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The four chapters of this thesis were written independently and may be read scapartely. Each has
its own introduction, terminology, and notations, but all references have been collected at the"cnd of
the thesis. : | ’ _

Chapter 1 presents an on-linc simulation of a deterministic mul,tihfcagii e-dimensional Turing
machinc of time complexity 7{n) by a deterministic mulggbqu d-dimensional machinc of time
complexity O(Ti;z)’ +d-1/ +€)foralle>. In I‘hcorcm 1,2 the ¢ in the cxponent is replaced by
o1). This simﬁla_tion nearly achicves the known lower bound (T(m)! + V4" 1/ on the time .
required. |

Continuing the study of multidimensional machines, Chapter 2 p‘rcs'cms an off-line simulation of
a nondeterministic d-dimensional machine with one worktape hcad that runs in time 7(n) by a
deterministic machine in space (T{n) log T(m)¥9+ 1, An anonymous referee noticed the simulation
by an alternating Turing machine in time O((T(n) log. T()? @+ 1) (Theorem2.3). This chapter has
been accepted fdr publication in Theoretical Computer S’cience, An carlicr vcrsion appcared-as
Technical Mcmorandum ™- 145 of the M.LT. :1aboratory for Computcr Science §141.

Chapter 3 uses an overlap argument to derive new propfs in the pebble game. We develop a
strategy that uses ((n/log n) pebbles to pebble every dircected a;,ychg graph with nvertices and
boundcd indegrec. A vanatlon of this strategy uscs S pebbles tq, pcbblc ;he graph in at most 220("/?) .
steps. This note on the pebble game will appear in In/qugat:qig Processing Letters. . . ’

Chapter 4 fccommcnds further research on automata with nonsequential storage structures. It
includes a novel geometrig argument that suggests a time-space tradcoff for, simulating a
multidimensional Tl;ﬁng~.Minc by atree machine, . . |

]
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Chapter 1. Simulations among Multidimensional Turing Machines

L1. Background

Introduced by Hartmanis and Stcarns [5], multidimensional Turing machincs are natural ‘
gencralizations of conventiohal Turing machincs. Hénnic and Grigoricv [3, 6] established a lower
bound of Y TTn)! * V4~ Mey4is the time required by a muliihead mm..ax Furing machinc to
simulate an e-dimensional machine of timse com;ﬂcmy Ttn) on—!ine Wc prcscm a smxulanon that

ncarly achicves this bound.

Theorem 1.1, Foralld > 1, all e > 4, and al £ > 0, every multihead e-dimensional Turing
machinc of time complexity T{x) can be simulated on-line by a multihcad & dimeosional Turing

machinc in time (T{n)! + VVd-Ve+ &)

Forthecased = 1, Pippcngcr and Fischer [22] 8cvi$éd an optima] simulation that runsin time
e = d + 1; cven in this spectal case, Theorem 1.1 provndm abcucr upper bound. Also, Gngonev
proved that cvery storage ‘modification machine of ime comprcnty ) can bc snmulated on-linc by
a d-dlmcnsmna! machine in time O(T(n)! + Y since cvcry muludimcns:oml Turing machme
can be simulated in real time by a storage mbd‘:ﬁcatmn machine [27), every édimensional machme
can be simulated on-Hrie by a o dimensional machmc in tifre omn)‘ + W‘“’i “The time reqmred -
by our simtilation is smaller, however.

Grigoriev [4] &iffonstrated that every nondcterministic e-dimensionalmachinc can be simulated
off-finc by a nondeterministic ¢dimensional maching in time O(TA)! + V4-¥/2+ &) for every e 50,
We consider only deterministic machines. Our simulation can be modified to yield this result about
nondetcrministic machines.

Paul, Sciferas, and Simon [19] studicd simulations among multidimensional machines with
Fimitcd numbers of worktape heads. They cstablished nonfincar lower bounds on the time required
to simulatc multidimensional machines on-linc by machines with fewer worktape heads.
Furthermore, they presented simulations of multitape multidimensional machincs by machines with

just two worktapes having onc head cach. In contrast, we present a simulation by a machine with
more worktape heads.




1.2. Simulation

DorE

Lect us review definitions for multldlmcnsmnal Tunng machmes To cach cell of a d-dxmensnonal
worktape assign in the usual way a d—tuple of mtcgcrs called the coordmates of the celi I‘he '
coordinates of adjacent Eells differ in just oné componcnt by :!:1 ']‘he ongm is the ccll whose
coordinates ar¢ all zero. A d- dimensional Turmg machme hasa ﬁmte statc control a read only mput )
tape, a writc-only output tape, and a finite umber of'd-d'uncnsnonal w0rktapcs cach of which has a
finite number ofheads. At each stcp the machine reads the symbo!s in (he cells on whlch thc mput
and worktape heads arc positionied, writes symbols’ on thcse worktapc cclls and possnbly on thc output
tape too, and shifts cach worktape head in oné of 2d 41 possrb!c dlrecuons cnthcr to one of 2d
adjacent cefls or to the same cell. Tnitially, all workmpc cells hofd blank& and cv‘ety( ivorktapc hcad is |
positioned on the origin of its tapc. Lcong and Sciferas [1 2} provcd that cvery d- dlmcnsxonal ¥ unng
machinc can be simulated in real time by a d-dimensional machine having just one head on each of its
worktapes. | _ -

Fix integers d > 1 and e > d, a positive rcal number ¢, and a finitc alphabet A. To cstablish
Thcorem 1.1, it suffices to exhibit an on-linc s:mulatmn of a pamcular e-dimensional machine E with
workiape alphabet A by a ¢-dimensional machine D in time ()(n1 + 1/d-1/e + €) Machine E has onc
head on one worktape and operatcs in real time as follows At cach step it reads another input

symbol, called a command, that has the form <b, §>, where b € A and 8 is one of the 2e +1
directions in which the worktape head can shift. Supposc E is m a conﬁguratlon in which the cefl y
scanned by the worktape head contains b'. thn E then reads the input symbol <b, 8>, it writes bon
¥, writes b on its output tape, and shifts the worktape head in direction 8. Call symbols of A
responses. Let Z be the set of commands for E. Machlnc E deﬁnes a funcuan from Z*w A* that
maps a string of commands into a string of responscs of thc samc length Machine D simulates E on-
line in time T{n) if it computcs this function in time ﬂn) on mputs of length n, and ‘fm;egvery input, .
for cvery j, machiuc D produces the jth rcsponscbeforcreadmg the [F] +l)§t¢command.

Ona éivcn input string of colnmands._whcuaE has processed just the first 7 commands, we say |
that Eis af time 1. When D has processed only the first commands (and produced the first 7 output -
rosponses), D is ot simulated times. .

Consider a string of ncommands. For simplicity we describe a simulation in which a isavailable - -

off-line. The simulation can be converted routinely to an on-linc simulation with time loss of only a
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(i) for every cell y, there are 5¢blocks at level that contais a celf at d%fam’:c""si orless
from y; T Ve toml it S -
(ii) for everycol yin a block Bat level 7, if'y is at distanice striétly greater'than s, from
-every ccll outside B, then there is ablock 8 C:B atilevet i- 1 sueh that y is'well within B'; the
relative position of & in B is casily calculated- ﬁ‘emtheﬁesnian ofy. « o
Reischuk [23}cmploys a similar covering. The blocks:at levet i<} tha‘im-"é(’)htaincé in'ablock Bat
level i are the subblocks of B. Every block at level-ihas at mest (35,/ 1)” subblocks.
l.et # be the function defined by - s SR
N w(x) = 2Megx1. .
if x is not a power of 2, then o maps x to the next largerpower of 2. Letm;* = n, and for i< Llet
m®* = (35)%

the volume of a block at level &, For cach iset

| v; = (30 ¢

u; = wl(y, w9, .
(= 2y, )V,
A routine calculation shows that u; = ()(n}/ d +£),and for i< L, o
u; 2 (¢, si‘/sflé)ll d u.,/2. (LY

In D a page at level 0 is a box of side o for i>0,a pageat level i is a box whose side is a power of
2 that has a mass store. memory map, a free storage lzsl, and a nonblank ceII counter. If Pis apageat
level iand P isa page at lcvcl i-1and PCP thcn 1” is subpqge of . We describe how the contents
of a page P at level i represent thc contents ofablock Batleveli :

Ifi= = 0, then P represents the contents of B literally: for each of tha(:ise)’ cclls yof Bthereisa .
representative cell zin P who§e,rcla;|vc position in Pis dc;tcrmmqi by ‘t&hﬁcir;,e_lquvg:,:poeat;on_of yin.B, -
and z holds the same symbbl asy. 'lhc detail}sf( of ﬂus representation are unimportant, provided that . .
relative pbsitibn of zin P can be computed from the relative pasition of 3 in B in constant time, ..

