MIT/ICS/TR-250

FAULT TOLERANCE IN PACKET COMMUNICATION

COMPUTER ARCHITECTURES

Clement Kin Cho Ieung

Tius blank page was inserted to preserve pagination.

Cambridge

Fault Tolerance
Packet Communication Compater Architectures
by

Clement Kin Cho Leung

® Massachusetts Institute of Technology

September 1980
This research was supported by National Science Foundation

under grant MCS 75-04060 A0l ~

Massachusetts Institute of Technology
Laboratory for Compuler Science
. Massachusetts 02139

Fault Tolerance in Packet Communication Computer Architectures
. by
Clement Kin Cho Leung

Submitted to the Department of Electrical Engineering andCanputerScnence on 28 August 1980
in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Abstract

It is attractive to implement a large scale parallel processing system as a self-timed hardware
system with decentralized control and to improve maintainability and availability in such a system
through fault tolerance. In this thesis we show how to tolerate hardware failures in a self-timed
hardware system with a packet communication architecture, designed to execute parallel programs
organized by data flow concepts.

We first formulate a design methodology for i incorporating redundant hardware into self-timed

. systems for fault tolerance. Redundancy management problems in self-timed systems are illustrated

with a byte-sliced hardware module structure.- Robust algorithms are given for synchronizing byte

- slices in a redundant module so that their outputs can be decoded to detect and/or mask hardware

failures. Hardware implementation of these redundancy management algorithms is studied under a
stuck-at fault model, a random pulse train fault model and a random wave train fault model.

In studying the design of fault-tolerant data flow processors we have also developed a dynamic
redundancy scheme for masking hardwarc failures in a multiprocessor architecture designed to
cxecute parallel programs organized by data flow principles. Novel features of this architecture
include use of packet netwosks:to support communication among processing elements and dynamic
allocation of a homogeneous set of functional units t service requests. Program organization and
hardware module designs to support the-dynamic redundancy scheme are described.

Thesis Supervisor : Jack B. Dennis
Title : Professor of Electrical Engineering and Computer Science

Keywords : Data flow computer architecture, sélf-timed Bardware systems, fault tolerance, dynamic
redundancy, fault-tolerant networks, fault-tolerant synchronization, non-determinacy.

Aclmowm'

I would first of all like to express my gratitude to my thesis supervisor, Professor Jack B.
Dennis, who heads the Computation Structures Group at the Laboratory for Computer Science at
MIT. He has been a constant source of encouragemeant and insight during my graduate studies. 'He
and Professor Michacl L. Dertouzos, director of the Laboratory for Computer Science at MIT, have’

also provided me with numerous opportunities for professional advancement. From them 1 have
Jearned a great deal.

I thank my readers, Professors Elias and Halstead, for their many constructive comments.
Critical comments from Dr. Liba Svobodova, novl of!RiA,unmearbcrdmﬁoanmes:sarealso
grawﬁ.lllyaclmowledged.

I am much indebted to the Department of Eleirical Eaginoering and Computer Science at
MIT which has provided me with financial mppmth:m uhmmahms and instructor
appointments. 3

I would also like to thank Professor Frederick C. Hennie III, my faculty advisor, for his
guidance and support over the years.

Members and former members of the Computation Structures Group, in particular William B.
Ackerman, Sheldon and Sandy Borkin, Andy Boughton; Dean and Ruth Brock, Randy Bryant, Lynn
Montz and Ken Weng, have provided this foreign student and his wife a home away from home.

My eight years of graduate studies have been very rewarding academically. For other than
academic reasons, these eight years have also been quite trying emotionally. Members of my family,
my wife Enid by my side, andmyparemsandbmd!efsﬁomﬁ have shared the frustrations of a
seemingly endless graduate program with me, andlnvemppmdmenelﬂedy

Table of Contents

Abstract

Acknowledgment

Table of Contents

1. IDUTOAUCHION c..eeceeeirencrecinisareneesas sessesessessssmssssesssmssesasasstessasssssssstsassmsossasasase

1.1 Fault TOIETANCE.....ccereerccreecrrerenseneesssssansnesessonsansses

1.1.1 Basic Concepts........coverevrvarenenne

1.1.2 Structure of Redundant Packet Communication Systems
1.2 Problem Statement
1.2.1 Design of a Fault-Tolerant Packet Communication

COMPULCT ATCRILECIUTEcovuecerrieresererrerisescsessssassessssasesasesssanssserasares
1.2.2 Redundancy Management in Self-Timed Hardware Systems.......coceeeeeerccecscscenes
1.2.3 Implementation Considerations.... resnasemeacet s asnsas sessanans

1.3 Related Work
1.3.1 Fault-Tolerant Architectures........ccoeeeenun.

1.3.2 Synchronization and Consistency Maintenance
1.4 Synopsis

2. Timing Synchronization and Consistency Maintcnance in Packet Communication Systems.......

2.1 Byte-sliced Packet Communication Modules

2.2 Timing Synchronization

2.3 Consistency MaintenancCe.............oeeoeersresrscsssssssssasssesorssasessrnsssrossssavssens

2.4 Discussion

3. Robust Algorithms for Timing Synchronization and Consistency Maintenance

3.1 An Algorithm for Timing Synchronization

............................

3.2 An Algorithm for Consistency Maintenance..

3.3 Discussion................

4. Asynchronous Packet Communication Protocols and Fault Models

4.1 Asynchronous Packet Communication Protocols
4.2 Fault Modeling

4.3 Discussion

11
11
15
17

18

22
26
29
29
32
34

38

47
50

53

62

67

72

713

79
88

5. Control Module and Synchronization Merge Module Design

5.1 Synchronizer Implementation........
5.1.1 Synchronizer Implementation undcr Fault-Free Condmons

5.1.2 Synchronizer Implementation under the Stuck-At Fault Model

5.1.3 Syachronizer impicmentation

_ under the Random Pulsc Train Fault Model
5.1.4 Synchronizer Impicmentation
" under the Random Wave Train Fault Model

5.2 Decoding Section Implementation
5.3 Implementation of the Synchronizing Merge Module

5.3.1 Hardware Structure of a Synchironizifg Mérge Modufe

5.3.2 Implementation of the Decision Algorithm

5.4 Design Examples

N Y S

5.5 Discussion

6. Design of a Fault-Tolerant Packet Commumcanon Computer An:hnectune

6.1 A Packet Commumcatmn Computer Archltectute

6.1.1 Hardware Organization
6.1.2 Packet Networks

6.2 A Fault Tolcrance Strategy Based on Dynamnc Redundancy .
6.3 Module Design . o

6.4 Network chalr Strategles

6.5 Discussion

7. Conclusion

7.1 Summary of Results

7.1.1 Fault Tolerance in Sclf-Timed Hardwar?ésymns

7.12 Fault-Tolerant Data Flow Processor m

7.1.3 Evaluation

7.2 Suggestions for Further Research

References

103

106 .
108
114
116
118
123
127

131

132
132
135
138
142
148
152

155
155
155
158

159
161

164

1. Introduction
In this thesis we study the following fault tolerance problem:

"How can hardware failures be tolerated in a seif-timed hardware system which is
organized by a packet communication architecture and designed'lo execute data flow

programs 7"

We first explain our motivations for studying fault tolerance problems in this context.

Computer systems which are significantly more powerful than those presently available are
needed in weather forecasting and acronautical design. These physics problems are often formulated
as é set of difference equatioz# for numerical solution. It is readily apparent from studying these
cquations that many intermediate values required for their solution can be computed in parallel; and
mnsamﬁvemmmumm’yhkhmmmmmmhardm
concurrency. Many approaches to organize a large number of hirdware units so that a good portion
of them can participate in the computation in progress simultaneously have been studied.
Architectures based on vector processing and array processing are available commercially. Another
approach which appears to be very promising, and provides the environment in which the research |
reported in this thesis is carried out, is to construct computer systems based on data flow concepts.
Current projects on data-driven computations and highly concurrent systems based on these concepts
are surveyed in [50], [51].

The data flow approach to parallel processing is based on the observation that an operation is
enabled for execution as soon as the operands it needs are available, and hence need not be further
delayed by other artificial sequencing constraints. In the internal representation of an application

program in a data flow system, data dependencies among operations are stored explicitly and used

directly to schedule operations for execution. In the data flow computer architectures [24], [25)
studied at MIT, application programs are stored as program graphs, and hardware units are designed

to execute pmgrmn graphis directly.

_ In aconventional computer organization, operation of hardware units such as arithmetic-logic
units, shifters and register files are coordinated in.machine mﬁmcnon execution by control signals
generated by a control unit. Many mamframecompuwm minicomputers and microcomputers are
implemented under this control strategy. We call this mode of hardware operation centralized
control. To gain orders of magnitude improvement in performance over state-of-the-art
uniprocessors, a parallel processing éystem must incorporate a large number of hardware units and
exploit parallelism in computations to achieve high throughput. It seems that to operate a large
number of hardware units under centralized control, excessive demand will be placed on the
complexity and performance of the control unit. Performanice is compromised if the control unit
becomes a system bottieneck due to the complexity ﬁfme control tasks ‘it'mm carry out. On the
other hand, only restricted forms of parallelism, such as pipelining and array processing, can be
realized as simple comml tasks. For a large scale architecture it is thus attractive to use decentralized
control. Packet communication architecture is an organizational scheme to support decentralized
control.

Under the packet communication principle hardware units in a system communicate with each
other by exchanging information packets, and packet precessing is carried out at each unit
autonomously. The size and complexity of these units depend on both system design and
implementation technology. In an architecture designed for high speed numerical computation, for
example, cach unit may consist of a small number of VLSI chips and a packet may consist of a pair of
floating point numbers and some control information. '

~ The packet communication discipline has been used to organize several data flow processors
[24], [26] and a high throughput memory system [21]. We have also studied design methodologies for
constructing ha;dware systems organized by a packet communication architecture, which we shall
refer to as packel communication systems [33]. Formal methods for studying properties of packet
communication systems have been studied in [27) and [32]. ‘In this thesis we study architectural
organizatiohs appropriate for tolerating hardware failures in packet communication computer
architectures, and will illustrate our ideas with a packet communication architecture designed to
execute a class of data flow programs. As part of this study we have also developed a set of concepts
and techniques for incorporating redundant hardware into se{f timed hardware systems [48] to combat

In a cqnyentional computer organimtion low level hardware synchronization, between a
combinational circuit and its input and output remers. for example, is governed by a set of periodic
signals generated by a system clock. Due to the use of a system clock, these hardware systems are also
called _synchmnbus hardware systems. A decentralized control computer architecture can be
implemented as a syng:hronous system. A large scale synchronous system, however, suffers from poor
modularity because synchronous operation introduces strang interaction among hardware modules,
indirectly through the timing characteristics of the clock signals. The design of each hardware
module must be consistent with the period and frequency of the clock signals, even though these
characteristics may have been imposed by the synchronization' requirements of other hardware
modules. When two neighboring hardware modules synchronize their input, processing and output
activities indirectly by referencing a cominon timing signal and one of thesé modules is modified, the
modification must not violate the timing assumptions made'in thé other module. Otherwise the other
module must be modified accordingly.. There are also skéw problems associated with clock
distribution in a large scale system. For these reasons we also favor implementing packet

communication system as an interconnection of hardware modules which exchange packets under
asynchronous two-way handshake protocols.

Under an asynchronous packet communication protocol, packet communication between
modules is synchronized entirely through exchanging signals amang them. We call hardware
modules which interact with their environment via these protocols packel communication modules.
An example of asynchronous packet corhmunicatiqn is glven i\h‘Fig. ” 1.‘£:L’Packets are delivered as a
sequence of packet bytes over an 8-bit data link (Fig. 1.1a). Packet byte reoeipt and transmission are
synchronized by exchanging control signaks between the sender and the receiver.t)ver the control link.

Packet communication using the control discipline of transition signaling is illustrated in Fig. 1.1b.

Since a packet communicatidn system makes use of handshake protocols for sending packets
between modules, it is ﬂso a self-timed hardware system. The redundancy .thanagettrent concepts
and techniques developed in this thesis have been talored speclﬁcally for packet systems, but they
are also applicable to other classes of self«umcd hardware systems 41, 131}, [39}. {49].

Let us consider designing high perfonnance cmputmg systems for physncs simulation such as
in weather forecasting and aeronautical design. The phyncs sxmuMon enmonment is different from
traditional application domains for fault-tolerant computers, such as process control and
interplanetary spaceflight, in that it mherently has no stnucnt reinbthty requirements. It is
nonetheless attractive to use fault tolerance techmques to mpmve avallabahty zmd mamtamabthty
System throughput is lmproved xf hardware faxlures can be masked. especully since it is not unusual
for a numerical computation in physics simulation to execute for many hours. It is extremely
annoying if the entire computing system is disabled because of one malfunctioning transistor or one
loose connection among the hundreds of thousands in use. These considerations have motivated the

research reported in this thesis on fault tolerance in packet communication computer architectures.

~-10-

Do o
]
¢
o data wires
D7 .
ready - ~
contro] wires
acknowledge - —
(a) Bundle structure
1
ready
i
) i
)
v .
1 i
acknowledge : :
.0 + 3 | I
i 1 | |
I I | |
i ! i
packet received packet received
ready ready
(b) Transition signaling

Fig. 1.1. An asynchronous packet communication protocol.

The problems studied in this thesis will be explained in more detail after we introduce some

fundamental ideas »for designing computing systems which can folerate hardwm failures.

-11-

1.1 Fault Tolerance
1.1.1 Basic Concepts

The following paragraphs on fault tolerance for phivsical faults is excerpted from the paper
"Fault-tolerance: The survival attribute of digital systeins™ by Proféssor Algirdas Avizienis of UCLA,
published in the Proceedings of the IEEE, vol. 66,10, 10,153 =~

"The notion of fault telerance for physical faults asan at;tﬁSute of digital systems requires the
viewing of the system from two different viewpaints: physical and logical. From the viewpoint of
purely physical observation and measurcment, digital sysiems are. physical systems, built of large
assemblies of electronic, electromechanical and otherrp,hysn;cal components. The components obey
the laws of physics and the behavior of the system can be descnbed in terms of time functions of the
values of physical variables: voltages, currems, podﬂons, et -

"From the viewpoint of the human saciety at large digital systems are 'black boxes’ that
perform information processing to meet human nceds. In the very geseral view of Newell and Simon
[40], they serve as physical symbol systems, in which phyncal variables: represent other entiﬁes'-
symbols, expressions, and processes, and the system is capable of designation and interpretation. At
the level of greatest formal detail, the information processing behavior of digital system may be
specified in terms of a fiite-state sequential machine. Qutside of the formal interpretations, the daily
user sees his box of digital hardware as a useﬁxlmfmﬁat m store large quantmes of symbotlic
information and can carry out information processing operations that are specified by his programs.
In this perspective, it is only the logical activity of information processing that concems the user, and
not the physical properties of the circuits inside. As long as the logic machine runs well, what
happens with the physical system that is its host is of very litele, if any, interest.

-12-

_ "The use of the physical system as a logic machine is based on the conventions that the values
of physical variables are interpreted as the discrete values of logic variables, md that the speed with
which transfonmtions are carried out is limited by the physical properties of the hardware The loglc‘
machine behaves in the specified manner a3 long as the parameters-of physical components and the
speed of opergtion remain w‘itl;ir;ﬂspec'iﬁgd limits. However, it has been a common experience that

unexpectcd out-of-specification physical changes in component parameters do occur in all kinds of-

digital hardware. They are usually called malfunctions when the changes are temporary, and failures
when the changes are permanent. Their effect is to cause an utispecified and disruptive change of
one or more logic variables of the logic machine. Sueli a change of logic values is called a physical

fault, or simply a fsult when the physical cause of the fault i tlear from the context of the discussion,
asit is here. ...

"It is the Mbﬂiw of randomly occurring faults that makes the user uncomfortably aware of
the physical side of his logic machine. Theoccumncﬁofafaultoﬂnnwmanmr,ﬂmis.a
deviation of the logic machine from its program-specified behavior (trantition through a sequence of
specified states) into a sequence of error states. While in an -error state, ‘the Jogic machine fails to
perform correctly at least one of its specified tasks, and suffers a partial or complete failure to carry
out the information processing function. Such failures are a commonplace experience for the users of
contemporary information processing systems. The usual solution of the problem is a manually
controlled maintensnce action that results in the removal or répair of the cause of the fault. The
system is then restarted to run until the next fault strikes. -

"The purpose of fault-tolerance is to offer an alternate solytion fo the fault problem in which
the detection of faults and the recovery to normal operation are. carried out &3 insernal functions of
the system itself. Fault-tolerance is the unique attribute of a digital system which makes it possible
for the system to continue with its program-specified behavior as a logic machine after the occurrence

13-

of faults. It may be said that fault-tolerance is the survnul aanbute of the loglc machme because its
purpose :stocause a return from enmsmesback tothemecnﬁedbehavnor musassunngthe sumval

of the mfonnauon processmg actmues.

" ... fault-tolerance requires additional hardware and/or soRware that is redundant during
jous i'a completely Fault-free logic machine. Inthe

normal operation and would be entirely superfh
fault-prone physical implementation, fmﬂttolenme s the insuraicé of the logic machine against
disruptive physlcal events. lts funcuon is to react to the oecurrence of faults and to protect the logic

Fegid

machine agamst the xmperfecuons of the physlcal system that serves s nts hon

The above excerpt: serves to introduce tié basic notions of failures faults errors and fault
tolerance-for fault-toleratit computiﬁg We use'the terms fullures, falts and errors as explained
above. A failure is an lmexpecmd out-ofspecificition physicil cliange in component parameters.
Examples of failures are out-6f-spec transiitors and locée coinections. A faull is an unspecified and

s e
KPS

disruptive change of logic values éausedd'by & fallure. A faflife cocurs i a physical machine while a
iciioiena by postulating how logic
valies may change when physical faflures‘occur. The moet common fault model is the stuck-at fault

fault occurs in a logical machine. A fault mode! relates the two

model which postulates that logic variables will become stuck at either logical 1 or logical 0 as a result
of physical failures. An error s a deviation of the logic machine from its program-specificd behavior
into a sequence of error states due to faults. Faults may be tolérated such that their occurrences do
not cause errors. A simple example of fault tolerance is to use bit-sliced memory systems protected
by error correcting codes so that when a single bit-slice fails ad causes one bit of the data word to be
faulty, the contents of the word can stifl be recovered dnd 1o érfoe cin oecur, |

We shall restrict our attention to tolerating physical failures in this thesis, and will not deal with
‘human mistakes that occur when the computing system is designed, implemented or in use. '

R

Fault-tolerant systems differ in the protections each offers against physical failures. For system
design the related notions of maintainability and availability are also usful, Maintainability i the
property of having low maintenance costs. Availability is a measure of the fraction of the useful life
of a computing system during which the system: js available for performing the functions it is
designed for. Communication processors are often designed ,_tgfbe highly available, even though
there is no s‘uarantee‘that cbnversat@ons in progress when failures occur, will not be disrupted. . -

The logical machine we work with in this thens isa cbmputer sysictﬁ des:gned to execute a clas'z
of data flow programs. The underlying physical machiné is a hardware system organized by a packet
communication architecture. We_study architectural organizations and hardware redundancy
techniques appmpﬁaw for tolerating certain types of hardware Mmgm physical machine, Our
design goal is that a data ﬂov{ program running on the computer system when failures in the specified
class occur can always run to completion, and compute the sage, resulia as if no failure has accurred.
In other words, the program execution capabilities of the logical machine are prescrved as long as
only failures in the specified class occur in the physical machine. The system design presented in this
thesis achieves fault tolerance by integrating program organization, architectural . features and
redundant hardware in the physical machine into a system strategy. This strategy is effective only for
certain types ofhardwarg ;falilures in the physical machine. Hardwm failures in a physical machine
are characterized by their extent, as well as by fault modtls. We will study. fault models for packet
communication systems in detail. For now we state our assumptions about the extent of hardware
failummatcanbetoJeratedbyourmtegy._Simeﬂmexmdfaﬂumunmlybcdelcri_b_edin
terms of physical structure, we next introduce the structure of redundant hardwase modules used in
this thesis.

-15 ;,
* 1.1.2 Structure of Redundant Packa o
We propose a des:gn methodology for hult-tolemnt packet cmnmumcanon systm:s consastmg
of the following steps: | - '

(1) A packet communication system is desrsned accordma to its ﬁmcuonal spec:ﬁcauon We refer to
this initial desagn asthenon redundantsystem R ' -) |

(2) Fault tolerance is incorporated into the non~:edunant system by moo:poranns redundant
hardware into each module in the non-mdundant syﬂem and mto the connecnons between

modules. Thepmductofﬂusseoondwpnawdmdmmanmpomnysunﬂarmﬂw

Forthxsthests,weﬁnm)ermommnnematredundantpacketcamuunmmonmodulshavea‘ ‘
byte-slmedmtermlorgammomoonﬁnxtedmthfaihn—mdepeadmtbndm

Bymslmngmammontechnnmformlemenﬂnamsy@msmdmmmemmv;
Processors. Amemorydupmmmﬂmemlogicdﬁpmemﬂwspeaﬁedmncuonforﬁxed_
size bytes. An array of such chips.it used (o implement. these, fus tions for sultiple-byte words. In
ol cac byt sl should v l it o, o oms o are pasaed betwesm slices
in the same array, ¢In a memary system or an arithmetic-logic pracessat each byte-slice receives only -
one byte dnd!mputmmﬁqmmmﬂmmhmmm
chips.) An gutput word of a byte-sliced module.consé sfmw'mmmwm .

Forfaulttolemnce redundmtslmmumodwedmmabyte-dacednwduleandmcbymm
D i
eachouq;utwordarecon'elatedbywmodmgscheme. !nanenoodmaschemeahardwaremdule

LE

xsmodeledasaﬁlncnonwhlchnnpszmmputbxtvectormtoanwtputbltvector andamodule‘

failure is modeled as a fault function which maps 8 fault-free output bit vector into a faulty one. If
each ‘output bit vector consists of n bits, then an encoding acbeme C pamtions the set of all n-bit
vectors mtoacode spacesc andanm-codewNC Todetecthardware fatluresinamodule.C is
chosen such that:

(1) All output vectors generated by the module duﬁné fault-free operation are in SC. and

(2) Under the most common hardware faxlure modes in the module no faulty bit vector in S¢ can be
generated. This property implies that under the most common failure modes the outputs
generated by the module is either the fault-free result or isa non-codeworti‘inrNC.

When the output words of a module are encoded by a scheme C satisfying these two properties,
the most likely hardware failures in the module can be detected by checking these words for code
space violations. An ,eoooding scheme can be used to mask t‘ailum in a hardware module if it
saisfies (),) and (3): | - "

(3) Under the most common hardware fmlure modes in the module each faulty output vector in N
can be decoded to derive the fault-free vector

Thebywdkedommiuﬁonhpuﬂénhdymmbkmmmmwchmquam
under some of the most common failuré modes, failure of a single byte shice, for example, only one
byte in each cutput word will be affected. Since the pioneering work of Hamming [29}, much work
has been done on applying coding techniques to detect and mask faihires in byte-sticed arithmetic
processors and memory systems {6}, {13}, [65], [47). ‘Hardware failures are also often dealt with using
modular redundancy. In a modular redundancy schemc several ooples of a hardware module are
operated togcthcr and thelr outputs are compared or voted upon to detect and mask haldwm
failures among them. Modularmdundancycanberegardedasaspemlcaseofbyteslicmgmd_
output encoding in which all slices perform identical functtons and each output word consists of two

-17-

or more identical bytes.

Each byte-sliced module Mina redundant packet commumcanon module is des:gned so that
failures among byte slices in it can be detected and/or muked by deeodmg their outputs, as long as |
the extent of hardware fallures is limited to less than sane ﬁxed number MN. of bytc shces in the
module.

A redundant packet communication system oomtmcted usmg ﬂme by(e'shced modules can
only tolerate hardware failures whow extents are thus liumed. It isa relmb:hty n'nprovement over its

nonredundant counterpart, however, only if

(i) All the redundancy management mechanisms are désigned cofrectly afid opérating réfiably, and
(i) In the implementation technology, the probability that more than MN slices have falledma,{
redundantmoduleMshssduanﬂwpmbabd:tyﬂmdxenonre@ndmtcounterpmtothasﬁ

Wehavemadehexmﬁabﬂitymsuﬁpﬁomhwnhgoutme:ﬁmwmmm ‘
1.2 Problem Statement

There are two major results reported in this thesis: a conoeptual design for a fult-tolerant
packet communication computer architecture, and a set of concepts and techniques for managing
dataﬂowcomputcromamwwnsmdmefaultmlermfummmbuﬂtmmﬂympmm
execunonmechanxsmatmem:nelevel Thehardwaremodulesmmnsardutecnuemdude
processing elements, which provnde storage for the program in execunon and sunple ﬁmctioml
capabilities, specialized ﬁmcuonal units for perfomung more complex operauons, roulers for
constructing routing networks, and allocators for constmcung allocatron networks. The propemes of |

-18-

these modules are explained in more detail in Chapter 6. Fm-nowwenotediatmeredundancy
concepts and techniques we have developed lhrself-umedhndwmsystmasmappltableto
tolerating hardware failures in the class of packet communmnonsystemsducribedm [33], including
aﬂﬂlesehardwarcnmdulesusedinthedaaﬂowmpuﬁnzsystem 'lhuswhlletheredundancy
management concepts and techniques have been developed to provide implememanon tools for
realizingthc fault-tolerant amhitectumasspeciﬁcd,meyarein fact more generally applicable.

Fcamresofmedata flow prooessormdescnbedm Section 1.2.1. 'l'he need formu'oduclns
new concepts and techmqucs 0 manage redundancy in self-ﬂmed systems is illustmed in Section
12.2. Some of the technical problems that arise in lmplemennng our mdundancy management
schemes in hardware are discussed in Section 1.2.3. . ..o

1.2.1 Design of a Fault-Tolerant Packet Communication Computer Architecture

Most computer systems [8], [30], [58], [67] designed to tolerate hardware failures are intended
for high reliability or long life applicauons with modest compumioml mqmmments. In this thesis,
we study fault tolerance techmques to oope w:th hardware fallunes ina mulnproeesaor dengned to
execute programs expressed in a subset of the data flow language presented in {22} - We shall refer to
this multiprocessor system as a data flow pmceasorforconvenience This data ﬂowpmceuorhas
several novel features: ‘

1. High performance and faull lolerance are achieved by using pools.of identieal hardware units.

Fauit-@kmt multiprocessor systems [11], "[30] have been dengnedusmg ‘mulrtiple, identicai.
hardware units. Aprogram mnningon medataﬂowpmessonspamuonedandstomdonuetof
idenucalproomngelemcnts. Thedata ﬂowpmcemrahoh&sahanogeneoussetofspemhmd
functional units for perfonmng cnmplex opemions. 'I‘hese functional units are aflocated dynamically

to service requests from the processing elements. The dyvamic allocation scheme provides direct
support for graceful degradation with respect to these functional units. Programs prepared for

on' if only a subset of

execution on the faul-free data flow ‘processor can ‘run without mo
functional units has failed.

2. Communication among processing elements and functional units is supported by packet networks,

© In the data flow processor hardware modules serve two distinct functions - processing and
communication. Processing element#" in a data flow proceuor execute mbeombmatiohsk concurrently.
Communication between the processing clements i supported by packet networks, to be constructed
out of a few basnc LSI celf types. “This architecture is qmte diﬁ‘emnt from most fault-tolerant
computer archltecmres reponed in the hterature, which are bus-onented von Neumann architectures
~ [8, 59, 58] or bus-oriented mulnproeessors [30 67]. Store-and- forward packet network deslgns which
can handle a large number of packets comurrenﬂy have been analymd in [12]. In some of these
networks the number of basic modules and the kength of connections between them both exhibit
faster than linear growth as the number of pmoenng elements bemg se_ryk;gd mcreases. It thus
meamWM mntAoft;ardwminakadaéﬂowpmmorwﬂlhem:edm
implement packet networks. The reliability of these hwogks will be - important factor in assessing
system reliablity and availabilty, and it i important 1o minjmize the amount of redundant hardware
invested in them to achieve a desired level of oult tolerancs.

-0
3. Hardware in the data flow processor is organized as a packet communication architecture.

The data flow processor hardware is organized by-a packet. caommunication discipline to support.
concurrency and modularity. Computer architectures are commonly implemg\ed/&wncm :
digital systems in which events in all modules are synchromzed with reference to a common timing
signal. Many fundamental fault tolerance wchmquu have been developed in this context. In
contrast, a packet communication computer architecture is implemented as an »mtemonn_ecuon of
selftimed modules whose activiies are synchronized through localized signal exchange, in
sccordance with the adopted packet communication proicol Fault toierance tzchniques for

- asynchronous systems have been demonmted pmviqngly ina fwlt-toleram clggk deﬂgn [16]) and are
reported in a paper on synchréniza{iqn volmg by Da\m and Wakerly [17]. We have generalized these
techniqueé to show that byte slicing and ooding techniques can be used tp mag}kjand detect failures in .
eftimed ysems undr more geneal flt seumpuons than the commonly adoped skt fl
o . _ :

In this thesis we present a fault-tolerant data flow proousor design based on dynamic
redundancy. In a dynamic redundancy scheme redundant hardware is incorporated to support
on-line fault detection. Upon detecting a hardware failure, normal prooemngisanpended. The
systemxsdmosedandrepmed(posdblydem:ded). Nomalpmcenngnsmenresumedmd
subcomputations contaminated by fmlumarereexecuwd. o ' o '

The dynamic redundancy scheme uses a combination of hardware-implemented fault detection
and packet encoding techniques to mask packet network fsilures in the fault-tolerant data flow
processor. Ituwh retransmission strategy which is conceptually similar to error control techniques
used in packet switched computer networks like the ARPANET. Differences in failure characteristics
and perfommoe requirements between these two'typel of networks have led to different

-21-

implementation strategies. We have also developed strategies-for incorporating redundant hardware

into a packet network to support rapid repair.

