
MIT/LCS/TR-250

FAULT TOLERANCE IN PACKET CCM1UNICATION

COMPUTER ARCHITEC'IURFS

Clement Kin Cho Leung

This blank page was inserted to presenie pagination.

· Cambridge

Fault Tolerance
in

Packet Cbnamunication Cbmpater Architectures

by

Clement Kin <;Jl9 Leung

C> M;n;sachusctts Institute ofTcdmology

September 1980

This research was supported by National Seience~n

under grant MCS 75-64060 AOI

l\.lassachusetts Institute of Technology
LaiNtnMM! far(;~ .. ltf,~U

MasstHlausetts 02139

- 2-

Fault Tolerance in Packet Communication Computer Architectures
. by

aement Kin Ole> Leung

Submitted to the Department of~ Engineering and ComJ>uter Science on 28 August 1980

in partiaJ fulfillment of the requirements for the degree of Doctor of Philosophy

Jt is attractive to implement a large scale parallel procesmng system as a self-timed hardware
system with decentralized control and to improve maintainability and availability in such a system
through fault tolerance. Jn this thesis we show how to tolerate hardware failures in a self-timed
hardware system with a packet communication architecture, designed to execute parallel programs
organized by data flow concepts.

We first formulate a design methodology for incorporating reduAdant hardware into self-timed
. systems for fault tolerance. Redundancy 'management probleilis in seff'-timed systems arc illustrated
with a byte-sliced hardware module structure. Robust algorithms are given for synchronizing byte
slices in a redundant module so that their outputs can be decoded to detect and/or mast hardware
failures. Hardware implementation of these redundancy management algorithms is studied under a
stuck-at fault model, a random pulse train fauk model and a random wave train fault model

Jn studying the design of fault-tolerant data flow processors we have also developed a dynamic
redundanCy scheme for masting hardware failures in a multiprocessor architecture designed to
execute parallel programs organized by data flow principles. Novel features of this atdlitecture
include use of packet netwemno support COl1llllWlicat# llROD&-ProcewiD& elements and dynamic
allocation of a homogeneous set of functional units to service requesas. Program organiz.ation and
hardware module designs to support the-dynamic redundlncy SCbCine are described.

Thesis Supervisor : Jack 8. Dennis

Title : Professor of FJectrical Engineering and Computer Science

Keywords : Data flow computer arehKectule~ ..,.timed baRtware systemS. fault tolerance, dynamic

reduadancy. fault-tolerant networks. fault-tolerant synchronttation. non~.

. 3;

Acknowlr4pents

I would first of all like to e,;press _my gratitude to my thesis supervisor, Pro{~r Jack B.

Dennis. who heads the Computation StrUctures Group at the Laboratory for Computer Science at

MIT. He has been a -constant souree of encouragen'Hlftf-ilBtl· iftsiaht during my &Aduate srudies; ··He

and Prof~r Michael L. Dertouzos. director of the Laboratory for Computer Science at MIT, have·

also provided me with numerous opportunities for profeslional advanC:anent From them I have

learned aareat deal.

I thank my readers, Professors Elias and Halstead, for their lnanr c::onatluctive comments.

Critical comments from Dr. Ll"ba Svol>Odova. now of DU~ on an· earlier dtaft Of ibis thesis are also . .
gratefully ackaowledaed

I am much indebted to the Department of~-~ ~.Computer Science at

MIT which has provided me widl financial auppott. .tJu:ouah tea:hina.aalistafltllbjps and insttuctor

appoinunents.

I would also lite to thank Profelaor Frederict C. Heimie Ill, my faculty advisor. for bis

guidance and support over die Jean.

Members and· former membm'B of the Computatioa StrunnRs Omup~ in particular William B.

Ackerman, Sheldon and Sandy Borkin, Andy BouPtont Dem and RdltBmet. 'Randy Bryant. Lynn

Montz and Ken Weng, have provicled this foreian ltUdalt ddllii wile ·a1klne ~ay fiOm bomci.

My ei&ht years of graduate smclies •ve been very l'eW academically. For other than
academic reasons, these eight years have also been quite trying emotionally. Members of my family,

my wife Enid by my side, and my parents and brothets ftom afilr, me shared the 6uso'ations of a

seemingly endless graduate program with me. and ha~- IUpported me se1ftealy.

-4-

Table of Contents

Abstract :.. 2

Acknowledgment .. 3

l'able of Contents ... 4

1. Introduction... 6

1.1 Fault Tolerance ... :.. 11
1.1.1 Basic Concepts 11
1.1.2 Structure of Redundant Packet Communication Systems....................................... 15

1.2 Problem Statement .. 17
1.2.1 Design of a Fault-Tolerant Paclcet Communication

Computer Architecture .. 18
1.2.2 Redundancy Management in Self-Timed Hardware Systems 22
1.2.3 Implementation Considerations.. 26

1.3 Related Work ... 29
1.3.1 Fault-Tolerant Architectures... 29
1.3.2 Synchronization and Consistency Maintenance.. 32

1.4 Synopsis.. 34

2. Timing Synchronization and Consistency Maintenance in Packet Communication Systems....... 36

2.1 Byte-sliced Packet Communication Modules ... 38
2.2 Timing Synchronization.. 44
2.3 Consistency Maintenance... 47
2.4 Discussion... 50

3. Robust Algorithms for Timing Synchronization and Consistency Maintenance............................ 53

3.1 An Algorithm for Timing Synchronization .. 54
3.2 An Algorithm for Consistency Maintenance :... 62
3.3 Discussion... 67

4. Asynchronous Packet Communication Protocols and Fault Models ... 72

4.1 Asynchronous Packet Communication Protocols ... 73
4.2 Fault Modeling.. 79
4.3 Discussion .. :.. 88

-s-

5. Control Module and Synchronization Merge Module Design... 90

5.1 Synchronizer lmplementation ...•.•.......... '.'. , .. ;r·,···-:-··· '.:··:,:··-·········-·'................................... 91
5.1.1 Synchronizer Implementation under Fault-Free Conditions ~·················· 93
5.1.2 Synchronizer Implementation under the Stuck-At Fault Model 101
5.1.3 Synchroni?.ertmplc~ ' !

under the Random Pulse Train Fault Model... 103
5.1.4 Synchronizer rmptcifientatiOlf . ' ,

under the Random Wave Train Fault Model.. •..................................... , 106 .
5.2 IJccoding Section Implementation.. 108
5.3 Implementation of the Synchronizing Merge Module .. 114

5.3.l Hardware StrUctureofa SyncttronmirfM~Mi>dttfe .. 116
5.3.2 Implementation of the Decision AlgOrithm... 118

5.4 IJcsign Examples .. _ ..•.••••• ~···~···~r·· _.. 123
.5.5 Discussion .. :.~: .. :::.:: : :: 127

6. Design of a Fault-Tolerant Packet Communication Computer Arutitecture 131

6.1 A Packet Communication Computer An:hi~.. 132
6.1.1 Hardware Organization _. ~.. 132

6.1.2 Pack~l ~.orts .. __-:n• .. -·-·•-.••!~~.*':'f-~~··-~··~··~···~ --.... --....... 135
6.2 A Fault Tolerance Strategy Based on Dynamic Redundancy... 138
6.3 Module llesign ... :~~.. 142
6.4 Network Repair Strategies••••...•......•. -:-····_o··~~·.~ :-.. 148 . . ' ,,·,.·.· .· . . .:
6.5 OiSCUSSIOD... 152

7. Conclusion.. 155

7.1 Summary of Results .. 155
7.1.l Fault Tolerance in.Sclf-TimedH'ardwareSystems :.: 155

7.1.2 Fault-Tolerant Data Flow Procellof'. O.lti&A· -··----··"".';'"' i • .. -··-···-· 158
7.1.3 Evaluation ... 159

7 .2 Suggestions for Further Research.. 161

References... 164

-6-

1. Introduction

In this tbesis we study the following fault mlenmce problem:

"How can hardware failures be ~lerated in a self.um.l haRlware system. Which is

organil.Cd by a packet conununication architecture and de$igned to execute data flow

programs?"

We first explain our motivations for studying fault tolerance problems in this contal

Cmnputer systemS which are significantly n:mre powerful than those presently available are

needed in weather forecasting and aeronautical design. These physics problems are often formulated

as a set of difference equations for numerical solution. It is readily apparent from studying these

equations that many intermediate values required for their solution can be computed in parallel; and

so it is attractive to design computer systems which can exploit such j)andlellsm through hardware

concurrency. Many approaches to organize a large number of hardware units so that a good portion

of them can participate in the computation in Pf08l'\S simultaneously ba've been studied.

Architectures based ()Jl vector processing and array processing are available commercially. Another

approach which appears to be very promising, and provides the environment in which the research

reported in this thesis is carried out. is to construct computer systems based on data flow concepts.

Current projects on data-driven computations and hishJy CODCWTent ~based on these concepts

are surveyed in (SO). (SI].

The data flow approach to parallel procemng is based on the observation that an operation is

enabled for execution as soon as the operands it needs are available. and hence need not be further

delayed by other artificial sequencing constraints. In the internal representation of an application

program in a data flow system, data dependencies among operations are stored explicitly and used

-7-

directly to schedule operations for execution. In the data ftow' computer architectures [241 [25]

studied at MIT, application programs are stored as proaram araphs, and hardware units are designed

to execute program graphs directly.

In a conventional computer organization, qperation ofJaardware units such as arith~logic

units. shifters and register files are c0ordinatcd in,~ bl5tntclion execution by control signals

generated by a control unit Many mainframe COIJIPUter&. minicomputers and microcomputel'S are

implemented under this control strategy. We call this mode of hardware operation cenlralized

control. To gain orders of magnitude iinproveent in perfonnance over state-of-the-art

uniprocessors, a parallel processing system must incorporate a Jarae number of hardware vnits and

exploit parallelism in computations to achieve bi&h throuahput It seems that to operate a large

number of hardware units under centraJU..ed conttOt exceaive demand wt11 be placed on the

complexity and perfbrmance or the control unit Perfonnance is compromised if the control unit

becomes a system bottleneck dUe to the coniplexity or the control tasks it must carry out On the

other band, only restricted forms of parallelisl11, such as pipelining and array processing, can be

realized as simple control tasks. For a large scale architecture it is thus attractive to use decentralized

control. ~ket communication ·architecture is an ~·scheme to support decentralized

control.

Under the packet communication princ;iple bardw.are units in a system communicate with each

other by exchanging information packers, and packet pmrnsina is carried out at each unit

autonomously. The size and complexity of thc:ae uaifl ~d on bodl system design and

implementation technology. In an arcbHecture desip,ed for hi8h speed numerical computatioa, for

example, each unit JDJY consist of a small .number of VLSI chips_. a packet may consist of a pair of

floatina point numbers and some control infonmdon.

-8-

The packet communication discipline has been used to organize several W.ta .flow processors

[24), (26) and a high throughput memory system (21). We have also.studied design methodologies for

constructing ·hardware systems organized by a packet communication ~e. which we shall

refer to as packet communication systems (33). Fonnal methods for studying properties of packet

communication systems have been studied in (27) and tni In this thesis we study architectural

organi1.ations appropriate for tolerating hardwire· failures m patket cori11nunication COrrlputer

aicllitectures, and will illustrate our ideas with a packet communication an:hitceture designed ~

execute a class of data flow pnJll'alftS. As pan of this study we have also developed a set of concepts

and techniques for iRrorp0rating redundant hardware into sel}tiined Nirdware jystems (48) to combat

hardware failuns.

In a conventional computer organil.ation Jow level ~wae syQCbronil.a~ between a

combinational circuit and its input and output repre..,_ for ~le.. is 80vemed by a set of periodic

signals generated by a system clock. Due to the use of a sys&em clock..~ hardware s~ are also

called synchronous hardware systemS. A decentra,li1.ed contml computa an:hitldW'e can be

implemented as a synchronous system. A large scale syachronous system. .however, suft'en from poor

modularity because synchronous operation introduces strong interaction among hardware modules.

indirectly through the timing characteristics of the clock signals. The design of each hardware

module must be consistent with the period and frequency of the clock signals, even though these

characteristics may have been imposed by the ~· l"Cquhealents of other hardware

modules. When two neighboring hardware modules synchronii.e their input. processing and output

activities indirectly by rehncing a mminon' timing Signal and one of thest modules is modified. the

modifICaticm must not violate the timingassumpoons'rftade'mthe'odier modrile. Otherwise the other

module must be modified accoRfiftlly;. There are also ue. ·prcibtems· associated wftlt clock

distribution in a large scale system. For these reasons we al9o fitvor imp1ementing packet

-9-

communication system as an interconnection of hardware 1DOdules which ~ange packets under

asynchronous two-way handshake protoco)s.

Under an asynchronous packet COJIUJlunicllion p.rot.ocol. packet c~nication between

modules is synchronized entirely through exchaJ1&!gg amqq& . ~. We call hardware

modules which interact with their environment via these protocols packet communication modules.

An example of asynchronous packet communication is given in Fig. 1.1. Packets are delivered as a
- ,.. ·-·~ ,_

sequence of packet bytes over an 8-bit data link (Fig. 1.la). Packet byte receipt and transmmion are

synchronized by exchan&in& control ~between the sender and the receiver over the control link.

Packet communication using the control discipline of mwition signaling is illustrated in Fig. 1.lb.

Since a packet communication system makes use of handshake protocols for sending packets

between modules, it is also a self-timed hardware system. The redundancy management concepts

and techniques developed in this thesis have been taiJoM specificaDy for packet systemS, but they

are also applicable to other classes of self-timid hardware systems (4). (31). 1391.i-i

Let us consider designing high performance oomputina systems for physics simulation such as

in weather forecasting and aeronautical design. The physics simulation environment is different from

traditional application domains fut fault-tolerimt computm, such as process control and

interplanetary spaceflight, in that it inhemldy has no strinaent reliability requirements. It is

nonetheless attractive to use fault tolerance techniques to improve availability and maintainability.

System throughput is improved if hardware failures can be masted, especially since it is not unusual

for a numerical computation in physics simulaDon to ex«:ute for many hours. It is extn:mely

annoying if the entire computing system is disabled because of one malfunctioning transistor or one

loose connection among the hundreds of thousands in use. 1bese considerations have motivated the

research reported in this thesis on fault tolerance in packet communication romputer architectures.

· 10.

DO
• • • data wires

D7

ready .} control wires
actnowledae

(a) Bundle structure

ready :J
I

I
I
J

1 I

I I
I

acknowledae I I
1 I

0 I . ~

I t I I
I I

I I

• I I
packet received p.ctet receive4, mdy

(b > Transition Uanelma

Fig. I.I. An asynchronous packet communicadon protocol

The problems studied in this thesis will be explained in more detail after we introduce some

fundamental ideas for designing computing systems which can tolerate hardware failures.

• 11 •

1.1 FaultTeleaaee

1.1.1 Basic Co~e,ts

The foHowing paragraphs on fault tolerance for ~ FAUits is eicerpted from the paper

"Fault-tolerance: The survival attribute of mgit.al sysrain~ _by Prohtif Algirdas Avizienis oruciA,

published in the Proceedings Of the IEEE. vol. <>6. no. 10. 1531 · ·

''The notion of fault tolerance for physical fapks •an a.urtbute of diaital systemS requires tbe

viewing of the system from two different v~~ ~ and ·logkal. Ffmn· the viewpoint of

purely physical observ•n and ~4·dW&W,.. phpical .aystans, built of laJp

;memblies of electronic, electromechanicaJ and other physical components. The componentl ol!»ey ·

the laws of physics and the behavior of the system can be deacribed in tenns of time functions of the

values of phySical v3riables: voltageS. currents, positkJm. etc.

"From the viewpoint of the human SQCiety at lalp dilifal &ystems ~ 'black boles' that

perfonn informationprocesina to meet human aeedl. ladle very paeral view of NeweU and Simon

(401 they serve as physical symbol syst.ema. in whidl pbylical· variabb,repreaent other entities -

symbols. expressions. and processes. and the sys&em • QPlble of 4esipation and interpretation. At

the level of grQleSl formal detail, die ioli>nnaUoo· .prormina behavior of a digital system may·. be

specified in terms of a finite-state sequential machiM. Outside of die formal interprelalions. the daily
'

user sees his box of digital hardware as a useful.Mifact '8t Qin saore latie quantities of symbolic

infonnation and can carry out infonnation processing operations that are specified by his programs.

In this penpeedve, it is only the 1ogicaJ activity of information procelllilig that concerns the user, and

not the physical properties of the circuits' inside. As Jons as the logic machine runs well, what

happens with thephysical system that is its host is"ofve,Y Jftde, if any, interelt.

"The use of the physical system as a Joaic machine is based on the conYllldoll•dlat Ille values

