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- 0. Introduction

Theanmofthtspapersmnponmth,hwmdm[m
of Effective Definitions. One of the main reasops for iptroduci

[1, 8, 10, 15, 21, 24, 25, 2,71, 290 are e o G o
programs, e.g,ffm_chm = taieralinisliates et is>
general questions such as:

(1) what propemesofagwenclmnfmmpdm%mﬁ
the resulting logic? x ,
(2) what are the limitations on the expruuvepomof lggg,of p:ogmsﬂ

(3) what properties such as compactness, injes 7 e fmbm
of programs? o ‘

(4) what common methods might te ‘appliad ia &ffm W of W‘m"
Anmmqmmmmﬁttommatm kilthe : N
author’s opinion that there should ‘exist a Smon Tames ok i
questions can be embedded with a hope of getfiag % AN B G ,
intended role of the Logic of Effective m T

£ g
Tl ST

LED is based on completely unstructured schemes which are better
called effective definitions rather than programs. The oaly primitive
relation in LED is rotal equivalence betweea schemes — many other
interesting notions are derivable from (expressible using) the primitive ones.
The extremely simple structure of effective definitions together with the
simplicity of LED formulas make model-theoretic methods easier to apply when
attacking problems (1) - (4). On the other hand, many logics of programs can
be retrieved as fragments of LED (cf. Section 3) via the standard wnfolding '
procedure applied to the programs on which the logic is based.

Weemphasmbexethatthroughoutthupaperweeomderonly
deterministic programs. There are no problems in formulating a
non-deterministic version of LED. However, there are confusingly many open
~ questions concerning deterministic programs and their logics. This situation
suggests, in the author’s opinion, a need for better understanding of the
phenomena arising in the deterministic case before passing to nondeterminism.

Theresultsptewntedinthispaperaremniniymnedwithmb
itself. However, the open problems formulated in Section 5 are orieated
towards a better understanding of the behavior of LED fragmeats.
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To keep the paper a reasonable size,: we.give only brief sketches of
proofs of results which appear elsewhere. Actually, there are three new
results stated in;this paper (3.5:5; 4.2.6, xad:£31.6)—they e mainly
improvements. of: ﬂ&«mrhmam. kﬂn mww prod‘s are giun

The first version of LED (m [31]) wu{fwéfxa mm
logic — the third truth value in this logic corresponded to divergence. A
completengss..theoregy: formawiﬁ[ﬁ%%wmﬁ of LED
based lwnna}nerelg two truth: values js “Mg Wilsittraduce-LED .in- this
paper in essentially.the same. oy ap s LR = - oo s . f o <o

gy n §

I would like to thank Professor Albert R. Meyer for many
valuable Gonversations, for Auis {rvitful eommedis: anthe: enslier :nishlli ot' |
LED, ﬁand @amm mw .
| editing this 10 f“
iting this paper. &

in Aachenforamy.ymputhemtdm
there in 1978/79, whenmoftheideuud,mdu speented in thi
. were fmhu \ , *_2 YR E : g%xh ok AN N ; |
Finally; Mm aueawandy Frignet aému.x.? monm for
Computer Sciepce for. txng.th&m o e e -
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1. Prelmim Notions. md Dcﬁnim

mghsmmmmmmmuﬁmm
logic. We concenteate here nminly. on: notation rathier:than ‘on: Costplete -
definitions of standard concepts — thelummbefomdinmymm
mmbm(w&m St T

, ll wudemﬂumm mﬂmuu SRR

+ egqual’ wﬂnadﬂfmﬁmgl 2,400 Weline @ wdeuou the
set o - {0} Afunteadmdntakmwﬁ%ﬂo?tﬂ S
ordmlssmallertlunn.

mzs»u-«mwm*u-m md#
cauedt-vxtmw Afatm wWW%Wi‘ FuieVQy

« Ak gt for overyw C 8, u, e 146 -t Sinpdh ””&‘u,ié.
a, = aln).
 Where itdoes it ud to confusion we identify fw- k¢, the
'eu Aa x Ek#ind AT e :%;%f ( e SEBT R TS oamLis s

AR T

- 1.2 Byafahguagel.wemeanmorderedpm
L =<L, pp> where L = L~ U Lp ULy is a union of pairwise

disjoint sets L, Ly L oaled. the set,of comsiamt wambols; Jfuneiien:

symbols, and predicate symbols, “Ank pfx 5011‘}“3'
is a function called the arity function.

1.3 Let L be a language and let X = {x, : n < »} be a set

disjoint from L. The set X will be fixed throughout the paper. Elemeats of X
are called individual variables.

Let T(L) denote the set of all terms of L with variables from X,
and L (L) the set of all first-order formulas over L augmeated by the

equahty symbol with variables from X. Finally, let OF(L) denote the set of
all open (i.e. quantifier-free} formulas from L__(L). :

For t € T(L), Var(t) is the set of all variables which occur in t.
'FpruiL“(L), Var(e) is the set of all variables which occur free
in @. For every n < @ we define
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T, ) = ft € T« Vat)c fy 2i ¢ o},
L (L = {a eL (L) Vu(a):{x‘ 1<nl],
ORL, n) = OFL) Ak, tt,
The clements of L (L, Q) are called swmpames.

FortGT(L), mt)(t)lstheleutn(omchthat
t € T(L, n). Similarly, for @ € L__(L), arityla) is the least
n < » such that « € L__(L, n). :

- 1.4 Let L be a language. By an L-structure % we mean a set
A called the carrier of ¥, and an interpretation of symbols in L (i.c. a

function s » 8%, for s € L) which satisfies the following conditions:
141 if c € Lg then ¥ € A; |
1.4.2 ifftLFaﬁdpl_(f)"n,tlwaf':-A“*A;
143 if r € Lg and gy (1) = n, thea r¥ ¢ AR,

An arbitrary t € T(L) determines in an L-structure ¥ a
function t% : A% + A which is defined inductively in the obvious way
(t¥ is said to be the meaning of t in W). The value of this function on
a given a € A% depends only on the first arity(t) components of a.
Thereforewe:haﬂmﬁmwﬁﬁemw_t‘(ﬂ,m:tAkmd

arity(t) < k, viewing t¥(a) as the value of t¥ on any extension of a
to an e-vector over A.

For an L-structure ¥, a € A®, and « € L__(L),
<M, O k a means a is true of W under the valuation of variables a. Just
as for terms, the truth of & in <X, 2) depends oaly oa the first n components
of a, where n = arity(a). Foramy(.)sknd;u* % &= of2) means
<N, a* k « for any extension a* of a to an e-vector over A.

We shall write W = a if foreverya € AY, (N, > E a. If
"% E a then ¥ is said to be a mode/ for . We write k a if for every
L-structure %, ¥ E a.

We extend the above definitions to sets of formulss. If T <
L,,(L) and ¥ is an L-structure then we write ¥ & Z if for every
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a €T, % E a holds. If this is-the case theg ¥ is:snid 10 be a model
for Z. Wewntehzlfeveryl.-structureluamoddfor!

Fmally,nf!::L (L)IndaEL (l.) thenwe
wntethanfeverymodelfortsafnoﬂfga

1.5 Formryﬁm&hnm&i.mdqntsmﬂdd?‘
codmgfortheexplmm'l'(l.)ldﬂﬂl.)(d fam[ﬂ)
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2. Friedman's Effective Definitions

The notion of effective definition is due to H. Friedman ([12]). In
section 2.1 we will define effective definitional schemes over a finite
language L. They will be semantically equivalent (in all total
interpretations) to Friedman's effective definitions over L augmented by =, a
binary predicate symbol which is always interpreted as equality. We defer
until later a full discussion of the appropriateness of our definition, but one
pragmatic motivation is that we want our Logic of Effective Definitions to be
similar to Deterministic Dynamic Logic, where tests for equality are allowed.
(cf. 5.2).

Friedman's effective definitions are known to be of universal
(computational) power over total interpretations (cf. [30] for discussion and
further references). Many other classes of program schemes, e.g. flowcharts
with indexed variables ([30]) or flowcharts with a stack and counters [23],
are inter-translatable with the class of effective definitions. This
phenomenon provides a system of finite descriptions which is semantically
equivalent to effective definitions, the latter being infinite objects. We
have decided not to introduce finitary descriptions since they tend to be
distracting. For example, many of our proofs involve constructing a new scheme
from a given one. This construction is often easily described in English, but
a formal description of the construct tends to be complex. Since our entire
development depends only on the schemes involved and not on how they are
described, there is certainly no harm in omitting such a system of finite
descriptions.

