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Abstract 
; 

Switch-level simulators model a metal oxide semiconductor (MOS) large scale integrated (LSI} 
circuit as a network of transistor "switches". They can simulate many aspects of MOS circuits which 
cannot be expressed in the Boolean logic gate model, such as bidirectional pass transistors. dynamic 
storage, and charge sharing. Furthennorc, the logic network can be extracted directly from the mm 
specification by a relatively straightforward computer program. Unlike analog circuit simulators, 
however, the nodes are assigned discrete states 0, 1, and X (for unknown), and the transistors are assigned 
discrete states "open", "closed", and "unknown". As a consequence, switch-level simulators operate at 
speeds comparable to logic 8*'5imulato&. . 

In this thesis, a formal model of switch-level networks is developed. The networks in this model 
may contain transistors of different strengths and types, as weft as nodes of different sizes and types, and 
hence the logical behavior of a wide variety of ratioed, complementary, and ratioless designs can be­
expressed. In keeping with the concept of a logic model however, both the transistor strengths and the 
node sizes may take on only discrete values. an<i eteettiC3t behavior is modeled in a highly idealized way. 
1be operation of a network is characterized by its largel state ft,; ction, which for a panicular state of the 
network yields the logic states which the nodes would eventual!) reach if all transistors were held fixed in 
their initial states. This characterization abstracts away the rate at which nodes approach their target 
states and the voltages through which they ~ but provides adequate detail for many simulation and 
analysis techniquea. 'fhe target state funetioR ~ be 0defincd·illFtmnl etf'.an abstractlon called logic 
signals, where a logic signal 8"es a compa9ite ~ ofithe network .at SDIM' ·node much as a 
Thevenin equivalent network gives ai:Olltpos'i!tedemription ofalinearnetwoft atane port. 

Logic signals can be formalized into a simple, discrete algebra with operations describing the effects 
of performing some elementary network. transfonnations. A technique for finding the target state of an 
arbitrary switch-level network can be derived by utilizing concepts ftom abstract algebra and lattice 
theory. This technique leads to an algorithm for a switch-level simulator which improves on previous 
algorithms in its generality, ~~*1pltily.~ Fµ~fJWJPa~tical formulation provides a 
means for proving useful pr~,~:the ~ .. mt:tl~J(\; flld opens up further areas of 

- - - ' ' - , 

application for.tbe;swifeh.,level model. 

Thesis Supervisor: Jack B. Dennis 

Title: Professor of Electrical Engineering and Computer Science 

Keywords: Switch-level simulation, logic simulation, computer-aided design. large scale integration. 
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1. Introduction 

Recently, a new class of logic simulator has emerged specifically for simulating metal oxide 

semiconductor (MOS) large scale integrated (LSI) circuits. These switch-level simulators model an MOS 

design as a set of nodes connected by transistor "switches" with each node assuming a state 0, 1, or X 

(unknown) and each switch a state "open", "closed", or "unknown". Programs such as the author's 

MOSSIM [8, 9] and others [5] show remarkable accuracy and versatility in simulating such logic elements 

as logic gates, pass transistor logic, busses, and both static and dynamic memory. The accuracy results 

because the logic network closely matches the actual circuit, white the versatility results because 

transistors form a common denominator for all LSI design techniques. Furthermore these simulators 

operate at sufficient speeds to test entire LSI systems, because behavior is modeled at a logical rather than 

a detailed electrical level. Unlike previous attempts at developing MOS logic simulators by adding ad hoc 

extensions to gate-level simulators, switch-level simulators are based on a uniform and consistent model 

which provides a powerful level of abstraction for viewing MOS designs. In this thesis the concept of 

switch-level simulation is developed into a mathematical model of MOS logic networks from which 

simulation algorithms and other analytic tools can be derived. 

The ability to implement digital logic has progressed greatly in the past decade with circuits of 

increasing size and complexity being fabricated at decreasing cost. Metal oxide semiconductor (MOS) 

technology has played a major role in this "integrated circuit revolution" due to its relative simplicity in 

both design and fabrication. In more recent years MOS design has become part of the university 

curriculum· in both electrical engineering and computer science. By using simplified design rules and 

conservative clocking schemes, and by following systematic methodologies such as those presented by 

Mead and Conway (28], the basics of MOS design can be learned in one semester. As this training 

becomes widespread, we will see a new form of integrated circuit revolution in which nonspecialists 

design their own custom integrated circuits rather than relying on the limited variety of commercially 
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available products. 

With the increasing number of custom-designed integrated 9rcuits, and with the. growing size and 

complexity of commercial LSI products, the inadequacy of cure~ LSI .design ~hniqucs has become 

apparent. The semiconductpr indu~ has traditionally relied on h1UD8llS to design, lay out, and verify 

LSl systems. Typically many man h~rs are spent, and several prototype cbip'"jgns.are fabricated in 

dexelopiog a sin~e IC desi~ Industry analysts have eitnpolated .the ~. ~. ~niques wt 

estimated that a 100,000 device ~oproc~r (the expected Slate of the ·art.in .1932) would take (j() 

man-year.; to.lay out and another 60,tp dcbq~ (41]. Rather than a;c~pting~ pr~ictionsas.inevitable, a. 

ch4\fl1;e m design techniques is called for • 

. Comput.criied ~ools have be@. applied to .~erciall .. SI, desip, but~ of these can ~viewed 

as.~xtensions of ~ual tccij~~~,.as graphi~Jay®J, ~), Of::•;e•~ in. a specialil# 
, , . .. . - - . . . ' ' . . . . ~ . - ' - ' 

domain (such as circuit sim~11ff?~)Jlo~ ~ rcqui.fc clflK~smW~~~.whQ.~ 

~ exact capabilitjes ~d limitations 9f the 1>rosram. In~~ are ~lli,red to bridge.the gaps . 
• • ~ • .... - - ' ' • , - -, - ' - ~ > - - • • - - ' • • ' • • - , - - " 

logic simulator, the actual design typically must. he translated by ~ m~ a .descripti.Qn which: can be 

task and also d~ the level of coafi~ proYide<l bJ the. Jim11~fioa. ; 

Logic simulators fonIJ. an imporJaat class of compllteQzed fQola; for LS.I 4es!gn •. 'IJleir utility Im 

long· been recognized for analyziDg designs whidl by ~ir size ."'1d CQ1Dplexity ,exceed~ capability of 

humans to fully unde~ The usefulness of a logic simulator .DP,$,~;.on-dl~~sistenc1 ~ 

accuracy with which it can m~l the full raQie of.design ~~ M~~ ~ des~er. Of course 

no logic simu~tor can model all designs with comp~te aceuracy. ~ it~~- siQ1~1*,~ detailed . . . . . •, .. - " . 

analog behavior. Nonetheless, it should provide~ close a model ~ posmble within a set of w~H-defined 

limitations. As a further requirement, a Jogic simulator for lSI must be. ~~nt enough to .simulate 

entire systems with reasonable speed. The size of single-chip, very large scale integrated (VLSI) systems 
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will far exceed the small scale integrated (SSI) systems for which conven,tipnal logic siptul(\lors. were 
• , ~ - " ' <. ; I ~ 

designed. 

A logic·simukitor has as it& basis an abstract model of how digital· systems function. This logical 

model desciibes both the structure and the behavior of a system in terms of a set of primitive elements, a 

set of interconnections. and a set of rules for operation; For a simulator to atturately arid retfably 

simulate a system, the lagkal model must reftect tts actUa1 structure and operation. 

Unfortunately, the development of logiCiSitiiofat0rsb;nbf'lceptpace with LSI technofogy. This 

inadequacy srems in- pan from the lack of fonncil IOgic' Moaels fof descrming the behavior of MOS ' 

circuits.1 Instead, systems are designed and simulated using an ad hoc combination of Boolean ~te 

models, relay models, and electronic models. Such a r'eptesentatibn 'inay be appropriate' for 'human 

designers, who can combine different modes of-0peration arufnisotv~lbe cohfticts betW~n· these Models. 

Computers, however~ tack the intuition required to sunultaneouSly view ·a 'syStem · at se~eral different 

levels. Computerized· tools·must be based on models 'which can destritfe a large class'<>f sYsterns In a more 

unifbrm way. 

Most logic simulators are based on the Boolean gate model which adeQuately models systems built 

from SSI eomponents but fds to support the wide variety of tethniques ·available to the· LSI ·des1gner, • 

espeeially fur MOS LSI. Mcrny extensions of tlie BOOlean gate bwdel h~e tieen attempted \Vith :the tisual 

result that only a slightly larger class of designs can be simulated anct•ntafry-Sottites1 of Unptedictilble -Or· 

inaccurate-behavior are ii1trt>duced. This cimm vtitt ~~ t,y·'brrefty surveying the devefopment of 

logic· SimulalMS With respect tti their support fur MOS LSf Cfesip. 

I .. 

l. Brzozowski and Y oeli [10) present a logic model in which "T-elements"·provide a-simplified model of 
field-effect transistors. This model, however, only expresses the operation of static logic ga.tes. 
Furthennore, it has not received widespread attention. ' · · · · ' · · · 



1.l The Boolean Gate Model 

The Boolean logic gate model bas formed the theoretical ~ for Josic c;lesign ever since the advent 

of electronic logic. ~ this model~ system consists of a set of logic aa&Q ~d, by• unidirectional. 

memoryless wires. . The logic gates compute Boolean. function$ of their. input~ and tran.vnit these 

values along the wires to the inputs of other p&es. Eat.h .pte . input. bas a· ~ue · ;Sjaoal SOUR:e. 

Information is stored only· in the feedbac~ paths of, ~tial ciraJif& ~ mqdd dirpotly implements 

Boolean algebra [20} and hence bas a well-defined ~ificatiqB wflicb ~ guide, the simulator 

. lemcn&atien. llllp 

The Boolean gate model cannot ~ many; of the techn~ av_.,~ to. the logic designer. 

especially the MOS ,LSI~. MOS pass tramistor DelWorb tan implementwmbiqatioaal Jqgjc in 

ways which more closely reseinble relay contact network$ than logic ·gate netwods (sec 128} or (16} .for 

several examples.) Dynamic ~.can store information wi .. tee6JLC~~~ hy~ the 

capacitances of the wires and the gates of the transistors attached to them. A variety of bus struQtwes can 

provide multidirectional. multipoint oommunicatjon. A • sivuel.alOr ~.implements oa)J the 

must consider these extensions as wc:IL 

held between the two logic thresholds, or a signal in transition between O and 1 or between 1 and 0. The 

X logic level can be handled algebraically by changing the two-valued Boolean algebra to a three-valued 

DeMorgan's algebra (3, 11. 23, 46).1 Thus, even with this extensionmany·ofthe desirable mathematical 

1. A DeMorgan's Algebra satisfies alt postulates of Boolean .Aladva except for the Law of Excluded 
Middle (A+ -. A= 1). 
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properties of the Boolean gate model are preserved. Alternatively, some simuliotors,iQ)Pl~ttfl!e X level 

by an enumeration 'technique in which the simulation is rep~at~d -wjth tJ1e. nQ<t~i; at the X level set to all 

--- ~ 

possible combinations of O's and 1 's [6, 45). Nodes whi"1 remain at ai unique level ffer all combinations 

are set to this level, while all others are set X. Still ~er simulators (44] use atL hoc techniques to 
.- - "~'..- r ·~~ •·-- _;:."' , _.,. ~ ''>'r' 

. , .. 
implement the X level often resulting in inconsistent or arimualous-beinrrior;· The"'Xiogic level is useful in 

simulating all forms of digital logic including MOS. 

To model the behavior ofbusstructures; some togie simulators have a fourth <>r "high-impedance" 

logic: lever rri1. This H level corresponds to the third stilte· oftri~state 'logic. 'To'siriiulate a bus structure, . 

the Uutpllts ofa number 'O(gates are connected 'tir a coriirimil nOcie::. TyiJk~f y all but orie o~t~ut will be at 

the tt tev~t. arid the te~~t of'ihat 6utput ·~in· amtiinate. ,.: ohu~~: the x :ie:v~i which. can 'be viewed as an 

extension or Boolean algebra, the;H 1~~~1 :violateS a bcrsi{Jrinciple: of tfl~;ri<io1ean rnciddl, in that a' logic 

gate input no longer haSa unique signal5ource .. &ca~ the ~mlli~fu~ is noi based on 'a wetl~defined 

mathematical modef, it' becomes difficult to impfoment con5~ntly 'atilt ~urately· .. The H state may be 
. ' . ' ' . .,. .. ' . . . ''' f,·,:. : :: . .; ;,, ... ;··: : : . : .. : 

adequate for simulating SST desigriS in wbich only linilted. forms of trr~stafo bum can be imptemented. 

The MOS LSI designer, on; theother hand,"can ;s'eitii from a ~de 'v~ety of bus designs, such as 

~ '·, '·,·; .·,;:;•, ·~,,-;:.,·~·~ ·~ ,~,: '. ·:' . - , 

pre-charge/discharge and multiple,driver designs. 'ThtfH state onl)r' partlatty captures the behavior of 

these bus structures.· Nonetheless, tbe n IOaic 1eve1 if ·seen in stln\)~i{Jg ffif'brilli~os··and other forms 

of logic.· 

Some sirtmfators allow a special logic gate' to ~p~nt the ·Mose~ ttansisfor (441: This logic gate 

models a. fietd·etrect traniil~tbr (F'ET) :as 'a·unimrcctianM d~e ~iflf two iilputs :arid &ii~: output ~ sho~ 

in Figure 1.1. the siniularor'danhot llelp in ~'iit~n~ tile'·&tdlrti:lionili proi>erty of the FET.is 

important, sucb a8 in cireuib where foformatitill may flo~ in tither diieciion,T or ~here the deSign ha8 a 

1 .. In actt!al fact, the bidircc,tiona~ pro~,r~ of the FE'fJs f,~f,~ly :~~~d !nt~ntipl).ally. Th,e ,author,has 8ef'U 
only a few designs whfch have signals propagating iri both 'directions tijfqugh!a.pa~ J.r~n~tor. ' . 

.!_,,_ '·~ ' ' ' ' ., + : • ' ; • : 
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Ff&. 1.1. The FET Locic Gate 

clock data CHdput 

clock 0 0 H 

0 t H 

t 0 0 

data output 1 1 1 

malfunction due to a sneak path. More recent gate model sim,uJators ,~ye implc~entcd bidii;ectional 

transistor models, but these transistors usually entail a ~mi<;h higher compu~~~ ~and hence their: 

use must be minimized. Furthermore, few. of these simulalQrs can sill.lulate arbitrary combi.natiQllal 
• • - , - " - - '~ , 1 - ' • .. 

networks of pass transistors, be<4use they cannot model the ~on o(RrJUup;resiS,«Ors. Titus tbis1 ~tensimi . . ~ " - ' . - ' - - ._;,~ . -

does nut fully capture the behavior of the MOSFET. Like the .h~7;~ top; ~v~ ,tt also lacks the 

algebraic properties of the Boolean ga~e model and hence fr>n:es an ad fux implemen~. 

Fin~ly, some simulators model _dym1mic m~ory in a lim~J~itl})J44l A n~e;., allowed to, 

remain at a previous logic level if the outputs of all logic gates con~ to tile n9Ck are at the H level 
. . ' ' - . ~ 

This extension is very limited ip its generality and its accuracy.1 

As new types qf MOS logic circuits are developed, designers ad4, more ex~nsions of the BoQleap 

gate model to their simulators. These extensions are doomed to failure, because they cannot correct. the 

fundamental lajsma~b between the 8Qolean gate model and M9$ .19P; ciJJ;uits. MOS Qrcuits ~ of 
- -- ~,- . ' . . . 

bidirectional switching elements connected by bidirectional wires, witb memory (considering the 

capacitive effects of the transistor gates ~contributing .to a wire's memory.) Instead. ,tJie simulaton 
' ' : ~ ~ . ' ,: .., - . . ' . . . ' . 

become increasingly cumbersome and JJnrcliable, because they only ~y ~ the behavior of the 
. . . . . - ' . . . 

logic technology. 

1. SIMULOO introduces even greater inaccuracy by failing to ditrcrentiate between the undefined (X) 
level and the high-iinpedante· (H) level · 



-13 -

Using a gate model simulator requires both intuition about ho~ the design is supposed to functiQ~ 
, ,,•' ,. ' ' ~ < ' • • • ~··:~ • ' • 

and detailed knowledge of the simulator implementation. The user must explicitly identify the logic 

gates, the signal directions dwough-pass transistors, thelOetlOOns ofbUSSes, the sites of dynamic memory, 

and some8mes even the· teedback paths. Often flle'·aet11al 4ogiC ·de!i~ must be tran8fonned futo one 

compatible with. the 'Simulaw . which may :notrtfisplay the· exlid ·same· behavior. 'This transformation 

p1UCC$ not only decreases the level of oonfidenee pr<Wit'kd by the'sitnulatirln,' it 'Vlrtttafly :eliminates the 

possibility of automattcally generating the sltntillitioff· ;tR'twMt rrom solne' sJ)ecificadon. of the aCtUat 

design. Unless we restrict our attention to;a'limftechlas$'0f HesigftS,''8 vbf~&IOn:ed program would 

be. requff'M to aaalyze the ma&t patterns fur -an MOS Jay(}ut anch:bnvert thiS tti a gat~teV'el destription, 

performing the neeessary transfbrmations to ·-provide Colnpatibili\Y' with'' the' :Sitntitatot. Without this 

capability, a: logic .simuJatOr.'cannotw used te ·fielJ)' ··+edf'Y' the-~ ora layott?:' Oate·fevel 1bgic 

simulators fit into the MOS LSI design process as shown in Figure 1.2. They provide 'htaitity'a 

verification of die high .. tevel funtlion8I destriptimlipluStimilied'Vefifdtioo'of the actual logie ttesign: 

Fig.' 1.2. Role of l.o&ic Gate Simulators in I.SI Desip 
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1.2 Analog and Hybrid Simulators 

LSI designers have recognized the limitations of conventional logic siuiula&ors for modeling MOS 

circuits and have at ~ resorted tD .analog or hybrid simuJatom. Aaaleg-sillluJators treat dle eatbe 

design as network of analog ciiaJit elements aad tfY to model die detailed wal!dOnn at every node otet 

tiJne. Simulators such as SPICE (30) ~nd evai ~ which use '-ter (aacl 11)0JC}approximate) numerical 

techniques such as MOTIS (13) require very luge amoonts of ~-iqp.. Some ~ claim the 

amount of computation scales as the square of the network. size 12i Thus daey are practicaJ only for small 

designs or for small sections of laiger deslgns. Analog simulators, however, are ·based on. a uniform and 

general abstract model.and hence have been well received~ ef Cbeif.~ and amuracy. 

Furthermore. computer programs~ forderivjag~ ....... ~ :auto11uweally:lrom tbe la,..a 

descdptiom 12i 

The amount of computation Q)ll be reduced si&nificantly by• brbrid techniques such as ,io .SPLICE 

[31) in which some sections of the design are simulated as logic gates and others are simulated as analog 

circuits. Hybrid simulation works well as long as o~ty small, isolated sections of the. design need be 

simulated as analog circuits. Unfortunately, a human lllustdecidc wbicb.ponjw ofttae networt can be 

modeled as logic gates, and which portions require analog simulation. Furthermore. trying to combine 

analog and logic models in a single program requires rather unsatisfactory· approximations at the 

interfaces. For example, if an output of a section modeled a5 logic gates is to be interfaced to an input of 

a section modeled as an analog circuit, the program must convert the logic signal into a voltage waveform. 

This,-0f course, cannot be done with any accuracy. because much of the aecessary infbrmation is !acting. 

The resultant outputs of the analog section must then be viewed with skepticism. Similarly, if the logic 

simulator were extended to include the .X state, it could not be interfaced«> an anaJ<>s simulator because 

this state docs not represent a single voltage. Unless great care is exercised, a hybrid simulation could 

well provide the accuracy of a logic simulator at the speed of an analog simulator, rather than Yic~vena. 



-15 -

For this reason, a human must monitor the simulation very carefully. 

1.3 Switch·Level Simulators 

As an alternative to conventional logic simulators, the author has developed the simulator MOSSIM 
. . . - . 

[8, 9] specifically for the logical simulation of MOS .LSI. With MOSSIM the Boolea~ gate concept is 

discarded altogether and replaced with a logical model which closely matches the structure and behavior 

of MOS circuits. A logic network consists of a set of nodes connected by a set of FET "switches". 
' ... 

MOSSIM uses three logic levels: O, 1, and X (undefined.) There are three types of nodes: 

t Input trodes provide a strong, externally ~rated signal (e.g. power lines, 
clock drivers, data inputs, etc.) 

2. Pullup nodes are connected via a pullup resistor to a high voltage. They will 
generate a t ·signaliu~ g'Wmnded. The outpufl>f 8ft riMOS tdgie gate iS an 
example of a pullup node. 

3. Normal nodes cannot generate a signal but can store a signal dynamically. 
~ / ~ . 

Only two types of network elements are allowed: p-type and n-type field-effect transistors. A 

transistor is a three node device which acts as a voltage-controlled switch with no. assumed direction of 
. . . 

signal flow as shown in Figure 1.3. No distinction is made between the labels "source" and "drain". 

When the gate node of a transistor is in the X state, the switch status is unknown: it may be open, closed, 
. . 

or somewhere between. The user interface of MOSSIM allows the user to describe the network in terms 

Fig. 1.3. The MOSSIM Traosistor Model 

p-~ n-type 
drain gate effect gate effect 

gate -1 0 cloSed 0 open 

1 open 1 closed 

source x unknown x unknown 
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of transistors, logic gates. and user-defined macros. but these are an translated into a transistor-level 

representation for the simulation. C. Terman has developed a switch:14JY!lll ~mulat$1: patlemed after 
. . . . 

MOSSIM [5) but differing in several respects. as is discussed at several points in this thesis. Resean:hers 
.. 

• {' ' ~, . .I 

at Caltech (34) also developed a switch-level MOS logic simulator, but not to a degree of accuracy or 
'• l 

generality required in a serious design tool. Researchers at other laboratories have developed their own 

switch-level simulators based on these earlier designL 

Switch-level simulators can simulate almost the full range of circuit designs available to the MOS 

. . - . . . -' . -i . . 
designer without any special logic levels or poorly-defined logic elements. Both logic gate and pm 

wide variety of bus structures can be simulated including tri-state busseS. pre-charsed busses, etc. Most 
' ',-.. . ' l 1. _J. ,." 

significantly, the. U$CI aecd not tell die .simulator w~ tY~et ~ ~,~~~ Qnly the actual 
.; i'~' •. ~ ~ . ' ·- • r~. -· 

physical structure of the design. 

. . ' • - ' • , f' : • -· '· i: . . ;_ . ' , :·-~-, j _;:: ~;' .:·:: . 

Switch-level simulators have been tested on a wide variety of MOS designs ranging from student 
:- _ --~ . ,·, ... :;·· ,:; . :;r~.~;' ;'>:;t:--~i/.--... :f;:,·,JJ":.n·~- {".J~-«~ ~:. ,', 

homework problems to a LISP microprocessor chip containing over 10.000 transistors t21i They have 
- .-. - ' ; . ' . ' . ; : : ; . . .·.- ·~ · .. -- !: ' : 

proved remarkably general and accurate. correctly simulating logic design techniques which were not 

- - .· . ' • .--: . ·, . ..· t.i ·~, ~ ~·· :£~,f~)·: ,-;J :"1_ . ,- - ' 

even anticipated in the simulator design. The confidence in the simulation results is greatly enhanced by 
:. -~-~ : _l ·~ ·•; <_. ·'··-~t:~";;r··:''_: - - -._,_ 7 1 .\~ :: 

the fact that the user can see an exact corresi>ondence between the actual design and the simulation 
'; :"fi i --· ... ~ ; . ·;·f ! ··:.:_ c -

network. Moreover, the simulation is fast enough that entire desians can be simulated. For the LISP 

microprocessor chip; MOSS1M requfteS betWeen S and 12 · seoondS · of'"CPt:rthne on a DEC20160 ro 

simulate each clock cycle. The designers were able to fully test ~c~~;by~\f~ 1oo clock~ 
Experience has showa lhat simulation inevitably ~fatal errors in the~ 

C. Bater (4} bas written a program ~ can iate layouts specified in the Cal~ech Intermediate 
: , .. 

Form (28) and generate the equivalent t:ransist0Htivel netWort. Unlike a program whkb generates a logic 

gate description. this program needs no spcciaJ intuition about logic design. It need only look for 

electrical connectivity and transistors in the mask patterns. The simulation network for the USP 
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microprocessor chip can be generated with 30 minutes of CPU time on a PDP 11170. This technique has 

proved extremely valuable, uncovering errors both in the layout and the logic design. Furthermore, it 

saves the duplicative effort of entering the design by hand for the two different representations. 

Switch-level simulators can fit into the MOS LSI design cycle at several levels, being applied 

independently to the high level description, the actual design, and the layout, as shown in Figure 1.4. 

1.4 An Abstract Model for MOS LSI 

The generality and accuracy of switch-level simulators suggest that a formal model of MOS based 

on the switch-level concept can be developed. The uniformity and consistency of the switch-level 

approach are precisely those properties which make a concept amenable to a mathematical treatment 

This model would serve not only as a basis for verifying the correctness of a logic simulator, but also as 

the foundation for new computer tools for MOS design. One need only look at the many advances made 

possible by Shannon's development of logic models based on Boolean algebra [38, 39) to understand the 

value of abstract logic models. While the expected benefits of a MOS logic model are much more 

Fig. 1.4. Role of Switch· Level Simulation in LSI Design 
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modest, its utility could be significant. Unlike traditional switching theory which was developed to help 

humans analyze and synthesize networks containing small numbers of elements, we now want models 

which can form the basis of computer programs to be applied to networks containing thousands of 

elements. This places more emplmis on the generality and uniformity of the model and the algorithmic 

complexity with which it can be implemented. 

closely resembles the network model of MOSSJM but generalizes it in several respects. As with 

MOSSJM, a logic network consists of a set of nodes inten:onnected by a set of transistors. Unlike 

MOSSIM, however, only two types of nodes: input and normal are allowed. To model ratioed circuits, 

• _- < • .- - •; ' -· 

transistors may have different strengths, with a stronger transistor (such as an inverter pulldown) being 

able to override a weaker one (sucii as a puDup foad transistor). A third ~ of transi~or.' d-type (for 

"depl~n") is introduced which is closed ~ of the gate signal. Th~ new model more closely 

mate~ the actu~ structure of MOS networks, becaus'e in MoS netwofks ~:~live sizes of~ 
.- . . . - . z - . : '' -F : : :-.... :-~-~. • -~ - , i J •. 

detennine the logical behavior. The puDup node used in MOSSIM is a rather ad hoc way of representing 

this. The new model can also . de9:ribe a wider varlety- or netWofb,. mctuallig- ciicuit.s which· rely on 

multiple levels of ratioing. 

. - -
In MOSSIM, each normal node n moqe,le<l as, h~ving a capac)Jance of,_ ~~~0,9~ value which can 

. _. :' .-- - ~--"'"·: - - ·-~ .. _,.-,;--~ i ... ~, .• '\.l.:...:,,J\;} 

store a signal dynamically but dannot'·arf{i't1'~ - onto aeother :~;fir'~ a ~rent state. 

Unfortunately this model cannot describe the behavior of many bus desips ..,j )thich a relatively high 

capacitance bus node is connected ., a lq~~f ~i-~ ~ode (such f'8 the *"II eode of ai 3-transistor 
, } .~ i ~, ., ,'. ;~(:~----·w'~ .... -..~.,_~,,,,i 'tGj 

dynamic RAM cell) resulting in tMth noctet'·b'f>tarning ~e· same logii sta~ .... ~~;~fiy,on the bus. 
_, - - -- "- -·~ ----~~ l i 

Our new switch-level model can model this effect by asmgmng each nonnal nodti a size, where the signal 
"'>, • ~ 

-. :: i 
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Our abstract model describes both the. time and elecl!ical behitvior of a network. in a highly 

idealized way. The time behavior is described by the target state function giving the logic states which the 

normal nodes would reach for a particular set of input n~e. transistor, and initial normal node states. . . 

For designs containing no critical races, the logical behavior can be )llod~led by rcpeated.~plication of 

the target state function. To model the electrical behavior, the t!p"getstate is defined in tenns o(the set of 
. ·; - '. . - -

steady state voltages in an. "order of magnitude" electtical ne~ork. This class of networks models the 
·- - ". . 

conducting transistors by linear resistors, where the cond1,1ctances of the resistprs for different streagth 

transistors differ by orders of magnitude. As a consequence, anY pad,l to an input node .. containing only 

transistors with strength greater than or equal to some value is modeled as. oveqjping a.ay path containing 

a transistor with strength less than this value. Similarly, the normal nodes are modeled by capacitors 

where the capacitances of the capacitors for different size nodes dlfter by orders of ~agnitude. As -~ 

result, the la;l'ge~ states formed q~ !! set of.no<tes th,ro,"~:-CA~~~sb~n,a ~pellds.oq!y on the state(s) of 

the Jargest node(s) in the set Furt,h~nnore, no attempt is made tQ acqirately .cqinpute, the node voltages. 
' ' ' - • - ; ; - ~ ·. ~' - - . - ,_ '< . . : . - . 

Instead. they are classified into the three lo~c states o. 1, and X. This model provides a simplified view of 

ratioed circuits and charge sharing which adequately d~pbes the 19Jical behavior of most MQ~circui~ 

Although the target state is defined in terms of an. electrical model, w:e will find that the taJiel state 
-· - - ·- .. : .. . . . - ~ 

of an arbitrary_ switch-level network can be famputed wittiout evaluati.n& 8JlY. electrical networh ~ 

by introducing an abstraction called logic signals, an i~ratiye meth,o<t fo{ _comp~~ .the target state <;an 
. . . '- - ' ' " .,- . ~ . ' . - : ,. . .' . ".- . 

be developed which uses only operations in a simpt~ •. ~ret~ Jll&ebra. A logic signal provides a 
. -'.- .... - _;: - .... 

composite description of a switch-level network at some nodeJor a particular set of node and tran$tor 
__ ' . ' , .. . . ; -' - - ' : : ' . ~. 

states, ~uch as a Thevenin network (15] provides a comP;<>Si~ ~es<:riJ!i9.11 Qf ~:li:fl~ '*work at some wrt. 

for a .particular set of network parameters. However. ,w~~~ f~~!~ Ute Thevenin equivalent generally 

requires solving a set of simultaneo,us linear equations, finding die 1~,ek sigµal requires much less effort. 

A simple set of rules describes the logic signals created by the input-and normal nodes in their initial 

states and the effects on a node of other nodes connected fhroUgh•-oondueting transiStors. ·· Wittr•these 
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rules we can develop an equation expresmng a set of constraints which must be satisfied by the signal for 

each nonnal node in terms of the initial node signal and the signals for input nodes and for other normal 

nodes connected through conducting transistors. It can then be shown that the minimum solution of this 

set of equations equals the set of logic signals descn"bing the networi at each node, and ·the set of steady 

logic states can easily ~ derived fTom this solution. Logic signals can be formalized into simple, discrete 

algebra with a domain corresponding to the signal values and operations describiog"the effects of the rules 

for logic signals. This algebra allows us to apply elementary conceptS from abstract algebra and lattice 

theory to develop techniques for computing the target state. These techniques ca'n be further developed 

into efficient simulation algorithms. 

LS Relation to Relay Networks 

The switch-level MOS model can be viewed as an extensiOn orSbamioD•s relay network .model (38. 

39]. The algebra of signal strengths inttoduCed in Oiapter S ~ ·~y-similarities to BOOiean algebra. 

As Shannon Observed, ·a relay can be viewed as a switch With ~ 1 irfhen closed and 0 wheD. 

open.1 The rules for connecting relays in series and in ·paranei· aDd the ·n1ethods of analyzing relay 

networb are special cases of those ror transistor networb. 

MOS networts, however, have several chatacteristics which are not. found m relay netw-Orb. rll'St. 

relay networts are used as a cumnt-driJen logic. in which lhe 1ogfc state of a node is detennined by the 

connection between the node and the current source. 1bUs a sbnpte cbaractcriz8don of the connection to 

the signal sou~ determines the state of a node. MOS netwotb. in c0n~ are used as a 'voltage-tbt,m 

logic, where the state of a node is determined by both its ~tioii tD the supply voltage ~ its 

connection to ground. One must characterize both the ltateS of the signal sources and the connections to 

them to determine the state of a node. Futtfiermore, in a 'vottag:e-driven 10giC erroneous behaVior may 

1. SJ1annon actuaIJy described me Slate of a relay by its hindmllce, the oompleape.nt of its cond11ceance. 



- 21-

result due to a short circuit between signed sources, and J1ence we also require the state X for logical 

completeness. Second, relay nctwo.rks do not allow ratioing in \Yµi~b. one closed switch qm override 

another. Thus, a Boolean characterization of a conductaqc~ path suffic~. Third, relay networks can only 
• - •. ' ' ' ' !' 

store information in feedback paths. No modeling of dynamic ~~ry or ~ge $ar!n& .is ~eeded. 

Finally. m()St theoretical _work on relay netw9r~ "~ .~onducted ~fore .~e widespread availability of 

digital computers. Thus, most techniqu~. were develope4 to aid the band <lesign of small circuits. The 
__ , ,,. . ·. ·': ._''. - ,.: - ' ·- ' ' 

standards by which ideas are measured change ~tly . wbe.n .tbe)'.. are to .. be incorporated into 
• < ! '·.:~~' - J - ! . . .- ' . ; .: 

computerized tools to aid the design .of very Jarae systQD$. 
,' ' - ' , . ~ 

1.6 Outline of Thesis 

In the next chapter, ~e details of how the switch-levelmo<iel descril:les the struc~ure and ~tion . 
' • c I.;•. • ' ' 

of MOS netwprk~Js preselllC~t By modelil1!&,~~ networ~~~_at a,tQW$istpdevel an<:\ by allowjog 
_,,, - _, , . - . . - . ·--- ' 

transistors of different strengths and nodes of different sizes, this model covers a Jars~. v~ei)', of MOS 

d~ign tecJni;~~es[jq a way w~~~ .fl~!Y.~tc.~~J~e:f!C:m"tcrif9U~~~~., :pie &witch-le¥el.~et,can1 
be viewed as either a simpli_fication, 9f, ~al~· D~tW8JtJJ};~rf>l ,af1; ~eJ)Si911 Of re~~. nel\\'ork, models., , 

The time behavior of a netwprk is d~ribe41>Y the targ~t ~te fi.JIW.tiAn. giving.the l~gk:. states ~ward 
,- .' ' - ·_. _·, - . ·- _,., ·-t!-~ .. -'- _,~~~'l' '' ' ~--·-· •. , ·j.'' 

which the nodes are driven or Cha!J~d gi,ven th~ C9~At, nqde Wl~7.tr~~ ~es. 'fbe val® of ~ 
• ~ ·. ' - . "' " ,- . . - ; . { ' . , ,_ - ... . ' . - - l -~ . - ' 

function is defined in terms. of th~ stea4Y ~te. vpl~es. ip.; ~ .µq~, el~~ p.etwork that models the 
- - - - - '; . - ' - . . . . .,;." , . . . ~.., ---· . _...,, . -- . - ~ 

transistor network. The logical behavior of many MOS networks is described by repeated appl~U~.of, , 

their targ~t state .functions .. In computiµg the target~· the ~q~,~e.mooeled'fith tiule-invariant 

elements, ther~by simplifying the. analysis. c~sl4erably • 
• ' ' ' ' • -· "%1 

In Chapters 3 aqd 4 the eleclrlc<tl circujt-orie~~ view. Qf tp~,JWS,ef s~ie: ~cti~.n,providedby the 

definition given in Chapter 2 i~ transformed into a more abstf~c;t,~~4J~iqll v_iew. It is shown that the 

target state can be defined in terms of the steady s1a~es of a set of hJgi(:al conduclance networks, where a 

logical conductance net)Vork represents a switch·l~vel network. in which each transistor is either 
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nonconducting or fufty conducting. The concept of logic signals is then developed to express the 

behavior of logical conductance networks. With the logic signal abstraction we can derive an equation 

which gives the steady state of a logical conductance networt. and consequently the target state of a 

switch-level networt. whicb does not require evaluating any electrical networb. 

In Olapter 5, an algebra of logic signals is developed with operations descnoing the effects of a set 

of network transformations. This algebra allows us to ai,lpJy ·elemenwy 'concepts ITom abstraet algebra 

and lattice theory to the study ofswitch-te.Yel networb. 

In Chapter 6 the mathematical formalism presented m Chapter S is uSed to derive a technique for 

computing the target state of a switch-level network. This development utiliz~ ~Y di~ ··~~ 

abstraction as expressed by the algebra of Olapter S and two equations which are derived in Chapters 3 

and 4 ·ftom the analySls of the eJectrical model. Attbougb we eoold arrive ai. die 'desired results more 

directly by utt1izing additional propertieS of the eltctricM· moaei· thiS aPJ>r6aclf ~'the power~ 

our abstract approach. 
--, i 

In 01apter 7, the abstract so1ution technique of Chapter'6 is cfe\'etoped inm an effiCient algorithm 

for a switcll•tevel simulator. By exploiting the ~ of tfie netW6r( the· Simulator ·requires at mmt 

linear time to simulate one clock cycle for aJmost an netwOrb. 'Ibis ~rfttun nnproves on previous 

switch-level simulation algorithms in several respects. . SOme perroniiance· data for MOSSIM Is presented 

to demonstrate the perforihance ~ of switch-lever simlitation and b it compares tO top: 

gate simulation. 

In Chapter 8, the simplified timing model of MOSSIM is investigated more closely to see fur what 

cl~ of systems it is valid. Possible methods of implementing logic simillalottlrith other timing models 

are presented. Jn addition, a · ternmy simutation algOrithril is dcvetoped which Uses the X state to detect 

potential races in MOS networts. This algorithm is a straightforward extension ot Bra>zowski and Y oeh.,s 

algorithm for logic gate networks [llf. Ternary simulation requires a much more accurate and efficient 

implementation of the X state than is required for functional simulation. because the X state wtll become 
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the most prevalent state in the network. The algorithm presented ill ~llapter 7 prnvides this accuracy and 

efficiency. 

Finally, in Chapter 9 some ideas for further improvements of logic simulators and for future 

applications of the switch-level model are described. 

1. 7 Notation 

In the remainder of this presentation, the following notational conventions are observed. Scatai: 

values are denoted with lower case letters (e,.g. a, b); vectors with boldface, lower case. letters (e.g. a, b); 

and matrices with boldface, upper case letters (e.g. A.. B) . . Mathematical domains, i.e. sets of values with 
' ' 

particular mathematical properties are denoted with script,_ upper case ~tters (e.g • .A..~}, while or~ 

sets are written with italic, upper case letters (e.g. A. 8). The e"tension qf a domain 9 to vectors of size n 
' . - : { ,• . 

is denoted CJ8 , and the extension to matrices with n rows.and m colum~ is .denoted ,n X m. 
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2. The Switclt·Leyef Networt Model 

2.1 Introduction 

In this chapter a model of the logical structure and operation of MOS' ~etworks wilt be presented. 

This model attempts to capture those aspects of an MOS circuit which affect its logical ~iof, .,.llile , 

ignoring many of the detailed electrical properties. This network model extends the network model of 

MOSSIM but in a way which·pfiivides a ~onsist~nt level of a:bsiracaon~ ·ute:MOSSJM' fue network can 

be extracted directly from a specification of the layo~t The ·time behavior of the network is also 

dcstribed in a simplified way by the target stale' fu'~tion. Given the ~urrent network state, this function 

yields ·the 'state toward which the nooci inove without conside"ring the ·rate at which these cfumges occur. 

This function bears a strong resemblance t0 die e;ci1ation function ~ in ~ gate and relay irioilefs. it 

is assumed that the reader has a background.in MOS logic desiP'~l>arat>ie 'io that pro~idediby M~ 

and Conway (28). 

