
MIT/LCS/TR-241

REPRESENTATION AND ANALYSIS OF REAL-TIME
CONTROL STRUCTURES

Rowland F. Archer, Jr.

Auoust 1980

This blank page was inserted to presenie pagination.

REP~ENTATION AND ANALYSIS OF

.'i.

ROWLAND FRANK 'AJllCHE.l\, JR.
: ";

@M&stach:U:setts InStitutei 'of' T~··,19?8

September, 1978

ThiS research .'W'I$' SU}>pOrted 'f>Y tJle ~·-ResciM'Ch'LPro.fl!icts Agency
or th~'J neparttD.<t ot"t»ledr 8Jbt''wu: 1DiOH!tOt'll"'11JY'LtJitt 'OPfin or
Naval'~ :Udilf'ccnttraet' :Nli'lft>ci1M-~099t~

· ~· -.,_ .. _Tt~·" c'.• ~'·!L._: ~S~-<~ ,~-~·~, :··~

CAMBRIDGE MASSACHUSETl'S 02139

REPRE.92ITATION AIU) ANALYSIS OF BEAL-'AME ~L STRUCTURES

Submitted to the Department of Electrical Engineering

_. <;cqn:eater ~c~ .• ·.: .
OD. August 18, 1978 in partial fulfillmeat of the requirements

for the Degree of Master of Science

.ABSTRACT

A new notation is introduced for representiDg :real-time
schedull:o,g at the task and event lP.vel. These schedules a:re called
control structures. The primary COllStructs iJlcluded which direct the
flow of control are sequenciD,g, iteration. and preemption. Additional
notation allows the :representation of interrupt masking. task
termination by e%terBa1 events, task :restart as well as :resumption
from. the JIC)iDt of preempt1oa and codestripping. AJ&mithms are given
for fbading Ula pr89!!'P.tkia .. suucture. of a gi'VIQl COAtJOl, structure in
the notation.. . ' .. ,, .

. . .

The t:ypes of :representable cont:rol structu:res are classified by
the topology of their Control Flow Graphs. It :Is shown that although
brancbiD£t is allowed in tlw preemption structure, a tree-shaped
preemption structure cannot be represented. Both partial and total
orderings of tasks and interrupt priorities are supported. however.

A. 1enainokV Jo~ d.esczibiJl&, ~~tiDHt .R~es <>f' C9ntr<>}
struc;twes~;d~-an4.it.is, . .-ea ~-~.Uloat.~j···~#O:qs
about task execu~ · ~. -.. :.Y:ent: ti~'~.·~~. ?nnot lie
drawn regardiDg :real-time perf'ormance of a control structure. · A series
of algorithms is presented which make use of these assumptions, and
find values for task. execution times in the presence of preemption.
The algorithms can analyze control structures contatnt:ng the principal
conLTOl features; suggestions are given for further development· of
algorithms which can analyze any representable control structure.

· Thesis Supervisor: Stqhen A. Waid
A.Uistant ProfeSsor '. of E1ectr1cal
Engin.eeriJlg and· Computer Science

Kax words ilDd.. ph:rases; Beal-time. control structure,
control now graph, scheduling, interrupts, l.ateucy, codestripping.

Acknowledgements

Primary thanks are due to Steve Ward for the germinal Idea, and his guidance

l,n helping me to develop It. His resourcefulness was resp<>Aalbla time anu again for

_keeping this research in motion.

Tom Telxelra•s work in this area was al$O -inv•ua.ble. -~ for his careful

and rigorous definitions of real-time properties of control structures.

·-
The excellent systems programming support of the DSSR ·OffNP mas »R>Vided an

exceptionally hospitable environment In which to program and produf:e this dQcu-

ment.

My wife Lizbeth deserves mention for her en~t,Mld for doing· more

l•,

;'-

-a-

1: tntroductfon

1.1 t Re1ete4 Resaarctt
1.2: Objectives
1.3: OUtllne of the Thesis

TABLE OF COllTEllTS

2: A Notation feir ReaHlllle Control Strueturas

2.1 : Introduction
2.2: The Buie Control Structure
2.8:· f'low 1>f "eontrol
2.4: Closed Control Structures
·2.6: -tteratllM-·
2.6: ~tlon

2.6.1 : Preemptlble Control Structures
2.&.2: Muttlple Priority Level Control Structures

. :a..e.a ~-3£Vel• · . .. , , c

2.8.4: Substructure at a Single Priority level
2.&6: -~the tntetrupf StrUctlft•.

2.7: Nolt-preemptlble Tasks
2.8: Stopping the Flow of Control

2.8. 1 : Breaks In Event Coupled Ll8ts
2.9: External Termination of a Control Structure
2. 10: Return of Control to a Preempted Task

2.1O.1 : Conditional Restart of a Control Structure
2.11 : Codestrlpplng

3: Representational Power of the Notation

3.1 : Introduction
3.2: Control Flow Graphs

3.2.1 : Priority levels
3.3: Interrupt Driven Control Structures

3.3. 1 : Globally Cyclic Control Structures
3.3.2: Acyclk: Control Structures

3.3.2.1 : Branched Control Structures
3.3.3: locally CycHc Control Structures

3.3.3. 1 : Dyruunlcalty Decreasing the Range of LC
3.3.3.2: External Tennlnation of Local Cyclea
3.3.3.3: Reatrlctlona on local Cycles

3.4: CF6a at the Task Level

4: Real-time Properties of Control Structures

4. 1 : Introduction
4.2: Weights of Task Identifiers
4.3: Properties of Event Variables

8.

9.
11.
14.

15.

16.
16.
17.
18.
18.
1D.
18.
21 .
26.
26.
27.
31.
32.
33.
84.
36.
38.
39.

41.

41.
41.
48.
43.
44.
47.
48.
50.
50.
51.
62.
68.

55.

55.
58.
69.

6: Algorithms

5.1 : Introduction
6.2: Latencies in the Absence of Preemption
6.3: Latencies of Constraints In Cyclic Control Structw-ee, ,.
6.4: Latencies of Constraints in PreemptibletOOntn*8tiiJCtturea

5.4. 1 : Deftnltlons and General Approach
6.4.2: Finding Infinite Latencies
6.4.3: Delay Due to Preemption , ,
6.4.4: Applications. of PT-AME
6.4.6: Adding Phase Relationships to PTIME ,
6.4.6: Task Execution n.,e wltft,Ptoe~a;efiafities > -o
6.4.7: Latencies for Constraints at Pr*ltl••·;),·.O : ~- .·

6.6: Special Cases and Extensions "
6.5.1: External Termination
6.6.2: Restart Control Structures
5.5.3: Codestrlpplng
5.5.4: Non-Preemptlble Tasks
5.5.5: Stopping the Flow of Control
5.5.6: Constraints at More than «>ne JPttortty: Level
6.5.7: Finite Eve~~-

8: Conclusions and DirectioM for Future Reseeroh

Appendix A: Summary of BNF for Real-time Control Structures

References

-5-

62.

oe.
·oo.
67.

·10.
72.
74.

·'·78.
8-1.

·.'·'' em.
86.
88.
97.
-98.
99.

100.
100.
101.
tot.
101.

t•.
108.

110.
-

UST OF FIGURES

2.1. Syntax for task tdent111ers.
:~2. Syntax for closed control structures.
2.3. Syntax for pream1 tlbfe COlttrol ataifCJlldM.
~,,.4. Computing the -trix L
2.5. lnttiatlnG •veld'a ,.,ex. 2.1;.
2.6. The I -trix for Example 2.1.
2.7. I+ for Example 2.1.
2.8. Preemption structure for Example 2.1 •

. a..e. Syntax for event coupled preemptlble control stniCtures.
a. 1 O. Initiating events for Example 212i~ ., ··
2. 11. Computing I fer Ca'• centiilnlq event_,......., lsta.. .
2. 12. Premaptlon structure for Exe rs le~-.~ -· ~--; · ' · -
2..13. Syntax for non-preemptlble tasks.
2. 14. Exalltpfes of processor idling.

it;.1. CFG for (((A B)/e1)C)'l.
a.2. CFG for Example 3. 1.
a.a. CFG for Example 3.2.
4f4. CFG for the control structm. {(6,fe1'(8:C11*. :. ; ··
&6. CfG for the control structure (A/(e1 :(8/(e2:Cfeae))tei4:E)J.
8.6. A tree-shaped CFG, for (A/(e1 :Bfe2:C)).
&.:I. A CFG which hu no ~fMNllHll'~•
8.8. A representable tree-ahaped CFG.
A&. CFG for Example 3A. . ' · , • . ·· ·
3. 1 O. CFG with an Illegal back arc.

5. 1. Breakdown of a ftrrite task Ust Into sublists.
5.2. Pre91RPtion structure for (6.9).
6.3. Partitioning the events of (5.9).
6.4. Partial execution of a critical window•.,.
5.6. Partial execution of ,, •

16.
18.
20.
23.
23.
24.
24.
26.
28.
28.
29.
80.
31.
33.

42.
46.
46.
47.
48.
48.
40.
60.
St.
62.

84.
78.
76.
91.

94.

1 : Introduction

In an artlcle entltled "Toward a dlsclpllne, of reaHime programmlno11 (Wirth

77b], Nlklaus Wirth has divided programming Into three categories ba•e_d on the-In­

creasing complexity of validating their programs:

1. Sequential programming

tn a real-time system, a program may be. attelftptfrtg fo COntrof {j, to react to

certain ·external processes which cannot be forded to cooperate with ·programmed

processes through uae of a syncflrontzatlori 'ptbMtrw such as a sem'aphote. [Dljks.tra

88] or a monitor [Hoare 74]. In order to ·Coc>tdtnate Itself with these external,

non-programmable processes, the real-time ·l'fogtam ·•mifat If~ 9ometh1ng about Its

own executlon speed. Thus Its correctness wl1I ·he de~endent on the speed of the

proeessor on which It is run; but this Is not: a ·prOrJerfy of';the' program ltseff; Wirth

ldanttfles'-thfs as the •sentlal diatfn_guhrN;tg feabir~ ·01 re~tlme pre)grammlng.

This thesis does not directly addreu ttie li'W'e of vllldattltti{ real-time programs.

IMtead, It 'deata with' th iep,...entatlorf of sch~et fbi.''re~tlme prog,.ama called

conlm1 struewres, · arid' Sbme aapectg· of ·. Meaaurthg ' 1t8'Ftr"'~ prcjp~rties· of ·the

resulting control structures. tn the sense tfi.t·~ \,r th&ise-:Nital-~e proper­

ttea-may be • pra;e~ 'f0r "'altta-ftbn•:ot ~f ..-.ttiie Proof~,' h wOrlc 'pre88nted

here d8es t.,,.sen.; ii cOntr1butlon 'tci on., aspect. Of ttMi valdati&t '~rObtem.

-7-

Introduction Section 1

1. 1: Related Research

Most of the previous studies in the field of real-time programming have been

- ' ' -
centered on one of two major areas, the design of languages for real-time program-

ming, and scheduling to meet real-time deadlines.

The development of languages for real-time programming can be split between

two

77; Ormlckl 77; PhlHips 76; Wirth 77a], and the creatMrfflf91tirely new 1anguages

tailored to the requirements of reaHlme progr-{~ 76; Kieburtz 75;

Sch<>eflter 70]. The essence of ~e e~ ~a f.>een to provide Interface

between the real-tune .Pl"09"fllll and the sch~_- of. Jtself ~ other progralRB, el-

ther through access to the proc.sors Interrupt system, clocka an4/or ti19era,. or

by lnftuenclng the proceuor'~ sc:he<hdtnQ routtnee. Such fQturea pAWicie onty a
- .

· 1ow level capability fc;>r detennlnlna a proceas~ re.t:~ ~vlor; In 801ft8 -cuee it

may be possible to think of _all the tl'1ling interactions that1 couJd llllpact on tile

correctne~ of a real-time e)'stem •. but ~e burden of '*>Ing 80 has usually f~

IR08t hea.vHy (~nd often totally) on. tf1e P"?Qi'.,..ec. -P•c~"aa baste u.aaelgn­

lng priorities to diff,_r,ol, tests ~t typ.ic_atly; ~ IJt&de by:~ ~is, In the
- . . ~ , ' ' ... - ,. . ' . . - -

hope that ~~ng has ~ ovedQoked._ As tba lfiz.,.9'; ~ •~tel\;•rea"a. the

compJexlty_of the P~J!I JJl'OW8.;~ weU,. ugl11~~1 .,..1~ becomes •x~~

tedious and error-pron.. if not lm~lble. _
•• < - - • i ~~: l"o c • • , _,_." •

Ideally •. Q prograQtmer could •uJlmlt hi4 r•41Hfme ... re~. ,requh:el88nta. fl'°"G
,_. '- • - ';.. • ~.· ~. ,·.._;, .: , , • ,_ - w -.- • - ~ • ' -

with his ~~rn~ .. "1d ~er tia\te --tti~.•chad•.ak.,h~lat•tv,.~ .. ~··1*:· •t hie

requirements cannot be met by that particular systan. Some ayate11S (such as the

CONSORT system of the Domain Speciftc Systems Research group at MIT) have

- - S.Ctton 1.1

author's knowledge no one baa yet cnuilted a·ayetearw·do•ttlfa tn·g•n.trat.· ttowev­

er, consl"8r.abfe reaeerch baa lteeR done'-oo sCh...,UIQJ'taatca In Ute· pflesence &f

hard- real-time deadllftea.

Moet of the significant results obtahted- have been-baaed on;reatticttng atten­

ti91' tea 1""6ted elUMa- .of, control atructu,. ;tysNe;; Far' oexa~ --ttHl lllUltlpr:Ocfesser

emtll'OQlent ~a there ._ a ;ptlf'tiek·orderlng~-ef .-s'Wt no Jteratton dUtalde et

"'8ks. [lit4lR&chfJr. 6;l]-gw.. an etOOrithmwl;.cb- l11111111conatruct neapoptlmal task -tlatS

(execution orderings) for almost any combination of task run tne.~:.,d: deacHlrtM;

If the schedule 1s fuH to capacity with:' ,taeka .,..._, -eompMtfOA ttMes are

guar.,.teed, his str•tecw altowe- .the,--aystem1m taM ott- addHllOnal -11n.-..rm8d

72] and Liu and L.ayJ.. [Liu 073] ttave1 '~- studied- the problelfl of

achedcuitna t~ which.,_ -Iterated but ttave nosrelattve-.-....... setln gives

scheduling algorithms based on ftxttd. ~ ·ttmensllctaSJ, -and relattve -uroency;

The last Is a dynamic priority scheme, where the processor re-evaluates the priori-

ties of each task at every Interrupt, and selects for execution the one with the

earlleat deadline. This method 1s shown to produce a schedule which meets real-

time deadlines If any schedule wift, but Serlln's analysts neglects the overhead of

context switching.

A dtfferent approach Is taken by [Hennessy 76; Kleburtz 75] In their mlcropro-
. ~ ,. . ; ~' ~

ceasor language TOMAL; Instead of using an interrupt ayste111, they have a com-

pUer Insert calls to a task control monitor (which Is created along with the complla-

Related Research Sectktn 1;1

tion of • •et of progrw) at spedflc points In the COlllPlect COde. This ~

asauranca. that the task .co.ta monitor -.- ·eon119f wltftlfl· a 9n1te· 'Md botlrided

slmHar to a time sHcing system which allocates execution tflBe.ffti· theed· amoonts to

-.ch task,· but. !the .u.e ·slices are synctvoniz8d with. ,...._ executlOn. The

leoQth of· ._ OOdestrlp is determined 'IJV· the: .,....,,._ u.e: nMl'*einMta of the

tut(. and Ute OMIPiler ettn· detefWne; wbet:hw'.llle >J>~ $Uppll8d requ1re-·

INRts are In· contact. The notation otven· •~ Clills 1t1111e ,:,,._,the~-~ of

A WCll'k wbldl le -relata.t. to the· preaent one .tct In fact COlltplUientary ta that'

of Teixeira [Teixeira 78} Much of the ·teM1ftolaW' .,.... her• was -~

there. partlo&tlMy .that of Chapter 5, .._. •,..._ f8f ~ reaHime Pro-

Chapter 2 to denote sequencing~andrbndinft of tasks• Mlll·IStudy centers, howev­

er •. on finding ilChedulea 'to tll8et reaH:1aei CoMttatt9f 11Ht•' orlefttation · t>f tfle

The principal goal of this research Is twofold; to develop a convenient
.:: - : - • ~ '!..-. ,-·~·:: _...:., \,. ·r«-:- -~ -

'

representation for real-time control structures, and to demo.'18trate how such a.

representation is useful as a basis for analyzing reaHilne prop«ties for specific

control structwes.

The representation as developed MOdels contrd structur• at the tuk and In-

-to-

Objectives Section 1.2

terrupt level; the tasks are aqu• w be tMtlf~tetru~d program units whose ex-

which might be ·synchronous or asynchronous wUih reepect to the executing task.

The notation can represent total and partial orderings among its tasks, and . iteration

of tasks at a, single priority ~-.or ac~ ae~eral.JMiortty :levels. As weH as

repr,esentlng conveptlonal sm{lle .4114 .. awltHe¥el 4ntafruPt atructwes. the ~trol

structures given here car;i represent •ver.- IMlCORVentlonal preemption structures,

structure which may Itself be branched.

As well as representing this basic framewcWt,''the capabUlty is provided to

represent:

2. External termination of a task or group of tasks by an event

oc~urrence (as ~p~ed to ~-:1,~~8!,il~ f,~~,'!!~~p .~em).

3. Indication that a task or group of ta•s Is not preemptlble by
• set of eve,... · ··· · · .· · · c .·.. ··'' •' · · · ·

4. The choice between reStartinG' ' . ptielRptecf task or • group of
tasks from the beginning vs. resuming ~xe~u~ ~.th;• point C?f
ln~i •. ,. ..,. ·.''.• . ·. '.·• ;· ., .. ,,, .. •/ .,..,,. ·••··•·· . . .

:,'.~-.}

Thua a rather generai notatlon Is given, which in addition represents all of th.is in-
:-- ·._'.~"1:.•'<- ':"·.-> ·· .---· · c· , ~:}. '4 . .t~-lb ;~'· <·:::< .. ~':; ',~;;, · <·' .-/r~. "· ~ .. :·

forinatJOn rather compactly. ·The ·notation may be used In any appllcation where it

ts n~be$sar)/ fo'c~munlcate .,..;ethlng;-t--~'control at,..;~t~e of tttis sort. be.~
·~·,') ,, > •, ' • 'f.~;j i... ;_ '' '; . > ~;'

human to human, human to machine. or machine to machine. In the second case.

the speclftc applications In mind are representation of a control structure for

-11~

Objectivea Section 1.2

anelysis, and for describing te a reat-ttme systewr ·What ·sort ·i;f control· structure ft

should establish for a set of taaka wfth"f'•at-tllMt ~~ In this vein~ the no-

tafJon is quite independent Of llMCNne archftecture~ · anct· ·tttua · a subset of the

language. can be chosen for • taf'98'l llMlchlM which suppOl-ts the coi1trOI features

included therein.

Thia leads Into the second goat of the tnvesttgatfen. ·Which ts to demonstrate

how atoorithma can be developed whJdr. aseertliln 't'ffftldt8 ·prc:);H•rttes .for 'eontrof

atructureg of the language. There are several ttme· lntetvata Which are probably of

common Interest to • large aegment bf uaere of reaMltne proorams. such as:

1. The maximum delay between the occurrence of an event and
the lnltiatton of Ile prqgr.,_ .. ,
2. The maximum time required to execute a set of tasks at a
given priority. with preemption.

3. The maximum time that •ay .,_se ·wfthOut thef&;'betng· Sri· ex­
ecution of a given set of tasks.

This is not Intended to be an exhaustive survey of real-time properties, but rather

an Introduction to the usage of the notatiOn as. the foun.tiiqfl.·f9' auqb W1alyals.

Indeed, It ~ llkefy that eec;:h.rt1~tim•-_s).'at'"'-,~-: ~··~ -~ r..-.lltftllts and

characterlStics; It is hop~d that ~· appropriate subset 'of Ute can be

chosen to model those characteristics, and algorlthms developed which ar~ suited . _
< ,-~ "'· ~· :: ·":- " , -~ f~ , "_. ~~!. ~~<?<·''-"~'(;. -~~ ,,_:\:E:'; ... ~-7, ~ • -.::--:.: - -:

to an appllcat1on•s special needs. In addition. many appllcatlona WUI h•ve na.~ural _.
~~-· ·,:..; ~;·::.-,r~ .-:~ :~~-t-·.:::,·-.._.,__~. ;-~- -.:. -

restrictions which lead to simpler algorithms; it Is with Intent of Ul~tratlng this
~ .,,, ,._ . :~ . .-: _?"< :.: ~ • i:);~l•.-'--~ ·~ ~--: - ·>·_~..._- :'.:.

.c

point that several special case algorlthlRS are developed.
' -~;'; -- , ~. ,.-

-ta-

Objectives Section 1.2

1.3: OutHne of th• Th .. 1.

The next chapter presents a c~S,,~;..,._.r •·ithe control structure

language, as well as giving the semantics for each construct. Sequencing, iteration

and preemption are the principal features, with extensions added as described In

Section 1 .2. Methods of determining the overall preemption structure of a control
; ~ ..

~ . • -- ?

structure are also presented.

