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ABSTRACT

In this thesis, the problem of designing the layout of integrated circuits is examined. The
layout of an integrated circuit specifies the position on the chip of functional components and wires
interconnecting the components. We use a general model under which components are represented by
rectangles, and wires are represented by lines. This model can be applied to circuit components
defined at any level of complexity, from a transistor to a programmable logic array (P1.A). We focus
on the standard decomposition of the layout problem into a placcment problem and a routing
problem.,

We examine problems encountered in layout design from the point of view of complexity
theory. The general layout problem under our model is shown to be NP-complete. In addition, two
problems encountered in a restricted version of the routing problem -- channel routing -- are shown to
be NP-complete. 'The analysis of heuristic algorithms for NP-complete problems is discussed, and the
analysis of onc common algorithm is presented.

'The major result presented in this dissertation is a polynomial time algorithm for a restricted
case of the routing problem. Given one rectangular component with terminals on its boundary, and
pairs of terminals to be connected, the algorithm will find a two-layer channel routing which
minimizcs the area of a rectangle circumscribing the component and the wire paths. Each terminal can
appear in only onc pair of terminals to be connected, and the rectangle uscd to determine the area
must have its boundaries parallel to those of the component. If any of the conditions of the problem
are removed, the algorithm is no longer guaranteed to find the optimal solution.

Thesis Supervisor: Ronald 1. Rivest
Title:  Associate Professor of Computer Science and Engincering

Key words:  VLSI (very large scale integrated) circuit layout, component placement (rectangles),
channel routing, NP-completeness, algorithm analysis, heuristic algorithms.
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Chapter 1: Introduction

The research reported in this thesis is an investigation of algorithms for the layout of integrated

c’ircuits.‘ Integrated circuits are formed on silicon chips by creating layers of different substances (e.g.
metal, polysilicon) in geometric patterns on the chip through a variety of fabrication techniques.
Electronic components are formed by the interaction of regions in the different layers. ‘Wires connecting
components are simply regions between two coinpénenis on a layer. Laying out a circuit consists of
dcfcrmining the patterns for each layer onthe chip to create the deslrcd components and
interconnections. For example, in nMOS/FET technology;.a designer creates.a transistor by drawing a
reéion for the polysilicon hyer and a region for the diffusion layer which'cross when the designs for the
two layers are superimposed [Me80). In general, designing a laxgqt reqmres knowledge of the
interactions between layers for the technology being used and limitations of the fabrication process being
uscd. The goals of the designer are to put as much circuftry as possiblc in as small an area as possible, and
to have it work correctly and as :fast as possible. A good example ?s the layout of aumicroproqa;sor, where
the amount of information which can be processed, the aumber of fictions which can be performed,
" and the speed of processing are important, o
The layout problem as described above contains a huge number of variables and leaves much

room for cleverness by the person designing the layout. It does not lend itsclf well to an algorithmic
approach where a well-defincd model and sei of operations are employed. However, standard layouts can
be used for each component needed in a circuit. These components need not be simple electronic
. components such as trﬁnsistors or resistors, but may be logic gates or even higher level circuit subsystems.
Given these components and the interconnections necessary to realize the desired circuit function, the
layout problem consists of allocating a proper-sized region of the chip for each component and
determining the pattern of wires fonhing the interconncctions on each layer. This is the layout problem

as we will mean it. We have lost the flexibility of tailoring the layout of each component to the particular
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application, but have greatly simplified the problem. |
In general, we will wish to place a set of components on a-pessibly multi-layercd planar surface.
The components will contain (evminals, which ase points to-whick wires can connect. - The desired
interconnections will be specified by giving disjoint sets of torminals. Each et of terminals, called a net,
should be interconnected. The interconnections will e naade by wires which definc paths between
terminals in the layers. There will be constraints which: the layout must satisfy, such as a minimum
sepafation between unconngcied wines. - These constrainidarg called design rules. |
The major motivation for developing algorithms nm& the Jayowt problemtis the complexity
of the integrated circuits being designed. A chip may new-contain tens of theusands of transistors. Hand
layout of these integrated circuits, even with the aid of cemputerizod. graphics, is very costly, time
consuming, and errer prone, Standardized components, such as logic.gate oslls, are alrcady employed in
the industry to simplify citcuid.desiga. and layout, and layout by computerhas mmﬁmenwd {Fe76]
| Per77). The tradeoffs are similar 0 those in. computer pregramming. - Programming in assembly
language gives a programmer the freedom 1 devise clever \laytwmk:a.pmnnm faster or require
less storage. However, when meny: large, complicated progsams need to be writien, the savings in time
and the concepsual simplification:gained by using a high lovel language mm are worth the loss of
flexibility. Just as one might write an often used subroutine in: assembly language, one might do the
layout for a circuit subgystem {0 be used in many circuits by hand. However, for most. projects, the
savings in-time and. the added faith in the correciness of the design:due tn the simplified structure make
the component appeoach preferable.
 Although working automatod layout systems docxia; the problem of desigaing algorithms to do
integrated cincuit layout is net solved. - Many of the existing algorithms place fusther restrictions on the
problem. Typically, they require.that all.components be. the same size jn one dimension. Such an

algorithm places the components in rows, forming an aeray.” The wiring (called rousing) is done in the
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spaces between rows. Also, although several algorithms have been designed and implemented, little
analysis of the algorithms has been performed. - Empirical evidence is often cited in the literature.
ﬁmver, papers describing algorithms which may not find optimal solutions rarcly present mathematical
analyses of the quality of the solutions found. For example, one does not find statements ofithe form
"this algorithm always finds a solution within S0% of the optimal.” Tn. this dissertation, we discuss layout
algorithms from a complexity theory point of view. We focus on the performance of algorithms, both iﬁ
terms of the quality of the solations they preduce and: the running times they require. We work with
‘subproblems of the layout problem since they are easier-io approach and are-commonly encountered. An
 exampie of such a subproblem s the routing problem when components have been placed in rows.

 The thesis is organized as follows. In Chapter 2, we-review the techniques used by cxisting
automatic layout systems. In Chapter 3, the model we wilt use for layout problems is presonted. We slso
describe a second model - the graph theoretie model ~ which Ras proven very uscful in characterizing
the area required by various interconpection patterns.  In Chapter4, we discuss the complexity of a
number of versions and subproblems of the layout problem. A review of previously: known
NP-completeness results s given. ‘We prove the NP-completeneas of # rctangle placement problem and
two problems encountered in channel routing. We analyze & previously known heuristic algorithm for
one of the channel routing problems. In Chapter 5, a niew algorithim s presented for a special case of the
routing problem. Tn this problem, termeinals i on the boundary of ohe rectangufar component. Pairs of
terminals must be interconnected. The algorithm finds @ minimum. area routing for a-channel fouting
model and has running time O(t%), where t is the number of terminals; By developing this algerithm, we
have shown that there ase non-trivial routing probloms which: are not NP-hard. ‘Mest routing problems
are cither known to be NP-iard or are so closcly rélated to' NP-hard pvablems a8 wbecemidefed
intractable without an actuat proof of NP-hardness. In Chapter'6, we disouss'properties of the algorithim.

InChapter 7, we summarize and present open problems and ' directions for Arture resdarch, A review of
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basic definitions and notation used throughout this thesis is presented in the appendix.
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Chapter 2: A Review of Layout Automation Techniques
2.1 Classical Approach to Layout

The problem of placing components on a surfacc‘and making the required interconnections in
one or more layers is not new. Research on the layout problem was initially done for printed circuit
boards in the 1960's. The layout problem for pﬁnted circuit boards is closely related to that for integrated
circuits -- components are placed on a board and interconnections arc made by conducting strips (wires)
printed on two or more layers of the board. Wires on different lag.'crs are insulated from cach other, but
wires on the same layer must not cross unless a connection is intended. Depending on the manufacturing
technique, a conducting path may be able to change layers only at fixed positions on the board (called
fixed vias) or anywhere on the board (called floating vias). Some researchers have used models for the
layout problem which they intend to apply to both printed circuit boards and chips [Han76]). However, as
we shall discuss below, the objectives and assumptions for printed circuit boards and integrated circuits
are different. |

Traditionally, layout of circuits has been divided into two phases -- the placement phase and the
routing phase. Separatc algorithms have been designed for each. In the placement phase, componcents
are assigned positions; in the routing phasc, the paths which the wires will use are determined. For
printed circuit boards, the goal is usually to minimize the total length of wirc used. Generally, the board
is divided by a rectilinear grid and components can be placed only at certain locations on the grid.
Terminals where wires must attach are at fixed positions on cach component; these positions match
locations on the grid. Automatic layout systems for integrated circuits have borrowed the algorithms and
modecls from printed circuit board research and expanded on them. Most systems usc standard cclls of
uniform size which are arranged in rows and colu}nns, leaving a grid of horizontal and vertical streets in

which connections can be made. Examples of standard cell systems can be found in [Fe76], [Per77).




-11-

For placement algorithms, components are gencrally modeled as points and the board or chip as
an array of locations on which the components. Mb&plamd, For-printed circuits, components are
usually standard size packages 50 that size is not a facter,, For iategrated circuits, a size parameter may be
associated with each point and 2 capac:ty\mhmh Jocation. For example, in [Sc76] cach location
represents a row of standard cells and has a capagity. which-is the length of the row. In the majority of
placement problem formulations, thc ob;iective is to find a placcment which mest facilitates the routing to
follow.. A function of the placemsm is chéqen as an abjective ﬁummmbenpnmued - The function is
supposed to be an indication of the difficulty of the routing given the.placement. Most oficn the function
is an estimate of the total wire length used for reuting. . Various estimates of the. wirc length needed to
route one net (set of terminals to be intercomnecied) are. used, ¢.g. the half-pesimeter of ;h,e smallest
rectangle enclosing all terminals of the net; the: Jength of the:shortest. spanaing trec. of the net... The
estimate must be easy to compute.

There are two types of placement algorithms -- constructive initial placement and iterative
improvement. Most ‘automated layout syatems use. both, -although either can be used alone: iterative
improvement can be used with a random initial placement. . Constsuctive initial placemont algorithaw
place components one by one based on_their connectivity wwm?ﬂmts ﬂr%\!mfpm In many
systems, a designer may choose and place the first components. When: the first component is chosen by
the algorithm, a special component such as a bonding pad may-be chosen, or an asbitrary component may
be chosen. Given an initial placement, iterative improvement algorithins move compencnts to improve:
the objective function. These algorithms are local gptimization algorithms, One common technique isto
exchange pairs or rearrange larger sets of components and test whether the value of the objective function:
has been improved. In another method, called Force-Directed Relaxation, a component is moved to a
point where the "forces” due to its connections to othcr componems arc balanced. A descnpﬂon of

various placement algonthms of both types can be found in Chapter S of [Des72]. An experimental
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comparison of several of these algorithms is presented in [Han76}

The routing portion of the layout problem has received much attention in the past ten or fifteen
years. Many algorithms have been developedwﬁmf'ncaropﬁmai*m&msm'ﬂm‘mmingpmbhm
when sets of points which miirst be interconnected arc given as input. Most of the algorithms attempt o
minimize total wire length. These algorithms almost exclusively use the rectifinear (also known as
Manhattan) measure oﬁﬁstance;l

Routing can be approached a mumber of different ways. ‘Nets may be connected using Steiner
trecs, i.c allowing wires to branch at points between terminals; m@y’&'mm to spanning trees,
where no branching wires are allowed. (Sec Figure 2.1) Connéctiospatln ‘may be aflowed to change
layers at arbitrary points, at fixed points, or not at afl. The tree of connections for each net may be
determined before the actual paths are found - called wire Bst determination -~ or the trees may be
determined as paths are laid out. When each path must lie totally on one-Tayer, the laycr assignment, Le..
determining which paths will He on which layer, noﬂendoncﬁm. Afi'paths on a layer must be routed so
that they do not cross. However, many of the most recent routers for integrated circuits and printed
circuits use the restriction that horizontal wire seghents and vertical wire segments are on separate layefs.
(Horizontal and vertical are the perpendicular directions of the rectilinicar metric.) Paths are composed of
horizontal and vertical segments. Fach change of direction is a—dﬁngeoflay&. “Typically, two layers are
used -- one for each direction. In the projection of the layers on one ptane, two paths may intersect within
perpendicular scgments witheut being elcctrically comnected. "When paths can change layers only at fixed
points, cafied vias, the vias may be assigned to perticular conncctions before routing. For printed circuits,

the number and location of vias is often restricted due to the fabrication technology. For integrated

1. Under the rectilincar metric, points (xl,yl) and (xz;yz) in a cartesian coordinate system are distance
lelzl-*bl')fz’m o ‘ :
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circuits, vias are contact cuts [Me80}. They are vsually allowed anywhere, although it is desirable to
minimize the number used since they require extra area.

Most algonthms to do the actual routing of wire paths fall into one of the following four
categones maze routers, line rouu;rs, oell routers, and cham{;el' @mm The first algomhms used on
printed circuit boards were malSe routers. Maze routers find we path at at time. They zire based on Lee's
algorithm [[‘.ee61] for ﬁndi"ng"{he shortest path betweea tvmf nodes in a graph. In fafs:L a path can be
found between merhbers of two sets of nodcs rather than between two specific nodes. The graph used for
routing is a grid graph containing @fbldden regions. The algorﬁhm is a breadeh first scamh of the usable
gﬁd points. (See Figure 2.2.) Multiple layers may be modeled by using' one two-dimcnsignal grid for
~ each layer. Each grid point (for unrestricted vias) or each of a speciai set of gndpmnts(for ﬁxec[‘;yiag) on.
one planar grid is adjacent to corresponding grid points on other planar grids. N

. Cellular routers. [Hit69] also divide up the Touting: phne m&o a reguhr amngement o£ cells.
Again, each path is Eound, one a a ttme by a breadth ﬁm search over all cell& Each cell represents a
* region of the routing surﬁice mcludm; all layen Thw ﬁpmuﬁoﬁ%;obtmned bypmjectins all layers
on one plam, den partitioning tte phae into pieces of unifonn,siw mglqu, These pwces are the cells.
Each cell is hue enough to fit mm one wire vnddl oa;;aeh laycr. The muuntaiwnthm must
define the entrance and exit point; ofe‘each routing_zp;a:th mthe iet qf. cells traversed byﬁ@epa(h From a
given point on a.cell boundary, the mwmdmmanm mc%akulated taking into
accouni wires whlch have been previeﬁsly routed and haVedut off patts of the cell ﬁ'om other parts
(F‘igureld). The detenmnanon ot ﬂte at;tual paths used wwhi&eu:h oell is left for-a mnd algorithm.
Cellular routetsd&mt Foquire: the hm uumber of grid pcma whlth must be repruenled when using a
maze router. |

* Line rauters [Hi69) do ot partition the planc. These routers work directly with hoizonial and

vertical finc’ segments. They buitd ﬁp,a path between twépomtsdut of these segmcacs. A-line router
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Figure 2.1: Steincr tree conncctions versus spanning tree connections.
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finds paths only in one plane. Paths arca determined one at a time. Given pwo target points to be
connected, lﬂne segments are exiended from the targets until they hit obstacles. Points along these
segments from which a l:ngm be extended which w;ll encape" an obstacle wvnously hit are found. In
this way, "escape lines" a:tienemmd umil a pmh bé?teea the two target pmchan be constructed from
’ se:mentsohheseescapelmes. (SeeF"agmeZﬂ < | w
The channel roudlu techmquc [Has‘ll] waﬁ develnped for routings w@ith homontal and vertical

wires on separate layers. The area. ava:hble for Bpis decd into horgomal and vemcal streets.

‘Each horizontal or vcméi? stmet m eonuin ai smbe if honzomal @venical path scgments,
respectively. Paths are ﬁm found ﬂarouah the ththun mardip conﬂ:cﬁ wnh&a each street. ARer
all connections have been globally WM #he sirects, the meﬂs within each_ sireet are

arranged so that no two owrlap “The nmnber of pw hnu or dﬁmelsl m each street is minimized.

Short segments pemendncafr to the street direcuongw ‘e used from each Q'mmal out into the street.
For some algorithms, such short segments s sao peratded 6 llow 8 paih Sefnen o changs channels
(See Figure 2.5.) Theslohalmuuagpmm uac;ual]agg mﬂ\ Mpmbquonamh where more
that one path may use ﬂle same edae The local mtm‘ pmbhm (or ckalmel assignment problem)
resembles a packing problem rather than a path-finding problem. These problems will be described in
more dotail in Chapter 4. o -

The alaonthms dexnbed above are those most oﬂen used by layout automatioa systems. They
do notemomm allalaortﬂams. ‘A survey ofrominsalmridumm be ﬁmnd in Chapler 6 of[Da72]
and in [H:74] A smdy of router performance s M@ddﬁ [Kel'm. None of the algorithms are
guaranteed to ﬁnd an optlmal sqhuon unlas thcy are aﬂowed to rjp up ud reroute - exhaustively

searchmg all poasxble ‘routings. Furthcnnore if the amount of area which can be used bounded the

1. The use of the term channcl has become confused in the litcrature. 1t is used by some authors to
denote a strect, by others to denote:a lane within a street. We follow the terminology of [Has71).



Figure 2.3: Cellular routing.
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algorithms are not guaranteed to route ail connections, even though such a routing exists. In practice,
failed connections are completed manually. Many systems use a combination of algorithms, beginning
with faster algorithms to route moit coanections and using slower but more successful algonthms to route
the final connections (e.g. see [Po‘B}) Some algomﬁrﬁs‘;: ﬁore suscepuble to the prablem of failing to
complcte all connections than others. When each ppmt-to—pmnt cenmection is assigned to a single layer
and then routed, the paths found ,ﬂr;st may encircle a minal not .yet connected tio anything. Itis

r%pmgup apreviously routed path.

SR

xmpossablc to find a path to this terminal without chm;ingﬁtggn
(See Flgufe 2.6} For routers ofthit twe mm ili?vhich the paths are ass:gned for a pmbtém can
make a grcat difference in wmmmm i: mm&ﬁ in routing afl the cni’mecuons Given this,
it is mteretting that Abel [Ab72] concludes from his eripiricit stisdy lhat, overall, the pel‘fonnancc of such
routers is nqt significantly-affected by various orderingcriteria; (The router-used is a maze router with an
added heuriétic so that paths do not run next to a row of terminals at minimum spacing from the
terminals. The paths being avoided would lead to a large number of blockéd terminals.) The channel
routing technique is less susceptible to the problem of failure to route:ali: connections since the exact -
pbsition of each segment is determined aﬁér all paths arc globally assigned. In fact, if area is not limited,
the streets can contain an arbitrarily large number of channels and 100% routing can always be obtained.
Several characteristics of the modcls‘ugeé‘it for past reseurch on thclayout | prbblem are very
restrictive, cspecially when considering the layout-of very farge scalc integrated (VLSI) circuits, where up |
to a million transistors are packed on one chip ina ucxx@marrmgemcnt. The use of cells which have
one or both dimensions fixed limits the type of componemi which éan be used. One may imagine having
in the same circuit a very large component whichr u an array bf registers and a number of small
components realizing a special function. Once the componients being used are of varying size, it is a waste
of space to place them in an array separa;éd bystreexs run;ung thcv leégth and wndth of tﬁe chip. The

size of each component and the way the components fit together on the chip are important.
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When an array of locations is used for cell placement, it-is reasonable to use total wire length as

a measure of the worth of a particular layout. Diﬁ‘erex;t arrangements of components within the array'
only affect the area of the layout msom as they aﬂ’ect c&e inserconnec&mm taken. The total wm': _
length is an easily computed apprmhmte mumrc of the imoum of muﬁn;sarhce whlch thas been used
at any point while routing is being (i)ne 'nm in tum, ihn appmxlmate measurc of thc congestlon of
wires in routing areas. Con;estionm affect ﬂ\e mmbﬂﬁy of intemonaecﬁuns still to be made. When
the area used for routing between campoaeua is ﬁm& \ihich is usually true for printed: cmcult boards,
too much congestion may result in f‘ahufc o mmm G}' the intercnnnections When the area used for
routing can be expanded by moving the components (While keeping their relative positions fixed), as is

more likely for integrated circuit design; too'#uch comjisstion may result in a larger ovemnhyout size.

When components are not of relatively un!ﬁmn niat thcir phcement has great effect on total
layout size. Wire length is no longer a good appmxnmaien to layout size.  This is illustrated in
Figure 2.7. The placement of components and routing of wim interact in a much more complex manner
to detcrmine the total size of a Eyout. The most recently developed layout systems no longer treat
component size as a parameter which is of secondary importance. Components are modeled as rectangles
-- giving them shape as well as size -- rather than as points with a size parameter attached. When
- rectangles must be placed on a plane, the way they fit together influences the area used by the placement
and the shape of the spaces left for routing. Preas and Gwyn [Pr78] have retained a constructive initial
placcment based on connectivity but place rectangles in a plaae rather than points on a grid. Their
iterative improvement phase tries to minimize the area of the circuit by selecting s the candidate for
placement modification a component one of whose dimensions contributes to the widest part of the
layout in that dimension. This componcent may be rotated, reflected, shifted, or exchanged with another
component. A modification is accepted if the arca is reduced. In [La79}, the initial placement i

produced by dividing a squarc of area the same as the total area of the components into rectangles of the



Figure 2.7: Tradeoff of wire length versus area.

total area: 15x15 = 225 total apea; 17511 = 187 . .

total wire length: 2 _ total wire length:.16 .

where wire width s 1 unit, minimum spacing is 1 unit
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same arca as the individual components. This gives an approtimate placement which is modlﬁcd‘ to fit
thc actual componcnts. lmprovumnts are made to the placemcnt by usmg rotanons and shifts. Routing
n taken into account in the improvanent phace The wklth ofeach strcet is esttmatcd based on global
routing and included in thc area calculation Brinknmm [Bﬂ&hho uses thc techmquc of dlvidmg alarge
rcctanglc mto smaller ones to. ﬁnd an cppronimntc plwcment. N

Routm; programs for thc moct neccnt systcnu also try t}o‘mimmtze arca rather than wire length.
Channel routers are used in [Pr‘n] and [La79] Channcl routcn are easy to use when arca nsthe parameter
to be OptlmIZCd since local routint mlnumzcs street. wm &nets can be allowcd to shrink or expand a8
ncedcd to complete the routing. In [Lo79}, componcntl m M to take pontions abovc thc routina
area independent ofonc aaothcr 0 M arca ls not wmd uomaaﬁly by aligning thc edges of thc
components.

Wire lcn;th rematns an lmportant pmmetcr fot 2 layout because it dlrectly affccts the quality
cndspeedofstgnalsin thecimm. lnasituation suchutlmﬁown in Flgutc27 where both size and
total wire length cannot be mimmimd at the same time, a tmicoﬂ‘mmt be made In tlus context, it may
bedeatdcdthatw:relcn@thls mosthtpomatrem«loflhem&n;cmuttmc Atothernmes,only
a mmumum wu-e lcngth rmcht be impoccd on certain in;monncctlom in the circuit. To makc things
more cmnplex we mt;ht unagtnc a sttuation in whtch the mulmnt was that two mtemonnectlons have
approxunately the same len;th say when two outputs of one component are the mputs to anothcr
component. lnshort.ﬂwdedredmcmmﬁ)rﬂacwaﬂ:ohhyoutcanbemadeverymplmtedif
eoouzh factors are consndemd Phymcal quantines may depend on other layout properties such as the
density of wircs in an area. In [Agu77] and [Ru??l. a systcm h dcccribed in which total power is

mtntmnzed and timmg constraints are obscrvcd ln [NoTG]. conncctions whoce delay must be minu'nized

can be dcsngnated "critical” and treated special



2.2 Alternate Approaches to Layout Automation

The approaches described in Sectlon 21 separate the placement and routmg phases of layout.
The input is a set of components -- either specrﬁed as points or rectansles - and a set of mterconnections
to be made cither among the componcnts as points or among terminal pomts on the components. There
* are alternate approachcs in the literature wherc the topologrcal aspects of layout arce modcled usmg graph
theory When finding the layout of a crmurt, placement and routmg are consrdercd togethcr by ﬂndmg a
planar embeddmg of a graph modeling thc cm:utt. 'Ihe nmdels do not necessanly assocnate one node
with cach component. ‘Each cmnponcnt may bc modeled sa set of nodes and edses, e.g. a cycle.
lnterconnocttons among a set of tenninals may be modeled asa set of edges ora set of nodes and edges.
For example the branch pomt ofa wnre may be represented asa pmnt under a Stemer tree reprcsentation
of connections. Several models have been suggested. A summary can be found in [van76] Gmph
embedding techmques have the advantage that placement and routmg mteract completely at the
topological level. However geometry - the stze and shape of the components ~is eompletely ignored ,
andmustbeaccounted forsepamtely et e s M TERGEL el 0L
- In the standard approach and in the graph embeddtrmapproach. tbe only mfonnatton about the
layout provided by the mput is the set of neB. ln an altemate @proach bmd onsttck dtagrams [MeSO],
topologtcal mfonnanon about the desrred hyout is alao pmvtded. ln sﬁck rhagrams. regtons in vamua
layers of the mtegmted circuit are represemed as hnes. Fore;;nple "m n&& technology a polysllmn
line andadrﬂ‘usron linecrmngrepmentaumistor 'lherelativepostlonsofeomponentsandﬂn
general path of each wire are mdtcatocl The layout automatao; system must’erpand the "sucks mto
rectangles of the proper dnnensrons based on demgn rules, and modtfy the layout 0 that components and
wires fit together wrth thc propcr spacmg. F.xamples ol' such systems are SI’ICKS [W177] and CABBAGE
[Hs79]. These programs attempt to pack the layout as much as possable whtle satisfytng the dwgn rulel

and maintaining the original relative positions of components and wires. This technique exploits the
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human designer’s ability to do-ovemll layeuts, i.e. rough sketches. The program FLOSS [Ch77] also
packs a rough manual layout it works from a hand drawn sketch Other syatems for whlch the deslgner
| does the general layout use a symbolk repmnuﬁonof: the layout (Gi76] [Per73]. The symbolic layout
is pmduced by the dcslzner and expmdcd into a ﬁxlly speclﬂed layout automatlcally Other techniques
for deslgn automation use &pecu! ﬁtucmres such a8 Pl‘osmmable LOBIC Arrays (PLAS) Wlth kﬂO\Vﬂ

layouts. Functlonal speclﬁcattons can be automatlcally converted mto PLA lmplementatlons [Ay79]

Specnal interconnection patterns can also be exploited to anist ln dcsmn (Jo79]
2.3 Summary

All of the above tcchmques have been developed to automate at least ln part, the des:gn of

cieis 5 3 FrETyis

circuit layouts The research rcponed in thls dmnermton is mmcted to placemcnt and routmg as
described in the ﬁrst section. Although many slgorithms haye been dcslgned and tcsted, little
mathemattcal analysls of the almthms has been performed 'l‘he techmques of complexity theory are
not regularly applied to layout pmbtems, Onc notable exception u the work of So Ting, Kuh and others
([Ku‘l9] [So74], [Tl’l(;L [Tl78], l’l‘i79i, [1"3791) for pnnled cin:ult board mutmg. In this work a rouunz
‘problem for printed circuit boards with ﬁxed v:as in columns is brokcn up into several pmblems. endinx
thh a number of instances ol‘ a muting problem for a row ol' termlnals ona smgle layer The problems
are analyzed Necenary and sufﬁclent condltions For a slngle-row smgle-layer routmg to be optlmal are
developed. However the model is not well sulted to mtegrated clrcuita 'I‘he meamh reported in this
dissertation also focuses on particular subproblems of ﬂ\e layout pfoblcm The pmblerns are motlvawd

by the channel routmg modcl of interconnections.
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As is ev1dent in the d:scusslon in the prev:ouo chapter; most modcls of cu'cults for layout use
| pomts or rectanglcs to model components. ln the rescamh pmented in Chapters4 through 6 we use
rectanglcs I‘he model is dcscnbcd precmly below ln the wcond secuon of tlus chaptcr, we dcscribe a
graph model in which componcms are pom(s We dlscuss its use in pmvmg bounds on the Varca requlred

’f‘-l;» Sy

by cm:ults with certain mtcmonnoction pattcm
3.1 The Geometric Model

We have chosen to use a rectzmgle model of componcms becausc it caplures the geomcmc and
topologlcal aspects of thc layout problcm Compoucnts are rectamlm' in shape and vanable in size.
’Wu'es lic on any of several layers and are of umform width The model was gunded by lhe deﬂzn mles'
prcscnted in [Me80] l‘or nMOS technology but n is mtendcd to be applicable to many technologla

Fonnally, the model isas lbllows.

A2

e

The mput for a layout pmblcm will consw( of a set of components amd a sct of nets. Ea:h

t“

3. ,.;7;, ,,;{, :

component. C, willbea rectangle wnth gnven dlmemons X and yi At gwen lomtu‘ms on thc boundary of

a component C are tcrmmals t , j l, ,n where n, is the numbcr of tcnmnals on componcnt C Each

| net is a set of tcrmmals, and thc nets are pamvm dmgomt.Ea:h net repmsents a collecnon of tc:minals‘
whlch must be elcctncally connected. 'lhc layou{ problem zs;oplaceneoon:pomts on a pm and
form the mtcnconnect:ons spoclﬁed by the ncts m (hc mlmmmn pmbl:;rca. 'l‘he maemonnecnomm

be made in any of N layers, whenc N is spcc:ﬁcd a pnorl. Thelay:m arenumbcred l dn‘ouxh N layer i a

S

considered to be adjacent to laycts i+1 and i-1, for 25l5N—I Typ:cally, N is two l‘he wires used lo

_,,‘:;.-:Ax e

interconnect terminals have a uniform width w. l‘hcre is a minimum spacing between wirces on a layer,
between components, and between a wire and a component of s.

The interconnections form paths which lie on the surface of the plane not covered by the
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components. These paths go between nodes. A node is a terminal.or an addidional paint on one or more
layers of the plane. Each path segment between two nodes has a designated layer. The paths induce a
partition of the MMMm of connected nodes; each set contains terminals from exactly one
net. Pith s‘ekments in different hxduma;, intersect. Path sesmenu in thc same layer cannot intersect
unless they-are: mmm the same net and intersect at a node. Addmonal points are allowed as
nodes so that one awire mmut into several and so that a path may changc layéxs A path may. .change
from layer ito layer . for any i anéj between 1 aad N‘ at any nodc; howéver &emd&must lie on all

layers between Iayersland!, iae!uuvc "'mepﬂthlsv ;

Therefore, no path mmeﬂ with a difkrenl»lmm; pilesdor % 1

*‘{"‘*’ =

and j. The set of nodcs and paths in any one lﬁyer rcpmgng ah Mmd a planar graph The area of
Figure 3 1 illusmtel.

Thc model described above takg mw i G

routing. We believe that resmctm; mmmeus toiave*mufar ﬂwes%snll provides a model that is

apphcable to the layout of VLSI cucuits. For thoﬁhghi componm wtgose layouts would fill only a

small portion-of a rectangle; g, "L"-shaped uyma nuybe
or three physmlcoﬂpomumthmmrlmhthw&
One of the advantucs of the model is M 3%

wﬁe&k;ﬂn component into two

*&a vartous leveh of modularizatmn.

Componcnts may represent transmors, logic gates, or even andzmeuc units, allowﬂiﬂty ooncepmat levcl S
of dmgn A hleramhlcal approach m layout such as ehat nsed by Preas and Gwyn [Pr78] can casnly be
taken using this model.

