INTERACTIVE DEBUGGING
IN A DISTRIBUTED

COMPUTATIONAL ENVIRONMENT

ROBERT DAVID SCHIFFENBAUER

September, 1981

C)Robert David Schiffenbauer 1981

The author hereby grants to M.I.T. permission to reproduce
and to distribute copies of this thesis document in whole or
in part.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

This empty page was substituted for a
blank page in the original document.

ACKNOWLEDGEMENTS

I wish to thank my thesis advisor, Professor David Reed,
for reading and commenting on early drafts of this thesis,
as well as for a number of suggestions and ideas that improved
the final produpt.

I wish to ;hank Bob Baldwin for contributing so much
time and effort towards improving this research at a time
when he was busgily involved in his own thesis work. Our
conversations were always informative and enlightening and
his enthusiasm for the project never faltered. His help
improved this work in many, many ways.

I would also like to thank Brad Myers and Andy Mendelsohn
for their aid in dissecting various portions of the Alto/Mesa
system, as well as for various illuminating discussions. I
thank Dan Theriault for his Mesa implementation of a liiked
list data abstraction, of which my debugging facility made
extensive use. Thanks to officemates Karen Sollins and
Stephen Kent for all their help. Thanks to Professor Jerry
Saltzer and Dr. David Clark for initially iﬁtroducing me to
the Computer Systems Reseafch Group at M.I.T.

Finally, I would like to thank my parents and my
brother, Joel, for all their help and encouragement.

This empty page was substituted for a
blank page in the original document.

INTERACTIVE DEBUGGING
IN A DISTRIBUTED COMPUTATIONAL ENVIRONMENT

by

ROBERT DAVID SCHIFFENBAUER

Submitted to the Depariment of Electrical Engineering
and Computer Science on August 7, 1981 in partial fulfillment
of the requirements for the Degree of Master of Science
in Electrical Engineering and Computer Science

ABSTRACT

This thesis describes an implementation of a facility
for interactively debugging distributed programs. These
distributed programs consist of groups of cooperating
processes concurrently executing on an arbitrarily extensive
network of processors. The facility allows the user to
monitor and control, at his leisure, the interprocess
communications that occur through message passing while
execution of the distributed program proceeds. 1t presents
the user with the ability to simulate transmission errors
and delays, to alter and create packets, and to precisely
control the pattern of such communications. The facility
serves as a tool for the detection of y those
errors, peculiar to parallel processing, which may or may
not appear during the course of any particular execution.

The facility possesses a high degree of trangparency
towards the program being debugged. That is, it has a
minimal effect on the events that define the execution of
that program. Transparency is a desirable property for any
debugger to possess. To achieve such tranaparency, the
processes of the distributed program are made to execute in
a logical time environment, reading logical, rather than
physical, clocks.

We show that the facility obeys a gclock condition, with
which any logical time system must comply in order to be
correct. We also show that the facility actually gimulates
the program it is being used to debug. Finally, we show
that the facility simulates a particular computation cf the
program that is likely to occur. The notion of probable
simulation is defined, and our debugging facility is shown
to achieve it.

Key Words: distributed systems, debugging, monitoring,
reproducibility, lurking bugs

This empty page was substituted for a
blank page in the original document.

CONTENTS

ACknOWledgementS @ 2 08 © 9 0 9 P 6 S0 0 0L L E 0P ES P E DO SN e 0800 2
Abstractotl.0..'..'-..oo...Ol..‘.ﬁoon.00...‘.00005"0.. 3
Table Of Contents ® S 060 08 8 ¢ 0 0 0 s e S D G LA BSOSO e s O EsOT OO 4

Chapter ODEO IntI‘OductiOno‘---o.-.-......-o-o..--o-o.. 6

Distributed SystemS..ceeecteccccscsssscsacesanses 7
Distributed ProgramS..ceccscessccoscccscssccssese 10
Debugging, Monitoring and TransparenCy.sceeeeesse 13
Previous WOrK..eeeroeeoessossssasscsonssssssssace 18
Hardware Environment for this Projecteeeececeeees 22
Software Environment for this Projecteeeceeeeses 24
The Internet ProtoCO0l.ccsieseececassncscensecnsee 28
Plan of ThesiSiieeessessscectsscccenrecncscsseans 32
Some DefinitionSececcesoesssccasscaccesnscssssnee 33

P I T QT QT Y
s o o & & 6 o o o
WIS NN —

Chapter Two. 1Issues in the Design of a Debugging
Facili‘ty...l..Il'.....t....l.ll'.ll.l.... 34