Having introduced the notation, Chapter 3 presents the concept of a Control
. . • • .:.-.. ' ' -~-·- 'c··" :~_~L!",.·:_? _ _,.~·-,• t ... i: · -

Flow Graph (CFG) ·[AHen 76; Fosdick 76], which gives a graphic representation for
' · ... "''-' ,· '.

the paths of control ftow dictated by a given control structure. A deftnltlon of ab-

solute priority levels la~e'c! fk>m • contn:if1tHro6ture~ CFGc;rapresenlatton. Then

a classification Of'. cOntfot··StiuCttira fyJ>ei rePlwtailtable by'the.·imlatron Is given,

based on the topolOgy-of thelf''CFG"s. tn ~; tyeea·o1 ·b0nfro1_ structures
• • _, ,. • -. -- ! ~ , ~ ., ~ •• ' - ' - ~ .:,·' < - " '

which are not representable are d8scrtbed.

Chapter 4; the requirements for knowing certain ,,.~,.-I.It event timings fn ad-

vance Is also discussed here.

Thia leads Into Chapter 5, where a hierarchical series of algorithms Is present-
- - ~ ,, -

ed which are designed to find the worst cases for S011te of the real-time properties
1." 1:-t; ~~- '" .-, ;

of Increasingly compDc~ted classes of control a~ctures. The most general al~

rlthm given Is appHcable to the set of control structures which Includes the basic
·-. 4.-~·~ ,,,,~~~"

frainewoi1C of· sequencing, ·Iteration and· preemption. · The types of modlftcatlons
, ·.'.-",...L....., ,;-;~fl~.~?-"'.':. .. } -; -'·; ·~

which would be required to analyze any representable control structure are dis-

cussed, although det~lled a1uarithms are not gfven.

-l3i!o .

2: A llatation for_ ... Control Structures

2. 1: Introduction

In this chapter a notation for representing real-tl1ne control structures wiH be
-f -

developed. The Intention is to provide a general analytical tool which wiU be suit-
- • -~ ·; - - < - •• ' ,: ~ j~-;~ l- .:-1" : .:

able for representing most of the possible_ \Af&ys to share •. proces,SQI'. among th~.

members of a set of tasks. This wiH include:

1. Sequencing: a tptal ordering of taeka,,~ ~ uecutec:t.

2. Iteration: cyclic executlc>o.of 80Pt• ordered set Of.tasks. . '' -·- - ... ,., - .- -. . .

3. Preemption: a P4'~ qr~\fia8 ~ ~.~ ttte,~nnce
of an ewnt forces termination of execution of the currently run­
ning task and starts execution of a "!llUlf • ~ . " ,· . .. , .

A context-free gralDtnU ·wnt be deVelopecf to d9flne the syfttax of the representa-

tlon. It la SUflllnartzed In• Appendbc A. . , • ·

2.2: The Basic Control Structure

The real-time system to be represented Is modelled as a set of prc;>eedures to
-~~---, ,- - < .. _»-- r ~~.t- ~.j~_., -::!'- - '.~ .- :_--~:-

be run, caHed t&slcs, a control structure which ~~~-the orde! .C!'f' ~le ord­

ers) In which the tasks may be run, and a procesllOI' which executes th.e tasks ac-.
. } ,-~:- ~ -·(_~;-;f_~-----~ i: ~- _;:-.-: ,_. - '''" :.=

cording to the scheduAng constraints specified by the control structure.
j - ·.;. -- --= ;;:-- . -"';,"f ::: ':·-. ~ ..

Thua the ftow of data between tasks, If there Is any, need not be a concern;
,- - ,} -; . - ., . ·~ t." .. ·~. .. - ~ ' • - ·- • :"" '

It Is assumed that any execution ordertng needed to preserve the Intended seman-

-14-

The Qaaic .Control Structure · Section 2.2

tics of the c001putatlon (data flow) will be itt'fhe oontiUt structure. For

example, If an output of task A~.~, lqp~~o~;~ ,.~P1• <:c>n~ ~~ucture as­

sociated with their execution should ensure that task A COft'IPlates execution be-
'.i.'

fore task B begins.

further, the detailed flow of Information and control within a task, I.e. among
: f- ' . ·:{;Jr'. <;. >.. .. -· ' .

Its Internal variables and Instructions respecflvelY. need not be of concern either .

blished; this Is discussed further In Section· 4~2'. . ~ : .

A task wlll be represented by a tas/< Identifier ("<ta$k Id>"), which In most of

the examples wlll be a single capital letter (though It need not . be). Figure 2.1

ahows the grammar which de11nes task Identifiers.

<task Id> : := <letter>-l <taak Id> <a1pfianumer1c)

<fetter> :ts A 1 8 J C I ... I Z

<alph~i'lc) ;:J.! <ietter). r '<digit)

<dlQfri' ::Iii' 0 11 'f!l ... l 9

··''Ff~ 2.1.'Syntax for t,;k ktentlft8~s.

Next to a single task, the almpleat thing to represent la the sequencing of two
• ·~-,- _j·. --:~t; ,Ji'.i:-' ;~~ -:· ·; - -

or more tasks which are totally ordered. This Is done In the natural way, by Hstln~
~--, j~··-:....:~.: .. ,,.~ • ;-;./'- -~ "'! ~~~ .-~!(;:;~~-;~. ·- -~ l l ',

the taak ldentHlers In the order of execution of their corraepondlnt taaka, separat-

eel by blank spaces for parsing. A string of one or more taaka wUI be caUed a

basic control structure, or <basic cs>. Note that It. ls P4Jrml••lble t() fret:" ,-i..~)d
.~ ::.:: ;~· ·.. ~. r ,-,· :,.~J·,;· a ·::·· ;~'·= ·'·· .: ·,• "~ -, . ..,,

mont thail Gne&.iln 4•Gdlc •>, to ,_,.._,f'ttti'fSl~'Mttif:~~~,9ir•~,.,
•,·>.;;' . • "C-}')._- . ,..t ... ·- ,__ -. •

task 18 executed more than once with zero or lftOl"e other task executions

-16-

The Buie Control Structure Section 2.2

sandwiched In between.
1

The ·~ ia:

<bulc cs>::• <tas'k'td> f <ba$k:. cs> ll <task kl>

where ••• represents the blank space tenninal syabol.

The sllltplest control structure Is just a basic control structure:

<control structure> ::= <baste cs>

sequenced task execution control structures.

Ui Flow of Control

It is useful to fonnaHze the notion of control ftow with respect to control struc-

structure, doing both •appllcatlona-oriented• work (wtlen tt .. ~· ex~ the
. . _. : ': . ~ "'.. -

statements of a task), and 0 systnas-oriented• .wprk. C.tt-.n ~ is 4•~- which
- • --: ~ :,, 4_, ~ - -

task to execute next according to the constraints .. embedded Jn the control struc-
,~ -~ ' . - - -. - '

ture). In either case, the actual machine Instr~ ~'executed at any time
-.~ j ,. ,,

wlB be associated with a particular symbol in the control structure representation;

It wftl be said that at that time the locus of control (abbreviated LC) is at that
~ , ' . - -

symbol. for example, In the following control structure:

1. Every occurrence of a task Id In a control structure repreaenta a separate ~
atantlation of that .t~kh,.nth Its qwn ~te. uat. .. TJU& ,-.,.ec:t ·to-. model:·'*""' · tranttY' Coditd rot.i&ea. . ' . . . '

-us-

Flow of Control Section 2.3

AB

when Instructions of task A are executing. LC Is at A; ·when Instructions of task B

are executing, LC Is at B.

2.4: Closed Control Structures

It Is desirable to Introduce parentheslzatlon for the grouping of task id's in the

natural way. In particular, this wltl be needed to lndicate the scope of the various

apeclal symbols which will be used for fterattori, pf8alnptlon, etc. It will also be

helpful In constraining the class of tegal C<Jhtro1. atructures to exclude nonsensical

onea, such u those ln which some taaks can never execute,, r~rdless of.- preemf>°'
• • ~ - • ' • > - ' .:: ' ", ' • • • - - •• '

tkm timing consideration•· Parentbt:tslzed (s-)control. structures wlll. be called
;• • . ··: - $

closed cont.rol structures, and the class wm be_ add,ed, to _..,_ nece~atY for odditlon-
.. . - - ·. ~- ' , . , .. '

al representation.al power. A~ the top levef. closed contr.ol str1.1ctures wUI be lnclud-

ed In the set of legal control structures. Figure 2.2 gives the syntax for closed
·l"'.·

control structures; a syntax Is also given for closed control structure lists, which

wfU be needed later to represent more complex control structures.

<control structure> ::= <basic cs> I <closed cs>

<closed cs> ::= (<basic cs>) I (<closed cs> <basic cs>) I (<closed cs list>)

(closed cs Ust> ::= (closed cs> I <ck>.o·os M> <Obied cs>

Fl9- 2.2. Syntax' far otonct control 9tr'Octures.

-17-

Closed Control Structures

2.&: Iteration

Most real-time process control applloatlona requir~ th• periodic repetition of a

certain task or aaquence of tub. BorrowlnQ from the notatJon. Of. re.,._, expr ...

elona, the aaterlak Is used to Indicate a endless repetition of a control structure.

lt8 BNf:

<Iterative cs> ::= <basic ca>• I (cf09ed ca>• f <bale ca> (iterative ca>

The un of ••• la moat eaaly elq)lained by ,~:

AW' i A(IQ'liA 88 888 ...

(A l}K : A 8 A a A 8 ·-

From a flow of cOntrol Viewpoint, when LC ·rlJachu .m; ~.r..;c tolloWlti,r a rtQbt

parenttteala, It returns to the 1MtCNftg l8ft .,;afetttiMtsls. 'tt tt 'reacliea an aaterld

followlng a taalc Id, It repeats tfta1 tuk.

The 1lnaJ expariafOn of tfte top-level deflnlttori of Control' 'atl'Ucture la:

'~~ ::,

(control structure> ::• <basic ca> I <ctoHd ca> I (Iterative cs>

2.e.1: PrM111P61e ce:a:•o1 ••atur• .
With the claaa of. 4*ltf'ol· atrwmlr•·"'_,.'"• M;,:far4,.._.•enly execution se­

quencea poalble ~ those In which the order of tuk execution la entirety

predetennlned (static). In many llftuatJona, a proceuor wll need to respond to

......

Pra~!Nltible· Control Structures section 2:6.1

asynchronous •vent•. $uoh as krternapte, ,wNcfi -ma.y ndt oecu'r · af ;predlctabie times.

It may b~,,dApalr•~- to hawe·'8Ueh _,.,.,itrf_.-: lite e*cuti&'Of a ·different part

of ~e control atrwctMr• than was ;praviouaty' tn contrel. lnfOnnatty, thrs Win· be

modelled by placing sub-control structures Into the overall control structure tn ·order

of non-decreasing priority. Demarcation of the priority levels Is achieved by indl-

eating that a control structure Is preemptlble. Figure 2'.3 ~ves ~ 8.Y'ltax fQr
. ' ,..-.~ ~~)~-~.~ti.:<-) ~ ' ~ -~ ... ""' ' '.' ~ .

preemptlble control structures. Preemption Is Initiated by occurrence of a partlcu-
- . • ·, "ire':..1 ¥ - , -F ;·. • ~ - , ' ' (,

lar event (which may be complex)~ so an event var/able Is Included which stao~
. -

for the event.

<preemptlble cs> ::= (cQntrol •tructure> /_(event var>
• - • • . ~ - . >. ~ •

<event var> ::= e<integer>

<Integer> ::= (digit> I <Integer> <dJJJlt>
~ -~ " ,. . . ~ ;

<closed cs> ::= (<basic cs>) I (<closed cs> (basic cs>) I (<closed cs list>) I
• ~ - - ; .~¥ -. ; ~~ '..,.. !) ..,

(<preemptlble cs>) I (<closed cs> <preemptible cs>)

·Consider the following simple example, which lllOdels a control structure with a
.J:-i. l

. '
alngle level of Interruption:

1. The event variable Itself Is not complex, but It may represent a complex avant.

Preemptible Control Structurea sectt6n · 2.e.,

represented «uslftO the ~ ayntex), auc:h ,.. ttw MV'l'18 ''tlufttpfe tevets of

Interruption.

2.8.2: Muttlpte Priority Level Control Struoturea

lnfonnafly. event· vari&btea He at the Interface between control structures of

different priortty, the control structure to th9 left of the 11 /<event var>• conatruC".'.

tlon having the tower priority. If LC la In the lower priority control structure when

the event happens. It wll IROV8 to the contrd atnieture lrnmedlately to the right of

the event variable.

Thua a oontrol structure with three priority twe.. might appear as:

The preemption structure (for each event, the tasks which It may preempt) la fairly

straightforward here; e1 pree•ta A <W" B, e2 preMPh A. S. c or ·o. But the nota-

tton is capable of repreeentlng more complex control structures,. and a . me1:!1'>d of

preclsely detemttnmg the preemption structure la needed.

The "Interrupts• or •preempts• relation la tranatttve; If e1 Interrupts A. Initiat­

ing C, and C Is lntenuptlbte by e2, -~ i.' "la· Interruptible by e2. Moreover• an

tasks ot a slngle basic oontrol strUOba'1t:wll em- -at 'IMi ..._,~ty MMtl, so baste.

control structures can be con81dered as units, rather than examining the preamp-

1. Although a later section wHI Introduce the capability of llHISl<lng spectftc Inter-

-ao-

Multiple Priority Level Control Structures
. '.•

Section 2.6.2

tton of Individual tasks.1

ly for each event In a control structure. which basic control stru9tur~s it may
J 7 f"" ·' ~·~ --~ ' ' ~- .. , ' . " . ' •. ' ' • ' -

preempt. The set of tasks which are lnterrup~le by a , cet:t~n .. ev(!Qt wm be re-
- .·J_ ,, ~.;"*-::·~;~_ ·, : •.

ferred to as the scope of that event. The 11inte"upts 11 relation for ,a control struc-
. . ~ . - ··. ·~'- ~ -

ture wlll be represented by a Boolean matrix I with n rows and coluinns, where n is

the number. of !bum contto1- atructures ·1n th~;;~ Sttuctute tfe,ng ci.nQJyzed. A
.,, .::-·· ~··. ,·. ·- ;: :-: ·. ,·-;- _";()'~L-'--' ~.-,'- _-.~~ :_-." - . ,

single basic cs.,Js,_..AOofatect wttrreach raw I amt ·carumt{ I_, ftX. 1 '$.J $ n. The
'- • • ~.::- > ·- ~-' -;.~ ~-- '--~ 1?,·; ... ,~.,._,-.:,.' ,· ._,

basic cs associated With r<>W (and cotumn) l'w111ti9'refefred to"i~ "basic cs I."

The ftrst event to the left of eaOhCfl8* CS' wnt~tr*'dalled that basic cs's lnl-

tlating event. If 1[/,J] = 1, It means that basic cs I runs at a higher priority J~"'

basic cs j; In particular, It means that basic ca rs lnjtlating_ ever}~ cap Pr~•mpt
~ '~ ~ ' ~;t:: !f}~:·~ :, __ . , ?--~·: ~- -~:·- '--' . --

'1 - ~

basic cs). The matrix I Is computed according to.th~ al~~ ,given in Flg11,r::~-2.4.
. ., ,-'.r {"<·: __ , ~-,: ··.;·' -,~:--~~-! .,,_ .,.,, . :,~ .

This matrix specifles which events cause preemptions across the tt~R~r

between adjacent priority levels. Since the "lnterrupts 0 relation is transitive, the

specifies, for each event In the control structure, exact~ _whf_ch basic.~·~ It c11.r1
_ _, .. • .v •• ~:, • ~1.:~ .. r.·;-_· ·.,!(~·:-o_.,.,;,}.: ,.·,,q"·-·-·' -.. - ·. -

preempt. Computing the transitive closure of thf! reta~ r•[>!'~ted . .,y J .~
+ ·:· ~- • . - - .,-;; - •" - •'. - ' •• :- •,' ? ""; ~ ·~ ~ f '1t1 ' I~;~ . . ; ~ ~ ~ . - •

stralghtf~~~~. Let ~.be ~ ~;~e ~ure of I .• · Then I+ = I + 12 + ••• + 1",
- . - . - - . - - ·. -~~ t

where+ is normal ~x ddftleit'-Bl>ot98n}!a,~"~ Is performed like

regular matrix multiplication except 'AND' Is .ajabatttut•d for 1Ttr.aeS' and 'OR' for

rupts whffe a particular task Is executing.

-21;.

Multiple Priority Level Control Structures Section 2.e.2

Alaorlthm a.11

1. L•t o b• the 04.ffDber Qf ·~"°"'' .lrttmt.control M:ruoture~ ,.._
a<:d«te a ·unique Integer from. 1 ton with ••ch butc ca.

2. lnltlallze I to be an nxn matrix of nroee.

a. For each bulc ca '· do ate" 4 and 6.

4. If bealc ca I has no Initiating event, leave row I of I equal to
all zeroea.

f;. If N.,c ce / h4a .,.. loltt~tina ~t -.. find the. oantrot struc­
ture lmmad .. btly preceding the COMtructlon •/e.• Call this ·~
trol etr,uc•• It.~. B)t .-. •vn~ of.••••.,., ooaera1,,.truotu, ...
controt atfuoture A Wt1i be either • beak:. oloattd or Iterative ca.
For ••oil beU: ~•JJn OQntrlA•~·~Mt 1(1-JJ..-:oto1~

,... 2A. CompuUftQ, , •• ' ..

, Consider an example of a control structure which contains preemptlble control
'

atruotureti, and which can be uaed to mntrate the COl18tructlon of the •1nte"upta•

Example 2. t·
" -. ~ _ ~ . . I 1 - • • ', . . . · · '

NOtlce that· this control structure contains four basic control structures, A 8, C, D
._, • ~+ ·r-~ .. ~:... .. -~.~'

and E. The lnftlet1no events tor theae bulc ca•a are aa spectfted In figure 2.5.

Basic CS
A·tl
c
D
E

lnftla Ev8"t Row . .J
non. 1
e1 2
•2 a
•8 4

Fig. 2.ts. Initiating event. tor Example 2. 1.

The matrix I la formed following Algorithm 2.1, and It appears In Figure 2.e.

-~-

Multiple Priority Level Control Structures Section 2.6.2

1 • A B has no Initiating event, so row 1 = [O O O O]

2. C's initiating event Is e1. The control s1i'uuture preceding e1
Is (A 8) 111 , which contains the basic cs A B. ;rtws,J[~. 1] := 1.

3. D's initiating event is e2. The:. iWJltrol 5tructure preceding e2
Is ((A B) 111/e1)C)* which contains tile basic' cs'& A fJ end C. Thus
1(3, 1] := 1 and 1(3,2] := 1. · .. ·

4. E"s initiating event Is e3. The control structure preceding e3
Is D. Thus (4,3] := 1.

I AB c D E
AB o· 0 0 0
c 1 0 0 9 .
D 1 1 0 .()'I

E 0 0 1 0 ..

Fig. 2.8. The I matrix for Example 2.1.

Now, to get the overaH preeMptton structure, compute I+, the transitive closure

of I, as shown In Figure 2. 7.

I+ AB c o ·e
AB b 0 0 0
c 1 0 0

l'\ J> ..
0 1 1 0 0
E 1 1 1 0

F19. 2. 7. 1+ for Example 2.1.

The preemption relatione of the controH1tr•ucture are summarized In figure 2.8.

-aa-

MuJtlple Priority Level Controf Structures

LC at
Aar9
A~ora
A or 8

c
c
D
E

'

tnltl•t••
c
0
E
0
E
E

none

fto. 2.8. Preemption structure for EXQIPl8 2. t,

2.8.a: Occvrrenc• of fvena

Section 2.e.2

The notion of an event •happening• 18 purpoa•flfllY left vague; each appHca­

tlon of the notation can a~cb Its own 01eanl1J9. , Fpr the purpose at hand It is

•uftk:lent to assume that an event varklble le Dk• • ftati~ which gets set when Its

associated event occurs. The processor checke ell the event variables before be-

pens If any ftag la found to be set:

1. In the case where LC Is to the right of the event variable
which has been set, no Immediate ··ewect 0n execution of the
currently running tu\1t f'41Sutl;ll. The cwr~,r""""'8 task is of a
higher priority than tf!et whtcb la ~II \tffl lnterrupt,

• • . ,_O' ••

,.. . ·.. . . . !
2. The event variable :temalris set. until auch tlM as LC ls to the
left of It and In a bulc cs ·Wf11cl\. le pU.-,,tlble by It, at which
time It wlll cause a pttae..,tlon. - · '

3. If more than one event corresponding to event variables to
the right of LC hu happened, then the rightmost one represents
~ lalgtleat .~. lllter«WJ!t "-"leatl.~'1.G. -.-•to the ftgllt ,

1. Generat1y, a queue of requests la associated with a given event variable, so
that addltlonat occurrences of the event will be remembered If they occur before
the Initial occurrence la noted by the processor. By specifying • length for this
queue, a system which remembers ao arbitrary number of event occurrences can
be modelled.

..z+..

Occurrence of Events Section 2.6.3

of it (assuming, of course, that LC was within a basic cs preempti­
ble by the event).

4. Completion of the control structure at a given priority "resets"
the event variable which triggered Its execution; note that this
must be done at completion rather than at initiation so that if the
control structure is preempted before It completes, then LC will
return to it when it is once again the highest priority control
structure requesting processor service.

2.6.4: Substructure at a Single Priority Level

A useful extension to the scheme is to provide for arbitrarily many control

structures1 to reside at the same priority level, but to be Initiated by different

events. During execution of one of these control structures, occurrence of events

In the other(s) at the same priority level will have no (preemptive) effect. The

principle syntactic change is to allow replacement of an event variable by an event

coupled list, as shown In Figure 2.9.

<preernptlble cs> ::= <control structure> I <event list>

<event list> ::= <event var> I (<event coupled list>) I

(<event coupled list>)lll

<event coupled list> ::= <event var>: <control structure> I

<event coupled list> 'I' <event var>: <control structure>

where 'I' means the terminal symbol I·

Fig. 2.9. Syntax for event coupled preemptlble control structures.