In some computer systems hardware failures are tasked using module replication and majority
voting. Another example of hardWare—irnb!emenlted"ﬁd!t‘ma‘skins is the use of error correcting codes
in bit-sliced or byte-sticed memory systems. The hardware redundancy techniques presented in this .
thesis can be used to incorporate redundait Nardware to either mask or detect failures on-line in a
self-timed hardware system. It is thus posdible to design a fault-tolerant packet communication
computer architecture based onvhardware-implunented fault masking. The dynamic redundancy
scheme we have developed offers the potenual of conﬂderable hard\vare savmgs, especially in the
packet networks. Hardware-lmplemenwd fault makia; offers two advantages over a dynamic
redundancy scheme the computauon in pmgres need wt be held up unul recovery is completed,
since hardware failures are m:sked on-lme and no addmonal prosmnmmg effort is reqmred to
insert checkpoints into apphcanon prognms. The ﬁm upabihty s rmponant in meeting stringent
response time requirements, in proeessoonudapphcmom. forexample but:snotessennalfor
numerical computation. Aswedullsee daedymmacredundmcyschanewehavedeveloped
perfommreooveryatmemadnnemuonkvelmdhemehmmmpactonapphum

programmmg.

When detailed logic designs and hardware failure rates are available for a hardware
| implementation, altermuvemmmaybeweﬁmywﬂuwdwdetemmemeumsmﬂ'eeuvm

. -n.

1.2.2 Redundancy Management in Self-Timed Hardware Systems

In this thesis a data flow computing system is implemémed ina physncal machine organized by
a packet communication architecture. Our dynamic redundancy scheme must be supported by
hardware-implemented fault detection. In Section 1.1 we have introduced a byte-sliced hardware

structure for redundant packet communication modules. We will use this structure. o incorporate .

redundant hardware for fault detection. Given a specification of the non-redundant modyle and the
extent of physical faijurcs to be detected, we can pick an encoding scheme and.then design the byte

slices accordingly.

Let us consider how the notion of encodmg t.he output words of byte-shced modules is used to

deal with byte slice failures in a synchronous hardwm system under the stuck-at fault model In a
synchronous environment the byte shces in a module are synchmmzed w:th each other, and with
fault handlers monitoring the outputs of the module, via a system clock. Under the stuck-at fault
model the output lines of a fax“ledmodulebecomesmck atelmeraloglcamonlogicall Aslongas
the clock signals are genemted in mordanoe w:th their ummg speclﬂcations and module failures
obey the stuck-at fault model, each signal pmentcd oa fauk handler by a by!c-shced module will
have stabilized at a signal value representing either a Iogical Oora loglcal 1, when the fault hander is
activated. The outputs of a module can thus always be interpreted by a fault handler as a bit vector
specified either by the bit vector function associated with the module or by the functional
composition of this bit vector function with a fault function. Faults can then be detected or masked
by designing the fault handler to operate on its input bit vectors based on the capabilities of the

Consider next the application of byte slicing and encoding schemes to deal with failures in

redundant packet communication systems. First of all, there is the problem of modcling hardware

failures in packet communication modules, and how %o design decoders, under these models, to

decode inputs from fault-free slices propetly, in apm of interference from failed slices. This is the

problem of fault modelmg and will be dnscussed in the nﬂt subsecuon In thls subsectmn we explam)
the problems of keeping fault-free shces ina redundant module pmpafy synchmmzed and consislem

so that their outputs can always be gmuped tosether pnoperly R)r decodmg. We mll these lauer two

problems redundancy management problems. |

The synchromzauon rcqmremcnts can be 1llustrated by analyzmg the operaung pnncnples
behind the synchronous byte-sllced orgamutmn, commonly lmown asa tnple modular redundancy
scheme, shown in Fxg 12. In thns ommzaﬁom a redlmdant module rs constructed using three
1denncalslmandﬂ1edwodersarema)ontyvoters. Faﬂummanysmsleshccammaskedm
majority voters in SUCCESSOr modules. Opemmn of the mqomy voters and processmg modules are

Fig. 12. A synchronous triple modular redundancy scheme.

synchronized through clock signals. Two implicit assumptions bave been made in using the
synchronous triple modular redundancy scheme to mask single module failures:
(1) The time skew in distributing a clock signal to the processing modules is bounded by a known

constant.

(2) Al fault-free processing modules in a triad will process identical inputs and generate the

corresponding outputs in approximately the same amount'ofthne.

When Assumpuon (1)is satlsﬁed. processing modules in each tmd wﬂl beacuvatedto procmanew

batch of inputs from their input voters wnthm a known time mtcrval Suppose the processing

modules are activated o process new inputs by clock pulse C. Then under assumption (2), it is
possible to calculate the time interval, in terms of the number of clock pulses, after which all
fault-frée processing modules activated at C will have pmuenwd their éqq:du to voters in mooesaor
modules. These voters are activated after this time interval to perform their fault-masking function.
If either assumption is not met, it is possible for a voter to be activated by the clock signal before all
input signals it receives from fault-free prmngmdﬂasm stabilized. Anmeousdanunmlv
then be propagated beyond the voters. 'l‘hesynemum requirement for a synchmnous triple
modular redundancy scheme toopeme properly in mshn; single slice failures is that whenever a
mmyvowrnmmdm-mfmmwm;mmmnrwﬁyesﬁomm
processing modules must have stabilized to their proper values. This requirement defines the desired
timing relationship among fault-fxu modules ina re(kmdmtsystem, and is ammd in a synchronous

systanmroughusmzapmpeﬂydedmedﬂmmw

In a self-timed system organized by a packet communication architecture, a majonty voter in a
triple modular redundancy scheme is activated upon receiving input packets from processing
modules. During fault-free operation, a majority voter receiving input packets from processing

modules can be activated after receiving one packet from each precessing module. There are
hardware failures, however, which can cause a procesting modulé‘to stop generating output packets.
We call these failu'resv killing faults. To detect and mask Killing favits affecting a single processing
module, a majority voter cannot always wait for an input packet from each processing module. After
receiving input packets from two modules, it must decrde at some point that the other module has
failed, and start to generate alarm siénaxs and oénst}uc{ the error-free data from the packets it has
received. When it starts to decode the input slsnals, however it must also be sure that packets from
all fault-free processing modules have already arnved Otherwise the same type of errors illustrated

mFxg.l.Zmayoocur

We have developed an approach to manage redundancy in packet comnwmication systems for
fault tolenance through enforcing the MMW

All input. sngnals from fault-free modules feedmg a decoder (the oounterpart of
majority voters in more general byte—shced oonﬁgnmxons) must have stabxhzed at their
proper values whenever the decoder is acnvated to decode its input signals.

Werefertothnsrequn'ementasmeﬂmmgsynchrommtnonpmblunﬂnceltmposescertmnmnmg
constraints on fault-free bytesboesanddecoders recelvmg mputsfrmnthem In ourapproachtnmmg
synchromzauon is mamtamed by assuring that fault-fme byte slices feewng a decoder w:ll always
send outputs to the decoder within a fixed time interval ofeac.h other. This approach will be
discussed in detail in Chapter 2.

At the end of Chapter 5, we mmﬂrumveappm to organize redundancy in
packet communication systems-for fault tolerance and analyze its relative merits and dissdvantages.

~ We have also studied another class of fault tolerance problems that arises in non-determinate
packet communication systems. The notion of non-determinacy and the .associated consistency
maintenance problems are illustrated in the following scenario.

Consider a data base against which transacuons ﬁ‘om data tenmnals are processed Suppose we
now rephcatemedatabaseatseveralmestomasksmﬂemefailures.anditlsdesxredtomunwn
consistency among them by senalmns the transactlons moewed at each swe and ensunng that the
stxeamsoftransacuomfedtomedambasesatmesemesareaﬂldenncal An mputtransacuon
recelved at a terminal is forwarded to all the sites. Non-determinacy arises due to the vanauon in
transmission delay along paths between terminals and data base sites, so that two transactions sent
from different terminals may arrive at these sitea in different order. To serialize concurrent

transactions consistently even when some termisais have: failed, data base sites must be:sble to

communicate with each other. The fault lolerame problem we shall tackle is how to support such
communication mhably. under the ammpnon that a faﬂed data base site or fmled terminal may
exhibit such ‘malicious behavior as sendmg moomstent mformation o other sim.

Our approach to tolerate failures in non»detemnnate systm is baed ona geneml algomhm
forrehablem&ageexchangedmovcredbyl’emetalkﬂ lnwrmwdrthemuchsxmpler
single-fault case was developed mdependenﬂy The conmncy problan is exphmed in Chapter 2,
and its solution in Clmptcr 3 and Chapter 5.

1.2.3 Implementation Considerations

To implement fault-tolerant packet comenunication systems. we need a fault model which
characterizes (i) the behavior of failed modules; and (i) the isteraction between hardware elements
employed in the construction of fault handlers and outputs from failed modules. The latter part is
necessary for evaluating the effectiveness of fault handlers, but is often ignored due to the fact that

the stuck-at fault model for logic gates is most commonly used. Under the stuck-at fault model, the
output lines for faulty modulés-are ‘assumed o be stuck- at either logical 0 or logical 1, and it is
straightforward to sb'ec'iryfthe interaction bétween faulé:freé logic gates and faulty input signals stuck
at erther O0orl \Ve will smdy hardware rmplemenuuon of redundant packet commumcanon

FERAPI SR TN 1;, REFE R

systems usmg the stuck-at fault model, a mndompulae tmin fault model and a mndom wave tram fault

model introduced in Chapter 4 The two laner models are chosen because they better capture the :
sensmvrty of self-nmed hardware modules to mnt pulses and ourput hawds exhlbrted by therr faulty

el Ry xéy_'"? s

nerghbom Their chorce is aleo monvaed by failure mecbmms in VLSI technologm whrch are not

5 . 'n

adequately modeled by classical stuck-at fault models [28] [63{ For both the random pulse train

fauit model and the random waxe, trin fault model, we baye 3 50 $peg je.interaction between
signals generated by failed modules and hardware clements.used 10 Jn d. fault handlers so

that the effectiveness of our fault solerance techaiques. in combaging hardware failures can be
vigorously evaluated. | —

The problem of havmg metastable mtesm bmble devrces, also known in the lrterature as the
glitch problem or the synchromur problem [14]. [IS]. [37], [44] poses addmonal drfﬁculnes m‘
mplementmg fault handlers under the random pulse tmm and the random wave train fault model.
Thmpmblemoﬁenmamemwrfaoebaweennymsymandanmhmmmmput
Whenahwhacuvawdbyanmtamnyaeuemednmmgmdnuudmrewvemasymhmom
input signal, the input signal may arrive at the latch almont simlisocously with the clock signal. The
latch may then be driven into its metastable-siate. Once a latch has entesed a metasiable state, it can
reside in that state for an arbitrarly loag time. Whes.the.laich subscqueatly leaves this metasiable
‘State, its output may undergo a signal transition and violate other timing assumptions in the system.
Metastable state phenomena have caused failures in synchronous digital systems. In a redundant

packet communication system, a decoder must receive signals from every byte slice in a redundant

module. UndermemdmnpulseUmnandﬂtcmndomwavcmeodekafuhdbyteslu
may deliver faulty signals to drive receiver latches. in wgbbonum into their metastable
states, causing these decoders to be out-of-sync by an arbitrary amouat, with no finite bound.

Ina self-ttmed system, another btstable deme called an arbltcr is oﬁen used to resolve oonﬂtcts
in resource shann@ A two-mput/one—output arbtter forward; t;lput requests it has melved at tts :
output port If two input requests are recetved stmultaneomly (wnhin a shon penod of ume)
arbltrauon is pert‘otmed and one of the requests wﬂl be mnvarded ln perfonmnz arbltrauon an

arbltcrcanalsobednvenmtoametamblem

To tolerate single arbiter failures; several of them must be operated wgethier. If two conflicting
requests are delivered to two Riffure-independerit arbiters within-a shoit iiterval bf-each other; these
arbiters may enter a’ndm#ide in their respective metastable states for different periods of time. There
i thus no guarantee that they will both resolve the conflict within a fixed time period. This poses
problemsmamnngmmngsymhromzanon. 'Iheatbitertsahoasourceofnondetemmacym
packetoommumcauoasystems lndnabovemano,merennommteethatmetwoammm
resolvcmeoonﬂtctsﬂmanselnexacﬂydtesmneway,andaddmonalmechanmmnecmyto
mannmnmnnstencyunongmmsommeconﬂicﬁngmquestswmmforwardedmﬂlesamc
orﬂeraﬁerarblmnonhasbeenperfomed mdependently bythetwoarbmn.

As we ghall see in Chapter 5, metastable state problems, together with massive failure modes
that affect several modules simultaneously, pose intrinsic limitations on the reliability that can be
acmevedwnenamémmh»emmmmnmmm-ﬁmmﬁmm
this thesis. '

1.3 Related Work
1.3.1 Fault-Tolerant Architectures

Redundant hardware for combating failures in electronic computers has been introduced in
many different fonns, ranging from quadded lognc for protecnng anmu single lognc gate failures [61)
mmoduhrmdundamyxhemesforpr«eﬂmgasmnﬁﬁnhmmennmpmm,mmonumd
buses Review articles [53], [54] and [SS] nge mounts of the development of fault-tolerant
computing in the past two decades. The pervanve use of compu&er controlled eqmpment, the high
cost of maintenance and the lowered hardware costs bmught about by VLSI have prompted much
interest in nnprovmg system avaxlabﬂlty and mamtmubﬂay thmugh me use of redundant hardware.
To date fault-tolerant computers systems are folmd moutly in telephone switching systems,
space-borne vehlcles. air trafﬂc control and other apphcanom where computer failures \vould incur

high human or economic costs.

The fault-tolerant data flow processor design presented in this thesis uses a dynamic
redundancy schertie to mask hardware fuilures: failures are detected on-line, the hardware system is
repaired and the program in execution is restarted. Many computer systems have relied upon
checkpomt/restartasastandardmeamof recovenngﬁunsyﬂemfaﬂures. TheSTAR (Self-Testing
and Repan') computer developed at Jet Propulnon Labomory f8] i is probably the first dynamucally
redundant fault-tolerant computer. lnSTARenchmﬂmeucumt.nmoryumtanddmbmns
protected by using error-detecting codes. Umtsperfmmmglogxaloperauonsareprotectedby
duplication. When a fuilure is detected, the failed unit is replaced by a spare through power
switching. Redundancy is managed by a coafiguration control unit, which is triplicated for fault
tolerance. To mask hardware failures, checkpoints must be inserted into application programs from
which program execuﬁmmbemtedaﬁer.afm hes-eccurred. A set of operating system

procedures is provided specifically for checkpoint insertion. The STAR computer has been
breadboarded and exercised through fault injection. It has evolved into the FTSC (Fault-Tolerant
Spaceborne Computer) systems [52] currendy under advaneed development at Raytheon and the

Acrospace Corporation.

A different approach to fault masking is adopted in the FTMP (let-'l‘olerant Mulnproeessor)r ‘
system developed at Draper Laboratory [30) and in the SIFI‘ (Soﬁware—lmplememed Fault
Tolerance) system developed at Stanford Research Institute [67] ln bo(h of these systems a progm'n
is executed on several hardware units and failures are masked by vonng on the results of redundant
computations. In the FI‘MP system, farlunes are masked through the formauon of processor triads,
memorymadsandbusmads,andvonngonmeoutpuuofead\madwnhma;ontyvoterslocatedin
bus receivers. Spares are provided for replacmg failed units. The SlF'I‘ synem eonmts ofa network
of processing modules, each with its own local memory In SIFI‘ mmority vonng is performed by
voting programs which receive results from redundant computations over Ihe network. The number
of processing modules dedicated t0 a task can be varied according t0.its criticality. In both FTMP
and SIFT fault detection leads to system reconfiguration, but.programs need not be. rolled back to
mask hardware failures.

Our work on hardware redundancy techniques has beneﬁted from work on fault-tolerant
clocking systems conducted under the FTMP preject [l6].and from work on consistency
maintenance conducted under the SIFT project [45).

Many fault-tolerant computers in use have a bus-oriented internal architecture and are made
fault-tolerant through providing redundant busés, redundant processing elements and redundant
memory systems. The data flow processor contains a packet network which is ‘absent in these
architectures, and in general has rathor differént reliability and performance requirements.

-31-

Methodologies for incorporating fault tolerance inio high performance computer systems and the
associated technical pmblemhavebeendmedml?},[l()} Weh&vealsofmndthmdmusswns

illummaung for our work

~ The interconnection networks in a data flow processor are modular, one-way, packet routing
networks. Each network serves a sét 6f source mochiles and a set of destination modules (which need -
not be distinct). Mmmmmmammmmfummm by the néetwork to destination
modules. Nodes in the net\vm:’mdesipe&to forward packets only inn‘the direction of packet flow,
from sources to destinations. m«mulﬁpwmmc.mp[&]for example, use
commutation networksferm!ermmm A tommutation network is one which can
be set up to satisfy antofcmnecﬁvuyfreqmmm"hm‘mm output nodes, but
is otherwise passive. The fault tolerance propédties of several classes 6f commutation networks have
been studied in [36]. This work deals only with the topologicat sspécts of fuult-tolerant network
design. For each class of commuttion’ networks stodied, i show Now reduiiidant paths may be
incorporated 8o that faulty subnetworks can’be bypasied. Several ofher reduidant commutation
network oonﬂwmaredésui’bed in 42, as part oftml«mmdaﬁve processor design.
Neither of these works addressés mm«mmmmmﬂmm

reconfiguration with recovery.

v kaummmiagﬁmm«hkpwwmlmm Hepomtsoutmata

-32-

1.3.2 Synchrounization and Consistency Maintenance

Our approach to maintaining timing synchmnintion is to assure that fa_mlt-fme byte slices in
the same redundant module will always deliver outputs to decoders receiving signals from them
within a fixed time interval of each other,, The techniques we have developed for this approach are
closely related 1o techniques proposed. for- implementing fawlt-tolerant clocks. In a fault-tolerant
clock several oscillators are operated in parallel to-generate- a set. of periedic signals. Thm
independently generated clock signals must, however, satisfy some in-phase requirements. One such
requirement is that they must-all change state within a fixed time. interval of each other, just like the

“one we have imposed on. byte ‘slices in the same redundant: module t0 maintain timing
synchronization. A fault-tolerant clock design has been presented in [16]. In that design the circuitry
is uailored to generating periodic signals. We will show haw.a fault-tolerant clook design can be
derived from our synchronization techniques. Our syachronization techniques are also related (o the
synchronization voting technigue given by Davies and Wakerly-[17]. - Davies [18], {19] has applied
synchronization voting tp fault-tolerant clock design, syachronization amang redundant, processing
units, and synchronization among redundant microcomputers. - We will also explain how timing
synchronization can be achieved using synchronizatian voting usider restrictod fasl assumptions.

Consistency maintenance problems in the fault-tolerant space shuttle computer have been
discussed informally in a paper by Sheridan [56]..In this computer, sysiem the $ame. process may Tun
on several pracessor-memory units simultaneously. - When an asynchronous interrupt occurs, the
process may be interrupted at different points on different processor-memory units. Processes in the

system communicate via shared memory. Suppose that an input interrupt occurs when a process is.

writing into a data area it shares with the input process, and that in one processor-memory unit it has
finished wntmg into this area when it is interrupted while in another processor-memory unit it has
not. The input process may then read different versions of the shared data in different

-33-

processor-memory units, and may then exhibit inconsistent behavior on (hese units. Sheridan
describes a set of mechanisms for manummgdm consistency in this environment. Process
incarnations running on different computers‘are tenuired to synchronize with each other before
aocessmg shared data. The fault model mxmed and me effectiveness of this solution were
unfoMnately not dlscussed in any deml in [56]

In the SIFT system; inputs from different sensors, outcomes of diagnostic tests and internal
clock readings are exchanged among processing moduies on the network. It is assumed that a failed
module may give mconsnstcnt mfo:mauon to other module& Pene et al [45] have developed a
general algorithm forexdmngmgmﬁxmm amon;dxep:mmnc modulessothat

(i) the information transmitted by a fault-free module will be known to every fault-free module, and
(ii) the fauht-free modules will agree on the conténts of messages transmitted by faulty modules. -

This algorithm requires at least 3f+1 modules to tolerate up. to f module failures among them. A
negative result which states that this fault tolerance capability cannot be achieved with less than 3f+1
modules is also proved in [45].

[For our work we have independently developed the solution to the much simpler case in which
at most one module may fail and each message contains the outcome of a binary decision. We have
also studied the hardware implementation of this much simpler case in the self-timed. systems

environment.

1.4 Synopsis

In the.foﬂowixis chapters, we first develop an appmach to manage redundant hardware in a
packet communication system for fault tolerance, and then present the design ér'a fault-tolerant data
ﬂow processor. Basic concepts and ledundancy techniques are illustrated with hardwm modules
taken from the data flow processor design. Readers \vho wuh lo smdy the an:hitecture oftheA
fault-tolerant data flow processor before analyzmg redundancy techmques for its mxplunentaﬁon can
alsoreadd\ematenalcoveredm thtsmesismﬂutordet

Our approach to incorporate redundant hardware ‘intvobba{:ket communicauon systems for fault
tolerance is introduced in Chapter 2. This approach s based on maintaining timing synchronization
and consistency in redundant packet communication systems, cven after hardware failures have
occurred. The problems of timing synchronization and consistency maintenance are explained using
redundant packet communication systems constructed with byte-sliced packet communication
modules, Concepts and terminology ﬁ:rdiscusdnsmuepmbkuuand Mso!utimsmorepncbely
are also presented in this chapter. ‘ ‘ |

Robust algorithms for maintaining timing synchronization and consistency among byte slices in
a redundant packet communication module are presented in Chapter 3. Under these algorithms,
byte slices in the same redundant module send signils and méssages to éach other. A failed slice may
send signalsand messages of arbitriry contents 4t randomn. These algorithms are robust in that timing

synchronization and consistency can be maintained in spite of hardware failures.

Hardware implementation of these redundancy management algorithms and decoder designs
are studied in Chapters 4 and 5. In Chapter 4 we introduce a class of asynchronous packet
communication protocols and three fault models. An asynchronous packet odmmunication protocol .

defines the behavior of fault-free patket communication modules. A fault model characterizes the

behavior of failed modules as well a the interaction between signals generated by these failed
modules and fault-free hardware elements used to'comtruct fault handlers. In Chapter 5-we discuss
how to implement fault handlers, and other hardwm modules, wsuppon the fault tolerance stmegy_
developed in Chapters 2 and 3. ﬂmhardwem&z!esmdeugnedtomnmmm;
synchronization and consistency, and to detect’ lnd/ér mali hardwm faﬁurec, under the fauit
models of Chapter 4. . I

A dynamic redundancy scheme for mukmg hardware failutes in a multiprocessor architecture
desgnedmexecummm&elﬁmgfmomnmdbydmﬂowpnwpksspmwdmcmpm6
Novdfcatures of this computing system mcludeus pactetcommumcanon architecture, use ofpacket
networks to sapport communication among prooesia; eicments and dynaxm_c allocation of a
homogeneous set of specialized functional units to semoe requests. Program organizanonand
hardware module des:gns to support the dynanuc redundancy sheme are explained. Strategies to
mcorporateaddmonal modulumddanpaﬂnmwpacketnetworksmwppmrapldrepaumaho
descibed.

Application of the hardware redundancy oonoepts and techniques'dev'eloped in Chapters 2
through 5 are illustrated by module designs given it Chapters 5 and 6.

A summary of results and conclhuding remarks are given in Chapter 7.

2. Timing Synchronization and Counsistency Maintenance in Packet Communication

Systems

The problems of timing synchronization and consistency maintenance have not received much |
attention in the literature of fault-tolcrant computing. These problems arg explained in detail in this
chapter. Solutions to these problems, implementation techniques and hardware modulc designs are

studied in subscquent chapters.

The concepts of byte slicing and output enax}ing haye‘ggpg_ mtroduc;;deecuon 1.1. Timing
synchronization and cons_istency maintenance problems will be illustrated with- a byte-sliced.
organization for redundant packet communication modules. This_organization .is presented in
Section 2.1.

We remind the reader that the basic problem in mning synchmnizanon is to assure that
whenever a decoder is activated to decode its mput snanals. all mput stgnals ffom fault-free byte slices
must have stabilized at their proper value. Our approach to maintain timing synchronization is to
develop a set of mechanisms which can maintain proper Amhmnizalﬂion. Informally, proper
synchronization is achieved if bytes in the same input word.and acknowledgments for an input byte,
arc always delivered by fault-frec slices in a redundant module to a neighboring decoder within a
fixed time interval of each other. In Section'2.2 we Wmconceptsmﬂ&mﬁnology for
characterizing proper synchronization among byte slices in a redundant packet communication

modulc more precisely.

To use a byte-sliced organization and output encoding for fault tolerance, outputs generated by
byte slices must also be consistent, in addition to being properly synchronized. Inconsistency among

bytes in an output word gencrated by a byte-sliced module is due to non-determinate behavior. A

37

packet communication module is determinate if; starting fom agiven initial state, the set of output
packet sequences it generates is a functlon of the set o! mput pxket sequences it has received,
mdependent of the order of input packct amvals at lts dlffcrent mpm ports. A non-delermmate :
system may gencratc dlfferent sets of output sequcnces after reccmng the same set of mput
sequenccs dependmg on the order in Whlch packcts arrive at its dlffercm ports, and on the outcomes
of internal conflict resolutions. A dctenmnate modulc has the nice property that its behavior rs'
reproducible in both time and space. Two fault-free. copies of a determinate module will generate
identical output sequences when fed identical input sequences.. Their outputs can hence be
compared to detect failures among them. Transient failyres can also be tolerated by feeding the same
input sequence to a determinate mbriule several times:in succession, each time starting from the same

initial state.

For now we illustrate how non-rie;tgr;nrtqnﬁy; | mtroduces inconsistency b} another simple
example. Suppose'in a byte-sliced module we have tyo copies of a non-determinate module which
increments an mreger input erther by one or by two, If these two module eepnes each receives the
integer 3, and then one copy outputs 4 and the other 5 wecannot deduce bycompﬁnng their outputs
alone whether a hardware failure has occurred or whe(her the two module cepics have acted
differently due to non-determinacy. Nonmym introduces additional complications in
fault tolerance considerations. A primitive for introducing non-determinacy in packet
communication systems and the associated Wymm tolerance problems are discussed in
Section 2.3. |

2.1 Byte-sliced Packet Communication Modules

A packet communication module interacts with its environment by transmitting and receiving
packets at its ports. Each port consists of two sets of wires, cafrying packets gmd acknowledgments
into and out of the port, respectively. A packet communication dnannél (Fig. 2.1a) is constructed by

connecting an output port of one module to an input port of another module.

Packet transmission over a-channel can be described in terms of channel state transitions (Fig.
2.1b). Port activitics cause a channcl-to alternate between an active state and a passive state. In an
. active state a packet is available over the channel from the sender output port. In this state the
receiver- input port is enabled. When the available packet is received and another packet can be
transmitted over the channcl, the receiver port resets the channel to its passive state. The sender port

is then enabled and at some later time will change the channel state from passive to active and

VAR

i packet bundle SRR
output port < — ' >] input port
| 7 acknowledgment bundle L._
pu— ‘ B : - - e
(a) Hardware Structure
active: passive:
input port enabled output port enabled

| acknowledgment
(b) Statq Transition

Fig. 2.1 Channel state transition.

-39-

transmit another packet over the chanael. For the: discussions in this chapter it is sufficient to note
that a feedback mechanism is built into 4 communication promcol so that during fault-free operation
packets and acknourledgments alternate at each channel. Techniques for hnplcmenung asynchronous -
packet communicawt‘ionr using signal transitious on wires’ in the packet bundle and the

acknowledgment bundle will be presented in Chapterd.

We next describe the hardware structure of a byte-sliced module én&»ﬂw structure of
connections between two such luodules. A slicé’ (Fig. 2.2a) consists of a processing module
(p-module), with each input port protected by a .synéhm'nizing 'decoder and cach output port
protected by a fanout module. We will refer to a decoder or a fanout moduie asa controI module, to
distinguish it from a-processing module. Subsequent presentatnons are ggcatly s&mphftcd bygmupmg
decoders and fanout modules ina redundant madule mﬁther into .synchmmzauon seis (Fig. 2.2b),
according to the mput port or output port each prot&m For such groupmgs to be lmanmsful,
p-modules in a byte-sliced module must have the same. nuinber of input ports and output ports, and
exhibit very similar packet processing behavior at these ports.- The nouon of schemauc equlvalence

as defined next, captures the desired reatonship.! 1
Two packet communication modufes are xkemaﬁca}bfmulept if

(1) They have the same number of input ports and output ports, and
(2) There exists a numbering scheme for input ports and output ports in each module such that if
identical input sequences are fed to the it? input port of both modufes, for all i, then the same

number of output packets will be gencrated at the jth output port of both modules, for all j. (For

1. Note that the notion of schematic cquivalence, and that of performance compatibility given later
on, arc well-defined only for fault-frec modules. :

- SD -- Synchronizing Decoder F -- Fanout Module

r-ﬂ----1
!

i
-—-:---;SD
!

.
*

- .

1
|
!
iIsee
i
]

4

i_

©v
1~
| W SN P

r- - -

- e ik wn >

. (b)- Synchronization sets in a byte-sliced redundant module.

Fig. 2.2. Structurc of a Bytc;sliccd rcdundant hardwarcA module.

- 41.:'.)

the hardwarc structures used in this thesis, the numbering scheme is always obvnous from context

and hence ommed.)