2.2 Network Structure 

A logic network contains a set of input nodes I= { ;1, ...• ~ }, a set of normal nodes 

N = { n1, ... ,nn }, and a set of transistors T = { 11, ... ·'t }. 
Input nodes provide strong signals from sources external to the network. much like voltage sources 

in electrical networks. Examples of input nodes include the supply (VDD) and ground (ONO) 

connections as well as signals supplied through input pads. Normal nodes have states determined by the 

operation of the network. Each normal node '1j has a size capi, where capi is an element in the set 

K = { "l· ... , "q}. A normal node can store charge to provide dynamic memory. The size of a node 

gives an approximate characterization of the amount of charge it can store, where sizes are ordered 
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When normal nodes are connected together they will share charge and settle in a state dependent only on 

the state(s) of the largest node(s). The values in K have no properties other than their ordering; they only 

indirectly represent actual physical capacitances. This model provides a simplified view of charge sharing 

which is valid for most actual circuit designs. The number of node sizes q depends on the kinds of MOS 

networks to be modeled. For most networks, q = 1 will suffice. For those networks which rely on a 

sharing of charge between a high capacitance node and a low capacitance node for their logical behavior, 

q must equal 2 or more. For example, Figure 2.1 shows a three-transistor dynamic RAM circuit which 

relies on the high capacitance of the bus (size ic2) to override the charge on the storage node of the cell 

during a write and on the drain node of the storage transistor during a read. 

Fig. 2.1. Ratiolcss MOS Desiga 

Three Transistor Dynamic RAM 

data 

'(r- load 

~BUS 
read~ ~ write 
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A transistor is a three tenninal device as shown below. 

gate -I 

No distinction is made between the soun::e and drain connections. ~ with each transistor ~ is a 

strength stri, where stri is in the set r = {'YI· •.. , y ,J. The strcJ)gth of a transistor gives an approximate 

characterization of its conductance when turned-on, with streng~ Values onlered 

The strength values in f have no properties other than their ordering; they only indirectly represent 

actual conductances. The number of allowable strengths p depends on the kinds of networks to be 

modeled. For networks which do not rely on ratioed resistances such as CMOS designs, all transistors are 

of equal strength and p = 1. Most ratioed nMOS or pMOS designs can be modeled with p = 2, where 

pullup and pul1down loads have strength 'Yl and all other transistors have strength y2. Some designs, 

inclUding certain static RAM cells rely .. on multiple levels-Or ratioiftg and bCnce require a model with p 

equal to 3 or more. A transistor can be either n-type, p-type, or d-type. All act as voltage-controlled 

switches as follows: 

n-type 
;'· 

p-type d-type 

utcmll ~ &aleiiaual ~~ &mmal ~ 
0 open 0 ~da!d" ~ 0 closed 
1 closed 1 ~ -1 closed 
x unknown x unlM,m x closed 

A d-type (for "depletion") transistor can serve as either a Joatfiresistor.Jdr a depJetion mode nMOS logic 

gate, or a polysilicon-diffusion crossover such as is seen in some designs. When a transistor is in a 

"closed" state it provides a conductance between the source and drain nodes with value characterized by 

the transistor strength. When a transistor is in an "unknown" state it provides a conductance of unknown 
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value between (inclusively) the conductance when "open" (i.e. 0.0) and when "closed". This model 

provides a simplified view of ratioed circuits in which a connection through a stronger transistor will 

always override a connection through a weaker. as, will be defined more rigorously later in this chapter. 

Examples of a variety of MOS circuits are shown in. Figure 2.2. The first three show common 

nMOS and CMOS logic.· ga. tes. The foui:th one sho~.a forQeable iaverter which, when connected in a 
• . • . ; ·" " ; • J. -

ring with another inverter, can statically store I bit 

Fi&. 2.2. Examples: of~ Nehrorb 

Depletion~ Inverter . 

Enhancement Load Nand . 

d 

inl ~ 

in2 24 

CMOS Nor 

···Fofceabie Inverter 

d 

.,._.__.___~--out 
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Transistors with strength less than T p (called weat. transistors) are used in ratioed cireuits, where a 

stronger transistor may override a weaker one. Generally thtse weat transistors are configured only in 

limited ways. such as puDup loads on logic gate outpu~ At·l'imeS· we'·.wm want co exploit the 

characteristics of neiworts restricted in·• the use· of weat '~··· t0' simplify. the l'nattiematical 

. de¥tlopment or to imJ>rove the efficiency of an algdi idun: . tn patdcofar, we define a restricted network 

fol1ows: 

In a restricted network every transistor of strength less than y p bas either its 

source or drain connected to an input node. 

AU ofthe Gircuits-in Ftgure 2.2 are restrictednetworb.--Anexm1pleofan umewicted'netWOl't is SftOwi. 

in Figure 2.3. In this example the pass transistor is assigned a streogth<~}'fiihiakitltfuit';wlien a siea\.' 
path forms through the "till" and ,,-itfansistors with the invertefm,ul' ~ ttro";'tlftdnverter output 

will go to X, while the output of "1e .,-_transistor will go to 0. Almost altjEtUal MOS designs can be 
... . ' l 

. - . ·-··"'\ . 
< .i:. ~ 

represented as restricted networks. ~ weak transistors are used aJmp,st *~vely as pullup (for 
! ; '. ' t • ' f .• l ; ; 

nMOS) or pull<\q.WD (forpM.Q~l ~with c)ne side connectedJ9.~_ypo_oriGND. Unrestricted 
.. ~ ~ ' - - - j~· - rt ! . . L--. . H 

networks seem plamible. taow~C{. so
1 
fl'C _\NteeveJop results for this ~ die.. We shall find 

. I 
j 

that although unrestricted netw~ feCtUjre a more complex mathematical ~lopment, their study will 
v ~ 

Ftg. 2.3. Unrestricted Network Example 

d 

. n 
in -4 

doct 

:..~lt..,_, B 1.,rL 

. ; 
i; . ' 

,__ ______ •-· ; : 
~ 

~ till-·,· .. j' 
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provide much insight into networks containing transistors with gate nodes in the X st.ate. 

2.3 Network Representation 

The structure of a network is represented by the sets /, N, and T, the vectors cap and str (indicating 

the node sizes and transistor ~ngtfts), and the following functions: 

TIYPE: 
GATE: 
SOURCE: 
DRAIN: 

2.4 Logic States 

Yi= 0 

Yi= 1 

Yi= X 

T-+ { n,p, d} 
T-+ /UN 
T-+ /UN 
T-+4UN 

---
' .· ;, 

the transistor type 

thet*fe'aOcle 
the source node 
the<dnUn 1lOde 

-0~~-
- t-

v+<vi<Vdd 

O.O<vi<Vdd 

where V- and y+ are the tope. tlftsbolds.: Note that out' logic model mates DO illtempt to -accurately 

model these logic thresholds, andthey areusedhereonly to aid·ourmformal.disciJSlioo. Eacll input node, 

ii has a logic state xi E { 0, 1, X } with the same interpmatien; 'fh.e values '1> and 1 correspOnd to the · 

Boolean logic tevtls; The v8lue .)( indicates either an ltnknown er rmdeflnedtOgic level~ An· unknown logic 

level arises when an ambiguity in the network condition prevents a unique determmadOn·of a noae·s'logic 

level, such as from uninitialized state variables. For example, when power is applied to a bistable device 
, . ; . 

such as a Nor gate latch, the output will obW. a valid, but unknown lo$it state. An unknown level 

corresponds to a voltage either below v- or abo~ v+. An undejinedlogic Jovel arises when the network 

operation creates a voltage which could lie between the two logic thresholds, such as due to a short circuit 
; . ·1 . . , 

or improper charge sharing. Hence an undefined level corresponds to a voltage which may be anywhere 

between 0.0 and V dd· 
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These two concepts differ slightly in that an "unknown" value ~ die Law of Excluded 

Middle, while an "undefined" value does not. For example. if y represents the state of an uninitialized 

bistable device, then y + -ty = 1. On the other hand. if y represents the state of a node along a shorting 

palb from VDD to OND. then y + -.y = X. Some Dn::uit desips-eq>Joitdie Law ofExcluGed Middle 

during the initial pow~r-up sequence to assure that all Redback padts wiD be Wt~ to valid loJic 

levels. No known algorithm, however, can utilize information about "unknown" logic values in a 

·- , 

completely genera) way, exceptlJy enmnerating over an ~ combinations of~ values. Thus. 

to avoid an exponential algorithm, we shall not attempt to, .di$0.ngui$b between thcL "tMlbwwn" and 

·undefined" logic levels but instead use the single value X. 

Each transistor ~ also has a logic state z_; E { o. 1. X }, where O indicates Nopen", 1 indicates 

.. closed". and x indicates ~unknown". ~. tmmi$t4>r ... anct.Mde ~;.aft). dift'erent pbJsica1 , 

2.5 Network State 

At any instant in time the s&ate of a network is sivea by .dMHheJ~•ic 9'ateS of the iaput nodes 

x E { 9, 1, X }m. the states of the normal. nodes 1 E { 0.1, X }n. and 1lte ..,.Hof file tr ·*MS 

z E { 0, 1, X }t. Under stable coaditions, the transistor st.ates 1 are fimctions of the node st.ates. Suppme. 

for example, dial node "i is the sate _. fi>r U'amistor ~ (i.e. I\.~ GAm~ Then ibe-value of -'j is 

given by the fOUowioa table 

• • 1 
x 

Tn'PE{~ 
p 
1 

• x 

d 
t 

·1 
t 

A similar table would resuk if the gate node were an input node. The function trans(x, y) denotes the 

transistor state z resulting from the node states x and y. During the actual cin:uit operation. some time 
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may elapse between a change in node state and the resulting change in transistor state. Hence the total 

state of the network must include the transistor states as well as the node states. 

2.6 The Target State Function 

With the network in state (x, y, z) each normal node ni will move toward a target state y i given by 

the function 

-y i = target i(x, y, z). 

The target state of a node equals the state the node would eventually reach if the input nodes were held 

fixed in state x, the transistors were held fixed in state z, and the normal nodes were initialized to state y. 

As shall be seen, the target state y is the steady state solution of a time invariant network with parameters 

x and z and initial conditions y. We can view target as a vector-valued function 

-y target (x y, z). (2.1) 

giving the target states for all normal nodes. The state y may never actually be reached, however, 

because the transistor states will change in response to the changing node states, and the input node states 

may be changed externally. The function target only describes a tendency in the network and not a 

definite reality. However, it provides a basic characterization of the logical behavior of a switch-level 

network. Much of the development of this thesis will be directed toward a mathematical formulation of 

the target state function. 

Define the function stepx as 

target (x, y, trans (x, y)). (2.2) 

For a particular state of the input nodes stepx gives the target states of the nmmal nodes as a function of 

their initial states, assuming the transistor states are functions of the initial node states. 
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During actual operation. the network may not move tbft)Ugh· the succession ofs&ates predicted by 

the function stepx due to chauging transisaor states and·cbaaaina inpulcooditions.· However, for a lafle 

class of networks, the ultimate behavior is equivalent to the behavior modeled by successive applications 

of the function step I. as long as the input nodes remain unchanged. lbat is, if the nonnal nodes initially 

have state 'I and the input nodes are. held faxed m. state, .X; ·rile network. ;Will eveatually reach a state 

~x. y) defined as 

(2.3) 

where the superscript le indicates k applications of the iundioA lteili· . F~ermore. the .networks of 

inrerest will be guaraateed to stabilii.e after, a bounded aumlrier of '*PL. ,Thus fer some k < m, 

slepx ku> = stepx k + 1(;Y) = phast(x, y). Once the network affiveHit dlis srate. it will ranain. the~ until 

some input node is changed. This ignores the possibility that oodes~lose their charge due tole.atage. 

With current technology, in which clock speeds are measured in megahertz while leakage times are 

measured in milliseconds, this assumption is appropriate. Examples of systems which can be modeled by 

repeated appfications of stepx include combinational logic, any system free of criticclt races, and a variety 

of systems which can be modeled with unit delay logic elemenrs., The liniitations of this assumption.Wm 

be discussed' in Chapter 8. 

For a large class of MOS systems an equation for the function target will lead tO a description of 

the ci>mplete functional behavior of a netwod. In other words, the ~'1or of a system ca:n be modeled 

by repeatedly freezing the states of the nodes and transistors. computing the target State for each nonnai ·. 

node, and then updating the node and transistor states accordingly.~;. niS t.eCt1nique has obvious 

advantages over modeling the detailed vokase waveforms on each....._ 
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Concepts similar to the target state function have been applied to the study of both relay networks 

and logic gate networks. The target state function describes the excikllion ofa switch .. level network, i.e. 

the node states created in response to the c~nt: states. Simjlafly, . the; eicitation of a relay network is 

defined as the states whidl would appear on the.rd.aymils.if.aU,rday rontacts are held fixed in their 

cqrrent stat~ while .the e¥CitatiQn of a Josk.M,te:~ is defined as the outputs of,the-logic·gates as 

functions of their current input.a. In general, the· ~xcitatioo of any logic. network can. .be defined as the 

logic state&o whjcb would .foqn on th~, Ji._ if ~II aeuve elements (e.g. transistors,: relays., or logjc gates) 

:~we hel<l fixed jn their Cl}~ftt ~ 

Huffina1' [22) first·.;reQt>gajied tbe imporumce (){;the neiwr~ .excitation as providing a basic 

char~riz~tion {)f the dyn~ic beW.~ Qf.a • net~, akhousll.ihe:.e~ it in the fcmn of a 

_tlow .tab~··rather than a ~oa. With dl.is c.ha.r~~imuch pfthe plzysieal; behavior is abstracted 

~way, such as the rate atwhi;h the QO<ie$ meve · roward throutll :thmr .. eiatt,ations and·~ the ,analog values 

through which they pass. While such a characterizatiencatUtt»detcct·cmaia·morcondilionsdependent 

on the detailed voltages.~ &imin& it provides a ·useful level of abstraction. Althoughdogic .states are 

formed in switc;h·level networks in much different ways, thall in.logic sate or relay networks, these three 

kinds of networks share much in CQDUD.on when viewed as s~oomputing logical functions. 

2. 7 Specification of the Target State 

For both relay and logic gate networks, the excitation ~tion for a node can be. defined with a set 

ofJ)oolean functions ma relatively straightforward way. Witluw.itch-level networks, on the other hand, a 

more complex formulation is required, because the logic elem• are bidirectional, and because the state 

depends on the relative conductances of the puJlup and pulldown palhs acting, on it or on the relative 

capacitances of nodes with which it may share charge. We will defme the target state in terms of a linear 

electrical model called the "order of magnitude" model With this model the concepts behind the 

switch-level model can be expressed in relatively conventional mathematical t.erms. In later chapters, a 
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rather unconventional algebra is presented to elpl'Css these concepts more directly and to allow the 

means by which dlese more abstract coneepts can be-11108~4Dct~;' · ., 

Order ofmagnitudct.1letworts.amtai1t .vot_.~ tt9isfan/anct ~rs Where the miStbr 

·x state form conductances- of ufltnown: value: tJoundcil'b~ powm· of p~; Md ilOdeS m tie l state' fonn 

;mitJlown voltages. Hence. wemustconsicterthe-sttof~•Sleady;tMalt1~f8':.•hnocte in an 

order of magnitude network when the parameters and initial con<leibM!tltige-OYerWfs:of vcilues. The 

target state of a node· in a switch-tevd. netWott ii 4eftaed:tn:1ll'rllf efafae.!~ of posMble ·steady state 

vottaees on the cormponding.ftodl in. Ille artier of mapilucle ~!aif yJ'Winaltihiery-ittrge; sudt' that 

the conductances ofditrerent strengdl·transiltm'm a:t de~ dlf:~itanc4'5 'OF'.d1tfemlt me 

" . '~ 

The order of magnitude netWOrt comspoildiftg to1a l\\4tdl-lete11ile8'ort~ iii ·a •panicUlar state 

(x. '" z) is constructed with elements sllown in; F"J8Ure 24. · F.ach'iblput aode· ~ Is medeied by a Wllfage 

source with negative terminal connected ,to GND and 1fith: :voltage ·xf where "f=-'&.0 if ~ = O', 

xj = V dd if1j = 1. and xj ranges over the set of voltages { v I O.?:<,v..::::~4d ~ ~). =. X. ~ ~~rmal nQ:<le 
... _ : ·' - , ll' •ll l .. ~.,""' '' -_ - •• < • ' ,._, ~ \ ·; ,,. • ,_ 

".i of size "t is modeled by a capacitor with one side connected to GND and with capacitance a.pk where 

ti' is an arbitrary positive constant This capacifDr is inililJly dlar8ed k» a Y01tage 'Yj ·ctefinect in terms of 

the logic state Yj in the same way xj is defined m tenRs 1'fxf A;waasistbr'.n:~ "ti and state 1 ii 

modded by. a. resistor of cOllductance •Ill.· who~ a is ·Ml ·amittary·poaitive· constant. A· transistor wiOt 

strength Yt and state· X is modeled by a resistor witft roRChictaftce Wlliit8 over the ·<set 

{ g f O.O<g<opk }, where a is the same constant used when theuaftsisror'State is 1. The 'YalUes ofa 

can be different for different resistors and capacitors. It Wilt be shewn tater that the :values -0f the9e 

coefficients do not affect the value &f thc t.afget state. 
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Fig. 2.4. The Order of Magnitude Network Model 

Switch-Level Network Order of Magnitude Network 

Input Node 

Normal Node 

• 
y y !__L k • "k y 

vap 

Transistors 

1 k 

_L 
ap 

-WV-__JI_ 
'Yk 

0.0 < g < ap 
k 

x 
_L 

-WV-__JI_ 
'Yk 

For a particular value of p, the conductance parameters in an order of magnitude network can be 

described by two matrices GE ~nxn and EE ~nxm, where~ denotes the set of real numbers. Each 

element 9ij of G equals the sum of all conductances between nodes ni and ')· while each element eij of E 

equals the sum of all conductances between node ni and the voltage source corresponding to input node 

~· When the switch-level network contains transistors in the X state, these matrices may range over 

infinite sets: 

Gmin(p) < G < GD!U(p) 

Emln(p) < E < Emucp) 

with the restriction that G be symmetric. Note that the partial order < is defined between matrices in the 
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usual way, i.e. A< B if and only if aij < bij for all i andj. The elements ofGmin, Gmu. Emili, and Emu are 

polynomial functions of p, and hence the elements of the conductance matrices G and E arc bounded by 

polynomial functions of p, although they may take on arbitrary values within these ranges. With this 

formulation, we are assuming that transistors with the same gate node behave independently when that 

node is in the X state. . This models the possibility that transistors may have slightly different threshold 

voltages, and hence when the gate node has a voltage close to one of the thresholds, the transistors may 

behave quite differently. Furthermore, as shall be shown in Chapter 3, this assumption allows us to look 

only at the minimum and maximum conductance values for each transistor when computing the target 

state. 

The remaining parameters of an order of magnitude network are described by a vector c(p) E ~0• 

giving the capacitances corresponding to the normal nodes, and the vector x E { v I O.O<v<V dd }m 

giving the settings of the voltage sources corresponding to the input nodes. When the switch-level 

network contains input nodes in the X state, this vector may range over an infinite set 

xm1n < x < xmu - - . 
where if xi = X, xm1

\ = 0.0 and xmu:i = V dd· The initial conditions of the order of magnitude network 

are described by the vector y E { v I O.O<v<V dd }n giving the initial voltages on the capacitors 

corresponding to the normal nodes. When the switch-level network contains normal nodes initially in 

state X, this vector may range over an infinite set 

Let vi(G, E, c(p)~ x, y) denote the steady state voltage on node ni for the network with parameters 

G, E, c(p), and x, and initial conditions y. Since the network contains only passive, linear elements, this 

voltage must be unique. Furthermore, since the network contains no floating capacitors, all node voltages 

must lie between 0.0 and V dd· When nodes or transistors in the X state are present in a switch-level 
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network, this voltage can range over a set Vi(p) where 

Vi(p) = { vi(G, E, c(p), x, y) I 6 = Gr, 6mi(p)$;Gs;Gmu(p}, Em1.n{p)$E~E11111(p), 

xm1n<x<x-. i"'11<1<r }. 

This set is uniquely determined by the structure and state of the switch-level network, the constant 

coefficients a (which willi>e seen .to be nnimpoitant). and'tmnatio parametet p. 

The target ~tale. of a node lrjdS defined in terms ·of the ~t VIP )cas Che ratio parameter p is m• 

very large. As this occurs, fil\Y eonductnnre paths todnput ooda,-fomleQ by transisfm8.with ·state ·1 81\d 

strength greater than or~_equ~J:ri rt will do~ii;iate ~v~~ada contaTi~g ~sisto~ o( strength less than 
''.· i:~ -· ~\!I} f' <.Ji-'. i j , 

1't· Similarly, the charge on capaeitances formed.by normal nodeS of Slze "k will d~~inate over the 
" > • • >·~ • ' • c" ' ~ ,,\!{,; v'. ,_.,> • / t;~·: \ '·_' i"}. ~. ',".~~r' •i • ·, ,:'~ • 

charge on capacitances formed by normal nodes oflesSer size. To form a proper logic state (i.e. O or 1), 

~~·. _,,. ;,,,. ) ' ·~,.1,.·· ~ • -

there can be no conflict between the pullup and pulldown paths or between the high'arid low charges. As ·· 

pis made very large Vi(p) shfld'lppfoacb·eith~J"~'~-f, ~or.th,set'( Vdd}· lfwe take the limit as 

p approaches infinity, the set Vi(p) should converge to one of ~ese ~9 ~ts ... TJlus, if we- define the .set . 
. \ >' t:,_:;L; ~ f··: -~~¥._. _ •. ,:)~ \ 1 ~- • .",:ji 

v..oo as 
1 

v..00 = 
I 

then the target state on node ~ is defined as 

lim Y~). 
p-+00 

(2.4) 

In this formulation, the X state -·or • .-.#- ' ,- t\S the set Yi(p) converges to some v~ue'.not ~qual to 0.0 or 

V dd· indicating erroneous behavior due to a short circuit or improper charge sharing, or when the set 
1· 3-- -

Vi(p) fails to converge to a aingle value,_ in<ijcating an ambiguity in ~1teady state.voltage caused by 

nodes or transistors in the X state. This definition of the target state; in terms of a limiting process 

expresses in a mathematical way the concept that the switch-level model considers only the dominating 
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effects acting on each node, either through conductance paths 'rorlned by transistors in the 1 state to input 

nodes or by charge sharing between nonnal nodes. When the dominatint effects conflict or when nodes 

or transistors in the X state create uncertainties, the target state equals X. 

For example, Figure 2.S shows a switch-level model of an 1lMOS Nor pte a« • corresponding 

order of magnitude network. Let us see: bow the target sraam would be defined for.several sets of inputs. 

If in1 = 1 and in2 = X, t.Ben a1 = cr1p. g2 = a.2p2, and O.o<:t)<a392. where a.1• ai- and «3 are 

arbilrary positive constants. This pvu a set of steady Sbl&e ~dbr 1MJde "i 

y. = { v r «rVdd . <: v' < ft V.dd ·}. 
1(p) «1 + (•2,.+ •J)P - -: al + •2P . ' 

and therefore v{XJ = { 0.0} and Yj = 0. Now suppose that in1 = 0 and in2 = x. Then 91 = «1P· 

92 = 0.0. and -O.O<g3<a31.2. This give,, a let 

Yj(p) = { " I a;\.v ~3" < "'° < ·~.i:ll" } 
andtherefme vi00 = { v tG.O<v<Vdd}aad Yi= I. 

Fag. 2.5. Example of aa Order of Magnltade Network 

d 

J--in2 
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2.8 Relation to Actual Circuits 

We have defined the target state in terms of an electrical network model as the ratio between the 

conductances of different $trength ·transistors and between the capacitances of different size nodes is 

made very large. It then follows that the switch-level model would correctly describe an MOS circuit 

containing only transistors in which the length-width ratios differ by orders of magnitude along with 

nodes with capacitances that also differ by orders of magnitude. 

In designing actual MOS circuits, of course, one does not use transistors with length-width ratios 

which differ by orders of mag~itude. Instead, the relative sizes of transistors along a conducting path 

from VDD to ONO are set so that the node voltages will lie sufficiently within the logic thresholds. 

Furthermore, transistors are sized according to their required speed, power, and driving capabilities. As a 

' " , ·, ' ·' ' 

result, the pullup load in a clock driver may have much greater conductance than the pullup in an 

ordinary inverter, even though both perform the same Iogicclt function -- to provide a 1 signal in the 

absence of a stronger O sigiictl. ·. Thi~· ~sistor sizing ~' be viewed as· an optimization of our ord~r of 

almost all MOS circuits the logic value formed on a node depends only on the dominating effects. 

Similarly, nooe capaciranee8 span a wide range of values. but die togicai behavior is affected by' 

node sizes only in a few isolated kcitions.' such as in pr~cirged bus circuits.. Typically. the large 
i ' . ~ 

·-/_ . ... . : ~ .· ' "· '. ·-i '·· .. ~ .;:-·... _._-,:_··~.,~ •. ·~ ,..J_,' • • 

capacitance node (e.g. the bus) greatly exceeds the. smaller capacitance node, and hence our order of 

magnitude model more nearly approximates the actual circuit in this case. 

To model the logical behavior of a correctly designed MOS circuit we need only characterize 
• ~ ~ r - - • ~· • _,... • 

transistor and node sizes according tO tbeir logical function in the netwofk. This correctness can be tested 

prior to the simulation by a computer program which compares ,tfie conductance and capacitance 
,. 

parameters of the circuit against the proposed logic network. Thus the simulation model can assume that 

the circuit. is ~wrectly <ksi&ned in this respect and take a more abstraet view A>f ratioed citcuiU and cbar&e· 
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sharing. 

Not all MOS digital circuits can be modeled by a switch-level network. For example, the 

switch-level model cannot describe circuits in which slight variations in voltages can represent different 

logic values, such as one-transistor dynamic RAM designs using sense amplifiers to detect these 

variations. Furthermore, our model can only describe the behavior of ratioed circuits or charge sharing 

when there is a clear precedence between the different transistor conductances and between the different 

node capacitances. Other forms of MOS circuits can only be modeled with partial accuracy. For 

example, the switch-level model ignores the effects of floating capacitors in "bootstrapping" node 

voltages above V dd or below 0.0. This technique, however, is used primarily to overcome the saturation 

effects of the field-effect transistor, but our model ignores these effects anyhow. Thus a circuit which 

utilizes bootstrapping for this purpose can be simulated with a switch-level model, but the simulation will 

not check whether the bootstrapping actually occurs. Except for these limitations, switch-level networks 

provide an accurate and simple way to describe the behavior of MOS logic circuits. 

2.9 Comparison to Other Switch· Level Models 

The logic networks allowed by the simulator MOSSIM [8] can be described in the model using only 

one node size (q = 1) and two transistor strengths (p = 2). Input and normal nodes in MOSSIM 

networks are modeled as input and normal nodes, while pullup nodes are modeled by one of the 

following circuits: 

~:. 
l 

The new model corresponds more closely to the actual circuit implementation, because transistors of 
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different sizes define the behavior of ratioed circuits. The pullup node of MOSS IM provides a· rather 

inelegant model of this al)d also lacks generality. All transistors ina MOSSIM network are modeled by 

transistors of strength y2. A MOSSIM network always wrrespo.,pds to a restricted network in the.new 

model. 

Thelogic networks allo~d by C.T~llll~n·s~wiu:h-level simulawrtslare,for the. most part iden~ 

to MOSSIM networks. A more_&f}I)Cral model of.clwge illaring is agpwe~ however, in which each 

nonnal node has a real-valued capacitance. This ~que i& applied w•n a set of, nonnal nodes ~ 

interconnected only by transistors in ti}~ 1 st$e, nooear.E;~nnecte~;t~ -iapµt nodes, and none are in the.~ 

state. In such a case, the P£O&raui ~s the ~~ of :those a~ in state 1 as well as the · 

capacitances. of nodes in state O~ If one sum exceeds the ethe.rby at: least a.fa£tor of:l. the nodes are,~Usel 

to the corresponding state, and othe~ise they are .set to ~· No :au.empt is .made to pe~fonn this 

calculatjpn when transis&Qrs or nO<ks in the X state are presenL J~ the DQ<les are allset to X. 

At first this .approach might_~ S\lperior to ow mo4#:l,of.~ge 1'win8 ~which nodes are 

assigned a size in the set K ~d the value on a larger node always,-0verrides tl)e valµe on a smaller. Using 

real-valued capacitances more closely.mat.ches the actualdecU"icaJ ~i9r and utilizes only infonnation 

easily ~ulated from the layoutspecifjcation. However, it~ as-i,f~n~rs ia.,the X state~ be 

dealt with in a consistt:nt,~aY: ~this model. Teim,n has~-~:(<> simu1-e the effects 0€ 

transistors in the X state with great accuracy. Instead, nodes are sometimes set to X even when they would 

have state O or 1 regardless of the conductances of transistors in the X state. For example, if a high 

capacitance node in state 0 is connected to a low capacitance node in state 1 by a transistor in state X, 
' . ::-:,, ,·~_-;<,'.;'..~. ·~ ... ~;: ~,.,; 

both nodes are set to X even though the high capacitance node would remain in state O even if it shared 

charge with the other node. 
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Suppose that we were to utilize real-valued capacitances in our logic model but tried to provide a 

more accurate model of transist<>rs in the X state. That is, a node would be set to O or 1 if it has this 

unique state regardless of the conductances of transistors in state X, and otherwise it would be set to X. 

Consider, for example, the network shown in Figure 2.7 containing a set of nodes of increasing 

capacitance connected by transistors in the X state. Suppose initia1iy that node n1 is set to t and aH Others 

are set to 0. With this model, the target states of nodes n1 and "2 equal X, because these nodes would 

have undefined states if only they share charge; Nodes "J and n4, on· the other hand, would have target 

states 0, because no setting of the transistor conductances could cauSe them to be dtatged abtwe the logic 

threshold. We have defined the targetSfate as die steady smtt solution Of the network. and hence when 

the nodes are set to their target states, the networl should mnain ·stable until· a transistor or input node 

changes state. if we set nodes n1 and 112 to X, however, the target Slate of node n3 will become x. because 

by our naive approach, we must consider the case in which the X states on nodes n1 and · "2 actually 

represent high voltages. and these nOdes share dta1ge with justn3. Hence, 1IJe original rarget state is not a 

true steady state solution. Simtlarly. if we set node n3 to its new tatget state. the target state or node "4 

becomes X, indicating that the previous target state was also not stable.· lb the final steady state solution, 

the initial charge on node n1 has cremd an undefined state on a ll6de With lD times gteater-eapacitauce. 

Thus. this model of charge sharing yields unstaltle solutions and allolacb·dlncy~ 

F"J&. 2.6. Oaarge Slaarin& AmmalJ 

"I "2 "J n4 
initial 1 0 0 0 

x x x step l x x 0 0 
J_ 

n2 
J_ nl J_ step 2 x x x 0 

step 3 x x x x 
1.9 2.0 8.0 30.0 
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More sophisticated approaches could be devised such as storing the range of possible voltages for 

each node, but for any scheme there seems always to be a circuit which would be modeled incorrectly. 

The problem occurs because we are trying to combine exact electrical concep~ such as real-valued 

capacitance with abstract logical concepts such as the X state for both nodes and transistors. With the 

logic model mapping many possible conditions of the electrical network into the state X, it cannot model 

behavior which depends on detailed electrical properties with sufficient accuracy or consistency. By 

adopting a more absolute view of charge sharing in which a larger node can always override a smaller, we 

obtain a more uniform level of abstraction leading to a more consistent modeling. Of course to describe a 

design in terms of our logical model the process translating the electrical design into the logic model must 

decide how the design should be viewed logically. For the network shown in Figure 2.7 this would 

require some rather unsatisfying decisions. In fact this network really should be modeled as an analog 

circuit, because its behavior depends too much on exact electrical properties. 

This aspect of the logic model design indicates a fundamental trade-off with abstractness and 

consistency on one hand and a desire to combine concepts from several different models on the other. 

Since we are concerned at the moment with developing the mathematical aspects of the switch-level 

model, the more consistent and abstract approach will be chosen. For other applications, a diff~rent 

choice may be appropriate. 

2.10 Derivation of the Switch· Level Network 

Switch-level simulators have proved quite successful in simulating networks extracted by a 

computer program directly from a description of the mask layouts. The combination of network 

extraction and simulation provides an important check of a design. 
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For networks which can be expressed in the MOSSIM network model, this layout extraction is 

relatively straightforward. The program need only follow the electrical connectivity in the network and 

find the transistors and their types. A simple set of rules atlow one to translate this node and transistor 

description into a MOSSIM network. For example, in depletion load nMOS technology, any depletion 

mode transistor with VDD as the drain node can be assumed to be a pultup load. while all other 

transistors are generally strong transistors. If the eXtraction program a1sO calculates the lengths and 

widths of the transistors, it can verify that the ratioed circuit will operate correctly by determining 

whether the highest resistance pulldown path can override the lowest resistance pullup path for· nodes 

which have independent pullup and pulldown paths. If these worst case conditions are nOt satisfied. a 

warning message can be issued.· By perfbrm1ilg these statiC checks of ttie circuits. we avoid the need to 

check the punup and pulldown ratios dYNimicaDY as the simulation proceeds. 

As we generalize the switch-level model to include inultiple levels ofratioing, charge sharing, and 

arbitrary use of weat transistors, the layout eXlractioll becames more diflicult The extraction program 

can calculate transistor resistances and node capacitances without great difficulty, but no general rule can 

rake these parameters and assign transistor strengths and node ~ For example, recognizing that the 

forceabte inverter shown in Ft&ure 2.2 requires three different transistor ~ would require a much 

more sophisticated algorithm than our rule for finding the MOSSIM oetwort. '. Siffiilarly, 'identifying 

be done with complete accuracy. 

If we tailor the layout extraction program toward a Pamcular eta of design$ and not try to utilize 

the fun generality allowed by the · model presented here, the. eXtracdo~ ecili·· be riiade ~ly 

stmightforward and reliable. For example, circuitS.uslng m6re·than tWo·~ strengths are rebwvely 

rare and even then appear only in limited configurations. The extraction program can look just for these 

configurations and for other portions of the design apply simple rules such as those used in deriving the 

MOSSIM network. Similarly, a bus node can usually be identified by its laflC capacitance relative to the 
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nodes with which it may share charge. Such nodes can be assigne<J, size "land all others size "l for most 

cases. Thus, layout extraction should still work well for this more general switch-level model. 

One can see the advantage of Terman's model from the standpoint of layout extraction, where the 

relation between the physical capacitances and the logical behavior is computed dynamically as the. need 

arises. Similarly, a program ~ould compute the relative conductances of the P';lllµp and puHdown paths 

dynamically to model_ratioed cii:cuits in a very direct way, although this is more difficult than computing 

the relative capacitances in charge sharing. For some applicatipns, one may be. willing to sacrifice the 

accuracy and consistency with which the X state is modeled to gain this direct correspondence between 

the electrical parameters and the simulation model 

2.11 Summary 

The switch-level model provides .three major simplificatio~ oYer m~re detailed analog cin;lJit . 
'· <""? <- • - ,, • ' -

models: 

1. 

2. 

3. 

Timing is not modeled ill great detail. fostead; , the dynamic behavior of a 
ne~work is modeled by_ a 8e'lllen~pLtaf&~t~.J·.Vh're .ecteh ta1Jet state 
reprdents the Steadt state s0liition ora thlle:iiivanant netwOrt:. -
, _ ''. . · , ,-__ ' : . . -· ·' -~ ·'. "c.' ~t ",_·, ~ · • ; ·. ' _ i·: ' :_ __ : I_ ' 

Node states are characterlzed by jus{the three logic;levelS o,'t'an<f(where 
states o and 1.~ dw:iJli P~Pl~twor~,o~ation .•. lh,c; ~W -~arises 
rrom an ainbiSUity_m_die_ ner.vork:or trom eriooeous-operauon. · · · · · ;-

The eff~ts ofratiaed logic-and ch~e 'sll~~ afe ~eled-,~ ~'simplirt~d w~y 
as if the conductances formed by transistors of different strength and the 
capacitances of nodes of different size differ ")BffMs:i'-~1 l~i , ,,, 
assumes the circuit correctly obeys the ratio rules and hence tiieeia:tvoltages 
need not be computed during the simulation. 

These assumptlons lead tO a unif6~ arid consiStent··~ie~ of MoS'fugiJ·d~i~ ~-which only those 

aspeets which determine the logical behavior Ct~ring rio~~j~~tiori ~~:chlisi'd~i'.ed. .AS ~ ooen seeil, 

these assumptions lie in a very delicate balaiice. If w~ trY to 'iritroduee 'greater accuracy i~ one area, sUch 

as incorporating real-valued node capacitan~es. we can lose-consiste~y' in another. ' 
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3. Logical Conductance Networks 

3.1 Introduction 

As was discussed in Olapter 2, the target state function provides 1l basic characterization of the 

dynamic behavior ofa ~witch-level networt. The value ofdUS function was defined in tenns of the set or 

pos.Wle steady state voltages for each node in a linear' efett.tical network in ·the limit as the ratio 

parameter p approacheS infinity.' This definition helps clarify the relation belwecn the switch-level model 

and MOS logic circuits but provides little aid in devising efficient slmulation algorithms. In this chapter 

we start a transition from a circuit-oriented view of the sWifcli~Jevel mockl rO a more abstract and logical 

view. A new fonn of network is introduced caUed logical conductance networks to focu~ attenl;ioll 09 ~ . 
. :;.: 

key aspect of computing the target state. A logical conductance network represents a switch-level 

netWork with each tnmSistor either nonc:Onducting or fblty ~ 'TilC nJde stateS have varues o. 1, 

and x. but unlike switch-level networks, the network elements are '"logical" conductances which cari ·tate · 

on values from a small discrete set The target ~ of a switch-level network can be defined in terms of 
., • ~- ~- 1, -- ; ~- - ;<-: \· ;jj iL;>4<,.·,: ·; .-, -- ; 

the steady states of a set of fogicat condUctancC netwtntt· .,. $teadfswe'<>f a logical conductance 
::~ 1~! .·· /:::: :;:{.~-:.-~·;:.'- ,,·_·:_·.'~.-:: ·:;.- ·--:, ... _; 

network is in turn de~ed in,te~ of the limitilli case~··~ yoltap ill~ or~r of mapitude 
• • < • •• - _,. • -- :.;". •• ,._.J.- ,,, --·; • • ..... 

network with a unique setofparnmeters and initial condlti'Oi$. ;~;~·networts provide an 
.- .'·_._ - ' ' . - '.1~--:; ... :-o ..;?:~·-.;··:-.· ~·1.:"-'.> ·:; \'~·-·'.·j '--: ,. l'.: , 

intermediate level of ab~don beJw~n electrical ne~orts ~ s~:level ~orb.. 
.-.;:,· ~· 7;~; c, ~- "· . _- ·;'-:: ;--~~iJ·· :: r,~-'- y~,;_.-~. :·.,.-"_:~-·~: ~ ;_ (.-- ,_ 

- l : .. ~ : • ' ; '· f i ~ I ! ! 

- _., i 

containing voltage sources, capacitors with one side conn~te<l to, ground,, and linear resistors. The 
•• ' - - ,. • • 0 • -' '. - ;.; - • • - ' ' _'::_- ' ~ \ • - " : •• - ' ; - ; • • ~ • - ' 

the conductances of the resistors are given by the matrices G and E. The initial conditions of the network 
• . ' - - , ""- • ~ ' ; , l I ~ ' • • - • 

arc defined by the vector y, giving the initial voltages on the capacitors. The nodes in this network 
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correspond to both the normal nodes and input nodes in the switch-level network. Some properties of 

these networks will be given here. Formal derivations of these properties are given in books on electrical 

network theory such aS Desoer and Kuh {15). They· rely only on Kirchoffs' Current arid Voltage Laws 

and on Ohm's Law. 

In a linear network con~ning only passive, linear, time-invariant resistors and capacitors, any node 

connected by some conducting path to a voltage souree (which has its negative terminal connected to 

GND) will have a steady state voltage uniquely determined by the voltage source settings and the resistor 

conductances. Such nodes are said to be driven. When node ni is driven, its steady state Voltage is a tineat 

function of the voltage source settings x: 

m 
vi = 'I aij xj. 

j=l 

The coefficients aij depend only on the resistor cood¥~ and obey lhcfolh;>wiog properties: 

aij > 0.0, for all j 
m 
'I aij = 1.0. 

j == 1 ·. . . 

These properties follow from the fact that for any p~ible set of voltage sourte settings given by the 

vector X, Vi is bounded below and above by the niinimuin and maximum elements of X, respectively . 

• 
That is, if aij were negative for some value of j, then an out-of-range volptge would be obtained by setting 

xj to a positive value and all other voltage sources to 8.0. Siniilarly, if the coefficients did not sum to 1.0, 

then an out-of-range voltage would be obtained by setting all voltage SOlliteS to the same nonzero value. 