2.1 Effective Definitional Schemes

Let L be a finite language and let n € @. By an effective
definitional scheme (eds) § (over L) with variables among {x; : i < n} we

mean a recursive function S : @ » OFL, n) x T(L, n) (S is recursive
with respect to the codings fixed in 1.5). The set of all effective
 definitional schemes over L with variables in {x, : i < n} is denoted by
ED(L, n). The set of all eds’s over L is denoted by ED(L) and is equal
to U, e, EDL, n).

We adopt the following useful notation. If S € ED(L) and m € »,
then @S m is the first component and tSm is the second

component of the pair $(m), i.e. S(m) = @ag m ts m- For
S € ED(L) we define arity(S) to be the least n < @ such that S € ED(L, n).



Let % be an L-structure and let-8 € ER(L, n):for some n € 0.

TheschemeSdeﬁnamlapartulfuncth' A“-'A wh:chs
def‘medmtbefabmugw

M) = tiiu mn.h&emw |
. inthest Ko n-v_;

o Wﬁfh«esm-ﬂu SRR
Wemtesﬁwtmm:hmews'nmadua.

~ with V being  the output varisble.

Just ms in 1.4, nﬂwm&mﬂm
s%(a), where 3 € AY sad asity(S) S k. This. showid set lead to

eonfmmthmdtg m&ﬁageﬁn,&mhmm
components of a.

7 An eds § ©ED(L; w is said to be. detepminispic if for every -
Lstmcture!aadfermseﬂ hmﬁtmr&&w
has at most one clemest. ‘

The next definition is an obvious generalization of the motioa of an
effective definitional scheme.
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2.1.1  Recursively Enumerable Tree-schemes

Let L be a finite language and let n € w. We describe here r.c.
trees which compute n-ary functions in L-structures. (cf. [17]).

The input variables are {x; : i < n}, there is one output variable
z, and a countable set {v, : i € 0} of quxiliary variables. We assume
that z £ {x; : i <n} U fv, : i € 0},

Test conditions are arbitrary first-order open formulas over L
(with equality) with variables in {x; : i < n} U {v; : i € »}.

Assignment statements are expressions of the form y: = t, where
y€{x;:i<n}VUly :i€a}andtisaterm over L with variables

in {x; :i<n}U{v,:i€w]. The variable y is called the Ieft side
expression of the assignment y: = t.

Halt statements are expressions of the form STOP(z: = t), where t is
a term over L with variables in {x; :i < n} U {v, : i € »}. ‘

Consider countable rooted trees with the property that every vertex has
at most two successors. Each vertex with two successors is labeled by a test
condition, each vertex with exactly one successor is labeled by an assignment
statement, and each leaf is labeled by a halt statement. Moreover we add a
technical condition: for each path » leading from the root to a vertex labeled
by a test condition & (resp. an assignment statement y: = t or a halt
statement -STOP(z: = 1)) if an auxiliary variable v; occurs in a {or in the

term t in the case of assignment/halt statement), then there is a subpath »’

of x leading from the root to a vertex labeled by an assignment statement with
v; on the left side.

Let T be a tree satisfying the above-mentioned,conditions. For any
path » in T let e, be a formal concatenation of all expressions which
label vertices on that path (in the order in which they occur). Call T a
recursively enumerable tree-scheme if the set {(e',, > :xleadsin T
from the root to a leaf} is a r.e. set.

Let % be an L-structure and let T be a r.e. tree-scheme over L
with input variables in {x; : i < n}. The computation of T in ¥ for input

value a € AP is defined naturally. It starts with a being substituted for
the input variables. Then the assignment statements are performed in the
obvious way. If the computation reaches a test condition a (along a path )
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then the next instruction to.be- executed is-the: indtruction datieling: the: vertex
reached either by 0 or by x1, depending on whether or not the test & is
false at this stage in the computation:: Whesn: the-sbmputition-tedches a halt
statement then it-stops. with: the -outpit-compisted: from-the term on~the right

hand side of the statement. LetT':AhAbememfucﬁog
computed"by'!‘m!

Let L be a finife language and lot . €., -

(i) For every eds § € EDIL, n)tlmekadetmmmﬁcedsQGBm. n)
suchthatumyb-ml;!'rﬁl e SR

(ii) Fmemr&mmtmtl#mn{t‘u(n)
there is an § € ED(L, n)suchthatmeveryl.m1 'f‘fs‘f

Proof: Fhe-prdof: of T s ovidhut: : ForMW; Apth i T from
the root to a halt statbmént. Let-e): &W obéastantion of
expressions occurring on that pcth. By
the path:« We' prodcl Wl (é: ﬁ! :
represesity's gt ﬁ-ﬁrﬂ f&*
mﬁfﬁiﬁ% W o

Lewcamamkuu. Dﬁi&n#";ﬂcmv

o st ke T
O M e Sk

Anedsshcﬂmpsnidtobemhimmmiq&u
equal to ™. Finte edi's correspond. bt-ime po \
byanA UK. f

22 Revirsion-theoratic nofions relative 10 a gies sirweture

N .nl;g;;.,i;, =2 MM%( . |
A partmf f‘f‘ 3 Ai - A 5w tO h, A gm s .
anedsStE[Xl. ) with f = S¥, Mwﬁﬁuiytﬂbe
W-semicomipitab "‘fi’wﬁitfkm‘a&ﬁl;__  funct

Let L be a finite language, let ¥,
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Let S, Q € ED(L, n), and let % be a L-structure. Define a
subset (¥ = Q') c AN, by

(s¥ = QY) = fa € AP : s%(a)s, Q¥(a)+, and $¥(a) = Q¥(a)}.
2.2.1  Proposition ([33])

Let L be a finite language and let n < w. Let S, Q € ED(L, n).
Then there exist Py, P,, P € ED(L, n) which can be effectively

found from indices for § and Q, such that for every L-structure % and for
every a € Al '

W ae¥=: QY iff P

()  s¥a@e and Q¥(a)e iff PY(a);

(iii) Either S¥(a)% or Q¥(a)+ iff P%(a)*.

Proof:

4] By 2.1.2(i) we may assume that S and Q are deterministic. Let
0:02+0

be a pairing function (i.e. a recursive one-to-one mapping of vl
onto w; cf. [28]). Then

Pl((m, k) = “S,m A aQ k A ts,m = tQ,k , tS,m)' form, k < @,
is an eds with the required properties.

(ii) Again we may assume S and Q are deterministic. Let
Pz((m, k) = (as’m A aQ,k’ ts’o)
Then clearly P%(a)* iff $%(a)¢ and Q'(a)*.

(i)  Is obvious. W
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2.2.2 Coroliary

For arb-ltrary eds’s S, Q and for an atbltmry L-structure o,

s¥ 2 Q¥ is W-semiconmputsble; Moreover &l |
sets are closed under finite unions and intersections.

22.3  Example

Let ﬂsm&au:MMxmms

successor and:a coastant 0 € . Mﬁtmmm
precmly the partial recursive functions.
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3. Logic of Effective Definitions
3.1  Syntax-and Semanties
Let L be a finite language. Let LED(LJ:be tite lesst aet of
expressions satisfying 311- 313below BlemuofLEle.)nrecalled
LED formul@ o Er :
3.1.1 IfS, Q € ED(L) then S5 Q €« LEIL). = ~

3.1.2 lfa,ptLED(l)thm"a,(c A’)AM(C Vﬂ)
belong to LED(L).