If i> 0, then for every nonblank éubbiock B of B, therc is a‘subpagc of P whosc contents
represent the contents of B recursively. All subpages atlevel i- 1 ar¢ mnrﬁx&ed’:s;omt. LetP iié?é : ‘
side p. ‘The mass storc of P is a box Uf side p/2 i in P that Cohtaing these suﬁpages Thc a«klressofa
box in the mass store is its rclauve posntion with mspc;t {0 the mass storc B ” o

subpages of P whosc contents represent the contents of subblocks of B. 'The relative posmons of
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Effects: 'The contents of the memory map are altercd o assaciate a-with k',.and the frec volume of P
is reduced by r4, (During this call to ALLOCATE, the frecstaragc list may temporarily hold
addresses of 27 blank boxes of the same side,) ‘

- Method; A buddy.system is used {10}.
Step 1. If the free storage list has an address of a box of side 7, then skigeto. Step 2. Letg*bethe

smallest power of 2 greater. than 7 for which the free storage list-dees have an address of a box of
side ¢*; if no such ¢* cxists, then terminate with faiture, Forg =.¢%¢*/2,..;.4r, 2rin order; -
select an address a, of abox C of sidc g, delete a, from the list; anid add-tg.the list the addresses
of the 27 pairwise disjoint boxes of side ¢/2 whese unioR-isCy. Theifiee storage list now has
addresses of 2 - 1 blank boxes of sides 2r 4r, ..., g*/2 and of 29 blank boxcs of snde r.

Step 2. Let abe thie address of a box of side 7 on the frec slorage ]lSt, and dclcte this address from the

list: Inthe memory map of P set up at most ()(log s,) pomtcr boxes of volume O(Iog u) for the B
binary tree (dCScnbcd above) to associate address a with & 1f the pumtcr boxes for the bmary \’

tree no longer fit in a box-of side p/(4 tog s). ‘theri termiihate with Failure.

Proccdure a« I’AGI' A DDRI'SS G, k) _

Hypothesxs The worktape heads of D are on a page Pat !evel i o
Parameters: k' is a binary string of length O(log s) that spccnﬁcs the rclauve posmon of a subblock B’
of a block at level i. | R A
Value returned: The address a of subpage P in P assigned to B such that the side of ' is

min {w((y,, 0n" +'s, )9, u, i}, where m' is the value of the nonBlankccll coutiter of P'. Ifa
call to ALLOCATE fails, then this call to PAGEADDRESS fails. R w
Effects: This procedure may altor the contents of the meitiory map’ and the free storage list by a cal’

,}':~ . 4.‘~'¥>:

to ALLOC ATE and may sct up a ncw page in the mass store.

Method: Using k"-and the-mémory map of P, retrieve thic address of the sabpage P of Passighed to

B’ visit the ((log s) pointer boxes fm’ the nodes orf the path in'thic f)fnaﬁ' frce (describcd above) |
from the root to the icaf that cm‘responds to K'to obtiin the addiess associated with k', '

If no addroess is associated with k', then call ALL()CATI‘ to'dbtain 4 b‘fant box of sidé 1. i1 m thc mass

store. Initialize this box so that it becomes| a subpage 7 whose ¢ontents i‘eprcscm ablock whose

cells all hotd blanks: the free stofage fist ofl" contaunrs juﬁﬁfe 48drcss of the blank box of side
FT S  S  |E E] LReito

t.1/2 in its mass storc (namcly, the mass storc itself); the value of thé nonblank céﬂ counter of P’

is 0. Return the address of 77 in P as the value of a.
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Let ¢ be the side of P and m’ be the value of its nonblank colf counter; by definition, p° is a power of -
2 Wp Cmim fully,, (' + 5, WV, u,,), then calt ALLOCATF o obiain a new box of side
p™ = min {x((y,, (" + 5; ). 1, |} > 25’ in the mass store of Fassigacd o B. Copy the
contents of ” into this box to produce a page P~ such that if the contents of /” representthe”
contents of B, then the contenits of P~ akso represent the contents of &' in particular, (o ensure
that the addresses in the memory map remain valid, copy the: coments of th mass store of P,
which has side p'/2, into the box of side p'/2 whosc hase ecll i the same a5 the base cell of the -
mass storc of P*. Augment the frec storage fist of P with addressésof 27 - 1 blank boxes of side
p"/4 m s mass store. In this ease return the address of P~ in P as the value of &

Let A bc the rc!auvc pusition ofaccn with rcsmtoabox ConthcworktapcofEand abea
sequence of commands. Procedure SHIFT on input (h, o)  produccs the relauvc position of the head
of E with rmt to C that results from stasting on ccll x(k, () andpc:mmnns the shifis indicated by
. SH’IF"I‘ 6pcratcs' ir; time pmpdnimal to the sum of,tbc lcngtbsofns inputs: using e unary
counters, onc for each dimension to maintain the displacement of the hcad from x(h (), change one
of thesc counters by +1 for each of the shifts in o, finally, with ead‘dimns orsubtmuons, calculate
the new relative position. '

Procedure UPDATE (i, h, 0):

(i) At the beginning and end of this call to UPDATE, the woskiape mqsofbgmmﬂwmccﬁof
apageQatlevel i ‘ '

(i) Letmbcdwvahmofﬂmmnb!ankwncmmdeammmgof&sca& Qhasside
mie {x((y;(m + ). u}.

Parameters: hisa binary string of kength ms)mmmxmmmc&mm
mmabkxtCatlevda ¢ is a sequence of 5; conmwmands, e

Effects: !fatthebcg:mmgofmsprm&mcaanpmmCatmnmwo&hapchwefEh
onx(k, Qatmncf.andqstbemmofmdsamf + L7+ s thenatthe
end of the call, QrcpreseasCanmcr+s‘. value of nosblark cell counter of Qissct lo
»' = min{m + s, m i’},ﬂ),estdgo{,ggsv';((yim')_l{‘). I any pmceduse that UPDATE calls
fails, then this call to UPDATE faibs.



Method: 1f i = 0, then usc o to determinc the new, contents of every cell yin C that s visited'by the -
worktape hcad of € when it starts from x(h, ) an@ﬁhiﬁs acconding to ¢; copy this new symbol
into the representative of yin Q. , .

Otherwise, if i > 0, then sct & « k; add 5; to the value of the nonblank ccll counter, unless it already
cquals m*; partition @ inlo s/, ; consecutive subsequences o "of length.s, ; and perform Step 1
through Step 3 for cach ¢’, in order. : : :

Step 1. For cach of the at most 5¢ subblocks € of C that contains a ecll within distance s, | of
x(k, C); perform Steps 1.1 and 1.2. :

Step L.1. Call PAGEADDRESS to: determine the address of the subpage O’ of Q assigned to
€. Let i’ be the relative position of x(k, C) with ecspect to €'
Step 1.2. Move the heads of D to the base cell of Q’ and call UPDATE(i- 1, i, o').

Step 2. Sct k « SHIFT (k, o'). ‘

Step 3. Return the heads of D to the base cell of Q:

Correctness: To check that UPDATE opesates properly, show by induction that for cach j, at the jth
exceution of Step 3, o is the sequence of commands attimes T + (= 1)s,, + 1, ... 7 + ji5, . the
worktape head of E is on x(&, () at time ' + j's; |, and Q ropresents C attime r + js; ;.

Procedure o « SIMULATE (i, h):

Hypotheses:

(i) Atthe bcgmmng and end of thns call to SIM ULATE all heads of D arcon the base ccll of a page
Patlevel i

(ii) At the beginning of this call let D be at s:mulated tnme T and lct m bc thc valuc of the nonblank
cell counter of P; page P has s:dc mm {w((y, (m + s,))l’ ") u‘,} . .

(iii) Atthe begmmng of this call, P reprcscnts block B at levcl zat tlmc T. At tlme T the worktape
head of Eison x(h B) whxch is wcll within B (Conscqucnﬂy thc worktapc hcad of E is m B at
timest +1,..,7 + 5;) B

Parameters: h is a binary string of length O(log s,) that specifies the relative position of acell in B.

Value returned: ¢ is the sequence of commands at times T+l LT+ s, Ifany procedure that ’
SIMULATE calls fails, then this call to SIMULATE fails. .
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To simulate E on an input string of # commands, mgve the-worktape heads of D to the base cell
of the page P; of sidc u; that represents B, at time 0, and call SIMULATI with parameters (/,, hg), . '
where #, is the relative position of the origin with respest {0 8;..

1.3. Analysis of the Simulation

We prove that every call to STMULATIE completes successfilly; she prooffor UPDATE is the

same.

R R

Lemma L1, Let rbe a power of 2. Supposc the free volume: of pagc Pisat Icast r" ina
configuration of D at the beginning of a call to ALL 0(' ATF on P l‘hcn ﬂm call can produce the
address of a blank box of side rin the mass store of P : , ‘

Proof. let ¢ < ¢, <-... < g, bethe sndcs of boxes whosc addrc;seg arre‘on ;hé fr¢c storage list
of P. Since the frec storage list has at most 27 - 1 boxes of each distinct side, the free volume v of P
satisfics o - o

v=g 9+ .+ q?< (- l)qmd +27- 1)(q./2)" bt (- X< (2qm)"
If 4 < v, then A< (2q )” hence since ns a power of 2,r< q.’. Conscquemly, ALLOCATL‘ can find
a blank box of side rin the mass store of P [ )

Let D be at simulated time 7 at thc bcginning of acall to STMULATE on-apage Patlevel i>0
that represents block B at time 1. Let m be the value-of the nenblankiecl counter-of Pin this
configuration and m’ = mia {m*, m + s}. Theside of Pisw{ly;mMV9H.