Node5 which have no conducting paths to voltage sources are said to be charged. Since every node 

has a nonzero capacitance and the network contains 1lO ftoa&ing capacitors, the steady state voltage of a 

charged node will be uniquely determined by the node capacitances, the resistor conductances (only 

whether each conductance is zero or nonzero), and the initiit node voltages. When ~ is charged. its 

steady state voltage is a linear function of the initial node voltages 1: 
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n 
vi = . I bij Yj· 

J = 1 

The coefficients bij depend ODly on the r~stor conductance ~d no<le capacitances and obey the 

following properties: 

bij > 0.0. for allj 
n 
1: b·· = 1.0. 

. 1 IJ 
J= 

Tbese properties follow from the fact that for any posmble set,of iqjtial node voltages y, the steady state 

voltage on any charged node is bounded below and above by the minimum~ maximum elements of 1. 

respectively. 

A node is either charged or driven to its steady state voltage, and therefore if we adopt the 

convention that aij = 0.0 for all j when ni iS charged and: bij = (}.O 'fbr alt j when ~ is driven, the tWo 

modes can be described by a single equation: 

m, n 
I 8·· X• + >: ,bji YJ·. 

. 1 1J J . 1 ~ 
J = J = 

The coefficients obey the following properties: 

aij ~ 0.(). for all i and j 

bij > 0.0, for all i andj 
m n 
I aij + I bij = . 1.0, for all i 

j=l j=l .' 
m n 
:E aij • I bij = 0.0, for all l 

j=l j=l 

(3.1) 

We will also be interested in networks where the elemenlS oft. G, an4•c; am·given by continuous 

functions of the parameter p. In this case the -coefficients ag and bij will be :given by continuous 

functions of p. For any positive value of p, the network described by the conductance matrices G(p) aAd 

E(p) and the capacitance vector c(p) will be a· passive, linear network: with no floating capacitors, and 
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therefore the properties of the coefficients listed above must hold for all p > 0.0. Therefore, if we define 

CX) . CX) 
8·· and b.. as the values lJ lJ 

8 .. ex:> = lim a .. (p) 
lJ p-+ CX) lJ 

b··CX) = . lim b:;{p), 
lJ p-+ CX) lJ 

then 

l m . . n 
im v· = l: a .. 00 

• x· + ·:I b .. ~ • y· 
p -+ CX) l j = 1 1J l J= lJl ,l 

and the coefficients 8ij 
00 and bij 00 obey the following properties: 

aij 00 > 0.0, foralli'8114J 

bij 00 > 0.0, for all i and j 
m n 

00 CX) 
:I 8·· + :I b.. = 1.0, fo. ralli lJ 1J 

j=l j;::l 
m n 
l: 8·· CX) • :I b··90 = 0.0.: ..,f]llli. 

. 1 IJ • 1 1J 
J= J= 

These properties show that the limits used u1 the .definition .of ~·target state are mathematically 
. )· ~ .~" . ,,, ~~:. . \ 

well-defined. 

3.3 Simplification of the Target State Definition 

When a switch-level network contains transistors or nodes in the X state, the target state of a node is 
"''\' 

defined in terms of the set of possible steady state voltages for the node in an electrical netWork as the 

network parameters arid initial conditions are varied overuric:buntably infinite sets. Fortunately, we need 

not evaluate all of these pOssibilities, because we only wish .. to kno~ whether each set of voltages 

converges either to the set { 0.0} or die set { V dd} as ~·approaches infi~ity. If it c~~ be determined that 

such a convergence does not occur, the target state is X. Thus we n~ not find the entire set of steady 

state voltages for all possible network parameters and initial' conditions for each node~ but only certain 
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properties about this set 

3.3.l Node Voltages 

Fust, let Us consider the etTeclS ofhavin& the voltage S(JUICCl:range over the settings x•<x<x­

and the initial node voltages range over y8-<y~. Let the vectors x' and y' be any vectors satisfying 

~efollowingrequircmeats: 

r-<x'<r, and x•-~x-· ~ x•-<x'·<x-· 
- - 17""" I l I · 1 

r9"5:r'» - y"'-i ::# ri ~ ,..i < ~·i ( rr 

The following theorem shows that we n~ only evaluate the network for this single set of voltages. 

Tlkocwww l.1. 
For any conductance matrices G and E and capacitance vector c. if 

Yi = {v~E.c,X,Jllx~x<x-, ~_r} 

~ = {Vdd} ifandonlyif vi<G.E,c,x'~J') = Vdd 

Yi = {O.O} ifandoalyif vlC.~C.x',J1 = U 

i>r any x' and 7' satisfying equations 3.2 and 3.3. 

Proof of Theorem 3.1: 

(3.2} 

(l.3) 

We have already seen that the voltage vi is given by a linear function of the elemenlS of x and 1 as 

shown in equation 3.1, including in the limit as p approaches infinity. Furlhennore. all coefficients are 

nonnegative and sum to LO. Clearly, Yi equals v dd if and only if xj = v dd for all j ~ that av) o.o. 

and Yj = V dd for all j such that bij > 0.0. Therefore, since x'j equals V dd if .:md only if 

xm1nj = x-j = V dd• and similarly for 1j. vi(G, E, c, x', y') equals V dd if and only if vi(G, E, c. x, y) 
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equals v dd for all x such that xmin<x<xmax and y such that ymin<y<ymu.. The proof for vi = { 0.0} 

follows identically .I 

This theorem shows that even though the voltage formed by an input or nonnal node in the X state 

can range over an entire set of values { v I O.O<v<V dd }, we need only evaluate networks with this node 

having a unique voltage v such that 0.0 < v < V dd· This single value can be used to test the sensitivity of 

nodes in the network to this X state, where sensitivity is indicated by the values of the coefficients aij and 

bij· Thus we can simplify the definition of the target state from one in terms of entire sets of voltage 

parameters and initial conditions to one in terms of a single set x' and y'. Furthermore, the exact values 

of the voltages are unimportant, only whether they equal 0.0, V dd• or lie between (exclusively) 0.0 and 

vdd· 

3.3.2 Conductance Matrices 

When the switch-level network contains transistors in the X state, the target state is defined in tenns 

of the steady state node voltages as the conductance matrices range over infinite sets, Gmin<G<Gmax and 

Emin<E<Emu.. Furthennore, while the elements of Gmin, Gmax, Em1n, and Emu are functions of p, this 

property does not hold for all matrices in the set, which makes it difficult to establish the limiting case 

voltages. Observe, however, that rather than finding the entire set Vi(p) for each node, if we could 

determine the minimum and maximum elements of the set, we would have sufficient information to find 

the target state. The following lemma demonstrates an important property of electrical networks as the 

resistors vary between their minimum and maximum values. 
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J,emma 3.1. 
Suppose a passive, linear, time-invariant network contains a single variable resistor with conductance h. 
If vi(h) denotes the steady state voltage on node "i as a function of h, then for any h, h•, and h- such 

that 0.0 < h11111<h<h-. either 

or 

Proof of Lemma 11: 

rll'St, suppose that node "i is ~when h = O.tt, te. there is, no conducting path from "i to a 

voltage source. Then for nonzero h, "i could be connected to more charged nodes than when h = 0.0, ar 

a conductance path could exist from a voltage soun:e to "i and hence "i ~ ,*?ren., Th~\~~'~ ~ a , 

discontinuity in vi as a function ofh at h = 0.0. For nonzero values ofh, the steady state current through 

this resistor must equal 0.0, because this resistor is not ci>ntained iii any tooP '.in die network. As a result. 

the "81ue of h can have no effect on the *8dy state voltageS, and vi lhUSt remain constant for any h > 0.0. 

Therefore, either h =, ttMlll = 9.0and,vi(tt•) == ·vi(tt). or h > O.Oand vi(h) =vi(li->. 

The more difficult case occurs when node "i is dt/Ven ·fbt alt values of h, le. there is always a 

conducting path to a voltage source. In Appendix I an' equation 1s derived for the node voltage vi asa 

function of h by an analysis of multi-port networli. Thiscquadori has'the fblm 

(3.4) 

where b is nonnegative. This equation indicates that vi is approximately linear with respect to h for small 

h but approaches a constant asymptote as h becomes very large. Taking the derivative with respect to h 

gives 

~ 
dh = 

a 
(1.0 + b hY1 



- 53-

which equals 0.0 only in the trivial case where a = 0.0. Therefore vi has no minimum or maximum 

between h =·hmin and h = hinax unless it is aconstant.ftmction, and·one of the two inequalities must hold. 

I 

With this lemma we can show that: the minimupi aRCI ~steady state voltages for. each node 

can be determined by· 40hsidering only' the' Jninimun{·aftd maximum Conductance values fot each 

traAsistor. 

Theorem3.l 
Let E and G be the following sets of conductance matrices: 

E :::· {Et ejt·= e.,jt••jt='e..,_jtl 

G = { GJgjt = Om1njk or 9jt, = ,gmujki}\n.~ ~jk = Qkj }. 

If 

and 

then 

minimum Y: l ..,.. • • Y.; I . 11UJ1111UUR. i.; . (3.5) 

maximum Yi = maximum Yi'· (3.6) 
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Proof of Theorem 3.2: 

Suppose some pair of conductance matrices G and£. give a minimum value i>r vi(G. E, c, x.1). 

For any element of G such that gm1ajk < 9jt < g-jk• Lemma 3.1 shows that we could set 9jt to one of the 

v~ gm1njk or gmujt without aff«u.& vi' or dse vi woHc.tnat!haW been a minimum value originally. 

This process can be. repeated fur all such ·ljt until we !lave a matriI G' E G such that 

vi(G, E, c, x, y) = vi(G', E, c, x, y}. A similar ~ would find a matrix E' E E such tJaat 

v~G. E, c, x, y) = vi(G', E', c, x,y). and therefore equation 3.5 must hold. A sjmilar techniql.IC proves 

equation 3.6. I 

This theorem shows that althoUgh trusistors in the X st:8lle may 'create arbitrary conductances 

within some range. we can find die minimum and maximum node voltages by considering each transistor 

to be either nonconducting or fully conducting. In general. however, we must enumerate over all 

combinations of these two p<mibilities for all transistors in the X stare, because the steady st.ate voltage on 

a node can be minimized or maximiZed with some transistors nonconducting and others fully conducting. 

Furthermore, the voltages on different nodes can be minimized or maximized under different conditiom. 

Thus, unlike the node volt.ages, We mint SfiD -etal~ the aetWort for a ~r of sets of conductance 

parameters, but this evaluation is now finite. Later we will show that the target state can be computed by 

a more direct method. Note also that this proof am.ones that the variable conductance parameters are 

independent of one another, which stems from our originaf asSomption that transistors with the same gate 

node will behave independently when that node is in the x· Slate. 
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3.3.3 Revised Definition of the Target State 

The results of Theorems 3.1 and 3.2 can be summarized by giving a new, but equivalent definition 

of the target state. Let x' and y' be any vectors satisfying equations 3.2 and 3.3 and define the sets E{p) 

and G{.p) as 

(3.7) 

(3.8) 

For any node "i· let Vi'(p) denote the set 

Vi'(p) = { vi(G, E, c(p), x', y') IEE E(p), GE G{.p) }. 

The matrices in the sets E{p) and G(.p) have elements which are continuous functions of p. Therefore, we 

can take the limit of this set of possible steady state voltages asp approaches infinity to get the set 

The target state y i is then given as: 

3.4 Rational Functions 

v:oo = 
l 

lim V:'(p). 
p-+00 I 

(3.9) 

In the formulation of the order of magnitude network model given in Chapter 2, a fully conducting 

transistor of strength 1'k is modeled by a linear resistor of conductance apk. Similarly a normal node of 

size ick is modeled by a linear capacitor of capacitance apk. In both cases, a is an arbitrary positive 

constant and can be different for different capacitors and resistors. Let us generalize this definition to 

model a fully conducting transistor of strength 1'k with a resistor of conductance g(p) where g is an 
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arbitrary ra1ional function of degree k such that g(p) > 0.0 for all p > 0.0. That is. g can be expressed by 

an equation of the fonn 

g(p) = = 
where N and D are both polynomial functions of p, and if N has degree n and D has degree d, then 

k = n - d. Similarly, we will model a nonnal node of size "t by acapacitor.ofcapacitance c(p) where c 

is an arbitrary rational function of degree k such that c(p) > 0.0 for an p > 0.0. 

Observe that this generalization has no effect on our definition of the target state, because any 

rational function a of degree k can be expressed in the fi>nn 

a(p) = apt + b(p). 

where a is a constant and b(p) is a rational function of degree n than or equal to k-1. Therefore, for 

any r > 0.0, there exists a constant Po such that 

A rational function of degree k behaves lite the function apt as p becomes brge. This generalization 

wm· mist our mathematical developmCnt,'. beca\R' the ~ of rational functions has many of the 

properties of the domain of real numbers, ie. thq ·bot:h fJm fields (27). We can use expressions such as 

"a+ b" to denote "the function of p which gives the value a(p) + b(p )" and assume that the + operation 

in this expression satisfies the usual properties of addition. We can also repllil?:·aJi;IBre~ of 

resistors by a single equivalent resistor in the order of magnitude model much as one can replace an . 
interconnection of resistors ~ving real-valued conductances by an equivalent resistor in ordinary 

electrical networks. 
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The degree of a rational function a can al!IC'l be detiaed as the maximum value k such that 

tdri '~ ~· 0.0 
p-+ 00 pk 

·111is function generalizes the usual idea of the degree of a polynomial function. Observe that 

deg(O.O) = -00. All other funcJi?ns usedbe~ have in~-valued degrees. For any rational function a, 
,. 

we will use the notation a 00 to denote the ·val45e 

a oo = lim a(p). 
p-+ 00 

This notation will only be used when deg( a) < 0, and hence the limit is well-'deflned , 

Let us define the domain G.f as the set consisting of the constant function 0.0 along with all rational 
> •• ~ • • ' ' ~ 

functions a such that a(p) > 0.0 for all p > 0.0. We will deal mainly with rational functions in this domain. 

If a, b E G.f then 

deg( a + b) = ma.x(_deg(a), de&(b)) 

deg(a • b) = deg(a) + deg(b) 

deg(l.0/a) = -deg(a) 

de&(a - bl < ~'*A~.t!el(--)l 

(3.10) 

(3.11) 

'(3.12) 

(3.13) 

NQte that when fun~tioas are ,$1.Jl>ttacted:- only a weak. ~entc,rw;,~ ~e ~00,~t the: d~, of the 

resulting functio,n. an4 furt®rmQr.e '.f is pot closed under (bis,.~ .. , , , 
; • 4 • .. , • • • ; i' '.. _ I • • • -·· _ , • - .' ~ • - 1 · < ! ; g ·, 

As a final ~tion reaardin& (ational ~o~ .~ .~. ~ujv.~ence re~tipn ...._,, oo. rational 
) • ,.. ' • ._ - •< • - • • ' ~ •• • ~ -.- ' • - ., • • • 

functions as 

a ....... b if and only if deg(a) = deg(b). 

The relations « and ::> are defined as 

a « b if and only if deg( a) < deg(b) 

a > b if and only if deg( a) > deg(b ). 
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These relations are extended to vectors and matrices in' the, usual way, e.g., a ,...., b if and only if ai ,...., bi 

for all i. These relations characterize the limit of an exp~n which is often encountered in equations 

for node voltages in ratioed circuits. For any a, b E ~: 

Jim a(p} ' 
(3.14) 

p-+ 00 a(p)+b(p) 

where a is a constant such that 0.0 < a < 1.0. 

3.5 EquiYalent ~etworb 

We are only interested in the steady state behavior of order of magnitude networks as p approaches 

infinity, and even then we need only a partial characterization of the node voltages. Thus many of the 
f .. -... ' 

details of the electrical network can be ignored. This idea of ignoring certain details can be expressed in 

m~ematical tenns by defining equivalence relations such tliai, networks which differ only in 

~rtant respects are equivalent 

The equivale~ relation ~ is defined on' etemenm or the - '{ v I O.O<v<V dd } as v ~ v' if 

v = v' or if 0.0 < v < V dd and 0.0 < v' < V dd· This relation defines three equivalence classes: { 0.0 } • 

{ V dd } ; and { v ·1 a.o < 'v < V dd } , Whkh correspond cfusely to dle:to'jk n~l>. 1, and X. This relation is 

extended to vectors in the usual way, ie~ y ~ v' if vi~ v'i rora1J l '~ ~g'lemnm eXptesses aie 

fact that the exact voltages on the nodes in the order of'magnitude'nMxtet aie~oritinporrant, only Whether 

they equal 0.0, V dd• or lie between (exclusively) 0.0 and V dd· 
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Lcmma3.2. 
For any conductance matrices G and E and capacitance vector c, if x ~ x' and y ~ y', then 

v(G, E, c, x, y) ~ v(G, E, c, x', y'). (3.15) 

The proof of this lemma closely follows the proof of Theorem 3.1. Let v denote the steady state node 

voltages for the vectors x and y, and v' denote the steady state node voltages for the vectors x' and y'. 

Referring to equation 3.1, vi equals V dd if and only if xj = V dd for allj such that aij > 0.0 and Yj = V dd 

for all j such that bij > 0.0. Therefore, since x'j (or y'j) equals V dd if and only if xj (or Yj) equals V dd• v'i 

equals V dd if and only if vi equals V dd· Similarly, v'i equals 0.0 if and only if vi equals 0.0, and by a 

process of elimination 0.0 < v 'i < V dd if and only if 0.0 < vi< V dd· I 

We can also show that if the coefficients of the conductance and capacitance parameters in an order 

of magnitude network are varied, the steady state voltages will be equivalent under ~ as p approaches 

infinity. 

Lemma3.3. 

Suppose an order of magnitude network contains a single variable resistor with conductance 11Pk· If 
vi(p, 11) denotes the steady state voltage on node ni as a function of p and 11. then for any constants 

111· 112 > 0.0 

Proof of Lemma 3.3: 

fim V·(p, 11 ) ,.._, 
p-+00 l 1 

We have already seen that for a particular (positive) value of p, if ni is charged when 11 = 0.0, its 

steady state voltage will be the same for any positive value of 11. and therefore vi(p.111) = vi(P. TJ2) 

including in the limit as p approaches infinity. Ifni is driven for 7J = 0.0, then equation 3.4 can be 

applied to order of magnitude networks to give 

a(p) · 7Jpk 
vi(p, 71) = vi(p, 0.0) + k . 

1.0 + b(p) · 11P 
(3.16) 



In the derivation of this equation in Appendix I it is also shown that b(p) > 0.0 for all p and that 

and consider die following three cases. 

ldq(b)( -t. 

which is indepeDctenc of•· 

2. deg(b) > -t. 

lim v~. 0.0). ,_.oo I 

y
1
.oo(1J) = lim yJ'n,WJ) + lim . J(el 

p -+ ao rr ,. -+ ao ll(p) 

which is also independent of 1f· 

3. de&(b) = -t. 

ao lim '' "i (11) = P -+ ao vj(p.,0.0) + LO + /J .. -' 

• = 
/I = 

In this case the voltage depends on the value of 1J. The derivative of this function with respect to 1f is 

which equals 0.0 only if a = 0.0, in which case vi°"(.,,) is a constant function. We know that 
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O.O<vi00(11~V dd for all values of,,, and therefore ifvi«>(,,1}::: O.O(or V dd)fot so~e value ,,1, then 

d•t'<">t. . 
d = 0.0, 
,, 1f=1J1 

in which case vi 00 
( 1) is a constant functi~ 

Combining these three cases, we can see th.1 viCX><.i iµust ~i~r ~ a:e<>~ fupn or else 

O.O<v1
00('f)< Vdd for all "1 >O.O. Therefore, .~e ~ -v~ of vioo('J).for -pesWViC 'I ~ust be 

equivalent under ~.I ' j 

Lemma 3.4. _ J 

Suppose an order of magnitude network con• a..sinlle .variable capacitor with capacitance 1Jpk. If 
vi(p, 11) denotes the steady state voltage on na<!e "i·. as .. a function of p and ,,, then for any constants 
'11· 112 > 0.0 ... - . ,. 

Proofof Lemma 3.4: 

Suppose the variable capacitoris as.90Ciated with node "j· This parameter will affect only.~~ 
, "'., ' ~ ; . ; ' ~ i ·, •. : - ,,.,- ·, ~;~· ' .' . 

state voltages ofn6des connected by some conducting path to nj and then 091YJf~~.,o.~ 
.. 

pach ftom n_; to a voltage source. Fot •Y~fi'h~ "l: ,,, ; 

dc<P>v1<P•~·+-.hr. .. 
v~. 11) = .~).+Vt: . ·'·' 

(3.17) 

"'fl¢~ c equals the sum.4>f all cap,ae~~ co~~)! ~padt. ta,tlj1.wheQ "~ O.fl By aH,SskJerina 

three cases: de4'(c)<k, deld..c)>k. and dell,c):::: k, we ~~~t~~W)~~ b.ea~t 

func~Q~ ore~ 0.0 < vi<X>(J) < Ydd~fqr all ~.ov~,yf"~""'~n-~ groqf-qf~ 3.3. I ,,.;_ · 

''. } 
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These two lemmas can be extended to ~ case in which ~ cpodn-=taore of the variaQle resistDr « 

the capacitance of the variable capacitor is given by an albitnry.ational function of degree t. To see this, 

suppose the terms 1JPk in equations 3.16 and 3.17are~byterms11Pt + d(p). where dis a rational 

function of degree ~ than or equal to t-1. Then as we tale die limit as p ~ infinity. aD 

instances of d wiD drop out. leaving 1he origiaat eqUadmas· 

These two lemmas tin be combined intb a ·iinlfe ~It by defining'die equi'111ence ma.ion = 
between two order of magnitude networb N and N" as N = N" if aad oaly if' 

..... 11 

·-· I - r 
c - •• 

i ;' 

Suppose order of magnitude electrical networks N and N' have steady state node vol&ages v(p) and v•(p}. 
...,.mvely. T1len ifN i:.:: 1'. . . ... .. , 

'l(p) ~ ... , ••> 
p-+00 p-+GO 

(111) 

The proof of this theorem follows directly JhJm'l.efnmas 3.2, 33, and l.4 (when extended to arbittarJ 

rational ftmctions} ·and the ttansitiritJ of tile ~ 'apn¥aleuce 1dationt Tim· theorem slmWs· tl*t 

although netwott ~WaleOOeis <1efifltd mtenns·ofthe·~'Of• ~t a1so'·DpDes. ft>iiii or 

behaviofal equivalence'/ :u: also jddies •,~· smttn.eatS • ., ~ts or ttie ortter· of 

magnitude network elements can be arl>itrary positive constants without afTecting the value of the ta1JCt 
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3.6 Logical Conductance 

As an aid in studying switch-level networks in which all transistors are either nonconducting or fully 

conducting, let us define a new type of network called logical conductance networks. Like a switch-level 

network, a logical conductance network contains i_nput nodes aud normal nodes, where each normal node 

"i has a size capi EK = { "l· ... , "q }. Instead of containiJ1$ transistors, however, these new networks 

contain logical conductances, which may hav~ val~es in the ~~ { 0 ~ U r =. { 0, 11, ... , )' P ~ .. ,'The 

correspondence between a switch-level network with all t(anSistol'S either nonconducting or fully 

conducting and a logical conductance network is quite ~imple: a nonconducting transistor forms a logical 
..:-~ . - -

conductance 0 (i.e. an open circuit}, while a fully conducting transistor fonns a logical conductan~ equal 
- - ., ~ '· ·, ~-: 

to its strength. Examples of the logical condµ<;tance networks co~nding to the switch-level model of 
. - - - ' -- ' . ~' -. ~ 

an nMOS inverter are shown in Figure 3.1. A switch-level neJWork wipi no tran.sistors in the X state has a 

unique corresponding logical conductanc~ network. When a switcti-level netwoi;k contains tr~sistors ii\ -. - ... _ - :-;. ; -. ·:· - (· .... ·- . -. ; -·-

the X state, however, we must consider the logical conductance o.etwort. formed for all p~ible 
, -- - - ! ~-· } -- ...... ::- .. ~ : -_ ' - ~ ' ' -·.; - _; ·• . ' 

combinations of these transistors being either nonconducting or fully conducting. By focusing our 
1, ~-

. attention on logical conductance networks, we temporarily-tetaside issues concerning transistors in the X 

state and solve a sin1pler problem. Once methods for analyzing logical conductance networks have beell. 

Fia. 3.1. Examples of Logical Concluctimce Netw'orb 
x=t 

Switch-Level Network 

d 

x=o 
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developed, we will be able to generalize these methods to handle arbitrary switch-level networks. 

The steady state behavior of a logical conductance network is defined in tenns of the steady state 

voltages in an order of magnitude electrical networf with a single set of netw6rk parameters and initial 

conditions. That is, a logical conductance of strength Yt is modeled by a resistor of conductance g(p), 

where g is an arbitrary rational function of degree k in the set '5. A. normal node of size "k is modeled by 

a capacitor of capacitance c(p) where c obeys the same requirements as g; Input node ~ in state xj is 

mOdeled by a voltage source with voltage xj, where xj = 0.0 if xj = o. xj = v dd if xj = 1, and xj equals 

some arbitrary voltage such that 0.0 < xj < V dd ifx; = X. When normal nOde IZ_j has an initial state Yj• the 

corresponding capacitor in the order of magnitude network is initially charged to a voltage y j defined 

simlarly. 

The steady state of a logical conductance network iS· definCd as the set of JogiC states (denoted with 

the vector y) which the normal nodes would eventually ~ach wh~n Siarted in an initial state y. That is, it 

the ·network is modeled by an ·order of magnitude network with panuride~ G(p). £(p). c{p ), and x and 

initial conditions y, and vi co is defined as 

y.oo 
1 = P !'«J· vi(G(p), E{p), c(p), x, y) 

(l.19) 

The target state of a switch-level network can now be defined in terms· l)f logical conductance 

networks rather than otder of magnitude networks. From the matriees G and E ~the order of magnitude 

model of a logical conductance network we can define two matriees G and E '.dacribing the logical 

conductances connecting the nodes in the network. That is, if deg(gg} = t; ~n gy = Yt· and if 

9ij = 0.0 then &ij = o; and similarly for E. Let the sets { E } and { G } equ,al the sets of logical 
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conductance matrices corre8ponding to the sets of order of magnitude conductance matrices E and G 

given by equations 3.7 and 3.8. These sets describe the set of losical conductance networks for all 

possible combinations of nonconducting and fully conducting transistors. Let y (G, E) denote the steady 

state of the logical conductance network with logical conductance matrices G and E, with the remaining 

parameters cap and x, and initial conditions y assumed implicitly. The target state can then be defined in 

terms of these steady states as 

{

1, 

0, 
x, 

y i(G, E) = 1 for all G E { G } and EE { E} 

y i(G. E) = O for allG E { G } and EE { E} 
else. 

(3.20) 

That is, the target state of a node will C9,Ual 0 or t if and only if it has this unique steady state regardless 

of variations in the conductances created by transistors in· the X state. Note that if the switch· level 

network contains no transistors in the X state the sets { G } and { E } each contain one element and the 

target state equals the steady state of this unique logical co~ netwoft. 

If a logical conductanee network cAnlte'~ by an order fJf magnitude network N then it can 

also be modeled by .some other network N'.if and; QDlY ifN-:-- N'. Thus, tliere.is a 1-1 correspondence 

between logical conductance networks and C(,luivalence.~~· of' order Qf .DUlgllitude networks. Logical 

conductance networks can be viewed as abstractions of order of magnitude networks, where those aspects 

of the structure which have no important effects on the behavior are ignored, as was shown in Theorem 

3.3. The logic state y provides all of the info~ we iCQ.Uire about the steady state voltages for the 

corresponding class of order of magllitude-networtL 

------------- ------------------------------------
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3. 7 Properties of Logical Conductance Networks 

With the analogy between logical conductance networks and classes of order of magnitude 

networks, we can derive some simple rules for interconnections of logical conductances. First, if logical 

conductances a and bare combined in series. then 

&series = mil( a, b). 

where logical conductance values are ordered 

To show this, suppose logical conductances a and b are modeled by resistors of conductance a and b 

where a and b are rational functions in the domain~- Then the net conductance g is given by 

g = -1..IL a + b' 

and applying equations 3.10, 3.11, and 3.12 gives 

Similarly, if logical conductances a and bare combined in paraUel. 'then equadon 3.10 gives 

de~g) = de~a+b) = ma.x(dti(a). •ab)}. 

and therefore 

8Parallel = max(a, ~). ... 

For more complex interconnections, the net logkal .~ bebv~ tw9 :aode3 .~· the 

maximum logical conductance of all paths connecting them, where the logical conductance of a path is 

defined as the minimum logical conductance in the path. To see this, suppose that for a network of 

arbitrary linear resistors the net conductance between two terminals equals g. Let P denote some set of 

resistors forming a path between the two terminals and C denote some set of resistors which if removed 

would eliminate all paths between the two terminals. If gj equals the conductance of resistor j, then 
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1.0 < g < :Ig·. 
:Ig·-1 - - CJ 
p J 

That is g is bounded below by the series conductance along any path and is bounded above by the 

parallel conductance through any cut-set These inequalities can be shown by simple applications of loop 

and cut-set analysis. If these resistor conductances are given by rational functions of p, then for 

sufficiently large p, all conductance values will be partially ordeo:d by ,the de~ee of their rational 

functions. Therefore 

This can be expressed in terms of the corresponding log~l conductances as 

min 8j < g :$ ll1llX &;• 
P ·c 

where g is the net logical conductance between the two terminals and 8j is the logical conductance 

corresponding to resistor j. These inequalities hold for any padi P and·any cut~t C. Suppose P' is the 

path of maximum logieal conductance, and C' ·•is ~·by repeatedly removing the· minimum 

element in the maximum uncut path until alt· paths between· the two· terminals are eliminated. Then the 

minimum element of P' equals the maximum element of C ': 

Therefore g equals both the minimum logical conductance in the maximum path and the maximum 
.. 

logical conductance in the minimum cut-set This rule illustrates how the switch-level model describes 

the operation of an MOS network in terms of only the dominant effects acting on each node. It considers 

only the strongest conductance path between two .nodes and characterizes this path by a strength value 

from a small, discrete set Much as rufes for combining networks of linear resistors may not apply when 

voltage sources are present, we must be careft:il in applying these rules when input nodes are presenL 
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We can also think of the nonnal nodes in a logical conductance network as fonning logical 

capacitances with properties much like logical conductances. Logical capacitances can take on values in 

the set K = { "l· ...• "q} which are ordered 

When logical capacitances a and b are connected in parallel t.hlou8fi a nonzero conductance, they form an 

effective logical capacitance: 

Other forms of interconnection cannot Occur, because the capacitors have one side tied to ground. This 

rule illustrates that die switch-level modetcODSiders only the WgCst capacitors connected to a node and 

characterizes the net capacitance by an element from a $IDall. 4i8cRte Id.. 

As a final set of rules. consider &be Josica1 coadnctatlCC aetwo4 sbowQ in FJ&UR l.l. containina a 
I ' .- - ' 

normal node '1i connccted by lo&ica1CQIMluctaac:es81· 32. aa411to~llOdesiastates1, o. wl X, 

respectively. The steady state y i will depen4.on dae ~-...- qf,daelC c;an"1JC4a..-·. 

F11- ll. State Fermation ia Ratioed Oradls 

,...__..,.1--...,..,~,., ---· "i --x 
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To show this rule. we can model the11etwork ·.bJ an ordM of magnitude network containing resiStofl of 

conductance g1(p).·gi(P). and g~) connected to voJ!fages Vdd• .OJ>, and:1ome voltage V such that 

O< V < V dd• respectively. Node "i will have a Jfleady slate voltap 

l;1(,)·Vyrb~).().()_+..9p)~ V 
vi(p) = Q1(p) + 92<P) + Q3(p) 

From equation 3.14 one can see that 

where 0.0 < V' < V dd· This rule illustrates that the logic state O (or 1) is fonned on a driven node only 

when the connections to input nodes in state 0 (or 1) clearly dominate over all other connections to input 

nodes. 

Similarly, if a set of normal nodes are connected such that the net logical capacitance of nodes 

initially in the 1 state equals c1, of nodes initially in the O state equals ti• and of nodes initially in the X 

state equals c3, then the steady state of any node ni in the set depends on the relative values of these 

logical capacitances: 

This rule illustrates that the node state O (or 1) is fonned on a charged node only when the nel 

capacitance of nodes initially charged to 0 (or 1) clearly exceed the capacitance of all other nodes. 
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3.8 Summary 

Logical conductance networks provide an abstraction of our electrical model of switch-level 

networks. The rather intractable definition of the target state in terms of electrical networks with 

parameters and initial conditions ranging over infinite sets can be reduced to one in tenns of a finite set of 

logical conductance networks. The steady state of a logical conductance network is in turn defined in 

terms of an electrical network with a unique set of parameters of initial conditions. 
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Fig. 4.1. Thevenin-Norton Equivalent Theorm 

N L - vdlev L 

The Thevenin-Norton Equivalent Theorem [15). illustrated in F"lgUl'C 4.1. states that for a linear 

networt N connected to an arbitrary load L (i.e. some other netwOl't}. We can replace N by its Thevenin 

(or Norton) equivalent networt and obtain the same behavior. 1be 1bevenin equivalent can be found 

for N without considering the nature of the load L. The voltage v tbev equals the volt.age across the port 

when no load is attar;bed and hence is called the opm-circuit volt.age. The admiaance Y tbev equals dle 

admittance ac~ the port with no load attached and with all (independent) souroes in N aet to i.ero and 

hence is called the zero-slate admittance. In our case setting aD sourees to mm involves short-cin:uitiog 

the voltage sources corresponding to input nodes. Since we are ooncemed only with rhe steady state 

voltages we can consider the admittance to either be a conductance te1aev or a capacitance cthev- becaUle 

the conductance values will have an effect only when the node is driven to its steady state voltage. and the 

capacitance values wiU have an etTect only when the node is charged. One can also see thlt a .wltage 

soun:e connected in series with a discharged capacitor is equivaleat to the capacitor charged to that 

voltaee. 

·Logic signals are related to 'fhev8;tlin networb in two mprctS; as is shown in Flgure 4.2. Farst, a 

logic signal describes the total beha~r of a logical conductance at a ~ node pi terms of a single 

soun:e of state. i.e. either an input node or a nonnal node. aAd a ~ networt element. i.e. either a 

logical conductance or a logical capacitance. Second. a logic signal provides a direct model of the 

Thevenin equivalent of an order of magnitude network. 1bat is, the logic signal at node llj models the 
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Fig. 4.2. Relation Between Logic Signals and Thevenin Networks 

Driving Signal 

Yt 
xr-D--n1 

t ....... p 

Charging Signal 

y • "t 

.__ ___ __.QND 

Thevenin equivalent of the order.of magnitude,netWOrt '.as viewed at a port with positive termit\at "i and 

negative terminal ONO. ··Thus we caa prove·· preperties··about toatc ·&lgnals by demonstrating· the 

The relation ~een a logic signal and theTheveninequivatent of an order of magnitude BetWott 

is defined as follows. For an order of magnitude network the open-circuit voltage v thev and the 
'··' .. , 

zero-state conductance gthev or capacitance cthev are given by rational functions of p. If we let 

YOO = /im. V 
thev P _ 00 thev 

then the logic signal corresponding to an order of magn~tude network will have state 1 if v ~ev = V dd• 

state O if v :v = 0.0, and state X if 0.0 < v ~v < V dd· The strength of the logic signal depends on the 

degree of 9thev or cthev· A driving signal has strength in the set r = { 'Yl· ...• 1 p }. A signal of 

strength Yk corresponds to an order of magnitude network in which de'gthev> = k. This strength also 

equals the strength of the strongest path in the logical conductance network from the node to some input 

node. A charging signal has strength in the set K = { "l· ... , "q}. A signal of strength "k corresponds 

to an order of magnitude network in which g thev = 0.0 and de' cthev> = k. This strength also equals 

the size of the largest node connected by some path in the logical conductance network. A null signal 
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represents an open circuit That is, the corresponding order of magnitude network has zero-state 

conductance and capacitance equal to 0.0. As a consequence, the Thevenin voltage is indeterminate and 

is denoted by the logic state .1_. The null signal serves as an identity element when combining logic 

signals much as the number 0 is used in other domains of mathematics. 

Just as a Thevenin network provides a composite description of a linear network at a particular port, 

a logic signal provides a composite description of a logical conductance netwOJt at a particular node. 

However, whereas the Thevenin equivalent of a linear network depends on d\e mmplete structure and 

exact parameters of all network elements, a logic signal dC"pends only on the dominating effects at the 

node. The strength of a signal depends only on the strength of the maximum logical conductance path to 

au input node or on the sil.e of the largest conacx:ted eonnal·aode; and•lhe state depends only on die 

8'ateS of input nodes CORDCCted tJy muflnum ~ace padls or die *es of tile Jaigest oouected 

normal nodes. As a consequence, finding the logic signal for a logical rondedancc netwart will prove 

much easier than finding die Thevenin equivalent ofa linear aetwmt. 

4.3 Rules for Logic Signals 

A simple set of rules describe the logic signals resulting when a logical conductance network is 

constructed by a series of primitive steps. These rules will first be listed and lhen shown tD descnl>e 

arullogous eftects in order of magnitude nctworb. 
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1. Formation 

a. Input node ~ fonns a logic signal of strength y P and state xj. 

b, Nonnal node nj fonns a logic signal of strength capj ~d state Yj· 

2. Coupling 

A logic signal coupled through a nonzero logical conductance fonns a signal with the 
state of the Original -sl81'ffll aed wim sttengtlt ettuatw: tile minimum of the original 
signal strength and the conductance strength. 

3. Combination 

Two logic signals can be combined into a single signal as follows: 

a. A stronger signal will override a weaker, and the weaker signal 
can be ignored completely. 

b. If cthe 'Signals have the same '5'feftgth and state, the resulting 
signal has this strength and state. 

c. If the signals have the same strength but different states, the 
mukilfg signal has this strenglh:aftd state·X. 

4.3.1 The Formation Rule 

The fonnation rule ~ribes the logic signal formedd>J an isola~ input or nonnal node. 
~ ",,/ \ .' ,_ ~ ' -. ~ ·. ' - ' 

Comparing this rule to the Thevenin aetworks of Figure 4.2, one can see that the logic signal funned by 

input node ~ corresponds to a Theve~ network with,~ thev set according to the logic state xj, and with 
' • ' - • - •, ~ - ¥ • • 

deg(gthev> = p, where y P is the maximum allowable transistor strength. This resistor was not present in 

the fommlation shown in Figure 2.4, but for the order of magnitude medc!liitctrilli>behave just like an 

infinite conductance. That iS, it acts as an identity element when.resistors are Combined in series and as 
i_. ~ ~ 

' - v ~ . ' ' . ·- -·" . 

an annihilator when resistors:are combined in parallel. This avoids' the need tD add a special strength to 

represent an infinite conductance. The logic signal fonned by nonnal node nj corresp<>nds to a Thevenin 

network with v thev set according to the logic statt: 'yj 'and if capi ~·Kt ·then de~ cthev> = k. . This 
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combination is equivalent to a capacitor with one side connected to GND and charged to the voltage 

Ythev· 

4.3.2 The Coupling Rule 

The coupling rule defines the effect of connecting a network described by a logic signal through a 

logical conductance to a node. Figure 4-3 .,ws how. tlJis rule dttaibea the effect in the.corresponding 

order of magnitude network. A driving signal of strength Yt corresponds to a Thevenin network with the 

passive element having conductance 91• where deig1) = k. As was shown in the derivation of the series 

rule for logical conductances, when this element is connected in series with a conductance 92• the net 

conductance has degree equal to min(deig1). deg(gi)). .By the t)l'dering of signal strengths. the 

connection rule describes this effecl A chaEgillg ~of ~;•t ~ds &0 a Thevenin network 

with the passive element having capacitance c where deic) = t. This capacitor in series with a resistor 
. . 

of nonzero conductance will have a JlCt~.ofO.Oancla:netcepn:ctmtOC of c. By our ordering of 

Fi&. 4.3. 1be Couplin& Ihde 

Driving Sipal 

111 

----------ONO 

----------OND 

min( 9192) 
;. 

.__----OND 

-----.. ONO 
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signal strengths, a nonzero logical conductance strength will always exceed the strength of a charging 

signal. and hence the minimum of the signal strength. anq the logical cQnductance strength equals the 
. - ,. ' , 

signal strength. 