1. Of arbitrary complexity, e.g. there may be additional local priority structure.

-25-

Substructure at a Single Priority Level

Conslder an· example:

(A•J(e1: 8 J e2: C})A

Preemption rights are as follows:

LC at
A
A

B or C

Preemptlble b
e1
a2

none

Initiates
B
c

Section 2.6.4

Execution of B or C continues· uninterrupted to- tetmination. Termtrurtlon of B or C

returns LC to A (unlea e1 or e2 has happened agllin).

A aUght modHlcatlon In the pc>aitlon of the tarmlruif , .. leaves the Interrupt struc-

ture the same but results tn different behavlOir Oft tekritnatlon of· B or C:

(A111/(e1: B le2: C)1t)

The Idea here is that once either B or C has been initiated (through occurrence of

e1 or e2, respectively), control Is never again returned to A. Instead, B and C wlll

be executed every time e 1 or e2 occurs.

2.8.6: Determining the ~nterrupt. Structure

Since arbitrary conqpl •t&14cturea maY r~ kt,M' event ~led list, It follows

that such structures may contain additional .~ti!J ·(or .fl!Vt1mt ~d Uata} ,,which

trigger even more deeply nested cqntrol atructur"8.

This abHlty to nest control structures raises a new semantic issue; what

llat? The choice made here Is to let any event In an event coupled llst have the

-28-

Determining the Interrupt Structure Section 2.6.5

same scope external to the event coupled list that an event variable would have if

it were substituted for the event coupled list. Consider the following:

Example 2.2. (A/(e1 :((B/e2)C)je3:((D/e4)E)))"'

The scope of e1, e2, e3 and e4 external to the event coupled list

(e1 :((B/e2)C)Je3:((0/e4)E)) is the same as that of e5 in:

(A/e5)

namely, the control structure to the left of the slash in the construction 11 /(<event

coupled list>)".

The initiating events, as shown In Figure 2.10, are determined as before: the

first event variable to the left of each basic cs. The internal scope of the event

variables Is somewhat different, though. Events In event coupled lists may not

preempt any task in the llst which Is separated from the event by a "I"· Thus in

the above example, e3 and e4 may not preempt B or C. Therefore Algorithm 2.1

must be modified to reflect this. Figure 2.11 shows the resulting algorithm.

Basic cs lnitlatinJl_ event
A none
B e1
c e2
D e3
E e4

Fig. 2.1 O. Initiating events for Example 2.2.

-27-

Determining the Interrupt Structure Section 2.8.6

1. Let n be the nuMber of butc ca~•· m tlle OOfttral structure
under exanllnatlon. Aaaociate a unique Integer from 1 to n with
each baalc ca.

2. lnltlatlze I to be an nxn matrix of zeroes.

3. For each baalc ca I, do atepa 4 and 6.

4. ff basic cs I hu no initiating event, leave row I ot I equal to
alt zeroes.

6. If basic cs i has an initiating event e, then this event appears
tn either a "/e0 construction or a •fe" construction.

a. If e appears In a 11/e11 construction, call the
control structure Immediately preceding • /e"
•control structure If.." For each bulc. cs J In con­
trol 8tructtlre A, Rt (/ J} equAt tO 1 ~

b. If e appears In a •Je• constructton, then e
cannot preempt any other bulc cs•a in the
event coUpted ht of which ft ·rec a ~r. Its
scope etarta at ~ control atructwe tq the left
of the •/• rn the constructton •/(<event 'coU.,Jed
Hat>)•. This will be the control ,atructure
preceding the first tinmatctied tett par9rttheata
to the left of e. Call this "control atru~ le."
for eactr baste cs J In · contri:i atructute ~ a~t
l[IJ] equal to 1.

Fig. 2.11. Computing I for cs's containing event coupled Rats.

The control structure of Example_. 2.2 haa the follOwlng preemption relatlon­
shlps:

LC at Pr-....tt$by
A e1 t e2, ea, •4
B •2
c none
D e4
E none

-28-

Detetmining the Interrupt Structure · 'sectioo 2.e.s

Since two or more tasks may reside at the same priority level, such as B and C

above, a natural question arises; what happens If both e1 and a3 pccur 11sirnµltan&,
. ?'~-QS: ~~t_,·-·-;.~::·~~'- ·~~-~-- ~:~.;"<·.- -

oualy," at least within the resolution of the Interrupt ~yatem. 1 Mo8t sy!tems .~00,Pt
._ ";_. . ·."' . - . ,. ,';'·""·~.:~"".: ,,._. . ~ ''·!~: ' - . -

some arbitrary metr!c to resolve such sltuatlona. A typlca' .Qne Is the dlstao~~· .Qf ..
_ • _,'' ' •. _ . -::,'":- • ~~o.._c:).·'.t (-~'!!-,.'>."' t·-,,··•·.·"; !,:;'.·· :... ,, . ~~ ·.>:·:~---

the Interrupting device from the CPU. A aimH~r appr,oach Is t~tsen h.ere. If J11Qre.
·; ' ;'' :;~ \d -:-::~::, :"; :_~; ,"<-~-~)!::: ," ~.: . '

. than one event is found to have occurred at the same priority level, then control is .
-- . :u..._,.~._; -,::- -. ;-~~'-' -- . , - .

arbltrarlly given to the first (leftmost) one in the event coupled list.
- ·- --.}~.. ~~ ' "-: ·; -~

However, with the addition of event coupled lists, "forksu are Introduced Into
.... ~ <v'-' · . -~- ~·-' ,.j- f ;~ , , .. · : _..,~ 1 :·,:- -~- ~--· - ,.. · "· · ..,·':I

the preemption structure, as shown In Figure 2.12. A dlaor&fft §~~h ,as. thl_! Is C?alle~ •
. ,, :·. ~.; ·. .'; -;·1·-t;.~ ~-r!'-,,-:.,· :.= , .:::~t? .. ,-!i;·>o:· . . -

a Control Flow Graph, and wlH be deftned formally and "'8~ extensively ~n the, 11ext
-. , : -,~ ··,.:::..:·~-~-~ ;,'.'·s ~: '

chapter. For now It is suftlclent to note that this dlagr:am "µnravelf#" the preemp-
. ·; . '.·' . •·:'>-·>•

tlon structure so that the relative priority levels of each task are displayed. If two
,•- , ':,, '~~: -•''T_• ~~

or more events happen together, priority Is given to the event which Initiates the

task having higher priority, aa was dOne bef~e. In the above example, If e1 and
·:. ..)· < ~ ',

e4 happen simultaneously control Is given 11rst to E (which e4 initiates).

,A
II\

et/ l U. ..
I I \

a J~ .. Q,,.;.,

I I \ I
e2I e2 a4 J~. ,, , .. ,,..

C E

Fig. 2.12. Preemption structure for Example 2.2 . . -.,) .

1. Typically the presence of lnte!rupt requests !fUI ~ .!~~k~~ tq,r ~ce _p.,r In- .·
atnact•;CJ'fllle, ao'any·:1t1ftM!f!UPta;~• llitMleri tWt>'tuctl'ch'icka Win be lndls­
tlngulahabte as to their ordering In time.

Determining the Interrupt Structure

2.7i llon-preemptlble Taeka

It Is occasionally necessary to perform all or some subset of a control structure•s

tasks tri a non-preemptfble mode, even though in the 1att~ caae other tasks at that

priority level may be preemptlble. Simply indicating that a task la non-preemptlble
, ' ·,

Is equhlalent to saying that the Interrupt system is •turned off" while that task is

In execution. For generality, the notation allows as an altemaUve the specification

of exactly those events which are not allowed to interrupt the task. Both capabili­

ties are provided with the augmented syntax, shown In flour• 2. 13. The scope of

the symbol for non-preemptlbllity extends to closed control structures In the natural

way, I.e. every taste In the clOsed cs Is non-preemptible.

<basic cs> : := <task> J <basfc cs> 16 <task>

<task> ::= <task Id> I (non-preenapttbte tid>

<non-preemptlble tld> ::=•<task> I '(<ev tlst>)<task>

<av Ust> ::= <event var> I <ev llst>,<event var>

<non-preemptlble closed cs> ::= c<c1osed cs> f '(<ev Ust>)<closed cs>

<closed cs> ::= .•• (aatae as Mfcwe pkJs:) ... I <~praeenptfbte closed cs>

Fig. 2. 1 a. Synt.ex for non-preemptlble tasks.

Prefixing a task Id (or a closed cs} with u APostrophe {e.g. 1A) Indicates that that

task Is not preemptible by any event. If there Is an event list after the apostrophe
- -

(e.g. '(e1)A), then that task is not preefllPtible by any event In the event llat.

furtherlftOl"e, It fa not preemptibfe by . any 8V\llll,t .• ~ -could. lead'-to pre •llPtlon ·by

an event In the event Hat. For axantple:

--------------------------- -----.

Non-preemptible Tasks Section 2.7

(((((A•/e1)C(e3)B C)/e2)0/e3)E)•

Here .If LC Is at B, It Is not preemptlble by e3 or e2, since e2 Initiates D which Is

preemptlble by e3.

Algorithm 2.2 can still be used to determine the nominal preemption structure

for the control structure's set of basic cs·.~ However. the output of Algorithm 2.2

must then be modified by removing preemptlbility relations as specified.

2.81 Stopptna the Flow ,of Control

Although ·the emphaaia has been on how LC moves within a control structure,

ttMMe may well be times when··there la stMpfY ncfWortt 'tC> ·be 'dOtie for the moment.

It is worth pointing out bow the ex~"'notatten'fndfdates··th1s with some exam-

pies.

Baalcally LC will halt when It either:

1. Reaches the "end" of a control structure. and finds no • ., , or

2. Reaches a slash ('f) beyond which no events (which are ca·
pable of interr_upting _the .PontroJ structure to .the left of ·the aleah)
have occurred. ·

Several examples are given In Agure 2.14 to clarify this concept; for conciseness,

a typical (but not unique) task strJng which ~Ill•~ .be-ated by each control

structure Is given. Additional notation should be self-explanatory.

Stopping the flow of Control

((A•/e1)8)• -> A A A 4111 B A A A e1 8 ••.

((A/e1)8)" -> A (watt) e1 B A (wait) el 8 •..

((A•/e1)8} --> A A A e1 B (halt)

(((A"/e1)B)/e2)" -> A A A e1 8 (wait) e2 A A A •..

F19. 2.14. Examples of proceaso'r ldllng.

2.8. 1 : Breaks In Event Coupled Lista

Section 2.8

In light of the Interpretation given to constC'UC. Whloh MSUlt: in atopplnt the

ftow of control, it wlll be noted that there t4l no wey to -..ay.ttwation to a:pertlon

of the control structure whlcfl ln~kldafil .it of a loweri : priority controf 8tructure ·and

part of an event coupled list. What A•. n 4s Vte OOM:ept of a breel<, which le

essentially a restricted "go to• statement; It directs LC to jump over the rest of

the event coupled list to the right parenthesla m.tohlne the --lrilttal left pventhesls

of the event coupled list. Thus It enables . the ltttra~ at ~· on~ of the event

coupled llst to be applied to any Intermediate part of the list as neec:Jed. The syn­

tax for a braM la the u~arrow (t) at the pdfnt Wfiere the bf~~ Is deSJted; It al-... ~- - .

ways follows a basic control structure, so It can be Incorporated Into that BNF:

(beaic cs> ::= <task> t (basic cs> • <task> J <baaf(f ea> 1'

As an example, consider the control structure of Example 2.2 modified to Include

two breaks:

(A/(e1 :((Bt /e2)C)le3:((Df /e4)E)))•

Breaks in Event Coupled Lists Section 2.8.1

NowJ wben LC reaches the an~ of .B or I;), It retul}ls to ~· insi.ad of waltJng for e2

or e4, respectively.

2.8: External Termination of a Control Structure

Consider the control structure:

Example 2.a.

Since e• Is non-termiaatlng and runs at a higher prtertty than A", A wlll never be ex­

ecuted again once e1 occurs. 1 There la notbjng ~g with this per ae. but wJth

the given notation It la not possible to. represent the case where occurrence of e2

aborts the repetition of 8, and returns control to A* after executing C rather than

To do this, the notation must be able to Indicate that occurrence of an event

terminates execution of a particular control structure, and thus LC does not return

to that control structure until Its initiating event occurs again. The modified syn-

tax:

.<task> ::= <task Id> I <non-preemptlble ti.~> J <abort tld>

<abort tld> ::= 8<task> I 8(<ev list>)<task>

<abort cs>::= •<closed cs> I ct(<ev.llst>)<~d.~>

<closed ca> ::= ••. (same as before plus:) .•• I <abort ~a>
' '•' ·:· "f '

Thus It can be apeclfted that any event a~ • ta8.k (e.g. 88) or set of u..ks

1. R~.U, that an ev.ent 11.ttag." ii\ this.~~ •'1• -. . .- O.ft'·untH the end 1>f
the control structure which Its occurrence Initiates~ B* has no. end.

External T""""1ation of a Control Structure Section 2.0

(e.g. Cl(A 8 C)) or that any aet of eventa caus• tennlnatk>n (e.g. 9(e2)8). The

event which aborts the task(s) need not be the same as the one which causes

preemption In a particular case; execution Is terminated as long as the aborting

event occurs sometime after preemption and before LC returns to the task.

If the control structure of Example 2.3 la changed to make 8 an <abort tld>,

the desired behavior Is obtained:

Now the string tA A A e1 -B B B e2 c A A A •.•• can be 1enerated. '#hera repetition

of A and B te for an arbitrary· ntlRlber of times.

2.10: Return of Control to a Pr-mpted Taak

There are two dlatlnct choices of what to do when LC returns to a task which

was interrupted during its execution: either resume execution from where It left
-,

oft, or start over again from the beginning of the task. Thea~ two strategies wlll

be referred to as resumption and restarting respectively. Each strategy has Its

advantages and may be the best choice In different situations. A task which Is In­

terrupted often enough may mwer complete If ft la always restarted from the begin­

ning. On the other hand, in a process control situation the Inputs to an Interrupted

task may have changed radically s~ce It was preempted, 'anci reaumlng the compu-
~

tatlon started with the -old Inputs may ·lead to anachronistic outputs which are not

relevant to the current contnJI sftuattert~ Therttfont, It la dMlrabte to lncorp0rate

means of representfno both strategies In ttte·not~ For cOMplete generaftty, It
~- - --

1nuat be capable of handling a situation where two different taaks In the same con-

~--- - -------

Return of Control to a Preempted Task Section 2. 1 0

trol structure may follow the two dl1ferent strategies. Furthermore, It Is necessary

to remember the point of interruption In the case of resumption, so the processor

will know where to resume execution.

When the problem of restarting a control structure Is examined carefully, it Is

seen that there are really two sub-cases which are of interest. First it must be

recognized that the actual unit which Is restarted is the task. At the next higher

level, a task appears In a control structure as part of a basic control structure.

Thus the problem Is really how to restart a (basic cs>. If there is only one task in

the <basic cs>, the problem Is easily solved-simply restart that task. If there Is

more than one task In the <basic cs>, then the entire <basic cs> could be restart-

ad from the beginning of Its first task, or it could be restarted from the beginning

of the task which was partially finished when the preemption occurred. For exam-

pie, consider the following control structure:

(((A B)"/e1)C D)"

If event e1 occurs, and C D executes, (A B)• must be restarted (or resumed).

Here are the possibilities:

1 . Resume from the point of Interruption, in either A or B.

2. Restart from the beginning of A.

3. Restart at the beginning of A if LC was at A when e1 oc­
curred; restart at the beginning of B if LC was at B when e1 oc­
curred.

The first case wlll be the default case, and !s assumed for all basic control struc-

tures as they have been so far defined. The second case will be called global

-35-

Return of Control to a Preempted Task

reatart1 the lt*d oue l«:aJ ,..,.,.,_ tt a •yntix· la ·detltNtd' ·tot the concept di GfO"

b.a r••U.rt, Jt oen " '*"' to •)'ftthufZ'e: locat . .-t«tt _.,. !apec ... case .. Thus a

tart•. the ~· caee 4lbov•·
<restart ca> ::i= > <t>urc ca>

To control the scope of the reatart symbol, restart control structures are Intro-

duced Into other control structures strictly through their appearance In closed con-
: r ~

trol atructurea:

<oloaed ca> ::= ((basic cs>) J (<praeap~ ~)J

C <closed ~> <pr-....,,tlbte ca> .> I ~. <cloaed .ca> ~ oa>) I

((cloeed ca Hat>) I (<r•t.n 9S>)

Here la an example of a control structure contailftno .f'eatarCa~ ·.

((((>A B)(C DX(>EX>f)})fe 1)G)*

Execution of thla. control structure proc .. da kl8nUc8lly to tlMrt of ttht bale control

structure (A 8 c D E F) until event e1 happena. Thia caue-:•xeautton Of G; after

G completes:

1. If LC was at A or B when e1--..-.ct.i.C retume to the be­
ginning of A (global restart of C>A B)).

2. If LC waa at C or O when •1 h.,..nect, lC reauntaa froM the
point of Interruption In either C or o.

a. If LC waa at E or F when •1 happene~. LC J>•tw• to the be­
ginning of e· or F respecttvely (note·· that focal reatart of CE F) la
equivalent to ((>E)(>F))).

Return of Control to a Preempted Task Section 2.1 0

2. 1 O. 1 : Conditional Restart of a Control Structure

There Is another possibility which should be represented. In some instances, a

task should be restarted if it was preempted by one event (or one of a set of

events), but resumed if It was preempted by another. This is handled by explicitly

listing the events which would cause restart of a task. Thus a restart cs without

an event list Is unconditionally restarted, while one with an event list is only res­

tarted if an event In Its event list occurred since It was last run.1

<restart cs> ::= > (basic cs> I > (<ev list>) <basic cs>

Example:

(((((>(e2)A)11t/e1)(>B))11t/e2)C)11t

Here A Is restarted If either

1. A Is preempted by e2 or

2. A is preempted by e 1 , which starts B. B is then preempted by
e2 before completion.

B Is unconditionally restarted, and A is resumed if e2 does not occur between the

time of A's preemption by e1 and the resumption of A.

1. Note that this means that the restart causing event need not be the one which
caused the task's preemption; there may have been a chain of preemptions which
Included the restart causing event, and this Is deemed sufflclent cause for restart.

-37-

Conditional Restart of a Control Structure Section 2. 10. 1

2. 11 : Code•trlpplng

A tlm•sHced allocation of processor time can be represented with the existing

notation by letting the event variables stand for timer-generated Interrupts. One

addltlonal form of preemption which wtH be expffcltly represented hare Is codestrlp­

plng, as outlined In Section 1 . 1 .

In codestrtpplng, cal1a to the operating system are Inserted Into a task by the

compiler at calculated Intervals, resulting In preemption of the tuk when they are

executed. The syntax Is as follows:

<codestrlpped ca> ::;; <basic cs> I <Integer>

<preemptlble cs> :::i: <control structure> I <event Hat> I <codestrtpped ca>

Thus codestrlpped control structures are Introduced . Into other control structures

under the same syntax as preemptlble control structures. An example of a codes­

tripped control structure:

((A B/6)C)•

The meaning here Is that the basic control structure AB Is executed 1/6 at a time,

based on Its tot.I (eethnated) execution- t11ne1 it 18 ·then preempted and· c is exe­

cuted. When c ftniahea, LC r•turna to tha · point of ,......ptlOn, and executes

another 1 /6 of the way through A B (whether this Is actually In A or In B depends

of course on their relative lengths). Thus C will be executed five times for every

alngle execution of A B.

Notice that control structures such aa (>A 8/10) are syntacttaally megal; the

notion of globally reetartlng (or locdy restarttng, fOr that matter) A B la lncompatl-

-·-

Codestripping Section 2. 11

ble with the semantics of codestrlpping. Furthermore, codestripplng of closed con­

trol structures could lead to highly ambiguous or meaningless structures and is

disallowed, This prevents such structures as ((A 8/5)/1 O) and (((A BK/e1)C)/5).

Structures which execute untll they either flnlsh a codestrlp or are Interrupted by

an event are allowed, as they should be, e.g. (((A B/5)/e1)C)K which executes C

for every 1 /5 of A B executed and whenever e1 happens.

-39-

aa Repreaentatlonal Power of th• Notatlon

a.1: Introduction

Thia chapter presents • catalog_ of <;c;Jfltl1X -~-· t¥P41S ~ the nota.tioA"

of the preceding chapter is capable of representing. It is not claitaed that every

concetvable type of representable control structtwe le included, but the llst at-

tempts to be comprehensive as to general forms. Some examples are also given of

types of control structures which are not representable.

a.2: Control Flow Gr_,.a

Control structures can be conveniently categorized by the topology of their

Cont.rol Flow Graphs. or CFG's. A CFG Is a directed graph; more precisely, It ia a

set of nodea and directed arcs. where a node represents a basic cs and an arc

represents the movement of LC between two nodea. The nodes bear the names of

the basic CS
9
S which they represent.

Consider an arc A which originates at bask: cs o and has aa a destination

basic cs d. If o occurs to the left of d In the control structure, then arc A is a

forward arc; otherwise, It Is a bacl<ward or bacl< arc. Either type of arc may bear

labels:

1. An arc which represents the uninterrupted ftow of control due
to termination of a basic cs is a forward arc, and Is unlabelled.
Note that thla Includes breaks as detafled In Section 2.8.1.

2. An arc which represents the flow of control due to preemption

Control Flow Graphs Section 3.2

by an event occurring Is a forward arc (an event arc) and is la­
belled with the corresponding event variable.