Additional parameters can be allowed as inputs to the layout problem in this model. Upper
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Fignre 3.1: Mustration of the gcometric modul for fayout design.
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Boinds go @e:bw"md width.or the total area used by the Jayout may be given. Altematively, a bound
OB, he aapact.rafio, L. the.mailo of “‘“’““WW width, 0f the layouk area may. be:given. This would
restrict the shape of the layout. -Any. of fhesc. imitstions-may be. necessary 10 imsure that the iayout
produced s usable. For wmaﬂ“m atonsalution resuled in an extremely long and
thin chip. The shape could prohibit the fabrieation of thepackaging of the ehip. Another possibility is
that the circuit being lid out s & compooen at & highos level in.# design hiccarchy. The bounds might be
derived Erom requirementa st Abe Bigher less). Wmsh 8- thone pravide a.range of solutions within
whic the algaithm should wk. 1 i alsc posibl 4. inoduce wire ength sequiremmcats 0 the ayout
problem. As mentioned in Chapier 2, wire.lkngsh is.an impartant fector in signal quality. Individual nets
may be given, upper boupda ea, the. fotal:wiro:Jength of, eeie. intesconeations. (Wire length can be
measuped using the center ling trrough 3 wire.). Rolasionahips ctwpenthe wire longihe for various ness
may also be imposed. | :

In the following chaptors, s will put restrictions.an- the typss:af Jayouts allowed: within the
above model. We will resirict ourmeives to rectilinear paths.and.orthegensl arisntations for companents.
Diiections "horizontel” and "vertical” perpendiculat 40 osl ather will be chosen, asd all componeats
will be placed so that their boundacics ase parailel p: one-of, these: dircestians. - Also, all: paths will be
composed of borizoatal and vertcal segments. This resiricton n isspesod for two resons.  First, the
problems examined are motivated by currendy. used laygut algorithma, - As discussed. in the previous
chapter, the rectlincar metricis sliwoat always used. Sepond, the sesrictian lisuits the. nusmber of possible
solutions and makes the problems easier o saalyze. Mast.of the time, we: also rastrict horizontal and
vertical scgments to.be an differcat layers. Given. that,only horiaonial and. vortical-wire: segiients are.
being used, this assumption aot only greatly simplifies the description of allewable paths (those that may
intersect at a point but do nat overlap) but is reasonable: when:only twe layers arc available. In this cass,

two segments runaing in paraii on diffeseat layers, avs.on, lop o the other, probibit any: path from.
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crossing from one side of these segments (o the other. -Amy pair of terminals, one on each side of the
segments, which must be commected will reqilire a path Which'goes around the parallel ségments,
Therefore, one would raroly want such segments. ‘Also, ifthe Scgments e extremely fong, they may
eause clectrical problems . due 10 capacitance. Réstricting ‘adjacent: layers' o contain - segmients in
perpendicular directions eliminates hese potential problems. -

There are scveral technical aspects of the layout problews which the modol does not take into
account. -We discuss thcsc below and-indicate Hiow the model eanfbb extended or modified to include
them. In actual compenent design; a component may have several terminals to which a particular
connection can be made. These terminals iy be cither physically equivalent, i.e. they are connected
inside the component, or logically equivalent, i.e. yoii @ar’t telt theny apart fanctionafly. An example of
logically cquivalent terminals is the set'of input terminals of an "and” gate. The problem ’of'deciding
which terminal to use in connecting a particular net is called the pin assignment problem for printed.
circuit boards, and is usually solved before mﬁngaigeﬂm ‘is-used {FEM4} Both physically equivalent
and logically equivalent terminals can be modeled 28 sets of tenminali. A set of equivaient terminals;
- rather than an individual terminal, would bé a member of the set ‘defining a net. ‘A sct of phiysically
cquivaient tenminals would appear in“only one net, while:» morwlyeqﬁvaiem terminals would
appear in several ncs, but no mere ncts: than the rumber of terminalt in the set. When layout is
complete, each sot of mwmm-mn&mutm at-1host one termimal from each s¢t of
logically equivalent terminals. This model of equivalent termisals is used by van Cleemput fvan76].

In integrated circuits, layers arc made ‘of différent ‘matérials snd ' different design rulcs may
apply.  Allowing the width of wires and sepafation bétween objocts % vary bétween layers is' a minor
muodification to our model, although the resulting-layonit problem is mrcdiﬂ!cutt However, the design
rules for various layers can be more complicated than'the model wilt allow.  For exampk ity nMGS ‘

technology {Me80}, wircs in diffusion and polysilicon laycrs-cannot cross. Therefore, we model them as
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one layer. However, the minimum distance between two wires kon either polysilicon or diffusion is
different from. the minimum distance mm of differentlayers: - This s not provided for in oﬁr
model.‘We must use the ingest of thie actusl requirod separations. Luckfly, the metal layer in iMOS can
eross both diffusion and polysiticoa wires. If it could onty tivks one, thew the actual layout problem
would net be captured by our m&ﬁ two layers could be iod for intefconnection, dut a concept of
"coloring” wires in cach layer according to the design-rules would Nave to be added. Another design rule
which we have aot accounited: for concerns changing tayer;. ' When' & conducting path changes layers, a
mac_aetcut must be made: to: comnest the Inmiﬂmmmmm nyer. m comact cut requires a
square area larger that mewldthafm witk, This is not taken info decount in ourarea calculation. Even
worse, some wires on & particular layer may bnsim‘imm than other- Wﬁ'etm‘me same Jayet;
depending on the electrical load on the wire. For example, the wires supplying power to' & lirge circuit
uluallylookﬁk&thc human atetial: systom: there: 8 a‘w ihaifi- wire ‘and a tetwork of wires of
docreasing sizp-Toaching every part 6f the clreult. We recogmize that our model overlooks many detaity of
actual layout design, St we foct tuak it i & reasonable approalmation 6f the major issues f the layout of
32 A Graph Embeidiag Model

We now discuss the uses of a model in which a circult is represented as'a graph. We call this
model the graph embedding model. Each comiponent ls represeated a» a node-in the circuit graph, and
each conmection to be made is represcnted as am edge betwoen two nedes. Theayout probiem is defined
as the problem of cmbodding the circult graph in & two-dimensionat grid grsph. An embedding maps
cach node represcnting a companent to & node of the-grid. ' This mapping is one-to-on. Fach edge
representing a connection is mapped to a path in the grid graph. 'Fhis path can only contain two grid

odes which 1 t0 component nodes <~ thosc that correspond o the ‘edpeifits of the edge being
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embedded. Faths corresponding to distinct edges are allowed to intersoct at grid nodes ‘but are not
allowed to use the same grid edge. To make such an embadding. possible, each node in the circuit graph
is restricted to having al most four edges adjacent to it, u it is restricted:s0 be of degroe at most four.
Such an embedding is an edge-disjpint homeomorphic embeddma. Given.an. csbedding, there are two
mcasures of area which we will use. The first, which we- will call the-nade area and denote A, is-a count
of the number of grid nodes used as magesofcmnpenencs and on paths which are jmages of edges. The
second, called rectangle areq and denoted A, is the number of nedes coptained in a rectangle whose
boundarics lic on grid cdges and which cmumxfibesaﬂmdesusedmﬁmembeddm i.e. all nodes
counted by A. For a circuit graph, C, let A(C) and A(C) denote the- minimam node area-and
rectangle arca, respectively, over all cmbeddings of C. Obviously, Ay(C) S A4(C). An cmbedding is
shown in Figure 3.2 ’

Fhe madel presented above can be vie\icd as doscribing a layout which w:mly'Mm%a@.
vertical wire segments (segmcnts in the two grid directions), each diroction 0n & scparate layer.
Aitermﬁvcly. the nodes of the grid may be.viewed a8 Wﬂihﬂéﬂﬁ& aroa squares on-a plane. Each
 grid edge adjacent to a node represents a boundary of the corresponding square. Two paths which usea

node need not actually intersect on the plane -- they may run diagonally, cutting acnm opposlte comers

bl o

of the corresponding square. (See Figure 3.3.) Thompson [Th80] uses a model of cm:mt layout wh:ch
divides the plane into such unit squares. He views connections as ninning primarily ia a:.st?ngb layer of
metal. Crossovers.are achieved by using short ruas in a second layes such as polysilicon. | ‘
The graph embedding medel lumps all terminals- of & component into ene poist. The
point-to-point connections made by wires are pre-determined and represcnicd in the geaph for the cirouit.
If Steincr trec interconnections of the terminals are desired (i.c. hralm wires), these must be explicitly
modeled in the circuit graph by adding a node for each branch point and edges from cach branch point to

components or other branch points. The model does not represent the arca required by components or.
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Figure 3.2: Fmbedding a gruph.

CIRCUIT GRAPH (i

ALC) = 17
A0 = 20

- Figire 34t Fiféets of the ordor of ternsinals arownd & component.
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Figure 33: A node represcnting a square.
o ©i geupl veprasentation:

represents:
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the fact that terminals have a specific order a@nd the’cdmponent. This order cayses some routings for
the graph embedding model to be impossible in the geometric model (see Figure 3.4.). Howcver, the
model is very useful for investigating the implications of certain interconnection patierns, -

When node area is uses, cach cu'cuu mdemmbmes@ﬂy“oné tmtt bf area. Thercfore, any
~ circuit graph vnth n nodcs whlch requjrcs morc than Xn) area: must hayé an mtgrconnectwn pattern
whach mqukuah&eiamwrm inwerbom\dson thcallountofaren regmmd by a graph_are
provea using this mcasjrg o»f‘area Note that any lower bound on ﬁvﬂ&afea ls a loivhr bamd on rectangle
arca. 'lhompse; [ rhsq provcs x lower bound oa the arca required to ambed a gmph m funcnon of the
minimum biscction wﬁthofambsetofthe nowofthegram. Givenagmph(}andasubset,s of the
nodes of G, a set of edges in G.bisects S if the remaval of these edges partitions the nodes of G:in® two ’
D LISK2 of the nodes of § are in one.act apd FI|/27 are in the other set;

it) After removiné the edges, there are no p#ths benvecx}nedes lll diﬂi:rentse;s. L

Let wg be the size of the smallest set of edges bisecting SinG. Then:

Theorem (Thompson mson Given a graph G with nodcsofdegreeatnm;ibuf &nd g subset, S, of the

| - ety
ANO) 2 (w4, B

,“ o e g ‘},

An n—supemoncentmwr is a graph with n designated mput nodes ang nmm output nodes
such that forany&:tsofk mputno‘esam! k output nodes, lSkSn. there are k node disjoint paths
connecting the k mpui ‘nodes to the k. output nodes [Val75}. Foﬁ%c w&af&npm nodes, E w2 L2l
'I‘herefore for any n-mpemonccnu'ator G, AG)2 (n-l)’/IG "= §ince for any n, there are

n-superconcentrators with ((n) nodes, all of bounded degree [Pi77], there are graphs with n nodes which




require node area 8(n?). Note that altheugh the superconcentrators in [Pi77] do not have degree at most
fou;. itis étraishtforward to reduce the degree of each node by adding a node for cach édge. The number
" of nodes added is then bounded by the original number of edges. Figure 3. 5 {fustrates.
Thompson also defines average and worst case mformaﬁon complexmcs of a function. He
derivesa lower bound ‘on the average or worst case time mguired by a graph m compute a function:
avcrage(or worst case) ﬂmc 2

(1/w,Xaverage (respectively worst case) information c?mplcxity of the function)

where | is a special set of input nodes in the graph. Combining the résults, Thompson obtains a lower -

bound on Ayx(average time)® for a graph which computes an n-point discrete fourier transform of

Ln/8J%l0g?n; he deﬂ\écs a lower bound of ﬂ(nzlogzn) on Ay x(worst case tiﬂft:e)2 for a graph which son n
numbers. The reade; should refer to [Th80} for details. Bﬁunds for othef functions have also been
derived by various au;gors usmg Thompson’s wchmque. eg. [AbsﬂO],{Sav?Q;.

Uppu boundscana!lo be obtaincd on the area to embed vm:dasses of graphs. Upper
" bounds are del:lved for mctande ares, A  Any such nppcf bound is @o an upper bqund for node area,
An- Flrstobservematanygraph wnhnnodes,cach ofdegreeatmtmur canbeembeddedin
rectangle area at most 6n2+3n. We give here a modification of th¢ proof presented in [Val79]. This
modification improves the bound from a (3n)x(3n) square area to.ii:‘(3n)x(2n+ 1) rectangular area. Since
n-superconcentrators requirc 9(n?) area, proportional 4o a% area is both necessary and: sufficient for
embedding an n-superconcentrator.

The embedding: achieving rectangle area of at most 5n2+3n is shown In Figure 3.6. The
directions used below refer to the figure. The nodes are embedded in onc vertical column of the grid --
one node every three grid points. There is a column for each edge, cither to the left or the right of the
_column in which the nodes are embedded. The path representing an edge must reach the column for the

edge from cach node representing an endpoini of the edge. Therefore, each path includes two horizontal

I W e L
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Figure 36: Fmbedding:an urbitrary grupl in G)an) arca.

" total

3inodes L
.I'M‘._{

SCRN UEE

columns foredges -  nodes columne for .

——total of ledges] + | columng ———{



TN e g R

- 3§~
segments between the column containing the embedded nodes aad the column for.the edge.  The first -
(last) segment of the path is cither one of these segments or a vertical edge from the endpoint of the path’
to the grid node Just above or just bclow :t. Ifa vcrtical «edge begjns the path, me horizontal segment
going left or right: fmmemendnode:smed Aslon;asmcedgesofmccxmmtgraphcanbe

partitioned into two sets ~ thosc whose columns arem the lctt oFtbe nede column, and those whose

columns arc to the nght such that at most m » UG
embedding cxists. The edges ofany gtaph wm neag moimumm can be colorcd usmgat
most six colors such that %0 two edges ad;accm o m samemde gemm color [Be66 PR Let
edges with odd numbered colors have eolumn; to the left, ?d thase with even num_biked colors have
columns to the right. At most three cdges ad;aeent toanodcgure onithe sae side, as desired. Since any
graph with n nodes, all of degree at most four, can have al most 2n e@es, there aré, at mour 2n+1

ot RS £
: T

columns. ' »
Other classes of graphs can be embed@d nﬁmﬂmﬂ D(nz} area. Valmm [Val??] and Leiserson
[L¢i80] have independently shown that gven a mh G with a nodea. eachbfdegree at mw four, ifG is
planar, then A, (G)is O(nlpgn); it G i s, tre, then A!(G) it om Valiw ‘actualty shows that an O(n)

2

embcddmg for a tree can be aauievedm :;. ,ﬂ'»Wm crm Tt is an open quéstion whether
there is an n node planar graph which reqm(lnbg’n)m Lempmvesa general result which
relates a separator theorem-for any class of m{o an uppes. bound o8 the rectangle area required to
embed any graph of the class. 7 ' | o

The results which we have reviewed above illustrate that the graph embedding model is useful
for proving bounds on layouts for particular classes of graphs and for proving time/spécc bounds for
function implementation. Using it, we can identify easy and hard interconnection patterns to route. In

the rest of this disscrtation we will be interested in algorithms to actually do the layout. Therefore, we

will usc the rectangle modcl described in Section 3.1.
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Chapter 4: Complexity of Liayout Problems

Regardlm of the exact lhrmulation of the loyottt pfoblem. we arc mterested in ﬁndmg an
efficient algonthm whlch computel an opdmal layout. lf thls is not posstblc, we would llkc an eﬂlcnent
algonthm whlch computcs an optimol layout much of thc ttmc and a good layout the rest of the time.
This algorithm may actually be a collection of al;orlthma to mlve subproblcms whlch togethcr glve a
layout. Auam we would llkc the allorlthms for the subproblcms to ﬂnd solutlons eﬂlclcntly Howcver.
most problcms assoclated wnth clrcuit layout are NP—complete 'l‘hc dcﬂmtion of an NP-completer

problem is given below., From a practlcal pomt ot‘ view, the NP~completcncss ofa problem lndlcates that

itis probably lmpoutblc to find an el’ﬂciem algonthm which solves the problem.

Two major classes of problems in complexlty thoory are the classcs P and NP A problem isin Pr
(NP) if there is a deterministic (nondetermmlstlc) Turlng machme and a polynomwl I’ such that the
Turning machme solves any mstaace of thc problcm wlth an lnput of lensth nina number of steps noA
greater than P(n) 'Il\e tcngl}: ol’ an lnput is the lenath of its rcpmenmtion as a character strmg ina
prcdctermmed chanctcr set. We wlll not l’ormally deﬂne 'l urlaa maclunes hcre The mtcrcstcd reader
should see (Ah74! Very oﬁen a nondeterministic Tunns machine solves a problem by "suenslnz a
solution and testing to see if its guess is actually a solution When the prohltm of lntcrest is a
mmlmizatlon (or maximmtton) problem, it is reformulated 80 thnt candldate solutrom can be tested
independent of each other. In thc new problem, a paramcter lt ls part of thc input.i A solutlon to the new
problcm isa l‘eamblc solutlon to the old pmblem for which the quautlty to be mmirmzcd (maxlmlz.cd) lo
less than (respectively greater than) k. A feasible solution ls one whlch sansﬁes all requlrcmcnts of the |

old problem except optimality. For examplc if the onginal pmblcm is to ﬁnd a mmtmum area layout of

a circuit, the new pmblcm given the circuit and paramcter K, is to ﬁnd a layout of the circuit of arca lcu
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than k. Under this formulation, a feasible whion?caufbe’mdsbyiaiteria depending only on the
feasrble solution to sce if it is a solution. When lhe mmlmization formulatmn of the problem mused,
fwsrble solutlons must be compared agamst each other to ﬂnd tl:e actual soluuons.
The numbcr of steps taken by a dctcrmrmsue 'i’unna machrne is polynomrally rclated to the
number of stcps ral:en under a modcl ol' computauon that correspon& to the mstmctton set of a

computer lf the lcngths of numbcrs opcrated on is tal:en mm accoum {Ah74] 'l‘hcrcforc any pmblcm
whrch isin P can be solvcd ina polynomial number of stcps byqan algorithm ina htgh lcvcl programming
language l‘he numbcr of steps cxecuted by an algonthm is rcferred to ‘as thc ume taken by the
algorithm. We wuuld lllsc all the problcms we nccd to solve to bc in P -

The question of whethcr P NP is one of thc major open queeuorls in complcxlty theory lt is q
believed that P # NP. Problems in NP have been found Whuamﬁ Pimplics NP = P.‘ These:
problems are called NP- camplm problcms. A problcm is NP-hard if for each pmblcm in NP, there isa
polynomral P and a transﬁmmuon computable by a dctemunisuc Tunna machmc in a polynomnal
number of steps whrch transfoms an instance of the problem in NP wnh an mput of length n to an/’
mstancc of the NP-hard problem wrth an mput of length 1’(n) An NP-complete pmblem rs one wlnch s
NP-hard and is in NP There are no known determmrsuc alsonthms for NP-cmrr;Ie(e problems wlnch
take a number of stcps polynomral in the length of the mpul. Tbe fact lhatsuch wcll s(udled problems as
mteger programmmg and the travelling salesman problcm are NP-cmnplete [Gar79] strongly suggesls
that NP = P, Thcrefore provmg a problemNP-complete is very suons evrdencc that any algomhm:'
wlnch solvcs thc problcm will be time consuming. R o |

The most common way to provc that a problem is NP—completc is to ﬁnd a reducuon from a"
Imown NP-complctc problcm to the new problcm whlch can be executcd in dctcrrmmstlc polynomml |
time. 'Then, since thc cmnposmon of polynomrals is still a polynormal all pmblems ln NP can be reduoed.

through the known NP-completc problcm to lhc new pmblmn ln determinmic polynomral time
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When a problem has been praven NP-complete; the usual course is to try to find an algorithm
which runs in polynomial time and fimis a mmm time. - When' the problem proven’
NP-complete is the pamneterized vorsion of an- optimization problem, an algarithm which can find
solutions close to optimal, if not optimal is desired. Heuristics are developed which can ‘direct the
algorithm towards a aaodsaluﬂm. ' When' the ‘algorithm is-scarching through a large {exponential)
number. of possible sohutions, Micsr remove large nunsbers of possibie solutions based on the
likelihood that none will beoptimabsolutions.

Very often a heuristic algurithm is tested and validatc(i by empirical evidence. AH of the
algorithms discussed in Chapter 2 are heuristic algorithms fbr placement and rounng All have been
judged by comparing the solutions they produce to mmually pmduced solutions for the same problems
These algorithms.are also compared te-each other to judge their worth. Incontrast, in this thesis, heuristic
algorithms for optimization problems are judaed, by the relationship of the solutions they ‘produce to
optimal solutions. Consider a layout problem in whnch mmimum area is dcsnred Let area (C) be the
" area of the layout for circuit C found by a parﬁcular a!aorithm Let area (C) be the minimum area
layoutof C. Then dcﬂne the wors! case perﬁmnance of the algonthm, denoted wcm(n) as the maximum
over all circuits of size n of area‘h(C)/am ©). Deﬁne the average case performance of the algomhm,
avgw(n) as the averase over all circuits of size n of area (C)/area (C) where the average Is taken with
respect to a predetermined distribution of circuits. The size of acireuit-can be defined In:various ways
depending on the circuit model. e. g. the number of' tenmnals, or thc sum of the number of componentsr
and the number of nets. The size should be deﬂned 0 that the lcngth of the input specifying the circuit
to the algorithm is polynomial in the size.

Averagc case pcrﬁmnenee is more likely to correspond to the observed performance of an
algorithm, especially if the average is taken over "realistic™ circuits. -H;OWevef; it is eﬁen very difficult to

analyze. In this disscrtation, the analysis is limited to worst case performance. If a lower bound on
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arca . and. an-upper boynd on area can -be derived, .an uppee bound: on " . can. be €oncluded.
| Ideally, a bound of 1-+¢ for small ¢ is desirad. hau!ay we are happy with agy constant bound.
However, as will be scen in Section 4.4, cm.vmﬁbmdum:w..mm;by SOME common
algorithms. |

In the next sction, we will review NP-complesepcss sesults for. peoblcms related (o layout. In
Section 4.3, we will ‘consider two. subproblems, of chanoel souting  and: shaw that they. are both
NP-complete. In Section 4.4 we will analyze a heuristic w foc. one- of ﬂm;pmbiems shown

NP-compictc in Section 4,3,
42 Placement and Routing: NP-complete Forpulations

In this section we consider the camplexity of the problems resulting: from. the decompesition of
the layout problem into placement and rooting.

ill“epmntmodel somekmlmlts.
First consider the ptxcmem pmblem used ﬁx pnnwd cm:unt boards and standand cells. Recall
Sty e ey

that components are modclcd as pomts and lnta! wire lem; is ﬂac qua:mty m be mlmrmzed by me

Iayou(. The quadnmc assngnmem probiem is one fommlaﬁan ofphcm

: (7' . .-';;‘ B NS Fab L) -‘J} e
»Gwen Lmaummlmmxﬂlmanddqu{ Sﬁ‘h'(m} bctwecnloquom

componentslmroughnandcmnecwnm {cu!ISiJSn}mm x

e Doew Bandienon Buodeag

Find: Aoneto—oncmappma.p.ofcomponemsmbcatms%@m
COS'I‘(p) sum over ﬂt; from lton of(c F(*

ismmmized.
Sahm and Gomalcs [Sah76] prove that mc parametenmd quadranc mignmem problzm is

e 5‘;'}‘
‘‘‘‘‘‘

NP—complctc ln fact, thcy prove. that unless NP =P, them & no mproxmmm algomhm for quadmic

-
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assignment for which there isan ¢ > 0-such that for allinstances of the problem:

| COBT, JCOBT,) S 1+ 8.
The proof does-rely on instances of the probliony with comection ‘matrix values ¢, greater that en.
Consider only instances of the problom for mmcﬁmw to a boundcd range of values. The
proof that the exisience of an approcimation algorithm for which die‘raio'of COSTp,. ) to COST(p,,) .
is 1o more than 1 4 ¢ implics NP = P o longor holds W @it'd - However, the restricted problem i
NP-complete as long as the ¢, are aﬁwcd to take on the valuc O or 1.

The quadratic assignment problem s 4 formulation of the placement problem in which all
point-tp-point comnections are spevified. - The witcuwwm nuinber of eonnections between
components i and j. The distance d,,"is the cstimate of the"wire erigth néeded: to-connect terminals at
locations & Mh 1fa placement problem: formulatioich witléh an estiiate of the fength of wire needed
to connect whole nets is used, the quadratic assignment problem i ns?a specnal case m whwh all nets are of
size two [SahBOL 'Iherefore the qmdrauc assngnment pmblcm reduces to thls formulation of the
placement problem It follows that dm Formu!atxon of thc placement pmblem in NP-completc

Let us now turn to mutmg. Ifa Stemer tree intm:oamctma patlem is dcs:red for cach net. theﬁ

e A

even ﬁndmg the connection paths t‘m one net is NPfomp!ete Formaﬂy

The Steiner Tree Problem
Given: A set of points, P, in the planc with integer cogrdinates.

Find: A set of integer points, Y, sach that the minimum fengtyspanning tree of PUY' is minimal
over all sets of integer points containing P. One of twa measures of distance may beused: . .
(i) The discretized Fuclsdcan length r ((Jsl xz)2+(y1-y )2) 1 where (x 1'y1) and (xz,yz) are the
points. The pmblcm is then me l)iscretiwd Euclidean Steiner Trec Problem

.. (i) The rectilincar wetric: ix i+ byyysl, giving the Reetilincar Steirier Tree Problem,

Far cither metric, the Steiner tree problem is NP-complete. If the standard Euclidean metric is



used, the problem is NP-hard, butis not known fobein NP G99}

The minimum spanning tree using cither mmm in polynomial time [Ah74]. For’
the rectilingar metric, the length of the SNAIW SDARNRG.1Toe is ot most 3/2 the Jengsb of & minisnal
Steiner tree fliw78) Thercfore, any algorithm to-find. minimues, length-spanning troes is a heuristic
algorithm for findiag minimum longth Stciner, treos with 2 worst case. ralo of longili,y, oves longth ., of
M2 A discussion of heuristic algorithms Jor the Rectlincar Sicines Trse. Problom; can be-found in

The abave two problems apply W the modc) of layout in which componests arc points and
minimum length. wiring is desire,. mmm toithis. masiol ase-also NP-complete, Ting et al.
[1i79] show that a via assignmant problem eacountered in their approach so.tousing is NP-camplets. A
summary of a nusmber of Naww.wmmmmummmmmmm |

lzzmmctanglcaede! ammlt.

The above NP-complete rcsults do not dxxectly apply to the model of layout in wh:ch

it B { iy

componcnts are rectanglcs and minimum area is dwrcd. We shall now pmve that even \vhen no

Py

mterconnecuons are ncedcd the placement of rectangular componcnts to mxmrmzc area is NP-cumplete.

Since this is a special case of the layout problem when iniemonnecuons are reqmred, the more general
layout problcm is NP-complete. The proof we present beléw docs requise. Some. exisk; assuBiptions in
addition to those given in the description- 6f -our model i Chdpter3.  All’ componciits and the
circumscribing rectangle mwmmmmmwmsm of their: s;deus in the
direction’ Gfonc of two' perpcﬁdimhr axes. This does parm redtictions-on ‘thie plicements

but is consistent with the conccpt of “ﬁonmnta!" abd vcmcal" bemg specml dnrmtpm wh:ch wires
follow. We also restrict all points and dimensions ta be.integer valusd 4o:ihat the problem: has discrete

solutions.
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Problem P1: Discrote lapout with 20 latercommoctions
Given: A set of n rectangles and an integer, A. For1€in; each rectangle r; has dimensions h,
and w; which are positive integers.

Question: Is there 4 placement of the rectangles o the plane with a cartesian coordinate system -

imposed so that
(i) Fach boundary is pafallel to one of the coordinate system axes;

(i) Coeners of the rectangles He ondntoger poidts in‘the plane;
(iii)) No twg rectangles overhp

(iv) I‘hc boundanes of any two rectangles are separated by at lcast a unit dtstance

boundarics paraliel to the axes, and is:of area at-most A. The boundary of the
circumscribing rectangle is allows (0 ontain boundaries of placed restangles.

Lemma 4.1: Problem P1 -~ discrete layout with no intercanméctions - is NP-complete.

Proof: Consider only piacements for whtch the lowest leﬁmmt corner of any rectangle ts at (0, 0) All

othcr placements are just translatioas of thesc The coordiaates of the lower leﬁ corner of each rectangle

and the orientation of the rectan;le i.e. whether the side of lcngth h is in the x dlrectlon or the y
direction, determme its position. Since the coordmates of each lower left corner can only take on intcger
Avalues betwcen 0 and A- h -1, there are at most A2 choices for each pomt. A nondeterministic Turing
machme can guess a possxble placcment and write it down Given a placcment, conditions (i) through (v)

can be chccked deterministically in polynomial time Thts shom that Pl is in NP

The proof that Pl is NP-hard is accompltshcd by mducmg thc Bm Packing Problem to it. Sinoe

the Bin Packing Problem is NP—complete [Gar79}, this proves that P1 is NP—hard.

The Bin Packing Problem:
Given: A setof n items, each of size c; a positive mteser; also, positive integers B and C, the
number of bins and bin capactty, respecttvely

DY R - e R
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Question: hmmmmgmatdm&huﬁ&tﬁmhtlﬁkﬁﬂwﬂdqm
,,aﬂmmmsebukmmmm

Given any instance of the Rin Packing Problem, we willconstmtaammace of P as foflows.
There wilt de n+1 mttanglcs. One, called R, waeafnimhbyw wherew (ZB+IX31md
h =2Bw+1. mmmmmmwmmmwm Rectang!er wt}lbave :
dimensions b, = (2B+1)c-}.and w, = L. The hound oa srea.wilt be A =wi+2Bw. Notc that the
mmorcwmpmmuwmnpxnnghommnmn+mcumm:ﬁmmofmew
andAcanbemkuh&dmkmgwmeﬂmpolymmdﬁmeuMlem |

wemmmmmmmmmfxummmandMy if there
Emmgmmtofﬁ:emm’ﬁ'bhsﬁmw:ﬁptﬁyfmmb& ‘Given a bin packing,
Figure 4.1 illustrates a satisfactory placement. Wcmm uwmm&amnm)

correspondsmalegalbmpachag Figurenwiﬂilkmue \Vxﬁmuthsnﬁgenclﬂny.lcimcddeof .o

recmgkkofd;mmwnhbcmmeydmcum Lﬁ"kﬁ"&;mmmmwcrnmnbershmex

dnrectronand nght demxemwardshfghernmnbers, k:t"above denotetmvar&hzﬁ\ernambersmthe '

,yd:recnonand"beiow dmotemardslowernmnbem Atmypmm.thenmkhofthelayoutlnthex

e .y»

dxrecttomsstncﬂyicssmmw-l»l lfnot,tncnmz h(w-i-l)— hw+23\v+l)A. Thereforezﬂ '

recunglcs, mustheahovcorbetowk Nonecaaexmdaunabeyoadmelemhsdesofk sothat

RCER L T "x‘ b -,:; sirl

foreachrectangle,mehnemhe ydmcmnm&mects&erectaagﬁemdﬁ Norecungle t isonemed

sothatnsbngszdelsmmcyduectm Odwmﬁe.ﬁmdimemnofﬂiemmmnbinammmmey

o fosginms . mo L

dzrechonwwidbeatleasth+(28+lkil+l uhmmeaﬁdedlmunaforﬂ\csepammnbemeen

arca 2> wih+(2B+1)x) 2 wh+2B+1)> A

Wemmmaaﬁmmcs,f moﬁenm&w&amﬁrmﬁdummmexd&m

,'f*: 3«
Fa s

Anyplacemntmnbem)dtﬁedshglalywmmmmmemmmamer fomrowsabovemd
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pii} C-J -
I L X B J
- " el row coiitains rectangles corresponding to
items in one bin. Adjacent rectangles are scparated
* 7 ‘by-ose wait - Singe the ¢; of the bin sum (o at most
t | o o 'D - ChMolmemi:atmost |
‘ _ (R((2B+ l)c, 1» +(# ofrec!ansles in the row -1)
| n=28w=1 < @B+1)C-1
“area = wh+2B) = A
w=(2B+1)C-1
Fiuntl:Anckiudnllm

[ |

| T

&

i

) . R | |
rows corresponding | [Il D] |

. tobiss ~ —— I
|

if there is anything here,

| thearea is to large; | . R

50 all r; within broken lines.

rectangle the long way is too tall
resulting arca i; too large

d\ersmxbeqwlthcwpaadumcbom,_
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below R. (Any r, and g less than two units above or belovr%ms!%mtedﬁﬁmw&mher&yat
least one unit to the left and right. These can bcshmedmmfm thc ﬁmréws above andbelow R The
next rows ar¢ formed analogously abovg the upper boandnryofthe row above R and be!ow the lower
‘boundary-of the row below R. qu‘ed;l dhsmte&) ach row of rcctangles can be cons:dercd the
packmg of a bm If thc rows correspond to a lcgal bm packing, we are done. Suppose there are K rows.
Then the dnmcnsmn of the clrcumscnbmg W in thc y dzrecﬂon must bc h+2K, smce tbere must be
a unit space scparating rows ﬁ'em-each other and R». If l( > B, then arca > wfh'+ 28) = A, contradicting
(v). Therefore, at most B bins arc used. It remains for us to slmw.that !he sum of sizes ¢ of the items in

any bin is at most C. Fach item cosrespoads to a rectangle with h, = (2B+ i)ci-l.

X ((2B+1)c,-1) + the number of rectangles in the row - 1

rectangles in row : ‘ ‘
< the width of a row of rectangles< w+1 = C(2B+-1)
giving (2B+1)(sum of ¢, for r, in row) -1¢ é(ZB+ 1)
Therefore, -~ (sumofc, forrin row) <C+ 1/Q2B+1):

Since all ¢, and Care posmvc integers, the above nmplia

(sum ofc; inone bin und«eemapondmg bmpackmg) 5 C ﬂdesind R |
Co;ollary 4.1: The modification of‘?lfﬁremovi-ng the minimu_ni spacing rgguif‘em'ent i NP-oomplete

Praof: The same proofis used. Rectanglc R has dimenslomh Bw +‘1 and w = C(B+1). Faeach ir
has dimensions h, = c(B+1)and w, w. = 1. The NP-hardness pan ofmmpmofdoes not rcqulrc that any
of the dimensions be integers or that the rectangtcs bc placed so that theli corners are on mtcgc: pomts of

the coordinate system. TR . o (8]

Lemma 4.1 is prescnted with spacing required between rectangles to‘closcly mirror the pi'oblem

in circuit layout. The dimension of each componentcmi B¢ increased by one: unit' to adeotmt for the -




eciangle to be one unit too large in each
dimension. When spacing is not explicitly required, the: problom remains NP-complote even if the aspeet
ratio of the circumscribing rectangle is bounded.

