DATA DRIVEN LOOPS

Gregory R. Ruth

Key Words: Automatic Progranmming
Software design
Very high level languages

This empty page was substituted for a
blank page in the original document.

Contents
I Introduction............... |
l.i The HIBQL Language: A Brief Introduction. ool |
LEU FIOWS. ..ottt ettt e e e 1
112 Flow Expressions......................... e e 2
113 Flow Equations. e . .‘ e L Yawens 3
14 Example... 3
"~ 115 Additional Information. if ces .i U 4
12 Iteration Sets and Explicit HIBOL... 'j TR P 4
.13 Implementation from a HIBOL Description. EUUTTROT .6
'H Data Driven Lﬁops e e 7
| Structureof!)ataDnvcnLoops................;;... T n
L Loop TErMINORY. -+ eeee e I
12" Kinds of Computations and Th?lr Loops................. i iaeaaaa]
oz Simp'leCprAnpt:uations.r....'.. TR °
122 Matchmg Computations. e, e .‘ .i ce ... 14
11221 Expressions Involvmg Flows with a Uniform Index........... .' el
11.2.2.2 General Discussion of Exprcssions lnvolvmg Flows wilh Mixed lndlces)
" 11.2.23 Mixed-Index Flow Expressions Aﬂowed in HIBOL. . . .' .‘ 18
1123 Simple Reduction CompUEtONs. +.~+ 1o rooseeeeeseeeeen. 24
1124 Aggregaté Computations.:’ eienss 28

B {

Data Driven Loops i

General Loop Structure and Description. U TR 28

i

Data Driven Lodgs
1131 Formal Representation of Nested Loop Strwctures. 28
1132 Computation Implementation.oerneeuneuannnonnns 30
1321 Level Position of /O and Cakuhtm 30
11322 Position of /O and Calmhmns WithinMAssigncd Levek. 3
133 Examples. TR .32
111 Computation Aggregation and Loop Merging.. ' 36
HIi Loop Aggregatability........... TR %
1111 Level Oumpaubmty Between LOOPS.ooooiniiii i 37
11112 Order Constraint Compaubnhty Between Loop& 38
T2 Merging Loops........................oeeenn.s e 4
1113 Non-Totally-Nested Loops. 12
i Examp!e L Aggregating Computations with lncompatible 6@& Constraints. - 3
HI3.2 Example 2: AggregatingCotnptmmThﬂmmwﬂ—wﬁbh....f44
iV DnvmgFlowSets ... R AR 46
i ATheoryorindexSasamcmiallm&ummupﬁmgm...,, 17
| lV.l.lDeﬁnitimsandUsefutLum;......;...c.f...4...v....’.....4 e 417
IV 12 Critical lndexS«ThcormforCme OO 18
lVlBExampks aieniinaii 52
| lVHDrivmgflo;SetSuffmency..i.L....v. s 55
IV.15 Minimal Driving FlowSets.......... e 57
IV.2 Determination of Index Set Inclusion. ’ 58
IV.21 Characteristic Functions for Index Sets. .. . : : e 59

IV.201 Variables. S .. 6l

1V.212 (DEFINED variable-referenced.................cooeuuionnns. 62
1V 213 Correspondence Between Logical and Set Theoretic Notations. 62
1V 2.2 Back-Substitution of Characteristic Functions. 64
V.23 Example. e 65
V Loop Implementation in a High Le'vel Laﬁguage (PL/ID............... 68
V.1 Single-Level Loops..................... . 68
V.1l Simple Computation# ... 68
Vi Nec?ssary Data Objects and Their Declaration. 69
V 112 Loop Initialization. TR L

V113 EOF Che;king and Loop Termination. 0
‘ Vit ‘The Loop ftseif. D R PR R EREERE n
V.12 Uniform-Index Matching Wutims NV RS 7
V.13 More Than One Drivef—-Active brivers U *
V.2 Mutiple-Level Loops. ST U U SO OO U ST U ST U ST TR m
V.21 Réduct’ion Computations. ittt 78
V.22 foed-lndex Matching COmMPUEALIONS.ueueeereenernennnn. 80
V.3 Aggregated Computations. . ..ottt s 8t
V4 Aggregated FIOWS. . .o oeoeeein e, 84
V.5 Access Methods and Their lmplemc;ltation# e 86
V51 Sequential Access. EEETRETTRRUTRIDRRPPR SRPRPES88
V.52 Core Table Access. PR e 88
V53 RandomAccess....,.‘.........................,...‘ 89
V6 The General Case--ASummary.iiiiiiiiiiiieniinneen... 91

Data Driven Loops : Bid

iv Data Driven Loops

Appendix I: The Simple Expositional Artificial Language (SEAL).

References

‘Data Driven Loops : |

Part I: Introduction

" I The H IBOL Lang‘uage A Btch lnlroducuon |

‘ The notion of the data driven |oop arises in connectlon with»our 'work 'nn the Very High]
. Level Language HIBOL and the automatic programming system (ProtoSystem l) that suppons it.
Although the concept is of general interest outside of VHLL‘s and automatic programmlng we
find it proﬁtable to use HIBOL as a vehtcle for our discusslon and a means of narrowing the
_ scope of our discussion. Therefore we ﬂrst present a brief descﬂption of the domain which

HIBOL treats.

LLI Flows
The HIBOL language concerns a r'estﬂ&ed oot significant “subset ”‘of_‘ all data‘ processing
appucatlons batch oriented systems invalving the: npenttvewtoceswtg of indexed records from
data files. It provudes a concise and- pwerﬁot way of dealing with data’ lggngates HIBOL has a1 '
single data_type, the flow. This comstruct is a (possibly' néfed)'data iggregite and ‘Pépresents a
collection of uniform records that are individually and uniquely indexed by a multifcomponcnt ’
| inde_x. -The components of a ﬂw’svindex are calied kéys and the sehofan index’s keys is called tts
key-tuple.! Each record his a single data field (darum) in #ddition to"the index tnfomanm
(Real -world data- aggregates, such as fﬂes with more than one datom ‘per Ioglcal record are

abstracted in HIBOL as separate ﬂows.«nefol each datw field)

! This term is historical. A more expressive term would be “key set”, but that has historically
been used to indicate the unlverse from which a key may take its values.

11.2 Flow Expressions

Flow expressions can be formed through the applicanon of anthmetic opentors such as "+
- or “x" to flows. The meaning of such an application to two ﬂows is that lhe opention is appued to
the data of correspondmg recovds (mose with ma(chmg tndkes) of the argumem ﬂow& Tbe resuk
is a new flow, havmg a record for uch matched pair for \ﬂuch the operation was petformed The
index value of such a record is identical to that of the matcbed pah' and the damm value is thev
result of the operation performed on the data of the pair This ooncept is gcneralilcd to an
arbitrary number of flow arguments.

Flow expressions can also be constructed using a conditional operator (similar to a 'CASE';
statement) which evaluates logical expressions in terms of corresponding flow records in order'to
select and then cqmpute an exprcssimra's the individual records of tbefhwsm proeessed The
| Jogical expressions arc.constructed using the arithmetic comparison anam %, %" and <. In-
| additim;‘theﬁmESTEm operator may be used: to test the M;dra}mﬂ in a flow for a given
value of the index. of that flow. . These may bemwdmhgh logicil connectives: "AND", "OR™
and "NOT". |

" Finally, there is.a class.of reduction nptrampuumd on flows and flow expressions. The
function of such an operatos Bmmeafhu»nnhvlmniqmmﬂm'm m-key index,
;vhere m <n, and the key-tuple of the m-key index is 2. subset d‘thktﬁnpknflhe n-key index. .
Al records of the argument ,ﬂow’that cmﬁamfm‘ the resurit forvn @ set t0 which'

a reduction operator {(eg. ;maxim_um', “sum”) can be apptied to obtain a single value.

Data Drivenf,l;aepa o 3.

'I.L?{ F Igw‘ Equations
Relation;hips,betweeq flows are are expressed-by flew equations of the form:
<flou-name> IS <flou-expression>
where <Hou—name>' is a named flow and <flou-expression> is a flow expression in terms of

named flows. The right- and left-hand sides must have identical indices. -

114 Example

Consider a chain of stores whose items are supplied from a central warehouse.. The collection
of store orders for item restockiag on a given:day an be thcnght of 8 a ﬂow called, say,
CURRENTORDER. A record of that flow contains the quanmy ordcred by a pamcular store of a
pamcular item. Each record has as its datum the quantity ordered and a 2-component index
identifying the store making the order and the item ordered (the keys of the index are a store-id
and an item-id). Let BACKORDER be the name of a flow (of sitnilar structure) tepnsemlng the _
~collection of (quantities of) previous ordérs that could either net be filled or-filled only partially.
The HIBOL statement

DEMAND IS CURRENTORDER + BACKORDER
describes a new flow DEMAND representing the total demand of each'item by each store. That is,
eachﬁ 'fgcord, in DEMAND contains a 2-component (item-id, store-id) index identifying its datﬁm which
is the sum of the data fér.thgsame item and lstore in the CURRENTORBER and BACKGRDER flows.

The HI.BOI; statement |

ITEMDEMAND 1S THE SUM OF DEMAND -FOR EACH ITEN-ID

illustrates the use of the reduction operator SUN. It describes a:new flow | TEMDEMAND representing

1 Data Driven Losps

the total demand of each item from all stores. That is, each of is records has a single-component
index (item-id) idemifying 2 particular item; and R datisms is the total quantity i desiiand sumemed

across aHf stores in the chain.

115 Additional Information

The computational part'of a daia processing sym::anﬁedecribed by giving a full set of
flow equations of the type shown above. To complete the system’s description additiorial.data and
timing informatien mwst be given:

- for each flaw, thewdism the type of its data nte,andthe
periodtmy with wluch it lsmwd

-foreachkqatstype

-foreachpcnodnst:mrehtmmotherpeﬁods

1.2 Iteration Sets and Explicit RIBOL

A flow expression, a5 explained above, represents a set of reconds obtained by the record-by-
record application of a formula to the records of the flows that appear as terms in the expression.
In this paper we shaﬁ be interested in exactly for whidh: index vakses {and thus remrds) the
indicated formula is applied. The set of these index mnmmmm set®

The HIBOL ‘bnguage. is ‘rather ‘informal about’ specifying Reration sets. It contains

abundant provisiens (throwgh the use of defaults) for imphcit sevantics based i the presence or

- the HIBOL flow

absence of records in the flows appearing in flow expressions. For &k
| expression
 CURRENTORDER + BACKORDER

2 After Baron {il

Data Driven Loops | 5

- describes-a flow that has a record for each indéx value for which either CURRENTORDER or
BACK‘QB_I:)ER (or both) has a recard:
if both flows have a record for a given index value, the resuktant flow has a record with the
same index value, whose datum is the sum of those of the corresponding records in the two
nOWs_;‘-- .. . PP I R PP R DNEUR S TF- Q-G § S S S+ L AER SIS A P

if only one flow has a record for a given index value, the Tesuliant flow has a record with the
same index value and the same datum value;

~ otherwise there is no reeord in the resuktant flow. S
One way of looking at the semantics'of additien in HIBOL, then, istoconvene that ,,thgesgperation
+ s pserformed if' and only if at least one of its operands is prmm and tha; each mlssi"g operand ’
is treated as if it were the additive identity (0). » L s

. Although such conventions are conventent in writing HIBOL. for the sakes of clarity and
- rigor, we require fully explicit iteration set specrfiatlon& Such an be obtained ,through the
thorough use of the HIBOL primuives IF and PRESENT Thus. the fuuy expliclt form of the

A

above HIBOL flow expresslon would be

CWHENT('R[ER + BACK(RCER IF CURRENTORDER PRE NT
M BACKORDER PRE

ELSE CURRENTORDER O CURRENTORDER PRESENT "

’ui

ELSE BACKORDER lF BACKMR _4 PHESENT C ey
Here the index values for which the ﬂow expressions iormula is to be applled have been made:
explicit by restructuring it as a three-clause conditional express!on in terms of three sub-’

expressaons each of whose iteration sets is speciﬁed by an associaud conditlon on the _presence of

kkkkkk

records m the ﬂows mvolved Thls is a legal HIBOL ﬂou expresim, although in view of the

existing conventions it is overspecified (redundant). For our purposes we wilt distinguish- 2. '

bt :»tasng £ wt boyat & svad rwolt dwd b
18 ray el b i3 a2z aatel sspdw aniey xshon oo

'umuuuhmurﬁmswnﬁwﬁuu
QQ#MW

- - entpy enytsh wnse ot bos suley wabng B

satluzat 33 0F DB O 1 ETIAT o enRa

2 7557 1403 .! i osmay JJOHH A noilbds W

FHA TR Y w !;wu f O

‘ﬁ g 3‘5#9 yif ;%é Besisog 2o DDABTRES 3N i3 W

D Hoyino bag o Doy ok

: : . i avemn fi = rers e i A
it s Iesinavaed 318 IRGURSVIED 1M e i

9:3: cgugedl lawigide ad e ts:acc LOGHERHLE B8 TOHSTR
ﬁ Afﬁ" A FRESENT D B PRESENT
Al o S i €% 2 aeld s .zl benagnae:
arii ol :w;w it o sudT TWIRFES Dag 3§ iz J6 pE A R
AT X PeiSion o B PRESENT NG A > 8
) 3¢ Bhiow poiaeigrs woll JO8HH 8 rorda
Theeughout the ratdum mwmmﬂmw.ﬁu
1430305 AFETUINY . FRHEAR 4 ?ﬁﬁ}!‘ﬁzm i3

H

Nn

gaibgxe yilul srtupsr W ‘103

-:hiul-'!'.

13 Implmentction from & HIBOL Dewrigtin |
I RAAAS ARG

mmgammxammmmmu
2 Fnsianwys woll ue ;;ggg; 3 ozandgy <2b i;f ardl o4

prononeer yd NnHgEs

fo 3“@ ad3 so frsiibaos brsber: ek ¢2 ; i Jdzes InoREFIGED
m -sost be w h M M twras. The HIBOL.

sosis SGIEIRRY *»e{i*“ JOEY !ﬁ-}}:ﬂ g2 adl ’*svk}wsz pwrdt ot Zb‘%ﬁ,'?

oowerE T k!

rar , : oy Gazbrobey Dafloogersve BY L EENOOSVES gRnzixNs
oy ”mwm-mmumwuwus '
Whaamw-ﬂmﬁq&w :

Data Driven: Loops _ | 7

~ description is declarative in nature: it describes the relationships among the flows. An implemented
da'ta‘ processing system is | procedural in nﬁtu,re. it must describe in detail how the flows are
computed. The flow equations must be reinterpreted. as-basic computation steps(ﬁith an output
flow and one or more flows as inputs) and cqnsxgints;‘an the order in: which: thesecomputmom
can be performed (the computation. p_rodqging, a flow must. he-pecformed before any computations
using thai flow) must be made explicit.

Design:*

The implementation will make: use of files.of data to be processed by job steps which will in
turn create other files. Each file will confain-the-information:represented by one or more flows;
each job step will perform the processing to satisfy one-or more-flow squations. ‘The design of each
file (information contained, organization, storage device, record sortierder) and ‘of each job step
(equations implemented, loop structure, accessing methods used) should be made in such a way as
to minimize some overall cost measure (eg. do!hrsvandﬂmsxcest time used number of secondary
storage 1/O events) for the execution of the data processmg system Typically this requires dymmic
(behavnorai) analysis of tentative design coni‘iguntions o

Code Generaiipn:,

The system’s design must be coded in a supported high-level language so that it can be

executed.

l4 Data Driven Loobs

Each flow equation represents .a computation whose impiemenution is essemiaily iterative in

“ In ProtoSystem I the design process is performed by the Optimizing Designer module.

m oz mi s ad Mluodz (s horiun gnissds Stnsng geol ;g?ﬁﬁf?éfﬁ‘.‘}qfﬁi 2ot fpe

iwe%‘%;‘g’iﬁ'ﬁb‘} 1i5E Mﬁi‘f mmmw Py gjp Ry I 1);'» s Ui
4 BSE A IF A PRESENS
wrrsayd paorupet skl Wioigy T meRy g‘ﬂ'&!’tkﬂg azab addt fe Molisoaxs afs i (imays Ohf sai0n

mwyammm B ‘,
foop wil istinguich bwo cutes snd commpeniing STEL L XTI,

L. Records in MAﬁanm&“wgﬁﬁn‘mhM

m:mm#hawsx Mﬁi y 9ol
in the recovds of A 20d 8. it -

ad nEd A o agsegnsl level-dgud banhogaus £ m sd num aﬂa&b fmsnyz o T
ZW“MIMMﬁkmmﬂﬁ* -uag
n
W'Mmcssm& Adwtital 4K vecord.