Lemma 1.2. Throughout this call to SIMULATE
(i) P has at most 56 /s | active subpages, and , ;
(i) the total of the nonblank ccll counters of thc actlve subpagcs of P never exceeds 3m'.
Proof. Fll‘SL supposc m = m?. Since B has at most (33/ 1)‘ subblocks. Phas at most (3s/sﬂ)
<mp*/syy <5m'/s, active mbpagcs, and Lhc sum of thclr nQpblank cell counters is at most
(3s/s D myy 3'm . < Sem’. 5 .
Now suppose m’ = m + s, By mducuon onr, al s:mulatcd ume 0t l’ has at most S‘m/s #1 actwe )
subpages, and the total of their nonblank cell counters ;s agmost S‘m At each of S/SH itcrations |
dunng the exccution of SIMULATE, at most 5' new active subpagcs are crcatcd, and Sia K is addpd o,
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the nonblank ccll counters of at most 5¢ subpages. Thius, the minber of Adtive subpages of Pis always
o iost L P s o
Swssy 4 SUs/s )= Swrs,.
The total of the nonblank cell counters of the active subpages of P is at most
[ S‘(’/SHB,-. =5w’. 8 PRI,

We show that during this call to SIMULATE, every call to PAGEADDRESS in Step 2 or Step
4.1 completes successfully. First, we verify that 2 has enough space for the free storage list and the
memory map. Since the side of Pis w((y, »)") < wl(y,m*)"/%).= u, the refative position of abox
in Pcan be spccnﬁcd by astring of (Xlog u) symbols. (By cbmsmg the size of the worktape alphabet
of D, we can adjust the constant of proportionality to cnsure that asscmons (14) and (1.5) below are
tmc) ‘The free storage list of P comprises O(log u) addre&scs oﬂcngth O(hgg,) thus, the fme
stomgchstoccuplcsabmofﬂde , o .
O(log u)' <0G, 1"’) < :«y, m )"‘)/4 149
because m' > 1, 1n the memory map of P there are O(k)g 3) pomtcr bous of fixed volume O(k)g u)
for cach of thc O(m /s .1) active subpagcs of P. Thcse pom:er boxcs ﬁt ina box of volume .

o7, Mog sKiog u)) < ()G log ). ()
the volume of the memory map of P. When PAGEA DDRESS caﬂs ALLOCA TL llm call cannot fail
for lack of space for the memeory map.

Consider a configuration of D just before a call to PAGEADDRESS on Pin Step 2'0r Step 4.1
between simulated time 7 and simulated time 7 + x,¢£<-llﬂhl8 configuration kot Py, P, ... be the active
subpages of P and let ml "’z , ... be the values of thcsr nonblank cell counters; lct P rcpresent
subblock B;in B. The side of P, is #l(y,; m/)/?. The masstoreofl’ho!dsmccomems of smalles
subpagcs that were assigned to B in pn.vumconﬁguratm anse ﬂxcsadtsofthcscﬂnaﬂer
subpages arc powers of 2, their total volume is at most thc volumc of r, namely, ('«le ;)W))"
Consequently, the vdlwmofnscdboxesm ﬂncmassstomof?m mtswnﬁguramn :sbounded by

z, 2(1'((1, " m;) ‘V |
Supposc PAGEADDRESS decides to assngn to By ancw pagc orsidc -r((y,, ;") V4 where
mo= my + i aecouling to thc dcﬁnmnn of PAGEADDRI'XS‘, ‘ o
O ety ‘)>2-«1,,n,‘)’"'1 s
Lemma 1.2(i) implics that | B
m"+ Ep, mj’ < 5. an
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Becausc the mass store has side w((y; m')/9)/2; the froe volume of P i this configuration is at lcast
("«7’ ') /dys2)d — 2, Ay, m; "Wdyd G e L ‘
Ay Uy VRN -2 B3 (0 J,) by (1:6)

>4d7 rr8my—ady, (% mp) = lm myT B

> 44 Yy My w2y " by (LY

> (w((y;y my YWD,
L.emma 1.1 guarantecs that ALLOCATE can find-a blank box of side wé(y ., 1,")'/% in the mass
storc of P. ‘Therefore, this call to PAGEADDRESS completes suecesshully. ‘

By induction on i, ncither the recursive calls to SIM ULATl;ng)f‘r thecallsto UPDATE fail. Ergo,
the call to SIMUL ATE at simulated time 7 complctés saccessfully,

In the memory map of a page at level / of side p< u, to Miove ahead from onc pointer box to
another takes time proportional to p/(4 log s,). the side of the memory map. 'Phds; to determing the
address of the subpage assigned to a subblock or to associate an ‘address with the'relative position of a
subblock takes time e e o

(Ollog u) + O(p/(410g s))Xlog s) = Xu)
because Oflog s) pointer boxces, cach of volume O(log up, are accessed.

Let T (i) be the time uscd by ALLOC ATE on a page at level i, Sincé time O(u) is consumed in
moving the heads around the page and in the memory map and time O((log ur)z) in handlmg the
addresses in the free storage list, '

T () = Ou) + O(log ) = Ow).

Let 7)(J) be the time used by PAGEADDRESS oiva page at 1¢vel I, excluding the copying of
subpages. This procedure retricves an address from the rhemory map (time O(u)), performs some
arithmetic calculations (time O(log u)), moves heads around the mass store {time (Xai)’) and caﬂs
ALLOCATE: R

T = Klog u) + Xu) + T () = Xu).

Let 7@ be the time uscd by UPDATE on pages Q at level i< L, excluding the copying of
subpages in calls to PAGE AI)DRF SS. Evidently, T A0) = O% l) For 1 >0 we asscss the time taken ,
by each Step. ' e ' ‘
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W¢ prove that during the simulation of E by B, the total tigie takeri by copying the contents of
pages in calls to procedure PAGEADDRESS fs O(nl * 9€). Consider a configuration of D at
simulated time 7 at the end of a call to SIMULATE on a page P atlevel i of volume . Let @, O,, ...,
Qf = P be the sequence of pages such that for cach 1 i > 1, prior to smlulatcd time k8 PAGEADDRESS
called ALLOCATE to obtain Q and copicd the contents of Q i1 into Qf Call the sum over jofthe
time for copying Q. i1 into: Q the ancestral copying time for P. “The sidés of these Q are mcrcasmg
powers of 2. Consequently, since the time to copy the com_ems of Qf. | mto Qj is bounded above by
the volume of Q; the anccstral copying time for P is at most twice the volumec of P, namely, 2v. In
this configuration of D let P, P,, ... be the active subpages of P and v, v,, ... be their volumes. Since
these pairwise disjoint subpages lic in the mass store of P, whose volume is w27,

VRS
Call a page P in P at any level active if cither P is an active subpage of P(atlevel i - 1) or P isactive
in an active subpage of P. Suppose inductively that there is a constant-&;- 24 such that for cach j, the
sum of the ancestral copying times for all active pages in PJ over all'levels is at most ks"f Then the
sum of the ancestral copying times for all active pagesin P over.all levels is at most -
v+ Z; key, €2 + kw24 < kgr.
In particular, when P = P/, the page at level L assigned to B, this totakcopying time is at.most
S“L O(YL n) = 0("1 + de)
Thcrefore by (1.1), the simulation uses time
TL) + Ot * %) < (5,75, XOW,) + TL- 1)) + O(nl + de)
) < nl- l/e(o(nlld+ e) + 0(“L~1» +. qnl + a)
< O(nl + l/d 1/e+ e) , (1.8)

Theorem 1.2, Foralld> landalle> d, every multihcad efdimené;xonai Turing machine of time
complexity 7{n) can be simulated on-line by a multihead d-dimensional Turing machine in time
O(T(n)! + 1/~ 1V + Oltiog Tny 1’2)) :

Proof l‘hc constant of proportionality i in a 8) can bc boundcd by k k71’ € where k¢ and k;

dcpend only ondand e. Choosc easa functlon of n to mmlmlze
k k71/e”1 + l/d 1/¢+ e

e = K(log n) 172y Ergo, every e-dnmcnsnonal 'l unng machmc of umc complcxlty 7(n) can be
simulated on- lme bya d-dimcnsnonal machine in Ume 0(7(n)1 + Vd-Ve T 0«"’8 7(”» m’) I
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" Chapter 2. A Space Bound for One-Tape Multidimensional Faring Machines

21. lnmducﬁon

h»is gencerally bclicvcd that the:gompul;a.\tionalv rcsoutccs time and _S;;aggg;m be exchanged for
cach other. | For ins@ncc, a p:ogmm that saves space (storage) by compressmg data spends extra time -
cncodihg ;hc data and dccoding thc @rcd representation, Somg dam;mmres,ugc minimym space,
but require long access timces; others reduce access times by accupying large ameunts of memory.
Quaptitative tradcoffs have been cstablished between time.and space for maltitape Furing machines
[7] and for straight-linc programs {21, 26, 29].