Probiem P1-ai Layout with haunded aspect ration ond ve intercommections

Given: A set of n rectan;lcs and a posi(ive number A For 1515:1, each rcctanglc fp hm
damcnsuonsh and wi

Question: Is there a placement of the rectangics on the planc with a cartesian coprdinjate system
impused so that: ’ V
(i) Each boundary is paraliel to one of the coordinate system axes;

(ii) No two recmndes overlap;
(i) Thcre isa rectangle in me_ m which circumscribes thc placed rectangles, has

boundaries pamlkl to the nea. k e?ma ut lmnt A and has aspect ratio (long
* side)/(short widie} at Tost , 'Where a’ls 4 ratihilt iumber not less than one. The
boundary,of the cirvumacribing. fossangle i:allowod 1o contain boundaries of placed

Lemma 4.2: Problem F2-a is NP-hard for any a a ratioasl sumber a0t less than one.

Pfool" ﬁe ﬁroof is a TCd;ICﬁOH from biﬁ packmg Jshjﬁilar tothcproof of Lemma 4>1 Givcﬁ c-} for
I<i<n, C, and B, construct R with w = aC(B+1'j"'and h=w/a-B, Each r, is of dlmensnom
h; = ac(B+1) and w; = 1. The bound on arca s A = wzla = ¢c2(3+1)2 The aspect ratio o implies
that the largcr side of the dcsared clrcumscribing rcctanglc is at most (aA) " =W, Therefom, assuming R
isonentedasm thcproofoflxmmaﬂ noneofthe ricanhetoﬂscleﬁornghtofll Thercstofthe’

proofnsana!ogoustothatforlcmma“andmleﬁ mmmd‘ R T T R ‘ D‘

Corollary 4.2: If the bound on aspect ratio, a, is allowed: 38 an iapus for problom P2-a, the problem

resnaing NP-hard,
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Preof: The construction in the proof of Lemmia 4.2 can be complted in time polynomial in the length of

the represcntation of a; thercfore, @ can be an inpat. SN o : -0

Lemmas 4.1 and 4.2 prove that the layout prob!em we are studylm is NP-complete even in the

ufcemtmnems, s the routms

degcenerate case when only pﬁeemem i required. Gilven ‘o
problcm NP-complete" Wc do not have a proof of a gcneral NP—cmnplcteness vcsu!t for routing.

However, in the next scction, we will pment two NP—compictencss results fur subproblcms encountered

in channel routmg.
43 NP-completencss in Channcl Routing

In this scctmn we wnll provc that two pmblems encoumercd m a channel routmg approach are
NP-complcte Recall that in the channel muungappmagh‘mg rwﬁnutcazs@udcd into horizontal and
vertical slreets. Termmalsﬁcalongthemdcsofﬁem mm&mﬁewofa sctofparallel
channels in the dircction of the street. Each channel is wide enough to account for the width of a wire
and the required separation between wm& First the interconnection pahéfa ofﬁathsthfonﬂmﬂn streets
is choscn (strcct routmg) Thcn, wathm cach street, the actual mutes of thc pa!h scgments aasigucd 0 ﬂxe
street - usmg the channel - is dctcrmmcd (cham:el mgnmcm) 'Ihc goal ns to minimize the overall

layout area. (See Flgurc 43 )

P 4":'

'lhesuectmutmgpmblemcanberepmsentcdasagraphpmblem 'Ihcrewnllbeanodcmthc

Hlarid i 3

graph for cach posmon along a strect at Wthh them ns arc tcnmnals. (Two termmals dlrectly across from

!

each other on a street are rcpresenu:d by onc node) 'Ihem wm also be anode in the graph foreach

SRR I I R EETADE T PO 1Y

intersection of streets. Each cdge of the graph rcpmsents a porﬁon of a street bctwccn t\vo positions at

which there are térrhinals of intersoctions: For daifr fret; we wish to finkda #tibgraph Which is a tree whose’

nodes consist of the nodes representing terminals of the net and nodes representing strect iterscetions.

This is a Steiner tree problem on the graph. The intersection nodes in the graph are analogous to the



Fig_un 4.3: Streets and channels in the channe! routing appreach.
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added nodes in the planc for a Rectilinear or Euclidcan Stciner tree problem. However, we do not wish
to find a minimum length Steiner tree in the graph for cach net. Using a minimum length Steiner tree’
for cach net docs not necessarily yicld a minimum area layout. The cventual arca of a layout must be

cstimated when the Steiner tree for each net is being chosen.

Thck second phasc -- channel mgamenh dctcmuncs thc actual 1;r¢a ;)f thc rlayqut. We are
assuming'éach strect is of variable widtli. The numher of chaanels used in 2 stréct dircctly cah‘csponds to
the strect widih. Channel assignment dctcntgnes the actual paths in the planc réalizing the
interconnection pattern determined by strect routih;._ ‘The paths a'rc composed of horizontal and vertical
scgments. The path scgments within cach street are dctcm;acd.mdcpcmhnﬂ;mep& that ihe segments
for paths which change strects must be-conncctcd:‘at the intcrscctib_ns. The horimntal scﬁmcnts in a
horizontai sxrcct (and vertical scgmcuts in.a vertical strect) lic in channels. Each channel is the region
between two lines parallel to the strect dircction; the lings arc spaced so.that there i oom for one wire
width and requi?ed scparation between wires in any channel. Wire scgmcnts perpendicular to the strect

direction are used to connect scgmcms in ¢channels to each other aﬁd to ta'mhak.

4.3.1 Channel assignment within a street.

The first NP-complcteness.aesult which we present prqvcsf thit, with certain restrictions, the

routing of paths in a street so that the numbcr ofzhanmls.uaedu pized is NP-complete. The

restrictions are that (i) all terminals to be intercoanccted lie in the street (i.c. there are no street
intersections to worry about), and (ii) cach set of wires interconnecting onc net uses exactly one channel.

This problem is represented as follows.

Problem P3: Channel Assignmcnt within a Street
Given: A linc scgment, S, containing equally spaced points numbered 1 through h, and a sct of
terminals, T. The line scgment represents the street. Each terminal, ¢, is an ordered pair (i,b),

~ where i is a number between 1 and h indicating the position of the terminal along the strect and
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b is an element of {0.1} representing the side of the street on-which the terminal fies. For any
two terminals (i.b,) and (1b,) with b, = b, |i-jl 2 8, wheresisa positive integer chosen a priori.
Integer s..rpresents - the wiec:widily' flas equivid separation.  Aleo/givert are a coffection of n
disjoint sets of terminals, N, for 1<i<n, f6ts, and @ parmater k.

§OIRT T g TLNTOAT

Question: For each net, N, let a, be the posttien of the terminal of lowest positionin N, and z;

be the position of the terminal of higheat position. Lat a,a} denute the set of all pointson S

between 3 and 7, inclusive. Is therc a mappms. ch whlch asstgns each net a numbcr between 1
and k inclusive such that for any N and N lSlen -

(i) Ifterminal (x,0) € N, and termmal 1€ Nj and lx-st, then ch(Nchh(Nj)

(i) If k‘r’ ]N [a’,rjl is not cmpty, then ch(Nis # ch(N})

The mappmg. ch, repnesents the auignment of a w:re segment between points 8 and z to one of k
channcls fnr each net N Tbg jp,terval (ﬂi’lﬂ is canad Q,lc W qf aet, Mp S;:smems perpcndlcular to
the direction of the street are assumed to go from each termint iff the net' N, to the segment in the
channel. The restriction that these segmeats must not ovcrlap»is represented as coadition (i) above.
©If there are no terminals satsfyiog the hyposhesis of condition £, i¢. condition (i is the only
relevant condition, then Problem P3 s the mzemlm;gnmpmmm interval colaring problem is:
' givén a finite set of intervals on a line and ,a:pos,itigg integer, k. assign a color {positive integer) to cach
_ interyal s0 that no two overlapping intervals have the same color and pe more thank colors are used.
Nets define intervals, and “channel” is just another name for "c@ﬂ" The.ingerval goloring problem can
be solved by a polynomial time algorithm {Giav72] {Has71}. .The solution to this problem uses the same
number of channels as the maximum over all points on § of the number of pets whase interval-fa.z]
intersects the point. ‘Therefore even if we allow wirgs for ong pet to use more than one chaanel, the
solution found using one channel iwmimal. S
Without additional restrictions, the channel assignment. problem. stated as Problem P) is

NP-complete.
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Lemma 4.3: Problem P3 is NP-complete.
Prool: lameam@MTmmmmanMmenf
(i) and (ii) are satisficd. Therefore, d’kpmblmﬁkh!? : o

We will m~mm=mm1pm“mmml to
Problem P3 to pmvcthat?hsNFhmt m&mhfwmmngprobkm :ssimd&rtoﬂtemu:rval

cokmngproblcm exceptd\alams on acm:lc ramerm imerya!sonahneamusc F:gurc‘iﬁﬂum

| TkeCircularArcCohmgm - : : c L
Given: Aﬁmtesctofarcsofacmlemdaposaﬁvehmk. o

T L R

Qucstnon lsthemanmgnmemofcobtsnumbered}ﬁmxghktoﬂ;carcsmhﬂmtanytwo
ares which Ovetfap are assigned different colors? mwhkhﬁ:mton!y aimeircndpointsare

Rot considered as gveriapping.
-~ Sinee arcs which intersect at endpoints afe nbt overlapping, we may modify any set of arcs so

that no arcs ‘have endpoints:in conmon(seei"lsmt‘l#). “Thie- aitual Tength of thé arcs is irrefevant

* Therefore, for n acs, we-can umber the endpolns o 1 throigh 34 WS travering the circe i some

direction. Each arc will be represented as'an ordered 'palf, (i), lsting the' endpoints of the arc as

encountcred in the traversal of the circle. - 4
i with h ars and k colors, we will produce

“Given an instance of the circular arc coloring pro
an‘instance of the chaihncl assignment problcin with ¥ chahiels S (2 + 2K+ 1)) dets, whert ¢ is the
romber of arcs which contain 4 (2h,1). Bach nét will Sontain exatly tho ferminals. Tntuitively, we cut
the circké between'points 21 and 1 mdsﬁ‘&dnm&tsﬂ‘ﬁa 'ﬁfiﬂeﬁx&sh A+ intcrvals, since  arcs
o' the it fine will Becomie Ehc

have been cut in two. The n-2c intervals which de not hav

intervals of nets.* Consideritig onty these nets, any Tegal assigh mﬁmofchmeh will b 4 fegal assignment

of colors to the corresponding arcs and vice versa.

L LAt
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Figure 4.4 Circular Arc coloring,

colored with
twocoloes -
(Each color can

abovc the circle)

arcs (a).b)); (ag.by); (a3.b3):(ag,by) traversing clockwise. - . -

l-‘igure 4.5 Construction of 2 chaml assignmcnt probiem »

- gives:a circular are colaring problem.
Given:
. &—F represents (hcmtcrval ofanet.
cut Atrows point to the side of the strect containing
the terminal.
C arcs
Construct for kcolors: o Ay .
. : - |sm£0'|'~~ .
1 Né; for 1 orc . 7 No, j
- - : ‘ 3 '
\nhvva\§ [ N .. L‘1 A
for arcs ' ’ ~ e
N (&)m) Coialova :

C\u\*\o{\q\ Q«s . ’ (Jsa\\m\
‘ | 4-&9 - 3 - orcs  N{; 1sisc
) g . e k-c
‘i.‘ [l r
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There are 2c intervals with endpoints on the cut line -- two interval perarc It we can insure

that both intervals of each pair are asslgned the same channcl, then each: channel asstgnmem wnll'

correspond to an arc coloring. We do this by e:wnd:ﬂg thc mlcrvals bcwmi’ﬂre cut line and adding nets
which force the pa:rs to bc mgacd to the same chajmel Figure 4.5 gwes ﬂw constmcuon The fomlal
definition is gwen below. 'Ihe pomts on which termina}s tic will be numbered fmm -c(k-(c*l)/2)+l to
2n+c(k-(c-1)/2) rathcr than from 1 to 2n +c(2k-c+1). -

For cach arc (a,z) which does not contain (2n,1), therc will be a net {(a,0)(z1)}. Order the arcs
which do contain (2n,1) by increasing starting pomt~ For the l“‘ such arc, there will be 2(k-|+ l) nets --
half have tcrminals within the negatively numbercd m mw have &mﬁnals widnn the pomcs

numbered above 2n. For arc (a, z), 1<7, <3, <2n, the i arc containing (2n,1), the nets are defined as

foltows. For 1<i<c, let- —— \ Do
i-1
sum(i) = % (k-j) = i (k-Y(i-1))
i=0
= -sul"n(c) + suni(i-l)

pt = 2n + sum(c) - surfii-)
Ng = (6 +10), ¢ D} and

N = {(pi +j,1), (p; +J+1-9)} for ISJSH
= {(a,1). 0.0} and | |

= OTOeHAD oKk
For each i beztween 1 and ¢ ;heapphcanon of coadsuon (@i) in thg,dcﬁmuan of problem P3
results in two chains of k-i inequalitics for the set:6€ nats con'cspondmg to thc i arc containing (2n,1) -
one chain of incqualities ch(Ni;)(ch(N'i i+ ) and one of inequalitics r:h(Ni':')«:h(N""ij + for

0<j<k-i-l. Thercfore, nets N 16 and Nl"(’,' must be assigned channel 1 if no more than k channcls are to
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be used. Nets Ng and N, 7 can be-assigned channel 1 or2 without violating condition (i), but their
intervals overlap those for nets Ny; and N, ¥, respeetively. ‘Therefore channel 2 s the only choice for
nets Nyg and N, . Proceeding in this way, we e thit ets N and N. T must be assigned channel i if
nomore thank chamncls arctobeused.

Given any channel Mgnmnt ﬁ)r mew:& set of nets, we color the arcs which do not
contain (Zn,l)}‘ by the same numbered color as:the conesponding channel. For the ™ arc which contains
(20.1), we use the number of the channol assigned 1 #ets N; and N,F. For any peir of arcs which
overlap, there is at least one coricsponding pair of etw:whasé intervals ovérfap. Thetefore, any legal
channcl assignment corresponds 1o & legal caleriig usitg the sme omber of colors aschannel.

. Given a coloring of the arcs using st most k colofs, we can assign the nicts to channels as foltows.
Permute the colors so that the #® arc containing ‘s (20,1) is assigied the #* color. - Assign nets N;; and
npj* to channet i+j, for 1<ic and 0<Cj<kl. The remaining niets drc assignéd the same numbered
channel as the color. of the corresponding ‘arc. Botween peints T and Zn, intervals overfap if and only if
their corresponding arcs overlap. '* Elsewhere, no' N, mnp;for Kp overlap except N*; and Np;
However, ch(N,y) =fi(~p+q,=.ch(?N’;f),:ﬂso no 'Ni; and Np;whi:h ‘overiap are assigned the same
channel. An analdgous argument Qlow that the Ni';' are properly assigned to channcls. Thercfore, for

*each coloring, there s a logal channel assignment using the satie number ofchannels sscolors. [
Since the construction uses only nets with two terminals, we have:

Corollary 4.3: Problem P3 restricted 1o nets containing cxactly iwo terminals is NP-complete.

4.3.2 Channel assignment with intersections,

The second problem which we prove NP-complete: deals strictly with: the ordering of paths in

intersections so that the resulting street widths minimize the area.” This problem is somewhat similar to
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the channel assignment problem in that if two paths are-approachisg an intcrsection from the same
direction in a street, and one path needs to go left at the intersection and:the other noeds togo right, then
they cannot share the same channel in the.new street unless.they.are in the propor order when they reach
the intersection. The problem will be modcled using a graph to represont the stroets. Subgcaphs which
are trees will be used to represent the interconnection pattesns resulting from street routing.

Let the strect graph, S, be some subset of a two dimessional grid graph. Fach. node in S is

labeled with integer cpordinates (p.g). Fach odge is either horizontak i, between nodes (p.q) and

(p+1.9), or vertical, i.e. bopween nodes (p.q) and (p.q+ 1), The:graph S s partitioned inso streets. Each
street is a path jn S Using only vertical or only. horizontal edges. - A horizontal sircet goes between nodes
(k) and (j.k) for some k and i(j; a vertical street goes between nodes (k,i) and (k,j) for some k and ij. A

node represents an intersectian of two or mare streeis, Am edge represents the portion of a stroet

between two intersections.  The interconnection pattern for cach act-is represcnted by a trec:in 8. -Each:
tree, T, will be called a net tree. We would, like 10 assign each occurrence of an edge in a net-tree o &
channel, Letchbea mammg from each occurrerice of an edge in a nettree (o a positive-integer.. The:

integer indicates the number of the chaancl containing that cdge in the street. to which the edge bolongs.:

We require:
(1) if edge ¢ of S is in distinct trees TgndiT,sMr&e eccurfence of e in. T, is
assigned to a different channel than the occurrence of ein T (No overlappmg wifu.)
(2) Ife; and ezamadjacentedgesm anettree'l‘ andclandezbelongtoonewcetin
S, then ch(e,) = chie,). (A conpection path cannet change cliannels within.a street.)

(3) Suppose horizontal edges ¢, = (p-1.9)(p.a) and ¢, = (p.a)(p+1.0), for some

p and q, belong to astreet, s. Furthermore, supposc ¢, .and 0, heloag to-distinct et trees T, and.

T,, respectively. Ifcife,) = chie,), then;
()¢, is not in T, and.e, is not in T,. (This follows from (1) and (2) above.)
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(ii) Suppose that vertical edges ((p,q)qu-bi)}aaé@;ml).(p,q» are in onc street; and each of
T, and T, contains at least one of the edges. Then ci(s,) < chix,), where x, represemts.any’
occurrence in T, of tither of the edges and x, represents %any occurfence in 'I‘2 of either of the
edges. This. conditwninsum tt;at the wire stmem repiescmed by 'herizontal edge
((p-1.)(p.q)) does not overlap the wire segment reprcscn?ed by horizontal‘ edge

((p.a)Mp+1.9).
(4) Analogous to (3) but fo vertca c0% (04 1)(p.a) 0d (Pa)pa+D)in T, and
T, respccuveiy If x, and x, are occurrcnces of honzontal edges ((p-1,9).(p,q)) and/or

(p.a)p+ l.q)) inT, and T,, respectively, then ¢h(x NN ch(xz)

We want to find an assignment of edges in trcec to channels so that the resulting overall area is
minimized. The assignment is called the intersection g@héz'a}sg@me;:i since the intersections induce
the constraints on the assignment of channels within cach street. Area will be measured as follows. For a
given channcl assignment, ch, let width(ch,q) be the sum over all vertical streets containing a node (i,q)
for some | of the number of channels used in the street; let height(ch,p) be the sum over all horizontal
streets containing a rode (pj) for same j, of the number of channels used in the street. Let width(ch) be
the maximum of wsdth(ch,q) over all mtegexs, q, appeanng as the secoad coordimte of some node in the
strcet graph. S. Ifﬂ\emam then wmth(ch) isonc I.zthcasm(@h)beme mammumof
height(ch,p):over an integers p whnch appear as the first coordinate of séme noie h S: Ifthe maxmlum is
zero, then he:ght(cﬁ) is'one. Then, ama(ch) is defined as the product ofmah(afi and heigbt(ch).

Using the representation presentcd above, we have the k)llowut problem, lﬂugtmwd‘ in
Figureds. |

Problem P4: The Intersection Channcl Assignment Problem

Given: A street graph, S, partitioned into streets; a collection of net trees, Ti; and a positive
integer, A. ’
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Question: 1g there an assignment, ch, of the oceurrenses of edges in. net trees.to channels in
streets which satisfies conditions (1) through (4) above such that arca(ch) < A.

Lenmuna 4.4: The intersection channe_l,mwpth NP-complete.

Proof: Conditions (1) thmugh “@) and the area of an amtsnment can be checked by a nondctenmmsm
Turmg machme in polynomml time. Therefore, the pmblem is in NP o

We show that the problem in NP-hard by reducmg S-wUsﬁabxlity [Gar79) to it:

x,r,*,‘ NS

, leen A boolean expressmn cnmposed of the comuncnon of k clauses, < for 1515]& Each
; Vclause is the dmjuncuon of three dnstmct mera!kr where a htefal 1s a boolean vanable or its
complement, i.e. ¢, = (y;Vy,,Vy;;), where yg is x or = for some variable'k.

{ o4O

: ;Quesuon Is there én bassignment of iruth values to tbe b@lean van‘a‘blcs such that the
" expression s satisfied? 0 7 o oinoLtE e
| Given an instance of the 3 samﬁablhty problem \;'lth k clauses an& v lvanables, we will construct
an instance of the intersection channel asmgnment problem with 2k +1 honzontal streets, 2v+1 vertical
streetsand A = 2vk(3v+3). Let S be the (2v+1) by:(2k+:1) grid graph with sodes pumbered from (0.0)
~ through (2v,2k). Each path from (0.i) to (2v,i) is a horizontal street, for-any i betwecn 0 and 2k; each path
from (i,0) to (i,2k) is a vertical strect, for any i between 0 and 2v. Cértain streets are asgociated with the
clauscs and variables of the boolean expregsioa as follows:
(a). With each: clause ¢, LISk, associato the horizoatal strect from (92i-1) to (2v.2i-1) and
name it C.. The remaining horizontal streets are ugosmerd.
(b) For each variable x,, 15 v, associate:the. yettical strect from (j-1,0)to (-1,2k), named X,
and the vertical strect from (2v-j+1,0) to2v-j+ 1,2k), named Xy, *

() The one remaining vestical stroet, that from v.0) 0 (v.2K), is named street M.




AR AR e e PR AT R e e S R e R T et R I R A

We construct two net-trees for each vaﬁab!e For variable xi, the first net tree, ’l’j, contains the
following edges: Y R

(1) In street C,, for each i from 1 to'k: all edges on the path from (-1,2i1) w
(2v-j+1,2i-1);

(2) In street X, theedge fmm 0 lﬂ)tooll)and forall cven ibctween l and k-l,
inclusive, the two cdges on (he pa(h fmm G- 121-1) to 0 12i+l) Mso 1fk i even, the edge
from (j-1,2k-1) to 0-1.21).

(3) In strect X,.: for all odd i between 1 and k-1 inclusive, the tw cdgds on the path
from Qv +1,261) to @vi+1, 2141 Ao, ik s 0dd, the edaebetween (v +1 21) and

(4) In street M: if vanable xj appears m clausc g umomp&cmemed then lf i is even the
edge between (v, 21-1) and (v,2i); if i is-odd, the edie between (v.2i-2)-and (v.2i-1). lfx appm :
inc complememed, then |fuscvcn meedxebctwecn(vﬂrZ)&nd(v,Zrl) 1fi sodd, theedue

»between (v,2i-1) and (v 21)

mmondnetmﬁ)rvaﬁaﬁlex T, contains the following cdges’

o
t)in mci.ﬁ)ruehi froii -1 to k: all edges on-the path- from (-1.2-1)

@vi+1201); |
(2) In street X;: for all odd | betwen: 1 and4C1 inchive; e 6w &8s on the path

~from -1, 2110 (-1, 2+ 1): Also; ik isotd; the edgo btween G-L -1y and G-, 2H),
(3) In strect X, the odigt froft (2v--+1.8Y8 v K1) and For it evén i between 1

and k-1 inclusive, the medsawwwﬁmﬂ*i%Im W+ 1.2141)0 Ao, if k is

even, the odge from (2vj#+ 12%-1) 0@+ LAY

(®) n-strdot M- if vasiable % appoars in clsusd e d, then if i is odd, the

edge between (v,2i-1) and (v,2i); if i is even, the edge between (v,2i-2) and (v,2i-1). If X, appears
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in c; complemented, then if i is odd, the edge betweea (v.2i-2) ang (v,2i-1).if i is even, the edge

between (v,2i-1) and (v,2i).

The following obscrvations are useful. For any coerdinatc p; call-an cdge fram (p2i-1) to
(p.2i-2) an edge down from street C,; call an cdge from (p.2i1) to (p,2i) an edge up from C,. Each net tree
Tj contains a path which begingwith an edge mmt xt,ﬂowufrmn@ueet Cy Thc pajm gocs through C;
to street X,o. ‘ L
through the horizontal streets mmed wnhmmchm usms sttw. X. togo from street C; to street

goes up from C, to strect C,, axid thrw;h G, sméct Xj. The padi continucs snaking

C., whcn iis cven, and usm; stmt )(jo to go frum q i+1 whcn i is odd. Each net tree Tp also
contains a path which snakes thmqgh the C, bm in, the opposue dilgcnon it begins with an edge in Xp
down from C,; umswectx tochaateﬁomc mC;“H w&eniiseven andusesstreetx to change
when i is: odd_ For any net tree T or T tf i app;; uncompleimnted in < thd edge in street M

| mterscctmg street C, n in the same direction ﬁom C m the edge of the treé in street X if x; appears
complemeénted, the edge in street M is in the sagledmcgon from street C as the_, cdxe:of the tree in street
X (oppokite to that in street X,). Figure 47 gi;es m cximpk of ﬂ\egconsmxgﬁon.

For each i bétween 1 and k, each netiucé confains the edjés between horizontal positions v-1
and v+1 in street C,. Therefore, there mustbeachmne}meachci foreacl; net tree, gmngahelght of
2vk for any channel asslgnment. Any channel assagnment which gives area at most 2vk(3v+ 3) must give
width at most 3v+3. | 5 |

At each ilterscc"tidh of street M \yim‘ a street C there are sa; net trees which comam edges of M
incident on the node for the irilgmection -- onc bair pf nct trecs, 'I‘j aﬁd for each variable X; appearing
in C; (We assurﬁ; that each vanable occurs af mdst oace in a clausc. Nog, that/ x_\(—'xVy is always
satisfied.) Half of the cdges are up from street C, and half arc dowgn. Thcreforc at lcast three channels

arc rcquircd for M. Threc channels will be used in M ¢xactly when the boolean expression of interest is

satisfiable,
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"Figure 4.7 Construction of the proof of Lemnia 44.
Espression: (x; V x5 V —x3) & (% V 13 Vx3)
o
Truth mxlf = X9 = X3 = true.

- strest _T‘, _T ___Tg_____ 15;__ I&Tx o

e
&

street
C

2 ‘. 1 ti . P ."*J"L: EE: TN 0

street __ | _. ,_____ byt — o

‘ VBtreet ' ’ Lo SRS FEER D RNNAtSE JET
T
cl » & T

L:
Rk
B
-
- i’ e
.

-
17

X




1'the width it roquired 10 b at most v -+3;-and sircet M contributes at loast threc, thén the
width contributed colloctively by strects X, and X, for 1K<y, miust be’at most 3v. Consider the
intersections of streets X; m:x, with ‘strest C,, Tor iaﬂé The cdge from (-12-2) to (-12i}) in X;
belongs to T;, and the odge mm,zi-ia to G<1.21) iﬁ?%j?bébﬁiiw?ﬁ.—-" Therefore, if only one channel is
used in X, the channel in C, contsiniag the cdges of ¥, mint have 3 lower number than the channel in C;
containing the edges of Ty @by condition @ giveaffari%ﬁe}sﬁmgm)f “However, in Xﬁ. the edge
from (2v-j+ 1,26-2) w-(Qv-j+ 1».mym to T, antfthe cdge fom v+ Y:2¥1) to (2] 4 1,2i) belongs
to T, If only one channet s ol o Xy, the ehanmrel i {:icmuinﬁw cdges of T, must have the lower
number. Therefore, only one of Xj and on can coqtain exactly one éhmﬁel:*’lﬂ is'even, the ¢dges which
belong to T; and T, are just intérchanged ﬁomﬁutm' we reach’ the s&ne conclusion. Therefore,
each pair of sireets, X, and X, contribute ut feast' threb m&mm width. “However, if collectively at
most 3v channcls are contributed by sticets X and X Pj<v, at most three channels must be used by
each pair: Note that 'l‘J an&‘Tjo "fit.together” so that-theéy can always share onc channel in Xj or one
channel in X In the other of X, and X, edges of T, are msigned 10 one channel and edges of Ty are
assigned (0 a different chanmel. 'We will associate achannél assignmient in which X; has one channet with
a value assignment in which x; has value "truc”; we will afscctate a channél assignment in which X has
one channet-with a vilue assignment of “false” for X
| Given an assignment of tmth valiles to- the variables X, such: that the boolean expression is
satisfied, the corresponding channet assignment giving width-3v-+3 is as foltows. For each j between 1
and v, if x; is true, one channel is used in X;; if x, is falae; one channct is used-in X, ‘Street M contains
three channels. We first determine what tréés wilh share ehmmels at-each intersection of M and some C,.
Note that only adjacent cdges in a tree are roquired to ise the saie channcl: odges of a trée which are in
 the same street but not part of the same path in the street are xim?requirédfm use the same channcl. Let X

be a variable whose occurrence in ¢, 8 true under the given assignmeit of truth values. The edges bf"‘!‘j




and Ty in M at C; can share a chansel. This follows from the fact that i€ x; is uncomplemented in ¢, the
edges arc.in the same direction as those in X,, and the odges in X; sharc 3 chasnel, if ; is complemented,
the edges-are in the same direction s these in X,,, WMMQX“M;BM However, other
~ pairs-of edges in M- at C; will not be able jo share a chasne] if the comesponding litcral in ¢ is - false.
Thercfore, ket the edge for xinM down from. G, share with the cdge.up- fiom C; far a second variable
inc,. Let the edge down fot; X share with the edge up-for. the Mfm kg Finally, the edge-down
for x, shares with the cdge up-for.x. The new constiaintss - ssignment of clianncls it C, induced.by |
this sharing are consistent wmmmmmmammﬁq with: x,,x x ,
Xip Xopr and X o (Sce Figure4 ).
mm:wmmmms%mgmmmm.nm met:tree. Thesefure,
the only condition relevant at the intersections of M. mwm»@mm in & netrce which
gocs through an intersection casnot change chasnelx. There will be a path in.a net trec through suchan -
interscction if the same literal appears in clauses ¢, and , , ;. causing an cdge;up from C, and down from
€,y in one of T, and Ty The edges arc. adjacent a (%21 The apsignment 4o chanscis o Mican b
: mMmammm
each edge in a net tree incideat on-the intrsootien. o4 differpnt chanas) wong chassis 1 through 3.
M cdges are edges down from street C,. AtC,, mmmmg hoen-assigned; assign the edgos -
up 50 they share wih the edges down s previously detesmiand,Now: consider the:intersectias of M with
the sront berwecn C, and . The chanacis.for any (6, paihe- e Cy 4o Cy have becn. detopined.at.
Cy; the remaining edges dowa from. G can be assigacd asbisrarily, 1u:this way, odges siown; from sach Gy
can be assigned channcls at the iaterscction of M, with,the hacizontal stoest befors C; 90 shat pache do ot
change channls. Edges up arc assigned at e, iakyacotionof M. with €, 40 that chanacis are shared
properly. Thus, if there is any assignmeat of beelcen vmﬂq%u%bmﬂm there is. |
a channcl assignment, ch, with widkbich) = 3v-+3 and areaich). = 2vk(V+3) S A a¢ desired.

determincd as follows. At the intersection of M. ith,
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Figure 4.8 Compatibility of the constraints at the intersection.of C; with M and wi
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U —-——"V indicatcs the chame! in C containing edscs of net tree U must havc alower numbcr
thapthatcontaining:edges of netee V.

—€—¥— indicates that the arder.could be either way,

Fer any choice of direction fot the two —*'—'T— edges, mo cycle iscreated. Therefore the
constraints are consistent.

up tcprescnts the trec com;nmg thc edse up
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Given a channel assignment with area(ch)' < A, we must show liow o construct-a boolean

assignment which satisfies the expression. ‘We have shown that any such chanite] assignment induces a’

- truth assignment by choosing X true if X; contains only:ong.channcl and x, false.if ontontmns only one
“channel. It remains to show that this assignment sa‘tisﬁes%the exgrmom We know that exactly three

~ channels are used in M. At each intersection.of M with some G edges from two different net trces must
K Tt H . ""'Eg s .

share cach channel. ‘Among thc trees containing‘edges in Pd at the mtetsecu;n with C; consider the tree
whose cdges in C, are in the lom numbered channcl m trec must contain an cdge in M down from
C,. Suppose the treclsforvariablex 'l‘hccham\clsof'?mmcdwcdgmmT andTparemthe
proper order for the edges of T, and T medxareachanmbdf:,wumpbmmwdm
thentheedgesm MatC, forTjandeoarem d\esalneduecumnsmoumx atC ltmustbeweet Xj
which contains only one channel. Therefore X is tme and ¢ :s sausﬁed by hteral X lf X appean
oomplemented in ¢;, then the edges in M at C for 'l and'l'p aram&em dmeg;ma&ﬁmehxy It-
must be street on which contains only one channel. The vahe:of*x;is‘&li:; and ¢, is satisfied by fiteral
“x,. A literal satisfying each clause canbe ideintified by looking af the interscction 0f M with, the street

for the clause. Therefore, there is an assignment of truth values to the variables such that the boolean

. expression is satisfied. ‘ a

In the construction used to prove Lemma 4.4, height(ch) is the same for any channel assignment.