Copies of dctel;ninalc modules are schcxhatically equivale’r'uéand deliver identical output
sequences when fed. ldenucal mput sequences Copies of non-detctmmate modules: may not be
schematically cqmvalent smee the number of putpqt packets gencmteé at an eutput port of a
non-determmate module may dcpcnd on the or¢er of packet arrival at us different input ports, as
well as on the contents of the packets it has received. Schemancaﬂy equnvaient modu]es need not be
identical. It is straightforward to extend the notion of schematic eqyiva@ence to-a group of mere than
two modules.) ‘ ' |

We will assume Iha;"bj'le slices in a mdundantu module are co;cﬁcléd put of schematically
equivalent pmodules. A synehmmuuon set (Flg 2.2b) contains one coﬁtrot module from each slice.
The common property among control modules in a synchronization sct is that cach protects the ith
input port of the p-module in its slice, or each protects the j output port of the p-module in its slice.

Synchronizationlsets arc enclosed in dotted lmg mFg, 22

Connections between adja'cent redundant modules are made by connecting a synchronization
set of fanout modules in one to a synchronization set of decoders in the other (Fig. 2.3). Each
synchronizing decoder receives inpiit bytes ffom a set of fancit modules. Each ‘input word to 3
synchronizing decoder consists of a number of bytes, one from each fanout module it is connected to.
Note that each ﬁnk shown in Fig 2.3 consists of a packet bundle carrymg Vsi‘gﬂals’ in the direction of
the link, and an acknowledgment bundle carrying signals in the opposite dtrecuon ’EVefy byte is
transmitted as a packet between adjacent modules Asyachronous protocols are also used by a

p-module to receive packets from |ts synchromzmg decoders and send packcts to its fanout modules.

-42-

—= F |: SD §=wgin
other F's other SD’s
in the in the
synchronization synchmnimtion
set . set
Y .
—e] F |¢ + | SD |——o
L

Module X | | ‘Module Y

Fig. 2.3. Connection between synchronization scts in adjacent redundant modules.

A synchronizing decoder decodes input words received from a synchronization set of fanout
modules. A fanout module forwards each packet it receives to the synchmnizaﬁon sct of decoders it
feeds. 1t also receives acknowledgments from these decoders and then returns acknowledgments to
its p-module. P-modules perform packet processing. Let us examine the eperation of byte slices in a
redundant module in more detail.

Suppose cach of the fanout modules in a synchronization set receives a byte from its p-module.
These bytes together constitute an oufput word of the redundant module, and arc distributed by the

fanout modules to synchronizing decoders in a synchronization set in a redundant successor module.

-43-

Each input word received by a synchronizing decoder is thus delivered as a batch of packets, one frofn
a different fanout module and cach f;ontaining one byte of the iqput word. Failure qf a single byte
slice affects at most one bytc of any input won'i, recei_véd by ‘a_ d_ecodlcr.i A synchronizing decoder
decodes cach input word recefvcd to dcri*re anA output word,'ﬂvhicﬁ it ﬂaeﬁ delivers to the p-mo_dule in
its byte slice. Aﬁcr some time the decoder will receive an acknowledgment from its p-module. This
acknowledgment 8 returned immcd.i'aae.lyr by the decedér to famout modules from which it has
;cceivcd input bytes. Each fanout module will thus receive a barck of ﬂéknowiedgm‘enfs, one from
cach byte slice which has received an inpilt byte from it, and- failure of a single stice wifl ‘affect only
one _such acknowledgment. - After a fanout module in the synchronization sct has received
acknowledgments from the successor module, it returns an acknowledgment to ‘the pmodule in its

slice.

For subsequent discqss_ions, we wnll also ﬁnd .it cxonyenign‘t to group packets and
acknowledgments reccived and produced l.)y’ p-modules ‘in Vthe same rédundant module into batches.
P-modules in a-redundant module aie‘schemaiiﬁlyéeq\xivalent aﬂc!Qill always be fed idcnu'cai’ihput
packets. Packets and acknowledgments delivered to and: gencrated by fault-free p-modules in a
redundant module, under these conditions, can be partitioned into batches, according to the ports at
which- they-are received or generated, and the pasitions they occupy in their respective streams.
Packets, or acknowledgments, received at the: eommﬁdingpomof thult-free'p-modules in a
redundant module, and occupying the same position in their respeéﬁve streams, belong to the same
batch. Likewise output words, or acknowledgments, gcnerat.ed at the éorresponding ports of
fault-free p-modules in a rédundant triodule, and- occupying the same posmon in their respective

streams, belong to the same batch.

2.2 Timing Synchronization

For a redundant packet communication system constructed out 'of byte-sliced packet
communication modules, timing synchronization imposes two timiiig constraints on system

operation:

(T1) Bytes in the same word generated by fauit-free :hoes must have arrived when a
decoder is activated to decode its input signals, and. o |

(12) Acknowledgments for the same output byte gencrated by fault-fice slices must have
arrived when a fanout module-is activated to return an acknowledgment to its

p-module.
Our approach to maintain timing synchronization is by maintaining proper synchronization:
A redundant packéi communication system is properly synchronized if

(P1) . Bytes in the same input word are always delivered . by fault-free slices in a
neighboring module to a synchronizing decoder within-a fixed time interval of
each other, and

(P2) Acknowledgments for the same output byte are always delivered by fault-free slices
in a neighboring module to a fanout module’ within a fixed time interval of each
other.

If proper synchronization is maintaingd, and thére are crnlopgh'.fat_)lt-frce byte sliccs remaining
in cach rcdufidant module, then cach decoder can dctenni»nvc;vhether it has reccived all bytes in the
same input word gencrated by fault-free slices in a neighboring module. And after delivering a byte
to synchronizing decoders in a neighboring modale, each fanout module can determine whether all

acknowledgments for that byte, gencréted by fault-free slices in the neighboring module, have been

-48> .

received. The technique used in these control modules to achieve {T1) and (T2), given (P1) and (P2)
will be presented in the next chapter.

Timing synchronization, as illustrated in Fig. 1. 2 is achieved in synchronous systems by using
byte slices Wthh can process ldcnucal mputs m appronmatety the 'same amount of time, and by
assuring that cach clock signal is delivered to all byte slicesin a rcdundant module within a fixed time

interval. Our strategy for maintaining pmper: synchronization is also'bascd on these ideas.

For a more precnse discumon on t}mmg synchronmﬂén we next define performance
compatibility for schemaucally equlvalent modulcs. and tmphase operauon for p-modules in
redundant packet communication systems. - The dcﬁmnon of performance companbmty is intended
to capture the intuitive notion that two schematically eqmvalem modules are able to process identical
inputs in roughly the same amount of time. In-phase operation is the approach we have adop;gd o

ensure proper synchronization.”
Performance Compatibility
Two p-modules M and M’ are performance ecompatible if

(1) They are schematically equivalent, and - _

(2). If identical words, and acknowledgments, are always delivered to M and M’ as a ‘batch within a
time interval bounded by p,] then packets and acknewlodgments inithe same output batoh will be
generated by M and M’ within a time interval-hoanded.by r+p; forsome fixed .

1. We use lower case Greek letters to denote time intervals.

-46-

- It is straightforward to generalize the definition of performance compatibility to a group of
more than two schematically equivalent p-modules and to a group .of control modules. We shall
assume perf;)nnance compatibility for determinate p-modules in a redundant module, and for
control modules in a synchronization set. We will often say that two modules are performance

compatible within v, and call r an uppcr bound on performance incompatibility.

Performance compatibility does not impose any constraint on how long a module may take to
process an input, but only specifics the timing relationship among outputs dclivered by schematically
cquivalent modulces. We also note that two coples ofa non-dcterminate moduie containing arbiters

“are not performance compatible since if either one of them cmcrs a metastable state, it may reside in

that state for an arbitrarily long time (Section 1.2.3).

In-Phase Operation

A packet communication system maintains in-phase operation of the byxe slices in a redundant
module if input words and acknowledgments in the same batch are always delivered to p-modules in
these byte slices within a fixed time interval of each other..

For in-phasc operation, we require that inputs in every batch delivered to p-modules in a -
redundant module be delivercd within the same fined time interval. We'will also say that the outputs
of a group of p-modules in a redundant module are in-phase if Gutputs in the same batch are always
generated by the p-modules within a-fixed time interval.

Our approach to maintaining proper synchronization is to maintain in-phasc opcration of
p-modules in fault-frec byte slices in cvery redundant module. A redundant packet communication
system in which:

-47-

(i) byte slices in every redundant module are constructed using performance compatible p-modules,
(ii) in-phasc operation of these byte slices is maintained,

will remain properl)l 'synchronizcd Wc reason as follows If in-phasc opcration of performance

compaublc byte slices in a rcdundant module is always malmamed thcn outputs of p- modules in

fault-free slices must be in-phase. 'l‘hese outputs are forwarded through control modules in

synchronization sets to ncrghbormg modules. Smcc control modules m the same synchrommtron set

are also pcrformancc compauble bytcs in the same word and acknpwlcdgments for the same byte

will be gcncrated by these control modules. and hcncc by the fault-free slrces, wrthm a fixed time

interval of each other. We make the further assumption that communication paths between .
synchronization sets have finitc propagation delay.. Bmpgr synchrohization (Properties P1 and P2)

can then be maintained. |

The synchmnizéuon techniques prosented : irl Clrap;cr 3 enable control ‘modulegs in
synchronization scts in a redundant module to mamtam m phase operauan of byte sllces in the
redundant module locally. The strategy is to lct control modules in the same synchronization set
- synchronize with each other before passing the-inputs they have received on to the p-modules they
are guarding. Using the symhmnimtion‘-tﬁclmlqu’es developed'in Chapter 3; all fault-free control
modules in the same synchronization set will deliver words or acknowledgments in the same batch to

the p-modules within a fixed time interval, despite interference from failed modules.
2.3 Consistency Maintenance

Packet communication modules send streams of data packets to cach other during system
operation. A module is deterninate if the set of output packet streams it generates is a function of the
set of input packet streams it has received, independent of the temporal order in which input packets

arrive at different input ports. A module is non-determinase if its output streams.may depend on this

-43.‘

arrival order and on the outcomes of internal conflict resolutions, as well as on the data values carried
in the input streams it has received. Non-determinacy introduces: another dimension to the fault
tolerance p@hm namely, information replicated in redundant hardware must be kept consistent.
The consistency problem is widely studicd in distributed data base systems. Sheridan [56] discusses
the prdblcms of maintaining da':a‘%mmy duﬁhg instruction execution on the Shace Shuttle
control cémputzr, with a program structure suppomng prioﬁtiiéd multiprocessing and-
interrupt-driven input/outpnt P"éase'et al [45] have gjiveh' algonthms for achicving mlemcttve
consistency in cxchanging élock‘ rcadings, sensor réadings and dlagnosts results amohg multiple

computers. They have formulated the consistency problem as the "Albanian Generals Problem” :

- Several divisions of theMbaman ‘Army are camped. outside an ‘enemy city, each division
commanded by its own general. The generals can communicate with one another only by
messengers. After observing the enemy, they must decide upon a common plan of action, either to
attack or retreat. ‘However, some of the generals may be traitors trymg to prevent the loyal genemls
from reachmg agreement. The gcnemls must have an algonthm to guaranwe that

(1) All loyal generals decide upon the same plan of action, and 7
(2) The loyal generals cannot be persuaded. to follow the plan of action coatrived of by a smail |
number of traitors.

We have noted that the need for consistency maintenance is a consequence of
non-detcrminacy. In the Albanian Generals problem, each loyal genieralhas to-independently decide
whether to attack or retreat. Loyal gencrals can thus make conflicting decisions, leading to

non-determinacy.

In this thesis we study consistency and fault tolerance for onc specific form of non-determinacy

in packet communication systems, introduced by combining two streams into an input stream to a

49+

determinate module, using a merge module (Fig. 2.4). If two packets arrive at the two input ports of a
merge module within a short time interval, the merge module m;output theni in either order, and
may furthermore take an arbitrarily long time o decide which packet to output first: When input

packets arrive further apart in time, the merge module outputs them as they are received.

In a redundant packet comrhunication system, mergmg two iﬁput streams is implemented using
a redundant module containing merge -modules as pfm;)dules in ‘itvs'_ byte slices. In .this setting,
idcmical input packets are a]w_ay-s delivered to merge modulcs in ;hesame redundant module within
a fixed time intcryal. as a}rcsulth gf maigtaining, m-phase vgperatiqn_inﬂtﬁhe system. The consistency
prqb)ém is to ensure that the output streams of non-fég!t_y m;f;c modules in a redundant module are
identical:.‘ The fault tolerance pmblcm is R en_s_ﬁre conslsumcy ag_d .in-phase operation in the
presence of hardware failures. The merge mogph;s’ usedm a redundant module also exchange
messages with each other to achieve consistency. We shall cal] them synchronizing merge modules in

the sequel.

Fig. 2.4. Structure of a non-determinate module.

- The strategy to achicve fauit tolerance is to allow syachronizing mcrgc modules to exchange
messages with each other, informing each other of the input port from which a new packet has been
received, an& then reach an agreement with other synchronizing merge modules on which input port
to use for forwarding the next packet. Nete that it-is not sufficiént to receive a Mc from each
synchronizing merge module in the redundant module and then perform majority voting on their
contents to pick an input port. This is because the fault-free synchrdnizinié merge modules can be
split up just about evenly on which of two input ports to use, and faﬁity’syﬁchrun'izi:hg modules can
send different miessages to different Fault-free synchronizing m;odnlcs,‘ leading them to different
‘majority vote decisions. We present an implementation of this strategybascd on an algorithm for
exchanging messiges reliably among synichronizing merge modules in Chapter 3. This algorithm has
been described by Pease ct 4l {43) while we have developed the much s:mpler case for dcalmg with
single synchronizing merge niodule faitures mdcpendently | ' o

2.4Discmsion

We have introduced two redundancy management problems for self-timed packet
commuq%c;,t_.jon systems in this chapter: timing synchronization and consistency maintcnance. These
are redundancy management problems in the sense that these problems arise only when hardware
functions are implemented using submodules whkh mmt be fallure-mdependent, and hence operate
independently, and yet their outputs must be comhted in some well-defined manner, such as by an
encoding scheme. If hardware is immune from fallm'es, h;rdware functions can be implemented in
packet communication modules using techmquesd’mcﬂbcd in [4], [31), [33], [39] for which such
problems do not arise. For applications l:equibring fault tolerance, we necd solutions to these
problems which 5rc robust, so that timing syncﬁronimtion and consistency arc maintained in spite of
hardware failures. By maintaining proper synchronization and consistency in a rcdundant packet

communication system, a conetete.fohndnﬁon,;jsapn_widedfﬁx: using byte slicing and encoding

-51-

techniques to detect and/or mask ﬁyte slice faihrm,in' selftlmed hérdwére systems.

The problems of timing synchronization and consistency "maivnterrance are illustrated with the
bﬁe-sliced module organization ‘preécmed"-'inls;ec'tirrrr 2 1 for rédurtdanr‘modules | Timmg
synchronization will be a problem in any fauh-tolerant computer system constructed out of
mdcpcndcnt]y clockcd proce&sor-memory units, Consmrrcy matntenance arises in scctions of
fault-tolerant computer systems that receive asynchronous mputs. These pmblems have not-recelved
much attention in the litcrature, perhaps due 1o their infrequent occurrence. It is nonetheless
important to understand the nature 6f‘mése problems, so that fault tolerarrcc ’mcchénisms for

handiing tbem are omitted only through judicious ct-roice,:a}nd:no; from ignorance,

Timing synchronization is also a fundamental prob!em facing the designers of fault-tolerant
clocks. In a fault-tolerant clock several oscillators are operated in parallel o geneme a set of periodic
signals. These independently generated clock sagnals must. however, sausfy some in-phaise |
requirements. Synchromzauon can only be aclneved by exchangmg sagnals among oscillators, and
must be maintained when a fauity oscnllator stops oscﬂlaung or swts makmg sngnal u'ansmons at
random. The tunmg synchromzauon algomhm presemed in Chapter 3 may ‘be wewed as a
generalization of the techniques described in [16] for impij’emennns fmk-tolerant clocks. .

In a synchronous systerrl intermodule actmnes are synchronized by rer‘erencing_ a common
timing signal. After recciving an input each module is required to generate the corresponding output
within a fixed time interval defined with respect to the timing signal. This implies performance
compatibility among byte slices in a redundant module since they all must satisfy the same
input/output timing constraint. lh—phase operation fs ensured as a consequence of the implicit
assumption of ncgligible variations in propagation delay in distributing the timing signal from a

common source to its numerous destinations. Fault handlers, by synchronizing with other modules

-52-

through this same timing signal, nced only deal with data faults and code @la%m

The input/output specification of a self-timed module imposes only sequencing and causality
constraints on an implcmcntation; For fault tolerancc we have to reintroduce the nption of
performance compatibility and to ,incorpe(ate mechanisms to _rﬁaimzin in-phasc operation in
self-timed systcms. Time metrics are thus remtroduccd into an othcrwnsc complctely sclf-timed
system. The additional comp]exlty nccded to deal w:th mconsnstency is also a consequence of
adopting the self-timed disciplinc.]‘hls is because arbntranon is not needed ina synchronous system:

conflicting requests can always be resolved through aprcdeﬁned priority assignment.

Our whole approach to redundancy management for fault tolerance is based on maintaining
timing synchronization and- consistency in r_edundapt- ‘parcket communicelion systems. A
methodological issue that arises is whether these two propcruesare necessary fqr tolerating hardware
failures in packet communication systems, Its seems that censistemy must always be maintained in a
byte-sllced module otherwnse a packet ba&ch generated by fault-free shces can have arbm'ary
contents, and bytc shce faalures can Jead to undetecwd and uncorrected errom The nece&nty for
timing synchronization is further discussed at the end of Chapter §, wher_e we examinc an alternative

strategy and its relative merits and disadvantages.

-53-

3. Robust Algorithms for Timing Synchronization and Consistency Maintenance

In this chapter we introduce the basic algorithms used in our approach for mai_maining timing
synchronization and cbnsistcncy in redundant packet communication systems. We maintain timing
synchronization by maintaining in-phase operation of byte slices in a redundant system (Section 2.2).
We maintain consistency by assuring that fault-free synchronizing merge modules in the same

- redundant module gencrate identical output streams (Section 2.3).

The algorithm for timing synchronization is implemented in every synchronization set for
maintaining in-phase operation. Under this algprithm, control modules in the same synchronization
set exchange signals with each other after receiving bytes in a new input word, or acknowlcdgménts
for a previously delivered byte, so that fault-free control modules in that set can deliver packets and
acknowledgments in the same batch to p-modules within a fixed time interval of each other. The
algorithm for consistency maintenance allows synchronization merge modules to exchange messages
with each other to jointly determine the input port from which the next output packet should be
taken. These algorithms must be robust in that in-phase operation and consistency must still be

maintained in spite of malicious interfcrence from failed modules.

For presenting these algorithms in this chapter, we use an abstract fault model under which a
failed slice may generate signals and messages of arbitrary contents at random, or stop generating
them altogether. Implementation of these algorithms, and éifcuit design techniques to éssure that
signals processed under these algorithms in control modules correspond to the abstract fault model
used in this chapter, are studied in Chapter 5. The algorithms for maintaining timing synchronization

and consistency are presented in Scction 3.1 and 3.2, respectively.

3.1 An Algorithm for Timing Synchronization

Let us refine our design methodology given in Section 1.1 for constructing redundant packet
communication systems. First of all, the non-redundant sysiem is designod and specifications for
cach module in the non-redundant system are determined. Then an output encading scheme is
picked. To construct the.redundant system, specifications for the p-modules in each: redundant .
module are derived from the functional specifications of the non-redundant module and the chosen
encoding scheme. P-modules, other than synchronizing merge modules, can then be implemented
using techniques given in [4], [31], [33]. [39], “Fach p-module in a redundant module is extended into
a byte stice by protecting its input ports and output ports with synchronizing decoders and fanout
modules. These slices are then connected together by adding communication paths between control

modulesinmesamcsynchronizationsettofomrareda dant

In our approach to constructing redundant packet communication systems, we design each
redundant module so that for each module we can specify: -

(1) its functional specification,

(2) for each synchronization set in ﬂﬁt gmodulc . an upper bound on the phase difference among
bytes in the same output word, or acknowledgments for the same byte, generated by that
synchronization st This upper bound is by design an intrinsic property of the module,
independent of any property of its neighbors.

We also design each control module so that timing symhronmnon (Propcmes T1 and T2 in Section
2.2) can be achicved once an upper bound for phase dltfcme among packcts and acknowledgmcms

in the same input batch is known.

-55-

In constructing a redundant system, two redundant modules are connected together by
connecting a synchronization set A in one to a synchronization set B in the other, as shown in Fig. 2.3.
Given the speciﬁeci upper bound on the phase difference among bytes in the same output word, or
acknowledgments for the same input byte, generated by synchronization set A, and the variations in
propagation delay along paths connecting A to B, we can calculate an upper bound on the phase
difference among inputs in the same batch delivered to B. This derived upper bound is the same for
all input batches sent from A to B. Likewise an upper bound is determined for batches of packets or
acknowledgments sent from B to A. These upper bounds: on phase differences are then used to

“adjust” each control module b assure timing synchronization.

After a redundant system so constructed goes into operation, proper synchronization is
maintained since the phase difference among output baiches generated by a redundant module is
always bounded by a constant which can be derived from pccame(crs in the redundant module alone,
independent of its interaction with its neighbors. - As long as proper synchronization is maintained,
timing synchronization is also maintained.

To support our design mcthodology, we need techmques for synchromzmg byte slices so that
the upper bounds specified in (2) above mdeed ex;st, as well as techmques for designing control
modules which can achieve timing synchromzanon given thesc upper bounds. In this sectlon we
develop an approach that can satisfy both of thm requirements.. In this approach the basic cycle of
activities carried out in a control module, regardmg synchrommt:on consists of several steps:

For a synchronizing decoder,

1 receiw}e-an input byte from each fault-free byte slice it is connected to, timing oqt faulty slices,
) synchromzc with other decoders in its synchromntlon set,
(3) forward a word, deduced from the input bytes it has received, to the p-module it guards,

(4) receive an acknowledgment from the p-module and return the acknowlcdgment to all byte slices

it receives bytes from.

For a fanout module,
(1) receive a byte from the p-module in its slice, and forward the byte to all decoders in the
synchronization set it feeds,
(2) receive an acknowicdgment from cach fault-free byte slice it is connceted to, timing out faulty
m .
(3) synchronize with other fanout modules in its synchronization set,
(4) rewm the acknowledgment to the p-module.

The synchronization algorithm is implemented in synchronizers in control modules. A
synchronizing decoder (Fig. 3.1a) consists of -a synchronizer section and a decoder section. The
synchronizer section implements the synchronization a!goriﬂlm The decoder section ‘decodes the
input word. The synchronizer section consists' of & number of byte -detectors (BDs) and a
synchronizer. The byte detectors are designed to receive packéts in the adopted communication
protocol. Asynchronous packet communication protocols are discussed in Chapter 4.1. For this
chapter it is sufficient to note that arrival of each new byte at a byte detector causes a signal to be sent
on its output line to the synchronizer. Amval of anew mput word is sngna!ed to the synchronizer as a
batch of signals, one from each byte detector. By usmg byte detectors, the synchronwer can be
designed mdepcndently of the packet protocols adopted. The synchmmzer generates an output
signal for cach new batch of input signals it receives. In a synchronizing deoodcr this agnal activates
the decoding section. Outputs of the decoder section are subsequemly dchvered to the p-module in
its byte slice. Each acknowledgment reccived by the synchronmng deooder is rctumed to the fanout

modules from which it reccives input bytes.

-57-

| -— . v acknowledgment
from : L BD L—-—- > 0
fanout ~ ~e— : |decoder ~ p-module

o s

modules L-. -
.,]

i} synchronizer
to synchronizers in from synchronizers in
other decoders other decoders
(a) Synchronizing decoder
a—
t0 wg——oue{ synchronizer 2 « tosynchronizing
p-module \ : decoders
/ P l I [-\ _ .
a—————
to synchronizers in from synchronizers in

other fanout modules other fanout modules
(b) Fanout module

Fig. 3.1. Hardware structure of control modules.

Operation of a fanout module (Fig. 3.1b) is similar to that of a synchronizing decoder, except
that no input decoding is necessary, and acknowledgment signals returned by a neighboring module
are received by its synchronizer directly. In a fanout module, the output signal of the synchronizer is

returned as an acknowledgment signal directly to the p-module in its shce

- To support the requirements of our design methodology, it is sufficient for the synchronizers to

guarantee that:

(S1) For cach new batch of input signals reccived, all fault-free synchronizers in the same
synchronization set will gencrate output signals within a fixed time interval of cach other. The
duration of this interval is bounded by a constant whn:h can be calculated from the time it takes
a synchronizer to perform basic operations, and cach basic operation can be performed in a fixed
time.

(S2) If input signals in the same batch arc generated by fault-free neighboring slices within a fixed
known time interval of each other, thcnfor each new input batch, a synchronizer will generate its
output signal only afier it has received all signals in that baich generated by fault-free slices.

In this section we describc a synchronization algorithm for developing a synchronizer
implementation with these properties. For this description, we assume that:

(A1) Each redundant module is constructed out of 3f+1 byte slices, up to f of which may fail.
(A2) Input signals in the same batch, gcncrated by fault-free ncighboring slices, are delivered to a
synchronizer within § of each other.

We will also use an abstract fault model which states that a fauity byte slice can send signals,
cither directly or indirectly through byte detectors, to a synchronizer at random. In particular, a
failed module may stop scnding signals altogether.

Since each control module communicates with its neighbors via a handshake protocol, the
interaction between a synchronizer and its neighboring fault-free slices obeys the constraint that none

of these ncighbors will deliver another signal to a synchronizer until after the synchronizer has

-59-

gencrated an output signal in response to the previous batch of signals it has reccived from them.
Operation of a (fault-frec) synchronizer under the synchronization algorithm, after it has just

delivered an output signal in response to the previous batch of input signals, is as follows:

For cach batch of input signals received, a synchronizer sends cxactly onc signal to every
synchronizer, including itself, and generates exactly one output signal. A synchronizer sends signals
to other synchronizers and to itself only after it has determined that an input signal from a fault-free
neighboring slice has been received by some synchronizer. Duc to the assumption that up to f
neighboring byte slices and f synchronizers may fail together, a synchronizer cannot be certain of this
until after it has received input signals from more than f ncighboring slices, or synchronization signals
from more than f synchronizers in its synchronization sct. As soon as a synchronizer has received
input signals from f+1 distinct ncighboring slices or synchronization signals from f+1 distinct
synchronizers, it starts sending synchronization signals to itself and to other synchronizers. Once a
synchronizer has received signals from 2f+ 1 synchronizers (itsclf included), it waits § seconds and

then delivers an output signal.

0

Suppose a fault-frce synchronizer receives synchronization signals from f41 distinct
synchronizers at t and as a result generates synchronization signals to other synchronizers, we assume
that all synchronizers will receive these signals by t + p, where p is an upper bound on propagation

dclay through the corresponding data paths.

Lemma 3.1 Under assumption (Al) and (A2):
(i) the output signals of the fault-frec synchronizers arc in-phase within a fixed time interval,
le. 2p, and
(ii) No non-faulty synchromzer wm deliver its output signal before recciving a signal from
every non-faulty netghbonng slice. ‘

Proof:

(i) Suppose a non-faulty synchronizer receives 2f+1 symhroﬁimtion slgnals at time [l and dchvers
its output signal at tl+6. At t} it must have reccived s:gnais fmm at least f+1 non-faulty
synchronizers. At time t;+p every non—fauity synchromzerunll have reccived at least f+1
signals from these non-faulty synchronizers, and will respond by sending signals o other
synchromzers if it has not alrcady done so. At tl +2p each non-faulty synchromzer will have
received at least 2f+1 signals from other synchronmls and at t1+2p+6 each will have

dchvemd its output agnd.

(i) When a non-faulty synchronizer has received synchronization signals from f+1 distinct
synchronizers, at least one non-fauity synchronizer will have received input signals from f+1
neighboring slices, and at least one of these slices must be non-faulty. Thus under the
‘assumpuonmatsxmalsmmemebamhmdchvemdbyfauk-ﬁeenmghbonmmwhma
when a non-faulty synchronizer delivers 1tsoutputs|gnala time units afler it has received
synchronization signals from 2f+1 distinct synchronizers, all input signals from non-faulty
neighboring slices must have arrived.

o

Note that Lemma 3.1 holds as a result of the actions of non-faulty synchronizers. The
algorithm guarantces in-phase operation regardless of the faulty bchavior exhibited by failed

-61-

synchronizers. Even though up to f faulty neighboring slices and f faulty synchronizers can send
signals to synchronizers at random, they cannot trigger synchronization and output activities in
fault-free synchroniiers. And even if they stop sending signals, they cannot declay such activities
indefinitely. To support in-phase operation in a packet communication system with cyclic paths,
output signals from non-faulty synchronizers must be in-phasc within a fixed bounded intcrval after
synchronization. For the above strat.egyA this phase difference is bounded by 2p. To satisfy (S1),
however, a synchronizer must be implemented in such a way that the operation of generating
synchronization signals after recciving such signals from f+1 distinct synchronizers takes a fixed
amount of time, independent of the phase difference among inputs to the synchronizer.

Implementation issues are discussed in detail in Chapter 5.

In the proof of Lemma 3.1 we have assumed that synchronizers act instantaneously. If
synchronizers-do not act instantaneously, variations in logic z;nd path delays through them is bounded
by some r. Phase difference among their outputs may then increase by , again a time parameter
which depends only on hardware parameters internal to the synchronizer set. The phase difference
among synchronizer output signals in the same batch can still be bounded by a parameter applicable

to all batches, and cannot grow without bound.