SRS

o aviints qileidanes af [
, mumma&:ﬂmuﬂu“/

Data Driven Loops: 9

any set of values for a pasticular. index an index set atid we distinguish two sﬁ&iai‘klnds of index
The set of index .va]uq for which a fb;v.Fiaoqnﬁu“a record is called the index set of F-
(denoted 1S(F)). |
The set of index values for which. an input flow F-contaifis a-vecord ‘ﬂli.t'wm be used in
generating a record of the output flow Fthe triisal index et of ¥ witk respect to F (denoted
CISg(F)).
fhese two_ should not be copfused. CISg(E;} for some flew F will often be'a proper subset of
IstFp7 e e | |
The. problem we face is that of fmding some ‘way sﬂfemmiﬁg the critical index sets of
each in»pu.t so.that loop;,cén. be». properly driven.® -4 penerally fhpriictical’ to use the set of ail g
: possiﬁle (legal) index values for which an input might Kwwe &'record: For one thing this set may
be unbounded. Even if it is finite and enumerable, it will often be much larger than the critical
~ index ;r»et and thus grossly inefficient. In the DEMAND flow equation example given above, for
instance, the critical index set of the input flow CURRENTORDER is likely to be orders of magnitude
" smaller than its maximum possible size (the case where every store fm orders for every itcm).
A much miore efficient way of 'c_numeﬁting a set of index values that is assured to cover the

critical index sets of the inputs is to use the union of the index sets of the input flows. This will

work because a record of the output can be produced ouly if there is some input flow in which that

® Unfortunately, this terminology is at variance with that used by Baron in his. thesis [i}
Baron uses the term “critical index set” to mean what we call the “index set”. :

7 On no account, of course, can it be other than a proper or improper subset of IS(F).

® This statement is somewhat oversimplified, but it will suffice for now. A fully precise
statement of the problem is given by the Fundamental Driving Constraint in Part 1V, '

hptﬂm(-&hhnhkmdmi anm;nmnm mmﬁ‘
by ity wpus s s mgswwmwwww s :
'mm (tive set of flows that drive a nmwum;‘nu{‘?ﬁémm

!ﬂwmg —

!muMthMimhmuﬁmgdAMﬂi%iﬁnb

£

coper, C155 1AL 1S h1cTWe: 5:smdconme , #0 v e’
only # there is comresponding record in A mmnaum wn by A alone; that &1’

A i

W‘“%‘ﬁ'ﬂgsM?Mn m%m Bl AS | 'asztw wl salpv Feivy dgenth sidizzog

Garen welb '?3 vonved e sd osita # sidsmnnum biE gignt gf 3 3t o =E s desss ad

ot

s ‘-’*::"éfv;.;ﬁ;gr; w 3t &‘r&‘“‘“} ads pi ssbhitont sg%zm*g it hng 15 o 1ot]]
ELSHE BRI u* viadd o o wﬁ.ﬁﬁ%ﬁ} wofd nago e} To tor xshai Ieatitn o sxish

Craed vaws ey rmebnad SR8 MI0R g**"\fs yissiw 9251 sk} 3eev sldinnn mumMixRe i Aad i ot
Cmeb T3ves o DEIML & 18t sy fs?*'zs fol gﬂﬂﬁmmiﬁ fgw mi.éﬁh.ze%}m daum A

Sie o T sweft wom ad! 3o s bRt 56l T folew %ﬁ mos 03 21 gugRi 3 Yo et bl B H A

14

szets st b wolt trges smoz & viesl G gies bapioty od sey wgms odt 1o bno AT § R XI0W

) menddr s nt noccd vd baw feds dlw sasiiay 1 2t fgeémssmxsx z:é) ?Na:‘ﬁi‘:ﬁ“s}i} @
e kb ovit Bay aw dsdw asum of T332 wabed {aoinind mal o e ﬁc*s&
21 T teader TIqUIGG 10 13901 8 ages e 5¢ 1 1Ed agwed o nncose on Al
maizarg ¥l éiﬁ A wor 101 siTus Miw W iud baifilgmitve seriwomos 2 swmstsie T 2
Vi 51z ni imsseroD gaivindd ixmomsbrid adl vd mavig o maif‘mz; sl T msmsjm

Data Driven Loops - n

Part IL: Structure of Data Driven Loops
Before a general treatment of data driven Joops-tan be devefoped it 13 Iecéssary to examine
the structures of .the loops encountered in the HIBOL system. We bejtin by presenting a taxonomy

" of computation types'and their corresponding loop implementations. -

11.1 Loop T erminology

B'efpre discussing loap stractures it is useful-to- establish some terminology. By the term loop
we mean a control construct which somehow enumerates ¥ set of vales feri loop-index and which
performs a fixed sequence of vstalemems (its body), once for each value of the l‘oop-'index. A loop .
may conta.in ‘one .or more ‘loops within its body. The inner foops are said to be nested within the
outer (enclosing) loop and the.structure as a whole Is called a nested loop structure. Each enclosure
defines a different level of the nested ‘bopv-s'tructm. ~The degenerite case of a. nested loop structure,
where there is no loop. in the body of the outer loop, iIs called 4 singlé-level loop, since there is only
one lgop level.

. A totally mested loop is a nested bop structufe whoseeompbnem loops are totally ordered |

*_under enclosure (ie. for any two loops L, and L, either L, is inside L, or L Is‘instde L))

- 11.2 Kinds of Computations and T heir Loops

£Ach run (computation, job step, program) in the implementation produced for a HIBOL
description of a dat.a'processing system is essentially a loop that iterates over the records of its input
files to generate records of its output file(s). The structure of this loop depends on the nature of the
computation being performed. We will begin with computations that directly implement single
HIBOL flow equations of various types. Then we will consider computations that _lmplenient more

than one flow equation (aggregated computations) simultaneously.

f11 XB% 4
"computation is deicribed by the HERMM Mvmaguetip gaibnogs;ics T bis 254¢) FoF s 1

A
st et VA

;
e il

WMMW graze

‘ W0 o ani s mibes o Bes L zoool owt yes T 5 0 weieng b

l- the SEAL mﬁn m &“W&;
. i .o e syl well b (Revyong fﬁ‘*z dof ‘mizsma,mi} ae weed

! '; s " l,gsi—'aq;‘i 2% 3"3‘3?76 %‘wsﬁ "!.’E"? EJ{ IS ?I f}ffv &'ﬁ}?f“i}

Sy mernng si ¥)\.:fﬁ iuf.szm} 2 o shiveny 2 3*#‘3433 bt it

syt By wtisingy eefl o P

W ke mygad fhw ﬂxia‘*f ﬁ%{*‘*{{ggg&r} yalad oo '*"t;ggm

sonstp s W) J0EE

oo Hre ow yed T ARG RUKHTES iy s

slevnafisHimie (Enoistpies hatRosi R8s NUilEUps waft <o e

Data Driven Loops 13

for each l(employee-id) from HOURS
get ‘HOURS (empioyee-id)
. PAY (employee-id) «

if. defined (HOURS (emp | oyee-id}]
and not(Hl.RS(enp!ogee id) > 40)

then FﬂﬂSlenplogee-cd) x 3.8 .

else if defmed{mS(elplogee-od)] ‘
then 128.0 + (mS(ellplogee-ld) - 40) x 6 5
else undefmed

if defined [PAV(enplogee-id_)l
“then urite PAY{employee-id)

end
The for-end constnict represents the baSIC iteration overva!ues of the index enelogee-id It
specnfles that the values for the mdex are obtained from the l{l.RS flow For each index value, the
correspondmg record of Hl]RS is read, the correspondmg record of PAY is genented and (ifm
generation was successful) that record is written out Notice that the PAY calcuhtion is a direct

i e R) U T TS S

translation from the HIBOLM equ:!m

fi.

For reasons of exposmon the Ioop implememation presented here is of the most general form.
An actual |mp|ementat|on would mcorporate various efflciency *énhaﬂciﬂg improvements’ '
Nevertheless, we shall comiiue 0 msuclur forms to show explicitly where 1/O and testing occur

~ conceptually.

9 For .instance, since the for has to read the next record of the driver to get the current index
value, the get could beomilted. .Furthermore, the detined tests ' the PAY calculation could be
omitted since they are testing the presence of record which must be present. Finally, in this.
computation, the check before output could aiso be omitted.

ar

n22 Maithltg Computations

A matching computation computes a non-reduction flew. expression involving .two or more
flows. Thus it is similar to a simple computation, but instead dmm a-single-record of a2 .
single input flow to produce an output record it opumnraa&dﬁunupmding records, one
from each input flow. Correspmdmxsmbhdndbymhdexvam The name
“matching computations” derives from the necess;ty d‘ matching up ﬂ!e remrds of the inputs by
index vahesbeforctheyanbeqaentedm R

" Two sub-classes of matchmg computations can be distmgmshed dcpending on whether all of

the inputs have indices with identical key-tuples or net.

11.2.21 Expressions Involving Flows with a Uniform Index

Consider the a pay cakuhtm similar to that gaven m ba where empbyees are pald
various hourly rates. Let MTE be a ﬂo- indexed by Whyee-id),eadl of vhose reco«!s has as

its datum thehwﬂypaymefortheemphpchdhmmnsm vahe. Thepayakuhtion

eheubemmes
PAY IS HOURS = RATE §F HOURS PRESENT
NO NOT HOURS > 48
ELSE
RATE x 48 + I .
(HOURS - 48) % 1.5 = RATE IF . HOURS PRESENT

HOURS and RATE have iduukalmdxes.eachmhgoﬂhmghuy “employee-id”. Tlnhq:
kammumchacmﬁatmhs:shghm

MumaMd&maWﬂi&ckaMh&tmm tlut

Data Driven Loops 15

file alone is sufficient to drive the loop. (Alernatively, by similar. reasoning, the RATE file could be
used to drive the loop.) This is-t‘hc‘éimplest case of a matching computation because only one
mput is needed to dnve the loop (The computation of the flow S above is also of this type) On .
each ueranon the next record of the HOURS file is read, the corresponding RATE reoord is fetched
. and the computation of gross pay performed |
This loop is represented in the SEAL language thus:
-~ for oach {employee-id} from HOURS
get MBS(enpfogae4'id1
get RATE (employee-id)
PAY femployee-id) =
if defined{HOURS {employee-id)]
and defined [RATE (empioyee-id)]
and not (HOURS (emp | oyee-id) > 48)
then HOURS {emp I.ogee.-io) - % RATE (employes-id)

else if definede(eop»logeo-rid')]
_and defmeleME(uprvhd)l

. then RATE {(employee-id) x 49 + ;
(HOURS (employee) - 48) x RATE (employee-id) x 1.5~

else undefined -

it defmed[PAY!enplogee-td))
then urite PAY(enployee id)

end
Agam the defmed checks on the driver, HOURS, are superﬂuoua But thosc on RATE are necessary.
(to determine whether the corresponding get was s;xcr.cssful) and thc doﬁned check on PAY is
necessary (so that a record is written if and only if 2 datum mgmwd). “

Now consider the HIBOL flow equation for the [EI'WIJ flow glven above

o ﬁ iéi‘iﬁii 2 wopds ST

i oanl wvith ot DI

sr0 vim bzl RORNIDGMED JREGGET 8 ot 2h 81 LOx
: ads o woll w0 uol A% ‘et 35‘3%3& 2w

o g x’-M%&%an v
wmummm*ﬂmm& Zgﬁm
I e e e e e T T e et
nputs are mecestary to drive the loap. BRUOH moot (bi-espoigas) ross o0t
mm&m“u&uhaw%; &Mvsm
b:gimudu“lﬁeﬁenbﬁ.' xnmmw%%%gnm
ovdes (say. alphabetically) by index values, the loop suny be pute
w,meﬁpa'ﬁu-u-’-i;-n—;“

f;("‘nimﬂagf*i'{%ﬁ@ PRHI baaitsn Y
[ini-sxygpliqes?’ ”’Q}’%Jﬁmi%aﬁ brn

' am&ﬁ!“dm* {83 < tbi-esypiomsicRIDH Jon bis

10:«:-—&:* , . "

,zbmﬁslthuﬂ

+ 82 5@*-%;»%&@5@9} gfﬁﬁ ﬂ@ﬁ”’

3. Rupeptfoumil . o} oma) TAR = (84 - fosunlqms) SPKED
T -K&ﬂ-@”n&*kﬂ%ﬁﬁhumh
nmn&eu&rd&ﬂhh* WW

tisiwiqmﬁf&ﬁ aiiwe nad}
“""m“*whmﬁmﬁﬁwm*hmw

chmmtqm*ssﬂhm& athed . 5 records OO,
yizesinn 3ve ITAR no seords W8 asoudirygs 976 ZRIB wvirh ot o 240 si‘)ﬁmsg o 2 Jusgh
e fesched by sequentiol rending. which is genenally suse efficient. .
3 VAT s dosels bonileb el bae (wlaeme 1s@ fsp yghﬁe;qgﬁmz afdt rodisdw smereish o

avods fviy wolt (AT ot 1ol motiedps woll JOAIH st phines wob!

§broant 5 tedll 00} VIBIOOMA

Data Driven Loops ' .' "

These details are implicit in the SEAL representation of the foop which is simply:
| for each (item-id, store-id) from CURRENTORDER, BACKORDER
get CURRENTORDER(i tem-id, store-id) -
get BACKORDER(item-id, stors-id)
DEMAND (i tew-id, siiwe—'rd),- oa

i f -defined (DEMAND (i tem-id, store-id}}
then urite DEMAND(item-id, store-id)

end

11.2.2.2 General Discussion of Expressions Involving Flows with Mix ﬁ Indices

‘The treatment of mixed-index flow expressions in this paper will be restricted to those that
are legal in HIBOL. The restrictions that HIBOL imposes are made for good reasons. - A brief
discussion of the varions conceivable types of mixed-index flow expres_sions. is preSented h'ei'e in
order to show the motivation behind these restﬂctiens | | o

Tiie vainous cases where the ﬂows ina ﬂow expfession have mixed imiices (ie their indices
have different key- tuples) can be distmguished by the set interrehtlonships among the key-tuples

 Consider the case where flows have disjomt key tuples (e.g (w, x) and (y. z)). :
Correspondence among records of such ﬂows is meaningless so we do not a“ow them to appear in
»b the same flow expression. | B R |

: qu consider the- more general case where there is inteisection among index key-tuples, bvut‘)
the union of their pair-wise intersections is w identical to their (simple) union. In this case
correspondence is always ambiguous. For example, consider the two flows: A with index (x, y) and

-B with index (y, z). Suppose that there are records in A for the particular index ﬁlues (x, y9) and

(x2 ;) and that there are secords on B for index vates {y;, z;). (y;. I2) and (y;, 2. Which of A's
records correspond to. which of B's records?*? | |

For correspondence to be meaningful Mmmﬁm&tﬁedxtm the union of
the pair-wise intersections of the key-tuples of the indices inveived is identicaf to their union. This
is atways the’case when there exists an index among-the flows involved ‘whose key-tuple is a
superset of alf the key-tuples of the other flows.

To be sure, there are other ways of satisfying the condition of the preceding paragraph
These involve conjunctions of three or more indices. Consider, for instance, the three flows: A with
index (x, y) B with index {y, z); and C with index (x, 2). Corresponding triplets are all unique and
unambiguous, of the form (x. y), {y, %), {x.) For:the take of simplicity, however, this case is

prohibited in HIBOL.

.22 Mixed-Index Flow Expressions Allowed _in H!BOL

It is possible in HIBOL to apply openton to two or more ﬂows having diﬂ'mnt indices as
fong as each index is a sub-indcx dthehdexdmunmeﬂowimolved (ie. as long as the ,
key-tuple of each index is a mbset of the kq—mpk of the hdex o(the unique flow). Clcarly, the
mdex of this umque now is idcmml to the Mcx of tht flow expussien as a whok HIBOL
aBows a mixed-index ﬂow expression only if its computation can be driven by the set of those ﬂows

involved having indices identical to that of the flow expression.

12 Of course, we could allow al/ ‘pairs’ to ‘match (in Cartesian’ product: fashion) so that the
expression A + B would represent the six possible combinations of additions for these 5 index
values; but this would change (extend) the semantics of HIBOL.

Data. Driven Loops e

For example, suppose we want to-cakufate the extended prices'® of the ‘current storé ‘ofders
(the flow CURRENTORDER) in our store chain example.- Let: PRIEE-be a flow indexed by (item-id),
each of whose records has as its datum the per-item price associated with Mm idfemified by its
index. The flow equation for EXTENDEDPRICE, indexed by (item-id, store-id) wwld be expressed in
HIBOL thus: . _ et Fa

EXTENDEDPRICE 1S CURRENTORDER x PRICE IF . = CURRENTORDER PRESENT
: AMJ PRICE PRESENT

A RUE S FPRSLE s BNE L I

- The intent here is: for every record in CURRENTORDER: mm mmmm in PRICE and,

_if the latter is present, multiply their respective dap to ca_lculate the datum of a corresponding
record in EXTENDEDRRICE. Notce that;because PRIGE and-SURRENIOROER: Save.differént-indices
((item-id) and '(item-id. store-id), respectively) the notion oﬁ correspendehce must be extended in 2
n/atu:ra!V way. from pure identity of index valwes.- We comvene that-for &Wwamfw M—id
the index (item-id) matches any index (item-id, M>M«m,xmfwmeﬁ:zamﬂ: regardiess -

of the value of store-id. This augmented definition of correspondence is extendedto' the general

casezwberefv*tht *key-tuple of one index is-a subset: of the: key-tuple of wivother. That is, for given
values of k, .., ky, the index (K, .., k) is said to-rhatch-awyinstance’of an Hidex (&, ik Ky
k,) with the same values of k.., k,,,. regardiess.of the values of k., ..o ky.