Therefore, we conclude:

Corollary 4.4: The modificd Intersection Channel Assignmeht Problem in which one desires a channel
assignment, ch, such that width(ch) < D for some given integer, D, (or such that height(ch) < D) is

NP-complete.

Lemma 4.4 shows that even ignoring terminals, assigning chanaels is a difficult problem. In the

next section we again consider channel assignment within onc street. A heuristic algorithm is analyzed.




-6
An example is constructed to show that:the. algesithin.can be made 2o do arbitrarily badly with respect to

the optimal solution.

4.4 Heuristics for Chanac] Assigament e

In this section, we discuss beunmcs for M m m:nment problem within a street. We
begin with a general discussion of various restncuom whose removal changcs the optimal channel
assignment. Then we prcscnt a hcuristic algorithm and its analysis for Problem P3, the version of the ‘
problem proven NP-complete. . v& R | |

The ordering on ch(N,) roquired by. condition. (i) of the staiement of ProblemP3 can be
represented using a dirccted graph, which we will call Q!e con.mamt ;raph Therg will be one qode for
each net, Ifch(N. ) < ch(N) is required undcrcondiM W&ﬁk’oblem P3 then there is
an edge directed from the node for N, tq the node for N Itis poss:ﬁl&lox mﬁ,xmﬂh to. be cychc In this
case, there is no channel assignment for the problem ng’}) If each net can use more than one
channel -- by using wire segmehts in the direction ncrpendicuhrm the street direction to connect
segments in different channels -- then a channel amismneat may exist. The segments perpcndlcular to
the street direction are called }ogs. Joas uwd ior diﬁemt nen, hke any other wire segments in the same
direction for different nets, must be separatcd by the minimum M !

Even when jogs are allowed at any polnt along asteet, the dmne%mmnt problem may
not have a solution. Figure 4.9 gives an example. However, if@mﬂlowed anywhere between points
on a street rather than only at the points, then the channel aﬁianment problgm is solvablle in polynomial
time [Ka79). The model of a street used in [K479] diffcrs slightly feom thé formuation used is P3. For
this discussion, we only need note that.viﬁ {kammimhmwmwm stveet arc cither at the
same point along the street or are at points scparated by at least minimum spacing.

Allowing jogs betwcen points implics that an arbitrarily large number of scgments
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Figure 4.9 Channel assignment problems with no solution eves if jogs sreaBowed.
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Nets: {(10). 3.0} = N;  {(20). 4.1} = N3
{L). G0} =Ny {210} =N,

N

"IN} or Ny uses a jog at 2 to change chiarnels, neither N3 not N canus ajog at 3

- terminals-cffoctively aternate top and batfom:



e L it R AT ek S e e S

perpendicular to the street direction may be inserted between any two terminals. The length of the street
~ the dimension of the strect in the direction of the street ~ mtst be variable, rather than just the street
width being variable. The algorithm in [Ka79] minimizes only strect width, nbfthe area of the strect. Let
the maximum overlap of a set of nets be the maximum over ail points on the strect of the number of nets
whose intervals overlap at the point. An optimal solution under the model in [Ka79] requires at most one
more channel than the maximum overlap of the nets. Recall that if there are no constraints due to
condition (i), the channel assignment problem P3 is solvable in polynomial time. Assume, as in [Ka?9},
that terminals are either at the same position along the street or have sufficient space betwecn them. By
using one channel and inserting a jog between .every-fp‘air‘ ‘of éonse’cutive terminal positions, we can
effectively separate the terminals on oppositc sides of thie street 36 that there are trxo constraints under
condition (). (See Figure4.10.) We at most deuble the strest length. Then the number of channels
necded (excluding the channel we used to'create the efféct of suita'b}y"maced’tefmiaais) is the same as the
maximum overlap of the nets. This implies that one never need to 1eiltmenthestreet by more than
double to get a channel assignment which uscs within one channel ‘6Fﬂié‘r;1inir‘nmn.

Since we are thinking of a stréet as mmtinaakms the boundary of a component and we do not
wish (0 think of each component as expandable,! altowing streets to fengthen is not satisfactory. An
alternative is to use jogs in a street intersection. When ajog is ieeded, a segment whiich goes tor the end of
the street and out into the street intersection is used. I the interscetion, the path can use a scgment (the
jog) in the perpendicular street to change to another chattnel in the oﬂgmal street, and reenter the region
of the street it was previously in. This type of sotution' requires that perpendiculsr streets be'available and
that nets are attowed to have wire segments in two channels of a streét at the samic position 'alonx the

street. Figure 4.11a illustrates. Such a routing not only affects the width of the strect containing the

1. In fact, some components are expan'dablc [3079).
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terminals being intercennected, but affects the width of the perpendicular. street as well.  Using this
scheine, any collection of nets consisting of tcrminals ia on styect can be injerconnected.  Figure 4116
shows the genemlconnecdanpm |

Let us.remn to our original channel assignment -problem, problom P3. The proof of
NP-completeness of problem P3 relics on the fact that jogs are.aat allowsd. .Figure 4,12 shows that even
for instances of the problem derived from circular arc coloring. allowing jogs reduces the number of
channcls accded. . We do not have a proof that the MWWEWN in NP-hard,.
although the author believes that this is the case. '

We now present a.simple. houristic algorithm for problem P3 aad analyze the quality of the
solutions it produces.! This algorithm is thebasic algorithm ysod.in [Den76} when jogs are not allowed.
We will assume that the constraint graph produced by applying, condition (i) does pot have any cycles so
that a solution without jogs does exist, We first defin the evel of 3 node in the comstraing. graph: |

(1) All nodes which have no edges into them are.on lovel 1. ,

(2) Assuming that the nodes on levels 1 through k-1 are defined for k0L, a node is on level k if

- all edges entering it are from nodes on lawer levels and it i3 not on a lowes level.

Since the constraint graph is acyclic, the levels.are well-defined. They can be computed by starting with
level 1 nodes and following cdges. We will say that a netis at level k if s ode s at level k. The nodes
from which there are edges 1o a given pode arc called. pradecessors of the given node, and the -
corresponding nets are called predecessors of the given net, |

Order the acts in-increasiag ocder.by the position, 3, of their tesminals. of lowest position. If
there are no constraints due to condition (i), then the following algarithm Sinds the pptimal solution: =

1. ‘This analysis is part of joint rescarch with Errol Lioyd.
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Figure 4.12: Use of jogs when not necessary.

We look at a problem derived from a set of clrcular arcs:
circular arcs (8,5), (3,7), 4.2), (6,1)
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- Low to High Fill [Hal'lll
Repeat for each channel, bcgmmng w:th chanael 1 and lncreasms the channel number by one
for each new channel until all nets are mignod. - 4
Choose the first unasslgned net uader the above ordenng Assngn it to a new channel.
Repeat until the channelis full: - |
Choose the ﬁmt unassngned net whosé terminal of lowest position is at a

higher position than the termlnal of htghest posmou in the last net to be

-assigned to the channel. Assign this net to-the channel.

Claim [Has71] When thcre are no constraints due to conditmn (i) the above algonthm uses exactly the

number of channcls as the maximum overlap of the m ..

Proof. Look at the lowest point, ~ao._‘ia the interval of the MMINLWWQ"“%&& last channel. Each
lower numbered chaanel must comaanet whase interval sontains point a,, I there were a channel, k,
which did not contain such a net, v'thgn the net Nshpukihaebnaaheed i this chanael. This follows
because, in the net ordering, N is before the nets, if any, which were placed in channel k after point a,.
| Therefore, all lower numbered chanaels are assigned nets whese inkervals contain peint &, The overlap

at this point is equal to the number of channelsused. = : -0

Algorithm "Low to High Fill” w:ll be the basis of the alaorithm to assxgn nets to channels when

constraints are present. Channels are agam ﬁlled begmmng wrth channel 1 At any point during

'S‘

execution of the algonthm et the set. A, of avazlable nets oontam those nets wluch are unassxgned and all

of whose predecessors are mgned. "Low to Hngh Fl“" is modlﬁed to choose ncts to bc asslgned only

1. In [Has71], Hashimoto and Stevens use a different approach to prove the algorithm correct. They
prove a differcnt -but equivalent claim. ‘The -proof given:hereis-based on: the proof used by Gavril
[Gav72] to prove that his algonthm for chordal graph colonng i correct.
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from set A (the nets are ordered as before) and to updae A after cvery assignment.

Lemma 4.5: For an instance lomeblemP3 letdkbe mcmaxnnumoverall pomtson thestreetofdne
number of nets at level k whose interval overlaps the poiat. Let h be the hishest level Then |
(number of channels)‘h( )/(number of chaancls) 1)) 5 mm(h, ava(dk)) S n

where the algonthm is the modlﬁed Low to ngh pm algonthm usmg set A avg(dk) is the average of Ihe

d, for 1<k5h and nisthe number of ncts in mmace l

Proof: We know that (number of channels) (1) > maximum of the d, andh.

We prove that (number of channels)‘,‘(l) < }2"‘:== 1“’1;)7 Let Cl denote the set of chapneiq con;aining a
net at level 1. For b1, let C, dcnotemesetofchanndsmmhlshernmnbersmanmchstchannel
containing a net at level k-1 and which contain nets at kvcl k The number of channels used by the
algorithm is the sum of the C,| over all levels. Fora particulark, C, may beiempty. IC, is not empty,
Jook at the first net at fevel k placed in the highest numibered chanriel in C,  dénote thisnet N, Leta, be
the lowest point in its interval, If any.channel in C, i§i0t adtignied & et Whosé Intérvat contains a,, then
N, should have been placed in this channel. ‘This follows because Nkmhavebeeﬂ in A when the
channel was assignod - all level k-1 nets are places before:chasinclyin C, are sasigned — and'N, precedes
in'the net ordering whatever net, if any, was assigned to the-chinngh sRér Point a,. Theréfore, IC,|<d,.

We have:

S max(h.ava(dk)) X mm(wd‘»lma(hm(d,» S min(ima(d,))
'I‘henumberofnetsatlevclhsaﬂeastdx Therefnm. - -

z{‘ ) = hxavg(dk)SR and mm(h.nﬁdt))‘ * . D

If the above bmdondmmweperfom efmuMhmu; ﬂ:ealpm '

can do very badly. Infach\cboundlsthcsameaswouidbcw(mnedforanatgonMthhapph
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"Low to High Fill" on nets of a fixed level, one level at a time; requiring all nets on fevel k (1<k<h) to

be assigned to lower numbered channels than those of level k+1. Nonetheless, our bound is tight.

Lemma 4.6: There is an instance of Problem P3 for which modified Low to High Fill using set A

produccs a channel assignment whose ratio to the optimal selution is 0" foravg(d,) = h = o

Proof: Figure 4.13 gives the instance. There are n% groups of nets, each of which forms an n% level
chain. For all l_éi)él numbcrs, k, betwcen 1 and h incmsive the intervals of all nets on level k overlap,
giving d, = n®. The algorithm assigns only. one net to Mchanncl However, there is a. channel
assignment which does not assign nets to chanaess ia am to hl;h ﬂl’dﬂ' A;mong nets on a level, some
nets which are later in the net ordering are assigned ta Jower aunbe{ed chamtels than nets which come
| before them in the ordenng. ‘Thie nets which camé st in ihc ordermg cin share channels with nets
which are on higher levels than they are, but whase predecessors have already been ass:gned Refer to the

figure for details. ' , (0]

The analysis presented above illuminates the fact that an algorithm used in practice s capable of
finding veryvbaél solutions. It forms a point of comparison for more "clever” or more complicated
algorithms. The "low to high fill” method can be used as the basis of an exponential time algorithm to
find optimal channel assignments by trying all possit;le choices for each assignment rather.than taking the
first net in an ordering [Ker73).

In the next chapter, we preseat an algorithm for a special case’of channel reutfng which is not
NP-complete. The problem is to route interconnections among two ﬁm nets whose terminals lie on the
outside of one réctangle. This problem is reminiscent of the circular arc coloring problem, which is

NP-complete. However, the paths around the outside of the rectangle arc allowed to change “color” as

they go around corners, i.c. the order of paths necd not be the same on adjacent sidcs of the rectangle.

This order can change because horizontal and vertical wire segments arc allowed to cross. Once the paths
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have been routed through the four streets surrounding the rectangle, the channel assignment is four
instances of the interval coloring problem. In the next chapter, we show how to do the street routing

optimally.
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Chapter 5: An Algorithm for Ronting Terwsinals on u Rectangubar Componcat

5.1 Preliminarics
We will now present an.algorimm which finds an optimal solution to the following routing

problem in polynomial time. Figure 5.1 presents an example.

The One Rectangle Routing Problem

Given: a rectangular component with terminals around its outside edge. Terminals lic on
positions which have at least unit spacing along the edge of the rectangle. The unit spacing
represents the width of a wirc plus the minimum spacing between wires. A list of nets, cach
containing a pair of terminals which must be connected, is gtven Each terminal belongs to

exactly one net.

Find: An optimal routing of the wircs between pairs. Paths must be composed of line segments

which arc parallcl to some side of the rectangie. Distinet paths may cross at right angles;

however, paralicl scgments belonging to distinct paths must be separated by the minimum
spacing. (We arc assuming that there are two layers for interconnection. Onc layer is used for
the line scgments in one direction, and the other layer is uscd for line scgments in the second
direction.) Al paths must lic outside the roctangular arca of the component.  An optimal
routing is onc which minimizes the axea of the smaflost mctangle which circumscribes the

componcntandaﬂmdﬁngpaﬂta The sides of the circumscribing rectangle must be paratiel to

thosc of the component.

Placethcrech:gularcmpﬁneﬂtmawtesiancoéﬁmﬁesyﬁuamﬁmimﬁdmarepamﬂdb
the axes. Arbitrarily choose one axis direction to be horizontal and one vertical. Label the horizontal
sides of the rectangle as top and bottom, the vertical sides as left and right.

Fach pair of terminals can be connccted either by a path which gocs clockwise from one of the
terminals o by a path which goes counterclockwisc from the terminal. ‘The directions of the connoctions
detecrmine a sct of intervals which path scgments will usc along each side. Omeq:ciamnalswbemd

by cach path along a side arc determined, minimizing the length added out from the side is a channel

FERERR T
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Terminals are represented as points on the rectanglc boundary.

Pairs of terminals with the same number must be connected.

An optimal solution is shown.

The height added’ to e top-by thiwsolution it 2 units; the Meight added to the bottom is 3 units.
The width addcdto daelefmdelﬁumtx memdthadéedmlhc riﬂtside ls:Zunlts.
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assignment problem, Vemca! and honzomal segmems which beiong to onc path can bc cxtcmiod bcyoad

-----

channels in the strect along one side of the comptmcnt can bc asianed mdepcndcm oi the ass:gmnems-

within other s,trcg:_s\‘ Within cxh steect, there are no cofty ’to wmmalsacms&fmmmanod\cr
(condition (i) of §mﬁbl¢m P3 in Chapterd). We \‘héycgiﬁlnl)i?&@gfs of the intorval coloring problem -
one for cach sfde; "l'!:aéi'cfom, the length added out from each side is oqual o the miai.;}'&éaap%ofme
intcrvals on that side, and it suffices to use paths which only changc direction to round a comcrofthe ‘
componcnt of to connoct toa tcmunal

We must dctmnme the directian of each connccting path Soihat thc i‘é;l!ﬁnz.arc; will be
minimized. Wc consider two types of conncctions, Pairs of tcm)mals on thc same snde br xbaecm sides
of the component are called local connectums For !hesc it sut’ﬁces w chumc the dircutkm whlch goes

around the fewdst sides. A path which goes the Ions wny adds at Ieast one mm in cach dzmcnsmn to the

circumscribing rectmgle. A pam wmch goes thc short way Cannot’ m moré (han this. Therefore it is

never better to go the long way around.

The second type ofconmw»mnalus ﬂwse va:hm fmihcbﬁsldemthcm atde'm the
top to the bottom. Thc choice of dnrectum for top-bottom uosnecwns is ;depcndem of the directmn of
left-right connections and vice versa, since regardless of the dlrectkson.usedhfora wp-bottmn connecuon,
one unit is added to the horizontal dimension of the circumscribing rec:angte 'I‘hcreﬁwewe have two

instances of the following problem:

Top-Bottom Routing Problcm
Given: ’lcnmnalsonatopandabouom asetofmptobotkmwnmmandmbcd
connections on these sides.

Find: A direction -- left or right - for cach top to bottom connection so that the resulting total
-vertical dimension is minimized. Each connection is made by going around to the left or the
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right as indicated by the direction.
In this description, connections which Oﬂginamv went from the top or bottom to an adjacent side are
considered to be local connections which go to the vcry edgeofthe top or bottom. (The portion used to
turn the corner is not of interest hé‘re.) ' |

To solve the above pmb!ﬁﬁ, we ﬁrst reduce it to a problem of assigning 0/1 values to clements
of two vectors so that a matching on the vectors ts maximized. The vectors represent the top and bottom
terminals. ‘The represéntation removes unnecessary information about local connections. The value of
"0" or "1" represents the 'gimpt'ion ~-left or right-- of the connection at a terminal. The matching
identifies ‘wAhich segments will share the same channel m the final routing.

The major phases of the algorithm to solve the new agsignment problem are as follows:

1. Partition each vector into regions within which mamhlni can be localized. After assigning
values within a region, the regions are recalculated. The algorithm iteratively assigns values within these

regions until there is only one unaséigned region for cach of the top and bottom vectors.

2. For the remaining top region and bottom region, the algorithm, assigns values from left to
right along the top region, maintainin‘g‘cgrtain pmpemes of the number of "('s and "1"s in portions of
the vectors. These propertics guarantée a maxlmum matching ﬂfogithe-r vectors. 1t may happen that not all
propenigs can be satisfied simultangou&ily vwhc_nwsqquelcgrr;gcm xsas.sngned a (va]‘ue,,‘ At this poi,_ﬁt.:wc say a
failure has occurred. When a failure occurs, the algorithm may sﬁll be able to determine an assignment
which suffices to.guaramce a maximym matching_. However, it may be necessary to-iry. both values for

the assignment.

3. When the algorithm must try both choices for an assignment, it docs not treat both choices

cquivalently. For the choice of value 1", the algorithm is applicd rdcufsivély to complete the
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assignment. For the choice of value "0", the algorithm is applicd with modification. We assumec that the
choice of "0 leads to a better solution, not just as good a ?91,"“9‘!';@? the choice of "1". Thercfore, as
soon as there is evidence that the 0" choice will lg:a‘(.i_’to‘ no beter a solution, the algorithm may stop
pursuing this choice.‘ In particular, if the situation in which the élgprimg; must try both choices reoccurs,
it will turn out that the second “0" choicé leads to no bcner solution mut the first 1" choice. This sccond
"o" choice can be climinated. Only the "1" chgicc IS uscd and the scarch done by the algorithm is thus

bounded.

The technique of bounded search is crucial to the algorithm. Without the ability to bound the
scarch, the algorithm would have'éxbiihchﬁzil m\runni'ng time. The R)flé;ing scctions described in more
detail the algorithm outlined above. ‘During this dcscriptum a large amount of notation will be

introduced. The appendix to this chapter summarizes that notation.
5.2 Reduction to Maximizing Matchings

The Top-Bottom Routing l;roblem is reduced to the problem of assigning valucs within two
vectors to‘maximize a matching. The vectors, T(1,m) and B(In)rcprescm the terminals at the top and
Bottom, fospectively, numbered from Icf to right. (We will drop the T and B when it is clear from
context whether we are referring to a top 6rbottom tcnnmaI)A valuc of "0 or "1" is used to rcbreseni
the dircction of the conncction at each terminal.” Dofine the value Runction VT: T{,m) = {(:).l;?} a
follows: _ , - | o

VIG)= 0  ifthe dircction of the path ffom ténminal i to its pair is to the left

1 ~  ifitisto the right
? if it is undetcrmined
Value:function VB: B(1,n) —» {0,1,?} is defined the same way.

Let p: T, m)UB(1,n) — T(1,m)UB(1,n)U{*} be the pairing function. Terminal p(x) should
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be gonnectcd to terminal x.. When p(x) = * (don't care), the terminal x is connected to a terminal on.an
adjacent side. Initially, the pairing function is known, and the.value functions have 0.or 1 vajucs only for
the local conncg#mns. We would like to find- VT and. VB for which all directions arc determined and are
consistent with the initial values given. Wg‘ will say that a value function V' is.consistent with V if
V'(i)= V(i) whencver V‘i)#-‘{. We also sax}hat- V' extends V. For any pair of valuc functions we require
that V1'(i) = VB() if p(Ti (;f))= BG).

- We would like to balance paihs to the lef with those to the right on the top and bottom
simultancously. 1.et m\-’,r be a function matching terminals in 'l;(l,m)pf, ~alue "0" .to terminals with
higher index in T(1.m) qnd of value "1", i.c. matching pgths to the left and right. The function is formally
defined as a oné;io-pncv partial function from umnoxmltsuch ,uz;( if my(i)=j, then VT(i)=0,
VI@G)=1,and ji. Deﬁne my,, similarly. For a pamcular VT and VB, lct M be the maximum over all
matching functions m . of Lrangc(mv r)I i.c. My .is the maxna;m numbcr of matches among T(1,m) for
agiven VT. Parameter Mys is defined similarly.

We will reduce our rdtlt’ins bmﬁlcrﬁ to a ;‘)roblelrnr .o'f asvsi'gnirn‘g ;'Q‘fs and ’fl"s to maximize

M +My;. Thisis justified by the following lemma: . : -

Lemma 5.1 Given a Top-Bottom Routing Problem with local connections represented by value
functions VT, and VB,, the problem of finding VT, and VB under which all disections are defined and
for which the vemcal dimension of the cnrcumscnbmg rcctangle ns mmnmlzcd is equlvalcnt to the
problem of finding VT,.and VB, such that Mw}+ va'r is ,ma;mzcd over all VT and VB which map T

and B to {0,1} and are consistent with VT,and VB,

Proof: The matching funaion mw.f corresponds to determining which horizontal segments above the top
- side will share the same channel. If mw.f(i): i (h.cn in some channel, the segment ending (going left to

right} at terminal i is followed directly by the scgment .which starts at terminal j. F.ach chz_mncl begins

o
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with a segment running from thic top IR edge (a scgment for whicti VT(1)0 dnd” p()ER(.n) or p)=*)

or with a segment which beging at a 1-valucd it
segment in each chanel i /scgment rutning to the-iop HENC ddge (VT YT and pYEBILb) or pC)="
ol Grder’ mw “Figire 3.2 illistrates
e i dile: ihbiicfore, we have found an

: f ;i&j“i;;‘;f: E e . .vrf' m ‘E:,; ~[

or a segment cnding-at a O-vahied tétminal whick’ is dnma)

passible configurations. - The chaiiels cah bé Hi iy ordcfd
assignment of scgments to channels for cach mwr, The argument e e o et e &

aiching for each’ assigninerit to' chantich, * Thet'is"# dic-{6°oné correspontonck “betweeh channel

assignments and matchings giving:

number of channels used =n number of segmcnts smns lo lcﬁ odge + number of mhed "l"
= numbemfwmgm&* T

This gives: total vertical d?ﬂensaon correspondmg tomatchm ﬁmctnommw amhnwhf
2 ht of rectangle{déncted H) & # chariné “Aampﬁrwm N
= h + # top scgments going to left edge + # unmatehed ™1 Tsabt0p:.
+ #bcnmwgmcntsgomgwmeds+ #Wj@"sam o

h+ #;opsegmcmsgosngmeﬁeam+ #"i”satwp Mm"’l |
+ 2 toﬂgh{g@-}‘; s S . O

Note that: #sattop. = #mwawumerf #mwwmmmw

€»§‘1 o T e LRI

Thsg:ves mlmmumuxalvenmaldmwmoverﬂlmwmmmhw deBf
=N ¥ #ww 44 Dekoin sl * ;afw%ﬁ@‘f O C My, +Mv,r)“

and therefore: 4 10p segmerty golng 0 1eft 4 # *1°satp

fiitw v as

Where C = (# local connections top and bottom) + X;top-b;mammncm)uacommforany

instance of the routing problor. Thorofare, nyinimizie QMnmm»mm SR
er"'“\r‘f- HESE IR i L };E;E%E ’i';”f‘_‘, S IROR LS UE LSS UE N L’!

W now present the various phascs of the algorithm which finds value functions VT, and VB
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Figure 8.2: Possible configurations when filling channels.
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maximizing (wa + MVBf)'

5.3 Defining Regions

The following description will be in torms of T. An anamgoué‘d‘eve;opmcm is assumed for B.
Let T(x,y) denote the tcnmnals from x o Y mclusm In any leﬁ mtcnml. I‘(l.l). for any i<m, we would
like to maintain thc property that no more{han half the tcminals arc I-valued. This property must hold
if every I-valued terminal in (1.i) is to be matchcd {tt{‘a'Q-valucd terminal with smaller index. If more that
half the terminals in a leR interval are 1-valued; sumc of these 1-valued terminals cannot be matched
| under any m,,. If at least half the terminals are 1-valucd, any ?-valued terminals in the interval should
become O-valued if we are to maximize the number of matches. Sﬁhﬁaﬂy we want no morc than half
O-valued terminals in any right interval to insurc- that these &uﬁuedtcnmnals can be matched. Because
of the local connections, it is not alwayé posssbic to mammathwc .pW‘_m any left or right interval.
Instcad, we definc regions within which these bounds hold. Within mesereg:ons matching can be
localized. | |

For a given value function, VT, let ZEROS,(S) = ({i€S|VI(i)=0}; ONES(5) =
{i€S|VT()=1}; UNDET(S) = {iESIVF(i)::"} where SCT. Define the propeny DK-I(VT,x,y)
(similarly OK-0) whxch is true if and Dnly if jONhSw(x,x)j 5 L%{y-x+1)J (Wc us the notation
"ONES,{x,y)" rather than "ONF.SW(’I‘(x,y))") Also deﬁnc NI l(VT x,y) (similarly Full-0) wmch i
truc if and only if DNESvr(x,y)} 2 r%(y-x-l-l)‘l Property Full-"p"(V’l‘,x.y) is truc when at least balf
the terminals in T(x,y) have value "b" under VI. Note that Full-}(VTx,y) and OK l(VT.X.Y) mn be
simultancously true only if IONF.SW(x,y)I = (y-x+1), an integer. Full-l(VT.l,i) indicates that the
terminals in UN DET,,,(1,1) should become 0-valued if we are to maximize the numbe; of matches.

We will now define the regions of T within which.matching can be localized. uﬁ-wns under

VT arc formed scanning T from 1 to m. A new region begins when the previous region has at lcast half
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"1"s.. Similarly, right-regions under VT are intervals of T scanning from m to 1 and counting "0"s. -
First define functions /. and 1\ mapping Ttokeeld:
D) =1
L =1 if Full-l(V'I‘,Iw(ii-l),i-l)

lw(i-l) otherwise, fori>1]

rw.(m) =m
nl) =j ifFull-(VTi+1r,(i+1)

rw(i} 1) otherwise, forj<m

The function #,.,. induces an- equivalence:relation oa. T(1,m) under which two terminals i and j
are equivalent if and only if Iw(i) = lej). The resulting equivalence classes are intervals of T(1,m); the
lowest element of each is an clement of the range of /.- These equivalerite classes arc called lefi-regions
under VI. A new region begins when the previous region has at least haif "1"s. Similarly, ry,. induccs

right-regions under VT which are intervals:whose highest element is an element of the range of 1y

Lemma 5.2: (JJOK-1(VT.J,1(i)i) unless &, ()=iand VT()=1

(BYOK-O(VT.iry (i) unless ry ()= and VT()=0.

Proof. We will prove (a). The proof for (b) is analogous.

If [ (i)=i and VT(D#l, thea JONES . (i)}=0=LU(i-i+ 1))t and OK-I(VT,ii). If { LK,
then not (Full-1(VT,/,{i-1),i-1)). In this case Iv1.(i)=lv.l(l-1) and
IONES,, (/). S IONES (- (i-1).i-)] 1< li'/%(idv;(i)ﬁ H=L Y(i-hy ) +1)d+1

and OK-1(VT. . {i).i). | O

On all the left-regions cxcept possibly the last, at least half the terminals are 1-valued. Such

regions are called ﬁdl left-regions.  We definc a delimiter for the full rcgions. Let Ly =m if
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Full-KVT,/\y{m).m) and /;, (m)-t-otherwisc. .Let Ry =1 if:FM\f'l‘;lxwﬂ)) and v (D)+ l otherwise.
Lemma 5.3 shows that the full left-regions can overlap the: m&mmoaly wheén all terminals ih the
interval of overlap are 0/1-valued.

Lemma 53: IfL, > R, then IUNDFTV](RVP ,w)l 0 ie. all dn'ecuons arc known on (Ry.Lyp).

Proof: Assume L. 2 Ry, The proof counts the number of "0"s and “1"s necessarily in (er‘ "VT)
using the definitions of Ry and Ly . | o R
Case 1: lONI:Sw( Ryplyy N2 IIPROS I(RVI"L ){ Supposc L 8 in range(rw) Then
(Ryp:lyy) is a set of right-regions of T. Since Pull-ﬂ is true for any right'rcgnon of termmals greater than |
Ry it must be that Ful-O(VT.R 1.l However, we havoassumed that there:are s Jeast as many "1"s
2 "0"s n (Rl ). This gives | |
IONES\ 1 (RypLy | = IZEROS Ryl = WlkrRyp +1)
and no elements of (Ry1.Lyy) have value "1" under VT.
We now. suppose,Lw is-not in the range of ryp. 'l!hm
[ZEROS Ly +1, rvr(l,w+l))i < r%(rw.(l +l)—(l.ﬂ.+ 1)+l)’l L gnd
ty{Lyp D=1 {Lyp) Interval (Rw..rw(LW)) is a set of ngbt-rcgions and Full-() holds. l‘hxs gwa
|7[~,ROSW(R Ly = IZPROSW(RVPI'VI(LW))! IZFROSW(LVT+ l,rv.r(Lw))i
[ZEROS iRy Lyl > FU(ry (L Ry + 333 Uiyl ) Lg 12 L%ﬂ;wﬁvr*w‘l)l Le
Fall-O0VT.Ry7slyy) again imaiying o elcments oF(R (L) have vlos " under VT.

Case 2: IONESW(RW.LVT)i < IZ}:ROSV[(RVPLW)I Th!s case IS pmven ln the same manner a8 case 1

§+—s§ § ~f v r‘ » SRS

with the roles of Ly, and left-regions interchanged with the roles of Ry and rmt-rcgm o o

The matchmg within the full Ieﬁ-negions (1 Lw) or the futl nght reglons (R‘,T,m) can bc.

maximized mdependent of the rest of T. Our algomhm uses thls prowrty to break up the pmblem.
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Theorem 5.1 formally states the independence of the regions. -

'l‘lmouu 5.1 let Vi bea nven initial value functxon dcﬂning RVr and L For every VT consistent
wnth VT and every maiching l’unction mvr there isa matchins funcnon m v asrcema with mvr on
0O-valucd terminals in (Lw-o +1.m) but matching each 0-valued termmal in _(I,LVTO) to a 1-valued
terminal in (l-,l.‘}ro)raad such that jrangetm’y ¥ > jrangc(m ). ‘Analogously, there is a matching
fanction m" ., agrecing with m, . on I-valued terminats i (LRyy -1) but matching each 1-valued

termina in (Ryy )10 2 O-valued terminal in (R, m) sncwhonc ranige I at east as farge.

Proof: We will only prove the existence of m'y.. The proof of the existence of m"y. is similar. The

. proof is by induction on the number of leﬁwgiom in (I‘I‘VFD,)"

.Basis: (I’LV'I‘O) contains at most one region. o .
If Lv.roz(), then ( LLVTO) is empty. If LVT0= 1, then VTO( D=1 and ‘(],Lwo) does not contain
any "0"s. In either case, the thoorem is trivially true.

