, -1, -1).::
2. The weights of each sublist are accumulated diring each scan, as well
as the start_index and finish_index for that scan. At the entt of each
scan the weight is compared to the largest found so far, and saved as the

new maximum. ¥C) i it is sgreater: (in .which cuse staftindex and
finish_index are updated to the valuea for the just scanned ﬂst)

3. Return the final values (MAX!MUM(I#“ |¢1| Y I-”l. rlﬁzl),
start_index, finish_index). : -

5. 3: Lntencles of Constrdnts in Cycﬂc Con‘tml Stmpturu .,

In the spectﬁed Ianguage an infinite list of tasks is genorated by the Iteration
construct; iteration is either appiled to an entire control structure or to. the last
closed control structure h a (closed cs list) Thus Inmita llats are slther entirely

cyclic (the entire structure Is repeated)
(ABCDE)" - (6.3)
or have a start-up period followed by a steady state cycling:

(AB C)(D E)* (6.4)
It would be indeed mtoﬂmtc if the mm hﬂn!ta llst had to Be examined to find
the worst case Iatency, but due to the restr!cttons on its qycﬁc nature only a rea-
sonably small number o'fmcycles (to be deterrl;iﬁed) have’to' heaxamined to find the
worst case. Thus the intention here is to reduce the case of an infinite list to a
finite list which contains the worst case, auduaukborm 5.1, FLATENCY, on the
resuit. o | | |

The principle question Is thus to determine how many cycles of the iterative

-86-

Latencies of Constraints in Cyclic Control Structures Section 5.3

portion of the list need be appended to the non-iterative portion (Iif there is one) in

order to generate a list containing the worst case latency of a specified constraint.

First, though, It must be determined whether or not the latency is infinite (assuming

no task id has infinite weight).

Lemma 6.1. Given a control structure (¢)(#)* and a constraint C, the worst case
latency of C in (¢)(¥)* is infinite iff C contains a task A which is not con-
tained in ¢.

Proof. If ¢ does not contaln a task A which is in C, then (§)* is an infinitely long

list (and hence of infinite weight) which does not contain C, and thus in which C

has infinite latency.

If ¥ does contaln every task in C, then If C contains n tasks at least every n
repetitions of ¥ contains C and hence the latency of C in ($)(#)* could not be
infinite. O
Once it has been established that the latency is not infinite, the following theorem
can be applled to find the sublist which contains the sublist with the worst case la-
tency.

Theorem 5.2, Given an iterative control structure L = (¢)(¥)* and a constraint C
containing n task identifiers, then if the latency of C in L is not infinite,
the list formed by appending n + 1 coples of ¥ to ¢ contains the sublist

with the worst case latency for C in L.

Proof. Theorem 5.1 established that the worst case latency of a constraint in a
list of tasks was either a critical window @, or a head or tall of the list ﬂ1 or 32.

By Lemma 6.1, if the latency is not infinite then ¢ contains every task in C. There-
fore

51 & ‘s *n (5‘6)

where ¥ means n copies of ¥ appended to each other. This is true since n copies
of ¢y must contain C, since each ¥ contains each task identifier in C. Note that ﬂ1

might be wholly contained in ¢, nonetheless.

-87-

Latencies of Constraints in Cyclic Contrel Structures o Section 6.3

By simllar reasoning:
'Y ZAA - (6.6)

contains the most critical window of ($}{#)*; if the ‘most critical windew is con-
tained in ¢, then equation (5.8) must contain It Otherwise, it is contained in
(#)($)*. If the most critical window starts in ¢ but erids ¥ 'Y then It éannot go

any further than 3" since the first o copies of ¥ must. cqntsln £;: thus eqyatlon
(5.8) coritains the most cmlcal window i t‘hls s the cago .also. e

Finally, suppose that (§)* contains the most critical window. Consider the list ¢
formed by starting at the first occurrence of sLl;Hn the first. copy of &, and ending
at the last occurrence of C[n] In_the n + 13t copy of ¥...The. list # must contain
two océurrenceas of C, since ¥, through v, contain €, and ‘2 ﬂimuab *nﬂ contain:

if [#] contains no occurrences of C, then ¢ is a critical window. If # is a critical
wlnnqm then. ne.critical window can exist:which i larger than # siheé it 'would have
to be .caonstructed out -of more than-a + 1 copldsiof §and:tius: would contain ¢
Thus if ¢ is a critical window, it is the most critical window in (§)*. But if ¢ is not'a’
critical window, then it must contain a critical window, and by the same logic this
critical window must be the most critlcal whdow in (f)"‘

EEH

h Mgorithm 5 2 ILATENCY shows how to use 'nneorem 52 coupled wi‘th the algo-
rithm FLATENCY to detemine the worst case latencsr of a constralnt with respect
to any control structure which does not contain preemption.

Algorithm §.2. WLATENCY(L, C)

lnpm L,acontmlstructurewhld:daasnotemtahmmpﬁm
C, a constraint (list of task identlﬁers)

Outputs: - (HC), start index, rwm.tasks) =
KC), the worst case latency of C in L.

start_index, the index in L of the ﬁ'st task of the list whose weight is
KC).
num_tasks, the number of tasks in the list whose weight is I(C).

1. If L is not lterative, let (I{C), atart.index,:finish.index) = FLATENCY(L, -
C); return(l{C), start_index, finish_index - start_index + 1).

Method:

Latencies of Constraints in Cyclic Control Structures Section 5.3

2. If L is Iterative, then divide L into its iterative and non-iterative (if
any) parts: L = (¢)($)*.

a. If ¢ does not contain every task in C (not necessarily in ord-
er), return(w, -1, -1).

b. Let K = ¢, ¥"*1 where n is the number of tasks in C. Let
(I(C), start_index, finish_index) = FLATENCY(K, C); return(i(C),
start_index, finish_index - start_index + 1).

6.4: Latencies of Constraints in Preemptible Control Structures

The next complication to be dealt with is the presence of event variables and
multiple priority lavels, implying the possibility of preemption before completion of a
constraint, and thus additional weight for the worst case latency. In fact, at this
point the possibility of infinite latencies arises due to lockout by higher priority
tasks, even though the constraint may be contained in an iterative portion of the
control structure.

The general case of preemptible control structures contains many additional
complexities, If one includes external termination of control structures, non-
preemptible tasks, codestripping, restarting, and idle time due to stopping the flow
of control. Thus, in keeping with the theme of building a hierarchy of aigorithms
which handle increasing complexity with each new layer, the applicability of the
next algorithm is restricted to include all the control structures allowable as inputs
to ILATENCY, pius those containing {event list>’s (<event var)>’s and <{event cou-

pled list>’s). Specifically there are the following restrictions:

1. No external termination ({abort tid> or <abort cs>).

2. No restarting of control structures (<restart cs>).

-89-

Latencies of Constraints in Preemptible Control Structures Section 5.4

3. No codestripping (<codestripped cs>).

4. No non-preemptible tasks ((non-preemptlble tid) or <non-
preemptible closed cs)). ;

6. No stopping of LC. The highest priorlty ready task must al-
ways be .initlated without delay. Thus. a control structure such

(((Ar7e)B)e2)C (67)
is illegal but
((((A*7e1)BY*/e2)C)r ‘ (6.8)

s not. Event coupled Hists must contain breaks (cf. Section

2.8.1) to enaure .that waiting for higher . priority. events In the
"evenfcoupie&ﬁstdoesnotoccur

8. Constraints must be contained wholly in a subcontrol structure,
defined as a series of basic cs’s, an itgrativecs,. or closed cs
fists at a single priority level. in CFG terms, a subcontrol struc-
‘ture Is an acyclic path through the control structureis GEG.which
contalns no event arcs, back arcs or breaks. This allows all pro-
cessor time spent at any other level to be treated as an addition
to worst case latency, and lets the detalls of exactly which
. tasks are contributing. to the increase be ignored. - Additionally,
‘the tasks of the constraint must not be contained in more than
one subcontrgl structure. .f they are, then the woarst case:laten-: .
cy in the entire control structure would be < the ‘minimum of the

“thus the present aigorithms still give an upper
_bound. The pmqemtm'e is that if tha constraint can:be satisfled
by an execution which spans two or more priority levels, then the
tasks being executed duting preemption. must-be dentifled, and
can no longer be iumped together and treated as time lost to In-
terrupts.