We can also develop some insight on why our timing synchronization algorithm requires 3f+1
synchronizers to tolerate up to f failures among them. Assume we have a total of S synchronizers. A
synchronizer must generate an output signal upon receiving signals from (S—f) synchronizers
(including itself). This is because up to f synchronizers may fail and stop sending signals altogether.
When a synchronizer generates an output signél, the other synchronizers should start sending signals .
to each other. We observe that if a synchronizer has received signals from (S —f) synchronizers, f of
these synchronizers may be faulty and hence may not send signals to other synchronizers. Thus when

a synchronizer gencrates an output signal, other fault-free synchronizers may have received signals

from only ((S—f) — f) synchronizers. Our strategy thus calls for a synchronizer to send signals to
other synchronizers upon receiving signals from ((S—f) — ') synchronizers. A faulty synchronizer
may send signals to other synchronizers at random. To prevent f Fatity synchromizers conspiring
together from controfling the behavior of fault-free synchronizers, we must have ((S—1) — £)> £,
ie,S)>3f

A similar analysis will show that it is sufficient for a synchronizer to receive input signals from
2f+1 neighboring slices (o tolerate up to f failures among these slices under the abstract fault model.
We have chosen mmmeﬂmasynchmnimr:wciveqinputsigxdsﬁm;}f+l neighboring slices to
simplify the presentation. The construction of mm:m using less than 3f+1 slices is
further discussed in Section 3.3.

3.2 An Algorithm for Consistency Maintenance

A scenario for studying consistency maintenance problems in redundant packet communication
systems was given in Section 2.2. In this scénario non-determinacy is intioduced using synchronizing
merge modules as p-modules in byte slices in a redundant module. In such a non-determinate
module all control modules in the same synchronization set will use the timing synchronization
algonthmpmsemedeecuonmenmm-phastopumonofmesymhmmngmae
modules. lnputwordsandacknowledgnentsmﬂxesmnebaﬁ:hwﬂlﬂmsbedehmedto
symhmnmngmemenmdu!esmmememdundantmodukmﬂunaﬁxedmnemmal

When every synchronizing merge module has a packet pending for output from one of its input
ports, which we shall call the module’s reguest source, they exchange messages with each other and
jointly pick an inpur source. Each synchronizing merge module then forwards a packet from the
input source to its fanout module. The synchronizing merge modules can choose any input port
proposed by a fault-free synchronizing merge module to be the next lput source, since packets will

-63 -

be delivered to every synchronizing merge module at that input port within a fixed time interval.
During the message exchange, faulty synchronizing merge modules may lie. Non-faulty
synchronizing mel;ge modules must be able to pick the same input source, in spite of liars. As long as
fault-frce synchronizing merge modules agree on their input sources, their output streams will be

identical.

Note that this problem is different from the timing synchronization problem, in that modules
participating in the synchronization activities must reach agreement on the outcomes of two-way
decisions, rather than on when events have occurred. Our approach to solviﬁg this fault tolerance
problem is based on an algorithm for exchanging messages among synchronizing merge modules,

under which:

(1) For every synchronizing merge module M, faulty or not, all fault-free synchronizing merge
modules will agree on M’s request source.

(2) The request source proposed by a fault-free synchronizing merge module will be known to all
other fault-free synchronizing merge modules and used in their decisions to pick an input

source.

(1) assures that if each fault-free synchronizing merge module applies the same algorithm to
pick an input source, based on the set of request sources it has deduced for' other synchronizing
merge modules, then all fault-free synchronizing merge modules will pick the same input source. (2)
assures that the choscn input source indeed has packets pending, so that faulty synchronizing merge
modules cannot cause all fault-free merge modules to pick one input port as their next input source

while these fault-free merge modules have only received packets at the other input port.

An algorithm for exchanging request sources among a set of synchronizing merge modules to

achieve (1) and (2), using 3f+1 synchronizing merge modules to tolerate up to f failurcs among them,

is given by Pease ct al in [45]. In this algorithm messages are exchanged in rounds; and the number of
rounds of exchange grows lincarly as the number of failures‘to be tolerated. This contrasts with our
timing synchronization algorithm in which only ofe round of signa} exchange is ever necessary.
Pcasc ct al have also proved a negative result which says:that fewer than 3f+ 1 synchronizing merge
modules arc not sufficient for tolcrating f failures among them, if (1) and (2) are to be achieved by

exchanging unauthenticated messages a]one

For this thesis we will only discuss the single synchronizing merge module failure (f = 1) case
in detail. This greatly simplifics the presentation, especially the implementation details. It is also the
‘most important case for the maintained environment envisioned for our physics simulation
applications, in which the mean time to repair is relatively short compared to the mean time to failure

for any redundant module. _

We will thus assume that there are four synchronizing merge modules, one of which may be
faulty. We start at the point at which each synchrofiizing mefge module has received a packet from
an input port, called its request source, and present the algorithm the synchronizing merge modules
use to jointly pick the input port, called the input source, for transferring the next packet to the
successor module. We assume thala falledsynchmnmngmergcmodmemaysendnmsagatoother
synchronizing merge modules at random and (hat the mesages they send can specnfy enther input
port as its request source. The algomhm also calls for nmmg out other synchromzmg merge modules
to avoid waiting for messages from faulty modules mdeﬁmtely To set up these time out
mechamsms,weneedtoknowﬂlephasediffemnceamongmputsmmesamebatchwme
synchronizing merge modules, and take metastable state phenomena into account. The details of '
implementing these mechanisms will be discussed in Chapter 5.

Each synchronizing merge module executes the following steps to determine the new input

source. Request sources and input sources are denoted by either Q or].
(i) Broadcast its rcqueét source to all synchronizing merge modules, im;luding itself.

(i) Rcceive messages identifying their request sources from other synchronizing merge modules.
This step is timed-out aad either @ or] is assumed for a late module.

(iii) Relay messages received in Step (ii) to othér synchronizing merge modules, including itself.
These messages have the format:
| ammodule1(1 <i<4). Synchromzmgmerge;qoddej(l < j < 4) told me

thatlthsarequ&stﬁ'ommputponk(ﬂorl)"

(iv) Receive messages sent by synchmnjzing merge modules at Step ‘(iii).{ This step is also timed-out
and arbitrary values are again assumed for request soumes in missihg messages. FEach
synchronizing mérge module i will have received four messages regarding the request source of
module j, one from-each synchrommig merge niodule (mcludmgwtselff The contents of these
four mesages are enteredi mw arow of a m;ssag& tablejSample :message tables are ngen in Fig.
3.2). Each element in this table i8 the request source: whlch the synchronizing merge module
named in its column heading claims to haye feceived from the synchronizing merge module
named in its row heading. Module i plcks the request source for module 1 by monng the G,
))-th entry mdletabieandvoungonﬂleremmmngenu‘i&m the row namedbyj

(v) Having determined four request sources, one for each synchronizing merge module, the one in
majority is taken as the input source for the next output packet. In case of a 2-2 tie, pick Q over

1

This algorithm is illustrated by the example given in Fig. 32. Instead of numbering the
synchronizing merge modules, we label them A, B,'C and B. The mom-faulty synchronizing merge
modules A, B and C receive messages from request sources 1 1 and 0 mspccﬂvcly Messages sent by
D can have arbitrary valucs. Thc Iast column in the table kept by a modulc gives the request source
determined by that module in Stcp(w) for each synchronizing merge module. - The extra box in the
fower right hand corner of cacly table gives the input sourec deduced in Step (v) from the request
sources. Note that the contents of messages sent by D in Step (iii) does not affect any decision made

Request Sources
- ” %W WO T v

>

-

=
'

RS- RequestSource IS Input Source

>
)
@]
o

> 9 ‘
>Q
9"

o o

b0 | e o
. ,

© [| |
o | [m |-

g0

]
b;“j‘i o | o | r b-- a

¢
. 3. el H -
DUTEIEIEy Np. o *!"!F'; 2ral MR IR T TIS M I LR SR S L

Tables of Mcssages Reccived

Fig. 3.2. An exampile to illustrate the decision algorithm.

by A, B and C in reaching agreement on an input source. The reader should also check that

properties (1) and (2) statcd at the beginning of this section arc indeed satisfied.

The same tables shown in Fig. 3.2 will have been constructed if either one of the threc modules
A, B, or C times out module D in Step (ii) and assumes the corresponding value for D's request

source. In this case, A, B and C would have picked the same input source in éxactly the same way.

We next verify the algorithm informally. If a synchronizing merge module M is fault-free, all
fault-frec §yn¢;hronizing merge modules (at least three, _incl@ing M) will :btoac_‘lcast M’s request
éoulpe to each other, and hence will agree on M’s request source among themselves. 1f M has failed,
the information exchanged among the three other Vs\ynch‘ronizin_g n;élge modules regarding M’s
request source will be consistent. And again all ﬁon-faulty »sync,’_hvro‘:_nikzing xhe;ge modules will agree
on M’s request source. The reader is referred to‘[}4$] for the general algorithm and for a correctness

proof,

3.3 Discussion

In the absence of a global timing reference, the timing synchronization algorithm presented in
Section 3.1 allows control modules to maintain h-phaseoperadoq locally. This algorithm is closely
related to the fault-tolerant clock design descﬁbedin Elﬂ. aadmy be'viewed as a generalization of
the synchronization voting technique studied by Davies and Wakerly in [17). These two references

have been sources of ideas and examples for our work.

Fault-tolerant Clocking Systems

In the fault-tolerant clocking system described in [16] an array of identical oscillator modules is

used to produce a number of phase-locked clock signals for global synchronization. Using 3f+1

modules, phase-locking is maintained on at least 2+1 of the global clock signals after f failures.
Local conditioning circuits at hardware units convert the 3f+ 1 global clock signals into local clock
signals that are phasc-locked if no morc than f global clock signals have failed. Phase-locking among
the glbal clock signals is maintained by conditioning cach oscillator output to change state after
either the elapse of a clock period or after sufficiently many other global clock signals have changed

state.

Our synchronization algorithm presented in Section 3.1 can be used to implement a
fault-tolerant clock in the configuration depicted in Fig. 3.3. ‘In this scheme cach syrichmnizer has a
‘single input port and sends signals to other synchronizers as soon as it receives an input signal from
this port. The output signal generated by the synchronizer is fed back to itsclf. The omputléignalrs
generated by fault-free sjmchmniuis can be out of phase by as much asZp (Section 3.1). Each
synchronizer, after receiving syn'chrbf:'iza'tkion‘simﬂs from 2f+1 distinct synchronizers (mduding

itself), waits 2p before sending the next output signal.

Fig. 33. A fault-tolcrant clo:king system.

-69-

Suppose each signal transition (either 0 — 1 or 1 —» 8) on its output line represents an output
signal generated by the synchronizer, then the configuration illustrated in Fig. 3.3 has the following

properties:

As long as less than f of the synchronizers have failed,
(1) Al fault-free synchronizers will generate output transitions in the same direction within 2p of .
each other.
(2) A fault-free synchronizer will make an output transition in. one direction after all fault-free

synchronizers have made their previous output transitions in the opposite direction.

These are exactly the phase requirements to be satisfied by redundant pesiodic signals generated by a
fault-tolerant clocking system. Our synchronization algorithm thus suggests an approach to construct
fault-tolerant clocks. Its practicality depends on whether of fiot it is possible to implement the
desired properties of the synchronizer in a fault-tolerant fashion in the given hardware technology.

(8]

Synchronization Voting

Under the abstract fault model, a failed control module may send signals to only some
synchronizers in its neighboring synchronization set; but not to others. For a restricted class of
hardware failures, however, a failed control module will eithermot send any sighals; or send one o
each synchronizer within a fixed time interval. For such failures, timing synchronmuon can be
achieved usmg the synchmmzauon vonng techmque of Duv‘ies and W&el‘ly [171. “

- In synchronization voting, synchronizers in the same synchronization set are designed assuming
that input signals in the same batch are in-phase within some §. No communication is necessary

among synchronizers. After receiving input signals from f+1 distinct byte slices, a synchronizgr

-70-

waits 8 seconds, and then generates an output signal.

For the restricted class of hardware failures under consideration, the phase difference § among
input signals in fhe same batch reccived by a synchronizer from fault-free neighboring slices depends
only on:

(1) variations in propagation delay along paths connecting adjacent synchronization sets (Fig. 2.3),
(2) variations in propagation and gate dciay among synchronizers in the same synchronization set,

(3) performance incompatibility parameters among p-modiiics in the same-synchrenization set.

& can thus be computed for cach synchronizer after the redundant system is designed and the above

quantities are known, and used in its hardware implementation.

If a failed module can send signals to some synchronizers in its neighboring synchronization
set, but not to others, then synchronization voting is not sufficient for timing synchronization.
Suppose a set of synchronizers designed under synchronization voting receives a batch of signals
from fault-free slices that are in-phase within §. Under the more general fault assumption, one
synchronizer may receive f+1 signals 8§ scconds before another, Output signalsugengrated by these
synchronizers can then be out of phase by 6. If the p-modules are performance compatxblc within 7,
the next batch of outputs generated by fault-frée byte slices containing these synchronizers can be out
of phase by 8 + r. Under thesc conditions, phase differcace among signal in the same batch can -

The intercsted reader is referred to [17] for a more detailed discussion on synchronization
voting.
o

-71-

Suppose an encoding scheme is picked for a redundant packet communication system under
which 2f41 byte slices is sufficient for detecting and/or masking failures in up to f slices among
them. Timing synéhronimion can be maintained in such a sys(ém by using 2f+1 byte slices in each
redundant module, and connecting the control modules in these 2f+1 byte slices as shown in Fig.
2.3. Fach synchronization set in this configuration has 2f+1 control modules. We have already
noted that the synchronizer algorithm can be designed to maintain timing synchronization using a
total of 2f+1 input signals. To satisfy thc requirement of having at lcast 3f+1 synchronizers
participating in each round of synchronization activities, wc .can add f synchronizers to each
synchronization set, connectihg them to every control module in that synchronization set and to each
other. These cxtra synchronizers do not réceive input signals nor produce output signals. Their sole
function is to cnhance robustness in the synchronization algqﬁthm. by rclaying synchronization

signals among all synchronizers. The algorithm they execute is: .

Receive signals from f+ 1 distinct synchronizers, then send a signal to every synchronizer.

Finally, note that the steps in the algorithm for reaching agreement among synchronizing
merge modules does not depend on the contents of the messages exchanged. The algorithm can also
be used for reaching agreement among a group of modules making multiple-outcome decisions
independently. In particular the consistency maintenance algorithm can be used to exchange clock
readings among computer systems reliably, and hence for timing synchronization. This approach is
clearly more expensive than our timing synchromization algorithm for managing redundancy in
hardware systems, but it may be appropriate for synchroniziiig nodes in a computer network. The
fault tolerance ca_pabi?iﬁes of this approach also depends on how hardware failures can be handled in
an implementation.

4. Asynchronous Packet Communication Protocols and Fault Models

In the last two chapters we have explained our approach to constructing fault-tolcrant packet
communicatioﬂ systems. A redundant system is constructed by intcrconnecting redundant modules
via redundant links. Each redﬁndan't module has a byte-sliced internal structure. Timing
synchronization and consistency are always maintained. even in the presence of failures, in a
redundant system. The output words of a byte-sliced module are cacoded for detecting and/or
masking failures in its byte slices. The cmphasis in the last two chaptcrs has been on explaining the
problems of timing synchronization and consistency maintenance, thc approach we have taken to

~ sustain them, and the basic algorithms uscd in this approach.

In this and the next chapter we study hardwarce implementation issues. Smce the eﬂ'ebﬁveness
of our approach to fault tolerance in packet corht‘nu'ni'cation systems depends hlﬁfnately on our ability
to implement the rcdundancy management algorithms given: in Chapter 3, we will analyze
implementation issues in detail. The basic concepts for control module design and analysis are
presented in this chapter. Hardware implementation of control modules and synchronizing merge
modules to support our particular approach to constructing fault-tolerant systems are studied in the
next chaper. '

A control module receives and generates packets and acknowledgment# by interpreting and
generating signal transitions on its input and output lines according. to a set of conventions called an
asynchronous packet communication projocol. Without knowledge of the adopted communication
protocol, there is no basis for discriminating between normal and faulty behavior. We define a class
of packet communication protocols in Scction 4.1 whose use will be assumced in studying hardware

implementation of control modules and synchronizing merge modules.

-7

In Section 4.2 we present fault models for characterizing the behavior of faulty hardware
modules. We describe the type of output signals that we assume a faulty module may generate on its
output lincs. The .intcraction between fault-free and failed modules is characterized formally by
modcling the interaction between signals that may be generated by failed modules and hardware
elements used to construct fault handlers. This latter aspect of fault modeling is essential for
evaluating the cffectiveness of fault héndler designs under the assumed fault model, but is often left

out under the stuck-at fault model.

For studying fault tolcrance problems in packet communication systems, we feel that the
stuck-at fault model is too restrictive, and have chosen.to study hardware implementation issues using
more general fault models which better reflect the sensitivity. of self-timed hardware modules to runt
pulses and output hazards. Hardware implementation of the control modules and synchronizing
merge modules will be studied under the stuck-at faylt model, the randow pulse train fault model and
the random wave train fault model. These latter two more general famlt models are also motivated by
failure mechanisms in VLSI technologies which are not adequately modeled by the stuck-at fault
model. Interaction between faulty signals generated under these two fault models and hardware

elements used to construct control modules and synchronizing ‘nierg’é modules are also specified.
4.1 Asynchronous Packet Communication Protocols

We have described packet transmission ovér a Mml m terms of ‘c‘hannel state transitions
(Fig. 2.1). Both data and control infonnatioq are sent over a channgl. A packet communication
protocol is a cbnvention for interpre_tiné the sngnal sequences transmitted over the wires of a channel
to synchronize port éctivities. A packet commun"gcat’ion protocol is asynchronous if the state of a
channel can always be deduced by examining kthc~signals carried on the wires in the channel, without

consulting any external timing reference. When an asynchronous packet communication protocol is

-74 -

adopted, a channel can reside in a state for an arbitrarily long period of time. In other words, an
input port need not process an input packet within a fixed time interval after the packet is available
and an outpﬁt port nced not gencrate output packets at a predetermined fixed rate. A packet
communication module whose port activities are synchronized by asynchronous protocols is then, in
this sensc, a scif-timed hardware module.

An acknowledgment bundle can be implemented using a single wire. Acknowledgments are
delivered on this wire as signal tr?nsitions. as shown in Fig. 1.16. For packet transmission on an
n-wire packet bundle, cach packet is represented by an n-bit binary string. Suppose a packet
represcnted by string a is delivered to an input port, acknowledged, and then a packet represented by
string b is transmitted. The packet bundie connected to the input poft may undergo a series of
intermediate state changes before settling down at b. The set of possible intermediate states that may
occur when a packet bundle undergoes a state tmls:tionﬁmn ato b is characterized by the subspace
covered by a and b, defined as follows:

Leta = aj..a; and b = by..b, be two n-bit binary strings. The set of n-bit binary strings in
thewbspacecoveredbyaand,b,isdeﬁnedl
{c=c1...cn|ci=ai=biforalliatwhichai=bi}
The subspace covered by 00100 and 01110 i, for example, =~
{0x)1y,01%, €{0,1},y; €{0,1}}

To facilitate the design of input ports, we use an approach in which a stream of packets is
transmitted on an n-wire packet bundle by encoding thema!tcmately in two subsets, A and B, of the
binary n-cube, and choose A and B so that transitions between them is easily recognizable. More
specifically, A and B should be chosen so that an input port can recognize when a state transition on
its input bundle, from any clement in one set to any clement in the other set, is completed. er

-7 -

approach is to choose A and B so that when a packet bundle undergoes a state transition from any
clement in one set to any clement in the other set, ao element in either A or B can ever occur as an
intermediate bundle state. Any two sets of binary strings with this property are said to be separable,

as defined next.

Consider an n-wire packet bundle. Let A and B be two subsets of the binary n-cube. A and B
are inseparable if therc exist three distinct stringsa € A, b€ Bandc € AU B such thatcis in the

subspace covered by aand b. A and B are separable if they are disjoint and not inseparable.

-In other words, A and B are inseparable if there are elements a in A and b in B such that in a
state transition on a packet bundle from a to b or from b to a, an element in A or an element in B may
appear as an intermediate state. The two sets { 010, 111 } a’nd { 100, 001 } are thus scparable while
{ 000, 010, 111 } and { 100, 001 } are not. When two separable sets are used for packet transmission
the receiving input port can detect the completion of the next packet transmission, after a packet
encoded in either A or B is acknowledged, by looking for a string in the other set on the packet
bundle.

For an asynchronous protocol based on two separable sets A and B, a packet bundle state is
illegal if it is notin the subspace covered by A ah&B‘.l Itis unsiable if it is legal but is in neither A
nor B. Elements.of A and B arecalled stable states. N

The ready/acknowledge handshake protocol is an example of an- asynchronous packet
communication protocol. Thetwg separable sets are the singletons:{0.} and {1}, used on the ready

wire (Fig. 1.12) to control packet transmission. Packet contents are delivered on the data wires.

1. The subspace covered by two sets A and B is:
U { subspace covered by aand bja €A, b€ B}

‘Another example of an asynchronous packet protocol is the dual-rail protocol. In a dual-rail
protocol every information bit in a packet s transmitted over a pair of wires. A packet bundie thus
consists of m wire pairs. It is i a spacer state when all wires carry the logic vaue 0. Rt is in a dota state
when exactly one wire in each pair carries the logic vatue 1. The singleton set, consisting of only the
spaccr, and the set of alf data states provide two scparable sets for asyachronous packet transmission.
Amagmmmm«mm_mm—-mm A data — spacer transition
resets the bundle state for the next transmission. Under the dual-rail protocol, a packet bundle state
is illegal if some wire pair carries 1 on both wires. Data states and the spacer state arc siable legal
states. Other legal states, in which some wire pair carries "00", are unstable. Chaanel state trasitions
for sending 1-bit packets in duak-rail is iflustrated in Fig, 41. The two separable sets used in a 1-bit
dual-rail protocot are { 00 }, and { 01, 10}.

Other examples of asynchronous packet communication protocols can be found in [4].

An input port can detect the arrival of a new packet ’using a packet detector (Fig. 4.2a). A
detector is constructed ‘out of acceptors for two separable sets A and B, and a Muller C-clement. The
output of the C-clement keeps its present value as fong as its two input values disagree, and changes
to the commen input value otherwise. Operation of the C-clement is described by a transition
diagram in Fig. 4.2 (b). A total state of the C-element specifics the signal values carried on its input
and output wires. The unstable states of a C-element are marked by an asterisk in the transition
diagram. A C-element acts by making transitions from unstable to stable states. An acceptor for a set
S is a hazard-free combinational circuit whose output is 1 if and only if its input is in S. The output
of a packet detector undergoes 0 — 1 and 1 — 0 transitions as the monitored bundle makes
transitions between the twovseparable sets. A packet detector for dual-rail protocols is shown in Fig.
4.2 (c). Packet detectors in synchronizing decoders a;'e called byte detectors because each packet

received by these decoders contains exactly one byte of each mput word.

Further restrictions, based on the notion of Hamming distance [46), [65], for example, may be
imposed on separable sets used in packet communication to support error ;hecking and error
correction. We next illustrate a technique that can be applied to translate familiar error detecting or

error-correcting codes {46}, [65] into a dual-rail code with the following example.

An n-bit dual-rail parity code partitions the data states of a packet bundle according to their
parity. Let the dual-rail encoding of the information bits 0 and 1 be"'Ol" and "10", respectively. A
data state in a dual-rail protocol has even parity if it contains an even number of "10"s, and odd
parity otherwise. An even-parity dual-rail asynchronous packet communication protocol is just a
dual-rail protocol whose data states all have even parity. In using a dual-rail even parity code, even

parity packets alternate with spacers on packet bundles.

input _—__.ﬁ | —_——

(a) Hardware structure of a packet detector.

Input states
60 o1 n 10
o |4 i
Output state 1
1 E ')

(b) Transition diagram for the C-clement.

1 FL

(c) A detector for dual-rail protocols.

Fig 4.2. Packet detectors.

If a dual-rail parity code is used to detect failures in a redundant module, each dual-rail bit
should be generated by an independent slice to assure that common failure modes, such as single slice
failures, affect at most one dual-rail bit. Encoding and decoding packets for fault tolerance are
further discussed in Section 5.2, |

4.2 Fault Modeling

We are interested in designing control modules and synchronizing merge modules. that can
tolcrate hardware failures in their neighbors in maintaining synchronization and consistency among
byte slices in a redundant module, and detect and mask data errefs.! To:study these. designs
vigorously, we need to explicitly specify the interaction between signals gencrated by failed modules
and hardware elements such as coinbinéti"oﬁ.al"gates,j C-clements and latches, used in constructing
fault handlers. We caft such a specification a fault model. In using a given fault model in fault
handler design, we arc assuming that under the most common hardware failure modes the underlying
physical interaction between signals genérated by failéd modules and hardware elements in fault
handlers can indeed be characterized by the adopted fault model.

In this section we introduce the stuck-at fault model, the random pulse train fault model and
the random wave train fault model. These latter two models are generalizations of the widely used
stck-at fault model. Several failure mechanisms in VLSI NMOS and CMOS technologies that
cannot be modeled by classical stuck-at fault models are reported in [28], [63]. Some of these
mechanisms are aging processes which modify the electrical characteristics of basic transistor circuits.
It seems that as feature sizes, path widths and separation between active circuits reach submicron
levels, the stuck-at fault model will not be adequate for modeling many on-chip failure mechanisms,

or transient failures caused by external interference.

We note that the stuck-at fault medel, the random pulse train fault model and the random wave
train fault model form a strict hierarchy in terms of generality and modcling power, the random wave
train model being the most general, the stuck-at model the most restrictive. Iti the next chapter we
study the design of control modules and synchronizing merge modules using these' fmﬂt models. For
a specific implementation technology, a fault model can be validated cithcr’~ Q}mugh cxperimental
measurements or physics modeling. Validation of these fault models for avéglable implementation

technologies is beyond the scope of this thesis. S

The Stuck-At Fault Medel

Under this fault model a signal gencrated by a failed module appears fo a hardware element in
a fault-free module as if the signal is stuck at either the logic Jevel 0 or the Jogic level 1. The behavior
of a hardware element receiving a faulty sign;l is ldenml to that of the ¢lement under fault-free
operation, with its corresponding input tied to either 0 or 1. "This is the most common fault model
assumed in studying fault-tolerant digital systems, and is often used to characterize logic gate failures
caused by output lines shorting to ground or VCC' This fault model is used in many production

A byte slice in a redundant module communicates with its seighbors via an asynchronous
packet communication protocol. Our stuck-at fault model for byte slices states that a failed byte-glice
behaves exactly like the fault-free slice except that some of its output lines are cither ORed with Voo
or ANDed with ground (Fig. 4.3). Thus while some output lines of a failed byte slice are stuck,
signals may still be generated on its other output lines in. accordance with the adopted
communication protocol. We will also explicitly assume that an-output line of a failed byte slice can
become stuck at a logical value only when the output signal on that line is already residing at that

value, and thus no spurious signal transmon is ever generated. Under the stuck-at fault model in Fig.

-81-

- Vec
ack -— — - packe!

' i\“ bondi

Fig. 4.3. The stuck-at faultnwdclfo&byte'slice failures.

43, an output byte or acknowledgment generated By the failed slice can be delivered to some, but not
nécesary all, neighboring control modules. An acknowledgment wire stuck at cither 0 or 1 will stop
returning acknowledgments. But ’if some wires in a packet bundle (Fig. 2.1) are smck some paqkets
generated by the failed slice may still be delivered on that bundle. 'Ihgse situations will be discussed
in more deﬁail when we study fauit handler designs-under the stuck-at fault model in Section 5.1.2.

The Random Pulse Train Fault Model

Under this fault model signals generated by a failéd médule may oscillste randomly between 0
and 1, but do not reside at intermediate levels for any significant period of time (compared to logic
gate delays). We model such a faulty signal as a random pulse tram (Fig. 44a). The interaction
between a random pulse train and a fault-free haréware qlemént is as foll;)ws:-

(b) Interaction between a random pulsc train and an OR gate.

Fig. 44. The random pulsc train fault model.

-83-

(c) Interaction between a rindom pulse train and a C-element.

Fig. 44. The random pulse train fault model (continued).

Interaction between a combinational gate and a random pulse train

A combinational gate, such as an AND gate or an OR gate, is modeled as a logic gate whose
output at time t is obtained by applying the corresponding boolean function to its input value at time
t, followed by a delay clement whosc input signal is delayed by some given 8. Interaction between a

combinational gatc and a random pulse train input is illustrated using an OR gate in Fig. 4.4b.

Intcraction between a C-clement and a random puise trais

The input/output behavior or a Muller C-element is iHjustrated in Fig. 4.2. More precisely, we
assume that the state table in Fig 4.2b specifics the oytput of the C?clancnt at time t given its input
and output signal values at time (t-§) for some fixed 8. intcra:ﬁon between a- C-clement and a
random pulse train input is illustrated in Fig. 44c In modeling this interaction we have made the
assumption that signal transitions in a random pulse train are sufficiently far apart that a C-element,
when activated, will always settle down in its new state before the next transition occurs, and that a
random pulse train does not drive a C-clement into a metastable state. Again, we cautioﬁ the reader
that the validity of these assumptions should be carcﬁm;cchmked befomadopungtlus fault model
for specific hardware implementation. Our key application for C-elements in control modules design
under this fault modcl is for filtering out random pulses using a fault-frec input signal, as illustrated

in Fig. 4.4c.

Interaction between a latch and a random pulse train

For a latch receiving a random pulse train under the control of a fault-free latching pulse, we
assumc that the output of the latch will scttle down at either 0 or 1 within a fixed time interval after

the latching pulse. It is well known that if the input to a latch changes its valuc at about the same

time the latching pulse arrives, the latch may be driven into a metastable state and remain in that state
for an arbitrarily long time. For many technologies the probability tﬁat a latch, after entering its
metastable state at-timékt‘ remains in that stz;le att+8 decreasés rapidly ,with 8. It is thus possible to
improve the accuracy of the random phlse train fault model by assuming a longer scttling time
between delivering a léfching pulse and rcading the output of the latc;ﬁ. The probability that the
latch will remain in its metastable stat'c al_ter the assumcd scttlir;g time is, however, nonzero and must

be taken into account in calculating reliability measures.