of physical variables are interpmcd as the dilel'Cte values of Joaic variables. and that the speed with
~~~i~--- ,.·!'.;·~ 

which trans(onnations are carried out is limited by the physical properties of the hardware. The lo8ic 

machine behaves in the spccifted lnlllll« ~ lona u dlc ,......._fl-Pf~ com~ .IDd the 
' - . ~-- . ~ ~ ' ' - - .; 

speed of ope~tion remain witJ?in.~ficd limiCL However, it hl9 bcel-1:~ aperlcnwo that 

unexpected out-of-speciftcation physical ebanaes in ~ ~ d9 ~Uf m all kiadl of' 

digital hardware. They are usually called mal/Unctions when the chanaes are temporary, and fail"~ 

when the changes are permanent Their eftict ii to eatne n utispeclfttd··anct diSruptive chanae of 

one or more Josic variables ol'the Jesic· maddne:' Rudi i dilnge ·of' lnliC values is caned a physical 

ftllllt. or limply ajml1 wh• thl·phy9c.reau.e ofthe-'faultfldearft'om the context of the dileussion. 

as it ii here. ... 

"It is the possibility of randomly ocx:~niDJ faults tb.i ~ the Ulef uaeomfonably aware of 

the physical side of his logjc machine. The occurrence of a fault often caurcs an error, that is, a 

deviation of the Josic mcbine limn itlpropan apecffled•bebiftbr(ttiaWitkm·throuah a sequence of 

specified lfateS) into a mquence of enor ltatft. Wblle Ill an -mor stalli ltae ·Jcip: rl1acbine fails to 

perform correctly at least one of ill lpldfted tall&. act ttJllln a partfal·· ar ec.plete tallure to carry 

out the information Procalinl ftancdon. Such fililura are a-c:oannon• apertence· lbr the u.a of 

contemporary informadon procelliRJ l)'ltlml. The uMl iDlutkm ·of the problem 1s a manuaDy 

controlled maintenance ICdon dial remits in 1be rllft(MIJ or rtpat; of11le CIUle of the Ault. 1be 

system is then Rlltai'tld to run until the ant liult llrlbl. 

"The purpose of fault-tolerance is to offer an llter!t* solQtioa AQ .. Che. (Jeult probkm in wbic:b 

the detection of faults Qd th.! recovery to no""'1 op;ratiQll .-e.Cll'ricd CJQt•~lltlmald ~of 

the system iuelf. Fa1'/1-1olm-ance is the unique imrlb~ of a diailal· .,..... ~:·~ it pglllible 

for the system to continue with its proaram-specifted behavior as a Josic mlChine after the occummce 

----~--



-13-

of faults. It may be said that fault-tolerance is the 111niwll allribule of the logic machine because its 

purpose is to cause a return from error states back to ~ specified behavior.. thus assuring Jhe survival 
-' ', -.. ~ -:-·: .. ' r. 

of the infonnation processing activities. 

" ... fault-tolerance requires additional 'barcffiate aridlor .,ltware that is redundant during 

normal operation and wuuld'be endmy ~in 'a~ &utt;.ffee 10gic machine. In the . 

fault-prone physical imptementatioft. · IWtt~cmenHICe 'IS ·5 ·iftsurance' of die to8iC machine against 

disruptive physical events. Its function is to react to the ~e of faults and to protect the logic 
,,. 

machine against the imperfections of the physical system that serves as its host. ••. " 
.• - . " " , ·-· 1 .. ,. -~J·.. . . ' 

The' aboVe excerpt' serves to ·fntrtiduce dM! bi* ~ Of /ailum. faults. errors and fault 

tolmmce-·ror fault-tolerant ~. We uae'tlk! tenm fatlu•· ~Its and em>fs as apllined 

above. A failure is an ~ t>ut~ftCadon pbySiCii ·cfiauge in: con1Ponent parameters. 

Examples of fiu1ures are out-ohJ>ec ~ aad 1dCfle ~- A jluli is in'unSJ)Ccified and 

disruptiVe change of logic values CaUsett\Y'~ '~. A~ Occt.rs'm"a ;i>ll~ machine while a 

fault occurs in a logical machine. A fault mOdel re1as the'two ~ by postulating how Joaic 

values may Change when physical ftdlutes\Ja:ur. 1be D1M'COlliln6n .. it'mOcler is the stuck-at fault 

model which postulates mat logic \'8liab1eS frill become Stuct at 'either toabf I .or tOsicat 0 as a result 

of physical fatlures. An mi>r ii a dmadoll of 1be ~ iftdiDe &om its program-sJ,ecified behavior 

into a sequence of error states due to faults. Faults may be toletated suCh that ~ir occurrences.do 

not cause errors. A limPft example of fault tolerlace is to Ult bit-sliced ineniorY systems protected 

by error·c::.omcting codes so that when a sinlfe bit..:wlice fails ahd cauaeS one bit of the data word to be. 

faulty, the contents of the word can di be reaWeredlnd no error am «cur. 

We shall restrict our attention to toleratini physical failures in this thesis, and will not deal with 

·human mistakes that occur when the computing system is designed, implemented or in uae. 



Fault-tolerant systems differ in the procections each otren apimt physical failures. For system 

design the related notions of maintainability and availability are also uteful. Maintainability is the 

property of Jiaving Jow maintenance cosas. Availability ii a measure of the ftaction of the uaefW life 

of ~a computing system during whicb the systeo;\· is •. ~v~ for perfopnina the functions it is 

designed for. Communication pl'OCCllOl'5 are often~ ~)Je hi&hlY available. even tbouab - ·, .. ' ' -

there is no guarantee that conversations in pqreas when. r•~ oc.'CUJ: will not be dilruptcd... 

The logical machine we work with in this thesis is a computet system desiped to execute a class 
' .·. -

of data flow programs. The underlyin& physical machine is a hardware system orpnized by a packet 

communication architecture. We stu4y ~~{al~~ hardware R4wa~ 

techniques appropriate for tolerating ~rtain. types oChardw• fiiJ~~~ph~ nwtUne. Our 

design pl is that a data fto": program runnina on the~~~~ failures in the ..,.cifted 

class occur can always run to completion, aqd compute the .,~•if no failure .1* occurred. 

In other words, the program execution capabilities of "" Joaica,t ~inc. are preserved • Iona • 

only failures in the specified c1a1J occur in the physical ma:bine.. )be. S)'IC4ml dclian presented in tbil 

thesis achieves fault tolerance by ~tearatioa PJ'Oll'llll. orpni.~-.. ..mi&ecWral . features ·and 

redundant hardware in the physical madllne into a~.._,~ Jbis ...._,is etfective.ODly for 

certain types of hardw~ failures in the physical machine. ~are faUpn:s in a pbpical ID#'bine 

are characterized by their extent, as well as by fauk PlOCkls.. We 'Yill SlUdy,fauh ~II for packet 

communication systems in .detail. For now we state our ~ about dle.ei.tent of hardware 

failures that can be tolerated by our sarateaY •. Since the aamt of failUJ'ell can only be desribecl in 

tenns of physical structure, we next introd~ the .sttucture of ~adaat •dw#e: ~ulel Ulld in 

this thesis. 



- lS-

We propose ~design methodology for fault..merant Packd ~ systemS consisting 

of the following stepS: · 

(1) A packet communication system is designed accordina to it1 functional specification. We refer to 

this initial design as the non-redll~t syltem. 
. . . ./ . . . . •. ·< .. . :i' . . .. . .. 

(2) Fault tolerance is incorporated into the non·reduliclant system by incorporating redundant 

hardware· into each module in the non-redundant - and into the connections between 

modules. The product of this second ..,,;~·a ~ -; ~Y similar to the 

non-redundant s~ but.coastructed out pf (edu~ ~.~ ~.Rdundant 
-~. - - ; ~ - - . . .. ; . : .. . l: '' . . :: '. ·- .- - .; -. ' ---- ·' - ,! , - .' ' 

lints. 
' 

For this thesis, we ~ mwne that~ packet eommunication modules have a 
_(. ~ 

byte-sliced internal organization. c:omtructecl with tiilure-indcpeadent,,,,. Ilka. 

"..:~5f.L .•. : 7 ~.~-: 1" #.~:; .' ~ 

Byte slicing is a common technique for implementina memory systemS and arithmetic·le>P: 
:>)_.f::-;--~5:.;'. - - . ,,..? <;~~t~; ~ , ·::·_,,"' ',. - _'.-,. 

processom. A memory chip or an aridmletic·logic chip implements the ipecifted function for fixed 

sizebySes. An~of$1Ch,dlip~Jl,,.'*'4f0c~·; ... ~,p~.,,.. ... Jn 

general. each b,vte.~alloulfl~ .iijpput ~ . ..tff!l'~,-,4~ . ..,~.,_-:._ 

intbe~arra1,,.,Ina~s~;orlA~~~~ ..... ,~~oply 

onebytcof~.inpu,t~.~:p.~~~~,i!M~~-:~ecaJDClllllQIY 

chips.) An09tputWO{de>f~~~~R.n· f,tf~~MM:•~,... 

For fault tolerance, redundant slices are introduced into a byte-Sliced module and the bytes in 
;; ._ :'i'-.._.t·ft"-- ,,Vt .. ~.) -,-

each output word are correlated by an encoding rltmle. In an encodiaa scheme a hardware module 
-,-.·-

is modeled as a function which maps an input bit vector into an output bit vector, and a module 
• 1 -

··1'\ _,,.·tL 



• 16· 

failure is modeled as a fault jitnctloll which maps a fault·free output bit vector into a faulty one. If 

each output bit vector consists of n bits. then an cncodina scheme C partitions the set of all n·bit 

vectors into a~ space Sc and a non-code space Ne- To detect hardware failures in a module. C is 

chosen such that: 

(1) All output vectors generated by the module during fault· free operation are in So and 

(2) Under the most common hardware failure modes in the module no faulty bit vector in Sc can be 
' . 

generated. This propeny implies that under the most common failure modes the outputs 

generated by the module is either the faulHiw result or is a non-codeword _in Ne 

When the output words of a module are encoded by a deme C satisfying .these two properties. 

the most likely hardware failures in the module can be detected by checking these words for code 

space violations. An encodina scheme can be used to mask failures in. a Jwdware module if it 

satisfies (1), (2) and (3): 

(3) Under the most common hardware failure modes in the module, each faulty output vector in Ne 

can be decoded to derive the fauk·free vector. 

The byte1licecl orpnif.8tion is pardtularly amenable to app1yina encocfina techniques since 

under some of the most common failure modes, tliture ofasiqle ~ IBce, fbr examp1e. onty·one 

byte in each output wonfwillbe atrectm. Since~ PIOnmina wort of Hiamnini f29J, much wort 

has been done on applying coding techniques ta "dtrett and mast NilUres in bytHticed aritbmetic 

processors and memory 1ystemS ffi}. (13), (6SJ. f47J. 'Hardware ftlilures are also often dealt With using 

modular redundancy. In a modu1ar redundancy !ICheme several oopies of a hardware module are 

operated together and their outputs are compared or voted upon to detect and mask hardware 

failures among them. Modular redundancy can be iegarded as a special case of byte slicina and . 

output encoding in which all slices perfonn identical functions and each output word consists of two 



or more identical bytes. 

Each byte-sliced module M in a redundant packet communication module is design~ so that 
~~.i ~; .. ~L_:<,; 

failures among byte slices in it can be detected and/or masked by decoding their outputs.. as long as 
f; 

. "' '. :·. '~~;: ; 

the extent of hardware failures is limited to less than some filed number, MN, of byte slices in. the 
, ,- ' '.•' 

module. 

A redundant packet communication system CODltrUCted ~ng these byte-sliced modules can 
" . ·'·· 

only tolerate hardware failures whose extents are thus limited. It is a reliability improvement over its 

nonredundant counterpart, however. only if 

(i) All the redundancy management mechanisms are delipeth'8tNtlf aifl~tdatJJy~ Md 

(ii) In the implementation teclmoloaY. the probability that more~ 'fN.~ ~ve failec\ in,_, 
'.· ;+ ~ i ~·?··~~ .' -u_.:·-.:R~· 'i::_( -~t_i;~~~ •} ''·;/:-:~;' ' '-;},~--~~/: ' -~ ... <- . ~I' .:- -~-, ·,.:- ,:._ 

redundant module M is Jess than the probability that the nonredundant counterpart of M has 

---- ·.• .. 

We have made these reliability assumptions in carrying out the investipdon reported in lhis thesis. 

1.2 Pna•l• State•• 
There are two major results reported in this thesis: a conceptual design for a (auU~toterant _ 

packet communication computer architecture. and a set of conceptS and t«hniques for managing 

redundancy iaadl·tiinelthudwarel!;••· ·.lk~cfelliP'-~~~ fOr 

data flow computer orpniz.ations and the fault tolerance features are built directly on program 

execution mechanisms at the machine level. The hardware modules in Chis an:hitecture include 
". l - '~ - ~ 

processing ekmin1s, which provide Storage for the prosrain in ex~ and simple functional 
.::; 'f • 

capabilitiCs, :specialized fanctional units for pCrtbnning more complex operations. 1011tm tor 

constructing routing networks, and allocators for constrilcting allocation networks. The properties of 



• 18. 

these modules are explained in men detail in Qapter 6. For now we note that the redundancy 

concepts and techniques we have developed for self.timed hardw~ syMrm5 are applicabJe to 

tolerating hardware failures in the class of packet communication systems delcribed in (33). includina 
- -

an these hardware modules used in the dlta flow compudna system. Thus while the redundancy 

management concepts and techniques have been developed to provide implementatiOn tools tbr 

realizing the fault-tolerant architecture as specified. they are in fact~ aeneraJJy applicable. 

Features of the data flow processor are described in Section 1.2.1. The need for introducin& 

new concepts and techniques to manage redundancy in self.timed systems is illustrated in Section 

1.2.2. Some of the technical problems that arile in implementing our redundancy manqcment 

schemes in hardware.are di&r,J.;tw,d a SecdOD 1.2.l · ·>• 1: -

. . '. ~ ' t < , , ~ -· c - - ':'i. _,. < -

1.2.l Design of a Fault· Tolerant Packet Commulcatlon Computer Architecture · 
,,-~_,.~: . r 

" .,,._;; 

Most computer systems [8]. (30). (58). (67) designed to tolerate hardware failures are inteMed 

for high reliability or long life applications with modest computational requirements. In this thesis. 
- ., •• ,,,, -~ ~- -.:~:" < ~J" 

we study fault tolerance ~hniQues to cope with hardware failures in a multiprocessor desianed to 

execute programs expressed in a sublet of the data flow Janauaae praentecl in:fl!lt; ".WC s1111hdsr ID 

this multiprocessor system as a data flow processor fbr convenience. This data flow procellOI' hlS 

several novel featuns: 

Fault-tolerant multiprocessor systems (11). (30) have been desiped using multiple, identical. 
- ~- .- :>. - . 

hardware units. A program running on the data flow .processor is partitioned and stored on a set of 

identical processina elements. The data flow proceaor also has a honqeneous set of speci•lir.ed 

functional units for performing complex operations. 1bae f\mctional units~ allocated dynamiclll)' 



-19-

to service requests ~ the procmina elements. ~. ~' aUQcaUon scheme provides dittct 

support for graceful degradation with respect to these functional ·units. Programs prepared for 

execution on the fault-tee data ftow ··J)fOOelSOt dn nm wfdlout mdClffitatioifif only a stibset of 

functional units bM ftiled. 

2. Communication among processing elements and fanctional 11ni1~ is J11pported by packet networks. 
- ' - ' { - -. ~. ~ 

In the data Row processor hardware modules serve two distinct functions - procemng and 

communication. Processing elements in a data flow proc.e.or ex~te subcomputations concurrently. 

Communieation ~~een the processing elements is supported by t;.;tet networks, to be constructed 

out of a few basic LSI cell types. ··This mbiUcture ·is q.;ite dift'erent from most fault-tolerant 

computer· architectures reported in the literature. which are b0s-oriented von Neumann architectures 

{8, 59, 58) or bus-oriented mulu~rs (30,·67]. ~-roiwaid packet network.designs whieh 

can handk a large number of paCkets concummdy have t>een analyi:ed in [I2i In some of these 

networks the number of basic modules· and the lcftllb of connections between them both exlubit 

faster than linear growth as the number of procellina ~ts bein& serviced increases. It thus 
- • ~, 0'. < 

appean that a substantial amount of hardware in a ~ data 8ow procasor will be used to 

implement packet networks. The reliability of d)C8e ~orb wiD be an important fact.or in ..,.;ng 
. . . .···i •. . 

system reliability and availability, and it is ilnportant to pUnjmUe ~ amount pf redundant hardware 
'" ~ - , • - .\ • ;~- - '. • , r . • ,'' ' • 

invested in them to achieve a desired level of fault tolenmce. 



• 20-

The data flow proceaor1lardwn il-0rp0ilfd a.,._.,_.,~~ diaciplint to IUpport 

concurrency and modularity. Computer an:hitectures are commonly imp~---~ 

digital systems in which events in all modules are synchronized with reference to a common timing 

signal. Many fundamental fault tolerance tech- have been ~ in this context . In 

contrast. a packet communication computer architecture is imp~ted_ as. an interconnection of 

self-timed modules whose activities are synchtoniz,ed thfOU&b loqllized signal exchanae, in 
- .. _ - ;:; ,,,_, .-·1 "'c.- --.. •· : - . 

accordance with the adopted packet communicaUon protocol Fault ~~~e . ~~niques for 
- • c , - - • < - ',' --:'" - ' ' -

asynchronous systems have been demonstrated previously in a rautt-tolcl'lt)t c~\ design [16J and are 

reported in a paper on syndronization roting by Davis and WakerJy j17). We hav~~~ ~ 
• • .= - - • ":-· - - ~ • i - - : . - . - ' " 

techniques to show that byte slicing and codina techlliC(uClCllJ _\)e ~ Jf .~ -~ -~' faUµra in 

self-timed system1 undet: more aeneraJ fauJt ~ than the conu,nonly, a_dopted_ stuck:-~ fault 
- - - ~ - ' . ' - .. -- . .. -. '. -- ' ' . 

model 

In this thesis we prellellt a fau1Nalerant data flow procellOr desip based on d)'Dmlic 

redundancy. In a dyn8mic redundanCy ·lcbeme ~ ·h8rdwate ii incorporated to support 

on-line fault detection. Upon detectina a· hardware .tlilure. normal ~ ii.~ The 

system is diqlKJsed and repairecf tJ,ombiy deafadedr Nonnai proeeliin1 is then resumed and 

The dynamic redundancy 11theme uses a combination of hardware-implemented fault detection 

and packet encoding techniques to mast packet networt failures in 1he fault-tolerant data flow 

procetlOr. It uses a retrammission strlteaY which is conceptually similar to error control techniques 

used in packet switched computer networks Dke the ARPANET. Differences in failure chancteriltics 

and performance requirements between Chae two typel of networks have led to diffenmt 



-21 _. 

implementation strategies. We have a1lo deveJoPed ttr h epa,farlncorporating redundant1wdware 

into a packet network to support rapid repair. 

In some computer systems hardware failure.a are inalted using module replication and majority 

voting. Another example of hantware-Unpleinented ftiult DUISkina is the use of error correcting codes 

in bit-sliced or byte-sliced memory systems. The ~ tedul'ldancy techniques presented in this 

thesis can be used to incorporate mlundant'11intware tO eicher masl: ·0r detect fmlures on-line in a 

self-timed hardware-system. It is thus poaSfble to desip a< fau1t-t0lerant . ~iet communication 

computer architecture based on hardware-implemented fault masting. The dynamic redundancy 

scheme we have developed offers lhe potential of considerable hardware savings, especially in the 

packet networks. Hardware-implemented fault mllkina offers two advantaaes over a dynamic 

redundancy scheme: the computation in progrem need not be held up until recovery is completed, 
I~ ; > 

since· hardware failures are masted on-line; and no additional prosrammin1 eft'on is required to . . 

insert checkpoints into application proa1ams. The ftnt aiplbility is important in meetina stringent 
,t : '· ' : 

response time requimnents, in process control applications. for example. but is not essential for 

numerical computation. As we shall see, the dynamic redupdancy IC'lleme we have developed 

perfonns recovery at the machine insttuction level. and bence bas no impact on applicatiom 

When detailed logic designs and hardwn &ilure rates are available for a hardwm 

implementatioft, a1tmnative ·tehemes may be cnfbDy evalUalm t6 determine their cost~ffectiveness. 



• 22. 

In this_ thesis a data ftow computing system is implemented in a physical machine organized by 

a packet communication architecture. ~r d~ic redunclanqr :~ .. must be supported by 

hardware-implemented fault detletion. In Section 1.1 we have introd~ a b~ bardwan= 

structure for redundant pac~et communicati9n 111adui.. We will. 1* #tJs ~~·Jo incolpo.-.C . 

redundant hardware for fault detection. ·oiven a 51*i~ of the A911·redupdaol modt.Jle •tile 

extent of physical ra9u~ to be detected. we can pick tll encodina ~- lftd.tllen desiP the byte 

slices accordingly. 

Let us consider how the notion of encodina the output words of byte-sliced modules is used to 
. ~ '-~ 

deal with byte slice failures in a synchronous hardware system under the stuck-at fault model. In a 

synchronous ·environment the byte slices in a module are·synchronized with each other, and with 

fault handlers monitoring the outputs of the module, via a sys&em clock. Under the stuct·at fault 

model the output lines of a fai1ed module bCcome stuck at either a Joaica1 0 or a JoitcaI 1. As Iona as 
. " 

the clock signals are generated in accordance with their timing specifications and module failures 
':t·."_ ~ '~ '. 

obey the stUck·at fault model. each sianal presented to a fauk bandier by a byte-sliced module will 

have stabilized at a sianal value repraentina either a logical 0 or a logical 1. when the fault handler is 

activated. The outputs of a module can thus always be interpreted by a fault handler as a bit vector 

specified either by the bit vector ft.mction ~ialod widt the . module or b)' die f\ulcdona1 

composition of this bit vector function with a fault ftmction. Faulls can .&hen be detocted or mested 

by designing the fault handler to operate on its input bit vecton based on the capabilities of the 

Consider next the application of byte slicina and encodina schemes to deal with failures in 

redundant packet rommunication S)'llelllS. rust of alJ, there is the problem of modeling hanlwm 



-23.; 

failures in packet communication modules, and ,Jaow to 4elign decoders, under these models, to 

decode inputs from fauk·frce slieespropedy; Bl apieOflriWICNlll:efftlm failed slices. This is the 

problem of fault mOdeling and will be discussed in the nest subsection. In this subsection we explain 
;' 

the problems of keeping faulHree slices in a redundant module pt0perly synchronized and consislent 

so that their outputs can always be grouped together properly fur decoding. We call these latter two 

problems redundancy management problems. 

The synchroniution requirements can be illustrated by analyzing the operating princip~ 
'_,.r. 

behind the synchronous byte-sliced organil.ation. commonly known as a triple modular redundancy 
, " ! ! :· .. 

scheme, shown in Fig. 1.2. In this orpni7.ation. a redundant ~le is constructed using three 

identical slices. and the decoders are majority voters. Failures in any ~e slice are masked in 

majority voters in successor modules. Operation of the majoritY, voters and proceaing modules are 

;_ ... ~. uV~~-· .. _·. ---...~ /-~ ~· 
I 

~-

/ 

Fag. 1.2. A synchronous triple modular feduodancy iicheme. 



synchronized tbrouah clock siplls. Two implicit . -ampcioes baw been made in using 1be 

synchronous biple modular led.undlllcy tdllme tolDlsk sialle:modulo •filihnl: 

(1) The time slew in distributing a clock sianaJ to the proc:essina modules is bounded by a known 

constanl 

(2) All fault-free proceaing modules in a triad will process identical inputs and generate the 

corresponding outputs in approximately the same amount of time. 

When Anumption (1) is satisfied. proceaing modules in each triad will be activated to process a new 

batch of inputs from their input voten within a· known time interval. Suppose the processina 

modules are activated to process new inputs by clock pulse C. Then under aaumption (2). it is 

possible to calculate the time interval. in terms or the number of clock pulses. after which all 

faulHree processing modules activated at C will have preaenced their outputs to vote11 in SUCDllOI' 

modules. These voten are activated after this time interval to perform their fault-masting function. 

If either assumption is not met, it is poaul>le for a voter to be activa&ed by the clock sipaJ before all 

input signals it receives &om fault-free pJ'OC$inlmodllles'bave _.,~. An'mtOUS datum may 
;~- ~ ~ 

then be propagated beyond the voten. lbe-~ requirement for a synchronous triple 
. ~. 

modular redundancy scheme to·q>erilc Prorx:r1Y in~ sinaJe slice failu~.is that whenev• a 

~Y voter is actiftted to. perfoQn ~ty Totin& the input lipals it ncei~es from fAuk.ftee 

procesmng modules must have stabilized to their proper values. This requirement defines the deshed 

timing relationship among fault-free- rriodules in a redundant system, and is uauR!d in a synchronous 

In a self-timed $ystem oraaniz.ed by a packet amununication architecture, a majority voter in a 

biple modular redundancy scheme is activated upon receiving input packets from proceaina 

modules. During fault-tree operation. a ...,rity voter receiving input packets from procWl\I 
- - - ·: . . . . 



modules_ can be activated after nceivina one packet hat 4ilCh pret?1"Wing module. There are 

hardware failures, however; which can came a pruee1*'•1,moc1U1trto stop teneratlng output packets. 

We call these failures killing faults. To detaclacllimt· tilHRl·faola affecting a singlepnx:essing 

module, a majority voter cannot always wait for an input packet from each processing module. After 
- .-. .- - • < 

receiving input packets from two modules, it must decide at some_point that the other module has 
•o ' 

failed. and start to generate alarm signals and construct the error-free data from the packets it has 

received. When it starts to decode the input sipals. however, 'it "must also be sure that packets from 
: ' ' . 

all fault-free processing modules have already arrived. Otherwise the same type of errors illustrated 

in F"ig. 1.2 may occur. 

We have developed an appl9llC1a to . ...._ Ndundancy in pldet c:ommunication systemS for 

fault tolerance tbrough enforcing the fallowinf IJIM!ht ta k r1iDDc:emll'lllftt: 

All input signals from fault-free modules feeding a decoder (the counterpart of 
. ,. , ~:~- ~ : ' -

majority voters in more general byte-Sliced confiaurations) must have stabiliZed at their 

proper values whenever the decoder is activated to decode its input sipaJs. 

We refer to this requirement as the timing sYncbronization problem since it imposes certain timing 

constraints on fault-free byte slices and decoders receiving inputs from them. In our approach timing 

s~n is ~nramed by assurin& diat fault-free byte slices feeding a decoder will always 

send outputs to the decoder within a filed time interval of each other. This approach will be 

discussed in detail in Outpter 2. 

At the end of Olapter S, we tlelcribnriefty;u ....,._ve lpp10llCh to orpnii.e redundancy in . 

packet c:onnunication S)'lleml·for fimk~-....,_,. mauve merits and dislldvantaps. 



• 26. 

We have also studied another das of fauk tolmace plUbkms that an.. in non-determinate 

packet communication •.YltmlL The not.ion of_ llOn"detenniucy IDCI lhe .a.ciated --COll.Siltaey 

mainlenalledproblems itR illu&tnl8d in_dle followina ..... 

Consider a data base against which transactions from data terminals are processed. Suppose we 
·_, :t > 

now replicate the data base at several sites to mast sinale site_ failures, and it is desired to maint4in 
, . ' - - . '. 

consistency among them by serializing the transactions received at each site and ensurina_ ~ the 

streams of transactions fed to the data bases at these sites are all ~ticfl. An input transaction 

received at a terminal is forwarded to all the sites. Non-determinacy arises due to ~ variadon in 

transmision delay along paths between terminals and data base sites, so that two transactions sent 

from different &erminals may arrive at d.- lilll ia · clitlftnl «4er. To .wize a>lttCUIRDt 

transactions consistently even """8 aosne _.,.;nla,havtc;failtilL dal& ._,..__mmt b1n1blt.t1> 

communicate with each other. The fault tolerance problem we shall tackle is how to support such 
' . ~~ ' 

communication reliably, under the issumptiOn that a r8ited datl.,. • or failed terminal may 

exhibit such ·malicious behavior as tendina ~ information to other sites. 

Our approach to tolerate failures in non-determinate systems is based on a general algorithm 

" 
for reliable message exchange discovered by Pease et al (45). In our raean:b the much simpler 

1 ~ : :,- : t _,.. ' . --· ,, -

single-fault case was developed independently. The consistency problem is explained in Chapter 2. 

and its solution in Chapter 3 and Chapter S. 

L2.3 lmple•ntatlon Comideratiom 

To illlplemem fault-tolerant ~et c:unRUPicatiOB 8'W;-,we 1ieed a_ fault· -model wbich 

characterizes (i) the bebavior of failed IRCldulcls,.l&Ml {ii) tbl itn 1 IC&iOA· ._. ... hardw8e el en•• 

employed in the construction of fauk handlers 81\d outputs from failed modules. The latter part ii 

necessary for evaluating the effectiveness of fault handlers, but is often ipored due to the fact dllt 



-rr: 

the stuck•at fauh model for logic gates is most commonly usec:L ·Under the stuck-at fault model. the 

outpUt 1ines for faulty modlili:s'&R iSllUftllCt ID be tauck' M either logical 0 or logical 1, and it is 

straightforward to sPeClftthe fflterattion IRb- fault.i.fn!e10ile1lte5 ·Mid faulty input st&nafs stuet 

at either 0 or 1. We wiJl study hardware implementation of redundant packet CODlJllUnication 
. ,,_'. . . ,-~{:. ~'.,. r~. ;.: .-il.;:'¥ ·J·~ri-: )~ .... ----:~ .. -;r, .. ~o;_;;j i.::;'ta .. <·f. ;, ''.···:;~-1 .. 

systems using the stuck-at fault model. a mndoln pubt tmin fault model and a random wa11e train fault 
~ ~·:.r ~:,. : .. :~ __ _,--. ~~ 

model introduced in Chapter 4. The two Jauer models are chosen because they better capture the · 

sensitivity of self timed hardware modules to runt pulses and output huards exhibited by their faulty 
·- -;._ .:.,_ ~~·:·-:- _-1~ ,• 4.; :._\.):c:-:~"*1f)5'1 :-;:L~ . ~· .. -: · -

neighbors. Their choice is alto motivated by failuft' mechanisms in VLSI technologies which are not 

adequately modeled by classical stuck-at fault models (281 (63i For both the random pulse train 

fault~ ~4 tile ~ Y(~, tlJinlault,~ -~~ wW ., ... acUon between 

~generatatb1l~~·~:~ .. -~~,~Jwidlen&0. 

that the effectiv~ of °"1"· -fault .lolcranr.o Ml&;baifl1'411 .ja,i :~ ~ware faih111!$ can. be 

vigoro.,.iy evaluated. 

The problem of having metastable sr.ates. in bistable devices, also known in the literature as the 

glitch problem or the synchronizer problem P41 (IS). (37), (44) po&eS additional difficulties in 
' . . ~ 

implementina fault handlers under the random pulse train and the random wave train fault model 

This problem often arises at lbe interface between a aynduonous lyMan. and an asynchronous input 

When a latch activated by an intemally pnerated timina llipal is used to receive an asynchronous 

inputsianal. the input sipalmay arrive at.tile.~ ~•eOUllJ,witll daedoct ......_ The - ., . 

latch ID4Y then be driven into its...-.:~ Onc_c, a.._.. ... ,.,..., a metalSable st.ate. it AB 

reside in that, s&a~. for an-~ k>D& time. ~ dlC:~uub•quc_,y Java this metamble 

state, its output may undergo a signal tnmition and violate other timing mumptions in the ~ 

Metastable state phenomena have caused failures in synchronous di&ital system. In a redundant 

packet communication system, a decoder must receive sipa1s from every byte slice in a redundant 



-28-

module. Under the random pulse train and the random wave train fault models. a failecl byte slice 

may deliver faulty sipall to drive receiver latches. ila nepborinJs~ iDto thei(' metlltabk 

state$. causitia these dccodem to be out"Of"IYQC by_,.~ am.ouo~ witl1~~ bound. 

In a self-timed system. another bistable device called an arbiter is often used to resolve conflicts 
. . , -~·~'·}\~:-: i{ J:::" - .. ,-_. :; . 

in resouree sharing. A two-inpu&loDe-output arbiter. forwards input request.s it has received at its 
_,_... - ._., 

output port. If two input requests are received simultaneously (within a short period of time), ,, 
·~ <-i ,;'::"'.,! ;1;~~f:~.~ ...... - :-· 

arbitration is performed and one of the requests will be forwarded. In perfonnina arbitration an 

arbiter can also be driven into a metastable state. 

To tolerate sinalealbiter~tMl'll oflhemmust'be·apefated ~- lttwdCODflft1ina 

requests n delivered to two liihne-i~ artJieerl Widdn-a itiott fll~ht-eai:b:~~ fbele· 

amiten may·enter and teSide ill dleir respectMmetad>le . ..._ ft>t dtltei~itt perlodi. orttme: Them 

is thus no guarantee that they will both resolve the conflict within a fixed time period. '1bbi polle8 

problems in assuring timing synchronization. The arbiter is allo a soun:e of nondeterminacy in 

packet communication systems. In the above acenario, lhere is no guarantee that the two arbiters will 

resolve the conflicts that arise in euctly the same way, and additional mechanitms are nec:eaary to 

maintain consistency among them, so that the conftictina requests wiB be forwarded in the SllllC 

order after arbitration has been perfonned independently by the two arbiten. 

As we shalt see in Clapter S, metlltable state problems, together with massive failure modes 

that affect several modules simttkaneously, pose intrin* Hmhatlons on 1he reliability that can be 

achieved when a self-dfned system is enhanced fbr f'auJt f01erance usina ~-approach deve1oped hi 

this thelil. 

----------- ----



-29-

1.3.1 Fault·Toletut Architectures 

Redundant hardware for combating failura in eJectronic computers has been introduced in 

many different forms. ranging from quadded Joaic for protecting apiDst sinaJe logic gate failures (61) 
" ~ ,., 

to modular redundancy schemes for Protectina apill8t failures in entire processors, memories and 

buses. Review articles [531 [54) and (SS] give accounts of lbe development of fault-tolerant 
" 

computing in the past two decades. The pervllive use of C001f)Uter contrqlled equipment, the high 
. :~ r , 

cost of maintenance and the lowered hardware COiii brou~ about by VLSI have prompted much 

interest in improving system avai1ability and maintainability throulh the UIC of redundant hardware. 

To date fault-tolerant computers systems are found mostly in telephone switching systems, 

space-borne vehicles, air traffic control and other applicMioas where computer failures would incur 

high human or economic COlll. 

The fault-tolerant data ftow procesaor deiip pNlented in this thesis uses a dynamic 

redundancy ICbelile to mast hardwn fdun11: &ilUres aae decected OR-line, the hardware system is 

repaired and the propam in eiecution is restarted. Many anputer systems have relied upon 

checkpoint/restart as a standard means ofrecoverina from sysaem failures. The STAR (Self-Testing 

and Repair) computer developed at Jet PropuJsion Laboratory (I) is ~bly. the first dynamically 
' '· ·.;:· . 

redundant fault-tolerant computer. In ST AR each aridunetic unit, memory unit and data bus is 

protected by using error-detecting codes. Units perfbnniag Joaica1 operations are protected by 

duplication. When a failure is detcaed, • failed· llllit ii ~ by a lplR tlnulh power 

switching. Redundancy . is maolFf by a coafiauraDon ccmtlDI. 1'8it. which is triplicated· fOr fault 

tolerance. To mast hardware failures. chectpoina llMllt he inufted into applicaUon programs from 



procedures is provided specifically for checkpoint insenion. The ST AR compum bis been 

breadboarded and exen:ised throuah fault injection. It bas evolved into the FfSC (Fault-Tolerant 

Spacebome Computer) systems (Sl) currently under advanced development at Raytheon and the 

Aerospace Corporation. .. 

A different approach to fault masting is adopted in the FTMP (Fault· Tolerant Multiprocesaor) 

system developed at Draper Laboratory (30) and in the SIFf (Software-Implemented Fault 
. . 

Tolerance) system developed at Stanford Research Institute (67). In both of these systems a program 
-~ -_ ... r ' 

is executed on several hardware unitS and failures are masked by votina on the results of redundant 

computations. In the FtMP system, failures are masked throuah the formation of proceaor triads, 

memory triads and bus triads. and ~0ong on ttie' outputs of each ttiad with majority voters located in 
,- .. , . ' . . . .. 

bus receivers. Spares are provided for replacing failed units. The SIFr system consists of a network 

of proceSsing modules, each with its own toCat memory. In SIFr majority voting is performed by 

voting programs which receive results from redundant computations over the network. The number 

of processing modules dedicated ~ a task ~ be v.-ied wx:ouJin& to. its criticaliQ. i. both FIMP 
-· .. . .. . . - - -· ·•· 

and SIFf fault detection leads to system reconftauration. ~·~ neeclnot. be.rolled back to 

mask hardware failures. 

Our work on hardware redundancy techniques has benefited from wort on fault-tolerant 

clocking systems conducted under the FIMP project [16). and ft'om wort on c:omistency 

maintenance conducted under the SIFf project (45). 

Many fault-tolerant computen in uae have a bua-«lented internal architecture and are made 

fault-tolerant tbrouah providllla redundant buses; redundant proce191q elements and redundlnt 

memory systeml. The dlla ftow pmG IJICA" COllfllnl a piClet network ·which is . ablent in ~ 

--------------- ---



• 31-

Methodologies for incorporatina fault ....... ,., lalP :~ eornpnter s,.ems and the 

associated technical problems have been dimmed in 19J. (10). We have also found these discussions 

illuminating for our wort. 

The interconnection networb ~ a data ·now proee.or ·are modular, one-way, packet routing 

networb. Each netwGFt serves a tet Gf~modillfllWkf a':set of clelldnation modules (which need 