Since a set of input flows; each- with index identical to the flow expfmlon;s. cin be used to
drive a.mixed-index matching compuwien,':-ittWmffh'ﬁiﬂﬁfﬁ"tht for a uniform-
index matching computation: the sorted éﬂvers'iré read in:such 2 way as to entimerate the ctitical

index sets of all of the input flows; the resulting index values are used o fetch records from the reit '

of the inputs (including all those whose indices are mbéndlces of the flow 'ex'presﬂoﬁ's index).

13.The extended price of a quantity ordered is the product of the' qtiintity aid: the per-item' '
price.

2 ke mm;m WW
110 0B OBER, mindm SFrenTeliividg- figweentis ok e w (AL

- . 2 : - .
gt gl _ AP haraiimrss 2T S TR U is mupien ot 28 e FhIeRT st 30 A3

AP wit e a3l

ey

R ERAETYE

st il

L

OGRS A

;?,

UL 2

M | IIIRY g
it definedioutput (<index>}}
] nsmwmpiﬁﬁi?ﬁ%%%ﬂ i biayey yisvs b ot ety e

;ﬁ;?ae‘ﬁw&!m £ b s sy siskuniss w1 sish aviDenrer viedl ylgiiien et 2r cabied 3 iE

" recerds ofsthenanirivers se g hi-metis bad (B,

5 AAIODS] UG nesmornies wive bl senttont - Fostig s MO Al et Irar Sl WSk <

m#&mﬁ*m 3 myomhnonovws noaniinibsh i‘?,;‘ﬁu’%:iig a1 s 5t i2 su‘ém ardt

5 Soqnides; mem me
records of both CURRENTORER are yarwe. by dteentithetsall;of shie CUPMBIIOREER rocerdt fof 4 .

In the. case whers. the wsrds: -&m wmﬁpww
computation is . impleovemiad. axia -

Data Driven Loops - 21

Basically, the outer loop chooses a value of the sub-inidex (item-id) and fetches the corresponding
PRICE record. Then it performs the inner loop. Within the inner ‘loop the value.of the item-id key
is held constant. Al corresponding: records ‘of ‘CURHENTORDER aré read and the computation
described in the flow equation is performed: using the data of these recbrds together with the datum
of the PRICE record fetched in the outer loop. : The: resilty-are’ used 1o Bkt and output the
'correspondmg records of EXTENDEDPRIEE. This pmcess is*repette&mm ﬂre ﬂéws are exhausted.

In detail the |mp!ementat|on is as fo“ows Before either bop is entered a record of
CURRENTORDER is read The outer loop uses this record to obtain the first value of the sub-index
(item-id) and fetches the correspondmg record from PRICE Then it performs the inner loop. The
inner loop uses the current record .;ef_ cmm 'and%mtm to read records sequentially
from CURRENTORDER until the sub-index is obsetved ‘teichange or an end-oﬁ-ﬁle“emdlt‘ion‘d‘cwrs;
When either of these condiriens occurs. it exits to the outer loop. If aneof has occurred, the outer
loop . gxits ; Otherwise it iterates, using the :ub-dndenwibe of the current CURRENTORDER recb’rd as
the new value to be held constant in- the inner lonp kwhtagahe mrrespmdmg PRICE record and
pcrform!ng the inner loop again. . O AR P

The cqrrespmding SEAL code is:

for sach lifes-id) from CURENIONER T :
get m!umm
for each (store-idl from CURRENVORDER(: tew-id)
get CRRENIGROERiten-id, stere-idh. =« =~ -
EXTENDEDPRICE (i ten-id, store-id) =

u def ined [CURRENTORDER Y tem- id, wlore-idl}
and defmed{PRiCEthu—zdﬂ

then wn:mmme.-sa store-idi E PR!II(HQI—M)
else undefined

if defined EXTENDEDPRICE (i ten-id, store-id)]
then write EXTENDEOPRICE (1 ten-id, store-id)

Notice that the outer loap is driven by CURRENTORDER {the whole flow), but that the inner loop i3
* driven by CURRENTORDER (i tew- i) (she sub-flow of CURRENTORDER oomsisting of fust thuse records
whose indices correspond to the value of the sub-imex:(itern-id) fixed by the oister foop). What
| this. means is that for the outer loop the mext value of the: sub-indek {itém-id) wilt be taken from™

the next record of the CURRENTORDER flow. But for the inner loop the hext valiie for the subb-index

(store-id) will be taken from the next record of the sub-flow of CURRENTERDER cerresponding to

current value of (item-id); if there are no further records in CURRENTORDER for this fixed valuwe of
~(itemr-id) this will be treated just like an end-of-file condition and the iteration of the inner loop
will terminate. Thus the inner loop is driven by a succession of 'mb-ﬁows, ane for each iteration of

the oute loop. S . :
' This nested-loop implementation scheme is easily extended to 3 or more loop levels when

appropriate sorting constraints hold among the flows involved. For example, suppose that there

Data Driven Loeps 23"

are 3 flows involved: A with index (ky, ko, kg); B with -index (k,, ké), and C withihdcx"(k,). "And
suppose further that B is sorted 't.)y k) and that A is sorted first by k; and;gﬁﬁftﬁi Segments
corresponding fo a fixed value of k,, the records of A are furthér ofted’ by Xy “I'fien the flow
equation can be implemented‘using a nested loop structure involving & bbﬁsg’(iﬁn’ermost loop,
middle loop and outornvost foop). The outermost Ioopschookk*a Wilbe for the key ¥, to be held
constant within the middle loop (and perforce in thdinnernﬁst‘* loop, which is tontained in the
middle loop). It also fetches the corresponding record ofC mwmm tlie ‘contained loops.
Then it executes the middle loop, which, in turn, choose x ‘vatae loiﬁié‘key K3 to be held con'stans :
within the inner loop. The middle loop also fetches the correspooding. record of B for use within
the innermost loop. Then it executes the innermost loop. In the innermost loop the valaes’of the
keys k; and k; are held constant. The innermost loop reads all corresponding records of A, uslitg
thelr data and those of the already read records to perform the alcuhtions ducribed in the ﬂowf .
equation and to build and output the records of the output ﬂow When the Innermost |oop has

' read and processed all records of A correspondlng to the fixed valuu of k, and kz, it exits to the" ‘

S £ TEE
1 et '

middle Ioop which chooses a new value for kz and iteram When the middie loop has exhausted_)

. R DU E L TS M T R

all pOsslbllines for the value of k ﬁxed in it It retums'to the wtermou loop whk:h chooses a new

value of k; and iterates. This loop structure expressed ln the SEAL hnguage Iooks gike- ,

DHies mﬁyag- & . - 4 vebardnw B el gd o 4 xsbmi hirw & Byviotni 2wl Eeie

‘;z*wxgﬂw hess Q‘ yel B **ﬂm # A ind1 b 33 yo betwe z B sl ':ﬁ;.rfrss,:_:.'-‘;zéq;;;sz
wifi *'g'i‘s” MM@ s1g & 8 2brest i ié *.5} syis ;’*if" v gi:i’r:ﬁm‘gi%*@ﬁu
’:{‘f “ﬁf"z*iﬂm Qg’&v%wﬁé U :md botian © FoeH ?;mﬂ*maum e RS OHELPS.
blassd o % gﬂ*‘ h‘v@w ORI 4T {gool seorayainG LAs gool stbim

. oo Dfd ;asmﬁﬁ? % hﬁ‘%‘iﬁm:ﬁ nobt g mzeg.wsx txmi r,;rns% séb?zm rj? srdtiw WERZRGY.

b

st semisines AT VRSNt Gem brosot g@%%gseqzaxm, sibt st cols # fquol stbhiem
érgf-.;:zam: gu% a W QW ssapry oun o dxidw qgeol ;;hi‘xam 3¢t ;{eiuﬁ:a:;;é 1 ned T
rirktiv xﬁ” 8ig Soom gaibaos fre*iw: silt zadont offe q&im sl ~gord vourt widl aidiw
A&;S.@ rﬂ;ff sl Ao WORTIITHE B £ nﬁei }agm%m.sét uasas 6 At} ol JorrTansn arls

. 2 to oot gnibangEITs s 25t goul lpenam ad T msnes biw ibns i 2vad
woli it bysiinesy emisiutae 34 3 wﬁ"s&, o1 shwt bass *;%;sﬁiig ad; Fo szod; B ik el
54 good potmonnt s asdW woP jugiue 51 o dbaoosr o ;ix;m bne Sliud ot bae mﬁg@a
© A sephe sduction cungins. compuies & selagion Sun s --u% -g
sels o7 25ixe A .;_;g bes ga%aﬁéﬂ &wﬁ ﬂﬁa% ibeogms A Yo thwost Hx éam» £51
panusrxs asd eﬁ gmw asm i mgﬁwmj tasmarhy dhidw gool
wan & coons dadw q@dwwam&ﬁﬁm ;ihi‘
itsell, 35 in the previomly cied example: : ' o
3:&@8 Lhoel éﬁ:@! ,;532 331 ot ham;e@xs synwti qool ad T emzntl boe A 1 stday

whhere SUTI is apphed to GENEL mmfﬁa:

1TEUEWD IS BE SN m;m
mmm '

Cwritten in m‘ﬁm*w hqmﬁwﬁﬁ“ws

- ,
mwmma-ﬂmﬁ
ml e Mﬂmumn‘

Data Driven Loops- . 25

trased‘ as a single flow.
- Gonceptuatly, the argument flow- is partitioned into subsets (subflows)by an e:quiv;al'ence |
refation definéd on the- sub-indek (a kej br Keys) Iidicated In the FOR'EACH clause; then the
rediuiction operatér {5 applied to-the rhéniberd of eath subset 1o generate the value of the datum of
the output record cotresponding to that subset For instince, In the fir?t example gwenabove the
DEMAND flow is conceptuaﬁy ‘partitioned into record subsets by item-id. “T'hus, all Tecords in DEMAND
whose index contains the value item-id, for the item-id key are in o‘ne‘subset all records for ltem-nd
= item-id> ‘ave iV another, and so 'fbrth"‘ {empty subsets are ignored) ' Tﬁe:da’toiri for tlse.record in

I TEMDEMAND with: index « “titem-id)) 1% caletitated by summfng alfof the data in the records in the:(-'
subset corresponding to item-id = item-id; : ’ L F

Conceptually, the imp!ememing iteration for a simple reductionexpression in a single flaw
consists of two loops, one nested inside the other. Theﬁmer loopimpiemems theappltcanon of the
indicated reduction operation to a subset of tﬁe“inpm's: records. Withinthls loop the value of the -
sub-inc!ex defining the subset is held constant Retumtngto the §.I1 OF DEMAND example, the
inner loop implements the summation of the data of the records of each subset of DEMAND. That is,
the inner loop is performed for each value of item- nd for whtch there are recotds in uemm
Within the inner loop the particular va!ue of 'he,,k"'! ;tem-id is held constant, all records of DEMAND .
correspondmg to that key value are fetched and their data are summed |

The outer loop performs clerical work. It chooses a vale the subsetting sub-index (eg. a
* value of item- |d) executes the inner |oop {which fetches records of thetnput corresponding to the.
chosen sub-index and, for exam,"adds them to!he a’c‘c‘ufmjlator), and when the mner loop is
finished, it uses the resulting fa!oe as the datumﬁof the output record correspmding to the chosen

sub-index, and writes that record out.

" cam in fact be

ontered a

M

maﬁe

sansiss lups ik

arh ,.,ri: sl H

the sb-index and then

M i el W aRed A"‘?"‘ RS9] m%ﬂs

wif svoGs o9Vi3 *3"’?'%5?“"% L%M %M ! . =
af "’ﬁg" ?m’%m %5 48 ‘hﬁ s
e e i e A Wﬂ:mm o o -

. et pf zbyoos ?m

for sach litem-if) m-m

A“ - iand : . . e e
Wil st BT msmuﬁs A uter sfomiz g T01 reuissi griiaamslgmd ol gHswgernd
7 fc m istere

gt qfiiﬁi”‘s 3D

§ mrre czoned W 0 2R

3 ngunos bed 2 srdin adl gm‘m%%%}Axa?mz‘—ég.zé
Miten-id, sters-idl

FERTe A Rl e g dae o ghiaoet *.z%{ wshadi e D s TR eyt ol Tt

LR iten-id, stors-id}

%zsin doidw 10t bi-modl o mdav s W1 Demrobisg o oo st o
ve if detinedBNIELI tw-id, stere-idl]

| vod ot Yo aulsy veluaitisg o qoeh venes S AT T

e m ﬂéz hﬁiﬁ badamt a1g sulev (38 el
else wﬁll

¢ wwonds 1 frow fodmh amsobisy gl mive 3T

iz ingwnes bisd 3 hrmsi
then

A 34 "a
=1

hmi 319t Anirw) qood e el 2atiers TIPS S IR S

£ oo s sl o b

webi zagis 1 Pmelzivyd
trienris 5ell a0 LNE IR TG DIRERY @*ﬁ: adt to muet sé: 15 wsdny ;gf!";*ﬁ’:‘—. aels g3zl B Beoiaomd

s Bigowi ?a%f saitva hps vahar SGu

Data Driven Loeps - 27

It may at first seem unnecessaﬂly baroque to mtmlizc the accumuhtor sum to undeﬁned in the 5
outeér loop test it in the inner loop for deﬁnedn& and then' mﬁw ‘It f undefined. In this
simple example we could just initialize it to 0 ir the omerloop and notbother wiiﬁ the ,dc».‘finedness)
checks.” We have chosen the forrﬁ?r céﬁrsé. f;f tworeasons First, Qc wish to make exﬁlicit the
lconditirons under which the sum (and thus a fe'c;n'd of the outputvl‘mm)j # defined fof a
given. value of the key .item-id. ~Second, 2 ittle thought witl show ‘that ‘for other reduction
'opgrauqns ,(viL MAX and MIN) initiaization of -the sccumblator “must’ (at least conceptually) be
postponed until the inner loop where the initializing value is obtained by the first-get.” Moreover,
in general, when computations are aggregated (see below) and more tﬁin‘;t.me activity is performed
in the inner loop, it is then possible (if some driver besides DEHAND is used) tﬁa‘t'for‘m;valués of
item-id no sum ix calculated in the ipner-loop: and m-aaﬁmme‘am extt from that loop.

If the input flow is not sorted as abc;v'le the c;mpt;tanon‘fo.r a re.dluctlon operation becomes

‘'somewhat more complex. One possibility is:to. creste and maitiin Sparite dccumutators for each
value of the sub-index value occurring in the input flow. Since the number of accumulators cannot

be known a. prigri (ise. at-compile time). storagefor-thelw-thast ‘be aIBEEEd: on ‘the fly (during
execution of the computanon) In PLIl for example the foﬂmvmg (rougMy omlined) scheme might
be used: b

Declare an accumulator array to have C(NTRG.LED storage

Make a pre-pass through the mput flow to count the number of dm‘erent sub-lndex
values occurring. = - - _ ;. : gl

Execute an ALLOCATE statement to define the size ofsh‘eiimy; i
Make a second pass over the input flow to perform the accumulation.
. Write alt accumulated values out to the output flow.
In this scheme there are two separate loops instead of a totally nested loop structure.

Alternatively, a nested loop, multi-pass scheme could be Implementcd The outer Ioop would

ﬂ??'#‘MMw i aoct onm ki w B e gfs@i Wio

SRR i: b b sitEy gmizEEITRS ol Svoaw gool el f»:»dz gy horeniiosn

Mﬁmhhn*h“aq“&kﬂﬁh&
arsd eie e ToIRUbeY § ¥ ggx,;g@m sil} 9&&;{8 % &mmm 3 woll e e}

» g2 : t SINM *;siw'*mm‘
3 Il ‘%t??iéfﬁw 338 13 ‘siiﬁ%??i?ﬂ 5;43 EB%’E%

s AREPEP BN S

weﬁ ?fm ssB ﬁﬁ gmmtmsﬁsv mim ’iv sels o ouiey

& sd
sripier wirarine (Daeifioe gidgues) gﬂ&wxzfaii pey aigﬁns ey El‘i at {noiskigod st 10 nollidszs
“K'”ﬁ”&m b 9d

1

.} speon B3 15"‘!%“ MO sy s o) ¥er1s RGIEiON
e irgrsliib ’in et aeil w0 wﬁ! mm sht dguond! ueg 31g 5 24

"'t,_thu

Swaistesk Yooy B, sattghtenenag o oriotsn of woll tigm adl Ve 128g brios & 2ARM
- welt aging st o ey beislumane g alorW

STV AT I it

et A fodoan YHERT BUD DSMeNE B MIEIRGIL OWI NE 5

a{gimtm el batzas = gl ST

gt ad Hpos @

Data Driven' Loops 29

1131 Formal Representatton of Nested Log) Structures

We have seen that the basic control structure tisezl ;n lmplemaiting a computation is the
totally nested loop. Associated with each loop in the nesting is a set of keys that it will fix and
which will remain constant in the loops it contains. It is easy to see that this constraint means that
the set of keys fixed within any loop is necessarily a (prooer) superset ol' tlte set of keys fixed within
any of its enclosmg loops. Thus the set of lteys l"ixed mthtn a loop is sufﬁclent to determine its
level in the nesting.