If Ly > L then Iwéa,woj.—. L. Thefefore, OK-U(V¥yLly ). We abio have
Fullbl(V’l“Q,l,LWo) and can  conclude tﬁNESvfo(l’,Lwo)Q.‘w f‘bLV'r"). ‘For any value function, a
maximum maiching.can be found by scanning T from 1 to m. Each time a "I" is encountered, it is
matched to the lowest numbered yet unmatched "0". As long as there arc no more "1"s than "0"s in an
interval (1,§), there:will be an yet unmatched “0" in (1,i-1) to-match a 1-valued terminal 1. In the case we
are considering, OK-1(VT,,1,i) holds for every iSLVTo. Therefore every 1-valued terminal can be
matched to a O-valucd terminal if all T-valued terminals ia\»(l,l'.v.r ) beeome O-VM. Since there are
%L, 1 -valued terminals in (1, "VT ) under VT, such a metching finction would match all O-valued
terminals in (I’I‘VTO)' For cach 0-valued or ?-valued terminal under Vl‘o in (I,LvTo). we can associate the
1-valued terminal to which it would match under the above matching. Given any valﬁc function VT

consistent with VT, and any matching function, my, the desircd matching function m’y. can be
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created by matching each 0-valued terminal imﬂ.lw 87 ﬂn&e Iz‘-.vﬂluedvtcmimlnk is associated: with
and usms the matchmg defined by “‘v1 for 0-valued lermmals in (l'vr ,m) Smce m’ VT ma&ches at least'

as many "0"s as Myp Inngc(m )I is at least a lalxe as lrange(mw)i (Rccail that matchmg ﬁmctnons

areone-to-(mesomatthcdmnamofamatchmgﬁmctmnisﬂ\csamestzcasnsm)

Inducion: Consir e s et region. By o argume usad i th bain, e malchia of the Wi
this region can be restricted to me "‘l':'s_mgc f#ﬁm; Fherefore, yg’e mxcmew ‘thc_ﬂmn:mien and
consider the remaining-tcrmingls. as a new pfebicm 'I'he hﬂwmef the mmm; ummws are
unchangcd and we apply the mducnvc assumption The desxred m' Tyt uscs the matchms of "0“3 in me
first lcﬁ-rcgton to "1"s in the first lcft-reglon and the matchms of “ﬁ"s in the rcmaming full Ieﬂ-reglom

to "1"s in the remaining full left-regions obtamed by thc mducﬁve mmpﬁon S O

5.4 Assignment within Reglons

Given Theorem 5.1, we can show that it suffices $0 consider mw mu'utﬂit with ¥,

~which assign all *-valued terminals u(l Lvr )the value "0" amtall 'mm termmals in (er ;m) the

value "1". Thisalso holds for VB, mmszmmm mwm fotamimvﬂm |
begins by assigning thesc values to the originally. 3-valned terminals and mm,:whcna m
ariss, . TO)E(LLyy ) 0 BG) = PTONE(R g 5) 0 TOIGR . mb avd. BGH =, pERENECLL.).
either choice can be made. We choose 1o definethe algarithes so. thet assignments are made in the

1 Make ani.?wamq terminal in(LLyy )and ieir boiom pairs G-valuod.
2 Make al vabed serminals.in (Ry_m) and e bosems pais I-valued.
3. Make alt1-valucd terminals in {1Lyy }and their top pais O-vabued.
4Make all > valued tesminal in (Ryy .0} and sheir top pairs 1-vaued.
This arder gives a proference W assignments dictaied.by the top segions. Exccuting cach of 1
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thrdugh 4 defines new. functions VliandVli which extend VT, and VB, and which may be extended to
value ﬁi@ﬁ_ﬂn& achieving the maximum matching (wa *—M’VB)"‘ These now_ functions may induce
new left-regions and right-regions, The algorithm rapeatedly computes new Ly Ry, Lyy, and Ryp,

and applies onc of 1 throush 4, cach in wrn, until there are no full regions containing ?-valucd terminals.

uM §:2" Let VT and VB be ény i)éir of vélue ﬁmctiom :consisteﬁ't with V’I VB and the pﬁirfﬁg
function, p. If there are % valued termmals under V’l‘ ln (1 L, VI, ) then thcre are functions VT' and VB’
consistent with VT, VB, and p, such that all ?-valued termlnals in (1 I‘vr ) under V'l‘ arc 0-valued
under VT', and My + Myy 2 M\n + Myp Simihﬂy, mere arc value functmns assigning 7-valued
terminals in (R",T am), (1, Lvno) or (Rvno .n) the va%ues "1" "0" “1" resbecuvely, without decreasing

the sum of the matchmgs onTand B,

Proef: We will only prove the statemgpt. for fixed va;upxin (lzt‘wa).‘ Proofs for the other intervals are
analogous. Supposc there ars ?-valued terminals in (1L ) under YTy, If thesc troniuals arc 0-valued
under VT, we arc done._Suppon;_ there are such ferminalg which.are not @-valued under VT. Define
value function VT’ to agree with VT on (Lvro‘*'l"i“.);b‘“‘ asgign each 2-valued terminal under VT, in
(I.LVTO) the value "0". Let my,. be a maximum matching function for VT which matches each O-valued
terminal in (1.Lwo) under VT to g 1-valued terminal in (LLyy). Dy Theorem 5.1, such a my; must
exist. Let my s be a maiching function for VT whigh agrees with mw;qaf(Lwaﬂ.m) and lmwheu
cach O-valued terminal in. (LLyy ) under VT* to a 1-valued terminal in (lyr). Again, My s
guaranteed (o exist by Theorem 5.1, Then, ,
rangen}- gy H = (ZEROS gkl B - FEROS Ly ) = &

But, My 2 [range(my/)f and My, = |range(my ). Ttmmfom.M,‘,-l “Myr 2 d. The corresponding
V' differs from VB by changing at most d "?"s or "1"s to "0"&, This can destroy at moest d range values

of any My, giving Mvn' Mvn’ <d Therefore MVT' + Mvn’ P Mw + MW - B

ot omdhs BB Anien S TR Rl v iR 1 ey e s e ST
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It remains to assiga 0/1 values to any ?-va!uedtcnninais “of ' ~1‘(‘Lvt+i,kwe-1) and
B(LQBe-F Lvaie'l)-‘ whereVTe and VB, are the fast extensions of VT, and VB, obtained by the above
assignments. Intervals T(L,, +1 Ryp -l)and HLVB +1 kvn 1) may be embty “Given Theorem . 1,
we can maximize the sum of maaches within Tﬂ'w;*\}'kvt:n and“B(Lvn;f- I.Rvaefi)’independent of
~ the full regions. We remove the full fcéion; and define a new T anQBcontammg only the remaining
A\tcmqli‘nals. We get a problem on vccwré 'l'( 1.m’) and B(-_Igp')lwtitlj new pamng f_unct‘iqn,vg"‘_ and Rew ipi,t:ial
value functions, VT’, and VB’O,;su_ch that ’ | o - |
o(i) = VT (LVT +i)and VBO(I) = VB (LVB +l)

m’ RVT lvr -landn’ = R
The pairing function, p’, corrcsponds to the the old pairing ﬁmctnon whén both tcrmmals of a pair are
within (Lvre+ 1,Rv1.e-1) and (l'vne*" 1R vae-l). If a terminal withm one of these intervals was originally
paired with a terminal outside the intervals, then the new: furk':tioh‘ pats this terminal with * (don't care). -
Any terminal originally paired with a temninal outside thise' }mervais is 0-valued orl valued under VT
or VB,. Since the pairing mnct:on is only needed for ”valucd terminai& ¢hanging the’ paiﬁna of such a
terminal to * does not change the problem. The new value fanctions, V'f' and VB, induce exactly one
left-region and one nght-rcgion on each of T(1,m’") and B(1,1"). None oftheae regtons is ﬁﬂi
The assignment to the new vectors is made using proccdure SCAN-ASSIGN. - The procedure is
cafied with inputs (T(Lm)B(Ln)p' VT, VB, Thig phicdure "scifis me wop vgcm.-; reassighing
top-bottom pairs of ?-valued terminals the value "0 whenever this m&gnment ‘would not creaw a
bottom right interval, B(s.n), with more that half 0-valued terminals. When such an niérval would result,
SCAN-ASSIGN trics to reassign the terminals the valse "1". “IF ik wokld-create 4 top leR interval,
T{1,q), with more than half I-valued terminls, the procedre stops and retarns "FAIL®. The procedure
which called SCAN-ASSIGN must handic the failare. If no failufe occars, SCAN-ASSIGN continiies

assigning until there is a full top right-region, L.e. a right interval with at least half “0"s. Any remaining
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?-valued terminals are assigned the value "1". The procedure SCAN-ASSIGN is defined in Figui'e 53.
The following two lemmas . and theorem prove the  correctness  of
SCAN-ASSIGN(T(1,m), B(l.n).p.VTo,VBo) when it succeeds in asstgning "0"8 or "1"s to all ?-valued

termmals in T(1,m) and B(1,n).

Lemma 54: Let VT, and VB, be the value functions asgumed by vadablcs vT and VB afier considering
terminal  T(i) in ‘ either the first or sgcqu , VFQR - loop | during‘ the exccution of
SCAN-ASSIGN(T( m). 1 I,m)?p.V' lfﬂ.,Vﬁé); ‘if’V'l'o &ﬂdVBo do not define any full regions on T or B,
then for any i, 1<igm, VT, and VB, m&fy mcﬁﬁiawmpmpem

Forall k, 1Sk<m, OK-I(V'I‘i.l.l";) o

Forall k, 1Sk Sn, OK-0(VB;X.n) ;
Furthermore, if SCAN-ASSIGN(T(I,m),B(l.m),p.V'l’a.VBD) enters the second FOR_ loop, then for all

value functions \,"l‘j and VBj. where T(j) is considered in this loop, IZEROSWj( 1Lm)|=r%m7.

Proof: We first prove the propeniés for functions defined in the first FOR loop by induction on i.

Basis: The propertics are true for VTo and VBO by hypothesis.

Induction: By inductive assumption, the propertics are true after considering terminal T(i-1), ie.
after the (i- 1)th execution of the loop. Function VT differs from VT ) at most for T(i). For this to affect
OK-1(VT;,1.k) for some k, the following must hold: IONESVTi_l(I,k)IxL%kJ, k2i, VT, ,()=?, and
VT(i)=1. However, if IO:NESWi_l(l,k)I= L%kJ, then VT (i) is not assigned "1". Therefore, for all k,
OK-1(VT,,1.k) holds. For OK-0(VB,k,n) not to hold for some k, it must be that: IZEROSVBH(k,n)i=
L%(n-k+ )4, k<p(i), VB, ,(p())=1, and VB(p(i))=0. However, if IZEROSVB‘.l(k,n)I =L%(nk+1)4,
then V'[‘i(i) and VBi(p(i)) arc not assigned "0". Therefore, OK-O(VBi,k,n) must hold for all k.

If SCAN-ASSIGN ecnters the second FOR loop, let h be the first value of j considered in this

loop. Execution of the first FOR loop is completed bc;cause Full-0(VT,_,.q,m) holds for some q. We
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Figure 5.3: Definition of SCAN-ASSIGN

SCAN-ASSIGN(T(1,m), B(La)p.VT, vao)

/Asstgns 0/1 to ?-valued terminals mTandBwhereLw 0 RVT -m+1 L l;“--0 RVBo—n+l.and
no region is full./ R

VT:= VT, and VB:= VB,

FOR i = | STEP 1 UNTII, (3q)Full-0(VT.q,m);
IFVIG="THEN .
IF (35) D)€ ) and [ZEROS, (sl =L (ar-s-+ 1) THEN

1F(3g) i$q5m and mu-.s y{L.gi=L%eld THEN
RETURN (FAIL, VT VB)
ELSE V1G):= 1 .and YB(p(i)): =1
ELSE VI(i): =0 and Vﬂp(t}). =0
END RS R
FOR j = iSTEP 1 THROUGH m :
IF VI()="THEN VT():= 1 and VB{p(iB:=1
END ‘
RETURN (SUCCESS, VT, VB)
END SCAN-ASS!GN
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know that h 22 and q<h since VT, , agrees with VT, on Thum)and for no k does Full-(VT k. m)hold.
If g»l, we know OK-i(VTh_l.],er) haﬁsby the flist part of this proof. 'This implies that
IZFROSﬁh_l(l,q-ll 2 I''(q-1) Y since no terminals in T(1,h-1) are ?-valuod under VT, ;. Then

IZEROSVT (1 mﬂ)l 2 M@+ T ’/a(m-q+ 1)1 2 F%m'l ‘
However IZFROSW (1 mj < F%m'l otherwue the ﬁm loop would not havc been repeated for h-1.
Therefore, IIPROSVT (1 m)] = Mam. 'l'he second F‘OR loop does not ass;gn any "0"s. Thercfore,
for all VT h<ji<m, I?FROSW(I m) = F%m’\ Also since OK- O(V - l.k m) holds for any k,
OK-O(V j,k,m) holds for any k.

It remains to show that OK-l(Vf 1 k) holds for ail k. Since any VT agrecs with VT, , on
T(Lh-1), OK-1(VT;.1,k) must hold for k<h. Supposc that for some kzh and some jzh OK- l(V lk)
does not hold Since the number of 1-valued terminah incream on each iteration, OK I(VT_,1,k) must
also not hold. Since no terminal is - valucd under VT lLEROSW (1 m)} = '%4m7 implies
IONES\,T (1, m)i L'Am.l therefom katm |

For any i2>h, ITEROSW (im) = {IEFJ'R\OSV.r (im)| <l %(m-i+1)1._

This implies » IONES vi, (k+l,m)|) L%(m-(k+l)+ DJ.
Then IONESW (LBI< L‘AmJ - L%(m-k)J,

giving IONFSVT (1,k}i< r%n contradmdng our assumptlon that OK-l(VT 1 k) does not hold. 0
Lemma 5.5: For any call to SCAN-ASSIGN as i Lemma 5.4, the first FOR loop is completed with i<m.

Proof: If the lemma does not hold, then afteri=min the first FOR loop:
|ZEROS,, Vi, (l m){ < r%m'l

However, by Lemma 5.4, IONFBW (1m)}i £ L%m.J, implying |Z FROSW (ILm) 2 ThmY. 0
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Theorem S3: Let VT, and VB, be initial value fuactions which inducc no fafl rogions oa T and B. If
SCAN-ASSIGN(T(Lm), B(Lah p; VI, VB,) returas (SUCCESS,VT, VB, ) then VT, and VB,

maximize MVT + Mvs over alt YT and VB consistent with Wond ng i

Proof: Since OK- I(VF Ik)holds for 15k<mand I()NF.SW (1 mx L%m.l M Vg = L¥%mJ, the
maximum posmble Smce OK-B(VB k n) m fnr tSESn, each O-Vﬂued botwm tcrmmal can be
matched, and M IIFROSVT (l n)l lf MVB = L%n.l thcn no Iafger ma(:hmg is pess:ble and
we are done Suppose MVE < L%n.l Let MVB =L%nlt-A, AX! Let V'F and VB be any otber vahle
functions consistent with p, V1, and VBB, We must shmv that
My + Mvas Mvr + M n- L%nJ—A+t‘&mJ
Since the mmany ?-valucd terminals are assmcd 0/1 v&lucs in wp-botmm pairs, we have
EZFROS (l,m)l [ZFREE Bh( I.R)f KZEROSW {I,m)f P‘EROSVB (l,n)l
=F %m‘H%nJ-l»A and
[ZEROS, (1, mx V,FROSVT (I,m)i m\mﬂ n} lZBROS so(l.n)l.
Let [ZFROS, (Lm)| = r%m'i+z. whcreznsmymcacr T‘hea. '
[ZEROS, (1 )= tZBROSW( 1 m)[ ({ZBROSVT’(I,MX EZEROSV%(I.B)D
=r %m1+z—(f‘%m1—t%n.!’+ A) L'éa.HrA
Case 1: 2€0. Then My; + M <lzmosw(1 m)l + EFROS“(La)l
€ Plhm¥4 246 %+ A CLEmI+LURF A,
Case 2: 0<z. Then My + M <pm“u,m)t+m”a.q o |
S L%mJ-z-H.'AﬁJ-&z-A L%m.l-i—l.%n.l-& | O

It remsaing: for us 40 deal with a retarn. of (FATL k,\ﬁ‘,;m. Before describing how a failuve is
handled, weprovematﬁ)rcenain&amc functions, the value of a terminal can be switched from one of

"0" or "1" to the other without decreasing My +M, ;. These value functions are consistent with the
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initial value functions used as input to SCAN- ASSKGN and assign only "0"s and "1"s. They assign an

imbalance of "0"s and "1"s in some left or right interval. We will use th:s ablhty to change the valucs of

terminals to prove that the value functions returned by SCAN-ASSIGN do not assign too many or too

few "0"s and "1"s to achieve ;ln optimai‘matchiu.‘ N

Lemma 5.6: Let VT, and VB, be initial value functions which define no full regions on T and B. Let VT
and VB be any function consistcm with VT VBO and p uader wmch no tcrmmal is ?-valued. :

A) For any x, ISxSm. if IONESW(l x){ IZbRQS lﬂ £y ) 1 thcn lhere is a terminal i in
T(1,x) such that VIg(i)=1, VI(i)=1, and the functions VT' and VB’ obtained by changing the values of i
and (i) 10 0" are such that Myps+ Myy 2Myp My

D) For any y, 1Sy<n, if [ZEROS (5.0} - IONES, (y,n)}l > 1, then there is a terminal i in
B(y,n) guch that VB ()=, VIXi) =0, and the functions VT’ and VB’ obtained by changing the values of i

and p(i) to "1" are such that M.+ My g 2 My + My

Proof: We will only prove A. The proof for B Is analogous. Since IONESvr(l,x)I-|ZBROSw(l,x)Pl,
there are at Ieast two "l"s in T(1,x) unmaiched under any maﬁchin&ﬂmcnon for V'i‘

Let there be a mau:hm; function achlevins MVT fm‘ which the termmal of lower mdcx among
two unmaiched "1"s is ?-valued under VT, We' will show by contradiction that such a matching function
must exist. Given such a matching function, change the valuc of the terminal of lower index to *0",
changing the value of its bottom pair as well. This defines VT' and VB'. The new "0" can match the
second unmatched "1", giving My-v=M,,+1. In B(1,n), at most one range value of any matching
function has been destroyed; therefore, MvﬂszVB-l. It Follbws that My +Mypr 2 My +Myp.

We now show that the matching function dcqcribed above must cxist. Figure 5.4 illustratcs.
Suppose that for any matching function achiev)ing' M\m at most one 1-valued terminal in T(1,x) which

was initially 7-valued (i.e. under V'l‘o) is unmatched, anci that if therc is such a terminal, it is the terminal



Figure 5.4: The prool of Lemma 5.6,

Claim exists:

VS . - e m
nln ) ulu oo
unmatched unmatched
7-valued under V'I'o :
Otherwise: -
any 1-valued terminal under VT, 0 is ma&chcd to a 0-valucd termmal herc
T: -1 - 1 : - _ «m
all 1-valued terminals under VT are also 1- valued tmder V'I‘o :
gmo many “1"s undcr Wo
all 0-valued terminals are ma(chcd tol- valued tcm\mals hem
Figure 5.5; Definition of C.
‘set Cincludesall 1%

assigned by SCAN-ASSIGN
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of highest index among all unmatched "1"5 in T(1,x). Then, for any matching function achicving My,
there is at least one 1-valued terminal under V'I‘ which is unmatched Constdcr all matchmg functions
achrevmg M t'or whteh a maxtmum numbcr of 1 valued termrnals in 'l(l,x) are matched Among these,
constder only those funeuona for which F maxtmum number of ongmally "-valued now 1 valued(
terminals in T(l X) are unmatched (ettber aero or one auch temunats) Fur each of these note the mdlccsﬁ
of any terminals in T(1 x) whtch are unmatchcd and are l-valued under VT Choose the matchms
function for whtch the htghest tndex say u, is obuined. Nn inmally ?-valued termmal in’l (1 u-1) which
is 1-valued under VT is unmatched Bach 0—valued termmal in T(l u-l) must match an mmally 1-valued
terminal in ’l(l u- 1) Otherwtse the matchtng t’unctton cnuld be modrﬁed S0 that the oft‘endmg 0—valued
terminal matchcd u. Ifthe offendma Bvalued terminal had been unmatchcd thts wm;ld produce a largers
matching; if it had matched a termtnzd in T(x +1 m) t!!is would produee a matchmg under whl(:h more
1- valued terminals in T(1, x) are matcbed If the offendtns tcrmmal had matched an mmally "-valued
terminal in T(1,x), matching it to u woutd produce a matchmg wrth a Iarger number of unmatched
+ 1-valued tenmnals whtch are "-valued under VT tf it had matched a terminal m T(u+] X) which is |
1-valued under:VT this would producc a matehlng wtth an unmatched termmal whtch is 1-valued under |
VT and of higher index than u. Any of thcse possnbtlrttes contradtct our chorce of matchtng functton
There can be no matched 1-valued terminals in T(l u-1) which are mtually "-valued nor any unmatched
termmals of this type. AII 1-valued termmals in T(l u- 1) are mmally 1- valued Smce all 0-valued
terminals in T(1,u-1) must match 1-valued terminals in T(l.u-l) we have:
IZEROS villw )l £ IONF.Sw(l u- l)l iONBSw (1 u- l)l
Since no terminals are ?-valued under VT, thls tmpltes IONI:SVI (l u- l)l 2r ‘A(u—l)‘l contradtctmg the

hypothesis that there arc no full regtons under VT ' . a
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5.5 Handling a "failwre”

Let us suppose that SCAN ASSIGN remms (}'AlLk VT VB), W¢ wiﬂ now dwnbe what k

,;:n[__ :

known about T B and thclr value ﬁmct:ons aﬁer SCAN ASSIGN rceums. Wc wm usc thls mﬁ)mamn

o handle the fanlure Promdure SCAN—ASS!GN n:mms thc vaiuc, k. of loop vanablc i when

ior Bashas e

SCAN- ASSIGN cncountered the fadure Ihcmfm we km\v that VT and VB ke, are the valuc
functmns retumcd 'Ihcre isa q>k such ﬂm K)NESVT (l q){ L%qJ Wc wm uscthc smanw sucht
q Therc is an s saﬁsfying thc ﬂﬂlowmg thrce pmperties (1) p(k)Zs. (n) VEROS nk (s,nﬂ =
L'/x(n-s+1).l and (m) each tcnnmal m '.l’(lk 1) whlch has hecn asstgncd mc valuc "1" hy

SCAN ASSIGN is pasred wuh a termmal in B{s,n) ie. onmw (i.bi}-ONEer (1 k-l)cp(ﬂ(s.n))g

L SRS

This last pmperty follows fmm thc fact that SCAN-ASSIGN only m%gns W(l)=l when, at the timc,"
(3s)(p(l)€B(s.n) and QZEROS B(s,u)l = L‘/:(n~s+ I)J l‘herefome we can assoctate an s with eachj
"-valucd T(x) made 1 valued Oace IZEROS\,B;(zti nﬂ L%(n—si+ 1)J ﬁn‘semc va the number of "0"',

in the mtcrval does not change in later !(cranons. 'l'hereﬁxt. choosimlhe ma!lcst ofxmy such 5 and the_ /

a

,skassocxatedwnhmefaﬂure wehavcaamdcx s,whichsalsﬁsa&lsbmpumm Infact.weuseme’

Y I (43 z}&A

Iargest s whxch sansﬁes all three propemu. Notc that VT _l(k) VBt }(p(t))z" Wc also know ﬂm each B

tcnmnai in &(s,n) whnch:smgneda"ﬂ“ora”l” valueby SCANASS!ONmustbepmmdwm:a

vciﬁ L

tcrmmal m T(l k-1), since no mmally "-vshsed wrmimh m T{k,m) or‘metr bouom pﬁn have been_

Lethemesetofmmally?-valwdmuhmﬂlq)mwsxminﬁ&n)(l-’ms.ﬁ

RES h:‘ ?zs«"&‘

Foran opmnal mgnmentauhewp aﬂm:na;?fwwmmm'ﬂwm@m "6"; Fw, }

teht g 154 2 Voanhiad eess
an upumal assignment at cbc botxom. aﬂ remaining ?-vaiuw ﬁemm in N&n) shou!d beoome "1"
ot S G v s ‘
Obvimmly.oncmmeareoonﬂicunggods. We wiﬁ!mﬁnd&llmmﬁxmm“?-uhnd
termmals mC(mclndmg k) for which sameexten&onwmachmﬂlcmamum sum of matches. 'I‘odo

this, we first prove that we need only consider value functions which assign a number of"O"sor "1"sinC
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within a certain range. Let:
¢ = .lQEBS_W-k: 1(C)I
G = MEROBy; (Ch
= IUNDETys, (04

To simplify the statement of tﬁe lemmat to l’oﬂow, let assume thc standard state after
“SCAN-ASSIGN returns "FAIL™ miean: "Assumins VTO and VB are mmal value ﬁumtwns which define
no full regions on T and B, let SCAN-ASSIGN{ T(1.m), B{1,n), p V'l VBO) return (I*AIL 'k, V'lk T

l) lctq,s.C co,cl, andc,bemwehavcdcﬁnedthcmabove.

Lemma 5.7: Assume the standard state afor SCAN-ASSIGN: roturns: "FAIL". Lot VT and VB be
arbitrary value functions consistent with VT, VB, and p uoder-which there are no 7-valued terminals. If
c1, then for any x, Lx Sc,-1, there are value functions VT and V' also censistent with VT, VB, and
p under which there are no ?-valued terminals such that;

| Myp + Myy Z.“\rr; + Myp and [ONESy(CY = o, +x.

Ifc,=1, there are such functions VT' and V' for which ¢, € JONES\;(Q)| £ ¢;+1.

Proof: 1fs) 1, let D be the set of initially ?-valued terminals in T(l.q) whosc pam are in B(1,5-1).
Then: JONES, (1q) = [ONES, (C)] + IONESW(D)I + IONESVT (1 q)l
Note that IONESW.H(l,q)l = DNFSVTO(I,Q)I + lONBSWH(C)] = !..'AqJ |

Case1 IONES,{C) 2 c, + x, where ifc,=1, x=1. | |
We use induction on QONESW(C)l + !ONFSw(b)I. o
Basis: JONES,,(C) + |[ONES, (D) = c, + x. Then [ONES(C) = ¢, + x as desired.
Induction: Assume that the lemma holds if: ‘ o

¢, +x < JONES,(C)] + JONES lJ(D)l(cl+x+i i)O

When JONES,; (C)] + [ONES (D) = ¢, +x+i, then
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JONES (L@} = ¢, + x + 1+ JONESy; (L) = Lihal +x +i2L4qi+2
3 K)NESVI(C)I = ¢, + x, we are done. Othenme weuse Lemma 5.6-A.

IONES, (1.} - [ZEROS; (1.} > L%qd + 2T lm -2)>3
Thercfore, be Lemma 5.6-A, there are VI and YB”such that MVT' + My 2 My + My and
| JONES (O} + IONESy (D = IONES 14O + IONESy D) -1
By inductive assumpuon therc are VI and VB" such that M -+ MVB" 2 Mvr + My and
IONPSV.r ACH = e +x. |

Case 2 IONF,SW(C)I<c1+x where |fc? 1, x= 0 ; o

Then |7EROSVT(C)| 2¢+cte + x)) =Cy+ G- X lfq(m let E be the set of initially
?-valued terminals on Bfs,n) whose pairs'arc in ‘F(q+ L.m). Let p(€) dcnoteﬂxe bottom pairs of C. o

IZEROS (sl = IZEROS(p{C)} + IZEROS,o(E) + |ZEROS, (s}
(’p(C‘))!‘f WERGSV%(&:))!_ = Lik(n-s+1)1.

‘Weknow [ZEROS, - (8,0} = IZPROS

VB VB,
We use induction on IZEROSVB(p(C))l + [ZEROS (B
Basis: [ZEROS,(p(C) + |ZEROS(E)} = ¢p+¢5x. Then lZFROSw(p(C))I = guHeyx, unplyuu
IONES, 5(p(C))] = ¢, +x as desired.
Induction: Assume the lcmma holds for'
cpte,x < IZFROS B(p((l‘))l + iZEROSW(E)Kco-fc, x+1 fon)O

When [ZEROS.,(p(C) + IZBROS“(E)l <:o+c-7 e A N
IZEROS va(sml = co+c,-x+l+l7l~ROS Bﬂ(s,n)l L%(n-s+l).l+c?-x+i2L%(n-s+l)J+2
If |ZEROS\ (PO = cy+cyx, then IONESW(C)Q = c1+x a8 desired Otherwme, we use
Lemma 5.6-B. - o

| |ZEROS,(s.n)f - ION‘ESVBV(s,n)I ZL %(n-s+ l)J+2~(f' %@-s+ 1)152); 3
By |.emma 5.6-B, there are VT” and VB’ such that My, + MV#’ 2 My + Mygand

[ZEROS,(p(CY)] + IZEROS (P} = pﬁnosva(gcmg-jganqsw(sn ‘1
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By inductive assumption, there are VT’ and VB" such that M~ + Mﬁu 2 My + Myy and

IONES,AC) = ¢, +x. | 0

We now know that there are value' functions sichieving the maximum sum of matches which
assign a8 least as many "1's in C s SCAN-ASBIGN has: swsigned. ‘Hewever, we do not krew if the
particular choiees for I-vatued terminals witf tead to an'opthmal solution. We will now show that cxcept

for possibly one torminal. which-we can caslly find, BCAN-ASSIGN has made'good choiees. Note that

the distinction made betweenc, =1 and:c )} as:in Lomemia 5.7 meccasary. Whea c>1, regardiess of the

extensions of VTo and Vi, being considered, there are enough necessarily unmatched "1';s in T(1,q) or
unmatched "0"s in B(s,n) 50 that we can trade off top matchesagaine Botlom matches. When c,=1, we
know that an optimal assignment: willhdve at least one uAmathed:”1** on T(1,q) or onc unmatched "0"
on 'B(&ni;f,',ﬂéwam we ¢atinol teatle thesc against sachetiief bocause whow a 0™ is unmaichid in B(s,n),

the extra:"0" in T(1,q) may match a "1"in Hq-+1.m). Bhnﬂaﬁwm extra *1" in B(s;n) may match a "0"

in B(1s-1). The algorithm must try both choices -~ leaving one unmatched "1" in T(1,9) or one

unmatchcd "0" in B(s,n)

The terminal whu:h may have been mcorrectly migned is the smallest numbered 1 valued

terminal in B(s,n) which is ?-valued under VB Auume ﬂlis is termmal l Given two termmals u and v,

with u<v in T and p(u) < p(v) in B, assigning "0" to uand "1" to v is always preferable to assignmg "I"

to u and "0” to v. ‘This is betause uny termiinal which v or m)mmteusmﬁeyfmn‘vmed, wor
p(u), respectively, can match when they are O-valued; any terminal which can-tie miiched to u or p(u)
when they are 1-valued; can be maiched to v-or é(v).‘m; when they are 1-valded. Therefore,
assigning "0” ty v and p(u) and 1" 16 vand pév) gives at cast as large a:miatching on-vaeh of T and B as
the opposite asigament, Thorofore, If wrminat ¥ and s pair afe-sralior- numbered-than p(k) and &,

respectively, then it is better to-have terminal | O-valwed and torminal & Twalued than vice versa,

However, the praferred assignment i not cotsistent with VB, | and VB, . We dofinc new value

T R e TR e



functions which maintain the important properties of VT, ; and VB, . but.allew the preferred

assignment.

Definition(sec Figure 5.6): Assume the standard state afier SCAN-ASSIGN returns "FAIL". Let i be the
terminal of smallest index in B(s,n) which is 7-valued-under VB&and I.,*vaillued under VB, ;. Certainly,
PGk, 1€ iKp(k), let h = i; otherwise, ket h = p(k). By definition of h, sll. I-valued terminals in C are
paired with torminals in B(hn), Define VT, and Vi, as follows. Ifh.= p(k), then VT, = VT, , and
VB, = VB,_,. Ifh# p(k), then VT, and VB, agree with VT, and VB, | exceptath, K, pl), and p(i,
where:

VT () = 1 O VI

VA, (o) = 1 VB M) =1
Note that OK-1(VT,.1x) holds for all x, 1Sx<q, and OK-0(VB,,.v.0) holds for all y, sSy<n. The

“standard state aRer SCAN-ASSIGN returns 'FAIL’" will now include h, VT, and VB, as just defined:

We will now prove that VT, and"VB are satisfactbry éxtcnsimns of VT, and VB,, i.c. they will
lead to a pair of value functions which achieve the maximum macchmg M I + M\,B Lcmma 58 gives
properties of cxtensnons of VT and VBfx whtch wnll be nccded to provc that n is sufﬁcient to consider

only these cxtensmns.

Lemma 58: Assume the standard state after SCAN-ASSIGN returns "FAIL", -Let VT and VB be
extensions of VT, and VB, |

A. If there is a ?-valued terminal in T(p(h).q) under VT& whichis I- vdvcdunder\"llm&\t f
any 1-valued terminal, i, in T(1,q) under VT, there is.a m function:my,- adnevmc M, which
matches cach 0-valued terminal in T(Lq) toa 1-valued terminalin T(1.¢) and leaves iunmatehed.

B I there is a *-valued terminal in ) undor VB,, which i O-valued under VI, then, for any

0-valued terminal, j, in (s,n) under VB, therc is.a maiching function myy achieving My, which maiches




Figure 5.6: Definition of h.
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under VBO



each 1-valued terminal in B(s,n) to a O-valued terminal in B(s.n) and leaves j uhmatched.