nofbe diltinct). Pactets aR generated at ntte moduiis ad ·deliveftd by the netwott to destination 

modules. Nodelin the netWOitl me clesipectto bward pcRts oltly ib'the ·direction of paetet fk>w, 

from soun:;es to deldftations. Other ~ OJ"tlnl•Xnu; Cmmp f68l"fi>r example,· use 
commutation networks tor ill~commumcatian. A~ detwort· is one whiCb can 

be set up te 8llfWy a tet of connectivit.y •nquirementl bettfdeirrits inpdt; dOdes and output nodes, but 

is otberWiee p.lllive. The fault toJerwe propeltillofaevent dllles'ort:OlmliUtation netwotts have 

been slUdied 1n ·(36). nm wort dais on1y·Wtlll tile..,,..._.*' ~·orrau1t-to1erant networt 

design. For aCh dlM of eommut*dmfnetwOlb ...., ·k M 11i8Wtfttow~ paths may be 

iacorponted• that faulty mbnetwalb<ealfl1e· btPinlll1t; Sevetlf ._, Muftdantcommutation 

network confiauratibat are dtlaibed it fGl•'Jiltt ot •·~ a.Ociadve pr0t:e.or de8ip. 

Neither of dlelle worn addRtres ~plobkms ot ...... 'fld~ aJld•coOrdinatina netwott 

reconfiauration with ncovery. 

Picket l'OUtiftl using Banyan· networb'•s plOpGlel bf Ttfpadti ·in (lW)J. He points out that a 

faulty wte in a paet swib:llc1Ul1Ryan ~ cmht'tirii•ed·lf~ . ...,.. a provided 

between network nodes. but aWes ntf ~ ..,.,.... t;j· ntiifety itritegies to support this 

scbae. 



-32-

Our approach to maintaining timing synchronization is to aaure that fault-free byte slices in 

the same reduDdant module will always deliver outputs to decodcn receiving signals from them 

within a fixed time interval of each other•:·~ techaiqua woba\IC de\'Cloped for this applVICh are 

closely related to techniquea propored tor-iv>pleolcn•iM-W...._ docu. In a fluk-toltrant 

clock several oscUJatm· are operated in .,..rlel '9.· _. .. a-.. of.peJiedic lliaaals. 1belle 

independently generated ckJCk sipa1s. must. however •. ..,,_ in..,._ i;eqµiremenlL One IUCb 

requirement is that~ must· all cbaqe-. w,iJhin a~ dme·infenal of-=il other, just lite tbe 

synchronization. A fault·toJ~rant cloct dtlWD hlJbeeaPRICll,.,. in (16). In that deli&& the dmlitry 

is. tailored to aeneraljna periodic. lianals We. will 4aaw •·• ~ ckJQk 4elilll can be 

derived from our~ techoiqua. ()qr.~ _.iqua are0o mated.to the 

synchronization l'Oliq ~D"1U:e atvea by llMia aad W•q·ll1). DavMIUBJ, {l9I bal applied 

synclm>nization VO~ f4> ~-fO)cAQt clcJct ~~ mqoq.~,pra:llllilll 

units. and ~ncbronizatk>Jl amona rcduD41nt ~ ..... ~w..,'"1J •·wlai• how .... 

synchroniz.ation r.anbe adlieved.~~ voaiae·...., ~fault ....... 

Consistency maintenance problems in the fault-tolerant space shuttle amputer have been 

discussed infonnally in a....-w SMidan (56).,Ja dais~,.._ .... _...,,.._. .-y nm 
OD several processor-~ units sipl~. ~ ~. ~ infen:upt <Q:UB, the 

process may be interruptcd.atdifferent J>Qiall a.di~~~meaaory ~ ~eaeaia die 

system ammunicate via shared memory. Suppose that an input interrupt occurs when a pl'OfllClll a 
writing into a data area it shares with the input process. and that in one processoNDemory unit it bas 

finished writing into this area when it is interrupted while in another procesaor-memory unit it.his 

not. The input process may then read different versions of the shared data in different 



'" ,-, .. 

proceaor-memory units. and may Chen exhibit incomilaent behavior on these units. Sheridan 

describes a set of mecbanisms for maintainiq data ~ in this environment Process 

incarnations running on different computen ~ required to synchronize with eacl.t .. other before . . ,. . . - . - , ' - . . . . 

accessing shared data. The fault model aaumecl and d)e effectiveness of this solution were . ~ ~ . . ' 

unfonunately not discussed in any detail in (56]. 

In the SIFI' system, inputs from different semors, outcomes of diagnostic tests and internal 

clock readings are exchanged arnona procesaina lnodUiel on the network. It is assumed that a failed 

module may give inconsistent infonnation to odleJ' modules. Peale et al (45) have developed a 
' ' . . ~ ,,. : -

general algorithm f'or excbanaina information amona the procashla JDOdulel so that 

(i) the information transmitted by a fault-free module di be tnown to every fault-tree module, and 

(ii) the fault-he modules wift ... on the contents orau-iuan trallllniiued by faUlty modules. 

This algorithm requires at least lf +I modules to tolerate up te fmodule failures among than. A 

neptive result which states that this fault tolerance capability cannot be c!Uevecl wida 1e$1lblll3f +I 

modules is also proved in (45). 

For our work we have independendy .developed tile ~ludon to the much simpler case in. wbid1 
• '•i c ' ' 

at most one module may fail and each -.. ,..,.. tile outcome qf 4 binary decision. We bave 

also studied the hardware implementatioa of thjs_ •"'* lbDpler cme. in the ~-~, lyatam 

environment. 



IA S,..ts 

In the. followina chapters. we first develop an appfOICb to manaae redundant hardware in a 

packet commun'ication system for fault tolerallce. and then preaent the desian oh fault-tolerant data 

flow processor. Basic concepts and redundancy techniques are illustrated with hardware modules 

taken trom the data now processot design. Readers who;~ to study thC aichitecture- of the . 

fauJt-toJerant data flow processor before 8nalyzing redundancy techniques for its bnplementadon can . ~ . - - ~ 

also read the material covered in this thesis in that order. 

Our approach to incorporate redundant hardware into Packet communication systems for fault 

toJerance is introdUced in Olapter 2. This approach is baed on· maintainfua timina synchronization 

and consistency in redundant packet ~-~ ~~ aftcr,.Jlaniwa{e .failua bave 

ocxumd: The problems of dming synchronizalion llMS. c;onsillency mai~ .are expJaiaod Ulin& 

redundant packet communication systems constructed with byte-Sliced packet communication 

modules. Concepts and term.inoloD fbr dilculSina these ·prt)tikml and ·tJleir aoJutiOns more pNCilely 

- al9o presmted In dtis dliputr. 

Robust algorithms for maintaining timing synchroniz.ation and comistency among byte slices in 

a redunctarlt packet communicatioft module are piWnted in ·Qiptet 3. -UDder dte1le alaoriduns. 

byte slices in the same redundant module aeOd ~ atlM!s.ps·to·e.:&-•. A failed slice may 

senc19ilna1s·anct mesagcs or amltdfy contents* raDdcim. 'these·~ are robust 1n that timing 

synchronization and consistency can be maintained in spite of hardware fli1uns. 

Hardware implementation of these redundancy manapment alaorithms and decoder desips 

are studied in Cllapters 4 and S. In Olapt.er 4 we introduce a cla of asynclrronou1 pack.et 

comm11nication protocols and three fault models. An asynchronous packet communication protocol . 

defines the behavior of fault·free pattet communication modules. A fault model characterizes tbe 



• 3S~ 

behavior. of failed modules as well 8' -. io•~tf 11 , iu1 111!11 ....... ...,aced by tllese failed 

modules and fault-free hardware elements used to ~ f.tult ·handlen. In Oiapter 6-M dilcuss 

how to implement ·rault handJers, and other hardware modules, to support the fauk tolerance strategy 

developed in Otapters· 2 and 3. These ~· modu'r ~. desianE!d to maintain timing 

synchroniution and consistency. anc1· tb detect andlc~t·a·'~~ 'failures, Under the fault 

modelS of Chapter 4. 

A dynamic redundancy scheme for masting hardware failutes in a multiprocessor architecture 

designed to execute ~· p~ orglnilect bf ~'low p~les is praen~ in Chapter 6. 

Novef feattires of this compufint ~ mctUcfe:b ,act~~-~~· arehitei:ture, use of packet 

networts to support communicatiOn among p~ ~- 'aDci dynamic allocation of a 

homogeneous set of specialized functional ma to lmice requests. Program Ol'!anilJltion and 

hardware module designs to support die dynamic f,'"dl•ndancy s:hane are explained. Strateaies to 
'i . '·· 

incorporate additional modules and data·patba in~ pd~ networb to support rapid repair are also 

Application of the hardware teduDdahcy concepts and techniques developed in Olapten 2 

through S are illustrated by moclWc desips 'liven iii Olapten Sad 6. 



-36: 

2. Timing Synchroaii.ation -1 Coml$talcy Mailltellntt ht Packet Communication 

Systems 

The problems of timing synchronizati~n and consistency mainte~e have not r«eivcd much 

attention in the literature of fault·.tolerani computinJ. TheJc prol>lcms ~.explained in detail in this 
- . - -_,<" _:'"';·- r "_ ·, ' ·• _ · ,';< · - ... ~ '- -- f ,.x--·,. -r · ' 

chapter. Solutions to these problems, implementation techniques and hardware rnodl!)c. ~ arc . 

studied in subsequent chapters. 

The concepts of byte slicing and output encodina have.~1 iAV~uq;cUn8cction I.I •. Tim.in& 

synchronization and consistency maintenance problems wiU be iU\JIU'ated with a by~iced. 
- - .- - ,- - _J -- ~ f . .f:' 

organization for redundant packet communication mociule&. This. ~i1.1tion j~ PJ"CH.D-1 in 

Section 2.1. 

We remind the reader that the basic problem in timing synchronii.ation is to mure that 

whenever a decoder is activated to decode its input sipals, an input signals fi'om fault-free byte slices 

must have stabilized at their proper value. Our approach to maintain timing ~ynchronization is to 

develop a set of mechanisms which can maintain proper syn(hroniZ41ion. Informally, proper 

synchronization is achieved if byteS in the same input ~ ao4 actnowledpnents for an input byte. 

arc always delivered by fault-free slices in a redundant module to a nei&hboring decoder within a 

fixed time interval of each other. Jn Section ·12 we introdUee llWne' concepts and tenninology for 

characterizing proper synchronization among byte slices in a redundant packet communication 

module more precisely. 

To use a byte-sliced organi1.ation and output encoding for fault tolerance, outputs generated by 

byte slices must also be consistent, in addition to being properly synchroni1.ed. Inconsistency among 

bytes in an output word generated by a byte-sliced module is due to non-determinate behavior. A 



- 37 -· 

packet communication module is detenninate if,:1t8ftiBa tNM'I a aWen initial state,; the set Of output 

packet sequences it generates is a function of the set ol input packet sequences it has received, 

independent of the order of input packet arrivals at its different input ports. A n0n-de1erminate 

system may generate different sets of output sequences after receiving the same set of input 

sequences, depending on the order in which packets arrive at its different ports, and on the outcomes 

of internal conflict resolutions. A determinate module has the nice property that its behavior is 

reproducible in both time and space. Two fault-~ copies of a pe~inatc ~ will aeneme 

identical output sequences when fed identical input acquencq).:. Their outputS can hence be 

compared to detect failures among them. Transient ~~n ~so be tolerated by feediq the same 

input sequence to a detenninate module several ~in~ '*'1 tinle st,arti_.g from the same 

initial st.ate. 

For now we illustrate how non-determinacy_ intn.:Jd1JCCS inconsistency by another simple 

example. Suppose·in a byte-sliced module we have two.~ies of a non-determinate module which 

increments an integer input f!ther by one or by two. if tbese tw& module eepies each receives the 

integer 3, and then one coJ>y outputs 4 and the other S. w.eanDOt-deduc:e by.:j)IRpiring their outputs 
- :·, 

alone whether a hardware failure has occurred or whether the two module cepies have acted 

differently due to non-detenninacy. Non dlMrmiMCJ .... iallQduces additional complications in 

fault tolerance considerations. A primitive for introducing non-determinacy in packet 

communication Systems and the associated QJ ( aeney ancHault tolerance problems are diacus8ed in 

Section23. 



- 38-

2.1 Byte-sliced Packet eo-n1cat1ea M.-aes 

A packet communication module interacts with its environment by transmitting and receiving 

packets at its ports. Each port consists of two sets of wires, carrying packets and acknow1cdgments 

into and out of the pon. respectively. A packet communication rhannel (F"1g. 2.la) is constructed by 

connecting an output port of one module to an input port of another module. 

Packet transmi900n over a ·dlanne1 can be described in te~ of channel state transitions (Fil. 

2.lb). Port activities cause a channel to a1tcmate between an octivr state and a pa$$ire state. In an 

. active state a packet is available over the-channcl from lhe sender ot.iq>Ut port. In this state the 

receiver input port is enabfttl. When the avaHable" pactet is m:eived and inother pactet can be 

transmitted over the channel, the receiver port resets the channel to its passive state. The sender port 

is then enabled and at some later time will change the channel state from passive to active and 
.. n 

paclet bUndle 

output port <--------.-,._--_,------- input port 

active: 
input port enabled 

acknowledgment bundle 

packet 

acknow1edgmeat 

(b) State Transition 

Fig. 2.1. Channel state transition. 

paaive: 
output port enabled 



transmit another packet over the channel. For the. discussions in this chapter it is sufficient to note 

that a feedback mechanism is built into a communication pi'bmcot. so that during fault-free operation 

packets and acknowledgments alternate at each channel. Techniques for implemen~ng asynchronous 

packet communication using 1ignat transitions on wires' in the packet bundle anfl the 

acknowledginent bundle wilt be presented in CbaPtcr 4. 

We next describe the hardware structure of a byte-sliced module an4 ihc structure of 

connections between two such modules. A slice (Fig. 2.2a) consists of a processing module 

(p-module). with each input port protected by· a· synchronizing decoder and each output port 

protected _by a fanout module. We will refer to a decoder or a fanout module aaa control module, to 

distinguish it from. a-processing module. Subsequent p~ntations ~~greatly simplified bylfOUping 

decoders and fanout modules in a redundaftt,~lc)oa@ther into synchronization sils (Fig._ 2.2b}, 

according to the input pon or output port each p~ For such groupings tQi k,IQpniqful. 
• " ~ ·-~- • • > ' 

p-modules in a byte-sf teed module must have Ole same nu•r of input ports aftd OOlpttt ports, and 
··."',,· 

exhibit very similar packet p~ing behavior at Chese po~·-1'he .qotion of schematiC equivalence, 

as defined next. caprurcs the desired retatio.mp. l 

Two packet communication modu1cs are schemattcaJb'l!qtliwMnit if 

(1) They have the same number of input ports and output ports, and 

(2) There exists a numbering scheme for input ports and output pons in each module such that if 

identical input sequences are·fed to the 1th input pon orb0ttl·rnociti1CS: tor· anL then the same 

number of output packets will be generated at the jth output port of both modules, for all j. (For 

1. Note that the notion of schematic equivalence, and that of performance compatibility given later 
on, arc well-defined only for fault-free modules. 



m 

' I 
I 
I • 

• 40. 

· SD ·- Synchronizina Decoder F •· Fanout Module 

(a) A byte slice. 

~: 
L---·-·••J • • • 

. 
• • 

(b). Synchronization sets Jn a byte-Sliced redundant module. 

Fig. 2.2. Structure of a byte-sliced redundant hardware module. 

... 

n 

1-----., 
I 

r 
I 
I 
I 
I 

.. 



-41• 

the hardware structures used in this thesis, the numbering scheme is always obvious from context 
~ .~ •• > '"'. 

and hence Ollliuecl) 

Copies 9f determi.oatc modules arc schematical1y equiv-~t [and .deliver ifJefttieal· output 
,' ! .: 

sequences when ~. if;J~tical iriput sequences. Copies of· non-dctcfmiifte moc.tulcs: may not be 
; 

schematically c®iv~nt sin~ the number of ,outpqt•'pactets gencipted at an output port of a 

non-dctermi~atc m~ule may dapend on the or9er' bf packet arrival it its dUTcrent input ports, as 
• ) .,_ I 

well as on the contents of the packets it has reeeived. Sch~afty equivalent modules need not be 

identical. It is strailhtforwardto txtend the notion of schematic cci1:1ivalcnce toagroup of more than 

two modules. 

. ' 
.-;...,-

We will assume rlrat·tiyte ~ices in a redundant module are co,,.,rUCted out of schematically 

equil'alen t p--modules. A -synehron~zation set (Fia. 2.2b) contains one control modµre· from· each slice. 
; . "'! 'c . ~ ' ' 

The common propert; ~ control modules in a synchroniution set is that each protects the ith 

input port of the p-module in its slice, or each protects the jth output port of the p·moduJe in its slice. 

Synchronization sets arc ~losed ~n d~ Ji1IQ ~.f"~ U~ 

Connections between adjaCerit rechindallt modutel are Diade by connecting a synchronization 

set or f4nout moctules m one to a synchrOniJ.atk>lf set or ttecoders in the other (Fig. 2.3). Each 

synchronizing decoder receives input .byta ·fdm· I aeh~f tanotJt fuOdules. Each :input word to a 

synchroniriilg decoderoonsists ofa numberotbytel,'ofie wmn eac1i fanout module ft is connected to. 

Note that each lint shown in Ffa.2J ·~ ofipadet.bURdJe carlying signals in the direction of 

the lint, and an acknowledgment bundle carrying signals in the opposite direction. Every byte is 

transmitted as a packet between adjacent modules. Asynchronous protocols are also used by a 

p-rnoduJe to receive packets from its synchronizing decoders and send packets to its fanout modules. 
~ - . . ; . ' •' 



other Fa 

intbe 

synchroni7.ation 

set 

Module X 

·42· 

.. 

othcrSD's 

in die 

synchroni1.ation 

. set 

• 

Module Y 

Fig. 2.3. Connection between synchroniation sets in acljacenncdund8nt modules. 

A synchronizing decoder decodes input words received from a syochroni1.ation set of fanout 

modules. A fanout module forwards each J>a(:ket it receiv~>to the synchronil.ation set of decoders it 

feeds. Jt also receives acknowledgments from these deco4e~ and thea returns actnowledpien&I to 

its p-module. P-modules perform packet processing. Let us ~ine the epcration of byte slices in a 

redundant module in more detail 

Suppose each of the fanout modules in a synchroni1.ation set receives a byte from its p-moduJe. 

lbese bytes together constitute an output word of the redundant module, and arc distributed by the 

fanout modules to synchronizing decoders in a synchroni7.ation set in a redundant successor module. 



-43-

Each input word received by a synchronizing dec<Xler is thus delivered as a batch of packets, one from 

a different fanout module and each containing one byte of~~ _in1:mt wQr~. ~ailurc of a single byte 

slice affects at most one byte of any input word received by a decoder .. A synchronizing decoder 

decodes each input word received to derive an output word. which it then delivers to the p-module in 

its byte slice. After some time the decoder will receive an acknowledgment from its p-module. This 

acknowledgment is returned immediately tty .&M dee~: to ·fanmtt 1Mdu16·'frbm which it has 

received input bytes. Each fanout module will d'tus ~ve a batch <Jfaclcnmvledtments. one from 

each byte $lice which has received an input byie from a, and·faifu~ ofa single slite .nn ·affect only 

one such acknowledgment. After a fanout module in ·the syncbronil.Stibn set has received 

acknowledgments from the successor module, it returns an acknowledgment tolhe-tt~odule in its 

slice. 

For subsequent discussions. we win also find it conven~nt to group packets and 

acknowledgments received and produced by p-modules in the same redundant module into batches. 

P·modules in a.~und.ant ·module al'e schemafially'eQUi'Valent andwill always be fed identical· input 

packets. Packets and acknot.Vledgments delWered to an4'..,.el'Dd ·~·fatilt..free p-modules in a 

redundant module, under these conditions. can be partitioned into batches, according to the ports at 

which they are received or generated. and· d1e positiODI ·they· occupy in their ~e streams. 

Packets. or ackllowledgments. received. at the COfi'eSpOdding· f)Oftl ·or fault-free· p-modules in a 

redundant module, and occupying the same position in their respective streams. belong to the same 

batch. Likewise output words, or acknowledgments, generated at the corresponding ports of 

fault-free p-modules In a redundant module, and Occupying the same position in their respective 

streams. belong to the same batch. 



-44-

2.2 Timing Sy_nchronizatioa 

For a· redundant packet communication system constructed out of byte-sliced packet 

communication modules. timing synchronil.ation imposes two timing constraints on system 

operation: 

(Tl) Uytcs in the same word gcneraled by fauk-free slices must have arriwd when a 

decoder is activated to decode its input sianaJI, and 

0'2) Actnow~qtsfor the '58lllC ootpu& byte generated by &ult.free slices must have 

arrived when a fanout module· is a.1ivated to return an· acknowledgment to its 

p-module. 

Our approach to maintain timina syncbroni7.ation is by maintaining propn- S)'nchronization: 

. . . 

A redundant packet communication system is properly synchronized if 

(Pl) Byaes in the same input word are alwaya. delMrcd . ~ fault~&ee slices in a 

nei&hboring mo,dule to a synchronizin1 docoder widlin'8fkecl1ime:in11rWd of 

each odler, and 

(P2) AckDcnvJcdaments .for the same output byte are always,delivcnd by fault·ft'ee dcel 

in a neighboring IUdQle to a fanout module' widlia ~ fixed .dine iatemtl .of each 

other. 

If proper synchroni7.ation is maintained, and there are enough· fault-free byte slices remaini1J& 

in each redundant module. then each decoder can dctennine whether it has received all bytes in the 
. ~ ~ 

same input word generated by fault-free slices in a neighboring module. And after delivering a byte 

to synchroni1fog decoders in a neighboring module. each fanout module can detenninc whether all 

acknowledgments for that byte, generated by fault-free· slices in the neighboring module, have been 



-•s·,: 

received. The technique used in these COPtrol .,...to adlie¥0iT1) and (T2), giver& (Pl) and (P2) 

will be presented in the negt chapter. 

Timing synchronii.ation, as ill1:1strated in Fij. 1.2, ~ achieved in synchronous sy~ms by using 

byte slices which can process idCntical inputs in approsimately the same amount of time, and by 

assuring that each cJock signal is delivered to all byte slices in a redundant module within a fixed time 

For a more precise discu~ion on timing synchronization, we next define performance 

compatibility for schematically equivalent modl;lles. and in-~ OfJ!ralion for p-modules in 

redundant packet communication systemS. The definition of perfo~~e compatibility i~ intended 
. . 

to capture the intuitive notion that two schematically equivalent modules are able to ~ identical 

inputs in roughly the same amount of time. In-phase operation is the approach w.e have adopted to . 

ensure proper synchronization. 

Performance CoinpatilNlitJ 

Two p-modules M and M' are perfonnanu-to11,,.,,.il 

(1) They are llChematioally equivalelat. and 

(2). lfi,de~ werds, and -*nowledlmeallt .-e._ya.deJiWnd1DMand M' as a'balchwidlin a 

time interval bouo4cd bf ,..1 ... pactegad••....._,, iaidle same .output batch.wilt be 

generated by Mand M' within a time interval,houdcclby;T~P• farlollle fiud.y. 

I. We use lower case Greek letters to denote time intervall. 



-46-

It is straighttorward to generalize the definition of perhmance compatibility to a group of 

more than two schcmaticaTiy equivalent J>"modules and to a group of control !nodules. We shall 

mume pcrfom:iance compatibility for determinate p-modules in a redundant module, and for 

control modules in a synchroni7.ation set We wiD often say that two modules arc performance 

compatible within 1', and call" an upper bound on perfurmancc incompatibility. 

Pcrfonnance cumpatibility does not impose any constraint on how· Jong a module may take to 

process an input, but only specifics the timing relationship among outputs delivered by schematically 

equivalent modules. We also note that two copies of a non-determinate module containing arbiters 
-· } ... 

are not performance compatible since if either one of them corers a metastable state, it may reside in 

that state for an arbitrarily Jong time (Section 1.2.3). 

In-Phase Operatioll 

A packet communication system maintains in-phase operation of tile. bJlC slices in a redundallt 
~ "~ e \ - ; , ~-

module if input words and acknowledgments in the same batch are always delivered to p·modules in 

these byte slices within a fixed time interv-1 CiJfeacb odler .. -

For in-phase operation, we require that inputs in every baeelt deli•ered to J)"'inodules in a 

redundant module be deliYeR?d within die lrtln¥.h«t ·tinw imemll. ·We will also say ·mat the' outputs 

of a group- of J>"modules in a mdundant modu1eere il11)11Me if ciutpUts ia lhe same batdt are always 

generated by the p-madules withia aiiled dmein•nal. 

Our approach to maintaining proper synchroni1.ation is to maintain in-phase operation of 

p-modulcs in fault·fi'ec byte slices in every redundant module~ !- ~~~tpac:ket co_romun~tiQn 

system in which: 



(i) byte slices in every ~undant module are constructed Ullng pcrfbnnance compatible p-modules, 

(ii) in-phase operation of these byte slices ii m~ 

will remain properly synchronized. We reason as follows. If in-phase operation of perfonnance 
I.: , . ': < ._ : ~' • 

compatible byte slices in a redundant niodule is always maintained, then outputs pf p·modules in 
. - . ~: . "' . 

fault-free slices must be in-phase. These outputs . are forwarded through control modules in 

synchronization sets to neighboring modules. Since ~ntrol modules in the same synchronjl.ation set . . . 
are also performance compatible, bytes in the same word and acknpwlcdgments for the same byte 

• • • - ; ,, :, • . ' .l , 

will be generated by these control modules, and hence by the fault·free slices, within a fixed time . . . . . ' - . - -

interval of each other. We make the further· assumption that communication paths between 

synchronization sets have finite pmpaga&ion delay." ffroper 1,mmoDir.atlon (Properties Pl and Pl) 

can then be maia&ained. 

The synchronization techniques presented in ~ap~er 3 enable control modul~ in 

synchronization sets in a redundant module to maintain in-P,hase operation of byte slices in the 
.. ·; .: : ~. . . - l: ' . .- , -. . ·! 

redundant module locally. The strategy is to let control modules in the same synchronization set 

synchronize with each other before passing the- inputS they· have ~ed- on ti> die p-modUles they 

are guarding. Uting the synchronil.adon- tBclmiques dM1oped in Chapter 3, all-fault-free control 

modules in the same synchronization set wilt deliver words or acknowledgmen~ in the same ba1dl to 

the p-modules within a fixed time interval, despite interference from failed modules. 

Packet communication modules send streams of data packets to each other during system 

operation. A module is detenninale if the set of output packet streams it generates is a function of the 

set of input packet streams it has received, indcpeJ¥lef!i pf the temporal order in wbich input packets 

arrive at different input ports. A module is 1Wn-delerminali if ks outpwt streaJDs,may depend on this 



-·-
arrival order and on the outcomes of internal conflict resoluUoas. as well as on the data values carried 

in the input streams it has received. Non-dcrcnniaacy ir$ocluces: aaodter dimension to the fault 

tolerance prob~ namely, infonnation replicated in redundant hardware muSt be kept co~L 
. . 

The consistency problem is -~idcly ShidiCd in distributed dat.i base systemS. ShcridaD [S6) discusses 

the problems or maintaining. dakz, ;::c;nsistency during m5trUc&n execution on the Space Shuttle 
. . 

control computer, with a program structure supportlng priori~ multiprocessing and· 

interrupt-driven input/output Pease et a1 (4S) have given algorithms for achieving interactive 

consistency in exchanging clock rCadings. sensor readings and d~ results among multiple 

computers. They have fonnulated the ronsiStency problem as the "Albanian OenCralS Problem" : 

. Several divisions· of the Albanian Army all' campeclc.eullide a& enemy city, each division 

commanded by its own general. The generals can communicate with one another only by 

messengers. After observing the enemy, they must decide upon a common plan of action, either to 
. . 

attack or retreat However, some of the generals may be traitors trying to prevent the Joyal generals 

from reaching agreement The gcneralS must have an algorithm to-~ that 

(I) All Joyal generals decide upon the same plan of aetion. aacl 

(2) The Joyal gener.als cannP' be persuildQd to tWJDw $e .,._ of adion amtriYOd of by a mall 

numlter of trailon. 

We have noted that the need for consistency maintenance is a consequence of 

non-detenninacy. In the Albanian Generals problem. each Joyal ~llasto;n.lependentty decide,. 

whether to attack or retreat Loyal generals can thus make conflicting decisions, leading to 

non-detcnninacy. 

In Ibis thesis we study consistency and fault tolerance for one specific f'onn of non-determinacy 

in packet communication systems. intmduced by combining two- streams into an input stream to a 



.49 .. 

determinate modu~ using a mergt module (F"tg. 2.4). If two packets arrive at the two input ports of a 

merge modWe within a short time intemll. - merae module tnaf·oUtput them 'in either order, and 

may furthermore take ~n arbitrarily long time co decide whicfi ,pactet to output first: When input 

packets arrive further apart in time. the merge module ovtpufSthem •they· are received; 

In a redundant packet communication system. merging two input streams is implemented using 
- . :. -_. 

a redundant module containing mersc modules as ~modules in its byte slices. In this setting. 

identical input packets are alw_ays delivered to merge mo®~ ip Che 5'ffle redundallt module within 

a fixed time interval, as a result of maintaining, in·p~ QPCr~tion igJhe systroi .. The consistency 

problem is to ensure that the output streams of non-fa~Jty ~ J.ll~~Jcs ill ;a .r~dun~t module are 
' : < , • :. • ' '. : - < • - - • , ~·: ..f ' - ' ; - -

identical. The fault tolc,-ance pro~Jem is to en$Ure con~-~y al!-4 ;jn~P~ operation in the 

presence of hardware failures. The merge m~Jes used. in a tcduP~J'lt module also exchange 
':: - : ·, . - i '."' - ·, . -, . '.. . . ~' ' " 

memges with each other to achieve consistency. We shall ca11 them synchronizing merge modules in 

the sequel. 

Fig. 2.4. SU'ucture of a non·detalllinate modlde. 



-so-

The strategy to achieve fault tolerance is to allow synchronizing merge modules to exchange 

messages with each other. infonnin& each other of the input port from which a new packet ha& been 

received. and then reach .an agreement with odler synchronizing meqe modules on which ·input port 

to use for forwarding Uie next packel Note that it ·is not suflicient to receive a message fi'om each 

synchronizing merge module in the redundant module and then pcrfonn majority voting on their 

contents to pk:k an input port. This is becatJse the fault-free synchroni7.ing merge modules can be 

split up just about evenly on which of two input ports to use. and faufty ·synchronizing modules can 

send ditl'crcnt messages to different raulHree synchronizing mooulcs.· JCading them to different 

majority vote decisions. We present ah. impl~cntatiOn' of this strategy based on an algorithm for 

exchanging m-es reliably among Synchronizing merge mOdules fu1~1 This algorithm has 

been described by Pease ct al f4SJ whiJC We have deveJOPeci the much simpler case for dealing with 

single synchronizing mergc.M6dute · t"a11urcs. independently. 

2.4 Dlscussloa 

We have introduced two redundancy management problems for self-timed packet 

communication systems in this chapter: timing synchroniz.ation and consistency maintenance. These 
_ _. ·- ,,, -- .. . . - - - .. 

are redundancy management problems in the sense that. these problems arise only when hardware 

functions are implemented using submodules whidt mUJSt be failure-independent, and hence operate 
~. . . - ~ 

independently, and yet their outputs must be carre~ jft some well-defined manner, such as by an 

encoding scheme. If hardware is immune fr°'1 failures, hpdware functions can be implemented in 

packet communication modules using techniques described in (41.. (31]. (33]. (39) for which such 

problems do not arise. For applications requiring fault tolerance, we need ~lutions to these 

problems which are robust. so that timing synchronil.ation anc:t consistency are maintained in spite of 

hardware failures. By maintaining proper sy11el)ronization and consistency in a redundant packet 

communication system, a concrete foundation:. :is'. ~icled. ror Vii._ byte slicing and enooding 



techniques to detect and/or mask byte slke failures.in setf~timed hardwares~ 

The problems of timing synchronii.ation and consisteticy maintenance arc illustrated with the 

byte-sliced module organi1.ation presented in · Section 2.1 for redundant modules. Timing 

synchronii.ation will be a problem in ·any · fautt-t01eft.8t computer system constructed out of 
' . 

independently d~kcd processor-memory units. Consistency maintenance arises in sections of. 
' . 

fault-tolerant computer systems that receive asynchronous inputs. These problems have nol'received 

much attention iri the literature, perhaps due w their "i'nfrcqucnt occurrence. It is nonetheless 

important to understand the nature of these proolemS. so th~ fault tolerance mcctWtisms for 

handling them are omitted only through judicious choice. and not frqm ignorance. . . . . -. . . . 

Timing synchronii.ation is also a fundamental problem facing thC designers of fault-tolerant 

clocks. In a fault-tolerant clock several oscillators are operated in para1ICI to~ a set of periodic 
~ . ,cp, 

signals. These independently generated· clock signals ·.must. however. satisfy Some in-phase 

requirements. Synchronir.ation can only· be achieved by eichaftliD& siPats among oscillators, and • 

must be maintained when a fiwky oscillator stops oscillalina 0r M ~Ing signal traDsitions at 

random. The timing synchronil.atiori algorithm presented ~ Chapter 3 ~y be 'viewed as a 

generalii.ation of the techniques described in (16) for an'~t;DJ' f.Uli-toterant clocks. 

In a synchronous system intermodule activities are synchronir.ed by referencing a common 

timing signal. After receiving an input each module is mauired to aeneratc the.corresponding output 

within a fixed time interval defined With respect to the timing signal. This implies pcrfbrmance 

compatibility among byte slices in a redundant module since they all must satisfy the same 

input/output timing constraint In-phase operation is ensured as a consequence of the implicit 

assumption of negligible variations in propagation delay in distributing the timing signal ftom a 

common source to its numerous destinations. Fault handlers, by synchronizing with other modules 



-S2-

through this same timing signal. need only deal with data faults and code violations. 

The input/output specification of a self-timed module imposes only scqu~ncing and causality 

constraints on an implementation. F~r fault tolerance we have tD reintroduce the notion of 

perfonnance compatibility and to incorporate mechanisms to maintai.n in-phase operation in 

self-timed s}'slems. Time metrics are thus reintroduced into an otherwise completely self-timed . ',-.· ... 

system. lbe additional comp1.e~ity needed to deal with inconsistency is also a consequence of 

adopting the self-timed discipline. This is because arbitration is, not needed in a synchronous system: 

conflicting requests can always be resolved through a predefined priority $gnment. 
. ' : ~ . -. . . ·. - ' - . . i 

Our whole approach to redundancy management for fault tolerance is based on maintaining 

timing synchronil.ation and consistency in redundant packet communication systems. A 

methodological issue that arises is whether these two p~rties arc necessary for tolerating hardware 

failures in packet communication systems. lls seems that consistency must always be maintained in a 

byte-sliced module, otherwise a packet batch generated by fault-tree slices can have arbitrary 

contents, and byte slice failures can Jcad to undetected and uncorrected errors. The necessity for 
. . . ~ 

liming synchronization is further discussed at the end of ~er S, where we examine an alternative 

strategy and its relative merits and disadvantapS. 



- 53 -

3. Robust Algorithms for Timing Synchronir.atienaad Consistency Maintenance 

In this chapter we introduce the basic algorithms used in our approach for maintaining timing 

synchronil.ation and consistency in redundant packet communication systems. We maintain timing 

synchroniz.ation by maintaining in-phase operation of byte slices in a redundant system (Section 2.2). 

We maintain consistency by assuring that fault.free synchronizing merge modules in the same 

redundant module generate identical output streams (Section 2.3). 

The algorithm for timing synchronization is implemented in every synchronization set for 

maintaining in-phase operation. Under this algorithm. control modules in the same sync~roniution · 

set exchange signals with each other after receiving bytes in a new input word, or acknowledgments 

for a previously delivered byte, so that fault-free control modules in that set can deJiver packets and 

acknowledgments in the same batch to p-modules within a fixed time interval of each other. The 

algorithm for consistency maintenance allows synchronif.ation rnerse modules to exchange messages 

with each other to jointly determine the input port from which the next output packet should be 