Now notice that the body of every loop (e:tcept the innerrnost one) contains exactly one top- '
level loop; thus, the body is naturally divided into: thiee:pafts

the prolog--those actions performed before the enclosed loop

the enclosed loop

the epilog--those actions performed after the enclosed loop

Conceptually, then, a totally nested loop can be represented as a list of loop descriptions, one
for each of the component loops. Each such description would consist of 2 level identlfierv
(mdlcatmg at which level of nestmg it occurs) and the prolog and the epllog However, during the
design stage while tmplementattons are bemg developed and. in partlcular, tvhen oomputation
aggregations are bemg ctmstdered it is useful to distinguish 3 classes of actions within the body of
Prolog--those actions that must be performed before the enclosed loop
Epilog--those actions that must be performed after the enclosed '
~ General--those actions that could end up in either thi-prolag or the epilog -
It is also useful to separate 1/O actions from the other actions. - Thus, we répresent each loop

in the nesting as a structure of the following form:'>

'S This representation, and the theory of computation aggregation associated with it are due
largely to the work of R. C. Fleischer [2], who improved on the earlier work of R. V. Baron.

0 . Data Driven Loops

(Level, o
{Inputsp, Prolog, Outputsp)
tInputeg, General, Outputsgd
{Inputsg, Epitog., Outputsg))
where | |
Level indlca(es the depth of the qup in the ncsting
lnputsp are the files (mcessamy) read in the Protog section.
Inputsg are the files (necessanly) read in thc Goneral section.
Inputsg are the files (necessarily) read in the Epi log section.
Outputsp are the outputs generatad. in the: Prod og:section {possibly used in the encloséd loop
or in the Ep' tog section)

Butputsg are the outputs gcnerated in the Genera(sectim

Dutputsg are the outputs gmemed in tbe Epnog section

- 132 Cbmpm:iion }mpMation

“The :mplemmtatm of a comptuatm as a nested bup strmre reduoes to the probiem of
detcrmming how mny and windv fevels are to be in thc lotaly nmed bnp and \vhere the lIO and
cemputatms go The answers to these quamm are oomtmned by the foroes of necessuy and

efficiency.

1321 Level Position of KO and Gakwiations
~ The levels at which. each input showld be read; each: output should be written and each
cakeulation should be performed are determined by.the following guidelines:

Inputs: Each input flow of a computation shouid be read at a loop level whoumhted

~ Data DrivenLoops - : 3

"‘?J‘“{P'% is 'de'!ti?a' to that of the flow's index (and og this.account the:totally nested loop for a
computation must contain a loop corresponding to the index of each mﬂw),ltmbemd
a higher level because at such a leyel the key information is.incomplete. To-read it at & fowet level
would be inefficient, because it would cause unmeeessagy re-reads of-the flow's records.
Qg,ggy_t_; T§imila_t.lg, each qutputﬂowof; compuistion faust -be written at ailoop level whose
associated key-tuple is identical to that of the flaw's jndex.. it canmot-be written at a-higher-¥vel-
because of insufficient key inforgmation, and.{o output. ik: at:a;lower devel- wautld ‘cause muitiple writes
of tne records. | ' | ' Cipii
., Caleulations: A flow expression should also e calaslateds at & Joop-jevel- whose assotiated
key-tuple is identical to that of the flow. expression’s.index. . Again, the key information.at ilmgher‘i
'~ tevel would be_ insufficient to calcula_tg the umwpwmgmt lqwer ‘level woold ‘be
redundant. Further economy can be realized, hawever, in.a. mixed-index. flow. expression if it
contains a sq!g-e;;prg'ss_ion whose associgted index is a sub-index. ormmwacpmamas a whoale;:

such a sub-expression should be split off and cakulated at is approprinia (higher)-Jevel.

- 11.3.2.2 Position of 1/O and Cakulations Within Their Assigned Levels

The““plncementvof a read, write or cakulatmswl:hina gwen‘lo;p :Ievel (.ie In We.ith’er the
Prolog, Epilog or General section) should be done with a vlcw toward imposmg the minimum%.
constraint on implémentation if done in this manner phcement preserves the maximal ﬂexibmty;-
in subsequent aggregation. For instance, if a calcuhtlon could go Imo elther the Prolog ‘or thse/
Epilog it should be placed in the General section. If instead it were arbitrarily phud;tnm |
Epilog this unnecessary constraint would preclude subsequent.aggregations that would fequ&*lt to

be in the Prolog (loop merging in computation aggregation is discussed below). -

1 Ean s consilutaties Gt ot isini
Wmd‘# xshai ord; @ ybrograTed W £ BERIIGY LN (071EIHGMOD
i .iﬁﬁ‘fﬁﬁi" e ot
R S

| memmmwwww
i i 8

zhtoxoy aqdt %

v i j%i“‘W“ fi’% i-ys i
3 :a i ﬁ}isi ot merlineal od bBluow iava
i Coloistionss A m m m AR m .ﬁl Fid ot
W% -S‘W’j

sextion.

. dsval pymgind 1ed T fﬂéﬂ‘&' miﬁmﬁs& haa 00l i noined S ?
As an obvious consegeence ﬁ these gwi & cmbe
B 10 W Q % a:sig 5

gy wndtia i 2} bavel gool asvig B ol
tevel foop or inwerment =] '

o @@%«&w%mm

priliciasht temiaa itt eovisemaq inenugly NNEM 2 A ?&%%Mﬂ*ﬁr

Epi log section will all be

Mg 39 gaiogmt bswel wsiv & diw smob gﬁi.
sedt 1 polod sdi wsdis o oy Dhion sunsleliss & B sansel wd mensgsugs vwmeder M

‘and the General section, respectively. Inputep, §

ned

mm ghogimicee st B hemam W oonmne? (swsesd sdlm byseiq o hivods o poiin

X}.J

LEZ T "“’?a Bk

525 noitesgno) M gnigism qeeé gf}?u i3 et o s

Data Driven Loaps 3

PAY IS RATE % HOURS IF RATE PRESENT AND HOURS PRESENT
Here, both inputs have the same index (employee-id) so there is only one loop:

Level: (employee-id)
Inputsp: empty
Prolog: empty
Outputspempty

Inputsg: {HOURS, RATE}
General:calculate PAY
Outputsg:APAY}
Inputsg: empty
Epilog: empty
Outputsgempty
As expia;ned above, Veveg?ythix\g_: is placed in the general.sections.
Now consider a_simple reduqi_on flow equation:
I TEMDEMAND 1S THE SUMM OF DEMAND FOR. EABH: 1 TEM-10

We have seen that the implementation of such a flow equation will. always have two loop levels:

‘Loop-l {outer loop) = .

-~ Level: litem-id)
Inputsp: empty -
Prolog: initialize sum
Outputspempty ’

Inputsg: empty
General :empty
.Outputsgempty

Inputsg: empty
Epilog: empty
Outputsg:i] TEMDEMAND}

> RN st R EYog TTAC TF AT
?1;5'1'?7‘;_‘;"3%‘1 tH‘; L BHI # 3TAN o !

LR 2z

2 e T
Level: hm—i‘. MO‘ o : R L It !]
inpavhpiaagng - o7 fhieeme dgenst asbed Tmar ont sved oo D R

‘ B TR o g R

i sty

Input N PR NI '-4'
ot) yinages tugtul)
Generalicatcuiste sum yinme
) o | L ETAR 2RUBY sprtuun’
. 9 stsiu atis ﬁ"*:z
’M“m - Y&S 5 ai&mia H 3..1 v “
Outputagenpty

5
e °s;ca e

mmﬁ the inmer foop, it sust be writlen fooms the

A mixed-index mmﬁe uhaws Zqz'h'a’q@ﬁ} _
wR 2%y istdom ‘:Qéif;‘iq
EXTEMDEDPRICE 15 CURREMTORER = PRICE IF RN PRESENT

A Pk
gi@afgss*'@ai

must have two ioop levels when implemanted, one for ench SUIIA ‘of s inputs. ks
- » gfw_ i-‘&ﬁfﬂg, '

.) .e;*@a,,zig*rﬂ

;5!{;&3 g .Q‘E}l*hgx

{HRAA30MGT Ehje tugiud

Data Driven Loops

Loop 1 (outer loop)
Level: (item-id)
Inputsp: IPRICE}
Prolog: empty
Qutputspempty

Inputsg: empty
General:empty
Outputsgempty

Inputsg: empty

Epilog: emp ty
Outputsgempty

Loop 2 (inner loop)

Level: (item-id, store-id)
Inputsp: empty
Prolog: empty
Outputspempty

Inputsg: {CURRENTORDER)
General:calculate EXTENODEDPRICE
OutputsglEXTENDEDPRICE}

Inputsg: empty
Epilog: empty
Outputsgempty

35

Wﬂﬁqumﬂiwa&m T,

mmuwmm”wi utore: 3;itja<;§
glgsn 3 ¢

swwst be merged o farm 3 single totally wewed :., i b

;;?tmgamqmi?

111 Loop Aggrepurabilicy REIDAOTHIRMIDN spetuun
) . Eﬁimﬂﬁ 5%&!3:}!934 iﬁ*egnm}

aﬂbhkﬂ“ﬂa&“ '

r-mm*mmwnmmtuww

: wsed; 2 Pro!og wﬂm*km*%“&ihﬂﬂm
" allbey s inmey lnap. |

‘Data Driven Loops ' 3

If two computations have level compatible loops and if the; ordering: constraints of the two

loops can be mutually satisfied in a single- totally nested loop, aggreéation is'possible.

II1.11 .Level Compatibility Between Loops

ltv is easy to show that two loops are level compatible:if and. only if their level structures are

identical or empty levels (levels at which ro actions are performed) can be inserted to make their

level structﬁrgs identical. Some (exmphsvof level eempnﬂbktmﬂy nested luqu,(INL‘;) and the -

level structures of their aggregated results are:'S

loop
™,

™,

™,

™,

™,

N,

levgl 5 . levels in_aggregate

), KL .
o K, &L
«®,1) |
®,L)

o ®,0, K140
®,L,M ~
W, w0

®), K1), KLm
(‘K.L’, ‘K,L'm i o

It is interesting to note that when aggregation occurs loop levels ire;atlthu-mdded nor deleted; that

is, the set of loop levels in the aggregate is simply the union of the sets of loop levels in the

component computations.

Some examples of loops whose _lc\id structures are incompatible are:

loop

™,
TN,

!évels

K)
w

'6 In this section the symbols K, L and H denote different keys.

m, &, &0
™, W, KU

™, &, ®U, KLm
™, «, &M, &.L.m
HEL2 Order Constraint Compatibility Betweedi Loops

Consider the compatations for the followifig two flow equations:
[TEDEWD IS THE <SHIY OF 'DENAND' FOR EACH TTEY-10

FRACTION 1S DEMAND/ITENDEMAND IF DEMAND PRESENT <
It would seem immanently reasemabie:to aggréjate these two mﬁons since they have a
common input (DEMAND) and tbcouspmofthe ﬁrstisaniqmtoﬂréuchd Yetﬁ'eq cannotbe

aggregated into a totally nested foop! Their implementation dacr@tbm reveal why Recal that

the description of the first is:

Loop | {(outer loop)
Level: litem-id)
- Inputsp: empty
Prolog: initialize sun
Dutw's'ewtg

!mutss.euptg
General:empty
.ﬂ tputsgenply

- Inputsgrempty-
Epitog: ewpty
Outputsg:d] THOEOWD)

Data Driven Loops . 39

Loog 2 {inner loop)
Level: (item-id, store-id)
Inputsp: empty .
Prolog: empty
Outputspempty

Inputsg: IDEMAND}
General:caiculate sum
Outputsgempty

Inputsg: ampty
Epilog: empty
UutpUtvs;Bnptg

The FRACTION computation also has two nested loops:

Loop 1 {outer loop)
Level: (item-id} :
. Inputsp: {DEMANDY
Prolog: . empty
~ Outputspempty

Inputsg: empty
General:empty
Outputsgempty

- Inputsg: empty
 Epilog: empty
Outputsgempty

Loop 2 {inner M}_
Level : litem-id, store-id)
Inputsp: empty
Prolog: empty
Outputspempty

1nputsg: IDEMAND}
General:do division
OutputsgdFRACTION! -

Inputsg: ewpty
Epilog: empty
Ou-twtagwtg

Clearly these tompﬁtations are level compatible since they have identical levei structures. But the

(iewn-+d) level loop of the first requives that | TEREIND be an epput of the i

i&z&sﬁafs Ji-mali
(iterm-id} level toop of the second m“thn‘_ n FP

mmuammn&m& v
L mﬁa*aaisa:ﬁ"

§éf—!9§:§ ‘aas*
Y3 rqetuan
ipolonS

-'ml"raiqam-mluh*m L oglumagsiugiv

— every Epilog actiun st remain in the Epitng vIomsigeiuanl
| C ploma i mond

— Prolog MO must sanain in the Frotey plamageiuatul

- Epi log NO svest remaln in the Epiteg L. ylogme sgeiuant
R ‘ : ptame cpetingd

mm*“u ' ;;gm?ammm

- nmmh“ﬁ.h*mmu v L%S‘éi@?é

® be mevped, but should never kdﬁ:M:s:'

' “m” fsved Em oot 3vad gl woni ié!ssqma; iavsl 318 zmwm;ﬁm semrd? ¢l

Data Driven Loops) 41

‘Computations whose totally nested- loops are jevel compatible and satisfy the ibove order

constraints are aggregatable..

lll 2 Merging Loog

Because each action and all /O mutt be performed at the mne‘ievel tn the aggregate as it
. was before aggregation the loop structure of the aggregation of two computations an be obtained
~through a level- by ~level merge of the loop ievels of the two computations to be aggregated

Ti'te algorithm for .tn,eg:ging twototaﬂyne:tdbops i |
For each loop in one: |

If the other has no loop at the tbe same level, just add the- npmtion ofthat level to the
description of the aggregate

If there is a correspondmg loop the two loops must be merged into one for the aggregate -
The foll details of merging loops ' are complicated but a rongh sketch foﬂows Let the
corresponding loops be L, and L, where no output of L, is an ingut to-L;.'¥ There are three

cases:

1. Some outputFoftheEptlogofL| isaninputtol.z
a.F is an input to Lzs Prolog section aggregation imposstble

b F is used by an action in Lzs General section move that action to the Epilog of
the the corresponding level in the aggsegate; alowg with iy ‘dictions in L;'s General
section which use, as ‘input, some output produced by.the action; all other ‘actions
remain in the same sections in the aggregue apthepweré iw Lyand X5 o

c. All other cases:-all ather actions remain in the same sections ‘in the aggregate as they
were in'L, and L,. '

17 Obviously, the case where no output of L is an-inpit to | wilt be handled exactly the same,
mutatis mutandis. The remain case, where each has some output that is an input to the other. is

impossible.

12 Data Driven Loops

2. Some output F, generaudby s0me action- A irvthe Gener a1 -section of- Ly, is an fvput to L,
a.F is an input to L,'s Prolog section: move A from the Genéi'at section to the Prolog
section of the aggregate, along with any actions in the General section which have, as
output, something used as input to that computation; all other actlons remain in the
same sections in the aggregate as they were in L, and L, -

b. All other. mdamm%m the: same sectiong 'fin the aggregate as they were
“in L, and L,

3 Nenthcr ! nor 2 an actlons remain in the same sectlons in thc zggregate as they were in L .}
and Lo s

Basically, what this means is that 2 -Getwral ‘action wiust move ‘to the Prolog "qf the
aggregate if it must come before some action in that Prolog or if it must comcbefore another
General action: which must-be moved to the Protog: a Generatl actm mll!t move to the Epi log if
it must come after some acuon in the Epi !og or if tt must come aﬁer another General _action

which must be moved to thc Epu log

l{l.a_ Non-Totgliy Nested Loops
. ln this report the treatment of data driven loop implementations is restricted to loop
stmcmres that are totally m.-sted Totally ncsted lmplemematims are not only bfoadly appucable
but generally simple and efficient as weu ln fact they m provﬂe the mt emcient and
expedltlous implementations, especialiy when sequgmiauy orgauized ﬁles, soned by key values, are
u;ed For the sake of compkm though. m; Mb nﬂ’m am non‘totally-nested
loops lndeed a gmat deal could basaid am mh Wh certainty, to make
one or . more. separate reports. Because of mmm htnismrﬂy brief and
| Most importantly, it should be said thtm-mtalrmbqwm are by no m@ns

Ft

Data Driven Loops B

inefficient or uninteresting. They ire used all the. ti:"neﬂmd for good, solid reasons. Their use is
perhaps most interesting when two or more computations cannot be performed-entirely concurfently'
_(i.e. in the same loop), but they ;canbej.perfem,édawith partial concurrency. The following two

examples illustrate.