3.1:3¢" If @ € LED(L) 'and x, chanmdivndualvamblethen
Ix,@ and VJw m to, Lﬂm-) g i W

3.1.1 and" 31?
nepttonm("‘)dounotoccurmc

We m the folkmug abbrmt%m*for%formﬁlu

-’ﬂ’%med*‘for“h V‘ﬂ
aef unseflifot (q,,-'ﬁ) A,(ﬂ '.'q) ~

IfaELED(L)andlfllsal.-stmctu(eandagA“ then
<N, ® F a means that "a is true in ¥ under v '?l“l‘l Okais
deﬁnedbymduct:onputheeomplemtyof:, foﬂqm; ~

314 Euhs=oms,_ié TAL) théhn

3.1.5 If « is —‘ then e S

SRR AU S TR & o BE 2 S
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316 Ifais By A By then
<M, ® F a iff both N, Dy and-l, 0 ).
BT Masby Vlpdhes
T, D ki cither B, »u,aa on-az

318 Ifais 'Iﬁm S TRENURSE R £ K
‘_d O F « iff for all 2’ € AY such that. . -
3 =tk"forl¥ida'ﬂ=lm
3.1.9 lfcuax“pthmd vhalfqua,vh«"xn"ﬂ

Jmunntheﬁruomm,nm‘&uiﬁofch S
o, omodywﬁefuuaca-pguagm, g -8, wheee n is
the e S ek ot o W =

We write ¥k « if for every 3 % A%, ﬁyﬂmm&b
case ¥ is said to be a model for «. Mwm#utfam
L-structure ¥, !ka,hthmnnﬂ#Mdm

3.2 mwmm S

321 rowm

thQlffSaaanuww
LBDmbevmvedaa

322 Strong sq.tm

: ForS,QGB!XL) MS!QRQMQtﬁ;Iﬂ)m
(S=SVQ:Q » 8z Q. Itis easy to check that for an L-structure ¥,
WieSEQiff S¥ = QY. Therefore =S5 Qiff S and Q are

strongly equivalent (cf. [14]).
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' 3.2.3  .Weak Equivalence

For S, Q € ED(L), let § ~ Qbeanabbrevmtnonofthe LED formula
(S=SAQ=Q) +»5Q. Ifltmytoseethatforanl.-mm! ;

W kS ~ Q iff both S¥ and Q¥ can be extended to the same total
function. Therefore I S ~ Qxffsmom*‘“’“&" fivalent (cf. [14]).

3.2.4 Tmmunan Pnp’min

meedsSGEﬂli&&myhnetht&tSew :
themomtythatswmm,wfop Aestoppiure ¥, S-l 86 5.0
s¥ is total. h!heaqdmmthemwm&m
$= 8. Wcahown;e&ifor'&a&. .

,Q

3.2.5.° First-ordér Properties "

First-order logic L, (L) is naturally intéfpretable in
LED(L)mthefollomq&mt‘oremyct;, e exi
o€ LED(L) which ‘can be effectively found

. < L-stmctt;ge ! -ang. for avery .8 « A‘!,v‘{.lf Q;Mt it
o, DR v.

» G ’5
A

FwanchGML)mmO‘hhs ¥ 8,
where S_ € ED(L) is a finite eds defined by&(kh(a xyfnal&
k<w.

fae€lL (L)lsanarbntnryformuhtﬁenfmtwetakethe
prenex normal fo?aldq say {<Ja%; 'where [+] 6 & black: -of ‘quantifiers
and a* is an open formula, Mwmp.mp[-ka .

- Therefore we may methlti.“&) ilhchdﬂ mmm.)
i.e. if a first-order formulaaoecunuaww ession .
which is mtended to be a LED formula thea corresponding

3. 2-6 KWM of Tmm

lfte'l'(l.)thenthef'uuteedssttml.)deﬁnedby
S{m) = <t=t, © for m Cw; fepredents the ternn t; 1.6 ¢xsctly ‘the same
individual vanmmurmtmdst andfo:every.-stmcturplandfor

every a € A®, M) = S't(a)
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If § € ED(L) and t;, ty € TIL) then 8% ¢;, ty ¥ §; snd
tl= tp are abbrevmhomoftbeLEDfomdsss s‘l"‘ S

8,78, and 8, 75

327 Pa'ﬂalCormm

Let L be a finite lmswe. let s?gmqmﬂacwm
leta €L (L, n)andf# €L (L, n+l) be arbi

first-order fm The-LED mw-ﬁﬁ'ﬁi -vafexpim

the partial correcmess of §:withi respect 15 'the ‘input condition « and the
output condition & tef. [ 143, &e. for-amy-E¢steuctore: % umd-fir & € |
CA®, M, Fa V(52 x> f) iff wiiinewr %6 ofagy .0, %, ]

and S%(a, ..., a, ;) terminates with result b € A, then.%. & fag, ..., 2, 5, b).

3.2.8 Totalemm o

ForLSa,ﬁuabnn(mJI.ﬂﬁieLBDfumh
« » 3x (8 x, Kﬂwmmdmdsﬁ&mpectwmempm
condmonaaudtbwmﬁﬁnﬁcfmwwmlm
W and for any a € A%, W, © Fa < Ix (8= x) A §) iff whenever”™
¥k afag, . ,a‘,,},ms‘h& .,a,,_ﬁmmm
b€ A and %k #lag, .., 5, 1, |

3.2.9 Relanonto[. “po

Forammkial-.i,(nm&ﬂd

allformulasoverl.of!ﬁelogk!, L TI8D: -
(L) dﬂmfm L“&Jm M we mmz SERR

WenowshowthatLEDformulummMauﬂemoL.l'
formulas. The only thing we have to deris:to show: liw: i triinslate -2 formula

of the form §< Q,whereSlndeedt mmL‘w

formula. Fnrst,obuemthats-q : m&c.
equnvalentmalll’.-ttmctwg:)mtheiaﬁnu juncts

mmv,,tmwmtsm&&mm'oi m‘j st
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the j-th step and both give the same: result, de. V{jlﬂ

Amei™eg,m A V‘m"‘oﬁ A " A ‘U,J
t5i* Qi

Wemmmﬁmmmmawmm -

Ll in:later sectidns. -

3.3 Normal-form Results for LED Fe omulc L

The following question arises naturally: What W““ °f progri
sre expreasbe-by LD fommuind Tho deahs ele® Wil % pardal
answer to:this questiod! 13 © 5 - wiusiot pak ne siEs s 0 B

£ A, 3
R I L

331 Theorem @)
Sogd b

Letl.beaﬁamhuum

TR LS S B i SEEY

() For crsey pestinisopesforrgih et BORY ere il i o5 e
S € ED(L), which can be found effectively from (the code of) & such thit

B P CrodRLipouL FwRid ;*\. ‘
Sriew 0 < RF ’“ﬁ* [ .k & o Tamg v, 4 3leins FAL 3 S
* ,‘v"f Lol " CI N 7

P . 5 ,\
‘;f 4*¢ g

(2) Foreveryopenfomulactl.mutbreeutn<omded;
QlGED(L)forl-l,.,nsuchth:tu,Ei |(n),n§‘ﬁ?‘i(n}anbe

el LG
‘»,—m‘_w,/}"zx‘4 -

kao AK,,(s Q)

(3) ForeveryopenformuhaCLEIXL)thueentn(omdeds‘
S;, Q; € ED(L) for ;( 2 ‘gtg&be ng ne such that

Ea w: ‘Akn('tﬁ’gq*’ )

(4) For every open forfania a ¢ LEDIL) there tuists & recursively
enumerable set (sm m < @} of eds’s in Em.)(née. the‘Godel numbers of

o st s ged) Eo ot argiy
the S;.'s fonn an ra .ww r&_ A A imﬂ;,ﬁtﬁm vty
a€ A‘ ROV TN B T NPT s

5 1L

G ahctfffetmym'(e;a wws ¥

Proof: (1) follows from Proposmon 221 (3) follom from (l) by using
conjunctive normal form for open formulas. (2) follows from (3); i.e.
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S+ + Q¢ can casily be expressed as S¢ ¥ Qg for some feffectively
found) eds’s Sx, Qx. Fﬂh(ﬁmfmm%&!l@‘mh :
casily expressed as A, P *foranre.set{?m m(o}ofeds' 8

It is peshaps interesting to. motethat inigemersl- the:s:in (D) or in
(3) cannot be bounded by any integer. T&Mfmﬁmm, '

due to J. Bergstra.
3.3.2 Theam(B])

IhcemafiptMidatMIﬁm
fwemyn(o&ueembmmmctwmﬁlﬂa

arbitrary eds’s So *y n.l’QO' Qn-lmmu' 2 g
WkaoA (ﬁno,*)dmmhoﬂ.

Theproofoftheaboveresultumamucmmwhcheds mm‘“y
} t'!'“‘ coox WD sbe

The next result is proved in the same wny as the analogous result (i.c.
thepremmalform)fmﬁm«dulauc.