taken. These algorithms must be robust in that in-phase operation and consistency must still be 

maintained in spite of malicious interference from failed modules. 

For presenting these algorithms in this chapter, we use an abstract fault model under which a 

failed slice may generate signals and memges of arbitrary cOn.tents at random, or stop generating 

them altogether. Implementation of these algoritluns. aftd thtuit design techniques to assure that 

signals processed under these. algorithms in control modules correspond to the abstract fault model 

used in this chapter, are studied in Chapter 5. The algorithms for maintaining timing synchroniution 

and consistency are presented in Section 3.1 and 3.2, respectively. 



-S4-

3.1 Aa Alpritltm for T.imincS~ 

Let us refine our desisn methodology given in Section 1.1 fOr constructins redundant packet 

communication ~ystems.. First of all, the non-redundant sysklQ is, daigncd ad .-spcciications for 

each module in the DQA·nxlundant &ystCm are ·detenninecl Then an .output encoctioa scheme is 

picked. To coastrµcl the,,rcpundant system. ·speeifica&ions i>r the .. p-nauchtles in eadl rcduncMnt 

module arc derived from the functionaJ specificat-oitbe~nclantmodlllt and tbechmen 

encoding scheme. P-modules. other than synchronizing merge modules. can then be implemented 

using techniques given in (4l (3Jl {33l 1J9i Each p-module in a redu~dant module is extended intD 

·a byte sHce by protecting· its input ports alld outj)ut p<>rts with synchronizing decoders and fanout 

modules. These sliceS are then connected togethCr by adding c0mmunication pathr between control 

modules in the same synchronilAltion set to fonn a red~Rdant mockde. . 

In our approach to constructing rcdwwlaQt packet ~ systems. we .design ea:b 

redundant module so that.for eaoh module we caa spedly: · 

( 1) its functional specification. 

(2) for each synchronization set in that module , an upper bound on the phase difference among 

bytes in the same output wont. 9r acknow~. (Of tbe ~ b,yte. .geaera&ed by that 

synchronil.ation set. This upper bound is by dc$ip. an.~ propert)' of tbe module. 

independent of any property of its nei8bbon. 

- .. ' . 

We also design each control module so thclt timing synchronilAltion (Pl'opcrties.Tl and T2 in Section 

2.2) can be achieved once an upper bound tor phase difference among patkcts and acknow1edgments 

in the same input batch is known. 



- 55. 

In constructing a redundant system, two redundant modules are connected together by 

connecting a synchronii.ation set A in one to a synchronii.ation set R in the other, as shown in Fig. 2.3. 

Given the specified upper bound on the phase difference among bytes iQ the same output word, or 

acknowledgments for the same input byte. generated by sync;hronization set A, and the variations in 

propagation delay along paths connecting A to B. we can calculate aa upper bound on the phase 

difference among inputs in the same batch delivered to B. This.derive'1.upper bound is the same for 

all input batches sent from A to B. Likewise an upper bound is dctennined for batches of packets or 

acknowledgments sent from B to A. These upper bounds: on phase <ljtferences arc then used to 

"adjust" each control module to assure timing synchroaizaaion. 

After a redundaDt system so constructed goes into operation. pro.per synchroni7.ation is 

maintained since the phase difference among .. output batcMs .. pnerated by a redundant module is 

always bounded by a ~nt which can be de.ti~ fman parameters in lbe redundant module alone, 

indepeqdent of its interaction with its neighbors. As. Jona M .W'OPU sy~ization is maintaiaed. 

To support our design methodology, we need techniques for synchronizing byte slices so that 

the upper bounds specified in (2) above indeed exist, as well as techniques for designing control 

modules which can achieve timing synchronization given these upper bounds. In this section we 

develop an approach that can satisfy both of these requirements. Jn this approach, the basic cycle of 

activities carried out in a control module, regarding synchronimtion, consists of several steps: 

For a synchronizing decoder, 

(1) receive an input byte from each fault-free byte slice it is connected to, timing out faulty slices, 

(2) synchronize with other decoders in its synchronii.ation set, 

(3) forward a word, deduced from the input bytes it has received, to the p-module it guards, 

(4) receive an acknowledgment from .the p·modulc and return the acknowledgment to all byte slices 



-S6-

it receives byteS frcm. 

For a fanoot module. 

(1) receive a byte ftom the p-module in its slice, and fbrward the byte to all decoders in the 

synchronir.ation set it feeds. 

(2) receive an actnowlCdgmcnt from each fault-ftce b)'tc'~ it is connected to, timing out faulty 

slices, 

(3) synchronize with other fanout modules in itssynchionil.ation set. 

(4) return the acknowledgment to the p-module. 

·lbe synchronil.ation algorithm is implemented in synchronizers· in control modules. A 

synchronizing decoder (Fig. 3.la) consists ofa syncbroniter section and a dccodtr section. The 

synchronizer section implements the synchronit.ation algorithm. The decoder sectioh ·decodes the 

illfJOl word. The syndmmizer section consists of .- nWnber of byte dclcctors (BDs) and a 

synchronizer. The byte detectors are designed to receive plaetets in llle-adOpted commullication 

protocol. Asynchronous packet communication protocols are discussed in Olapter 4.1. For this 

chapter it is sutf1eient to note that arrival of each new byte at a byte detector causes a signal to be sent 

on its output line to the synchronizer. Arrival of a new input word is signaled to the synchronil.er as a 

batch of signals, one from each byte detector. By using byte detectors, the synchronizer can be 

designed independently of the packet protocols adopted. The synchronizer generates an output 

signal for each new batch of input signals it receives. In a synchronizing decoder, this signal activates 

the decoding section. Outputs of the decoder section are subsequently delivered to the p-rnodule in 

its byte slice. Each acltnowlcdgmcnt received by the synchronizing decoder is returned to the fanout 

modules from which it receives input bytes. 



from 
fanout 
modules 

. 
• . 

to 
p-module 

- 57-

decoder 

: synchronizer 

r·· i 
to synchronizers in 
other decoders 

from synchronizers in 
other decoders 

(a) Synchronizing decoder 

synchronizer 

to synchronizers in 
other fanout modules 

from synchronizers in 
other fanout modules 

(b) Fanout module 

Fig. 3.1. Hardware structure of control modules. 

acknowledgment 

to 
p-module 

• to synchronizing 
• decoders 
" 

Operation of a fanout module (Fig. 3.lb) is similar to that of a synchronizing decoder. except 

that no input decoding is necessary, and acknowledgment si8iials returned by a neighboring module 

are received by its synchronizer directly. In a fanout module, the output signal of the synchronizer is 

returned as an acknowledgment signal directJy to the p-module in its slice. 



- SI-

To support the requirements of our design mcdlodology. it is sufficient for the synchronizers to 

guarantee that: 

(SI) For each new batch of input signals received., all faulHi"ec synchronizers in the same 

synchmniz.alion set will generate output signals witllbla fixed time interval of each other. 1be 

duration of this interval is bounded by a constmt which can be calculated fJ'Om the time it takes 

a synchronizer to perform basic operations. and each basic operation can be pcrfonned in a fixed 

time. 

(S2) If input signals in the same batch arc generated by fault-free neighboring slices within a fixed 

known time interval of each other. then fur each new input batch. a synchroni1..er wiD generate its 

output signal only after it has received all sianalsin that batch generated by fault-free slices. 

In this section we describe a synchronization aJpithm for developing a synchroni1.er 

implementation with these properties. For Ibis~ we ••me 1mt: 

(A I) Each redundant module is constructed out of 3f + 1 byte slices, up to f of which may fail 

(A2) Input signals in the same barch. generated by fault-fRe neighboring slices. are delivered to a 

synchronizer within 6 of each other. 

We will also use an abstract fault modet which mtes that a faulty byte slice can send signaJs. 

either directly or indiRctly throu8h byte detectnrs. to a syachronizer at random. In particular, a 

failed module may stop sending signals aJtoaether.. 

Since each control module communicates with its· neighbors via a handshake protocol. the 

interaction between a synchronizer and its neighboring fault-free slices obeys the constraint that none 

of these neighbors will deliver another signal to a synchronizer until after the syncbronim' bas 



- 59 -

generated an output signal in response to the previous batch of signals it has received from them. 

Operation of a (fault-free) synchronizer under the synchronization algorithm, after it has just 

delivered an output signal in response to the previous batch of input signals, is as follows: 

For each batch of input signals received, a synchronizer sends exactly one signal to every 

synchronizer. including itself, and generates exactly one output signal. A synchronizer sends signals 

to other synchronizers and to itself only after it has detennined that an input signal from a fault-free 

neighboring slice has been received by some synchronizer. Due to the assumption that up to f 

neighboring byte slices and f synchronizers may fail together, a synchronizer cannot be certain of this 

until after it has received input signals from more than f neighboring slices, or synchronization signals 

from more than f synchronizers in its synchronization set. As soon as a synchronizer has received 

input signals from f + l distinct neighboring slices or synchronization signals from f+ 1 distinct 

synchronizers, it starts sending synchronization signals to itself and to other synchronizers. Once a 

synchronizer has received signals from 2f + 1 synchronizers (itself included), it waits 6 seconds and 

then delivers an output signal 

D 

Suppose a fault-free synchronizer receives synchronization signals from f +I distinct 

synchronizers at t and as a result generates synchronization signals to other synchronizers, we assume 

that all synchronizers will receive these signals by t + p, where p is an upper bound on propagation 

delay through the corresponding data paths. 



-Q)-

Lemma 3.1 Under as.unption (Al)and(A2): 

(i) the outpulsignals of the t:ault-fn:e synchroDiiers are in-phase witbiD a fixed time iDterval. 

namely~ 2p. and 

(ii) No non-faulty synchronizer wiTI deliver its output signaJ before receiving a signal from 

every non-faulty neigbbori111 slice. 

Proof: 

(i) Suppose a non-faulty synchronii.er ~ives 2f+ 1 synchronization signals at time t1 and delivers 

its output signaJ at t1 +a. At t1 it must have received signals fiom at least f +I non-fauJty 

synchronizers. At time t1 +p every non-faulty synchronii.er wiD have received at least f+l 

signals from these non-faulty synchronii.ers, and will respond by sending signals to other 

synchronizers if it has not already done so. At t1+2p each non-faulty synchronii.er will .have 

received al least 2f + 1 signals from other syncbronil.ers and at t1+2p +a each will have 

delivered its output signal 

(ii) When a non-faulty synchronizer has received synchronil.8tion signals from f + 1 distinct 

synchronizers, at least one non-faulty synchronizer will have n:ceived input signals from f+ 1 

neighboring ~ and at least one of these Slices must be non~raUky. Thus under the 

· aaumption that signals in the same batch are deliven:d by fauh-ftee neigbbOririg slices within a. 
when a non-faulty syncbronizer delivers its ouq)ut silnal a dme units after it has received 

synchronil.ation signals from 2f + 1 distinct ~rs, atf input signals ·from non-faulty 

neighboring slices must have arrived 

0 

Note that Lemma 3.1 holds as a result of the actjons of non-faulty synchronizers. The 

algorithm guarantees in-phase operation rcgardlm of the faulty behavior exhibited by failed 



- 61-

synchronizers. Even though up to f faulty neighboring slices and f faulty synchronizers can send 

signals to synchronizers at random, they cannot trigger synchronization and output activities in 

fault-free synchronizers. And even if they stop sending signals, they cannot delay such activities 

indefinitely. To support in-phase operation in a packet communication system with cyclic paths, 

output signals from non-faulty synchronizers must be in-phase within a fixed bounded interval aft.er 

synchronization. For the above strategy this phase difference is bounded by 2p. To satisfy (SI), 

however, a synchronizer must be implemented in such a way that the operation of generating 

synchronization signals after receiving such signals from f+ 1 distinct synchronizers takes a fixed 

amount of time, independent of the phase difference among inputs to the synchronizer. 

Implementation issues arc discussed in detail in Chapter S. 

In the proof of Lemma 3.1 we have assumed that synchronizers act instantaneously. If 

synchronizers do not act instantaneously, variations in logic and path delays through them is bounded 

by some .,. . Phase difference among their outputs may then increase by .,. , again a time parameter 

which depends only on hardware parameters internal to the synchronizer set The phase difference 

among synchronizer output signals in the same batch can still be bounded by a parameter applicable 

to all batches, and cannot grow without bound 

We can also d~velop some insight on why our timing synchronization algorithm requires 3f + 1 

synchronizers to tolerate up to f failures among them. Assume we have a total of S synchronizers. A 

synchronizer must generate an output signal upon receiving signals from (S-f) synchronizers 

(including itself). This is because up to f synchronizers may fail and stop sending signals altogether. 

When a synchronizer generates an output signal, the other synchronizers should start sending signals 

to each other. We observe that if a synchronizer has received signals from (S- f) synchronizers, f of 

these synchronizers may be faulty and hence may not send signals to other synchronizers. Thus when 

a synchronizer generates an output signal, other fault-free synchronizers may have received signals 



-62-

from only ( (S-f) - f) synchroni7.ers. Our strategy thus calls for a synchroni1..er to send signals to 

other synchronizers upon R:Ceiving silrMlls ft'om ( (8-t) - f) syndtronim's. A faulty synchroniJJer 

may send signa1' to ~ ~ at nndmn. To prnent r faulty synchronittrS conspiring 

together fi'om controllias the behlvier of fault-free ~i7Jen. we must have·( (S-f) - f) > r. 
i.e., S > lf. 

A similar analysis wiD show Chat it is su~t for a. synchronUa. to receive input signals from 

2f + 1 neighboring slices to toJeratc up to f f.Uures ~ dp slices _lqldcr the abslract fault model. 

We have chosen to aBlll1C t.hal a syncbronil.Cr rocciv~ input signals .._ lf +I neigbbori&g slices to 

simplify the presentation. The construction of ~tmoduks ~ ~ tball Jf + 1 s1ica is 

further diactmed in Section 3.3. 

3.2 An Algoritlua l'or Cons&enq Ma~ 

A scenario for Sludying consistency maintenance pi'oblems in redUndant pactet communication 

systemS was given in Section 2.2. In dlis scenario non-detel'minac is mfioducec:t using synchmnizing 

merge modules as p-modules in byte slices in a tedundant IDOdUfe. ··· tn SUcti ·a non-determinate 

module all control modules in the same synchrooWdibn · set W.11 me die· timing syftClut>niz.adOn 

algorithm presented in Section 3.1 to maintain in-pballe opmtion of the synchronizing mage 
' . 

modules. Input words and acknowledgments in lhe same batch will thus be deliveml to 

synchroniring merge modules in the same redundant module within a med time intaval. 

When every synchronizing merge module has a pactet pending· fbt output from one of its input 

ports, Which we shall caft the module"s rtfWS1 JOUtee, Ibey ~ mesSages with each ocher and 

jointly pict an input JOUrce. F.ach synchtoniting ·merge niodU1e lheD lbrwards a packet from 1be 

input soun:e to its fanout module. The synchronizing merge moduJej· can choose any iilput port 

proposcd by a fault-ft'ee synchronizing merge module to be tlC next Input soun:c, since packets will 



- 63 -

be delivered to every synchronizing merge module at that input port within a fixed time interval. 

During the message exchange, faulty synchronizing merge modules may lie. Non-faulty 

synchronizing merge !J10dules must be able to pick the same input source, in spite ofliars. As long as 

fault-free synchroni1jng merge modules agree on their input sources, their output streams will be 

identical. 

Note that this problem is different from the timing synchronization problem, in that modules 

participating in the synchronization activities must reach agreement on the outcomes of two-way 

decisions, rather than on when events have occurred. Our approach to solving this fault tolerance 

problem is based on an algorithm for exchanging messages among synchronizing merge modules, 

under which: 

(l) For every synchronizing merge module M, faulty or not, an fault-free synchronizing merge 

modules will agree on M's request source. 

(2) The request source proposed by a fault-free synchronizing merge module will be known to all 

other fault-free synchronizing merge modules and used in their decisions to pick an input 

source. 

(1) assures that if each fault-free synchronizing merge module applies the same algorithm to 

pick an input source, based on the set of request sources it has deduced for other synchronizing 

merge modules, then an fault-free synchronizing merge modules will pick the same input source. (2) 

assures that the chosen input source indeed has packets pending, so that faulty synchronizing merge 

modules cannot cause all fault-free merge modules to pick one input port as their next input source 

while these fault-free merge modules have only received packets at the other input port. 

An algorithm for exchanging request sources among a set of synchronizing merge modules to 

achieve (1) and (2), using 3f+ I synchronizing merge modules to tolerate up to f failurcs among them, 



• 64. 

is given by Pease ct al in (4S]. In this algoridun melS88CS are e1changed in rou• and the· number of 

rounds of exchange grows linearly as the number of f'ailures'to'be telerated. This contrasts with our 

timing synchro~ algoridun in which only oile round Df' 'signal eichanle is ever necesSary. 

Pease ct al have also proved a negative result whkh flys;that :her titan' 3f+ l synchroni1jng JnCf8C 

modules arc not sufficient for tolerating f failures among them, if (1) and (2) are to be acfrievecfby 

exchanging unauthenticated messages alone. 

For this thesis we will only discuss the tlnaft sync:tm;ni1.ing merge module failure (f = 1) ca1e 

in detail. This srcadY simprlfies the ~talion, especially the implementation details. It is also the 

·most important case fbr Che maintained• enm.nent· envisioned fbr our physics simuJadon 

applications, in which the mean time to repair is relatively short compared to the mean time to fai1ute 

for any redundant module. 

We wiU thus mume that there are four synchroniling merge modules. one of which may be 

faulty. We start at the point at which each syncbrotliling nte'f8e m6dule has received a packet ftom 

an input port, cal1cd its rtf/lleSI source, and present the aJgorfthnt the syncfironizing merge modules 

use to jointly pict the input port, called the inpul saurr:e. for transferring the next packet to the 

sua:essor module. We assume that a failed synchronizing merae module may send mesuges to other 

synchronizing merge modules at random, and that the messaaes they send can specify either input 

port as its request source. The algorithm also calls for timing out other synchronizing merge modules 

to avoid waiting for messages from faulty modules indefinitely. To set up these time out 

mechanisms, we need to know the phase dift'erence among inputs in the same batch to the 

synchronizing merge modules. and take metastable state phenomena into account The details of 

implementing these mechanisms will be discussed in Cllapter S. 



-6S-

Each synchronizing merge module executes the following steps to determine the new input 

source. Request sources and input sources are denoted by either I or l. 

(i) Broadcast its request source to all synchronizing merge modules. including itself. 

(ii) Receive messages identifying their request sowas from other synchronizing merge modules. 

This step is timed-out and either ti or l is assumed fora late module. 

(iii) Relay messages received in Step (ii) to other synchronizing merge modules. including itself. 

These messages have the fonnat: 

"I am module i (1 < i < 4). Synchronizing merge~ HI S j < 4) told me 

that it hill a request from input port k «!or l)". 

(iv) Receive messages sent by synchronizing merge modules at Step (iii). This step is also timed-out 
:,-. ,. ,-. 

and arbitrary values are again assumed for request sources in missing messages. Each 

synchronizing merge module i will have received tour tnemaes regarding the request source of 

module j, one from· each synchronizing mctge meduht<includingbelf). The contents of these 

.four DlC$agCs;treenteredinto a row ofam~~t.UleJSample~e ta~les are &iven in Fig. 

3.2). Each element in this table is the request source :which the tynchroniziag merge module 

narried in its column heading claims to have recehled. from the S¥DChroniri&J meige module 

named in its row heading. Module i picts _the R":QUesl soun::e for mOdule j by ignoring the (j. 
- . .J 

j)-th entry in the table and voting mi the remaining entries in the row named by j. 

(v) Having determined four request sources. one for each synchronizing merge module, the one in 

majority is taken as the input source for the next output packet In case of a 2-2 tie, pick D over 

l. 



-66-

This algorithm is illUSU'ated by the example given in F'1g. ).2. Instead of numbering the 

synchronizing merge modules. we labeJ thein A, B.,C and 0. The llOD-fautty synchromzing mefl' 

modules A, B and C receive memges from request sourees_ l. land O. respectively. Memges se~t by 
- . ,, {. 

D can have amitrary values. The last column in the table kept by a moduJe gives the request source 

detcnnined by lhal module in Step •iv) for eadt synduQniziag 1Defle modille. -'flte eatra boa in tlle 

lower right hand comer of eacll·table aiws the input.IDURC ieduced ia SleP tv) from Che request · 

sources. Note that the contents of messages sent by D in Step (iii) does DOl affect any decision made 

On 
A 

B 

c 

D 

~mw.r _-.-,-, l 
'·.'-· - ' . 

'.') 

RS -- Request Soun:e 

From From 

A B C D RS .A ,,:p · C-, ,,p '.JlS' ,·, · A·· B·,," (:. ,_ D RS 

On On---:---.,._---------
l ~ l l;' -- ·l ; A:: :a: t,,,l,,,1- ,,}u'. - • 'bl , ~.,.:b}- ''i-! oc:.1:.l-i» .. _.;, l 

l l ·l ' - l 

g it t 
- . - D c a "' aJ -If (''-"'U;a ' e·· · 1 ., n a ,_, ~,, - a 

g a l - g 
' _,, -.:- l<-;/;'7 ·,;;; ;; ?-'-' ' __ ;~--) I; ji,:ffi:;:··;; ·•:\." IT! ,,, .-•. <.~' 

o a o i:. a aa o i - o 
' 

,---:c __ ·~' ... :""-+.,~~· .... ,;:;-~:.;...........,;._.-1.,.i...,-""'-.1·-J ,, \ ~::;<, ·!':~.· /• __ ..• ",. '-· ~ 

IS g IS Q IS - -
A - ·B c 

Tables of Messages Received 

Fig. 3.2. An example to iDusttate the decision al8oridm. 



- 67_ -

by A, B and C in reaching agreement on an input source. The reader should also check that 

properties (1) and (2) stated at the beginning of this section arc indeechatisfted. 

The same tables shown in Fig. 3.2 will have been constructed if either one of the three modules 

A, B, or C times out module D in Step (ii) and 8Blmes the corresponding value for D's request 
. :'t: 

source. In this~. A, Band C would have picked the same input source in exactly the same way. 

We next verify the algorithm informally. If a synchronizing merge module M is fault-free, all 

fault-free synchronizing merge modules (at least three, including ~) will .broadcast M's request 

source to each other, and hence will agree on M's request source among themselves. If M has failed, 

the information exchanged among the three other synchronizing me'l.e modules regarding M's 

request source wilJ be consistent And again all non-faulty synchronizing melle modules will agree 

on M's request source. The reader is referred to (4S) for the general algorithm ~d for a correctness 

proof. 

3.3 Disamion 

In the absence of a global timing reference, the timing synchronization algorithm presented in 

Section 3.1 allows control modules to maintain in-phaae-OplRl&ioa locally. This algorithm is cloeely 

related to the fault-tolerant clock desiln <b;.1.ibed ·in 116). •·may be viewed as a generalization of 

the synchronization voting technique studied by Davies and Wakerly in [17). These two references 

have been sources of ideas and examples for our wort. 

Fault-tolerant Clocking Systems 

In the fault-tolerant clocking system dcsen'bcd in [16] an array of identical oscillator modules is 

used to produce a number of phase-tocked clock signals for global synchronization. Using 3f + 1 



-68-

modules. phase-locking is maintained on at least 2f + 1 of die aJob111 doct signals after f failures. 

Local conditioning circuits at hardware units convert the lf+l P>bal clod: signals into local clock 

signals that are phase-locked if no more than f global clock signals have failed. Phase-Jocking among 

the global clock signals is maintained by conditioning each oscillator output to change state after 
_,, 

either the elapse of a clock period or after sufficiently many other global clock signals have changed 

state. 

Our synchronil.ation algorithm presented in Section 3.1 can be used to implement a 

fault-tolerant clock in the configuration.depicted in Fig. 3.3. 'in this scheme each synchronizer has a 

single input port and sends signals to other synchronizers as soon as it receives an input signal from 

this port. The output signal generated by the synchronizer is fed bad.to itself. The output.signals 

generated by fault-free synchronizers can be out of phase by as much ~ 2p (Section 3.1). Fa:h 

synchronizer. after nxeiv1ng synchronil.ation signals from 2f+ 1 distinct synchronizers (Including 

itself). waits 2p before sending the next output lipal. 

3f+l 
IOCllJ 

connected 
syncbnmimn 

F1g. 3.3. A f'auk-tolerant docking sy1tem. 



-69-

Suppose each signal transition (either 0 -+ 1 or 1 -+ 8) on its output line represents an output 

signal generated by the synchronizer, then the conftauration illustrated in Fig. 3.3 has the following 

properties: 

As Jong as less than f of the synchronizers have failed. 

(1) All fault-free synchfonixrs. will genera&e output tqnsi&ioas in the same direction within 2p of 

each other. 

(2) A fault-free synchroaizer will IN,ke an .ouqNt ~ in. one direction after all fault-Ji'ee 

synchronizers have made their previous output transitions in the opposite direction. 

These are exactly the phase requirements to be s~ by redu-4ant periodic signals senerated by a 

fault-tolerant clocking sys&em. Our synchronil.ation aJaoridun thus sugests an approach to construct 

fault-tolerant clocks. Its practicality depends on wtaedler· at dtJt ir is possible to implement the 

desired properties of the synchronizer in a tault-toltranl lilllllon ill tile given hardware technology. 

a 

Synchronization Voting 

Uncter. 1be lb8rnct. fault model. a flilld C8ldl1il. module, may tencl lilBals to only me 

sync11renizers ia its neighboring IJllCbnmbadon llCi'tNt aat .to odlen;. ·Per a rest!icltd cla or 
hardware failures, however, a fmled control module wiD eitbel!..-aad.aay:,....;,or:sendone ao 

each synchronizer within a fixed time interval. For such failures, timing synchronization can be 

achie~Cti using t11e synchronization·· ttChDiq~ or~·~-w~ewty (11). · · 

· In synchronization voting. synchronizers in the same synchronization set are designed aawning 

that input signals in the same batch are in-phase within some a. No communication is necessary 

among synchronizers. After receiving input signals from f+ 1 distinct byte slices, a synchronizer 



-70-

waits B seconds. and then generates an output sipal. 

For the· restricted cl5 of hardware failures under consideration, the phase difference B among 

input signals in the same batch received by a synchronizer from fault-free neighboring slices depends 

only on: 

(I) variations in propagation delay alOng paths connecting adjacent synchronii.ation sets (I-lg. 2.3). 

(2) variations in propagation and gate delay among synchronizers in the same synchroni1Ation set, 

(3 )perfOrmancc incompattbmty parameterS among fHWOdtifcs in-the same'Synchronaation set 

B can thus be computed for each synchronizer after the redundant system is designed and the above 

quantities are known, and used m it! flardware implelnentation. 

If a failed module can send ~als to some synchronizers in its neighboring synchronization 
.. ' < • • , • • ~ 

set, but not to others. then synchronization. voting is not .sufficient for timiq s)'llthronization. 

Suppose a set of synchroni1.crs designed under synchronization voting receives a batch of signals 

from fault-free slices that are in-phase within a. Under the more general fault 8Umption, one 

synchronizer may receive f+ l signals a seconds before another. Output signals gen~rated by these 

synchronizers can then be out of phase by 8. If the p-modules are performance compatible within T, 

the next batch of OUtplllS pnerated by fault..frtle bJtie sliceSconUininl,dJesl~ims ca be out 

of phase by I + T. Under thesc:amdilioos., ptme ditferwe ameqsiaaal.ill-thc w batdl am 

grow without bmndldQas·bdtr.t ptdla. 

The interested reader is referred to (17} for a more detailed discussion on synchroniza~ 

a 

0 



Suppose an encoding scheme is picked for a redundant ~ket communication system under 

which 2f + l byte slices is sufficient for detecting and/or masking failures in up to f slices among 

them. Timing synchr9ni1.ation can be maintained in suCh a system by using 2f+ I byte slices in each 

redundant module, and connecting the control modules in these 2f + l byte slices as shown in Fig. 

2.3. Each synchronization set in this configuration has 2f + l control modules. We have already 

noted that the synchronizer algorithm can be designed to maintain timing synchroni1.ation using a 

total of 2f + 1 input signals. To satisfy the requirement of having at least 3f + l synchronizers 

participating in each round of synchronii.ation activities. we can add f synchronizers to each 

synchronir.ation set. connecting them to every control module in that synchronir.ation set and to each 

other. These extra synchronizers do not receive input signals nor produce output signals. Their sole 

function is to enhance robustness in the synchronir.ation algorithm. by relaying synchronir.ation 

signals among all synchronizers. The algorithm they ~ecute is: 

Receive signals fTom f + 1 distinct synchronif.ers. then aend a signal to every synchronizer. 

Finally, note that the steps in the algorithm for reaching agreement among synchronizing 

merge modules does not depend on the contents of the messages exchanged The aJaorithm ~ also 

be used for reaching agreement among a group of modules making multiple-outcome decisions 

independently. In particular the consistency maintenance algorithm can be used to exchange clock 

readings among computer systems reliably. and hence foithnmg 'Syncbronimtion. This approach is 

clearly more expensive than our timing synchroniution algorithm for managing redundancy in 

hardware systems. but it may be appropriate tbr Synchroniiiiig nodes in a computer netwod. The 

fault tolerance capabitities of this apptoach alSo depcnds--Oll hoW hardware failures can be handled in 

an implementation. 



-72-

4. Asyndaronous Packet Communication Protocols and Fault Models 

In the last two chapters we have explained our approach to constructing fault-tolerant packet 

communication systems. A redundant system is con•ructed by intcn:onnccting redundant modules 

via redundant links. F.ach reduodani module has a byte-sliced internal structure. TJDling 

synchroniz.ation and consistency are always maintained. even in the presence of failures, in a 

redundant system. The output words of a byte-sliced module are encoded for detecting and/or 

masking failures in its byte slices. The emphasis in the last two ~rs has been on explaining the 

problems of timing synchronization and consistency maintenance. tbc awroach w~ have taken to 

· sustain them, and the basic algorithms used in this·approacb. 

In this and the next chapter we study hardware implementation issues. Since the etfectivenea 

of our approach to fault tolerance in packet communication systems depends ultimately on our ability 

to implement the redundancy management aJaoridlms pvea · in .a.ap&er 3. we will analyze 

implementation issues in detail. The basic concepts for control module design and analysis are 

presented in this chapter. Hardware implementation Of control modules and· synchronizing merge 

modules to suppon our panicular approach to coMtructing ftlult-tolerant systems are studied in the 

A conuol module receives and ge.nemes. packets ~ acknowledgments by iDterpreUag and 

generating signal transitions on its input and output Ji8'S aa;orcling, to a set of c:onventions called an 

asynchronous packet comnumitalion J)Tf!l«DL Witboul ~~ ()( 4,le adopted communication 
-· .,,. :· .··;- ' 

protocol, there is no basis for discriminatJ.og betw• ~~.,.-' beiJayior. We define adas 

of packet communication protocols in Section 4.l whose use will be assumed in studying bardwaR 

implementation of control modules and synchronizing merge modules. 



-73 -

In Section 4.2 we present fault models for characterizing the behavior of faulty hardware 

modules. We describe the type of output signals that we assume a faulty module may generate on its 

output lines. The in~raction between fault-free and failed modules is characterized formally by 

modeling the interaction between signals that may be generated by failed modules and hardware 

elements used to construct fault handlers. This latter ~t of faull modeling is essential for 

evaluating the effectiveness of fault handler designs under the assumed fault model. but is often left 

out under the stuck-at fault model. 

For studying fault tolerance problems in p~ket communicaf,ion systems. we feel that the 

stuck-at fault model is too resuictive. and have chosento study hardV(aJe implementation issues using 

more general fauk models which better reflect the sensilivay of self-timed hardware modules to runt 

pulses and output hazards. Hardware implementation .of the control modules and synchronizing 

merge modules will be studied under the swck-at .fiuflt ~I. the '"""°"'pulse 1rain fault model and 

the random wave train fault model. These latter two more general J-.k models are abo motivated by 

failure mechanisms in VLSI technologies which are not adequately modeled by the stuck-at fault 

model. Interaction between faulty signals generated under ·thee two fault models and hardware 

elements used to construct control modules and synchronizing merge tnodUles are also specified. 

4.1 Asyncbronous Packet CommunicatiQQ.ProtoeolJ 

We have described packet transmismon over a channel in tenns of channel state transitions 

(Fig. 2.1). Both data and control information are sent over a channel. A pket communiClllion 

protocol is a convention for interpreting the si~ sequences traq$111itted over the wires of a channel 

to synchronize port activities. A packet communication protocol .is asynchronous if the state of a · 

channel can always be deduced by examining the signals carried on the wires in the channel, without 

consulting any external timing reference. When an asynchronous packet communication protocol is 



-74-

adopted. a channel can reside in a state fur an arbitrarily Jong period of time. In other words, an 

input port need not process an input packet within a fixed time interval after the packet is available 

and an output port need not generate output packets at a prcdctcrmined filed rate. A packet 

communication module whose port activities are synchronized by asynchronous protocols is then. in 

this sense, a self-timed hardw~ module. 

An acknowledgment bundle can be implemented using a si •. wire. AckQ~wledgmentl are 

delivered on this wire as signal transitions, as shown in Fig. 1.lb. For packet transmission on an 
c 

n-wire packet bundle, each packet is represented by an n-bit binary string. Suppose a packet 

represented by string a is de1iveml lo an input port. acknowledged, and then a packet represented by 

string b is transmitted. The pactet bundle connected to lhe input pOtt may undergo a series of 

intermediate state changes before settling down at b. The set of possible intermediate states that may 

occur when a packet bundle underJC)eS a state transition· &om a to b is dlaracterized by the subqoce 

covered by a and b, defined as fiJllows: 

Let a :::: a1···Cln and b :::: bt···ba be two n-bit binaly striD&L The set. ofn-bit binary strinp in 

the subspace coYBed by a andb, is defined • 

{ c == c1 .. .c0 I ci :::: 8i = bi for all i at which ~ = bi } 

The subspace covered by 00100 and 01110 is, tor example, 

{Ox1lY10l11 €{0,l},yl €{0,1}} 