131 Exarhple . Aggregating Computations with Incompatible O_rdér Constraints
Recall the flow equations: |
’ ITEMDEMAND 1S THE SUM OF DEMAND FOR EACH ITEM-ID

FRACTION IS UENAND/ 1 TEMDEMAND IF BEMAND PRESENT
' “AND |TEMDEMAND PRESENT ~ -

and their implementing computations. We saw- in Section HLL2 that the implementing
| computations for these flow. cqﬁatidm could not be merged into a totally nested loop structure
because the inner loop for the first had to be completed before the inner loop of the second could
be performed. They can, however, be aggregated into a single loop with a structure like:
for each (iteﬁ—id) from DEHAND
SUM = undefi;aed
for each (store-id) from DEMAND(i tem-id)
- <calculate sum>» - .. e
end ‘
if definedlsum) then ITEMDEMAND(item-id) = sum
for each (store-id) -from DEMAND{i tem-id¥
<caiculate FRACTION>
end | -
end

~ This is a non-totally nested loop structure, since two loops (the inner ones) appear at the same level. .

1+ | Data Driven Loops

It is interesting to compare this aggregate implementation with the unaggregated
implementation-of the two computations involved (as separate Joops in separite job steps). Oh the
one hand, in cxhenmhmtatmrmym&d the BEYAND flow etst be ‘accessed twice, 50 no
accesses are eliminated by aggregation. 6n the other hand, accesses of the records of flie
I TEMDENMAND flow are eliminated by aggregamn if the cnmpmztms are tmplementtd separately.
every record of HENJE?WIJ must be written into a file by the ﬁrst mpuhumr;nd then read back |
: bY the second; whereas in the aggregate implanenmion the records are med as they are generated,
50 no re-reading is necessary.“. | | | L

In general whakmthawﬁntwbw&;s;ﬁhmﬁhb,mmlyasem
which their aggregate cannot be implemented ai: totaﬁy nested Wop '8’ where, for some loup level,
the output of theEpiiog section of one is an input o theProlog seetion of the other (a:s"is the case’
" with 1TENOENAMD above). in sich a case the corvesponding loop level of the aggregate can be
impkmﬁted (at above).as two lonps of the same level performed I sequence, and re-reads of the

fbw’in question will be saved.

maz2 MWam Tlnt AreNet wmm

In Section i mnwthatcanpmamwﬁhmmwwmmhd

compatible with one another:

™, KD, (K.M), LM

Thefactthattkyanmh&wtﬁbm&nkkmhdumaml

13 I fact, If these records are not used by any other computation in the data processing system,
it is not necessary to write them out into a file either.

Data Driven. Loops 45

nesting of loops that will implement their aggregate:. They might, however, be said to be partially
level-compatible, since the 'outermost_ levels have identica) keys. If a common driver set 'ﬁn be
found -for that level, they might be implemented as a: non-totaliy-nested loop structure. The
following is a possible implemenmimskekton: |
for each (K)' from.Og
for each (L) from.D,
for -each (M) from D,
end
- end
fer eaqh M) from Dy
. for _each (L)} from D4
~ end
end
end
wbere the D; are distinct drivers.
| This is another commonly found construct in file e!au processing wlt is the case where, for a
common set of values for the sub-index (K), two or more independem computatlom are to be

~ performed. As in the previous example, there is some lIO saving (over separate implementations

of the computations involved) because each record of Oy bas m be read only once.

gt a5 bikz 3 e xMW’F&\g; i 350t gt 19 EEERE
sii 115 VG P o Sty mn“%iwﬁ*ﬂﬁ%
B sk m i Fheme- , y ,.,,wwnmw,
ot 1 mm‘*”‘WaﬁV - oa 5 2 gniwoilel

We hn*”“h”lm# o

mested umm mm bgak bl
o - , gs;éﬁtt#m;m

which must have « drviving flow set.

In PFart } nm&uﬁr:w:ﬁa““

drivers we have : . o E b

L for every npus e ¥yt fowed 1, bunabusit
ad ©i eie ra0iisionmod ebosgabal oM 1w oW1 fﬁ x5t

) O P ch | o |
o ipTssmslgae SiBIEgET ssvs} grive: U sz o ﬁeéi simﬂts wmtyarg st ni 2A bemiwlieg

2 for every suagms Fo at froet §, .
Az ging ha::é of 2srl o 0 Deore? sém a2usssd (%}s?igvfa an :;;*m;‘,mm «d1 ¥
M& cB : ,
n ordey b&uhM‘ﬁh‘“ﬁﬂ”*: plh

Mdiﬂuwﬁm&:‘

Data Driven Loops _ 47

V.1 A Theory of Index Sets and Critical Index Sets for Data Driven Loops

Let us begin with some definitions and.useful consequences of these definitions.

1V 11 Definitions and Useful Lemmas

We .redefine the notions of ‘Lé flow's index sct and critical ;ndex set fom;ally and iqtrdciuce ’the
_operators P?oj., Inj and Restr: . ‘
_ Definition: The i;ldex set of a flow F witt‘\‘“lndex 1 fs‘ deﬁned as
IS(FY = {1 | thereis a record in F for 1}
Definition: The cri?i;al Li;ndex: set of a flow F (wifh ihdei‘i) w‘ith respect to a flow X is deﬁne& as

CiSx(F) = {I | there is a record in F for 1
that is necessary to generate some record in X} -

Definition: The projection of an index set S with index. (ky, ..., ks Kyiyo - - » ky) Onto the sub-
index (k,,..,k,) is defined as

ProjiS, (ky,..,k,)) = R e :
(kg k) | Tk, k) such that €Ky, .., Ke, Kpypo- -2 ke) € S}

_ Definition: The injection of an index set S with index 4ky . ., k,)-by the index set T with super-
index (k,, . ., kg :,u,,,,.’. .+ ky). is defined as .

Inj(S,T)- , -
{tg ke Kpope -2 Rg) | Ry, .., k) € S A

Ky Ky Kppegs o Kgd € T}
Definition: The restfiction of an index set 5 witht'kﬁex Ak . ., ky) Dy the condftion C {whose
truth depends on the values of the keys ky, . ., k,) is defined as

Restr (5,0) = {(k,,.., k) ¢S | C istrue}

From the last three definitions the following simple but useful results (stated without proof)

can be obtained: | o

Lemmal: IfAis an index set with index I, then

P"Olﬂ 1) =it meiia msn€i o 138 wabrd bt han 1l mabei e g TR L Rt

lni&m -8B a InjlA.B)

aperersd Jutsel boe e uniind %“5’
hpuﬁulu if A and B are index mﬂt&mhﬁ,
3sb7 soubosior bas (Homiet e xobed Lssiths bas ise xabal Tveoh & }e asaltoa it c%m‘ﬁtr«s“ sW
‘ InjiA.8) =B aA

. fesfl bas nl o4 ziotsTgo

Lewma 3: HSM'mh‘umM&ﬁu‘ﬂn peeindex of that of S, them
28 baaiish #1 | xobed diw 7« ;_-ﬂ%ﬂ’%z xybss od 1 noitinite(i

T InjS. MM c ¥ - ‘
{1 wt 3 8 bwost & ot | 2} 121

- Lemma £ I T is an index set with index 1 ﬂsbnmxﬁﬂul 2 suib-index
. xx heniteh 2t X woR 8 of Dsges diw £ miusi dtiw) Twodl & T bl Wmbtn e T aodliniis(l

‘!yh
it 3w bﬁﬁﬁﬂ seamdt il - (4,21

Projlinj m By SWRUEPRAG 11122090 & sl
hewmatio 1.3 uummmmwgﬁs slBaa |

of Ig then ' s benitsh i fgd LAY }I”ﬁbé’ﬁ

Restr (S, F PRESEMT) = InjlISF). D) SRR ,,x!‘i Biie9
{g H fxxz'wimfg %ggsﬁs :';:?g A siﬁ@.~,i)“?§.§, {0 i,~ 32} .

We begin with twe thearens concerning &Ml&wmw* :
. computations. mm-nsmwbmqtumﬂaﬁmw
SERPNF- TN DU I 3 SRR D SRINE 1 :

Thewrem & HF is aﬁu%#ﬁwpqﬂv&i’! non-vednction flow
WM@W”Wwa ss2 gebai 88 3o sebisias o T aoinndisC
CISyF) = ProjiiSFhfdonitsh o 'u;-’; PRS- eé;:s‘;vi st Yo amdey il oo }r,m_fr.; sty

- That is, an input muwhuMsﬂ;t,“Wﬁ

e o i et S »
- Lemma | we have that | - : | | tanisids od n&s

rndd 1 gsta dtbw je2 xobri ns u AT o ameenad

gt 2 ¢ xaba ps o eiv ol T goutnlsd

Data Driven Loops ' N &

Corollary 1: Let F be defined as in Theorem L. Then for afiy flow F; with index identical to
that of F . |

CISE(F) = IS(F)

Theorem 2: IfRisa ﬂow (with index I} described by the apphication of a reduction operator

to a flow expression expr in terms 6f the flows Fy, . . ,F,,, where ncﬁ flow F; has index I, (eg.'

the flow equation for Ris: R IS SUM jl}' oxpr FOR EACH. <igs);then

‘Cng,(Fii.) = P}e;US(expr,); 1) |

(Note that the index of expr must be a super-index;-of‘l,.)
This theorem snmply says that when a flow (as that dcscﬁhed by expr) is reduced: every record of
that flow is used in calculating the resu!t From Theorem | we have in turn that the critical index
set of each F; with respect to the flow to be reduced is given by the expression on the right-hand
side of the above equation. | |

Corollary 2: If R is a. ﬂow (with index ln) described- byrtheapplm of a reduction operator

toaflowF (eg. R IS smoF F FOR EACH <lg») then

CiSg(Fl = IS(F} -

The followiné theorems concern the- nature of b,the Andex sets of flow cxpnsﬁons. First, a
simple result about flows describe;i_ by reduction 7 |
Theorem 3: If R is a flow (with index [rig)‘ described by the application of . reduction operator..
toa ﬂéw expr;ssi;:rt expt'-’(e.g. thé ﬂt":w equation f& Ris: R IS SUN OF expr FOR EACH <i§>),,
then | e

IS(R) = ProjUIS(expr),ig)

ﬁwmmm . ’ , ERRiSH

{31l = ';1}1;“\.
For “’”m”mhw:*mmn

M p g zasd owed iy i T .4 3 awofl st o wnrs o s nolzsigRs woll 5 6F

T T
Iy ﬁ%nw
arithmetic flow expression (ﬁ“m & o fanem gxa w0 xohai a1 124 srobh)

Wﬁa‘ mw& w28l Py ey 1es 2y vgt-qmg., mocedy ad T
. NDFy EIDN |

FCHEHMIEEE S R UL ¢ nt pead v |aroadt T m‘!ﬁ #@3 3y gfmfsf wiey m w3 woll e
Brumsi sty i 6O HORISIGES v;;i* i qgs;ﬁ # mﬁw o 5*31?}%" dite 3 duee o f92
ng e ﬂl '. ﬁiiﬁg svigs **’i“i o Tt
’Q?i aﬁ 3.
%& %F’

at least ane such flow) s ' B mez:mg::&

In FE-HIBOL crempacifuptaie i Shjrontin

’ mmnwuaamgmuw

| m"‘tWBHMMW L

gﬂwoﬁe} 'z{"i‘

gﬁﬁ&i’ﬁ%ds Huss slgmie

,,m;ﬁw&?s&ig'ﬁ 2 moroud T

3"'“"1 % Lﬁ'“fe";.-:.&! be 2 flow ¢

additiornss! constraint that the F; are of uniform index.

%ﬁmemmﬂi - is?-;at '

Data Driven Loops

IStF ¥ n= 1
IS(safelF,,.. ,F,]) =
. oMW ISEY - > 1

i

)

As mentidried above the only legal arithmetic flow exple;sm in FE-HIBOL is a safeor a

_only need the following simple theorem: -

safe further qualmed by some condition. ThisfurtRer quauﬁuuou ‘must take the form of a Iogical

expression ANDed with the safe. Thus, to complete our treatment of arithmetic flow expression we

Theorem 5: The index set of a simple arithmetic flow expression safe quqlified by the

condmon Cis glven by

lS(safe AND C) = Restr(lS(safe) C) v
. Rty

- Consideration of special cases leads to three snmple coro!hries

~ Corollary 4: By Lemmas 2 and 5

IS(safe AND G PRESENT) = Inj(C, lS(safeH
= [S{safe) N Inj(G,1S(safe))

Corollary 5:
IS(safe AND (C; AND Cp)) = Restr(is(safe),c,) fi Restr ([S(safe),C,)
Corollary 6: .‘

IS(safe AND (C, OR C,)) = Restr(IS(safe},C,J U Restr(IS(safe),C,)

Ay

For conditional expressions with two cases'? we have the following result:
Theorem 6: Let E be a conditional flow expression of two terms:

£ - expry IF C,
ELSE expra ¥ Cz

19 The extension of this theorem to more than two cases is trivial.

= | i Do Rk

m""'*“"‘"‘t*ﬂlﬂlﬂhm and Cy a’g'ngnt
) ,...,‘«lsaise;
xprenions. Define the ""wxﬁ’u E; (wing the e flow and logical
£ wpgdes B EEE YoInMw gw@w #a walt ﬁ,m%‘m el ﬁgim st 3?6{* hanotina 2A

&3t ";é R mgéi > }?M;&% Q\r&mﬂ' Bt &"mm smror o Deitdgup G0t BiE

i el HAR paligtiag

e

3,
P
pe
&
bl
iy
A
P

gas woll ndnie o nE @ v 53‘*‘@ o "wﬁ?
ISE) - ISE) v ISKEY nmonits &gﬁm gestwodled sobi beorr i

3

~asigee woll sitemine shgmiz 5 0o }ag wsbai T F msveed

R

d 3 134 ;3 50 "sf.}fih{ma
To Mustrate the *"m "‘ﬁ"“"’*‘nw and verify
3
M&ehqm " * 13, lateel 81y iesdl = 1D % stszied

433 si Ma‘ m sszEy bEppang Y0 noitersbiealy
Esawple £ R IS BE S0 OF £ FOR sgm " B

€ b ¥ zenumad A b oyl TN

mnmm &,3:‘?&:* &;.k;l &ﬂhna-abve&cw
(latge)R1.00ial = (THIZIRT S OMA atoal &

: i tigtnzlel Dtist O wm»h’?f =

for each tk,) from F o iR yrélenaDl

RS - q - s
HNORE T ’E !, gﬁ Hls.p}‘z‘:*%agia;;;*z

s58 = 11D MHA (O (WA sisel ™l

oach Byl frem Fi,) : o S & tralirel
(0, 1sTpa iyl e P 3, tietElisteei = {10 AD jr Ok siseldl
UM =y : . R .) X

g W JRwOlGE it 37 6 S € sorks owi dhw eI e EnDEEbGSY 107

R e R "s-wawgm woll Isaoiibnes ¢ sd rmd @ mesdT
bogin _ _

Ry ""!"' -

if definediswm]

Data Driven Loeops ' -5

In level | we have the output R and the driver F. The index set D) enumerated by this driver at
this level is?
0, = Pboj(lS(F) (k))) = IS(R) (by Theorem 3)
thus satisfying the dmung constramt for the input R.
In level 2 we have the input F and the driver F. Tﬁ_e index set D, enumerated by this driver
at this level is |
D, = IS(F) = CISp(F) (by Corouary 2)

thus satisfying the driving constraint for the output F.

Example 2:

i

PAY 1S HOURS * 3.08 IF HOURS PRESENT AND
v NOT HOURS > 48

ELSE 128 + (HOURS - 48) # 4.5 IF HOURS PRESENT
We..shall use this example to illustrate Theorem 6. Define E,and E by
E; = HOURS %= 3.88 IF HOURS PRESENT AND NOT HOURS > 48
and ,
‘ E; = 120 + (HOURS - 48) x 4.5 IF HOURS PRESENT AND
- NOT - (HOURS PRESENT
AND NOT HIRS > aa)
By pure logical snmpliﬁmnon the hst eguation can be rewritten:

E, = 120+(Pﬂﬁ$-63)*45 lrmsmssut»n

From Theorem 6 we have that

7""’ Theorem 8 of the next section.provides a formal treatment of enumerated index sets.