7. Infinite avent gueues. An infinite. number .(or some suitably -
high number representing the maximum possible number of pending
avents) of occurrences of each event are remembered. This
means that if an event happens before the previous occurrence
has been cleared (by completion of the initiated control struc-
ture), the new occiirfence wilh:Be held in ‘a qudde and not ignored.

~-70~

Latencies of Constraints in Preemptible Control Structures Section 6.4

§.4.1: Definitions and General Approach
The addition of preaemption to.a control structure introduces several interesting

timing questions. For. example:

1. The worst case latency of a constraint as previously defined,
l.e. the longest time that can pass wlthoug their baing .a..complete,
‘execution ‘ot each task th the constraint in order. This may now
be prolonged by /nitiation delay as well as presmption dglay. Ini-
tiation' delay is time lost due to the initiating event not yet hevmg
occurred

2. The worst case latency of an event, defined as the longest
time that cah elapse Betwean the occufrence of an event and
the start of the subcontrol structure which it initiates. What ex-
actly constitutes:the: initiation of .a’subcontrol strittare wilt be -
plementetlon dependent

3

3 Related to (2), lt may be desired to know the worst case exe-
cution time of ‘a st of tasks at a'given priority: levél; this is their
execution time in the absence of preemption plus the most possi-
bie -time lost to preemption. - This: may ‘b moré usefdl thaw (1) in ~
cases where occurrence of an event signais the arrival of new
data, rather than sssuming that task Initistion is “@nsynchronized
with data arrival times.

In all these cases it wm be: neceesery to meke some essumptions which could
lead to an uppet bound whlnh is wmewh&t grewa- mm eétué! worst case (In
addition to the uncertainty In the estimate of worst case- M pxecutlon time). In
particular, Teixeira has shown [Teixeira 78] that the warst case ocours ‘when all
interrupting events happen at the beglnning of en interval end continue heppenlng

at their maximum rate. It mey{__bje;,tne} tpe;,pwegro 8

i ,‘of the events cou
pled with the execution times of their subcontrol structures is such that the.
events coufd never eﬂ happen together. lf thla is known in. e pettlculer case then
its worst case may be dlfferent and the lnltle! pheses of the ewente could be ad-

Justed accordingly. The aigorithms do allow. specification- of event phases, as will

-71-

Definitions and General Approach o : Section 5.4.1

be seen. In any case the algorithms do give an upper bound to the probiem.

~ The worst case. latency of a constraint which exacutes at priority 0 (the
lowest priority) can be determined in terms of nominel time in the absence of
preemption plus time lost to lntemapts the initiation delay need.not.be considered.
The fundamenta! dﬂference between tasks at prlority G and pﬂorttbs crqater than
0 is that if tha worst cuse ‘latency of a copstmht involvas m than obe execi-
tion of tasﬁs at a priority level greater than O, there may be delay due to initiation

of that pﬁoﬂty level (which must ‘be figured ac;;ordmg to gm of the Initiating

eventmmowstcm)fortheaddﬂmtdhﬂsxm Thempﬂoﬂty
level is assumed to be always running or ready, and thus has no such delay

In genmlthmwiﬂbesonethouahtmqﬁodtcpﬁmdﬂtﬂmmtcase for
any time lnterval of lnterest. deteﬂnlned, ﬁw dporm ‘to mme such a

time interval can. be coastmcted using the faﬂanino baalc technlque

1. Determine the relative priorities of every basic cs in the
overall control- structure, and associate with dich. event variable
the-subcontrol structure which It initiates (cf. Section 2.6.5). The
priority of a .subcontrol Qmura:ad dte ioitiating event are the:
same. It is assumed that Tm md ' are known for each

v . Max
~ avent (ct.- Section"4.8). - ,
2. Determine whether the time interval {latenéy or otherwise) Is
lnﬁnite. This may be done in two steps' L
a. If the time lntervd is infinite in the absence of

preemption (détermined as previodsly shown), then it is
'"““t’ in the presance °f preemption. :

b. Otherwise, find out whether higher priority tasks can
sufficlently foad down the processor so that the interval
of !nterest ls never conpleted. One method for doing

3. If it is not infinite, determine the interval In the absence of

-72-

Definitions and General Approach -~ - Section 5.4.1

preemption and: other delays.

4. Factor in the loss of time due tqmm;bn Aéﬁ dﬁ!ﬂ delays;
lifting any of the restrictions given in Section 6.4 will usually be
seen as perturbations of this factor.,. T

5.4.2: Finding infinite tlhnem -

The control structures represented here provide no a priorl method of guaran-
teeing fairnass if preemption is present; Le., it is entirely possible that in the

worst case some tasks in the control structure may never be executed due to

Aoy g ede

preemption by Higher’ pﬁonty tasks T e EE - ‘_

Fortunately It is posalblo to dstermine whethar this. h tbs euseah advance and
at low computational cost, and this must be done before contlnulng with the
analysis. If the lafency at a olven prlomy Ievel Is Inﬂnits then the iterative solu-
tions to be used for soMng for Ioss of tlme due to preemptlon do not converge.
The method usad ls to- detomim a, load facter ﬂx aaclt aubconu'ol structure that

can preempt a glven one, and if the load is 2 1 than the glven control structure’s

E A

tasks wili MVnr execute

LA

in order to ﬁ’ld the load factor due to a subcontrol structure ¥ with initiating

event e, it is necassary to pariition: the-set of-events-indhe overall control struc-

%

ture as follows:

1. sdwws; the set of events which can always preempt ¥, but
- can never be preempted by e‘ These are the mnts of higher ‘
absolute priority than ey as found by Algorithm 2.2, ‘ “

2. E -This is the set of avents which caandt preempt ¢

win_tie’

~78~

Finding Infinite Latencies . : ‘ " Section 6.4.2

and cannot be preemptad by e‘, but are: .chosen: over e’fx!f e'

and one of them are both pending at the same time Tms set is
the wﬁon of tﬁi fomg sets? :

a. Events which have the same absolute pﬂorlty ‘as e‘.
but occur to its left in the same event coupled list.

b. Events which have the same absolute priority as ey

but occur in a different event coupled list.which is entive-

ly to the left of the event coupled list containing ¢.
c. Events which have higher abaolute priority thah ey
but occur-in an event coupled list which #6638 not contain
ey
3. Em tie’ This is the set of events uzhlch cannot preempt ¥
and cannot be preempted by e*, but o' is chosen over one of

them ¥ ‘both are pending at'the same titie. This sat of events is

the union of the following sets-

a. Events which have the same absolute prloﬂty as e‘,
but occur to its rlght in tha same ovent coupled list.

b. Events which have the same absoiute prlorlty as @ Y

. but are in a different event" eoupfé&ﬁtmh is entirely
to the right of the avent coupled Ilst contalning &

c. Events which have a lower absolute prloﬂty than ey

but occur in an event coupled list which does not oontaln
8,. o G

i

4, Enallar 3
ey and initiate subcontrol structures which can always be
preempted by ey These are the events of lower absolute prior-

ty than e‘.
As an example, consider the controi stﬂicture:

(A/{e1:B/(e2:Cle3:D)|e4:Ef{a5:F|eB:G)))*

-74~

This is the set of svents which can never presmpt

(5.9)

Finding _Inﬂgﬂte Latencies

Settion 5.4.2

Its preemption structure appears: in Figure 6:2, and the partitioning of its events in

Figure 5.3.

A

Fig. 6.2. Preemption structure for (6.9).

Initiatin ent . v
' /?:sfv- ‘ Eﬂ'u'lays waii&le' & ‘EMﬁ_tie " | Enever

none/A e1, e2, a3, e4, a6, 86 | none none none
el/B a2, 83 o5, o8 ed none

a2/C none j.ooog ... |83 e4, eb, e6 | el

- @3/D none . e2 o4, o5, ab el
ed/E o5, e6 e1, e2, 83 | none nonhe

eb/F none a2, el e1, ef ed

__86/6 pone .. C e a8, 86 ‘et el

Fig. 8.3. Partitioning the evants of (5.9).