SR

3 3 3 ’““ “ v,.: |

Letl.beafimtelugmge. ForeveryatLBm.)ﬂmeexim
ax € LED(L) such that .

@ Ea*ay

@ e o of the Tors Qg . Qp g3 10, Whire exch @
is either ¥ or 3, and ¢ is an opem LEDML} farfauls. = -

34 mwymmm

It follows frag 3 zs that rm; structyse.
(up to isdmorphisi) By s tiigle EE?;‘% G sy
formula). Rerewemtethefmm what structures are’
uniquely axiomatizable by a single LED formula? We give a complete
characterization of:stsuotupes which are waiquely atiomatizable’by opea LED(L)
formulas, in the cast that L contains at least one constant.
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Let us start -with the following example. - -
3.4.1 Example

Let L= (0} Ly = ), o8 = 1, Ly = ¢. Define an ede
Q € ED(L, l)byQ(n) <S"€Q xg,zgn‘ulﬂauo

Itismytoueethﬁtlfam
Q*A(axo) ﬂxl)-’xosxl)/\(“ﬂv =0

then for ewrybtﬂ%cﬁrel, [ e 2 4 Y, S, 0, ivhereSls
mterpreted a8 successor.

An L—structurell usndtobemqudydz;ablcbxa&!of ;

- LED(L)-formistes if- % is ;the only ‘sodef ( forphisn) of Z. SmceLBD
formulas express program properties (cf. 3.2 lnd 3.3), structures upiq

defined in LED can be viewed as those which are nmqudy dmib.ﬁh y their
algorithmic properties. For example, STACK can be eqted as a c;mm o
structure (cf. [29]) whith canthén be sHowir A6° e definable.” More gencnlly,
it follows from Propontxon 3.4.2 below that Abstract Data Types (cf. [13]) cag. be
viewed as structudes uniguety. definabie WLED > THE alid 1 fottﬁetin;of
integers, the field of rationals, and the field of recursive;reghs (cf. ¥13).

3.4.2  Proposition ([4))

Let L be a finite language with Lo /', Let® bean ,
L-structure. The following conditions are equinlent:

(1 Wis umquely deﬁnable h, a m efm Lmuﬁfm

(2 luumquelydeﬁmhlehyalet&*hiil}ﬁmﬁm
predicates, where each §; £ Eul.),

(3 lﬁnsubpropermbctnmuru,le.fongycryacAmem :
teTL, Owiha=M" . o o o

Proof: (1) » (3) and (2) = (1).ace obvieus: ‘For-(3) *:(2); we show that =~
the property of having no proper substructures can be expressed: by one famoh
of the form S+ mdthenweaddformuluducﬁbmthmme, e.;.,

[7] for a definition) of ¥. |
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' For an arbitrary finite language L :the following ansloguc of 3.4.2 can
“be proved. '

| 343 Propomion (Y))

Foranarbmaryf'mltelan;mggl. dmlgstmctutclu L
unnquelydeﬁnabkbyautofopenmm&nlhumproper

substructures, i.e. for every substructure %o of ¥ with W ¥ 5, Mg = ¥
holds.

Proof: Let ¥ beuniquelydeﬁntbkbya:ct!ofopéhﬂlil) formulas.

Each substructure g of % sstisfics:Z-ay well,s0 W ¥ 8.:8ince’W -

has finitely generated substructures (which must be isomorphic to W), we
concludethatlmelfufwtdy'ewawd. lfgouam E

substructufe: ofl Mnmnm%% adl«-mmmhthaf

2

(i) foreveryn(o,! uamnh&ﬂmdlh‘l,
(i for every. n < 0, theu ll as vf_ £,
such that fn"n’ 'ml : ;

Then WX = U ¥ is not finitely generated: snd* @iéé not

isomorphic to ¥. Ontheothethand boqal*aadlg?pﬁxtlnwuopen
LED(L) formulas. - ™ 8 | 4

Chatr Lowdhes o

Ino:dertongeacharactenuﬂmof:tmctm}

a slngle LED formulu: we' introduce some ‘standird B

Letl.beaﬁmhmgeiuhl:ciifﬂkia{,nz ' |
{ro, ’ rk l} with ’L(f') nlf“l(ﬂ. %i*&ﬁ by

L-structure without proper su
recursive coding ‘fiked ‘in 135, Defiie a m&?or! to be s OLmﬁ:g') =
Clrg, M, ..., Cry_g, W, Ox, M of relations in w; WHHE -

O, W € 0 for i< koand Ciw, W) g.wf,atielying the* v
. fm ing conditionst = -~ - 7 s 3TVEE T

@  fori<kand <m0, "'“n.? €l
mg, .y my_> € Cr;, %) iff ¢glmy), ..., dmn‘_l) e Vi




21

(i  for cmg mp € o,

. (;no’ml)*ta.") iff‘i‘ﬂﬁ!d{,f ‘u:l,l)- V‘ :. o

For a set X, let Z(X) denote the set of all subsets of X. w»{é R
ﬂﬂ% X ges X aqénk"l) %ﬂ‘&) be ithe st ﬁ‘“b&%@h
Cop -~ _, |

coding @ the sese of (id above) of an agivalenss solation.ia, ik, @ fthe
structure T(L, 0) has only operations and cons i .

in a natural way), andforeveryi(kw{u‘nﬂm,pi
:uu‘, nf(ml,pj)thoreveryj(nltheath;ﬂng

‘ substructures, mmwm W‘ X

corresponds in a natural way (Qfac :Gm%‘? “Kid
m”"d!b for eysry, fp.5.€ thets, evists ¥g. & %mm% 40

A subset X & ﬂu*? X,,.X ﬂ§~*g~¥ | *F“!ﬂ ” bg

H?ifthereemﬂarecumve(ae.@fm;(‘t; oy T ,xo.x)

such that <Cy, ..., Cy i, B)Gthfooixma "ck—l'ﬁ"o"l]
_utruemthestmdardmodelofmthm.

TR gk ROV

A subclass X5 < o is T1§- deﬁuueuwsaﬁg“
set. Obcerveﬂut(defmedaboveuangmmﬂtgw

344 ﬂnomn([q)

I.etlbeaﬁmtelanguagemthl.cfﬂind@!ﬂgeau
L-structure. The followmg oondim are equmlent:

(i lnsumquelydeﬁnabiebyaanghfmhot‘theformmforl
certain S € ED(L)

(i) ¥ is uniquely definable by a recursuﬁy M set:.
{a; : i < @} of open LED(L) forromlas = < - ome . ;e

(i) W has no proper substructures and ¥ is n9-deﬁmm

Proof: () -+ (ii) is obvious. For (i) + (ii) we apply Theorem 3.3.1(4)
and transform {a; : i < @} into the semantically equivalent r.e. set
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(S;%: i < w} with S; € ED(L) for i <. Then from A S;* we get a IIf

condition defining l To prove (iii) - (i} we-esentislly. raverse q;ew
of (i) - (iiD), applymgarecumvé ‘fthermemad
positive integers. . o« - -

In tmmmmumm“ ervations we made in 3.2.9
aboutmenMefLBDhL.., mm—umm oY

Ly o 1 derive rénutts comoerning s B

: 3.5 c«m M 2

Thepurposeofthusecuonstoptmtafomalpmof:ysmformD
and to prove ity complet _The e of the. oot
Model Theory a‘t.,_l, (cf. ;4 d is. based ona.
notion of tbemsmmfr;. e R o T

3.5.1° ‘We first iveed & thaaMoriitation
o I‘“"‘“"‘”‘*'ﬂwhﬂw.;
Thenthefoi'mu!aif definéd in

(8= Q) '18""@1 : ; )
(e ise, q
avp)isa Ap,
(A p) isa VP,
(hnl"ilv‘i(c')

;anﬂ'ihnf‘l') |
Nowwearemapoummwthem
35.2 Axtom:

Wehavethefollowmgtnomcchunel,wbereatmqumdxmdy
areanymdmdﬁlﬁrﬁbb.

Al Everyuutobgyofﬁmmypropoumaﬂkpc. _

A.2 o »a

where n ¢ @, and S, Q € ED(L).
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Ad  Vxa = a(x/t), :
: where t € T(L), t is free for x in @, and a(x/1) is
obtained by replacing each free occurrence of x in @ by t.
AS x=x
A6 xsy=y=x
AT (a Atsx) = alx/t)
3.5.3 Rules of Inference

In the rules below, a, # € LED(L) and x is any individual
variable.