3. An arc which represents the flow of control due to iteration is
a back arc and Is labelled with an """·

It may seem that tasks rather than basic cs's should be at the nodes of CFG's,

and In fact the algorithms used for determining real-time latencies must sometimes

deal with control flow at the task level. However, this additional detail adds noth-

Ing to the breadth of representable control structure types, and In fact detracts

from the readability of the CFG's.1

figure 3.1 gives an example of the CFG for a simple control structure.

A B--e1--c ,._ _______ ,
Fig. 3.1. CFG for ((A B)/e1)C)".

A string naming the tasks and (optionally) the events encountered in a path taken

by LC through a CFG Is called an execution of the corresponding control structure.

AB e1 C A B and A e1 C A e1 C are both executions of the above cs.

1. If, for example, a basic cs is preemptible by event el, then every task in the
basic cs would have a forward arc labelled e/.

-41-

Control Flow Graphs Section 3.2

a.2. 1: Prlorftv Levela

As an extra benefit. the CFG notation provides a convenient mechanism for for-
., 1~ .. -

maHzlng the concept of priority level. which has btteft: used aom&what lntultlvely

thus far. To 11nd the p~ level of basic ca I, do the fOllQwlng:

1. let the leftmost basic oa 1n the CCMitrol. sttik:ttlre have prforlty
0 by definition.

2. Find the acycUc path from the priority 0 basic ca to basic cs I
hlMftg the argest·R...., of·eWent··arca.:

a. The priority of basic cs / 1a equal to the nwnb9r ot·event area
In thla path.

a.a: Interrupt Driven Control Structuru
... · ~ ·. ~

The CFG's for control structures using only s~uenclng and Iteration are fairly

straightforward and do not expand the catalog of representable control structures

by much. The sequence of tasks within a baalc cs la knpllcltly represented, and

forward control ftow from one basic cs to another sJmptY' b-anslates to an unlabelled
. . ~

arc In the CfG.

, The morl · 1ntereating CFG"s are those which are derived from control structures

having event varlabfea. It Is readily apparent that . the notation has ~erably

more tlexiblllty than that which is needed for representing traditional priority inter-

rupt schemes. This ftexiblllty is derived prlncipally through the placement of the

• 11111 Iteration character and by use of the branching Introduced by event coupled

Hats. The latter has been mentioned briefly; the former .~ cl .. f'itlQatfqn.
''

A back arc can be originated frOm any bai'lc cs by 'folioWtng It with an

lnte"upt Driven Control Structures Section 3.3

However, there Is a degree of 'freedom in apectfYtng the <leStlnat/on of the back

arc; this will be exerdsed In ettlargingi the·· eatatocr of control structUres. Funda-

mentally, the back arc may return to the same priority level, a k>*9r one,' or the

lowest one. If It does not return to the lowest level, a certain "shrinkage" In the
(.- \. t'~' " . ~\/ "

future range of LC Is experienced. This wlH be elaborated on shortly. Additional

varfa1lions' an .Ula· fundamental typets are aehleved thtouOh·tiae Of the Interrupt mask

(tJOn-preemptlble tld), externa1 abort and retttart/r..um9' capabilities.·

a.a. 1: Globally Cyclic Control Structures
,>,,_-

Under this category Is Included all control structures with Cf G's such that

every back arc, regardless of Its originating priority level, goes to the first task of

the lowest priority level. Informally, this means that upon completion of the tasks

at a given priority level, the processor will scan all the event variables In the con-

trot structure from the lowest level to the highest, and begin execution of the

highest level task pending. l,tris Is as opp()88d to control structures with local cy·

clea, Where the lower priority events are not necessarily considered In each such

situation.

The traditional Interrupt d)'Menia · avaffable - on moet processors fall Into this

category; such ayatama, •• furtrHtr autJdll\fldtHFrntb ~ fypea1 Which are called

here the !WM· priority aystetR and the sttong p;l'ortty eyatetn. In ttre weak priority

system, although *"*'•tton betWeelf;Jnterrl.IPt8 ·fibln: tWo or·iftore events Is provtd-

ed, there Is actually only • •lnele .tf:Ue . Jevet-'.Of lntertuptloft. There fa a 11user11 or

GfQbally . Cyclic Control Structures Section 8.3.1

each preempt It; ~ver. no .,.,,t may Interrupt,_,.,. taek; which gained controUt-

coupled llsts. N.ln Example 3.1.

Example a.1. (MAIN/(e1: Afe2: Ble3: C))"

The CFG (Figura 3.2) ~ an lnterru.pt brenclt ma .._.. for every tntenUpttrlO

event, to the bulc ca. It lnlUatea. ·. ~-- of:· A, a'°" oC,. forQea lC to ratu(tl;itD

MAIN, so there la a back arc from each of them. For the sake of keeping the CFG's

readable, multiple back arcs with the same destinations wlll be CORtblned. as Is

done In Figure 3.2. It Is worth keeping In mind, however, that this does not Imply

that another type of node (Junction) has been added.

Ftg...a.a. Cf6,tw.£x.,... a.1.

. A strong pAarlty ~tea ~ • Pl'QCel-,·~dhe cUl'l'tll1tly """*'8

task has a. prlorlty o 8MOCleted .wJth. ft. .anc1'"aaw· 4NeAt8 ·~ wlttt. prtartty m

> n may preempt It. With U..·· exQePtlon of Ute abltl.y: Pft)Vlded ·for mutclag Inter­

rupts, the procesac:ar runs tl;le ~ ~,tut,...,_. '°''Aletvk:e cat .any time.

Globally CycUc Control Structures Section 3.3. 1

of preemptlble (and Iterative) control structures, as shoWn lft Example 3.2.

Example 3.2. ((((A111/e1)B)"/e2)C)111

The general form can be recursively constructed; each "layer" looks Ilka:

((<Iterative cs>/<event var>)<basic cs>)"

which is Itself an Iterative cs. The (bfl&lc cs> runs at the next higher priority than
< ' ' ~."' > ' •

. the rightmost basic cs In the <pree111pt1ble c~>.

A CFG for Example 3.2 Is given In Figure 3.3; It can ~,e seen that the proper-

ties of nested Interrupt systems have natural analogues In the graph:

1. Let er and - be basic cs"s in the CF~., . If there is an acyclic
path from er to - whose last arc ts labelled e/, then there is an
arc from • to - Jabelled e/. T~ls Pfel>tHty "''tema from. the transi­
tivity of Interruption In a nested, multJple · prfOrtty system.

2. There Is a back arc from the last basic cs at each priority lev­
el to the beginning of the ~llft. P~lY P•sic,cs,. ~~er ~pmpla­
tlon of the control structure at a given 'pilortty level, LC returns to
the highest level with a pending request.

Fig. 3.3. CFG for .Example 3.2.

Globally Cyclic Control Structures Section · 3.8.1

a.a.2: Acyclic Control atruo-..

At the other end of the spectrum are found control structures with no back
'l'.: .!'.':: ~ ' '

arcs; these represent completely non-Iterative systems where the ftow of control

terminates when tt reacbae Ute end of any .-thi ·auctl CORtl'GI struotUr•nsre fUrttto

er subdivided into two type~:

1. Linear control. structures • control),ow is str.atabt-llne and thus
antlrely:PtedeteriRlned. o•in the exitftPte of Ffsjufe 8.4.· .

2. Branched control structurila :. ·re4i.~~/ d8c'8ton. bmd on
event occurren~•- detafl!lkJe the.·~~ 1jclw. pf ooo~ aee AQ-
unt 8.6., whtch -~ ari exaMPle. ·· · · '

The subject of llnear control structures does not leave lftUCh room for discussion

and 18 Included _matnly for c:omP~tene,~. ~i, ~;t ·~i-~ Jnterestlng ob­

servations ·-that can be made about branotHtd -~trql· •t~~ representable with

the notation, and which apply lndependenUy_ of whether . ~ are Qyoles present;

these wlll tie· conslder•d In the fo1~h1g ..Ctlon.-
, . . .

""A--ee1.--->aB C~D

Fig. 3.4. CFG far the control etructure ((A/~1)(8 C)O).

Acyclic Control Structures Section 3.3.2

..--------e2~C

Fig. 3.6. CFG for the control structure (A/(e1 :(B/(e2:Cfe3:D))fe4:E)).

a.a.2. 1 : Branched Control Structures

It Is Interesting to note that whlle tree-shaped CFG's such as the one In Figure

3.6 can be represented, allowing arbitrary tree-shaped Interrupt structures is not

compatible with the transitivity of interruption. In f11ct, the notation cannot

represent any tree of depth greater than one where the forward arcs are all event

arcs. Thus a CFG such as the one in Figure 3. 7 has no corresponding control struc-

tu re.

fig. 3.8. A tre&shaped CFG, for (A/(e1 :Bfe2:C)).

For example, consider an attempt to derlv.e a control structure for the CFG in

Figure 3. 7, a tree with a depth of 2. By AJgortthm 2.2, It Is found that slnc:e C In-

terrupts B and B Interrupts A, C must also Interrupt A. Thus an arc labelled e2

-47-

lktancbed Control Structures saCdon 8.3.2.1

IBUSt be added from A to c. and tne tree atructuta Is lost. Event e2 (and e3) can

be waasked from lnterrupt1n9 A; but . ~:-4t1 ·~ ...,, nauked, since It initiates B
-~ "

which la tntarruptlble by e2. Thia- ew lmt of-:Ha1 >1._ apples to W1Y otltar at-

teatpt tD produce a tree-shaped control ~· depth greater than 1.

have completely local PJ'88111Ption structures~ and yet at a. ~ be lrtltlated
~~: ·:-;z: r>4~.t r~ ,'_;" - , ·- -_.,...,.

by .0.. event. To ~te tNs type of atructwe woutd require a notion of •to-
.. ~'...;.

cal" and •g1a1>a,. events, with aultable reatricUona on their scope. The addltlonal

001Rptaxlty this would Introduce may be Jncolllpatl>le with the attempt to keep the

notation conc1se, but this may be • 1ag1ca1 extmlSlon of the 1angua99 for wae ap-

Althouoh It does not represent a .,..._,,~ structura. flgw'e 3.8 show• a CFG

which Is aiM8ar to that of Figure 3.7. but wNcla la ,..,,..•••table, and by the folkJw-

fA Bl(at:C Je2! 1>))

The aJ'C from A 1D B f'8Pf•ent• cocltrol 'flaw on termination of A, but A cannot be 1lt"

tanupted.

Branched Control Structures Section 3.3.2.1

Fig. a.a. A representable tree-shaped CFG.

8.3.3: Locally Cyclic Contrel Structures

Included In this clfl88 •• all thoe•· oontral structures having back arcs which

do not r"turn LC to the low._t priority level< task. Thia QtOUp Is ftffthet subdivided

Into stryctures which ne11W return control to the towe&t prloffty task, and those

which may or may not make the return at sOJ11e?palnt. · Whle'the emphasis· here is'

on returning to the lowest priority level, the same sort of distinctions can be made

about any priority level and Its superiors. Examples of each case wlU be given.

a.a.3.1: Dynamically Decreasing the Range of LC

Consider the followlng general form of control structure:

Example a.a. C ••• <preemptlble cs><closed cs>"/<event var> ...)•

This has a non-terminating "<closed cs>•" construction, which corresponds to a

back arc In the CFG from the end to the beginning of the closed cs. Although the

rightmost u 11 forces LC to return to the beginning of the control structure (If the

... la reached), the <preemptlble cs> will not be resumed since the following
"

DynamlcaUy DeCTeasing the Range of LC sectJon 3.3.3.1

(closed cs> runs at a higher p.rtortty, .end Is non-tennlnatln.g.

Figure 3.9 gives the CFG for the controlauc_.,:

Ex111RPle a.4. ({(A/e1XB C)•/e2)D)'I

which has the above general form. It can be seen that once a non-tennlnatlng loop

Is entered. although It may be preempted by higher priority tuka (either momentari­

ly or pennanentty), control wll not return 1D ...,,~ tlHtia ~ "Au#'~ 'cCl1t10l

atructure ,flu etfectlvely tn Ulat ceAafni1aak9 n no longer executable.

This ~ .•Y oc:catr. In ataaea." tf ttwe are· aeverat weftti which 1'1nfate ltera:.
Uva. control ~ •nd which occur In a.cceeaJan; at If lliay OCctlr att'at once.

Fig. a.a. a=e tor Example a.4..

a.a.a.2: External T........._ a1 Local cyc1a

A local cycle need not always tndlcate a decreasing control atl'Jletw'e. If the .

Unle in a given sub-structure (local cycle), and ~ return tu lower prlortty levels

-52-

External Termination of Local Cycles Section 3.3.3.2

when th-. aborting event occurs. The control atrueture of Example 3.4 can be

modl1Jed by the addition of a single •a0 symbol:

Example 3.6. ({(A/e1)8(8 C)•/e2)D)•

Now when e2 occurs, It "shuts .otr e1, as wel as lnmettno 1). This Is a dynamic

behavior and as such Is not well suited to representation by a CFG; however the

reaHlme latency algorithms must certainly take account of It.

8.8.3.3: Restrictions on Local Cycles

A back arc can ~a fonned frona·,tJte end to the'beflnitlng of any closed control

structure, and hence,,,~r9 llJ, HtUe restriction ·ort fts rt.nge 1'f pcsslble destinations.

One notable exception OC<=1Q In Ute preaenee of event cdUPfed Hsta. Figure 3. 1 O

gives a CFG which doea not have a carrespondlftg' control structure; Its megaUty Is

the presence of a back •c which cuts aCf088 1.he' 91• :-syntactic boundary In an

ev.ent eoupled list.

•1 J~ 1. L ··~·
e3. "-\.l ·"'e2~C~D

Pig. a.10. CFG with an lleOal back arc.

-61-

R9strictions on local Cycles Section 3.3.3.3

Essentially. this ·says that the forkJng cauaed ~event eoupted ·llSta forms two

or more independent sub-control a~ and LC ·cannot lllOVe Mtely from· one to

the other. However, It Is poaslble that an event external to all the branch~ may

preempt any of them; thus a CFG Identical to that of Figure 3. 10, except that It

has no .back. arc. corre8flCIQda to th9 legaf controS: l'trl.t8tUr8:

(((A/(e1: Bfe2: C))/e3)0)

8.4: CFGa at the T•k Level

., ,_

There are. several vad4ltlone · on the c1Ud18etlons pt.Sented here

which arlae prlnctpally when control, 1low at ·the iftt81'-tealt ;teijet 18 coi181dered. A4

previously mentioned. the complexity of ttse- ·resu111n9 CFQ'a 'limlt8 their usefulness.

Thus these variations are .,,.. stlltabty dlecuaaed In t11a· Context of tatency algo­

rithms; furthermore,. they do not Introduce new genenrl ctesa9s;of controt stl'Ucture

types as far as the topology of their CFGs Is concerned, but Instead r8atilt 1n per-:

turbatlons of those already considered.

However, It Is reasonable to examine the changes which-would be Induced on a

CFG which has single tasks at Its nodea, rather than basic cs's. Use of the •<non­

praemptlble closed cs>" or "<~preamptlble tJd>" Cbnstructlons results In the re-

llOVal of the appropriate event arcs. In addition, tf the task Immediately prior to

the •/<event var>" construction Is masked, an unlabeled forward arc Is added to

show the ftow of control ~h occurs on ter...,..tlon of ttMt lliaiiked task.

The default mode of control return to a preempted task Is resumption, as dis-

-52-

CFGs at the Task Level Section 3.4

cussed In Chapter 2. Thus any arc (backward or forward) to a preemptlble cs of

this type must be dynamically relocated 'tD. paint to .tile tan Which was fn execu­

tion when preemption occurred. Again, this Is not easily representable with a static

CFG, and in fact corresponds to the need to store some "state" Information while a

task is dormant.

If a task Is to be restarted, this problem does not arise; In fact, If an entire

closed cs Is of restart type, there wlll be no arcs pointing to tasks Internal to the

closed cs which originate outside of It. The only entry point from the external

world's point of view Is the beginning of the Initial task.

4.1 s Introduction

A primary llK>tlvetlon behind devetoping the 1enguege presented In Chapter 2 Js . .

to provide a repreaentatlon of control etructuree suitable for uee u an analytical

toOI. SpectftcaHy, it provides a convenient fonut for ~eying preemption and

control flow Information to an algorithm which then detennlnea rea,.tlm~ . properties

of the given control .vucture.

The algorithms to be given here we not Intended to provide an exhaustive

analysis of a control structure, but rather to be representative of the types of

analysis which may be performed. The re•tlme properties •euured here are of

common Interest; however, It wtU probably btl the cue that, depending on the

needs of the particular user, different real-time propertlea may be of special In-

terest. In many cases, the given algorithm.a can be adapted for measuring different

Intervals wtth mlnlmai changes. In other cases totaUy new ajgorlthms may be need-

ed. but parts of those given wttt stiff be ueeful.

Much of the termfnology ueed here wu developed In [Teixeira 78] and the

reader Is referred there for a complete dtacuealon.

A prlnclpat goal here wlH be to develop algorithms for determming the worat

case /Ill.ency of a 118t of tasks In a given control structure. Informally. the worst

cue latency of a Het of tuks • (written I(•)) te the longest t.lnte that can el-.pstt

without there being a C0111Plete execution of each task In the list In the order

Introduction Section 4.1

given. The list of tasks whose latency is being measured will be referred to as a

constraint. The latency of a constraint is measured with respect to an execution

of a given control structure, where an execution is a list of tasks In the order in

which they are executed by the CPU in a particular invocation of that control

structure. Each element (task Id) of the execution has a weight associated with

It, written as J<task id>I. The weight represents an upper bound on that task's

execution time on a particular processor.

Note that depending on event timings, a number of different executions (of

finite or Infinite length) may be generated by a single control structure. Consider

the control structure:

Possible executions Include:

A BA BAB ...

ABC ABC .•.

ABABCABABC ...

(((A B)•/e1)C)• (6.1)

among many others. Also note that In the case of preemption a task may be

suspended and restarted, and thus partial weighting (or Its effective equivalent)

must be accounted for.

The weight of a list of tasks Is the sum of their Individual weights. The worst

case latency of a constraint a with respect to an execution (J, Is the sublist of (J

with greatest weight which does not contain a. The term "contains" as used here

means that the elements of a occur In order and with their full weights; there may

-66-

Introduction Section 4.1

be arbitrarily many other tub tnterteaved. For example, (A Ii C O) contains (A C)

as well, as (A-&), but It don not contain (C'S).

The provtalorr that the tastes be lncfttdecf with . their full weights is emphasized

for the fodowlng reason. In many reaf.tt'me process control app1rcatlons, the Inputs

to• t•k 1118)'-chenoe at any tllfte, but the schedUling of task lnltlatton may not be

synchronized wlttl the arrival of new Inputs. ' Thus Ii · 1s entirely possfble that new

Inputs may arrive Immediately after the Initiation of a task,~ i.e~, after It has already

read the outdated Inputs. Given ttils posa1bllty ," It may ·be that nearly two complete

occurrences of the COMtralnt may be· executed· tn an lniitnra1 which stin does not
. . .

contain (In the strict senae deftned above) a single occurrence Of the Jtst. for ex-

ample, given the control structure (A B C)•, consider the execution A B C A B C. If

an Input to A arrives Immediately after A reads its old Input~ then it is only after

the second occurrence of C has completed Its executlorr'tttat alf--th'a tasks In the

constraint will have been executed in order (the constraint ta alltlslled i>y such an

executJon). Thus a way Is needed to represent an execution whose end-tesks are

weighted just less than their nominal values; the notation chosen Is ble.cketlng

auch a task on its "short side"; [A means "begin just after the start of A11
, and CJ

l'IMRlns •stop just before the finish of c•. The Welght of such a task Is Its nominal

weight minus a, where• fs arbltrarlty smalf: ·Yttus ttle worst"caae latency of (AC) in

CA e c>• is I [A e c A e c) 1.

The llst (A 8 C A 8 C) ts an example of a crltlCIJI rAilndOw for (A C), where a

1. Unless It Is known that the timings of such data arrtvets can be synchronized
with taak Initiation, It muat·be assumed that thtS coufdc:oec~- at ·a1,y time after A Is
Initiated.

-68-

------~

Introduction Section 4.1

critical window Is deftned as a list • ~uch- m,ai. ',~~s two occurrences of a

const~alnt C but[•] con~ins no occur;r.:•~·~ C.~t ln:•~ Cfl8e&•tha"w0l'1't ca•
latency of a conatre,lnt will turn out to be the,~•t\t pf,~,qrltlc::4J:,wJndow Ohe most

critical window). The worst case latency of a COMt.r~,A#,lth-.~fHIQ!8Ct to a control

structure (as opPQSed to ~ executJop) Is .taker_,over a11-,t'1•reossibl• executions

that may be generated by the control structur~ -, 11G nwattel wtutt ·the event -timinp

(within spttcified limit$),. ther~ can be no ~ il[ltefM'1 -whk;h ®-· not f;Ofltaln the

list. Thus part of the Problem faced la. to ~f¥.. th• types of ~ecutic>M whlott

may be g~riereted by a c<>QtroJ structure and .. n.v~ .tihe~;cholc~ among th9fll for

'finding the worst case, . since . otherwise ~ ~~~- •xploalon · In tJllt ·number·

of possible executions would m«l.c• :th• prob ... lntr~ble.