To declde whether a task A at a given prlor'ltyﬂ level !h'a‘ control structure ﬁuay

never execute, partition the events of the control structure relative to A as Just

described. Each event initiates a subcontrol structure (at a single priority level);

let e initiate subcontrol structure ¢ Iz The worst case load of a given subcontrol

Finding Infinite Latencies e Séction 5.4.2

structure on the processor occurs when Its initiating svent happens at its maximum

frequency:

|*]

Worst case load(y i) =
min

3

(ei) (6.10)

The total load factor is the sum of the worst case Joad factor for each event which

might participate in the blockout of A;. this is the set EM pts °
{Eahvays VE_» tle}’ since these are exactiy ihose?évants which consistently get

control over e A Mo matter how long e A may have been walting in queue. Of course,

i A is in the lowest prbdty control struétufe,l"t'heyr; lsno 6 A and the set Ewin tie

Is empty; but the analysis of possible blockout due to preemption Is unchanged.

Let the avents in E

preempts be {ei_. e ,ej}; then the total load factor is:

B\
Total load factor(A) = X3/ »
K=} 'mn“l)._

(6.11)

If the total load factor is > 1.0, then the task A (and any other task in the same
basic cs as A) never gets executed; its waorst case latency is infinite. All the foi-
lowing algorithms assume that this check has been made before they are called, so

that a finite solution is known to exist.

Finding Infinite Latencies - Section 5.4.2

5.4.3: Delay:Due.ta Presmption
The problem of determining the time taken up by preemption lends itself natur
ally to an iterative solution. In the worst case It must be assumed that every in-

terrupting event happens at its maximum frequency (once every r seconds).

min
As the tasks Initiated by one interruption aré being executed, there may be addi
tional event ‘occurrences, Gausing. further delay, -etc. By equation (5.11), If the
load factor is < 1 It is guaranteed that at some peint the task In question (the one
being preempted) will exeéute; but it Is not clear when and for how long before it
Is presmpted again,

Tﬁe problem is then to solve for the}k‘it'e’tui time taken to execute some set of
tasks ¥ of total weight W‘, in the presence ef' a sgt of lnt‘erruptin‘g events
{e;.~--.e I} which all happen at time zero and rthen again every -we’—'mla“i)'
seconds, each initiating subcontrol structures with weights {W,, e, W]}. The

i

total time, T‘, is:

T
r‘-ww"il [———L—— w (6.12)

ket | | Tmin(®) | K

The celling function is chosen since the Qqqﬂeht

T
I"nilh(‘k"] PRI : (6.18)

givas the number of occurrences for eku%n: the interval [T*; but since alt events

Delay Due to Preemption - - Section 5.43

happen at the beginning of the Interval (in the worst case) oneé additionat oc-

(5.14)

but f the event occurs at the exact end of the: interval 1" this occurrence must

not be counted since v wilt airéady be completed — thus the choice of

] e

A quick iterative solution to (5.12) is had by noticing that an excelient lower bound

is the solution to

,w,
T,zwr"i]——!——"— g (6.16)
k=1 Tmin(®)

which is

5
v 15l Wy . .
k=1 Tmin(®x)

T

(5.17)

Notice that the denominator is exactly 1 -Eqution (5.11), the total load factor,
which has already been computed. Equation 6.17 implies that running ¥ with inter-

rupts ls like running ¢ on a processor whose strength has been diminished by the

Delay Due to Preemption Section 6:4.3

load factor of the interrupting tasks.
Thus equation (5.12) is solved iteratively by fetting L

T, = (6.18)
Yo 1-*3 Wa_
" Kt Tmirk®x)
and then soiving for T, K R
" ; f
T, =W, + z [__.‘_Q:l_] w {6.19)
Yo Y ket | | Tmin(exd | K
and stopping when-'r‘;;,-r‘ -1. Thersgm-hmdmeis onically Increasing
n—

with T* and this process converges very rnpldly slnce the Inltlal guoss Is so near

the final vnlue

Given a computation which takes a kooum thwt»tn the mence of mtarruption
Algorithm 6.3, PTIME, computes the total tlme taken to do the computation in the
presence of. lntermpts It»&s asuned thnt thom ls no lolﬁnﬂon My lnvoived i.e.
PTIME finds the worst cqse lntmol wbich: mntdns t coeonds of tim ln which

preempting tasks are not executing.

Alqorlthm 5.3. PTIME(t Em)

inputs: t, a time which represents computation time in-the ebsence of preemption.

Eproempts" a set of. events whlch-can preempt the computation which
takes t seconds.

Delay Due to Preemption ' Section 5.4.3

Output: t , the time taken in the worst case with Merriipts to perform a computa:
mmwutmmw&&,mnqmﬁﬂm

mmtnmmasmnﬂnmﬁmm and con

tinue at their maximum rate)

Mathod:

~(Wl. s, l} be the wdghts of the subcontrol structures initiated by
the corresponding events. Then solve equation (5.18) for an ipitial value
of T,; solve equation (5.10) repeatedyforT‘ usipg the vakie of 7,

¥n-1
ending when T =T . Return(7
, *n ‘n-f *n)'

1. let W, = t Let L O J} be the events in EP'MP‘S’ Let

5.4.4: Applications of PTIME
mmmﬂmﬁmm«wﬂnesevemmeWdh
terest for control structures which meet the restﬂctions of 8ection 5.4 it must be

kept in mind that there Is a d!stinction between the fohwlng two sets of events:

a. The set of events which can preempt a task after it has been
 initiated, as well as take priority over & Witliting ‘event white it
is pending.

b. The set of events which get priority over an event if it is
_pending but has not yet beert recognized by thé processor (no
tasks have been initiated due to its occurrence), but cannot
preempt any tasks I the subcontrel strutture which that évent
Initiates.

Sa e Bn el e

The worst case latency of any constralnt which is in the subcontrol structure
at priority O can also be directly determined. The @lstinction between this appuca
tion and the one just mentioned is that the constrakit need not be contdined in a
single copy of the subcontrol structure. Since the priority 0 subcontrol structure

has no initiating event and hence no initiation delay, the worst éase latehcy of a

-80-

Applications of PTIME ‘ Section 5.4.4

constraint C can be determined in two steps:

Algorlthm 5.4. PRIOLATENCY(*, C)

Inputs i, a subcontrol structure which runs at prbr!ty 0.

C, a constralnt

Output- I(C), the worst case Iatoncy of C In i

Hothod
1. Find (I(C), start_index, num_tasks) = jLATENCY(t, C), the worst case la-
tency of C In the absenceé of preemption

2. L“'Eprédh'p‘ts ‘ba the set of ali-avents M the erftire contiol structire.”

The worst case latency of C is PTIME(I(C), Epreompt;)

Another application is to determine the latency of an event e, thgt_ is, how

L]
A

long Is It in the warst case between the occurence of ap event and the initlation

of the corresponding subcontrol structure. This can be found as follows:
Algorithm 6.5. ELATENCY(e, °i)

inputs: ¢, the least amount of time that can elapsp before a task can be con-
sidered iritiated. : ,; gi v

' o, the everit whoso Iateney Is bahg detu'mtned

Output: i , the longest time that can elapse after °I occurs before its subcontrol

structure gets initiated. - SR RS R
Method:
1. Let the sqtﬁw M&m J‘éo} relative to the event
e. S Lo
2.t = PTIMEG,E,). “

° preempts

Applications of PTIME ~ Sectiori 5:4.4

5.4.5: Adding Phass Relationships to PTIME

For a more general formulation, it is useful to have avmable the means of‘
determining execution tlma in the preaence of mtermp;bns when the lntermptlng»
events may have started happening at any lndeuauy datermined tlme rather thanv

all starting at time zero. For this pqrposa, the phm of an avent is hare deﬂned as