To facilitate the design of input ports, we use an approach in which a stream of packets is 

transmitted on an n-wire packet bundle by encoding theni alternately in two subsets. A and B, of the 

binary n-cube, and choose A and B so that transitions between them is eamly recogni1.8ble. More 

specificafly, A and B should be chosen so that an input port can recognize when a state transition on 

its input bundle, from any element in one set lo any element in the other set. is completed. Our 



-75-

approach is to choose A and B so that when a packet bun4le undergoes a state transition from any 

element in one set to any clement in the other set. oo element in either A or B can ever occur as an 

intermediate bundle gtate. Any two sets of binary striap with this property are said ·to be separable. 

as defined next. 

Consider an n-wire packet bundle. Let A and B be two subsets of the binary n-cube. A and B_ 

are inseparable if there exist three distinct strings a € A, b € B and c € A U B such that c is in the 

subspace covered by a and b. A and Bare separable if they are disjoint and not inseparable. 

In other words. A and. B are inseparable if there are elements a in A and b in B such that in a 

state transition on a packet bundle from a to b or from b to a. an element in A or an element in B may 

appear as an intermediate state. The two sets { 010, 111 land { 100, 001} are thus separable while 

{ 000, 010, 111} and { 100, 001} are not. When two separable sets are used for packet transmission 

the receiving input port can detect the completion of the neR packet transmission, after a packet 

encoded in either A or B is aeknowledaedo by looting for a string in the other set on the packet 

bundle. 

For an asynchronous protocol based on two separable setS A and 8, a packet bundle state is 

illegal if it is not in the S\tbspa covered byA' ilMtttl It is utlJlable if it is leptbut is in neither A 

The ready/aeknowle48e handshake protocol is an euinple of an asynchronous packet 

communication protocol. The:tWQ~3ble Sdl are the. siJl81#G1tS:LfU . .and { .. l }. used on the rmdJ1 

wire (Fig. l .la) tO control packet transmission. -Pae"ket contents are delivered on tilt data wires. 

1. The subspace covered by two sets A and B is: 
U { subspace covered by a an4M.ai; .. l> E Bl . 



-1'-

proltJCOl evny illhm ti l'ft Ml ia a pd.et is .....naed ow:r a plir of wires. A pactet bundle dms 

consisls of• wil_e pails. It is in a~--wllen al wiRs carry tile logic value I. It is in a tltlllllllie 

when euctly one wire in each pair carries the logic value l Tile mgk ton set, consisting ol only Ille 

spacer. and die set of• data scat.es provide two scparaMe sets filr asyldlronous packet transmis9on. 

A pad.et is transmittal over the bundle in a spacer - data tAnsilioa. A data - spacer transition 

resets the bundle saa1e tOr the next transmission. Under tile dual-rail Pft*JCOl a packet bundle s&ase 

m illegal if some wire pair carries 1 on bofh wires. Dllla SlaleS and die spKer Slate are sJabk legal 

states. Other legal s&aleS. in which some wire pair carries "00'°. aR ""*'1le. Ch.wld saate tramiWMtS 

filT sending 1-bit padets in dual-rail is illustnHd in F1g. 4.1. 'Ille two separable sm used ill a 1-bit 

dual-rail pnJfOCOl are { E }. and { 11..10 }. 

~ ........ 
passive~._.,.._ ___________ _ 

_____ ..... ·--spacel'--... -------·B,-..... -
Ftg.4.1. 1bemat-ralp1a1111i. 



-n-

Other examples of asynchronous packet communication protocols can be found in (4). 

An input port can detect the arrival of a new packet using a packet detector {Fig. 4.2a). A 

detector is constructed out of acceptors for two separable sets A and B, and a Muller C-element The 

output of the C-elcment keeps its present vaJue as long as its two input values disagree, and changes 

to the common mput value otherwise. Operation of the C-element is described by a transition 

diagram in Fig. 4.2 (b). A total state of the C-element specifics the signal values carried on its input 

and output wires. The unstable states of a C-element are marked by an asterisk in the transition 

diagram. A C-element acts by making transitions from unstable to stable states. An acceptor for a set 

S is a hazard-free combinational cifcuit whose output is 1 if and only if its input is in S. The output 

of a packet detector undergoes 0 - 1 and 1 - 0 transitions as the monitored bundle mates 

transitions between the two separable sets. A packet detector for dual-rail protocols is shown in Fig. 

4.2 (c). Packet detectors in synchronizing decoders are caJled byte detectors because each packet 

received by these decoders contains exactly one byte of each input word. 

Further restrictions, based on the notion of Hamming distance (46), (65). for example, may be 

imposed on separable sets used in packet communication to support error checking and error 

correction. We next illustrate a technique that can be applied to translate familiar error detecting or 

error-correcting codes (46). (65] into a dual-rail code with the following example. 

An n-bit duaJ-rail parity code partitions the data states of a packet bundle according to their 

parity. Let the dual-rail encoding of the information bits 0 and 1 be "01" and "10'', respectively. A 

data state in a dual-rail protocol has even parity if it contains an even number of "lO"'s, and odd 

parity otherwise. An even-parity dual-rail asynchronous packet communication protocol is just a 

dual-rail protocol whose data states aJl have even parity. In using a dual-rail even parity code, even 

parity packets alternate with spacers on packet bundles. 



- 71-

input 

(a) Hardware structure of a packet detector . 

...... 
80 01 11 10 

Output Slate 
0 

I f I I • I I i I • 

(b) Transition diapml fOr the C demaal . 

. 
• . 

2n • output 
wire • lipal 
pairs 

. 
• • 

(c) A detector for dual-nul protocols. 

Fig. 4.2. Packet dctc :11n 



-19-

If a dual-rail parity code is used to detect failures in a redundant module, each dual-rail bit 

should be generated by an independent slice to a.wire that CQIMlOD failure modes. such as single slice 

failures, affect at D10$l one dual-rail bit Encoding and ~ packets for fault tolerance are 

further discus..ed in Section S.2. 

4.2 Fault Modelinc 

We are interested in designing control modules and::-..chmntzing merge modules, lhat ·can 

tolerate hardware failures in their neighbors in maintaining synchronii.ation and consistency among 

byte slices in a redundant module, and detect and mast data e~ ~ !fo 'saudy these. 4esigl1s 

vigorously, we need to explicitly specify the interaction between signals generated by failed modules 

and hardware elements such as combinational gates. C-elcments and latthes, used in constructing 

fault handlers. We caft such a specification a faurt model. 1n Using a given fault model in fault 

handler design. we are muming that under the most common hardware failure modes the underlying 

physical interaction between signals ge~rated by raDM· llioduies and' hardware elements in fault 

handlers can indeed be characterized by the adopted tault model. 

In this section we .iatroduce die stuck-at C.lt model. $e random .pulse train fault model and 

the random wave train fault model. These latter two models are generalizations of the widely used 

stuck-at fault model. Several failure mechanisms in VLS1 NMOS aDd CMOS technologks that 

cannot be modeled by cbmical stuct-at fault models are reported in (28). [63). Some of these 

mechanisms are aging processes which mOdify the· etectricaJ ·cbaracteristics of basic transistOr ciraiits. 

It seems that· as feature sizes. path· widths· and separation between active circuits· reach submicron 

levels. the stuck"'at·fault model wm not be adequate fOr modeling many on-chip failure mechanisms. 

or transient failures tauscd by external interference. 



-80-

We note that the stuck-at fault medel, the random pulse train fault model and the random wave 

train fault model form a strict hierardly in terms of generality and modeling power, the random wave 

train model t>en,g the most general, 1he stuck-at model the·ftlost restrictiYe. lri the next chapter we 

study the design of control modules and synchronizing merge modules using these flrult models. For 

a specific implementation technology, a fault model can be validated either through experimental 
~ > , -

measurements or physics modeling. Validation of these fault models for available implementation 

Under this fault model a signal generated by a failed module appears to a hardware element ill 
' _. . ~. ~ ; ~ . - ': ~ 

a fault-free module as if the signal is stuck at either the ~ level 0 or the .. ~ ~vel 1. The .~viol' 
' - " , : _, " . -.- ... 

of a hardware element receiving a faulty signal is iden~l to tAAt of ~. ~ under fauJt-free 

operation, with its corresponding input tied. to ddier 0 or 1. . lllis is the IJlC}Sl COllUDOll fault, modd 

cmumed in studying fault-tolerant digital sys&ems. aJl(f is often used to characteriz.e logic gate &iluRs 

caused by output lines shorting to ground or V cc· This fault model is used in many production 

environments. semiconduetor manuftlcaneR, fbr e~ tbrtesf ~ · 

A byte slice in a redundant JDQdu1e GOOUDunicates with iia .aeilb~rs via an ~ 

packet communication proWcol. Our stuck-at fault ,QlOCld for byte slices ~.dial a failed bJte-8tice. 

behaves exactly like the fault-free slice eicept that SQ'.llC ofitS.~ JiJeS are ei~.ORed wjtb V cc 
or ANDed with ground (Fig. 4.3). Thus while .SOIJI'. ()U~~ Jines·qr • ~.~)'te sJice;are .. ~ 

signals may still be generated on its other outpu~ • in. «OOrdaDce ~~ . the adopted 

communication protocol. We will also explicitly mu~ that an-output line. pf~ ffUJed b)'te ~ am 

become stuck at a logical value only when the output signal on that Jinc is already residing at that 

value, and thus no spurious signal transition is ever generated. Under the stuck-at fault model in F°J&. 



ack .............. --

act ... ,....,,__ 

. 
• -

Vee. 

- 81-

Fig. 4.3. The stuck-at fault111Ctlel~eslice failures. 

packet 
bundle 

packet 
bundle 

4.3. an output byte or acknowledgment generated by the failed slice can be delivered to some, but not 

necessary alt, neighbori~g control _flodul~ .. ~1.1acknowledgment wire stuck at either 0 or 1 will stop 

returning acknowledgments. But if some wires in a packet bundle (Fig. 2.1) are stuck, some packets 

generated by the failed slice may stilJ be delivered on that bundle. These situations will be discussed 

in more tlefail when we study·fauk handler desipsundertbe'Stllct-at fauttmodel in Section 5.1.2. 

The Random Pulse Tntio Fault Motlel 

Under this. fault model signals generated by~ failed snfKlu1e may oscillate f'8Ddomly between 0 

and 1, but do not reside at intennediate levels for any SllDlficlnt perfucf of time (cOmpared to 1oaic 

gate delays). We model such a faulty signal as a random pulse ttain (Fig. 4.4a). The interaction 
~ ~ -L'~ ~ 

between a random pulse train and a fault-free har•ware ~tis as follows: 
> , • ! 



-82-

1 ..-- ~ ~ 
~ 

.. ,'-,; 

0 ~ .... i..i 
~ 

(a} A random pulse &raia. 

1 

0 

1 

0 

,: 

1 

Out 

0 

(b) Interaction between a raAdom pulse train and an OR pte. 

Fig. 4.4. The random pulse train fault model 



-83-

I 

I I 0 

1 

0 

Out I 
1 

I 0 

(c) Interaction between a r.mdom pulse train and a C-e1ement 

Fig. 4.4. The random pulse train fault model (continued). 



-84-

Interaction between~ combinational W .md a random JWIKDill 

A combinational gate. such as an A ND gate or an OR gate. is modeled as a logic gate whose 

output at time t is obtained by applying the corresponding boolean function to its input value at time 

t, followed by a delay clement whose input signal is delayed by some given 6. Interaction between a 

combinational gate and a random pulse train input is illustrated using an OR gate in Fig. 4.4b. 

Interaction between !l C-clcmcpt & i r;mdofn. llllB Jaia 

The input/ou&put behavior or a MuUer C-element-is illustrated in Fig. 4.2. More precisely, we 

~umc that the state table in Hg 4.2b specifics the oqtput of the C~elcmcnt at time t given its input 

and output signal values at time (t-6) i>r spme fixed 6. lntcraclioo between a; C-element and a 

random pulse train input is iHustrated in Fig. 4.4c. In modeling this intcraictiOO we have made the 

a~umption that signal transitions in a random pulse train are sufficiently far apart that a C-element, 

when activated. will always settle down in its new state before the next transition occurs, and that a 

random pulse train dOes not drive a C-elcment into a metastable state. Again, we caution the reader 

that the validity of these assumptions should be carefuJJJ. checked before adopting this fault model 

for specific hardware implementation. Our key appl~l.l (~r C-e~r.s in .control modules design 

under this fault model is for filtering out random pulses using a fault-free input signal, as illustrated 

in Fig. 4.4c. 

Interaction betwCCD a .lillcil awl .il random RUB 1llill 

For a latch receiving a random pulse train under the control of a fault-free latching pulse, we 

asm1mc that the output of the latch will settle down at either 0 or I within a fixed time interval after 

the latching pulse. It is well known that if the input to a latch changes its value at about the same 



- 85-

time the latching pulse arrives, the latch may be driven into a metastab1c state and remain in that state 

for an arbitrarily long time. For many technologies the probability that a latch. after entering its 

metastable state at time l reinains in that state at t+B decreases rapidly with 8. It is thus possible to 

improve the accuracy of the random pulse train fault model by assuming a longer sett1ing time 

between delivering a latching pulse and reading the output of the latch. The probability that the 

latch will remain in its metastable state after the assumed settling time is. however, nonzero and must 

be taken into account in calculating reliability measures. 

The Random Wave Train Fault Model 

Under this fault model signals generated 1>Y, a failed module can wander arbitrarily in the 

region bounded by the signal values 0 and 1. We model such a faulty signal as:a random wave train 

(Fig. 4.Sa). The interaction between a random wave train and a fault-free hardware element is as 

follows: 

Interaction between a combinational~ Bl ann4om DDJDill 

Same as that between a combinational gate aRd a random pulse train. Interaction between a 

combinational gate and a random.wave train input is illustrated using an Oft gate in Fig. 4.Sb. 

Interaction betweeD i C=clcmcnJ mli1 .ii ran<lom ~ JDill 

We assume that a random wave train input can be propagated to the output of the C-element, 

as illustrated in Fig. 4.Sc. Thus under the random wave train fault model, C-elcments are no longer 

useful for fi1tcring faulty signals. 



-86-

1 

0 .-------------

(a) A random wave train. 

Out 

l 

0 

1 ---------------

0 -- ... --.--- .... ~-----~--

1 

Out 

0 ------------..-----~ ..... -

(b) Interaction between a random wave train and an OR gate. 

Fig. 4.S. The random wave train fault model 



- 87 -

Out 

1 

__ ! ______ __!_ 
0 

1 -------------------------

0 

1 

Out 

0 --------------- --------

(c) Interaction between a random wave train and a C-element 

Fig. 4.5. The random wave train fault model (continued). 

Interaction between i .filKh .aru1 i random wave JDin 

Same as that between a latch and a random pulse train. 



-88 -

4.3 Discussion 

A packet communication module interacts with its neighbors at several d_ifferent levels. At the 

wire level it delivers signal transitions on wires to its neighbors. At the packet communication level it 

delivers packets to its neighbors over a bundle @f wires and delivers acknowledgments over 

acknowledgment wires. in accordance with the adopted packet communication protocol. Higher 

levels of interaction, interpreting a packet as a request for se!""ice, for cxainpte. need not concern us 

here. 'llte three fault models we have given specify the 1Jehayior of a failed module at the wire level. 

In the next chapter we wiJI relate these faults on wire bundles to packet communication errors and 

discuss how these faults relate to lhe abstract fault models as.wmed in ~ redundancy management 

algorithms presented in Chapter 3. 

'l1te generation and propagation of runt pulses under the random pulsc train and random wave 

train fault models can be illustrated by a simple example. Consider the synchronous digital Syslelll 

shown in Fig. 4.6. The outputs of the processing module are protected by an error-detecting code, 

and checked by an error detector. 1bese modules are synchl'Ollil.ed mi.a a two-pliase clock. At .,,1 a 

input 
latch 

__ oulpUt 
1aEh 

t 

' I 
~ 

Fig. 4.6.. An error detection scheme for synchronous sys1em1. 

error 
indicator 



- 89-

new input for the processing mudule is stored in its .input latch. The corresponding output is stored 

in its output latch at cp2. This output is checked for errors and the error indicator flag is set at the 

immediately following_ cp1. Suppose the proc~ng module has failed and generates random wave 

trains or random pulse trains at its output pon. violating the setup and holding time requirements of 

its output latch for synchronization with cp2. Under these conditions the output latch of the 

processing module may enter a metastable state, as explained in Section 1.2.3, remain in this state for 

an arbitrarily long time. and then exit into a stable state that violates the error-detecting code and 

hence is erroneous. If this transition occurs late in the clock cycle following cp2. the output of the 

error detector may not indicate an error at the next cp1. In particular, the output signal of the error 

detector may still be residing at an immediate value between 0 and 1 when the next cp 1 occurs, and 

can be interpreted as indicating an absence of errors when latched intD the indicator flag. In this way 

an erroneous output may be propagated from the f~ty. processing module to other hardware 

modules. This son of pathological behavior cannot occur under the stuck-at fault model. 

Redundancy techniques for eliminating such patholOaical behavior in redundant packet 

communication systemS are discussed in the next chapter. 

Regarding packet communication protocols, we have presented a c1ass of asynchronous 

protocols in Section 4.1 that is sufficiently general for implemeni.ing'i>actet communication systemS, 

and is yet still quite easy to characterize. It is possible to construct more general classes of protocols 

but their implementation may require more powerful and more complex encoding and decoding 
.. 

equipment Separable sets can also be used to generalize the notion of an acknowledgment, tD 

construct systems in which packets are transmitted in both directions over a single channel. The 

applicability of these generalizations remains tD he investigated. It would also be of interest tD 

compute the maximum number of distinct packets that can be represented using separable sets of 
' . 

binary strings of a given length. This problem has been sb.ldied in (si 



·90· 

In this chapter we study hardware implementation of CQDtrol modules and synchronizing merge 

modules. Whale p-modules other than synchronizing merge modules can be implemented under 

unbounded pt.e delay assumptions 141 (31]. Pll (391 we have ~ it convenient to design 

synchronizers. decoders and synchronizing ~ modu~ using. more conventional asynchronous 

state machine design techniques. Delay elements are imerted on selected paths in each control 

module to ensure that inpulS to these asynchronous state machines indeed conform to assumptions 

made on their rate of change. Upper bounds on sipal propagation delays among synchronizing 
. ':j ,;- - -_ -- - ' . ' .. ,, ' 

· merge modules in a redundant module are also used to inlplement time-out mechanisms in tbe 

consistency maintenance alaorithm. Note 1bat alJ such liming c:onsicle...oon are confined to within 

the same redundant module, and hence each redundant module can stiU be constructed without . . . 

detailed knowledge of the internal operating speed of its. neighbors, other than upper bounds on 

phase differences among packets and actnowledpiencs in tbe amne bardl received by the rednndlQI 
~·-· -

module from these nei&bbon-

Hardware implementation of control modules and synchronizina merge modules is studied in 
:.! ,. - .- ... ; - - > ~ 

Sections 5.1. S.2 and S.3, using the fault models aiwn ii! Soction 4,2. In Section S.l we study 
... • .,,,_ - • ~ -1 ' • -

implementation of the timing synchronir.ation ·. aJeorithql in the syncbroDiJ.er section of control 
[_.,_.;;, 

modules. In secoon S.2 we examine techniques for ~ pdet contents in tbe decoder section 
' . 

of synchronizing decoden. General impkmentation tecbaiques, tbr these dccoden are discumd, 
. . .';.; ,- - - .. -. ,:_,, . ·-, 

without going into detailed case studies based on specific enoodina . .memes or decoder cfesips In 
_, • • -_ .- __ ,-_·· ::: .-_, - ~·<·'.. ~/~---). ·::: -

Section S.3 we study implementation of the consistency mainteQanQe algorithm in syncblPDidng 
. . - - ; . -·: , -~"~-- ,'~:~~--\ff>_ ··;_- ... · . _,- -

merge modules. Our approach to constructing redundant packet ~unication modules and the 
. . - . - .'..": - r·,-- . i·: ' ... 

implementation techniques explained in dlis m.ter are ~ by two design eumplef in 
' - ' . - ~- ; ; -- . . .- ; ~ ,.· . -

Section S.4. 



-91-

Throughout Section 5.1, S.2 and S.3, we assume that there are 3f+ 1 byte slices in each 

redundant module, up to f of which may fail.· There wiff .fhut 1'e ·eDOllgh failure-independent byte 

slices to maintain synchronization and consistency Ullina CM aJsmithms1>.-Cnted in Olapter 3 under 

the abstract fault model presented therein. Hardware implementation of these algorithms. and their 

use in maintaining timing synchronization and consistency in packet communication systemS 

subjected to failures modeled as in Section 4.2, are presented under this assumption. Application of-

our redundancy techniques to hardware modules which are not byte-sliced intemalJy is illustrated in 

the design examples given in Section S.4. 

Let us briefly review the operational environment of a synchronizer. Referring to Fig. 23, a 

synchronizing decoder receives input byteS from a s~ set of 3f + 1 f,wiout modules. 

Each byte is deliveied by a fault-free fanout module aa 11 ~ ~.die ayw;hronil.ing decoder using 

the adopted packet communication protocol. The arrival of a new b~ at.die synchrQoiDng decoder 

is de~d by a byte deteetor (Fig. J.:W and signaled to '*' ~- In a fanout module. a 

synchronizer receives acknow~ SWaals. &om its ~~JlroniziDa.dfc9ders direedy. 

The algorithm to be implemented in the synchronizer is described in Section 3.1. For every batch of 

input sipa1s received. a syachronir.er exchanges· synchroDii.atioii signals With other synchronil.ers. 

and then generates an output sipl1. 

In the control modules environmeat, due ti>dle tnte of banclshake protocols, there is a feedback 

path from the output of the synchronizer to its signal sources, such that a fault-free input sipal 

~ S of the synchronizer wiH noHendanotber sipal to the~ until the synchronizer 

has geneiated an output signal in ~ to the previou&tipal aenerated by S. A delay element 

can be inserted in this .feedback path. in the contml ·modulei:OlltainiDS the synclvoniz.er, to Je8U)ate 



-92-

the rate at which these input signal souroes .....- lipa1s to the ~r. As we shall see in 

Section S.l.l. dUs pio¥icles a a.mvenient median• fQr ~ the proper operatiml of 

asynchroaous ._ madliaes used in dae syaclumila. 

For the synchronizer imp1ementations studied in this section. a signaJ is inplemented • a 

signal transition. either 0 - l or 1 - O. on the correspondiog wire. We furthermore adopt the 

convention that input signals in the same batch, and the output signal 8Cneratcd by the synchronizer 

in response to that batch, are all represented by sipal transitions in the same direction. In the 

following disamion we need to distinguish between the logical sipaJs received and sent by a module 

and the signal wavefunns carried on its input and oucput wires. We mt die tbnner ~ ,,.,,.,_ aacl 

use the term signal to dmole the llner. 

For each balch of logical input signa1s received by a SJllC)umiZer.· at least 2f'+ l of them will be 

signal transitions genera<c:d by fault-he byte slices. and will be in-plme wid1in some tnown I. 

Failed slices can -exhibit ~ behavior. and we will only a.sider 1be sort of paddogica1 

behavior aRowed in our fimlt models. Under lhae illput c:onditicm. a hardware implanentadon of a 

synchroni1.er must support (SI). (S2) 8iftn in Section l.L al(S3): 

(SI) For each new batch of input signals received. aD fault-he synchronizers in the same 

synchroni1.atio set will generate output signals within a med time intaval of each other. The 

duration of this interval is bounded by a constant which can be calculated ft'om the time it takes 

a synchroni1.er to perfonn bllic operacions. and ma hlllic ope1mon can be perhmecl in a 

fixed time. 

(S2) If input sipaJs in lhc ame balch are genera<c:d.by fimlt-frce oeiahtMJrins srltleS within a filed 

known cime interval of~ other. then for eadt new input halch. a~ wiD ...­

its output signal Ollly after it has ftleeived all signms in dull 1m:ll smc:sated by fmlt-ftee slices. 



-93 -

(S3) The output signal generated by a fau1t-free synd\rooizer must not contain haI.aTds or runt 

pulses. 

The last property (SJ) is-especially important in self-timed hardware systems whose modu1es react to 

signa1 transitions on their input wires. AH tJaese three: pmpertit!S· must'be satisfied together in a 

synchronizer implementation to support our overal1 approach to timing synchronization. We first 

present a synchronizer desian ~icb implements the sy.nch~tion a1gorithm under fault-free 

operation. and then examine how this design can be enhanced to deal with hardware failures 

mode1ed by the three fauk modekexplained in SectioQA.2. 

5.1.1 Synchronil.er 1.,temtntation UBder Fault·Free Conditions 

The basic openltiOOs in a synchrooW:r are to senerale: logical synchronmtion signals and 

logical output signals in raponse to the ~ Of 1Q1ica1 inpUt signals or logical synchronization 

signals. These basic operations have the form: 

"Receive logical signals on n of the 3f+ l input lineS, then generate a logical signal." 

In an implementation, the logical signals received and generated by each such operation are all 

represented by signal transitions in the same direction. We fint dclian a,enarzlol'cin:uit (Fig. S.la), 

denoted by ~1'.n, 3f+ IX for perforJ,1ling t1Us ~ During fau}trfree operation, the input and 

output si&nals of the paerator cireuit undergo the folloWinacyde: 

(gl) All fault-free inputs are at o. 
(g2) n or more of the inputs become 1, output is then set to l. . This corresponds to receiving a 

batch of logical input signals and generating a logical output signal in the synchronization 

algorithm. 

(g3) Al1 fault-free inputs are at 1. 

(g4) n or more of the inputs become 0, the optput is then set to 0. This corresponds to 



r----~-----------------, 
I I 
I ~D. :Jr+ l) I 
I I 
I I 

3f+l I 

input · --'­
lines 

I 

sequencer ... Output ___ .... , 
I 

l 
I 

L~ .. - --.-. ...... ___ .............. ~ ... -- ........... ____ ..J 

C(m,lf+I) 
distinct 

combinations 
ofm 

input wins 

(a) A smttafal' circuit lftl(n. lf +l). 

m { : . , 
•· 

(b) A duahoklcdalil .... Jf + 1). 

r .... ~ - - - - --------~ ... _ --~ 
I 
I 
I 

11 

I2 

I 
t 

I 

- - - - - - - - - _:_ ·- - - -· - .:... .. J 

(c) A sequencer module. 

Fag. S.l. Hardware imp1ementation of a aeuerator cin:uk. 

Out 



-9S-

receiving a second batch of logical input sipals and aeneAliqg a second Jogica1 output 

signal in the synchronil.ation algorithm.. 

In the context of control modules. due to the use of handshake protocols for packet 

c~munication. we can also control the duraUon at whidl the iQput sipals to the synelm>nizer 

remain at input state gl or g3. This can be achiev~ bf .... ,!Jae actnowJcdpient 1$1Jned. by the 

control module containing the synchronizu to itl ~r.,. Tbia .kind of.control is important 

because several asynchronous state machines are used.in the synchronizer implementation, and their 

outputs would be lward-free only if their internal state variables are-given ~fticient time to stabilize 

in between input chan&eL. The rate of input chanae is cootroHed' by ~ng the input states of a 

generator in gl and t3 for as long as is necemry. 

A genera&or cin:uit ~n. Jf + 1) tFia.· S.la} is~ usma·two 1hmholtl cimtitJ and an 

asynchronous stale llllCbine which we will call a l«/UntCN """"'1e. 

A thmhold ciltuit {Faa. S.lb) •. 4-otedJ>r:tladr bn. lf+l). is used 11> delect the arrival of m 

1oaica1 sip.al&.· It -~~~C(JJl. Jf+,i)~ ---~AMl'--- a tJee.ofOJl pta. Its 

output is I if and malJ·if m qi 1DORtof:itl lf'*1iillput ...,.eae.u •. ..a ia fleeof-..unm tile 

followiDg~ ........ 

As the input state to a threshold circuit cycles ftom gl throuah 84, a fauh-free input 

signal will pot make anqdlcr.~Qsidon uA1il -~~--~liaa~.ea:at.ed in 

response to the previous~. QD thlt iaput.,...._..._~_. the <Mput 

line of the thrahoklcircuit. . ''ii : ,. ·; , 

1. C(m, 3f + 1) is the number of combinations of choosing m objects out oflf +I distinct ones. 



-·-
Sillce dM!R dllaldd titcuils are used inside t'Olltlul modDles. Ibis amdi1ion is ILlftmariraDy 

satisfied by using asynchronous hapdshat~ prOlOCGk .• pdet COllBIUllitatioG in dae hardware 

la the geatiilk>r (Y1g. S.Ja). die lhd(n. lf+ 1) cilalit detects tile input S1a1c llanSilions &an gl 

to g2. tile tltA(lf-n+ 2. Jr+ 1) cift:Uit del!cls die input II* b .. ., .. rn. g3 to "· Tile oulpat 

.... ofdae twolhRshctlcldeniei4sc:ydctlanJulhdle IOlowill&W: 

(tl) thsll(n. lf + 1) = 0. 111.tA(Jf-n + 2. lf + 1) = 0. (1cae1amr iapull •11} 

(t2) tlt.sll(n. lf + l) = I. dull(lf- n+ 2. lf +I) = - , (&mer.llOr ... cha FS tium gl to ,:Z) 

(tl) lluh(n.lf+l)= l,bW(lf-n+2.3f+l)= L ~ ... ag.l) 

(t4) rh.M(n. 3f+l) = -. M.d(3f-n+2. lf+l) = 0. -(leneratorinpuadaaalestiomgl tog4) 

wllhmbd IOd wllcn-tlle ............... dllaetfnmgi(bld ll>gl. 

Under Che signal repnsentation convenbons. tbe ou&put sipal of the gaeralOr' should ao fi'om 

0to1 wbea tbe---...-c1'tbe aaa .. ao,fiani tl ID,&2-•. C191feahti11J, wlten Ute output 

signal ar die dtrahald ltMeat "31(-.-lf+l)clt8'*"8 8to'l. :A T'dy tile G8lpUt .... of die 

gamCDr ued: ps.a I·ID I lrwsitimt upcaaaJ ••cl · •••-m-.-._.f!ldae ,._....,.. 
or, equivalently, a 1 to 0 aransilioo on the output sipal of the t11dlln!llliiil11t el-lit 

3f+l). 

The output or ee tenet.,, ciait is daiffld 11111 111e· ...,_-°' a.e two direshold·cin:uils 

using the aayldnoaous w-~·wlliclwe w11c:a1 a~"-'*. shown in Frg.·s.1c. The 

sequencer modu1e has a single binary Sf.ate varilble. impJemented widJ a C;eJement. Wbell bodl 

inputs 11 and 12 are 0. the output of the C-element is 0 and the nest 0 -+ I ttamitinn on 11 is 

transmitted to the output line Out. When both inPuts me L Che ~of the C-eler;nen& is 1. and 1be 
- : • ' - - ', ... ~- - < - " 

oat l -+ 0 transition on 12 is transmitted to Out. The Output llipal delivered at Out by a sequencer 



-97-

module is haz.ard-free under a delay1 assumption and an input assumption: 

(1) If both input signals to the demultiplexor (Fig. 5.lc) have the same value as its output signal, then 

selecting one input signal instead of the other by changing the output of the C-elcment will not 
. . 

cause a spurious pulse at Out. This can be assured if in the demultiplex or (Fig. 5.lc), 

delay (Not)+ delay (Andl) >delay (And2) + delay (Or) 

(2) The input states remain at 00 and 11 long enough to allow the internal state of the sequencer 

module to settle down before the next input change occurs. The previously discussed 

mechanism of delaying the return of acknowledgments from a control module to its predecessor 

is useful for ensuring that this condition iS satisfied. By holding the input signals of the 

generator circuit at gl and g3, the output signals of the two threshold elements, and hence the 

input signals to the sequencer module, can be held at tl (00) and t3 (11), respectively. 

D 

Three generator circuits are used in a synchronizer (Fig. S.2a): 

01: gen (f+ 1, 3f + 1), generates a logical signal after receiving f+ I logical input signals, 

02: gen (f+ 1, 3f + 1), generates a logical signal after receiving f+ I logical synchronization signals, 

03: gen (2f+ 1, 3f+ 1), generates the logical synchronizer output signal after receiving 2f+ I logical 

synchronization signals. 

Logically the synchronizer generates a synchronization signal as soon as either 01 or 02 

generates a logical signal. Under our signal representation, this is implemented by combining the 

output signals generated by GI and 02 using another asynchronous machine called the detector 

1. For delay considerations. a logic gate or a C-element is modeled as a hardware element, which 
reacts instantaneously to input changes according to the corresponding boolean function or transition 
diagram (Fig. 4.2b), followed by a delay element 



-98 -

from 3f + 1 synchronizers 

from ·-3f+l • ~ input 01 03 
• output sources .__.. 

02 signal 

detector 

to 3f+ l synchronizers 

(a) Synchronizer design. 

11 .. 
Out 

12 

l._ -- - - - - ..... - - ... -- ... - - ... - .... - - _j 

Demultiplex or 

(b) A detector module. 

Fig. 5.2. Hardware implementation of a synchronizer. 



-99-

module (Fig. 5.2b ). A detector modu1e differs .fioln a .sequnoor module in that it does not pas a 0 

- 1 transition on one input signal and.then a.1 -+ Ouansition.on the other to its output line. The 

detector module also has a single binary state variati1e,>intpllmented with a C-eJement When both 

inputs JI and 12 are 0. the output of the C-element is 0. an.tthe next 0 -+ 1 transition on either 11 or 

12 is transmitted to the output line Out. When both inputs are 1. the output of the C-eJement is 1, 

and the next 1 -+ 0 transition on either 11 or 12 is ·transmitted to Out. The outpttt signal delivered at 

Out by a detector module ii lm.ard-fRe under a delay mumplionsaAd an input assumption: 

(1) If both input signals to the demultiplexor have the same value as its output signal, then se1ecting 

one input signal instead of the other by changing the value of "select" from 0 to 1 or from 1 t 0 

will not cause a spurious pulse at Out. Thiscan:be aaa(ed ifio·-dledemukiplelor (Fig. 5.2b ): 

delay(Not) + delay(A.nd2) > delay(Andl) + dell~ 
(2) The input s&aces remain at 00 and 11 ~ eBCM.J8h to.al)()w dae internal state of the detector 

module to settle down before the oat input dlan8' occurs. 11lis condition can be satisfied by 

preventing input llipals.aad syncbroniJ'.lfion sipaJs fiom fault-free modules from changiD1 too 

rapidly. which· caa again be adlieved \ly 4elaying the. lulieal ackoowledament signals returned 

by tbe control module con&aiaiq abe ~·to i. )>ledocr:&aor by an appropriate amouat 

of time. 

a 

FiDally, to satisfy (S2). the output of03 is delayed·& leCODds(Fia. 5.2a), where Bis the phase 

difference ameng logical input signals in the same baldl delheled ~tlle:synclm>Diar. 

This completes the description of our synchronizer de$ign. Let us examine ·the operational 

characteristics of this design during fault-free operation and the support it provides for our overall 

approach to constructing fault-to1erant packet systems in more detail We have noted that a 



-100: 

synchronizer implementation must satisfy plq>elties (SI). (S2) and (83) together. (Sl} is sadsfied 

since the basic operations. in the syacbrooillel are implaneated Ulilag hm'dware- eltmems such as 

C-elemcnts and logic gates. each of whim Im a fixed. bouaded. mction time under allpoml>le input 

conditions presented to them in the synchronizer clurin8 fault-Re .,.000. (S2) is satisfied by 

delaying the output of G3 by a. (SJ) is shieved by designiq the duahold circuits, the aequeacer 

modules and the detector module to be hazard-free under these-··input conditions. For system · 

integration, the phase difference among pa;tets and.acbaowlcdpaentsa the w bR:h delivenld to 

a control module is used to detennine the proper delay element for delaying the logica1 output signals 

generated by 03. 

To analyze the fault tolerance capabtlity of Che ty11ehroniler implementation, let us defiae an 

operation cycle of a synchronizer as dle period between the mne'When aB· fault--ftee input signals to 

the synchronizer are at the same lo8ic le-vet to tbe nat dme·Wbeft all tMle:·fault-free input signals 

have switched to the complementary lo8ic level. Due· to the me of asynchronous packet 

communication protocols, operation cycles can Vall M'hilrllilf · in Jenadt. Proper syndmmmtion 

assures only lbat all fault·tiee input sipals wil chlnae ttate ~ withilt the Int I time units of 

each operation cycle, for some fixed a. We can dtlnctlllir.e'the ret11icdon• input tianals deJhered 

by failed modules imposed by the abstract fault model presented in Section 3.1 as: 

Suppose in an operation cycle every fauk·free input sipal ftom a group of 

neilhborina control lll9dules. or ftom a amup of ~n ia the w 

synchronizatioruet. makes a fl'IBSi.tion mm one logic 'falue" to ta.other Joaic VlllUe -a. 

Then an input signal. generated by a failed module in that group. either stays at a for the 

entire operation cycle, or males the same transition exactly once and then stays at ... a in 