The Random Wave Train Fault Model

Under this fault model signals gencrated by a failed module can wander arbitrarily in the
region bounded by the signal values 0 and 1. We model such a faulty signal as:a random wave train
(Fig. 4.5a). The interaction between a random wave train and a fault-free hardware clement is as

follows:

Interaction between a combinational gatc and 2 random wave uain

Same as that between a combinational gate and a random pulse train. Interaction between a
combinational gate and a random wave train input is illustrated using an OR gate in Fig. 4.5b.
Interaction betweep a C-clement and a random wave train

We assume that a random wave train inbut can be propagated to the output of the C-element,
as illustrated in Fig. 4.5c. Thus under the random wave train fault model, C-clcments are no longer

uscful for filtering faulty signals.

(b) Interaction between a random wave train and an OR gate.

Fig. 4.5. The random wave train fault model.

h

1
I

0| ——————d . -

1
)

0

1|~~~ e e — — = -—
Out

0 | LS e s L M e e e e e - — ——

(c) Interaction between a random wave train and a C-element.

Fig. 4.5. The random wave train fault model (continued).

Interaction between a latch and a random wave train

Same as that between a latch and a random pulse train.

‘4.3 Discussion

A packet communication module interacts with its neighbors at scveral different levels. At the
wire level it dclivcrs signal transitions on wires to its ncighbors. At the packet communication level it
dglivcrs packets to its ncighbors over a bundle of wircs and delivers acknowlcdgments over
acknowledgment wires, in accordance with the ad()picd packct communication protocol. Higher
levels of interaction, interpreting a packet as a request for service, for cxample, need not concern us
herc. The threc fault models we have given specify the behavior of a failed module at the wire level.
In the next chapter we will relate these faults on wire bundles t0 packet communication errors and

" discuss how these faults relatc to the abstract fault nwdels‘asﬁ;umed in thc iédundancy management

algorithms presented in Chapter 3.

The gencration and propagation of runt pulses under the random pulse train and random wave
train fault models can be illustrated by a simple c;ample. Considgr the synchronous digital system
shown in Fig. 4.6. The outputs of the prdcessing module are protected by an crror-detecting code,
and checked by an error detector. These modules are symhfmimd, using a two-phase clock. At @y a

input . output error

latch ' latch indicator
processing - o
:' ' i
! I
! i {
141 R /] 1

Fig. 4.6. An crror detection scheme for synchronous systems.

ncw input for the processing module is stored in its input latch. The corresponding output is stored
in its output laich at @,. This output is checked for errors and the error indicator flag is set at the
immediately following] P} Supposc the proccséing module has failed and gencrzites random wave
trains or random pulse trains at its output port, violating the sctup and holding time rcq’uircmcnts of
its output latch for synchronization with wz.‘ Under these conditidns the output latch of the
processing module may enter a metastable state, as explained in Section 1.2.3, remain in this state for
an arbitrarily long time, and then cxit into a stable state that violates the crror?dctccﬁng code and
hence is erroncous. If this uﬁnsition occurs late in the clock cycle following @, the output of the
error detector may not indicate an error at the next Py In parucular the output signal of the error
detector may still be residing at an immcdlatc value between 0and 1 when the next ¢ 1 occurs, and
can be interpreted as indicating an absence of errors when latched into the indicator flag. In this way
an crroneous output may be propagated from the fqulty”prmcminéiinodiile to other hardware
modules. This sort of pathological behavior cannot occur under the stuck-at fault model.
Redundancy techniques for climinating such pad\olomcal behiwior in redundant packet

communication systems are discussed in the next chapter.

Regarding packet communication protot':ols; wek have prese:itéd a class of asynchronous
protocols in Section 4.1 that is sufﬁclently general for nnplanenung packet communication systems,
and is yet still quitc easy to characterize. It is possible w construct more general clases of protocols
but their implementation may require more powcrﬁ,ll and more complex encoding and decoding
equipment. Scparable sets can also be used to genei'alize the notion of an acknowledgment, to
~ construct systems in which packets are transmitted in both directions over a'single channel. The
applicability of these gencralizations remains to be investigated. It would also be of interest to
compute the maximum number of distinct "p'ackctsv. that can be represented using separable sets of

binary strings of a given length. This problem has been studied in [5].

5. Control Module and Synchronizing Merge Module Design

In this chapter we study hardware implemeﬁtaﬁonbf control modules anq synchronizing merge
modules. While p-modules other than synchronizing merge modules can be implemented under
unbounded gate delay assumptions [4], 31}, B33} [39]. we have found it convenient to design
synchronizers, decoders and synchmnizing merge modules using more conventional asynchronous
statc machine design techniques Dela} el&nems are imened on selccted paths in each control
module to ensure that mputs to these asynchronous statc machum mdeed conform to mumpuons
madeonmenrrateofchange Upperboundsonslmalpmagauondehysmnongsymhromnng
-}mergemodulwmamdundantmdukmahomedwmplementum&ommmme
consistency maintenance algorithm. Notemaaﬂsnchmwmdeumnsareoonﬁnedwmmm
the same redundant module, andhenceead:redundama:odulemmnbeconsmmedwnman
detailed kmwbdgeofd\emmdopemngspeedofmne@mmdmuppabwndsm
ph&dlﬁemsmgpﬂmmmmmmggrmbmhmwdbyﬂwm
module from these neighbors. | |

Hardwmmplanenmnonofmnudmodulesandmhmmngmergemodulwssmdwdm
SecuonsSl S.2and53 tmygmefaunmodekg:mmm4.2. lnSecnonﬂwsaldy
mplanenmnonofmenmmgsymhmnmdamwmmmesymhmmmmofmm
modul&& lnSecthlweammnewchmqnesfo:dewdmgpacketmtemsmdwdewdermn
ofsynchronmngdecoders. Gmuﬁmpmmmhnmform&dmdemmdw
wnmwtgmngmwdaahdmestumesb&dmspxﬂkemodmgachumsmdwoderdm In
SwUmSJWSmdympkmmﬂuonofdnmymnmmmmmsynchmmg
merge modules. Our appmach to cm\stmcnng redundam packet oommumcauon modules and the
mpmamnmhnnmammmmwmermi&lmbywommm
Section S 4.

-9]-

Throughout Section 5.1, 5.2 and 5.3, we assume that there are 3f+1 byte slices in each
redundant module, up to f of which may fail. There will thus be enough failure-independent byte
slices to maintain synchronization and consistency using the algorithins presented in Chapter 3 under
the abstract fault model prescnted therem Hardware implementation of these algonthms, and their
use in maintaining timing synchromzanon and con&stency in packet communication systems
subjected to failures modeled as in Section 4.2, are presented under this assumption. Application of*
our redundancy techniques to hardware modules which are not byte-shced mtemally is illustrated in

rhe design examples given in Section 5.4.

5.1 Syachronizer Implementation

Let us briefly review the operational environment of a synchronizer. Referring to Fig. 2.3, a
synchronizing decoder receives input bytes from a synchronization set of 3f+1 fanout modules.
Each byte is delivered by a fault-free fanout module as a packet 4 the synchronizing decoder using
the adopted packet communication protocol. The arrival of a new byte at the synchronizing decoder
is detected by a byte detector (Fig. 3.1a) and signaled to -its synchronizer. In a fanout module, a
synchronizer receives acknowledgment signals from its aeighbosing synchronizing decoders direetly.
The algorithm to be implemented in the synchronizer is described in Section 3.1. For every batch of
input signals received, a synchronizer exchanges synchmnimuon sgnals vmh other synchronizers,
and then generates an output signal.

In the contrel modules environment, due to the use of handshake protocols, there is a feedback
~ path from the output of the synchronizer to its signal sources, such that a fault-free input signal
source S of the synchronizer will not-send another signal to. the synchronizer until the synchronizer
has generated an output signal in responsc to the previous signal generated by S. A delay element
can be inserted in this feedback path, in the contral module containing the synchronizer, to regulate

the rate at which these input signal sources generate signals to the synchromizer. As we shall see in
Section 5.1.1, this provides a coavenient mechsnism for emsuring the proper operation of
aymhmm@maﬁwmdh&esym.

_ meesyndumherinpmnmionssmdbdhmismbmadmdishnpkmenwdasa
signal transition, cither 0 —» 1 or 1 — 0, on the corresponding wire. We furthermore adopt the
convention that input signals in the same batch, and the output signal generatcd by the synchronizer
hmomwﬂmbaﬁLﬁtleMedbyﬁmdmh&mdimﬁo& In the
following discussion we need to distinguish between the logical signals received and sent by a module
and the signal waveforms carried on its input and output wires. We call the former logical signals and
use the term signal to denote the latter.

Formmawﬁwmmﬁmmivedbnmamzfuofmmu
signal transitions generated by fault-free byte slices, and wilt be in-phase within some known 8.
Failed sfices can exhibit pathological behavior, and we will only consider the sort of pathological
behavior allowed in our fault models. Under these imput conditions, 2 hardware implementation of a
synchronizer must support (S1), (S2) given in Section 3.1, and (S3):

(S1) For each new batch of input smuls received, all fault-ﬁeef synchmmmls in the same
symhonizaﬁmsetwmgenéaemnsigmkwﬂhhaﬁxedﬁmehmdofmhothﬁ. The
duration of this interval is bounded by a constant which can be calculated from the time it takes
a synchronizer to perform basic operations, and each basic operation can be performed in a
fxedtime.

(S2) If input signals in the same batch are gencrated by fault-free neighboring slices within a fixed
known time interval of each other, then for each new input batch, a synchronizer will generate
its output signal onty after it has received all signals in that batch geacrated by fault-free slices.

-93 -

(83) The output signal generated by a fault-free synchronizer must not contain hazards or runt
pulses.

The last property (S3) is especially important in self-timed hardware systems whose modules react to
s:gnal transitions on their input wires. Al &ese three- pmpenm mustbe satisfied fogether in a
synchronizer implementation to support our overall appmach to timing synchronization. We first
present a synchronizer design which implgmems the synchronization algorithm under Jault-free
operation, and then examine how this desxgn can be enhanced to decal with hardware failures
modeled by the three fault modelsexplamed m SecnorM.Z

5.1.1 Synchronige»g,,!nlen'entation under Fault-Free Conditions

The basic operamns in a synchromzer are to geneme logxcal synchronization signals and
loglcaloutputsngnalsmrespometoﬂ\emcgtofmal input signals or logical synchronization
signals. These basic operations have the form:

"Receive logical signals on n 6f the 341 input Iines, then generate a logical signal.”

In an implementation, the logical signals received and generated by each such operation are all
represented by signal transitions in the same direction. We first design & generator circuit (Fig. 5.1a),
denoted by gen(n, 3f+ 1 for performing this opetation. During faultsfree operation, the input and
output signals of the geaerator circuit undergo the followingcycle:

(g1) All fault-free inputs are at 0.

(82) n or more of the inputs become 1, outputi;then set to 1. . This corresponds to receiving a
batch of logical input signals and generating a logical output signal in the synchronization
algorithm. |

(g3) All fault-free inputs are at 1.

(g4) n or more of the inputs become 0, the output is then set to 0. This corresponds to

A e)
: —e thshin, 3f+1) — :
11 :
input : sequenoer-'—o'Output
fines ' . r—. '
1 : 1
: ot hsh(3f—n+2,3f+1) }—-J {
L—--— a——-c-—‘—‘-:-—, ———————————— J
(@A A generamrcumugedn. 3f+1).
4
(D
C(m, 3f+1))
combinations < L—-:—-OR—
of m . r-—'—-m
input wires _
k P E
(b) A threshold circuit thsim, 3f+1).
"o T I I TS
n i |
t —
] ' o
R !
L I e o S
Demultiplexor
(c) A sequencer module.

Fig. 5.1. Hardware implementation of a generator circuit.

-95-

receiving a second batch of logical input signals and generating a second logical output
signal in the synchronization algorithm.

In the context .of control modules, due to the use of handshake protocols for packet
communication, we can also control the duration at which the input signals to the synchronizer
remain at input state gl or g3. This can be achicved by delaying the acknowledgment retumed by the
control module containing the s)enchmniéer lo its predecessor. This kind of coutrol is important
because several asynchronous state machines are used in the synchronizer implementation, and their
outputs would be hazard-free only if their internial state variables are given sufficient time to stabilize
in between input changes. The rate of input change is controlled by holding the input states of a

generator in gl and g3 for as long as is necessary.

A generator circuit gen(n, 3f+ 1) (Fig. 5.1a) is conatrucied using two threshold circuits and an
asynchronous state machine which we will call a sequencer module.

A threshold circuit (Fig. 5.1b), denoted.by theh m, 36+-1), is used to- detect the arrival of m
logical signals. It is construcied from C(ms, 3+1) troes of AND: gatos.and a trec of OR gates. Its
output is 1 if and oaly if m or mare of its 31 input fignas arcat 1, :and i free of hazsrds undes the

As the input state to a threshold circuit cycles from gl through g4, a fault-free input
signal will not make anather transitien until aftes the output signal traasition generated in
response 1o the previous transition on that input signal has been obeerved oa the output
lin ofhe thresholdciruic |

1. C(m, 3f+1) is the number of combinations of choosing m objects out of 3f+ 1 distinct ones.

v SmManMMmﬁm&ﬂu,ﬂﬁmﬁmsammny
satisfied by using asynchronous handshake protocols for packet commnmication in the hardware
system.

In the generator (Fig. 5.1a), the thsh{n, 3+ 1) circuit detects the input state transitions from gl
to g2, the MsA(3f—n+ 2, 3f+ 1) circuit detects the input stase transitions from g3 w0 g4. The output
signals of these two threshold elements cycic through the following states:

(1) thshin, 3f+1) = 0, thsh(3f—n+2,3f+1) = 0, (gencrator inputs at gl)

(2) thsh(n,3f+1) = 1, thsh(3f—n+2,3f+1) = —~, (generator inputs changes from gl 1o §2)

(3) thsh(n, 3f+1) = 1, thsh(3f—n+2,3f+1) = 1, (gencrator inputs at g3)

(t4) thskin, 3f+1) = —, thsi(3f—n+2 3f+1) =0, (gcmmdimﬁmng} to g4)
and then back 10 t1 when the input signals to the generator change from g4 back w0 gl.

Under the signal representation conventions, the output signal of the generator should go from
0 to] when the input signais of the generator go:from gl 0. g2 or, equivalently, when the output
signal of the threshold clemsent Ms,i?»f-o-!);gna%fmﬁ 8w 1. ‘Sinilirly the output signal of the
geaerator undergoes a 1 to 0 transition upon a g3 10 3¢ tansitivn on-the Hput signals of the generator
or, equivalently, a 1 to 0 transition on the output signal of the threshold clement hai(3f—-n+2,
3f+1)

The output of the generator cireuit is derived from the outputs of the two threshold circuits
using the asynchronous state machine, which we will call a sequencer modidle, shown in Fig. 5.1c. The
sequencer module has a single binary state varisble, implemented with a C-clement. When both
inputs 11 and 12 are 0, the output of the C-clement is 0 and the next 0 — 1 transition on Il i
transmitted to the output line Our. When both inputs are 1, the output of the C-element is 1, and the
next 1 — 0 transition on 12 is transmitted to Out. mwwmawwaw

module is hazard-free under a delay

1 assumption and an input assumption:

(1) If both input signals to the demultiplexor (Fig. 5.1c) have the same value as its output signal, then

selecting one input signal instead of the other by changing the output of the C-element will not
cause a spurious pulse at Out. This can be assured if in the demultiplexor (Fig. 5.1c),

delay (Not) + delay (And1) > delay (And2) + delay (Or)

(2) The input states remain at 00 and 1‘1 long enough to allow the internal statc of the sequencer

Gl:
G2:
G3:

module to settle down before the next input change occurs. The previously discussed
mechanism of delaying the return of acknowledgments from a control modﬁlc to its predecessor
is useful for ensuring that this condition is satisfied. By holding the input signals of the
generator circuit at gl and g3, the output signals of the two threshold elements, and hence the

input signals to the sequencer module, can be held at t1 (00) and t3 (11), respectively.

Three generator circuits are used in a synchronizer (Fig. 5.2a):

gen (f+1, 3f+ 1), generates a logical signal after receiving f+ 1 logical input signals,

gen (f+1, 3f+1), generates a logical signal after receiving f+ 1 logical synchronization signals,
gen (2f+1, 3f+1), generates the logical synchronizer output signal after receiving 2f+1 logical

synchronization signals.

Logically the synchronizer generates a synchronization signal as soon as either G1 or G2

generates a logical signal. Under our signal representation, this is implemented by combining the

output signals generated by G1 and G2 using another asynchronous machine called the detector

1. For delay considerations, a logic gate or a C-clement is modeled as a hardware element, which
reacts instantaneously to input changes according to the corresponding boolean function or transition
diagram (Fig. 4.2b), followed by a delay element.

from 3f+1 synchronizers

from @-—e

f+1 .
input .
sources

" e—

Gl

J

detector

|

to 3f+1 synchronizers

(a) Synchronizer dwgn

Demultiplexor

(b) A detector module.

Fig. 5.2. Hardware implementation of a synchronizer.

G3

output
signal

module (Fig. 5.2b). A detector module differs fromy a sequencer module in that it does not passa0
— 1 transition on one input signal and.then a. 1 — 0 transition on the other to its output line. The
detector module aiso has a single binary state variable, implemented with a C-element. When both
inputs 11 and 12 are 0, theoutputaflhé Cmbﬂ, and the next 0 — 1 transition on either 11 or
12 is transmitted to the output line Out. ‘When both inputs are 1, the output of the C-element is 1,
and the next 1 — 0 transition on either 11 or 12 is transmitted to Owr. The outpaut signal delivered at
Out by a detector module is bazard-free under a deiay assumplions and an input assumption:

(1) If both input signals to the demultiplexor have the samc value as its output signal, then selecting
one input signal instead of the other by changing the value of "select” from 0 to 1 or from 1t 0
will not cause a spurious pulse at Out. This can-be assured if in-the demultiplexor (Fig. 5.2b):

delay(Not) + delay(And2) > delay(And3) + delay(Or2)

(2) The input states remain at 00 and 11 long eaough to allow. the internal state of the detector
module to settie down before the next input change occurs. This condition can be satisfied by
preventing input signals and synchronization sigaals from fault-free modules from changing too
rapidly, which can again be achieved by delaying the lagical acknowledgment signals returned
by the control module containing the synchrosizer to its predecessor by an appropriate amount
of time.

a

Finally, to satisfy (S2), the output of G3 is delayed 8 seconds (Fig. 5.2a), where 8 is the phase
difference ameng logical input signals in the same batch delivered to the synchronizer.

This completes the description of our synchronizer design. Let us examine -the operational
characteristics of this design during fault-frce operation and the support it provides for{ our overall

approach to constructing fault-tolerant packet systems in more detail. We have noted that a

- 100 -

synchronizer implementation must satisfy properties (S1), (S2) and (S3) together. (S1) is satisfied

since the basic operations in the synchronizer are implemented using hardware elements such as

Ce:emems;ndsogic gates, cach of which has a fixed, bounded, reaction time under all possible input

conditions presented to them in. the syachronizer during fault-free operation. (S2) is satisfied by

delaying the output of G3 by 8. '(ss) is achieved by designing the threshold circuits, the sequencer

modules and the detector module to bc hazard-free under these:input conditions. For system
integration, the phase difference among packets and acknowlcdgments in the same batch delivered to

a control module is used to determine the proper delay element for delaying the logical output signals

generated by G3. |

To analyze the fault tolerance capability of the synchronizer implementation, let us define an
operation cycle of a synchronizer as the period between the time ‘when alf fault-free input signals to
the synchronizer are at the same logic level to-the next time when afl these fault-free input signals
have switched to the complementary logic level. Due to the use of asynchronous packet
. communication protocols, operation cycles can vary arbitrarily in length. Proper synchronization
assures only that all fault-free input signals will change state together within the last § time units of
each operation cycle, for some fixed 8. We can characterize the restriction on input signals defivered
by failed modules imposed by the abstract fault model presented in Section 3.1 as:

Suppose in an operation cycle every fault-free input signal from a group of
neighboring control medules, or from a group of synchromizers in the same
synchronization set, makes a transition from one logic value a to the other logic value ~a.
Then an input signal, generated by a failed module in that group, either stays at a for the
entire operation cycle, or makes the same transition exactly once and then stays at ~a in
that cycle.

-101-

Under this restriction on input signals delivered by failed modules, (S1), (S2) and (S3) can be
maintained using the synchronizer implementation presented above. We will show that under the
stuck-at fault model; the output signals generated by failed modules indeed obey this restriction, and
hence the above synchronizer can be used directly to maintain timing synchronization under this
fault model. Under the random pulse train fault modcl, we show that we can filter the output signals
generated by failed modules to derivc.sig_nals which obcey this restriction, and then feed these signals
tq the synchronizer implementation presented above to maintain timing synchronization. An

approach to tolerating failures under the random wave train fault model is discussed in Section 5.1.4.
5.1.2 Synchronizer Implementation under the Stuck-At Fault Model

A synchronizer in a fanout module receives acknowledgments directly from its neighboring
slices and will stop receiving acknowledgments on any input line which is stuck at either 0 or 1. Thus
a neighboring slice which has failed will appear to a synchronizer in a fanout module as if it has

stopped sending acknowledgments.

A synchronizer in a synchronizing decoder receives signal transitions from its neighboring slices
indirectly through byte detectors monitoring the output packet bundles of these slices. Suppose a
failed byte slice attempts to set its output packet bundle to a certain state to transmit a new byte. If
some wires in its output packet bundle are stuck at either 0 or 1, then states which may appear on the
bundle are restricted to those with the corresponding bits fixed at the corresponding values. If the
failed byte slice attempts to set its output packet bundle to a state which is not in this restricted
subset, the desired transition will not be observed by the byte detector monitoring the packet bundle:
and will not cause a signal transition on the output of the byte detector. Later on, the failed byte slice
may be successful in delivering another packet-encoded by a packet bundle state in the restricted

subset. The arrival of this new packet is then detected by the byte detector and signaled to the

-102-

synchronizer. The stuck-at fault model for packet communication modules (Fig. 4.3) also assusaes
that a failed slice behaves just like the fault-free slice, except that some of its output lines are stuck at
either 0 o 1. Thus a failed slice will atiempt 10/ deliver 2 new. byte, using the adopted protecol, oaly
whea all fault-free slices in the same redundant module are prepared t0 do 30 withia a fixed imterval |
8.

Mmmm&memmmwmme

ual-rail (Fig. 4.2). lfbo(hhnesmamputwuepmbbebytedeﬁectmmsﬂx&ataﬂmﬂorlor
one of the wires in a wire pair is stuck at 1, the output of the byte detector will also become stuck at
some logical value, cither Gor 1. If ome of the wires becomes stack 3t 0, packet comarumication can
continue umﬂadualrai’lbﬁenco&dbyalmﬁwmmﬁcrmﬂnﬂck-ﬂfmkndaﬂmthe
other wire in the wire pair is transmitted. mmmpwwmmmymﬂmmmmdmebm
detectorwmnotmalmcamvaiofmembyte. Tbemapondingbnofasﬁsewemmcm
may, however, becncodedbyaﬁonmemmctno,andalonﬂmeotbermmﬁlemw
Theamvalofﬂmnewpackctsmenbembyﬂnmmaorndmabdwﬂw

synchromizer.

Thusunderﬂaem-afaﬁtmodetmcmpmwdeﬁmdmamrmfyﬂr
nstrmmexplmmdameendofmsu mmmwnwm
mﬂmbemdmmmmwhchmmm(su(&)nd(&)na
synchronization set.

-103-

5.1.3 Synchronizer Implementation under the Random Pulse Train Fault Model

Under the random pulse train fault model (Fig. 4.5), a random pulse train signal generated by a
failed byte slice neighbor can propagate through a byte detector and’ appear on the corresponding
input line of the synchronizer. If this signal is processed by the synchronizer presented in Section
5.1.1 directly, property S3 can be violated and the synchroniier can deliver random pulse train.
outputs, according to the assumed fault model for interaction between randmn pulse trains and
‘hardware elements in the synchronizer. Under this fault model, however, a random pulse train can
be "filtered” by passing it through a C-clement whose output is regulated by a fault-free reference
signal (Fig. 4.5c). |

In a control module, we can derive a reference signal for this purpose from either an
acknowledgment bundie (in synchronizing decoders) or a packet'bundle (in fanout modules) in the
control module containing the syn:hmnwer For synchronizer design we can assume that these
signals are free of errors and obey the adopted asynchranous handshake protocol. This is because a
byte slice is taken as a unit for fault tolerance considerations and in a fault-free slice synchronizing
decoders and fanout modules receive acknowledgments and packets; respectively, from the p-module
in the same slice. These signals can be used as reference signals because for the class of packet
protocols presented in Section 4.1, acknowledgments and packnts always alternate in a channel
operated under fault-free conditions. We next illustrate the application of these ideas in a
synchronizing decoder. 1}

For a synchronizing decode‘ry,}pur‘ strategy isto ﬁln:r the signals generated by the byte detectors
and by other synchronizers in the same synchronization set with a column of C-clements (Fig. 5.3a)
regulated by the acknowledgment signal received from the: p-module in-the same slice, before feeding
these signals to the synchronizer. Conceptually we are reinforcing the packet protocol at the

acknowledgment

packet bundle BD

packet bundle «{ BD

from other synchronizing decoders
(a) C-element filters in synchronizing decoders.

packet bundle

«u——| synchronizer

1
%

from other fanout modules

(b) C-clement fikters in fanout modules.

Fig. 5.3. Filtering randem pulse train inputs in control modules.

-105 -

C-element filters such that the arrival of new bytes and logical synchronization signals at the
synchronizer alternate with the receipt of bM acknowledgment signals from the p-module. In
te’nhs of processiné binary signals, we are imposing the following restriction on the input signals
received by a synchronizer: o |

Suppose in an operation cycle every fault-free input signal in a group of
neighboring control modulﬁs, or in a group of synchronizers in the same synchronization
set, makes a transition from ane logic value a to the other logic value ~a. Then an-input
signal belonging to that group, generated by a failed module, either stays at a for the
entire operation cycle, or makes the same transition exactly once and then stays at ~a in
that cyele. All such transitions can occur only after the logical acknowlcdgfnent signal for
the previous batch of transitions has been received by the synchronizing decoder

Similarly, a reference signal can be derived from the packet bundle in a fanout module
(Fig. 5.3b) and used to filter random pulse trains on acknowledgment lines before feeding them to
the synchronizer in the fanout module.

Any input signal obeying this restriction also obeys the restriction given at the end of Section
5.1.1. A synchronization set of control modules ¢can be constructed using syachronizers enhanced by
these C-clement filters, and properties (S1), (S2) and (S3)-can be maintained in this synchronization

- 106 -

5.1.4 Synchronizer Implementation under the Random Wave Train Fault Model

As illustrated in Fig. 4.6,4fam‘iom’wave< trains can propagate through hardware clements in the
synchronizer and cause runt pu&s on the oufput signals of threshold circuits, sequenwmand
detectors, as well as on the output signal of the synchronizer itself. Random wave trains are basically
analog signals and can be filtered with analog-filters. Since équencers and detectors are
asynchronous siate machines, it is attractive to-filter ‘the output sigtisds of threshold circuits before
feeding them to these two types of modules. - We hext outfine aii' approach to enhance the
synchromizer design presemted in Section S.1.1 to deal With randowi “Wave trains. its detailed

verification requires analog circuit and signal analysis asid is beyund the stope of tis thesis.

When all fault-free input signals o a threshold circuit are at the same signal level g, the output
of the threshold circuit will also be set at a. As soon as one fault-free input signal changes its state to
~a, it becomes possible for the faulty signals to conspire together and cause the output of the
threshold circuit to oscillate between 0 and 1 and-generate humt pulses. If input signal transitions
from fault-free sources are in-phase within a, the time period diring which oscillation may occur and
the width of runt pulses will both be bounded by a. When a is kilown, we cain build a lowpass filter
to filter out these oscillations and runt pulses.

Let us first consider adding lowpass filters to each of the generator circuits in the synchronizer.
For the thresheld clements in the generater circiiit- G (Fily 52a) their Migical input signals are
A N P P m

in-phase within 8, where 8 is known when specifications (
given. The lowpass filters on their output signals should thus be designed to filter out all oscillations
with period shorter than 8. For generator circuit G2, a little thought reveals that all fault-free
synchronizers arc guaranteed to generate logical synchronizer signals in the same batch within §,
since they will all receive at least f+1 logical input signals from fault-free input sources within 8.

-107-

The output signals of the threshold circuits in G2 should thus also be filtered to eliminate oscillations
with period less than § using lowpass filters. - For generator circuit G3, we showed in Lemma 3.1 that
fault-free synchrbnize;s will generatc logical synchronizér siéimals in the same batch within 2p, where
p is conceptually an upper bound on the ume it takes for é synchfonizer to generate a loglcal
synchronizer signal after receiving at least f+1 logical synchroniier :signals. plus the time it takes for
this newly gcnem@ signal to feach tﬁe qmér synchrohizcré. In é synchronizer implementation, p is
an upper bound on the delay thrbugh .the gencrator citcuit G2 and the detector hiodule (Fig. 5.2),

plus an upper bound on the ﬁmpaaation delay between éyhchrbnium

To support our timing synchronization methodology, a synchronizer implementation must
satisfy properties (S1), (S2) and (S3) given at the beginning of this section. (S2) does not concern the
design of lowpass filters. To satisfy (51), a signal transition, from either 0 — 1 or from 1 — 0, must
be propagated through the lowpass filter in a fixed time interval. Comsider when the output signal of
a threshold circuit used in the above contexts is at 0. hnmediately before changing to 1, this signal
may oscillate between 0 and 1, for up to a seconds, for some fixed a. We require that as soon as this
signal "stabilizes" at 1, 20 — 1 transition will be observed on the output signal of the lowpass filter
within B seconds, where § is another fixed constant independent of a. This requirement also holds
for 1 — 0 transitions. To satisfy (S3), the output signal of the lowpass filter should not contain runt
pulses.