FERE Ry ool

the time since its last occurrence. Thus for a sat of events {ei. RRERY } there
may be assoclated a set of phases $= {’P - . $ l} !f um Qvonta a(o eccurring
at their maximum rates, then no mora than 'mn(‘l"’* ¢,umndscm elapsa before
the next occurrence of . S B |

In addition, there may be oné or more pending occurrence of any of the events

on the avant queue, SO & set of tnmily pending occurrences 8 = {n,, ---’;’n}}”

may be detemined Thue two factors atter the ﬂme due to preemption equation

(5.12) as follows:

Ty=Wy+ (6.20)
A good lower bound to this is &s solution without the cqgiiing.function;
W* +*z’{wk - i)t |
k=i 'aun(’k)
Ty2 (6.21)
k-l mmi k)

Adding Phase Relationships to PTIME - Section 5:4.5

The solution is again found by aolving (56.21) for the:initial: value T*o and then
solving (5;20) for T‘ using the prevloﬁs Vdﬁe T‘ ;mtﬂ fhey are equal. A sum-
n s N . X ll-“ B e B o

mary Is given below as Algorithm 5.8, PHTIME. ~Note that If}k:m- '»'mlng‘ek) and nk =0

for all X, PHTIME computes the same value_ as PTIME.

Algorithm 6.8 PHTIME(t, €, ooy, 4, 9)

Inputs: t, a time which represents computation time Ini the *absence of preemption.

Epreempts’ a set of events which can preempt the computation taking t
seconds.

$a set of phases, ona for each event inE

Sl Cpreampts’

8, a set of initially pending occurrences, one for each event in E presmpts*

Output: Ph’ the time taken in the worst case. to perform a computation which-

takes t seconds to perform with no interrupts. The worst case involves

preemption by all the events:in Eproompts s oftew as possiblé, subject to

the conatralnts of ¢, 0, and Tm for each event.

Method:
1. Let W*-t Let {e,, teaey } be the events in Epraempts Let

w, - l} be the welights of ‘the subcontrol” structures initiated by

the corresponﬁng events. Then solve equation (5.21) for an Initial value .
T‘o~ solve ‘@quation (5.20) repeatedly Yor T‘ ‘sing the previous value

of T‘, 1 » terminating when they are equal T*, . js~thevalue to-be re-
n- n
turned as tﬂ”“

Adding Phase Relationships to PTIME o : -+ Section 5.4.6

6.4.6: Tnsk%Execuﬁon Time with Preemniption at Priorities > ©
Mgorithm 5.5 gives a method for determlning the maxlmum tlme that .can elapse

between the occurrence of an event e and Initiation of its subcontrol structure.
This is fairly slmp!y done since while el is pendin§ the ‘set of events that can

preempt it Is static. Once its subeontrd stfuciu;e 'has been lnlﬂeied, hewevei.

only events In Ealways can interrupt; however, lfany oftheaq svants does ocour,
any event in E_,, ., wil take priority over resumption of e,’s. subcontrol struc-

ture.
This complicates the determination of worst case execuﬂon tlme (and laten-
cies, as will be seen in the next section) for a task subset Fi of the subcontrol

structure. Note, however, that if the set E_ n..tle 3 empty (and therefore the set

of interrupting events is static), that PHTIME can be used to get the correct result.

lngenerelthet@t,thnreautmustbehmdhm demﬂnhgwhenlcan
be executed. The next algorithm detern’ﬁnewthe worst case time to execute a set
of tasks 8, contained in a smgle subcontrol stmctwe. given the sets of events

always and Em_zia for & and their !nltlal velues of. ¢ nnda It assumes that §

has been just initiate,d_fand then finds the time t, mmﬂontpcanpleuon of 8.

This is done by first finding how long it will be before afl the pending interrupts, if
any (based on ¢ and §), are processed and § can be resumeéd..’ Then the earliest

occurrence of an event in Edmys marks the next preamption of §. At that point

any accumulated occurrences of events in E will cause executions of their

win_tie

subcontrol structures to be completed before § can be resumed. This partitioning

Task Execution Time with Preemption at Priorities > O '~ Section 5.4.8

of the total time taken to execute 3 is repeated until all of 8 Is completed. Note
that the method does not require determination of an ‘@xact schadule for all the
tasks in the control! structure, although the éﬁtaét"itme& when 8 wi“ be ‘vexecuted
dre found. Algorithmi 6.7, "SCSTIME (fbr "sabeontrol structure QXeChfbn time") de-
talls the procedure. Note that -this aigofithm does not address the problem of
dctormlnlng execution tlma for a set of tasks wri’fch may requlre more than one in-

vocation of a subcomml structure.

Myormlm 8.7, SCSTIME(' Edwgs’ Ewln u’, i, 0)

Inputs: $, a sublist of the tasks in a subcontrol structure

Ealways' relatlvn to. a‘. &s lnmatlng avant

[ENE

Ewin_tl e’ relative to e;.

¢, phases for events in Edwa and Ewln_tle"

Q, initialty be:hdlng ‘occurrences for ‘e'\iem in ;EW and Eiyln_tle‘

Output: p' the Iongest posslble time to execute § with interruptlons

¥ o gl .:,

¢ the ﬂnal phases for all the events in E

win_tie’ win tle

0win _tie’® the fhal number of pendlng occurrences for all the events in

- Ein_tre

Method:
1. Set ‘cum = 0, the cumulative execution time for §. Set t1 = 0.

2. Find how long 3 can execute before it is preempted by an event from

Edways. This is:

£, = MINIMUM (:,m.n(ek) %) for all @y €Egy (6.22)

Task Execution Time with Preemption at Priorities > 0 - . . - Section 5.4.6

Go to step (4).

3. Find how long § can be executed before an ewent from Exways
preempts It; this occurs at time:

t, = (least mumple of v (ex)>1, for alle, ¢ EMS) - (5.23)

min
4. If ‘cun +iy-t, > B, § will complete in ﬂ!ia'kltewd;m“te,gp -,
+ m cum' compute ‘win..tle uslng equat!on (5 25) and substitutlng tp

for ts; compute me _tie using equation (5.24) and substltut!nq tp for t 2‘
Return (t_, '

Q). Otherwise set:d. . =} +t2 g

p’ wln tie® “win_tie cum cum

5. Set 8 = 1 for the event from EM which caused the preemption,
Some events in Evin _tie ™Y also be pendlng

o
k [mm(ek)l [min ‘k)

6. Update phases for all events:

(6.24)

} for aﬂe win tie

t, o
‘k - 12 - IWJ cmm(ek) for all € {Ew UE IMIG) (6.25)

7. Find new value of ¢ 1, the next resumptlon time of §:

ty= t2 + pmms(., YE i e’ 0 . (5.26)

Edways win ti

8. Repeat steps (3) through (7) until termination of 8 is datectaé in step
(4).

Task Execution Time with Preemption at Priorities > 0 ~ Section 5.4.6

5.4.7: Latencies for Cm:trdn& at Priorities > 0

The worst case latency may be desired for a constraint which is setisﬁej'dg;g%
an execution of a subcontrol structure at a priority greater than 0. If the execu
tion which represents the greatest fatency invoivés two or more invocations of that
subcontrol structure, the possibility of initiation delay must be considered as u?ell
as Interruption delay. Each of these delays may Involva & @ifferent set of preempt-
ing events.

There are thus several complexities to be dealt with in the general case, even
with control structures meeting the restrictions of Section 6.4; hewéver there are
also several special cases with simpler solutions. An example is: wheri‘the sets

Ewin tle and Elose tie are empty, it will be shown how to meke use of this

%

slmpllﬂcatlon in a Iater sectlon A ' :
Recall the notatlon of Sectlon 5 2 where a eubcontrol structure A was broken

down Into components @1. @ &, ’2) relative to a constralnt C, where the
: Db B

. ‘s were critical windows and the ’I s eech contelned one occurrence of C

x P SPE T
AT 52 S S 1

The worst case latency of c In a control structure centalnlng ¢ at a priority

level gr‘eeter than zero is found ‘as tollows. Lét e‘ ‘be’ tﬁe Tnitfatlng event for " A

There are two candidate time intervals which mey be the worst case letency for C.