that cycle. 



-101-

Under this restriction on input signals delivered by failed modules, (Sl), (S2) and (S3) can be 

maintained using the synchronizer implementation presented above. We will show that under the 

stuck-at fault model, th~ output signals generated by failed modules indeed obey this restriction, and 

hence the above synchronizer can be used directly to maintain timing synchronization under this 

fault model. Under the random pulse train fault model, we show that we can filter the output signals 

generated by failed modules to derive signals which obey this restriction, and then feed these signals 

to the synchronizer implementation presented above to maintain timing synchronization. An 

approach to tolerating failures under the random wave train fault model is discu~d in Section 5.1.4. 

5.1.2 Synchronizer Implementation under the Stuck· At Fault Model 

A synchronizer in a fanout module receives acknowledgments directly from its neighboring 

slices and will stop receiving acknowledgments on any input.line which is stuck at either 0 or 1. Thus 

a neighboring slice which has failed will appear to a synchronizer in a fanout module as if it has 

stopped sending acknowledgments. 

A synchronizer in a synchronizing decoder receives signal transitions from its neighboring slices 

indirectJy through byte detectors monitoring the output packet bundles of these slices. Suppose a 

failed byte slice attempts to set its output packet bundle to a certain state to transmit a new byte. If 

some wires in its output packet bundle are stuck at either 0 or 1, then states which may appear on the 

bundle are restricted to those with the corresponding bits fixed at the corresponding values. If the 

failed byte slice attempts to set its output packet bundle to a state which is not in this restricted 

subset, the desired transition will not be observed by the byte detector monitoring the packet bundle 

and will not cause a signal transition on the output of the byte detector. Later on, the failed byte slice · 

may be successful in delivering another packet' encoded by a packet bundle state in the restricted 

subset The arrival of this new packet is then detected by the byte detector and signaled to the 



-182-

synchronim'. Tire lltld-at fault lllUde1 fiJr peclct CCQJ _ _.CllilllD -ndld-
tbat a failed slice bella\!Djusl lite .-fault.file~--Mnne4ill.auaput linaaa..S at 

either 0 or 1. Thul a failed lice wil lllempt todelwr a -.bfle. _.. lbe adopflCI pnm:ol; mly 

whee aD fault-liee slices ia die same Kdtmclmlt Ilk J I . arep1qmaUo-• •1'illlie a Aud iMaval 

These fault phenomena can be illustrated using lhe byte detector daiped IO receive packets in 

dual-rail (Fig. 4.2). If both lines in • input wire pair to lhe byte cfefectcJr are sauct. at either 0 ar I. or 

one of the wires in a wile pair is SCUd: at I. the output of the byae defmor will also become stuck at 

some logical value. deer Oer 1,. If oae efllil wiM ....._llld:.al, pdet do8mz ·e11iDa ea 

continue unbl a dual-rarl bit encoded by a I on the wire suffering the Slud-al fault and a 0 on die 

other wire in fhe wire pair is tramlmiued. The wire pair wiB lben stay in the spacer state. and dte byte 

detector will not signal the arri~al of Che new byte. Tbe corrapoading bit or a subsequent plCtct 

may, however, be encoded by a 0 on die wire lbd at 0. and a I on Che odaer wire in die wire pair. 

The arrival of dais new packet is lben be detected by lbe byte dclr:ctor' and sjpaW to die 

syadarmi&a. 

Thus under die Sbd-at fault model. dle input .... ddifeRJCI to a synchronU.er amfy the 

ratrictioR explained al the end ofSccaion SJ.I. Tbc synduoaize.r delip pn:Katcd in Sec:lian ll.l 

can &bus be used to aJRSUuct CODlRJi modules which ca mnbllin plUpllliel (Sl). (S2) and (S3) in a 



5.1.3 Synchronizer Implementation under tbe Random Pulse Train Fault Model 

Under the random pulse train fault model (Fi&. 4.5). a random pulse train sign~ generated by a 

faiJed byte slice neighbor can propagate throu&h a byte detector and appear on the corresponding 

input line of the synchronizer. If this signal is processed by the synchronizer presented in Section 

5.1.1 directJy. property SJ can be violated and· the synchronii.er can deliver random pulse train 

outputs. according k> the aasumed fault model for interaction between random pulse trains and 

hardware elements in the synchnmii.cr. Under this fault model, however, a random puJse train can 

be "filtered" by passing it through a C-element whole output is regulated by a fault-free reference 

signal (Fig. 4.SC). 

In a control module, we can derive a reference sisnal for this purpose from either an 

acknowJedgment bundle (in synchronizing decoders) or a pactefl>Undle (in fanout modules) in the 

control module containing the synchronizer. For spdlroniz.er design we can assume that these 

signals are free of errors and obey the adopted as)lllCbronous handshake protocol. This is because a 

byte slice is taten as a unit for fault tolerance considerations and in a fault-free slice synchronizing 

decoders and fanout modules receive acknowledgment$ and pdds, retPectf'tely, from die p-module 

in the same slice. These sipals can be usad •·reference signals because for the class of packet 

protocols presented in Section 4.1, acknowledgments and ~ always alfanate in a channel 

operated under fauk-ftee condition&. We next illustnte me application of these ideas in a 

synchronizing decoder. 

For a synchronizing decoder. our strategy is to filter the ~ptls aenerated by the byte detectors 
•. . ·.~ . 

and by other synchronil.Crs in the same synchronization set with a column of C-elements (F1g. S.3a) 

reguJated by the actnowlcdpJent signal NceivecHrom die·.,......... in idle same slice, before feeding 

these signals to the synchronil.Cr. Conceptually we are reinforeing the packet protocol at the 



-104-

packet bundle 

packet bundle 

. . 
• 

actnowledpnent 

synchronizer ...... 

••• 

from other synchronizing decoders 

(a) C-element filters in synchronizing decoders. 

packet bundle 

synclmmilCI' 

• • • 

from Olher fanout modules 

(b) C element filters in fanout modules. 

• . 
• 

Fag. S.3. Filtering mnclem pulse tnlia .. in control modulel 



-105-

C·elemeot filters such that dlC arrival .of aew bytes an4 logical synchronization signal& at the 

synchronizer alternate with the receipt of logical acknowledgment signals frmn the p-module. In 

terms of processing b~ signals, we are imposing the following restriction on the input signals 

received by a synchrc>ni1n: 

Suppose in an operation cycle every fault.free input signal in a group of 

neighboring cont,rol IJH)duk$. or in a group of synchron~n in $e same synchronization 

set. makes a transition from one Josic value a to ~ odlertegie Y#ue ""a. Then an input 

signal bet~ to ~t _.-oup, aenerated by a failed llJ9du~ eitlMr stays • " for the 

entire ~ration cycle. or makes the same transition 8*d)'4JPOC,. fhea11ays at-a in 

that cycle. All such transitions can occur only after the logical acknow1cdgment signal for 

the previous batch of transitions has been received. by fhe Syrichromzing decoder 

containing die S)udlMrizet. 

Similarly, a reference sipal can be derived. iiom dae .packet bundle in a fanout module 

(Fig. 5.3b) and used to filter ran4om pulse trains OD acbo~. liaes before. feeding them to 

the synchronizer in the fanout module. 

Any input signal obeying this restriction also obeys the restriction given at the end of Section 

5.1.1. A synchronization set of control modules~ be ~mia&&J11Cbmailen.enhallced by 

these C-element fUters. and properties (Sl). (S2}81Ki.(S3U.a~ in this syncbroaimdon 

set under the~ pulse train fault model 



- lC)(;°-

S.1.4 Synclaronizer lmflelHlltatio•11lllilertlle·....._·Waft Train Fault Model 

As iJlustrated in Fig. 4.6, random wave trains can J>f"4)aple throuah bardware elemenll in the .. 
synchronizer and cause runt pulses OD the output signals of threshold cin:pits, sequa¥:aS and 

detectors, as wen as OD the output signal Of the synchronil.er itself. Random wave trains are basicaDy 

analog signals and can be fikeRd with an81og- fBtal. sibat ··· tequencers and ·detectors are 
f '· 

asynchronous state machines; it i8 attnclive to· filter 'tbe·OUQM' Sigriats··Of thralwld circuits bem 

feeding them to .these two typeg:, of moddJes. · · We tielt . dUdine.-· aii · 8pprolch to enhance the 

synchrmizer desilfl ...... in Section S.1.1 to deal ftl rasrdiitl,.t'e tl-afns. lt5 detailed 

verificatioa requires analol dltuit'iiild 'Sipid aDli1ylis def is bejonc:f llt il'o,Je'ot diis dlesis .. 

of the threshold circuit wiJI also be set at a. As soon as one fault-free _.,lipal r ...... ilsalate to 

-a. it becomes J>(>IBible for the faulty signals to conspire together and cause the output of the 

duallokl circui& to OICiBate between o and 1 anct aene!lletunf put*s. tnnput sianal transitions 

from faull-free sources are in1'ha witbhr er, 1he time perioct 4urinl iM:b osCiDatiOn may ocxur aDd 

the width of runt pulses will both be bounded by a. When er is tirOWlt,we·~;fbdf 'a JoWp&ls fthet 

to filter out these oscillations and runt pulles. 

Letus Ant comider actmna 1owpm ftlten to eadi of'ft'jedeJatur dJcuits in 1be synduonizer. · 

For the threshold elelnena·ilt lbe tenefltldi tiittufcGf ~ 52&) ~ ldgldit Input sipa1s are 
in-phase within a. where a is known when rpecificacions- iir~lllg' redlmdattt ftioduJeS are 
given. The lowpass filters on their output signals should thus be daiped to filter out all 01C111ations 

with period shorter than I. For generator circuit 02. a little dlouabt reveals that all fault-he 

synchronizers are guaranteed to generate logical synchrooi?.er sipals in the same batch within a. 
since they will all receive at least f+ I 1ogicaJ input signals ftom fault-rn,e input sources within a. 



-107-

The output signals of the threshold circuits in G2 should lhus also be filtered to eliminate oscillations 

with period less than a using lowpm filters. For generator circuit G3, we showed in Lemma 3.1 that 

fault-free synchronizei:s will generate logical synchronizer signals in the same batch within 2p, where 

p is conceptually an upper bound on the time it takes for a synchronizer to generate a logical 

synchronizer signal after receiving at least f+ l logical synchronizer signals, plus the time it takes for 

this newly generated signal to reach the other synchronizers. In a synchronizer implementation, p is 

an upper bound on the delay through the generator cin:uit G2 and the detector module (Fig. 5.2), 

plus an upper bound on the propagation delay between synchronizers. 

To support our timing synchmni1J1tion methodology, a synchronizer implementation must 

satisfy properties (Sl), (S2) and (SJ) given at the beginning of-dtis section. (S2) does not concern the 

design of lowpass filters. To satisfy (Sl), a sipal transition, froin either 0 ... 1 or from l -+ 0, must 

be propaaated throu8h the lowpass filter in a filed time imel'val. Consider when the output signal of 

a thR&hold circuit used in the above contelts is at 0. tnunediately before changing to 1, this signal 

may oaci11ate between 0 and 1, for up to a seconds, for IOllle fixed a. We require that as soon as this 

signal "stabilizes" at 1, a 0 ... 1 transition wiD be observed on the output 9*nat of tile k>wpass filter 

within , seconds, where fl is anO(ber fixed constant independent of a. This requirement a1sO holds 

for 1 -+ 0 transitions. To satisfy (SJ), the output signal of the IOWjiass filter should not contain runt 

pulses. 

Implementation of lowpass filters in available hanlware tecbnotogy. deviations exhibited by 

these implementations fmm the desired characterfstics and eonequences of such deviations in 

maintaining timing synchrotlimtion must be investigated.befbre the effectjy~ of this approach 

can be eva1uated. 



-108-

In our approach to constructing redundant packet cooununication syst~ hardware functions 

are implemented with byte-sliced modules whose output words and acknowledgments are encoded. 

A word is encoded in that it consists of a batch of packets, each generated by a separate byte slice and 

containing one byte of the word. and the separable sets used in the packet protocols to deliver each 

batch jointly support some error-detecting or error-correcting capability. The exampJc of even-parity 

dual-rail protocol has been given at the end of Section 4.1 to illustrate such protocols. An 

acknowledgment generated by a byte-sliced module is encoded in that it is represented by a batch of 

acknowledgment signals. one generated by each byte slice. Hardware failures. limited to 101De 

maximum number of byte slices prescribed by the errONlctecJia& or C11W-Corrccting capabilities of 

the protocol. are detected and/or masked by decoding~ won1s .-aaowledplenas aenenled 

by a byte-sliced JDOdule. The goal <>( mai'lfai... timina. synduuni.zafioD wt consistency in a 

redundant system is to provide an aa:ommodalin& enviRHtlll!CQl for applyq encoding .~ 

As we have explained in previous discussions. the faull lOlerance-~of aD ·encod.ina ldaane 

can be compromised if cilher tiJJling synchrooimioo or COPSiatmticy s net maintaiDed. Only thole 

failures whose occurrences do not Jead to Joss of~ or CQRSistency can be delectecl 

and/or masted reliably in our apPlOldL 

In the last section we have discussed the hardware implementation of fault-tolennt 

synchronizers which can be used to maintain timina ·~ under Ille stuct.-at fault model. 

the random pulse train fault model and the random •ve Dia-~ JDOdel. O..aninrior of 

decoding sections are studied in this section. We DOfe tbat She problem of "decodiaa" an 

acknowledgment in a fanout module (Fig. 3.lb) is taken care of using fault·tDlerant S)IJlduvair.en. 

We thus only need to deal with the problem of decoding input words in synchronizing decoden. We 

wiJJ explain several general techniques to deal with random pulse train and random wave train input 



-109-

signals in decoding sections. but will not present decoder designs. for specific em>Nielecting or 

error-correcting protocols. 

A synchronizing decoder is organized internally into byte detectors. a synchronizer and a 

decoding section (Fig. 3.la). lnpUt wordS are deJillered to a dewding section on several subbundles. 

some of which may be connected to failed byie alices. A word is encoded to support either error 

detection or error corrccU<>n. for error detection. input~ to the decoding section are monitored 

to detenninc whether the input word recei\led .,_tai'ns q errors. /Fe limit error propaplion. 

erroneous input words are "held up'' in tile decoding sectipn . ielfead of being forwarded to 

p-modules. For error couection. input sipals to.,a«lecocliq see&iao annJSed to regenerate 1be 

error-free word. which a subsequcntly forwarded to the P"ll10Clule ill dlat slice. 

In a decoding section input signals are decoded by signal decoders. We restrict our attention to 

signal decoder designs which can generate error signals°'· rrgtnmile lhe erro,..free input W01tl within 

some fixed time interval qfler all of its fault-free input signals haW! slabiliud. Using signal decoders 

with this propeny. our implementation strategy for a decoding section is to receive a timing signal 

from the synchroni~ wllicb io4icalel .._ all .fat,tk·be . ..,_ .._.to the decc4mg section bave 

stabilized. wail a fixed&iJBe .interval for the outJ>tlt .... of .,,._ deeodc..-to stlbime, ad 1lacn 

studying implementation issues. When all fault-free input signals to a ~ decoder have stabilized, 
'·. ' ; ~ . -· ~: '. '' 

input signals from failed neighboring slkes can nhibit path<>~_ ~vior ac;ording to the 
,,: '. ~ 

stuck-at fault model, the random pulse train fault model or the random wave train fault model. We 
:_-..'. :' "~ 

require that within a fixed time interval after all fault-free_input signal values are a~ailable, the output 

signals of the signal decoder must have stabilized at their appropriate values. Oscillation and runt 



-no-

pulses are permitted. however. in the interim. Under· these requirements. signal decoders must be 

designed so that runt pulses and oscillations canoot propapte ahrougb diem if fault-flee input signals 

have already s&abllized for some time. 

An . encoding scheme fbr wllicb we can clesip sudt a signal decoder is the familiar byt~ 

repliration scheme. Jn Ibis 9Chane each word ooeiisas af 1"eral identical bytes and die error-h 

word is derited usins majority voting. A decoding iatioft fOr a byte tepticadon 9Cbcme (F"1g. S.4) 

desiped according to our stratCBY c:oosills of a 9ilnal decoider which: eontains a group of majority 

voters, a delay clement I to lime the pmpaption delay lhmugil,lbe-tignaldeaiider. and a cohilnn of 

output latches to stole the output valUes ot dte IDlfiiorflY Wllel'S def 1fteir outpUt sipals have 

stabilized. A majority vorer is construcll!d OU1 of AND and OR .8*1S (r1g. S.4b). Undtr our fault 

models. a majority voter has the characteristic that if two of its input sipals are at the same value. its 

output signal will s&abilize at &hat value after a finite time period. independent of whether the third 

input signal is stuck at some logical value. cklivering a random Pulse train. or delivering a randmn 

wave train. 

Another approach to ~ ·iipat deceden ~:tie ... at pNpetty is ID llOre input 

sipals in a colunla of llltbel: fF11: <S.s) ancNJecode-dle-·08lpUtl ef 'tlk9e'litChes after- tbey·b8ve 

stabilized. In Ibis arrangement the latcbes1ft ...... ., IM'~..- afw ~r. 

Non-faulty input signals and those stuck-at either 0 or 1 wiD always have stabilized when the latches 

are activated· by ·the synchrOntter output· signal. A mdom i*i.e train ~ random wave ttain may 
; ·< 

cause its receiving latch to enter a metastable scate, accorcliD& lo the fault models in Section 4.2. A 

latch is alk>wed Ii seconds (rig. S.S) to seuJe,doWn. wbCre f~ i:cimrit1d~ parameier. The 
',: 

~~ ; , ' .. 
outputs of the input latches are then decoded and stored in a column of output lalches. as in a 

" • , _, • f . ~. • 

replication scheme. In rig. S.S. a is an upper bound on lhe propagation delay through the lignll 

decocler. 



subbundle l 

subbundlen 

BD--Byte~ 

• 
• 

- lll-

PG -- Pulse generator 

output 
latches 

---~-nc_hronil.er ___ . ___ -----------~~~ 
• • • 
other 

synchronil.ers 

(a) Synchronizing decoder 

11 8 =And 12 

13 =-8 
_And 

14 

(b) majority voter 

Fig. 5.4. Synchronizing decoder design for replication schemes. 

acknowledgment 

to 
p-modules 



-112-

BD -- Byte detector PG -- Pulse generator 

subbundle 1 

~-----1 

~ 
I 

subbundlen 

input 
latches 

·--"""signal 
decoder 

output 
latches 

~s ...... yn_c_h_ro_n __ iz_e_r....., ____ _...__.....,0-GJ __5l 
... 

other 
synchronizers 

Fig. 5.5. A synchronizing decoder design for error correction. 

acknowledgment 

to 
p-modules 

This strategy of reducing the problem of receiving random pulse trains and random wave trains 

to that of waiting for latches to exit from their metastable states can also be used to design decoding 

sections for fault detection, as illustrated in Fig. S.6. An input word to the decoding section is first 

latched into input latches. After fJ seconds. the outputs of the input latches are strobed into a column 

of internal latches. The contents of these internal latches are forwarded to the output latches of the 

decoding section only if they contain no errors. Suppose the adopted protocol is based on separable 

sets A and B. The key input property used for fault detection in the configuration shown in Fig. 5.6 is 

that if the next input word delivered to the detector should be encoded in one of the separable sets. 



-113-

say by a1 in A, then no hardware failures to be detected can cause a packet encoded in some other a2 

in A to be delivered to the detector. Otherwise 82 will be accepted instead of a1 and forwarded to the 

p-modules, defeating. the ·fault detection scheme. As long as this property holds, errors can be 

confined and detected by monitoring the contents of the internal latches with a packet detector (Fig. 

4.2a) designed to recognize the separable sets A and B. After the iOput word is Stored in the internal 

latches. the packet detector monitoring the outputs of these in1emal latches will generate a signal 

transition on its output tine only if the input word stored in tht· 1ntema1 latches is encoded in the 

proper separable set. and hence free of emn If the inpuJ word stored in. #ae internal latches is 

erroneous, i.e., not encoded jn the proper ~- ·no tralllition will tJe' delivered by the packet 
-, "" :; 

detector. and the erroneous word wi11 not be sroied into the ouqmt latche$. 

An alarm pulse is generated from the ·ou'tput of the synchronizer and the output of the packet 

detector (Fig. S.6). The pulses generated 'mm dlele two ... ft of boundedwidth during 

faulto.ftee operation. If an aroneeus or unstable input state is stored in the internal latches, the 

output of the packet detector will not change State and the width of the alann ·pu&e ·becomes 

unbounded. This property is useful in designing alarm detectors. 

This fault detector design in Fig. S.6. is alsQ Jtpplicabte . to detecting. ac.tnowledgment sipal 

failures. The two separable states used on ~- ,"8dlcs. a,tbe. two sin&1etms 

{ 111 ... 111 }, and { CDLOOO }. An AND gate is a receptor for the first set. an OR gate a receptor for 

the second. 

Note that under the random pulse train and random wave train fault models pathological input 

conditions need not persist until detected. Such conditions may exist for a short time and then 

disappear before any fault detection mechanisDt has reacted to them. The fault detection scheme 

nonethelem mures, if only in a probabilistic sense due to meta.1table state phenomena, that no 



subbundle 1 

subbundle n 

••• 

synchroni1.er 

• • • 

• • • 

BD - Byte detector 

input 
latches 

-114-

PG -- Pulse saamtor 

~ :;t: - - - - :'."\ 
f ..- ~ .. ,deteder • ' - ---- I 

. ...--..... ' . , ,_ ........... 
I 

t ----­' I 

r 

' I 
--~. 

I 
I 
I 

\... __ ~ ..... ___ ) 

Fig. S.6. A detector desip for coding IChema. 

5.3 Implementation of tile Syncltroaizin& Merce Motlllle 

adnowledllnent 

__ _...... t.o 

p-modules 

alann 
pulle 

With the synchronizer design and decoding section design presented in Section S.l and 5.2, we 

have a complete methodology for incorporating redundant hardware in delmninale packet 

communication systems to combat hardware failures. The synchronizing merge module is introduced 

to mustrate an extension of this methodology, 1o a class of non-tktmninate systemS. 'The basic 

non-detemiinate operation we consider is that of merging two input sueams into a single output 



-us· -

stream (Fig. 2.4 ). In a redundant system. Ibis operation is performed ill a mlttndant merge module 

using synchronizing merge modules as p-modules in its slices. 

In a redundant merge module, every input word iS decoded by a synchronizing decoder before 

being forwarded to a synchronizmg merge module. A slice, however, forwards only one byte of each 

received word. so that a single byte slice failure affects at most one byte of any word delivered by tbt: 

redundant merge module. To apply encoding techniques effectively, it is necessary to ensure that 

bytes from input words received at different input ports witJ not be "mixed up" together in a 
,:-- ; 

redundant merge module. In the terminology introduced in Section 2.1:, ~ is necemry to ensure that 

bytes in the same batch generated by fault-free synchronizing merge modules in the same redundant 
l ~:: ' ' \ '.- - . .· 

merge module all belong to the same input ,word. The consistency problem is solved by allowing 

synchronizing merge modules in a redundant merge module to communicate with each other after 

~viDg an ~ -wor4.. to .. jQintly .~ u.e. ilpMt port. htn whieb. nery·fault-free 

synchronizing m-. ~,will tarwardtlle 11.Clt Q.Qflut;iJJt&Jo.dlluaae•rRdunmt module. 

In Section 3.2, we have presented an algorithm for exchanging messages among synchronizing 

merse mod\lles. so M even if.~ .... GR &encl·..._:-. rcto diftia'ont modules. 

fault-flee synchroniziq J11e11t modulo can d ,._ oa; wJtidl -iaput pert to senice nm. A 

hardware structure for ~I .,.; --~ .afl ·~ of the consiBncy 

maUitenance aJgoribn .-e desaibcid in this sectiea. WeJint. ..-at· a ~ mucture mr 
impJementina synchronizing meqe, DIOdlales 8Dll ~ lie ~·of a synehnmiz.ina me1p 

module using this sttuctw'e. Jmp~tatioD .. 00 llC ~Y, ~ algoridun is then 

discussed in further detail and its fault tokwanee ·,~ility splained. Fer maintaining timing 

synchronization. p-modules in a redundant module must be pcnfomumce oompadble. Performance 

compatibility amona synchronization merge modules ~ ,.., these techniques is also 

analyzed. As n'*'1 in Section 3.2. only the single~ ease. ill .whidJ four ,syndaroaizing merge 



-116-

modules are used in a redundant -rae module to toleAle hanlware failures in any one of them. is 

Packet flow at an input pon of a synchronizing merge module is regulated using a forward and 

-
wail (FW) module (Fig. S.7a). A FW mo_dule forwards the input packets it has received din:ctly to an 

output c111/ module. For each packet received. the FW module also senerates an output request 

tagged with the corresponding input pon identifier W or l). These output requests are meqed 
. -

together and then processed by oul/lfll cnll. A FW modiite will accept a new packet only after it bas 

received acknowledgments for both the preceding packet. from outp11l cntl. and for the output 

request it has generated for the preceding packet. from the merge module. 

A merae module n:ceives input packets at its two input pons and forwards them at its output 

port as they ..me. When a oonftict arimnlue to WH> inpat-patets·anwftil wilhiD a thort time 

interval. arbitration is performed and the two packets may be forwarded in either order. 

When a new request ani\les at ""I/Ml cntl. its 111· (wlbd\ ·.WilJ· be 1eL1td to • the ttfW$I 

ntm') is used to invoke the decision aJeorida. The """' ~ lbr the next omput packet is 

selected jointly with odler syndmJaiDng merge liloduJes under this decision aJaorjdnD •. ·If the input 

soun;e is different ftom the request -SOUKe ~ by °"""" cllll. the corresponding output request 

for the input soun:e wiD be pending at the output f'Jf lbe *'le· module. This is because 1he inPut 

packet from the rejected request souroe-hat not Jtt been acceptied·and ihe corresponding PW moduJe 

is designed not to process 3 new input packet from the input port it iS guarding under the 

circumstances. Thus the output request from ~ input source wiU be the only one pending at the 

merge module, and will be tbrwardecl to the Olllpllt Clfll module next Diii/Jiil cntl llJsoms Ibis oUtput 

request for the input source fmm the merge medu1e. aa:epts an input· word· from 1he FW module 



Port 
g 

-117-

Po~ --B-------

(a) Hardware Ol'peiution. 

request source 

input souroe 

ready 

actnowfedae 

dedllion ~. .. Other 
SM 

box • · Modules 

} 
} 

data 

lint 

control 

link 

Fig. 5.7. The Synchronizing Merge M~. 

guarding the input source, extracts one byte from it,· 'arid forwards this byte to the successor 

redundant module via a fanout module. When output cntl nleives the acknowledgment for this byte, 

it returns an acknowledgment to the FW module, and if it al~y has a request source that was 

rejected in the previous round of decision, it wi11 imJne4iaJely ~bmit this request souroe. 

Otherwise it waits for a new request to arrive from the merge module before activating the decision 

algorithm again. 



-111·-

We will omit the implementation details for the FW module and the output cntl module since 

they do not illustrate new fauk tolerance tedmiqael. 

For implementation of the consistency maintenance algorithm. request sources and input 

sources are CKhangcd betweell oUlput cnil and dteision box under a gewalireJ data lin/c/control lilllc 

protocol (Fig. 5.7b). The da&a lint/control lint protoCOI is explailied in Chapter l (F"lg. 1.1). Under 

the generalized data lint/control lint pFowcol. the dala.link--consists Or •o data wires for sending 

input sources anclrequcst sources in opposite directions (F"tg. 5.7b). A new request source is available 

to decision box when a ready signal is sent on the control lint. The corresponding input soun:e is 
•• ~ f . 

- ' . ~ ! ~ ' -

5.3.2 lmplementatioa of the Dttisioft A ....... 

The decision algorithm in a synchronizing merge module is invok.ed,.:trith}•#her Dorl as its 
- -·- ~ l .' .• . " - . 

request source. For every request source received from oulpUI cnll the following hardware operations 

arc carried out. cot1cspoacling toS.,. (i) dauulb-(v)of'a.vclei!irioa ... tam·~ in Section 

3.2. The data path in synchronizing 1DCf1C module A for carrying out these operations is shown in 

Fig. 5.8b. In this figure the symbol "Xyz .. denOtes 'ihe - soun:.e ofX as told to Z by Y. 

(i) The request source received from OIUJl"I cnll is broldcalt to aB decilion ~es. 1bis step is 

implemented by broadcasting the sipal received on A to all decision boxes. as shown in lbe 

upper left hand comer of F1&- S.lb. 

(ii) Request sources from other decision boxes are stored in lftiws. 

(iii) Request sources stored in latches are broadcast to all decision bOlla. 



ready 

request---­
source 

-119-

pulse generator 

'-------11~A data path 

A 

i ... ~ 
to other synchronizing 

merge modules 
from other synchronizing 

merge modules 

(a) Decision Box. 

p 

a 
t 

c 
h 

A' B' C' 

p 

1 
a 
t 
c 

h 

D' 

t input source 

IlnA 

(b) Decision box data path f<?r synchronizing merge module A. 

Fig. 5.8. An implementation of the decision algorithm. 

acknowledgment 

input 
source 

p 

a 
t 

c 
h 



-120-

(iv) The request source for each synchronizing merge module i5detennincd using a majority voter. 

(v) Request sources determined in Step (iv) are fed to a threshold circuit thsh (3. 4) (See Section S.l) 

to derive a new input source. 

In each round of joint decision. latches in a decision box should only be activated after new 

request sources arc available from all fault-free synchronizing. merge modules in the same redundant 

module. And then only after the outpUts fmm aU these ~'have scuJcd down, and a new input 

source derived from them using majority voters and· the threshold cin:uit. should a decision box 

.return an acknowledgment to its output cntl module. Our approach to synchroni7..e the operations in 

a decision box with those in other decision boaes is to mate use of two derived upper bounds a1 and 

'2· sudl that 

(1) If a decision box receives a new request source from its t111tpu1 cntl module at t. then it will receive 

a new request source from every fault·ftee synchroairjng llierge module in the same redundant 

merge module at t + 11. 

(2} lfnew request soun:es are available for Storing in latches in a decision "81 at t + a1• then a new 

input source wiU be available at the output of the threshold cireuit duh (3. 4) in that decision box 

alt+ 81 +32. 

Based on these two upper bounds,· our ~ strategy is to generate a pulse in a 

decision box &1 seconds after it has received a new n!f/llal Dlrtt ~ its decision box, to store new 

request sources into latches, and then return an actnowledpient to OlllJlfll cntl 8i seconds later (Fig. 

S.8a). We next consider factors that detennine 11 and '2· 11 and 32 can be computed for an actual 

implementation based on these consideratioas. 



-121-

In the decision box of synchronizing merge module A (Fig. 5.8b), for example, 61 must be 

sufficiently long such that request sources arc delivered at signal lines labeled "A", "BnA"· "CcA" 

and "DoA" within li1 of each other. We can identify two components for 61. One is an upper 

bound on the variations in propagation delay along paths leading from interfaces between decision 

boxes and output cntl modules to latches in decision boxes. This bound can be derived by taking 

delay measurements in an implementation. The second component is an upper bound on the 

difference in arrival time among request sources to be submitted for the same decision, as they are 

delivered to decision boxes in the same redundant merge module. To calculate this component we 

must consider the various situations that may occur in other decision boxes as a decision box receives 

a new request source. 

If the new request source received by a decision box is one that has been rejected in a previous 

decision, a request from the same input port must be pending at the merge module of every 

synchronizing merge module which has not yet received this request If the new request source is 

derived from a packet which has just arrived at the synchronizing merge module containing the 

decision box, the same packet will arrive at other synchronizing merge modules within a fixed time 

interval, due to in-phase operation. Thus under either of these two situations, a new request source 

will arrive at all other decision boxes within a fixed interval, unless cotiflict arises at a merge module 

due to the simultaneous a"ival of two output requests. When a conflict arises, the merge module may 

be driven into its metastable state and may stay in that state for an arbitrarily long time. The 

probability that a conflict arises at time t and remains unresolved at time t + a decreases rapidly with 

a, for many implementation technologies. We can in practice pick a value a 1 and assume that any 

conflict that arises at time tis resolved by time t + a 1. Under this assumption. then, we can also 

calculate an upper bound on the difference in arrival time among request sources for the same 

decision as they are delivered to decision boxes in the same redundant merge module. 



-122-

To compute Si- Jct m consider the various situations the Olher decision boles may be in when a 

decision box generates a pulse to store new request soun:es into its-lalches. Since not all new request 

sources arrive at these decision hmes at the same time. and each decision bOl generates a latchina 

pulse 61 seconds after it has received a new recpJeSl soon:e. latches in different decision bmes IDllY 

not be activated together. After a decision box has generated ils latchi8g pulse. it must wait long 

enough until outputs from all latches in fault-free docisian bmes have SCllled down. Thus if new 

request sources can arrive at decision bmes as-far apart •/I tbeR '2 l'DUll exceed. fl. FurdKnnore 42 

must be Jong enough to late into account the propaption delay along palhs between decision hmes. 

and the time it takes. for.~ majority VOlel'S and threshold cimlilS f& llllef1lle a new input soon:e 

after the latches have stabilized. There is yet another component which must be added.to '2· to ate 

into account signals generated by failed synchronizing merge modules driving receiving latches into 

their mccastable states. We mtlme that a latch will always have cc:>mC out of its metastable state a 2 

seconds after it tm entered this state. and uSe a 2 in compUtina Ii· 

random pulse trains and raadom-wave ....... Olll:e bJ·seoria& ilMctlnmlule m I ICS:ia Jall:hes 

and assuming dial if any of1bc'8C _._,is dmen into;Jnv' Uable w ~a fimlt.J sigul, il wil 

alwaysoome out of that Ute after •2 ~ 

There are two metamble state phenomena we have faced in the synchronizing merg,e module 
' ~ ~ . . . . . . . ' ' . ~ 

design: two output requests arriving simultaneously at a merge module. and .a random pulse train or a 

random wave train being delivered to a latch. The former occurs during fauk·fi:ec operation while 

the latter is stricdy a hardware failure symptom. In both cases we have .. med that if a hardware 

clement enters its metastable state at t. then it would have come out of that state by t + a. for some 

fixed a. By using larger and larger a's, this asMnption can be made more and more accurate. at the 

expense of performance. This tradcoff between performance and reliability seems unavoidable in 



-123-

non-determinate systems. 

We next analyze performance compatibility among copies of synchronizing merge modules 

implemented using the above techniques. There are three factors contributing to phase difference 

among packets or acknowledgments in the same batch generated by synchronizing merge modules in 

the same redundant merge module: 

(i) the phase difference among packets and acknowledgments in the same batch deffvered to the 

synchroniziaa fnCllC modules, 

(ii) the time it lakes a merge module to molve confticts. This is necessary because conflicts may 

arise at some. but not necessam, aH, tynehrolri!ingme11onodutes. 

(iii) the two ditferent courses of action that can be taken by output cntl after the input source is 

determined. 

We have mumed that acceptable reliability and fault awerage caa •be amieved by uwer· bounding 

(ii) with a 1. Under this assumption the perfOnnarce inolllftpatibility between two synchronizing 

meQJC modules. is bounded ·bY some paramoter which defends only on propagation and gate delays 

throuah various paths in and between mac modules abJi ie1Jh;ale operation can be maintained. 

S.4 Design Examples 

lo this section our techniques for maWaining · timing synchmnit.ation and consistency in 

redundant packet oommullication systemS are illustrated by apt>lying them to the design of 

fault-tolerant IOlltm. 

A router is a 2 input/2 output building block module used in OORStructing packet networks for 