Implementation of lowpass filters in available hardware technology, deviations exhibited by
these implementations from the desired characterfstics, and consequences of such deviations in
» maintaining timing synchronization must be hvestigated‘beforé the effectiveness of this approach _
can be evaluated.

-108-

In our approach to constructing redundant packet commumcauon systems, hardwarc funcuons
are unplcmcmed w1th byte-sliced moduks whoae output words and acknowledgmems are encoded.
A word is encoded in that it consm of a batch of packets, gach generated by a separate byte slice and
containing one'byte of the word,k and the separable sets uécd ‘in the ﬁ;ckctjpromcols to deliver each
batch jointly support some crror-detecting or error—correcung capablhty The examplc of even-parity
dual-rail protocol has been given at the end of Secuon 41 to ﬂlustrate such protocols. An
acknowledgment generated by a byte-sliced module is encoded in that it is rcprwcnted by a batch of
‘acknowledgment signals, one gcncr_ated by each byte slice. Hardware failures, limited to some
maximum number of byte slices prescribed by the error-detecting or error-correcting capabilities of
the protocol, are detected and/or masked by decoding outpit words and acknowledgments generated
by a byte-sliced module. The goal of maintaining timing synchronization and consistency in a
redundant system is to provide an accommodating environment for applying encoding techniques.
As we have explained in previous discussions, the fault (olerance capabilitics of an encoding scheme
can be compromised if cither nmmg synchronizatipn or consistency is noet maintained. Only those
failures whose occurrences do not lead to loss of synchronization or comsistency can be detected
and/or masked reliably in our approach. |

In the last section we have discussed the hardware implementation of fault-tolerant
synchronizers which can be used to maintain timing synchronization under the stuck-at fault model,
the random pulse train fault model and the random wave train. fanit model. Organization of
decoding scctions are studied in this section. We note that the problem of "decoding™ an
acknowledgment in a fanout module (Fig. 3.1b) is taken care of using fault-tolerant synchronizers.
We thus only need to deal with the problem of decoding input words in synchronizing decoders. We
will explain several general techniques to deal with random pulse train and random wave train input

-109 -

signals in decoding sections, but will not present decoder designs for specific error-detecting or
error-correcting protocols.

A synchroniziné decoder is organized internally into byte detéctors, a synchronizer and a
decoding section (Fig. 3.1a). Input words are delivered to a decoding section on several subbundles,
some of which may be connected to failed byte slices. A word is encoded to support cither error
detection or crror correction.. For error detection, input signals to the decoding section are monitored
to determine whether the input word reccived contains any errors: . To limit crror propagation,
erroncous input words are "held up” in the decoding section insiead of being forwarded to
p-modules. For error corsection, input signals to .a: decoding section are used to regenerate the
error-free word, which is subsequently forwarded to the p-module in that slice.

In a decoding section input signals are decoded by s:gnal decoders We restrict our attention to
sngnal decoder dwgns which can genemte error s:gnals or regmerate the ermrﬁ-ee mput word within
some fixed time interval gfier all of its fault-free input s:gmls have stabilized. Using signal decoders |
with this property, our implementation strategy for a decoding section is to receive a timing signal
from the synchronizer, which indicates that all fault-free: input signads to the decoding section have
stabilized, wait a fixed time interval for the output signals of the signal decoder to stabilize, and then -
use these output signals in error. detection and/ar.corsection; - -

Let us examine the reqmrements unposed on sn@al decoder des:sns more carefully before
studying implementation i issues. When all hult-ﬁ'ee mput signals to a sxgnal @oder have stabilized,
input sxgnals from fanlcd ncrghbonng shoes can exhibn patholog:cal behavmr acoordmg to the
stuck-at fault model, the random pulse tram fault model or the random wave tram fault model. We
requlre that within a ﬁxcd time mterval aﬂet all fault-ﬁ'ee mput sggnal valuas are avallable the output

sngnals of the slgnal dccoder must have stablhzed at lheu' appropnate values Oxcillation and mnt

~-110-

pulses are permitted, however, in the interim. Under these requirements, signal decoders must be
designed so that runt pulses and oscillations cannot propagate through them if fault-free input signals
have already stabilized for some time. '

~ An encoding scheme for which we can design such a signal decoder is the familiar byte
replication scheme. In this scheme each word consists of several identical bytes and the error-free
word is derived using majority voting. A deceding section for a byte feplication scheme (Fig. 54)
designed according to our strategy consists of a signal decoder which contains a group of majority
voters, a delay clement @ 1o time the propagation delay througlt the signal decoder, and a column of
‘output latches. to store the output values of the nm volérs after their output signals have
stabilized. A majority voter is constructed out of AND and OR gates (Fig. 54b). Under our fault
models,amajontyvoterhasﬁnecbaractcmmat:ftwoofnsnputsxgnakareat&emevalue,ns
output sxgnal will stabilize at that value after a fmxte ume penod, mdependem of whether the third
mputs:gnahssmckatsanelopmlvalue,dehvenngamdompmseuan ordchvennganndun

wave train.

: AmmwM“mm-mmkammhm
signals in a cohumn of latches: (Fig. 5:5) and decode the -outpits of hesc: Jatches after they have
stabilized. In this arrangement the latches are activated by the ‘output signal of the synchronizer. -
Non- faultymputsxgnalsandthosestuck-atcxﬂ:erOorlwillalwayshavembﬂnzedwhenthehmhes
areacnvatedbymesymhmzeroutpmml Arandampuhetmmorrandomwavetmnmy
causensmcervmghmhmemerame(astabkmacor&ngmdwfwkmodekm&cﬁon&l A
hmmsanowedpseconds(ﬁg55)msemdown,wherepsamné¢hmmm The
outpu:sof(hempmlak:hesaremcndccodcdandsﬁomdmawkmnofoutputhwhes.asma
rephcauonscheme lnFig.S.S asanupperbwndonmepmpagatmdehythrwghmemﬂv.

decoder.

-111-

BD -- Byte detector . PG -- Pulse generator
output
latches
subbundle 1 [acknowledgment
il
BD| . majority|. — -
T . voters to
subbundle n v ; p-modules
-
i} J)
' BD I
synchronizer ' - 8§ |———— PG
I other
synchronizers

(a) Synchronizing decoder
)
And
n —L2)
. —
D—>—
R il —
3B
And)—-—J
M —

(b) majority voter

Fig. 5.4. Synchronizing decoder design for replication schemes.

-112-

BD -- Byte detector PG -- Pulse generator
input output
latches latches
subbundle 1 acknowledgment
 E—
BD . — o] signal [- {0
1 * decoder p-modules
subbundle n '
BD l (
‘ * " 8 ! m m
synchronizer T - B [—w a —————j
other
synchronizers

Fig 5.5. A synchronizing decoder design for error correction.

This strategy of reducing the problem of receiving random pulse trains and random wave trains
to that of waiting for latches to exit from their metastable states can also be used to design decoding
sections for fault detection, as illustrated in Fig. 5.6. An input word to the decoding section is first
latched into input latches. After 8 seconds, the outputs of the input latches are strobed into a column
of internal laiches. The contents of these internal latches are forwarded to the output latches of the
decoding section only if they contain no errors. Suppose the adopted protocol is based on separable
sets A and B. The key input property used for fault detection in the configuration shown in Fig. 5.6 is

that if the next input word delivered to the detector should be encoded in one of the separable sets,

13-

say by a; in A, then no hardware failures to be detected can cause a packet encoded in some other a,
in A to be delivered to the detector. Otherwise a, will be accepted instead of a; and forwarded to the
p-modules, defeatmg the ﬁult detection scheme. As long as ﬂus property holds, errors can be
confined and detected by momtonng the contents of the mtemal latches with a packet detector (Fig.
4.2a) designed to recognize the separable sets A and B. After the input word is stored in the internal
latches, the packet detector monng the outputs of these internal latches ﬁm generate a signal
transition on its output line only if the input word stomdin the internal latches is encoded in the
proper separable set, anthence free of errors. If the inpu? word stored in_the internal latches is
erroneous, i.c., not encoded in the proper neparabkset, no transition wilt bedeﬁvemd by the packet
detector, and the erroneous word m‘llnotbemredmtomeoutnmhm.

An alarm pulse is generated from the output of me synchromzer and the output of the packet
de&ecwr(ﬁg 5.6). 'I‘hcpu!sesseneraedﬁumtheae twomakmofbounded wmdthdunng
fault-free operagm. If an erroneous or unstable input state is stored in the internal latches, the
output of the packet detector will not change swe and the width of the alarm pu!sebeeamu
unbounded. This property is useful in designing alarm detectors.

This fault detector design in Fig. 5.6 is also applicable to detecting acknowledgment signal -
failures. The two separable states used on ackmowledgment bundies ase.the .two singletons
{111..111 }, and { 000..000 }. An AND gate is a receptor for the first set, an OR gate a receptor for

Note that under the random pulse train and random wave train fault models pathologlcal input
conditions need not persist until detected. Such eondmons may exlst for a short time and then
disappear before any fault detection mechanism has reacted to them The fault detec&on scheme

nonetheless assures, if only in a probab:llsuc sense due to metastable state phenomena, that no

-114-

BD -- Byte detector PG -- Pulse generator
input internal output
latches latches latches
subbundlel | acknowledgment
l ey
BD . —— ‘ - ——pg 10
1 . SR IS p-modules
subbundle n , -packet HE
]
o T T i T
' SR | .
e [[ro
|)
| vy
[}

L]
e
|
!

!

wf s w0 e o

Fig. 5.6. A detector design foreodingm

erroneous packet will be delivered to the p-modules. |
5.3 Implementation of the Synchronizing Merge Module

With thesynchmnmrdemgnanddecodmgMonMpmentcdewtmnSl and 5.2, we
have a complete methodology for mcorporaung redundant hardware in detammate packet
communication systems to combat hardware fa:lum. The synchmnmng merge module is introduced
to illustrate an extension of this methodology, 10 a class of non-delerminate systems. The basic

non-determinate operation we consider is that of merging two input streams into a single output

-115-

stream (Fig. 2.4). In a redundant system, this operation is performed in a redundant merge module

using synchronizing merge modules as p-modules in its slices.

Ina redundant' merge module, every input word is decoded by a synchronizing decoder before
being forwarded to a synchronizing merge module. A slice, however, forwards only one byte of each
received word, so that a smgle byte slice fadure affects at most one byte of any word delivered by the
redundant merge module. To apply encodmg techmques cffecmely, it is necessary to ensure that

‘bytes from mput words recelved at dlfferent mput pons wnll not be "mixed up” together in a

redundant merge module In the eermmology mtroduoed in Sectlon 2.1 n is necessary to ensure that
bytes in the same batch generated by fault-free synchmmzmg merge modules in the same redundant
merge moduk: all belong to t.he same mput word. The comstency problem is solved by allowmg'
synchronizing merge modules in a redundant merge module to communicate with each other after
receiving an input word, (o jointly determine the imput port from which every - fault-free
synchronizing mesge module. will forward the next outpyt-byte to the successor fedundant module.

In Section 32, we haw)e présemed an algonthm for exdmngmg messages among synchronizing
merge modules, so that even if failod, modules can send. different: memsages. to different modules,
fault-free synchronizing merge modules can still agrec om. which iaput port to service next. A
hardware structure for synchronizing merge: modules and implementation of ‘the consistency
maintenance algorithm are described in this section. . We. first present a hardware structure for
implementing synchropizing merge modules and review the operation. of a synchrenizing merge
module using this stucture. Implementation. of; the consistency mainicoance algorithm is then
discussed in further detail and .its fault tolerance -capability explained. For maintaining timing
synchronization, p-modules.in a redundant module must be performance compatible. Performance
compatibility among synchronization merge medules implemented :using these technigues is also -
analyzed. As noted in Section 3.2, only the singic failure case, in .which four synchronizing merge

- 116-

modaules are used in a redundant merge module to tolerate hardware failures in any one of them, is
considered. '

5.3.1 Hardware Structure of a Synchronizing Merge Module

Packet flow at an mpmportofa symhronmngmerge module is regulated usmg a forward and
wait (FW) module (Fig. 5.7a). A FW module forwards the i mput packcts it has received directly to an
output cntl module. For cach packet received, lhc FW module also generates an output request
tagged with the corresponding input port identifier (ﬂ or 1). Thesc output requests are merged
together and then processed by ioutput cnll. A FW module win. ;écept a new packét ohly after it has
received acknowledgments for both the precedlng packet, ﬁ'mn output cntl, and for the output
request it has generated formeprecedmgmdet fmm themetgemoaﬂe.

Amemenmd\ﬂem&vuinputpﬂmaiumﬂinputmmdfomardsﬂm at its output
port as they arrive. When a conflict arises due to two input packets arriving within a short time
interval, arbitration is performed and the two packets may be forwarded in either order.

When a new request arrives at outpul cnil, its tag (which will be referred to as the reguest
source) is used to invoke the decision algorithm. The mput sowrce for the next output packet is
selected jointly with other synchronizing merge modules under this decision algorithm. ‘If the input
source is different from the request source proposed by owiput cail, the corresponding output request
for the input source will be pending at the output of the merge module. This is because the input
packet from the rejected request source has not yet been accepted and the corresponding FW module
is designed not to process a new input packet from the input port it is guarding under the
circumstances. Thus the output request from the input source will be the only onc pending at the
merge module, and will be forwarded to the output entl module next. Oufput cntl absords this output
request for the input source from the merge medule, accepts an input word from the FW module

-117-

_ " Modules

(@) Hardwm'orgaaimion.

request source v - data
ready i Aﬁ__r control

‘acknowledge «a—

(b) Commuaication protacol between owtput cnsl and decision box.

Fig.5.7. The Symhrq:__izing Merge Module

guarding the input source, extracts one byte from it, and forwards this byte to the successor
redundant module via a fanout module. When output cntl reeives the acknowledgment for this byte,
it returns an acknowledgment to the FW module, and if it alrcady has a request source that was
rejected in the previous round of decjsion, it will immediately yespbmit this request source.
Otherwise it waits for a new request to arrive from the merge module before activating the decision

algorithm again.

-118-

We will omit the implementation details for the FW module and the output cntl module since
they do not illustrate new fault tolerance techniques.

For mplcmcnmnn of the consistency maintenance algomhm. request sources and input
sources are cxchanged between eulput ch and dmsoon box under a generalized data link/control link
protocol (an. 5.7b). The data tink/control link protocol is explamed in Chapter 1 (Fig. 1.1). Under
the gencralized data link/control fink protocol, the data fink consists of wo data wircs for sending
input sourccs and: request sources in opposite directions (Fig. 5.7b). A new request source is available
to decision box when a ready signal lssentonthecontrolhnk 'I‘heconespondmgmputsances

available on the other data wire when nmmnespmmngackuowledg»mm is returned.

5.3.2 Implementation of the Decision Algorithm

The decision algorithm in a symhmnizing merge module is vokedmthuther Qorlasits
request source. For every request source received from output cnil the following hardware operations
arc carricd out, corresponding to Steps (i) through (v) of the:decision: algorithsis presented in Section
3.2. The data path in synchronizing merge module A for carrying out these operations is shown in
Fig. 58b. In this figure the symbol "X 7" dendtes the request source of X as told to Z by Y.

(i) The request source received from outputcndisbmw:andeciﬁon boxes. 'Hnsswp is
implemented by broadcasting the signal received on A to all decision boxes, as shown in the
upper left hand corner of Fig. 5.8b. |

(ii) Request sources from other decision boxes are stored in latches.

(iii) Request sources stored in latches are broadcast to all decision boxes.

-119-

ready —————e»| delay & o{ delay 8y | —a acknowledgment
request input
source ' source
pulse generator
j P
L wlA data path —

oy b

to other synchronizing from other synchronizing

merge modules merge modules
(a) Decision Box.
P P P
— AAA —o BaA = CAA —=Daa
1 1 1
—=AAB al [Bap al = Cas 2| =Dap
A — BBA—- t CCA—- t DDA—'.' t H
h n | b]
el
—= AAD —= Bop — CAD —=Dap
Aga Baa Caa B‘ Daa a ‘
ADA Bpa Cpa Dea
A’\ B C / D
thsh (3, 4)

1 input source

(b) Decision box data path for synchronizing merge module A.

Fig. 5.8. An implementation of the decision algorithm.

-120-

(iv) The request source for each synchronizing merge module is determined using a majority voter.

(v) Request sources determined in Step (iv) are fed to a threshold circuit fhsh (3, 4) (Sce Section 5.1)

to derive a new input source.

In each round of joint decision, latches in a decision box should only be activated after new
request sources arc available from all fault-frec symhroilizip_g- merge modulcs in the same redundant
module. And then only after the outputs frem all these Iat:hﬁhave settled down, and a new input
source derived from them using majority voters and-the threshold circuit, should a decision box
return an acknowledgment to its output cntl module. Our approach to synchronize the operations in
a decision box with those in other decision boes is to make use of two derived upper bounds 8, and

Gz,suchtlnt

(1) Ifa decision box receivesanewrequestsourtefrmnitswtpwcnqudulcatt. then it will receive
a new request source from every fault-freesynchmnidngniergem&ulein the same redundant

merge module at t + §;.

(2) 1f new request sources are available for storing in latches in a decision box at t +), then anew
input source will be available at the output of the threshold circuit ish (3, 4) in that decision box

att + 81 +&2.

Based on these two upper bounds, our synchronization strategy is to generatc a pulse in a
decision box 8 scconds after it has received a new reguest source from its decision box, to store new
request sources into latches, and then return-an acknowledgment to ouiput cail 8, seconds later (Fig.
5.8a). We next consider factors that determine 8 and 8,. 81§nd82canbe~omnputed for an actual
implementation based on these considerations. | "

-121-

In the decision box of synchronizing merge module A (Fig. 5.8b), for example, 81 must be
sufficiently long such that request sources are delivered at signal lines labeled "A", "Bg, ", "CC A"
and "Dp," withiﬁ §; of cach other. We can identify two components for §;. Onec is an upper
bound on the variations in propagation delay along paths leading from interfaces between decision
boxes and output cntl modules 16 lat(fhes in decision boxes. This bound can be derived by taking
delay measurcments in an implementation. The second component is an upper bound on the
difference in arrival time among request sources to be submitted for the same decision, as they are
delivered to decision boxes in the same redundant merge module. To calculate this component we

must consider the various situations that may occur in other decision boxes as a decision box receives

a new request source.

If the new request source received by a decision box is one that has been rejected in a previous
decision, a request from the same input port must be pending at the merge module of every
synchronizing merge module which has not yet received this request. If the new request source is
derived from a packet which has just arrived at the synchronizing merge module containing the
decision box, the same packet will arrive at other synchronizing merge modules within a fixed time
interval, due to in-phase operation. Thus under either of these two situafions, a new request source
will arrive at all other decision boxes within a fixed interval, unless conflict arises at a merge module
due to the simultaneous arrival of two output requests. When a conflict arises, the merge module may
be driven into its metastable state and may stay in that state for an arbitrarily long time. The
probability that a conflict arises at time t and remains unresolved at time t + o decreases rapidly with
o, for many implementation technologies. We can in practice pick a value ay and assume that any
conflict that arises at time t is resolved by time t + a;. Under this assumption, then, we can also
calculate an upper bound on the difference in arrival time among request sources for the same

decision as they are delivered to decision boxes in the same redundant merge module.

Tocmnputc&z.lcluseonsidcrme various situations the other decision boxes may be in when a
decision box gencrates a pulsc to store new requcst sources into its latches. Since not all new request
mmmkammmsamemmammmmmamhm
pulse 8; scconds after it has reccived a new request source, laiches in different decision boxcs may
not be activated together. After a decision box has generated its latching pulse, it must wait long
cnough until outputs from all lmchos in fault-free dacision boxcs have sciticd down. Thus if new
request SOUrces can arrive aidecision boxes as far apart as § then § must exceed . Furthermore 8
must be long enough to take into account the propagation delay along paths between decision boxes,
_and the time it takes for the majority voters and threshold circuits. to: generate a new input smurce
after the latches have stabilized. There is yet another component which must be adthd.tovtz, to take
into account signals generated by failed synchronizing merge modules driving recciving latches into
their metastable states. We assume that a latch will always have come out of its metastablc state ay

secondsaﬁerhhasenmmdmissthm,andufseazinmmti.

As in the decoding scction designs presented in Section: 5.2, we deal with stuck-at faults,
random pulse trains and random ‘wave trains all:at once by storing nicrmodule messagesin latches
and assuming that if any of these iaiches i driven into.a metastable siate by & funlty signal, it will
always come out of that state afier &, seconds.

There are two metastable state phemmena we havefaoedm the synchronizing merge module
design: two output requests arriving simultanecy)uslyr at a merge modnle, and a random pu!se train ora
random wave train being delivered to a latch. The form& oocurs dunng fault-frec operation while
the latter is strictly a hardware failﬁre symptom fn both cascs we have mnved that if a hardware
clement enters its metastable state at t, then it would have come out of that state by t + a, for some
fixed a. By using larger and larger a’s, this assumption can be made more and more accurate, at the

expense of performance. This tradeoff between performance and reliability seems unavoidable in

-123 -

non-detcrminate systems.

We next analyze performance compatibility among copies of synchronizing merge modules
implemented using the above techniques. There are three factors contributing to phasc difference
among packets or acknowledgments in the same batch generated by synchronizing merge modules in

the same redundant merge module:

(i) the phase difference among packets and acknowledgments in the same batch delivered to the
synchronizing merge modules,
(ii) the time it takes a merge module to resolve conflicts. This is necessary because conflicts may
arise at some, but not necessarily all, synchrowizing merge modufes.
(iii) the two different courses of action that can be taken by output cnil after the input source is

determined.

We have assumed that acceptable reliability and fault coverage can be achieved by upper bounding
(ii) with a). Under this assumption the performance incompatibility between two synchronizing
merge modules is bounded by some parameter which depends only on propagation and gate delays
through various paths in and between these modules and in-phase operation can be maintained.

5.4 Design Examples

In this section our techniques for maintaining: timing synchronization and consistency in
redundant: packet communication systems are illustrated by applying them to the design of
fault-tolerant routers. ‘

A router is a 2 input/2 output building block module used in constructing packet networks for
the packet communication computer- architecture’ presented in the next chapter. This module

receives packets at its two input ports and delivers each received packet at one of two output ports

-124-

according to a destination address carried by the packct, and is designed so that packets to be
forwarded at different ports can be processed concumendy Such concurrency is naturally supported
by decomposing the router into two input modules (IM) and two output modules (OM) (Fig. 5.9a).
An input module is a scquential machmc whtch examines the destmaurm address in each packet and
forwards that packet to the uutput module spcclﬁed An output module is slmply a synchronmng
merge module. Straightforward applmmn of the redundancy tcchmques presented in this and -
previous chapters leads to the redundant : router design showa in Fig. 5.9b. Control modules
belonging to the same synchronization set and OM modules which:saust be kept consistent are
- enclosed by dotted lines. This redundancy scheme can tolerate handware failures confined to a single
unit consisting of two synchronizing decedess, a mularm and twe fansut modules.

In an implementation of a non'redrmdant routerusing off-the-shelf components, it Ais more
practical to implement packct communication using a sequence of 8-bit nibbles! delivered under a
data link/control link protocol (Fig. 1.1). Under:this protocol redundancy can be applied to the data
nibble and control link independeatly. For fault masking the dats lbble can either be replicated or
encoded. The control link can be protocted by replication using techsigaes presented in previous
chapters. A redundancy scheme based oa a single-ervor-conrecting Haswnhing code {29] code is shown
in Fig. 5.10. ThlsoodcusesatotalolebmarysngnalstoummtSmﬁmmanmbns. Eachmput
nibble is decoded by four router units. The data outputs of these router units are voted upon to
derive the 12 output bits at an putput port. Control signals:are quadmplicated and uadergo in-phase
synchronization as they arrive at the-router ynits.; These units also exchange. messages (0 select input
sources. For clarity the interunit synchronization paths are omitted in Fig. 5.10. Inusing a scparate

control link to synchronize packet communication the delays incurred in different portions of the

1. The term byte is commonly used instcad of nibbles in' this- comext.' 'Weé' prefer the term nibbles
since we have used the term byte t denote bit fickds in a word gencrated by a redundant module.

-125-

(a) A 2 X 2 Router.

t-tolerant Configuration

(b) Faul

Fig. 5.9. A fault-tolcrant router design based on repliated redundancy.

-126 -

ready (4) ——e- — ready(])
input ack - — - e ack (4) output
portl, data(12) — e~ data(12) port Oy
ready (4) ——e —a ready
input ack - *— ack(4) output
port 1, data(12) —> -~ data(]2) port O,
(a) A Router Unit

r [data (12), from A.0; ™ | \

—! data(l2) Checker dala{n). f‘n)m BO, = ; _|data (12!
Al Bl,, A data (12}. from C.O; ™| ¥ o
—=| ready(4) ClI}, Dl data (12), from D.O;~* ,

P L ack, from A.ll rcady, ﬁ'om A'Ol e } 01
«—| ack, from Bl ready, from B.O, e =
<—| ack, from D.; B ready, from D.O, ——

ak{4),0A0), |)
B.0,.C0;, D.O;

r - data(12), from A.O,

—{ data(12) to Checker | data (12), from B.O,

Aly,Bl,, C | data(12). from C.O, .

—| ready(4) Cl,, DI, data (12), from D.0 = :
~—| ack, from Al ready, from A.O, —

«— | ack, from B.I, . ready, from B.O, —
«— | ack, fromCl, Checker ready, from C.O, ——

«—| ack, from D1, D - ready, from D.O, —

- ack (4), 10 A.Oy, e J

80,,C0y DO,
— : J
(b) The Redundant Router

Fig. 5.10. Hardware structure of a 2 X 2 router using an error-cormecting code.

-127-

data path must be known. Voter delays, for example, must be taken into account in asserting ready
signals. In addition to hardware failures confined to a single router unit, single voter failures in this

redundant router can also be tolerated.

Compared with a replication scheme, a coding scheme requires less input and output
connections amdng routers at the cxpense of more hardware packages and connections within a
router. ‘This is advantageous if a more cxpensive and/or less reliable technology is used for
interrouter connection. In the fault-tolerant architecture described in Chapter 6, a redundant router
designed to detect hardware failures is used to construct packet networks. Thié fouter uscs a parity
check to protect the data link and has the same hardware structure as that shown in Fig. 5.10. Its

design is discussed in more detail in Section 6.3.
5.5 Discussion

In this chapter we have studied hardware implementation of the redundancy management
algorithms presented in Chapter 3, and analyzed the fault tolerance capabilities of these
implementations under the stuck-at fault model, the random pulse train fault model and the random

wave train fault model.

For the synchronizer implementation, different techniques are given for tolerating hardware
failures under the three different fault models explained in Section 4.2. Since these three fault
models form a strict hicrarchy in terms of modeling power, any technique for tolerating hardware
failures modeled by one of them is also adequate for tolerating hardware failures modeled by the less

general ones.

In the implementation of decoding sections, our approach is to first generate a synchronizer

signal that is free of output hazards and runt pulses. Using this signal as a timing signal to store input

signal values into laiches, we havc shown how to reduce-the fault tolcrance problem of handling
random pulse trains and random wave trains (0 a timing problem caused by metastable staje
phcnomena -in bistable devices. This same technique is also used in synchrnizing merge modules to
dcal with random pulse train and random wave train inputs. The timing problem can be dealt with, if
only pmb’abilisticaﬂy‘ since in most‘impicmenéﬁon technologlesﬁ\cpmﬁabﬂlty that a latch rémains

tradeof¥ reliabitity Wlﬂ\'perfoﬂnamcinm@m sticos

We have developed an approsch to mask and detect. hardware failures in a packet
communication system based on ainiainieg sigig syachromizaion and consisicsry. throughout the
entire system. A methodological issue that arises is whether:these twe:propestics:are pecessary. -for
tolerating hardwarc failures in packet communication systems. It seems that consastency must always
be maintained in a byte-sliced module, otherwise a packct batch gencrated by fault-ﬁ'ee slloes can
next describe a.technique fordaecmhatdwugqummuadathempulscm fault model
without maintaining timisg synchronization.

A popular scheme for fault detection in synchronous hardware systems is 1o operaie two
identical hardware units concurrently and detect failures in cither. one. of them by comparing their
outputs. Notc that there is not cneugh .redyndancy. in a2 duplex sysiem for maintaining timing
detect failures in determinaic sysiems. if hardware failures can be modeled as random pulse trains
and, as stated in Section 4.2, C-elements can be used to filter out random pulse trains. A decoder for
duplex systems can be constructed using the technique illustrated in Fig. 5.6, except that a C-clement
instead of a synchronizer is used to activate input txches (Fig. 5.11). A'fanout module consists of
simply a C-clement and a bytc detector for deriving the filtering signal from the packet bundie.

-129-

input
latches
subbundie 1
l i
BD
|
subbundle 2 -
BD acknowledgment

Fig. 5.11. A synchronizing decoder for duplex systems.

This technique can be generalized to detect hardware failures under the random pulse train
fault model using other encoding schemes. In such a scheme, a decoder will always wait for one
packet from each neighboring fanout module before decoding, while a fanout module will always
wait for one acknowledgment from each ncighboring decoder before returning an acknowledgment

to its p-module.

A similar strategy for masking hardware failures is for a decoder to wait until it has received
packets from sufficiently many neighboring fanout modules to derive a new error-free input word,
and then forward this input word to its p-module. A fanout module is designed to forward a new

byte it has received from its p-module to each decoder which has acknowledged the previous byte.