The first, t’ , Is the maximum delay between occurrences of e‘ plus the maxlmum

delay to complete ﬁ1 wlth preemptlon The eecond t ls the maximum tlme taken

to complete a,, the most critical window. of ¥, also with. preemption. Either one

may involve more than one invocation of ¢, and hence ipitiation delay. To show

-87=.

I

Latencies for Constraints at Priorities > 0 - : : Section 56.4.7

that either t’ or t, could be the worst case lstency for C, consider a simple ex-
1 m ,

ample:

Example 5.1. ((A*/e1)B C D C)* .
where

* max\€1) = 10 sec.

IAl = 1 sec.

{8} = 2 sec.

i€} = 1 sec.

: p{l 8 sec.

The most critical wlndow for the constraint (C) is (C D C), wlth a welght of 5
seconds. However, the longest time that elapses without an occurrence of C Is 13

seconds, which Is t‘ or x (e1) + [8] + [C]. R 10] were chancad to be 16

seconds, though, (C D C) would stm be the most crltical window for (C), but now

t is 17 seconds, which is greater than t.
m »)

Thus the two candldate times must be computed and thelr maximum returned
as l(C) Note that since the entlre control structure ls repeated, the task list

starting at 52 and wrapping around through 51 is a critical wlndow call it c‘, andt
must have weight greater than 32, therefore 62 cannot take longer than it to exe-

cute, and need not be considéred as a candidate for I(C) Furthermore, it might be

thought that the weight of w, plus the delay due to Initiation of its second part, Py,

may in total be greater than the weight of an otherwise most critical window which

Latencies for Constraints at Priorities > O i Section 5.4.7

Is contalned In ¥ and henge has no Initiation delay assoclated with it. To show:this

s untrue, It Is only necessary to show that the weight of a; with Initiation delay

must be less than t, and t‘ , 8ince the addition of delays due to Interruptions Is
. . m R 1 = .) ~ 3 " sl s K :

a monotonically increasing fuactlpn of the time taken without interruptions.

Thus assume that ¢‘ is not the most crltlcal wlndow of dv for > (f it is, it will

'5

be considered by the algorlthms and thus there !s no need to juatify Its exclusion)

But if this'is tha case, then there s a crltlcal wlndow . In & with greater weight

than ay; thus tie tine to exécite 4y ls less than or equal to
l'ﬂ' + (tmax(O*)- km') . (522)

in the absence of interruptions. But since I-’I s < |¢] aquatlon (5 22) is <

ﬁ%

(e *) Thls in turn is less thnn t’, whlch lncludes 4 (a*) as one of its sum-

max

mands. Thus it Is sufficient to find the maximum of t‘1 and t.
m

Consider the computation of t, . First the most critical window must be found
m . 5 i

for C in ¢ using the algoflthm"for iterative control st?uctures, ILATENCY.~ -Note that

In this case since the eﬁﬂt,eﬁk'pbcontrol structure gets repeated, the head (ﬂ1) of

(¢)* containing C cannot represent the worst latancy for C by itse!f (without initia-

tion delay); there must be a crltical wlndaw of oroator welght whlch Includes ﬁ1

as its aecond occurrence of C.

Therefore ILATENCY will return I(C), the weight of the most critical window a,,

Latencies for Constraints at Priorities > O Section 6.4.7

in (#)*. LATENCY also retums start_index, the index in ¢ ‘of the first task of a_,
and num_tasks, the number of tasks in «,,. Knowing this, it can be determined how
many tines e, the initiating event for #, must occur during «, °s execution (i.e., by
knowing how msny coples of ¢ mlnehdedinu Y, mc Intothesubﬁsts
{'m1"m2’ -e e, cmn}, where each “m, b\i portion of -mwhk:b is containefl in (a
single copy of) ¢. Since t, s the Iongestpossble m ‘tochexec‘utec , It must
be assumed that all the interrupts happen Mtp!y after_initiation of e and
meatMMMrﬁu;mﬁWWMe*matlu

slowest rate.
Figure 5.4 shows the time line for part of a sample execytion of a critical win- -

dowcm which is not containaed by a single copy of ¢.

R e RRnt SUES EETRY St CLT ZEEed R AR
e v . - e «
L starts m]] om
ocours ' 1 1 "~ occurs 2
starts ends. second = starts
‘ ' tima

Fig. 5.4. Partial exééutbn of i critical wlﬁdoﬁ L

in the worst case, the initiation delay of interval (4) mu be the maximum possi-
ble, with the constraint that interval (3) must be at m maximun too (greatest

amount of time lost to interrupts). Therefore the intervnls (1) and (2) must be

Latencias for Constraints at Priorities > 0 © " © 00 gection 6.4.7

computed- at their minimum, i.e.:no presmption. Thus -interval (1) is assumed to be

zero, and Interval (2) is | - pm-- | “This may givé'<an inlated upper bound by

Iengthenlng interval (4); If it is known in a parﬂcular case thnt preemptlon must

Bieaiiiag

oceur durlng lntorvals (1) and (2), an adjustmant can be made in the phases of the
Interruptlng events at the beglnning of mtorval (3) S H
As was previousty stnted, Tt s assumaa that ‘the worst case is when aII events

occur right after 'm1 starts, - ‘80 the lanotﬁ f intorval (“s) t(a), ls found from

o2 @ TR Ry - i;
i3 Fimtaveoos 0o FREEES o R RN

E Q) where

SCSTIME(¢m1, Edways' win_tle’ ¢, and E are deter:.

Ealways win_tie

mined relative. to e’,.«o =40, .., 0) and'@ = (1, 3., ¥ tor & thd svients.”

“ad P AP AU S, ST LU 05 S TP SN SR S 2

‘(4) - MAXIMUM [°' 'ami‘w’ St X] (6.27):

: R 3 o G geme b Do
lf‘fz 4) > 0, there is an:initlation delay Which must be factored into the solution.

At this polnit’ andtifer décision must be made which aﬁ‘ects the ughtnm of the

upper bound determinad by the algorFthm ﬁuﬂng lntarval (4), any of the events in

ESETS

the control:.structure ether. than e, may‘get’ ,’and there iay be athtti“‘ariiy ‘

complex blocking out among the different sets. of aventa dye:to the exact order of
occurrences; le., to get the true picture, theu sets IIWS' Em”!,,“& and
Eloue tie relative to every event must be conaldered, since the reference polnt

provlded by knowledge that e* was pendlng has been lost Thls makes Mding an

analytic solution for the values of ¢ and @ at the end of interval (4) quite complk

‘al-,» e

Latencies for Constraints at Priorities > O R - -7 BSection 6.4.7

cated, and two alternatives. are provided hers instead. Note that the relative im-
portance of this is dependent on the relative size of interval. {4); In the extreme
case, If it is zero, then there Is no probiem at all. |

The simpler method (and the one usod here) is to assume that all events in

and E aet blocked out durlng lnterval (4), and thus thelr O s and n’

Edways win_tie
get updatod accord_lngly. Thls will provide_,fm upperbound ‘which is high by the
amount ofAexocutioo of pre_ompting tasks which could have taken place during inter-
val (4) and will now instead be added to the preemption delays of the next inter-
val. o s | -

Unfortunately, this is not the only complication. in the wotot case, an event:

from Elose _tie mlght get control just before the ond of interval (4) .and initiate a

subcontrol structure which could not be preempted by e' The event 8 in
Ejose tie Which Initiates a subcontrol structire ‘that runs for the longest time

without being proemptod by an event In E or E (given their ¢’s and

dlv% "win_tie -
s at the end of Interval (4)) is chosen, since once it gets g‘goggpptgq,:ig has less

priority than % by definition. Let the length of thts time be t,.::ano then the time

until « starts is given by PHT ll,lE(t,,ffu{E.mfﬂv.l".-045“',;";{,5}, $,.8). Tha ¢’s and

my
O’s are updated and the process is repeated as from the start of’-m , terminating '
1

when the end of a_ 'is reached.
m,

The alternative method is to determine an exact schedule_ for Interval (4).