Rl @& af

[}

R2 a=28
a-Vx

where x does not occur free in a.

R3  fa-+>=S"ZQM:n< e}
a5 Q)

where S, Q € ED(L).

Let £ ¢ LED(L) and let a € LED(L). Then « is said to be
provable from Z, in symbols FLED(L) ® if « belongs to the least

set of LED(L) formulas which contains Z, all the axioms obtained from schemes
A.l1 - A7, and which is closed under the rules of inference R.1 - R.3. We
write Z k a if every model for T is a model for a.

3.5.4 LED Over Arbitrary Languages

Our proof of the completeness of the above formal system will require
us to work with countable languages rather than with finite ones, so we define
here LED(L) for an arbitrary language L to be U[LED(Lp) : Ly < L
and Ly is finite]. Observe that all the notions introduced in section 3.5

make sense for arbitrary languages, in particular the notion of provability in
the formal system (3.5.2, 3.5.3).
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The result below has been proved (in [32]) for'a three-valued-logic of
programs, but only for finite sets 2. - &h&llo WW (in [33]))
to LED, but agamodrfo( fipite sets B

3.5.5 Theorem

~ Let L be a countable language. For every:2 ¢ LBDL) and for
every @« € LED(L), ZI-LEuL)ctﬁ'Zka

Toprove355weﬁrstprondeamdforcoustrucun;modehofLBD
formulas, the Model Existence Theorem, an anslogous:result: 45 that for
L Thuﬂmemuwedmthemofammwymy 4

“l' a v g‘f
“The reader may compare the cofislsteicy mﬁfanﬁﬁm&&

corresponding property for L"l" (cf. [16]).
3.5.6  Consistency Property

Let L be a countable language. Let L* denote the | .
obtamedfroml.byaddmgacomubleutCefmm Let U be a

set of countable subsets of LEDIL”). U is said to have the consistency
property iff for each u € U and for arbitrary.«, §-%LERIL),. all the -
following hold.

C.1  (Cousistency Rule) Either « £ uor w f u.
C2 (' - Rule) If'vGutheauU(c').GU,.

C.3  (A- Rul) u(.nncuﬁuuumguud |

wugen | -
C4 (Y- Ruid !tevxudtwwf«ﬁctc,
ud g fyev. |
C5 (V- Rule) n(.vmcummuug.;evoe,
uU{slel. ‘

- C.6 (3 - Rale) Ifﬁxudtn&enformctc
wUfalx /R €U |

€7 (Convergence Rule) For §, Q € EDIL™), i (8 Q) € u

'“tﬁenformn(.,uﬁﬂ%ﬁ!ﬁ
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C8  (Divergence Ruke) For 8, Q € EDIL™), if
~S= Q)Guthenforaﬂn,o,“' '
wU (s ey

By a basic term we mean ei at symbol or a term of the
form Rc,, .. ,cn) wherefGLF p(Qah,,ulel,..,.,cntc. P

C.9  (Equality Rules) m:usmmmsc,uc
uey _

If (c5 ) € u thea w U ¥ ¢} € U.
If ¢4 t, o(x/t) € u thea 3 U jalx/cl). € U..
For some ¢ € C"ﬂ h.’q“" e

357 Mmm'fhumn :
HUhuﬁemmﬁuGU Muhﬂtmodel.

Proof: Theproofueuenhaﬂytheumeuthetof&endmmltfor
,.,(Cfllﬂf) = B o

3.5.8 Preposition BT

iy swut)maewmmrl—m*,nﬂ

Proof: Suppose T+ § in LEDIL®). Since proofs in LED are potticular
instances of proofs in L .o it follows. from cut-elimiparion for -

”l" (cf. [20]) that there is a proof of § from L‘wlﬁﬂl“)
whnch uses no constant symbols from C. Therefore l‘ l- ﬂ in LBD(L) n

_ &59 Nwwarernp&mbwass ﬁzt-cmLBD(L)
then obviously Z £ «. Now suppose Z ¥ a in L ), - Let 3 b the s6t of
all universal closures of formulas in Z. Obviously ¥ ain LEIXL) Let B
-{z"Uu usaﬁmuwruamwnm"rm
Since L is countable, every element of U is also b[e One, can mdy

check that U has the corisistency promﬂy ﬁerefone,hysﬂ
z* U {~a)'has ' model. N i

Remark: We-essentislly needed the cut- “efimination ‘theorem in the proof of
3.5.8 only for the case where there are only ﬁmtely many mdtmual variables
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which do not occur (free of bound) in the fosmulas, of .- Jav particular this
proofdoesnotusecutehmmmoawmrnfmtﬁ- sy

3.6 The Hanf Number of LED

Because the dowm X en & b fori,

(cf. [16]); it semains. trye for LEBD (ef 3.2.9). Flinswoiget
3.6.1  Theorem

Foreveryfmi&haguptimlfaremyzcwm if Z has
an infinite model then it has a: coumtable model. - -

We have already seen in 3.4.1 that the upwasd. [Hwenheim-Skolem Theorem
fails for LED. Let L be a finite language. The Hanf swmber of LED(L) (cf. [16])
is the least cardinal x_such that. for cach ¢ ¢ LEDG): f woines '
moddofpowerknﬂmphaublm lllodeb.

Thecardmals:.,foraano:dmzl,mdeﬁadmducmdyx

:O="': l=2: 3 z U(.: when « is a Muiit‘ofdinal.

An ordinal & is-said to be s reewidive’ ordinal &ef. 28] if there
uarecumvebtnuyxﬂmksszsuchmnnamdw
.. Letof"bethefiutm-mm N

The main resalt of this section is
3.6.2 Theorem ([33D

o et o e

nunbweflm::‘g.

Proof Let« mmwmwdm Mmﬁw&u
kS S ofK LetLCKl ummmmm
enummbkdismhomﬁdﬁed(cf[lﬁ]) Rsm@@kﬂu&
smterprmm(asmnwmﬂc}l, Byﬁekhhy-mm

(cf. [16], Thm. 22), which says that the Hanf nwmber nfLC,'}P s g.,

it follows « < 3 fK mmequmy:.f:xs.foumfmtuemtm
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3.6.3  Proposition ([33))

Let L be a language as in 3.6.2. Then for every recursive ordinal a
there is a p € LED(L) which has a model of size ,, and has no model of

size > :a.

Proof: We modify the example due to Morley (cf. [16], p. 70) of a sentence ¢
in L"’l" with the required properties. Details are given in [33]. [ |
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4. Correctness Theories vs. Program Equighedbe - - <"
.. - In this mmwmmtk notions
introduced in 3.2.1, 3.2.2, 3.2.3, 3.27, and 328, 1t torme-opt that this

mvmmm“ questions.
mthamidwlﬁemmm&&yu vhw&ga £ e

mvumatlon

We first introduce some notation. Let L be a finite language. Let
¥ be a class of L-structures. Recall that for « € LED{L),
O k= a means that every ¥ € ¥is 2 model for @. I 2 ¢ LED(L),
then by Mod(Z) we denote the class of all models for 2.

PP

Let S € ED(L, n). By the partial correciness thoory of 8 with
respect to 5¢ we mean the set POS, X) = {m, > €L _ (L, n)
X Log(L, n+1): X @ » Vx (85 x + #)] (this set is
denoted in [6] as MPCy(S).

: By the rotal correctness theory of S with respect to X" we mean the
~aetTCIS,.’X’)=((a,l)tL“(L,u)XL“(l.,nvl/)::!’h.a-o!xn(sixn/\ﬂ)}
(this set is denoted in [6] as MTCop ().

4.1.1 Theorem

For an arbitrary finite language L, n < @, 8, Q € ED(L, n), and a
class O of L-structures, all of the following hold.

@  If 2k 83 Q then TCS, ) = TAQ, X).
(@ TAS, ¥) = TOAQ, ¥) ff X k8= Q.

(i) 2k S = Q then POIS, X) = POIQ, V).
(v  If POB, X) = POQ, ) thea Wk 8 ~ Q.