Recently, Paul and Reischuk [18, 23] proved that Ehc tradeoff of Hopcroft, Paul, and Valiant [7] is
. not an artifact of the linearity ‘of the Turing machinc tapes: ‘every detesministic mutitape
multidimensional Turing machine of time complexity 7{n) can be simudated by a deterministic: -
‘Turing machine of space complexity 7tm) dO8" . TW/10g TYn) for-some constant ¢. We derive a space’
bound for a restricted class of nwltidimensionat ‘Turing machines! for cvery nondeterministic &
dimensional machine M with onc worktape head that nuns in tirnc 7Un), therc is a deterministic
Turing machine M such that M aecepts the samé languageas M in spacc”(’ﬂn) Iog ﬂit))d“(d + I)
provided that T{n) is constructible in space (7{n) log T(n))d/(d + l) l ‘

describes a deterministic simulation of 2 nondctéhmmsnc dedfrﬁcnsmnal machme ‘M with just one
worktape head, and Scctmn 24 provcs that thls sxmufatzon uscs space {(Mn) log 'I(n))d/(d +1) when
M runs in time T(n). (All logarithms arc taken to base 2) Thc stmulation and proof gencralize
Paterson’s {15} for thecase d=1

2.2. Definitions

Fix a finitc alphabet 2 anda posmvc integerd A worklape over E 1s a set of cells. each of whnch
can contain a symbol in 2. A worktape is d—dzmenswnal lf 1ts cells are in b:jecuvc con'cspondcnce '
with Z2, the set of d—tuplcs of i mtcgcm. For every x in I 4\ thcrc is a umquc workmpe cell C(x) at
location x. Locanon (xl,. " x‘) lsad;acenl to locatmns ("1 :t I x2 "d) (xl x2 :t 1., x‘)
and (x}. x2, wXgt 1. In 791t eg = (0 0... 0) A box ana subsct odecompnsmg the
d-tuples
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ap X lag, byl X i Xilay b4
for some integers ay, by. ..., ag by The boundary of B is the subset of locations (xy, ..., x ) suelvthat -
for some i cither x; = a;0r x;= b;. The volume of B, denotéd §BY; is the-number of leeations that it
comprises. A confent function on abox Biisamap frem B to E;such dfunction speetfiés the tontents
of cells whose locations are in B. A N oo
A d-dimensional Turing machine (with alphabet.Z) has & sds&immien.a}fwomapc on which the
worktape head can move onc cell aln;lg any of tﬁc d Mma&m%ns in cither positive or
negative dircction at cach step;. if the head reads cell Géxhat step's, {Hen.at ssep 5+ 7 reads a-cell at
a location adjacent to x. In cach cgll the worktape esd cane ﬁri& a symbol flom X theifipatto the
machine js presented on:a tio-way. iead-only eimué tape. dmitplly, atstep 0; tﬁe:wérﬁapé is
completely blank, the. mput headu positioned on h!cwaymhﬂho& theiinput woid; and the
worktape head reads cell (Yeg). . : Pt
Let Mbea nendemmugusm drﬂamcnsmnd T urm wgulwnhm viotktapcthcad) ‘that funs
in time 7\#) on inputs of length n: - for every word of Jength gvthat A accepis there!is agaccepting
computation ef at. most T{n) steps. Assume that & magk all ofitsinpt# T D' ~ and ‘that T(n) is
constructible in gpace (7)x) log Tta) ¥4+ 1), The, warkidpe it veritis on oelfs whose locations
Botn) : = T, T X [-nn,g.atu);x :.ﬁxi-mf Tl
We may assumc without loss of generality that to.acbéptan input wokd, A halts with its worktape
entircly blank, its worktape head positianed:0n Cleg)s and its inputihedd ow ‘the HéRmest symbot of *
the input word. (If necessary, M can be-modified-toicrase its wosktaps by depth-firstsearch on the
cells that it has visited: the madificd machine runs in tisns (T n}}) ‘Ferthercihainder of this'
chapter we consider the computation(s) of M.on aﬁmmmmm i
A partial configuration = on a box B comsiss of - B L

are in the box

. acontent function 6,08 B,
asiate |
a step. number,
a position on (he input.tape, and
a worktape cell location x, such that cither xg, € #0pxy = L (uhspoetﬂed)
Let ¢y be the partial configuration on Bof(x) that specifiesthé initial.configuration en M atstep 0. For -
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sequence of partial configurations w = wg, wy, ... ® g = ponBsuchthatw b=, for cach.i. A
set of crossing records that enter or exit B can specify the entry and exit transitions of a partial
computation. Let R be aset of crossmg rctqrds that cnter orexit B. The triple (w, p, R) is:compatible
if there is a partial computation from w to p for which R specifies the entry and exit transitions.
Define the predicate Comp (w, p, R) to be truce if and only if (w, 9, R) ‘isecommtible.f
Call (. p, R) consistent if cither (i) or (ii) holds: |
() R = @ and citherx,, = L = x, orboth x,, € Bandx,, € B;
(ii) (a) R+ @;
(b) the records in R, strictly ordcrcd by stép number, altcmate between rccords
that enter B and records that exit B;
(c) if Xy € B, then the carhest record in R exits B if x = .L‘, then the earliest
record in R enters B; and ' \ R |
@ if Xp € B, then the latest record in K enters B:ifx p= 1, th¢n the lateét
record in R exits 8.
When (m, p, R) is compatible, (w, p, R) is n-ecessar‘ilyr consistent.
Define a predicate for a box B, a positive in&egcr;l and a set of cressing records R:
Blank-Comp (B, 4 R) : = CW(;g. a L. R).
Machme Af accepts the input word if and only if Blank-Comp (Bgfn), 1, B) is trye for some L.

2.3. Simulation

To determine whether A accepts its input word, deterministic Turing njaghing M’ checks .
whether Blank-Comp (By(n), , @) is truc by rcpcat'cdliygargﬁqhiqg the box By(n) and.the step . .
interval [1, . Using a balanced divide-and-conquer method, M am.rpduces either a set of crossing
records or a partial configuration io aéccnain recursively whqg_,be}"\,a__pani‘alcomputatim onabox
exists. "The consistency condition ensures that partial computations on two boxgs can be combined.

Lemma 2.1, which is straightforward to prove, guarantccs that for cach box, there is some
partition int_o twa boxcs that induces a small number of crossing evepts. Tg;sirﬁp!ify our arguments,
we neglect to distinguish among z, LzJ, and 21 fqr real numbers z; onc can justify thiis simplification

routinely.
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Lemma 2.1, Let Bbe a box with volume v = |51 Let.r2> slbestepsdunngacmnputatmof
M and s = - 51. There is & partition of Binw two boxes By and Bysuchthat
(i) the mumber of crossing events between BImd&z&nnglsi-H sylis at most 3s/v1/d
wnd - .
(i)} B} and B, have volumes between v/3 and 2v/3.

We describe the simulating machine Af” informally. It is not difficult to verify that M correctly

simulates M. n L

‘ 'Whenaproccdurcisinvokcd, it is constrained to opcrate within an amount of space determined
bythewﬂing procedure. If this amount of space islnspm then the invoked procedure reports a
fa:!urc to the calicr. Both procedures B/.ANK-COMP and (‘OMPmn suat@cs in " parallel space™
.mmspaccbounds. ForS=1, 2.3,....(hcygweeachstrawgy,$cc$mcxew1¢- I one strategy
m&m&m&h(m_@hmﬁmdmwcmm#wmmmmak
the value retumed. | |

MAIN PROGRAM FOR M’
For £ = 1,..., Tts) cakeutite BLANK-COMP (B, 1, B) with space bound (TUn) log T(ap?/ (@),
If BLANK- COMP(Bdu). . n;cmmmmmay and s true for some 1, thon accept the input

Procedure BI.ANK-COMP(B, 1, R):

Inpsts: Box &pwmmnmdmngmxakmacm«un&

Ontput: The value of Blak-Cos (B, ¢, K} 0 |

Assumption: There is a space bound for this procedure call.

Method: Let v = |B]. Runﬁmmtngmmhpalﬂdmwﬁhmcbounds If this
invocation of BI. ANK-COAfP rans out of space, then report a &ilum. o

Strategy BI: Retum the value of COMP (1. a \B. ).

Strategy B2: 1f (g, a \B, R) is not consistent, then return false. lterating through all partitions
of Binto two boxes B}, B with vokumes between w3 and 2v/3 and through all scts R’ of at most
31/v4 crossing records for crossing events between By and stcamh for B. B), and R’ for which
both BLANK-COMP (B}, 1, (R U R')\B)) and BLANK-COMP (B, 1,(R U R)\By) arc true. If
suitable B}, B), and R’ are found, then return irue; otherwise, return false.
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Procedure COMP (71, w9, R):

Inputs: Partial configurations o 1 and w5 on the same box B, sct of crossing records R that enter or
exit B.

Output: 'The value of Comp (wy, 75, R).

Assumption: There is a space bound on this procedure call.