the packet communication <:0mputer .architecture· piaeneed in the next chapter. This module 

receives packets at its two input ports and delivers each received packet at one of two output ports 



-124~ 

according to a deslination address carried by the packet. and is designed so that packets to be 

forwarded at different ports can be processed concurrendy. Such concurrency is naturally supported 
. . 

by decomposing the router into two input modules (IM) and two output modu1es (OM) (Fag. 5.9a). 

An input module is a sequential machine which examines the destination address in each packet and 

forwards that packet to the output module specified. An output module is simply a synchronizing 

merge modu1e. Straightforward application of the redundancy techniques presented in this and · 

previous chapters Jcads ID the redundant· router desialt **• .in F1g. S.9b. Control modules 

bekmging to the same synchronb.ation set and OM modules wbil?b~ _. he kept censistent are 

In an implementation of a non-redundant router using off-the-shelf components. it is more 

practical to imp1cment packet communication using a sequence of 8-bit nibbles1 delivered under a 

data link/contrel Jiot·proWcol {Fig.1.l). Undef;lhis praracol........., Cd be appW to the data 

nibble and control liat indepcndeady. Fer .. ....._.die._ fdbblt-aa either be replid«.ed or 

encoded. The control link can be pnJlCded by "'6••-. ~Bel~ in prmeus 

chapters. A redundancy scheme l"8Cd oa a tiap a___.dftelfiWrlli1iftgcbdef!91 code is sftown 

in Fig. 5.10. This code uses a total of 12 binary signals to transmit 8 infi>nnation bi~ Each input 
, . ~ -- ~ ... -- :·' ./ . . . 

nibble is decoded by four router units. The data outputs of dlese router units are voted upon to 

derive the 12 outputp~aan4>UlPUtJ>01l..~n....,raeqadn pfu1ecl'8nd.......,fll..,m.e 

synchroniz.ation as they ~ve at dae~.router wM.' 1hctlc ullill:a1• adJ r a _., ges toltlect input 

sources. For clarity the intcrunit synchronir.ation paths ate omitted in F'1g. S.10. lnllliag:a .,.._ 

control link to synchronire packet communication the delays incurred in different portions of the 

1. The term byte is commonly used mSfeact"of nib6tn irfddlf'<:entnt." We'~ 1he tmn ni6bla 
since we have used the term byte to denote bit ficlds in a "'°'"d generated by a ~ndant module. 

. . ' ,, ' ,- -; ~-;, - . ' ,·~ : . ' 



-125 -

(a) A 2 X 2 Router. 

Fig. S.9. A fault-tolerant rou&erdesign basedon repliealed redundancy. 



-126-

{ ready (4) ieady(l)} .. .. 
input act .. .. ·ack(4) output 
ponI1 data (12) .. • data (12) port01 

{ ready (4) ----- .. -y } input act ----- 4 act (4) output 
ponI2 data(l2) .. .. data(12) port Di 

(a) A Router Unit 

r data (l2); fiom A.Oi_ ~ __., data(l2) to D dara{t2!- , .... 8.01 _ jority data(l2l 

A.11• B.11, data (12), from C.01 . .. fotem 
~ ready (4) C.11, D.11 data (l2), from D.01..,.. 
.,.__ act, from A.11 ready, trom A.01 .. 
...,__ act, from B.11 

1aw:~] 
ready, from B.O} .. 

.,._ act, from c.11 ready. from C.01 .. 

._ ad. from D.I 1 ready, fiun D.01 .. 
ct(4). tO ~O}. .. 

B.01• C.01• D.01 

. Ea dala(llHR~nA.OiEJ __..,... data(l2) to data (12). from B.~ . . y data(l2) 

A.12, B.12, data (12), from c.0i voters --- ready (4) C.l2,DJ2 data (12).; m.nn~.... . 
.,__ act, from A.12 ready, from A.C>i .... --- act, from B.12 CT] 

ready, from B.C>i .... 
+- ack, from CJ2 ready. from c.~ ... 
......_ act, from D.Ii i'cady. from D.C>i ~ 

act (4). to~· --
B.Oi· c.~.n~ .. 

(b) The Redundant Rauter 

Fig. 5.10. Hardware structure ofa 2 x·2 routerusingan~code. 



-127-

data path must be known. Voter delays, for example. must be taken into account in asserting ready 

signals. In addition to hardware failures confined to a single router unit, single voter failures in this 

redundant router can also be tolerated. 

Compared with a replication scheme. a coding scheme requires less input and output 

connections among routers at the expense of more hardware packages and connections within a_ 

router. This is advantageous if a more expensive and/or Jess reliable technology is used for 

interrouter connection. In the fault-tolerant architecture described in Chapter 6, a redundant router 

designed to detect hardware failures is used to construct packet networks. This router uses a parity 

check to protect the data link and has the same hardware structure as that shown in Fig. 5.10. Its 

design is discussed in more detail in Section 6.3. 

5.5 Discussion 

In this chapter we have studied hardware implementation of the redundancy management 

algorithms presented in Chapter 3, and analyzed the fault tolerance capabilities of these 

implementations under the stuck-at fault model, the random pulse train fault model and the random 

wave train fault model. 

For the synchronizer implementation, different techniques are given for tolerating hardware 

failures under the three different fault models explained in Section 4.2. Since these three fault 

models form a strict hierarchy in terms of modeling power, any technique for tolerating hardware 

failures modeled by one of them is also adequate for tolerating hardware failures modeled by the I~ 

general ones. 

In the implementation of decoding sections, our approach is to first generate a synchronizer 

signal that is free of output hazards and runt pulses. Using this signal as a timing signal to store input 



-128-

signal vaJues into latches, we have shown. how lO recluce· the fault tolerance pmbJe91 of hand1iD& 

random pulse trains * random wave trains to a ajmillg problem QUfled by metastabJe Sf4il.te 

phenomena in bistabJc devices. This same technique is also used in ifll':hlJlftiaing meq.e modules to 

deal with random pulse train and random wave train inputs. 1bc timing problem can be dealt with. if 

on]y probabilisticalJy, since in most implcinen~n techOOlogid'ibC:~mty diat a latch remains 

in its metastable state attime t + p after entering that state at t ctecreases with p. ft is thus poilsibk to 

tradeotTrefaability with.performance in thele'situatiOnt ·: 

We have developed an appl'Oldl to mask & .4elect .. hanlwce failure$ in a packet 

communica&ionsys&an·baled on t1Wlllt8iJti98_..~_.~.~:fbe. 

entire system. A methodological issue that arises is ~Jl!i!ne. _.,._..tW...,IJ·•for 

toJerating hardware failures in packet communication sysaems. It seems that consistency must always 

have arbitrary contents.~ byte ~~--~can Je~~u~~~ ~~~ ~ We 

nQt describe a,~ue for ... ecvQI har4w• ~'~~~ . .,...~.fa\$,~ 

without maintai.ningtim_,s~ 

A popular scheme for fault detection in synchronous hardware systems is to operate two 

identical hardware unit$ cpncunen~ aa4~ ~~~'··-~'~'~)'.~their 

outputs. N* that there is not ~,~,,ilLa ~-... fQf.~tainillg timUla 

synchroniza~ .or t~nry l15ina .. our ted,)n~. °""~ Glll~k;'5 }>e ~ to 

detect failures ia. determiBatc ~ if ~1W.-C· ~ caa be.~~ as.random. pulse trains 

and, as stated in Section 4.2. C-eJements can be used to filter out random pulse trains. A decoder for 

duplex systems can be constructed using the technique illustrated in Fig. S.6. except that a C-element 

instead of a synchronizer is used tO acti¥att' mj;ut·tiaClies <Ai ·i.li). A' fanout moclule cOuliSts of 

simpJy a C-clcmcnt and a byte dececcor for deriving tht filterina signal ftom the packet bundle. 



subbundle 1 

I 

~ 
I 

subbundle 2 

-129-

input 
latches 

L------- acknowledgment 

-8 
Fig. S.11. A synchronizing decoder for duplex systems. 

This technique can be generalized to detect hardware failures under the random pulse train 

fault model using other encoding schemes. In such a scheme, a decoder will always wait for one 

packet from each neighboring fanout module before decoding, while a fanout module will always 

wait for one acknowledgment from each neighboring decoder before returning an acknowledgment 

to its p-module. 

A similar strategy for masking hardware failures is for a decoder to wait until it has received 

packets from sufficiently many neighboring fanout modules to derive a new error-free input word, 

and then forward this input word to its p-module. A fanout module is designed to forward a new 

byte it has received from its p-module to each decoder which has acknowledged the previous byte. 

In a redundant configuration based on byte slicing, it can be shown (See Davies and Wakerly 

(17) for an illustration of this phenomenon) that byte slice failures in redundant modules can cause 



-130~ 

fault-free slices in their neighbors to go out of phase by an arbitrary amount Thus a byte slice that 

has fa11cn behind others in its module may not .have failed. To maintain communication under the 

adopted handshake protocol, a decoder should not return actnowleCljplents to a neighboring slice 

that has fallen behind before receiving new input bytes from this . slice. The decoder should 

funhennore retain enough information, such as a byte count!· to fte. able to deduce when this 

neighboring slice has caught up with other s&.iCes in its modult. Sincf a neighboring slice can fall · 

arbitrarily far behind, there is no upper bound1Hl-tbe. ~ of·mfonnation. and hence the storage 

for it. that must be kept in a decoder. This_ decoding strately iS ~ theoretically not realizable. -··~ .. . - -- . . - , 

although a practical decoder implementation can be constructed using sufficiently Jarae counters. 

There is a similar theoretical problem in implementing this strategy in a fanout module. A 

packet must be retained in a fanout module until it has been delivered to every neighboring decoder. 

since the ~tents ()fan output packet generated by a p-module m&.Y. ~~on the e.&ire stream of 

input packets it .. Jlas previously received aad ~· A. ~baring decoder ~ apin fai 

arbitrarily far behind and there is no upper bound on rhc amount of bWferial required to store 

undelivered packets in a fanout module. The quatioa 91 how IQuch ~ to indude in ea:h 

fanout module. and buffer management techniques, praent more of a practical. problem. 

Techniques for estimating the buffering requirements accurately must also be developed since the 

effectiveness of this strategy in combating hard~;-faiJUnrckpentB on the locUraCy or such an 

estimation. 

By maintaining timina synchronization in a ~- packet . COlpPIUnication system. all 

fault-free byte slices in a redundant module are always in-phase. and the buffering problems lhat 

arise in the above s:hernC is avoided. Instead of buffcriiag · lacilitiCS, Mditlonal hardware and 

interconnection paths are invested to ·implement die syndlronttatfUn aJgoriihm fur maintaining 

timing synchroni7.ati(>n. 



-131 ~ 

6. Design of a Fault·Tolerant PacketO»••••if*M»aC'1111*ter Af'daitedure 

In this chapter we ~'be a conceptual desi&P for,a ~-Wlel'aJ)_t ~ flow processor intended 

for physics simulation ~ The Slllieat ..... of d1is d.esjap bav.c been introduced in. . . . . . ' . 

Cbapterl: 

lfl8h performaDce and fault tolerance are achieved by using pools of identical hardware units. 

-- Communication between proce.ing elements and Nnctio8al ~nits is sui>Ported by packet 

networks. 

-- Hardware in the data ftow p~ • ~~l>¥-:~~~miQ~,a,rchitecture. . . . 

As observed in Olapter I. there are no stringent reliability ~inl)lraat<U.-• 

simulation applications. We are interated in adding fault tolerance capabilities to the non-redundant 

System primarily to iinProve Dlaintainabt1itY and.avaHmruty.' $- ·thro~put is improved if 

hardware f'at1ures can be ma.tee( espeaauy ~ it is nOt ~.fur a-~~ ccmputation in 

physics simUJation to execUte fOr many hours. 

accordillt to a ·~ ,.,.,,.,._,. ~- la this acblme·a..dw.e failures. are ·defected and 

~the data flow ,,..Oris ftllllllillill wttllll ..... IU .... tationl .. teaecuced OD 

prepared on a host machine. loaded into the dafa. Alw pNalll!IOr, act 1Ma aecuted. 'Ibis lat 

machine is also assigned the tasks of configuration control. and of coordinating diagnosis, repair and 

recovery activities with program execution. We win eip&lm the strategy to be implemented on this 

host machine, and the application of hardw~ redundal)cy techniques developed in previous 

chapters and some packet encoding techniques to implementing hardware modules in support of this 

strategy. A fault-tolerant implementation of this strategy on the host machine can be constructed 



-132-

using conventioul t«hlliques. and wiD not be COllliclered. 

The hardware organiz.ation of the data flow processOr and its operation are explained in Section 

6.l. where we Wilt focus on those asPeds of its ~ me~ant. tO '&ti~' toleranCe considerations. 

The dynamic redundancy scheme is explained in Section 6.2. Hardware module designs to satisfy · 

fault tolerance requirements imposed on them by the dynamic red\,I~ scheme are presented in 
t - ·, • . - • - .. ~ - - •. 0 , ~ •• ' ' • - • -

Section 6.3. Strategies for incorporating additional hard1¥are into a packet netw.ort to support rapid . _. . ·, .. ,_-, __ - - . ' 

repair are discussed in Section 6.4. 

6.1.1· .... °'l•latt• 

Hardware in a packet communication compu~ arcbi~ is orpnizedas an intereonnection 
' ' .~ - -" ;' . :;:;.,,: d: - . . , . -

hardware modules using the ready/acknowledge protocol depicted in Fsg. I.I. F.ach wtodJde pon 

consisfs of a bundle.of dlfa wiR:a md a'* of cmdRJl wilatFia. IJa). ·Pamt C08lllri¥¥!btio is 

syncbrom.l by 1Clldillg control tipaJs ewer die allKml wifts. . Awibbility of a l)eW Dibble• a. 

CODDCldion is signaled by ..... a nrldy sipll .OY« die lady wile. ........ by re1UJ11i118 an 

ac~ ..... over.dlednowledp·wile. .... ., act.~ligllalsam replelelltl!dby 

signal trwitioas(Fi&- llb) ma the mipectiYe wiNL · 

The major modules in the data flow JK1JCe8>I" (F1g. 6.I) are prnaaing elements (PF.s~ 

specialized functional units (SFUs). a routing network and an allcr.a&ion networt. Scalar operations 

are processed in the PF.sand SFUs. The oetwoiks support pactet ttaffic among the PF.sand SFUs. 



J>rocessing 
Element 

-133-

--:' 
.... _______ .. 

• . Routin& 
"' ..... • 

....... ____ .,... 
... I 

r--
I r-..., 
I I 
I I 

I 
I 

L~ 
' I 

I .. Allocldml 
I • Network • 
L_.., 

___ ....., : resukpactet 

--
• . 
• 

Speciali7.ed .... -_.., FuctiM*IUnit 

• • 
• • 
• . __ _,. Specialized 

Functional Unit 
·...:. 

- - - - ...... : operation packet 

Fig. 6.1. Hardware an:hitlcllnoftbedlla low-pm:mor. 

Operating Principia 

' 

A machine level program fof die data ftQw pro:•••IH' ii stoled ia thc,P& as a set of aeliWly 

templates (20t An .activity template A coataU,S a IJ#ftlliM ..-wl the ""'1rmo of oae or more 

activity templates. called A's largel lellplatn. which~~ lilM.Nault~ by ~ng 

A. An activity .tallplate is 1i1aiquely ideAtified ·tw·· 9 addresl, ..... has two componentE a 

destination tag which specifies the PE in which the ~lajde&. aad * loca&io• of the template 

within that PE. 



-134: 

Operations are divided into two cbmes, accordina t&whether-they arc'executed by a PE or by a 
.. 

SF1J. When activity template A is enabled (See below· for a discussion of the enabling conditions) 

and the operation it specifies is executable on a PE. die operation is applied to the operands A bas 

received and the result of the application is dispatched ...... .,..~ If ataraet template B 

resides on another PE. a copy of the Fesuh is faUed with B"s address and a rrlbblc count to form a 

result packet, and delivered to B via the routing netwOI\. fw an operation executed on a SF1J, an · 

operation poclc~ consisting ef die operation code, operands and the target template addresses is 

fonned and delivered to .a SFU via the routing networt ~.the allocation network. At a SF1J the 

operation specified in an operation packet is ~ to·the operands and result packets are generated 

and dispatched to the target templates via the n>Utina· network. 

An activity template. A is enabled when two conditions are met F'ust of all the operands 

required for the operation must have arrived. The 5eCOIM;l condition is a consequence of organizing 
-·,:_ "":;; -·-- .. -, 

machine level programs in the data flow processor to support pipelining and iteration. Suppoae that 

in such a program activity template A sends Rtlld1lto dvn, ._.' SS B mldina in another PE. To 

avoid deadlock (381 an operand sent from A to B must.be processed_ betbre A can send B a ~ 

operand The execution of A and B are synchronized by conditioning each ~~ o( A CJll 
• ' 1·-. ' • ~ , 

receiving an aclcnowledge pocket from B. This acknowledge packet is transmitted when B is 

processed with the pre\lious operanct recei.ed fi'om ~ · tlms·~·aw.tiVity templlle can be 

executed, it must haveft!ceived the neeess11y a:tno..1c:dgnielltsfn*'ll._ Mlbplates. A deailed 

explanation of this synchronization scheme is pmi fa f26l. ·Uader 1IUt tdlatie 'every ·mull pteket 

transmitted through the netwalts is actnowledged by-an aeltto ...... ,,.etet ~by the taqet 

template. We Will also mate the l9IUlllptioft fhlt tlJClr t1J1M1J1Mr /ltritf «Jlllllin.f aardy ~*"Id 

template address. This asmmption results in no Joa of generality since the result obtained by 

processing an operation packet can be further distributed duou8h its taraet template. In fault-he 



-135-

operation under the above synchronization scheme and· this asltlMption on operation packets, a PE 

will receive exactly one acknowledge packet for every result packet or operation packet it delivers to 

the routing 11etwort. This property will be u9ed ·to ··<XMJfttinate reeovery activities with norma1 

program execution in the dynamic redundancy scheme. 

A PE proYides storage for activity templates. executes simple operations, sends packets to and 

receives packets from the routillg. netw• A SFU .~ designed to execute complex operations. such 

as floating point arithmetic, efficiently, with additional capabilities ro· receive operation packets from 

the allocation Jld,work and send result packets to dle roudDa network: Implementation techniques 

for these hardware modules as discussed after their fault tolcranee requirements have been 

detennined. In the remainder of Ibis section we take a closer loot at the structure of the routing 

network and the allocation network. 

6.1.2 Packet Netwerb 

An N X N routing network. with N input ports and N output ports, supports packet 
. 

communication among N PF.s. k ~ pactets at ~·tnptit ~.ancttransmi«s eaCh packet at the 

output port specified by a bit field comprising a header or destination tag of the packet. The 

destination tag and a nibble couat tp8Gifyina the length of ahe packet are contained in the first few 

nibbles of a packet. Routina networks can be ~ ming 2 X 2 routers.· A 2 X 2 router 
, ' 

' . ~ 

receives packets at its two input poflS ·'°" delivers eldl t11Ceived ---at one of two output ports 

according to the destination tag carried by the packet The 2 ~!router is designed_, dlat packets to 

be forwarded at~tJeNDlOlltput ports 9H1 be processed o0ncurrently. We have described a hardware 

organi7.ation for the muter module (Fig. 5.lOa) and ~raJ ~ps for fault~tolerant routers (Fig. 5.10 

and Fig. 5.11) in Section 5.4 to illustrate our hardwaJe redundancy tecbniques. 



-136-

Methods and uicbniques fer tolerating hardwn &ailura in roudaa networks will be illustrated 

using rectangular routing networks. An N X N ft!tlfllt,,.,....,. ia·built from 2 X 2 rollten by 

the recursive constnlCtion illustrated in F11- 6.2 •. An N X 0N network tooc:oastructed has 1o&2 N stages 

o........._ 
1~~1 

-o • ,,,,,,,. • • 0 .. o 
• . 

o, : I · N/2XN/2 . l •O ·- . o,,.., . 
• • ..,. Rectanptlll' Network 

.. Q 

: 2 x 2router 

(a) Recunhre COlllb1.lc&ioD. 

(b) An 8 x 8 ft'JCtan&i1lf netwGrt. 

F11- 6.2. Rectangular routing netwo1b. 



-137-

each of which contains N/2 routers. AU packets sent to an output port of the routing network, 

regardless of their sources, have identical destination tags. Routers in succeeding stages in the 

network examine successive bits in a destination tag to forward the packet along the proper path. 

Path control in a routing network is distributed among the routers. There is no centralized control 

mechanism whose complexity must grow with network size and which may become a performance 

bottleneck. Many packets can be forwarded concurrently to provide a high throughput rate. One of· 

the design objectives for a fault-tolerant routing network is to retain all these characteristics during 

fault-free operation: decentralized path control, parallel processing, and asynchronous nibble-serial 

communication. 

In the data flow processor the allocation network receives operation packets from the routing 

network and distributes them among the SFUs. Each of its input ports has its own routing network 

address. In the data flow processor we use a rectangular allocation network which also has the 

topology shown in Fig. 6.2, constructed out of 2 X 2 allocators. An allocator receives operation 

packets from its two input ports and forwards them at its output ports as these output ports become 

free. It is possible for operation packets to be temporarily "trapped" in a section of the Allocation 

Network waiting for service even though SFUs not reachable from this subnetwork are free. Such 

trapping has the pleasing property of automatically diverting other operation packets from the 

congested subnetwork. We next present an allocator implementation constructed from determinate 

modules and merge modules. This implementation can be rendered fault-tolerant using exactly the 

same techniques illustrated in Section 5.4 for router modules. 

The implementation strategy we have adopted for the alJocator is to generate service requests, 

for new input packets, and availability tokens, when output ports become free. Service requests from 

the two input ports are then merged together, as are availability tokens from the two output ports. 

Each service request is matched with an availability token, and a packet is transferred from the 



-138-

requesting input port to the available output port. In the hardware implementation (Fig. 6.3), service 

requests are generated by input port controllm, avaJlabitity tokens by Olllput port conlrolltrs, and they 

are matched at ~ matclter modUle which also handles packet transfer from inpilt port controllers to 

output pon contmlkn. 

6.2 A Fault Tolerance Strateu Based~ ~u111ic Redttndalaq. 

It is poaible to apply static redundancy techniques uniformly in the data flow processor to 
. . 

implement a fault masting capability in hardware. We have presentCd two router designs in Section 

5.4 appropriate for constructing fault masting routina networks. and pointed out that similar 

techniques are applicabJe to allocation networks. We have also desjgned a rout.er module, based oo 
. t. ' . 

parity checks. to support fault detection and, again, similar brlmi<Jues are app~le to the des,ign of 

fault·detectina al1ocator modules. This router design is described in the ~t section. A packet 

network constructed with these fault-detecting modules has consider.ably fewer intennodule 

connections than one based oo replication (using the~ ofrou~ modules illustrated _in Fig. S.10). 

~ 
output 
pmt .. .. 

tl1>Der aJBtroller 

madler 

~~ e 

~!~I • ... 
CODUdlel" 



-139-

and fewer hardware packages and intennodule amaectioos than one· balled on error-correcting codes 

(using the type of router modules illustrated in Fig. S.11). It is thus attractive to develop a fault 

masking strategy wh~ can exploit the advantages of network designs based on ·fault-detecting 

modules. Such a strategy 1eads to a dynamic redundancy scheme. 

In a dynaniic redundancy scheme. failures are masted through hardware-implemented fault 

detection. diagnosis. repair. followed by reexecution of the afflicted subcomputations. To support 

the dynamic redundancy scheme. each PE must store additional infonnation that is not used in a 

non-redundant ciala Oow processor. A copy of every result and operation packet delivered to the 

packet transport and fJITJCtlling {PTP) subs):$tem Q>J!Sisti91 of'. .the J*ket networks and the SFUs 

must be kept until - packet is acknowledged. ~t~ PE~ ~of every received packet must 

be knQwn. This information can be main~ by aECiaUna·each opa:mJd position in an activity 

template with a template addms for. mumin,g .""~~ The sender of eacl1 

acknowledgment packet and~ request~ ~)lllUllt alto be identifiable. 

The dynamic redulldancy scheme assumes that the hardware implementation of the data Oow 

processor bas the following propenies. even in the presence of hardware failures. 

destination tag. either to a Pfi • the·.....,.·amtort.: &di ,.:tel received bJ the 

allocation network is deliveml to a SAJ. Specifically, neither packets nor packet nibbles 

will be lost in the netwOrb. 

(3) Target template addresses carried in an operation packet are always delivered free of error. 

· (4) · For every operation packet received. a SF\J Will deliver eidler a error-• tesult packet or 



-140: 

(5) Every acknowledge packet and retransmission request (See below) is ~ivered free of error 

to its destination. 

Techniques to design redundant routers, allocators. P& and SAJs that can be used to implement a 

data flow processor with these properties, even when up to one hardware package in each module bas · 

failed. wiH be presented in Section 6.3. The fiwlt tolerance stl'ltCIY is • rouows. 

Any packet which has encountered a faulty router or alloc:ator m its journey thrOuab the 

networks will be marted as SbCb upon delivery to ibe ~"PE' di !FU.· ·When a SFU receives 

an operation paetet taged as erroneous. it will gdlerite a' ·1esu1t pacttl,. tag it as erroneous. and 

forward it to the target temp)ate specified in die oPeralidft·pactet. Jr-a·PE receives a R&U1t pactet 

tagged as erroneous. it si&nals 1he hall maddne. .:whlC:b· 1n bJl'll siplls ·11ie·Odlief Pf.a to stop ....... 

packets to the routing network. All paaers: m··tr11111t:wBI afthe· at ftlr ~ ~ a ftDite 

time period. which can be determined from hardware panmdell specified for the PfP subsystem. 
,;~ ';: . .:: - . 

After this time period the PfP subsystem can be replired under the direction of error sipals 

generated by fault detectors in this subsyslem. After repair Ille PF.a an rawted. A PE wbidl bas 

Activity templates representing a machine level program. and a ~ intes;mecliate state of 
. !.:'::; -'--,.,_~~ ---~·· :- ... -~-~ ~~ ~.,.... ' ' ~- _: 

the computation in progress. are stored in the P&. If only routers. allocators or SFUs have failed, the 

computation cu always' be ft!Mllted ·Imm ~·irtliitl--'ltllie' .... ht·11e·PfJfaal Nil to 

completion after the networks have been repaired. If failures occur in the storaae components of a 

PE. it may be necessary to abort the computation in props. since the iatennediate state may 

become iaawistent. &to,. faOuns dnll IRUlt ·be mrtr!An .............. fauk mlitina 



-141-

Failure in other components of a PE need not be masted in hardware, but the ~ty templates and 

partial intermediate state stored in it must be relocated before processing can resume. If an activity 

template A is relocated. the entire activity template set must be relinked so that other templates 

having A as a target will contain the new address of A. It thus seems desirable lO mast aH failures in 

P& 1oca11y in hardware. Communication between PF.s and the host machine lO coordinate repair can 

be implemented with an interprocessor bus. Fault-tolerant busing structures have been presented in 

(30) and (67). 

The PfP subsystem must be repaired after failures are detected. A failed module can be 

replaced or repaired in place manually. Availability is improved by reconfiguring around the fat1ed 

module autometically aad .&hen repairina &he failed modulcoff-liee~ Fer··~ in progrea 

lO proceed successfully, the full functionality of·~· ...... netWQlk must be retained. i.e .. .,.-.ket 

communication between any input port and any output port must be maintained. Two strategies for 

incorporating spare routers and data paths into a routing network are disnmed in Section 6.4. Under 

these strategies the full capability of a routing network is fewned so long n spares are not exhausted. 

These strategies are also applicable lO allocation networb. A SFU failure can be repaired by simply 

taking it off-line. An allocator will not i>rward opaadQo )NICkets to any SFU wbiqll.bas stopped 

acknowledging inputs. The machine an:hifeclwE js ~ 4egradable with respect to SFU failures 

in this sense. SFU failures have DO effect otbar' dWl degraded performance aaalS· the Yl'P 

subsystem boundary. 

The dynamic redundancy scheme we have deac:ribed is built. directly on die· execution control 

mechanism in a data ftow proceaor. It has the merit dllt ateasions to the execution control 

mechanism are incorporated in low level hardware functions and require DO extra ·pmaramming 

effort to achieve fault tolerance. 



-142-

Our basic unit for fault tolerance considerations is a pac~ which receives input signals and 

delivers output Signals through its lmninals.. Hardware modules are constructed using packages We 

also asmme that lhe mean time ~ repair is much shorter than the mean liJne to failure. Modules 

described in this section are hence designed to tolerate up to one package failure per module. In this 

section we present hanhJate redundancy and packet encoding &edmiques to support the five fault 

tolerance properties stated in Section 6.2. We first describe die encoding lldmiqucs: 

-- Control signals are generated in quadruplicate, from four failure-indepelldent pri.-

-- F.acb data nibble is proll!ded by a parity bit. 'Ille Rine hill of a ,._,. t--.S nibble are 

cgenerattd fnml nine failllle-independl8t "'" • •. 

-- F.ach packet ml>ble whose error-free transmission must be guaranteed is expanded into three 

nibbles. The second and third nibbles in each triplet are nhgined by mtadng bits in the giftll 

m"bble one and two posi&ions to the rilbt. respectiwly: 

frebibi.¥'1~.,.,,.. 

¥obt~Hi'7-

~¥'l'H'6 

This encoding scheme can be reprded as an ilnplcmentmon of triple modular redundancy in 

lime ..... of in apalle. Ni"'*8 in ,,,,,. ~ ..... .., .•• , ........ fields. and 

identification tap in acbcJwltdp.,.pdtll Md ftMlll*Klllllliillill• -.-­

dlis lft:lnrique. 

- An aD O's data mlJble is appended to the tail of each pdet This nibble is used to flag pdm 



-143-

which contain erroneous nibbles. It is set to all l's by the first modµ~ wbich detects the parity 

violation, and is od1erwise retransmitted as received. nae packet is,~ted as error-free only if 

its Oag consists of an O's. 

Using the hardware redundancy techniques developed in previous chapters and the above 

encoding techniques routers, allocators and SFUs can be implemented with the following fault 

tolerance properties: 

-- If at most one of the four control signals delivered' on each quadruple is faulty, its pathological 

effects can be lnllked. 

-- If at most one data. wire in each parity-c~.S 4* link can'ia faulty sipaJs, the ~ ceu.nts 

and addressing information ia each paetel ~ •. --- The lat nilable in tile 

correspondiDa OlftPUl packet wm be flawd.·~ "811J!Olbe'8 O's. if aoy packet nibble bas 

violated the parity dlect. 

-- If at most one packaae in the module has failed. the above capabilities are not impaired and 

faulty signals are delivaed on at most one oucpUt oontrot wire and one output data wire at any 

module port. 

We note that it is in fact pollible to mast an siDaJe pactaae failures in routers. al1ocaton and 

SF1Js with these fault tolerance capabilities if every packet mbble is triplicated using the 

rotate-and-repeat encoding scheme pven above. This approach to fault masting leads to lower 

performance during fault-free operation, • ~ w#b die. 4yuQaic · .-Undancy tdleme 

explained in the last section. 



-144-

We next iltuSb'lle module design techniques. widl a router module design and a processing 

element design. Tbe9e techniques are also applicable 10 implmientDfa Ille: desired fauk tolerance 

capabilities in allocaaors and speciali7.ed functional uni1L 

ROMler Module Daiin 

A redundant router module (F'1g. 6.4), just as its nonredundant counterpart, receives pactell at 

its two input pons, and delivers each received pieket at the ~~ ~ llf)C!Cifi,ed .,Y a destination tag 
- - - . -·~·> ,'~ ''L· - -~·. . 

carried in the packet Packet receipt and forwarding are S)'DChronized by~--~ delivered in 
..... -.. ,, ...... \, ·.. . 

quadruplicate. Packet nibbles are parity encoded. The redundant rouaer is implemented using four 

ch«kt'P'pactages wt niRe JOletpaebaes fPi&. ~: tr.ch ched:er (Pig: 6.Ulhastwo inpUt pOrts and 

two output porls. Coatml si&l'Ws' ~· • the' c:oilc!lpOnding pOns or the four cbed.en are 

grouped toget11er at ea port of-the redbndant r0utet llllidlle. TftUs;'·fti· euniple. tae ·actnowleclge 

signals generated by the four checters at their 11 input pons (Ftg. 6.4b) are'IJ'(>Uped ~al input 

port 11 of the redundant router. Data nibble outputl from &be corrapolldinJ QlltpUt portS of the four 
.- ~ . . . . . 

checkers are collected IOlether and voted upon at the votm to derive outpu«s for an ~tput port of 

the redundant rouaer. In F'lg. 6.4, the number ofwiRs NpRKDfed by each arrow is given, in ill label 

in parentheses. This number is omiUed if the arrow repraents a lin8le wire. 

A checter receives all input a>ntrol and dara sipak ~ 10 ~ ,router. and implemema 

deduce the error-free nibble for every data nibble encoded in triplicate using the 

rotate-and-repeat ICheme given above. 



-145-

{ ready(4) ... ready(l) } input act ... .. act(4} output 

ponl1 data(9} .. .. data(9) port01 

{ ready(4} .. ... ready } input act .. ... act(4) output 

. portl2 dafa(9) ... ... .d8(9) portC>i 

(a) A C\ecker Unit 

B dola(9).Jhwn,~,0i El 
data(9) to data (9). from 8.o1. . . ~ty data (9) 

~ 

A.l1. lll1·. data.,); .. tlOJ. . •· .'\!OferS --A 

ready (4) C.ll• D.11 data (9). from ~·~1 : . . ... 
act. from A.11 ready.·liOOt A..o1 .. 
act. from B.11 

B 
ready, from 8.01 ... 

act. ftom c.11 ready, ftom C.01 ... 
act. from Dl1 ready, ftom D.01 ... 

act (4). to A.01. ..:...<. -
B.01, C.01• D.01 

§-<~6-A.°'l , . ·.· 
data(9) to =:=~=~ty 

data(9) 

A.li-B.1~ 
Rldy(4) .. ~~ . ··~~;::,.··: 

act, from A.12 readr· fiun A.C>i .. 
act. ft\1lft ltl2 

f71 
;,. .. IDl'' • _.,.. 

G.fblRC'2 ~~c.~ ... ' ~ ~' 

act, ftom D.12 ready, mm D-C>i __.. 
'. ·d~titA°'i-"' ·. : .,._ 

B.~.c.<?n~ 

(b) the Redundant Router 



-146-

- set the last packet nibble to all rs if the ~ pdet nibble it bas receivecl is not all O's or if parity 

violation bas been detected. 

-- maintain timing synchroni1.ation and consistency U$ing the techniques developed in previous 

chapters. For clarity, coaununioalions paths Jbr edtM&ina·~ si1MJs and 

messages among checker packages to implement these redundancy management functions are 

omitted in Ftg. 6.4. 

In the redundant router shown in Fig 6.4. data faults due to sin&le checker failures will be masted at 

the voter paclages. -Contml f1drs. u to ....., cbl!ctet failum afdfla faults due to single voter 

failures are detected and dealt with in hardWIR modules recei'iing pack~ ~ this mlundant 

router module 

· A PE prOvides 9UJn1e h actmty f8lllltl*s anct ~ opemck. as wd1 as ftmctiaul 

capabilities fer activity tempJatt prcxasjna, ancl input/Olllpllt ~ - packet c:ommunicadoD 
' - - . . !~ ·" -· 

.~ • ' < 

components is given. ill, l61J,: (lfJ. To support JM cba"* nnllldmaq · ~ a PE.,a a 

fauk-to1ennt11ata flow proceilorm be constructed ~••1-lt "!"'ting.tiit-slked menaJiJ PlJ. a 
\ .. . 

A partial state of the computation in execution is saored in dle bit-sliced memory. For 1be 

computation to be recoverable after single J*lage fai1wa.-~ _.a failures must be masted along 

the data path used to retrieve this information tiom lhe memory to the host machine. This is 

achieved by usin&• bit11icedmemory prot.ected bJ:•~•li•-*•aoie dlil infbrmatioD. 

and a control unit with the same sttucture and operating principle. and helKe the same fault tolerance 



-147-

Host Machine 

l 
Redundant Routing 

Redundant .. .. Control . .. 
Memory Unit Network 

t I Redundant Fuoctkmal Unit I 
Fig. 6.5. Design of a fault-tolerant procesmng element 

capabilities, as the redundant router module shown in Fig. 6.4. The control unit consists of four 

failure-independent packages each of which receives all input signals delivered to the control unit 

The outputs of these four packages are grouped together or voted upon to form outputs of the 

redundant control unit 

Addresses and data transmitted between the redundant control unit and the bit-sliced memory 

system, and those transmitted between the control unit and the host machine, are encoded using an 

error-correcting code. Each bit-slice in the memory system stores one bit of a data word and has its 

own addrea decoder. Any hardware failure confined to within one bit-slice thus affects at most one 

bit of a data word and consequent errors can be corrected. Packet nibbles transmitted between the 

redundant control unit and the routing network are parity-encoded. Since the redundant control unit 

has the same fault-tolerance capabilities as the redundant router, single package failures in the control 

unit cannot cause undetected erroneous packets to be delivered to another PE. 



-148-

The functional unit is the only subuDit: in· a fe ·that need not be completely fault-tolerant 

Package failures in it must nonetheless be detect.able. Many redundancy techniques are available for 

detecting failu~ in functional units. For a cornmtRially available LSI functional unit chip, it is cost 