:irved il

15 moii KA b SRS & WP 0T I mvtibody bas & T R ST T

U555 isval ziddl

- Pestr USONURS), W57 YOS » 480 *mg
U Restr (ISORNUNS). NANE > A0

: T - &s!r!m n ‘
< yovith fidi O boisTsmuns o e xshai sdT 3 w&fhésé} prs 3 mqm a;!i svsdsw € Is
- ls :

v i

2t favst idi 18-

~ and by Corellary | ' , |
€ plived W) S Mg~ (MR- 0

’Clsmﬂm-:sm.m'\ ,
3 msic a1t 201 Inigaienoy gniciih sl gniyicines 2idi

Example 3: . | . -
. ' RN - S dymsxd

B IS PsC W rmntm
GAA THIZSS BRSH Y. &x;aﬁm 21 VAR

memnmam‘u‘ Citom-id). (This s
‘ ,."_’;‘Mﬁaiqmsxa 2ieit geth Harde 9‘&‘

wemuﬁmessm Ll wm&mm% B9.E % 2AUOH - ;3'

Dz

- CISpfC) - ISE 12373 SRUDH @ - 35;&& $ 831 = &3

- IR O Gy T
S (B8 < SEIDH TOM OMA Sl s L
- CiSp®™ -Mm,m_-m' 4 '

15z webel Deiginuns Yo eeuieyy) L) & ésm%?sg S I58 - Jxse o iﬂ 3 awumd 1 os

Data Driven Loops | : 55

for each (item-id) from C
get Plitem-id)
for each (sfore—id) from Clitem-id)
get Clitem-id," s'tore-fdf o
EP(item-id, store-id) = ...

if definedlEP(iten-id, store-idl)
then urite EP(item-id, store-id)

end
end
In level | the iﬁput is P and the drivq is C Theindexset D, enumerated by this driver at.
this level i | | |

Dy = ProjUISIEY, (item-id)) ,
5 15(P) AProfIFSIT), (Ftemsid)) = ClSgptP) -
In level 2 the input is C, the output is EP and the driver is C. The index set D, enumerated

Syt

by this driver at this level is S
D, = IS{C) _
> InjUIS(P),IS(C)) (by Lemma 3)
= C’S{p“:’ - IS(EP) ‘

Thus we see that thc ﬂow C is (at Jeast) adcquate to drive both level&

1V 1.4 Driving Flow Set Sufficiency

‘We wlsh to 'be able f6' determme whéﬂm 2 set of input ﬂﬁws’ i; mmcient to drive a
computation loop level. Let us begin by defining the notion of the necessary i;;;ex ‘set for a
computation level:

Deﬁnition "The | necessazy index set at !evel i for a compum c (denmed NlS‘(Cl) is deﬁned «s-

the set of index values necessary to drive level i ut the toml;nemd MWG

viosn. Sy

ﬂmwmm-.m o 3 govt ibi-ms?i) dose o}

M1 tep

Theorem 72 The necessary index set for level § of =

NIS{C) = (v Cthﬂl’ el Eﬁ’masmfa} s 10}

F « 8IC), Gt
FRX ’ ipi-s<ole bi*&S?s?J 50

s a2 g 5’ M ;W,; i
where@(C)- outpats of computation C = {hi-swls b esfild3
:i: - s : :" .:'?" MG a10sn bi-maiil9beaitat b

T inpons.of 1 M& tp .5i-zeti)lF3 et iwe podl

Mawwmumwmqn&mcmmﬁhuam

hwbdonmhveenmtqsh&irm m&* : :
is:.xs Lo Sciwrk@;ﬁmﬂf&wwﬁ’iiwﬁ ﬂi .

2§ f““é"i 3§J§7
Mwbmnnmm
44{3:»&“? 23 itiort = 4

Theorem & “W”&‘Wm_ iuwru

a ,
i 1SR m%ﬁm sAT 02 wavnb wit bns 93 2 waie st 3 g dugai sidi § fpyof ol

S;Hl - PN}HIS‘! n : C 0 g tewsl a1 iﬁgiiu wi: L

Urtne: the i SO ' o (et - 50
’ﬂue ology just imtroduced we have: ..o\ § yd) (i1 I AE o
w2 = eIl -
Theorem & Anithh“bmimﬁlﬁé&qt
. hsvsé diod avhb o sxsapebs (esod 18} & 3&@&&;&19&9& ard T
MSIC ¢ U S 1

F‘(' i . .
wasbiltud pe wold gaivinG $1.VI
: th:tk.lfaadulyil e ob o L
‘& svith o1 tasbhithi &
for that level

5 101 ter xsbai yirzma ed 13 nellon it grdmiish vl argsd] Jsesi qool solgwgmon

iaval sscémmz;fﬁm

Z'Mﬁmmgm
- 'SF" E” ' . ..‘,.-n,-' ~ ‘ 2

Data Driven Loops 57

IV.15 Minimal Driving Flow Sets

| ‘The set of all inputs of a computation is sufficient to drive that computation. We are
interested in 'f‘irnding the smallest subsets of :this set that. will rpmvddeesumaent drivers for each
level. This interest sterrrs from our implementation comstraint. that all drivers must be read |
sequentially and must have compatible sort orders. If all.contained: inputs were used to drive“mh
level of a computati‘oq_logp, all inputs to that computation would :have to-have compatible sort
orders and.a." would have to be read sequentially;a-;constm that is often unnecessarily severe. -

Moreover. from an efficiency point of view, we generally-want the set of indices enumerated
by the drivers at any level to be as small as possible (whtle satrsfymg the fundamental drivrng
constraints) so as to minimize the number of iterauons For example lf we are trying to minimile :
11O accesses and we have a loop that.reads some (non-driving) ﬂow by random access, the fewer
iterations there are the fewer attempts there wm be to access records from that flow.

Consider, for example, the EP computatron (Example 3 above) The inputs contamed ln thek :
outer loop are P and C. Both together could have been used asa driving ﬂow set for that level.
We were able to show, however, that C alone was sul'ﬁcient to drive the outer Ioop Thus. we came

p with an implementatlon in which only the ﬂow C had to be sor;ed ond read sequenthlly
Additionialy, in this lmplementation only those records of P that can actually be used are fetched

Tt is important to note that the usmg some smal!est drwing ﬁow set fore;cit Jevel does not ‘
always improve eﬂ‘rclency In the computatton above tt can be showu tbat P alone is sumclent to
_drive the outer Ioop However, such an implementation would be no better than one in which the .
" outer loop is driven by both inputs Since the. inner. loop must be dﬂvm by C in aay eue. we
would still end up using both inputs as drrvers both would have to be sorted compaubly and read

sequentially; and more records of P would be read than wouid actuaﬂy be used

shass ﬂ pa moid avorte M

v sihiw} sifimfv:; 28 Bers 26 o4 @ %w?i (e 15 e 963 v

mivizh ismsmsbmsd 5l
W2 Determination of index Set Inclusion

a1z su H %xﬁ w1 noitessH o yadmun odl SMmam O 18 O {npiettenns

SxkminieT o) AN ¢

Tom&aa&-ﬂkavm*gq~
19wsl 841 zaxs mobns (d wol {gatvitb-nen) m&:‘a’m Iﬂﬁ
'Md:cﬁ:ﬂs‘mtmm Inanad e

- woft 1541 2o abrodn Hes ﬁsé%at

such inclusions for some of the examples given
ad? i Bemigioos awigni oA T fsveds ﬁmxﬁm
Mnm’“n&ud : .
Snvad sud ol e weit gmivith & 25 baey fisvd seed Bluor e

The characteristic fowction of an index oit & 5 g
s ew aud T ool 1w st swith of weioiThe 26w 9 2
. »m:«&w&&:m:t“*ﬂ.

glsitnsupse bist bas bemer od of bad 3 wolt 5 glae Al
ferwe) if and only If the index set contning that value: othyrmia
beddie: 318 bszsi ad yilEubs ned el T o thon senl

Wmammﬁnm_” on dnighiei
ton rech teys! rdes o1 432 wohl 3&72}& &ﬁm o 4 ¥

Mbnmm;ﬂi—ﬁm
m;m yidieqmod %f‘wséauﬁﬁﬁm, o ;
: # tnsofar as set inchusion is

inclusion is net selvablbsiu 59

Data Driven Loops ‘ 59

A>B @ By » Ay

'.The expression on the right of the equivalence symbol {#)-is a: formula in the first order
predicate calculus. If this formula can be shown to be a-tautology the corresponding set inclusion is
proved. Shouﬁhg that a formula is a&ﬂt%_i&,W‘ to: showing that it simplifies toT.
Since powerful first ﬁrder predicate calculus simplifiers exist, themkof proving set inclusion. can
be so|ved by recasting the hypothesxs asa predicate calculus formuh md!irying to slmpllfy it. Ifit

can be slmpln‘ied toT mclusnon is proved; |f it slmpliﬂes toF lnclusion is dlsproved
When the formula cannot be slmphfied to elther T or F thcmuning Gf the result is not
‘dear Either the simplification is correct (in which case ;tbeiormula ismot'a tautolegy. and thus set
mclusnon does not hold) or the simplifier has run up agaimt a fundamental limntation” and has
failed to simplty the formula completely In the htter case the mm in fat:t be equivalent to
T (implymg set mclusnon) but the simphﬁer is unable to determine it Because of this ambiguity.
the wisest assumpnon is the conservanvc one: whmm shnphﬁcmm to I does not occur, set

" inclusion does not hold.

lV.2.l Characteristic Functions for Index Sets

‘

- In this section the pamculars of the syntax and semam d dhmm functions for
index sets are pl‘?SCl’l(Ed _) FURRR "tfj, R N
’ e

The characteristic function for an index m isa logm expmwn ipradiau) in terms of its

- the keys of its index that is true for an assignment of vamn those-keys in exactly those cases in

2% 1t is a well-known fact that it is impossible to devise a procedure that will correctly simplify -
: everzy formula in the first order predicate cakulus.

® Because our work is implemented in the LISP prognmming hnguagc lhe notation is -
unabashedly LISPish.

60

which the index set contains a corresponding index value. mﬁisgtk,.-..k,) denotes the

 Saelhy.... A = T #f Sosmtains anindex value with &, < Ky, .. ko= 4,

L Standard logical aperasers™

. AND - N.pg,...p) =T m:mm%madmﬁm
tmefnrtlutnstame

b.m fm P'.-.,p.’-f f“‘m'wméﬁmdﬁnmm

<. NOF 0T p) =71 ﬁapﬁ*kwwﬁptwmm
instance

d. FOR-SOE (FOR-SOME (k. . ., ky) PRy, . . kgw o - Ko)) = T fora
particular Xep-tuple imstance ;- -, k.!ﬂ!tﬁﬂtexﬁﬁhuferﬂnizpk,,...k.
mchmatthepndmp{k,,“.k,?smtﬁsnawm

2 Standzrd arﬁMwmmMWmhaMapfm
in terms of variabies {soe below) 208 censtants Tormed using the arithenetic operators +. -,
wxand /) e “
a. EQUAL (EQUAL expry expr) -Iﬂw,szhnanmml
value ,

b. GREATERP !Mﬂﬂl’ex@r, eaq:r,i =1ﬂth~aaa!uhedw, is
‘greater than that of ey : _ .

3. The special operator DEFINED; (DEFINED ¥ per X, .., &k;)) = T T there is a record
mthevanakamperwdperaxtheWmm&,,.-,U mmu.

. DERINED operatar- samst bea variable,

The teras intraduced here are explaited i greater detail in Thit Tollowing sections.

2% The smpmpimmm'

Data Driven Loops . 61

IV .2.11 Variables

A variable is a representation of a HIBOL f‘l'owbwn,h_gg’y and period information attached.
The period uniquely identifies the variable in time (i.. it specifies a particular "incarnation” of:the-: -
| flow). An assignmenr.of values to a variable's mdex and .its period specifies an instance of that
~variable and this instance is said té be d{[ined if there is a datum (an(ithﬂi récord) corresponding
to the key and perlpd vvaluve.s _r.lamed‘in ‘thg assignment. |
The ge_ne;ralk form for a variable is
{flou-name - period keyy ... key,)
where flou-name is the name of the asso;iated ﬂqw” the, slot qgriod: contains. the name of the
period in whlch the variable is generated or input and the slots kay; contain the names of the keys
of the variable.. An example of a variab!e speci!’ication s - |
' (E’MLEU term student subject nu:bcr)
wrnere
ENROLLED is the name of the vm:nable
term is the name of a period
student and subject-number ate the x;ames of the varlables keys
An occurrence of 'a variable.in a- pred:cate is. «M@ wubk rejcmm In-a variable’
reference the form in the period slot 1dennﬁes a partiquhr inamation of the variabk (e.g. if the

period slot contains TERH that means that this’ term’s incamation of the variable is belng referred

to; if it contains (PLUS TERM -1.), last term’s incarnation is referred to).

T ywah

27 The variable and the flow have the same name.

62 ' Data Driven Loops

1V.212 (DEFINED variable-reference)

" This expression is true if and only if variable-reference is defined. In particular an
expression like |
(DEFINED (ENROLLED term student subject-number))
is true for an assignment of constant valves to each of its keys and i3 period if and only if the
variable ENROLLED in.the specified period cent:if'isi record mtrespmdhg b the specified index
ealue; Qtﬁerwise it is false. Thus, for example, mé predicate abo'eis tmefor wbjet:t—ri.ﬁubef -
33 and term = TERM if and only if in this term's incaration of ENADLLED there is 2 record for the

index value €JOE 33) (e # and only:if-Joe Is encofied in Subjit

+ 33 during the current term).

IV. ZI 3 Correspondence Between Logx:al and Set Theotelic Netatm

SEEEG T

In our characteristic ﬁmctionlmdex set dna!ity the geuent W between -logical |

and set operators is given by:

logical operator

oR ‘ “ n o

(FOR-SOME (Kky.j,..,K,) Sue? Projis, x;, ..k}~

(AND S, C) “ Restr(s (%]

AAND Sy Vo) T “1njes.n

(DEFINED (V ...)} - ISt

That is:

the characteristic function of the intersection of two sets is the lqial AND of their
characteristic functions;

the characteristic function of the union of two sets is the logical OR of their characteristic
functions;

the characteristic function of the projection Proj (S, I} of an index set S onto the sub-index

1 is the FOR-SOME operator applied mmmmdsmmmm'
keys;

Data Driven Loops . 63
the characteristic function of the restriction. Restr (5,C)of an'index set S by the condition C
is the logical AND of the charactenstic funcuon of S and the condition C

the characteristic functlon of the m;ection ln ,(S AL of an index set S by the index set T is
the logical AND, of their characteristic functions; - ' ;

_ the characteristic function of the index set ISW) -of a: vsmbie V is the DEFINED operator
" applied to that variable.

This mapping can be used to determine the characteristic function of any set expression
encountered above -
‘Examgles:
The index set
1StP)
| ’ has the characteristic function

([EFHED {P DAY tten-tdi)

‘ The index set

ISP) n Proj(IS(C), titem-id))
. has the chafacteristic function

(Am ((EFUEU P DAY nteu—idii '
(FOR-SOME (store-id) (DEFINED ic DM item=id store~id)}))

Tbe index set . - o e
Restr (ISTHOURS), NOT HOURS > 48)
~ has the characteristic fumtion

(AND (DEFINED (HOURS HEEK employes-id}} 3
" (NOT (GREATERP (HOURS UEEK employee-id) 481))

64 | Deta Driven Loops

lV.2.2 Ba:k-Subummn of Chnaerisa: l-‘mius

We would like our charadtnsuc fmctms to coutain as mur.h mfommm as poss:ble
e
 soas tobeabkwdaﬂnmcasmhaspossﬁ“ﬁw‘ clas Mdm sets.
The only:possible characteristic fanction for a varkablé (¥ perk. SH N tlm is'a system

input (ie. avarhbbmmwnwcmmdbynnsymhmkawpherﬂst)isthe

trwmlone werncn !Vper k,,.. kll bmmealthaunheuidistbatkmhsarmd

f it contains a record.

In some cases an mput variable may have the special property that it will alwaysmmama
record for every allowable index value. (Kmhdgednxhapropuqambg?gdm from
the HIBOL specification of a data processing system; it must be supphed sepamely) Such a
variable is tcrmed denrse or full. An example might be the PRICE variablg which in every
incarnation should have a record for every possible value of the m htea-nd) In such a case
the charactenmc function of such a variable is simply T

We could use the trivial characteristic fanction for a compmcd vanab!e as weﬂ, but more.
(useful) information can be obtained through the appﬂutim d‘ Tbeotem 3-6 to the defining
HIBOL ﬂowequzlm Mwmux%[awﬂ?mo&aﬁuﬁﬂchm
ﬂmctms for critical index sets. Characteristic functions thus obtained are cakd ' o’sumef
characteristic functions.

ft should be easy to see that for any characteristic function if ‘#fi occurrénice of (DEFINED
variable) is replaced by tbe chanaertstkm l‘ur varia)ie ﬂde l’euﬁ i’lﬂ be a logically
equivalent characteristic ﬁmctm This is term:d back-substitution of characteristic functlon& if

back-substitution is applied recursively, the resukt will be a characteristic function mm only

Data Driven Loops » 65

DEF INED’s whose arguments are non-computed variables. This is called fofa! back-substitution.
Total back-substitution of all characteristic functions has the advantage of making them:all into a

uniform form, thus facilifating comparison and logical manipulation.