Method: Lctv = |Band r = |R]; Ict 5 be the step number of #§ and s, be the step number of a7y
and s = 51 % Verify that(wl, LY R) is consistent; ifitis not, then return false. If v = 1, then
return true if (w |, o, R) is compatible on the one cell whose location is in B, falseif not. If s = 1,
then return frueif oy 75 and, if this is an entry or cxit transition, R specifies the transition;
otherwise, return false. For larger vand s, run the following three strategics in parallel space with
spacc bounds. If this invocation of COAM P runs out of space, then report a failure.

Strategy C1: Reduce r. Determine a step s” at which [R\[s; +1, 5']| = r/2. Enumcrating all
partial configurations =’ on B, search for #’ with step number s’ such that both
COMP(my, o', R\s;+1, ) and COMP (w', my, R\[s +1, sp]) are true. Return frueif an
appropriate ' is found, false if not.

Strategy C2: Reduce s. Sets' = (5] + 55)/2. As in Strategy C1, scarch for #’ with step number
5" such that both COMP (7). 7', R\Isy +1, 5']) and COMP (', 77, R\[s'+1, 52]) are true.

Strategy C3: Reduce v. Enumerating all partitions of B into two boxes By, By with volumes
between v/3 and 2v/3 and through all sets R’ of at most 3s/ v/ dcrossing records for crossing events
between By and By, search for B|, By, and R’ for which both COMP (w{\B}, my\B], (R U R)\B)
and COMP (m\By, m)\B,, (R U R)\B,) are true. If suitable B), B,, and R’ are found, then return

true; otherwise, return false.

2.4. Analysis of the Simulation

We show that M’ uses space O(7T{n) log T(n))d/ (d+ 1)), The amount of space used by
procedures COMP and BLANK-COM P is dominated by the storage required for the input
parameters. _

Since every location of the d-dimensional worktape can be specified by a list of 4 integers written
in binary, cach box B in By(n) can be specified in space O(log T(n)). A content function on a box of

volume v requircs spacc proportional to v to store. Thus, cach partial configuration can be stored in
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space (v + log T{n)). Sincc each crossing record can be stored mspaceO(k)g ﬂn)),asetofr
crossing records can be stored in space O(r log T{n)). ] -
Let bc(v r, ) denote the space required by COM P 1o run successfully on all inputs (), w-,

R)

such that #; and =, arc partial configurations on a box meistep mmbcﬁfxl andszforwlnch '

v=|B8,r=|Rl.ands = 5y - 5,. The definition of COMP implies
Sctnrn)Lkjv+ (r+ 1)log N
+ miin {Se(v, /2, 9. S v, £, 7, S w3, v 4 3714, 9}

for aconstant ky. Simitarty, let S gl¥, r) detiote the maximum space vequired by BLANK-COMP on

inputs (B, 1, R) for which v = |Bland r = {R]: The definition of BT ANK-COM P implies
Spn ) < kofr + Dlog T 4 min {Sc(v. 7. n 9,,(2#} r+ 31'/'1’4)}
for a constant ky.
Fix § 1= dA(d + 1) and
ky:=2X né -
Choose constants kg, ks, ks, and k7 such that
| kg > 12k,
b >k + 8,
ks> ) 4+
kg <OVl - ks -
k7>4t4+(k2+ k4)k5+ te

Lemma 22, Sc(v.7. 9 < kv + (r+ I+kgx)kgT+(xh;1)‘).

2.D

o
Q3
29
Qs
(26)

Proof. Bymdncnonon(v r.t),micxlcographlcorder r=1lors= I,thenCOMPusc&oab

the space occupied by the inputs, kj(v + (r + 1) log 7) space. Otherwise, there are four cases.
Casel: v<(r+ 1)log Tand r> 1. Thea
Scnrn)<ky(v+ (r+ Diog 7) + St 172, 5)
SQkr+ D+ kgDlog T+ k(v + (0 + logs)lngT-i—(slogn")
Shyrlog T+ kglv +'(1 + hog ylog T+ (510 DB
because kg satisfics (22) and r > 1.
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Case2: v<log Tand r = 0. By (2.2) again,
Sc(%0,9 < ky(v + log ) + sc(v.o vy
< 2kplog T+ ky(l + log (/2) log T + ky(v + (slog 1)8)
S kylog T+ kyllog 108 T + ke(v + (slog ).
Case3: v+ (r+ Dlog TS ky(slog NP Use23)to cstabhsh that
Scv. r,5) < k(v + (r + l)log 7) + Sc(v‘,r s/2) ‘
< (kg + kg/20Xs1og I8 + ky(v + (r + 1 + log (2)10g T
S kg8 D8+ kyv + (r+ 1+ log J1oR T,
Cased: v2 (r+ 1) log Tand v +.(+ + 1)log T2 kﬁxhg'f)‘ In this case,
k;(slog?)&g% FRENI

hencesinced = d/(d+ 1), - IR
G mg-wvlfdﬂ.g (m3)1/5v. e e
SC(v rs) < ky(v+G % l)dogﬂ + sdw}, 4 awW
< (kg + 2kg/3 + kgllr + 1 + 319 4 1og s)log T + (slog TP)
< (@ky + 2kg/3 + 3k k) 8y + ky(r + 1 + Tog 5) log T + (5% 10 -
Skyy+ kyr+ 1+ log ) log T+ (slog 7)‘)
by (2 7. (2 1) and(2 2). |

Lomma 23 Jf(nogntsgmawrs ksmw boamzia
Spn D < k(T log B+ lngleg ws(’mgwﬁlfd
Proof By induction on v. 'Iherearctwocases. SR R
Case 1: 5 3(Tlog 7)8 Aocordmg mmehyppmem, o o
"+ 1)ios T< ks(T1os TV(Tiog Y4 = kg(Tiog 7)5;, A )
Lemma 2.2,(2.8), and (2. 6) nnply , '
© S r)<k2(r+ Niog T + Sc(v r, 1) .
Skgv+ kyr+1+10g Dlog T + (kzks + k4)(Tlog 7)3
< (kg + kg + ks + kXTlog Dl 4 kyNog B2
< ky(Tlog NP - kg(T1og T/¥M/9 + kyliog TY.

i.‘i‘
i
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Theorem 2.3, For all 7{(n), every nondeterministic 4-dimensional machine with one worktape
head that runs in time 7{n) can be simulated by an alternating Turing machine in time
(max {, (T(n) log T(m)d/(d+1)y),
Proof. {Sketch) In the simulation in Section 2.3 make the following routine modifications.
(i) Guess T{n) nondeterministically.
(ii) Choose strategies existentially without imposing a bound on space.
(iii) Replace iterations through partitions of B and through enumerations of R' and o’
by existential choices.
(iv) When a strategy makes two proccdurc calls, choose both universally.

‘T'he time analysis of this modified simulation is identical to the space analysis of Section 2.4.
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Chapter 3. A Nsteonthe?ehbk(;m

A combinatorial "pebble” game on graphs has been uscdwcstabﬁsﬁ tradeofTs between time and
space required for arithmetic cxpression evaluation [21] and for Turing machine simulation [T}, One
places pebbics on the vertices of a directed acyclic gmph"('iﬁ steps accosding (o the following rules:
| (i) Asreplsm{hcraplaccmcm ofapcbblconancmpty vertex orarcm(wal of a pcbble

from a vertex.
{ii) A pcbble may be placed on a vertex only if there arepcbbicson all xmmcdiate
predecessors of the vertex. (Thus, a vertex with ro prcdcccssats can a&waysbc pcbblcd.)
(ili} A pebble may always be reinoved from a vertex.
A pebbling strategy is a scquence of steps in the pebble game. The goal is to find a pebbling strategy
that places a pebbie on cvery vertex of G at Icast once when the supply of pebbles is limited. This
pebble game has been studicd cxtensively; I.cngauer and Tarjan [1 1] provide an exhaustive list of
refcrences. .

This note develops an explicit strategy that uscs (Xa/log a} pebbies to pebble cvery directed
acychic graph G with # vertices and bounded indegree. Fusthermore, for every S 2> (Xn/log n). a
variation of this strategy uscs .S pebbics to pebbile Ghzmszﬂmscp& 'Fhe proofs of these
upper bounds, which employ an overlap argument [16], seem more natural than the original proofs
piLm

Fix a dirccted acyclic graph G = (¥, E) with vertices Vand edges E. Let n = [Vl and dbe the
maximum indegsee of the vertices. For subsets W}, W5 of ¥ ket X}, W) be the set of edges from
Wio Wy

BWL W)= {(xp)(LNEE x€ Wj,and y€ W3}.
Let WC V. A scquence (W), ., W,,) of subsets of W is a layered partition of Wif { W}, ., W} isa
partition of W and EXW;, W) = @ for all iand jsuch that i< j. Let (W) denote the internal overlap
of W- .
(W) = max{LAW}, Wo: (W}, W;) is a layered partition of W}.
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Lemma 3.1. If o(V) = r, then G can be pebbled with:r + 1:pcbbles in 2 steps.