4.21 Weights of Task 1dentlftera

It was mfin~ed,., f,>r1E!~. above th.a~. a weight is .8.M,9clate(r.f --'A(lth every task

l~entlfter, .repre~entJ":Q ,an UPP.er bo~ on ,i~ ..,ex,~ Jifl\9 ... Naturatly· ·~ ntMSt ·

be with respect to a P4f'.t,cular.prac~. ~t.aven.,.,JtlJ.~ restric;~ tber•-•e

some dlftlcultles in determining a meaningful upper bound on execution time. Aside

from Input dependent computation times, there are processor dependent variables

such as me~ accae~ tl111e In a vlrb.f~I •t<>r'"P .a~tQ.. TJJe ·WPl"•t ca,se· thae

would occur when all 'memory reJ•r.,ces -•8".•' tQ. me •la¥t••t storne device. but

the proba~lllty of s~h a cas" actuany oc;QUrJjng.__m,)f ,~ nearly zero. On the other
r . - ' •

hand, there 111ay be an uncotnfortab.Jy larg• v.,-,lan~ ,~lat~ with· the mean ao-

cesa time when crltlco.Dy tlme-depeJldent prooa.Nes are ;Involved •. It· se~ .then

Weights of Task tdentifters Section 4.2

that In such a cue one muat either arrive at a statlatlcatly reason.4ble upper bOund

on melllOrY accua time or change the storaoe aUOc::atlOn parameters of time depen­

dent tasks· to ·ensure their residence at a partlcular- level at above (In accna

speed) of the Nerardty.

tf an upper boand en the execution time· fDr a task does not exist, this WOUid

llllply potentially in11nfte worst case ratenctes and thete would be no purpose to ap-

bound. then It must be chosen carefully ln llght of the -~ appUcatlon of the

latency tntonna.tloft. Th• W9fGM of each task . .., be 1111 lnPut tO the latency algo­

rtttt.a along with the control atru.:mara, &net ft wit ti8 • ...-.., thflt a function (table

look-up) exists which returns this weight fri reapOnse to th f1dtation f<task ld>f.

4.a: Properties of Event Vartabf•

fn order to arrive at worst case latency times for a~ control structure containing

event variables It Is neceaaary to know something 'iaor'e liboUt the tfiriing of the

events repreaented. To Hfustrate, consfder the contrOI structure:

(6.2)

ff e1 never occurs, the only possfMe execution of this control structtire Js (AB AB

A B .•.). The ta'tency l(A B} In this case · 1a · 2<1Al+f81> • ~. alnce the longest subllSt ·

which does not contain AB WOUid be [A 8 AB]. On the other hand, If e1 occurs at

least once every fef+fDt seconds, th8n ftA 8) Is 111•dte, · a1nee the only execution

generated la cc D e D c D ...) (ignol'lng poalbht Initial exeeutlOns of A and B). If

-68-

Properties of Event Variables Section 4.3

the control structure contains more event variables It may become difficult to deter-

mine the worst case latency (the largest l(A B)) by inspection, and the need for

additional Information about the event varJables ls clear.

In particular, what Is needed is the following:

1. ft mln(e1): the minimum period of event e1; It Is guaranteed

that e1 will not occur more than once In any Interval of ff min(e1)

•econds.

2. ft max(e i): the maximum period of event e 1; It is guaranteed

that there will be at least one occurrence of e / In any interval of

ft max(e1) seconds.

It Is entirely plausible and indeed likely that In some situations tr min(e i) will be

the same as ff max(e i). This is the case for all regularly occurring cyclic events,

such as data sampling, processor time slicing, etc.

In general, It Is impossible to distinguish a ffmin(ei) whl~h is less than the pro-

cessor Instruction cycle time from an Infinitesimal one since the processor could not

possibly respond to an event which occurred at that rate In any meaningful way.

In fact, for a reasonable system, one would have to pick a "min (e 1) considerably

larger than the Instruction cycle time, but the actual value will be application

dependent. For most events of interest it wi11 be possible to determine a reason-

ably tight r min(e;); e.g., If the event represents an 1/0 service request, It cannot

occur more often than some time Interval dependent on the 1/0 device's maximum

character transmission rate.

Unfortunately, finding a good value for ft max(e;) is more difficult in many cases.

-69-

Properties of Event Variables Section 4.3

An event often represents an exceptional condition, which may never arise In par­

ticular executions. , fortUnately. most contrOI stri.tc'ture• Wl1I not put time critlc~I

tasks In such a position that their Initiation deJ>ends on w,..Ce1), but rather lt Is

-- '
more Hkely that the completion of a constraint may be inftuenced by time lost after

such an 8Vent occurs; and the time Jost WIH be>a tUilt:tton cit '•min {e1>. not

It Is more 11kety -tttat the Interval Of lnterest--w0o1d- b8 tile maXliRn ,tfrne from the

occurrence of e1 to the Initiation and/or comp~tlon of Its ~'fted control struc-

ture. rather than the longest time between such executions (a latency value).

-80-

S: Algorithms

6.1 : Introduction

A series of hierarchically related algorithms will be presented in this chapter,

which will be directed at the problem of finding the worst case latency of a con­

straint with respect to a given control structure. Each algorithm In the hierarchy is

applicable to a larger subset of the set of all representable control structures, and

may call upon the algorithms designed for solution of the problem on a lesser sub­

set as subroutines.

The overhead due to context switching Is not explicitly taken into considera­

tion here. It may be accounted for by a fractional reduction of the effective pro­

cessing power of the CPU, when computing the worst case task weights. If this Is

not satisfactory, then the algorithms could be adjusted so that each event oc­

currence and corresponding initiation Is counted, and the overhead due to each

could be added to the delays attributed to Interruption.

As the worst case latency algorithms are developed, it will be seen that the

determination of algorithms to measure several other real-time properties, Interest­

ing in their own right, is required. Finally, special cases may result In substantial

slmplificatlon to the algorithms, and examples of this effect are Included.

-81-

Introduction Section 6.1

5.2: Latenclea In th• Absence of Preemption

The first step taken here toward the general sotutlon of the worst case Iatan-

cy problem la the development of algorlthma to determine the latencies when no

preemption la present, I.e. when there are no event variables or ~-IP& in . the

control stl'\leture. This leaves control stru~tur.-s wblcta. Q41!R8!;.ate.; .ftftlte . .and·· inftnlte
., ·-. I'

lists of tasks, In which an tasks execute. to ~Uon.QDCtl lldtlatect.
-.- ' - - . - '. • j . : - ::: - .. ~ -

tlon), aH 'finite Hats must contain no ~·ttv~ compeneQta.. . Fuc;thermor-., any ftnite

llat L Of tasks which contains at least ... one oc;:cUR"eac• .of • constraint C aay · be

broken down Into a aeries of possibly overlapping sublists:

wttll respect to a ContPtr.ant C,e:

.1. - 1 and ' 2 each COi'lfaltf one rriatance ·01 C, but ' 1j arid C-2
~.no lnatancee of c.

2. The • / •a are critical wlnclQwa far ie.,

(6.1)

The subHet - 1 la the head of the Rat L having minimum weight ~nd which also

contains one instance of C; 62 la the tall with least weight which ~•Hts one In-

stance of C. The Hat • 1 Is the critical ~ .whlcb ai.n. .•t ·the 1Ut l8etenee Ill

L of the first task In C; •i la the crltlcal window which starts at the Ith instance

In L of the first task in C. If L contains no crltlcal window, there wiR be no • / •a;

1. If L doea not contain C, then the latency of C In L la ln1lnlte.

-sa-

Latencies In the Absence of Preemption Section 5.2

slmllarly, If L begins or ends with a crl*al wJl'Jdow the'1 J1 or , 2 re91>ectively may

alSo be empty.

Figure 5.1 gives an example of the breakdown f~ the list (A B C D B C B C E)
. - ~· ~~,;.< •

and the constraint CB C). Note the overlapping of the sublists, and that In this

l---1.--t 1----.• -•e , "l
A B C D B C IF'». ·E

~'2-l •1

l"ltecw•m 6.1. The latency of a ·constraint. C with , .. pect ta~ 'finite list; L which
ee>nt.a1ns at ~~t,.~ occ;;urtttt1Q.f!t .e/ -F·tsr~~'!"~•4 .,..._ tn
the set of ~. {11• •t• · · ~ ··-~)f.~r9,Ula ,.-1 4 ~ • 1"a are u
defined above ..

Proof. The proof wlH, be Qiya~ in twp pa~; .-~~ .~Y; ~ that any I~ 'Nhlch
contains at least ~' oc~urr~ce «?'· p ijJo '?:.l~'k~ i"~~,4bQY• ~- to
obtll1n such a·· set of' aubhtS which lnCl~a all ~~. t~s . J~ _ the ~q,111•!, ~~·-. an~.
aecand1"1»y. ahowlng that' no:cc>U.r"•lltllft:n«Jtittfthfl M"ifNinliava:a 'lfeat• latency
for c.

The· proof Of the first piart Is given tiyf'~g'1r met~cfof constructing the
aet ~1 • • 1• • 2 • • • • ·•n' la} given such.• Ji.trL·.attd~• '°91tatQitntQ.:

Find each sublist of L which exactly contains one Instance of C (i.e., a sublist
-r_auch_ that 'Y con_ t_a __ lns._C but band 1Jdo ~J ~n,.~~~J~I ~~t\.!~ .~list

for I • ·1 tO'tf Wh*te n IC 'the nunmet'of''~"-~1" ·''qr kc In (. "Tho' ·1.at. L ca_ n .,,. . : ' ' .. , .. ·. '., .: ·': '.:··.:::..·-. ,::;~-':"t~, ,, ' . ' . ., ' '' .
thereby be consldere~ as a aerlaa of .aubltSts; , ·"' , '_ . .

• .:.. .- • " _-) • ' - :· _,-" • '• < •• - -

(5.2)'

latencies In the Absence of Preemption sectron ft~

where the • i ~. do not contaln c ancf may bfr enipfy.' ·1r >; / overraPs ·., 1+1• then • 1+1
wlH be empty. Thia set of sublists Includes every task in L, and with fl() pa~.~:
tion of the original ordering. Then: · ., · ,,,

2. • i ta the list starting at ., / and continuing to the end of ., / + P

Including • i + 1. Note that since ., / and ·., 1+1 may overlap,-~., 18

not. their concatenation.

·.. . . 1
Now for the proof· that the worst case latency of ·c In L la the maxlntUm of

<1i11.1-11.1-2 1. ···.l•pl·'~}. ;:; ·,~, , : 1'
... ~ ...

Since the •/a are all the critical windows In L, they repreaent all the lists •

~ti,.:::: ~? ~e,;r:.&rc;2·~cz~b!~~~ C~a~:::a~i:;.::
without introducing C to the Interval. Since the concatenation of
Cl.1• •1· *2- · · • ""n• 12> ~i;+.aJld.nane,;Of,tbeae '81118• .oan_ IMt~Xpandad

:===g;.:.~~~~::..~~~c; ~
of the above sublists. That such a sublist with greater lat~ '.ddelF :t\Ot exist Is
demonstrated by case analysts.

Again, constder the llfl' L·-reorga!lfzed aa Bf -.cfu.llOO''.c~:.?). ,·tjow. sU~f>048 ~t
there extats .• -subffSt • \VhlCh ~~.I>~. _pf;~i)~ m of. •1· _a11d ~tt .. ,t l*t)
t'1J ~ .jjl)_ .,_,1 .. ~-~ • •--'.-... ••h•·ptor ltt....._ net.coetelinan,. ..
thing past .,1 (without containing C) and hence lfl < , 11. But If # starts at the

begjn~\'19 of:., 1• It CQlfld .~Ufcie RQ .. ~e,_ih"1t4'v ~ ~W• 11'1~1' tir,.t~: If·• be­

gins past the beQJnnlilo.ef:';yi, It cannot contalrf ~,. .. t,.,2, ancf'hence lff (•
1-11. Thus such a sublist# does not exist.

"· . -- -

, The sam11 line Of re·~~t,)~,L~'.'~~;··•:•~~. ~Wfl:fttw ~htF~an
any of {#1, .r·1 , · · · ·•n• ,.2} caririOt b~~~,,~~~!~/'°':!=j~ ~dJ•:cent,•1;_•!:
or •n and 112 . Thus the worst case latency of C In L Wtl be the llMlXllnum of C,11,
1•1 I• • • • • l•n 1° 1'21>· c .. . -· "'

Algorithm 5.1, FLA TENCY, summarizes the procedure to be followed In ftndlng the

-64-

latenclea In the Absence of Preemption Section 5.2

worst case latency of a constraint C with respect to a ftnlte llSt' L.

Algorithm a~ 1. FLA1ENCY(1., C)

llJputa: L. •UH of tale ld•tlftw• (• baetc-control-struc:ture); l{/} fa the Ith task
tn-L ··· ' ·.

C, the .conetralnt.(tllao a llst of t•k identlttitrS)i: C[l]'ts ~ ith task in C.
't -(:· ".'.'",! .:.f' .~ ._. . ~<:.-· • f •.-:-{-·il,~fa\·

Outputs: (l(C), start.Jndex, tlrHshJndex);

.. thod:

.. :..:-.

l(C) Is the worst cue latency of c in L •. · -Hj •

start_lndex Is the Index of the first task of the sublist of L which displays
the worst latency for C.

· ~.'· · · · • · - .,. , ·· : ' - · ,. ' , ~-:· • .. ' .: ~ .:· r ·, -' .,~ 4 Si"; ..• • -.• ' · .' J- i.
0

ftnlsh_lndex Is the liKlix ·of the last ta&k of the subllat of L which displays
th• worst-~~~, for c; _ u:1', • • • • ' ·

1. Scan L to find:

IJ1, the head of L with least w~tght which contains C.

•i • I = 1 to n where n Is the number of occurrences of C In L

minus 1.

tJ2 • the tall of l with least weight which contains C.

This la accompllahed as follows. All scans start from the marl< point.. lnltlal­
ly L[1].

a. Reset the mark point to be the first occurrence of C[1] found
during _.h tteeft•; 0 H Mt4CautHihoa,of.jt'&f-•}; I••~ the Nrk
point Is set to the task past the end of the current acan.

b. tJ1 Is found by scanning untU a complete occurrence of C has
been founcf. & - • •

o. The fi
/
•s ara the flats WhlCh:' exa~y' cbntafn two occurrences

of Cj they w•~,~ ~~, ... ,_,k,point for one oc­
currence of-C, and than scanning frolR the new mark point for the
aecond occurrence of C.

Latencif;!~ In the Absence of Preemption . SectlOn 5.2

dow.

e. If no occurrence of C is found In l., retUm. (•• -1, -1). : ,
1· -

2. The weights Qfc,eie<:tteublst.,.. accu•urliMO dUrlng~eabtt scan, •~we11
as the start_lndex and ftnlshJndex for that scan. At the aflcti of each
scan the weight Is 00111pared to the largest found ao far, and saved as the
new ~--, l(C~ Jf ._It ;'9 ;>1_.alBf ;?:i(ln {• ... Cltdaa.e. :atlltt.JAtdex and
ftnlsh_lndex are updated to the values for the just scanned Ost).

starLlndex, ftniah.Jndex).

5.31 Latencies at Constraints in Cyclic Contff)I_ S~tur ..
~ -- ' - . - ... ~ - " i : ' '-

In the specified language an Infinite fist of taste fa c;eM'r.ited by tJ1e Iteration

construct; Iteration ls either applied to an entire controt e.tructure or; to the last
- -. j' -:,·· : - . . ~ c ~

closed control structure in a <~ed es Hat>~ Thu8 l~tlnJte U.ts are either entirely

cycHc (the entire structure ls repeated):

(ABC DE)• (6.3)

or have a start-up period followed by a steady state cycling:

(AB C){D E)11t (5.4)

It would be Indeed w.tor.tunata If . the enttre fftftnlt• 1st ~ tD be examined to find

the worst case latency, but due to the restrictions on its cyclic nature only a rea-

sonably smaH number of cycles (to be determined) have to be ~tMRlned to ftnd the

worst case. ThU$ the _inteotion here qi to reclt,ace tbe case 9' &f.l inftnlte list to a

finite list which contatna the wOnit case, and use AlgorfttlM 6.·1, FLA TENCY, on the

result.

The prtnclple questton 18 thus to detemlne haw many cycles of the Iterative

Latencies of Constraints in Cyclic Control Structures Section 5.3

portion of the list need be appended to the non-iterative portion (If there Is one) in

order to generate a list containing the worst case latency of a specified constraint.

First, though, It must be determined whether or not the latency is Infinite (assuming

no task ld has infinite weight).

Lemma 5. 1. Given a control structure C+)(#)1t and a constraint C, the worst case
latency of C In C+)(f)1t is infinite iff C contains a task A which is not con­
tained Inf.

Proof. If # does not contain a task A which Is In C, then (f)1t is an Infinitely long
list (and hence of Infinite weight) which does not contain C, and thus in which C
has Infinite latency.

If "1 does contain every task In C, then If C contains n tasks at least every n
repetitions of ii contains C and hence the latency of C in (+)(#)it could not be
Infinite. a

Once It has been established that the latency is not infinite, the following theorem

can be applied to find the sublist which contains the sublist with the worst case la-

tency.

Theorem 5.2. Given an Iterative control structure L = C+)C#)it and a constraint C
containing n task identifiers, then If the latency of C in L is not infinite,
the list formed by appending n + 1 copies of it to + contains the sublist
with the worst case latency for C In L.

Proof. Theorem 5.1 established that the worst case latency of a constraint in a
llst of tasks was either a critical window •, or a head or tall of the list fJ1 or fJ2 .

By Lemma 5.1, If the latency is not infinite then it contains every task in C. There­
fore

(5.5)

where #n means n copies off appended to each other. This is true since n copies
of '1 must contain C, since each 'ti contains each task identifier In C. Note that /J 1
might be wholly contained In +, nonetheless.

-67-

llltencias of Constraints in Cyclic Control Structures Section 6.3

By similar reasoning!

+. 1n+1 (6.6)

contains the moat crltlcat Wlndc>W· of. {ffl)•; if ttte· 'mOst crtttcaf wtndew is c~
talned In +, then equation (5.6) must contain It. Otherwise, It is contained in
C+)(f)•. If the most critical window starts in + but erids•llfl(f,.;'ttiert'it ~nhot go

any further thttn #n slnpe the ..-St a. pqp~ .. of #,, .. t.-~toln,~~;thU8 e~tion:
(6.6) coiftalna ·ttie llioat c1ttlcal.WJn~ fftilta. ki'..ttufQ\9'fa~•isp.> : .·

finally, suppose that (f)• contains the most crittcal window. Consider the list I
formed by starting at tbe fi!st Ofi;;ur~~e of ~L1J,Jn~~,-~,~ ~9f:#s •nd end1n9'
at the 1~ ~c;urre,n.c• of qn,] l~t.:tf't:.,,~ +.,1,~}~0l?~.~.#"''~:la,t l::~t;~t.an
two oceurrenc'es of t:,' slnee f 1 tlii"ough f n contain C, and ~ 2 ~ ~:;, ... 1 ~t•tn·
C. If [I] contains no occurrences of C, then I is a critical window. If I is a critical
w1~,.., ~no,,c~ wiR.de:w carr:exl8*i11Wh1Ch ita tugeF·U.. ,,.,_. lt~WOUk'I have
to be ~truc..a:..-t,·m·more .tl•h• •'.!t ·capl8s•.et'. ,:·ancti~ WoUlll ~ •~
Thus if I is a crltlcal window, It is the most critical window in(#)". But if I la'r~f'tf
crltlcal wtndow, then It muat contain a crltlcal window, and by the same logic this
critical window must be the most critical window In (#)". c

._ '. ::;. '~i ~- ~";:

Algorithm 5.2, ILATENCY, shows how to use Theorem 5.2 coupled with the algo-

rlthm FLA TENCY to determine the worst case latency of a constraint with respect

to any control structure which does not contain preemption.

Algshllnl 4.2. ILATE~Y(J.., C)

lnpllb: I., .a contrel structure which does not caiitaln .pre ··-'·

C, a constraint (list of task Identifiers).
~ , > V.'i "l,-

OU1Putal _, (l(C), -1:arUndex; nua:;tuka) -

.. thOd:

l(C), the worst case latency of C ·in L.

atart.Jndex, the index In L of the first task of the list whose weight is
l(C). i

num_tasks, the number of tasks In the Hst ~ wel~:t Is l(C) . . -<.: -," . ' ~: . . . 0 :..... ' _; ~ - - ., ·- ; •

1. If L Is not Iterative, let (l(C); .tllrtincNK,~~x) •· FLATENCY(t.. .
C); retum(l(C), start_index, ftnlatUndex • start.Jndex + 1).

Latencies of Constraints in Cyclic Control Structures Section 5.3

2. If L is Iterative, then divide L Into Its Iterative and non-Iterative (if
any) parts: L = (+)Cf)".

a. If 'It does not contain every task in C (not necessarily in ord­
er), return(DO, -1, -1).

b. let K = +, '/In+ 1 where n is the number of tasks in C. Let
(l(C), start_index, finlsh_index) = FLATENCY(K, C); return(l(C),
atart_lndex, flnish_index - start_index + 1).

6.4: Latencies of Constraints in Preemptible Control Structures

The next complication to be dealt with is the presence of event variables and

multiple priority levels, Implying the possibility of preemption before completion of a

constraint, and thus additional weight for the worst case latency. In fact, at this

point the possibility of infinite latencies arises due to lockout by higher priority

tasks, even though the constraint may be contained in an iterative portion of the

control structure.