Then It will be known whether or not an event from Elooo tia ©aN get control and

-92-

Latencias for Constraints at Priorities > O Section 5.4.7

keep it past the end of Iinterval (4), and the exact ¢'s -and I’s for all the events
can be determined. This Is the method of choice if the initiation delay is known to
be sgignificant.

The interval t’1 is measured on a sHghtly different time line:

R At e R Rt eEbhy LR R
e [s e B
L 4 1 1 U 1
occurs 1 1 occurs 2
starts ends . second starts
: : . time

Fig. 6.5. Partial execution of 51.

To find t‘ , the execution of 31‘ is broken down into parts which are contained in a
1 ‘ . H - . G

single copy of ¢, just as was done for L Here the worst case Is when all inter-

rupts happen at the beginning of interval (1) and continue at their maximum rate,

since the length of interval (0) is fixed at rm(e*); this gives the gregtést delay

during Interval (1). Interval (1) is thus the maximum initiation delay for ¢ with

preemption, including the possibility of an aevent from Elose tie getting control just
before e* happens and causing further delay as previously discussed. The times

of the remaining intervals are found as was done for the ., ’s, computing the initial
i

¢’s and 's appropriately.
This procedure is detalled in Algorithm 6.8, LATENCY.

-93-

Latencies for Constraints at Priorities > O TR : Section 5.4.7

Algorithm 5.8: LATENCY(C, ¢)
inputs: C, a constraint

O,aMcMshmmrecanmamemxshc,Mamww'w
ture meeting the restrictions of Section 6.4, and where the worst case la-
tency of C is knoww not to be infinite by equation (6.11), ~

Output: 1(C), the worst case latency of C in the control structure containing ¥.

Method:
1. Find KC), start_index, and num_tasks by executing ILATENCY((¢)*, C).
Lotc bethecrmcaiwhdowstarmatsmlndexmdmntkmmtor

mn.tasks.

2. Find the sublicts of «,,: (x, .o , -nn)_@ere each «,, is
the completely contained in a sihgle copy of¥. If the number of tesks in
vis k& then-mf"iﬂsth}thrumhf[k],c through o, = ¢,

Mp-1
and « = ¢ 1] through ¢[num_tasks - k(n - 2) - (k - starLindex+1)]

3. Since the worst case involves maximum initlation delay for ¥, assume
intervals (1) and (2) (see Flgure 65.4) slapge without preemption. Thus
t“)ltt)&ndt(z) ¥ - I, uxu*-tﬂ) t(zytttbe:tattofkrterval

(3).

4. Find the sets Ealways’ and Eut,lq_tie ralative to a‘ Set¢ =0 and =

‘1 for all events in these sets. ththesetilon_ﬂe relatwetoe* Set

i.~<,=,0 lwem.cmge,rlzn. Repeat steps (5) through (7) unti

the end c:f-n is reached in step (5).
6. Set / = i + 1 Find tg =t ‘which Is returned by

[
SCSTIME(C 4, 9) Set t - t + t‘g} Set Q and & :

Eafumys wm_tie -
for the events in Ewln_tie to the vaktes ‘wln_tla lﬂd owln_t:e
by SCSTIME. If / = . o to step (8) whare ty “le Gomputed.

retumed

8. Attheendoft(a),smcecm was in control, none of the events in
i

Edways was pending. Thus set 8 = O and:

Latencies for Constraints at Priorities > O ’ Section 5.4.7

t.

(5.28)

%=t - l“‘—(;;;] *min

and the following must be done:

(‘k) for each event "k € {Edways}

a. Update ¢ and @ for each event e, in {Eqways Y Ewin_tie)
0, - |8 K | (6.28)
"min®x) | o
‘k = t(4) + ‘k - ak I'min(ek) » o (5.30)

b. Find the event e € Eléae_t}e which Iinitiates a subcontrol

structure that can run the longest before (or without) being
preempted by an event in {Edways u Ewin tle}; this can be done

by considering each event in E, .o oo I8 tumn. Let. ;" be the

time which elapses past the end of interval (4) due to e,.

_¢. Find the initiation delay of «,,

1+1
d. Set t‘m -t.m +t€‘}+t ralay"
e. Set ﬂ* =0, and: -
t. v
-t - |0 _ , Ao
ot mm(.k) * i 8s) (6.32)

for all events ¢, in {Eahvays UEwin tle}'

e. Set ‘*' ,dday'~,

It t(a) s zero, set ¢* - O* + t(3) - 'max(e *).

Latencies for Constraints at Priorities > O R . Section 6.4.7

'8. Find t' find 8, of ($)* by scannlng until the first occurrence of C

hasbeenscanned. Divide 8, htoaublistsasmsdnneforc -th step (2),
getting as a resuit (ﬂ1 ,51 .y "t ,01),where t,hisnmaybedlﬁerant
n; . o

fmthhnobtdnedforc

9. Refer to Figure 6.6. The time of Interval (o), Yoy = max(8g)- AS

sume all events in {Edlvays uelvin_tle} occur at the end of this interval,

and continue at their maximum respective rates. Thus set@ =1 and ¢ =0
for afl these events. Let 'F’ -t(o), let; = 0. Starting at step (7b), ex-

ecute just as for «, suhsutuday t’1 for t,

and 8, fore
m Yy -

i

10. Return MAXIMW(Y’1, L,)
) m

8.6: Special Cases and Extensions |

There are many speclal cases which result in much sﬁﬁbier algorithms. Each al
gorithm presented in the previous section is directed’ towards a subset of control
structure types which contains the prevlous subagt and some additional control
structure types; it is seen that in general as tha number of diﬂ;erent types in the
subset increases, so does the complexity of the rgsultina aloodthms.

As an example of another important spechlcasp,coaaid.r finding any of the

reak-time properties for a subcontrol structure whose sets E, ., and E_. ...

are empty, e.g., as would be the cnse'“ﬁ'l é‘béntro&»’sfmétwe contalning no event
coupled lists. Now all of the complicatlons due to having ﬂxe set of preempting
event varlables change dynaatvhdty drop out - the staﬁcauy determined set

E.,qus is the only set that may preempt, and by’ Geﬂrdﬁon it can always preempt.

Special Cases and Extensions " Section 5.5

The simplifications this Introduces are subistantial; take the most complex of the
algorithms of the previous section, Algorithm 8.8, LATENCY, for example. In step
(6), SCSTIME can be replaced by the simpler-PHTIME. There may still be an initia-

tion delay t.4, but there is no fongeér the possibiity of an event from E, . ;o

getting controf and prolonging the initiation tlmé.

As far as extensions to the algoﬂthms go, thére are two prlnclpalvareas to con-
sider: one Is the determination of algorltﬁmé tor re&f-tﬁhg b;bbertiés not discussed
here and which are germane to a specific application, and the other Is the lifting of
the restrictions of Séction 5.4 to allow any representable control structure to bé
analyzed. Since the first area requires an application relative to which suitable ak
gorithms can be developed, only the second area will be covered here. |

The difficulty involved In lifting the resrtridtioni;ébfi Section 5:4 \)aries' consider-
ably from one restriction to the next, r_‘énd~héﬂei”tﬁeyf‘aré discussed here one at
time. The following discussions are not Intended’to be the final word on the topic,
nor are all the detalls supplied for a perticular method of iifting each restriction.
instead, the intention is to point out the difﬂculties Invblvedln each case and to

make suggestions as to how they might be overcome.