Proof. Our pebbling strategy compriscs n Stages.: Put Wy = @. For j = 1, .., n, assume
inductively that Wfl is the set of vertices that have been pebbled priot to Stage j. At Stage f place a
pebble on a vertex xin V' \ Wj—l’ provided that all its immediate predecessors hold pebbles, and put
Wj = Wj—l U {x}; then remove pcbbles from all vertices y for which all iimmediatc successors of y
arecin W f: At the end of cach Stage, a pcbble remains on a vertex z if and only if some immediate
successor of z has notbeen pebbled.

The rules of the pebble game guarantee that every (W j,j;V‘\ w j)is a layered partition of V. By
hypothesis, every II:XWJ-, Y\ Wj)l < r. Therefore; at the end of eachi Stage there are at most 7
pebbles on the graph, and the strategy uses at most r + 11 pebbles. ‘The strategy. has 2n steps because

for every x, a pebble is placed on x and removed from x just once. 1

Lemma 3.2. Let (W}, ..., W, )bea layeredﬂ partition of V. There is a strategy that pebbles G with
at most ' Lo s
Z; WY+ d 1)
pebbles.

Proof. By induction on m. For m =-1, Lemma H?ssetts a forliesi th‘ht, ya(Wl) pebbles suffice.

Assume that the subgraph of G induced by V' \ W,=WwWu.u W, can be pebbled with

3 (w(w,) +d+D
I"l R At e, et

pebbles via strategy S,,,.;. We describe mfbﬂnaﬂyhoﬁv to’f)ebﬁle veitices in W, usmg
W,) + d + Lmorepebbles. e

Let P, beasctofw(W ) + lpebbiesand(z‘ beésctofdpebblcs. The pebbles in P, are
placcd only on vertices in W), Thepebbles in 0, arcplate! ‘only‘on vertices in ¥\ W

" Asin'the proof of L.emma 3.1, our strategy éompriscs W"}Sta’ésand‘ uses at most w(W, ) + 1
pcbbles on W, At each Stage'seleet a vertex x W matﬁakﬁatyétbecnpcnbiedbman ‘
immediate predecessors of x i W, hold pebbles:: Ule strategy S, w1t blaCe pebbles from Qm
the immediate predecessors of x in ¥\ W, These Q,,-pcbbles remain on the immediate

predecessors of x until x is pebbled. (By hypothcst& no vertex in W, is an immediate predecessor of
avertex in V'\ W, thus, strategy S,,, | may always be cmployed.) Place a pebblc from P, on x.
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Remove all Q,,-pebbles from the graph, retuming them w Q,,, forlater use. - Also, remove pebbles
from all vertices yin W, for which all immediate successorsof y in W, have been pebbled, and
return these pebblesto £, § '

Lenuna 33. For every r, therc is a layercd partition (W}, W, )of ¥ such that m < 2T /71
and Z; (W) <. SR

Proof. Assume, to the contrary, that for cvery layered partition{Wy, ... W, Yof ¥ if
m <M1 ghen 5 (WD 1. Letig = Tdu/riand ¥y g = V. For i =0, ig- L induetively
supposc sets Vijforj = 0, ... 2 - 1 have been defined. Fer cach jfind alayefed'baiﬁﬁon
Vi1 - Viv12j+ D of ¥y mmm’zuzy Virt2j4+14= “‘V.} By assumption, for
every i, ’ ' ‘

Ejo(Vl-J))r.
and consequently,
Zkip T VP > dn
Bydcﬁnnmnofmcsemy , the scts of edges (¥ +121 ,+12}+1)mpwwxsedmnt Since G -
has at most dn edges, R
R

" Theorem 3.1. (Hopcroft, Paul, and»‘ila!iam[?bfﬁ;fén&ectedacycﬁcgmph with a vestices and

bounded indegrec can be pebbled with ((w/Tog x). pebbles. . '

Proof. Let G = (V, E)Madmxmmmfsmwwd Lot S(n) satisfy
S Owgm,
log, (S(ay(zd +2)2 rw,su)l
According to Lemma 3.3, there is a layered pactition (W), —.. W) of ¥.such that m < 2”""/3(")‘
and Z; (W) < S(aV2. For this partition |.cmma 3.2 asscrts that same straiegy. pebbics G with -
3 @W) 3 d+ DS SM2 +mdt U S, .

pebbics. ; .
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Theorem 3.2. (1.engaucr and Tarjan [11]) For every.a. d, and:S.and every-directed acyclic graph

G with n vertices and indcgree d if (3d + 4)n/logz n < S < n, then there is a strategy that uses S

/
pcbbles to pebble G in at most S 220(" S)

Proof. et G = (V, E). Scta = 2d/(3d + 2)andﬁ (d + 2)/(3d+ 4)andy l-a- B

Evidently, log; logy n < (logz n)/2 because (3d + 4)n/log2 n< n lmphcs n > 16. It follows that
log5 (BS/(d + 2) 2 (logy /2.2 (34 + 2)n/2S + WS 2 di/as + 1, -
hence (d + 2)2F a1 < gg '

Apply Lemma 3.3 with r = aS to obtain zilaycredpor»ti:tion ( Wl W, of V with
m < MW aSVguch that B (W) < aS. Fori=1,...m, Ict Pibea sctof (W) + 1 pcbbles
Distribute the remaining BS-m + S pcbblcs among sets Ql Qm such that each
Q)2 LyS|W)/nd +d+ 1. ‘

We define the pebbling strategy inductively. Lct 7Ik) be thc numbcr of stcps uscd by l.hlS
strategy on the subgraph induced by Wy U ... U Wk For k = 1 thc stratcgy m the proof of Lemma
3.Luses w(H)) + 1 pebbles, and TT1) = 2| < m

Suppose that strategy S, _| with ’Itm 1) stcps uscs the pcbb]es in Pl U. U 1’ -1 and
oju.. U Q,y;-1 to pebble the subgraph of Ginduced by 1% \ W To pebble vemces m W
out thc strategy in the proof of Lemma 3.2 with the foﬂowmg modmcauon Whencvcr thc immediate
predecessorsin ¥\ W of avertex in W must be pcbblcd, use strategy sm—l to place pcbblcs from
Q,, on the immediate predecessors in ¥\ W, of the L[le/dl vemccs in W that arc pcbbled next.
Strategy S, isinvoked at most I" m ,I/LIQ nlldJT <f dnﬁS“ Umes. Therefore

nm) < T "1/L|le/d.n nm 1) + 3 mel '
L+ dn/yS)T(m 1) +2n C
S+ +d/yS)+ .+ 1+ dn/yS)’"'l]
< n a+ dn/yS)’”l(tbﬂ/yS)
< (27/(1}8’ cxpj exp2 (I' dn/'aS‘l + log2 1032 a + dn/yS))
= 5209 |

(In general; expy u = 24) 8
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structures.

A tree machine has a finite-state control and several heads on a worktape hgvingythe structure of a
complete infinite binary trec. Section 4.2 presents an argument that suggasts that to simulate a two-
dimensional Turing machine by a trec machine on-linc requires time £ a (log n)V 2) if the simulator
uses space O(n). Proofs omitted from Scction 4.2 appear in Section 4.3.

Scction 4.4 outlines further rescarch problems on comparing automata with different storage

structures.

4.2. Static 'mbeddings \’crsqs Dynamic Simulations

Let ¢ be a simple cmbedding of T, into a bindry tree B, Call a pair of vertices (x, y) a separated
pair (for ¥) if TR R
A3 YO 2 g m- (logy logy m)3 - 3.
A path (vg. ..., v)) includes a consecutive paitof vertices (x y) ifx = v and Y= + 1 for some 1
DeMillo, Fisenstat, and Lipton [1f proved that scparatcd pairs for \I: cxlst. Proposmon 4, 1 whlch is

proved in Scction 4.3, asserts that som¢ path in l‘ mcludes many consecutlve separated palrs

Proposition 4.1. For cvery bmary tree B every.even m 2 32, and every simple embedding - of
[ into B, thercis a path in T, of length at most 7m thauncludeg at Jeast.
m/ 32(*03223)1? .

distinct consecutive separated pairs.