The general case of preemptlble control structures contains many additional

complexities, If one includes external termination of control structures, non-

preemptible tasks, codestripping, restarting, and Idle time due to stopping the flow

of control. Thus, In keeping with the theme of building a hierarchy of algorithms

which handle increasing complexity with each new layer, the applicability of the

next algorithm is restricted to include all the control structures allowable as inputs

to !LATENCY, plus those containing <event list>'s (<event var>'s and <event cou-

pied llst>'s). Specifically there are the following restrictions:

1. No external termination (<abort tid) or <abort cs>).

2. No restarting of control structures (<restart cs>).

-69-

latencies of Constraints in Pre9111Ptible Control StructUi'es Section 6.4

3. No codeatrlpplng (<codeatrlpped cs>).

4. No non-preernptlble tasks (<non-preemptlble tid> or <~
pr&BlllfJtible olosad ca)~

6. No stopping of LC. The highest priority ready task must al­
ways ~ , ~ted without dea.y. Thus a control .. tructure such
as:

((((A•/a1)B)/e2)C)w (6.7)

la illegal but

(6.8)

Is ·not. Event coupled llsts must contain breaks (cf. Section

!;;6~1 !J:r:i·:T!. ::!'!!~ ~, ~;: ev~q la tbe:.

8. Constraints inusf.be contained wholly:·in a subcont;o/ structure,
d~~ed, ~s •. ferlea of ~~ ;C?S"~·.tall-itllt'~~.,,9r-.,;~ed ~
Reta at a single prlOrtty level. In CFG terms. a aubcontrol struc-
t&Ke Is ·~- acycllc. path -~ ~ -~~~~Wt-8;.. ~fi,~
contains no event area. btick arcs or breaks. This allows an pro-
cessor time spent at any other level to be treated u an ~
to worst cue latency, and lets the details of exactly which

. task& are contdbu11,Qg t0;·. the inc.f•-...--. kln9r9"· .. ~lti,onally,
·the tiisks of the c0n8traint must· not be · COntained In more than
one sut>contr~ stna~ture.,_Jf.~ .,.~.~ -,i~t ope,tatell"
cy In the entire control structure wOOkt. be :;- the vmlnlmUm of the
_worst C4'18 lat~.- l~,~~c:s'lb~\rpLs~~ •. ~.~na
th9 c0n8tialnt; ... thus th9 preaent. atgorlttims 'Still give an upper

~d. Tbe ~~.~· ts t~ tf·;t~;~H~-M\I~ ~d
by an execution WNch spans two or more priority 'levels, then the
tasks .tt•lnG .ex•cuttt4 ~g Rftt~~:~\.~ ~flt and
can n0 longer' be fUlftped together and treated as tline lost to ln­
terra.ap,s.

7. ln1fntte event Q'1eues. An ~, ~er ,_~ .~ •uitably
high nUIRber representing the maxllftUtn pc)nible number of pending
events) of occurt~ea of. ••ch ev.ntJ..-• -I~ Thia
means that If ari· 'event happens befOre the preVtoua occurrence
hu been cleared (by completion of the Initiated control struc­
ture), the new ~e wlif'lie hela~-1'. • ~ 8n6 not· tgnc:iied. ·

-70.-

latencies of Constraints in Preemptible Control Structures Section 5.4

6.4. 1 : Deftnltlona and General Approach

The addJtion of ,,....,.tlon to·• control structlJfre lntroducea several Interesting

1. The worst case latency of a constrillnt as previously deflned,
I.e .. the '~.~at U,.. tha,t. C!l'\ p~ .·~~t,t~!lr, ~~1~,~lttte.
executlOti-~ ••dh 'task 1n the constraint In order. This may now
be ~.~d by ln/tllltl~ .~-~,a, ¥f,•~. ~ p,r~~t~ Ji!Jay. ~ni­
tfatton' defay la time lost due to the irilthltlng svent not yet having
occurred.

2. The worst case latency of art event.., deftnad •s the lqngast
tlnie that . cah .,,.. tietween. the occurrence . Of an event and
the start of the aubcontrol structure whiCh it initiates. What ex­
aotlv •CGMtltua.a:l~-~ ot-a:.ubcontiof·~ra .nt·be'fm­
plementatlon dependent.

3. Related to (2), It may be desired to know the worst case exe­
cutloA time of'• 1st of btelGa at •igt.vWi ~18HI; tttts Is thlr
execution time In the absence of preemption plus the most possi­
ble titne ,_t; '9 ..,,.mptlort. This•...,)' 'tAf<·tn0r9''~ tt.•ff}' In •·
cases where occurrence of an event algnals the arrival of new
data, rather than tttat tuk ~·--~ad
with data arrival times.

In all tlleae cases It will be.necMS&Jy to make some asauinptions which could

lead to an upper bound whlCh ta .otnewhat _. 'thMf ftie a~ WOrSt case (In
.. 'fc ~ . ; , ~ . ~ ,~ r

addition to the uncertainty In the estimate of worst ~,.,~, ,ttxecutlon t,ime). In

particular, Teixeira ~s shqwn (Tel~ira 78]. ~•t,~. ~·t QIMMl·· ocours when all
... :' ,:;: c .-··•'

Interrupting events happen at the beginning of an interval and continue happening

at their maxlJnum r'te. If m•Y .. b~ tba~ tbe -~~re~ of: the events cou­

pled with the execution times rit their sub~t~ .. structu;es':' Is such that the

events coofd never on. h_,,pan t<>gether; If .. th~ , is known Ip .. a. ~cular case then

Its worst ease may be different, and the Initial pha.M$, Qf U..· w.nta could be ad-

juated acc;~dlng.ly. The algorlthms do alloW. ,$1>.ecttl.ca.titN~>C~f e\«Sot phases. as will

-71-

Definitions and General Approach Section 5.4.1

be seen. In any case the algorlttuns do give .n. UPP&f· boUnd to the problem.

The worst case. latency .of a oonstmlnt whlCIJ .. ·~ at·· 9riorfty 'O (the

lowest priority) can be determined In terms of nomiMll'-tt.e In the· .ntsence Of

preemption plus time lost to lnterrupt8j t~ ~tklr..delay '"'8d.notJpe considered.
- ~ - . - - ~

-. - ·' . ~- . ~; -· -_- ~ :,..~,·.:~.J~ _--<--·

The fundantentat dltterence between tasks at ~ O fln4. pdoflties Qr¥ter than
- --. . ·- ._ ', --·~~;_· ~ .. J.• . ~ -

, .

O Is that if the WOrst case latency· of a constraint ~~ ..,.... ~ oae execu-

tion of tasks at a priority level greater than o. there may be delay due to Initiation

of that prtortty, level (whfch MUSt be ~. ~c~~ · ~ ·~ of the Initiating
. .

level Is asaumed to be always running or ready, and thus has no such delay.

In gener«I there wjl be some thought reqlllired to plnpolrlt 1htJ WOl'4t case for

any time Interval. of Interest; .once cletermlnect. .. -u. .,._1Umf,1D wsure such a

1. Determine the relative priorities of every basic cs In the
over..U contrQI- 8tn.4cture. Md, aSMGl-.te ·.tth: 81iCf1 .. · event variable
the,subcontrol structure which It initiates (cf. Section 2.6.6). The
p~ QJ.,..,.,.a~llOI ..,._..r&1Md::lta lalttllfM& ..at ate ·the·
same. It is assumed that .. min and .. max are known for each

' event (Cf> Sectkwr'4.8). - - · ·. ··

2. Oetenatne Whetlter ·the ttme· mt:ervillttatenby ·o, othenVfseJ 1s
Infinite. This may be done in two st~ps:

a. If the time Interval is Infinite In the absence of
preempttan fdtitermlnad ·*8 ~ty '.ihbwn)~ ·'then It IS
lnftnlte In the presence of pr~tlon. _

~-~- . ~' - ,-_-.! ::~- .· --~:~

b. Otherwise, ftnd out wheth'9f' higher_ priority, t4~ks can
eutllcfently toed down the prbeenor acfthlf'the''fnter\ial
of interest Is never ~~ed. 9"'! ~ .~ .f91; ~
tfda. Wll'be shown; ·' .• . '.. , ·· .

a. If ft Is not tn11nfte, determine the·· 1ntarvat 1n the absence of

-72-

Deflnitiona and General Approach Section 5.4.1

. .

4. factor In the Joss of time due tq,~t~-•M'~er . .a.lay.a;
lifting any of the restrictions given in Section 6.4 will usually be
seen .•s ~rM.tlioM pf .U. fMto(.,;, . :-.

- ' I • • ~, • • • • ~

&.4.2: Finding 1nft11fte t.atenca..

The control structures represented ~ere provldet no ' Pf_itNI .method of guaran­

teeing f~ •f Pf4MalllP-tQt Js preaent; . t..;.,· It is •rttlrll¥ poaslble that in the

worst case some tasks In the control structure may never be executed due to

". ,,)
• . ..:; '.~ -- ; .) . - .. ·' l ,,.

at low computational coat, and this must be done before continuing with the

analysis. ·If the latency' at a ·given Priority le~el la _.l~ftnlt~ ~n the iterative aolu-
i)

tlona to be used for solving for loss of time due to preemption do not converge.
·~ " . ·~, f~ ~-

The metho4 used is, to-.da~~: a, lo-4 f-.ctw,·-•;~aclt' aubcontrol structure that

can preempt a gtVen°one, and If the toad is~ 1 then t~~-~iven control structure's

tasks wilt never execute.'

In order to find the load factor due to a aubcontrol atructt#"e f with initiating

event e1, It. la- .neo••MY tp parMtlow tbe<Jtflt at~e¥9fttr,Jn . .-e OV.!f.4.0ontrol atruc-
.. : J

ture as follows:

1. Ee/ways; the set of events which can always preempt t, but

can never be preempted by ~·· . Thaee .•na the.-~~ _of hlU!'er
absolute priority thane,, aa'founcf by Aliorlthm 2.2: ...

2. E11111n_tle; <TIW la U. nt Of IW..._ wlltoh caanot preempt f

finding Infinite Latencies Section 6~4.2

and cannot be preempted by e1, but ••dtoalani<>Ver el' tf e1
and one of them are both pending at the same. timf!. This s~t is
the Gft10n of tft4i f~ setS:' . . • ; 'r ·

a. Events which have the same abaoltrte prlOrlty .as e1,
but occur to Its left In the same event coupled list.

b. Events which have the same absolute priority as e1,
but occur In a dttferent event couetl<l ·~...,.Js-._~·
ly to the left of the event coupled list containing #.

c. Events which have hlfiher ~e priority than e #
but oocurdn an event coUptecl 11st· whlclt· not eontain . .,.

3. E1oae_t#e; Thia la the set of evenU. ~ch ;c~l PJ'&"'1Pt I ,
and cannot be preempted by e1 , but:_•# Is c~. o_ver ~e, of,

them " both •• pendtnsf at·ttm same Wdlb. Thil it8t' of events la
the union of the following se~:

~ -. :-. . '

a. E~ents which have the same .flbsolute pr~ as ef,
bUt occur to Its right in the smne event coupled Hat.

b. Events which have the same ~t~ priority as e1,
but are in a diWerent fient· couptett'at 1wtlfCtda erittrety
to the right of the event coupled ·~-~on~_#.

c. Events which have a lower absolute ~. ~n e1 ••
but occur In an event coupled llat which does oot contain

•••
4. e,,..,; This Is the set of eventa-;wftleh can. ·never preempt

e #, and Initiate subcontrol structures which can always be

preempted by e1. These are the events of lower absolute prJoii.

ty than a1.

As an example, consider the control structure:

(A/(e 1 :8/(e2:Cfe3:D)le4:El(a6:Ff86:G)))•

-74-

(5.9)

Floding lnflpite Latencies sect1on 5.4.2

Its preemption strucU.re appears In _Figure W. and· the partitioning of Its events In

figure 5.3.

F19. 6.2. Preemption structure for (5._9).

Initiating Event
EMWays Ef111ii11e ftese_tle l!never /1'1lsk

none/A e1,e2,e3,e4,e5,e8 none none none
e1/B ·~·3 •5...Le8 •4 none
e2/C none

. -.. - . ,...,._,_,,_, · .. . A8. e4, e5, e6 e1
-""--

e3/D none e2 ·~ e6, e6 e1
e4/E ·~e6 e1,_ e2, e3 none none
e5/F none •2...t.•3 •1..t. ee e4

.tJIQ none., ,.

··'·~-. 116
'•• e4 ..

'Fig. I.a. Partitioning the events of (6.9).

To decide whether a task A at a given priority level In a control structure may

never execute, partition the events of the control structure relative to A as just

described. Each event initiates a subcontrol structure (at a slngle priority level);

let e1 initiate subcontrol structure # 1. The worst case load of a given subcontrol

-76-

finding Infinite Latencies Sa"C:tJon 5.4.2

atrucb.lr• on the ·proeesaor occurs when lta tllttiattitg event: happens at · ltS maximum

frequency:

(6.10)

The total load factor Is the sum of the worst cue load factor for each event which

might participate In the blocl<out of A; . ·~s Is the set E preempa =
> -o'

{Ea/ways U Ewln_tle>• atnce these 4'• exactly :those·events which conalstentty get

control over e A no matter how long e A may have been waiting In queue. Of course,

- .

tf A is in the lowest priority control structure,· there Is no e A and the set Ew/ n_tle

la empty; but the analysis of possible blockout due to preemption Is 1mchanged.

Let the events In E pt'881ffpts be { e1, • • • ,e J }; then U. "total load factor NJ:

(5.11)

If the total load factor la ~ 1.0, then the task A (and any ottt. task m the same

basic cs as A) never gets executed; Its worst case latency a. lnftnlta. All the fol-
.. . • • >:'_.-

lowing algorithms aaawne that thta check has been made before they are called, so

that a finite solution la known to exist.

Finding Infinite Latencies Section 6.4.2

5.4.&: Delay Du. to. Pr"ntPtlon

The problem of determining the time taken up by pree~ lends Itself naturi

ally to an Iterative 80lutlon. In the worst case It must be assumed that every In·

terruptlng event happens at Its lha.xilM.am. fr•quency (once every w min seconds).

A8 the tasks Initiated by one Interruption are being executed, there may be addl-

Uonal event occ:urrences, .~uetng; fJlrthar d•~~ c:eto.-. lily aqoation (6~11), If the
' - ' :~ . -

load factor Is < 1 It Is guaranteed that at_ some. PQ111t .• ttl•·-~•sJ< in quastlo(l (the one
' ' > • ', • - ·- _, • : ~ - " • : ·_ ~ '

being preempted) will execute; but It Is not clear when and for how long before it

la preempted again.

The problem Is then to solve for the telal time taken to execute some set of

tasks # of total weight W 'I. In the presence of a set of Interrupting events
:. . '~

{ e 1, • • • , e J} which all happen at time zero and then again ~v"ry 1 mln(e;)

seconds, each Initiating subcontrol structures with weights {W 1, • • • , W J }. The

total time, T #' Is:

(6.12)

The centng function Is chosen st.nee .the :CNQtlent

(6.18)

gives the number of occurrences for eA .,., the.mterval [T #; taut since alt events

l>ehty Due to Preemption Sectlott 6.:4:3

happen at the beginning of the Interval (In the wurst· ca*9)c :one acldltlanal oc-

but If the event ·OCCUl'8 et the' exact end of ·thai liderial '• this occurrence must

not be counted since ~ wll atr .. cly be cOliapleted .:. ··thu. th8 choice of

(5.16}

A quick Iterative solution to (5. 12) Is had by noticing that an excellent lower bound

.. the aolutlon to

(6.18}

which la

(5.17)

Notice· that the denominator Is exactly 1 - E~tion (5.11), the total load factor,

which has already been computed. Equation 6. 17 implies that running ., with inter-

.,.

Delay Due to Preemption Section 6>4.3

load factor of the intarR.4Pt1ng ~sks.

~ ..,atton (S; ,~) 18 solved lteratrvety by;t~tt.'flg

(6.18)

(5.19)

with Ti and this process converges very rapidly since the initial gue~ 18 so near
., . ; - . ~ . . -

the ftna1 value.

Algorlthm 6.3, PTIME, computes the total time taken to do the computation In the

presence of. Interrupts. ll 141 usuMd .tmlt' there ._, ftO lnlti.-n,y Involved, I.e.
.. ; ; ,. '. -C"'"-o -'t -~ , : l

PTIME fin• , ~ ~st :,.:ue lntwval wblob; oontelna :t aeconde of tftRe In which

preempting tasks are not executing.

Algorlthm 6.3. PTIME(t, E,aRH""*)

lnputll: t. a time which repreatt1lt.1' computation time In the· .-en.ca of preemption.

J;prtifllltpta• a ••t of ..• v.,.te which qan preetnpt •tll*. COlllPUtatloft whlCh

takes t seconds.

-79-

Delay Dua to Preemption Section 6.4.3

OUtput: tp• the time taken In the worst case wlltnnt~ tt) perfonn a ~

tlon which takes t ~· ~lt..,~J~~~~••'411B•.lllt the
events In E,,,. ... ~· happen as soon as the CC>mplltation starts. and ~

tlnue at their mexlMwn rate)

1. Lat WI = t. Let {-,.,~ ·; • ~ e1} be the events In E,,,.eempts· Let

{W1• • • • • W 1} be the weights of the subcontrol structures Initiated by

the corresponding events. Then solve equation (5. 1 Si) .tQI" u .~ value ..
of T t; solve equation (6.19) repeatedly for T f ~ 'tfie -ftbr-of tt '·,.

n n-1
endtng when T t = T f . Retum(T f).

n n-1 a

&.4.4: AppRcatlona of PTmE

tJalng th& algoritlua p-r.-e me- eaa cletermille aaverat ~U- PfOll!jltl&a of In-
- f --

tereat for control structwes whlch meet the restrictions of Section 5.4. It must be

kept in mind that there la a dlstfnction between the follow".ng two sets of events:

a. The set of events which can preempt a task al'te#' It has been

lnltietwd. - well .. take prlortty·lNer - ~<event Wflle It
Is pending.

b. The set of eventa which get priority over an event If it is
pending IMlt laa&;not yet· beeft; ~-~-ti* prOce8W (no
tasks have been Initiated due to lbs occurrence), but cannot
...... t. any·.-.. lh - .. COAtnll Wlltch .tMt event
Initiates.

The worst case latency of any constraint which is in the subcontrol structure
-~ •:_~:..::-y~,,:.. ,..:: } " --:?:

at priority o can also be directly determined. The *"rlctleri between this appllca-

tion and the one juat -.tioned is that Ute mnstraJnt· ,.... not bit contii.lned 1ri · a

sfngle copy of the aubcontrot· structure. SMce the t>rbltY e ~ structure

has no Initiating event and hence no initiation delay, the worst case latency of a

-80--

Appllc:atiQns of PTIME

constraint C can be determined In two stllP&:'

Algorithm 6.4. PRIOLATENCY(f, C)

Inputs: #. a subcontrol structure which runs at priority 0.

C, a constraint.

Output: l(C), the worst case latency of C Inf~·

Method:·
1 .. Find (l(C), ''art.Jndax, num_t~a) /1! Jf.:A,J:~t4CY(~~J=>.~ the w~st case hl­
tency of C 1h 'tfte absattce of ptaitnptlbn.

2.. Let · E ,,,.._.,,. bit u. •t of lllt'eveftttl M tft4tt !erit1rW cOfftii01 ·structure~'

The worst cue latency of C Is PTIME(l(C), E,,,..,,,~=~·.

Another appllcatlon la to determine the latency of an event e 1, that is, how
-· ~ • :-.; .-~'. \• _.:"' __ .·-$ • _,- ~, :'".::~ '·\.e \,'. ;~1-. -· <:·~-, . -~

long Is It in tb~ worst .~a~'· b~twetltn .~e. ~<;~•n<?-• l~t IW e.ye~t .._nd the initi;ation

of the corresponding aubcontrol structure. This can be found as follows:

Aloorithm 6.6. ELATENCV(•, e1)

Inputs: •, the least amount of time that can el•P• before a task can be con-
sidered ll'fitiat,d. _ , . , i \ '

'.I I - ~

OUtput: t
8

, the longest time that can elapse after e1 occurs before Its subcontrol .

atr'ucture gtr61=fnltlated. · · ,.,· · · " · ,.· ,; · ' .

Methods
1. let the s-~ 11: (E~M~Jn_.> relative to the event .,. ' ; ' '.·~· •;

Applications of PTIME

6.4.6: Adding Phase Relatlon•hlpa to P'JIME

For a more general fonnulatlon, it Is useful to ~ve a~~ble t~e me~na of
i ' /~. • • ~~ ' ? l~ .~. '

determining execution tkne In the presence of Interruptions when ~he Interrupting
:~ ".:; > ," , • ~ ~ ·'

events may have started happening at any lndMduaUy determined time rather than
. ,.,,, ; i ~·"I

an starting at time zero. For this JH.trpose, the phase of an event ls here defined as
•'l

the time since Its last occurrence. Thus for a set of events {e1• · • • , e1}_ tJl•r_e

may be associated a &et of i-Jhases + ~J+1-• '. ~ · •; +1}. _If is. -~~n~ •• f?CCUrrlng

the next occurrence of e1.

In addition, there may be one or more pending occurrence of any of the events

may be determined. These two factors alter the time due to preemption equation

(5. 12) as follows:

(6.20)

A good lower bound to this Is its aolutlon without the C?tf""8,~;

(6.21)

Adding Phase Relationships to PTIME Section 5.4.5

solving (5.20) for T '# using the previous value T .a. until they are equal. A sum-
n ~n-1

mary Is given below as Algorithm 5.6, PHTIME. Ht>te ~hat If •k-- ff,,,41~.el<) end O" - O

for all I<, PHTIME computes the same value as PTIME.

Algorithm S.e. PHTIME(t. Epreempt.s' +, 8)

Inputs: t, a time which represents computatiOft tDne lrt thwt"'ll"-1ce .. o'r preemption.

E preempts, a aet of events which can preempt the computation taking t

seconds.

+,a set of phases, one for ea~h ~.~·~t In EP'...,X•··

0, a set of lnltlally pending occurrepces, one for • .eac.;I} •vent In EpretSlnpts·

Output: tph, the time taken in ~ worst case. to.~ a ~~Ion which

takes t seconds to perform with no Interrupts. The worst case Involves
preemprtlon ey all._ ;events· tit E~/lfa • Ofte#Je.a 1~, subject to

Method:

the constraints of +, O,. and 'It.mm.for ••~b event.