4.3.3 Combination Rule 

Fig. 4.4. The Combination Rule for Acyclic Connections 

Driving-Driving 

~l 

Driv~ 

01. 
fi 

., 
2 

. _!'; 
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The combination rule describes the effect of connecting two networks described by 1ogic signals to 

fonn a single network. Fim. let us asmme the two netwofts are· independent Then this rule can be 

demonstrated by showing an analogous effect when pons of independent order of magnitude .networks 

are connected. This involves three different cases as are shown in FJgUR 4A. 1lOt a>Untin& the triv.ial 

cases where one of the signals is a null sipal. 

When two driving signals are combined, Ibis corresponds to connecting a Thevenin network wilh 

voltage v 1 and conductance g 1 to one with voltage v2 and conductance g2. The ze~state conductance 
·-; . :: .",.!- .!' 

equals the effect of coonccting the two resistors io parallel. and ~ 

The combination rule yields a.signal with strength equal to the maailrlum Qfthe two signal strengths and 

hence COl'RCtly chanderizes the value of glbcv~ The open~ voble is liven by 

-• , .. , - 91<P)l(1<P> + 1.p>vjp> 
vtnev""' - 11(,) + ti(p) · 

where a and /J are positive oonstants. When g1 ........ 9;z. v:V will equal 0.0 {or V .w) if and only if both 

v1
00 and v2 

00 equal 0.0 (or V ~ The ~--~a;1fpal widl Sllte equal to the state« 
the stronger signal if the two signals have di._~ apd otherwise it yields state O (or t) if ad 

only if both signals have state o (or· l-.) Thus the combination ru~ conecdy char-=terizes the value of 

v~. When two charging signals ~ combined. this ~conaecting a Thevenin networt 

with voltage v 1 and capacitance c1 to one with voJta&e v2 and c.apacitance c2. The analysis of this case 

proceeds much as with the previous case. When a driving signal is combined with a charging signa1. this 
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corresponds to connecting a Thevenin network with voltage v1 and conductance 91 to one with voltage 

v2 and capacitance c2. The res'ulting network has ·a.zero-state.conductance 91 and an open-circuit 

voltage v1. Since a charging logic signal is always weaker than a driving signal, our rule co~tly 

describes this effect. 

We have shown that the combination rule holds when independent networks are combined.; In fact 

a similar rule holds for arbitrary linear networks and hence we have not yet achieved a major 

simplificiition over more detailed e1ectrical models. If the combination ru1e is applied only to 

independent networks, however, it can only be used t<rconstruct acyclic networks. In general. networks 

may contain cycles, and to CORStruct these we must create cycles by combining the logic signals desCnl>ing 

two nodes in the same network. This COi"responds to connecting together two ports of the same order of 

magnitude network to form a single port With logical rondtlctance networks, the effect of this cyclic 

connettioo is given by simply applying the combination rule «i'the»tw<J signals.· 1~'6d\e.t words, the port . 

behavior of the order of magnitude network formed by connecting two ports of a network N is equivalent 

to the port behavior of the network fonned by connecting the·port;s of two :different copies of N, as is 

depicted in Figure 4.5. This can be motil'(ated intuitively by nating 1hat a logic signal describes only· the 

dominatin8 effects at a node and lbese efftdl involve onty,simplechlnoterizacions of acyclic paths. This 

Fig. 4.5. The Cotnbination Rule forCycHc Conneetions 

: 

1 N 2 = 1 N 2 1 . N 2 
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provides a major simplification over general linear network models, because the Thevenin-Norton 

Theorem applies only when the network N and tbe load L -are indepettdeat In general the Thevenin 

equivalent of a linear network can be found only by solving a system oflinear equatiom. 

To show the combination rule holds for cyclic connections, suppose ports I and 2 of an order of 

magnitude network N are connetted. If one of these ports is deQibed by a dri¥ing sipal while the other 

is described by a charging signal. there can be no path. in· N between die· positive terminals of the two 

ports. Therefore this case is just lite an acyclic connec:tion. S~ly. if both portS are described by 

charging signals. either tiler~ is no path in N between the positive terminals of die two ports. and he~ it 

is just like an acyclic connection, or there is a path aa4 the aew c:onaection is redundaaL The 

combination rule correcdy describes both of these poaibilities. Tbemore dit&ultcase occurs when bodl 

ports are described· by driving signals. We. must shew frat the new. aetwork · wi1I bave a1 ~ • 

conductance gthev which obeys equation 4.2 and a Jimitiag cme.~t voltage. v~ whicb ohe,s 

equation 4.3. 

We can show the zero.state conductance obeys equation 4.2 ming fheenale derived in Chapter 3 tbr 

finding the net logical conductance between two nodes in a 1Daicll~ HtwOrt. This rule atatea 

that the net· logical conduclance equals the Sb'eD8th of the· -... pada between tile two nodes. where· 

the strength of a path equals the weakest logical conductance in the path. (Jiven the correspondence 

between the logical conductance Yt and a resistor widl~'8i~br:a-..i.ru.~of dqrae 

k, we can apply this rule to find the "degree" of the net conductance between two nodes in an order of 

magnitude network, i.e. the degree of the rational function which gives the net ~· The degree 

of the net conductance between two nodes must equal the degree of the path with malimum degree. 

where the degree of a path equals dte degree of the elelftent in the path with minim0m degree. 

Furthennore, we need only consider acyclic paths, because for any cy'1ie·path we can form a path with 

conductance of greater or equal degree by removing the cycles. In connecting the twO-pOrtS of N, we do 

not fonn any new acyclic paths from the positive port tenninaJs to GND, and hence the set of acyclic 
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paths across the new port equals the union of the sets of acyclic paths across ports 1 and 2 of N. 

Therefore 

and the combination rule gives the correct signal strength for cyclic connections. 

We can show that the limiting ·value of the ~:-ci~t voJ~ "v~v .~ys e,q~~tion 4.3 ~y 
-··- . . ' ... - ·-. - -, ·, 

applying an equation for v thev derived in Appendix I by an analysis of multi-port networks: 

v - 91(1.0-k2)v1 + g2(1.0-k1>v2 
thev<P> - g1(LO.....;k2) + oi1.0-k1~ (4.4) 

AU of the terms in the above equation are rational functions of p. The fact~ k 1 and k2_,describe the 
' - ,: -.~ f ~~ ·'- ..;': 

strength of the connection within N between the positive terminals of the tWo ports. If both equal 0.0, 

then there is no connection and the equation reduces to _the one for an acyclk connection. If k 1 (p) equals 

1.0, then all paths from the poSitive terminal of port 2 to voltage sou~ pass th~o-ugh .he'P<>sitive 
-. ~. 

terminal of port 1, and vic1rversa. For values of k1(p)be~een(txctusively) O.O;and·t.o, some paths from 

the positive tenninal of port 2'-to.voi.aa,e saun:espass thfou,gh:dle pOSitive terminal of port 1 and some do 
'-f >~-. 

not These factors obey the following properties for any poSitive value of p: 

92(P)k1(p) = 01(p)ki(I>) 

0.0 < k1(p) < 1.0 

0.0 < kz{p) < LO 

k1(p}v1(p) ~- v,P) 

k'}.(p}v'JJP) < . v1(p). 

The second and third inequalities imply that k1 and k2 have degree less than or .equal to 0. Let us 

consider 3 cases. 

1. 91>92 

Then deg(k2) = deg(g2k1tg1) < 0, and hence deg(l.O-k2) = 0, while deg(l.O-k1) < 0. Therefore 
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An analysis similar to the previous case shows that v~ == v2~. 

We wish to show that for some positive constants a and fJ 

00 00 00 
vthev == av 1 + /Jv2 · 

Consider the following four poaibilities: 

00 00 a). k1 < 1.0, t 2 < 1.0 

Then 91(1.0- k2),..., 92(1.0- k i>· and the desired result will clearly hold. 

b). k1 oo == kz oo = i.o 

This implies that v1 
00 = v2 

00
• in which case 

00 00 
c). k1 < k2 = 1.0 

00 00 
Then vthev = v2 , and 

00 00 00 00 • ·. •. ' 
Furthermore k 1 · v 1 < v thev < v 1 , and therefore 

0.5k1 oo.vl oo + O.Sv2 oo < v:v < 0.5v1 oo + 0.5v2 oo. 

For /J == 0.5 and for some a such that 0.0 < 0.5k 1 
00 < a < 0.5 the desired result m• hold. ... 

00 00 
d). k2 < k 1 = 1.0 

The analysis of this case proceeds much like the previous one. 
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Therefore, when 91 r.J92, v:ev must depend on both v1
00 and-v2

00. This completes our proof that 

the combination rule correctly describes the effect ofa: cyclic connection. 

4.4 The Steady State Signals · 

F.ach node 11j in a logical conductance network can be characterized by its steady state signal, 

denoted vi, analogous to the Thevenin equivalent of the corresponding order of magnitude network at 

this node once it reaches steady state. The state of this signal equals y i• the steady state of the node. The 

value of this signal can be found by constructing the network. by a series of primitive steps according to 

the three rules. This task can be difficult and tedious, however, and must be done separately for each 

node. Instead. we will show that an equation can be derived which expresses the value of the steady state 

signal for each node in terms of the signals formed by t!1c input nodes and normal nodes in their initial 

st.ates and by the steady state signals on other nodes. 

Let us first introduce some notation, much of which will be replaced by more concise notation in 

Chapter 5 when the logic signal concept is form3Uzed into an algebra of logic signals. For a nonzero 

strength value s, the expressions +s, -s. and xs denote signals with strengths and states 1, 0, and X, 

respectively. The null signal is denoted X. Signal-valued variables are denoted with italic characters. The 

vector x denotes the signals formed by the input nodel in state x. That is xi has state Xj and strength y,. 
Similarly, the vector y denotes the signals formed by the normal nodes in their initial state J. That is Yi 

has state Yj and strength capi. The signal resulting wh~n logic signal a is coupled through logical 

conductance g is denoted cple(a, g). According to the coupling rule this signal will have the same state as 

a and strength equal to the minimum of g and the strength of a. We will adopt a convention that 

cple(a, 0) = A, i.e. any si~ coupled through a zero coaductance yia. a nuB signal. 
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The rule for combining logic signals imposes the follow partial ordering on signal values: 

xyp 

/\ 
-yp\ I +yp 

xyp-1 

/\ 
-yp-1 

\/ 
+1,..1 

XYp-2 
• 
• 
• 

xyl 

/\ 
-11 +r1 

\/ 
XICq 
• 
• 
• 

XICl 

/\ 
-"1 +1e1 

\/ 
A 

That is, for signals a and b, a < b if and only if the effect of combining a and b equals b. Thus, the result 

of combining a set of signals equals the least upper bound (abbreviated l.u.b.) of the set for this partial 

ordering. This partial ordering will prove important in our mathematical development It provides a 

concise statement of the concept that the logic model considers only the dominating effects acting on a 
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node. 

4.5 Constraints on the Steady Steady State Signals 

We can use the rules of logic signals to derive a set of constraints which the steady state signals must 

satisfy. Let N be an order of magnitude network in which node "i has capacit.ctnce ci• initial voltage Yi· 

and steady state voltage vi~ Suppose we were to· eonaect an additional 'capacitor to this node with 

capacitance c wh~ c .-.. ci• and charged to an initial voltage y, w~ y ~Yr giving.a netwod: N'. 

Then the .new network would be. equivalent to the old~ i.~. N:;: N' •. • Equivalent order of magnitude 

is performed _with a logical con~ ~~o.rk. tbe. logic $pals should remain unchanged. This new 

application of.the combiaation rule to Yj and "i aiv.ioa 

Similarly, suppose that N has a total conductance eij connecting node ·"i to the voltage souree 
; <" • ' , , • • 

corresponding to input node ~- Then if a conductance e is added between ni and this voltage source such 

that e r-.J eij• the new network N' wilt .,e·equivalent, i.e. N == N'. Therefore, if we perfonn an analogous 

process with a logical wnductance network. .the logic sipala sllould remain uncbanged. A ~r wilh 

order Qf 111agni~de condu~ e is. described by;tl1~1e8ical COJtductence eij, and hence ~e effe:ct of tis 

new cond~e on .lit is desciibectby ~ fignet cplt(Kj• ~&Wiaa 

This result holds even if eij = 0, because cpl'i;(,x~ 0) = A.r_and ~ ~ A. By a similar line of reasoning 

~ = tu.b.{cp/t'(vj• 8jj)• 'i} > cplt(vj, Rij}· 
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If "i is greater than or equal to all of these signals. it must be greater than or equal to their least 

upper bound: 

\} > Lu.b. { {Yi} U { cplef.xj• eq> 11:::;;.J<m} U { cplef.'j. 8ij} I l~n}). 

If we define the function/ i as 

/i(•) = lu.b. { { >'i} U { cplef.x; e~ I Is<m} U { cplt("t &ij) I l~n}), 

then these constraints are expressed by an equation .. >fir}. Jr we then.let f denote the function 

yielding a vector with ilh element equal to die applitation r# Ii to ·tile argument, then die set of 

COllSlrainls b aB node si81'* can be apreaed by a silllle'equado&·r >If. r). 

We can show in fact that'=/(,,_ In other word&. IM steadr'Sfale9ipal on each node equals the 

leas& upper bound of the signal fcJrmed initialy OD die node aact• sipllls M 14aceat input and normal 

nodes coupled through the 1ogical conductances betwtea•tbesL ·To stiow lhis. ·Jet? denote the ftCtor 

given by ; = /(r). and let rand r' denote the vectors of signal strengtm for the signal vectors rand;. 
~ \ . 

That is, for any value of i, ri equals the strength of .. and r' i equals the strength of -Ii· Suppose first that 

for some "i· .. is a charging signal. ie. it has stren&m ri E I. Then ror any "; such that lij > 0. 

which implies that 'i = .; r If. cm~ odlel'lawl. fij = o for aDJ. .- node "i is~ isolattd and 

thedort: 'i = .. i = Yi· Nm. SUPIM* .. is a <kh:idffsipll· ie.. it ...... iye r. If ~ > •r .. 
either ri > r'i or l} has state X and .; i bas 9late t or 1. · lr'if ~ rl'p ...... ,.-nOnnat ftOde· ,., lhe 

constraints on the logic signals imply the following.constraints~ ~ sipal strenatbs= 
': • • JI.· } •,' .. ' ·• ,-.•- ·,, 

I· ) r'· > mifi11.,._ f.•\ 1 1 - -----..,- r 
1l >r~(> ~~ 

'.,_.:. ,·: 

Therefore, if rj > rr the first inequality can hold only if lij < r' i < rr and if rj < ri• the second inequality 
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can hold only if &q < r; < ri. Similarly, for any inl>Qt_,. ~· 

r· > r'· > I · I -

In other words, all logical eonductances connected. tO "i have strength ~ than ri, the strength of the 
_,1 7 

; , ,. 
::~+,-, 

steady state signal. Therefore, since any path .frrilrt ~to an·'.ltput,.aode must pass through one of these 

of "i equals X and dle·Jtate;of¥1<.cquals a. Fona1111Q11e :".fjf~.~>l\,:tben:rj > ~ rf):c: ri. 

Furthennore, v'i- > cplt{ 'j• Sij)· .and therefore 'j must have state y j -~ .._. By'arginu1ar a.e efreaSoniag. 

any node ~ for ~~id! eij ~uals ri. 9,t ~ ~ ~ater~~ .XS = O., ~~ ,<>t¥; 'f<>Fds.Jq1y :node connected to "i \ . :· , i:·:~ -'_:' ··" .. ~- --- .4_ , .. _:_, . ..:.:·: •• : "' '"r: .. -i-··f--·· ", : ~ - ~~ ·'·· -- .-

by a logical conductance of strength greater than or equal to r1 must have state 0. Let us look at what this 

implieS in the correspondmg order ~f magnitude network.
1 

By; Kl~h~s ;C~rrent Law~ the net current 

flowing out from node "i equals 0.0: 

m 
:I (Y· - X·)8·· + 

J= 1 l J lJ 

- ; ~' - . 

n 
:I (Y· - y.)g.. = 

. 1 J. 11 

J:dl .It 

0.0. 

In the above.equation.alltel'Qlare rational functions-of p. ~ rp= Yt''we·can divide thmu8h by 

p1 and take the limit as p approaches infinity: 

P 1!:' a:i C!ti- xi~ + ·;~ilfn~)'iB P4 · 

Let us look_ at the}ndividual terms in this equation. For any j such tha~. ~gq> < k, 

Jim (v· -v-~ = (v·oo -v.oo) lim !ii = O.O. 
p-+ C'lO 1 J.pk . ·. 1 . . l - ,, ....+;,~·,,t., 

FOF any j ·such that.de3(9g)> t, Yj = 0, and them'ore v/)(> = t.ct. ,Furthemlore, by OUT assumptioa 

y i = X, and therefore v{~ >it.9. This impJies:tbat . 

Jim (v· -v·~ 
p-+00 I JpJ. 
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A similar line of reasoning shows that for any j if deg(-eiy < t, 

lim (vi -x~ = 0.0, 
p--t 00 ,, 

lim &·· 
(vi - XJ·~ ) 0.0. 

p--t «> . p• 

These results would imply that the above summatioa is greater than 0.0; which is notpos&ble. Therefore 

vi cannot have state x when v'i has state e. and a similar lineofreasoniq sbowstkat."i caunot have stare 

X when. v' i has state 1. This completes our proof that r = /(IP).. 

We have shown that the rules for logic sipaJs imply a set of mnstraiiMs which •ust be satisfied by 

the steady state signal for each node "i: 

~ = 1.u.b. ( { >'i} U { cple(xj, eij)l I~<m} U { cple(";, Ii;} f I:::;,j<n}}. (4.5) 

Note how we used the fact that the combination rule holds for cyclic as well as acyclic connections to 

derive the constraints on the steady state signal for each normal node in_ terms of the steady state signals 
!$'.?" ·,._, ' < 

on other nonnal nodes. No such set of constraints can be given for ~-Thevenin equivalents at the 

different ports of an arbitrary linear networt, becaQSC cyclic combinadom cannot be dealt with and 

network concepts. 

4.6 Specification of the SteadJ si.te Signals 

. .~ ! 

The constraints on the Steady state signals given in equation 4.S can bC expressed by a recurrence 

equation of the fonn , = /( r). This ~a in itself. however, ~ not pR'*ide a unique specification 

of che steady Slate signals. because it may have mukipkmlurions; For .exanpk;. ~ ,lleflrOfksJa Fwure -: . ,. ~· 

4.6 contain no input nodes. and assuming the nodes ~iaitial:!ll.ate X.tbt·steady ·start.si&Dals of the 

nodes in both cases should equal 31. Suppose in ~.first ex31J1Ple, howcvc.r, that we Jet a equal +yl" 
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Fig. 4.6. Networks with Extraneous Solu-
Kt n1 

n1 "1 . 12 Y2 

'"t. "2 

Then, since Sii equals y2, and +y2 = cplt(+y2, y2). the signal a Satisfies the recurrerlce relation a= /(a), 

as would any signal such that xic1 <a< xy2. Tue ~ond example shows a s~ifar case in which two 

nodes have mutually dependent signals, and hence an~·'sOlutiUn siJchtbat xte1 < a1 = a2 < xy2 would 

satisfy the recurrence relation a= /(a). These examples demonstrate that the equation a= /(a) may 

have solutions in which. some nodes have signals ~ than the steady state si~als because of 

extraneous ,cyclic dependencies allowed by the recurrence relation. In the second case. a single logical 

conductan~ creates cyclic .depende,ncies., in both directi(>DS. These extraneous. soluti~ have no physical 

significance; they are artifacts of the simplified view of electtjcal netyr:o~~ provided by logic signals. 
- --~ " -·. ' - - . - ;,. - : 

Fortunately, we can exclude these extraneous.soluqons by considering only the minimum vector 

which satisfies the recurrence relation. Let v' denore the minimum solution of the equation a= /(11). 

That is, v' = /(v') and for any /1 such that /1 =/(a), v'i < °i for all i. We will show in Chapter 6 that such 

a unique minimum solution must exist The minimum solution depends oBlyon the initial sigltlls on die· 

nodes and the consistency constraints impo'!ed: by the recurrenee relation. Therefore, it seems quite 

reasonable· that the vector of steady state sigilrus , shoillf equal the minimum solution v'. By a 

generalization of the technique used to show that v = /( v), we will show that ' = v'. This gives us a 

complete specification of the steady state signals in tenns of a simple set of Operations on logic signals. 
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First suppose for some node "i· lf is a charging signal. Let A equal the set of all nodes connected by 

some conducting path to "i.· Then lf describes the result of charging sharing between these nodes: 

'i = 1.u.b.{Yj 1 "j EA}. 

We can show that v'i cannot be less than 11 using this equation. For any ".i and nk in A such that Bjt > 0, 

v'j > cple<Bjt• ; t> = ./ k > cplt<ljt• -I;) = y'j• 

and therefore v'j = v't· For any node ".i EA., we can show by induction on the length of the shortest 

path to "i. that ,•i = vj. Furthennore ,•j > Yj for all ".i which implies that 

,'i > lu.b.{Yj In EA} :;: '"r 

Therefore 'i = v'i for any charged node. 

Next, let us consider driving signals. Let r and r' denote the vectors of signal strengths giving Ille 

strengths of the elements oh and;, respectively. For any node "i• ihi > ;i• eidler ri > r'i or 'i ha state X 

and ,·i has state O or 1. Let s E r equal a strength value where' for aD J Sudl that 1 > s. rj = r'j• but fbr 

some i, ri = s > r'i· Let A and B denote the sell 

A = { "i Is = ri > r'i} 

B = N-A. 

S ) r'· > mjmfb._ f'.\ 1 - __,,.. y 

r· > mi1't1 .. r..\ 
J - ---.· I" . 

Therefore, if rj > s. then r'j = rj and the first inequality can hold only if 3ij < s. Similarly, if rj = s, and 

since ".i ~ A, then r'j = rj and the first inequality can hold only if 8ij < s. Finally, if rj < s. the second 

inequality can hold only if 8ij < s. Furthermore, for any input node ~ 
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s > r'i ~ mMte;; y _,) = e-,,; 

and therefore eij < ri. 1n·Other wotds.alt~.~nces~ ~in A to input or normal 

nodes outside of A have strength less than s. the.stx:engdl, of_d,le steAd¥ siate signals for all~ in.A. 
. . , :._,__ - . ···- - .... .. 

Any path from a node in A to an inpqt node must pass, tbr9ugl\. oqe .of~ conductances and ~ 
-· ' - . . - '· ,.· . - .._ - " 

cannot have strength equal to the signal strength, but this contradicts the fact that the strength of the 
.. 

steady state signal equals the maximmn bf these path strengths. "'l'herefore, there Can be no strength value 

s satisfying our requirement and ri = r'i for all i. Next, lt~I f!quat * stmtgd1 value Where fut alt j suCh 

that rj > s, 'j = v'j· but for some i. ri = s4tbd ~ > f~~· Ut-A-~ ,B <fnote the following sets: 

A = { ni I ri = s, 'i has state X, and v'i ._state 0} 

B ~ N- A. 

Then for any~ EA and ".i e Bif'&ij >'ri, thell ~ > min(Ji_fri) =;ri.' Pdtthemmre;· ''i > cj)A!(~.lij). 
and therefore 'j must have state y j = :e .: ·ny a simi1at IUle' of~ 1or 'ally "i E A and ·aiiy illpOt 

node~ for which eij equals ri(~~-~~ be.grea~~.~-= O:Thiuh~ tflatJor,any normal node in Bor 

for any input node, if it is connected to a node in A by a logical conductance of strength greater than or 

equal to s, it must have state 0. Let us look at what this implies in the corresponding order of magnitude 
',,. ---. ·.:.:,, 

network. By Kirchoff's Current Law, if we form a cut-set consisting of all branches connecting nodes in 

A to nodes in B and to voltage sources corresponding to input nodes, the net current through this cut-set 

must equal 0.0: 

m 
I I (vi - xY,ij ~ ~ , . . .I Jvi - ~~ii = 0.0. 

~EAj=l ~EA "jEB 

In the above equation, all terms are rational functions ofji.-: Fei';s :I: :tf ;'We em divide 'dtrougftby pl and 

take the limit as p approaches infmity, 
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Let us look at the individual terms in this equation. For any i and j such that deggij) < t, 

lim (v· _ y.~ = (v.oo _ y.oo) Jim !li = O.O. 
p -+ 00 1 Y pt. I J p -+ 00 pt 

For anyj such that ll_j·E Band dq(gg) > t, Yj = 0, and therefore vj 00 = 0.0. Furthennore, we have 

assumed that for any "i EA, y i = X, and therefore vi«>> 0.0~ This implies that 

lim (v· _ v·~ = (v·oo _ y.oo) Jim !ii > O.O. 
p -+ 00 1 J ,t 1 J p -+ t)fJ. ,,.,. 

A similar line of reasoning shows that if~ e~ < t, 

and if deg(·~> t. 

l" •·· un (Y· - X·~l = Q.O., 
p-+00 I Y,1 

Jim (Y· - X·~ ) 0.0. 
p-+ 00 I }'pt 

These results would imply tllal the above summation is greater then O.~ ·~ is not po&SiWe. Therefore 

the set A m~ be empty. but a similar result bolds if .4 is de6-d • 

and hence there can be no such strength value s. For all driven nOOe,, 'i = 1' i• which comp~ our proof 
~ ~ 

that the vector of steady state signals , will equal the unique minimum value satisfying the recurrence 

relation , = /(,). 

The constraints on the steady state signals given by equation 4.S give us a specification of the set of 

steady state signals without any reference to an electrical model, as long as we consider only the minimum 

solution. This will allow us to develop a method ~f ~puting ;the ·steadi ··s.. of a logical conductance 

networt wUhout e¥aluaUng &UlY ~ networU. · 
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4. 7 Signal Blocking 

Informally, we can view a driving logic signal_ as describing the combined effect of those input 
-< • • ~ • ~ • ~ • 

nodes connected by a path of maximum strength. Under certain conditions, however, this informal view 
. _; -;,: ..... . . 

may not be entirely accurate, because of a phenomenon we call sign.al blocking. Consider, for example, 

node "2 in the two networks shown in F11Ure 4.7. In both networks there is a path of strength 

min(yl, 11) = Yl to an input node in state 1, and a path of strength mi1'..y2• y1) = YI to an input node 

in state 0. Our informal view would then suggest Chat in both networks "2 = l.u.b.{ +y1 • ..:.'Yl} = ixy1• 

and hence node ni has a ~teady state X. While this ~~ yields th,e correct result for the ~nd 
'' ,:, ~ ._. '. ' 

network, it fails for the first In the first network node n1 will be driven to 0 by fhe signal -y2 and hence 

n2 will also be;dnven to Oby the signal cple(-y2, y1) = -yz- This ex~pie demonstrates tli~t when the 

paths.to input nodes are not~ some:signals maykblocbd·aloeg;a padl by a sipat-Ofgrea&er 

strength. For example the si8nal +yl is blocked at ni by the~ ...;y2, and hencu1ode n2 is un.aftected. 

by this signal Our inblnal view does.not t&e such apesriitliitymto>acmuat. although our ~ tOanat 

method <k>es. Note that this. phenomenon can be ipomd in· reslriclld Jegical conductance networts; 

which are defined as networks in which any logical mnductanoe between ;two normal nodes must have 

Fig. 4.7. Signal Blocking Exnrle 

Y1 yl yl 
yl 

"I 
nl "2 

• nl 
Y2 yl 

Y2 
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defined in Chapter 2. In restricted networks. the strength of any path to an input n• will be 

determined by the strength of the final logical conductance in the path. and hence the informal rule will 

correctly describe the precedence between signal paths. 

Signal blocting creates difficulties in the formulation of a medlod for computing the steady state 

signals, but a resolution of this problem leads to an efficient method for computing the target state of a 

switch-level network. 

The simple set of rules for logic signals lead to a specification of the steady state siguls: 

'i = Lu.b. { {Yi} U { qlt(7 ;f ll~<m} U { qlt(-7 8ij) ll:S.i<n}). (45) 

"WMR dlc dements of r. must be the minimum set of sipak Sllisf)illg the M¥e equation fiJr aD i Sin£e 

the saeadJ state y i equals the state of dae sigmt ljo Ibis livts •a·specifkmoeoflhe Sleady state k aay 

JoaicaJ conductance netwod ia tams of a simple set of opcnlioM Oil top1ig9als radael'dau in terJBS.of 

an cJeccrical model Tilus we have completed aur Lansilim bm a·~ vieW of the 

switdl-le"ld model to a more abslnct Jogicai view. From dais point anward we wDI cltal oaly widt dlele 

logical coacep&s. Theonier of mapitnrdearical aetwort JBOde1 baslbtYCd out its useAd Ile. 

The logic signal· formalism tales advantage or our simp1ified model or tbe eiectrical behavior of 

switch-level networks. In general linear networks. the state variables fa.e. noc1e· vokaga) are to some 

degree dependent on the complete network structure and the exact parameterS of all connected network 

elements. As a consequerq., computing the steady state involves solving a set ?f; sitnultaneous linear 

equations. With logical conductance networks. on the other hand. the signal 'on a D<>de'generally depends 

only on the network parameters along a small number of paths, and consequently the state can be 

computed much more easily. 
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Many logic simulation programs use values (lenerally cafled "~~ ·~· describe both legic 

state and relative precedence. Such values corN$pODd closely k> loaic signals. For example the high 

impedance or ff state described in Cbapter 1 corresponds closely to the null sigrull A, 'becaUse both 

e0C9de ~.~ ~e and ~.itl(!e,,~ v~ iWf .• ~,-~ •otkJ>): fPQD~~~ 

an<l~patb~,val~.~~.~set,~qt~.~-~~w~F~,ot\en~)lQtdiatlar 

the~ncy;~y.~~-~~-~~-~~J<P9"4k~!W"1::.'Jlle,~.f9flogicsipls 

outJined in this chap~. Ol1 . the ~ 11-1. -~' -~, b;ql~-- io.to ~ algebra w:ith. ~· 
' : ' , - ' . ' ; ' ... - ~- ... · : . ~ , . .. ,. ' ., . " . ,- ' . ' -- ' . ' ~ ,. . - - . 

~ . , ' '.! -, 
' -~"' ' i: ! • 

; l. 



5. An Algebra of Lock Signak 

5.1 Introduction 
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Shannon showed originally that Boolean algebra could be applied fD the study of relay networts. 

and later this algebra was applied to logic gate netVmrts. Witb MOS netWorts. however, BOOlean algebra 

does not suffice. Although lhe nodes mume Boolean (or t:ernary)Jogic states, the netWOrt conditions 

which create these states depend on the relative sizes or C011ductat1Ces ·amt capacitances. TherCf'ore, the 

conductances and capacitances cannot simply be diaracterized by' Boolean values. Furthermore, in a 

voltage-driven logic. one must considei' tile state of a signal' source~' aS wen as the strength of tile 

conductance path to it We will develop our own algebra based en ttie:iules·of'Jbaic~ which retains 

much of the simplicity of Boolean algebra while allowing a more detailed description of the networt. 

5.2 General Defmitions 

Let us start by defining some terminology, most of which is consistent with st.andard mathematical 

practice. 

For domains 9 and 9' and a function /'!!J -+ 9' define the poinlwise uleJUion to vectors of size n, 

i.e. /"!Jn -+ ~·n as the vector resulting from the application of the function to each component of the 

argument The pointwise extension of a function with more than one argument is defined as the vector 

resulting from the application of the function to the corresponding components of each argument The 

pointwise extension to matrices of size nxm is defined similarly. For example. in linear algebra matrix 

addition is the pointwise extension of scalar addition. Whenever a .:aJar function is shown applied to 

vector or matrix arguments. its pointwise extension is implied. 
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Observe that the pointwise extension of the least upper bound operation fut sbme ·JM11.ial ordering ,equa1s 

the least upper bound operation. i>r the extension of the partial orderiaa. 

For a domain~ with partial ordering ~ and a domain 9' with partial ordering<', a function 

f "!!J -+ 9 I is monotoltk if 

A function of more than one argument is monotonic if it is monotonic f9( each ~nt,. .Qne can easily 
;.~~;(~d· ;i.· ~ ;, <~ ~ , -,, . ·, ~ ~,'~~ 

see that the composition of monotonic functions must be. monotoqic, as is the pointwise extension of a 
: . . ; ~ ~ ~ 1 . 

monotonic function. 

S.J TJte Algeltra of Signal Stre11&tm 

Logic signals have strengths in the finite set 

'J = { 0. "I····• "tt Yi··•· I Ypt 
J; 

When two !igna1s cOmbine. the resulting signal ·haS strength equal to 1he maximum of the two sipal 
' --;,> ' 

to the minimum of the signal and condUctance strengths. The binary operations T and 1 are defined to 

give the maximum and minimum of their arguments, i.e. 

a t b = ma.x(a. b) 

a 1 b = min(a. b). 
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These operations have properties similar to addition and multipltcation. respectively. We will refer to the 

minimum of a set of values as the }WOduct. and die mazimam of a set of values as the sum. Sipal 

strengths can be described by Ill algebraic system "'· t. l. a 1; whick sacisfies lhe following (net 

exhaustive) list of properties: 

la. (1. T. 0) is a moaoid: 

i. a.bE1•atbE1 
ii. a T (b T c) = (al b)f c 
ii. a f 0 = •ta = a 

i. 
i. 
ii. 

a.bEJ==r> a.lbEJ 
•l~.lc) = (a.l h)lc 
a!y = l la =a , , 

c. 0 is an =ei!tiWO'r IJr !: 
a.10=0 

2. t is commu&ative and icfempoat· 

i. afb=~t• 
i. afa=a 

3. ! disttibutes OYef t: 
a l (b t c) = (a l b) t (•.l c). 

(dmed) 
flPOC iadwe) 

h, ..... .,} 

4. If a1, ? .... 8r H. is a c~ouat1'bk ~· Qf. ekmc.,)11 t,,, .... 
al T 32 l ... t 3i T . . . eD11s and is unique. Moreover. assoclativitJ, 
commutal.ivitJ, •ickatpotlinc:capplf ID jnipjre•wd .... 'flllill: .. ' · 
(sequences of values combinecl widl t .) 

5. ! distributes over countably infinite sums as well as finite ma. 
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The above P~.~~ ... --~·~.,,c~Jelffirini~Win; Aho. 

H•~-O,t\and~P,~.1'decs·M:f90'4.•M•fWl•"-..,"'~·~·*~·il).ve~~ . - - . ·~ . - " . . - . -

th•SUJD<>PCrationl~ .f~~.!Rllll,~~--..-"~'-'.~ 

We can define ved'ots aad tnattices of suenath~wM;h··~.~ •to.~. dle Jl~Oll 

structure and signal stre~ in terms of matrix equations. If the pointwise extension of l (!) is applied 

to two vectnrs. the resulting V«tDr will have elements equal to the componentwise maximum (minimum) 

of the two vectors. The pointwise extension of l then has properties similar to vector and matrix addition. 
- .r. , -

We can define a matrix product• for strength values where f is analogous to addition aad ! is analogous 

(S.l) 

The properties of closed semirings also hold for the algebra when extended to square matrices. 

That is (:rnxn. f, •, 8, I) also fonns a closed semiring. where :rnX n denotes the set of nxn matrices 

over :r. 0 denotes the ~x whose elements are all o. and I denotes the matrix with y ;s on the diagonal 

and O's elsewhere. 

. . 
For any closed semiring, the closure operator, denoted • is defined to give the reflexive, transitive 

closure of its argument For eumple. if A E 'I 8 X 8 , 

(52); 

'Ibis operator has the property that 

(S.3) 

The closure operator will be useful for analyzi~~ cOndumnce petbs in a network. 
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The operations T and • obey some of the properties of closed semirings even when applied to . 

rectangular matrices and to matrices of different dimensions. In a matrix equation, as long as T is applied 

only to conformable arguments and • is applied only to arguments with the number of columns in the 

first equal to the number of rows in the second, then: 

1. l and • are ~iative 

2. l is commutative and idempotent 

3. • distributes over f. 

These properties will allow us to manipulate and transform matrix equations in the sb'ength algebra much 

as in more traditional matrix algebras. 

The set '! with the ordering < form a complete lattice (35) with f and ! serving as the least upper 

bound and greatest lower bound operations. Hence the set of vectors 'Jn with the extension of< to 

vectors also forms a complete lattice. For this lattice the pointwise extensions off and! serve as the least 

upper bound and greatest lower bound operations, respectively. As a consequence, both ! and f must be 

• monotonic functions, and therefore must be as well. Only the most elementary aspects of lattice theory 

will be used in this presentation. 

One further function over strength values will be required to·exp~ the ability of a stronger signal 

to block a weaker when both signals are described by their men8th :vaiues. This will prove important 

when the equations in the algebra of logic signals are factored into eqµatio(lS in the. algebra of signal 

strengths, as will be described later. Define the fupction block : '!X 'J-+ 'J as follows 

block(a,b) :; {·a. a> b 
0, a<b 

(S.4) 

We can apply the pointwise extension of this function to vector arguments. The function block is 

mo11otonic in its first argument and antimonotonic in its second That is, if a < b then for any c 

block (a. c) < block (b, c) 
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block (c, a) > block (c, b). 

As a result, it satisfies the following properties with respect to the least upper bound operation t: 

block (a t b, c) = block (a, c) t block (b, c) 

block (block (a, b), c) = block (a, bl c) 

b t block(a, b) == bl a. 

Furthennore, 0 serves as an identity element fur the second arsurnent: 

block (a, 0) = a, 

and block is idempotent 

block (a, a) = a. 

This list of properties is by no means exhaustive; In fact all of the above properties hold for the identity 

function of the first argument. However, they will allow us10 manipulate and solve equations involving 

the function block . 

5.4 The Algebra of Signal States 

The network model allows; node states in the set { 0, 1, X }, with O and! ·representing the Boolean 

logic states and with X representing an undefined or errone0us state. We have also introduced a new 

value ..L representing a null state. This value will only be associated with the null signal which has 

strength 0, indicating that this signal is devoid of state. 
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The set of signal states is denoted f"= { ..L. 0, 1, X} aad the elements are partially ordered as 

follows: 

x 

/\ 
0 1 

\I 
J_ 

llle least upper bound operation for this partial ordering, denoted LI, has. the following fuoctimi. table 

LI ..L O 1 X 

..L..LO 1 X 
0 0 0 x x 
1 1 x 1 x 
x x x x x 

The rule for combining logic signals of equal strength is tlJ.11,t the ~ltina sipal will have state equal to 

the original states if they were ~· and state X if they :were ~ ... ·.~ .~e v•e :..L is only 

associated with signals of strength 0, this rule is expressed by the operation LI. That is, if tw().signals:with 

equal strength and states x and y are combined, the resulting signal will have state x LI y. The operation 
~::.:.:.::: "·,.-/ 1~~·''"''.~_--· ~'-- ;::,·:;·, ·. ~ }. 

LI is tenned the consistency operation, because for nonnull arguments it gives a "proper" value (O or 1) 

only if the arguments are.both proper.and equal. Qth~~ i\&h;~aaerrm •;1. 
The set 'f"with tbe ordering .$~a Jauice. ~the opeQ&iQa,U ~beys.~ foll()wiDf;.,· 

properties: 
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l. yLiy=y (idempotency) 

2. xLiy = yUx (commutativity) 

3. z LI (x U y) = (z U x) LI y (associativity) 

4. x < y => z U x < z LI y (monotDnicity) 

The set of signal state vecrors 'rn along with the extension of< to vectors also forms a lattice with the 

pointwise extension of U serving as the least upper bound operation. Hence, the pointwise extension of 

U also satisfies the properties listed above. 

The lattice <'r. <> has both the structure and interpretation of the flat lattices used in denotational 

semantics of programming languages [35, 40)., The "proper!' values 0 and 1 are incomparable, while the 

bottDm element -1. represents an "underdefined" or null value and the tDp element X represents an 

"overdefined" or erroneous value. 

5.5 The Algebra of Signab 

5.5.1 Signal Values 

A logic signal is represented by a pair of values <s, y> where s E 'J is the strength and y E 'f'is the 
' ':;r !..,. •· ,' 

state with the restriction that y = -1. if and only ifs = 0. That is, only a null signal can have a null state. 

Logic signals fonn a set 

The null signal <O, .L> is denoted A. The expressions +s, -s, and xs denote signals with strength s and 

states 1, 0, and X, respectively. The symbols +, - , and x can be viewed as denoting unary functions 

mapping strength values to signals of a particular state with the convention that +O = -0 = xO = A. 

These functions can be extended pointwise to vectors and matrices as well. 
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Signal-valued variables are written with italicized characters. while strength and state-valued 

variables are written with normal characters. 

Let <a> denote the state of signal a and I a I denote its strength. These symbols denote functions 

<->:.A.-+ t; and 1·l:.A.--+1. 