We employ Proposition 4.1 to argue mfonnally that every tree machmc that simulates a two-
dimensionat Turing machine on-line in space ‘O(n) for i mputs ofTength n may requnre time
Q(n (log n)1 / 2) in the worst case. This argumcnt hmot been devclopcd into a ngorous , proof yet,
however. )

Consider a two-dimensional Turing machinc M with one worktape head whose inpui alphabet
consists of the cight pairs <b, §> where b € {0, 1} and 8 is oné f the f(%)u'rlc'iirccti(;ms that thé worktape
head can move at cach step. Machinc M opcrates in real time = it prdcééses'bﬁﬂnpﬁt symbol at
- cvery step. Supposc M is in a configuration in which the cell C scanned by the worktape head
contains b; on input <b, 8>, M writes b on C, writes b’ on the output tape, and moves the worktape

head in dircction 8.
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Let M’ be a tree machine that simulates M on-line in space O(n). Assume that for every workiape
cell Cof M, machine M* mg:soncofmtmctapeccﬁs 10 hold the contents of C. Thus, M
dcwnmnesasmpkmnbed@gofevefyfm into its binary Ince structure, R
. Construct an input word wof length mas folfows. “The fitst n/2 symbo’ls of winduce M to fill a
square of side m = (n/2)!72 on its worktape with 0's dnd 1S "T'hd Tast #/2 $ymbols drive the head of
M on n/18m paths of fength 9 that each includes at'least nir32(0og, #)*/2 distinct consccutive
scparated pairs of cells; cach of these paths begins with a path of length 2/m that drives the wwkiapc
head of M to the first cell of the path of Iength 7/ whose cxistence is guaranteed by Proposition 4.1.
Because M’ has a finite-state control, it can rcmc:ﬁ‘bt':‘ﬁicamténkoémﬂy aénﬁcnumbcr oF i
scparated palrs mtcmall y-. Conscqqcnﬂy. itis plausxhip that forcach ‘0ew separated paif (x, 3) that M
encmm{crs, M’ spcnds time Q(log ) moving a worktape hcad fmm the representative of x o ibe -
representative of y. Hence on m.,put w, M may reqmrc mpc ;
- ﬂ[('i/ISIIIX;n/32(bgz m)""xno; m)] = Qn (log m}” 2) o gog ol
A trce machmc M- that uscs supcﬂmcar space mlghl simulaic M, &Slg:{. Reischuk {23] devised an
on-linc snmulzmon that operates in nme O(n ‘Jog ”) for acpasiant ¢, but uses space O(n chg‘
Each cell that M uscs has (Xc“’g ") representatives in the workiape of M™.
‘. Lipton, Fisenstat, and DeMifio {13] introdced @ formubition f data'struciure embe:kﬁnglha
permits multiple rcprcscnmmcsvfm ofﬂ'oc gucit graph. et G = A Fyand H = (V‘ E*)be
graphs. An embedding of G into H is a map @: P= +»' ‘P {A}, where A € ¥, such thailgq(x)j >1
for every xin V. If g(x*) = x, then x* is a representative of x. 'ihésrzkcasmf, s
max {]w ](x)i x€ V} Thc slmng tmaecosi Ts(f)cfga glia;smaﬂcsi Tsuchthat
forcvcry x* in V‘mchtimty(x*) # Aand cvetyym Vanhthﬂddﬂx‘),y}( 00,
 there ex!sts y*in 97 lp) and dpgx®, ) S Tdgle(rhn)-
The meak time cost Tu‘?’) of @ is the smallest 7 such that
- forevery xand yin ¥ such that dg(x, y)< 90, there exist x* in ¢ {()andy*in vl
suthad,,(x*y'xrddx,y) L '
In gencral, TP 2 T f9). Ifg hasspaccwsu then T,(p) T‘(,).
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Proposition 4.2. (Lipton, Fiscnstat, and DeMillo [2}) If g is an embedding of T, into a binary
trec with space cost S, then '
T(p) + logy logy $ 2> Iogz m-c log; legy m

for a positive constant ¢’ independent of m.

Reischuk’s cmbedding of F ,into a binary trec [23} has space cost clo8* M pence unbounded
strong time cost by Proposition 4.2, but bounded wcak nmc cost. His snmulauon runs quxckly
because the weak time cost of the cmbcddmg is constant. [’hcrcforc chsahuk s simulation suggests
that the strong time cost measure may be mappropnatc for cstdbhshmg a lowcr bound on the time
required by a tree machine to simulatc a muludlmcnswnal T urmg machmc on-linc when the

simulator is not confined to (Xn) space.

4.3. Proof of Proposition 4.1

The graph G = (V, F)is connected if for every'xv y in V‘there is apalh from b'e to y Let U C V.
The boundary of U, denoted 3 U, is the set of vcmces m U that have a ncnghbor in V\ U. Wntc Q)
for the subgraph of G induced U. A connected componenl of Gis a subgraph o W) mduced by a set
of vertices W such that (W) is connected and d(,(x z) 00 for all x m Wand zin V \ W The size
of a component is the number of vertices that lt has.

If P is a path from x to y and Py is a path from y to z, thcn the concatcnalzon of Pl and P,,
written Py « P,, is the path from xtoz obtained from Pl by replacmg thc last vcrtex y by Pz The

concatenation operator « is associative.

Lemma 4.1. For every set &/ of u vertices in I‘m théfc is la path of length at most 2m (vull 2, 1)
in T, that includes all the vertices in U. : " |

Proof. (Steiglitz and Papadimitriou [28].) Sets = F m/ul’ 25, h‘ f' m/s'l 1, and for
h=0,.. A"

Up =1 (.)€ Uandhs + 1 <j < (h+ Dskh;

{UO, Uh*} is a partition of U. Construct the path Paﬁ follows. First visit the vertices in Uy in
lexicographic order, then the vertices in U] in reverse lexicographic order, then the vertices in U, in
lexicographic order, then Uy in reverse lexicographic order, and so on. (In the usual lexicographic

ordering of pairs of integers, (i, j) precedes (7, f) if cither i< or i = i’ and j<j.) Index U according



to the order visited by P2 U = {(iy, jyk (i, e - (i i) Set Aig = lig 41 - ixfand Ajp =
Uk +1-Jad Mg ) and (g 1. jg 4 1) arc in the same Uy, then Aj, <s-1; if (ig ) € Upbut
CGrs1ik+1) € Upy 1 then Ajp < 25-1 = (8=1) + s ‘Therefore,
o A <@u-DUs-D+ Ps<u(s-H +m
One verifies routinely that
Ek A’k <(K* + l)m <(1 + m/s)m =m + m2/s.
Ergo, P has length
Z (Azk + Ajk) < 2m + u(s l) + n12/s

<2m+ u(rm/uln'l D+ mZ/rm/ul,z'l

<2m+m Vz+mul/2 ‘

<m@2+1.8

Lemma 4.2. Let o be a sequence of ssymbols over {a, 8} and let b be the number of B symbols’
in e. Forevery r< b/2 mcfeisaconsecutive_,mbsemuc:pccof q_qf Fsrf_(b-QW symbgl_sthatgonlains
atleast rsymboks B. - -

Proof. Sett = Msr/(b- NY; note that 1 > sr/(b r)mphtslb/(s-l- t)>r Fonnascqumcec
oflrs/ﬂsymbolsbyappcndmglfs/ﬂ ssymbobatoehecndofc Pan.mona intol/1
consacumewbwmmcsoﬁsymbolseach Oneofdmconsecumcmbseqnmac musthaveat
least WT /01 > bA(s/t + 1) = /(s + 1) > rsymboks 8. If 6 ”i muheﬁnalmbsequcaceofc,
thenmsawbscquenccofa othennse,nfc nstheﬁmlsubmucnccofa menthelasl.tsymbdsof
aﬁrmaconmcnnvcstuenceofownhazmrsyMﬁ 2

Lemara 43, Let m > 32 and U'be a nonempiy set of vestices in I, mmm<m2/zmd
I, {Uis connected. For every r < (1UV8)172, tbctelsapathl’oﬂenglhatmnsl‘)r I that inclodes
at least r distinct vertioes of aU. | | | ’

Proof. Call i, in ®,, a boundary vestex if (ij) € 3U: call other vertices of ® ,, nonboundary
vertices. We shall find a path with at most 9r vertices that contains at least r distinct boundary
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* = max {i: (i §) € U for seme j},
i, = min {i: (§ j) € U forsome j},
J7* = max {j: (i, p€ U forsome. i},
V J, = min {j: (i, )€ Uforsome i}. .

Case I: Either i, > 0 or /* < m and cither j, > 0 or /* Cm. Without loss of gencrality, assume
*-i 2 J*-J,. Becasue . , s
WL (- i, + DG*-j, + D),
it follows that R |
| #oi,+ 1202
We construct a path Q such that for every rg:(jWS)l/ 2 <@*- i, + 1)/2, there is aconsecutive
subsequence of @ with.at most 4r vertices that contains at least r distinct boundary vertices.

Assume j* < mr; the case j , > 0 s similar. Since ' £U) is connected, for cvery 7 such that
i, £ i< *there issome jfor which (i; ) € U. Fer.i =i i, + 1, .., /* set

XD = max (i GHE UL
By assumption, every Xi) < j* <m; thus, every (.. Ki)) is a:boundasy vertex.
Fori=i,i_ + 1, .. -1, construct a path A-from (& X)) to:(i + 1, i +1)) as follows. If
K> Xi+ 1), thenlet ()b thepath LRI UL
(i KD G KD - 1), s (L KE A A) + D Ki + D) G+ LK+ 1)),
all vertices on this path except possibly (i, i + 1)).arc baundary vertices; I X)) << Xi~+ 1), then let’
() be the path R L f .
GAD G+ LANG+ LX)+ 1), .+ LA+ 1D-1), G+ LK+ 1))
all vertices on this path except passibly (i + 1, Xd) are boursdary vc:iic&t‘.