1. let W '# • t. Let { e 1• • • • • el} be the e~enta In E pr.f)flRJR_ts. Let

{W 1, • • • • w 1} be the weights o1 ·tile w6canttof ~truc......S lnltlated 'by

the corresponding events. Then solye aquatiqp (5.21) fc;w _an. fnlti«I voJue . 1. ; 80IYe ·IRfUattOn f6~20) tepeatlktly . ft>,' r •. 'tlalng. the previous value
O n

of T #, , terminating when thev •re ~al. T , a.·ttae·value ta be re-
n-1 n

tumect as tplt,

Adding Phase Relationahips to PTIME Section 6.4.6

Algorithm 5.5 gives a method for determining the .111axllllum time that. can ~lapse
)'~ ' ~;; . - ~ ' - .

4o'

between the occurrence of an event e1 and Initiation of Its :·$ubcontrol structure.

This 1s fairly Shnp1y dOne since whUe e1 is pending the set of events that can

preempt It Is static. Once Its subcontrol structure has been Initiated, however,

This compttcates the determination of worst case execution time {and latel't'
j .:....· -,

cles, as wm be seen In the ·next section) for a task subset I of the subcontrol

structlifit· Note, hoWever, that ff the set er:,,nJJe llf 8MptY (and~ therefore the set

of lnterruptJnv events Is static), that PHT1ME can be used to get the oonect result.

In general ~ tba f'eault mua_t be found ift -*• i 1, ~ ·wtaen I can

be executed. The next algorlttnn detennlnes·the Wo..st ca~ tHH to execute a set

of tasks I, contained In a single subcontrol struc~e, given the sets of eventS :

E411wap and EwlnJ./e for I and their Initial. v~ ~f\ + onct· Cl.- It ass~ that I

has been juat Initiated 4nd thell tnda the U.e t,. trpm_.~~~:tp completion of I.

Thta Is done by 1lrat finding how long It wll be before al the pendJng .*tterrupts, If

any (based on• and O), are processed and I can be r88UlltecL.· Then the earUest

occurrence of an event ln Ea1ways martcs the next preemption of I. At that point

any accumulated occurrences of events In Ewln_tle wilt cause executions of their

aubcontrol structures to be completed before I can be resumed. This partitioning

Task Execution Time with Preemption at Priorities > O Section 5.4.6

of the total time taken to execute I Is repeated until all of ·a Is .completed. Note

that ~· method 4Des not require detennlnation: Of an 88ct schedule tOr all the
. '

tasks Jn the control structure, although the exact times when I wlll be executed

are found. Algorfthlft 6.7, SCSTIME (for ·"sdbcontroi' st~~ture execUtlon time") de-

~la ttte procedure. Mote that -this afgottthm doeS oof •ddreas . the problem of

det•rmlnlng executloii time for a set of t~sfcli Wtttch ma~'
1

;!t~~l(JJ ·more ttt.an one In-
- ·~'""' :, . ' . , . . -· "

vocation of a subcoratrol structure.
. ~ '.

Algorithm IJ.T. SCSTIME(f, E~wi'a'·l!~ln_tl, ,,~)
.,

lnputaz I, a sublist of the tasks In a subcontrol structure.

Ea/ways, r~latfve t~, e,. r,~ 1n1t1atib9 av~nt. :
. . ! , \ !. ~- '

Ewin tie' relative to e 1.

•· phases for events in Ea/ways and Ewln_tie:

o, tn1t1at1y pending occurrences for eventl!t In e~ lll1d Ewin tie"
! ' -

Output: tp, the longest possible time to execute I with Interruptions.
. •. --~ ~- ---.~~ ,; ~.! ~

•win_tle, the ftnal phases for all the events In Ew/n_t/e.

) \ ~ .,...., . ~" '

Ow/n_t/e, the 'flnal number of pending occurrences for an the events In

Methods

Ew1n_i1e·

1. Set •cum = 0, the cumulative execution time for I. Sett 1 = O.

2. Find how long a can execute before It la preempted by an event from
Ea/ways. Thia Is:

(6.22)

Task Execution Time with Preemption at Priorities > 0 Section 5.4.6

Go to step (4).

3. find bow long I C4ln be executed, before an event froat Ealways

preempts It; this occurs at time: . ~ ..

t 2 - (least multiple of .. min<•,,_) > t 1 tor an el< • ~...,..,.)
. '

(5.2~U

4. If. ICUI + t 2 - t 1 > 11&. I will· flOlllPleta in -tht.: lqte~,~utetp • t 1

+ Ill - 'cum• compute .•.~(nJ/e ,~ ~Uon, ~~:~5.~~•nd.8cubs~itutin~ tp
for t 2 ; colftpute OwlnJle using equattOn (6.24) and substituting tp for t 2 .

Return (tp, •w1n_tle' 0w1n_t1e>· Otherwlsa.et•lce,m ... eum .+'t 2 - t 1'

6. Set O • 1 for the e\le~t from E~~·-~ ~- th• (>Fet!IBPtic.lll~

Santa events in Ewln_tie may arao bi peritliftg'i'

(6.24)

6. Update phases for alt events:

1. Find new value of t 1, the next resumption time of I:

t 1 • t 2 + PHTIME(•, Ea/ways U Ewln_~le' ·~, 0) (5.26)

8. Repeat steps (3) through (7) until tennfnatton of I Is d•ot- In step
(4). . . .,

Task Execution Time with Preemption at Priorities > O secttt>n 6.4.6

The worst case latency may. be desired for a constraint which ls satlsfi~~ ,~1

an execution o1 a subcontrol structure at a priority greater than O. If the execu­

tion which represents the greatest filtency ·.,;n;o1~ two or more lnvocatlo~s · t;f' that

aubcontrol structure, the poaslblffty o1 initiation delay must be considered as weif
as Interruption delay. Each of these delays may Involve 4: dtft'erent set of ·preempt-

Ing events.

There are thus several comptexltles to be dealt with In the geneMI case, even

with control structures meeting the restrictions of Section 6.4; . -.,ever there are

aJao several special cases with simpler solutions. An example 3* ~riC:the sets

Ewln_tle and E1088_tle are empty; it will be shown how to make use of this

slmpllftcatlon In a later section.
. "",,

Recall the notation of Section 5.2, where a sut>control stru~tur,e t was llrqken,
,, '·. .. ; ~ ' . . ~· : ': ; .: ' . . . 1 ~ ' , . . ' ' ~ !j" ... - .

down Into components ~1 •• 1• · · • , •n• - 2) relative to a constraint C, where the

) '-c.; -~ :~. • 'h~ -~l.-:~

c1 •a were critical windows and the ~, ·s eae'h contained one occurrence of C.
~ ·~. '

The worst case latency of C In a control structure containing # at a priority

level vr•t•r than zetO ls'· found : as fo11oWa. tt!it e#,:' l>e' lfiiilnitfatlng event' for i.

There are· two candidate time intervals which may be the worst cue latency for C.

The 1nt, t- ·, Is the maximum. del~y be~.~~· ~c~r~e~~e~,~f e1 plus the maximum

1 ' ' . ' '"
~ii

delay to complete - 1 with preemption. The second, t• , Is the maximum time taken
. .. ::' 41!H:. ' . . , ,

to complete •,,,. th-. ~t crltJ~I win*>'!'· C)f f .. ~-wJ#t · pr~tlora. Either one

may Involve more than one invocation of #..., 4md .• beft04t ~ •••~· . To show

Latenclea for Constraints at Priorities :> O Section 6.4.7

that either ~ or t• could be ttt. woret ..,. ~·tor c, . .conslcler a alntple ex·
1 m

atftple:

Exmnple 6.1.

where

W' llllllX(e1) = 10 88C.

IAI c 1 aec.

IBI = 2 aec.

fCI = t 88C.

IOI• a sec.

The most crltlcaf window for the constraint (C) Is (C D C), with a weight of 5

seconds. However, the longest time that elapaea without an occurrence of C is 13

secands, which Is ~ , or rmax(e1) + 181 + ICf. It' IDf were chanQed to be 15
1 .

seconds, though, (C D C) would stiff be the most critical window for (C), but now

t• is 1 7 seconds, which Is greater than "- •
m 1

Thus the two candidate times must b~ computed U.d theJr mexltnum retwned

as l(C). Note that since the entire control structure is repeated, the task Hat

starting at , 2 and wrapping around through , 1 , is a critic.al _wif1df:>wt call ~ ·~ and,
, - . , - -

must have weight greater than • 2 ; therefore , 2 cannot take longer than It to exe-

cute, and need not be considered as a candidate for l(C). Furthermore, It might be

theuQht that the weight of •i plus the delay due to·lnritatlon of lt8 aeoond part, , 2 ,

may In total be greater· than the weight of an otherWl&e nK>it crtttcal window which

Latencies for Constraints at Priorities > 0 Section 6.4. 7

Is caotalned In# and henpe haa po lnitiaUon •M¥•uoclat•d,wtth It. To showthls

Is untrue, It Is only necessary to show that. the. wel~t o~;,~f. w,IU:t Initiation delay

must be less than t•m and t,
1

, since the addlitc>n ?f delay~ ,d~e to l~terruptlons Is

a monotonlcallyJncreaa1"8 fWtctipn of~~ t..,. wtttaout·mterruptiona.

Thus assume that ·- Is not the most crltJcal '!"l"~ of # f~ C (If It Is,, It wlH

be considered by the algorlthms and thus there Is no need to Justify Its exclusion).

But If thl~ Is the case, then there Is a critical wlndoW'lrm In I with greater weight

than -,r thus· ttle tlitte to exedote •- rs leas than Or' equal to

(6.22)

In the absence of fntertuptfons. ·But since f.-1 Is s 1-ml• equation (6.22) Is s

.. maxce1). Thia In tum la less than t., which Includes ffmex(e#) as one of Its sum-

mands. Thus It Is suflk:ient to find the maximum oft- and t• .
1 m

Consider the compui.t1on qf t• . first the moat crfficat. wlndqw must be found
m .

f . ~ ' '

for C In # using the algorithm for iterative control structures, ILA TENCY ... ,._,t• that

In this case since the entlrt1.'.ubcontrol struct.,,;,j get~ repeated, the head CJ1> of

(#)1111 containing C cannot represent the worst latency for C by Itself (without inltla-
... • .. ~ ~ ""· r ~ .,

tlon delay); there must be a critical window of greater weight which Includes • 1

as Its second occurrence of C.

Therefore !LATENCY will return l(C), the weight of th~. most critical window • 111

latencies for Constraints at Priorities > 0 Section 6.4.7

and run_tUlcs, the number of tasks In•,.· Knowing this, It can be determined how

many times • .,. the fnltlatJng event far'· must oecur during • ., •• execution (i.e., by

knowing how •tlRY coptea of f .,._ lnctudecFln •.}. fJarlltkin •,.. Into the sublists

{•m ·•m . · · · , •m }, where each •,. la a portion of•.,· which ill contained in (a
1 2 n I

sfngle copy of) #. Since t ta the longest possible tlllle to execute •,., It raust ... ' . ,. --- -

continue at their maximum rates• while the Initiating event •t happens at Its

efowest rate.

Figure 5.4 shows the time tine for part of a ·~ ·~ of a QdtlcaJ .wifl.._

dow •m which la not contained by a single copy off.

1----1----1----2----1----a----1----4----'1----&---..:1----e----f . .,
a tar ta m • # IJl

ocotars t 1 occurs 2
starts enda second at~rts

ti.a -

fig. 6.4. Partial execution of a critical window •m·

In the worst case, the Initiation del~y of Interval (4) will be the maximum poasi­

bfe, with the constraint that Interval (3) RtUSt be at Its 111axlmwn too (greatest

alllOUnt of time lost to Interrupts). Therefore the intervals (1) and (2) must be

-SC).;.

Lateno""• for Constraints at Priorities > O · •,;, SectiO~ 6.4. 7

compu-d·. at tttelr mtnltftU1n, t.e.'110 preemptiUn~· · Thus tfntervet (1') ts assutt'led to be

~wo, . •d lnt•rv•l (al Is ;1#1 .. 1-;n f. , lllla •Y Oivifi'-llri ltilltttKI ifiipef' bo..nd by
1

..
lengthening Interval (4); If It is known In a particular case that preemption must

.,:~.-/:, .~ t~;n.;, -+1 .":"'.~~

occur during Intervals (1) and c2>, an adJ..tm.nt can be made In the phases of the
,, __ ·- ~ { -"'·:: -""', ~"

Interrupting events at the beginning of interval (3).

Mi was prevtdUaty atlitec:t, Tt Ii as'suih~a t111.t" the ~~st case is when all events
- '·;. ·:•~,',•- ~..:. .-''';j~..,,._w,_:;:_ • ~.·~ .I..:,· '• '••7-, '?'· ~;. },;; ~ c,P

OCCUr ·#IOht after •m atartS, .;so. the· rengtfl 'of ."iiltfirvaf (3), tc~)~ ... found from

1 -"'? ,.. ·-~ t.;:'~:..~: ~·:J ;''·: .

SCSTIME(•m
1

• Ea/ways' Ewln_tle' •· 0) where Ea/ways and Ewln_tle are det~,

11Jned.relatlve.to .,,,• •(O,;;. •• , O) 41fHHI • (1·; ~ ~·~:. :lfJ'tat jf{'thtf1iV'ilntli: .. '·

(6.27):;

~ . - . · ,- ,_- r - :-: - -· :" ~:;: --J i·:-,::;;;:~<- ./-:.:;l!::~.c--j - ·:;;;~ ~--..: '~:: _-._; ~ -::· ·
At fhla · pbft'it' an6tlffef · 4'icla16ri must be made which atrecta the tightness of the

upper bo0nct determined by the ·i1~1th;.:.:."~~~~ l~terv~t (:.J{'a~y ·~,the .events i~:

tba cantrati.atruoture •t1:t,.-.. ~.;e~,w::i'8t0Wlv>I, '~ ifin .Way:atJ· arb..tarlly ·

comp~e.x.~~l~g .~ Ml9D.Q #er~ .,,.J.9# .•wmta<...,;ID tRe exact, order of.~.
,.

occurrences; I.e., to get the true picture, the ,~.~'c'~~!"8Y.~-~ .~'flla,.tt• a~d
r ~~:, '·

E10lll8_tle relative to ef/Wy event must be considered, since the reference point

provided by knowledge that e# was pending haa been loa~. ~s makes flnd~g .an
~ ~ ... l ,~-;- .

analytic solution for the values of • and O at the end of Interval (4) quite compll-

-81-·

Latenoies for Constraints at Priorities > O Section' 6.4. 7

cated, and two alternatives are provided here .. instead. Nate that the relatiVe 1m-

portance of this is dw»endent on •• r•tive s~ of fnteivaf.(4); 1n··the extretite

case, If It is zero, then there is no problem at alL

The simpler method (and the one used here) is to aasUllle that all events In

Ealways and Ewln_tie get blocked out during lnterv~I ~4), ·~thus thek' f's and o·~

get updated accordingly. This win provide an upRCH". bou~ which •s high ~y the
, : . -

amount of execution of preempting .tasks which. could have taken pJace during inter·

val (4) and wiU now Instead be added to the preemption delays of the next Inter-

val

Unfortunately, ~ la nqt the only CORIPllc•tlon. ln,.U.. worst cue, - event·

from EloseJJe might get c:~tr~ Just be~cx,-e the end of llJJ~~al. {~). CJd lnltlate a
' ' . ~ '

subcontrol structure which coutd not be preempted by ••· The event e1 In

Eloae_tie which Initiates a subCOntrd stnietltte :U.at ·;u~ 'tc1- the longest time

without being preempted by an event .In e.,.., •.. or t;.wlnJle. ,(given their. +'s &1Jd

O's at the end of Interval (4)) is chosen, slnqe <>n~e l.t .. SiJ.ttS};\'i•PPt•dc}~ IJ4s Jess

priority than •.• by deflnltlon. Let the ltlng~ 9f this tlllae. be tp .and then the tjJne

O's are updated and the prooeaa Is repeated as trDm 1.tte 8tM of'•m , termlila.tlng ·
1

when the end of • m Is reached.
n

The alternative method Is to determine an exact schedule for Interval (4).

Then It win be known whether or not an event from Eloee_tle can get control and

-92-

Latencies for Constraints at Priorities > O Section 5.4. 7

keep It past the end of Interval (4), and the exact ••s and O's for all the events

can be determined. This Is the method of choice If the inltiatlOn delay· 1s known to

be afclnl:tlcant.

The interval t11 Is measured on a 8ftohtly different time line:
1

1----0----1----1----1----2----1----3----1----4----1----6----1
e fl fl e fl

' 1 1 • 1
occurs 1 1 occurs 2

a tarts ends aecGf)d starts
tJIM

Fig. 6.6. Partial execution of fl 1.

To flnd ~ , the execution of fl 1 Is broken down Into parts which are contained In a
1

single copy of #I, just as was done for •m· Here the worst case Is when all inter-

rupts happen at the beginning of interval (1) and continue at their m~mum rate,

since the length of Interval (0) Is fixed at 11' max<•,); this gives the gre~wst delay

during interval (1). Interval (1) Is thus the maximum lnitletlon delay for ii with

preemption, Including the posslbllity of an -.vent from E1089_t/e getting control just

before e# happens and causing further delay as pre9~8i~ discussed. The times

of the remaining intervals are ·found as waa done for the •m 'a, computing the Initial
I

fi's and n's appropriately.

This procedure Is detailed In Algorithm 6.8, LATENCY.

-93-

latencies for Constraints a.t Priorities > 0

Inputs: c. a constr•t

f, a subcorrtrol structure containing al the taaks in C, in a contiot _.lie><
tura meeting the reatrictiolts of Section 5.4, and where the worst case ta­
tency of C lalmown not tD-. .. Jstl.1E "j>y . ..,....(6..c11i

Outpvt: t{C), the worst case latency of C In the control structure containing f.

Method:
1. Find l(C), start.index, and nutn_taaka by executing ILATENCY((#)", C).
Let • m be the crtttcaf window startfn8 at start..IRdex and continuing for

nunLtaska.

2. Find the sublists of •,,,: (•,,, , •m , · • • • •-) .. re each •m Is
1 2 -n · ··· I

the CCllllP'9tely 'CiJidafned in a ~ ~ ·fiif-1. If the number of taaka In
fa IC. then •a • «atart.JndexJ through f[A]. •,. through •m = #.

1 2 n-1
and•,. = #[1] through f[NHILtaska - A(n ~ 2) - (k - start.Jndex + 1)].

n ... >·

a. Since the worst case invo&vee lltaXiMum Initiation delay for#, assume
lnterva.Ss (1) ~. (~) (see ~e ~6.·"'l, ,....,. >~ PPJ.-P~ .. nn.
'c 1) • o ·and tc2> = '' . r-111 r. ilnd +,. - tc1 > ... '<2 >- at the start at 1nterve1

1
(3).

4. Find the sets E_,IM!lp. and E•lnJle relative~~ e1. Set+= o and n =
1 for all events in tbe8e ·a8ts. And the set f.k;..Jn, relative .to e1. Set

'-,;, =. o. t"@lllZa the ~- I • o. Rapen ...,_, (6): tftleugl\ (1) unti

the end of•,.,..• reacltecf in step (6).

6. Set I = I + · 1. Find \a) • tp• ·Whfch Is returned . by

SCSTIME{all't~ Eelwey.s• E,.,in_tltJ' f, SJ) • • ~) •• t t•lli + t~}; S~t + and,0 •

for the events In Ewln_tle to the values •wln_tle and Gw/nJie returned
lty 8CSTIME. ff I • n. go to step.·fet •ere ._ · ·ae aGillpafed.o

1

e. At the end of 'ca>• since •m waa In control, nane of. the events In

' Ea1wap was .,.... 1llua set 8 • O ...ct:

-94-

latencies for Constraints at Priorities > 0 Section 5.4. 7

7. Let t(4) • ,, max(a#) - t(3) -•-1· ff t(,4) > o. tbflfe Is an initiation delay

and the foltowtng must be done: ·

(5.29)

(5.30)

b. Find the event e1 e e1,,__t/e which Initiates a subcontrol

structure that can run the longest before (or without) being
preempted by an event In {Ealwaya U Ewln_tle }; this can be done

by considering each event In ,i;,_..:tle ;in Jµ"!~ Jet '9, be the

time whk::h elapses past the '·~d of lnterya~(~) ~y~ toe,.

c. Find tbe initiation delay of •,,,
/+1

d. Set t. - t. + t14} + t..,_,...,.
"' . m ' v--r

•· Set •• - O; and:

'>".: ;t_

for all events "• In {Ea/ways U Ewln_t/e}·

•· Set •# • tdelay·

If t(4) Is zero, sat +1 -•1 + t(a) - • max<•-1>·

-86-

(5.31)

(&32)

latencies for Constraints at Priorities > O Section 6.4. 7

· 8. Find '- ; find • 1 of (#)" by scannfntl until the first occurrence of C
1 • ., .

hp been scalVl8CL Dlvlde·-1 lntoJIUl •. t* •s .•s~~#8 ~~ ._;,, ·fh step (2).

getting as a result Cl 1 , " 1 • • i 1), ~e this n may be different
1 2 n

float thlt n Obtaffted for .-., •

Q. Refer to Figure 6.6. The time of Interval (Q). %o>' Is •max<e,.~. As­

SUMe all wents ·in {£always U Ewln_tle} occur at the end of this Interval,

and continue at their m~"9 respective rates. Thus set 0 = 1 and • = 0
for an these events. Let .,,1 -.·'tt))~ te~~J = O. Starting at step (7b), ex·

ecute just as for•,,,, substftutittdi-· fort • and • 1 for•,,, ..
1'1 •,,, I I

10. Return MAXIMUM(t.. , t).
1'1 ...

&.fi: Spec;fal c ·and Eateneiana

There ate many speclal cases which result in, much shnpter algorithms. Each al­

gorithm presented In the prevlou& aectlOrt 18' dlr'ect8a' mwert:IS • subset of control

structure types which qontalns the previo!Js ~l ,and some .additional control
' ~ - ,

structure types; It is seen that In general, as the mJRlber of different types In the

subset Increases, so does the compfexfty of itfle r.wtloa -thms.