S.5.2 Signal COBlhinatloa 

The binary operation V is defined to describe the effect of~.~~.... This .operation is 
' ;. ! . ,,. . 

laVbl = lalfl-H 

{

<a>. . , 
<aVb> = <b>. 

<a>u<•. 

lal>lbl 
I hi> 1.-1~ 
lcrl = lbL 

< i: . ·. ::;· . • "'., - ' -:, ' t ~ • ~ , ' • ~ 

This operation provides a fonnal statement of the rules that a SUODger" sipafWiir override ,a, weaker. and 

that signals of equal strength will combine to fonn a signal with the same s&mlgth an4 .,.:at;lte .~to 
_..... O!: • 

the least upper bound of the two states. Note that this operation bas only a disaant relation to the Boolean 
,t ,-, 
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The operation V defines the following partial ordering among signal values: 

xyp 

I \ 
-y p +yp 

\ I 
X"fp-1 

I \ 
-yp-1 +yp-1 

\ I 
XYp-2 

• 
• 
• 

xyl 

I \ 
-yl +yl 

\ I 
XKq 
• 
• 
• 

XKl 

I \ 
-Kl +ic1 

\ I 
'A 

That is a < b if and only if a V b = b. With this partial ordering we must maintain a distinction between 

the terms "greater" and "stronger". The signal xs is greater than -s or +s but not stronger. 
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The set of signal values .A. with the partial ordering< forms·a fatrice with minimum element A. 

maximum element x1 P' and with V serving as the least upper bound operation. As a consequence, V 

must be idempotent, commutative, associative, and monotonic. 

We have defined partial orderings for the sets of signal strengths 'J, signal states 't: and signals .A.. In 

many cases the functions from one domain to an&ther: preserve these orderings, i.e. they are monotonic. 

For example, the functions+, -, and x are monotootc. because signals with the same state are totally 

ordered by their strengths. Similarly the functiOn I · I is 'monotonic because signals of different strengths 

are totally ordered by their strengths. The function <->, on the other hand, is not monotonic. For 

example-11 < +12• but <-11> <. <+y2>· 

The pointwise extensions -0f < · >, I · I, and V can be defined and obey all of the properties listed 

thus far. 

5.5.3 Signal Factorir.ation 

As shall be seen, the algebra of logic signals Jacks many of the properties one might desire in a 

mathematical system. such as a total ordering and lllOliotonicity of certain operations. As a consequence, 

we will often factor equations in the algebra of signals into equations in the more tract.able algebra of 

signal strengths to aid the mathematical~ 

The domain of 1ogic signals looseJy resembles eoinplex numbers with strength corresponding to 

magnitude and state corresponding to pbaSe. Just as a coinpJex mnnber is characterized by either ill 

magnitude and phase or by its real and imaginary parts. a signal is characteJUed by either its strength and 

state or by its "1" and .. 0 .. parts. The factored form of a signal is a pair of strength values (u. d). with u 

indicating the strength with which the signal will pull a node toward 1, and d indicating the strength with 

which the signal will pull a node toward 0. The following table shows the two representations of a signal 

-------' 
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Signal Strength - State 1 part - O part 
). <0,..1.> (0,0) 
+s (S, 1) (s, 0) 
-s <t.·o)· (0, s) 
XS <s, X> (s, s) 

The factored fonn must either baVe bOth pans equal Or one part' equal to zero, corresponding to the rule 

that a stronger signal will override a weaker, and the weaker can be ignored. A signal with state X has 

equal t and o parts, because ·x rePresen~ -a ~onflkt·b'Ctween ~of equal strength pulling a node 
:_;_ .. ~ 

toward 1 and 0. The null signal A. on the other hand, bas no ability to pull a node toward 1 or 0: 

Observe that the ordering < between signals is equivalent to the extension of the strength ordering < to 
• ' ,j._. ! • ~ ._;i1" - . 

the factored fonn representation. The functions r · 1 and L · J are defined to select the 1 and O parts of a 

signal, respectively. 

(5.S) 

LaJ = { •a:t; ••:=torX 
0, <a> = 1 or ..1. 

(S.6) 

l 

The factored form of a signal can be viewed as describing two signals, one with state 1 {or ..1.) and one 

with state O (or ..1.). which when combined will yield the original signal: 

(S.7) 

The strength of a signal equals the maximum of its two parll: 

I al = ral f LaJ (S.8) 

The state of a signal can also b.e ~~J>J ~ die ~ ~ '1ie siggals :ftPresent.e41 by its 1 

and. O parts: 

<a> = <+rai>u <...:LaJ>. (S.9) 

This identity holds, because at least one part of a signal will equal zero unless the signal state equals X. 
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For example 

When two signals arc combined with the operation V, the .~ ..... bas ~ fQIJowing factorl'ld 

bm: 

(S.10) 

LaV bJ = block(LaJf LbJ.laV 61) 

In the above equations the function block preserves the restriction that if one part of a signal is a than 

the other (or equivalently, it is a than the maximum of the two J>MU), it must equal zero. For example 

r +r2 v -111 = bloct b2 T 0. 1~ = 12 

L +t2 V -ylJ - bid~~ ll• Y~. = Cl 

-_ !': 

~identities illustrate bow the ~bl«A ~~~in the signal algebra are factored 
~· _, ., 

S.S.4 Sigllal Couplina 

To complete the set of operations for ~-~ values we require a means of expre&ling 
. ',.; :--

the effect of a signal coupled through a logical conductance. Our rule for sipa1 coupling is that a signal a 
. ' 

J· '.-_ 

will be coupled through a logical conductance of nonzero stn:ngtb s to form a signal with strength 

I a I ! s and state ~a>. In Chapter 4 we defined the function cple:.AX 1-+ .A to yield the signal 

resuttift8 ftom an application.of fMs:fUle. Fotottr·h'mal'.dt~t, ~ OfuStnj;a functiOn with 

different types of arguments, we will express signal coupling with the binary operation ° aver signal 

values. The conductance s is then represented by. &be,signal .xs. ~~ting that it can conduct O and 1 

signals equally well. Define 0 as foDows: 
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a 0 b = +(f al! fb1) V -(LaJ! LbJ). (5.11) 

In other words, if two signals are represented in ~red:tonn.. o is equivalent ,to the pointwise extension 

of ! applied to the corresponding. parts of the two signaJL The sipal a coupled through a logical 

conductances.then forms a sigru1l xsoa. In all casesusedhcR. oaeargument of 0 will have state X (or 

Ax = { xs I s e :r}. · 

then the subalgebra (Ax, V, 0 , >., xy i) is isomorphic to the algebra (1, f, l. 0, y i)· Thus when the logical 
-"·-,·: . 

conductance s is represented by the signal xs, it has the same algebraic prope~ 

The operation ° obeys the following properties: 

1. (...(, o, xy i) is a monoid: 

i. 
ii. 
iii. 

a,bEA =o- a 0 bEA 
a 0 u~ a c) = .{4 0 4) 0 c 
a 0 x1, = x1, 0 a =a 

2. A is an annihilator for o: 
a•>. = >.. 

.~ i} _·; ';- ' <:, ~ ' 

(closed) 
(~. 

(xy Pis the identity) 

Thus the algebraic system,(...(, V, 0 , >., x l i) almost obeys ~ of the properties of a closed semiring. In 

general. however, 0 is not monotonic. For example +11 < -12• but 

i. ,, 

As a consequence, 0 does not distribute oYer V .1 For exampt.:.?; · .. ~. 

1. Any operation which distnbutes over the leasrupper ~operation for a lattice must be monotonic. 
For example, suppose a< c. lfit were die case tMtP diatributes over Y t1ten 

-, ' ' ; ' ; ,_ ·~ , . 
b 0 a V b 0 c = b 0 (a V c) = b 0 c 

which implies that b 0 a< b 0 c. The converse statement need not hold, unless the set is totally ordered. 
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(S.U) 

This lack of distributivity expresses in madlcmatica1 terms that sgnal paths cannot be analyzed 

independently, because weaker signals may be b1octed along a padt by a~ signal with a diffelent 

state. This phenomenon was danomttaled with 1he networb shown iR Figlft 4.7. In fact the left haecl 

side of equation 5.12 expresses how the Sleady stare sipll'Oll node ''tis IUrmed in tile b example of 

Figure 4.7. while the right hand side exp~ how the steady signal on node "2 is fonned in the second 

example. This lack of distributivity will cause some difficulty in our madlematical development. 

If we restrict our attention to strong transistors in the 1 and 8 s&B, however, distributivity (and 

hence monotonicity) holds. That is, if bE { A. xy P} tbca 

and hence the algebraic sptem ({ A, xy p}. V. 0 • A, xy ,> does form a dosed semiring. In fact. Ibis 

algebraic system is equivalenl,to lbe Boolean doaetf Sdtiitiltg,({ 9;1 }, +, ·• o. 1). This shows that 

restricted logical conductance netwotts approach relay networks in their simplicity. 

If one of the cquments to 0 represents a conductance value. dleA • if:IDOftOllKlic ill this argument. 

That is. if b, c E 'J, and b < c. then 

mranyaE .A.. 

The operation ° was seen to equal tD pointwise exteosion ·of l to the factored rep~tation of 

signals. This leads to the following identities: . 

ra• bl = ra11 fbl 

la• 6J = LU! L6J 

I a• bl = (fa11 rb1) f (la.I llbJ). 

For the common case where <a> or <b> is in the set { X. J_ }: 

(S.13) 
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lq•bl :::; lalllbl (514) 

5£5 Matrix Operatiom 

The matrix product operation Q is delined to describe the etTects of first coupling a set of signals 