Set @ = QGi,) « Xi, + 1)+ ... » Q(* - 1). Pathh Qroomtainsthe:*- i, ++ 1 boundary vertices
(i, K1), which each occur cxactly once in Q. Let &' be the number of other boutidary verticesin @; -
each of these occurs at most twice. There are at most # - i, eceufrenoces of:nonboundary vértices --
one in cach Q(?). Path Q has at most 2(* - i,) + 2"+ 1 vesticos; inchading repetitions; it has at least -
- i, + 1+ b distinct boundary vertices. Apply Lemmad4.2 with s = 2(*-i) + 2b'+ land b =
*-i, + 1+ b toobtain apath with T(Q2(*- i) + 20"+ DoA™= i, + 1 + V-9 L
T*-i) + 26" + DA - i, + 1)/2 + b)Tr < 4r vestices that contains at least r distinct boundary

vertices.
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Case2: i,=0and* = m. Forj=1, ... msct
Ui=Uun (1., . (m, p}; -
U is the jth column of U. 'There is at Jeast one clumna Uy such that U} < T'm/27; otherwise, all m
columns of U would have at least F/27T + 1 vertices, and m > w(Fm/27 + 1)> m2/2, contrary to
hypothesis. : .- i
Let{Uy} = u, and fet i}, ..., i, be the i in increasing order for which (i, k) € U} Define
Ki)=kfort="1, i
We define KAJ) for other i as follows. Set j; :0 Oand iyg1=m Since [‘m(U) is connected, for CVcry
0 < 1 < ucither
() for every isuch that i, < i< i, , ; there exists j< kmch-m@ A€ Vo

(b) for every.isuch that i, < i<y,  thereexists j> ksuch that (L JE U

If condition (a) holds, thencall [i. i,., 1} an interval of fpe i), and for i i< iy ). set
| © AD = max {7 j<hand (EHE VY.
If condition (b) holds, then call [, i, , ] aninterval of type (B)-and for i < i< 't+ 1o set
- Ay =min {j: 7> kand (i HE Uy '

By dcfinition, unless / =: i, for some {, every (i X)) € L. - ‘Thus; at:least #1- ¥ > Lm/2J vertices of
the form (i, X)) arc boundary vertices. : R '

- Fori=1,..,m- I, we dcfine apath Q(:)fm(z.xmxo(;+ 1, Xi +1)) such that at most one
iderior vertex of ((4) is a nonboundary vertexw, Suppose [i; i+ lies in an intcrval fipigyq) of type -
(a); the definition of Q) for an interval of type (b) is similar. If Xi) > Xi + 1), then let (i) be the

GCEN.GAY- D, G K+ 1+ DG RX+ DG LK+ D)
all interiog vertices on &mpﬂhmm&h + l))amhanndarv vertices. if.K:}< Xi+ 1),
then Jet @ be the path o7 ‘
(L AP+ LA+ LK) + 1), o (i + LA+ D) -D 6+ LK+ D)
all interior vertices on this path except possibly (7 + 1, XJ) are boundiry véstices.

- Set @ = (1)e X2) » .. « O(m - B). Thispath contains at least Lonf2: boundary vertices (i K1) '
for Xi) # k. Let@ have &' otherboundary vertices; cach of thésc edcurs at mosttwice in Q. Path.Q
has m vertices (i, ) that cach occur once; it has m~ 1 occurrences of nonboundary interior vertices
among the Q(i). Thercforc, Qhasatmostm + 20’ + m-1 = 2m + 2b'- 1 vertices, including -
repetitions; it has at least Lm/2 + ¥ distinct boundary vertices. By hypothesis, r < (UV8)1/2 <
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m/4 < Lm/23/2 + 1/2. Apply Lemma4.2to Q with s = 2m + 25 - 1and b = Lm/21 + b to find
a path with :
FQm + 26" - Dr/(Lm/23 + 6" -1 < TQRm + 26 - 1)/(Lm/24/2 + b - 1/2)r
<T@m+ 2 - 1)/(ml4-1 + B)1r
< 9r (because m > 32)
vertices that contains at least 7 distinct boundary vcrtiées;

Case 3: j, = Oand /* = m. Similar to Case 2 s

Lemma 4.4. 1.ct U* be the vertices of a subtree ofa binary tree. For every subset 1V* of rverticcs
in U*, at least /2 vertices of W"‘ are at d|stancc at least log r fmm vertices not in U*,

Proof. I.ct D =log r-1. The maxnmum number of vertices of W* lhat can be at distance at
most D from a vertex notin U*is2P-1 = 2 - 1 At lcast r- (r/2 D2 r/2 vemccs of W"‘ mustbe

at distance at least D+ 1 from vertices not in U" l

Proof of Proposition 4.1. Let U* be the vertices of a subtrcc‘bf'ﬁmeh that r2/4 < WY U™ <
m/2; such a subtroe exists because m s even. Set &= ¥~ MU*); Let the sabgraph T*, (U) induced

by U have ¢ connected components; and let Uy u2. + U, bethe sizeiof these comiponents in
decreasing order. ‘

Set M = m? and kg = log M - log log 2. (Al logarithms are taken to base 2. ) Fork=0,1,
4 = u/«z" ‘mm: h’isfzk»xbg m):; :
By dcﬁnmon, lkO =1L | R ; e

We claim that for some k there are at least 2" connccted COmponcnts of T, (U) of size at least ¢;.
Suppose, to the contrary, that for every k there are at most 2% - I componenits of T', (U) of size at least
{- Then uy <1g. Since there is at most 1 component of size at teast 1y ;hii’d‘iiliz uy > w3, we infer
that uy <1y and u3 < 1]. Ingeneral, forall kand all0 < j < L 1,
<ty

“ok
Consequently,

ko
0= 2; u;< = 2Ky, = (kg + 1X(M/4Tog M) < M/4,
k=0

But U] > M/4. Contradiction.
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Let Uy, . U, 4 be the seis of vertices of the 2 largest componeats of I (U) such that |U4 > 1
for cach i For cach i, [U} < U1 < /2. Apply Lemma 4.3 with r = (13/8)!/2 to obtain a path P;
of length at most %(1/8)1/2 - 1 that contains a set: W; of at least ¢£/8)1/2 vertices of 3U; Put

W= Uw
WIU Sk

By definition, J] > z“u,/x)m 2K/ 2180008 my? /2, and cvery vertex in 1V has a neighbor in
o \U. o | ) , L
By Lemma 4.4, since $(H) C ¥(U) = U*, at leasthalf of the vertices ift $(W) arc at distance at
| hg!w:mgm (loglogm}2-3

from alt vertices in &(Q N !.et Wbcasctoﬂlﬂnvcnr.esxm Wsuchthat(x ))maseparated
pair forevery yin @\ U.

Lc{ylbcthcﬁrstvcncxml' and z; bcthclast. LetP bcapathfmmz tu},whoselcngtblsat
most the length of P Let @; = P;o P/ pa{hQ,ﬁmn),my,haskngxbatnmlﬁtklx)ln 2
Invoke Lomana 4.1 - obtain a path dengm,am,mz"ﬂ) + 2 thiat visits cvery y; Construct
a path & from R by substitting 0, for aw occurrence of y;in & for eactvs. Pati ' Bas longth at mhokt

20282 + 1) + 2Rani a2 -2) < 4tk 22X Dgursiiog my 2 2 |
< am2t/2 4 2k 213016 -2 (heamen)lG)
< Gm2k/2-2
and includes the vertices in . Apply Lmunauwuns:wm.b: Iw1>
222,/16010g )12 and r = mi3xlog )2 10.0btaim a Sabsequence S of R of length at most Gt
with a subset B~ of m/3(log m)/2 vertices in W. Construct path §* from Sby replacingan ~
occurrence: in S of each veriex x in W™ by the sequence (x. ¥, x)-for some neighbor y of xsuch that
y € ®,,\ U: by definition of W™ cach (x, ) is a scparated pair. Path 5' hat longthvat most
6 + W] < T and inchudcs at least [I"] = m/32(log m)}/2.distinct separated pairs. §
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4.4. Open Problems

A comparison of multidimensional Turing machines and machines withrothclf storage structures
describes quantitatively how the structures of the machines affect their cf'ﬁci.cncy. When studying
these machines, we may attempt to generalize mcoremé abbut éonvcn'iion’al one- dimcnsional '
machmes But we should not be interested in gcncralnatmn for lts own sake. Rathcr we should
~ determine what propertics of conventional I uring machmcs are not amfacts of thc lincarity of the
machinc’s tapcs to dcmonstratc lhal phenomena such as the time-space tradcoff 7] occur ,
ublqum)usly in computatnons.

'The following problems remain open.

1. Can a d-dimensional Turing machine simulate an e—dimén§ional\"l‘uring machinc of time
complexity 7(n) in time O(Tn)! + 174~ 1/¢) on-line?: Orcan the lower bound @(T(m! + 1/d-1/¢)
be increased? -

2. Can Reischuk’s simulation ofa multidimensional machine By a tree machine [23] be
improved? Ifthe space used by.the on-line simulator is‘restrited to O(a) when the gi-dimensional
machine runs for » steps, must the simulator use @(n (log n)1 -/ d) time? T

3. Can a ddimensional machine simulate a tree machine of time éompicxity 7(n) in time
onw! *+ Va0 T(n)) on-line? | -

4. Do similar time bounds hold for simylations amohg ﬁ;)ndetcfminisgic machines? Can a .
nondeterministic Turing machine of time complexity 7{n) be simulated by 2 nondeterministic

machine in space T(m)/log T(m? * - - O T A B TR
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