As an example of another Important special QS@t, °°"eii!llttr llndtng any of the

real-time properties for a subcontrol structure . whose sets Eloae_t/e and Ewln_tle

ate· empty, e.g •• as would be the ca•e In a ~"strudture containing no event

coupled lists. Now all of the complications due to having the s~t of preempting
~ ·.:~"· -·. .·_ ~~ ~ -. _;-:-

-~ . .-r~ : . ..;"" - ' '.~

event variables change dynamically drop out - the statically determined 88t

Ealways ta the only set that may preempt, and by'~ It can always preempt.

-98-.

Special Cases and Extensions Sectton 5.5

The simpllftctltlons this ·Introduces are· sutiStantlal; · take the· most complex of the

algorltbms of the prevtous MctlOn, Algorithm 6.8, LA'tl:NCV, for examp1e. in step

(6), SCSTIME can be replaced by the almpter ·'PHTIME. There may stlll be an Initia­

tion delay tc41• but there la no tonger tf't9· ponlbllltj of''an event from E1oae_tle

getting controt ·and prolonging the Initiation time.

A8 far as extel'ISlona to the algorithms go, there are two prlnclpal areas to con­

sider~ Ol'le Is the determination of algorithms for real-time properties not discussed

here and which are germane to a speclftc appllcatlon, and~the other is the llftlng of

the reStrlctlons of Stfotlon 5.4 to allow any representable control structure to be

analyzed. Since the flrat area requires an appttcatfon r~latlve to which suitable al­

gOrlthms can be developed, only the. secon<f area w111 'be oovered here.

The dtfTlcutty inVolved In Dftlng the restrictJoM '~f Section 5.4 varies consider­

ably from one restriction to the next, Afld·hettctr'tftey are ·dlsctissed here one at

time. The faltowlng diacuaslons lint· not lntandd.'ft>''be tfte 'flrfat wtJrd 0n ttri! topic,

nor are aH the det.tls supplled for a 'partt0utar method· of ltftfng each restriction.

Instead, the Intention Is to point out the dtfftculties lnv6fved• 1n· each case and to

make suggestions as to how they might be overcome.

6.6. 1 I .£xtemal l'ennlo&lfcul

Recall that there ua two typea ofLltef'atfoh, In effect, that can be applied to a

aubcontrol etructura; local, and globet. it a aubcoritrot' sttUcture Is locally cyclic, It

mea,.,U..t that partroutar 8Ubcontrol etruature exeeutes; rftde11hlte1y', without requir­

ing relnltiatlon by Its lnttlating event. This le equfvatetit, c 'then, to having an event

....,_

External Termir1atlon Section 5.5. 1

which Initiates a subcontrol structure with . lnftntte weight. If, instead, It Is part of a

globally cycHc control structure, th-'1 It too wiU tte .repeated indeftnit91y, but only

one time per Initiating event occurrerJCe. Both· Of .tfMaae -types are. dewed ·under

the restrlctlons of Section 5.41 beoeuae th4lt · welllllta of t.he Initiated subcontrol

structures are 1bced, even though they may J>e Infinite tn. the 19<:a11y cyclic case.
• . .• J' -

However, there 18 the potentlal for a subcontrol a~tur' ~h has Jn11nite (and

thus 1bced) weight with no external tennlnfttlon to .haVEt V~JiY~~t In the pres­

ence of external termination. Thus the delays enoounter,ed In the execution of
' ;,. , '

lower priority control structures due to Interrupts,. which. l11tlated <abort cs)'a

(those which may be externally terminated) wt1.1 vary acpc)fdlJ')g to how IQng the

<abort cs> executes before It gets preempted. An upper ~nd on tha. time can

be found If a good value Is known for -, """' of the teraalna.tlng event; if there Is

more than one such event,. the. lnlnlnlum of their IMXDum periods my be used.

Note that this alee> compftcat-.. the ~......_tlon · of JOad · facta' (equation

(6.11)), since that depends u wel-Gn hevJQg:·a· lmawn .,,..,. .. baund few the weight

of each subcontrol structure.

5.6.2: Restart Control Structures

This Is another case which may lead to variable subCCJMrG&,atructureo:executlon

times. Every time a <restart ca) get& PJeempted .. ttte tilae nits carent execution

18 extended by Its nonaJnal weight kl ttae abseaee of preamptlon; It. b eseentially

the opposite ()f external tenatnatloR. r ; <rntert ce> needs • non-preempted

Interval equal to Its l'IOl1llnal w.tlght In whlclr to execute.. Ta find, wtlether such an

-98-

Restart Control Structures Section 5.5.2

interval exists, one must sea whether the phnaa of all the events In the sets

ea/ways and E.win_tle relative to the <restart cs> can be adjusted so that It gets

preempted at least once every !<restart cs>I • • seconds" This can be either very

simple, as In the case where there Is only one event that can preempt the <restart

cs>, or very complex, If there are many events and their interrelationships must be

considered.

&.&.as Codestrlpplng

This Is somewhat simpler to handle. If one of the Interrupting events Initiates

a <codeatrlppad ca>, then the delay It causes Is arinply Its nominal weight divided

by the number of codestrlps, e.g. the weight ef {A/5) Is jusf fAl/5. If the tasks

whose execution time Is being measured are codestrlpped, though, It is as if they

were preempted by an event with variable .. min - to get this effect, a dummy

event can be substituted for the integer which teUs how many codestrips there

are, and its phase can be adjusted every tl~e the ~codestripped .cs> Is resumed

so that It will cause preemption at the time when a single ~oc:festrlp would have

ftnlshed.

6.8.4: Non-Preemptlble Task•

Let #meas be a subcontrof ·structure whose real-time properties are being

measured. Then If a subcontrol structure of higher priority than 'meas Includes

non-preemptlble tasks, the effect on I,,,._ Is unnoticeable - these tasks would

-88-

Non-Preemptlble Tasks Section 5.5.4

have been exeQJted to completion anyway before ~meas was resumed. If aH of

#meas is non-preemptible, then its computation tfme need not Include the e1feets of

those Interrupts which cannot ·preempt It, and the sets Ealways arid Ewln_tle can

be adjusted accordingly. If only a part of #meas la non-preemptible, then the ••s

and O's of interrupting events must be updated when the non-preemptlble part has

been executed. If a subcontrol structure of lower priority than #meas Is non-

preemptlble, then if the Interval i meas includes an Initiation delay, it must be In­

creased by the maximum amount possible due to execution of tasks which e• can­

not preempt. Thia can be handled simffarly to tl:le case where an event from

E1oae_Ue gets control just before•• occurs.

6.6.6: Stopping the Flow of Control

This Is another case which may result In effectively varying the weights of

aubcontrol structures and hence the delay due to preemptions which Include their

execution. It l:tas some slmllarltles to eXtemal termination; consider the example

given in equation (5.7), repeated here:

((((A"/e1)B)/e2)C)R

The problem Is that the e_ft'ect of the delay Jn executJna ,., due to.e1's oc~urrence

Is dependent on the period of e2 - hence the simflarlty to external, termination.

The dlft'erence Is that the minimum effective weight of 8 Is stiff IBI, since an oc­

currence of e2 before the end of B preempts B, but leaves the remainder of B to

-100-

Stopping the Flow of Control Section 5.5.5

be resumed once C Is done.

Thus the techniques for eletemal tMnttnatton Ctln'be applfectttere, with the con-

stralnt that the •lnlmum weight ot a· aubcontrol structure Is stflf Its nomlnal weight.

fi.fi.8: Constraints at More than One Priority Level

To be able to consider the worst case latencies of constraints whose member

tasks are found at different priority levels and thus in di1ferent subcontrol struc-

turas Is a dlftlcult problem. To determine this, the executions of tasks at lower and

higher priority levels can no longer be lumped together and treated as a delay,

since at the very least it must be known when every task which occurs In the con-

atralnt Is executed, regardteaa of what Its priority may be. Thus algorithms of a

very different sort from those In the previous sections are probably required, and

the posalblllty of slmulatlon to determine an exact schedule may provide a starting

point.

8.fi. 7: Finite Event Queues

If· only a ftnlte number of event occurrences can be remembered, and this

number Is small enough so that some event occurrences are Ignored, then from

i 'a point of view, the delays due to preemption computed previously may be meas

too high but cannot be too tow. The equations which determine the time lost to

preemption must be adjusted to Include a maximum value of 0.

When computing Initiation delay, It muat now, be seen whether, In the worst

case, the Initiation delay may be prolonged due the Initiating , even'f a occurrence

being ignored.

-tot-

A new notation .._ been g1v.,.~ which repma..U · i'eaHhN ·control· structures·. at

a high (task and event) and Implementation-free level, Including sequencing, ltera-

tlon and preemption as primary constructs. The notation can represent convention-

al single and multiple level Interrupt structures as wen as ~traditional ones

where branching of the preemption structure 18 generalized. A total priority order-

Ing may be described, or arbltrarHy many events and subcontrol structures may re-

side at the same priority level. An algorithm 18 given for determining the preemption

relationship for any <event, task> couple in the control structure, as well as a COIA'-

pletely deterministic method of selecting a task for service if several events with

arbitrary priorities are pending (possibly equal). It may be Interesting to consider

the modlftcatlons necessary to the algorithms If It 18 assumed that the. processor

chooses at random from among an the pending events of the hithest priority.

Additionally, notation Is given for representing task termination by external

event occurrences (as opposed to telitporary preemption), ~crlbing wheth,r a
=~~~~~ . . - .

control structure should be restarted from Its first task or resumed from the point

of preemption, codestripplng, and masking of a set of interrupts while any given
< - ' • - --s :;' '~ -

task Is executing. It is shown that due to the assumed transltlyity of the

•preempts" relation, the sets of events chosen for these special cases might

necessarUy Include other events not expllcltly mentioned.

The notation Is compact, and provides a convenient format for conveying a lot

of lnf0nnatlon about the control b relat~ ~g- the members of a set of

·'-. ' . ~ .

tasks. A complete BNF speclftcation Is prOvtded, and a parser can be (and has

-toa-

I

Conclusions and Directions for Future Reseatch Section 6

been) constructed using any of a number of extant complter-'eompllets which accept

BNF apeclftcatlons.

Cla:aaM ·Of "*PN.anta.ble· control structures are given, typed by the topology

of. their controf 1loW gtaphs. · · It Is Shown' 'tttat parttal as \VeU as total orderings of

taat<& and events cart be achteved thrOtJQh-~ the uae . Of tfte e9enf coupled list, which

Introduces forks Into the control ftow graph. A method for recursively constructing

• llWtttft1e Pf'bitY r.vet:· 'Centt'Of · sttucttwe of· fhe· :tradttlonat 'fype Is. 'gtveri~ ·The dls­

tlnctlOn- ia -made betWeen· Ii controt·'structute Whtch atJPp&ts a·· processor priority

and one W9'1Ch astuanyttaa:t)nfy a"Slngte fhet·Of ~sf8ven iho-u.ih there may

be a set of several . fnt8rruptirig· events whtch are. 0rd.wed alROWO themselves. It is

shown that ··WfilM In generat the need for ttn lypEt Of coritrOr structtire 1$ percelved

to be sttongest 'In situations where representattoit Of periodic everlts 'anti task ex8-

cutk>na prevallS, · aP"eriOit& controt 11tr11cturea· ::are1 repr8Hhtabt8: · ttO\river. a true

tree-shaped Jnterttipt' 1istructure cartnot •be cctlhWib due ti{tft .. tr4nsltlvffy;'of the'

11pr.eemptstt relation~ tn addftlon, Whtie Iteration can 'be '&JipHed to any closecl or

basic· control strueture, a back are cannot' Grlginate;'fn:Jnt' the lhfddte of one event

coupled litt'and tetfnlnM• hf'the ihfddfe °Of another;'.• thts 18 hat felt to 'be a serious

reautotlon, ·hOweVer-;· 8Jftee) ft ht llk8ty tttat gr6dj;i Of 'tilake In a:'tlUl>comrOI structure.

are related and expected to be executecf'aa a 't>tbci.?

The second half of ·the thesfS concentNtes 0n describing the sorts of real-time

properties which may be Of Interest to a ueer of any · r&•ttme .Y*tem, and :demon­

strattna hoW they can be llieaaured f6r eotrfrOI JsttUcfurea: ·representable u~Hng the

notatlan ·presented here. Th& Worst case fatehcy 'of a cdfffltralrit Js found; 'to be a

property Mlose -detenntnatlon Involves 'contPUtlltton of ·aeV&ra1 other ·properties as

-lQI.;.

Conclusions and Directions for Future Research . ; . Section 6

subroutines. The dlftk:ulty of finding "1. upper,- bound on t.a~. ex~ tlllte Is· cMe­

cussed. although without this knowledge It Is doubtful that much f~:;~ Of

value coul<f be performed. AddltJpn4Hy. -~-on. the ~ -~ •_ period

for each even.t are ne~4ed~ 1he algorith~,,r~t re~ dill ~ If _.,._. tMltoda

are not known, It wlll .J>e dltftcult to fOf~ ,._...~ ~09' for :the conVol
' - . . - -. ~

structure.

Next several algorit~- fQr Ple~nq a.t~• ••-Velo.Ped. ~ a

larger set of contrQI s~cture types. up to •~•ev•,.mtch,~ ~ enllr•-·buk:

framework of sequencing._ .Iteration and Pl•emP#Pf1. ,wone ;.\he 't'-f'Ya Jt ia etJOWlt how. - .

before atte{Rptlng to ~ .,.y of the al~·-~ ~~ vu,laus time inter­

vals. A.n algorithm is given which ~ the-~ of ,U. due.to pretNRPtton if

the set of p~eeQy>tlng ,ven~ la static. and aw. u.siOSJ ,ft It la ;tlhewa: haw. to detennlne

the latency of a constraint ~tA19ed .. IJI •.P~-- Oo,a~,§tf.ucture, and the

wor•t case initiation delay for an even~ at a .eiven pricarity .leveL. The worst case

and their reQ<:currence at.th«tk lndl~aJ ~lC:lllJtHJJ ~ ~. _,._allDl'ltb.., is.

also given wbictt detenalne4_ preamp~ .~Jf ---•• ~ -.nt _le kllOWll

at the beginning of the Interval belqg ,me-.tyAI'•

The enacts on the~• alg<Klt:hms o.f ·adding ~ atruotvrp• o.ontaininQ. -.ch of

the restricted Items of. Sec~n 5.4 is CQl1$ider~, ,~ •tttti.gatiQA.Ja_ ~ ·

here to uncover the detaila of tba proble"s ~~h ••-~ out •.. .Another ...,.ful _

thing would be to devalQp analyses bNed on & prol;>ablletic ~ reU..r tlMm: on

the worst case; e.g., what Is the prob~ that • given oc;JQatraiQt wHI have a la-

-104-.

Conclusions and Directions for Future Reaearc;h Section 6

tency of no more than n seconds? Flnally, an Important result would be the

development of a general algorithm which could determine t!'le latency for any of

the representable control structures •. The ·~ of $1Ch a teak :should not be

underestimated; Indeed, In the words of Niklaus Wirth:

It does not appear feasible at this time to postulate any generally
valid and at the same time practically useful rules for the de.termi­
nation of execution time bounds for sys~ using prOC::essor~ shar­
ing. [Wirth 77b]

-106-

Appendix A: Summary of BllF for ~-- COlltrOI Stnieturea

<oontrol structure> ::= <basic cs> I <closed cs> I <iterative cs>

<ta• tc:t> ::= <letter> I <tastt id> <afph&numeric>

<letter> ::= A I 8 I C I ... f Z

<alphanumeric> ::= (letter> J <dlQJt>

<digit> : := o I 1 I 2 I ... I a

<basic cs> ::= <task> I <basic cs> • <task> I <basic cs> 1'

<task> ::= <task id> I <non-preemptible tid) f <abort tid>

<closed cs> ::= (<basic cs>) I (<preemptible cs>) I (<closed cs Hat>) I

((closed cs> <preemptible cs>) I (<closed cs> <basic <;a)) I

(<restart cs>) I <non-preemptlble closed cs> I <abort cs>

<closed cs nst> ::• <closed cs> I <closed cs Ust> <closed cs>

<Iterative cs> : := <basic cs>• J <closed cs>• I (basic cs> <Iterative cs>

<preemptible cs> ::= <control structure> I <event list> I <codestrlpped cs>

<event var> ::= e<tnteger>

<Integer> ::= <digit> I <integer> <digit>

-106-

<event list> : := <event var> I (<event 'eoupted list>) I

(<event coupled list> l*

<event coupled Hat> ::• <event var>: <control structure> I

<event coupled fist) tr <event vat>: <coritro1 structure>

<non-preemptlble tid) ::• t<taak> I t(<ev llet>)<tnk>

(ftOn<preamptlble closed ca> :i• '<cloaec:l'ca) f '{<ev list~?<cJ()sed cs>

<av llat> ::• <event vat> I <ev Hst>,<event var>

<abort tld> ::• •<task> I 9(<ev liat>)<task>

(abort ca> : :m •<a1Mecl ce> I 8{<av llst)}(efosed ca>

<restart ca> ::• > <basic c•> f > (<ev nst>) <bftlb cs>

<codestrlpped cs> ::• <basic cs> I <integer>

-107-

(-

[Benson 87) Benson, D.1 R.J. Cunningham, l.F. Currie, M..R. ~ R. Kingslake, R.J.
Long, and ~-~.~•~;-.,~.._.._.-.·~rite Computer
Bulletin 11,3 (Dec. 19e7), 202-212.

[Dijkstra 68) Dijkstra, E.W., "CooP,ec•tine fef1U91't1tal pruce•sas,," • PlotPlllllllllntl
IAnoueoes (F. Genuys ed.). Academic Preas, NY, 1968, 43-112.

[Dijkstra 72] DJiQ:tl'•· e.w~. •A,clqe Qf ~·atr.atW• ~ b,ou11ded·de­
lays onty,•-'AFIPS Conf. Proc. 40 (1972 &ICC), 9~.

[Fosdick 76] Foadlck, LO., and l.J •. Ost~ ~ ~ ._al• IQ'8Dftware·!faffa.
blllty,• Computing Sul'wtyS 8,3 (Sept. 1978), 30&330.

[Freiburghouse 77] Freiburghouse, R.A., ·~RJPOI; ~ ...,.~~to PL/l for· teal-tiMG
appllcatlons, • SIGPLAN Nat/cea 12,7 (July 1977), 28-42.

[Gonzalez 77] Gonzalez, M.J. ~? _"l)et~lc,~eRM" Mlt-*IHllD»" ~
8un19YB 9,3 (Sept. 1977}, 173-204.

[Hennessy 75) Hennessy, J.L, ~·-~ m.tCf D&;~ "TONAL;. A tuk­
orlented microprocessor appllcatlons taneuage, • IEEE Tranutetlons Ind.
Elect.. Cont. Inst. IECl-22,3 (Aug. 1975), 28&-289.

[Hoare 74) Hoare, C.A.R., "Monitors: .An-C>P8rattnG. s~~~~ structoong ~~ept,•
Comm. ACM 17,10 (Oct. 1974), 549-557. .

[Kleburtz 75] Kleburtz, R.B., and J.L. Hennessy, •TOMAL - A high level programming
language for microprocessor process control appllcatlona," Proc. ACM
SIGMINl/SIGPL.m lnterl11ee Meet.Ing on PrOQ. Syats. In a Smll// Processor
Emtlronmant., also Sl6PLAN Notices 11.4 (Aprll 1978). 127-133.

[Uu 73] Uu, C.L., and J.W. Layland, •Scheduling aJgorlthms for multiprogramming in
a hard-real-time environment," J. ACM 20,1 (Jan. 1973), 48-61.

[Onnickl 77) Onnlcki, A., •Real-time BASIC for laboratory use,• Software Prc. &
Exp. 7,4 (July-Aug. 1977), 435-444.

[Phillipa 78] Phllllps, J.V •• and T .H. Bredt, •Design and verl11catlon of real-time sys­
tems." Proc. IEEE 2nd Int.. Conf. on Soft. ElftJ. (Oct. 197&), 12~131.

[Schoeftler 70] Schoefller, J.D., and R.H. Temple, •A reat-tillle language for process
control,• Proc. of IEEE 58,1 (Jan. 1970), 98-110.

-to8-

[Serfln 72] Serlln, 0., "Scheduling of time crltlcal processes, 11 AF/PS Cont. Proc. 40
(1972 SJCC), 926-932.

[Teixeira 78] Teixeira, T.J., Real-time control structures for block. diagram schema­
ta, S.M. Thesis, Department of Electrical Engineering and Computer Sci­
ence, M.l.T., January 1978.

[Wirth 77a] Wirth, N., 11Modula: A language for modular multiprogramming," Software
Prac. & Exp. 7,1 (Jan.-Feb. 1977), 3-36.

[Wirth 77b] Wirth, N., 11Toward a dlsclpllne of real-time programming," Comm. ACM
20,8 (Aug. 1977), 677-683.

-108-

This empty page was substih1ted for a
blank page in the original document.