1V.23 Example
Consider the flow equations:
S 1S H xR IF H PRESENT AND R PRESENT

X IS (H-48) xR / 2 IF H PRESENT AND R PRESENT AND H > 40

P IS S + X 1IF S PRESENT AND X PRESENT
ELSE S IF S PRESENT
ELSE X IF X PRESENT

where the flows H and R are system inputs, all flow have the index (key) and all computations are

performed daily. The one-step characteristic functions of the necessary input sets are?*

NIS{S)y,, = (AND (DEFINED (H DAY key))
(DEFINED (R DAY key)))

NIS(X),, = (AND (DEFINED (H DAY key))
{DEFINED R DAY key)) -
(GREATERP (H DAY key) 40))

NIS(P)y,, = (ORIDEFINED (S DAY keyl))
(DEFINED (X DAY key)))

From these we deduce (by Theorem 9) the following. resuits

1. Computation S can be driven by either H or R, since both

28 We use the outputs as the computation names and drop the level subscript since there is only
one level.

66 Data Driven Loops
NIS(S),y = (DEFINED 6 DAY keyl)
and

NIS(S),,, - (DEFINED (R BAY key))

are troe

2. Computation X can be driven by either H or R, since both

NIS(X) 4y -+ (DEFINED (H DAY key))

and
NISiX} e, = (DEFINED (R DAY keyl)

are true

a)

@b)

3. Computation P must be driven by both S and X, since neither

NIS(Ply, - (DEFINED (S DAY key))
NISIP},, > (DEFINED (X DAY keyl)

. are true, but

NIS(Pl,, - (OR (DEFINED (5 DAY ¥ey)) -
 (DEFINED 1 DAY Keyd)

is true
However, we know that

1S(S) 4 = (ANDIDEFINED (H DAY keyl)
(DEFINED (R DAY Reylh) -

IS(X) ,, = (ANDIDEFINED @L8AY keyd). -
(DEFINED (R DAY keyl)
(GREATERP (H DAY key} 48))

" so back-substitution of characteristic functions yiekds

(31)

il

Data Driven Loops - 67

NIS(P) g, = (OR (DEFINED (S DAY. keyd)
(DEFINED (X DAY key)))

- (OR (AND (DEFINED (H DAY key))
.. (JEFINED . 1R DA¥ keyl)) -
(AND (DEFINED (H DAY key))

... ADEFINED (R DAY keyd).
(GREATERP (H DAY key) 48)))

-~ (AND (DEFINED (H DAY key))
(DEFINED (R.DAY keyh)) .

Thus, formula (3.a)
_ NIS(P) py, = IDEFINED (S DAY key)) -
becomes :
(AND (DEFINED. (H BAY key)) (DEFINED- (R BAY. keyl})
-5
(AND (DEFINED (H DAY key)) (BEFINED R DAY keyh)) -
which is obviously true. Thus, back-substitution has revealed that computation P can be driven by

S alone.

» A T Mr!! #emawz g 21 tnistw
. g sevith sd #a3 9 aes! ‘e 164! Gl eavst 266l wﬁﬁﬁmxﬁsg’ M;&

BB ©

V11 Stmple Compstions
w*mmw
PAY IS RS = 3-' w mm |

'uﬁumn&ml-ﬂhwm

The busic implraentation of this computisie _;gmmup.mmu
" rend 2 m&m&

a"""“ﬂmmmﬂa; winon,
'-m-gn-eu-suie. M*“*‘**ﬁi,; o of Slind we

~ Data Driven Loops ‘ | 69

extract the data item (the number of hours worked) - -
multiply it by 3.00, . o
assemble the corresponding record ofPA¥ G

whose employee-id key is the same a3 the record read

whose data- ’item‘s value is the resull of multnplying the value of the data item of
the record readbyu!) e T

write the newly created record to the file PAY

To support this iteration, there must be
declarations of the data objects to be used”
loop initiatization

EOF (end-of-file) checking (to terminate the loop)

V 111 Necessary Data ‘Obj'gcts and Their Declaration

First there must be dectarations for all input and output files. Assume that the files PAY and
HOURS are known by these names to the PL/I environment UCL code can be generated to make
. this happen). Then the following declarations must appear in the PL/I code:

DECLARE HOURS INPUT FILE SEQUENTIAL REQ
PAY oumr«r FILE SEQUENTIAL ‘

3

There must also be declarations for data stmc*mrés%ancﬂary to the’:llo‘ and control to be
performed. In particular, for every input file there must be a record image data structure into
which a record of that input can be read. Likervis;. 'for"‘evcry output file there must be a record
~ image data structure into which a record of that output can be bfuilr so‘rhdt th can be writterrout.
In our simple example, the HOURS and PAY files must have such l_ssuchted‘data objects. The PL/I

structure can be used for this purpose:

7 . Data Driven Loops

'DECLARE 1 PAY_RECORD,
2 ENPLOYEE FIXED DECIMAL (&),
2 PAY FIXED DECIMAL (4},
1 HOURS_RECORD,
2 EMPLOYEE FIXED DECINAL m
2 HOURS FIMED DECIDAL 3);

Finally. for each input a flag is needed to indicate the EQF conditiop. for that jnput. Thus, for the

EL T e Leamy B

HOURS file we would have the declaration:

DECLARE 1 EOF ALIGNED, \ .
2 HOURS BIT (1) UNALIGNED INITIAL (*8°B);

When EOF occurs on the associated file this flag inu ta 'X'B o

V.1 Loop Initialization

Before iteration all flags must be initialized. This can be done by the use of the INITIAL
statement in the declaration (as above for EOF . HOURS). Ala all drivers must be read to establish
initial values for their indices. In our example, the initialzation section would consiat of mevely:

READ FILE (HOURS) INTO (HOURS_ECORDI ;

VY.113 EQF Checkinx a"dm Términation i

To detect an EOF condition on am,caulsg mmmm PLII{N constmct
can be used For theKlRS file the appropnatemde would be:
: ON EMJFILE G{lRSl E(F KIRS 1'B;
| To enforce rteration termmatm upon EOF of the driver, the loop is constructed using the

‘ formDO WILE (- E(F drwer)

Data Dyiven Loops T

V.LL4 The Loop Itself

Given this supporting structure, the rest of the implementation is easy. The loop itself can be

written simply as: DR SIEEE S TR PR AR SR
DO WHILE (- EOF.HOURS); ; Gt nna
' PAY_RECORD.PAY = HOURS_RECORD. W*&J; e
PAY_RECORD.EMPLOYEE = HOURS _g—mmmg B
URITE FILE (PAY) FROM (PAY e, - |
READ FILE (HOURS) INIO. (HOURS_RECORR) ' L
END ;
When the loop terminates, the job step is ended and the mput ;nd output ﬁle; .are‘automatically
: 80Ty oA Pla g
closed. The complete PL/I program for the pay caitulation compu::uon :5 given in Fig L |
AT EEE AT . i
V 1.2 Uniform-Index Matching C@“M e - P TN T T L a

Let us extend our treatment of single-leve] \papoimplementationd 36 these %iW mdre #fan one
input We use as our vehicle the variation of the, mmm £t Inthifés & rate fle tindexed
by mpioyee-nd) ' - W= LA RRES E (R RO

PAY IS RATE x HOURS IF RATE PRESENT AND }ﬂﬁs PRESENT |

e AT as

Suppose that the input files RATE and HOURS are to be read sequenmliy. that their records are
sorted by emp loyee-id and that I-DI.HS is tised as thel;wjp dm;er e

- Again because the loop is driven by a single input file, it is implemented using the form DO
WHILE (- EOF.driver}. However, the computation description dictates that a record of the
output file PAY for a given value of the key employee-id is to be produced if and only if there is a
record for that employee in HOURS and there is a corrc;spondthg record in the RATE file. Therefore,
in the body of the loop, before the output record can be calculated, the record (if any) of the non-

driving input that matches the current value of the driver’s index must be found. |

Data Driven Loops . n

To find the matching record of the non-driving input we read:successive records from its file
comparing the index value of each record with_the current. \oop. index. The: general matching

algorithm consists of the following loop:

For each non-driving input: .

I. If FOUND. input is. true (indicating. tlm the, recotd. currently. held. in the. input’s image
structure has been used) read the next record of the roput

~ 2 if'an EOF condition has occurred on the input. set F(lm mput to falsc (0) and exit the

3. Otherwise, check the index, of the currat mmw the index of ‘the current:

" driver record '
. . 43 RPN £ WS I S
B lfssetFm mputtotfueandem

“1f <, read’ thc ‘next record of the input and go to step 2

I >, there is no corrcsoor’;dmg?rccord ln the input Set FCINJ mput to false (m case
_the index of the record, just read gmy maich that -of.some: substquent: mmm

T and exit

. y B [N PSR TR
¥ S g oaE, T g ML i T
AN S RIS & A 4 i

To support this algomhm a flag FOUND. input must be declared; fior: each non-driving bput

AR I

and initialized to true (l) hg[om.&hg»main loop. e sk e R L S
The imp%mentauon of rhe rest of the main loop's body (followlng the matching code)

'consrsts of code that attempts to compute the omput record mtug only tlnou nou-drtung inputs

whose FOUND j}a;; are true. Baslcally, in this code, the PRESENT checks of thc HlBOL descrlption

P

gy

become checks on the corresponding FU.NJ ﬂags\ '

This matching process must be:impkmented for every non-driving Ioput in a data driven

Data Driven Loops-

PAY_COMP : PROCEDURE ;
{deciarations)

OM ENDF ILE {RATE) EOF .RATE = '1'8:

ON ENDF ILE (HOURS) EOF “MOURS = *1'8;

READ FILE {RATE) INTO (RATE_RECORD); ‘ .
LEVEL_1_MIVIMUM_EMPLOYEE = RATE azcem tmovrf. e

DO WHILE { EOF RATE);
IF EOF _HOURS
THEN DO:/% THIS READS ITEMS, SEQUENTIALLY, FROM A ru.z UNTIL. mgtaggyzsvep ;
RECORD IS FOUND (SET FLAGS TO TRUE) OR PASSED (SEY. nassgjo mm ./
IF FOUND.HOURS_RECOR® :

"‘? 3({

THEN READ FILE (HOURS) INTO {HOURS ieconi,

11
x

"HOURS_RECORD_COMPARE :
 IF -EOF .MDURS
THEN FDUND WOURS_RECORD = '8'B;
'ELSE IF HOURS nccow&;mom = LEVEL MWM

THEN FOUND. HOURS l:cm U s s I
ELSE IF HOURS_RECORD. !mom 2 L&YF,L,*; ummme

v meu rounp mm *. o:n.,.? :
- n.s; 00; wgm%nu jlgns) 110 (uom RECORD) ;

¥ 3
3

END;

| mre fite (vfm Fm gm.umn,
EID;

« < Fe

READ FILE (RATE) INTO (RATE_RECORD);
 LEVEL_1_MINTMUM.EMPLOYEE = RATE_RECORD.EMPLOYEE:
END;
END PAY_COMP;

Figure 2: PL/I code for PAY 1S RATE # HOURS

Data Driven-Loops ul

Fir;t, notice that the iteration structure is fundamentally different from:that for a single
driver loop. The index value determinatioa;a@-i&)&sbﬁkhg is-now perforied: at the beginning
of the loop body3! As always, the iteration.is:terminated When-all diivers are exhausted (When the
flag EOF_SO_FAR ends.up true efter-all drivers-have been read). Thus the feop exit must appnlr
before. the output calculations.and the form. DBNILE: (*1'B} is Wed: instesd ‘of DB HMILE (-
EOF . driver) (as in the grggdrtxégﬁnk - This 1s. jst a minos: v:rhtm on the baiic stheme. -

What is interesting in the implementation of Fig. 3 is the use of the PL/1 ACTIVE structure

il RTCERIAE TR B I A
.and the ACT]VE_DRIVER CU.,NT variable in determining the proper next index value. The idea is
dav BrerR AR BYLT
to took through the drivers in succession. The ﬁrst is used to cstablish a tentative index value for
/}%’ulf‘ 1 0 W RN SE R Si’ ik F
the current iteration. The first driver is also givcn a numbet that marks it m:tive (for the time

bemg) lf the next ariver has the same mdcx value it is given the same number lnﬁmngmat it

will. be af.xtyc when. Mrst isi-if-ithas o lower imdisx uhuinihq déx veset and‘the second'

. §g§¢-;s o mgit TR sz;fwh":f%'*@f 1 sy
driver is assigned a higher number, meaning that it is tentatively active {and, effcctively. that the

2 TegIEE wﬂ“ B '%i,
sk il TR SR Wi PER EELA RIS TR Lol &

flrst 1is lnactive) When a" drivcrs havc been examined those sharm WIEH’VE number

(held in ACT1VE_DRIVER.COUMJ).are.moasked defiped, umammuwm

Pyrap FE GRS % BAIEARTT 24

Multiple-level Joops intraduce the need .for mainsmance of. current index values for each

* distint loop level and-for, contal structures o implemant.Joap.deiving. from loops at knwep:leves. -
Multiple-level loops arise from two basic sousces: Feduction computstions ‘and - mixed-index:

matching computations., Let us examine the i jom.of each Intusm.

31 1t could be done at the end of the body if the same code were duplicated as an initialization
before the loop were entered. We have refrained from doing this to minimize code.’ ‘

1 TEMDEMAND_COMP . PROCEDURE ;
{declarations) »

ON ENDF ILE (DENAND) EOF DEMAND .= *1'8;
mo FILE (&mwa INTO (DEMAND RECORD)

" THEN DO: LEVEL 2 mintmm, mn « DENAND_RECORD . 1TEN;
LEVLS_LTHML2 NI K380 = LEVES 2 RIS ITEN; -
ewo; ' ‘ '
ELSE LEVEL_1 = '0'S;
00 WHILE (LEVEL 1) . = . o " G 7
DEFINED. ITEMDEMAND = ‘0'8;
" BO WHILE (LEVEL 2);

u u;]g{n]Kw B T N T TNt ILL IS LA 0
THEN 1 TEMOEMARD_RECORD . 1TENDENAND = mmcmo RECORD. ITEMDENARD + DEMAND_RECORD. osmnn ,
ELSE DO; ITEMDEMANP RECORD.TEMOEMAND 1= DEAMNIISECORS DESUID ;: : AT e BT

DEF INED. I TEMDENAND = *1'S;
END; ’

READ FILE (DEMAND) INTO (DEMAND_RECORD);
1F EOF .DEMAND L 4T
THEN DO; LEVEL_2_MINIMUM. lml * DEMAND_RECORD. mﬂ

S

L TEARYER ZMBREON. ITEN D LEWLRIY e
ar, THEN LEVER R =OAS; :
e _ ' TR
CELSE DO: LEWEL 2. 'OMK: c 0 oo o aen DR e s e
LEVEL] = '0'8;
EM T e
“ew; ’ ')

Liken 3V wiy

ITEHDEHARB ﬂECORll ITEH = LEV{L Y _Mininun. "ﬂl

WRITE FILE (ITEMDENAND) FROM (1TEMDEMAND_RECORD); .
IF EOF.DEMANO . . .
THEN LEVELS_ l Tmu Z _MININUN. "’EH . lEVﬂ. 2 NIIIM ITEN;
END;
END 1TEMDEMAND_COMP; |
SRR T v e

Figure 4: PL/I code for I TEMDEMAND IS THE SUN OF DEMAND FOR EACH ITEM-10

mmmmmmamu

| th and LEVEL 2 ave waed n&pumu~w&ﬁ* mw
respecsivety. LEVEL I tmqﬁﬁﬁﬁ s
‘wheew the file 1o be reduced u p—y m e

,ém:aﬁ m%; &w; imﬁy% AR 6%?9
mm %‘*3 32
R 4 w3t

: :&_ﬁi 3 3
‘fmm mz}m {W}n} 31&1 TR

oy

- ; ;aRd
L aHDD ORAROMITT 683

Qﬁﬂl uﬁmkw

Beauw m t soreed ig im—i‘ﬁ& &w '
: ML mﬁzs msumf 1&5*&,‘5%

* ' of the B g4 o et
) 337371 3 AR %"‘*‘* %}ﬁé T 2% W‘?‘ﬁ oY aber 119 eiugtd
8 mmwumuuaﬁ: .

_ Data Priven-Luops . 8l

‘a. one is found that has an item-id value matchmg the driver's tten—ud value m whjch
case all EXTENDEDPRICE records for that value an be generated or

!{

b. one is found that has an item-id value greatcr ‘thin the dfiver’s, “of tﬂe"PthE; file is
exhausted in which case there is no matching vaﬁe?md the inner loop can be skipped.

2. (Inner loep) Gmenn all mptwmm for Mglm Fen-id vnlue reading records from the
driver as you go. When a driver record is read that has an f‘ten-td value greater than that of the
current PRICE record, or the driving file is exhausted; exit. * ‘™"

3. If neither input file is exhausted go to step | and repeat; otherwise exit.

n this ~way-each record ofme PﬂICE ﬁk is read oniymee

A PL/I implementauon of thls algomhm is shomﬂn ﬂg 3 Tﬁe mder will notice that this

vy

implemematuon is unnecessanly mefflclem becausé‘\vﬁcn % miﬁ%hg*thE record is not found the
TrvE TR Sy il

inner loop is executed anyway 'J‘Ms is Mmm WW&! happens in the general case where

there may be cakulat:ons in the mmrluﬁp M«éab mﬂhwfmnwd without the use of a mlsslng

input.