through logical conductances. and tften combining than. That is, if c = ,4oj then 

~~~ ,. < " • '~ .'! ·: 

Cj = ~. (~ 0 I>/· 
. '.• ., ' . 

(5.lS) 

The operation o is closed and~. ·-tlttrebe~~'algebraiC· ~ystem (.A.nxn, V, o, 0, /)almost 

obeys the properties of a closed semiring, where the identity matrix I has xy p's on the diagonal and A's 

etseWhere,::wltile the -are~ I~ of aU-):s: lil'aettetai lt>We\ier, 6' dC>Cs not dlstn'bute over v 

(S.l'l 
- •', 

<~ > ·;.; .. i,,.;' 

This closure is isomorphic to the Boolean transitive closure. 

If one of the arguments to o represents a conductance matrix. then o is monotonic for this 
,.. . ;. )S"' ' 

argument That is if B. CE 'lflX 0 , and B < C. then 

(5.17) 

for any• E .A.8 • 



-112-

·-
The following identity follows from the properties ofV and •. 

I Aoi I = (f Al•f 61) f (LAJ•L6J). (S.18) 

For the common case-where each element of A is either a nun signal or bas state X, i.e. A E .A.xn xm. 

I Aoi I = I A l•I j I. 

A matrix pr~uct can also be factored into its 1 and 0 parts: 

r Ao61 = block (f A1•f 61, I Ao6 I) 

UoAJ - bloc.t( ... ~~Lt.I. IAQll) 

(S.19) 

(5.20) 

The pointwise extension of the f\mctioa blt)(k maintaias the resttictioll that each part ofa sigDal llWSl 
• - - ' . ~ ! ~-. - - • - - . - -

equal the strength of the signal or equal 0. 

S.6 SummarJ 

The concept and properties of logic signals have been fonnaliied into an abstract algebra with a 

domain conespc>uding to ~ sipa1 va1ueS and-With ~ ~ 1o-ttte rules tor combhWig 

and coupling·sigiials. Many Of the~ Oflolic .. ~~1'Y"ti ~: • ·dbmaln is a 

~ ,~te set, and the operations obey· ~Y-i~-~- pJUJ>erties. Even the 

complications arising from signal bloctina are reflected by the lack of distributivity in the algebra except 

for a restricted domain. 
,~. \ 

The domains and their operations are sumn1ari1.ed below. 

. -. '. ; c . 



- 113 -

Signal Strengths 

Elements: 

Ordering: 

Operations: 

j maximum (least upper bound) 

l minimum (greatest lower bound) 

block signal blocking 

• (j D matrix product 

* closure 

Signal States 

Elements: 'f = { .L 0, 1, X } 

Ordering: 

x 

/\ 
0 1 

\/ 
J_ 

Operations: 

LJ consistency (least upper bound) 
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Signals 

Elements: A = { A, +Kl· - Kl· XK l • ... , + y P' - y P' x y p } 

Ordering: 

xyp 

I \ 
-y p +y p 

\ I 
xy p-1 

I \ 
-r p-1 +y p-1 

\ I 
xy p-2 

• 
• 
• 

xr1 

I \ 
-yl +r1 

\ I 
X/Cq 
• 
• 
• 

X/Cl 

I \ 
-1(1 +1(1 

\ I 
A 



Operations: 

v 

0 

0 

* 

Functions from signals to states: 
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signal combination (least upper bound) 

signal coupling 

(V 0 ) matrix product 

closure (for restricted domain only) 

state of signal 

Functions from signals to strengths: 

II· II 

r.1 

L·J 

strength of signal 

1 part 

O part 

Functions from strengths to signals: 

+ 

x 

form signal with state 1 (or j_) 

form signal with state 0 (or j_) 

form signal with state X (or j_) 



6. Computation of the Target State 

6.1 Introduction 

-116-

The algebra of logic signals alona with the mated algebras of signal strengths and signal states 

provide a set of matbeqiatical toQls..for·further developing the switch-level abstraction. In this chapter a 

method wil1 be developed for finding the minimum solution of the steady state signal equation given in 

Chapter 4, which then gives us a method for finding the steady state of a logical conductance network. 

This method is then generalized into one for finding the target state of an ari>itrary switch-level network. 

This development will utilize only the logic signal abmaciioa • apcesmd bJ our algebras, along with 

two equations which were derived from tile properties of the electrical model: the definition of the target 

state in tenns of the steady states of a set of logical.coaductance netW.mb given in equation 3.20, and the 

equation for the steady state signals given in equaaoa .f.S. While we<:ould arrive at the final results more 

directly by utilizing additional properties of the electrical model, this approach demonstrates that the 

concept of logic signals is quite powerful and self-contained.. The earlier wort with the eJectrical model 

was presented only to motivate and justify the more abstract conceptS. The issues of implementing these 

techniques with efficient computer algorithms are deferred to °'3ptcr 7. In particular, the matrix 

notation in this chapter is used only for mathematical conveoieoce and need not imply that the simu1atioB 

algorithms involve matrix operaticm. 

6.2 The Target State fAfuation 

First, let us restate the definition of the target state in terms of the steady states of a set of logical 

conductance networks. The function target (x. y, z) was defined as giving the set of states j which the 

nonnal nodes would reach if the input nodes were held in state x. the transistors were held in state z, and 

the normal nodes were initialized to state y. With the transistors held in state z the network of transistors 

can be described by a set of logical conduc.1ance networks, where a transistor in the 1 state fonns a lo&Dl 



-117 • 

conductance equal to its strength, a transistor in the 0 state forms a logical conductance of 0 (i.e. an open 

c~uit}, and a transistor in the X statelbfltls a logical conductance"titberequat to its strength or to 0. We 

have seen that a set of parallel logical conductances can be replaced by a single k>gical conductance equal 
- < • ' ,....· • ~ - ' 

to the maximum element in the set. Thus.we ~ of~,~ netwo,rts correspondipg to a 
=, ._ -~! _ ''.~t:!-CO.,S1- '.'- --.. ~ .. • ; 

switch-level network in tran$stor state z can be described by .four 1ogica1 cond~taQce matrices: <?*. 
: .. . ~ '.'· '. :·. ''. -- . . . ;; :; ; . ' - . / ; ' ! '.' . . 

Gmas, ,[D, and F. Each element gain ij of Gm1n equals the ~um strength gf ~~·transistors, in ,the 1 

state connecting normal nodes '1 and nj or equals 0 if no ~h transistor exists. The elcme.11ts of G­

equal the corresponding values for all transistors in either the 1 or the X state. Each element eminij of Em1a 

equals the maximum strength of alt transistors in the 1 ~te conn~~~ .~ormat node ·'1 and input node ~ 

or equals 0 if no such transistor exists. The elements of F equal the corresponding valu~ for ~a04~ 

in th~ 1 or X state. More fonnally, if Tij del)Otes the following~t of transiston: 
' ' . . . 

then 

(6.1) 

and 

S-ij = f Stl't· 
tk E !ij· .It E { t, x,} 

(62) 

In both equations, the maximum of an empty set is defined to equal, 0. Both Gm1a and <;- are symmetric 
' ., . l 

matrices with elements in the set { ,o. y1, ... , y p}. In general. th~. ~trices a,re very sparse, because 

each node is connected to only a limited number of other n.<>des. Similarly, if T'ij ~enotes the following 

set of transistors: 

T'·· = lJ 

then 

(6.3) 
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and 

e-ij = , t - Slrt· 
It E T ij• zk E { 1, X } 

(6.4) 

[1Din and E'88 are n X _m matrices with elements in the set { 0, y1, ... , y P}. These matrices may be lea 

sparse than G1111n and G-, because some input nodes (e.g. vbo, GND) serve as source and drain nodes 

for many transistors. The network may also contain transistors connecting input nodes to one another, 

but these have no effect on the logical behavior. To compute the target state funetion. we need only look 

at the network of logical conductances described by these four matrices, without considering the 

transistor configurations or states which give rise to them. 

The presence of transistors in the X state implies that the actual conductance matrices G and E lie 

within the ranges: · 

G111111 < G < G­

~ < E < :E-. 

Let { G } and { E } denote the following sets of matrices 

{ E} = {EI ejt = e-"'jt<P> or ejk == C-j.t<P>} 

{ G} = {GI 8jt = gmnjk(p) or 8.it = S-jt(p), and 8j.t = gkj }. 

(6.S) 

Note that these definitions of { E } and { G } are equivalent to those given in Cbapter 4 in terms of the 

sets of order of magnitude network matrices E and Gas were defined in equations 3.7 and 3.8. 

For logical conductance matrices G and E, let y(G, E) denote the steady state of the logical 

conductance network with these values of logical conductances. Equation 3.20 defines the target state of 

a node in the switch-level network as 

.... { 1, y i(G, E) = 1 for all G E { G } and EE { E} 

y i = 0, y i(G, E) = O for all GE { G} and EE { E} 
x, else. 

(3.20) 

--------- -------------------
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That is the target state equals 1 or 0 if and only if it has this unique state regardless of the conductances 

fanned by transistors in the X state, and otherwise it equals X. This equation can be expressed more 

concisely using the consistency operation LI for logic states: 

; = LI "i(G E) 
" { G }, {E} " ' . 

(6.6) 

This equation shows that the target state function for an arbitrary switch-Jev.el network can be determined 
-.; . .· ;_ ' ,. ~ .. 

by computing the steady states for the logical conductance networks represented by all possible matrices 

G and E in the sets { G } and { E } and then combining these states with the operation LI. This reduces 

the problem of computing the target 'state equation for a S1Witch·te~el network to one of computing the 

state of a logical conductance network can be generalized into a method for directly computing'llle-~ 

state of a switch-level network. 

6.3 The Steady State Signal Equation 

~ .. : ~ 

Let us tum our attention to computing the steady state "i for a particular set of conductance 

matrices G and E. 

The rule for forming logic sigaats; is that an· iBpat 1l<lde·'bms ·a lOgic' signal with state equal to1he · 

nocfe state andttrength equaLto y y'As was tiefitled m ~'4 •• ~tdi"rdenotes the: 9et.1>f-signats 

<C.xi>· :: •st 

·~· = .,, 

Similarly, a normal node forms an initial signal with state equal to the node state and strength equal to the 

node size. As was defined in Chapter 4, the vector y denotes the set of signals formed by the normal 

nodes in state y: 
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<>t> = Yi 

I >'i I = capi. 

(6.8) 

In Chapter 4 it- was shown that the vector of steady state signals , must be the minimum vector 

satisfying the constraints: 

for all i. This equation can be exp~ using-Operations in the algebra of logic signals as 

'I = >'i V ':'(xeij° x} _ V . ':'(Xljj°'j}- · 
J . J ... . 

If.the mabices £and Gare defined ... the-~of)ogic .... rep~,__)QgicaleQnduetance 

matrices E and G. i.e. 

E = xE (6.9)· 

G = xG 

then this set of equations can be expressed by a single matrix equation: 
·, ' .;l-_. . i ' : ~-1. : [;; 

' = Eoz VIV Go•. (6.10) 

Unlike.equations in qtl)er aJgeb~ in wbidl all,e~inv,ol·~~·Wlriables can be 

~~to ooesi,de of the ecplit)I. we hMe oaia¥cfse operatiea in dle:@nel ~to eenmtcanodlatimt · 

of the left hand side. Hence the equation for the steady state signal ..... 1~•a:,~·; 

re~. It will be shown shortly that equation 6.JO has ~ue minimum IOlution. 

'; ' 
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6.4 Solution for Restricted Logical Conductance Networks 

We wish to find the minimum vector 11 such that' = /(•), where 

/(a) = Eo x V y V Go & 

A general technique for solving such recurrence equations is only known for monotoni~ recurrence 

equations. i.e. ones in which the recurrence is expl'C§ed by a monotonic function. In general, the 

nonmonotonicity of the operation o implies that the functi~ti f may not be monotonic, and hence this 

may only be interconnected by ~d,uctaooes ofstreQlth 'Yy the ~lff>RJ ia lllOllOWB.ic:. ~is, a 

restricted logical conductance network has a cond~ ~G witik eacb etemont'e.qAlal to-0,or y y ln 

this case each element of G equals). or xy/I' This imp~~ that for an~ •and I> 
>' < • ~ • : • ' 

Go (a V 6) = Go ti V Go I, 

and therefore f is monotonic. The followiag theorem,. .,~~lase of one given by Scott (35], shows 

how to solve such an equation. 

Theorem 6.1. 

For a monotonic function/:.A.0 -+ .A.!1, ,the eq:ni&tion 

" = /(•) 

has a unique minimum solution given by 
,,. = ,lim /'t.. llf 

k-+ 00 
(6.11) 

where 0 denotes a vector of all ).'s, and the superscript k denotes k applications of the function /. 
FUl'fhermpre, ~ liJnit \Vilt be~ f9C ~,t $ n·J .A. L, wJttre.i+f~ .-,.-. 

':. . : ~ 
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Proof of Theorem 6.1: 

Consider the following sequence 

~ t<llJ. tlf<flJ>. . ..• A~ ... 

First we will prove that its limit exists. Qearly O<f(fl). and by the monotonicity off one can prove by 

induction on t that 

Hence the sequence is nondecreasing. Any strictly increasing .sequettce in .A.n would h~ a lenlth of at 

most n~ ...t I. Therebc fi>r some j< lf·fA J. A~ =Jj+ 1<-· Md then ·lOf any t > j, fl<'1 = rtlJ. 
From this we can·see that ti* must be a so11ttion,'. heats 

- ·- -'t .,· 

Fmally, suppose for some., • = /(•). Starting with the basis•> ~ we can prove by induction on t that 

Therefore 

' A.,-'. >' A....o., 
• ·:t Tl.•1 _·J'~ 

• > 11m· ...t:.a = .-. 
- k-+ 00 J\•I 

Thus Ii* is the unique minimum solution of the recurrente'~'· 

This theorem follows as a ·special case of a 'dieorem proved by Scott (JS] regarding the least fixed 

point ()fa continuous function on a continuqul Ja~;' whent "~uity" here is only distantly related to 

the continuity of real analysis. In finding the minimum solution of the recurrence equation • = /(•) we 
"": ' ·_ >··:-._-..., • ~ ,;~ '.~.r-_! .· •. r· : .• ~L.l ,."'!~. .:·-. c1 -. • • 

are computing the least fixed poiMOflheiUBction/. Ally tmite'~li~~- is iiny monotoDie 

function on a finite lattice. Scott shows that a result similar to equation 6.11 holds for any continuous 

function on a continuous lattice. Finite convergence, however, may not be guaranteed for functions on 

infinite lattices. 

- -----------------
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The process outlined in this theorem of computing the sequence f(fJ), flf(fl}) • ...• /'·({}), ... 

until it converges corresponds tO a straightforward relaxation algorithm. It starts by setting ~ to A for 

each node and then performing relaxations of the form ~ - f i(•) until it converges. i.e. any further 
- • > • \ ""'ti 

relaxation Steps would not Charlge 11. Since ~e . hav~. expressed . the method in vector fonn, each 

application off corresponds to applying relaxation computations at all nodes simultaneously. 

For example the logical conductance network shown in Figure 6.1 models an nMOS Nand gate and 
-- - - , - ---- • ~· ' - -~·- > ... - --~ •• 

pass transistor with all transistors in the 1 state. The extra self-loop has been added to n3 to ~the 

possibility of extraneous solutions. Eq\Jati6n 6.ltt can be~cled .in' 

"1 = +yl V X"f 2 o ".z V X'Y2 o '3 
"2 = -12 v ir2. "l '.::. 
"3 = ,, x'f 2 o '1 \l xy2 o '3· 

The above equations have the charging signals y left out for simplicity. The relaxati6n':Jl'ltlhudgift5tle · 

fullowing sequences: '' ~ i ; 
~ '. ' . 

"l: A +t1 -12 -12 -"'(2 ,. 
; 

A -i2 ' ' 
;.1 '-'.-i 

"f -12. ·-12 -12 . . 
a3: A A +r1 -12 -12 



indicating that all nodes have steady state signals -y2 and hence have steady states 0. Observe that an 

extraneous solution never arises because at all times each value '1i is m than or equal to the steady scate 

For this particular equation the minimum SQlution can be expressed in terms of the closure 

OmJlarJ 6.1.1. 
For a matrix GE {A. x1

1
}0 X 0 , and a v~r jE .A.0 , the equatioa 

bas a unique minimum solution given by 

•=IV Go& 

. ' 

a'* ::::;. G ol. 

IV Go( •.. IV G>(IV G>1' ... ) '::: 

(6.12) 

(6.13) 

.'I• 
·.' ~ti 

I 
,. 

This result shows that for a restricted logical conductance De11Wort the steady state signal is given by 
• ,i l 

•· :;;; G o(Eo_z V;)). . (6.14) 

As mentioned in Chapter S, the ~tive closure opeACion in ·;tbiS restricted case is equivalent to a 
' .. 

Boolean transitive closure. Element ij W ~matrix G• equal$ ~! ~ if nodes "i and ".i are connected by 
,, ,.\~ . 

some path of logical conductances and equals A if they are qot'; Thus the matrix G partitions the 

network into a set of equivalence classes, where "i and ".i are in ~ class if and only if element ij of . ' ' G equals xy p. Since xy Pis the identity element for 0 and A is ail annihilator, computing element i of 
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• G o b in this case simply involves selecting the eterhents orb for the nodes in the same class as 11j and 

combining them with the operation V. Thus if we let b equal the vector of signals given by E o x V y, 

and node ni is in equivalence class ck. tllen 

V:= vb: 
t "jE Ctr 

Observe that all nodes in a class will have the same steady state mp'l,l, If we were only concerned with 
, •, ~ 

restricted switch-level networks with no transistors in the X ,sr:ate. the computation of the target state 

would be quite simple. 

6.5 Solution for General Logical Conductance Networks 

Unfortunately, the technique outlined for comput;ing th~ steady state signal in restricted logical 

conductance networks can fail for general networ~ ~use\it tnay conv~e on some solution other than 
' f ~i "-. " I ;-

the minimum. Consider how the proof of Theorem 6.1 relies on the monotonicity of the function f. 

First, it<isusedto*>w lhatthe sequence~tl) ismono11onicumd·ilcdo$1Werges. 'fn,fact. it appears that 

this sequence wmdd mnverge rot ·equa0ens ofthe'Jbnn of'6.ll ~of-the monotonicity off, 

although this has not been proved formally. More importand1; •Owe¥flf; f.he·mOOOtonlcity off is used tD · 

show that • > /~ (/) for any • which satisfies the recunence ~n. and hence lhe limit to this sequence 

must be the minimum solution.. This result .. does npt hold when the recurrence function f is not 

monotonic. 

The netwott Shown Iii F'tgrire 6.2 ~bles the networt Slidwn'itt Figtire 6.1 except that the pass 

transistor has strength 'YI· and therefore we no tonger have a iest'ricted' logical conductance network. 

Equatidil 6.10 can be exp8aded iS: 
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Fag. 6.2. General Logical Conductance Network Exanph 

"I = +yl v .112 • "'2 v X<r1 • Y] 

~ = -12 v .112• "I. . 
"J = •11 • "I v .112 • P_J . 

equ~ is 'I = -~ '? = 'lz.:-1 "J i:: -ri• giving a steedy ll*of Ocon~ nodes. just as one 

would apect. The reluation,metbod·aivealhc sequemw: 

41: A. +-rt -Y2 -12 -rt· 
°2: A -12_ -12 -12 -12 

OJ= 1 A +rt .. 'fl ll't1 

The sequence converges with the~ lll'l OIJ.ll®e "l" wlµth,..,_~.~ dleminimuJIJ.:v;alue. :Yt• 

and therefore finds ~ extraneous solutk>p with .state X .~ node "l- . ,, 

This error arises due to an interplay between the effects of signal b~fli:~ .a~~. 

recurrence function), and the pos&bility of extraneous solutions of the equation. The network of F"igwe 

6.2 has been contrived to cause this interplay. On the second relaxation step we inttoduce information 

about the path from VDD to n3 in setting a3 to +y1, and this value is not, less than or equal to the steady 
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state signal -yl. Due to the presence of the self-loop at n3, this infonnatioa will remain during !Urther 

relaxation steps. When the third relaxation step introduces infonnation about the path from GND to n3 
_, 

into a3, it combines with the old value of a3 to give xy1 instead of-y1. Thus our relaxatkn method does 

. p !' ' ' < 

not take the effects of signal blocking into account properly and hence may reach an extraneous solution. 

'' 

While this example seems rather contrived, similar effects can occur with more realistic (but larger) 

·networks. 

The steady state signal for a general logical conductance network can be found by a method of 

conditioned relaxations which first computes the strength of the steady state signal and then u.s.es this 

information while computing ~iv~ r<:~xati9~;~~v~ ~ ~ {~ being set to a nonnull signal 

weaker than the steady state signal. For example, suppose for the network shown in Figure 6.2, we could 

determine that the steady state signals will have strength y2 on nodes n1 and n2 and will have strength 'Yi 
: ''· ·, ;-:,.,, 

on node n3. In generating the sequences of values on each node, any time our original method would set 

'' 

the node to a signal weak.er than the steady state signal. we .. will ~stead set it to A. This gives the 

following sequences: 

-yl 
-12 

_A. 

.. -12 
-12 

i' .. .,, 

The signal +y1 is weak.er than the steady state signal for node n1 and hence the first relaxation 

computation at this node will give a value A. :;Al a~. die '&ignaf'+yyisnevet propagated to 

node n3 and will never create an extraneous signal This example shows how the conditioned relaxation 

technique prevents extraneous signals from arising by killing weak signals before they can become 

extraneous. We will now prove formally that this method produces the correct results. 
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6.5.l Factor~ Equatiom 

The method of conditioned relaxations can be derived formally by factoring the steady state signal 

equation into its 1 and 0 parts, giving more tractable equations in the a~bra of signal strengths. All 

elements of E and Gare null signals or have state x. which implies by equation 5.19 that 

IEo.rl = IEl•l.rl = E•l.rl 

IGoPI = IGl•lpl = G•lrl. 

1,1 = E•l.rl f .,,. f G•lrl. (6JS) 

which shows that I ' I satisfies a recurrence relation of the form I r I = h (I 'I). where the function h is 

monotonic. Recurrence relations for r r l and L pJ can be derived as well: 

r,1 = block(E • r.r1 l r,,1 f G • r,1, 1,1) 

LPJ = block(E. L.rJ 'r L,,J f G. LPJ, I rl). 

(6.16) 

(6.17) 

Thus, if we could determine the value of I r I. we would have recurrente relations of the fonn 

frl = J1(fJ1l) and Ltd = fo(LJ1J). where 1¥>th/1 andfo are lftonotonk funC:dOns. We will show later 

that I JI R, r,,1. and LrJ must be the minimum solutions of their respective recurrence equations. 

6.5.2 Recurrence Equations ia tlte StrengU& A_... 

The minimum solution of a monotonic recurrence equation in the strength algebra can be found by 
~ :., .. : ; . (. . 

a relaxation method similar to the one shown for the signal algebra. as is proved in the following theorem. 
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Theorem 6.1. 

For a monotonic function/:1°-+ 1°, the equation 

a = f(a) 

has a unique minimum solution given by 

... = Jim .A•> 
k-+00 

(6.18) 

where 0 denotes a vector of all O's. Furthermore, this limit will be reached for some k < n·I '11. 

The proof of this theorem parallels the proof of Theorem 6.1. For equations of the form of 6.15, the 

minimum solution can be expressed in terms of the closure operation. 

Corollary 6.1.1. 

For a matrix G E '11- X n, and a vector It E '1'1, the equltioft 

has a unique minimum solution given by 

a = It t G•._ 

• a"* = G •k. 

The proof of this corollary parallels the proof of Corollary 6.1.1. Observe that this result holds for 

strength values in unrestricted as well as restricted networb. 

As a conclusion to our study of recurrence equations in the strength ~~ let w; loot at the 

relation between solutions of different equations. Define the relation < between two functions f and g 

as f < g if and only if /(a) < g (a) for all a. The following theorem shows that this relation will then 

hold between the minimum solutions of their respective recurrence equations. This theorem· will prove 

valuable in comparing the steady state signals of different logical conductance networks. 
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Theorem 6.3. 

If monotonic functions/::I°--+ :t'1 and g ::1'1--+ :t'1 areorderedf < g and a-m and.- are the minimum 
solutions to the equations 

respectively. then 

Proof of Theorem 6.3: 

a = /(a) 

• = g~). 

By induction on k /k(O) < g k(O), and therefQR; .. 

I 

This theorem is also a special case of one given by Scott which states that the least fix~ point 

operator is monotonic when applied to monotonic functions. 
- '.: 

6.5 .. J Selutioe Tedlnirpae 

The following theorem shows that the minimum solutions of equations 6.15. 6.16. and 6.17 do 

indeed lead to the value of the steady state signal 
:, .~: 
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1beorem6.4. 

For a matrix GE :rnxn, and a vector bE .A.n, define Gas G = xG. The unique minimum solution of 
the equation a = /{•).where 

/(a)= bV Go• (6.19) 

is given by 
r=+..-v-r. 

where Umin ~ r9 are the minimum solutions of tbe. equaeioas U = Ji(.}and d-::;;;JO(d). ~)'. 

and the functions/1 and.fo are defined as: , J 

lj(u) - block(f 61 t G •.'ft r) 
- ,__ " . l '.,: ' ~ 'I 

J0(d) = block (L6J l G • d. r). · , ' rll:: 

and 
~ ·. •. l 

·• r = G •I 61. 

,;(6.20) 

.. (6.ll) 

'~ " . 

The proof of this the<>1!111 is given in Appendix II. ~t se~ '!'~;.~1.~.1°. ~~firm Of:l~~~ intuition ~ut 

~quires provb.>i ~y SU~~ Primarily,it ja~olyes.sl>p~,thal tJle.~ yectQJ'.,,+umia.V -r'-
~ ~' ~ ' ' - • - '. - ,. • • - ; '··-" ' - ' -~- : > ' '. • • 'I , - . • , . -- . . . . 

satisfies the recurrence relation 11 =/(a). It is then straightforward to prove that it must be ~.~~ 

solution. 

If we let the vector b in equation 6.19 equal E o x V y. then we can apply Theorem 6.4 to find the 

·steady state signal "· Alternatively. the ·resutt oh:his;'~can: be:~~d· ii a·manner:more 

susgestive .. of a -sequerice'df''conditllined;;~··m· ~ ··slglial··~'. :Defthe the 'fubction 

kill :.A. x ., .,... .A. •. 

kill(a. b) = +block(ra1, b) V -block(LaJ, b). (6.23) 

In other words 
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kill(a, b) = -{a, I al> b 
A, I al< b. 

- . 

.. 
This function exp~ our technique of killing any signal weaker than some strength value. 1be 

foDowing corollary to Theorem 6.4 describes the method of conditioni:d relaxations. 

~6.4.1. 

For a matrix GE !f8XD, and a vector IE .,(n, if Gis defined as G = xG, then the minimum solution of 
die equation • =/(a) where 

isgivenby 

/(•) = 6 V Go& 

... = lim rt" 
k-t co 

' 

r<•> = kill(/(•). r). 

• r = G •I jl. 

·' 
(6.24) 

(6.2S) 

The proof of Coronary 6.4.1 is0 'given AppendlX ;Il. -lt proceetfS bf ft1ctoiing·1he function rand 
showing that 

With, this, one can easily see that~ seQUCJlCC will CQPY~ !O .-. 

The conditioned relaxation method--~-w~, ~ ~,.r4_ ~n m.etbod ~ 

because the function/' is monotonic over the domain { 11I11 < r. and 11 = block (11, ~ r I)}, •hereat. 

the function/ may not be. Furthennore,j is closed over this domain. Thus. when successive values of• 

are fonned by repeated applications of j, we will get a monotonic sequence converging to .-. This 

result is given as a corollary to the main theorem, because it does not generalize to switch-l<Wet netwOrb 

containing transistors in the X state while the method given in the theorem does. 
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6.6 The Target State 

Returning to the problem of computing the target St.ate y of a switch-level network, where the 

network may have conductance matrices in the sets { G } and { E } , we saw that the target state could be 

found by computing all possible steady states y (G, E) and then combining these possible states with the 
' . 

consistency _operation LJ, Such an approach, however, would have exponential complexity if a large 

number of transistors were in state X. Instead, we will derive a method of directly computing 'i by 

generalizing the method of Theorem 6.4. 

To determine the target state y i of node ni we need only find the range of values y i(G, E) can 

asmime. If some setting ofG and E can be found wllichgiV,~ 1 or.X A>rrJ(i . .E1,«utd so~Qthei'.seUiag 

can be found which gives O or X, then y i equals lt- lf; 'Oil the other band, either of these two attempts 

faifs, then y i equals the state fOuild by the' other attempt· Deline )f(G~ Efas the vector of steady state 
- ~· . . 

signals for the logical conductancenetworkrwithl:OlldbetaneematricaG and E. Then y i(G, E) equals 1 

or x if and only ifrvi(G, E)1 iS ireater tban-0. Similarty, y j(G, t) equals o-eix if and only if Lvi(G, E)J 

is greater than 0-~ This suggest$ _that- the target state. of a node can be found by performing two 

optimization processes. The first matimizes rvi(G, E)1 for all p<mible G and E giving a result u•i· while 

the second maximizes L 'i(G, E)J giving' a result (faiiti· tbcse- ~alues can be combined to give the target 

state: 

(6.26) 

That is, the target state will equal a proper value (0. or 1) if ai;id only if the ~nding optimization 

process succeeds (obtains a nonzero value}, while the other fails. This can be exp~ by the following 

equation: 

(6.27) 
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At first this optimii.ation approach might not seem to improve on the full enumer.ltion technique. 

It seems to call for a separate set of optimii.ations for each node, with each involving the trial of a number 

of conductance matrices. Fortunately, these difficulties do not arise. Instead. the values r vi(G, E) 1 will 

be maximized for all nodes with one particular pair of matrices G and E, and a similar result holds for 

L vi(G, E)J. Furthennore, these values can be computed without ever finding the particular values of G 

and E which give rise to them. Instead, the vectors &"" and r can be computed directly by slightly 

modifying equations 6.20 and 6.21, as is shown in the following theorem. 

Theorem 6.5. 

The target !late j of a switdHevel network is given by 

J = <+tt"> U·<C .... r'>. (6.21) 

where &"" and r are the minimum solutions of the equatioas a = g1(ia) and &I = ~d), respectively. 

and the functions g1 and 'o are defined as 

11<•> - Moct<r-•rx1 l r,,1 f cr•-.r) {6.29) 

.fG(d) = block Ct.- • lx.J f L.1..1 f G- • 'r). (6..JO) 

• r = G""- •(r"8 •Ix I T 111). (6.31) 

The full proof ofTheorem 65 is given in Appendix-IL k involvea showing that 

u°" - f . ...._G Ji"\ 
- { G }, { E} • \ ' .,,,,, (6.32) 

where Jill" equals the minimum soJution of equation 6.29, and ..-CG. E) equalS the minimum solution of 

the equation u = / 1(•) for 

• J1(u) = block(E • fxl f fyl T G •a. G •(E•I xi f IJ'I}). 
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That is umin(G, E) equals rv(G, E)1. We can see that uopt must be greater or equal to any umi"(G, E) for 

any Gin { G} and E in { E} as follows. For any such G and E, Gmin<G<Gmax and Emin<E<Emax, and 

since block is monotonic in its first argument and antimonotonic in its second, this implies thatf1 < g1. 

Therefore Theorem 6.3 shows that uopt must be greater than or equal to umin(G, E). To complete the 

proof, we need only find a matrix GE { G} and a matrix EE { E} which give umin(G, E) = uoi>1_ The 

following matrices satisfy this requirement, although the proof is rather tedious: 

{ 
gmln.. uoi>t. = 0 or Uopt· = 0 Y' I J 
...max.. uopt· > 0 and uopt· > 0 
6 IJ' I J ' 

Observe that these matrices are defined in terms of the solutions they lead to. Our solution technique 

bypasses the search for the optimal settings of G and E and yields the optimal solution directly. By 

symmetry, one can see that a similar result holds for crt. 

6.7 Explanation and Example of the Solution Method 

Theorem 6.5 describes an efficient technique for computing the target state of an arbitrary 

switch-level network. First we compute the vector r by applying the relaxation method to the equation 

r = Emin • II x II l II y II l Gm1n • r, (6.33) 

which gives the same result as equation 6.31. The elements of r equal the strengths of the steady state 

signals in the logical conductance network formed when only transistors in the 1 state are conducting, 

since the equation involves the matrices Emin and Gmin. For any allowable values ofG and E, any signal on 

node ni with strength less than ri will be blocked regardless of the conductances of transistors in the X 

state and hence can be killed. We then compute the vectors uopt and d0P1 by applying the conditioned 

relaxation method to equations 6.29 and 6.30. These computations consider transistors in both the 1 and 
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X state to fonn logical conductances equal to their strengths, giving G-- and ~ in tbe first argument to 

block in both equations, but any strength value on node "i less tDan ti.is blocled. TheoomputaOoos are 

performed separately for the 1 and O signals, so that a signal (represented by a stffngdl value) will not be 

killed if it could be ,the dominant signal for"SOl!le set of transistor conductances.. Signals of state X can be 

considered to have both Slate 1 and state G. an4 hence they eiltef iata IJGdl computations. Once d1ele 

strength values have been found. they catlbecombined m 8Hte•fmlet~ 

This technique requires no enumeration over J>OSSil;1Jc sets of transistor conductances whatsoever. 
" - -·· 

' ' ~ - .. ' 

This method cannot be fonnulated as a tiim'e inll,JttlYe metho:i in the' signal algebra. such as the method 

shown in Corollary 6.4.1, because our optimization techn~ does not correspond to the operation of any 

single logical conductance network. Furtheftno"'• 'no simpler method has been obtained for restricted 

networks. because ~ansistors in the X state in. some wa,s, ~\>le ~ lfclQSisUn That is. the signal 

Fag. 6.3. Switclt-LeYel Network Ex• fie 

l'l ,x 
l_ 

"l ·113 
'2 t-l· 12 

"2 

1-f 
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This method can be illustrated by the example shown in Figure 6J. representing an nMOS Nand 

gate with both inputs equal to 1 connected to a pass transistor in state X. Assume that node n3 has size "l 

and initial state 0. The recurrence equation for r can be wntten as: 

r1 = 11 t <Y2 l r1) 
r2 = 12 t <Y2 l r1) 
r3 = "1· 

The minimum solution of this set of equations is r1 = r2 = 12• and r3 = "l· The recurrence equation 

for u• can be written as 

u1 = block <11 t (Y2 l u2) i <r2 l uy. Y2> 
u2 = block <12 J ul, Y'i) 
u3 = block (12 ! u2, "1>· 

The minimum solution of this set of equations is u011\ = uopt2 = uopt3 = 0, indicating that regardless of 

the conductance formed by the pass transistor, no signal with state t or X can form on any nodes. Even 

though the 'pullup trans'5tor provides a signal of strength +11• our computation correctly recognizes that 

this signal will be blocked by the signal -12· The recurrence equation for r is 

d1 = block <<Y2 ! dz) t. <12 ! dy. 12> 
d2 = block (12 t <Y2 l dl). 12) 
d3 = block (1C1 t t~2J. ~ "1>· 

The minimum solution of this set of equations is ~l = dopt2 = dopt3 = ll· Thus, since these values are 

all nonzero, while the values ofuopt are all 0, all three nodes have, a target state 0. 

If the same network has initial state 1 for n3, we would find that uopt3 = "l· while all other 

elements of uopt and r have the same values as before. This gives target states 'Y1 = 'Y2 = O, and 

y 3 = X, indicating that the unknown conductance of the pass transistor creates an ambiguity in the target 

state of node n3• 
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6.8 Properties of the Target State 

Now that we have a mathematical description of the target state, several useful properties can be 

demonstrated. 

6.8.1 Monotonicity 

Our partial ordering of signal states ranks slates ~ordi~,to _how '1Vel}.defin~(i they are. Tbe.st.are 

.l. is underfined, i.e. it represents an absence of information. This state will never appear .on a node in a 

switch-level network, because all nodes store information <iyIWQM;ally and hence can never be devoid of 
~ ~: ; - . . - ;..: 

state. The states 0 and 1 are well defined, i.e. they F$reserit a~nsistent degi'ee of information. The state 

X is overdefined, i.e. it represents conflicting information. The following theorem shows that the target 

state function is monotonic i>r this ordering. This indicates thatsettiag some node 91' ttansmor to X can 

only lead to target states for some nodes equal to X which woukl odlerwise ecpaai· Boolean valua. 

Theorem 6.6. 
Ih < x', y < y', z < z' then 

targtt(X. 7, z) < l/ll'iel(;l,f. z'). 

Proof of Theorem 6.6: 

This theorem can be proved by comparing the derivation of the target state for initial values x, 7, z 

(which will be shown with unprimed values), with the derivation· tor lliitial values x', y', z' (which will be 

shown with primed values.) Compare the function 

gl(u) = block(E-. rxl l r,1 l CJ- ... r) 
:t.ir· 

with the function 

gi'(u) = b/ock(E-'•fx'l l rll l G-'•u,r'), 
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where 

and 

r' = Gm1n•• •(E"'"'' • H x' H l Ii I). 

One can see from equations 6.1, 6.2, 6.3, and 6.4, that if z < z' then 

Em1n > [M' 

Gm1n > G•' 

Enm < E-' 

<;- < <;-'. 

Since the strengths of the initial stimulus signals are determined only by the node types and sizes, 

H x II = II x' II, and II y II = II y' H. Therefore r > r'. Furthermore, if x < x', then x < x' and therefore 

rx1 < rx'1. Similarly, ry1 < ry'1. Therefore g1 < g1' and by Theorem 6.3, uopt < uopt'. By similar 

reasoning, one can see that g0 < g0' and therefore rt$ r'. Observe that the function of b whose 

value is <+b> is monotonic, and therefore <+uopt> < <+uopt'> and by similar reasoning 

<-dept> < <-«fP''>. Finally, by the monotonicity of U 

target {x, y, z) = <+uqlt> U <-r> < <+uqit'> U <-dopt'> = target (x', y', z). I 

The monotonicity property then extends to the functions stepx. and phase. 

Corollary 6.6.1. 
lfx < x' and 1 < y' then 
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Proofof Corollary 6.6.1: 

One can see from the table in Section 2.5 that trans(x, y) < trans(x', y'). Therefore 

stepiy) = target (x, y, trans (x, y)) < target (x', y', trans (x', y')) = stepx•(y'). I 

Corollary 6.6.1. 
Ifx < x' and y < y' then 

phase(x, y) < phase(x', y'). 

Proof of Corollary 6.6.1: 

By Corollary 6.6.1 and induction on k, 

Therefore 

phase(x, y) = lim step k(y) < lim step ,k(y') = phase(x', y'). 
k-+00 x k-+00 x 

I 

These results show that the presence of an X value on a node can only lead to new network states which 

have some nodes set to X which would otherwise be set to Boolean values. 

6.8.2 Stability of the Target State 

The target state is claimed to be the set of states which the normal nodes would eventually reach if 

the input nodes and transistor states were held in states x and z, and the normal nodes were initialized to 

state y. To really prove this, we must show that once the network reaches the target state, it will stay there 

until some input node or transistor changes state. While this stability can readily be seen for the steady 

state of a logical conductance network, it is less clear for the target state of a switch-level network. The 

following theorem eliminates any such doubts. 
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Theorem 6.7. 

If y = target (x, y, z), then y = target (x, y, z). 

The proof of this theorem is aiso given in Appendix IL It invohes showing that the tenns r.>'1 and 
. , ' ; : ; ; - ' .•.. - . - . . ~ . . 

LyJ in equatioqs 6.29 and 6.30 can be replaced with tei;ws f; 1 and l 1 J where y is the vector of signal$ 
'.' 5 < • ~> ; . . . 

with ith element having state equal to the target state ~ i and stre~~th equal to t1!e node size capi. 

6.9 Summary 

Our entire development of the switch-level model. so f~ can be summarized, by three equations 

r = Em1n•R.tlJ lyl t Gm1a•r 

u = block(~·rx1t ry1t~·u,r) 

d = block (E- • l.rJ T tyJ f G- • d, r). 

(6.33) 

(6.29) 

(6.30) 

By finding the minimum solution of the fitSt equation and then·:using this value in computing the 

minimum solutions of the other two, we obtain two vectorS of strength values If" and r from which the 

target state for each node can be computed as 

(6.26) 

Consider how far we have progressed from the electrical eimlit·oriented view of the switch-level model 

provided by the original definition of the target·state in Chapter 2. This new method involves only simple 

operations in a dm:rete algebra, and the equations caa be solved by a *8ightfOrwaRf iterative method. 

Furthermore, it finds whether nodes are sensitive to the unknown oondQctances funned by transistors in 

the X state (and hence should have target state X) without enumerating over po!Bible combinations of 

transistor conductances. Thus, it can be implemented by a very efficient computer algorithm as is shown 

in the next chapter. 
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7. Simulation Algorithms 

7.1 Introduction 

Theorem 6.5 defines a straightforward method for computing the target state function, and this 

method can be implemented by an efficient algorithm to serve as the basis of a switch-level simulator. By 

exploiting the locality of both the interconnections and the activities in the network, the program can 

achieve a performance comparable to logic gate simulators. First a unit delay simulation algorithm is 

presented which provides the same functionality as the program MOSSIM (9) for designs which can be 

described in the MOSSIM network model. Next, it is shown that a slight modification yields a simulator 

with a timing model similar to Terman's program [5], although the functionality of the two algorithms 

differ significantly. The new algorithm differs greatly in its style from both of these previous algorithms, 

largely because it is based on solving equations in a well-defined mathematical domain rather than on the 

intuitive ideas of the simulator designers. These simulation algorithms are compared and contrasted 

toward the end of the chapter. Some performance data from MOSSIM are presented to demonstrate the 

performance characteristics of switch-level simulation and how it compares to logic gate simulation. All 

algorithms are presented as "Pidgin Algol" programs as defined in Aho, Hopcroft, and Ullman (1). 

Before delving into the details of the simulation algorithm, let us consider its intended mode of use. 

Suppose the design to be simulated will operate as a synchronous circuit with a conservative clocking 

scheme. That is, some external set of clock signals will be provided through input nodes which control 

the sequential operation of the circuit such that as long as these clocks run slowly enough, no timing 

errors can occur. Each clock cycle can be subdivided into a set of simulation phases (called "epochs" in 

Mead and Conway [37]) where during each phase, all clock and data inputs remain constant For 

example, a two-phase, nonoverlapping clock contains four such simulation phases: 



Phil 
Phi2 

Phase 
1 2 3 4 
0 1 
0 0 

0 0 
0 1 
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During each phase, the circuit has sufficient time to stabilize. 

To model the functionality of such a circuit, a simulator can simply compute the state in which the 

network would settle for each phase of each clock cycle, setting the clock and data inputs to new values 

between the phases. The function phase, defined in Chapter 2 as phase(x, y) = lim stepx(J) serves 
~.~00 

this purpose. To the user, this technique provides the effect of a unit delay timing model in which 

transistors switch one time unit (i.e. on the next computation of stepx) aft.er their gate nodes change state. 

Such a technique provides only limited information about the speed of the actual circuit, but gives an 

indication of the function computed. The characteristics of this and other timing models are discussed in 

Chapters. 

This technique has been applied to simulating self-timed systems [36) as well, in which activities 

may occur independently and asynchronously. Each phase then corresponds to a particular setting of the 

input data and control signals, and it is assumed that the circuit will settle before the inputs are changed. 

Although actual circuits may not obey these assumptions, almost all can be modeled as if they did. 

7.2 Complexity Model 

In a switch-level network, each node could be connected to every other node by any number of 

transistors, giving an unbounded number of transistors relative to the number of nodes. In practice, 

however, the number of transistors grows only linearly with the number of nodes due to the limited 

connectivity allowed by a two-dimensional integrated circuit chip and to electrical and functional 

considerations. To evaluate simulation algorithms, we should have· a model of the complexity of 

networks which more closely matches actual circuits. The follQwing set of assumptions has been observed 

to hold for a variety of designs, although it has not been subjected to a rigorous study. 
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Define the connectivity set of a node as the set of transistors tbt1tl\ich the node serves as the source 
, i .- ' 

.,... !'_ l 

or drain connection and the connectivity degree as the size of lhis set The fanout set of a node is defined 

as the set of transistors for which the node serves as the gate connection, and the fanout degree is defined 

as the size of this set An infonnal study of a variety of designs has shown that almost all normal nodes 

have connectivity degree less than 5. Exceptions include large busses and the output nodes of large Nor 
-·:;:' - ·1 ':. .:.-~. 

gates.1 Input nodes, especially VDD and GND, however, may have ah~ ~ of ~onnectivity. A 
- . ~ ; 

similar statistic holdS for fanout degree with the exception of nodes providing major control signals such 

as clocks and reset or enabling commands. 

We will assume the network may contain 0(1) (i.e. a constant number) of input nodes each with 

O(n) fanout and connectivity degree, where n is the number of normal nodes. An 0(1) subset of the 

nonnal nodes may also each have O(n) fanout and connectivity degree, but the remaining normal nodes 

must each have 0(1) fanout and connectivity degree. From either the fanout or the connectivity 

asmimptions, one can see that the network can contain only O(n) transistors. 

The sparseness of interconnecpons in a logic design leads to a localization of the activities. When a 

node changes state, generally only a small number of nodes will be directly affected. Furthermore, in 

most synchronous designs, each logic element will be activated only a small number of times during each 

clock cycle. That is, during a single simulation phase. information will only pn.aaate ftom the outputs 

of one set of storage elements through some combinational logic to the inputs of other (or perhaps the 

same) storage elements. Even allowing for a small number of dynamic h81.ards (transient pulses caused 

by unequal path delays), each node will change state only 0(1) times during each phase. In fact. 

experience has shown that often significantly fewer state changes occur. For example, in a random access 

1. Stmctures involving many transistors of the same strength and type connected in parallel, such u 
large Nor gates could be simulated more efftcientJy if they were modeled by special "multi-trailsistors* 
which have multiple gate nodes, any of which can activate the switch. A simple count of the number of 
gate nodes in the X and l state would indicate the state ofsudi an elemelit . · 
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memory, only a small percentage of the nodes change state during each clock cycle. While this example 

represents an extreme case, most networks contain only a small number of active elements at any given 

time. 

7.3 Sparse and Incremental Equations 

Our complexity model shows that the connectivity in the network is very sparse, and that changes in 

the network state occur only incrementally, i.e. a small number of nodes at a time. A well-designed 

simulation algorithm can exploit both of these reductions in complexity and thereby achieve considerably 

better performance than would a naive implementation of the matrix equations. These techniques will be 

demonstrated by developing algorithms for solving sparse and incremental equations in the strength 

algebra. 

7.3.1 Sparse Equations 

Suppose we wish to find the minimum solution of the equation a = f(a) where f:<Jll-+ fil can be 

expressed as 

[f(a)l = b· i i J .. (a:) 
i i n· E p. lJ J 

] 1 

(7.1) 

The set Pi is called the adjacency set of node ni and in our application will equal the set of normal nodes 

connected to the node by transistors in the 1 or X state. We will assume that all connections are 

bidirectional, i.e. ni E Pj if and only if nj E Pi. Furthermore the function f is assumed to be both 

monotonic and passive. The general definition of passive functions is described in Appendix II, but for 

the function! above implies that for all indices i andj and all strength vah • .:s s,fij(s) < s. 
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As an example the function / 1 defined in equation 6.20 as 

/ 1(a) = block (f 61 T G •a. r) (6.20) 

can be expressed in this form with bi = block (r bi 1, ri) andfij<a;> = block <iij ! a;. ri). One can see that 

/ 1 is both monotonic and passive. This example also motivateS the term •pa&,i~e": \vhich corresporJds to 

the property that a signal coupled through a logical conductance can never be increased in strength. This 

example also demonstrates how the 1ocality of mre.rconnec~ in the network lead ~ .~~ matrix 

equations. Element ij of matrix G can. only be greater titan 0 _if a traJlsistoi:. in the 1 .or. X state connects 

nodes "i and~· By our assumptions about netwo,rt CQ~tivity,.l,1'_1,lcan ~-<?<n> for only 0(1) values of 

i, and must be 0(1) otherwise. Therefore l:I Pi l must l?e O(n} •. 

The foltowing program solves this equation where S denotes some data structure such as a ~ in 

which elements can be inserted (push) and removed (pop) in unit time. The order in which elements are 

removed is unimportant 



procedure SOL VEl(f): 
begin 

s +-ta; 
for i - 1 until n do 

begin 

end; 

a,..-- b·· -. . l' 

push(S, "i); 

donei - fabt 

while S ?' 0 do 
begin 

'J .._. pop(S); 
if donej = false then 

Hiia 
donej ..-- true; 
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· for each "i E 1j do 

end; 
return( a) 

end 

if /r(a·) > 8i then 
~~D 

end 

ai - f ij(8j); 

donet-~ 
pusb(S, "i) 

The procedure SOL VE! resembles the relaxation method outlined in Chapter 4, except that it tries 

to minimize the amount of computation by computing the effects of a node value on adjacent nodes only 
" .. ·; ' 

when the value changes. It starts by setting all nodes to the initial values given by b and placing the nodes 

in the list S. At any time, any node 'l in the list for which donej equals false has had a new value assigned 
,-<.·; 

to 3.i· the effect of which has not been propagated t<> neighboring Dodest The procedure performs a series 

of relaxatio~ each of which starts by selecting a node ll_j·. from' S such that done; equals false. The effect 

of the value 3j on each neighboring node in Pj, i.e. f ij(8j) is computed, and if this exceeds the previous 

value on the neighboring node, the neighbor is updated and placed in the list with donei set to false. This 

may lead to duplications in the list S, because ni may already be on it. The flag donei, however, provides 

a means of checking whether the effects of the node value on adjacent node values have already been 
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computed. This technique eliminates the need to test a node for membe$lip in S be[om ~ng it to s.1 

These relaxations continue until all nodes are consistent with one another. i.e. any further relaxations 

would have no effect 

The correctness of the procedure SOL VEl relies only on the monotooic~Y. off. This can be proved 

by inductive assertion on the number of relaxation steps (i.e. executions of tilf while loop body.) Let at 

equal the value of the array a after k steps. It is claimed that for any k, b <' ak < 11'* ~nd for any j such 

that donej equals true, f ij(aj) < 3i for all i in Pj. This ctearly holds at the start, _because 

b = a0 = /(0) < a= and donej equals false for all j. Now suppose this 11Sertion holds after relaxation 

step k. A relaxation step involves propagating values a:cor4ina tothe.aet of functions/ij• and therefore 

ak < ak + 1 < at t /(ak}, which gives 

Furthermore, the second part of the assertion clearly holds,, because the program sets donej to false any 

time 3j has been changed and only sets it to true once the effects of the new value have been computed. 

By induction the assertion must hold when the procedure terminates with donej equal to true for all j. 

This implies that for the final value of the vector a, ai > /ijCaj) for all i andj. We alsotnow that 3i >bi 

for all L and hence a >/(a). By the monotonicity off and inductlo~ on k, a >A~> for all k, and 

therefore 

• > 1im !~•> > tim AO) = .-. 
k .... QO ' t-+ 00· 

Combining this inequality with the inequality of the inducdon as&efdon p:res ·a = ... when SOL VBl 

terminata. 

1. One could test the flag donei before inserting a node in S to avoid duplication in S, but the method 
given here leads more naturally to our !Urther developments. 
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To analyze the complexity of this procedure, observe that a node is pt&shed on S-0~ when its value 

is increased. Thus each node ni can only be pushed a maxitm11noft1'f,~ taclltime causing at most 

one relaxation step requiring I Pi I operations. Therefore the algorithm has complexity less than or equal 

The foll~wing example shows that this degree of complexity can acttiany be realized. Define b as a 

vector of decreasing strength values followed by O's, i.e. 

{ 

Yp+l-i• l<i:91 
·bl· = . It. ·1 . . ...JJl<!i<"'+q p+q+ -1' y• -~ 

0, p+ q+ l~i$p. 

Let Pi = { ni } , P n = { ~- l } , and Pi = { ni· l• ni + 1 } for l< H n. Define fij as-the identity function 

for 1l_j E Pi. This example corresponds to a linear chain of normal nodes with the nodes having initial 