In a redundant configuration based on byte slicing, it can be shown (See Davies and Wakerly

[17] for an illustration of this phenomenon) that 'byte slice failures in redundant modules can cause

-130 -

fault-free slices in their neighbors to go out of phase by an arbitrary amount. Thus a byte slice that
has fallen behind others in its module may not have failed. To mam(am communication under the
adopted handshake protocol, a decoder should not return ackmwleﬂi’glents 0a neighboring slice
that has fallen behind before receiving new input bytes fmm ﬂi’is;slice. The decoder should
furthermore retain enough infm;matibn. such as a byte count. 10 beable to deduce when this
ncighboring slice has caught up with otl_!cr slnoes in its module. Since a neighboring slice can fall-
arbitrarily far behind, there is no upper bound on.the amoumafinfoanahon and hence the storage
for it, that must be kept in a decoder. This. decoding strategy s thus theoretically not realizable,

although a practical decoder implementation can be constructed using sufficiently large counters.

There is a similar theoretical problem in implementing this strategy if; a fanout module. A
packet must be retained in a fanout module until it has been delivered to every neighboring decoder,
since the contents of an output packet gencrated by a p-module may depend on thecutmsum of
input packets it has previously received and processed. A neighboring decoder can again fall
arbitrarily far behind and there is no upper bound on the amount of buffering required (o store
undclivered packets in a fanout module. The question of how much buffering to include in each
fanout module, and buffer management techniques, present more of a practical problem.
Techniques for estimating the buffering requirements accurately must also be developed since the
effectiveness of this strategy in combating hardware' faihires“depends on the accuracy of such an

By maintaining timing synchronization in a redundant packet communication system, all
fault-free byte slices in a redundant module are always in-phase, and the buffering problems that
arise in the above scheme is avoided. Instead of buffering facilitics, additional' hardware and
interconnection paths arc invested to ‘implement the synchronization algorithm for maintaining

timing synchronization.

-131-

6. Design of a Fault-Tolerant Packet Communication Computer Architecture

In this chapter we describe a conceptual design for.a fault-tolerant data flow processor intended
for physics simulation applications. The salient features of this design have been introduced in.
Chapter 1:

- High performahée and fault tolerance are achneved by uéing pobls of 1denucal ﬁ;fdware units.
- Communication between processing elements and functional units is supported by packet

As observed in Chapter 1, there are no stringent reliability requi
simulation applications. We are interested in adding fault tolerance capabilities to the non-redundant
system primarily to mpmve mmntmnabihty and avaﬂabihty Syswm thmughput is mpmved if
hardware failurescanbemdedelpecmﬂysmeeitisnotumnﬂml foranumemaloompuman in

nts mhereat: in physics

Ay ~~."< r'«;; S

physlcsﬂmulauontoexecmeformyhm

Fault-tolerant mechanisms employed in the redundant data flow- processor are organized
according to a dynamic redundancy scheme. hdm::lmwmwte failures are ‘detected and
diagnosed, the data flow pracessor is repaired, and tlien afflicted subcomputations are reexecuted on
the repaired, possibly degraded, systom. We agsume that: programs for the data flow processor are
prepared on a host machine, loaded into the data flow processor, and then executed. This host
machine is also assigned the tasks of configuration control, and of coordinating diagnosis, repair and
recovery activities with program execution. We will explain the strategy to be implemented on this
host machine, and the application of hardwa;:é nedundancy techniques developed in previous
chapters and some packet encoding techniques to implementing hardware modules in support of this
strategy. A fault-tolerant implementation of this strategy on the host machine can be constructed

-132-
using conventional techaiques, and will not be considered. -

The hardware organization of the data flow processor and its operation are explained in Section
6.1, where we will focus on those aspects of its opennmmlegmtto fault tolerance considerations.
The dynamic redundancy scheme is explained in Section 62. Hardware module designs to satisfy
fault tolerance lzequimments imposed on them by the dynatmc redundamyscheme are prgsen;ed in
Section 6.3. Strategies for iﬁcorpqmﬁng'addmonan ﬁa@vgarg mto a packet network to support rapid
rmirmﬁmumdﬁSecﬁm&& | o o

6.1 A Packet Co
6.1.1 Hardware Organization

Hardware in 2 packet communication compuier archiesur s orgaized s an ineronoection
of self-timed modules which omnmumcatcby sendmgpackets to each other. Each packet i
transmitted as a seqm of nibbies between modules. Packetnibbles are dehvered and received by
hardware modules using the ready/acknowledge protowl depmdm Fig. 1.1. Each module port
consists of a bundie.of data wires and a pair of control wires (Fig. 11a). Packet communication is
synchronized by sending control signals aver the. cantrol wires. - Availability of 2 new nibble at a.
connection is signaled by seading a ready signal over the ready wire, its-receipt by retumning an
acknowledge signal over the acknowledge wire. Ready and acknewledge signals are represented by
signal transitions (Fig. 1.1b) on the respective wires.

Themajmmo&xlahﬁedmﬂowpw(ﬁg,@l)mpmcesﬂngehmnﬁ@ﬂsl
specialized functional units (SFUS), a routing netwm‘kandmﬂomtmnetwork. Scalaropeutions'
are processed in the PEs and SFUs. The networks support packet traffic among the PEs and SFUs.

-133-

. el
Processing —rioee o o0

Element P . ' - j
. . Routing
: — .
— an we - o
Element | | —
r—-
| r=
|t 5 . .
% o
| Lo Functional Unit
'« |Allocation | ° .
£ 1 |Netwok | | .
L--. . _de
—_— Specialized J
_Functional Unit

- :mltpacletk — —— — — -» : operation packet

Fig. 6.1. Hardware architecture of the duta flow-processor.

Operating Principles

Amacmnelevelpmm»fa;medauﬂowpmhmmdh the. PEs as a set of activity
templates [20]. An activity temaplate A contains an operation code and the addresses of one or more
activity templates, called A’s larget templates, which should recgive the result generated by processing
A An activity templae s uaiquely identifiod by its address, which has two components: 3
destination tag which specifies the PE in which the template resides, and the location of the template.

-134-

Operations are divided into two classes, according tewhetherthey areexecuted byaPEorbya
SFU. When activity template A is enabled (See below for a discussion of the enabling conditions)
and the operation it specifies i executable on & PE, the operation is applied 10 the operands A has
received and the result of the application is dispatched to A's target templates. If a target template B
resides on another PE, a copy of'ﬂlefesultistaggedwiiﬁ B‘smrand'aii'ibblccwmwforma

result packet, and delivered to B via the routing network. For an operation executed on a SFU, an -

operation packet consisting of the operation code, operands and the target template addresses is
formed and delivered 10.a SFU via the routing network and the allocation network. At a SFU the
operationspeciﬁedmmmﬁﬁmmkabmm'm;mmmmmmmwd
and dispatched 1o the target templates via the routing network.

An activity template A is enabled when two conditions are met. First of all the operands
required for the operation must have‘ arriyed. 'Iheseoondcondmon:saconsequence of otxamnng
machimkvelpmgmminmedamﬂowpmcemormwpipeﬁnil;;andm Suppose that
in such a program activity template A sends results to activity template B residing in another PE. To
avoid deadlock [38], an operand sent from A to B must be processed before A can send B a second

operand. The execution of A and B are synchronized by conditioning each acnvmofA on

receiving an ackmnowledge packet from B. This acknowledge packet is transmitted when B is
processed with the previous operand received from A. ~ Thus: before anr aétivity template can be
executed, it must have received the necessary acknowledgments fros-fis target templates. A detailed
explanation of this synchronization scheme is given in [26]. ‘Under this schestie every result packet
transmitted through the networks is acknowledged by an acknowledge packet retiirned by the target
template. We will also make the assumption that each aperation packet contains exactly one target
template address. This assumption results in no loss of generality since the result obtained by
processing an operation packet can be further distributed through its target template. In fault-free

- 135-

operation under the above synchronization scheme and this assamption on operation packets, a PE
will receive exactly one acknowledge packet for every result packet or operation packet it delivers to
the routing network. _This property will be used to coardinate recovery activities with normal

program execution in the dynamic redundancy scheme.

A PE provides storage for activity templates, executes simple operations, sends packets to and
receives packets from the routmgnetwo:t. A SFU ns designed to execute complex operations, such
as floating point arithmetic, efficiently, with additional capabilities to receive operation packets from
the allocation petwork and send result packets to the routing network. lmplemcntauon techniques
for these hardware modulw as discussed aﬁzr thetr fault tolerance requirements have been
determined. In the remainder of this section we take a closer look at the structure of the routing

network and the allocation network.
6.1.2 Packet Networks

An N X N routing network, with N input ports and N output ports, supports packet
communication among N PEs. It accepts packets at its input ports m&mm each packet at the
output port specified by a bit field oompﬁs_ingamde’rmdmmn tag of the packet. The
desnmhontagandambbkcountwfymsthebugthof&:epacketarewnﬂmedm the first few
nibbles of a packet. Rounngnetworkscanbecmstmémdusms2 X 2 routers. A 2 X 2 router
reoclvespacketsatltstwomputponsanddehverseﬁh l‘ecewedpacku at one of two output ports
according to the destination tag carried by the packet. The 2)&iroutensdes:gnedsodxatpacketsto
be forwarded at. diﬁeventoutput ports can be processed concunenﬂy We have deseribed a hardware
organization for the router module (F“lg 5.10a) and several des:gns for fault-toleram routers (Fig.5.10
and Fig. 5.11) in Section 5.4 to illustrate our hardware redundancy techniques.

-136 -

Methods and techniques for tolerating hardware failures in routing networks will be illustrated
using rectangular routing networks. An N X N rectangular network is built from 2 X 2 routers by
the recursive construction illustrated in Fig. 6.2. AnN X N network o constructed has logy N stages

O\, _— “N/vvzxwz : ~Q
O/ * _| Rectangular Network | « 0
O ~ .
T, R ETI O
o~ \ RecmpulrNetwot | 1

(b) An SXSWM

Fig. 6.2. Rectangular routing networks.

-137-

each of which contains N/2 routers. All packets sent to an output port of the routing network,
regardless of their sources, have identical destination tags. Routers in succeeding stages in the
network examine éuq:essive bits in a destination tag to forward the packet along the proper path.
Path control in a routing network is distributed among the routers. There is no centralized control
mechanism whose complexity mt;st grbw with network size and which may become a performance
bottleneck. Maﬁy packets can be forwarded concurrently to provide a high throughput rate. One of -
the design objectives for a fault-tolerant routing network is to retain all these characteristics during
fault-free operation: decentralized path control, parallel pi'oceming, and asynchronous nibble-serial

communication.

In the data flow processor the ;'allocation network receives operation packets from the routing
network and distributes them among the SFUs. Each of its input ports has its own routing network
address. In the data flow processor we use a rectangular allocation network which also has.the
topology shown in Fig. 6.2, constructed out of 2 ‘X 2 allocators. An dl@mr receives operation
packets from its two input ports and forwards them at its output ports as these output ports become
free. It is possible for operation packets to be temporarily "trapped” in a section of the Allocation
Network waiting for service even though SFUs not reachable from this subnetwork are free. Such
trapping has the pleasing property of automatically diverting other operation packets from the
congested subnetwork. We next present an allocator implementation constructed from determinate
modules and merge modules. This implementation can be rendered fault-tolerant using exactly the

same techniques illustrated in Section 5.4 for router modules.

The implementation strategy we have adopted for the allocator is to generate service requests,
for new input packets, and availability tokens, when output ports become free. Service requests from
the two input ports are then merged together, as are availability tokens from the two output ports.

Each service request is matched with an availability token, and a packet is transferred from the

-138-

requesting input port to the availablc output port. In the hardware implementation (Fig. 6.3), service
requests are generated by input port controllers, availability tokens by output port controllers, and they
are matched at a matcher module which also handles packet transfer from input port controflers to
output port controllers. |

6.2 A Fault Tolerance Strategy Based on Dynamic Redundancy

It is possible to apply static redundancy techniques uniformly in the data flow processor to
implement a fault masking capability in hardware. We havé presentcd two router designs in Section
5.4 appropriate for constructing fault masking routing networks, and pointed out that ‘similar
techniques are applicable to allocation networks. We have also dﬁigned a router module based on

parity checks, to support fault detection and, agam, snmlar techmques are applmble to the desngn of
fault-detechng allocator modules. This router design is descnbed in the next section. A packet
network conmstructed with these faull-dctectmg modules has ‘cpnﬂde(ably fewer lngennqdule
connections than one based on replication (usihg the typeofrouter modulesillusu'atedm Fig SJO).

0&"(‘5

Fig. 6.3. A hardware implementation of an allocator modale,

-139 -

and fewer hardware packages and intermodule connections than one:based on error-correcting codes
(using the type of router modules illustrated in Fig. 5.11). It is thus attractive to develop a fault
masking strategy whnch can exploit the advantages of network designs based on “fault-detecting
modules. Such a strategy leads to a dynamic redundancy scheme.

In a dynamic redundancy scheme, failures are masked through hardware-implemented fault
detection, diagnosis, repair, followed by reexecutioﬁ Vof the afflicted mbcomputatibns. To sdpport
the dynamic redundancy scheme, each PE must store additional information that is not used in a
non-redundant data flow processor. . A copy of every result and operation packet delivered to the
packet transport and processing (PTP) subsystem consisting of the packet networks and the SFUs
must be kept until the packet is ackuowledged. .‘ AteachPEtbc sender of every received packet must
be known. This information can be maintained by associating each operand position in an activity
template with a template address for returning_scksowledgments. The sender of each
acknowledgment packet and retransmission request (See below) must aleo be identifiable.

The dynamic redundancy scheme mnmcs that the hardware implementation of the data flow

pmmmmummmmemdhﬁdmfmlm

(1) Esach packet received by the routing network is delivered at the output port specified by its
destination tag, either to a PE or the allocation: network.. Each packet received by the
allocation network is delivered to a SFU. Specifically, neither packets nor packet nibbles
will be lostin the networks. -

(2) Each packet delivered to a network output port iseither ersor-free os flagged as erroncous.
(3) Target iemplate addresses camed inan operatmn packet are alﬁys delivered free of error.

. -(4) For every operation packet receivod, a SFU will deliver either an error-free result packet or

- 140 -

one tagged as erroncous to the target tempiate specified.

(5) Every acknowledge packet and retransmission request (See l?_elow) is chivered free of error
to its destination.

 Techniques to design redundammutets.allocamm.PFsmdSFUstnbéusedtohanenta
dataﬂowpmcmsorwnthﬂwsepmperﬂes,evenwhenuptoonehaldwampackagemeachmodulehas'
fanled,wﬂlbepresentedeecﬂonﬁS 'l‘hefaulttoleranoem'awgylsasfdlows.

Any packet which has encountered a faulty router or aflocator in its joumey through the
“networks wiﬂbemarkedassnchumdeﬁverym‘ﬁ:c déstination PE or SFU. "When a SFU receives
an operation packet tagged as erroneous, it will generite a' result packet, tag it as erroneous, and
forward it to the target template specified in the operation packet. 1fa PE receives a result packet
WaemnwmmmvmmmmmmrMmmm
packets 10 the routing nietwork. Afl packets' in tranit-will diitve at diéir destiriations after a finite
nmcpenod,whmhcanbedemmnnedﬁumhardwmpumxwﬁedfmmemmbsym
Aﬂermnsnmepenodmemsubsmcanberepamdunderthedmmmofmw
genemedbyfaultdetem:smﬂnswbsyﬁmAﬁeuepﬂrﬂ:P&mmm APEwhnchhas
received a contaminated packet will issue 2 revransmission: reguest instead of an acknowiedgment to

Acnwtywmplaampmenumamwhmekvdpmgrmmdampuemmedmemd
the computation in progress, are stored in the PEs. lfonlymmdlwdmsorSPUshavefailed.me
computation can always be restarted from the intefmediang state stored in -the PEs and run to
complenon after the networks have been repalred. If fallums oocur in me storage oomponam of a
Pﬁnmybemrymabonmemmpumﬁmmmmmmumedwemmy

-4l

Failure in other components of a PE need not be masked in hardware, but the activity templates and
partial intermediate state stored in it must be relocated before processing can resume. If an activity
template A is relocated. the entire activity template set must be relinked so that ether templates
having A as a targ.et will contain the new address of A. It thus seems desu'able to mask all failures in
PEs locally in hardware. Commumcauou between PEs and the host machme to coordinate repalr can

be mplememed wnh an mterprocmor bus. Fault-tolerant busmg structures have been presented in

(30 and [67)

The PTP wbsys(em must be repaired after failures are detected. A failed module can be
replaced or repaired in place manually. Availability n improved ‘by reconfiguring around the failed
medule automatically and then mpamng(he failed module off-line. For a-computation in progress
to proceed successfully, the full functionality of the reuting network must be retained, ie., packet
commumcanon between any input port and any output port must be mamtamed Two strategies for
mcorporaungsparemutersanddatapaﬂnsmmamungnetworkamdmmedm Section 6.4. Under
these strategies the ﬁxllcapablluy ofa rouungnetwork sretmnedsobngassparesarenotexhausted.
These strategies are also applicable to allocaﬂon networts. A SFU faxlure can be repaired by simply
taking it off-line. An allocator will not forward opesation packets to any SFU which has stopped
acknowledging inputs. The machine architectune Bgraecihlly degradable with respect to SFU failures
in this sense. SFU failures have noeﬁ'ectod\ﬂ"dﬂndcyaded performance across the PTP
subsystem boundary.

The dynamic redundancy scheme we have described is built directly on the execution control
mechanism in a data flow processor. It has the merit. that extensions o the execution eontml'
mechanism are incorporated in low level hardware functions and require no extra programming
effort to achieve fault tolerance. '

-142-

6.3 Module Design

Ourbadcunnfmﬁukmktmmaﬁdaaﬁomkamkagawlﬁdlmeiyghputﬁgnakmd
deﬁverswtputéimalsﬂ:rouﬂ:itstemindx Hardwaremockﬂamooaﬂmctedwngpmkqes. We
_alsoasmmeﬂmmemﬁnmmrepausmudxmmmemmw&ihm Modules
descnbedmmxsncnmmhcnccdwgnedmm:spwoncpadmhkmpﬂmoduk Inthxs
mmwepmthﬂwmmdundmymmamwmwwmeﬁwfmm
tolerance properties stated in Section 6.2. We first describe the encoding techniques:

- mmmmmmmgmm,mmmwm

-- Each data nibble is protected by a parity bit. The nine bits of a parity-encoded nibble are

- Eadlpackam'bbkwhosecrmr-ﬁeemmmmbegumdsexpmdedmwﬂme
mbbles. mmdmmmbbmmmmmwmblSmmegm
mbbleoneandtwopomonsmthenmmvdy

siven nibble: bybyb;b38,b5bgbyby,
3 nibbie: 7glighy 55b3,bb

This encoding scheme can be regarded as an implementation of triple modular redundancy in
time instead of in space. Nibbles in nibbie cown fieids and' semplate address ficlds, and
this technique.

— An all (s data nibble is appended to the tail of each packet. This nibble is used to flag packets

-143 -

which contain erroncous nibbles. It is set to all 1's by the first module which detects the parity
violation, and is otherwise retransmitted as received. The packet is.accepted as error-free only if

its flag consists.of’all 0’s.

Using the hardware redundancy techniques developed in previous chapters and the above

encoding techniques routers, allocators and SFUs can be implemented with the following fault

tolerance properties:

-- If at most one of the four control signals delivered on each quadruple is faulty, its pathological
effects can be masked. .

- If at most one data wire in each parity-checked data link carries faulty signals, the nibble counts
and addressing information in each packet can be retrieved The last mibble in the
corresponding output packet will be flagged, ic., will 9ot be all 0's, if any packet nibble has
violated the parity check.

- If at most one packageinmeniodulehasfailed,meaboveapabiliﬁesamnothnpairedand
fauhysigmlsaredelivemdonatmostoneoﬁq:ﬁtc:‘onuol‘mindonéoutputdatawimatmy
module port. |

Wenotematnmmfaclpmbkmmaskaﬂnnglepxhgefaﬂmmmumanocamm
SFUsmththesefaulttolemwecapabﬂnﬁunfeverypactetm‘bblensmplmwdumgme
rotate-and-repeat encoding scheme giveli above. This appmach to fault masking leads to lower
performance during fault-free operation, as compared with the. dynamic redundancy scheme
explained in the last section.

144

We next illustrate module design techniques with a router module design and a processing
mpabiliﬁwiixa!kmasandspedaﬁzedﬁxmﬁonalm R

Router Module Design

A redundant router module (Fig. 6.4), just as its nonredundant counterpart, receives packets at
its two input ports, and delivgts each received packet umeozmtpgnspectﬁed by a destination tag
carried in the packet. Pmketrecmptandforwardmgmsymhmmdbymﬂolw&hmm
‘quadruplicate. Packet nibbles are parity encoded. The redundant router is implemented using four
checker packages and nine voler packages (Fig. 6:4); Fath checker (Fig. 6.44) has two input ports and
two output ports. Comtrol signals genersted at the: cofrésponding ports of the four checkers are
gmmmemm port of the redundant 10 '. | Thus, for examriple, the acknowledge
signals generated by the four checkers at their I} input ports (Fig. 6.4b) are grouped together at input
ponlloftheredundantlmtcr Daambblemmmsﬁmtheoorrespondmgmupmpomofmefmn

Mmmcdlmdmgeﬁaandvoﬁedmubevommdmnwtpmfmmwtpmpmtof
the redundant router. In Fig. 6.4, mcntmberofwmnpmdbyechmsmmmhhbd
in parentheses. This number is omitted if the arrow represents a single wire.

Ad)eckerrwamaﬂmputmnudmddaumahdehvaedwthemm and implements
severalfaulttohanceupabiht:esmaddﬂonwpdetmm

- mmmﬁnmwhenammmwmmaﬁmhm.

- deduce the error-free nibble for every data nibble encoded in triplicate using the
rotate-and-repeatschemegiven_above.

- 145 -

ready (4) —— = ready (1)
input ack - -— k(4 output
portly { data(9) — — data(9) } port O
' ready (4) — — rady)
input ack - o— ack(4) output
- portly { data (9) —em — data(9) } port O,
(a) A Checker Unit
-
—-| data (9) to
A.ll.B.lI,_.
—=| ready (4) C'll’ DLy
—e— | ack, from AL
~=— | ack, from B.I;
~— ack, from D.Iy
B.04,C.0;, DO y
—a=| data (9) to Checker dan(9).ﬁm majonty data (9)
| | Al,BIL, | C wmﬁw =al’ voters -
—e|rady@ Cl, DL u.qz
~— | ack, from AL »_‘mdyfmmA.Oz — f°2
L B.0,,C0,, DO, | s

Fig. 64. Hardware structure of a redundant 2 X 2 router based:on parity codes.

(b) The Redundant Router

- 146 -

~ set the last packet nibble to all I's if the last packet nibble it has received is not all 0's or if parity
violation has been detected. ' ‘ "

~ maintain timing synchmnmuonandconsﬂcncywngmetechniqmsdevdopedmpm
chaptets. For clarity, communications paths for exchanging tyscltrontzation signals and
messages among checker packages to 'nnplanemmeacmdundancymmmtﬁnmﬁomm.
omitted in Fig. 64. -

lnmcredundammuterﬂ:ownmﬁgﬂ datafaultsductomslecheckerl‘mluresmllbem&edat
lthevoterpackages. Control mmmwmﬁma&mmdxmmm
fmmmmmmmmmmmmuammmmmmmmm
router module.

Processing Element Design

APEprovidesmﬁ)rmwmmchB.aswnasmmd
wmbﬂmforxnmymh&pmandmwumtmhpﬂamm
and error report. Ammmmammmmmﬂam
mponentssg:veni&ﬁlkm Toam;h;Mm&mdmyMaEﬂna
fmxhﬂqmﬁdanﬂmpmmbeWﬁxwmmmnna
mdundantcmuolumnadarmﬁmm%ﬁ).

Apaxﬁalstateofmecompuwionmexecuﬁmisﬁomdinmebit-sﬁoedm. For the
omnputaﬁonmbereoovmbleaﬁersin@epackﬁagefgihgﬁ,;ﬂrmﬁlunsmustbcm.ﬁedalong
medammmuwdmmﬁevemkinfm&méxumymﬂnmm This is
achieved by using a bit-sliced memory protected by an esror-correcting.oode $0 store this information,
and a control unit with the same structure and operating principle, and hence the same fault tolerance

-47-

Host Machine

Redundant v Routing
Redundant | o ___ | Control - ———
| Memory Unit Network

|

Redundant Functional Unit

Fig. 6.5. Design of a fault-tolerant processing element.

capabilities, as the redundant router module shown in Fig. 64. The control unit consists of four
failure-independent packages each of which receives all input signals delivered to the control unit.
The outputs of these four packages are grouped together or voted upon to form outputs of the
redundant control unit. |

Addresses and data transmitted between the redundant control unit and the bit-sliced memory
system, and those transmitted between the control unit and the host machine, are encoded using an
error-correcting code. Each bit-slice in the memory system stores one bit of a data word and has its
own address decoder. Any hardware failure confined to within one bit-slice thus affects at most one
bit of a data word and consequent errors can be corrected. Packet nibbles transmitted between the
redundant control unit and the routing network are parity-encoded. Since the redundant control unit
has the same fault-tolerance capabilities as the redundant router, single package failures in the control‘

unit cannot cause undetected erroneous packets to be delivered to another PE.

- 148 -

The functional unit s the only subunit in‘a PE ‘that need not be completely fault-tolerant.
Package failures in it must nonetheless be detectabk Many redundancy techniques are available for
detecting failures in functional units. Fora Mg available LSI functional unit chip, it is cost
effective to detect single chip failures ﬂlmugh dllplm and nmk ﬂme Qlilres through triple
modular redundancy, as desired. Commamcamn ‘between the_redundant co

mdundamﬁmcmwumtmnahobeprmactgdmngaunrmerm-comcﬁngwdea.an
error-detecting code, depending on whether Tailures in the functional unit are to be masked or

&4 Network Repai Stegis

~ When a network hardware failure is detected in the dypamic redundancy. scheme, all PEs will
dormant. Before normal processing can resume the failed unit must be located and the networks

must be repaired. In this section we will illustrate two repair strategies using routing networks.

The first step in any repair procedure is to locate the failed routes, Each checker package can
generate an error signal upon detecting a parity violation. Failures in the last network stage are
detected directly by parity checkers in the PEs and SFUs. Singe checkers arc quadruplicated in cach
router, PE and SFU, two or more error signals will be generated for each legitimate complaint under
the single package failure assumption. These error signals can be used o locate the failed router.
Further diagnosis will be necessary 1o locate the failed package(s). |

The most straightforward repair procedure is to make use of ermrs:gnalsgenerated by checker
packag&smlocatemefailedunitandmenmpho'eh»maﬂywithgm. This procedure requires
no additional hardware, but system availability is directly related to the availability of maintenance

-149 -

personnel. The personnel requirement can be reduced by incorporating self-repair features into a
network. The error signals will be monitored by the host machine which will direct repair activities.

Additional modules or data paths must be incorporated directly into the routing network to support

self-repair.

In the self-repair scheme illustrated in Fig. 6.6, a number of spare modules are appended to
each routing network stage, switched in electrically to replace failed modules. Switching
arrangements are incorporated systematically using switch packages, which have been introduced in
[36], to support system reconfiguration. A switch can be set in one of two modeé. either "crossing” or
"bending” (Fig. 6.6a) the pair of input leads to the pair of output leads. Spare routers are
interspersed with active routers. The reconfiguration capability of this switching arrangement is
illustrated in Fig. 6.6b where the ith router is assumed faulty. Note that in this scheme a spare router
cannot replace any faulty router below it in the column. Control signals for setting the switches.can
also be carried in the interswitch connections. This repair scheme requires many additional data
paths and packages, and must be further enhanced to tolerate switch failures. It is thus practical only
when the additional hardware costs are acceptable and the switches are much more reliable than the
router modules. One technique to tolerate switch failures is to connect each switch to more than ox;e
neighboring switch so that an immediate neighbor which has failed can be bypassed. These switches

are called ripplers in [58].

The additional data paths introduced can also be used for off-line diagnosis, testing out the
routers systematically with pregenerated test patterns. In the configuration shown in Fig. 6.6, the ith
router can be tested by the host machine while the remaining routers carry the packet traffic. The
fault detection mechanism in the dynamic redundancy scheme assumed single package failures in

each router. Multiple package failures or lurking failures which have not yet manifested themselves

are not detected. Network reliability can be further improved by testing the routers for these failures

/@< \®/

-150 -

cross mode bent mode

(a) The switch module

Host Machine

\O _—
+ /i-ISt\\

/ M spare i JP ———

(b) Reconfigurable network stage

Fig. 6.6. A reconfiguration scheme for sclf-repair.

-151-

periodically or after detecting a fault in software.

In the above strategy the topological and operation cﬁaracteristics of a rectangular routing
network are retained éﬁer reconfiguration. In a rectangular network any router, except for those in
the last stage, can be,paimdtogesherwnhfaneighborm the same stage such that the two can be used
interchangeably in packet routing. If one router.in a pair fails, its duty can be taken over by its
partner and the network can continue to operate, possibly with degraded performance. This scheme
can be implemented by adding two input ports and two output. ports to each redundant router. If
there is a path in the nonredundant network from router A to router B, a new path between A and B’s
partner is added. The redundant paths incorporated into an 8 X 8 network (Fig. 6.2) are shown in
Fig. 6.7. The last stage can be repaired by using the previpus scheme. A packet can be forwarded to
its destination along two different paths at each enhaneed router. Both of these paths can be used
during normal operation when all routers are fault-free, o ope of them. may be designated a spare to

lo
e
., ®
.9
. 9

®
. ©

@

Fig. 6.7. A reconfigurable 8 X 8 network with redundant paths.