Proof: Straightforward. |

4.1.2 We now consider the converses of (i), (ii)) and (iv) of
4.1.1. Let LOOP be an eds defined by LOOP(m) = <txg = xp), xp

for m < @. Obviously in every L-structure ¥, LOOFY = . Now, if
¥4 % then the implication in (i) cannot be reversed for trivial
reasons — clearly TOXLOOP, 2¥) = TALOOP, X¥) but |
¢ LOOP = LOOP. For (iv) it is enough to observe that for every § €




29

ED(L, 1), 2= LOOP ~ § but <xg = xg ~Xap=Xgh € POS, 2¢) iff

O LOOP = §. This observation gives rise to many counter‘examples The
subsections 4.2 through 4.5 are devoted to i he i
what classes 2f can the implication in (iif) be reversed to hold for arbitrary

S, Q € ED(L)? In 4.1:we shall fee thnt i gosleraP () chnmot be feversed.
On the othes, hand,. in 4.3-we st that-if we alloi wmw s
express partial correctnesyGonditions ithen (i) cum beivevesdedfor an © ©
arbitrary (first-order) elementary class ). Finally, 4.4 shows that for the

class of all L-structures “partial cordeatnéss dedermidies the semantics™.

A class X of L-steyetures wmnwmafh
arbitrary S, Q € EUI;L mm-%mogamnﬂw
XeS5Q ...

4.2 Determinateness on Elmamry Clm
T s TERRCE LN ST
Aclus:Yofl.—nmctumuuidmbemnffame
Z <L, (L), = ModX). In this subsection we iivdstigotethe - -

question: whgn is a pven ehmentuychedu—aw Thedﬁm resylt

421 Theorem C6)

Let.L bs the folloring languages.Le = Lys #,iLy = s

nl_(f) = pp(® = 1...Than the clasg X GMW +:pilixg)) & 5"??9
is not edt-complete.

LR

Proofi Take S to compute the two argumeat pro)ectloa fnnctnon
S(xg» Xp) = X LetuQ &:ED(L;:2) b, sa eds tht dies-shy*Tollowing: . given

two arguments, it checks whether the figyt a finite
subalgebra, or the second argument gen %&, of the first

arguthent: maow iy :
the above conditions hold then

it diverges.

Clearly 5% S = Q. To prove PQl
first that' POYS, 26 ¢ POQ,-¥) obi '
<a, /> € POQ, ) - PCIS, :ﬂﬁm@@n
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A kla A "ﬂ(leqi) -#Q'ud

Y#c*“&z/xg)

Letvex,,u.,aug.muw

’mamwnmmw p&?}nﬁnda
model % ex’mmm :,bptt&u#“

L ™ :pﬁqa},usww,c}

and the subalpehras generated bya, b, care &mﬂm
disjoint. Then from the specification &F JF it Tollowd that: " -

there is an automorphism h : % + % such that bis) = a and (b} = ¢ Mﬁm
contradicts (*). B :

-..-: v Lo G

Themmrauhofdmwhncmuthem

L:t Ibeawm&nﬁim Eor SR
S, Q € ED(L), if POS, X) = PQQ..‘X’)&QMM:WIG:Y
such that ¥ k= § = Q. Tl et

Proof: Let §; Qi€ EDXL: Mmaw&wnﬁfu?ﬁhf )
sets of opea first-cuder fosmmslan:iti L2 (L)5 kaf’(‘oﬂm L

-K'!us'mV'(ts'm ,n))AcQ’nzm(o}.

—»”zmt *fragu ¥ g * !?*u“‘sa*““
_,Letzsr...,mbemmx-m,, |

NPT ‘3

[73 for the necessary model theavetic

Proposition A

Let:faaﬂ!btagsbme. R;,thl«m &W(d'.
z.nthentheroumn;m&mm - .
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(i) PCS, o) = PAQ, ).
(ii,) For every n < w, I locally omits .
Proposition B

Let o be an L-structure. If S, Q € ED(L) are deterministic then
the following conditions are equivalent:

(i ¥ESE=Q.
(iig)  For every n < , ¥ omits I,

Now 4.2.2 follows from 2.1.X(i), propositions A and B, and the
Omitting Types Theorem (cf. [7], Thm. 2.2.15). |

In the rest of this subsection we derive some corollaries from 4.2.2.

Call an elementary class 2 of L-structures complete if any two
clements of J¢ satisfy exactly the same sentences in L__(L).

4.2.3  Corollary ([6))

Let 27 be a nonempty complete elementary class of L-structures.
The following conditions are equivalent for arbitrary S, Q € ED(L).

(i) PO, ) = PAQ, X).
(ii) For some countable ¥ € 2f, ¥ S £ Q.
(ii)  -For some countable % € 2¢; PC(S, {¥})) = PC(Q, {¥).
Proof: By 4.2.2 and 4.1.1, (i) = (ii) and (i) » (ii}) hold (we have not
yet used the assumption that 2¢’is complete). Implication (iii) - (i)
follows from the following easy fact. If Of'is a complete elementary class of

L-structures then for every § € ED(L) and for every % € Of;
PCS, o) = PCLS, {H)). |
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4.2.4  Corollary ([6])

Let:)!’beanmmiedcm'ehmﬁq'eﬁidf
L-structures (i.e. ¥ mmmammuel-mwdwm
countable elements of OF are isomorphic). Then ¥ 'is eds-complete.
Proof: Follows imwediately froims 423 m 3.6.1 B I

Caﬂaclasﬁ’eft-nmﬂl[abm{ﬂm

of O have the same termination properties, i.e. ﬁlmySGM)
and for arbitrary %, 'z¢x'g¥_9ﬂ’z!‘s‘,

425 Corollary

L"f""wydunmmydudl.m If Xis
MLED_complete thea: X is eds- o |

Proof: Follows from 4.2.2 and 3.3.14).: - B. .

. An L-structure W is said to be algorithmically trivial if for

every S € ED(L), if % k S+ thea for some n < w; Wi 8 5cgff,
Algorithmically trivial structures have been investigated by manay authors (cf.
(10, 17, 18, 19, 3] Euxmdm“mmaa,ﬂn
reader should consult [34},

mmmtmahaw’dﬁem’
classes among all clementary complete ones.

42,6 ‘m
Fmamphudmmdnx’d&efmmm
.equivalent: -
1] :Y-edu-om
@ s TED compiete.
(i)  Every % € s algorithmically trivial.

Proof. The only interesting case is when O¥'is a class of infinite
m i
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() - (ii). If ¥ € O¢is not algorithmically trivial then. there
exists m with 0 < m < », and § € ED(L, m) such that % [k §¢ but for
n < w, o b §Ms. Without loss of ‘generiility; s can 'be thoseti so that
it computes a partial projection on‘the #ist component. Let -
Qxgs s Xy = xﬂbeatotaledswhnch eomputathupro;ectlon Since
SIqumvﬂ%mmhnyofibﬁnﬁemh% tandar
compactness ammfﬁkwkﬁtﬁ‘m unottoulonﬂ Here
wegetacontradichonnucelhSlQ.loby36llmkm\uuedtobe
countable. Then by 4.1.1Gi) PC(S, (M)} = POIQ, (X)), and by 4.2.3
PO, X) = PAQ, f).wafmwhyw pmpletegess. 20 B 1§ 8 Q, a
contndxétm , e

(nii)-o(li m:{;mm
(i) - () follows from 4.2.5. B

- Belowweglwtwoeumpluwhwhmm«!ydeﬁnblefmmdza

For an L-structure ¥, Tifl)-isi {w.€: ﬁ&‘ﬁ%ﬁ? s E
" 4.2.7 Let € be the ﬁeldofcomplexnumhen. Then:Y: ModTh(C))

is not edt—coqvkk mmmm&&%ﬁuvw%& not

428 Letlj)eanl.-stmcture t
Mod(THW) is ot oifs- e (by 342"? m

trivial).

4.3 Determinateness via Lm:"alt Eviensions

Let L be a-fine Iiiguiape. umufhemméf‘ o
arithmetic, i.e. Npm%.{&f e ifﬁw:‘g 1, 'WQ w

Nc = {0} AssumeﬂmLmdedumMIef

L(N) be the extension of L b is a cla
let 27 (N) be the class ofiﬁ’ém‘) X ?( éﬁmmmﬂf

Themouhswwmnosk&nmohufm
result, whlchhubeenobtpmed'm enden
m(zz} ) . i i




4.3.1 Theorem ({6, 22]

Let.’)l’beanarhmaryclasofmmual.m Then for .
arbitrary 8, Q € ED(L), foqs,mwn m@%&»ma’hsna

Proof: Amomentofreﬂecuonupon&ll(u)lhowthltmordutom
4311tlssufﬁc|ent(‘lndmry)toptmh;5 wing result. .