5.5.1: External Tormination

Recall that there are two types of:iteration, in effect, that can be applied to a
subcontrol structure; local. and global. If a-subcontrot structure is locally cyclic, it
means that that partioular subcontrol structure executes indefinitely, without requir-

ing reinitiation by Its Initiating event. This is equivalent,: then, to having an event

External Termination Section 5.56.1

which initlates a subcontrol structure with infinite weight. If, instead, it is part of a
globally cyclic. control structure, then it too will be repeated indefinitely, but only
one time per. initiating event occurrence. Both- of these types are alowed under
the restrictions of Section 5.4, because the welghts of the Initiated subcontrol
structures are fixed, even though they may pe infinite in_the lecally cyclic case.
However, there is the potential for a subcontrol structure which has infinite (and
thus fixed) weight with no external termination to hnvevuryimwelqht in the pres-
ence of external termination. Thus the del,a“ys_e;neduntqggd_ in the execution of
lower priority control structures due to lme;'ruéts%,r which_ ipitiated <abort ce)'s
(those which may be extpfnaﬂy ternﬂnatgd)_wﬂ‘l vary according to how long the
<abort cs)> executes before /t gets pregmted. An upper bound on this time can

bcfoundlfagoodvalueisknownfor;w

of the terminating event; if there is

more than one such event, the. minimum of their meximum periods may be used.
Note that this also complicates. the determination of Joad factor (equation

(5.11)), since that depends as well.on having a known upper beund for the weight

of each subcontrol structura,

6.5.2: Restart Contral Structures

This is another case which may lead to varlable subcontrol structure-execution
times. Every time a <restart cs) gets preempted,. the time hfr:lu ourrent execution
Is extended by its nominal weight in the absemce of preemption; Rt.is essentially
the oppasite of external termination. Thus m(w-'m).mds' a non-preempted

Interval equal to its nominal weight in which to moutel’oihdwhethar such an

Restart Control Structures Section 6.6.2

interval exists, one must see whether the phases of all the events in the sets

and E rglatlve to the (restart cs> can be adjusted so that it gets

Ealways win_tie
preempted at least once every |<restart cs>| - ¢« seconds. This can be either very
simple, as in the case where there is only one event that can preempt the <{restart

cs>, or very complex, if there are many events and their interrelationships must be

consldered.

5.6.3: Codosﬂlﬁping

This Is somewhat slnipler to handle. If one of the Interrupting events initiates
a <{codestripped cs>, then the delay it causes Is simply its nominal weight divided
by the number of codestrips, e.g. the weight af (A/6) Is jJust |A|/5. If the tasks
whose execution time is being measured are codestripped, though, it is as if they

were preempted by an event with variable *min

- to get thls effect, a dummy
event can be substituted for the integer which ‘tel,ls, how many codqstflps there
are, and its phase can be adjusted every tjgne the Scodestripped cs> Is resumed
so that It will cause preemption at the time when a single codestrip would have

finished.

5.6.4: Non-Preemptible Tasks

Let ¢, De a subcontrol structure whose realtime properties are being

includes

measured. Then If a subcontrol structure of higher priority than ¥ meas

non-preemptible tasks, the effect on ¥ Is unnoticeable - these tasks would

meas

~-88-

Non-Preemptible Tasks ‘ - Section 5.5.4

have been executed to completion anyway before *moas was resumed. If all of

¥ neas I non-preemptible, then its computation time need not include the effects of

can

ay. win_tie

those Interrupts which cannot preempt it, and the sets Edw s and E
be adjusted accordingly. If only a part cf‘ivmeas is noh-preemptible, then the ¢'s
and ’'s of interrupting events must be updated when the non-preemptible part has

been executed. If a subcontrol structure of lower priority than ‘meas is non-
preemptible, then if the Interval ‘meas includes an initiation delay, it must be in-
creased by the maximum amount possible due to execution of tasks which ey can-

not preempt. This can be handled similarly to the case where an event from

lose_tie 9018 control Just before e occurs.

5.5.6: Stopping the Flow of Control

This is another case which may result in effectlvély varying the weights of
subcontrol structures and hence the dehy due Ztrd bfeemptlona whlch include their'
execution. It has some similarities to external férﬁiﬁ;tbn; consider the example

given in equation (5.7), repeated here:
((((A*/e1)B)/e2)C)*

The problem is that the effect of the delay In executing A due to et’s ocgurrence
Is dependent on the pericd of e2 ~ hence the similarity to external termination.
The difference is that the minimum effective weight of B is still |B|, since an oc-

currence of e2 before the end of B preempts B, but leaves the remainder of B to

-100-

Stopping the Flow of Control Section 6.6.56

be resumed once C is done.
Thus the techniques for external termination can be applied-here, with the con-

straint that the minimum weight of a subcontrol structure Is stif its nominal welight.

5.5.8: Constraints at Mors than One Priority Level

To be able to consider the worst case Iatencles of constraints whose member
tasks are found at different priority levels and thus in diffarent subcontrol struc-
tures is a difficult problem. To determine this, the executions of tasks at lower and
higher priority levels can no longer ber lumped toqetﬁpr and ﬁrepteq as a delay,
gince at the ‘very least ’it must be known when every ta_ak whlcp occurs in the con
straint Is execdteci, regardiess of what its priorlty may be. Thus algorithms of a
very different sort from thosé in the preVbup sections are probably required, and

the posslbllity of simulation to determine an exact schedule may provide a starting

point.

8.5.7: Finite Event Queues

it only a finite number of event occurrences can be remembered, and this
number is small enough so that some even't' odcurrences drp Ignorad, then from
‘meas s polnt of view, the delays due to preemption computed prevloualy may be
too high but cannot be too low. The equatlons whlch determine the time lost to
preemption must be adjusted to Include a maximum value of Q.

When comppﬂng initiation delay, it musf no‘w::ba’ :qun \yhether, in the worst
case, the Initiation delay may be prolonged due the Inltrl‘qtlngwevant'a ogcurrencé

being Ignored.

-101-

G: Conclusions and Directions for Future Ressarch

A new notation has been given which represents real-time control structures at
a high (task and event) and implementation-free leve!, Including sequencing, itera-
tion and preemption as primary constructs. The notation cen represent conventlon—
al single and multiple levetl lnterrupt structures es weﬂ as non-tradltnonal ones
where branchlng of the preemption structure is genereuzed A tota! priority order-
ing may be described, or arbttrarlly meny events end subcontrol structures may re-
side at the same priority level. An algorithm ls g!ven for determlning the preemption
relationship for any' {event, task> couple in the control structure, as well as a com
pletely deterministic method of selectlng a task for service if several events with
arbitrary priorities are pending (posslMy equal) It my be interesting to conslder
the modmcatlons necessary to the algorlthms K lt is assumed that the processor
chooses at random from among all the pendlng events of the highest prbrity

Additionally, notation is given for representing task termination by external
event occurrences (as opposed to telrmorery preemptlo‘n),‘; describing «_wh‘ether e'_
controt structure should be restarted from lts ﬁ'st task or resumed from the point
of preemption codestripping, and mesking of a set of interrupts whlle any given
task Is executmg lt is shown that due to the assumed trcnsitlvrty of the
"nreempts" relation, the sets of events chosen for these specia! cases might
necessarily include other events not expucltly mentioned

The notation Is compact, and provides a comlenlent fomat for conveylng a lot
of information about the control flow relctbnshtps emong the members of a set of

tasks. A complate BNF specmcation is provlded, and a perser can be (and has

Conclusions and Directions for Future Research ‘ Saction 6

been) constructed using any of a number of éxtant compliler-compilers which accept
BNF specifications.