V.3 Ageregated Computations

The aggregation of two or more co&vputations into one nested loop introduces a consideration

~ not seen before: the synchronization of contputitiows at ‘differént” hop mag Consider the two
ST T POINI0 O MTE Rl L oneEs AT

e FERT

HIiBOL Eomputations: :

EXTENDEDPRICE IS PRICE # CURRENTORDER IF PRICE PAESENT -
| AND CURRENTORDER PRESENT

VALUESHIPPED IS PRICE » ITEMEMAND IF PRICE PRESENT™™ ' ' "
: AND |TEMDEMAND® PRESENT

32 }f CURRENTORDER had been unsorted or sorted dlffereutly. records from PRICE would-
generally be read more than.once. -

Data Driven.L.o0ps: , 83

where CURRENTORDER is the same as above (with-index (item-jd, s&e—id&) and 1 TEMDEMAND is
a file with index (item-id). Ase have scenabous, the firsh compatation. can be draplemented as
a _two-!ev_e!;ng;gedy loqp T hese:oudmmatm siterates aver-the: siugle-key .itensid and 50 has '

- When aggregated.the result.is a two-levebioop:> =

" levels htell—uﬂ

y imutq,ailPBLCE,, lmi ;e
Protog: caiculate vaim—ﬂupped
Outputspempty

CoAneutsg ety L
Epidog: empty

;- . : I Seoren

Looep 2 {inner loop) _ _ :
,Lzevg!‘v(i' temajd,. store-dd). .oop o i d o o7 aneihn cpe et e g T

" Inputsp: ICURRENTORDER) ’ :

nglogz 1in -Galouwlale wsteniddeprice oo Fo
Outputsps(EmeCEi

PR Pt

§
lwutsg. enptg .
Epilag: . - .emply . - e Lo e el R R
Dutputsgauptg

o B feua i S Tt

What is slgmflcant here is that the computations in the aggreg;te occur in dmerem levels.
S AV AL s pie e wsft W MWL sy

Suppose that the PRICE file is guaranteed to have a record forevery item-id. Then 1 TEMDEMAND

is the natural choice for a driver for the value-shippgd computation bechuse a ucu’djd‘mw

will be generated if apd only, if, there is.a. ecord in- 1 TERGENAD: fos-the Same key. :As for the

extended-price computation, cmﬂsmmahmmmbm the driver. | |
 Now the outer loop iteraes over i fan-igh values detesained by-bath drivess. Suppose the”

firs record of each driver is read. Thereare three cases, distinguished by the.retative values of the

item-id keys in these records:

33 Notice that in finalized loop description there is no General section.

7

{deciarations)

{ON conditions)

(read CURRENTORDER and initialize LEVEL_2 MININUN.YTEN = CURREHFORDER_RECORD 1TEW;)
(read ITEMDEMAND wn initislize LEVEL_) MINIWM.ITEN = mnuw- RECORD. ITEN;)

g s 53 SRS 4 3T FE R
[} T A ’ .

(code to set the syndwonintlon n.g for each hnl to 'alu if ts drinr hed no morﬁ)'

(cwurism of 1TEM valves tp st synchrentietien ﬂm
1F LEVEL_2_MINTMUN.ITEM > LEVEL_)_MINIWN. TTEN

THEN D0; DOLENRL 8= A8 2 0 e
LEVEL 2 = '9'8; .
LEVELS] _TRRY: 2 WIRINON, TTEN = LEVEL 1 WINIMUM. ITEW;

3 H ,
ELSE T -LEVEL_ 2 I8 MU, 1EEM LEVEL Y WINIWN. [TEN
' THER DO; DO_LEVEL_1 = '9'S; ’

CAFVRLR e TR
LEVELS_|_THRU_2_NINIMON. mn - Ltm z nmun mu.
END; wf fdvrere LRGD 7T v e T S et
. ELSE 90; DO_LEVEL 1 = '1'8; i
LEVEL 2 » *1'8; ’ A
LEVELS _1_THRYU_2 M1N5WM. min m&*a M;
£049:) ' '
DO WHNILE {LEVEL_)); ' SR
{reed PRICE record) SR

IF DO_LEVEL 1 THEN (calculate value- u-mu‘) f"%lﬁ“& 1y

N!ﬂ"t& (LEVEL 2); - ¢ o ow. et Lwewd mnpafngens CAS
IF FOUND.PRICE_RECORD THEN (cﬂcuhtc asnd write utmdci-pﬂu)
v (recd CURRENTORDER sod riset ' LEVELIS VINIWINETEN &thtm avin;y
(check for ¢of) .
IF LEVEL_2 WINIMM. TTEN > REVELS_ 1 THRE.2 MEUMIN. TN TN LEMLE v 208,
_ ‘ ' ELSE LEVEL_2 = '1'8;
END /% LEVEL_ 2 #/; o
IR A SU SRPT SUE S SR R S
* IF DO_LEVEL_1 THEW DO /+ Epileg LEVEL_I #/;
LTI R DEEINED VALOESHIPPED TN {ertiy Veleelskipped riverd)
(resd 1TEMOEMANS snd reset
AR TN TI T NV RECONS 1TEN;)
END /+ Epilog LEVEL 1 o/;

{synchronization code exsctly as above)
END /o LEVEL] o/,

Figure 6: IHustration of synchronization code for aggregated computations

gty T
= LT

Data Driven Loops -

PAY_COMP: PROCEDURE;

DECLARE DSAGI INPUT FILE SEQUENTIAL RECORD,
PAY OUTPUT FILE SEOUENTIAL RECORD;
DECLARE 1 PAY_RECORD, ,
2 EMPEOVEE FIXED DECIMAL (4),
2 PAY FIXED DECIMAL (&),
1 DSAG1_RECORD, _
2 EMPLOYEE FIXED DECIMAL (4),
2 DEFINED ALIGNED,
'3 HOURS BIT 110,
3 OVERTIFE BiT (1),
-2 HOURS FIXED OECIMAL (3);
2 OVERTIME FIXED DECIMAL (3);
© 2 EMPLOVEE ‘FIXED OECIMAL (&),
2 HOURS FIXED DECIMAL (3);
DECLARE 1 EOF ALICNED,
2 DSAGL BIT .{1) UNALTGNED INITIAL (°8°8);

© ON ENDFILE (DSAGL) EGF.OSAGI = '1'B;
READ FILE (DSAG) INTO (DSAG1_RECORD);
. 00 WHILE (~ EOF.DSAGL):

1F USAGT. DEF INED. HOURS
THEN DO;

PAY_RECORD.PAY = 0SAGL_RECORD.HOURS * 3.8;

 PAY_RECORD. ENPLOYEE = m&maﬁm{!
URITE FILE (PAY) FRON (PAY_REDORD);
READ FILE (DSAGL) INTO (DSAGI_RECORD);

END:
ELSE;

READ FILE (DSAGL) INTQ {0SAG1 RECORO); -

END ;
END PAV CGP

Figure 7- PL/I code for PAY IS HOURS x 3.88 with Aggregated Flow

Wi . . . R

SFREIIORT 0 THID YAS

sigEe 343 UMl I

(8 NI i3 'memz 5
' mm wﬁﬂm

ﬂ%‘ﬂ! B 30§ oA
. (IOA%E. 03 - Ll oo

% A 1wde 3
L ﬂ%‘!‘f

'ﬂuu&uﬂqu.& 5
:L xm m;w fmmjga

woll byagorggA ditw 88.0 ¢ SRULH 21 YAY i} sbos AU T sy .
suly dilisener is in the JCL. dubation of the e

Data Driven: Lobps | ' 89

used. If the sort orders are compatible the method of access |s completely analogous to sequential
- access except that “records” are “read” fmthﬁble mm efset%o*hry storage (see Fig. 8).

If the input file is randomly orgamzed (regleml (2»% -a€cess code generates a hash index
and then mimics the PL/I access procedure: compare the key value%"d‘"?hcimﬁme& ‘table entry
with the desired ones; if |dent|cal stop; othermse examine mvéém‘ries i wrap—around fashion
until an empty slot is found (end of the bucket) or a complete cyde has been .made. If the sort

orders are not cmnpatlhkm more: :emp}kated bxmry search is impkmeméd

V 5.3 Random Access

When the records of an input are directly (regional (2)) organized the file is randomly
accessed. Instead of using a leop; as Wtithssequential access, a single read, using a cakulated key is
executed. For example if the PRICE file in the EKTEME(PRICE computation (above) were
randomly accessed, the accessmg part of the code would be

PRICE_RECORD_HASH_VALUE - MOD (5 x (MOD (LEVEL_2_MINIMUM. lTEH 1,5

PRICE -RECORD_HASH_VALUE_STRING = PRICE_RECORD_HASH_VALUE;

PRICE_RECORD_HASH_KEY =

LEVEL _Z_MINIMUM. 1 TEN || PRICE_RECORD_HASH_VALUE SIRIM}‘.

FOUND.PRICE_RECORD = "1'B;

READ FILE (PRICE) INTO (PRICE_RECORD) KEY (PRICE_RECORD_HASH_KEY);

The first three statements calculate the source key string which has two parts: the region number
(rightmost 8 characters) and the comparison key (the remaining characters). The case where the
record is not present is handled by the statement:

ON KEY (PRICE) IF ONCODE = 51 THEN FOUND.PRICE_RECORD - '8°B;

which resets the FOUND flag if a "keyed record not found™ error occurs.

-

Data Driven Loops

IF EOF .PRICE
THER DO IF FOUND.PRICE_RECORD
THER IF PRICE_RECORD_INBEX < = PRICE_RECORD _SIIE
THEN PRICE_RECORD_INOEX = PRICE ucm lm +1;
ELSE EDE .PRICE = *1°8; -

- PRICE_RECORD_COMPARE : .
1F €OF .PRICE
. THEN. FOUND_ PRICE, BECORD = *9'8; ‘
" ELSE IF PRICE_RECOR®.ITEM = LEVELS_1_THRU_2 MININUM. ITEN
TREN FOUND.PRICE_RECORD = '1';
ELSE 1F. PRICE_RECQRD.3TEM > LEVELS_)_THRU 2 MTNINSN.ITGN '

THEN FOUND .PRICE_RECORD = *'9'B;
ELSE DO; IF FOURD.PRICE_RECORD ' o
THEN IF PRICE_RECORD_INDEX (= PIICE nzcm Size
o THES: PRICE,MECORD_INOER = -
PRICE_RECORS_INDEX + 1;
- ELSE EOF PRICE = ‘B0 o

60 7O PRICE_RECORD_COMPARE ;.
11 B
£ND;

Figure 8: PL/I Code for Reading PRIGE by Cote Table.in the Extanded Price Computation

Data Driven Loops 9l

V.G The Qmeral Case-A Summary
We have seen that the basic code structure for a computatign consists jof thc fol!qwing four
parts:® | | | o |
declarations
on-conditions
lo§p initiatization
the ne;ted loop:m
The basic structure of the body ol‘ each loop in the nested loop is as follows
read & match non-drlvlng mputs
Prolog cal,cu!atlons
“inner loop (if any)
Epilog calculations
write outputs
read active drivers

determine new active drivers
and index values for the next iteration

loop synchronization code

exit on EOF or (for inner loop) sub-index change

B 1t ‘may be mterestmg to note that ProtoSystem ls code generator generates these sections
simultaneously as four separate output streams (rather-than sequentialfy) that ave ¢atenated together
when they are all finished.

38 There is no clean-up code following the loop because the-end of the :job stép which is the -
computation does everything necessary, including the closing of files.

9 Data Driven Loeps
Appendix I: The Simple Expositional Artificial Language (SEAL)

As an aid to discussing loops we invent an artificial language similar in form to traditional
high-level languages such as ALGOL, PL/l and FORTRAN. The bask constructs of this

language are:

Iteration: expressed by the construct:

for each <loop-index> from <driving-fiou-set>

<body>
end

which has the meaning perform the actions comamed in the <bodu> for uch value of the <loop-

i”'

index> obtamed from the flows in the <drwmg—flou-—set> doop-mde» is the elgbg: the

y ot et
JOERE A

name of the index associated with the flows in the <driving-flou-set> or (forAre,asons that
become evident in this paper) a sub-index of corresponding sub-flows. The set_of,vqhes tlsat the
<foop-index> takes on is the union of the index sets of the drivers. This set is enumented at

HETRTH

execution ume by readmg successive records of the drivers.

1/O and defined: input (record fetching) is expressed by the get operator.thu&
get «variable-instance> | |
where <variable-instance> specifies a flow and a panicuhr valué for its index, represented ass
variable (see below). A statement like this nm_&«’feteh-!ﬁeiﬁhﬁd m;fr it exists. .
Qutput is expressed by the wr i te operator, similarly:
write <variable-instance>
The defined operator is a loglcal operator for use iﬂ conditioml expressions It is
applicable only to flow. var:able instances. The form

definedl<variable-instance>]

Data: Driven: Loops o3

evaluates to "true" if the specified resord or the indicatedflow exists. -In particutar, #f the record is
an input (obtajned through a get) it is: "defined™ if-and-only if the! get:subceeded; if the record is

an output it is "defined” if and only if the generating code produced a datum for the record. |

Conditignal Execution: expressed: by the:familiar i f-then-e|se construct:

if <condition> then: <statement-list>;:
else «<statement-list>,

which means that if the logical expression <cond|t|on> evaluates to true perform the statements
in <statement-1ist>,; otherwise, peﬂ'orm the sam ln «vtatmm’ Hsbz

Logical expressions can be fprmed usmg themthmltié comparison operators, the defined

operator, and the logical connectives and or and not

Conditional Expresslons: expressed by the construct:

if <condition> then <expression>,
else <expression>;.

which evaluates to the value of <expreasions if the logial expression <condition> evaluates to

“true” and to the value of <expression>, otherwise.

Variables and Assignment: expressed by the construet:
| <variable> = <expression>
where = is the assigth operator.

A variable can be either a scalar or an indexed variable. Flows ere represented as indexed
variables with Aan index identical to the flow's index. Thus, DEMAND{i tew=id, store-id) is the
vqriable{gorresponding to the DEHAND flow and an.instance of its index: stlects: the dattsm'of the
corre_spo;nding; flow record.. That.is, for example, the statement:

DEMAND (1234, 5678) = CURRENTORDER (1234, 5678) +
: BACKORDER (1234, 5678)

o4 Data Driven: Loops

means that the datum of the record of DEMAND for itern #1234 ordéred By store #5678 is to get the
value obiained by adding: the data of the. corresponding records from CURRENTORDER and
BACKORDER. |
Typi.ca“y. the record-by-record computation imnplied>by a' HRIBOL flow equation would look
like that equation translated into our artificiak language (with a gmaiﬂtzdm.wch as |
mtite--id._ store-id) = S

if defined [CURRENTORDER(item-id, store-idl}
and defined [BACKORDER (i tewm=id,: store~id)] -

- then CURRENTORDER(itew-id, stors=idF &
BACKORDER{i tem-id, store-id}

else ”' ﬁefined[ﬂﬂiﬁNYMR(ité:-id. storg-id)l |
then MNTMR'H&!;H; ;tor;-ﬁﬂ |
else if de(ined(m(;iiu-ié,; »?t&e-idll
" then BACKORDER(itew=id, store-id)
else undefined -
and iwould appear somewhere in the body of loop.
- Sub-flows: A sub-flow (fc-rr use in the for each cmﬁm@) is expressed by
| <flou-variable> (<sub-index>}
For example,
 CURRENTORDER tem-id)
denotes the sub-flow of CURRENTORDER consisting of just those records whose inidices correspond to
the value of the sub-index (item-id). Generally, the valse of 'm'e indicated sibiindex is-fixed by an

enclosing loop.

Data Driven Loops ' 95
References

I. Baron, Robert V., "Structural Analysis in a Very High Level Language”, Master’s thesis, MIT,
1977.
2. Fleischer, Richard C, "Loop Merger in ProtoSystem 17, Bachelor’s thesis, MIT, 1978.

3. Ruth, Gregory. R., "ProtoSystem I--An Automatic Programming System Prototype”, Proceedings
of the National Computer Conference, 1978.

_access methods, 16, 86
active driver, 4

aggregated computations, i, 8
aggregated flows, 84

back-substitution, 64

characteristic function, 58, 59
code generation, 68
computation, 7

computation aggregation, 28, 81
core table access, 88 ,
correspondence, 2, 14, 19, 71
critical index set, 9, 47

datum, 1
DEFINED, 60
defined, 92
dense, 64 _
driving flow, 10
driving flow set, ID, 46

end-of-file, 21, 22, 26, 69
EOF, 69

epilog, 29

epilog section, 29

FE-HIBOL, 6

file, 1, 7, 11, 16, 14, 68
flow, |

flow equation, 3
flow expression, 2
for each, 92
FOR-SOME, 60

fundamental driving constraint, 46

general section, 29
get, 92

HIBOL, |

index, |

index set, 9

_index set of a flow, 9, 47
injection, 47

Data Driven Loops

Index

input flow, 8
iteration set, 4

key,

w' n Y E

loop aggregatability, 36
loop body, It

loop implementation, 68
loop level, i, 28

loop merging, 41 -

loop synchronization, 81
loop-index, § -

matching algorithm, 73

matching computation, I4, 71
minimal driving flow set, 58

mixed indices, 7

necessary index set, 55
nested loop structure, Il

non-totally-nested loops, 42

one-step characteristic function, 64
Optimizing Designer, 7

ordering constraints, 36, 40

output flow, 8

period, 61
predicate, 58

PRESENT, 2

projection, 47
prolog, 29
prolog section, 29

random access, 15, 89

record, | '

reduction computation, 24, 78
reduction operators, 2 '
restriction, 47

safe, 50
SEAL, 92

Data Driven Loops

sequential access, 16, 88

simple arithmetic flow expression, 50
simple computation, 12, 68, 68
single-level loop, 11, 68

sub-flow, 22, 80, 94

system input, 64

total back-substitution, 65
totally nested loop, 1l

variable, 61
variable reference, 6l

variable specification, 6l

write, 92

97