4.3.2 Thamn

m:xfbeauarhmryduofmablel-mm Thenif .
S € ED(L, n)fonomen(u,andnfformltfudformaeﬂ‘

<M, 2 k St then there exists a formula.g £ L __@E(N), n.such-
that

4 .’X’(N)hv-'SO

(1i) { vucomutentukﬂ’(m;ichm
® < XN), 8 & 33, .

ST

Fnst wewedommtmw Ah D-structare Wis
sandtobe:tmdad:fmreductmmﬂ-mlthewf“
of arithmetic (i.e. Wy = <w, 0, 8, +, ). Form(.,usan

abbreviation ‘for tht tém S"’(OY ‘lhenext mﬁh i:,,the ke
proof of 4.3.2."

4.3.3 Lemma ([6,, 22])

Let {a, : m < »} < OFL, n) be & recursi _,mhbctof
formulas. ThenthewmuacmggeiGWIfQM‘
formulavtL (L(N), mf)nnchthat o

¥ is true in all etindasd LIR) ;jf;i;,.

(ii_) | Fo:mhm(-(,h&*(a

Proof: Thepmofofﬁﬂslemmauanadamﬁonoﬁhewdproofofﬂle
representation of recursive functions in arithmetic. Det& are omitted.

Proof of 4.3.2: Let § € ED(L, n). Apply 4.3.3 to the r.e. set
{~agm : m < el Let# and v be formulas obtained from 4.3.3. Then

¥ A Vx vy satisfies () and (ii) of 4.3.2. |
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To relate 4.3.1 to arbitrary elementary clnesue state the following
auxiliary result.

4.3.4 Proposition

| Letiiffbeam~ ‘ d&ofle&trmwnbeonwma
countable structure, M%hmm&;dm&l&mm

O¢. Then for an: arbitessy §:€ BO(L); POS, ) = PCI8, Ng.
Proof: Follows from 3.61. B .

4.3.5 Comlla'y ({6], [22])

Let.‘%’beanelementaryclwofl.-;tmctum. Then for arbitrary
S, Q ©/BBAY IF PO FFTNI = POQ, aﬁrB-o |

Onemtyukﬁmﬂirqmﬁummthénmli 4 43er R
definitional schemes which need not t&-¥¢ effaeﬁiﬁ,‘f’e. the deffiiition in” "
2.1 the function § is arbitrary. It turps outﬁm:t all results of 4.1 m;d,42
carry over to this more general h ihchang

' _methodofprowng435eaenmllydependsoaeffectsvemofagtven scheme.

The next result shows that 4.3.5 is no longer true for arbitrary definitional
schemes, even for an elementary class which § (cf. '

4.4). Let F be thoBhite sbtieme in PDE, 1 elrlH’msthe dtity, i.e.

Kn) = <xg = xg X for n C o p«.mhwg,mwu
be the class of all L-structures. '

Let L be a finite language mtthﬁ Ko (._1}, .
Lg = lrg - .rm_llforwmem,n<a Lefmeyoneoftbe
foﬂomn;muhtlonl . e R

@ z,(n,,,(fg 220
(@) Zigaptr) 2 1 a6d zm.,_ug 21
M&mm:m&m&ﬁm&ﬂWSml

suchthatforauurbmaryextenﬂonl.;l. the following two
conditions hold"
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™) POS, StruclL®) = PO, StraeaL™).
(**)  For some % € Struc(L), ¥ k= 3xyS*.
Proofi We sketch here a proof of 4.3.6 fortheasewberel. contains two
unary functios symbol'f and .- “Fhe proof for othier Cases 1 ‘ in(i).
(ii) is essontinlly* the same. Eet §:be abéhetiéc Sifimed ‘i follows,- *
S(n) = <a, x for @ Cw; where agip 5y t%}%ﬁhiwé’q

~MNxg) = xg), Ep s o

ml

~xg) = ﬂxd) ;f.,,um o

g e C
ot a:z, .»'?ﬂ? N

wherevnnthen—thmdrmfmﬁ-;r NGRS

Towm(’)ktwnkean;ml.sk Jfg{p.nt

Cwim »wwww

a
ey

UIDfor e N € e ';‘.}
B TP O P A

Extend L* by a new constant symbol c. Letvbetkmm
alc) A f(c, ¢). Thus v is consistent and

43.9 kv*"u(dfoi‘tnfiai’n
LetThniv)bethentofﬂlmdedudﬂefrmm %ytlh
completenestheomn,"-(c)t‘!'hnh)foremyn<o Let

P={gfY) =c:n<e VU gMc) = fc) : nurvi-it(dﬂs}
Obviously I' N Thmlv) is a recusively enug
(Cay(0) : n < @) < ' N Thay),” andl e

2 wel, by the comsistency of .., Xbis gives.vs. A-aontradistion, . Condition

(**)uobhous.
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4.4 StruckL) is eds-complete

In this subsection we briefly sketch a proof of the followmg
result (cf. [6]; a similar result appears in [22]). -

4.4.1 Theorem

Let L be an arbitrary finite language 6ih¢r thm the one where
LF= “}r PL(n‘ l ka" and fOf 'lll.egt’ .Lw‘ 1' )
Then StructL) is eds—complete

Proof: The proofuqmetechmﬂymm Hewweomyskud:themaia*
ideas behind the proof -- the details can be found in {6} ;In [6] there is.8
complete proof of 4.4.1 for the languagesl.mth LR°0(:é ’foralgebnlc
signatures), and the netiiix Wiﬂ{df“‘mbeeaﬁty adiptedtoill
languages except the case mentioned in the hyMﬂ’d 41. ‘

~ The proof is essentially divided into two parts wedording to'the cases ™ -
the language L umﬁes

M Lgs " Lpr. i .,_m -

(D (Rmmn; eues} {Emptlead cm}
Actually, for case (D) a stronger result can be proved (Note that

Theoren: 4.2.f shows that the resalt below Fafls for L containing two unary
function symbols).

4.4.2 Theorem ([6])

Let L be a languagesatxsfymg(l) ThenmgycmsI?Vof
L-structures which is closed under su A

Proof There are fio tricks involved, hthMto&dm See
[6] for details. [ | A ,

Proof of 4.4.1 (contmued)

The main difficulties are found in case {ID.: .In this case we
proceed as follows.



18

We first prove an auxiliary result (the: Localivation Lemma in [6]) which
makesnpombletorestnctmmmatadodd&

Localtzalm I.anm

Let L be a finite language and let 2 be an arbitrary class of
l.-stmet\ua. mmmuw

@ s ede-complese

(i)  For all finite extensions of L by constaats to LS and for
cach § € EBILS, @, if % i S¢ for some ¥ €A, then there is
a sentence g € L (LS, O which hat s modef in WAL sad
fth*c*s'(m.f(&")ghm&;&mﬁ
structures in ¥ torkSswueturen. o

Proof See[6} fordetsis. .

Let L be a language satisfying (ID, and let LC be any finite
extensaouofl.bymu. We expand: LE: to:a 1wp-semved [omguage
L* by adding to L® a new sort calied SETS, and renaming as DOM the
sort of L. We akso add €; & biitry relilidn o SEYS* SV and MAP, 2
binary relation on SETS x DOM. L (L")nddiggds

'usuﬂ, :ths t\iva txpuofmaﬁu‘mt@e Jing

Every four-tuple of formulas t = «D,cs,cplu)n
(L (LS, M2 x (L o'LS »ﬂmam ,
nf of L cLC") mt.,tt:'—! ia"an obviows way

_Thekcym&thepmfofu.lnm,m‘f

Lemma A
Let GL“(chQMkthuu' .,d

conditions:

(®)  for every S € ED(LS, O} if there is an LS-structure %
suchthat!lzsethmthuemuul.cmﬂm
8#1"5’




3

(*X%)  for every seatence ¢ € L‘.ﬂ. ;@ fyAY

has a model (in suuct(v*» then Hiy A ) has  model (in
StruedL). L

Then given any eds S € ED(LC 0) which di on ‘, PR
Lc-stmcmfe, thefe emu . mm _, ‘ l !; ¢
has 2 model in Struca L) mmm& - 8%@

‘Now, the pmfuf 441 wdrr A and_the Lo Jizad
Lemma’ oﬂce“We show tﬁ't fpr _"; m MMQMM qyu(!m
interpretation Ht which umfy mmwmmwm for detaib).’.

| For the proof of ;,#Wﬁ&mcmmof
anthmetlc N. Let 8 ¢ Eulc 0 %ﬂ o mmm plsn oY S

certain LC-structure. Then we apply Theorem 4.3.2 to get a sentence ¢’ €

L, (L%N), 0) which is consistent with M%«*Wﬁﬁ e

th‘t SMLC (N» :’ ﬂyﬁm »; TR oo R v n‘ "

RS

Toehm:mtethesymbohofNinpweme'rtudHtfromthecn )
hypothesis of Lemma A and apply the following techaical result in axiomatic set
theory. . :

Lemma B

Let L be a finite language and let p € L__(L, 0).