effective to detect single chip fail~ through d1 .. k::l&ton ~"" ..-1. jti'1res through triple 

modular redundancy, •·desired. ~ bdiveen the .. ~t'·ccmrot unit and the 

redundant functional unit can also be protected using either an error-correctin code or. an 

error-detecting code, depending on wbelhet failunS- iii· die--~ unit are to be masked or 

When a network hard~are-~jsdetected ia ... ~ ~-~ aJl-PEswiD 

stop sending packets to~- odaer ancl,after-a_.~~ ~:~Jbe aetwerU will be 

dormant Before nonna1 processing can resume the failed unit must be locate4 _and the. aetwerU 

must be repaired. In this section we will iDuslndc two repair strategies using routing networks. 

The first step in any repair procedure• to .b:lte the failed rout&r •• Elda dlecter priap an 

generate an error signal upon detecting a parQ _violaliqia .F .... :a • lllt .-ort ._ .e 

detected directlf by parity checten in the PF.a aac1 SFUa. SillQI.~.,~ ia ea 
router, PE and~. two or more em>r ,._. ~be ........ IJJ. ~ camplain& uacler 

the single package failure assumption. These error--·~ be-~ te IQcate die failed router. 

Funher diagaosis will be nccesu'Y to )Qcate tbe,... Pac:k I (1). 

The most straightforward repair procedure is to mate use of error signals generated by c:becter 

packages to locate the failed unit and then replace it 1lfl1llllOlly with a spare. This procedure requires 

no additional hardware, but system availability is direttly related to the availability of maiDtenance 



-149-

personnel. The personnel requirement can be reduced by incorporating self-repair features into a 

network. The error signals will be monitored by the host machine which will direct repair activities. 

Additional modules or data paths must be incorporated directly into the routing network to support 

self-repair. 

In the setf~repair scheme illustrated in Fig. 6.6, a number of spare modules are appended to 

each routing network stage, switched in electrically to replace failed modules. Switching 

arrangements are incorporated systematically using switch packages, which have been introduced in 

(36), to support system reconfiguration. A switch can be set in one of two modes, either "crossing" or 

"bending" (Fig. 6.6a) the pair of input leads to the pair of output leads. Spare routers are 

interspersed with active routers. The reconfiguration capability of this switching arrangement is 

illustrated in Fig. 6.6b where the ith router is aumed faulty. Note that in this scheme a spare router 

cannot replace any faulty router below it in the column. Control signals for setting the switches can 

also be carried in the interswitch connections. This repair scheme requires many additional data 

paths and packages, and must be further enhanced to tolerate switch failures. It is thus practical only 

when the additional hardware costs are acceptable and the switches are much more reliable than the 

router modules. One technique to tolerate switch failures is to connect each switch to more than one 

neighboring switch so that an immediate neighbor which has failed can be bypassed. These switches 

are called ripp/ers in (58). 

The additional data paths introduced can also be used for off-line diagnosis, testing out the 

routers systematically with pregenerated test patterns. In the configuration shown in Fig. 6.6, the ith 

router can be tested by the host machine while the remaining routers carry the packet traffic. The 

fault detection mechanism in the dynamic redundancy scheme assumed single package failures in 

each router. Multiple package failures or lurking failures which have not yet manifested themselves 

are not detected. Network reliability can be further improved by testing the routers for these failures 



cross mode 

-150-

(a) 'lbc switch module 

'><>! xx 
/ "' bent mode 

Hust Machine j.__
1 
___ 

1 
m-~-;----... 

o-----
rn~ i-181 

-rn---.L__ 

(b) Reconfigurable network stage 

Fig. 6.6. A reconfiguration scheme for sc1f-repair. 

IJ,...1--­
[ 



- lSl -

periodic:ally or after detecting a fault in software. 

In the above strategy the topological and operation characteristics of a rectangular routing 

network are retained after roooafiguration. In a rect.anaular network any router, acept for those in 

the last stage, can be paired together with a neipbor. in the same ..,. sudt that the two can be used 

intetdlangeably in packet routing. If ooe routerJn a pair fails. its duty can be ,taken over by its 

panner and the network can continue to operate. pasably with Waded perfol'maQCe. This scheme 

can be implemented by adding two input ports and two ~tj>orts to each ~<lant router. If 

there is a path in the nonredundant network from router A to router B, a new path between A and B's 

partner is added. The redundant paths incorporated into an 8 X 8 network (Fig. 6.2b) are shown in 

Fig. 6.7. The last -.e can be repaired b:y QSina.~~ ~- ;.. ~et can be forwarded to 

its destination alona two ditferenl paths at each enbanc:ed router. Boch of~ paths can be used 
' '~ ~ - - . 

during normal ~ whea an routm are fault:ftee,.pr ~of ~.may be designated a spare to 

• 

• 

• 

• 

© 
© 
0 
© 
© 
© 
© 
0 

Fig. 6.7. A reconfigurable 8 X 8 network with redundant paths. 



be used only when the other path is blocked by a faiJed l'Ollfl!r. lnftwmation on the 1ocatioll of failed 

routers can be distributed by the best machine during repair, to disable connections to fmled routers. 

The host machine can keep a count of the number of fililttRs tepOlted fbr each router and take 

it off-line ooly when a pruletc111tilted ntUmum fili1Ule r11e is seeded. Spare modules can tbell be 

better utitiied when transient fai1ures ·dominate. ··we alio Ide lhat neither of these repair Demel 

require recomputing destination ~ in aJMl1iallY ewmed 6Ca·ftoWc pqrmn ttHomplelt i1I 

execution after being intenupted by a ·aetWort fai1lft. 

6.S Discussioa 

The STAR computer (8) and tbe Fl'SC compla\'er (S2J are two eumples of fault-tolerant 

computing system based on dynamic reduncfancy. Boc1l of Mn have a bus-oriented an:!Uttl:bJre 

designed for executing seq\ientiaJ propanis. ·In tli1I dlipfer Wie lave praenled a dynmDic 

redundancy scheme for masking hardware fatlures in • mukiprocelllor ~ .. ~ to ex~ 

parallel programs organized by data ftow concepts. Thae proanunmiDg wucepts and the quest for 

high perfonnance allo distinguish our work from other fault-tolerant llDdtiproceaor.projeds such as 

the FIMP system (JOI and the SIFT system (67). 

The dynamic~~ is developecfbJ .... spedryiag a Ill of fault tolerance 

capabilities for the ~ket transport and pt0Cmi1lg .....,._., ~ of the packet networks and 

ooordinating fault-related activities such as fault de~ ........ ~ itpail' with normal 

execution are then· formulated based .on these fault tolerance ~· We have also explained 
" . 

hardware redundancy and packet encoding tecbniques mr implementing hardware modules and 

subsystems to support these strategies. Redundant hardware is incorporated and operated aa:orctiDg 

to the redundancy management methodology developed in previous dYpten. 



- ISJ-

The packet transport and procemng subsystem is deligned to· be conStruc:ted out of hardware 

modules. instead of with busina structures or cammunications technoloSY. The fault tolerance 

capabilities specified for this subsystem have been chosen primarily because it is quite 

straightforward to both develop a sptem strategy based on thmcapabilities, and t.o implement them 

using familiar hardware redundancy concepts at the module lcM!1. The fault tolerance and 

maintainability fea&ures of the resultina s)l&fem ·desi&n can he prcisdy characterized and. if only 

infonnally, verified. A different set of fault tolerance capabilities for the paclet transport and 

procesmng subsystem can be adopted for system desip, leading to alternative system and 

implementation strategies. When detailed logic designs and hardware failure rates are available for a 

hardware implementation, alternative schemes should be carefully evaluated with reliability models 

(41) to determine theircost-eftectiveDelS. 

We have assumed that hardware packages fail under nonna1 use, and that failures are readily 

repaired. The redundancy schemes have thus been presented muming at most one package failure 

in each hardware module. As long as there is at most one failed package in any module, the 

computation in PJ'0815 can always be completed. If the processing elements are not designed to 

mask single pactaae failures in their functional units, it may be neceaary to relocate the activity 

templates and the partial state of the computation ltDred in a failed processing element, and relink 

the activity templates, before program execution can be resumed. The redundancy techniques can be 

extended to accommodate multiple package failures by using more packages in each router and more 

elaborate coding techniques. In a physical realization several packages can share a physical unit as 

Jong as the physical system is partitioned so that under the most common failure modes at most one 

package in each module can fail. 

We have demonstrated how to methodically deal with hardware f8ilures in a practical 

implementation of a highly parallel data flow processor, with no impact on its programmability. We 



-154-

have explained how hardware failura. can be masked· whm. dle aR:bMdure is pl'Op'llDllled in a 

restricted daaa flow language. Another operatioml l'llllbictim is dull ftel'y packet trammitted mer 

the packet transport and proceaing subsystem • adnowledged by another packet. The fault 

tolerance techniques explained in this cbapter are . dilmJy applicable whenever dle bardwaR 

architecture is programmed under dlCll restricticm. It is e&pected··dalt more~ sysKm. 

stralegies must be developed IO. iBcorperaR fault tolerwe CGlt eftilctively into more advanc:ed data 

now MCbiteaurea PJ. (661. 



-155-

7. Conclusion 

In this chapter we present a summary of results and sUggestions for further research. 

We set out to answer the question: 

"How can hardware failures be tolerated in a self.timed hai:dware system orpnized by a 

packet communication architecture and designed to execute data flow programs r· 

Our answer is provided in two pal't&. In the first part we study the general question of desianing 

redundant packet systcrm for fault tolerance, and examine the issues of redundancy organil.ation, 

redundancy management and fauk modeling. In the second part we study architectural issues in the 

design of fault-tolerant data ftow processors. Our results in these ~o ~ are presented next, 
•\ 

followed by an evaluation of whether these results have provided ~. sa~actory answer to the above 

question. 

7.1.1 Faul Tolerance in SelFTIM HardWare S,.._ 

Researeh reported in this thesis has been conducted as part of an effort to develop a desigJi 

methodology for constructing computer systems with suitable perfonnance, programmability, fault 

tolerance and modularity characteristics. In particular, we have studied the problem of achieving 

fault tolerance in self-timed systems organized by a packet communication architecture. In the past 

there are significant speed and economic penalties for constructing self-timed systems using 

off-the-shelf components. These disadvantages are greatly alleviated in custom LSI chip design. an 

implementation approach appropriate for constructing large parallel processing systems for hiab 

speed numerical computation. 



-1S6-

Many stuck-at faults cause hangups in self-timed hardware systems whose modules interact via 

asynchronous handshake prolocols. This property is often cited as evidence that self-timed systems 

provide naturaJ support for fault isolation and fault diagnosis. 1bere exists no methodology. 

however, for incorporating redundant hardware into self-timed systemS b'fauft tolefance. prior to 

our wort. 

Our major result in this area is a complete ~ for incorporating r:cdundant hardware 

into a class of packet systems for fault tolerance. This class includes all ~nninate sysrems and 

non-detcnninate systemS constructed with merge modules. In the course of this investigation. we 

·have addR!SMd Ille i>llowiftl.._: 

Strucl1're of Redundant Alodula 

We have pmlCllted a byte-sliced hafdware organi1.atioa for redundant packet cominunication 

modules. Byte slices in a· redundant module can be desiped and ooostructed ftml functional 

specifications for the nonrcdundant module and the chosen encoding scheme. We haft also 

described a class of asynchronous packet CCIDIPUDic,Sion ~i\t~ ia diese ll¥ldldel. 

Ffllllt MoMJilli 

Hardware failures in redundant modules are characterized by a stuck-at fault model. a random 

pulse train fault model and a random wave train fault model In each fault model. we have specified 

the kind of signals that can be aenerated by failed modules as well as die interaction between such 

signals and fault-free hardware elements in fault handlers. Thae fault models provide a vigorous 

basis for studying fault-tolerant hardware implementadom. 



-157-

Redundancy Management 

We have developed an approach to coordinate. D,te slices in,each redundant module so that 

failures among these slices can be detected and/or masked by dtcodigg the outputs they generate. 

~is approach is based on maintaining liming srnchmnimtioo ad~cy among byte slices in 

the same module; Thi& approach to reduadacy ~is supported by two.robust algorithms 

under which timing synchroniz.ation and consistency can be maintained eva after certain hardware 

failures have occurred. The effectiveness of this approach in dealing with hardware failures 

characterized by the stuck-at fault model, the' randOm pulse ·frain fauit model and the random wave 

train fault model is also inveStipted. We have a1So brlefty discussed an alternative approach to 

redundancy 'mana&ement for faUlt tolerance. based on ·butTerlns ·schemes. and its relative merits and 

disadvantages. 

We have presenfed COIW'ol module designs which cm detect amilor mast hardware failures 

under &be stuck-. fault~ ~flel' ...-...ftlllt .._ Uitderibe:A&dom puJse·tNin 

fauk model, these control BIOdaHcs ceo pqeraae Nnt-pula due fD:·IMSatstabJe state phenomena. but 

the probability of such occuneacea eaa be ,redueed to anpe1t'r' lcweJI.; .·We have also outlined an 

~. to deal with random wave &rain fauks. btat;haw:.• anelrztd; Ibis' approach ia suflicieat 

detail to evaluate its effectivenea 

Our timing synchronmtioa>teduaique is doie17· reiated'IB·the syndrtoniution V()tlng technique 

studied by Davierund WaMrly (171. and' has apfJticat:iollBin liuJt•telelaat'doct desip. We have 

clarified the problems ill this aN8 and t1'tir~ ........ 1hroulh iiWestlpting the hardwani 

implementation of our dminl sytae1Honi7.a&ion technique~ different.:fiiulhnodels. 



-158-

7.1.2 Fault· Tolerant Data Flew Procmor Desip 

A data flow processor can be rendered fauk-roleraot by implementiag a fault masting 

capability in each of its hardware modules. As an allanative approach we have developed a fault 

tolerance strategy for masting hardware failura ia die data ftow pruce1&or"'based on d,...UC 

redundancy. This alternative approach oft'en lhe p1ee111liit of ciJMiderable hardware savings. 

especially in the packet networb. 

The data flow processor is a paraJ1cl processing system in which $Cveral machine instructions 

may be e1ccutcd in para11el. and intennodule communication is ~ by packet networks. The 

ST AR computer (8) is probably lhe first fault-tolerant computer orpnir.ed by a dynamic redundancy 
' '1-· 

scheme. In this computer fault detection is supported by using arithmetic codes in ari~ units 

and system buses. and duplication in units that perfonn logic operations. Spare hardware modules 

and spare bus lines: aie incorpented and swi&cbed in to ntplace ftiled medales.t«haldw'are failures 

are cletected and diagDosecl The STAR COIRpUldF encueet 11W1£lthte imlruttioRs serially, aad s&are 

information is saved at PJ08f811l· dleckpointl for ... .,...._ IQlllNd1 •te Ra¥er ftom detected 

implemenled on Cbe ST All computer,. refined in aa:on11nce wi1b me,aft:hitecmral chanctnias f# 

the data flow computer: 

-- Failures in processing elements, speciali1.ed fuadioul --. mutera ·and aOoclaols am d 111! cted 

by designing anese modules. and eaeomna pacleuublda. to 5*PPC»t..., cbecb. 

-- Spare routers and allecafors are. rabedded ill pdet. metworb to support rapid replir. 

Homogeneous sets of preceaing elements and:.,a.liaed fuDcti8nal Ullits.are pnwidcd • that 

the system can degrade gracefully when these modules fail 

-- Transmitted packets arc saved until they are acknowledged, and retransmitted upon nquest. 



-159-

The dynamic redundancy scheme is developed by first focusing on fault tolerance requirements 

for the packet networks. A system strategy for fault W!erance is then developed based on the selected 

requirements. These requirements are also used to derive specifications for hardware· modules. The 

desired fault tolerance capabilities are implemented in these hardware modules using hardware 
. . 

redundancy techniques developed in the 6rst pan of this thesis. This same methodology can be used 

to design other dynamic redundancy schemes for fauk-tolerant dat.a flow processors. using different · 

fault tolerance requirements for the networks. 

Our design is but one of many possible alternatives for constructing fault-tolerant data flow 

processors. It nonetheless demonstrates that . fault tolerance can be incorporated into a high 

performance computing system with no impact on its pmarammability. 

7.1.3 Evaluation 

The data flow processor is desigaed to achieve h.iah performance lhrouab parallel proc:essing 

This parallel processing capability is not compromised irt the fauk-tolerant processor design we have 

proposed. Individual hardware operations may take longer to pertOnn due to input decoding and 

synchronization. But pipelined and concurrent operation of har4ware modules are still supported. 

In other words, fauh tolerance mechanisms incoiporated alOOfdial to our. strategy lengthens the 

execution time of microscopjc operations. but has no elfect on coacurrency exploitation at bilher 

leveJ&. 

For our intended applications, we also favor a self-timed implementation approach guided by 

packet communication principles. In constructing a totally self-timed system, the timing 

characteristics of individual modules need not be known. In our approach to redundancy 

management, we have relied upon performance compatibility among byte slices in the same 

redundant module to maintain proper synchroni7..ation, and we have also made assumptions on gate 



- lfJO-

delays and path delays in rontml module designs. For each redundant module. however. the only 

timing characteristics which must be made available to its enYironment for its successful deployment 

are phase differences among packets and ad:nowtedglnents in die same oUtput barch generated by 

fault-tree slices in that module. In synchronous syStems. Uppcrbounds on execution times for basic 

hardware operations in each module must aJ9o be calculared. Our procedure for integrating 

redundant pattet communication modules into fault-mlerant pactet commumcation systems is thus 

somewhat more complex than that for self-timed systems. aRd yel'~ly simplet than that 'rot · 

synchronous systems. We have lost some, but not an. of the desirable modularity properties of 

self-timed systems in our fault tolerance methodology. 

We have shown how to conStruc't ~ntrarit packet coHDtlUnicatiol'l sy9temS so that hardware 

failures limited to some maximum number of byte slices in each redundant module can be to~ 

We have, however, not addressed the issue of evaluating the rcliaba1ity improvements attainable 

through such enbancementl. We haw~ a-daip tnelllMloto&J for·iiieorporating reduDdant 

hardware into packet communication systemS for fault tutawc, a set el~ to support ddl 

methodology, ·and illustrated its app1icatioD in· a specific sylttm deSign. · "A1temative approaches to 

redundant manasement. akemariYe liled'88isntlto lllppOlt "*-' ~·- aJtername.,..... 
designs can be developed to guide lbe eomfnldioilolfauk liJlerant parallel pmcesSiDa sylrems b.ed 

on self-timed principles. When delaited lojic 4eligas1·111d lllldwl'ft filBuR l'illtl!s are avalllblt, 

alternative schemes can be evaluated more carefU1Jy to compare &heir reliability properties md 

cost-effectiveness. In this thesis. we have identified the technical issues and laid the foundation on 

which such alternatives can be developed and n•••wL 



-161-

7.2 Suggestions for Further Research 

We have pre~nted a design methodo1ogy for constructing fault-tolerant packet communication 

systems and a system design for a fault-tolerant data flow processor. Let us first consider some 

a1temative solutions to redundancy management and packet network design in this framework, and 

then discuss how our concepts and techniques can be applied to achieve fault-tolerance in more 

general forms of data flow processors and in constructing fault-tolerant computers for other 

applications. 

Redundancy Alanagement 

Our approach to redundancy management is based on maintaining.timing synchronization and 

consistency in redundant systems. An alternative approach to maintaining timing synchroni1.ation is 

described briefly in Section 5.5. 'Ibis approach is based on t})e idea of buffering packets and 

acknowledgments in control modules until they can be forwarded. It is conceptually simpler but 

implementation details must be worked out before its har4ware requirements and fau1t tolerance 

capabilities under different fault models can be eva1uated. Methods for determining buffer sizes in 

control modules and stratcaics for dealing wi&h .butfer overlaw must also be established. 

For our timing synchronization algorithm._3f + 111ynchronizcrs arc needed to tolere1tc failures in 

up to f synchronizers among them. The qucstio~ of whether there ex_ists robust timing 

synchronization algorithms which can be impleme~ted with fewer synchronizers, or whether 3f+ 1 is 

a lower bound for solving this problem remains unsettled. We riote that under restricted fault 

assumptions, timing synchronization can be maintained using synthronization;voting (17), which does 

not require any synchronization among byte slices in a redundant module. 



-162-

We have also suggested an approach to imp1cmcnt the timing synchronization algorithm in 

control modules under the random wave train fault mode1. In this approach we propose to use 

lowpa~ filte..S to eliminate random wave trains of bounded wavelength. 'Ibis.approach should be 

investigated using analog circuit design and analysis techniques to establish methods for dealing with 

random wave train faults. 

Packel Network Design 

Hardware failures in packet networks can be masked by implementing a fault masking 

capability, based on either error correcting codes or replication, in every ro.an~1N1Dd allecat«. ·Wto 

have adopted an alternative approach under which some hardware failures are masked and others arc 

only detected. ·Other alternatives include relying entirely on ~k~t ·~~ techniques. such as 

adding a. checksum nibble to each packet, to detect failures. and ~ time-out. mechanisms to 

control retransmmion, as fo the ARPAnet. It is worthwhik to ConduCt a~~ study of 

fault-toler~nt networt design, de~i~g different Wchniques ~rdiftg to the imp~ 

technologies and failure modes for which. they are effective. 

We have alscH1escribed twosuamgiesb~lllia& nsdUndantllantware into aNdaap11r 

packet network to support rapid repair. Interconnection networks in large parallel processing systemS 

often have regular struCtures and are constnJcted out o( ai~.~ of iclcnticaf ~nits. There arc 

thus many oJ)p0nuriitics for exploiting structural "regulaiity and. ~ifoOnity in. these networks in 

incorporating redundant modules and ·palhi intO them. · · 
'.;:;. - , 

Redundan1 Dala Flow Comp111er s,,,_,,. 

We have presented the design of a fault-tolerant data flow proccB>r intended for numerical 

computation applications. 1bis processor supports only a subset of the dala flow language presented 



-163-

in (22). More genera] forms of data flow computer systems (1), (65) must be deve1oped to support 

environments suitable for data base app1ications and genera] purpose computing. These systems 

shou1d a1so be fau1t--tolerant to improve availability and maintainability. 

Redundant Microcomputer Systems 

Many real-time control applications can benefit from the availability of ]ow-cost fau1t-tolerant 

computer systems. A redundant system can be constructed using several independently clocked 

microcomputers, and maintaining· timing synchronization and consistency among them. 

Redundancy management can be implemented in hardware, by incorporating the suitab1e hardware 

mechanisms in the microcomputer chip, or in software. by incorporating the corresponding 

operations into application programs. It is a chatlenging research problem to design a fault-tolerant 

microcomputer system, and the corresponding programming methodology. for real-time control 

applications based on these ideas. 

Finally, we note that many engineering decisions must be macle in applying the methodology 

explained in this thesis to the construction of practical fault-tolerant systems. Such decisions concern 

system modularil.ation for redundancy incorporation. the choice of a sui~ fault model for the 

implementation technology, and the choice of redundancy techniques subjected to reliability, 

performance and cost requirements. Methodologies can also be developed for making such 

decilions. 



-164-

References 

[l) 

(2) 

(3) 

(4) 

[5] 

[6] 

(7) 

W. n. .Ackcnnan. "A structure memory for data flow computerf', Laboratory for Computer 
Science. Massachusetts Institute ofTcchnology, TR-186, August.1977. 

W. H. Ackcnnan, "Data Flow Languages", Proceedings of the 1979 National Comptller 
Conference. pp. 1087-1095, June 1979. 

W. B. Ackennan and J. R. Dennis "VAL -- A Va/ue-Orienlea Algorithmic l.Anguage: 
Preliminary Refermce Alanuar. Laboratory for Computer Science. Mcmochusctts Institute of 
Technology, TR~218, June 1979. 

D. 8. Annstrona, A. D. Friedman and P. R. Menon. "Design .of asy11ebronous circuits assumina 
unbounded gate delay", IEEE-TCC-18. 12. pp 1110-1120, Dcc.1969. 

D. 8. Annstrong, A. 0. Friedman and P. R. Menon. "Design of asynchronous circuits assuming 
· unbounded gate delay". Dclf Telephone LabS. internal niemora1n1Un1 (unpublished): 

D. A. Anderson. Design of selfchecki11g digital networks using coding techniques. Coordinated 
Science Laboratory Rep. R-527, University of Illinois. Urbana. OcL 1971. 

A. A vizienis. "Fault-tolerance: the survival attribute of digital systemS" ~ P-t« IEEE. vol 66, 10. 
pp. 1109 - 1125, Oct 1978. 

[8) A. Avizienis, et al, "The STAR (Sclf-Tcsting·J\n~H\epaiQ,1) computer. An investipUoll of 
the theory and practice of fault-tolerant computer design", /Ef.'f.'·TC, vol. C·20, 11, pp. 
1312-1321, Nov. 1971. 

[9) A. A vizicnis. "Famt-tolerancc and longevity: goatS lbr high-speed romputers of the ruture•, 
Proceedings of the Symposium on High Speed Computer qml AfgQTilhm Organizatio1L Acadelnic 
Press, pp.173·178, 1977. . . •' . 

[10) A. Avizicnis, M. Ercegovac. T. Lang, P. S~Jvain cl A. Thomasian "An investigation of 
fault-tolerant architectures for large-scale numerical computing", Proceedings of IJte. · 
Symposium 011 High Speed Computer and Algorithm OrganiZtllion. Academic Press, pp. 
159-171.1977. 

[11] B. R. Horgcrson, "Spontaneous reconfiguration in a fail-softly computer utility", Proc. Datqfair 
73, British CrnnputcrSocicty, London, pp 326-333.1973. 

(12) G. A. Boughton, Routing Networks in Packet C0111munication Architectures, Dept of Electrical 
Engineering and Computer Science, M.1.T.,.S.M. 'lbcsis, June 1978. 



-165 -

[13) W. C. Carter and P.R. Schneider. "Design of dynamically checked computers", U:IP Congr.68, 
vol. 2, pp 878 - 883, Edinburgh, Scotland 1968. 

[14) T. J. Chancy, S. M. Ornstein. and W. M. Littlefield, "Beware the Synchronizer", Digest of 
Papers- Comp(on 72, IEEE, pp. 317-319, Sept., 1972 

[15) T. J. Chancy & C. E. Molnar. "Anomalous behavior of synchronizer and arbiter circuits", 
IEEE-TCC-22, 4, pp 421-422, April 1973. 

[16) W. M. Daly, A. L. Hopkins and J. F. McKenna. "A fault-tolerant digital clocking system", Dig.· 
3rd Int. Symp. Fau/1- Tolerant Comp. Palo Alto, CA, pp 17 - 22, June 1973. 

[17) D. Davies and J. F. Wakerly. "Synchronization and matching in redundant systems", IEEE-TC 
vol. C-27, 6, pp 531 - 539, June 1978. 

[18) D. Davies. "Reliable synchronization of redundant systems", Proc. 5th Annual Symp. Comp. 
Arch Palo Alto, CA. April 3 - 5, 1978. 

(19) D. Davies, "Reliable synchronization of redundant systems", Internal Memo, Digital Systems 
Laboratory, Stanford University, Stanford, California, Oct., 1977. 

(20} J. B. Dennis, "The varieties of data flow computers". Proceedings of the Isl International 
Conference on Distributed Systems, IEEE, October 1979. 

[21) J. B. Dennis "Packet Communication Architecture", Proc. 1975 Sagamore Computer 
Conference 011 Parallel Processing, Syracuse University, August 197S. 

[22) J. 8. Dennis, "First version of a data flow procedural language", Lecture Notes in Computer 
Science, vol.19, New York: Springer-Verlag, pp. 362-376, 1974. 

[23) J. B. Dennis, "Computation Structures", COSINE Conrmillee Lectures, Princeton University, 
Department of Electrical Engineering, Princeton, New Jersey, July 1968. 

[24] J. B. Dennis, G.A. Boughton & C.K.C. Leung "Buildins blocks for data flow prototypes" to be 
presented at the 7th Annual Symposium on Computer Architecture, francc, May 1980. 

[25) J. B. Dennis, & D.P. Misunas "A preliminary architecture for a basic data-How processor." 
Proceedings of the 211d Annual Symposium on Computer Architecture. IEEE, New York, pp. 
126-132, 1975. 

[26) J. B. Dennis, C.K.C. Leung & D.P. Misunas "A highly parallel processor using a data flow 
machine language", M.l.T. Laboratory for Computer Science, Computation Structures Group, 
Memo 134-1, Cambridge, Mass, also to appear in IEEE Transaction on Computers. 



-166-

[27) D. J. Ellis "Formal Specification! for Packl!I Comnt11nication Systems", Laboratory for 
Computer Science. Massachusetts Institute orTedrnofogy, Tft"'lt9. No¥cmber Im.· 

[28) J. Galiay, Y. Crow.ct and M. Vergniault "Physical vci'sus logical fault models in MOS LSI 
circuits. impact on their testability", Proc. of the 19'19 SymjJ.' bn Fault-ToTerant Computing, 
IEEE. pp 195-202, June, 1979. 

(29) R. W. Hamming. "Error detecting and error colTCctingtode", Bel/System Tttlrnical Journal, 
vol. 29, no. 2. pp 147-160, April 1950. 

(30) A. L. Hopkins. Jr .• T. 8. Smith, Ill, and J. H. Lala .. FfMP - A highfy reliable fault-tolerant 
multiprocessor for aircraft". /'roe. IEEE, vol 66, 10, pp 1221 - 1239, October 1978. 

(31) R. M. Keller. ''Towards a theory of universal specd-inttePCndcnnnodliks", I EER-TC C-23, 1, 
pp 21 - 33, Jan 1974. 

(32) P. R. Kosinski "Denotational Semantics of Determinate and Non-·Determinate Data Mow 
Programs", Laboratory for Computer Science, Mcmacbusctts lnstitutc.ofTcchnology. TR-220, 
May 1979. . . 

(33) C. K. C. Leung On a Design Methodology for Packet Comm11nication Systems based on a 
Hardware DeJign Lanpage, CSO Group Memo· under PrtParation. Lab. for C(>mputer 
Science, MIT, August 1979. · . · 

(341 C. K. C. Leung "ADL. an architecture description language l'Or packet communication 
systems", CSG Group Memo, Lab. forCCJlnt>t*rStimc~ MIT AlJBUst, 1'919, also presented at 
5th Symp 011 CHDL, Palo Alto, Ca. Oct 1979. 

(35) K. N. Levitt, M.W. Green, ct. J. Goldberg, "'A study of data commutation problems in a 
self-repairable multiprocessor", AF/PS Confemttt Procttdings. WJL 32, (1968 SJCC), 
'tbompscm Boot Company, W8911ihgton, D;C; 1968., pl): :SJS;-521. .. . 

[36) L. R. Marino "1be effect of asynchronous inputs on sequential network reliability", IEEE-TC, 
vol C-26, 11, pp lt82- IMO. Nov.1917. · 

(37) D. P. Misunas, "Deadlock avoidance in a data ftow architecture", ~rocttdi11gs of the Milwaukee 
Symposilim on A111onid1ic Conl[Jdrtioli Wrtl Control, IEEE; Apnt1975.. . 

(38) D. E. Muller "Asynchronous logics and application to information proccmng", Swilching 
theory in Spacer Technology Stanford University ~ Stanford. CA 1963 • 

• : ~ < 

(39) A. Newell and H. A. Simon. "CompatCl'9:ientc as empirical inquiry: symoolS and search", 
Communictlliomofl~ ACM, vof.19, no. 3, pp.11J-126~Mar~ ·mi: 



-167-

[40) Y. W. Ng and A. Avizienis, "A reliability model for gracefuUy degradable and repairable 
fault-tolerant systems", Proc. 1977 lnL Symp. Fault-Tolerant Computi11g. IEEE, pp. 22-28, 
June 1977. 

[41) B. Parhami and A. Avizienis, "A study of fault tolerance techniques for associati've processors", 
Proc. NCC, pp. 643-652, 1974. 

(42) S. S. Patil BlJUlltled and unbounded delay synchronizers a11d arbiters, Computation Structures 
Group Memo 103. I ..aboratory for Computer Science, M.l.T., Cambridge, Mass., June 1974. 

[43) M. Pechoucet. "Anomalous response times of input synchronizers", IEEE-TC, vol. C-25, 2. pp. 
133-139, Feb., 1976. 

[44) M. Pease, R. Shostak and L. Lamport "Reaching aarcement in the presence of faults", Jacm, 
vol. 27, no. 2, pp. 228-234, Apr., 1980. 

[45) W.W. Peterson and R J. Weldon, Erro~Comcling Codes. MIT Press. Cambridge, Mass., 1971. 

(46) T. R. N. Rao, Error Coding for Arilhmetic Processors, Academic PR9, New York, New York, 
1974. 

(47) C. L. Seitz "System Timing", Chapter 7 in Introduction Jo VLSI Systems, by C. A. Mead and L. 
A. Conway, AddiS<m-Wesley Press, October 1979. 

(48) C. L. Seitz "Self-Tuned VLSI Systems", Proceedings of the Caltech Cmiference on VLSI, 
Pasadena, California. January 1979. 

[49) ~ons on Data Flow Computer Architectures. Proc. of AFIPS Conference, 1979. 

[50) Sessions on Data Flow Computer Architectures. Proc. of Compcon 80, IEEE, Feb. 1980. 

(51) Session on the Fault-Tolerant Spaccbrone Computer. Proc. of the 1976 lnl. Symp. on 
Fault-Tolerant Computing, pp. 129-147, Pittsburg, PA, J~, 1976. 

[52) Special issue on fault-tolerant digital systems, Proc. IEEE, vol. 66, 10, October 1978. 

[53) Special issue on fault-tolerant computing, Computer, vol. 4, 1, Jan/Feb 1971. 

[54) Special issue on fault-tolerant computing, Computer, vol. 13, 3, March 1980. 

[55) C. Sheridan, "Space Shuttle Software", Datamation, July 1978. 

[56) T. B. Smith, III, "A damage- and fault-tolerant input/output network", /El!,'E-TC, vol. c~24. 
no. 5, pp. 505-512, May 1975. 



-168-

(57) J. J. Stiffler. N. G. Parke IV. and P. C. Barr. "1lle'SHRF fault-tolerant computer", Parts I and 
II, Proc. of the 1973 Int. Symp. Fault-Toletaltl Computing, PalO Alto. CA;:June, 1973. 

(58) W. N .. Toy, "Fault-tolerant design of Joca1 F..SS Processors", Proc. IEEE, pp. 1126-1145, Oct 
1978. . . 

(59) A. R. Tripathi and G. J. Lipovski, '.'Packet Switching in Banyan Networks", Proceedings of the 
6th Annual Symposium on Computer- Arthitft'tilre.·~ .,p. 160-161, ~pnl'l979. 

[60) J. G. Tyron, "Quadded logic", Redundancy TtthniquesforComputi11g Systems, Spartan Books; 
pp.205-228,1962. . 

[61) E. Vishniac, "A processor module for data flow computer tkYelopmenr,. Laboratory for 
Computer Science, M.l.T., CSO Memo 176, May 1979> 

[62) R. L. Wadsack, Fault modeling and logic simu/a1io11 o/CAIOS and MOS integrated circuits, Bell 
System Technical JourRat, vol. 57, S, pp M49-<141'l:"MaY~Wlt. 

[63) J. F. Waterly, "Transient failures in triifle' mocfuW' 'rCdbndalley systems *ith sequential 
modules", IEEE-TC, vol. 24, 5, pp. 570-573, May 197S. 

(64) J. F. Wakerly Error-delecfirtg cOtft. selF'checl:ing tirtt1lt$ anti applicalions. Elsevier-North 
Holland, New York 1978. 

[65] IC. S. Weng An abSlmet implemenlalfon a/ a ge~ lbla fln kl11guage", l..aboratory tbr 
Computer Science, Mas.w:huscus Institute of'fcchnology, Tedtnital R~'rR-228; 1980. 

[66) J. H. Wcnsley, L Lamport, J. Goldberg, M.W;Gfteft,fi(; M. l~evitt.'P.M:Mc1Jial"'Snthh, R. F.. 
Shostak, and C. B. Weinstock "SIFI' - The design and analysis of a fault-tolerant computer for 
aimaft control", Pr«IEE8.w1:r6~ I&, pplM·~f255,fi:11191ti:; ''': ' 

[67) W. A. Wulf and C. G. Bell "C.mmp ·a;muJtHnifti ~. h«_:AF!PS 1971, FJCC. vol 
41, AFIPS ~ Montvale, NJ;pP. 7'5•777. ' 



-169-

Biographical Note 

Clement Kin Cho Leung was born in Hong Kong on December 26, 1949. He received his high 
school education at Wah Yan College, Hong Kong. He was awarded a Graham Scholarship for his 
achievements in the Hong Kong Schcx>l Certificate Examination in 1968. 

From 1968 to 1980, he was enrolled at the Massachusetts Institute of Technology. He received 
the degrees of Hachelor of Science, Master of Science and Electrical Engineer from the Department 
of Electrical Engineering and Computer Science in June, 1975. He also held an instructor 
appointmenc in the Department of Electrical Engineering and Computer Science from 1975 to 1978. 

As a member of the Computation Structures Group at the Laboratory for Computer Science at 
MIT, Mr. Leung has conducted research in parallel proc~ing, data flow computer architecture, 
architecture description languages, and fault-tolerant computer design. He is also a member of the 
IEEE and the ACM, and has been elected to Tau Beta Pi, Eta Kappa Nu, and Sigma Xi. 

Mr. Leung is current1y a research associate at the Laboratory for Computer Science at MIT. He 
is married to Enid Yee Wan Yim. 