Proof of A: If suffices o show that [ZEROS,(x.q) < JONES, {xq} for all x in T(L,q). If this is true, '
then we can produce a matching on T(l.q!:\ghicﬁ matches each‘ 0" in T(1 q) to a "1" in T(1,q) and does
not match a given 1-valued tcmin.\‘hl’i. We define ;hcmé;chmg function by scanning T(1,q) fromq to 1
and matching cach "0" mountered fw..a yet umnam,f'lff;gf,hiﬂ\e: index other than i. ‘The fact that
IZEROS (1 < JONES,, (x.q) guarantees that we willfind such an unmaiched "1 for cach "0, This
matching can be extended to a matc’hiﬁg which achieves Mw»by letting the matching agree with any
matching function achicving Mv[ on "0"s in 'l‘(q+bl ,m).
For any x in T(1,q), we will show that }zsgosﬁfx.q)tgpggsﬁfx,qx byshoﬁin‘g that more
than half the terminals in T(x,q) arc 1-valued underVT Supposls X 5 p(h). Then, by hypothesis:
JONES (5.0} 2 IONES, 1 (sl + 1
Forx = 1 |ONESyy_(1a} = L%qJ. Forx> 1, we know that OK-1(VTy.Lx-1) holds. Therefor,
1ONES,; (ol zt@pi&(i’-m > L¥(qx-+1) and “
JONES, (x.qi > L%(q-w 1)1 + 1, as desired. "
Suppose pth) {x € q. We cla‘nh that lONESka(Lx-I)Q-( L(x-1)1. If ﬁng, this gives:
IONES,1(x.94 2 ONESyp (1)l > L¥g- LU(-1d 2 Lih(@r+1) ) as desired.
Ifx> k, then ONES,; (Lx-Dj = IONESyy _(1x-1)< L1, Otherwise, we would have chosen
1259, butx < . Ifx < k. then since x> p(h), peh)sek. Inthiscase,
JONES,; (13-} = ONESy; (La-Dj-1 |
since VT (p(h))=7and VT -1{(P(N))=1 and the value functions agree evcrywherc clse on T(1,k-1). Since

OK-1(VT,. . Lx-1) holds, JONESy (Lx-DI < LI(x-1).

Proof of B: It suffices to show that JONES, (s} < [ZEROS,g(s.y)l for all y in B(s.n) so that al

1-valued terminals in B(s.n) can be matched to 0-valucd terminals in B(s.) without using j.- Produce the
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matching by canning from 8 to.8.. As in.the proof of A, we prove that more than half the terminals in
B(s,y) are 0-valued. Fory > h, by hypothesis: . o _
|ZEROS, 5(sy) 2 lZEBQSv .h(“x PR
We know IZEROSQ»,(S-:}M =L %fg;g;)- 14 and, ity <, OKA(VRyy+1.0) holds. Therefore:
IZPIBO%nh(S-M§F%§n§{Q Jo LA+ D) 2 L%Gys+1)d and

VZEROS, (80 2 L%(y3+ 1) + 1, a8 desis

For y < h, iy+1,n) containg_p(k) and al] I1-valued terminals in C under VB, . Therefore, if

ZEROSyg, -+ L0 = LU(ay), we would have choen y + 1 955, buty g 8. Thorefore:
IZEROS g (y+LoN = JZEROS . (y +10NS LYY and -

bt

IZEROS () 2 ZEROBy, (s} f¥(rs+d: Lh(ayd 2 LhG-s+ DL, O

Now that we have Lemma 5.8, we can prové a two part theorém whiah, when combined with
Lemma 3.7, proves that In ouf séarch foF an ‘optimf pait 6F value Arnétions, it 5 suMficient 1o consider
only value functions consistent with extonsions of VT, and VB,. Ifc,> 1, the eatonsions give all
 terminals on T(LQ) aad Ban) 07 or "1 "‘““” if 6y = 1, the sarminals h and pih) are the oply terminals

in thesc intervals whose values are not fixed.

Theorem S.4-A: Assume the standard state after SCAN-ASSIGN returns "FAIL". Let VT and VB be
value functions conisicnt with VT, VB, and p for hich no terminal in"T-valued and such that
ONES, (O}l = ¢, +ci-L. There are extonsions, VT__ and VB, of VT, and VB, comsistent with p and
(i) no terminals are T-valued
(i all -vabued termimals ia ‘T(1.q) under VT, with pairs in B(1s-1) arc 0-valiied under VT,

(i) alt ?-valued terminals in B(s.n) under V3, with pairs in T(q+1,m) are 1-valued under VB,
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(iv) if Cy2 1, all ?-valucd terminals in-C.under Wﬁacep: p(h) arcivalucﬁ'under vra *(é._,'-lfof
them), and VTu(p(h)z:O

(OMyr_+Myg 2 My + My,

Proof: Properties (ii) through (iv) define all valued of VT, and VB, on (1.q) and B(s,n) cxcept those
of p(h) and h when c, = 1. Ifc, = 1, we will begin by letting VT__(p(h)J = VB_(h) = 0. ‘This may be

changed. The valucs of terminals in 'T(q+1,m) and B(1 &) whose pairs are in B(sn) and T(1,g) arc also

Figure 5.7 illustrates. We stifl must specify the values under VT, and VBex of terminal pairs with one
terminal of cach pair in T(q+ 1,m) and the other in B(:s-1). For *-valued terminals under Vfo and VB
of this type, VT, and VB_ agree with VT and VB, RS

Wé prove Mwﬂ + M\'Tu 2 MVT + Mvn by comparing the,maximum matchings in various
intervals and combining. Let m.y be a matching function achieving Myg and my;. be a matching,

function achicving My

I. Consider B(1,5-1). LetS, be the set of -valued términals in B(i,sil) unﬁcrv'Vﬂoiwx;th pairs in T(l,q)
which are 1-valued under VB. The only terminals in B(1,s-1) whiéﬁ are ?—Valilecii‘unc‘l\er VBb and 1-valued
under VB, are those which are ?-valued under VB wi,tl)-pé’irs m T(q +_1,m,),. This ,_fol}lowsffrom the fact
that any %-valued terminal under VB, which is 1-valued under VB, is in B(sn), and any ?-valued
terminal under VB, with a pair in '[(L,q) is 0-valucd upder VB,,. Functions VB, and VB agree on all
?-valued terminals in B(1,5-1) under VB, with pairs in T(q+1,m). Therefore, every 1-valued tenr}iml iu
B(1,s-1) under VBex is 1-valued under VB. Each of these terminals whlch mma:chedunder my,g can be
matched to the same O-valued terminal under a matching rﬁmqt,iog:foté Vl}a.,_ ]ct m“a,,bc a matching

function for VB, which matches "1"s in B(1,8-1) as my, does. The matching under myg . .on B(s.n) will

be defined later. We have:
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Figure 8.7: Assignments under Theorem A4-A.
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"1"s under VBe‘x
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|matched "1"s in B(1,3-1) under mVB | =
) Imatched "I"s in B(l s-l) usdcrmvnl lmatchcd "l"s in Sl under mvnl

imatched "1"s in B(1,5-1) under myn- 12> |matched "1 wﬁ(l.s-l) under mVB] IS, 1.
- Rdar": S ,‘* . ]

1. Consider T(q+1 ,m). Let Sﬂ be the set of "-vaiued tcxmmals under \('l‘ﬂ in T(q+1, m) with pairs in
B(s,n) which are 0-valued under VT, Each &vatuedminal in T(q+1 m) undcs' VT, sﬂ-valued under
VT, or is T-valued under VTG and VT and is pmmd wuh a tcrmmal 0 B(l s-1). l‘hcrefm'e every
0-vatued mmnnai in l(q+l,m under V’I’ex is 0—valued under VT. Every such b ' ‘wmch is matched
under my. can be matched to the same 1" uhder a malching unciion for VT, Welet mvr“beauch a
matching function on T(q+1,m). | '
| Imatched "0"s in T(q+1,m) under mVl‘ul =.
jmatched "0"s in T(q+ 1,m) under my,| - matched "0"s in S, under m,.,|

_|matched "0"s in T(q+1,m) under-mw. | 2 Imatched "0”s in T(q+ 1,Mm) under _mw.l - Jsol.
. '

li[. Consider B(s,n). Since VBa(h) = 0, Lemma 5.8-B holds. Under VB, each 1-valued terminal in
B(s,n) can be matched to a O-valued terminal in B(s;_n) while leaving any particular O-valued terminal
unmatched. Complete the matching "ivnu defined on B(l,s-l) i.n I‘ by such a matching on B(g.n) which
leaves h unmatched. We know that: o
JONES, (C)| = IONESVT“,(CX = ¢ +¢-1 and.
[1-valucd terminals in B(s,n) under VB, which are ?-valued under VB, and have pairs in T(q-+1,m)}
= |terminals in B(s,n) which are ?-valued under VBn and have pairs in ﬂq%l,ﬁpﬁ
= |1-valuod terminals in I¥s,n) under VB which arc ?-valued under VR, and have pairs in T(g+1,m)|
+ ISyl
Then, jmatched "1"s in B(s,n) under.mvrul = K)NF.SVBu(a.n)I = JONES(s.n)f + IS,)
2 Imatched "1"s in B(s,n) under myg| + ).
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IV. Consider T(1,q). We gwst consider ¢, = | and 61 separaisly.
For ¢)1, there ase other terminals-in. UNDEF - (C):beside h.- These terminals must fie in

T(k+ 1,q), since no terminal except h in T{L) s 2»%&1“ WYE& ; Sinee kaﬂp(h) and these terminals

are 1-valued under VT o L4Mma S.B_-A‘ applies. Under VT _, ;m;;!ﬂ";éshiﬂhq) igwbermamhed toa

"17in T(Lq). Complete the matchingmyy defnerk o T(q:-1 sy in U with such a matching on T(1,q).

We know that: ,

[ZFROS\(CN = [ZERGE, (O mty+ b 0
[0-valued terminals in T(1.9) under. VI which are 2-vajued under VTQ and have pairsin B(1;8-1)|
= |"-valued mﬂnmals in T(1,q) wnder. VE, with paisin B(1Le1) -

= [0-valued termipals in T(L,q) under VT which. um’!»ﬂhed uader YV, and havepairs in B(Ls-1)}

+ 18,

* Then fmatched "0"s i T(1.q) under myy | = [ZEROSyy (1al = [ZEROS ;dlai + IS,

2 Imatched "0"s in T(Lg)undermy,| +:18 |-
Combining I through 1V gives: | |
Mvrﬁ +. MV'&; 2 l:anmwa)l + Imnae(mvﬁgﬂ;a kame(mwld—« frangatmy i = Myy+ Myy
For c,=1, since all 1-xalued terminals in T(Lq) under VT, are Orvalued under VT,
ON'ESVT“(I.Q) = ONESvrk(l‘Q).fSM OK:-UV Ty, 1x) holds for all x in W1q), all L%qd "1%s in
T(1,9) can be matched to ';9"8 in T(1.q) uader VT_. The deflnitian of myp_ On T(l.q) is such a
matching.
Imatched "0"s on T(L.q) under mﬁ;l; =L%qd = lZF.ROSvfu{l;,q)tr(F %q 1L %qd)
2 ZEROB{1.al + I5,] - (FhqTL hqd)
zghlawhed "0"sin T(1.9) under my ) + 48, (TRqFL%qd). -

(i) If q is cven, the above implies, with | through Ik that My + My, 2 M+ M8
« ex

desired.



-
(ii) If any of the inequalitics doduced in | ihrotgh V. kitHet weliave
uﬂ. i+ Mm >uw+ Mv,, (r%qum W

CL%gd = m'ﬁ"sm’f(r e |

terminal i’ T(q+1,m) under Vs 1%% W *A,be ahy M&éﬂ temﬁnat‘m ‘l‘(q#- I,m)

matched under myy is maiched to ) T+, mymd-is mhedzwﬂ:e«m»"ﬂ”-by My

Therefore, there must be an unmatched lwaiued min#‘amkr inf,f h"l‘(t;-r‘i.m We cm mend

myy_so that the unmaiched "0" in T(1,q) matches this "1". Then. '
jmatched "0%s in T(1 q)andermw l = tmateheé"ﬁ"sm 'l’(lq)underme ‘and
Myr_ + Mvn 2Myp+ My |

We now suppose that S,1>0. We know that

ched ™12 it n(i,s-xmmerm,,,t 184 Alsp

lZEROSW (g1 !ZERGSVB(I s-l)l + 1811 ?ﬁm

{ZEROBy (La1)- mm"r'mnaa-ww iy 1«
 [ZEROS, y(Lw 1) IS, - pasched mm mm) memvg ¥ ;slzzz

There must be an unmatched “0" in B(1s-1) under ‘“vn since no "0" in B(I,s-l) masche&a **in

Imamheé"l"smﬂiwljm&mw | = fmatcl

B(s.n) under tiis matching function.. Wbenmv,, mdeﬁueﬂ o a(ia)ghi m W waﬂé& unmamhed. ‘
Modify VT, and VB, so that VT LP) = VB )= on: zm (§+1,m), myr

unchanged. On T(L,q), Lemma 5.8-A now appmmm«ﬁnemv;i mﬁa aﬂ:&valued terminals
on T(L,q) arc matched to I-valued termisals oo Bl ). |

Imatched "0"s in T(1.q) under my; | = L%q.l_ as before.
- ,
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On ZBRQSVB&(L&-IL: m“;.&aw*ao that -8 préviously aminatched "0" is matched to h. On

ZE..RQQW;(&&). s, isunchanged.. Therefose
M“"Tu + ?Mvs;‘ & lrange(m, “z)t Hmﬁm"“ }mww + {rangemyp)l = My + Myp.
Note that we have changed VT, and VB,, so that p(h) and h are 1-valued. ' ’ -8

Now that we have Theorem s 4-A we klww how to handle "fadures whcn c.,)l By
Lemma 5. 7 there are vakoe mnctaons VT, and VB coaaimnt wtth p, Vl‘ and VBO for which
K)N!:Svr (C)l = ¢ +cy 1 and whu:h achieve the maxhnum af Mv'r + MVB évcr all funcnons consistent
with p, V’l and VB, Given these functions, we apply rbeurc;n 5 4-A 1) deducg that then; are extensions
of VT, and VB, consistent with p and satisfying (i) thmuda (iv) of l‘heorem S 4-A which achieve
M. + My ’l‘hcrcfnre for alf tetminals whicﬁ,m@viﬁ:éd of 1-Valuied tindér V'I‘fx and VBﬁ, we can
fix their values to be those under VT e Vi f’,ﬂ?“hlf ferminalt Whese véi'ﬁes are dictated by (li)
through (iv) of Theorem 5.4-A, we can fix their values as dictated. We now have new initihﬁalu'e
functions under which no terminal in T(1,q) or B(s,n) is 7-valued. We are guarameed that Qx;cgfe arcvduc
" functions which achieve wa + Mvar and which are consistent with these new initial value fuactions.
Some terminals within T(q+1,m) and B(1.s-1) foay have acqmred 0/1 valucs under the new initial Yalue
ﬁxnctiqng. We can rgcumjvgly apply t.healgomhm. begip?tpg w;th computation of left-regions and
right-regions, to find extensions of the new initial value ﬁmgti?nsv whach Jgaxnmaze the sum of mnchuou
T(1,m) and B(1,n). The number of "-vamcdteunmalshu decr@aged. smce atleast h and p(h) have
changed from "-valued to O-valued. . | R
When =1, we ﬁrst need a modnﬁed ve:slon of’lheorem 5 4-A Wheu c,-l Lemma 5.7 only
guarantees that there arc Runctions achicvmg the maximum maiching, M, + Mvn , with IONESW )
equal to ¢, or ¢, +1. Theorem S4-A can only be applied if bNBSﬁf'(C)[ & cl. “Thérefore, we prove a

modified version, Theorem 5.4-B, for the casc that IONESWf(CM =c,+1

" T AN AR, o S
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Theorem 54-B: Assume the siandasd state aftor SCAN-ASSIGN retarns "FAIL". Let ¢y=1. Let VT
and VB be value functions consistent with VTo, VB, and p for whkhnowm:nal is Hvalued and sach
that IONESyy(€)} = c;+1. There are extensions; VT, and VB,, of VT, and VB, consistent With p
.and such that:

(i) no terminals are "-valucd, A 7 |

(ii) all "-valucd tcrmmals inT (1 q) undcr VT with pairs in B(l s-l) are 0-valucd under VT

<(m) all "-valucd termmals in B(s,n) under VB with pairs in T(q+l m) are 1 valued under

VB,

ex'

Myr +Moo > Mow + Mos.
VTex Vlfq— vT VB

Proof: We nced to modify the proof to Theorem 5.4-A 50 that the roles of intervals T(1.9) and B(s,n) are
interchanged. Functions VT, and VB,, are defined as before except that we begin with VT (p(h)) =

VB, (h) =

1. In B(L;s-1), as for Theorem 5.4-A.

1. In T(q+1.m), as for Theofem 5.4-A.

M. In B(sn). Lemma58B does not hold, but 7EROSVB s,n) = ZEROSVB (s,n) Therefore

OK-(V Bu,y,n) holds for aify in B(s.n) All L'&(n—s+ I)J “G"s in B(s,n) can be mamhed to "l"s in B(s,n)

under VB__. Asmmcpmofommnu-;\ R T R ey
 IONES (s + IS = IONES,;, (sl and

Imatched “1's on ) under my | = JONESp (s} - (F Hoes+ DR 3 5 D)

> Imatched ™17 on B under myg| + 15,1 (P s+ 1 -LU(a5+1)J)

1V. Lemma 5.8-A does hold and we can define my;._ 50 that p(h) i left usmaiched and
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|matched "0"'s on T(1.q) under ,mwgl = lZE_KOSW“(MX y
= |ZEROS, (Lo} + IS;| 2 Imatched "0"s in TeL) under myyl + I8,]
We have Mwex + Mvsu, 2 MVT"" MVB -{r 'A(n-s»i-»l)'I-L%(n-sfl)J). Ifn-s+1isevenor
any of the inequalitics in I through 1V are surict, we have the desirediresult. Assume not. If|Sy|=0, then
L%(n-s+1)J + 1 =}matched "1"s on B(sé)nndcr myp|.
There must be a O-valued terminal in B(1,s-1) which matchesa 1-valued terminal in Ii(s,n) under my,,.
This O-vglugd»; terminal under VB i;:also&vplur;d»gndw ysﬂ and unmaiched under mvnex-. We can
modify mv% so that the unmatghed 1" in.B(s.n) maiches ,thfi,sv,"O.";;siwim, o
L Myp tMyp 2 My k My
IF|Syf > 0, we modify VT, and VB,,. We have:
&QNBSWa(q%r Lm)| - matched "0"s in T(g + L,m) under mwzﬂl :
= [ONESy{q+ 1Lm)| + lSol ¢imatched "0"s in T(q -+ Lm) under my | - 1Sy)) 2 2
We conclude that there js an unmatched 1-valued terminal in T(q -+ 1.m) under My - Let VT _ (p(h)) =
VB, (h) = 0. Now p(h) can match the ynmatched 1-valued terminal.in T(g+1,m) and lrause(mwﬁ)l is
increascd by 1. In B(s,n), l.emma 5.8-B now applieg and we still bave
Imatched "1"s in B{s,n) under mm;& = L%(n-s+1)d

Weconclude that My + My 2 Myp + Mg o - a
fe co » = T

Given Theorem 54-B in addition to Theorem S54-A, ‘we can dedﬁce that there are value
functions consistent with VT, and VB, and satisfying (ii) and (iii) of Theorem 54-A/B which achieve
the maximum pf‘ MVT + M, over all functions éo:'\ki;stcnt Qith p,i‘V"I‘Zo and ‘VBO. However, we do not
know what the value of p(h) and h should be. If the terminal pair is assigned "0, there is an extra "0” at
the top which may be matched to some terminal in T(q+ 1,m), but one 'O-vaiuéd: tcnhinal in B(s,n) yvill be
unmatched. If the pair is assigned "1", the opposite is true, Thercfore, we do not know which to choose

until we have completed assignments within T(q+ 1,m) and B(1,s-1). Sincc p(h) and h .may be the only
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?-valued terminals in T(1,q) and B(s,n) under VTé:mﬂVB‘;.'We cannot Usca fecursive application of the
algorithm. Therefore, the algorithm must try both ‘postibifities for B and:p(h). If we were to apply the
algorithm recursively for each choice; the running time could be cxponertial in the number of terminals.
Therefore, we use a modification of the procedures we have describéd so &r The miin proéédul'é, which
given VT, and VB, finds VT and VB which maximize My, + ﬁvh.';"u:’éélkd MAX-MATCH. The
modified version is caled BETTER-MATCH. -

When we arc trying value "1"' for h and pth), we will recursively apply MAX-MATCH,
beginning with the computation of left-regions and right-régions; on T{1:m) and‘B(1,n) for initial vafue
functions which extend VT, and V»;B}x as dictated by pmpcmes{ﬁ) and (iii)l of Theorem 5.4-A/B and
under which p(h) and h are 1-valued. When we are trying vatue "0 for h and p’(h),'h’re‘ use initial valued
functions which arc the same as for the first ehoice except that pfhy snd h are 0-vatued.” However, in this
case, BETTER-MATCH is uscd. Proccdure BETTER-MATCH does mot look for a pair of value
functions consistent with the new initial value functions and which ‘maximizes My + My, over all
consistent function pairs. R‘amer the procedire looks for 2 pairofcoudﬁnt ﬁmcﬁons which maximizes
My + My over all consistent ﬁ:mtiongmrsmdadﬁeves"a*m inatehing than any function pair
consistent with the initial value functions when pgh) and 'l are'I-vehued: Consider all function pairs
which maiimizc the sum of matchings on T and B over afl ﬁim!ioitth ‘with gVTﬁ and VB, ‘It
under one of thcse, h and p(h) are I-valucd. then a ﬁm’ction pair #chicving a 'better matching with p(h)
andhO-valueddoesnotexnsl. Lookmg(mly forbettermhimaﬂowsusmboundﬂ\esearch spaceof
the algorithm so that exponenual runmnx mnc 1s avom Now mat we owld aqua!ly we!l have chosen
to look for maxnmlzmg matchmgs undcr thc "0" chmcc and beucr ma&chmp undcr the "l" choice.

LcmmaS.91suscdtoboundd1escardl.
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Lemma 5.9 (see Figure 5.8): .Auum’e the standard state sfter SCAN-ASSIGN returns "FAIL". Letc,=1.
Let V’I‘ao' and VB, be value ﬁmctions coasistem with VT, VB&, p. and (u) and (iii) of
Theorem 5.4-A/B under which p(h) and h are ﬂbvalued. If under some matchmg function mvn which
achieves MVB , there i an unmatched "0" in B(l 5 I) thcn theﬁ: are vatued funcnons VT exl and VB,
consistent with all of the above and under which p(h) and h are ]-valued such that
Myr, + Mg 2 Myr  + Myp
Proof: Let VT, and VB_, agree with' V'l‘e,‘o and VB, everywhere cxcept at pth) and h, where
VT, (p(h)) = VB, (h) = 1. Déﬂne mvr to assign cxactly those matches which ase assigned by
mVT 0anddonot involve p{h), wheumvT achieves Myy VI g Then: .
My, 2 s 2 ansetmy b =My
Since VB, is an extension of VB, and VB (h)=0, Lemma 5.8-B applies. Let m"mm0 be a
matching function for VBMo which agrees with mv%‘0 for each range value in B(l,s-}) but matches each
"I in Ban) 0 2 "0" in Bsn) while leaving b unmatched.- Any "% in-B(t-1) which was unmatched
under my,y 0 is unmatched under m'y oo e
|range{m’ vB )| = |matched "1's on B(1,s-1) under mVB l + IONESVB (s,n)l
= lrange(mvnﬂo)l = M“M |
Let m“ul be a matching function for VB, , which assigns all.matcha that m'\mem0 assigns, and, ’in
addition, matches h to an unmatched 0-valued terminal in B(1,s-1). Then
Mw,‘ml 2 Irange(mvnul)l = Iran;e(m'vnuo)ﬁl = Mvamﬂ and

‘M +M M + M 0
VTexl vBe:xl 2 "Tuo V"uo

L.emma 5.9 allows us to modify the assignment procedures described so far while pursuing the
0-valued choice for p(h) and h. While pursuing this choice, supposc that MAX-MATCH would make an

assignment giving a new pair of value functions, cither after computing lef-regions and right-regions or
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Figure 5.8: Configuration in proof of Lemma 5.9.

If:
matched to something

V,rexo(p(h)) = 0/’/’—’—\
T: 1 "

. ph) = el 1 m
1‘ - S h n
B- hd - A adll -
1T VB_,(h) =0
unmatched "0" K_unmatched
Then becomes:
unmatched unmatched
e 1 V l C(l(p(h)) = l X p(h) q "]." # m
I : > g > -~ Y
1 o IIOII S : Lf Il
B: *

S~ A VB, =1

matches
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after processing a retum of "FAIL" from a call of SCAN-ASSIGN. Suppose we can deduce that there is
a pair of value functions, VT and VBﬂ, consistent with painng function p and the new valuc functions,
which maximizes M. +M,y over all such consistent ﬂmctions but for whnch a matchmg functnon
achieving MVB Ieaves a"0" in B(l 51 unmatched Then BF]‘]‘ER MATCH necd not consuder any
pair of functions consistent with the new value functions. Nope will méucc bettcr matchm;s than the
functions found when pursuing e 1—vaiued choice for p(ﬁ) and h. Th:s tme becausc Lemma 5.9 can be
applicd to VT, and VB to give functlons y:eldhu ad good-a:sum of matchmgsvunyd_cr which h and p(h)
are.1-valued. 7 ‘

If the pair of new value func;ion; whichhm hmrehued is ome.of two' choices after a call on
-SCAN-ASSION which resurned "FAIL", then this choice is emmamd BETTBR«MA I'CH never needs
to pursue two choices. If the pair of new value mm ll dcﬁned by assngnment to left-regions and
right-regions, then by Theorem 5.2, any pair of value ﬁmc?qggs;wmnu Mw+ MVB over value
functions qohsistent with p and the new valueﬁ:mdomdnp maximizes MW+ Mvi& 6ver value functions
consistent with p and the old value ﬁancﬁbns Since t;wu‘is such a function under \\;hich a"0" in B{1,5-1)
can be leﬁ unmatched no ﬁmcmm conslstcnt with the old valucd fu;nctlon wnll produce a sum of
matchmss better that that pmduced under the l-valued chonce for h and p(h). Procedure
BETTER-MATCH necd not pursue functions con‘s;stgm,rxh the old: valpe funcaons cither. Therefore,
BETTER-MATCH returns "(nullnul)",indicating that'the 0-valued choice for h and p(h) will ot yield
a larger sum of matchings than the 1-valued choice. Fo:ﬂxe same ereéqn,;fBE"ITF,R-MATCH returns
“(null,null)"” if c,)l when SCAN-ASSIGN returns "ﬁﬂ[‘.",’ o

The main procedure, MAX MA l‘CH is prcseﬂﬁa&in Hgm'c$9 “Our original routing problem
is solved by calling MAX- MA I‘CH(T(Lm);B(l n),p,V'Fo,Vho) whcre W and VB, represent the local

conncctions. The modified pmcedure BEI'I‘BR-MA’ICH used whcn processing a 0-valued choice for

p(h) and h, is presentcd mhgurejslo. Supposc BE'ITER-MA FCH(T(1,m),B(1,n),p, VT, VB) returns
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Fipm 5.9 'The main procedure.

MAX- MATCH(T(I m) ﬂ(l n),p,VT VBo)

/Fmds extensions of VT and VB whlch maxmuze MVT"' Mv&over all such extensnons/

VT VTandVB VB

Computé l v Ly Ry andR
DO WHIU: there are any "-valued termmals in T(LL o) TR,

END

), ULLyg.and (R ygo8)

Viie) =0 and Vgl |

'END

Compute R, and Ry /assigning "0"s only affects dﬂwregsons/
FOR cach "-valued tcrmmal x in T(R‘mm) DO

“VHx).=1and VIg(x) =1
END :

. Compute by andbyy - o < /asigning™1"s only affects left-region/

FOR cach ?-valued terminal y in B(1, l‘v DO ,
VBly):=Oand VIp(yk=0 "~

END

Compute Ry and Rvn

FOR cach ?-valued terminal y in ll(R“,n) DO

Viy): =1 and VT(P(.Y))
END

" Compute LW and LVB

IF there are any valued termmals in T(Lv.r-l—l er 1) and B(L B+ 1 RVB 1)'[ HEN DO

~ (STATUS, VT, VB):= SCAN-A

. m' R'vrl‘vrl

n:=R L\ml
VTissi)chﬂlatV’i’(X)*'VTG.ﬁ-P'x) DR
VB'is such that VB' = VB(Lvn+x)

" p’'maintains pairs corrcspondlng  those under | P when both termmals of the pair are

in T(1.m’) and B(1,n’), For other term in T(Lm') and Ln’), p’ assigns "*"
i j%?m’)ﬁl aﬁ?qw VB’) .

IE STATUS = "FAIL k" THEN DO, .
VI = VT, and VR = VB

Cakumﬂl.ﬂd% e R
I¥ p'(h)=k THEN V1 (k) l and VB’(p (k))'-l
FOR allx i 1@ g)other thit pth)and kDO -
IF V'l"(x)-—? THEN
 IF p'(x)is in(1.51) THEN - 3
VT'(x): =0 and VB{(p (x)) 0

ELSEVTa): =1 and VB (p'x)):=1

END :
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FOR all y in B(s,n’) DO b !
IF VB'(y)="and p'(y) is in 'l(q+1 m )THEN
VB(y): =l ad VF(p'(s)):=1"
END '
IF¢,> 1 THEN DO : : :
VB(h): =0 and VI{p'th)): =0
VT, vs) = (MAX*&M'! CH@(slm').x B(l.n‘) VT, VB))
END .
ch,—II‘HENDO Lo
VB'(h):=1and VT'(p'th)): = l
(VT,,.VB, ):= MAX-MATCHET(1m?), ML WV VB
VB'(h): =0 and VF'(W ~
(VT4 VB )i = BEFTER-MA &CH’!(l,m ),B(l,n ).s 1,p',V1',VB))
IF VI 5= null OR MV'l +M% gﬂw 'PMVB FHEN

(vr Vi ) =(VT, .vs
ELSE(VT, vn = (V'r,o,vs“,)
END
END SERRRPEN
FOR cach x in T(Ly+ LRy;-1) DO
| V"l‘(x): VT ((X",LVT) o
 END '
FOR each y in B(I. VB'HR I)DO
VBa):= VB (x-L, n) |
END
END
RETURN(VT,VB)
END MAX-MATCH
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Figure 5.10: The modlﬁed procedure for ﬂ-valned cblta.

BE'I'I‘ER MATCH(T(, m) B(l,a),d,p,vrn,vno}

/If can guarantee that a pair of extensions of VT, and- VB, which maximize M. +M,q over all such
pairs of cxtensions allow an unmatched @-valicd termmal in:B(1,d) under a maxlmum matching, then
returns (null,nuil). . Otherwise, rcturns a. pair Of extensiotis of V1) and VB, 1f d <n, it is assumed that
B(d+ 1,n) has no ?-valucd terminals under VBO and that makhmp ﬁu B(d+l ,n) and B(1,d) can be
maximized independent of each other./

S VT=VT, ané‘VBzz‘VBe'
Compute Ly, L.yp, RVP ande oo :
IF there is a right-region in B(1,d) cuntaimng ﬂxaét%y one termmal THEN

RETURN{null,nuil)

DO WHILE there are any *vahued termials in T(LLy 1), TR .m), B(Ly ). and B(RVB,n)

END

FOR each ?-valued tcrmmal Xi in 'T(u, v} PO; ‘
IF p(x) 8 in HRVB d) THFN RF’ TURN (pgll,nuﬂ)
ELSE VI(x): =0 and Vll(p(x)) =0 ‘
END
Compute Ry, and Ry
fFthercisa nght-mgmn in B(1.d) contammg exactly one termmal THEN
RETURN(null,null)
FOR cach 7-valued terminal x in 'I‘(me) BO
VT{x): =1 and VB{p(x)): =
END _
Compute L and L,
FOR each ?-valued terminat y in B(u‘vn) DO
VB(y): =0 and VI(p(y)): =0
END
Compute Ry, and Ryp
IF there is a right-region in B(1.d) containing exactly onc terminal THEN
RETURN(nullaull)
FOR cach 7-valued terminal y in Bﬂl“,n) DO
VB(y): =1 and VT{p(y)): =1 ‘
END '

Compute L, and Ly

IF there arc any 7-valued terminals in T(LVT+ I'R\rr 1§) and B(Lvn"'l RVB 1) THEN DO

m':= Ryplyl

n' = RygLyyl

VT’ is such that VT'(x) = VT(Lyp+x)
VB' is such that VB'(x) = VB(Ly+x)

p’ maintains pairs corresponding to those under p when both terminals of the pair are
in T(1,m’) and B(1,n°). For other terminals in T(1,m’) and B(1,n’), p’ assigns "*"
(STATUS, VI, VB ):= SCAN-ASSIGN(T(1.m %,B(1,n"),p" V1", VR)




. IF STATUS. = "FAIL&" THEN DO .
VI':= VT, and VB': = VB

&Ienhtc mkh. andc,

IFc,> 1 THEN RETURN (lu!l,null)

IF ¢ = TTHENDO - :

FOR allx in DO
L1 . ».
‘ IF p'(x) is in B(1,s-1) THEN
VTI'(x):=0and VB(p (x)):=0
CRLSEVT(R): =1 and VB (p'(x)): =1
/Only k and P (k) are, assmned by. the ELSE statemeint/

“END
FOR auym‘%
y=1 and p'(y)is in T(q+1,m") THEN
S . Ylu)!) #,lﬂﬂdyl Po)=1
"END

(VTVB):= uw'mm MATCH(T(1m’),B(Ln’)n’ p' VT.VB))
IFVT = nunfmm Riﬁ‘URN (il null)
-, - END,
END '
VT(x): = VTr(x-LVT)
_ END - 4
FOR each y in B(Lyg+ LRy 1) DO
VBaK= VBfalyy
END
END
RETURN(VT,VB)
END BETTER-MATCH
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VT;and VB, which are not "null”. Functions VT and VBI may not maxmm My + MVB over all value
funcnons consistent with p, VT, and VB However, i “V'r +Mva hhemzr that the maximum sum of
matches for the 1-valued choice, then M "‘Mvn docs mumte MW+MVB Lemma 5.10 states the

property of MVTr+ Mvsf which allows us to m,akcj ﬂns_ cmc“iuﬁm

Lemma '5.10; Lf:t YBO ahd d be ~su¢h that if d<n, no terminal in B(d+1,n) is ’!-vglued,
fZEROSVBo(d+1,n)| = L‘/i(n-d).H 1. and for “’:’myi 0;valueq gt‘c;minal j in }B(d+1,n), each l'valﬁed
terminal in B(d-+ 1,n) can be matched to  0-valusd terminal in B(d -+ 1.0) while keaving j unmatched. IF
BETTER-MATCH(T(Lm) X(Ln)d,p.VT,,V,) returns “(nuflaufl)", then there is a pair of value
functions consistent with p VTG and VBQ max;mizing MVT+Mv-over al such consistéﬁt functions and
for which there is a matching function achicving the mﬁximum maachlﬂim B which does not match all
"0"s in B(1,d). 1f BETTER-MATCH(T(1,m),B(1. H)ﬂ,P.VTo.V Ba) netums ‘(’V’!‘ VBr) with VT and VB
not "null", then there are no ?-valued terminals under VT and VB aud xf ﬂle:e are VT and VB

consistent with p, VT, and VB, for which MW+M“>MW +Mw, m therc are. VT and VB |
 consistent with p, VT, and VR, for which MVT +Mvn 2 MVT+M VB aad under which mmhma

function achieving My, leavesa "0” in B(L.d) unmhed.
s

Proof: By induction on the number of recursive calls o BETTER-MATCH before the call being
considered returns. B

| Basis: no recursive calls. By Theorem 5.2, any extqnsiéns of VT, and VB, defined in the
WHILE loop, which assigns within full regions, can be extended o functions ’méximizing Myr+Myy
over all functions consistent with p. VT, and VB, We know thatifd(n.d-ﬂ must be the end of a full
nght-regxon Otherwise, we would have:

|ZEROS,,, (d+1,1(d+1)) <M%(r(d+1yrd)7, which implies

VBo(

IONESVBa(d +Ld+ 1)) > L¥%((d+1)-d)J.
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In this case, not alt*1"sin B(d +1,%d + 1))-coukd be maxched to “0"s'in B{d+ 1,n), contradicting part of
the hypothesis. It follows that d 2Ry v, LetYBaﬂWbﬂqme B, and VT, or extensions of VB,
and VT, defined in the WHILE loop. If under VB there is a.right:region containing exactly one termiinal,
say j, then: |
IZEROS (i, ) = IZEROSVI;G+1‘,d)i+l 2 M) 1+1 = L%(df+ DI+1

For any extension of VD, there will be a matching function maximizing the maiching on B'which matches
all "1"s in B(d+1,n) to "0"s in Béd+1,n) and which leaves a "0" in B(j,d) unmatched. Therefore,
"(null,null)" is returned correctly when: there is a right-region comtaining cxactly one términal.