Then there exist a sentence p of the first order language of Zermelo-Fraenkel
set theory, L(ZF) and a formula p\x) of L(ZF) such that

(1] ZF F .

(i) If 8 k= p then for b € 8, B k& pIb] iff b is isomorphic
to an L-structure which satisfies the sentence . ]

This completes the sketch of the proof of 4.4.1. The method described
above does not work in the exceptional case mentioned in 4.4.1. We leave as an
open problem (cf. Section 5) the question of eds-completencss of StrucL) for
languages L which are not covered by 4.4.1.
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4.5 Arithmesic Programs - -

the following question: is the class of ¢Il modd: PoA af Peano
Amhmeac ed:-compkfd' S

" Let L be a lnngs 'é'wrthft.c p;,t,l, "o ,},
Lg = {Sh op(® = 1, pjs) =pf (D= 2 Let M=

@, 0, §, +, *, O be the standard model of arithmetic, . Let. Paf be the
':dassof'ﬂlnio&ehol‘ met ,;,'f; |

Fmapuememmmf tencts The
used. We refcﬁemnmﬁe“ g ’

r "aS-l m({‘p R A ‘:( .'j:,"?é-ézil’»;i": R4 - if,',i ol U w i

For arbitrary S, Q € ED(L), POIS, P} + FOQ, ?i)mhu
:x/psno

el e
PR
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3. Open Problems

_ Below we list some mm& mwwmnected mth topta_
we hav%dmod in the paper. - B

3l Frqgrgam af LED

Let /be a clas of. progmn schm e.g. stmght-hne programs, or
flowcharts, or recursive procedures, over-aigingh ngyegs L. ~One can-add
./’asanaddmouxlpaumeterinthedef‘mﬁm(l!)ofﬁbwberem“l

schemes § and Q are. assinmiod 'té sangy: oWde - ' Thé' il of = (total
equivalence) remait®: unchanged. ; Jin-this  way W sbiaiil o 1aific’ LEBA LY
which can be viewed as a fragment of LE!I!.) & fa;' ag,{is__trsg_dagnl;@ into
ED(L). There: is-a:teadency {cf: IOt 0N SINEHW @’W i
schemes as those of maximal computational power :
classes: .7, mmmm&;%}& ks vies
LED. T i T s b

%fn;neau of L

Let LEDI and LED, be two fragmems of LBI!L) for a fimte language

L. LED is said:te bexisbdrpreiabliisi LEDY iPfot vy & € &Dl there
exists a # € LED, such that k a « 8. l{ s interpre

al ; 1 g t% 7t :tﬁf’?’zj -~,,‘ _e ::«’7:7*% : av
LED s Iml i Lo ¥ 63,;- mf‘& wg,j; «r 31 sl
LED, is said o be mmﬁcally qamim o LED-‘; if wn, . um2

W wnfes i3 Ty Ty R Y]

- For example, LED based upon stw;ht-hne progmnl is semanmlly
equivalent to first with. equality., J,EQ MMW
(with-eqility w@ Bt "‘%
individual and itermoa qmntxﬁm (cf [ l] nd t2$] for the aeoesary

3 uNE [

iif*

Justumfﬁiogia,wecancompmdmofmmschemu(cf [9,
14, 23, 30)). We write. /< /p if g I8 Aoapipteble Y. 1/, <ohe:coo
above 7} ~ /i,n;e;m,ﬁ s-@mﬁfgasmfﬁm#;z&/gm

following implication Hold: ~ T et



Q2
7| < S implies LED(/}) < LED\/,)?

A knpﬂﬁf&mwd*mmmm
S < ./2, flowcharts are transiatable into /], sad LEDUF )~ LED(/,)?

3. Is the full LED semantically equivaliit: 85 sty of its fragments
LED(.”) mthﬂmhuum&m/nd.;’(w

52 ﬂebkufﬁ&dﬁym

lnschmtdcu x&-mt wﬂymt*ﬁtmm
can M&ufamm‘“k&%ﬁr“’ 3@;

Thmfore Mfomm“nuwmw

Faamchdfd'mm&f Mth .

chaof/-wbmmmbyﬁeeqﬂtym What is the
rehttomhlp betwua LEH/ ) aad LE!I/F)?

 In particalar, MMLWMWJW -
Remark 1t J' ) t chu of p che dic

mm
(II) LED ouly Wmon over wieaa t M

pomd-ux,m"ﬁﬁmww poursion: theofe nmperfm erties”
of F-schemes. - For ‘esmmple’the formsila V[ V8,38, & 1‘&";%“"84
is a formula of LED* true in ED, aadthemkms.z“uystﬂntlmformh
neednottobetmem./forachs./ogwa ;
equality predicate. To take another
VS)VS,3S3(S;s V §,%) « 53] . This formgula & trye s
in the class of all flow butnmtrieinthedu@ﬂ
flowcharts augmented by ome stack. .




s
Problems
6. Given a class / of program schemes compare LED(./ ) and LED%(.”").

7. Call two classes ./}, /) of program schemu :imlm' if for every

sentence a in LED®; '« i tret in’ 4*"&‘#6&% ./2 "k the class
of all flowcharts similar to Eﬁ' 4

8. Given a class ./ of program lchpmu, invutipte the dequhbthty of
the set‘of all LED® ‘senténicss true in /)

9. Gwen a class / of pto;um achemu mvunpte the mommubahty

1y fhm Y -/ GC»«KMMM hmm (up
to semantic mter—tnnslaubnhtxj by L tog in ST

% ‘l"".f‘:{'%“f b

54 &mm wWme

11. Let ./} amfzuchmdmummhmn
LED(/}} < LED(./ D It always gomblé fo {ind 2 stonctuce which is-
uniquely definable in- Lm.fz) by a single sentamon bt not defiasblein

LEDX.}) by any set of LED(.)) sentences? by a single LED(.”)) sentence?

5.5 Unique Definability

12. Characterize structures which are uniquely definable by a
single open LED formula over a language without constants.

13. Characterize structures which are uniquely definable by a
single LED formula.

14, Characterize structures which are uniquely definable by a set
of LED formulas.

15. Are there any reasomble results concerning unique definability
of structures in fragments of LED (eg. for flowcharts)?

5.6 The Ilanf Number for Fragments of LED

16. Isthereaclass./ofprognmlchemuwchthatLElX/)(
LED, andbothLE[X./)lndLEDluvethemﬂanfmben?
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17. Compute Hanf numbers for various well-behaving fragments’ of LED
(eg. for ﬂowcharts recursive proeedures, flowcharts mth eouuw'l)

5.7 Eds-Complete Clasm

18. Letl. bea ﬁnnte language uhdm&foﬂowmg
conditions: L= i), Lg?é, (D=1, and for.allr € Lp,
pp(n) = 1. Istbeclasofalll.-stmctumedu—coeﬂm?

5 e e o ok o o b
5.8 Tools to Construct Models . -
20. In this paper we have

4.2.2) which can be viewed as tools to el Moges. 11
sesults 'was devived froms - the ‘Model Balstiice i

St 1& S

the second from the Omitting Types’ Tbeom’“fn t Aretheu any results

specific to LED which also. provid
3.5.7 and 4.2.27 -

Thuquesttonleemtohgmpmm
tools tommo&kmaﬁgm . HRT
WMM
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