-152-

be used only when the other path is blocked by a failed roui¥r. Information on the location of failed
routers can be distributed by the host machine during repair, to disable connections to failed routers.

The host machine can keep a count of the number of falures reported for each router and take
it of-line only when a predetermined maximum failure rate s exceeded. Spare modules can then be
better utilized when transient failures dominate. ‘We also note that neither of these repair schemes
require recomputing destination addresses in a partially executed dita flow program to-compilete its
execution after being interrupted by a network failore.

The STAR computer [8] and the FTSC computer [52] are two examples of fault-tolerant
computing systems based on dynamic redundancy. Both of them have a bus-oriented architecture
meummmmmmmmwmmwdam
redundancy scheme for masking hardware failures in a muRiprocessor system designed to execute:
parallel programs organized by data flow concepts. These programming concepts and the quest for
high performance also distinguish our work from other fault-tolerant multiprocessor projects such as
the FTMP system [30} and the SIFT system |67}, - |

The dynamic redundancy scheme is developedbyﬂl!speafymc a set of fault tolerance
capabllmesfmmemckellmnsponmldmmsmmofﬂ!epﬂammmd
mespmmhwdmnwondumm.mm@damﬂowpmm ngpmgrmaecuuon,andﬁx
coordinating fault-related activities such as faukdemhm. dagnoﬁsﬁdmpnrwﬁh normal
execuuonarethenformulatedbasedonﬂwfammm Wehavealsoexphmed
hardware redundancy and packet encoding techniques for implementing hardware modules and
subsystems to support these strategies. Rednndanthardwmishompomdandoperacdmdm
to the redundancy management methodology developed in previous chapters.

-153-

The packet transport and processing subsystem is designed to be constructed out of hardware
modules, instead of with busing structures or communications technology. The fault tolerance
capabilities specified for this subsystem have been chosen primarily because it is quite
straightforward to both develop a system strategy based on these capabilities, and to implement them
using familiar hardware redundancy concepts at the module level. The fault tolerance and
maintainability feamm of the remlm:g system -design can be precisely characterized and, if only
-informally, verified. A different set of fault tolerance capabilities for the packet transport and
processing subsystem can be adopted for system design, leading to alternative system and
implementation strategies. When detailed logic designs and hardware failure rates are available for a
hard\ﬁare implementation, altcrnative schemes should be carefully evaluated with reliability models

[41] to determine their cost-effectiveness.

We have assumed that hardware packages fail under normal use, and that failures are readily
repaired. The redundancy schemes have thus been presented assuming at most one package failure
in each hardware module. As long as there is at most one failed package in any module, the
computation in progress can always be completed. If the processing elements are not designed to
mask single package failures in their functional units, it may be necessary to relocate the activity
templates and the partial state of the computation stored in a failed processing element, and relink
the activity templates, before program execution can be resumed. The redundancy techniques can be
extended to accommodate multiple package failures by using more packages in each router and more
elaborate coding techniques. In a physical mhuuon several packages can share a physical unit as
: longasﬂnephysicalsystemispartitionedsoﬂ;atunderﬁenmﬁcormnonfailuremodesatmostone
package in each module can fail.

~

We have demonstrated how to methodically deal with hardware failures in a practical _

implementation of a highly parallel data flow processor, with no impact on its programmability. We

have explained how hardware failures can be masked when: the architecture is programmed in a
restricted data flow language. Another operational restriction is that every packet transmitted over
the packet transport and processing subsystom is acknowledged by another packet The fault
tolerance techniques explained in this chapter are directly applicable whencver the hardware
architecture is programmed under these restrictions. It is expected-that more sophisticated system
Megiesniumbedewbpedmmmfmmvdthm&vmdﬂn‘
flow architectures [1} §66].

- 155 -

1. Conclusion
In this chapter we present a summary of results and suggestions for further research.
7.1 Summary of Results

We set out to answer the question:

"How can hardware failures be tolerated in a scif-timed hardware system organized by a

packet communication architecture and designed to exccute data flow programs 7"

Our answer is provided in two parts. In the first part we study the general question of designing
redundant packet systems for fault tolerance, and examine the issues of redundancy organization,
redundancy management and fault modeling. In the second part we study architectural issues in the
design of fwlt-tolerant data flow processors. Our results in these two areas are presented next,
followed by an evaluation of whether these mlts have provnded a satisfactory answer to the above

quesnon.
7.1.1 Fault Tolerance in Seif-Timed Hardware Systems

Researchreportedinthisﬂxesishasbeenconductedaspanofaneﬂ‘ontodevelopadesign.
methodology for oonstmctmg computer systems with sunable performance programmablhty, fault
tolerance and modulanty charactenstlcs. ln pamcular we have studned the problem of achieving
fault tolerance in self- tlmed systems orgamzed by a packet commumcatmn amhnecture In the past
there are sngmﬁcant speed and economnc penahm for constructmg self txmed systems using
off- the-shelf components. These dtsadvamages are greatly allevnat,ed in custom LSI chnp desngn, an
implementation approach appropriate for construcung large parallel processing systems for hngh

speed numerical computation.

- 156 -

Many stuck-at faults cause hangups in self-timed hardware systems whose modules interact via
asynchronous handshake protocols. This property is often cited as evidenpo that self-timed systems
provide natural support for fault isolation and fault disgnosis. There exists no methodology,
however, for incorporating redundant hardware into self-timed systems for fiult tolerance, prior to

our work.

Our major result in this arca is a complcte methodology for mcorporamg redundant hardware
into a class of packet systems for fault tolcmnoe This class mcludes all detcrmmate systems and
non-determinate systems constructed with merge modules. In the course of tms investigation, we

"have addressed the following issues:
Structure of Redundant Modules

We have presented a byte-sliced hardware organization for redundant packet oommunm
| modules. Byte slices in a redundant module can be designed and constructed from functional
specifications for the nonredundant module and the chosen encoding scheme. We have also
demnbedaclasofasymhmnouspmkucmmmmhfmmmmm

Fault Modeling

Hardware failures in redundant modules are characterized by a stuck-at fault model, a random
pulse train fault model and a random wave train fault model. lneach fault model, mhwme&&d
the kind of signals that can be generated by failed modules as well as the interaction between such
signals and fault-free hardware elemems in fault hmdle!s. These fault models pmvnde a vigorous
basis for studying fault-tolerant hardware nnpletnentmou -

-157-

Redundancy Management

We have developed an approach to coordinate byte slices in:cach redundant module so that
failures among these slices can be detected and/or masked by decoding the outputs they generate.
This approach is based on maintaining timing synchrosization and ¢ossistency among byte slices in
the same module. This approach to redundancy management is supported by two.rebust algorithms
under which timing synchronization and consistency can be maintained even afier certain hardware
failures have occurred. The effectiveness of this approach in dealing with hardware failures
characterized by the stuck-at fault model, the random pulse train fault mode! and the random wave
train fault model is also investigated. We have also bricfly discussed an alternative approach to
redundancy management for fault tolerance, based on buffering schemes, and its relative merits and

We have presented control module designs which can detect and/or mask hardware failures
fault model, these control modulcs can generate runt pulses due (o metastable state phenomena, but
the probability of such occurrences can be reduced t0 acosptable: levels. . We have also outlined an
approach to deal with random wave train faults, but have not analyred this approach in sufficient

detail to evaluate its effectiveness.

Our timing synchronization technique is closely related:to the syrichronization voting technique
studied by Davies and Wakerly [I7}, and has applications in fult-tolerant clock design. We have
clarified the problems ia this area and mmmw mvestigating the hardware
implementation of our timing synchronization technique under-the different fault models. ‘

- 158 -

7.1.2 Fault-Tolerant Data Flow Processor Design

A data ﬂowpmmrunbermdemdfwk-mkmtbyinpiamnﬁngafauhmasking
capability in each of its hardware modules. As an alternative approach we have developed a fault
tolerance strategy for masking hardware failures in the data flow processor based on dynamic
redundancy. This alternative approach offers the - petential of comsiderable hardware savings,
especially in the packet networks.

The data ﬂow processor is a parallcl processing system in which several machine instructions
* may be executed in parallel, and intermodule cmnmqnication is supported by packet networks. 'ﬂle
STAR computer [8] is probably the first fault-tolerant computer organized by a dynamic redundancy
scheme. In this computer f;uit detection is supported by using arithmetic codes in arithmetic units
and system buses, and duplication in units that perform logic operations. Spare hardware modules
and sparc bus lines are incorperated and switched in to replace fiiled moduies after hardware failures
are detected and diagnosed. The STAR computer executes machine instructions serially, and state
information is saved at program checkpoints for subsequent rollbacks to recover from detected
failures after repair. Our dynamic redundancy scheme can be considered a variant of the strategy
implemented on the STAR computer; refined in accordance with the architectural characteristics of

the data flow computer:

-- Failures in processing clements, specialized fuactional units; routers and allocators are detected
by designing these modules, and eacoding packet nibbles, to support parity checks.

-- Spare mmMMa‘Mhpﬁﬁm@wwnpﬂwﬁ.
Homogencous sects of precessing elements and specialized functional units are provided so that
the system can degrade gracefully when these modules fail.

-- Transmitted packets arc saved until theyma;:knowledged,andmmiueduponrequen. .

-159 -

The dynamic redundancy scheme is developed by first focusing on fault tolerance requirements
for the packet networks. A system strategy for fault tolerance is then developed based on the selected
requirements. These requirements are also used to derive specifications for hardware-modules. The
desired fault tolerance capabilitics are implemented in these hardware modules using hardware
redundancy techniques dcveloped in the first part of this thesis. This same methodology can be used
to design other djnamic redundancy schgmes for fault-tolerant data flow processors, using different -

fault tolerance requirements for the networks.

Our design is but one of many possible alternatives for constructing fault-tolerant data flow
processors. It nonetheless demonstrates that -fault tolerance can be incorporated into a high

performance computing system with no impact on its programmability.
7.1.3 Evaluation

The data flow processor is designed to achieve high performance through paralle! processing.
This parallel processing capability is not compromised in the fault-tolerant processor design we have
proposed. Individual hardware operations may take longer to perform due to input decoding and
synchronization. But pipelined and concurrent operation of hardware modules are still supported.
In other words, fault tolerance mechanisms incorporated according to our stratcgy lengthens the
execution time of microscopic operations, but has no effect on concusrency exploitation at higher
levels.

For our intended applications, we also favor a self-timed implementation approach guided by
packet communication principles. In constructing | a‘ totally self-timed system, the timing
characteristics of individual modules nced not be known. In our approach to redundancy
management, we have relied upon performance compatibility among byte slices in the same

redundant module to maintain proper synchronization, and we have also made assumptions on gate

- 160-

delays and path delays in control module designs. For each redundant module, however, the only
timing characteristics which must be made available to its environment for its successful deployment
are phase differences among packets and acknowledgments in the same output batch generated by
fault-free slices in that module. In synchronous systems, upper bounds on exccution times for basic
hardware operations in each module must also be cakulated. Our procedufe for integrating
redundant ﬁackct communication modulas into fault-tolerant packet communication systems is thus
somewhat more complex than that for self-timed systems, and yetcomdelﬁlysnnpkf than that for
synchronous systems. We have lost some, but not all, of the desirable modularity properties of
self-timed systems in our fault toleranoe memodolo;y | | |

We have shown how to construct redundant packet communication systems so that hardware
failures limited to some maximum number of byte slices in each redundant module can be tomd. :
We have, however, not addressed the issue of cva}uaung the reliability improvements attainable
through such ephancements. We have developed a design methodology for-incorporating redundant
hardware into packet communication systems for fault tolerance, a set of mechaniams to suppont this
methodology, and illustrated its application in a specific system désign. *Alternative approaches to
designs can be developed to guide the construction of fault-tolerant parallel processing systems based
alternative schemes can be evaluated more carefully to compare their reliability properties and
cost-effectiveness. lnthxsmmwehavendennﬁedthctechnndmlesmdhldmefmmdanonm
which such alternatives can bedevclopedandamed.

-161 -

1.2 Suggestions for Further Research

We have presented a dcsign mecthodology for constructing fault-tolcrant packet communication
systems and a system design for a fault-tolerant data flow processor. 1.ct us first .consider some
alternative solutions to redundancy management and packet network dcsign in this framework, and
then discuss how our concepts and téchniqucs can be applied to achicve fault-tolerance in more
general forms of data flow processors and in constructing fault-tolerant computers ffor other

applications.
Redundancy Management

Our approach to redundancy management is bascd on maimainingltiming synchronization and
consistency in redundant systems. An alternative approach to maintaining timing synchronization is
described bricfly in Section 5.5. This approach is based on the idea of buffering packets and
acknowlcdgments in control modules until they can be forwarded. It is conceptually simpler but
implementation details must bc worked out rbeforq i;s hargy;are requirements and fault tolerance
capabilitics under different fault models can be evaiuated. Mcthods for dctermining buffer sizes in

control modules and strategics for dealing with buffer overflow must alse be established.

For our timing syncﬁronizatjon al‘gorithm.}f +1 synéhronizcrs arc needed to tolcra;c failures in
up to f ‘synchronizcrs among them. The question of whether there eXlStS robust timing
synchrohimtion algorithms which can be implemented with fgwgr synchronizers, or whether 3f+1 is
a lower bound for solving this problem remains ﬁnscttlcd; We n'oté that under restricted fault
assumptions, timing synchronization can be maintained using synchronization voting {17}, which does

not require any synchronization among byte slices in a redundant module.

-162-

We have also suggested an approach to implement the timing syachronization algorithm in
control modules under the random wave train fault model. In this approach we propose to use
lowpass filters to climinate random wave trains of bounded wavck:ngth.‘ ;lhis.apprt)ach should be
investigated usin’g analog circuit design and analysis techniﬁucs %) cstab!ishiﬁc‘mods‘fbr dealing with

random wave train faults.
Packet Network Design

Hardware failurcs in packet networks can be masked by implementing a fault maskmg
capability, based on cither crror correcting codes or replication, in every router:and allecator: 'We -
have adopted an alternative approach under which some hardware failures arc masked and others are
only detected. Other alternatives include nclymg cnurely on packct cncodlng techmqu(s, such as
adding a checksum nibble (o cach pmkct. to detect faﬂurcs. and usmg time-out mcchamsms to :
control rctransmmon as in the ARPAneL It is wonhwh‘lc to conduct a more systcmanc study of k
fault-tolerant network design, clmfymg ‘different techmqucs according to the lmplementanon |
technologies and failure modes for which thcy are efﬁsctive B o ;

We have also-described two strategies for incorporating rodundant handware into a-rectangular
packet network to support rapid repair. lmcmonnecnon natworks in large parallel proommg systems
often have regu]ar structures and are constmcscd out of a lalue mwnbcr of)dcnucal umts. There are
thus many opponunmcs for cxplomng structural regulmty and umfonmty in these networks in
mco:poralmg redundant modules and paths inothem.

Redundant Data Flow Computer Systems

We have presented the design of a fault-tolerant data flow processor intended for numerical

computation applications. This proccssor supports only a subsct of the data flow language presented

-163-

in [22]. More gencral forms of data flow computer systems [1], [65] must be developed to support
environments suitable for data base applicatidns and general purpose computing. These systems

should also be fault-tolerant to improve availability ahd maintainability.

Redundant Microcomputer Systems

Many real-time control applications can bencfit from the availability of low-cost fault-tolerant
computer systems. A rcdundant system can be constructed using several independently clocked
microcomputers, and maintaining timing synchronization and consistency among them.
Redundancy management can be implemented in hardware, by incorporating the suitable hardware
mechanisms in the microcomputer chip, or in software, by incorporatihg the corresponding
operations into application programs. It is a challenging rcsgarch problem to design a fault-tolerant
microcomputer system, aﬁd the corresponding programm’ihg methodology, for real-time control

applications based on these ideas.

Finally, we note that many engineering decisions must ‘beb made in applying the methodology
cxplained in this thesis to the constructiog of practlcal fault-tolerant systems. Such decisions concern
system modularization for redundancy incorporation, the choice of a suitable fault model for the
implementation technology, and the choiceé of redundancy techniques subjected to reliability,
performance and cost requirements. Methodologies can also be developed for making such

fecisi

- 164 -

References

[

21

B3]

[4]

51

6]

M

18]

9

(10}

[11]

12

W. B. Ackerman, "4 structure memory for data flow computers”, 1.aboratory for Computer
Science, Massachusctts Institute of Technology, TR-186, August, 1977.

W. B. Ackerman, "Data Flow Languages”, Proceedings of the 1979 National Computer
Conference, pp. 1087-1095, June 1979,

W. B. Ackerman and J. B. Dennis "VAL - A Value-Oriented Algorithmic Language:
Preliminary Reference Manual", 1 aboratory for Computer Scicnce, Massachusctts lnsmute of
‘Technology, TR-218, June 1979.

D. B. Armstrong. A. 1. Friedman and P. R. Mcnon. "Design of asynchronous circuits assuming
unbounded gate delay”, /EEE-TC C-18, 12, pp 1110 - 1120, l)cc. 1969.

D. B. Armstrong, A. D. Fricdman and P. R. Menon. "Design of asynchronous c1rcuns assuming

“unibounded gate delay”, Bell Telephone Labs. mternal memorandam (unpublished).

D. A. Anderson. Design of self-checking digimi networks using codihg iechniques. Coordinated
Scicnce Laboratory Rep. R-527, University of Wlinois, Urbana, Oct, 1971.

A. Avizienis, "Fault-tolcrance: the survival attribute of digital systesas”, Proc IEEE, vol 66, 10,
pp. 1109 - 1125, Oct 1978.

A. Avizienis, et al, "The STAR (Sclf-Testing-And-Repairing) computer: An investigation of
the theory and practice of fault-tolcrant wmpuwr dcs:gn" IEEF-TC, vol C-20, 11, pp.

- 1312-1321, Nov. 1971.

A. Avizicnis, "Fauit-tolerance and longevity: goals for high-speed computers of the future”,
Proceedings of the Symposium on High .Speed C omputer and Algomhm Organization. Academlc
Press, pp. 173-178,1977.

A. Avizicnis, M. Ercegovac. T. Lang, P. Sylvain & A. Thomasian "An investigation of
fault-tolerant architectures for large-scale numerical computing”, Proceedings of the
Symposium on High Speed Computer and Algorithm Organization. Academic Press, pp.
159-171, 1977.

B. R. Borgerson, "Spontancous reconfiguration in a fail-softly computer utility”, Proc. Datgfair
73, British Computer Socicty, London, pp 326-333, 1973.

G. A. Boughton, Routing Networks in Packet Communication Architectures, Dept. of Electrical
Engincering and Computer Science, M.1.T.,.S.M. Thesis, June 1978.

[13]

[14]

[15]

(16]

[17]

18]

[19]

[20]

[21]

2]

[23]

[24]

25]

[26]

- 165 -

W. C. Carter and P. R. Schncider. "Design of dynamically checked computers”, IFIP Congr.68,
vol. 2, pp 878 - 883, Edinburgh, Scotland 1968.

T. J. Chaney, S. M. Ornstein, and W. M. Littleficld, "Beware the Synchrom/er" Digest of
Papers - CompCon 72, IEEE, pp. 317-319, Sept., 1972.

T. J. Chaney & C. E. Molnar. "Anomalous behavior of synchronizer and arbiter circuits”,
IEEE-TC C-22, 4, pp 421-422, April 1973.

W. M. Dafy, A. L. Hopkins and J. F. McKenna. "A fault-tolerant digital clocking system”, Dig. -
3rd Int. Symp. Fauit-Tolerant Comp. Palo Alto, CA, pp 17 - 22, June 1973.

D. Davies and J. F. Wakerly. "Synchronization and matching in redundant systcms" IEEE-TC
vol. C-27, 6, pp 531 - 539, Junc 1978.

D. Davies. "Reliable synchronization of redundant systems”, Proc. 5th Annual Symp. Comp.

~ Arch Palo Alto, CA. April 3 - 5, 1978.

D. Davies, "Reliable synchronization of redundant systems”, Internal Mcemo, Digital Systems
Laboratory, Stanford University, Stanford, California, Oct., 1977.

J. B. Dennis, "The varicties of data flow computers”, Proceedings of the Ist International
Conference on Distributed Systems, IEEE, October 1979.

J. B. Dennis "Packet Communication Architecture”, Proc. 1975 Sagamore Computer
Conference on Parallel Processing, Syracusc University, August 1975.

J. B. Dennis, "First version of a data flow procedural language”, Lecture Notes in Computer
Science, vol. 19, New York: Springer-Verlag, pp. 362-376, 1974.

J. B. Dennis, "Computation Structures”, COSINE Ceonmmittee Lectures, Princeton University,
Department of Electrical Engincering, Princeton, New Jersey, July 1968.

J. B. Dennis, G.A. Boughton & C.K.C. Leung "Buildiﬁg blocks for data flow prototypes™ to be
presented at the 7th Annual Symposium on Computer Architecture, France, May 1980.

J. B. Dennis, & D.P. Misunas "A preliminary architecture for-a basic data-flow processor.”
Proceedings of the 2nd Annual Symposium on Computer Architecture, IEEE, New York, pp.
126-132, 1975.

J. B. Dennis, C.K.C. I.cung & D.P. Misunas "A highly parallcl processor using a data flow
machine language”, M.LT. Laboratory for Computer Science, Computation Structures Group,
Memo 134-1, Cambridge, Mass, also to appear in 1EEE Transaction on Computers.

27]

28]
9]
0]
B1]
32]

133]

134
135]

136]
B7
38]

1391

- 166-

D. J. Ellis "Formal Specifications for Packet Commumication Systems”, 1.aboratory for
Computer Science, Massachusetts Institute of Techmiology, TR-189, November 1977.

J. Galiay, Y. Crouzet and M. Vergniault "Physical versus logical fault models in MOS LSI
circuits, impact on their testability”, Proc. of the 1979 Symp. on Fault-Tolerant Computing,
IEEE, pp 195-202, June, 1979.

R. W. Hamming. "Error detecting and error correcting éode”, Bell System Technical Journal,
vol. 29, no. 2, pp 147-160, April 1950.

A. L. Hopkins, Jr., T. B. Smith, I, and J. H. Lala "FTMP - A highly rcliablc fault-tolerant
muluproccssor for aircraft”, Proc. IEEE, vol 66, 10 pp 1221 1239 Octnber 1978.

R. M. Keller. "Towards a thcory of universal specd mﬁcmndcm ‘modules”, /EFE-TC C-23, 1,
pp 21 - 33, Jan 1974,

P. R. Kosinski "Denotational Semantics of Determinate and Non-Determinate Data Flow
Programs”, | aboratory for Computcr Scwmc Mamachusctts lnsututc of Technology, 'TR-220,
May 1979,

C. K. C. Leung On a Design Methodology for Packet Communication Systems based on a
Hardware Design Language, CSG Gmup Memo undcr preparation, Lab. for Computer
Science, MIT, August 1979,

C. K. C. Leung "ADL, an architecturc description tanguage for packct communication
systems”, CSG Group Memo, Lab. for Computer Science; MIT August, 1979, also presented at
Sth Symp on CHDL, Palo Alto, Ca, Oct. 1979.

K. N. Levitt, M.W. Green, & J. Goldberg, A study of data commutation problems in a
sclf-repairable multiprocessor”, AFIPS Conference l’mceaimgs. voI. 32, (1968 SJCC),

Thompson Book Company, ngwn DC, 1968, pp 515-527

L. R. Marino "The effect of asynchronous inputs on sequentxal nctwork reliability”, IEEE-TC,
vol C-26, 11, pp 1082 - 1090, Nov. 1977.

D. P. Misunas, "Deadlock avoidance in a data flow architecture™, Proceedings of the Milwaukee
Symposium on Aulomanc (‘ompammn and C. ontroi, IBEE, Apﬁﬂﬂs '

D. E. Muller "Asynchronous logics and application to information processing”, Switching
theory in Spacer Technology Stanford University Press, Stanford. CA1963. :

A. Newell and H. A. Simon, “"Computer science as empirical inquiry: symbols and scarch”,
Communications of the ACM, vot. 19, no. 3, pp. 113-126; Mar. '1976.

[40]

[41]

[42]

[43]

[44]

145]

[46]

[47]

[48]

[49]
150}

[51]

1521
53
[54]
1351

[56]

- 167 -

Y. W. Ng and A. Avizienis, "A rcliability model for graccfully degradable and repairable
fault-tolerant systems”, Proc. 1977 Int. Symp. Fault-Tolerant Computing, 1EEE, pp. 22-28,
June 1977,

B. Parhami and A. Avizienis, "A study of fault tolerance techniques for associative processors”,
Proc. NCC, pp. 643-652, 1974,

S. S. Patil Bounded and unbounded delay synchronizers and arbiters, Computation Structures
Group Memo 103, Laboratory for Computer Scicnce, M.1.T., Cambridge, Mass., Junc 1974,

M. Pechoucek, "A nomalous response times of input synchronizers”, IEEE-TC, vol. C-25, 2, pp.
133-139, Feb., 1976. '

M. Peasc, R. Shostak and L. .amport "Reaching agreement in the presence of faults”, Jacm,
vol. 27, no. 2, pp. 228-234, Apr., 1980.

W. W. Peterson and E. J. Wcldbn, Error-Correcting Codes, MIT Press, Cambridge, Mass., 1971.

T. R. N. Rao, Error Coding for Arithmetic Processors, Academic Press, New York, New York,
1974,

C. L. Scitz "System Timing", Chapter 7 in Introduction to VLSI Systems, by C. A. Mcad and L.
A. Conway, Addison-Wesley Press, October 1979.

C. L. Seitz "Self-Timed VLSI Systems”, Proceedings of the Caltech Conference on VLSI,
Pasadena, California, January 1979.

Scssions on Data Flow Computer Architectures. Proc. of AFIPS Conference, 1979.
Sessions on Data Flow Com;iuter Architectures. Proc. of Compcon 80, IEEE, Feb. 1980.

Session on the Fault-Tolcrant Spacebrone Computer. - Proc. of the 1976 Int. Symp. on
Fault-Tolerant Computing, pp. 129-147, Pittsburg, PA, Juae, 1976.

Special issue on fault-tolerant digital systems, Proc. IEEE, vol. 66, 10, October 1978,
Special issue on fault-tolerant computing, Computer, vol. 4, 1, Jan/Feb 1971.
Special issue on fault-tolerant computing, Computer, vol. 13, 3, March 1980,

C. Sheridan, "Space Shuttlc Software”, Datamation, July 1978.

T. B. Smith, III; "A damage- and fault-tolerant input/output network”, /IEEE-TC, vol. C-24,
no. 5, pp. 505-512, May 1975.

1571
[58]
1591
[60]
l61]
[62]
(63}
f64]
65}

[66]

{671

- 168 -

J. 3. Stiffler, N. G. Parke 1V, and P. C. Barr, "The SERF fault-tolerant computer”, Parts I and
11, Proc. of the 1973 Int. Symp. Fault-Tolerant Coniputing, Palo Alto, €A, June, I973

W. N.. Toy, "Fault-tolcrant design of local ESS Proccssors" Proc. IEFE pp. 1126-1145, Oct.
1978.

A. R. Tripathi and G. J. Lipovski, "Packet Switching in Banyan Networks”, Proceedmgs of the
6th Annual Symposmm onC ompuier Arthimuré Tﬁﬁi w 166-16? Aprit 1979

J. G. Tyron, Quaddcd loglc" Redundancy chhmques Jor (‘omputmg Systems, Spartan Books;
pp. 205-228, 1962.

E. Vishniac, "A processor module for data flow compuler development" Laboratory for

Computer Science, M.I.T., CSG Memo 176, May 1979

R. L.. Wadsack, Fault modeling and logic simulation of C MOS and MOS mlegraled circuits, Bell
System Technical Journal, vol. 57, 5, pp 14491473 May-Jod1978.

J. F. Wakerly, "Transient failures in triple: modular ‘redundancy’ systems: with sequenna!
modules”, IEEE-TC, vol. 24, 5, pp. 570-573, May 1975.

J. F. Wakerly Error-detecting codes, selfdmkmg cm:u!ls and apphcations. F.lsewer-Nonh
Holiand, New York 1978.

K. S. Weng An abstract implementation of a genevalized data flow language”, 1 aboratory for
Computer Science, Massachusetts Institute of Technology, Techniéal Report ‘TR-228; 1980.

J. H. Wensley, 1.. Lamport, J. Goldberg, M. W. Greca, K. N. Levitt, P.' M. Mcifiar-Smiith, R. E.
Shostak, and C. B. Weinstock "SIFT - The design and analysis of : a fault-tolerant computer for
aircraft controt”, Pro¢ IEEE, vol 66, 10, pp 1240 - 1255, 0%t 1978 - -

W. A. Wulf and C. G. Bell "C.mmp - amu‘ld—mﬁti‘plw" Pmc AFIPSIWZ FJCC vol
41, AFIPS Press, Montvale, N}, pp. 765-777.

- -169-

Biographical Note

Clement Kin Cho L.cung was born in Hong Kong on December 26, 1949. He received his high
school cducation at Wah Yan College, Hong Kong. He was awarded a Graham Scholarship for his
achicvements in the Hong Kong School Certificate Examination in 1968.

From 1968 to 1980, he was cnrolled at the Massachusctts Institute of Technology. He received
the degrees of Bachelor of Science, Master of Science and Electrical Engincer from the Department
of Flectrical Engincering and Computer Science in June, 1975. Hc also held an instructor
appointment in the Department of Electrical Engineering and Computer Science from 1975 to 1978.

As a member of the Computation Structures Group at the Laboratory for Computer Science at
MIT, Mr. Leung has conducted research in parallel processing, data flow computer architecture,
architecture description languages, and fault-tolerant computer design. He is also a member of the
IEEE and the ACM, and has been elected to Tau Beta Pi, Eta Kappa Nu, and Sigma Xi.

Mr. Leung is currently a research associate at the Laboratory for Computer Science at MIT. He
is married to Enid Yee Wan Yim. :