signals of decreasing strength. Suppose that S is implemented as a stack and that llOOes are selected from 

each set Pi in order of their subscripts. SOLVEl will first_set all nodes "i such that i > p+ q to 1e1, and 

then it will set all nodes ~ such that i > p+ q-1 tQ' • 2• and, so ~n tlu'Oligh all possible strength values until 

finally all nodes are set to Yp· Thus, the worst case comple~y of a SOLVE! equals 0(1 'J l·n). 

For most MOS networks we can assume that 'J is a v~.cy small set For example, the network model 

of MOSSIM can be implemented with'!= { 0, ic1, y1, y2 }. Therefore SOLVEl provides a linear and 

hence optimal solution. Nonetheless. our worst case example shows that SOL VEl can waste much effort 

in propagating values which will only be overrtclden later. A slight refinement, however, leads to an 

algorithm with complexity O(n). It replaces the list S with and arrct¥ of lists B, with one list for each 

possible strength value. 



procedure SOL VEl(f): 
begin 

foreach s E '!do B(s] +-8; 
for i - I until n do ... 

3i +-bi; 
push(B(3j1 llj); 
donei +-false 

end; .. 

PROPAGATE(B, a.fl; 
return( a) 

end 

In this program node ni is inserted into. the stack co~ng kt.the initial value bi. The procedure 

PROPAGATE, defined below, then spreads these values throu8h the network. 

procedure PROPAGA TE(B, a.ft. 
bqin 

end 

S+-y; 
repeat ... 

11111 

while B(s] 7'= fZI do ... 
, +- pop(B(s)); 

if donei =Ju. .. 

-S+-prrd(I) 

lleaia 
~+-tnw. 
rmi~ +- felw;) 

.. 
for each "i E 1j do 

if/·;(A,\)8i tlllll 
Q~ 

:;//:/~ .. 
llllb1 s = 0 

The function pred in this procedure is the predecessor function for 1. That is, pred (0) = 0, and for s > 0, 

pred (s) equals the greatest element of :f less than s. This function is used to enumerate the strength values 

in descending order. The line enclosed in square brackets is required for our next extension of the 
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algorithm. 

The procedure SOL VE2 operates much like SOLVEl, except that a node is selected for relaxation 

only if it has maximal strength of all nodes for which donei equals false. It does this by keeping the nodes 

on separate lists according to their strengths and going through these lists in decreasing order. It relies on 

the passiveness off to assure that if a node of maximal strength is selected for relaxation, no nodes will be 

set to greater strength during the remainder of the computation. Therefore each node is selected for 

relaxation only once, and hence the complexity of SOL VE2 equals O(I Pi I) = O(n). It is unclear whether 

SOL VE2 will actually achieve a better performance than SOL VEl, because the cost of implementing the 

array of stacks might exceed the gain in efficiency. This depends on the details of the programming 

language as well as on the networks to be simulated. Nonetheless, we shall pursue the algorithm for 

SOLVE2 for further development. 

7 .3.2 Incremental Equations 

As an extension of this technique, suppose that we have computed the minimum solution amin of the 

equation a =/(a) with/ defined by equation 7.1 and now wish to find the minimum solution am1n• of the 

equation a =/'(a), where 

(f'(a)]. = b'· l l f'··(a·) 
1 l n· E p. IJ J ' 

J l 

and f' obeys the same restrictions as f. Furthermore, assume that b'i differs from bi for only a small 

number of values of i, that /'ij differs from fij for only a small number of values of i and j, and that 

Pi -:/:- Pi for only a small number of values of i. 

For the example of the function/1 given earlier, the differences between bi and b'i reflect changing 

input node states or changing connections to input nodes. The differences between fij and /'ij and 

between Pi and Pi reflect changing connections between normal nodes. 
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The differences between the functions f and f' can be regarded as perturbations of the function f. 

That is node ni is perturbed if bi =I: b' i• Pi =I: P' i• f ij =I: f' ij• or fji =I: lji· Such a perturbation can only 

affect nodes in the vicinity of node ni• where nj is defined to be in the vicinity of ni if there exists some 

path from nj to ni in the graph with edges defined by the connectivity sets P' k· Thus, the new equation 

can be solved "incrementally", by only computing new values for those nodes in the vicinity of a 

perturbed node. 

procedure INCR_SOLVF.(f,J', a): 
begin 

end 

Er-0; 
for each i such that b· 4 b'· or p. 4 J". or f .. 4 f'·· or J .. 4 f' .. do 1 / 1 1 / 1 lJ / lJ Jl / JI 

begin 
Er-EU { ~}; 

donei r- false 
end; 

for each s E 'J do B[s] r- 0; 
for each ni E E such that donei = false do 

begin 
INITIALIZE(ni• b', a, B); 
PROPAGATE(B, a,J') 

end; 
return( a) 

The procedure INITIALIZE sets all nodes in the vicinity of ni to the initial values given by b', using a 

depth-first search technique for finding all connected nodes in a graph as is described in Aho, Hopcroft, 

and Ullman [l]. The flag ini~ is used to indicate whether the node has already been initialized. It is 

assumed to equal false at the start of the program and is also set to false by the procedure PROPAGA TB 

once the relaxations begin. The procedure also places each initialized node into the appropriate list in the 

array B. 



procedure INITIALIZE(ni• b', a, B): 

if ini~ = false 
then 

begin 
ini~ ..... true; 

· a,.-b'·· 
1 1' 
push(B(3i], "i); 
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end 

for each nj E Pi do 
INITIALIZE(nj• b', a, B) 

The procedure PROPAGATE has already been given. It will take the initial values set by INITIALIZE 

and spread them through the network in the vicinity of the perturbation. Observe that the flag donei is 

used for two purposes. It is used by the procedure INCR_SOLVE to avoid redundant computations 

when two perturbed nodes are in the same vicinity. It is also used by the procedure PROPAGATE to 

take care of the case where a node has been moved to a new list but has not been deleted from the old. 

The complexity of the procedure INCR_SOL VE is proportional to the number of nodes in the 

vicinity of a perturbed node. This can range from 0(1) to O(n). In any case, the procedure is close to 

optimal, because it only looks at nodes in the vicinity of perturbations. A truly optimal algorithm would 

only look at a node if its value will change, but this is hard to achieve. 

7.4 Unit Delay Simulation Algorithm 

Theorem 6.5 shows that the target state can be computed by solving equations for r, uop1. and dept in 

the strength algebra. We will now drop the superscripts on u and d. As the phase simulation progresses, 

these values change only incrementally. Thus the techniques developed in the previous section lead 

directly to an algorithm for a switch-level simulator. In the following programs it is assumed that the 

network structure and state information as well as the vectors r, u and d are available as global variables 

and need not be passed as arguments. Only an outline of the algorithm will be given here, because it 

involves many details and requires further development of the proper set of data structures. 
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The program PHASE shown below computes the f8lidioli , 

phase(x, y) = Jim Slep ku). 
t-+00 x 

(2.3) 

It takes advantage of the fact that each computation of stepx invOIVes only incremental changes to the 

network state. The procedure is given a list of node-statA~' an,~nt F.ach element of this list 

is of the form <~. x>, indicating a new setting for an iaput node; or <nj• :Y>. ~dicating a new setting for a 

. normal node. The varjable "newval" reP,resents some element of this list.. In g~ral •. only input nodes 
. . ' . . . . 

will be changed, because in, an actual circuit only these nodes are.llCCe§ible extemaUy. -. - . . 

procedure PHASF.(A): 
healn 

E+-S; 
for each newval E A do ... 

Slrr _NODF.(newval); 
E +-EU PERTURB_NQO~al); 
SET_TltANSMORS(newvati; 
E +- E U PERTURILTRANSISTO_RS(newval) 

end; 

whfte E 7'= ta do 
. E +- STEP(E) 

The procedure SET_NODE updates the node state. and the plJ)l::e(l~ fF.R..J'URJl..NODf.places thOle 
, }- , ~ ~· < • - ;. 

normal nodes perturbed by this change in the list E as well as sets the f1agS donei to false for these nodes. 

That is, a changing input node will pertum an normalnodes Connected bj Conducting tnulsistors. while a 

changing normal node will perturb only itself. The procedllre SET _TRANSISTORS updates the state of 

every transistor in the fanout set of the Dode, while the ptoce41ire PEltrilitB_1RANSIS1URS places 

each normal node for which a transistor in its connectivity set has changed state in the fist E and sets the 

flags donei to false for these nodes. The procedure STEP sbnulates die effects of the perturbations an the 

nodes in E which then creates a new set of perturbations to be simulated. This process continues until a 

stable state is reached, i.e. no perturbations remain. 
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The procedure STEP is shown below. 

procedure STEP(E): 
begin 

end 

A+-0; 
for each ni E. E such that donei = false do 

A +- A U UPDA TE(ni); 

E+-0; 
for each newval E A do 

begin 
SET_ TRANSISTORS(newval); 
E +- EU PERTURB_TRANSISTORS(newval) 

end; 
return(E) 

The procedure STEP selects a node from the list of perturbed nodes and calls the procedure UPDATE to 

compute the new states of all nodes in the vicinity of the selected node. Those nodes which change state 

during this process are accumulated in a list A. Once the effects of all perturbations have been simulated, 

the transistors in the fanout sets of nodes in A are set to their new states. This will cause new 

perturbations which are accumulated in the new list E. Observe that the procedure PERTURB_NODE 

need not be called, because by Theorem 6.7. the target state will remain stable unless either an input node 

or transistor changes state. By changing the transistor states only after all perturbations have been 

simulated, the procedure STEP creates the effect of all node states changing simultaneously and then all 

transistor states changing simultaneously. This implements a timing model in which transistors switch 

one time unit after their gate nodes change state. 

The procedure UPDATE is shown below. It applies the technique shown in the procedure 

INCR_SOLVE to solve the equations 

r = Em10 •11xll T llyll T Gm1a•r 

u block ([DW • r x1 T r y1 T Gmu: • U, r) 

d = block (Emu: • LxJ T LyJ T Gmu: • d, r). 

From these the value of the target state is computed for each node as 

(6.33) 

(6.29) 

(6.30) 
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(6.26) 

Each node which changes state is placed in a list. amg With .itsaew Yalae. 

procedure UPDA TF.("i) 
lleain 

entl 

for each s E B(s) 4lo B(s) +- flJ; 
INITIALIZE..R("i, B); 
PROPAGA TE...R(B); 

INITIALIZF.....U(ni, B); 
PROPAGA TE...U(B); 

INITIALIZE...D(ni, B); 
PROPAGATE...D(B); 

A+- UPDATE....STATF.(llj); 

return( A) 

The remaining procedures will not be given. 

The speed of the procedure UPDATE could be improved for the case where no paths of conducting 

transistors from ~ to input nodes or other normal nodes contain ~ in ~ X state. Suppose 

furthennore that all paths from 1Zj to other normal nodes contain o~ly ~ of strength y JT Then 

Corollary 6.1.1 shows that the steady state signal for every_ node connected by some path to ,~ can be 

found by combining the initial signals on these nodes using the operation V, and the state of this signal 
' •• < ._ _··., ;• - • ' • 

equals the target state of all of these nodes. The procedure INfflAI JZR..R. c;ould check whether this 

particular condition exists, and if so a procedure could be called to perform. this ~uta~n, and ~ 
: • ··--'"; ~ i ·_- ~ ' \- - • • • • 

the nodes could be set to the state of tills signal. Th,is comJ>U,J.au.on involves considerably le!m effort than 

computing r, u, and cl. Considering that in most simulationuhe X ttate arises only rarely once the X's 

present at the start of the simulation have been forced away, such an optimii.ation could provide a 

substantial speed gain. For the case where some nonnal nodes are connected by transistors with strength 
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less than y P (i.e. an unrestricted network) we could employ the method of Corollary 6.4.1 to find the 

steady state signals and consequently the target states. This method, however, may not provide a 

significant savings over the original method. 

Our network complexity gives a rather weak bound on the complexity of PHASE. If we assume 

that each node changes state only 0(1) times, then the total number of perturbations to the network will 

be proportional to the sum of the fanout degrees of all nodes, which is O(n). However, a perturbation 

may require O(n) operation to simulate its effects, although such cases are rare. This gives a total 

complexity of O(n2). Such complexity is achieved only by highly contrived examples, however. 

Experience has shown that typical networks require at most O(n) operations per phase. 

7.5 Pseudo Unit Delay Simulation Algorithm 

lbe algorithm presented in the previous section carefully holds all transistors fixed until all 

perturbations have been simulated, thereby creating the effect of all nodes changing state simultaneously 

and then all transistors switching simultaneously one time unit later. If we instead switch transistors 

immediately after their gate nodes change state, we obtain an algorithm with many characteristics of a 

unit delay simulator but in which all events are ordered. The characteristics of this timing model are 

discussed further in Chapter 8. 
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procedure PHASE2(A): 
begin 

end 

E+-0; 
for each newval E A do 

begin 
SET _NODE(newval); 
E +-EU PERTURB_NODE(newval); 
SET_ TRANSISTORS(newval); 

. E +-EU PERTURB_TRANSISTORS(newval) 
end; 

while E =i' 0 do 
begin 

end 

ni +- dequeue(E); 
if donei = false then 

begin 

end 

A+- UPDATE(ni); 
for each newval EA do 

begin 
SET_ TRANSISTORS(newval); 
E +-EU PERTURB_TRANSISTORS(newval) 

end 

In this procedure, elements are removed from the list E in first-in, first-out order so that the effects of 

simultaneous perturbations will be simulated before any subsequent effects are simulated. As a result, the 

algorithm provides a similar timing model to the unit delay algorithm, even though the list E evolves 

continuously during the simulation phase rather than being repeatedly filled and emptied. 

7.6 Comparison to Other Switch· Level Simulators 

Both MOSSIM [9] and the simulator developed by Terman [5] are designed along similar lines to 

the ones described here. A comparison between these three simulators serves to highlight some issues in 

simulator design. 
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7.6.1 MOSSIM 

For networks which can be described in the MOSSIM network model, the unit delay simulation 

algorithm presented here will produce the same results as MOSSIM. The two programs, however, differ 

greatly in their internal structure. 

MOSSIM precedes the simulation by a relatively complex network analysis, primarily to partition 

the network in a way which allows selective updating. At the start of this analysis each input node is 

replicated to give a separate copy for each transistor in its connectivity set. Then the network is 

partitioned into transistor groups with each group corresponding to a connected component in the 

undirected graph with a vertex for each node and an edge between each pair of vertices corresponding to 

the source and drain nodes of a transistor. This partitioning divides the network into components which 

interact only through fanout connections, i.e. from a node in one group to a transistor gate in another. 

Fig. 7.1. A MOSSIM Network Partitioned into Transistor Groups 

~ pullup node 

• normal node 

>-- input node 
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Since we assume the gate node is electrically isolated from the source and drain, such a connection. is 

purely unidirectional and depends only on the state of the node signal and not on its strength. Thus each 
·~' . ~ 

transistor group can be :yiewed as a logic block with inputs, outputs, and internal state and which 

communicates with other blocks only with logic values O, 1, and X. An example of a MOSSIM network 

partitioned into transistor groups is shown in Figure 7.1. A similar partitioning method has been used by 

researchers at the Nippon Electric Company in an analog simulator to achieve a localization of activities 

[42). Although our new algorithm does not require this partitioning, such a technique provides a way of 

introducing some degree of structure into the network. This structuring has several applications that will 

be described shortly. 

During the simulation a transistor group need only be simulated when one of its inputs has 
(•; 

changed. This tends to restrict the simulation to the active portions of the network, thereby achieving 

some of the effect of the incremental updating technique used in the new algorithm. MOSSIM, however, 

can only take advantage of the slQJic locality in the. network.. i.e. tba.Lwhich.Qll. be d.etei;teil. without 

source and drain nodes of a transistor in the O state are •-~ electrically isolated. Thus. only 

nodes connected by paths of conducting transistort:tb i pertUrbed node,~ .,._~ This added 
·~ '; 

selectively should :Yield some gain in speed. 

MOSSIM also uses a si&niftcantly different mdhod 4>f updatine-a ,Set Gt DOdes following a 
• t ..... ' ~ • : ~. . '. : -·--, 

perrurbation. It exploits the kt that in a· teStrictcd aetwort a set Or ~~ nodes amaected by - . 
' 

transistors in the 1 state will attain the same t*1Jet S&ate1
,- was sho1Q in CorOUary 6.1.1. MOSSIM 

simulates a transistor group· by pa~tioning the nonnaLnode.)n A.IJ'OW: u.to equnatence classes and 
- ' ~ ~ - ;;.;· -

computing the steady state signai foi' e8ch cla9s, i&nqring all transistors- iir*' X ~ Then the effects of 

transistors in the X state are simulated by first forming a "supergraph" With~ vcnta for each equivalence 

class and an edge between two vertices if a transistor in the X state has its s00ree node in one class and its 

drain node in the other. This supcrgraph is inspected to see which classes should be set to X because of 
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possible connections to classes with, different state and~ or equal sarength. 

initial network analysis, as well as the computation of equivalence classes, supergraphs, and so on involves 
,, ' 

a great deal of dynamic stbrage: allocation. This requires much corlpatational effort and cannot be 

programmed easily in languages which lack automatic heap SU>1'a1'e management The new algorithm, in 

contrast, utilizes only recursive procedure calls and data structµres such as sets ,and ~ small array of stacks. 
, ' "-,fc' .-,. - .. , ,/J • 

Furthermore, the MOSSIM algorithm cannot be extended to unrestricted networks easily. Although a set 
. .--1 : 

of nodes connected by transistors with strength Yp and sta:~ 1 in an u~restn,cted network will form an 

equivalence class with the same target state, the computation of this state becomes much more diffteult 
: · .... · ~,. ' : , 

While almost all MOS designs can be described as restricted networks. the greater generality of the new 
- .,..,., - ',-_ ~,. " - 1 

algorithm gives added flexibility. 

7.6.2 Terman's Simulator 

The algorithm used in Tennan's simulator provides a timing moqel similar to the pseudo unit delay 
. ' . ~ . 

algorithm presented here. These two ~gorithms diffei: significantly in, their. functionality and internal 

structure, however. 

Terman's program deals only with restricted networks. For nodes connected by paths of transistors 

in the 1 state, it combines the initial signals on the nodes Witli an operation similar to the operation V, 

just a8·was suggested to improve the procedure UPDATE. Asmealioned:inSection l.9, however, chafae 

sharing is simulated by real-valued capacitanees. FOi' ·noies cobaeclei,by transistors in the X state it 

attempts to encode infonnation about the network condition into addition,a.1 "s~tes" and propagate this 
' • '.. •• , • - •I ' ,- • ',~ 

infonnation much as it does the other states (which can ~ likened to signals.) However, the small 
. 'f .. :._; " 

number of additional states provides insufficient detail about the network condition, and this forces a ,, 

rather inaccurate simulation. Furthermore, simply adding more states would not correct this problem, 

because it seems as if an accurate algorithm requires two p~ over the set of nodes: the first to perform 
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a pre-conditioning step and the seconcl to compute Ille .new node' states. The functionality of Terman's 

Yj = .{ <l}(G-. E'8'8)>.. Yj(G .... E'*) = 
0

l}(G. -.,...., 
. x. ' ~.~~,~.r-). 

That is, a node is set tO x unltS it has the same steady state'si&naf wben'att tranSistors ~the x state are 

fully conducting as when they. are nonconductlllg. F~.·:,Y~' ~· nOdes. iii .different ·states 

are corinected by transistors in the x state, no a- is made. to. take. ~ relative capacitances uito 

account Instead these nodes are set to X. As wac; shoVin iii Section i9, one has little choice.in this CMe, 

because real-valued capacitances and transistor in the ; x - {~tly) cannOt be dealt with 

consistently. It can be shown that Terman;s ~is more ~ativ~·than thC one given fierC. 

except when charge sharing is involved. That is. whenever it sets a node io''d' or i ~rs.sets the~ to 

the same value, but in some cases it may set a node to X when ours sets the~ to 0 or.1. To~·tlUsr - ~ . . . ' . - . 

recall that for a restricted network. both G* and G- must be elements of { 0, y P } 8 X 0, and therefore 

any matrix in the set { G} must also obey this property'. Let E eqUal any in8triX ·in the Set { E} and G 

equal any matrix in the set { G }. F.quation S.17 shows that o is moBotonic for ~nts repieser\tina 

conductance matrices. Therefore for any·• E .A.n 

If it(C-, E*) = 'i<G-, E-). then y i(G, E) = y ~G*. E*) for any GE { G} and l t {I}. 

Therefore y i = y i(G'*. r-'-). Thus. for the cases in. whim 'tenna·s mnulatar sm a node t.o CJ. or 1. 

ours sets it to the same value, except when charge sharing a invohed. 
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Fig. 7.2. Inaccuracies in Tennan's Simulator 
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As the examples in Figure 7.2 show, however, Terman's algorithm may set a node to X when it 

clearly should set it to 0 or 1. These examples are shown in the MOSSIM network model in which the 

pullup resistor corresponds to a d-type transistor of strength y1, while all other transistors are n-type 

transistors of strength y2. In the first example the node is being driven to 1 by a transistor of strength YI 

in the 1 state and a transistor of strength y2 in the X state. The node will have a different steady state 

signal if the second transistor is conducting or nonconducting, and hence Tennan's program will set it to 

X. The state of the steady state signal will be 1 in either case, and hence the node should be set to 1. The 

second exatnple shows a similar result when a normal node is initially charged to 1, and then connected 

by a transistor in the X state to VDD. In the third example, if the transistor had zero conductance, node 

n2 would stay charged at 1, while if it has nonzero conductance, the two nodes will share charge but '12 

will remain above the positive logic threshold. Therefore n2 has a target state of 1, but Tennan's program 

sets it to X. Jn many other cases, however, such as in simulating logic gates with some inputs in the X 
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Fig. 7.l Inaccuracies in Terman's Simulator 
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As the examples in Figure 7.l'show,'IK.nrrier, ·'renmm•s'atgoritttm may set a'node to X when'lt 

ctearfy' should set it to o or·t. ~'exaniptes are· shbwn itl'tbe Mo8Sm"netwott model in which the 

pullup resistor correspond! to a &type ttansistof of~ '11: whittf atF6th'er transistors are n~type 

transist61sdfsurigth 'Y1; Ithhe first ~ampte ~n~'is~ driven tO t by a tntftsistor of strength Yi 

in the · t state and a· trattsistOr of stteilgth 12 in ·the X Staie.· The- node flt have a different Stea<!}' state 

signal if the second transistor is eonductirig0r honconducful&-artci'ttertte TeJ!rnan•s pt0gr8m wm set it to 

x. Thestateofthesteady-state·stgnahVitlbe tin eitbert:a:se;·amtl\Cnce ttie node should be set to 1. The 

second H8tJlPle shows ·a Similar restilf Whert A normal node'*'btidatly Cbarg'ed to 1, and then OOnnected 

by a transistor in the X·Ueif>VOO.' in fue·thmf~ if• il~had tero conductance, node 

n2 would stay charged at 1, while if it has nenzero condUctance, the t\VO'nottes wm share charge but "2 

will remain above the positive logic threshold Therefore "2 has a target state of 1, but Terman's program 

sets it to X. In many other cases, however, such as in simulating logic gates with some inputs in the X 
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As a further application of mixed-level simulation, in most MOS designs certain transistor 

configurations arise very often and can be replaced by their functional representations to improve the 

simulator speed. For example, MOSSIM recognizes the transistor configurations corresponding to. 6 

different nMOS logic elements: inverter, Nand, Nor, and each of these logic gates with a single pass 

transistor on its output. MOSSIM perfomis this optimization only when the configuration comprises an 

entire transistor group. Since transistor groups interact with one another only through fanout 

connections, each group has a clearly defined set of inputs and outputs. Hence the functionality of the 

transistor configuration can be guaranteed to match the functionality of the logic gate. For example. 

group o2 in Figure 7.1 can only behave as an inverter, and group o4 can only behave as an inverter with 

pass transistor. These optimizations affect only the speed of the simulation and not its functionality. This 

cautious approach overlooks other possible optimizations but involves no guesswork. With MOSSIM 

tllese optimizations are perfomied during the network analysis prior to simulation and entail little 

additional effort because the network must be partitioned into transistor groups anyway. With the new 

algorithm. no such partitioning is required unless the optimizations are to be performed, and hence the 

added cost of applying them becomes much higher. However, for networks which will be simulated over 

long sequences of inputs, the net savings can be significant 

Implementing a mixed-level simulator requires small extensions of the procedures PHASE and 

STEP given earlier. In addition to maintaining the list of perturbed nodes E, we must also maintain a list 

of perturbed function blocks F, i.e. those blocks for which some input has changed since the most recent 

updating. When the procedure PERTURB_ TRANSISTORS is called to find which nodes are perturbed 

when a changing node state causes a changing transistor state, we should also catl the procedure 

PERTURB_BLOCKS which will add any block to the list F which is perturbed by the changing node 

state. In the procedure STEP, blocks in the list F should be simulated and the nodes at their outputs 

should be set to their new states. Any node which changes state is added to the list A. With this 

implementation function blocks will be simulated much as they are in traditional event-driven logic gate 
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simulators. 

7.8 Performance of MOSSIM 

Although the algorithms presented in this·chapter have not·bedl implemented. their perfonnance 

should becomparable to MOSSIM~ Thus we can use the·petferrnance,t>fM0SSIMas·a measuroo(the 

Speed of switch-level simulation. Furthennore, since MOSSIM an• ~ transistor c0nfipratk>ns 

corresponding to certain logic gates by a gate-le\<elreprerentation, we caiuompare·the relative speeds of 

switch-level and logic gate simulation. 

MOSSIM is written. in the language, CLU (26). AU times were measured on a DF.C 20/f>O. While 

the program, programming language, and compUter ·system ·bave·beee ~ to ·provide reasonable 

performance, there is room for speed improvements in altduW--. 

designs. Both 4esigns have the circuit shown in Fipre 1 J · Jbr each4>it positioa Data is stored 

dynamically. and no initialization citcuill}' has been included. The chain of half adders forms a 

carry-ripple adder. The two designs differ in how the half addas • ·inlplementecl. The first. called 

CNTR, utilizes four Nand gates and an inverter to implemeat1he sum and:cany leaic in a conventioml 

way. The second. called MCNfR utilizes a pre-charged'Manchester carry chain as shown in Mead and 

Program 7 J. Test Case Networks 

Name Transistoll • 

CNI'RlO-OPT 0 
CNTRIO-UNOPT 200 
CNTIU.6-0Pf 0 

MCNTRIO-OPT 124 
MCNTRIO-UNOP'f 2S8 
MCNTR16-0PT 200 

• includes depletion mode transistors 

lAJ&lcGates. 

70 
0 
112 

S2 
0 
84 



Fig. 7.3. One Bit of Counter Circuit 
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Conway [28, p.150) to implement the carry logic and a selector logic blotk [28, p.152) to implement the 

sum logic. This design achieves high speed by pre-charging each bit position in the carry chain on each 

clock cycle, so that the carry lines are never driven through load transistors. 

Both designs were tried in 10 and 16 bit versions (e.g. CNTRlO and CNTR16). The suffix "OPT" 

for the entries in Table 7.1 indicates that MOSSIM replaced the transistors for whatever logic gates it 

could find with the logic gate representation. The suffix "UNOPT" indicates that the network. was 

simulated entirely at a transistor level. As can be seen, the conventional counter design can be replaced 

entirely by a gate level representation, white in the other design only 50% of the network (measured by 

the number of transistors) could be replaced. Experience has shown that between 50% and 80% of typical 

designs can be represented at a gate level. 

Table 7.11 gives performance data for the six circuits. All times are measured in CPU milliseconds 

per clock cycle. Best and worst case times were measured by finding which cases minimized or 

maximized the time, while average times were measured by averaging 1024 clock cycles. The best and 

worst case times could not be measured with complete accuracy for the faster circuits. 
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Program 7 .II. Performance Statistics 

CPU milliseconds I clock cycle~ 

Circuit ayerage llest worst 

CNTRlQ-OPf 30 30 70 
CNTR10-UN0171' 9S >79 • - 220 
CNTRl6-0PT 34 ·30 110 

MCNTRlO-OJYf 300 260 32C} 
MCNTRlO:-UNOPT· 400 3'0 440 
MCNTR16-0171' 490 .4SO SJO 

',_ .~ : ·- -

First let us consider the data for CNTR. The transistor level simulation requires 3 times longer than 

the gate level simulation. This provides a measure or speCd of a simulator which operates at a transisfur 

level relative to one which operates at a logic iate level. Furthermore, if the simulator were designed ooly 

to simulate logic gate circuits, its speed could bi hnproved further. No~lhe~ it shows that the speed 

' --::_· 
of a switch-level simulator can approach that of a logic gate simulator. Observe that the best and wont 

_. . ~ ' . ,. . ' ' 

case times differ greatly. This indicates that u~ the carry propagates a long way during a clock cycle, 

large portions of the network remain inactive. This is also 5een in the I6bit ve~on where the averaae 

' ' - 1 

time is only slightly higher than for the 10 bit version, but the worst case time grows in proportion to the 

network size. 

' ~ c. 

The data for MCNTR indicate much different performance characteristics for this design than for a 

conventional gate impleme~tation. The circuit requires up to 13 times longer (f~r the 16 bit version) than 

CNTR. This difference is due largely to the greater amount of activity in MCNI'R. On every clock cycle. 

·-..-.; ..• 

all carry lines are pre-charged, and since the sum logic depends on the carry values, the silnulator will first 
'_;t'· 

compute the sum based on the pre-charged value and then on the final carry value. Furthermore. 

. . •. - ' ~ . 

transient X states arise due to sneak paths in the push-pull drivers for the carry chain and the sum logic. 
, . . 

causing many more activities to be simulated. Thus, the amount of activity in the network is almost 

independent of the length of the carry propagate. This is indicated by the close~ of the best and worst 

case times and by the fact that the simulation time grows in direct proportion to the network size. Note 



also that in replacing 50% of the network with logic gate representations, we imprme ·1be speed by 25~ 

showing that these optimi:z.ations do not provide a major performance gain. 

These measurements indicate that the performance of a switch-level simulator can vary widely 

depending on the nature of the circuit to be simulated. For cilwitl-jg)pleawntechnostly will\ logic gates, 

the activity is highly localized and much of the design an be simulated at a gate level. For designs using 

more exotic reclmi'Wfi ·such. as pre-charged· and pa&&. ~ ._ .activity occurs tbrougbotlt die 

circuit and a larger portion must be simulated at .the U'ansistor leveL · la either case. however. the 

simulaOOn time arows at most liaeady with the;aetwork a. 

7.9 Summary 

Unlike previous switch-level simulators which "~ based solely on .fue intuitions of the designers. 

the algorithms presented here are based on a mathematical tbeory. 'Ibis prcwides aJramewoFk. much like 

numerical analysts have in which problems are formulated as, a set of equatiODS, and the goal becomes to 

find efficient !l}goriduns to solve them. In our case. Ute simulation algorU8rn relies mainly on a technique 

for sol\'ing recurrence equations in the strength algeba By studying tlli& $irnplitred and more abstract 

problem, one can see m~ clearly the trade-offs between algo~ complexity .and simplicity of 

implementation. Furthermore, the algorithms can be proved correct .The characteristics of equatioas 

which arise in simulating MOS networu such as sparseness and locality ofdlanges can be exploited to 

obtain an algorithm which is particularly efficieat for Ulis application. 

Once the basic unit delay algorithm has been •veloped, ·it· can be altered to provide a slightly 

different timing algorithm or extended so improve Ul•H~ffici¢nc)'·and~y of the simulator. It can 

be seen that switch-level simulation can be combined with Josic gate an4 functional simulation so that the 

best features of each may be utilized. 
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8. Timing Models 

8.1 Introduction 

The unit delay alsoridmt presented in ,Chapter 1 sin!ulateS the network as· moving thfOugh a 

.sequence of target states. To the external . viewer, thiS pmvldes a .timing model in which a· transistor 

switches oneitime unit after its gate node-Ohanges state,.but in whieb ligRalB·pmpagatecalq palhs Of 

conducting transistors instantaneously. For common iniplanentations of in~ Nand gates, ind ·Nor 

gates, such as those shown in Figure 2.2, this.algoridtM *9;amutate1· tajit tMes as:1taviilg unit delay. ·in 

this chapter, the modeling of time in MOS circuits will be investigated in ternis of both simulating the 

functional behavior of a design and detecting timing errors. Example networks will be given containing 

logic gates. It is assumed that these gates are implemnted in ODO.oflhe styles shewn in Figure 2.2, all of 

which behave identically from a logical point of view. 

As was mentioned in Chapter 2, switdl-Jevel networks tllare maay commonalities with relay and 

logic gate networks when view.ed as systems compUting logical :functiont. The taf8eC state provW. die 

basic characteril.ation of the logical function computed by aswitch-fe¥et aetwort; It gives the node states 

created by the network in responae to the current statei. Thus it descrlbel the w:ilation of the networt 

much as the excitation of a Boolean gate netWt>rt (20] is deftf1ed •the -OUtput vatUes of all logic plea 11 

functions of their current iaput values. Many of the dleoreti£al tecliniqUes aad algorithms developed for 

logic gate networks (and relay netwmb) can be adapted totllelwitdl-tevel lbOdel. ·1n.4oing so, hOWeVer, 

several characteristics of MOS systems muSt be tept in mind. 

First, the sheer size of MOS LSI systemS·imposesconstrainmon-the·pratticatity and usefulness of 

many techniques. Such tools as Kamauah maps. (281· and flow .tables (2l, 4ll require a tomplete 

enumeration of all ~ible network states, which would grow expooentiily with the number of nodes. 

Such techniques can only be applied to small sections of a design. In fact, any algorithm with nonlinear 

time complexity must be viewed with skepticism for networks in which the elements number in the 
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thousands. Similarly, any tool which requires "hints" from the user such as the location of feedback 

paths, state variables, or delays becomes unwieldy for large networks, unless this information can be 

derived algorithmically from some source such as the layout specification. This problem becomes even 

greater as LSI designs are generated by automated or partially automated systems, because the designer 

may not have the intimate knowledge of the network required to provide such hints. Thus the desire to 

handle large networks and to implement any technique as a computer algorithm changes the standards by 

which techniques are measured. 

As a further point, switch-level networks differ from networks in other logic models in that the X 

level can arise during normal network operation due either to short circuits or improper charge sharing. 

For example, sneak paths between input nodes in different states often arise in pass transistor logic 

circuits such as the push-pull drivers used in output pads (28, p. 165). Generally these error conditions 

occur transiently and have no effect on the ultimate network behavior. The presence of X states may not 

indicate a badly designed circuit but only a temporary ambiguity in the network operation which must be 

scrutinized to see how far it propagates. This contrasts with logic gate models in which either Boolean 

behavior is assumed at all times or at least that an X value can only arise as the result of other X's. 

Techniques developed for other logic models often require modification to handle the X state. 

Traditional assumptions about sources of delay in digital systems do not apply to MOS circuits, 

either. Most analytic techniques for asynchronous circuits [22, 29, 43], assume that delays occur only in 

logic elements (gate delay) and not in wires (line delay.) Furthermore, they assume that a logic element 

will respond to all inputs simultaneously. This would require in MOS implementations of logic gates, 

such as those shown in Figure 2.2, that all transistors respond to changing input signals at the same rate. 

Such an assumption may not hold, because p-type and n-type devices may have different timing 

characteristics, and even transistors of the same type may not behave identically due to variations in 

geometry, fabrication details, and stray capacitances. A timing model for MOS circuits should allow each 

transistor to have an independent switching time. With this degree of generality, however, we can also 
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model line delay by incorporating it into the switching times of the transistors with their gates attached to 

the wire. Fu.tthennore, transit delay (the time required for a signal to travel through a conducting 

transistor) can usually be modeled by incorporating it into the switdting time of lhe tr.insistor. ·Thus, a 

timing model which allows arbitrary delay times ibr each'tr3iisistor cab'model ·an tbnns of delays m an 

MOS circuit Giventhat·wiring delays are predicted to dominate in future'VtSt circuits (36}, the ability 

to model wiring delays may play an important role. Many :of the traditionahmafytic tools, however, 

cannot deal with this degree of generality. 

As a final, and SOllleWhat more optimistic note, much of the concern about timing in traditional 

logic design need not concern the MOS <bisner. • Mt>st MOS· systenl!r are designed to operate 

synchronously with conservative electing schemes. For etampte. ·in ·a pf'oPerly designed circuit with a 

two-phase, n<>noverlapping d0ckin9 scheme l28t no malftlnctionS due-'tri 'timing can arise as ldng as the 

clocks run slowly enough for the cirruit to settle dUringeaclt time epoch, but fast enough to avoid the Joa 

of stored charge. These methodologies have been adopted, in fact, ID compensate for the difficulty in 

accurately ·predicting the exact time. behavior of MOS ciaits,· ·esplda1ly· if Che design is to operat.e 

correctly despite variations in fabrication· and despite· the. inability to fine 'tune circuits once they· have 

been fabricated. For such systemS, almost any timing modd wriutd; prcmde sufticient accuracy to teSt the 

functionality of a design. However, timing still remains an issUe lbr those dCSigris ·m which relative path 

delays can affect the logical behavior and ·fOr ascertaining that adesian·•tail· operate at a particular 

clocking rate. 
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8.2 Simulation Timing Models 

Much attention has been focused on timing models for logic gate simulators. Some of these 

techniques will be described and their suitability for switch-level simulation will be discussed. 

8.2.1 Unit Delay 

To implement a unit delay model the simulator computes the excitation of the network and then 

sets the node states to these values. This model has been used successfully in both logic gate and 

switch-level [9] simulators. It provides the same level of accuracy as logic designers use when they analyze 

timing by counting logic gate delays. This suffices to model the functionality of a a wide variety of 

designs, because very few circuits rely on a path with fewer logic gates having a longer delay than a path 

with more. A unit delay model, however, may deceive the logic designer who finds that a design can be 

made to simulate correctly if extra delays {e.g. inverter pairs) arc inserted along some paths. Often the 

actual circuit cannot be corrected so easily because of factors such as the assymetric rise and fall times of 

ratioed logic gates and the inexact behavior of the circuit during transitions. 

Unit delay simulators can fail to terminate, both in cases where the actual circuit would run 

indefinitely, and in cases where the actual circuit would settle. For example, a simulation of an inverter 

ring would not terminate, such as the one formed when the input to the network shown in Figure 8.la is 

set to 1, because the circuit would run indefinitely. More importantly, the circuit shown in Figure 8.lb 

has a critical race if the input is changed to 1, but eventually the slight differences in the two Nand gate 

delays would cause the conflict to be resolved (although not with a predictable outcome.) With a unit 

delay simulator, however, both logic gates are simulated as having the exact same delay and the 

oscillations continue indefinitely. As a practical matter, this problem has arisen only a few times out of 

many simulation runs by many users. The conditions leading to these oscillations seldom appear in real 

designs. This nontermination due to perfectly matched delays can create major difficulties, however, if 
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Fig. 8.1. Networks for Which Simulation May Not Terminate 

a). 

b). 

c). 
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the simulator tries to initialize the network nodes to states other than X, because a naive choice could well 

create effects similar to the example in Figure 8.lb. To prevent nonterminating simulations, the 

simulation program can be designed to halt after a maximum number of unit steps, with this limit set 

according to the network size. 

8.2.2 Pseudo Unit Delay Simulation 

A pseudo unit delay simulator proceeds by computing the excitation of a set of nodes resulting from 

an event selected from an event list, where each event indicates a perturbation in the network state. These 

nodes are then set to their excitations and any resulting perturbations are added as events to the end of 

the event list. This process continues until the event list is empty, indicating that the network is in a stable 

state. As long as the event list is maintained as a first-in, first-out queue, this simulator resembles a unit 

delay simulator in that if two nodes are perturbed simultaneously, the effects of both will be simulated 

before any perturbations they cause are simulated. However, activities which are modeled as occurring 

simultaneously (and hence independently) in a unit delay simulator will be ordered, and hence one may 

affect the other. This ordering will depend on the internal details of the simulation program and to the 

user will appear unpredictable. Such a simulator would terminate for the example shown in Figure 8.lb, 

although not in a predictable way, because the simulator would arbitrarily select one logic gate to simulate 

before the other. The network shown in Figure 8.lc, however, has a similar form of critical race, but a 

pseudo unit delay simulator would fail to terminate, because in following a FIFO discipline the simulator 

would alternate between the upper and lower chains, giving the effect of perfectly matched delays. One 

should note, however, that this example is very contrived, whereas networks like that of Figure 8.lb are 

quite common. It is not known whether less pathological examples would fail to terminate with a pseudo 

unit delay simulation in cases where the actual circuit would reach a stable state. Circuits with 

nonterminating behavior such as the inverter ring shown in Figure 8.la will have nonterminating 

simulations. Thus, a pseudo unit delay simulator partially solves the problem of unbounded oscillations, 
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but at the expense of introducing some degree of unpredictability. ·This teclmiqueJias been used 

successfully in a switeh.-level simulator (5). 

8.2.3 Zero Delay . 

To implement a zero delay model [12) all feedback paths must be_ broken such that the system 

becomes a combinational network, computing a function from the inputs and current values of the state 

variables to the outputs and new values of tile state variables.. -Each pm:rhaloush: the netwott appears to 

occur instantaneously, and hence lhe term "zero delay"~ llrismodll asllllbes thecircuit is free of critica1 

simulated at most once during a pass,. thereby achieving·greitei'dicienCJ than either a.unit delay or 

pseudo u-oit delay sim.ulator. Simulations of networbt*h as hJse shown-in Figures 8.lb andi;lc would 

the network shown in Figure 8.la would not Such a technique would apply to MOS.networtspnly if die 

be an NP-complete problem (11). but for most applications a a which is 1lOl minimum would suftice. If 

an algorithm chooses to break the paths in Fjgures 8.lb,amt &lea two'.places. heweYer •. a·nOl1l'el'lninati 

simulation coukl result Furthermore, tile user would have little undentandin8 of the sisnuladoa timing 

unles,, informed of the points at which feedback padls are bluken. -A zemdela~ model has ~Y not 

been tried-in a switch-level simalator. 
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8.2.4 Continuous Time· 

Many logic gate simulators introduce a continuous time measure by altowing the user to assign 

delay times to the logic elements and .usin& a time-ordered ew8t tist tcbeduler• Some ·even allow logic 

gates to have different rise and fall times [44), to model logic ,ates in. ratioed dreuits. Such a technique 

has been proposed for switch·levd simulation· widt the atltWd: parabtef.trs which detennine the delay 

computed by a layout analyzer [5]. With MOS circuits, however, delays are'~ii\>y many details 

which the switch-level model ignores, such as both the linear and nonlinear effects of transistors, the 
. 

threshold voltages, the capacitive loadings (which may change during operation), and the exact voltage 

waveforms on the nodes. As one tries to take SUdl details: into•account, it bieComes difflcu1t t.o achieve a 

consistent level of detail. without resorting·to a'·fidl scala:aaalog simulation. An inaccurate sitrmlation 

Wi>Uld create more problems than it woold solve, becaa&e ;users tend to plaee great faith in numerical 

results even ifthey have.no validity.: 

Perhaps the most promising approach is to find lower and upper bowtds ·on-the· circuit delay by 

applying only simplifications of tile .analog behavior which caa be goaraRtted either eoaservative er 

simulated, until it can shown that the required timing condidllal willitlrmet., R«ent werk C.f Ola'sset 

before it becomea a practical simµlation tool. This form of~ would pnwide the most 1'0liable 
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8.2.5 Summary 

None of the models listed above. will· satisfy all. usea at all. tillies4 · •. However. the unit· delay and 

pseudo unit delay models SQmd out fur tbeiN;implicity~m~. acl-coosistency with the lewl 

of detail which the switch-level model is intended to provile: To·dMJeae·tJetwetn the9e two, -One must 

compare the value ofgreater predidabitity apinst:the.value.of:a,graa;r{Rt nottblal)Dnblnity to' 

nootenninaung simuiadons. 

8.3 Analysis of Timing by Ternary Simulation 

Rather than introducing a continumls.time model inl& a swilch-level simulator, one misht belt 

leave such a level of detail to analog simulafars·wllere it·~ ·be handled aocurately. lnstead,-Cbe 

switch-level simulator could be used to ideatify those pottiom of a system which warrant closer timiJ18 

analysis by analog simulation or some other technique. This would allow ·die JDCW :powerful (ht more 

expensive) tools to be applied just where they are needed. Fer ~ die speed· of a synchronous 

cin:uit is often· Hmited by a siDale critical ~ sucb a the carry main of».adder. A unitdelay simulamt· 

could generally fin4 this path by findina which nodes dluged stale•4uriai &he last unit step of 1 

simulation phase and tbea working bckwanl. 

A method bow11 as .ternary !inalltdiolf .bas been deYeJbpecl m *tect possible bawd& aad critical· 

races in. loaic &ate cireuias widM>ul iatmdudlll acontinmus 0.. model:fll, 2l. -46). This tledmMt.-e ·.UICll 

the X state to represent the ambiguitJamed-0,·a'nadein;• 11iti• fRm 8 to 1or1 te 0. Teraary 

simulation techniques can also be applied to switch-level networks to detect poaible sourees of timing 

errors. These parts of the circuit can then either be redesigned or analyud by more detailed melhodl 

such as cireuit simulation. 
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8.3.1 Algorithm 

The algorithm for a ternary simulation of MOS networks can be described in tenns of the function 

phase. Suppose a switch-level network is in a stable state y, i.e. y = stepx(Y). and we'• i~h to simulate the 

effects of changing the input nodes to state x'. The resulting state y' is computed as 

q +- phase(x U x', y) 
y' +- phase(x', q). 

That is, first all nodes ij for which xj ¥: x'j are set to X, and the network is simulated until it settles. Then 

the input nodes are set to their final values x' and the network is again simulated until it settles. For logic 

gate networks implemented with transistor circuits such as those shown in Figure 2.2, this algorithm 

reduces to the one proposed by Brzozowski and Y oeli [ll] for logic gate networks. Ternary simulation 

requires only slightly more effort than the unit delay simulator described earlier. Observe, however, that 

the X state will now become the most prevalent state during the simulation, because every time a node 

makes a transition, it must go through the state X. For the method to provide useful infonnation, the X 

state must be simulated accurately and efficiently. The algorithms presented in Chapter 7 satisfy these 

requirements. 

It is claimed that each node ni will have a new state y' i equal to 0 or 1 if and only if it would have 

this unique state regardless of the magnitude of any delays in the circuit. Any nodes sensitive to network 

delays will have y'i equal to X. This claim has not been proved fonnally, although it can be motivated 

infonnally, and weaker statements have been proved. 

The ternary simulation method will first be motivated infonnally. In setting the input nodes to 

x U x', all inputs which may be changing simultaneously are set to X, indicating that their exad values 

cannot be ascertained. In the first computation of phase, these X's are propagated to all nodes which are 

sensitive to the input node transitions, including into the feedback paths corresponding to unstable state 

variables. In the second computation of phase, the final values of the input nodes are propagated to any 
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nodes which are combinational functions of the inputs and of any stable state variables. If a feedback 

loop has developed containing all X's, however, these nodes and any nodes dependent on them will 

remain in the X state, because the behavior of the actual circuit would depend on the exact delays in the 

feedback paths. The assumption made in our logic model that a set of transistors with the same gate node 