If under some VT defined a8 above thefe i 8 t-valued termilnal in T(1L,,) with its pair in
B(Ryy;d), then by Theorem 5.2, there are extensions; VT, « SNdVB_, of VB:and VT which assign this
terminat the value "0" and maximize the sum of matchings on T.and B over all extensions of VT and V8.
Then:

IZEROSy, (Rypdl 2 FhedRyg+ D1+1.-
There is a matching function achieving MVB ‘which matches all "1"s in B(d+1,n) to "0"s in B(d+Ln)
and leaves a "0" in B(Rvn'd) unmatched. Therefore, "(null,null)" is mumedeomeﬁy

Let VT and VB be the final extensions of VT, and ¥B, upon exiting the WHILE loop. Ifno
terminals in T(LVT'+ I.wa-l) and vB(I;va-H,RVB;I) arc Tvaluod, then VT, and VB, maximize
My ;+My, over all functions consistent with p, VT, and VB, - There are ne functions consistent with p,
VT, and VB for which My1-+Myp> Myp +Myy , and (VT,.VB,) is correctly returned. If there are
-valued terminals, fet T(Lm') and B(Ln') be intervals T(Lyy + 1Ry -1) and BLyy +LRyp D)
when renumbered. Let VT and VR, be the restrictions of VT, diid VBt these intervals, Let VT,
and VB_be a pair of valued functions which maximizes the sumof matchings on T¢(1,m’) and B(1,n’) over
all functions consistent with- p’, VT, and VB_. Theorem S.1 guarantces that the function pair which

agrecs with VT_and VB on T(Ly + 1R, -1y and Ly, +1Ryj; 1) and agrees with VT, and VB,
w
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clscwhere maximizes the sum of matchings on T and B over all fonctions consistent-with p, VT and

VB, Whea SCAN-ASSIGN. rcturms (SUCCESS.VT,LVB), VT,; snd. VB, maxkmize. the sum of

maichings on T(Lm) aad B(La) ad do mct Toswe: any- lorminals Pvaloed. . Thereiose,
BETTER-MATCH correctly retums functions which maximize My y+ My over all functions consistent
withp, VT and VB, .. . o ST ATRRER LU

IF SCAN-ASHIGN  returms - (FAIL GV, VB and ), thea by Lomma's7. and

Theotem 5.4-A, there is a terminal 5 and a pair of finctioss; VT : a&wﬁ%ch smaximiacs the sam of

matchings oa T(1,m") m&lﬁbmd&&mﬁw mmp VT, and VB andfor which

; , llmosv,;(&nfx:a Lmn&mzt;m
_ Any mawhials'ﬁ!nctiou for VB, Jeaves.a "gQ" mﬂm’)Mm fuctions.on T(Lm) and 1La)
 which agree with VT, and VB, 08 Tlyy_+1Byy, -1)aad Mloyy +LiRyy, 1) andagros with VT, and

VB, elsewhere maximize Mp+Myp over all functions consistent with p, VT, and VB, Given these

functions, there is a maximum mmmnmm each ’!'mﬂk-w ) to a 0" in
BRp n)(mvokszSI)md leunsa,"»e"ha(sthmnw )Gﬂlﬂm -In shis
case, "(null,null)” is returncd coroetly, - ‘ -

- Induction: Let yr;mdawbme;mm ssasions of VE] sad B/, defised when ¢,=1
upon the rewrn of SCANASSIGN(TILm')B(L o)\, VT, VB]
= VR(R) =1, Let Vg a0d VBg bethe gwmutvs,mvm #nd h 6-valved and
VT, ; and VB, be the extensions makiag them hvalyed: mmwmnwmm

to BETFER-MATCH -are VT, , and YBﬂq By Lm&%wsﬂm 5&:& and:5.4-R; any. fonction

pair maximizing My;+Myy ever all. functions consissent: with 3, VIT, sad VB, maxithizes M+ Myy
over all fuctions consistent with p’, VT_ and v&mmmﬂwmv&u

VB, there are LUn's+1d+1 "0"s in B(u),mreummmm-dmm
SCAN-ASSIGN resuras "FAIL". Onc such 0" must be uamaschiod underasly sukching:

mpmmmw‘ma»'-
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If the recursive call to BETTER-MATCH using T(1,m), B(Ln"), o', p’, VT, and VB ; returns
"(null,nuli)", then by inductive assumption, there isa piir of valuod functions which maximizes the sum
of maichings on i‘ﬂm’) and (k) over mwmm with p', VT, and VB, | and for which a
‘maximum' mawching of B(1,n) kﬁm; 0" in B(EN') unnvatctied. Either this pair of functions also
‘maximizos My + My, over sl ﬁmﬁaﬁmﬁs consiatétit with ", VTX and VHX ‘or a function pair for
which-p'th) and i are O-valued maximizes My + M, over thess fanctions. Inefther case, there is a

value function pair which maximizes M.+ Mg over all functions consistent with p’, VT and VB, and

for which a "0 in B(s.n’) is unmiaichied undef some makiinii maaiching for B(1,n). As for the case when
¢y > L.in the- proof of the b&hfabave, "(nul, auly™ ilebmtﬂyremmed ‘by the original call to
BETTER-MATCH. |

- -Suppose the repursive call to BETTER-MATCH feturns VT and VB, which are not "null".
These functions are consistent with VT, and VB! ﬁmwxlmd VB, are consistent with VT, and
VB,. Given any pair of value ﬁzncdons on T(1,m’) and B(1,n’), let the expansions of these functions
denote those functions on T(Lm) end- BLn) which ‘agre¢’ with - the given . functions on
Py +LRyy -1yand Bllyy +1Ryp -1) and sgwe widh VT, and VB, elsewhere. The original call
to BETTER-MATCH returns VT, and VB, which are the expansions of VT_and VB, Since no terminal
is -valued under VT, and VB,, none is *valued under VT and VB, Suppose there is a pair of functions,
VT and VB, Mste‘n;with p. Yra- an;i VB0 for wlnch MVT+MVB )Mvrf+ er.#l)yu'lheomm 5.2,
there are functions VT1 and VBl consistent with p, V'I‘w and VB' for which MW1+MVB1 b4
My +Myy. Since pairs VT,, VB, and VT, VB, are bothi contistent with VT, and VB, we can use
Theorem 5.1 o deduce that the restrictions of these ‘functions to Ty +1Ryp D) and
Blyp +LRyp -1)most be such that o |

Mv*ri*”vn‘ dMyp +Myy,

1 r T

where VT, and VB, are the restrictions of VT, and VB,. By Lemma 5.7 and Theorems 5.4-A and 54-B,
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there are functions, .VI‘é and. VB2 consistent with p. VT, and VB, and assigning 0o "'7"s such that:
MM Myt Mg OMee sMen 0 oo
viy Mm@ Mz + Myag My, +Mey,

Case 1: Suppose VT, and VB, arc consistens with VT j-and VB , -For VB,, there. is an
unmaiched "0" under any maiching function on B(Ln'). Let VT, and VB, be the expansions of VT and
VB;. Then My, +Myp, 2 My +M‘,,1 and thers s, 3 maiching function achicving Myy, which
leaves a "0" in Il(l.‘,B +1R -1) ;B(l.d) ummtched funewn@ VIzandVB,afe medesmdw‘
and VB, v .

Case 2: Suppose VT, and VB, axg{c@psjstem mvaﬁ and VA,,. By inductive assumption,
there are functions VI‘ and VB consistent with p'. VB, -and. \IBﬁ for -which MW'*MVB 2
MVT:+MVB: and under which some matching function achnevmg Mvs’ leavec a2 "0" in B(Le)
unmatched. Since VB‘l and VB, are extensions.of W'and-,%-fw‘._aagyaia:emm with VT;,
and VB, Let VT, and VB, be the cxpansions of VT and VB, They.are consisient with VIg and-VBy
We have; “ N

M“’l V’xzu”fi | ""22”"1- M“x o ‘
Under VB'. therc is a maiching function achicving My, which leaves a "0%:in. Bk, +1Ryy 1) 2
subset of B(1,d), unmatched. um. VT’andVB.mthedeﬁmm R =

Lemma 5.10 completes the techmca! dcvelopmem needed to venfy thc cormcmess of the
algonthm Theorem S.Ssta:esthecorrecmw of thc maia pmcédure MAX-MATCH o
Wm -5~5= Let VTg and V:Be.be m&mmmmu &mnpmmm the
only *-valued terminals_are members of top-botiom pairs... Then: MAX-MACH(TELm)Bela)n.
VI, VB) fctums functions VT, and VB, consistent with p, W“o amwa,whthmme MW+MVB

over all such consistent functions.

Proof: The correctness follows from the development M&d in thls chapter. The formal ai’iumént B -
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by induction on the sumber of recursive nﬂs. it is similar.to that used in proving Lemma 5.10 except that
verifying the correct return of "(null,null)” is not necessary. We only present the argument used when’
¢,=1 after a call to SCAN- ASSIGN Itis uadn &h Mﬁm :that BETTER-MATCH is called by
 MAX-MATCH and Lemmas$.10 s nended n thcmf

- Assume the mndandm after the calk 0 SGANMIGN in MAX-MATCH returns "FAIL".
Let VTx and VBK be the extensions of the ﬁmcﬁgmm by SCAN-ASSIGN under which ali
terminals.in T(1,q) and Bs,n’) except h and p'(h) are O~valued or 1-valwed. Let VI, and VB, extend
VT, .and VB, so.that p'(h) ansk h.aee {-valued, sad VT ;md&ﬂu extend them so that p'(h) and h are
1-valued, By inductive assumption, the mmyrﬂ sad VB, wwmod by MAX-MATCH(T(1,m),
B(1n),p',VT,;,VB,,) maximire My + My, over alk-funstions-consissant with p', VT, and VB,,.

Suppose BETTER-MATCH(T(l,m’ ).Kl,a),s 1Lp’ VTxo,VB 0) returns "(null null)”. 'I‘hen‘
there is a pair of functions VTuo and VB m consistent with' VT o and VB maxnmmng My + Mva over
all functions consistent with p’, me. VBy, for which there is.a:maiching. function achieving MVBexO
which does not match alt "0"s.in B(la-lk By Lemmn §9, there are: value functions VT ; and VB,
consistent with p', VT, and ,vn_im:mxwa +Myp_ 2 Myp +Myg . Then:

Myp +Myg ZMyr +Myy 2 Myr +Myy

and VT, and VB, maximize Myy+Myy over all finctions:consistent with p’, VT, and VB,. The
expansions of VT, and VB ; maximize M+ My over all functions consistent with p, VT, and VB,

Suppose BEITER-MATCH(I‘(I m)B(La).eLp VT, VB, ) returns VT, and VB, which are
not "pull”. Suppose VT4 and VB, do not maximize My+Myy over-ail functions consistent with p,
VT, and VB, Let VT_jand VB, g be value functions conistent with p', VT, and VB,; which do
maximize M.+ MVB over all such functions. Then, MW&0+MV"&0 > Mwm-}.- MVB,O" By
Lemma 5.10, there arg functions VT, and VB, consisient with p', VT, and VB, for which Mv.r’~|5 My,

2 M7t Miag and for which a matching function aéhicvin;“vs'f leaves a "0" in B(ls-1)
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unmatched. By Lemma 5.9, there are value functions VT, and VB, consistent with ', VT, and VB,
Mw'l+MvB > MW +uv3 2 My +MVB “Therefore,
Mvr +MVB 2 Mvr'l“‘ > .ﬂﬁ : +Mvnv ﬁuﬁ" +M, '.b‘,
Functions VT,, and VB, maximize My 1+ My ober alt usctions corisistént with ', VT, and VB, and
are correctly expanded and retared by unx«mm |
VT andvsmdomameuw-mwmma fanctions consistent with p', VT, and VB,
then the- maximum of My +Myp ahd My, My ‘matinizes M.+ M, 5 ‘ver dft functions
consistent with p’, VT, :and XB mmaﬁmmmmamu(mmmmm

favor of VT, and VB,,) are cerrectly expanded and: retursied aymxm; s o
56 Ruuniog Time of the Algorichm

 We will find an upper bound on the running mﬁmw wiitiout wisking assumptions

about the details of the:data mmmmmm algoritim. iWé wilt aswitne that each of the

fllowing takes one step: addiion to» cunser, wmmeymusmmu and nesig
scalar variable.] Amnmmmaﬁmvmﬁmdw&wwmmmhh
cachdmnsmvatueowiem wﬂbmrmwmm‘ﬁ%u ‘niemberof*

memmﬂbemﬂiw&wa’f i

nmbud’-mhmmmumﬁgmﬂ#“‘ g
muau%mmmmmgw,w Lot donole thi W S
' mgwﬁmﬂﬂmwmm“ :i5r00004

1. This follows the unit cost model fof randomm acctes wiachincs 6 Abio; Hepersh; dd Utiman (AW
The logarithmic cost model, whkhta&smmmmmenumberofbgmmquimdwmpmtanumber
woﬂMmult:plYmiymwhyhzm*nl R U ST
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The procedure considers each terminal in T at most once, For each ?-valued terminal it considers, it must

fest the sizes of sets of O-valucd terminals and 1-valued teyminals and make an agsignment when possible.
I the st are ecomputod,for each T-valed terminel onsidesed,the ougmber of sieps used 1 process one
*valued tepminal s af mast km 1) for some constant k. The sleppiag test of the first FOR loop must
also be computed, but only when an mimmeﬁt has been made. This test also requires cmnputingﬂ)e
size of a set of terminals, Let SC(m,n,u.a} denote _the maximum number of steps taken by

SCAN-ASSIGN oa any.m {op terminals and.n bostom terminals with u.2-valued terminal pairs when a,

T-valued terminals pairs are assigned by SCAN-ASSIGN. Then

' SC(m,n.u,as) < kl(a.d- le +n), fof some constant k.
If a,Cu, SCAN-ASSIGN. repums "FARL" and (3, £1) s the aymber of, 2-valued terminal pairs
considered. . Let SC(m.n,u) denote the maxjmum number of sigps taken by SCAN-ASSIGN on any m
top terminals and n bottom tormisals with u?-vdmmtpa‘!}m@ e
§C(m.n.u) S maximum over all a,gu.0f SC(m,nua) § kyfu+ 1Xm-+0).= Ou(m +n).
S‘EANAS&GN and a recussive call to itself.

. Procedure BEITER-MA’I"CH may us¢ prage
First BETTER-MATCH computes the full Jof-regions and :ismwmons and. assigns o ?-valued
terminals within them. This is done in the WHILE Joop. ARet assigning within any of (1 L), (Rypm),
(1Lyp) and (RygR), some regions must be recomputed,. This takes. Okm.+ 1) steps. Once regions are
compuied, isting for the conitions under which "(nllnull" i returned takes anly a constant nuber
of steps. Suppose a, initially 7-valued terminals are assigncd /) values in the WHILE loop. ‘Then its
executiog,,iacluqih; the initial computation before gntering it, takes at most ky(ay+ 1{m+ 1) stops, for
some coastanf k. |

After the WHILE loap is-completed, if my,z-;mued pairs remain, SCAN-ASSIGN is called.
Preparation for calling SCAN-ASSIGN takes O(m’+n’) steps to assign to VI', VB, and p'. If

SCAN-ASSIGN returns "SUCCESS", then merging the functions that SCAN-ASSIGN returns with the
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functions on the fult regions to creatc the mncums returnéd byi?né*l*fék-MA'mH takés O(tn’ +1n’)
steps. H SCAN-ASSION returns "FAIL", it takes O(m' +0') sicps 10 'assign to VT and VI’ and ealculate
g5, h, and ¢, 1fc,=1, BETTER-MATCH ¥ calied recursively, returning functions of *null’s. If the
recursive call returns functions, then the processing required-to retiin their expanisions takes O(m'+n)
o |
Let B(m;n,u) be the maximum numbcrafstepﬂateﬁbyaay call mBP‘ﬂ'ER “MATCH wnth m
top terininals, n bottom terminals, and u mniaﬂy "'vahreﬁ pairs. Suéh a tai!fa BF’I‘I‘FR MATCH under |
which a_ initially ?-valued pairs arc. assigned ‘in the WﬂftEhﬂﬁaﬁd irs"ﬁairs are ‘as;ignéd‘ by
SCAN-ASSIGN takes at most |
k(a, +1Xm+n) + SCm’ 0’ - a,2) + Bl 0" ira, a‘-r) + kym+n’) steps’
for some constant k, where B(m,n,-1)=0 by definition for any 't and n. ‘l’:fsink’the bound for SC gives:
< kyfa, +1Xm+n) + Kfa, +10m +n') + g(ﬁ*#is’)# Bt n"ua, -2, 1) steps.
We know 1<m’'<m and 1<n'<n. Fork, =k, +k,+k;; mmberﬁfwsbmnde&m by
t;(aw+a,*1Xni’§h)"$ Bm' s 3 A = ‘expression 1
Then B(m,n,u) < (maximum over at m'<m, n'En, and D, +a‘$nofapteﬁion D
Order alt triples (Mﬁi’iﬂ; for m> 1 021, ahd v 30, lexicagnptﬁcﬁﬂy 'We prove by induction
on this ordering that for afl such triplcs, 'a(fm,kn:ﬁf és ks{u+l’)(nf+n),fol‘“mthccmm ks. “Thé basis,

(1,1,0), s tiiviat. For any tripte, (;,0), B(m.0.0) S -k,mi-ffis).‘fﬁi;gf“ M. L the roposicon be
true for any triple fexicographically smalier M(m,ﬁ.ﬁ) wﬁdm u>0. %mm lﬁm Sm and

% cafied & aw-‘(-a u 653-3' a;tSu-l afid

1<n" 0 whenever BETTER-MATCH s

we can usc the inductive assumption. When a'-i-a‘:ﬁ. u-a'-as-l = -] but ks(u~aw—a'i~x,m'4- ) = Q L3
sl an upper boand on ffic conribation of the recirive cilf th BEFTER-MATCH, sie nd recursive

call is made. Therefore:

expression 1 < ka, +a+ 1Xm +"nf + ts(u-a'u,)(m‘+n') :



expression 1 < k(a_+a +1)m+n) + ks(u-a'-a')(m +n)
using ke 2 ¥, andoy dul 2 min
 SkutDman)
and B(m,n,u) < ky(u+1)m+n) s—admi}u)). | .
We now turn to MAX-MATCH, The bound on the number of stcps used in the WHILE loop is
of the same order as that for BETTER-MATCH, by the same argument. Procedure MAX-MATCH does
not do the testing to return "(null,nuil)” whnch BETTER-MATCH does, but this only adds a cénstam per
assigament to the number of sieps used: by BETTER-MATCH, and: only affects the constant for
MAX-MATCH's bound. The pre-processing. for SCANASSION -and the post-processing when
SCAN-ASSIGN returns "SLUCCESS" have the same bound on the number of steps used as that for
BETTER-MATCH. However, if SCAN%ASS%GN#M*?FAH"’, a réoursive call to MAX-MATCH
and possibly a call to BETTER-MATCH are used. The pre-processing and post-processing for these calls
take O(m’+n’) steps. Let M(m,n,u) be the: maximum number 6f steps used by any calf 40 MAX-MATCH
with m top terminals; n bommak. and u inisially ?-valued pairs. Then for constants k, and k,
Mim,n,u) < maximunover all m' S, wKn, sd 0Sa, +a Suof
ki(a, +1)m+n) +-S(m'.n'w-a_8) + Bm'n'wa 1)
+ M(m' 00 a 1) + k' 4n) expression 2
We now prove by induction on the ordering of triples that | |
M(m,n,u) < ky(u+1)Xm +n) for some constant k.
The basis and cases where u = 0 are straightforward If ky >k +K,. Suppme the proposition is true for all
triples lexicographically less than (m,n,u) where u > 0. Then |
expression 2 < k(a, +1)m+n) + ky(a +1)m'+0") + ky(u-a_-a)m'+n’)
+ ks(u-aw-ai)z(m'+ n) + k.,(m’+n') '

< ky(u+1Xm+n) + ky(u-a, -2 )2 (m+n) for ky=k+k; +ks+k,




-‘ly.

Letting kg > kg, we have
expression 2 gkg(uz +u+1)m-+n) 5‘1"(n4$i)?('m+n)
and M(m.nu) < ku+ 1D m+n) = Oum+n)) = Om+a)) -
We have shown that our algorithm runs in a numbes of steps a&'wmstprop«rm_ioaal to the cube -

of the number of tcrnminals. -
5.7 Summary

In this chaper, we have prescnted an algorithm which foutes the connestions betwoen pairs of
terminals located on the outside of a rectangular eempmm& ‘The rauting assumes horizontal and vertical
wires are on separaic laycrs and uses minimum: area. The proklem 1§ réduces toanamgmnemm'oﬂem
on vectors.  Procedure MAX-MATCH- solves': the pmuc&t on. . vectors using- - procedures
BETTER-MATCH and SCAN-ASSIGN, - Procedurcs SCAN-ASSIGN and BETTER-MATCH have
O((m+n)?) running time and MAX-MATCH has G((m‘*sﬁjfmns mhme@uﬁAXMA’Iﬁi :
is actually used twice in rwﬁnuemimls‘on a tectangie--once mmwmm and once for
left-right connections. Before using MAX-MATFCH, local eommm assigned directions in a
predetermined manner. A_sﬁgaing .the local connections amats éxt)computatmn steps, wheie tk is the
npumber of terminals on the rectangle. :Each call :&»MAX*M%H uses O(t’) steps. Therefore, given a
rectangular component with t terminals atound its boundary, &emﬁmtdeéa Section‘$.1 can be

solved in polynomial time -0(t3).
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Amwxmcmms Notation |

The notation used in Chapter 5 is listed here, with deﬂmtions, in order ofappearance o
T(1,m) denotes top terminals 1 through m.
B(1.n) denotes bottom terminals 1 through n.

VT: T(Lm) — {0,1,7} and VB: Ii(l,h) — {0,L.?} indicate the dircctioas.of conpections from top and
bottom terminals, respectively, as_follows: N

VI /VB () = 0 if the direction of the path. from terminal i to its.paic is t0.the left
1 ifitinnﬁg right , '
? ifitis undéténuined

p:T(L.mUB(1,n) —» T(l.m)UB(l,n)U{‘} is the p,airfns function indicating what terminals should be
conhecied: : S e gt T e C

For the following deﬁnmons. there are analoaous definitions for B and VB:

my: T — Tand is the mmuon amahm aemumk in 'I‘(l,m)ofvaluc 0" mmmals wgmhl&hﬁt index
in T(1,m) and of value "1", given value function VT. If ’“vr“) j, then VT(:) : 0, VT()) =1, and i <j je

M is the maximum over all malching ﬁmctlons, mvr far a value ﬁmcuon VT, of Me(mv.r)l

N TR
MR P

ZEROSW(S) = {i€S|VT(i)= 0} for a value function VT and S C’l‘

ONES,(5) = {i€S|VT()=1} fora value funcuon VTaMdSCT.

UNDET,(8) = (ESIVTG)=1} rorg value function VT Msc:r o
ONESw(xa,y) is simplificd Wﬁon f;or (*“;Nssvﬁ,m:x.y),)‘,'m. S
OK-1(VT,x.y) (similarly OK-0) ltrue if and ony-if IONES(;(xy} € LW(-+-£1)..

Full-1(VT,x,y) (similarly Full-0) is true. if and only if JONES, (x.y)| 2 I'4(y-x+ 1))
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hpT = T and 1T — T are used to define leﬁ‘reswns and nght-regfon! onT unde‘r a given value
function VT: ,, ‘
Iw(l) =1
he)) = i if Full- (VT (i-1)ii-1)
h{i-1) otherwise, fori> 1

rv.l(m) =m
fp0) = § -if Full B(VT,i+ L4+ 1)
ry{i+1) otherwise, forj<m

Lefi-regions are defined as the equivalénce classes' induccd by chc equivaknce relation on T(1,in) under
which two terminals i and j are equivalent if and only if lw(t) Iwﬁ) - ‘

Right-regions are the equivalcace classes induced by the equwa!cnoe mlauon usmg "vr'

Ly is defined to equal m if Full-}(VT, Iw(m) m) and to equal lw(m)-l otherwise. (1L, ;) are the full
left-regions of T under VT -

Ry is defined to equal 1 if Full-O(VT,1 r,n(l)) and to equal er(1)+1 otherwise. (me) arc the full
nght egions of T lmdchT - ~ S
'lhc followmg definitions are made aﬁer SCAN-ASSIGN mtums "(FAIL | & V'I‘t r VBk 1)"

qismesmallesuzmmh thathNE.S,,.,r (l,l)l L‘iﬁiJ. ‘

stsdxemllest;sausfymgmefoﬁowingmmepmpemu B
(ii) IZ'.EROS.\,Bl G}l = L¥%(nj+ I)J ) . , -
(iii) each terminal in T(1,k-1) which has boen mgnod me vakle "l" by SCAN-ASS!GN is
paired m‘ha“’mm in B(j.a). 4 ."i A s ’ :

C is the set of initially 2-valued terminals nT(lg mm w&q m o
¢ = K)NESWt_I(C)I. :

C = IZEROSvrk_l(Cl
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¢, = IUNDETVTk_l(C)I.

h is defined as follows: Letibe the terminal of smallest index in B(s,n) which is ?-valucd under VB, and

l-valued under VB, ,. Certainly, p(i)<k. IfiKp(k), then h = i; otherwise, h = p(k).

VT, and VB, are defined as follows: If h = p(k), then VT, = VT, and VB, = VB, . If h # p(k),
then V'l and VB, agree with VT, , and VBk_1 except at h, k, p(h), and p(k), where:

VI (k) =1 VT (p(h) =?

VB (p(k)) = 1 VB (h) =



* Chapter 6 Discussion of the Algorithen

6.1 Removing Assrwptions

~ In this chapter we makc some obscrvauons about the algorithm we h¢ve just prcscntcd The
algorithm is of the channel muang vamw Themw bg ‘ysed by cﬁ\m&m path:are choson® by
the algorithm. Only one choice is considercd fur local connce&ons. For top-bottom and left-right
conncctions, the pmccdure MAX- MAICH makes the dm;son 'l‘hrcc assumptions are crucial to the |
working of the algorithm: (1) only pairs of ierminals need to be conmctcd:(i!) there are only four routing |
areas - one paralel to cach side of the rectangle; (3) the segments from ea_éb terminal to the routing area
(perpendicular to the routing dircction in this arca) cannot conflict regardiess of their lengths.

We do not necessarily necd to have tcnnimls‘amund mcbdutsid‘c of onc rectangle as long as the
above assumptions are satisfied. In fact, terminals may alsuv lie -abns' a rectanguia;_ boundary -
circumscn’bing the rectangular component, i.c. on the opposite side of .thc routing area. as long as.vthese
terminals can be projected on thc rectangle to obtain an instame of thc ongma! prublcm (sec hgurc 6.1.).
This configuration might be found when cannecting termanals of a fuacﬁonal component or set of
functional components to bondmg pads. The bonding pads he :akmg the uutside edges uf the chip, and
the routing regions lie bctwecn thesc pads and thc rest of thc intcgmwd circuit. Mlmmwing the area used
'for the interconnections minimizcs thc sizc of the cmp | |

| When the third assumption above is rcm()\*cd, \vc ‘have al’rcn'dy secn in Chaptcr 4 that the
resulting routing problem is NP-complete ¢ evcn for one routing channcl wﬁh wrminals akmg its side.
When cither of assumptions (1) or (2) is n:moved our division imo local mnnectimm .md oppesite side
~ conncctions no fonger limits the choice of directions ﬁw cach cmmeetion Comdcr the pmblcmfor one

rectangular component when it may be necessary o mlcmmaect thrce or mnte mrmmah When three

terminals are mvolvcd there are throe choices instcad of two for me type ef path used to isﬁcrconnecl the
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Figure 6.1; Alternate configuration of terminals for our algorithm.

- . -
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[ [ |
cannot be L - L]
terminal here e d
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|
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cannot be T - - -
terminal here | |
]

L
- »—
/cannot be terminal here

= indicates a terminal
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terminals. Thascanbesecnbydmdmgmebomyofﬂlemcumkmwﬂmepm eachp:eoegoes
bclwecnad;acentlennmaisasﬂlewuadmysmvemd Anypaﬂtwﬁd:ﬁﬂowsiwoad;acentpmof'
meboundarycaaiacusedmeounectmemmﬂs. Whenmetcminalsmmﬂwcdlﬂicmmd& two
orummbkmtypammmmmm However, ;ecaamc!mmaﬁcmesepambﬂim
ltsnottmcﬂatmcﬂmdchdcesﬁmysaspodasmeodhm Fw:rc62—A;ivesa
counterexampie. Corme;tmg these terminals involves three sides of the mctamle Ihetcfotc. we have
mmemmn&mdmemmnmwhkhwwwmmmaMkﬁm
connections. lfﬂmm&mmﬁmtwoadﬁ,emﬂwm{yﬁemaﬁﬁwmdescambc
climinated. mtssslummﬁgurcﬂ-& ltisaaapenpnhlmnwhe&tﬂ&m\ccmnpmmmku
probicmcanbesolvedinpdymnimmwhenmdﬂmeormorémnalsnwdmbe
interconnected, o k |

- cmm:mimmmmtmmmmammmmmmukmh'

eermmalstohemmeofmommhrcowoaemwhthmpmambym Ignomforthe

momcmanycmmcmnwhichmvo!veswnmmlswhichﬁeonmebmwmesaﬂhcmbaweaﬂw -

twomctanglc& mmmmmmsmmmmwmmw
ihatpathscantakea Mcwmmmmumm Howcver.ﬂlkoptim
| addsmanychomofp&ﬂuwbemdmmmmmm mmmmmmmw
mdepcndcmofmckﬁaadnﬁlsidu FimrcSJ mmmmwmmw
memmuyafﬂmmuwum:lhm

6.2 A Special Case for Pracedinre MAX-MATCH

The procedure MAX-MATCH, with its sub—pmm solves the optimization problem
defined in Section 5.2. Wemmummmmzmmmwm
mnaions,ﬂ:cmsdmysmmnmf"a"sad"l mummdmmh
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Figure 6.2: “eOneCmmmmhm&amumbahhm
Temnnahwnmmemeaumbermoddbecmm R
A: Three terminals on three sides -- three choices.