Classes of represéntable control structures #re given, typed by the topology
of their control flow graphs. It Is shown that partial as well as total orderings of
tasks and events can be achieved through the use of the svent coupled list, which
introduces forks into the control flow graph. A method for recursively consiiuctind
a multiple priority levet control structure of the traditiofial typs Is given. The dis-
tinction is made between & control structure which suppdrts a processor priority

s;'aven though there may

and one which actuaily has bnly a'siigle fevel of intérrup
ba a set of several interruptifig- events which are ordéred imorig themselves. It is
shown that ‘while in general the need for this type of control structure is perceived
to be strongest in situations where representation of periodic events and task exe-
cutions prevalls, apericdie control structires aré' repraséhtiible. Howéver, a true
tree-shaped interrupt ‘structure cannot be achievéd due 16 the transitivity of the
"preempts* relation. in addition, while iteration can ‘be ‘appiied to any closed or
baslc control ‘structure, a back arc cannot origifiate from' the middle of one event
coupled Het-and terminate in the middie of another." This is not felt to be a serious
restriction, however; since’ it I8 Iikely that groupa of ‘iiski In & siibcoritrol structure’
are related and expected to be executed as a block.” - T

The second hatf of the thesfs concentrates on describing the sorts of reaktime
properties which may be of Interest to a user of any reaktime system, and demon-
strating how they can be measured for control ‘structures represéentable using the
notation prasented here. The worst case faténcy ‘of a cohstraint Is found to be a

property whose determination involves compiitation of ‘several other properties as

-103-

Conclusions and Directions for Future Research. . . . : Section 6

subroutines. The difficulty of finding an.upper bound on task: execution time Is dis-
cussed, although wtthbut this knowledge it Is doubtful that much furtheranalysis of
value could be performed. Additionally, bounds on. the maximun and minimum-period
for each event are needed. The dgorﬁhmsﬁ,rmtfmamgg_-thgtiff these periods
are not known, it will be difficult to forecast reai-time performance for the control
strycture. : P

Next several aigorithms for measuring latencies are develapead, each handiing a
larger set of control structure types, up to a level which. jncludes the entire basic
framework of sequencing, iteration and preemption. Along the way, it ia: shown how
to determine if a response time might be. infinite, and it is aspumed that this is done
befare attempting to use any of the algorithms: for measuring. the variaus time inter-
vals. An algorithm is given which determines the loss of -time due to preemption if
the set of preempting events Is static, and by using it it is.shows-how to determine
the latency of a constraint contained. ip a priasity- O-subcontrol. structure, and the
worst case initiation delay for an event at a given priority level - The worst case
assumed here Is the occurrence at the beginning of an interval of all interrupts,
and their reoccurrence at their individual w rates, However, an-algorithm is.
also given which determines preemption time. i the phase of:sach event is known
at the beginning of the interval being measured..

The effects on these algorithms of -adding control structures: containing each of
the restricted items of,,Secglpnr 54 is conaidered, further investigetion is neeaded:
here to uncover the details of the problems which are-pointed out. Another useful
thing would be té develop analyses based on a probabilistic model rather than on
the worst case; e.g., what s the probability that a given constraint will have a la-

-104-~ -

Conclusions and Directions for Future Research . = .~ , Section 6

tency of no more than n seconds? Finally, an important result would be the
development of a general .a‘l'gorith‘m which could deternﬂhe the latency for any of
the representable control structures, . The difficulty of such a task should not be

underestimated; Indeed, In the words of Niklaus Wirth:

It does not appear feasible at this time to postulate any generally
valid and at the same time practically useful rules for the determi-
nation of execution time bounds for systems using processor shar-
Ing. [Wirth 77b]

-106~

Appendix A: Summary of BNF for Real-time Control Structures

(md structured ::= (basic cs> | (closgd:cs)v{ (ite_’rativavcs)

<{task id> ::= lgtter> | task id> <aiphanumeric)

Cetter> ::=A|B|C]|..}|2Z

<alphanumeric)> ::= (letter> | <digitd

Kdigit) :=0|1}2]..]19

<basic cs> ::= <task) | <basic cs> ¥ <task> | <basic cs> T

<task) ::= <task id> | <non-preemptible tid> | <abort tid>

<closed cs)> ::= (<basic cs>) | { <preemptible cs>)] (<closed cs list>) |
(<closed cs> <preemptibie cs>) | { <closed cs> <basic cs>) |
(<restart cs>) | <non-preemptibie closed cs> | <abort cs>

{closed cs list> ::= <closed cs> | <closed cs list> <closed cs>

iterative csd ::= <basic cs>* | <closed cs>* | <basic cs> (iterative cs>

<{preemptible cs> ::= {control structure> / <event list> | {codestripped cs>

<{event var> ::= e<integer>

<integer)> ::= <digit> | integer> <digit>

-108-

<event list> ::= <event var> | (event ‘coupled Hist>) |

(<event coupled list>)*
<event coupled list> ::= <event var>: <control structure>)

<event coupba llst)'l‘ Cevent var>: <control structure>
<non-praemptible th u= ‘Ctask) | '(<0vlht>)(task)
<non-preamptible closed o8> ::= ‘Cclosed cs> | (<ev list>)<closed cs>
<ev list) ::= Cevent var> | <ev ﬂst),(ev’%’p’t var>
<{abort tid> ::= @<task)> | G((e\(list)){task)'
<abort cs)> ::= @<closed cs> | &((av Hst})f(&iqsqd‘-ci:)
<restart cs)> o > <basic ce> | > (Cev fist>) {bd‘sfc cs>

{codestripped cs) ::= {(basic cs> / {integer>

-107-

[Benson 67] Benson, D., R.. Cunningham, L.F. Currie, M.R. Griffith, R. Kingsilake, R.J.
Long, and A.J. Sauthgate, "A language: for. real:time aystems,” The Computer
Bulietin 11,3 (Dec. 1967), 202-212.

[Dijkstra 68] Dijkstra, E.W., "Cocperating sequential processes,” in Programming
languages (F. Genuys ed.), Academic Press, NY, 1968, 43-112.

[Dijkstra 72} Dijkstra, EW., "A class of. on: atrategies inducing bounded de-
lays only," "AFIPS Conf. Proc. 40 (1 972 SJCC), 833-836.

[Fosdick 78] Fosdick, L.D., and L.J. Osterwell, "Data M -anofysls in software telia-
bility," Computing Surveys 8,3 (Sept. 1978), 305-330.

[Freiburghouse 77] Frelburghouse, R.A., "Proposed axtepsions: to PL/} for real-time
applications,” SIGPLAN Notices 12,7 (July 1977), 26-42.

[Gonzalez 77] Gonzalez, M.J. Jr., "Determiniatic. pmcessgs scheruling," Computing
Surveys 9,3 (Sept. 1977), 173-204.

[Hennessy 75] Hennessy, J.L., RB. Kieburtz, and D&, Smith, "TOMAL: . A task-
orlented microprocessor applications language,"” /EEE Transactions Ind.
Elect. Cont. Inst. IECI-22,3 (Aug. 19785), 283-289

[Hoare 74] Hoare, C.A.R., “Monitors: An operathg syétéilf s‘tructwing concept "
Comm. ACM 17,10 (Oct. 1974), 649-567.

[Kieburtz 75] Kieburtz, R.B., and J.L. Hennessy, "TOMAL - A high level programming
language for microprocessor process control applications,” Proc. ACM
SIGMINI/SIGPLAN Interface Meeting on Prog. Systs. in a Small Processor
Environment, also SIGPLAN Notices 11,4 (April 1878), 127-133.

[tiu 73] Uu, C.L., and J.W. Layland, “Scheduling algorithms for multiprogramming in
a hard-reak-time environment,® J. ACM 20,1 (Jan. 1873), 46-61.

[Ommicki 77] Ormicki, A., “Real-time BASIC for laboratory use,” Software Prac. &
Exp. 7,4 (July-Aug. 1977), 436-444.

[Phitlips 76] Phillips, J.V., and T.H. Bredt, "Design and verification of realtime sys-
tems,” Proc. IEEE 2nd Int. Conf. on Soft. Eng. (Oct. 1978), 124-131.

[Schoeffler 70] Schoeffler, J.D., and R.H. Temple, "A real-time language for process
control,* Proc. of IEEE 58,1 (Jan. 1970), 88-110.

-108-

[Serlin 72] Serlin, O., "Scheduling of time critical processes," AFIPS Conf. Proc. 40
(1972 SJCC), 826-932.

[Teixeira 78] Teixeira, T.J., Real-time control structures for block diagram schema-
ta, S.M. Thesis, Department of Electrical Engineering and Computer Sci
ence, M.L.T., January 1978.

[wirth 77a] Wirth, N., "Modula: A language for modular multiprogramming," Software
Prac. & Exp. 7,1 (Jan.-Feb. 1977), 3-35.

[Wirth 77b] Wirth, N., "Toward a discipline of realtime programming," Comm. ACM
20,8 (Aug. 1977), 677-683.

This empty page was substituted for a
blank page in the original document.