may behave independently when the gate node is in the X state gives the effect of each transistor 

responding to a transition at an independent rate. Thus a node will be set to 0 or 1 if and only if it has 

this unique state regardless of the transistor switching delays in the circuit 

For example, the network shown in Figure 8.2 contains a 2-out-of-3 majority with its output fed 

directly to one input and through an inverter to another. An MOS implementation of the majority gate is 

shown by Seitz in Mead and Conway [37, p.255]. The output of this gate equals 1 or 0 if at least two 

inputs equal 1 or 0, respectively, and equals X otherwise. The reader can also verify that an MOS 

inverter in our model will have output X if its input equals X. Suppose initially that x1 = 0, y1 = 0, 

y2 = 1, and that we change x1 from 0 to 1. Assuming unbounded transistor switching delays (or 

equivalently unbounded line delays), there will be a critical race depending on the relative delays in the 

two feedback paths. A ternary simulation would first set x1 to X, and then compute the new state X for 

Fig. 8.2. Ternary Simulation Example 

C-etement 
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both nodes n1 and n2• ThUS. feedback loops have developed containing only X's. When x 1 is then set to 

1, both n1 and ni .will remain at X, indicating a critical race. This example demonstrates that a Mufter 

C-element (consistiag of a majority gate with its outpUt fed Net to dbe of its inputs) :inlplemented in 

MOS may malfunction if its.feedback path contains an excessive' delay. lti;fact, Dennis and Patil ha¥e 

shown (14) that a C-elementcannst beconstruded ~tt·gmnmteed:fDiftlnctiOlldespite arbitrary Une 

delays. 

8.3.2 Theoretical Results 

Brzozowski and Y oeli [11) have proved that an algorithm similar to the one shown here will set a 

node in a logic gate network to 9 or 1 only if it has tbis:uliiques&aM,~of logic Wile delays. Some 

networks which would funCtion . property assuming only uabouAdcfd· k>gic gate delays, such as the 

example ,of Figure 8.2, however, may have nodes.:tet to X •. 'l'heseiaudfols Q)Djeeture; ;but 4o not prove, 

that their algorithm will set a node ta O er l it tmd on/)" ifit·hati dtis unique;state regardless of both 'gate 

and Jin~ delays. Their proof reties. pi:imarily on the BlOliGtOaicity ef ttte.Citatioa .function for the parCiat 

ordering o <. X and 1 < X. Their proof also assumes:tbat a logic. netwottfnonnally contains only ·nodes 

with Boolean logic states, ·but this requirement can· be ·reta.ed. The ·excitation function fbr the 

switch-level model is *Px• and We have already seen by ·Theofem 6.6 that it• is monotonic. Thus. 

Brzozowski and Yoeli's pwofcan be applied to show that fory' resulting from the temary simutati~ 

each element y' i will equal· G or t only if it has •Clris u~:statei ~·of the transistor switi:hing 

delays, with the restriction that transistors with the .... node must-~have 0.dle'·same delaf. 

Furthermore, a proof of their conjecture could be applied to show that each elementy'1'wi11equalO·Oi'1 · 

if and only if it has this unique state for arbitrary transistor switching delays. 
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Brzozowski and Y oeli's proof also shows that the temacy .~ will a1ways terminate after a 

linear number of simulation steps (in the number of nodes.) For example. ~simulations of all three 

networks shown in Figure 8.l. wjll tenniwtte, .(but with. the: ·nodes. in dle: X ·sate.) Even though such 

circuits as the inverter ring shown in Figure i.la will ma indd;nitclf. their: ternary simulations will 

tenni~. Thus. Che worstcaseperformanceoftenm¥ sinnllaOOnis.bettcrbinthatofanyofthe timing 

models described previously. In practice, this potential gain is otfset by the larger number of aqde 1 

transitions and the greater effort required to simulate the effects of the X state. 

8.3.3 Application 

A ternary simulation would provide useful results forsJDClvenoussyStema.·Ncausea weH designed, 

synehronous syste01sbould.contain no critical raceumder;aa): ddayJDCJdel:, Timing morsaa only arile 

as a result of insufficient:«~lock ~ and these *1uW be dleckcd by"'Olitidal path aaalJflis. For 

asynchronous systell)i; on the other band. llenaisad .Patil 1141 have sbOWA:1hat Ad' nont.l'ivial aequential ·· 

ch•tuit$ can be built whicll will funcUen com:ctly. despite lVhin•y liaedda)s. : For CDlllple. die' Muller 

C-element forms the comerstoM of mostspeod.indepfadcmt cireuit.ctesilm (29}. ud we have·alleadf 

seea how it can fail with temary simu1*00A. A ternary simuJafioa of aost :ISyDChronOla circuits would 

ovenYhetm the user with X's and proyide little iaformationaoutdle·desig& l.Jnler{4lJclercribes bow 

delaJ~ots. could be introducecl ints a tfdarJ· sirnulatiolL B,.inseltiag deiaJ:dements. into anfuBy 

seleeted ·feedbtct ,,._ c:iratUBcaa be·madeAo simnfaa: Jn a.-.IJleGl8Bller. This ttrJe of 

asynduoooua design. however, bas limited application ia MOS LSI. ..,._ it iequila too mucti 

fine-tuning of the ciR:uit. 
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8.4 Toward a Simulator for Self-Timed Systems 

In some design disciplines, timing constraints are assumed to hold within small regions of the 

circuit, but as long as these constraints are satisfied the system will function correctly regardless of the 

delays in other parts of the circuit. For example, many speed-independent designs require only that the 

C-elements operate properly. Seitz has proposed a class of systems called self timed systems (36] in which 

particular timing constraints can only be assumed to hold within equipotential regions, while arbitrary 

delays may be incurred by any communication between regions. This methodology allows much 

flexibility in the design style, because a subsystem contained within a single equipotential region can be 

implemented with a synchronous or asynchronous circuit, or recursively as a self-timed system. 

Self-timed systems may also have overlapping equipotential regions, but we will not consider this 

possibility. Ternary simulation would provide a useful tool for testing self-timed systems if it were 

applied only to those portions which are to function correctly despite arbitrary network delays. The 

simulator should only model the functionality of those portions for which particular timing conditions are 

assumed to hold, thereby providing the appropriate stimulus to the portions simulated by the ternary 

algorithm. 

Such a simulator would have many advantages over detecting timing errors with a continuous time 

model simulator. With a continuous time simulator, numerous cases must be simulated with slight 

changes in operating conditions and network parameters. Even a poorly designed circuit may simulate 

acceptably due to a chance combination of input conditions, element parameters, and simulation model. 

With ternaty simulation all possible forms of uncertainty due to timing are condensed into a single state 

and hence a single simulation run analyzes many cases simultaneously, always finding the worst case 

behavior. With a self-timed system simulator, the user could isolate small regions of the design for which 

particular time behavior is assumed to hold. These regions could be tested extensively be a very accurate 

circuit simulation. Then the simulator tests the hypothesis that as long as these regions function correctly, 
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the entire design will be insensitive to other circuit delays. 

A system could be simulated in this manner if the regions of the circuit for which ternary simulation 

is to be applied were separated from those regions to be modeled with a pseudo unit delay simulation by 

special network elements as will be described informally. These elements serve to convert between the 

two modes of simulation. Regions may only be connected through fanout connections, i.e. from a node 

in one region to the gate of a transistor in another. 

Ramp elements convert the 0-1 and 1-0 transitions resulting from a pseudo unit delay simulation to 

O-X-1 and 1-X-0 transitions for the ternary simulation. When the input to a ramp element changes, the 

output is first set to X, initiating a transition event, an indication of which is placed on a special event list 

Any time a perturbation resulting from a transition event causes an X to propagate to a node, this change 

also becomes a transition event. Events are selected from the normal event list only when the transition 

event list is empty. The simulation is continued until the network settles (i.e. both event lists are 

emptied), at which time the X's will have propagated as far as possible. Then the simulator sets the 

outputs of those ramp elements with output equal to X to their input values, and the effects of these 

events are simulated until the network settles. It can be seen that the combination of ramp elements and 

this scheduling algorithm leads to a ternary simulation of those regions with ramp elements at their 

inputs. 

Trigger Elements convert the O-X-1 and 1-X-O transitions resulting from a ternary simulation into 

0-1 and 1-0 transitions. That is, if a transition event causes the input to a trigger element to be set to X, 

the output is held in its previous state. When the input is set to a new state by a normal event, the output 

is set to this state. In this way, the X states arising from the ternary simulation will be blocked from 

entering regions for which the simulator is only to model the functionality. 



While this simulation technique bas not yet been implemented, it shows great promise as a tool for 

locating possible timing errors in self-timed systemS. 

8.5 Summary 

The relatively simple u.nit delay and pseudo unit delay timiD8 madeJs have proved adequate for 

modeling the functional behavior of botb synchroDOOI. and selkimed systemS. These· models provide 

little information about possible timing elJ'Ors. but for circuit& dcsiped with conservative clocking 

schemes, such information is not required. A contimrous time Jtiodel simulator would prove most useful 

for verifying that a circuit can sustain a particular ck>Ckil&'·~ Such a simulator should try to place 

lower and upper bounds on circuit perfomumce bv, applyiq only simplifieations which can be 

guaranteed conservative or optimistic. It shoul<hllow the user UJ,:t.igllten:these bounds by increasing the 

level of detail at which the circuit is modeled. Ternary and telf.timed ·system simulators provide a 

powerful tool· for detcct.ing critical races. Unlike analog simulatom, wbidl can only verify a design for a 

particular set ()f cireuit delays, these simulators CaA verify a desjan for, all J)9&Sible sets of cireuit delays, 

except for smaU Ngions in whidt particular timing conditions must;be .assumed to hold. 
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9. Conclusiom 

9.1 Final Thoughts 

The value of the switch-level model has already been proved by extensive experience with 

switch-level simulatcm~ These simulatoft have shown areat versadlity" and. accuracy in modeling the 

logical behavior of systems coostructed using many· dift'aat arebitectural·muhimrit ·desisn techniques. 

Furthermore, they utilize only ini>rmation about the· actual· structure ·Of the design such as can be 

obtained from the mask specifications. By operating at a logical level. switcb•level 'Simulators achieve 

perfonnam;es approaching those of logic gate·•1Jators. 

This thesis has demenstrated that the switch-level model can. also be developed into a mathematical 

description of the behavior of MOS logic circuits. This·allows·a riaomllS derivation·of equations to 

exp res,, the operation of a network: from which simulalion algoli1bm& can be ·derived and proved cC>rreet. 

These new algorithms improve on previous algorithms which were hasedc the progrmuner's iatuidon. 

The degree of generality allowed by the switch-level model does not come widlOut its COii&; . Aa 

compared to relay and logic gate models, our matbematical model seeas '.Jlludl mQre .aaplex ·and 

intractable. A long and difficult proc~ was required to derive the basic simulation technique. 1bis 

difficulty stems partly from the novelty of the model. The switch-level DlOdel cannot be described 

adequately by such well-developed concepts as Boolean and linear algebras, and hence we were fon:ed to 

develop a new abstraction and justify it in terms of an electrical model. Furthermore, the switch-level 

model supports a much richer variety of cin:uit and architectural design techniques than do traditional 

logic models. The Mead and Conway approach to custom LSI design differs from other approaches such 

as polycells [33) and gate arrays (19) in that it allows the designer to select from the entire variety of 

different design techniques and even tailor the individual devices to provide many trade-offs between 

speed, power, density, and ease of design. To provide sufficient expremve power for this level of 

generality. a logic model must be more complex than logic gate models. but as has been shown this 
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generality need not come rhrough ad hoc extensions. 

Unlike commercial LSL<iesian~ however,,Mead and Conway eooourage the use of structured 

design metho<lolOJie! and simplified .design techniquet ·. li8is permits a;heavy reliance on computerized· 

design and analysis tools to replace the many hours of highly skilled labor use¢ Ill produce commercial 

LSI designs. The tools <an be designed~. the tines of this· methodology, thereby achieving better 

performance and encouraainl the user to prodUce .weft stmctured desips. With the emphasis shifting 

away from techniques appropriate for humans~.tb:dlo&.approptjale!Uir'iODlllJJUler .implementation. 

techniques should be judged primarily on their ability· to be impleniented :as computerized tools. In this 

regard switdt~level simulators compare favonbly· With kJaic gate tilllulators and· greatly outperfonn 

aaalogsifnulatora. . , ' 

9.2 Suggestions for Further Research 

Thus far, the switch-leYel ·model has only been implemenled in .the form of logic simulators with 

simple Gmingmodds. . While.tbaeapplic:ations have~ ·tlle.valtae&f die switch-level model,·· 

they represent only the ~mas of an eneile class of tools for:Mas 4esip.. . The switch-level model 

helps bridge die· gap between tile views of e LSI desip • an electriCal:e:Euit or as· a piece of artwork 

arul the view as asystem wbich.compures a logicaHi.mction.. .. 

9.2.1 Simulation 

Simulation will always play an important•role ··in· the.'Ull deaip. process. Humans· have a 

remartabie ability. to. synthesize desians, often applying :111* 'Cleverness ill selecting from a seemingly 

endless range of poaible approaches. Howe¥.er,. maay,houfSeftediclusf..tad much self-discipline are 

required to generate a totally correct design by haml CoinlM*n. in contrast; lack the kind of cleverness 

and intuition which goes into novel and originaldesigns but wiH·willi1181Y perfonn mks which humans 

find impos&bly dull Thus a natural complement is formed with computers verifying the designs and 
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ideas produced by humans. Simulation provides just dtat fonn of veriftcation. · It directly tests the 

functionality of a design in much less time and at ·Dlueh less cost than' the pmduction of prototypes. 

Fwthennore, it can often provide more infi>nnatioo ·than can rasonablY be measmed from an actual 

implementation of a design. 

Future logic simulatois could· provide· more rigorouscbeds of tile correctness of a design. Unlike 

current simulators. which try to provide m modi. generality as ~·the sitnulator could be tailored 

toward a particular design metnodology to cbed whether idle r4esiga adheres to· this: medmdology. Many 

of these checks can be added with little additional rompluity. 

A slight modification of the &W:>rithm given in Otap«er 1 ·woulchield a simulator which provi.dea.a 

more rigorous test of CMOS designs. In CMOS, node voltages correspond to valid logic levels oaly if 

they very nearly equal 0.0 or V dd· Even the threshold voltage drop resulting from a signal with state 1 
"' '~ ~ ~ .... . ' 

passing through an n-type transistor or a signal with state 0 passing through a p·type transistor is 

X and similarly for a O throush a p~type, unless the complemenmy ~is cennected in parallel A 

conversely for p-type transistors. The techniques developed fbr modeHJC traft8istors in the X state can be 

extended to describe the behavior of the network for this model with only slightly increased effort 

The self-timed system simulator described in Chapter 8 would test whether a circuit really fulfills 

an analog simularm and with much less comput.adoaal cost. The aJeeridllll for this simulatorinust di be 

more formal underslanding of the theory behind dais simulation metho4 is also ftqUired. Bm>wwstl aad 

delays remains an open problem. The proposed combination of. femar)' and pseuc1o· ·unit delay 



techniques has also not been studied formally. This style6f simulation~dgreatly assist the design of 

self·timed systems. 

Simulators could also be designed to provk:le new tinds·Ofinfurtnation. For example, whereas 

existing simulatDn only tell the user lhe state of the nenvort, a more sopbiSticated program eould also tell 

how it got there. This wou1d greatly aid rite user in ~ns a:~ , 

Simulators could also provide more information abOOt dn:uit timing. Even with methodologies 

such as conservaili'e clocting schetnes and toots such BS·terlliarY simulation, for some applications the. user . 

must know the tilne bel\avior of a· cirolit F&r example, if a ·systtm musr function· at a cloct rate 

determined by Olher chips or by the particular application, the designer tnust verify that this ctock rate 

can be sustaitted. Hoptf&Uy, a Mt scale analog simu1atitm can ,he a¥8ided by identifying the critical path 

and simulating' only ·this part with a simplified model/ It is believetl that a considerable·amount of detail 

must be added to the switdl·level model before it c:an medef.itfuetlit timing With the same generality and 

accuracy with which it models the f\Jnctionality; ··White. dtt .. order. of magnitude" electrical model may 

describe the logical behavior adequately, it provides limited mftntation attout tireuiupeed. Ideally, any 

simplifications· of·~ ~,;behavior shoukl be ·~ oomervative or optimistic so that the 

simulator provides bounds o& dle·petformance. The lin1utatDf sheuY be able to apply diffeteat leYels of 

detail so that the bounds can be tightened until they are'atceptable for the application. Unlike existing 

hybrid simulators in which increased accuracy is achieved only by going to a totally different (and often 

incompatible) model. the simulator should allow a smooth and reliable transition between the levels of 

detail 

A switch-level Slllulator could also provide infonntition ahodt the effects of circuit faults. Unlike 

the traditional medtods of fault .analysts, whieh assume' that 8''10gic sate witl fm1 by beteming "stuet-at" 

some level. the switch,. level model. can describe the· flu1~ of individual: transistors or connections. For 

exampte. a·faulty transistor can be modeled as a transist&r·in tke x·st.ate,ie.·an unknown and unreliable 

conductance. Similarly, a faulty wire can be modeled as two nodes connected by a strong transistor in the 
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X state. This application of the X state has not been studied in detail 

Finally, we must consider what form of simulation will wort for VLSI design. The current 

implementations of switch· level simulators model the entire design as a network of transistors or at best 

combine some of these transistors into simple logic gateS. While the. efficiency of this tecbnique has 

proved adequate for modeling LSI systems.containing up to 10,000~ it will dearly fail for VLSI 

systems containiog 100,000 or perhaps 1 million transisto'3. As with all other desian·tools. the size and 

complexity of VLSI systems mes a redlinking about· logic simulation.·· Systems of this size must be 

designed bier~ally, where each level of the design involves combiQing subsystems designed at the 

next lower level. A simulator must utilize this hierarchy to achieve the required. performance and to assist 

the. user in maintaining the hierarchy. Switch...Jevel simulalion can PftlVide valuable assistance at the 

lower levels of this hierarchy. It can be used to verify that a transistor circuit imJ)lements a particular 

logical function either by automatically comparing it to a fuDCtioaa1 specificatjon·or simply by allowing 

the user to test the design. Once the functionality has ·~ verified, . the simulator can ieplace the 

switch·Jevel representation with a functional representation for simulaDon at the next level of the 

hierarehy. In some cases the user may also wish to simulale some portioQsvfthe network at a tunctioDll 

level and other portions at a switch level. As was seen earlier, a simulator can .be·desigped to combine 

simulations at these different levels. Thus switch-level simulation will senie an important·role in VLSI 

9.2.2 Other Design Tools 

Most existing LSI design tools treat a design as a -piece· of artwOfk. For example, most layout 

systems and design rule cbecters view the design as a collection of geometric primitives with no 

understanding of the actual or intended functionality. As a consequencei they provide only limited 

~e to the designer. The switcb·Jevel model can help introduce a greater uaderstanding of dle 

functionality of a design. 
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Current design rule checkers, for example, check only the geometric features in the layout 

Experience indicates that they catch only a limited class of errors and also report many extraneous errors. 

For example, if the designer omits a contact cut, no error is reported. If a wire contains a gap, it will be 

reported only if the gap is smaller than the interwire spacing tolerance. A more useful checker would 

perform both the geometric analysis and the extraction of the switch-level logic network. It would 

produce two results: the switch-level network it believes was intended, and the design rules violated by 

the layout with respect to the network. By simulating the network and checking the list of violations, a 

designer would have a much greater chance of detecting most errors. Furthermore, since the checker 

would have a better understanding of the electrical connectivity in the layout, it could greatly reduce the 

number of extraneous errors reported. Experience with C. Baker's layout extraction program (4, 5] has 

already demonstrated that many errors in the artwork can be detected by deriving the switch-level 

network and applying several simple checks. 

The switch-level logic model could also be incorporated into a design "analyzer" which detects such 

features in an MOS logic design as feedback paths, sites of dynamic storage, potential race conditions and 

short circuits. Many of the theoretical techniques which have been developed for the Boolean gate model 

could be profitably adapted to the switch-level model. 

The ultimate goal of computer-aided design is to automatically synthesize an LSI or VLSI design 

from a high level functional description of the system. Current automated design systems such as Bristle 

Blocks (24] still require the user to design large portions of the layout by hand and have only an 

incomplete understanding of the circuit's functionality. These tools would benefit to some degree by 

adopting the uniform representation of a logic design provided by the switch-level logic model. 
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9.2.3 Theoretical Developments 

The mathematical developments in this thesis provide a finn foundation for switch-level simulation, 

but much more theoretical work is required before the full potential of the switch-level model can be 

realized. Several areas have already been mentioned in connection with their possible applications. For 

example, the exact relation between circuit timing models and both ternary and self-timed system 

simulation techniques remains to be established. Similarly, research has only begun on methods for 

introducing more detailed timing infonnation in ways which can be guaranteed conservative or 

optimistic. Finally, developing computer algorithms to identify feedback paths, sites of dynamic storage, 

and other features of a design will require a much better theoretical understanding of the structure of 

MOS logic networks. Many of these analysis problems appear to be NP-complete, but heuristic 

techniques can probably be devised which will work efficiently for most real designs. 

The simulation model developed in this thesis provides only an operational model of a logic 

network. That is, given a particular initial state, it describes the state in which the network will ultimately 

· stabilize. A more powerful model would describe the function computed by the logic network. For 

example, Shannon showed how the Boolean function computed by a combinational relay network can be 

derived from the structure of the network. The Boolean function for a logic gate network can generally 

be derived by inspection. Work on denotational semantics of programming languages is also directed 

toward deriving the function computed by a computer program. Much more work will be required to 

develop a corresponding functional model of switch-level networks. At present. the conversions between 

the logic states, logic signals, and signal strengths tend to obscure the function computed by the network. 

Furthennore, expressing the ternary function computed by a network (i.e. including the state X) involves 

considerably more effort than expressing the Boolean function. 
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A functional model of swif.ch<.level networks would have many applications. For example, it could 

be used to verify that a network implements a particular function. Unlike programming language models 

in which this task is in .general uncomputable, for ·togic networks we can a1Ways construct truth tables by 

simulation, and hence any design can be verified in at most exponential time; ;Furthermore, various 

heuristic techniques could re4uce the complexity considerably for most problems. Th~refore, auto~ 
: , ; ~ - ! ' 

logic design verification may be practical. A functional model could also help make the transition from a 

a design could be derived automatically, the simulator could ·replace .the switl:h.-level·representation by a 

functional representation. This seems especially practical if it is applied tri wait sedions of the design, 

such as to the transistor groups used in MOSSIM. · Since most desi~t1S2contain many instances of a 

particular transistor configuration, only a small number Of different ctiriftgofat:ions would need to be· 

analyzed. Thus, developing fimctional models for swirch-le'tel networks poses a great challenge but 

should yield many applicatioas. 
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Appendix I • Multi· Port Networks 

This appendix contains derivations of several «iualiom an4 proofs of some properties regarding 

passive linear resistor networks. 

1.1 Introduction 

Suppose a time-inv~ network N contains only vottaae qrces·aad pas.tjv~ linear resistDn in 

which each voltage source bas its negative terminal COD.QeCted te the refeJeace.node GND and is set to a 

voltage 0.0< v<V dd·, Asmme funhennore that etEh node is C08ftCeled .by ~e padt to a voltage soun:e 

and that voltage sources .are never connected in parallel.·•heoce all node val&ageJ are well-defined. 

The corresponding zero-stale network No isdefiaed • the network formed whep. all voltaae_ sourees U1 N 

are set to 0.0. i.e. they are short-c~ted. The network No croPgaips Qllly passive. linear J"eSistors. 

A port in the network. consists of two terminals with any node servin&•~tbe ~live teJnlinal.1 and 

the reference node GND serving as the negative terminal. We will be interested in networks with at most 

three ports, labeled 1 through 3. The indices i and j are used to denote any of these ports. We require 

only information about N and No which can be observed at the ports. Otherwise the networks can be 

considered "black boxes". 

1. Nodes which are the positive tenninals of voltage sources in N correspond to input nodes in the 
switch-level network, while other nodes correspond to nonnaJ nodes. Either kind of node can be a 
positive port terminal. 
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1.2 Port Parameters 

The open-circuit impedance parameters are defined in terms of the voltages measured at the ports of 

the zero-state network N0 when a current; soun:e is ~on~~~ one 9f .~ .~ 'fbat is. if current 

source I is connected across port i, and a voltage v'j is measured -.P<>rtj, then zji is defined as 

y'. 
Z •• - ...:.J.. 
Jl '.'""' l • 

These parameters fom'I a matrix Z ·· which in our case has ·dimension 3 x 3: ·· Most presentations of 

multi-port networks [15) deScribe the analogous 2X 2 matriX fur tWo~l:k>rt iletwC>rks. The diagonal 

elements of z are the "8e1f'.rifnJ1Cdance" temlS, i.e. the impedaJlce ·ine3snred ~ each port of No when 

an other ports are· teft open.;arcuited. The off-diagonal elements ·are the "cross•impedance". terms 

indicating tlte degree to which the positive tennin31S'of the t\Vol>Orts·are toniil~tt<t: 'lllat is, tij equals 

0.0 if there is no path in No between the positive teftnibalS bf port~r'i'andJ,1 or if one ·or these two 

tenninals is connected directly GND thfongh a zeto-state voltage source~; At the other extrem~. zij equals 

zjj if every path in No from the positive terminal of port i to GND passes through the pOsitlve terminal of 

portj. 

For a passive resistor network, the matrix l obeys several important properties. First all elements 

are nonnegative and finite. Second, since the network is reciprocaJ, the matrix is symmetric: 

This. follows directly frOlll UM; Reciprocity Theorem (l5). :{bird, for zii )!Q.O, when a voltage source with 
. . 

a positive voltage v is connected directly across port i of N& while all other ports are left open-circuited, it 
' - '"•, 

will produce the same effect as a current source with current v /zii. Therefore, the voltage at any port j 

1. As the tenn "path" is used here, a path cannot contain the reference node GND or any node 
connected directly to a voltage source as an intcnnediate node. 
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under these conditions will be 

This voltage cannot be less than 0.0 or greater than v. and therefore 

(Al.1) 

This result also holds when'Zii = 0.0, because thiS:case occUrs only when the positive terminal of port i in 

No is connected directly to ONO by a zero-state ~ ~ 11¥1 hence zji .-=. 0.0. 

The open-circuit volt.age parameters of N ~ defipedas the ~v1• Y2, and v3 measured at 

ports 1, 2, and 3 of N with all three pom open-ciratitqd. ~of 4'is ~-bave notbeen. bmc:l 

in any other presentations on multi-port networks. In general, dle,ie w~ will not be completely 

independent of one another .when the network c:o,,itains paths between the.~ port. tenmoals To 

derive some of tlleir relations. suppose that a ~oltace soume of YOttaae vijs CfJDDCCted across port i of N. 

Then no voltages in N will be chaoge4.. Now if all vott.aae SOUtCeJ ill N are set to 0.0, die voltage at any 
. . - _,, t ' 

port j will be given by 

, ~ 
VJ· = ¥1• • z .. 

II 

when zii ":F 0.0. Furthermore, since this voltage was obtained by changing the settings on some voltage 

soun:es from nonnegative values to 0.0, it must be Im than or equal to the original open-circuit voltage of 

portj in N, and therefore 

(Al.2) 

The Thevenin equivalent of the network N at port i contains a voltage source set to the open-ciR:uit 

port voltage and a resistor of conductance equal to the net Conductance across the port with an soun:es let 

to 0.0. As Jong as the other pons are left open-circuited. the Thevenin equivalent of N at port i is 

described by the parameters: 
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Vthev = Yi 

9thev = 1.0/zii. 

Suppose the resistor conductaiices are given by rational functions of p with degree greater than 0.0. 

Similarly, the open-circuit vol~ parameters will be. given .by .ratippal functions of p, and since 
; - ~ "' 

0.0< v i(P )<V dd for all values of p 

1.3 The Effect of a Variable Resistor 

A network containing a single variable resistor can be dezibecUtJ; ,a ·fixed act.work.. N with a 

variable resistor connected acroe;s.poa:ts.l and2,' as-shewn ii,\ Figure 1.1. Since the positive terminal of 

port 3 can be any node in the network, the port voltage can represent the vol~e on any node in the 
:· ·:· ') d ,' ' 

network. Suppose the resistor has eonductanee ,by and the resulting port voltages equal v' 1, v' 2, and v' 3. 

Fig. 1.1. Multi-port Model of Network with VariaWe Resilltfr 

h 

1 N 2 

3 

1 N 2 

3 
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This resistor will have the effect of injecting a current I •·port 1 ofN and removing the current I from 

port 2. where 

I = h(Y't :-- y'~· . 

By superposition. the voltage at any port equals the sum eftle '91tage created by the soun:es of N, tile 

voltage created by the current injected into' port l; ab4111tif·vdtillt t'Wtateet1>y:rhe-current m1HWed lh:mt 

port2: 

v'i = vi + lzu - Iz2i 

y'i = Yi + h(v.,1 ..i.i.·'v'l>fzli - z,J.' 

For ports I and 2, this gives two equations in. ~e two unPi~ v' l and y' 2= 

v'1 = YI + h(v'1 - y'2Xz11 - z12) 

v'2 = Y2 + h(v'1 - v'i><zu - zrU-
. ~ < ::- '' 

This set ofCquations am bt solved to' &iM. 

1 , . YL- Y2, . . 
• 1 - v 2 = I.O :+ 'h(zii ~ 2z12 + zn) 

and this result can be substituted into equation Al.3 to give 

, ll(Vf....; ~)(~Jf''""' zlJ} ., .. 
y. = Y· + -----------) I 1.0 + h(zll - 2zl2 + ZrJ.) 

In particular, the voltage at port 3 will be given by 

• _ '·II{!}'~ •zX!!u - 221)' 
Y 3 - v3 + 1.0 + h(z11 - 2z12 + zv.)" 

(Al.3) 

'/ .~ 

(Al.4) 

(Al.5) 

To gain some insight into this equation. observe that for smal values of h. y' 1 - v' 2 AdYl - vl> 

and therefore 

(Al.6) 

In other words. the denominator in equation Al.5 approximately equals 1.0. As h becomes very large. the 
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increased conductance between the two nodes will be offset by the decrea!ed voltage difference, and 

hence each node voltage in the network approaches an as}lllptote: . 
. . .~ ~ 

lim , _ (v1 - v2Xz13 - 2 2J> 
. V 3 - V3 + 2 . 

·h-+ oo zu - z12 + z22 
(Al~~ 

Thus vi is approximately a linear functioft of h ;ter.,slnaD::\taWBilW h and levels off to a constant value for 

large h. 

The general fomi of equation Al.5 is 

(3.4) 

'; :_-- <; 

b = z11 - 2z12 + z22 = (zu - z12) + (z22 - z12) > 0.0. (Al.8) 

F.quations 3.4 and Al.8 are slifficient to prove ~ 3.~. 

We can 4erive further properties of eqpatipnAl.S. ~'1 a positiv~. cu~I.ll ~ js W,jected into pprt 1 
" ' ~ . ' : ' - • !;..< ' - ~ ~ ,; ;_, i- •. ' .- ~ ' •• ' 

and removed from port 2 of No- the positive ~ of port 1 must have the maximum node voltage in 

the network and the positive terminal of port 2 must have the minimum. 1'herefu 

I(z12 - z22.) <:: I(z1~ ~ zJJ? ::;_ I(z1l - z,12) 

<zu - z22> < (z13 - z23) < (zu - 2 12>-

.. 
The second inequality holds when I is.negative as well. From this one can see that 

(Al.9) 

If the resistor conductances are given by rational functions of p, tHen the voltages will also be a 

rational function of p and will have a general form 

( . (. em · a(p} h<el 
v(p, h p)) === v p, .v1 + l.O + b(p) h(p). 

Furthennore, since the impedance parameters all have degrees less than O. deg(b) < 0, and since equation 
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Al.9 holds for all values of p; 

Therefore 

These results are sufficient to prove Lemma 3.3. 

As a historical note, although equation Al.5 would~ fD:baVc:.iitlitiappiication~ iit ~trical 

Qetwork theory, no such result has beenioiida.in tQe .... re.: SQuJe presentations on sensitivity analysis 
... ~ ~- ~ - .. . ( 

(such as [15, p.678D derive the approximate equation Al.6 for small values of h. but the more general. 
,,·~." ·-:'.c-,.;__;~.i;·: tii~-~.;},· · ... ·.·;o ·;tt.; ~F~ 

result is not given. The technique of viewing the variable resistor as a current source of unkno.wn current 
. :- i,.. ' t. ~ > ; • '; 

'"..,.f 

and then later solving simultaneous equations to find ~ current is generally credited to Kron (25] which 
' 

he used in a method called "diakoptics". Mo~ -~ntly, this'·~ ~--beCri ~i~'.to solVing · 

syste1mrof'spatse equations by a methoCfcalled "~" 11.-'nt ·. · '·' 
I 

1.4 The Effect of CollD".t=tin& Two Ports 

We can determine the effec1S·of connecting to~ei p6rts l·end 2 in. network N by letting the 

conductance h in the previous devetOpment approach infinity. We will mume that zu > 0.0 and 

z22 > 0.0, i.e. there is no voltage source connected <Urectly across ports 1 or 2 of.N.1 In the limit the 
t ,.· ,. . .. . .. 

voltages on the two ports will approach a single voltagei v where 

y = 

By rearranging terms we get 

lbn y' 
h-+00 l 

1. This restriction can be assumed. because the· combination rule is never applied directly to the logic 
signals which describe input nodes. 
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k1 = z12/z11 

k2 = z12/z22 

= 01(1.0-:-k2)v1 + g2(1.0-ki)v2 
91(l.()~ki)'+ ·~J.i8n';k1) ' 

(4.4) 

where 11 and g2 are the Thevenin conductances at pOtt5 land' 2, te: d\e "1'«ipmcals of ;zil and z22• 

respectively, and from our assumptions both values must be poSitive and fimte>The folldwing properties 

of the fuctors k 1 and k2 can be derived from their definitions and from equations ·Al.land Al.2: 

92k1 = t1t2 

0.0 < k1 :::; J.O 
0.0 < k2 < 1.0 

krv1 < v2 

k2•V2 < Vl, 

Equation 4.4 and the above properties of the factors k 1 and t 2 are sufficieat:to prove die validity of the 

combination rule for cyclic connections, as is done in Chapter 4. 
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Appendix II • Proofs of Results in Chapter 6 ~ 

This appendix contains proofs of Theorem 6.4, Corollary 6.4.1. and Theorems 6.5 and 6. 1-

11.1 ~ive Networks 

The method of conditioned relaxations relies on the fact that logical conductances act as passive 

elements. That ~ when a signal is coupled ~Jk a 1oaal condudance. the resulting signal bas 

strength Jess· than or equal to the original signal strength. · FunbcnnoK. signal oombination alw8JS 

ignores the weaker signal. Th.i$ allows us to kill ADY signal on a node·widi strenath less than the.steady 

state signal strength, knowing that no ~blf: a®on of ~.·network could amplify this signal ·into one 

critical to the fonnation of some steady state signal. 

The passiveness of logical conductances has important implications on the recurrence equations 

describing a logical conductance network. Before the. cle$ited theorems can be proved. some general 

properties of "passive" recurrence equations must be derived. For a value s E '!let 3s denote the vector 

bloc:k (a, ( s)). where I s] denotes a vector with each element equal . fD. s. Shnllarly, fbr a ftmOOon 

f :'11-+ '11, let/ s denote the function/ s<•) = blod: (/(a). ( s ~ 

A function/:'11-+ '11 is said to be passive if (Qr any sand any a./s(•)::: / 5(-J. In other words. if 

b =/(a) then any element ofh greater Ulan or equal to scan depend only on elements of a greater than 

or equal to s. No element of a a than s will be amplified into a value greater than or equal to s. A 

function of more than one argument is passive if it is passive for each argumen~ The functions T, !. •. 

block and constant functions are all pcmive, as is any composition of paaive functions. The successor 

function sue, on the other hand, is not, where sue is defined as sud.:y; = y JI and for any a< y I' SllC(a) 

equals the least element of '!greater than a. 
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The following lemma Shows the relation between the minimum solutions of the equations a =/(a) 

and a = f s<a). 

LemmaA2.l. 

For a monotonic and pmive function /:'/1-+ '/1, if i'* is the minimum solution of the equation 
a =/(a) then am1a sis the minimum solution of the equation a = f 

5
(a). 

Proof of Lemma A2.l: 

We wiD show by induction on t that 

This clearly holds for k = 0, so mume it holds for k· l. 

The minimum solution ofa = f 5{a) is given by 

tim I kco> = tim Ao> = a• . 
k-+00 s k-+00 s s 

I 

Observe that this property may not hold if the function/ is not pmive. For example, the minimwµ 

solution of the equation a = sue( a) equals y P' but for any s > 0, the minimum solution of the equation 

a = suc8(a) equals 0, even though the function sue is monOtonic. 

We can now prove a lemma that ~-in· a very ~ed ~ that ~ ntethod of conditioned 

relaxations will not lead to a "runt" solution with some signals weaker than the steady state signals. · 
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LemmaA2.2. 

For a monotonic and passive function /:'11-+ '11, if_.. is the minimum solution of the equation 
a = f(a) then amln is also the minimum solution of the equation I = r(a) wheR 

r<•> = bloclc (f(a). .-,. 

Proof of Lemma A2.2: 

Let a.m• equal the minimum solution of the equation a = r(a). Clearly,-. is also a solution of this 

equation and therefore a-.> 1m1a•. We wilt prove that the two~~'~ f~~ by iaduction on 

decreasing strength values. By Lemma A2.l, am1n
5 

and a.,.'
5 

are the minimum solutions of the equations 

a= f J_a), and a=/' J.a), respectively fur any value of s. The function block obeys the followiQg 

identities 

That is, unless the second argument is greater thaD the first, block behaves as an identity function of ill 

r .,,<•> = bloct 11~<•>..:*). ,= I 11<•>· 

Th.is implies that a• 1 ;:; a..,.., . New suppose .-,_. = _., .._., .We will show· that , , 

We know that ..... .M(s) ~ _...,f and therefore the left hand aqument of block in the above equation 

must be greater than or equal to the right band argument. This means that this application of block wi1l 

behave as an identity function of its first argument. giviD8 



---
which shows that a•' s = am1n s· The set '!is totally ordered and finite. Hence by induction on ~ 

strength values a"*' = a*. I 

This result also may not hold for a function f which is not pasfilve. For example, the equation 

a =sue( a) has a minimum solution y P' but the equation a = block (sut'(a). y i} has a minimum solution 0. 

The result of Lemma A2.2 can be expressed in a form closer to what is required to prove Theorem 

6.4. 

LemmaA2.3. 

For a mattix G E fl X n, an~ a vector b E .An •. define the fu~tt~/1 ~(o as: . 
. . f1(•) = 610ck(r}1 f'tr•a: r) - ... 

J0(d) ::::: block(UJ~-l.G.•,d...J'). 

where 

• r :a G ••Iii:· 

If a° and r are the minimum solutions of the equations II'= ff(.u) and d = fo(d), respectively, then 

r = ..-r,.... 

Proof of Lemma A2.3: 

Define the function 1 as 

g(a) = b/ock(l 61 T G•a, r). 

Lemma A2.2, combined with Corollary 6.2.1 shows that r must be the minimum solution of the equation 

a= g(a). We will show by induction on k that 
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Clearly this holds for k = 0. Now suppose that it holds for k-L 

g t(O) = block (B b H t G• g k-l(O). r) = block (I b I f G•lf1k·1<@) l /o k· 1<o)), r) 

g kco) = block (r 11 l G•Jl" 1<o>. r) l block (LiJ t G•/o k-l(I). r) = ft kco) l fo kco). 

Taking the limit of this equation gives the desired result. 

r = lim g t(O) = · lim J; kco> l lim /, kco> = _- r r. 
t-oo t-oo 1 k-+OO O 

I 

Il.2 neorem 6.4 

Lemma A2.3 takes care of the most difficult~ of the proof of'Jbeorem 6.4. 
: , . ', ~ ' ' 

Theorem 6.4. 

For a matrix GE ,nxn. and a vector bE .A.0 • define Gas G= xG. Th.e unique minimum solution of 
the equation•=/(•). where 

(6.19) 

is given by 
,,. = .... v -r*. 

where.-. and r'8 are the minimum solution& of dae. equations u = J1(u) and d = fo(d), respectively, 
and the functions/1 and.JO are defined as: 

J1(a) = block(rj1 t G • u. r} (6.20) 

fo(4) = block (i..jJ l G • d, r). (6.21) 

and 

(6.22) 
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Proof of Theorem 6.4: 

Define the vector j as Ir = +..- V -r. We will first show that I satisfies the recurrence relation 

Ii -= /(I). Observe-tbat r i1 = a• arul LAJ = 4m1n. Lemma A2.3 then sitowS that 

r = um111 t ,- = I A I = I 6 I t G • I I I = I 6 V Go A I. 

Substituting this into the definition of / 1 gives 

J1(ril) = block(rbl t G • fil, 16 V Go ii) = rb v Go 11. 

Similarly, 

JO(LAJ) = ti V Go IJ. 

Since r11 = ulllin, rAl = /i;(f jl~and similarlyUJ =/'o(LIJ)JH1issbowst.bat 

Ii = +r.61 V -LU = +rl V Goll V -Lb V GoiJ = b V Golt. 

Therefore Ii satisfies the recurrence relation A= /(A). which implies that A> ti*. By the monotonicity 

ofl I, r 1, and L J: 

IAI > ..... 
umlll = r11 > r.-1 
d"* = LiJ > ...... J. 

(A2.10) 

(A2.ll) 

(A2.12) 

We can now show that j must equal ti* by factoring the equation r = /(fiala). First we can find the 

strength of ti'* as 

I ti* I = I 6 V Go r 1 = I 61 l G • 1.-1. 

Therefore n tfiln n must be greater than or equal to the minimum solution of this recurrence relation, i.e. 

I tfSln n > r = H .6 I. Combining this result with the inequality of equation A2.10 shows that 

I tfSln I= I Ii R. Now we can see that 

fd"181 = f6 V Go tfilnl = block(rbl l G • rr1, 1,,-1) 



rr1 = block(rb1 l G • rr1, r) = / 1(r..-1). 

Therefore rr1 > ..-. which when combined with the ,:iheqUality of equation A2.ll gives 

r.-m1 =um. Asimilarderivationgives~J = r. Wecaonow~Jheproofwith 
- --., C- ~ ' '-~ • - d t •- - · 

.- = +rr1 v -Lr J = +....- v -r. I 
.- . -.) : ·~ . : . . . -.;_ 

11.3 Corollary 6.4.1 

.... -,. 

Corolla11 6.4.1. 
For a matrix GE :f1X n. alida vector j E .Afl.j i/''1.is:cfebedas,fi :,xQ'tfiai1be miriimum solutic>aGf: 
the equation• = /(11) wbere 

isgiven by. 

where 

. ~ •' . 
r = G .•Iii. 

""·\ . ,, ; ' . 

Proof of Corollary 6.4.l: 

Expanding the equation ror r gives 

r<•> = kil/(6 V Go-. r) = +block(rb V Go a1, r) _Y -~~(Li V Go &J. r). 
·' ,• 

In the proof of Theorem 6.4 it is shown that r = I ,.- I and therefore for any • < ti'* 
, ,I· 

r = 1.-1 = I j I l G • 1.-1 > I j I t G • I• I = I J V Go• I. 

For any a<.-

block(ri V Go al, r) = 
block (r b V Go 111. r) = 

blvck-(bl«k(rJlr1 (f ~f4'\' •t V Go al). r) 
block(rJl l G • ft1l, r) = Ji(rt11}. 

(6.24) 

(6.2S) 



-209-

where / 1 is defined in equation 6.20, and a similar result holds for the O part with respect to the ftlactioa 

fo defined in equation 6.21. Then for• <r 

f<•> = +f1<r•1) v -f0(Ld). 

We will show by induction on k that 

This clearly holds for k = 0, and asswaing il:holds tOr k imptits611 

rfkcO)i ~· 1~'<*> 
L.fkcO)J = fo ~I) 

· (A2.14) 

For ...... and r defined in the state1111!Dt ofl'hecmn 6.f.Jikoo<-11'91' andfo lc(O) < r. Therefore, by 

the monotonicity of+, - , and V = 

and equation A2.llapplies when•= f'~f/J. ~JlllowsJD,~fk+ l ,_: 

rt+ 1c~ = rcrkcu, = +11crr~°',> v -Jq<Lf'~O)J> 
f't+~· = +J.p,tco>tv -foifo~· ='. ·f/~t:+l<8> v '"fot+lc«». 

which proves the induction a5sertion. C<>Jnl>inlrig the result ofTheorem 6.4 with equation A2.14 gives 

and therefore 

.- = i1m r~~ 
k-+ 00 

I 
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11.4 Tlleorem 6.S 

The target state y of a swit.ch-level network is given by 

y = -C+u°"'> U <-r>. 
where a""- and rare the minimum sOludons of the equadons'a ~ 11(0) and d = go(d). respectively, 

and the functions 11 and lo are defined as 
g1(u) = Moel~· r.rl t fil :f ~·9.'r) (6.29), 

g0(d) = block~ • LxJ f:,. b-1- t c- • ., r). (6.30) 

and 

Proof of Theorem 6.5: 

First, the idea behind the optimWltioD method can be 'derlVed ft>rmaftYl>y algebraic marlipulatkm. 

1 = { G }~{ EJ "j (G, E) = '{ G }~f E} <J(G~~> = { ai.!t ~ .. ~;+rJ(G~,~)1 v -LJ(G, E)J> 

J = { G~{E} -C+rJ(G,E)l> LI {~J~{E} ~-LJ(G.E)J>. 
_i; 

The last step above follows fuNn the Weotity shoQ.:;iu equation S.9. It ~ ~- the fact tbat unless the 
' , • : - ~ > - • : ' ' • , j "t ~ . p .0 ' ·-

! \o 

·' 
state of a signal equals X, either its O pan or its 1 part must equal 0. Furthermore observe that the 

function ofb whose value is <+b> is monotonic, and therefore 
-r''· 

<+a> U <+b> = <+(al I>)> 

and that a similar identity holds with - • Hence 



- 211-

Since T denotes the pointwise maximum operation, this equation shows that the target state for any node 

~ can be computed by finding the maximum values of r vi(G, E)1 and L vi(G, E)J for all G E { G } and 

EE {E}. 

Define umln(G, E) and cF1n(G, E) as the minimum solutions of the equation u = /1 (u) and d = fo(d), 

respectively, where 

/ 1(u) 

J0(d) 

Theorem 6.4 shows that 

* = block(E•rx1 T ry1 T G•u, G •(E•UxUTUyl)). 

* = block (E • LxJ f LyJ f G • d, G •(E • II x II T II y I)). 

um1n(G, E) = rJ(G, E)1 

dnimcG. E) = LJ(G, E)J, 

Therefore, if we can prove that 

g'IPl = f 0m1n(G E) 
{ G }, {E} ' 

r = T dm111(G E), 
{ G }, { E} ' 

then comparing equation 6.28 to equation A2.15, it can be seen that the theorem will be proved 

(A2.16) 

(A2.17) 

Only the proof of equation A2.16 will be shown. Equation A2.17 follows identically. For any 

G E { G }, EE { E} and u E '/1 

E•rx1 f ry1 T G•u < Emu•rx1 T ry1 T G-·u 
* . * . G •(E • II XII T II)' II)} > Gm1n •(E1111n • II X II T II)' U)). 

Therefore, since block is monotonic in its first argument and antimonotonic in its second, / 1 < g1. 

Applying Theorem 6.3 gives um10(G, E) < uopt for any G and E in the allowed range. Therefore 

T umln(G E) < uopt. 
{ G }, { E} ' 
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Tocomplete the proof. we~only find same seµingo{G.an4.t whkb-&We&.tt~<G .. E) =.rt. 

Define tbt matrices G' and E' ~Jollows: •,. 

_(I.. , '· .. <' I... ,; 

We will show that u'*(G', E1 = If""-. From these definitions, we can see that 

E'•rx1 = t..-•rx1. 

and can show that for any u < ul1fA 

To see this, observe that for u < Ji"', 

bloclc (G' • u, r) < bloclc (G- • u, r) < block (G- • &""-, r) < bloclc (sf", r). 

Therefore, for u~i = 0. 

' .. , .. 

0 < bloclc ([G' • u~. rJ < bloclc (u°"i• ri> = 0. 

bloclc ([G' • u\. r~ = bloclc ( f (8' ij l ~ ra> 
aflA. >O 

bloclc ([G' • ul- r·' = block ( { fr·· ! u-~ r·\ 
"I' I' u°"·>O IJ y I' 

' . . J: ... ~ . . 
block ((G' • u)r r~ = block~ •_•)j. rt>-

- . ;-

F.quations A2.18 and A2.19 imply that u• is a solution to the equation 

.. = block(E'. rx1 f r,1 t G'. u.r). 

(A2.18) 

(A2.19) 

(A2.20) 

and furthermore any solution ~than or equal to u'1"- must also satisfy the equation u = g1(a). and 

therefore u""- is the minimum solution of equation A2.20. l...elnrtia A2~2 then shows that u""- must also be 
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u :s: block(E' • rxl f f,rl T G' •·u. r f _., . 

• Lets = G' •(E' • I x I t I y I)). It is~ ... 5.;;: rt a'!!. Clealty 

r = G1'°'1* •(E"* •I~· t IJ1J)} < G'* •(E' ·.a~ If I yl)) = s. 

We know that s is the mi•~$0lt1Qon of the equation. a :;:; .. ,.~·wbcft 

h(a) = E'•lxlf lylfG'•L 

This shows that s > u•, because the function in the recurrence equation A2.20 is less than or equal to h. 

Therefore s > r T u'1'4'~ Next we wi1t show dlat r t·tfPl = ·· h(rj It"), w1ildt wm prove that fl .rt> ·s, and 

when combined with the previous inequality, shows that r T ti""_= s. First observe that 

This follows because if ri > .u•i· th,en uClllti = 0, which irnpµes ~o the ith column of G' will equal the 4h 

column of G"*. Similarly 

E'•l .r I = E'*•I x • t E'•rxl. 

We also know that r satisfies the recurrence relation 

Combining these facts with equation A2.20 gives 

u• l r = 
u• Tr = 
u°" Tr = 
u°" Tr -

E'•rxlt r11TG'•.rttr 
E' • r xl T rm • I x I Tr y1 t I y I t G' • gGPt T G* • r 
E' ~;l.tt t 111 t G'e(tt" ti)~ 
l(r tu°"). 
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Putting these results together, we have shown that u• is the miriHmnn solution of the equatiOn 

and therefore uapt = rJ(G', E')1.·.Thtseoinpletes<>lfftmd.,_ 

.. = •,. f '»~(;iii}, .. l• 
{ G }, { E} ' 

11.S Theorem 6.7. 

'llleorem 6. 7 _ 

If y = lmget (x.1. z), then 1 = target (x. j', z). 

ProofofTheorem 6.7.: 

Define the vector; a,, the set orSisnats formed by thC ~~in _.,;~i.e. 

<i> = i 
•i• - ':IP-., 

Observe lhat I I I = I F I = cap, and therefore for r ddiftW ia ~ 631 

r = 

.11(•)' = blod:(r9. rxi r :r11 ~ ~ • ., r)' 
i 1<•> = bloct(l"9•r.rl t ri1t ci-•-.r). 

, ' " ~· . 

,:, 

Let u• and ii• be the minimum solutions of the equations• = g1(a). and• = i 1 (u). respectively. We 

will show that these two vectors are equal Fust. r;i1 = tt""tlcapi 10r all i. Furthennore. 

u•i > block(r.Yj 1, r~,and r>'i l < capi for all i. which implies that r:;i, > b/oclc(r>'j l,ri). TIKftftn. 
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since block is monotonic in its first argument 

block (fy1, r) > block (block (ry1, r), r) = block (ry1, r), 

which shows that g 1 > g1, and by Theorem 6.3, uDP1 > uopt. We will now show that t.i1cse two· lues are 

in fact equal by showing uopt = g 1(uopt). Since uDP1 > ry1 >block (ry1, r), 

gl(uop~ = uopt = u0ptT b/ock(ry1,r) = i1(uDP1)T b/ock(ry1,r), 

and furthennore g 1(uDP1
) > g1(uop1

) = uOJ11 > b/ock(ry1, r) which gives 

uopt = g 1 ( uOl'l). 

Thus uopt = u°"\ and by a similar argument we can show that d°P1 = iJopt, where iJopt is the minimum 

solution of the equation 

d = block (Emax • LxJ T LyJ T Gmax • d, r). 

Theorem 6.5 shows that target (x, y, z) is given by 

target(x,y,z) = <C+uDP1>u<-ifop1> = <+uop1>u<-dop1> target (x, y, z). I 
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