1 2]} | 1T 1
2 ‘
BEST OF ‘
THE THREE
!...
path uses4 sides - — © pathuscs4sides
routing addes 2 unit to height — . S | routing adds 3 units to height
2 units to width S , ‘ 3 unit to width
2
_ path uses 3 sides
, 1 routmgacklﬂumtsmhe@t
i 2unitsto width

B: Three terminals on two sides - three choiges.

preferrecd wheah<{wl || h ‘ ‘ »
1 2 21 12 - 21
] 1 ) IR SO J MI
1 . } ‘ | o
(G +bX1+ w)=3+3Iw+h+hw = area
(2 + h)2 + W) = 4+2w+2h+hw = area I‘I
12 . 21

¥ %ﬁ:@ﬁﬂm@%uﬁ{:n il B L Py B e B g




Figure 6.3: Extending the routing problem of Cha’ter 54t‘o' twomm 5

1

1

preferred
for w<h

2_

|
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1

2

area'=(2+w)(h4—3) S S
=6+2h+3w+hw

area = GHw)2AN)
= 64+3h+2w+hw
but:

: l ) ' ’ B ,l pe .
. . 3 LY
B

1 . ,12 em ;* o | |
4 l = b e . - ! ) ’ 1: .
area = 2+ w)X2+h) L1

area = Q4 W)O+H)
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-within-one of MWMW mmmm« top sermiaals to bottom tcrminals is
disrmmé- We always sssqme. shet,all T-valucl sorminale.are-memhers of foptbattom pairs under p.
- When alt terminals are ?Mmm initial:valae-fanctions; the imbcr:of top terminals, m, must

Lemma 61 Let VI, and VB, assign " o all terminals in T and B. Then

MAX-MATCH(T(Lm),B(1,m),p,V'T,,VB)) returns VT, and VA, such tht My +My, 2 el

&

- Proof; Initially, therc are ne full regions and SCAN-ASSIGN is called. If:'SCAN-ASSIGN returns
(SUCCESS, VT, VB ), then T %mT-tgmminale aec.0-valugd.in sach.of 1-and B.. We know: OK-0(VB, 1,m)
holds. Thercfore, m is even, "Fhe manchings give Myy 'ﬁMw’ = Y%m +%m = m

- . - Suppose. SCAN-ASSIGN rewwrns (FAH RNT, V). Let-q, 8 h,and c, be as defined in

Chapter 5. AH terminals in T(k,m) are T-velued undos VI, ‘Therefore, q = &k, ¢y = 1, and kis odd. We

‘Imow:
JONES, ;. (1k-1)]:== |ONBS, (s.m)} = L%kd = %(k-1)
4 Al . ne
1 - o T o L .. . i.‘,gfl - {a]
and | L%(m-s+1)J | lZER%rM*Sv &B&Qﬁw r{l k-1 = W(k-1) (a)
Also, L%(m-s+1)J +%(k-1) = WOS@ Em)+ QONBS“i (sam)} £{m-s+1)1
| 4 5 T :
implying kD) £ Tms+)1-1 (B).

Combining (a) and (b) gives:
LiA(ms+ 1)) = Wm-s) = %(k-1) and mmwfs.m)# = lZ_BROSWr(Lk'l)I-
Either VB(8) = 1, or s = p{k). Otherwise, IONESyp (5 1mik = |ONESyy (sak = Y(m-s) and
B(s+ 1,m) contains p(k) and the pairs of all "1"s in T(1,q). ‘therofore, we would have chosen 5+1 rather
than 8. In cither of the two possible cases, s = h.
Let VT, and VB, be the valuc funactions-defincd when the “1” valgm;;i& tried for h. We know

[ZEROS 1(s+ Lm)| = Y(m-s) and OK-O(VB, |.x.m}-holds far all x in Bis;m). Therefore, s+ 1,m) is
X




e
~ aset of full right-regions with m?-mm ‘Al Y(mes) "0"s in B(s+Lim) can be matched.
Unlesss = 1 or s = 2, interval. ﬂiﬁmmkkﬁmm&mm neither of which are
- full. Since JONES,; & k) = £ %k and OK- xwﬂ,i.x)mfm alt'x n T(K-1), TOK) s a sét of
full right-regions in which 1(k-1) "0 can be maiched to "1 in T(LK). When's &1, i which case
k=m,we have | » , | |
| 'Mw‘ My %(m-l)+%(m-l).-m- L -
and the desired result foﬂows. When s)l l‘(k+ l.m) comams one ic&-rcgmn and onc nght-region
neither of which are full. 1f5 =2, B(1L.2)8a ﬁxﬂe&»regﬁmtn&ﬂliis *valued-under VB, ; “Formials
(1) and p(B(1)) = "Hm) are essigned the value "0 by the retwrsive cal 60 MAX-MATCH. Tcrminal
B(l) can mawch B2), but F(m) is Wm mmmimnm matchings sumt 1o
(m-2)+ 14 %{m-2) = nr-1 a5 desired. (FsD 2, ko€ T{¥ni") bethe renumboring of Tk + Law). ' Procedure
SCAN-ASSIGN is caticd for T(1,m’) and B(1,s) usmwwappmpm restrictions of VT, and VB, .

If the sccond calt ui SCAN-ASSION rctums (SUCCFS&W‘,,,VB,,), then
|ZBROSVBH(1.3)§ = mﬁmsw;lu,mf)} = mmwmuwdvrﬂ%d =k W'l 4 M%m" = m',
Combining this with the matchings on e Al regidta gives ™ '

: Mwﬂ-oonﬂ =m" + wm)i +FHED =mh + ‘ke-alé = nrl
where VT, and VB, arc the expansions of ¥T | dnd ‘V sﬂmwmwu and VB, on E(1 k) and
B(s+ 1,m). | |
I the second calt to SCAN-ASSION mm{mm KW', VE), let q’, 8", and h’ be the special
terminals for this call. }:.mec initial. meﬁmm ﬁt%mﬂﬁi%ﬂ*ﬂﬁiﬁﬁ ﬁm in
“I{1,m’yand all terminals in B(1,s-1) are Mvalued and §%~il"-¥m: mq—' 2K isokland
. JONES, 4s's-1) = DNstf(l.k'-m-&: i L
[ZEROSy 45" 90 = L¥(ss"+ )3 S {ZFROS ALK = (k1)
Also, IONES, 8"} + [ZFROS, A8 = (k1) 4 14 LK 13 Qs +11,




fg....,oem mumwmwm » revimge
the paths will follow the boundaey of the rectangle. The on Wi v
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Figure 6.4: The One Component Routhg Problem mth no locli eolnecﬁou.
Terminals labcled with the same number shouiﬂ be eonﬂected.
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‘start later. The exchange causes the two originally conndctod segments overlap but no other scgments
(0 overlap. (Soe Figure 6:5) In this way, -we cun modify the routing 36 that thére is only enc horizontal
scgment for cach connéction, me&MﬁmM&m to which it needs to
be connected since some segment originally did, ahd scgments-have not been shortened, just merged.
The vertical scgmonts which conneet to wmmm e aifded on me verticat‘layer: Abso, after the
_modification has been made to each side; W@MWW at the corners ciin be iengthened

or shortened to do s without causing conflicts, BT I IR g |

1hi§ upper bound on the amount of hclght addedbyusmgseparatc Iaycrs vfpr the twodlrectiont
is actually achievable for a very simple routing problein shown in F”lghre 6.6. .

The argument used o prove Lemma 6.2 hﬂdsfonay region m ammpenem side as-long as
all wires are cither perpendicatar- wm&mmm W dfiiﬁintw &!ﬁgﬁh extending’ from _
different terminals perpcndlcu’laf to the side wm not intersect, and semwhk‘hmnparaﬁef to tht side |
can be extended at the ends of the s:dc wnthout causins ccmﬂm Any number of tennimk can be

mterconnccted not only pam.

» wmmmwmmmwnmmvmamemmmmwm

for interconnection. Temmmdrmmwmmm PiAON %0 T
 vertical wire segmvents,’ mmﬁawm&%&mw#m ‘e’ pomincction’ of
‘segmonts on:different layers a0 fonger arivial mewmmmmm

fegment Mummm&m “Yiwfbmem ﬁ?’hytrmfm oomiectin

0 MWMMMW U R SR e
Suppose that we do wish'to ratis'tNe "vopurate difection '~ Siiirate jer” straiegy for wofe
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Figure 6.5: Construction for Lemssa 6.2. .

A. Splitting positions.

becomes

B. Merging segments for one connection.
- for layer connection

after splitting:
rightofl - - —
- rightof2
after merging:
= rightof2

rightofl - - —

two channcls

~ one chanael, two layers

for vertical connection

right of2 - -

— rightof1
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Figure 6.6: Instancc of One Componcnt Routing Problem rea!iiinﬁ upaer i)ound of Lemma 6.2,
~ When one layer for horizontal segments and one layer for vertical scgments;

[ —

',l..t i

' l . n channels used
i o

I l 1 1 1 -

12 n n

<t nf2 channels used
n even

layer 1 = = == Jayer2
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than two layers. We will lot amm layers be ﬁxhﬁm&mms and all cvén numbered
layers be for vertical segments. Mmbm»wm containing wires in the other direction. '
Let "track” denote & periicubyr m»h'l channel. MM is only one layet for each direction, the
number ufdwmiund hm&;“&ﬁﬁﬁymg the same aathe number of tracks

e in M Mﬂu number of channels requ:red is as little
as 17H of the m« of m W Mou than thh mher of channels may be needed to allow
segments to consect at’ cmMy. The conncctions at corncrs place constraints on the layers uscd.
All layers in a channel may aﬁ‘hm s impnmm 0 otmrvc that there is no longcr guaranteed to
be an optimal routing in M wk M ulll n mglt ugg nmnent ru;mms alonz each side of the
rectangular component, Pemkﬁas a path to use more than one segment along a side allows the path to
ehamhm lathlway, layeumybcbenerm F&ureﬂ mumtes. ‘A

Let us suppose we- do ‘wishe mmm mmbmmgment akms each side per path. We
can choose which segments wll M ﬂ!c same track“ eg. uslnz the matchmg fancuon of ChapterS
Given any such choice, we muat nutn the resulting scis of scgments to channels and*layers in the
chanaels »o that mecmumnmpmpcﬂy made. A legal assignment minimizmg the area of
thelayoutilmd Wcmmwﬁimﬁtoﬂmmmm tracksmto two phases:
| determining what segments will shase the same tfack, ad&detemiﬂmt what track they will share. When
there is only one layer for each direction, the second part of this problem is trivial -- any assignment will
do. | |

If we require that all pairs of connoctins segments hg bﬂ édjacent layers, then we can model the
constraints imposed by me wnnectinm betwm manu using a dlmd graph The graph contains
onc node for each set ofaemm M amek Let a node mpmemmg,a set ofscsments above the
top of the component be called a fog node. ‘iimilafly, the terms bottom node, lefl node, and right node

denote nodes rcpresenting sets of segments mnw sides. ‘There is an edge between two nodes
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Figure 6.7: Laycr assignment for the Onc Component Reuting Problem.

It is no longer truc that one channel pcr'bsiréét for each "'n?et:is’ alwa&é o;ilimal.

Given 4 layers, no assignment of laycrs uscs only one channél on cach side.

Onc attcmpt is shown. A
e ) ¢—fayer3

T [Tt

1 2 3 4

layer 2 A .
layer 41 ‘ | | e laver2
‘ 4 ?

layer 19}
layer 39

chxsasucccssﬁnlassigrxmcht e
' 1 ———— —#ayer 3

1 2 3

Py

-

layer2 ——p
- layerd—4 |

| layerlq"‘ - —
hma‘; R . ! R o i , A

Graph representation of track connections for first track assignment
 LiophZiop .
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when the sets of sopments represemied By the nodes costaln segments which must be connected at a

comner. Edges are dirasted as fallows: o, a 10p noide 404 KRt node, representing a connection in the
top fef comer; from a lcf node 10 & Battolt node, sepresenting a comnection in the bottom left corner:
~ from a bottom nads to a right sode; reprosnting & conmection in the bottom right corner; from a right
“node to a top node, Mw&Mh tbcw right caraer. The graphr consists of disjoint
chains and cycles. Figure 5:1-shows the graph for the segments of that oxample. Since connections are
always between adjacent layers, umm determine-the layer for cach sct of segments. The actual
channel used by each set of scgments can be arbitrarily ohosen, just as they could for enly two laers. The
only restriction is that there be onty-one set of segmentsion each layer in any channel. Therefore, we wish
‘to assign a layer aumber to each node mmmm keRt and right nodes have odd numbers and top
and bottom nodes have even fumbers. Adjacent modes in the graph must be numbered: with adjacent
| aumbers. For any given side, each oscurvence of a "W will be in-a different charinel. We wish to
find a numbering which minimives the area of the coresponding layout | |
| - ‘Let us now consider Mconmﬂonl'y of disjoint cycles. ‘We restrict our-attention to these
graphs to illustrate how cyclic constraints can be handles witheut werrying ‘about graphs with different
numbers of tracks on different siul. which can occur if ¢chadns are present. A method of assigning layers
t nodes in a graphcenm;my nftm is as follows. €hoou¢mecyclc begin with some top node
.of this cycle. Assign layer 1 to this node. Moving ia beth directions away from this node, assign the
nodes along the cycle -- ene node in each direction at cach step: = in the following pattem. Going in the
direction of the edges (clockwisc), beghining with =1, asign in comsecutive steps: i+1 to the next left
node; i to the next bottom rode; 1+ 1 10 the acxt right node; i+ to the fext top node. Increase i by two
and repeat the pattern. Going spposite to the diroction of the cdfies (counterclockwise), beginning with
i=1, in consccutive steps assign: i+ 1 to the next right node; i mﬂ!e next bottom node; i+ 1 to the next

Icft nede; i+2 to the next top node. increase § by. two and repeit the pattern. ‘Fhe first node reached by
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*both dirctions will cikher be a 1o or  besiom nde. Sinoe theee aee being amigned the same aumber a

* the same step, the cycle is completed properly. I the stup assigning2H 10 8 right node clockwise and a
lef node counercipckwise is reached before the cycle era)m.ofmm»m is
used. For clockwise, beginning with i=2H-1, assign: i t0 the nest top node; i-1 to the next left node;.ito

the next bottom node: i1 1 the pest right ade, ‘Deceeaso i by.wo and sepest. Fur counterclockwise,
beginning with i=2H-1, assign: 10 the nest top node; i1 to the mfrxﬁh node; i to:the next bottom
‘mode; i1 to the pext left node, Docm thymmémm.i{ht mmmlm a right
sode clockwisc and a loft pode coustercleckwise is -reached before: the cycle is finished; the original
pattem of axcending aumbers & ropeated. . By repeating the twox paticens therugh icreasing and
desteaing numbers kel & cycl of any i canbe abeied. (Soc Figuro6.8: Al he ey’
finished, a sccond cycle can be Mmammwtmofm pattern which assigas to a top
or bottom node. I the next step ﬁwmwm&hmmm& atop node; then-an
acbitrary top node of the new cycle is cheacn as the starting it I the aiep sigas 10 8 bottom node,
then an arbitrary boliom w&eh Muummhﬁkmmmm be assigned in
wm. Each passthrough. mwmmmwmm 1At-most one lyer
is unused .in any chaanel. Ouew WMM*:Mw&mdm
nodes. Fach group consists of consecutive top, Jefl. boltom; wm“’d& One pass thaough
mgmmmm»m nehm mwmmm
side W&nmm inat mant S P ) |

ax! M%M* Mbﬂ e cquation 1
 where nicycle) s the sumber of groups of fowrneden in e cydle) Nose:shat when 5 graph consiats of
anly cycles, it containg the same nuehies of ados for cach side. Thesefiee oquation Liscqualte: |
- 45T utn, + e sumbesobcycleayaiat b
| where n_is the numsber of nodes for each side. The number.of channels veed om ey s at lenst 18
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of the number of nodes for Mﬂ& Wﬁem oﬂumd’dumdsused on a side’by
* the assignment technique to the the number of channcls used on a side by an optimal assignment is at
most 4H/2H-1 + 4H/n_ For2 < H <1/12n,, this ratio is less thaa three It is reasonable to cxpéct n, to
be much larger that H, mnce we do expect o havemaa;y mgre mtemonnecuons. and therefore, scgments, o
thanlayelsformﬁemonnect. | L T | o

The m&m pmted in Chapw 5 minimizes the number oftrxts usedmmmad a
rectangle. The aigonmm produccs the sets of segments which w;ll share tracks, cnllcda packing of the
segmenis. However; the: packmg may not lead to a minimum arca routiaa. An aitématc pack;ng of the
segments may allow more layers to be used in some channels, resulting in less channels being used. Even
the distribution of tracks to the top and bottom or left and right may not be optimal._“Phe algorithns for
top-bottom routing does ot ty to optimize the distribution of top tracks and bottotn tracks sed. It only
minimizes their sum. The "wrbng" distribution might result in half-utilized chan,n&& In addition, our
original choice of paths for local connections is no longer sufficient to find mqilimal routing. Figure 6.9
shows that the optimal mmmmq mmak,wmmmm argund all four sides of the -

g T

6.4 Summary

The algorithm presented in Chapter 5 finds an optimal routing whon certain restrictions are
placed on the problem and on the allowed routing paths. !nmm;wehmw'm
repercussions of removing some of these restrictions. Whenweauowsohﬂomwluch uaye‘on!y twélayeu
but allow horizontal and verﬁcalmnsoam layers orwhichase more than two layers, the
| algoﬁmmnolongera‘lwaysﬁndsanoptimalsoluﬁon. [nﬂmwa.dnahnmmybeéonddcwda
heuristic algorithm. mmmmﬁmmmmgéwwuﬁmkmm;h«bmmaﬁdm
within this limited set. When twohyémueuaedﬁ)f‘both mwwmwu,mm
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Figure 6.9: The One Compsnent Routing Problein with more thin two layers,

Conncction for 5 goes amund asides.
14  adds 2 units to horizontal dimension
] adds 2 units to vertical dimension
rf 4 -

Connection for § goes arouind 2 sides.

R N

adds 3 ﬁnits to horizontal dimension
- adds 3 units to vertical dimension

——— horizontal layer 1
—~—+ horizontal layer 2

| vertical layer 1
; vertical layer 2
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shown in Section 6.3 that the mmf Jengh adied fa each dimension by the routing produced by the
a}goﬁthm is never more that twice that added by the optimal routing. When sc‘pgraAte‘lgy’_c‘ly are used for
horizontal and vertical scgments but there is more. than one layer for each. direction, the algorithm
minimizes the number of tracks used in eachdimaum. 'However, a new prob!em is encéuntcrcd. Each
set of segmems shanng a track st beamigncd to achannel and. layer so that connecnom at corners can
be made properly and the area of the rcsuk#ns layout in minimized. Given sef§ of' scgments to, be
assigned, we do not know an algorithm to find an- nptlmal assignmem. Kiso, givcn a collection of
scgments, we do not know how to pack thcm into tracks $0 that the rcsulung arca, rather than the
resulting number of tracks, is minimized. Finally, given a OngComgoggm Routk\gProb}em,we do not
know how to choose directions for connection paths ‘rgg;thqt the resutting a;'ea rather than: the resulting

number of tracks used, is minimized.
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In lhls thesis, we have W mm ln clmuit layout from the perspective of
complexuy thoory Our .od has been 1o m better undemndin; of thc problems and discover better

technmes for ﬂtelr loluw We have pmlcm thm pmﬁ of NP-completeness -- one for an

ortho;onal layout probiem wltl\ mumlu compm ofatbitmy slze, one for the channel assignment
problem in a street, wd one l'br the lutemction eltanaol mlgnment problem i.e. channel assignment

over all streets and lntemctiom We aln luvc aaalyacd a common heunsttc algonthm for channel

mianmentwlthlnam mm&mmmmwm numberofchannelsusedin the

solution pmduccd by the nlgorlthm to the aptlmal numlm is not bounded by any constant. This

al;orlthm and its nnalysh provlée 2 referenec poltu lﬂhlt wltloll othcr alcorlthms can be compmd The

development ofbetter al;orlmms im'chat\acl aulmm«tt remalnl a topic for remrch
'The ptoof of Nl'—oompletem of tlte chmcl ml.mmnt problem holds only when each net h

reqmred tn use at most one dunnel. Le. channel ulcnmeat wlthout jogx 1‘he complcxity of the channel

Wmmmmmm mmmmmmﬂaepmbm is NP-complete.
In practloe jou are allowod within & M Tlterem tlte analysu of known channel asstgument
alwn&mwhchwjopmdmedwdmemofwmmmmmmlmofmemh Thc
lower bounds on optimal channel mem wltl\out jogs 4o ot ap apply when jogs aro allowed. Analysis
ofmmmmmuhmmmmwmmmmm ’ ’

In Chupter S we luve pmented an algorlthm whlch l’lnds thc optimal channel routing for a
special cne of the hyout pmblcm in polynomlal umc Amon; other requiremenu. thc layout problem
mun involve only one mtamlar component, and all neu muustoontaln exactly two tcnmnals We have
shown in G\aﬂerli that when any restrictions on the problem are removcd, the algonthm is no longer
gulmhed o find the optlmal lolmion Asumpﬂons about sattsfactory routlng paths no longer hold.

WheaucumallowedmhavemmthantwotcnninalsbutallotherreurlctlomofChaptch hold, the

i e N R R S R S R I AR S S T e DT T T S R R A
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complexity of the layout problem hm Aammmonﬂfﬁewmnwd in ChapterSora
completelydlfferentdmrmmmayﬁndmopnmnlsolummpolymnldme Theaumorhasbeen'
unabkmﬂndaxhanalaombmorpm&nceapmfofNP-hrdnem. Analtema&erelaxauonofﬂ:e

resu'lcumaﬂowslwocm:poaentswhnhﬁcudcbynde bmdoesnotallow&nmn&honmcac&m

sides. 1heresmctionmtwotcrmmalnesmrenhaed. Theahiiityofpadutomnbetweenmetwo o

rectangles:sadded mvemnofmepmbicmhasakodcﬁedaaalm Mmegenerally.memhmqw
usedmﬂmalgonﬂmmaybeumdashwisﬁcsﬁxthemlmmmpmbicm Furdlermeaxcha
nmssarytodetemmcﬂ\equahtyofthesewﬂmquesashwdnh L | |

An mtereﬂiagcombma&omlproblemhww thcmutiagpmbiem ofChmterS
meuwmmnagmmmmMammmmmmm tbrmcmtanaie
pﬁmmmmdtwowawmmwmmmm"m atanycomer Supponk_
'weextcndmrcuhratccdonumma ams mgoammdmecinﬂemummn Monpmchdy '
wemodtfymecuwhrmedomgpmlﬁwzm Pﬁnofpmnﬁonadﬂem;im 'I’hcptobiem
lstochooseoncofthemommmwewhmrmdmmmommmﬂwmewmww
coiommedisnﬁnunmd. Smdmhmmbﬂmnﬁm%mmmmwﬁemk

Wemmmmammmmswmmam:
wiﬂaumﬁnmwmunﬁﬁummm mmmmwmmm

e RS- éygé ,’35‘\, oy SIS };3 :

mmmoumpm mammﬁmhyamhm Umumwanmmm

ofmmquaedwmmmmbem mwmummhﬁmef
WMWMMWMMw&;&hMM Pmblen
which vary significantly from our model, such amandrmd m:wemw
Wem&umwmummmmmammmm'

mec&ﬁcm msnmmummmmamzmu,
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.. topological information as part of the input. Both techniques have been found wscful in practice, but lead

10, differant problems. The study of algoridyns for, problems, coepuntered: in.alternate approaches o
layout from that in this thesis is mmwmnm e

In Chapter 3, in additios (o prescnting the mqdel we. have.used, we discussed a graph thoorctic
maodel for layout. This graph dlmxicmodelhu proven vecy useful in-obtaining bounds-on- the arca
required by interconnection patterns represented by various classes of graphs. . Thore are many open
. problems in this arca of research. Two open Pfﬂblenﬁ@fsmﬁt interest are to deserming-tight upper and
- lower bounds on the afca»mmmémaghiwatx Maaranhmdmﬂwar%wmd to embed a
shuffle exchange graph [LeiS0), Frh80} An aliesnate cost measupe 40-these presented in Chapter 3 has
recently been proposed by Storer (Su0).. He, also proxes the NP-bardness of optimally embedding a
in Chaptos 3 9ud ynder his measure.
In the problems we have considered, placmg;andms arp restricted to be orthogonal.

graph in the grid bo!hundcrthcee@

Rescarch is nceded on the cost of m assumption. How qmchspgeg is Jost by allowing ooly horizontal
and vertical wires? How much is gained by addin;a third direction for- wires, €.g. 45 degree wires,
Tompa [To80] has shown that far; onc street containing terminals on. beth sides such; that all conncctioas
are of the form "connect the i Mgal un one side mthc ™" tesminal gn the second side”, the optimpel
routing uses arcs of circles as wire paths. We have alsumumd{thn horizental and vertical wites lie en
.diﬁcrent layers. We have indicated how much this assumption costs for the problem of Chapter 5. How
much this assumption costs in general is an open problem.  When _.thcré .arc.only twe- layers for
intcrconnect, running two wires in paralicl, one an top of the othar, on-scparaic layers acrose a chip
separates the t;vo sides of the chip. This suggests that restricting ¢ach layer to wires in onc direction is

desirable. | |
At present, most integrated circuit dcsigns arc donc with only. two layers for interconnect.

Howcver, in the futurc, more layers may bc_availabic, When maore than two laycrs arc available




amwxaiaecﬁ ﬁcﬁg&%g?égsg of area of layouts: Should
more directions be intreduced and one g?&&@ﬁs ,g,w:&n,.wai&maxaqg _

diffcrent direction” 8&555?%’33&% ﬂﬁaaﬁggawﬁ? a&c:aoom

research Is 10 determine the resirictions whick simglify the routing problem sufficiently to allow
development of good algorithms and which resolt in good tayouts in relation to the layouts produced

’ without the restrictions. :

- The model we have used considers only the aréa of layouts. g%%i
circuit layouts, suelt as circuit ming and power cofisumption; &ve o gzgwg&&g :

- ways of modeling these persmetcrs. gf%?&g%&wu&&ﬁ |

parametors into secount in any way. ‘We would _n»wa\ﬁm‘s have a less'res e model of components.
The extension of the modet %giﬁg%%igs

Chapter 3. We would slso fike the ability © gg%é&nﬁ&@ag%

n the thesis, we have -ﬁggi%wn«gﬁaﬁs&g ,58 ‘

. interaction of placement and'routing s very compficated. Q&u&%g n&ﬁ&%ﬂaz@
‘ggﬁiggia&?ﬁéﬁzggg.&gs ;
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| getimetry of components aili-s ggﬁﬁq problesh.  When placement and routing
are i.m si%iwtgﬁtm!&ég ora .?.n_%n which
facilitates routinig. ‘At one éxtreme, & plavessent which is s §ooi packing 'of contponents as rectangles ._8,_.
 bosomght. This, of course, i NP-ssinplete. A the BT sx e, e placciment can be governed by the
desired rgggi %i for how the rectangles fit together.
One area for Muture rewssithv is the Rudy of the: tradecil Sewween: the twi mpeéts-of placement. Good
n.:na.r for judging whether a placement does facilitate the routing are nceded. The criteria currently
used most often estimate wire longth, but not routing ares. . |

We have intended our model to be independent of the particular technology of interest,

| agtoisﬁaﬁgas.z?sa?%ﬁls:?& These design rules are

gsgglﬁgggg =~§n=o t and smaller
, objects. Thercfore, ggggggs ggﬁe&g of designs _
change frequently.

n&ﬁiﬁ?&ggtgnun:&@o algorithms to solve problems
encountered in layout. ?gagﬁ_gﬁi?iﬁaﬁsgfzgs

algorithm to be used in practice. Algorithms should be easy to use and maintain. They should allow .

tome interaction wich the human dosigner. The algorithm presented in Chapter S finds optimal solutions.
Therefore, interaction with the designer is not as important as it s for heuristic algorithms, where the
designer’s insight is an important input. Nevertheless, the algorithm of Chapter S can be written to allow
ihe desigaer to predetermine the paths of some wires. It will find the optimal routing using theae paths.
Asother criterion for judging algorithms is the number of good solutions which an algorithm can produce
efficiently. »ni&giﬁ!ﬁ!.%xﬁg&s&gﬂ‘axﬁagtsi

. which presents one good solution, unless the onc solution is substantially better than any of the cheices.

~ Even among algorithms which fiad optimal solutions, one which obtains more than one optimal solution
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in approximately the sae rusaing lime may be preferred. Criteria other than the optimization criteria
may be used (o choose among optisal. sohuions. Forexample, the algorithm ofChapw&is biased
towards assigning "0"s (o leR top terminals, A dual version of the algorithm biascd towards assigning
"1"s to bottom right terminals might also be rn 1o find an aliernate solutian, Complexity analysis can
assist in the development of better algosithms for layout problems, - However, the usability of an
- algorithm must also be copsidered in cvaluating new algorithms for layoutdesign. .



m.
M Basis Deflaitions

lnthinhetil.thcwﬂm&mywtﬂﬂ'eqmﬂybeundmdewnbepmblem& All
definitions can be found in [LJU88). We review them heve.

AMGS(VBLMOfGﬁnﬂeﬂWM(MWI“S) Vv, andasetofedges,E Each
edge, ¢ = ("r"z) iupairofnodu. Bdcceiﬂaidwbe hcnkmon vcrtices v, and Vz’ vertices v, and v2
aretheatdxmmofc Veﬂhu VI“VIMMWem other. If the cdges are ordered pairs, the
" graph is directed:, otherwise, it I8 wndirecied. lnadimcndmph an edge (v,.v,) goes rom o outaf v,
'la(orima)vz tfnmdehad*hc&mmigmmmlofdexmd.

| Amlhinuﬂaphhammo!m - -
O O g Oyt

mnodumdupm"eﬂuneduvl,vr ,v ’!’hcpamisoftensthn Nodesv ,and v, , are the

n+1
en@olnuof&\epa& thepuhmfnmvlmv““ Ifnouodeappearslnmewquenceofedmmon
momﬂupoﬁhlﬁdmbewc chm&wuysmn"ﬂmplepam whcnwesay"pam" Apath
Bacpcleifvy=v .. Amhcyekbapaﬂ\onwh!chmuyvl Happeanmorethanonce A
mphhwwlicifmmuocychmmem Aaacyclkundirectednuphhcaﬂedam A
subgraph, 8 = (Vg Eg), of a graph, G = (¥, E,;), s a graph whose set of nodes, Vs, is a subset of Vi and
whose set of edges, E‘.iambdeamwnmquyedﬁMendpointsthr |

A graph, G, is planar if there is a mapping from the nodes of G to points in the planc and from
edges of G (o curves in the plane such thet: '

(1) The endpoints of the curve correspondiag to an edge are the images of the endpoint of the

edgs;

(2) No two curves intersect at any point other than their endpoints;

(3) A curve does not intersect the image of a node unless that node is an endpoint of the edge

corresponding to the curve.
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Informally, aplanar graph i oe which ca be drawn in the pléne without crosing edges.
| An mbyntwo—dtmensiomi gridzmpbnunundimwdgmph wlth nodclet.
V = {(ij) | and j are positive inw:m. ISISm and lslsn}
and cdge st S |
E = (vl v, = () and v, = (j+ D for 1<iSm and-ISjASn-l
= (u)and ¥y = (|+ 1) for lsiSm-l and ISJSI'I}

To indicate ehc growth rate of ﬁmctluns whcn dxscuwing the pcrformame of an almnthm, we
need the foﬂowmg notation. Given real~valued functions fand-g on the same domain, fis O(g) if there is
a positive constant, ¢, such that for all out a finite number of domaih valueﬁ, f(x) 5 cg(x). ‘The O notation
is used when discussing upper bounds on a ﬁnncnon A mnent of (hc form "the running time is
O(g(n))" gives an upper bound on the running time. When discussing lower bounds, the Q notation is
used. Gwen real-valued funcuons f and gon the same domain f is ﬂ(g) 1f there is a posmve conmn(, (Y
such that for all but a ﬂmte number of domain values, f(x) 2 cg(x) ’I’hcn "!ht mnnmg time is ﬂ(s(n)) h

| statmgalowerboundou d\e rumnn;time.

Theabovedeﬂmmmofmecmcepumostfreqnenﬂyumdmmism Otherdeﬁmtionl

are presented as needed.
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terminal on one side is connected to the leftmost on the other side, ete. -
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Prescribed Street Congestion,” Preceedings ef the IEEE lnmwimai éymposmm on Circuits

and Systems, 1979, pp. 466-469.
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topics. Includes author and keyword indices. Vol. 1 covers publications through Dec. 1974; Vol
. covers Jan. 1975 through May. 1976 Vtﬂ iﬁ mér my 19’16 mmudv‘bet 1“977 The
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Blographical Note
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