1 Use of the Debugging FacilitFeesesesoesssercanee 36
2 Practical Considerations: Transparency and
Artificially Induced Communication DelayS..cee.s. 45
+5 Theoretical Basis: Causality and Systems of
Logical CloCKSeeoeeoesorvessasnseosscsscscssnseses 57
4 The Uncertainty Principle of Program Debugging.. 69

Chapter Three. Implementation of the Debugging
Facility"....Q‘.ll.l0....!0‘.0-....... 70

31 Overview of the Facilityeeieeesteesneeroocasecas T1
3.1, The Central Sit€eecceessccsoscassaccns e T3

3.1, 2 The Nubeeoovoooes Y 4

3 2 Routing and Timestamping of Application Packets. 178
2.3 Nub - Central Site Interactions...ieceeeeesecesee 87

3.3.1 Initialization FacketS.ieeeesceeseeceess 87
5.3.2 Handler-Creation PacketS..eeeeceeeceeses 87
3.3.3 Receive-Request and Maybe-Receive-

Request PacketS.ceeesveccacasocscacsecsss 89
3.7.4 Conditional-Execute PacketSeeeeseecseess 9GO
3.3.5 Give-le-Now PacketS.eececesss ceessescsss 90
3.3.6 Cannot-Be-Satisfied PacketS.eeeeeeosceees 91
3.3.7 Clock-Update PackelS.seeescctseascacscess G2

3.4

3.5

Chapter Four.

8 Package-DeStrOyed Packets-o.ooo.nootuooo

3.3,

303.9 Enter—DebuggeI‘ P&Ckets.....-............
3.3.10 ACk PaCketS.......-..‘.....--....---..--.
Low Level mchanisms...O.....-...0-0'...0......0
3.4.,1 Initialization.cecoececsccscesossoccnase
3.4.2 Application Packet Selection Algorithm..

3.4.3 Node Suspension and Logical Clock
mmtemce..l.'...il..'......IO‘.I..I..
3.44 Deadlbcka....t.l...l‘...0........\...‘...
3.45 Termimtion..l.."..'.'.....l...l..’lll.
Uaer Interface.......‘O......l!l'....'.......t‘.
3‘51 Monitoring................O.l“..'...‘..
3.5.2 Debugging (User Commands).ceeeccccccscsce
3.5.2.1 The Send Compand.cceeecceooscss
3.5.2.2 The Withhold Command.....eeeee

3.5.2.3 The Replace and Retrieve
commds..go.oo.oo..ocoacooooo
3.5.2.4 The Delay Command...ccceecscse
30502;5 The Diﬂpiay comndao-ooo'onoo
3.5.2.6 The Cr'ate CDMQCOOODOQOOQQ
3.5.2.7 The Call Debiigger Command.....
3.5.208 The Quit comm&ndcooono.oc-oooo

Correctness and Usefulness of the

P
¢« o o »

PN -

Chapter Five.

ASLLG LN AN RN RS)]

NN -

5.7

Debugi-ng Facility.......‘.l.........'..

Maintenance of the Clock Condition.cecreccccccoes
Proof or simtion.......0'..'.0.0..00..0.0.0..
PrObable smulation.....\......ll....l...lI..C‘..
Probable Simulation vs. Transparencyececcccccecsecs

Related Ideas and Suggestions for
ther Research....’......‘..".O....'.

Fra@entation...l..."..0.........0......'......
Bottlenec L 2K BN B B BN BN NN B K BN BN BN BN RE 3 BN BE BE NN NN NN NN B BN N R RN RN N NN B B N)
Order of mnt Re Orting..................--..-.
The Multi"Application PrOblemoccooooooco.-oou-oo
Controlling Monitor EntrieS..cccsscccecceccrcens
Future User Interfaceﬂlcl.‘..D.“........O...."
5.6.1 XNultistepping and Slow Stepping....sc...
5.6.2 Graphical and Analogicel Display of Data
563 Dynmic Display Of Qﬁts..........‘..’.
Towards an Integrated Deb ugg%ng System for
Distributed Computational ironments..........

126
126
126

127

129
133
146
157

158

159
161
163
165
169
175
175
177
187

184

References...I.....l.....'0...'....l.....'....l.....'.. 186

P '4:~6~s

ST R

PP R NS ek
sviimrsgoon £ ol

CQ’EP% M E m%mm M ﬁ“‘ﬁ%w I3
*%mms& %ﬁ@m
debugging t°3§'ﬁ!%»r?' m %m Q&ﬁ%& ,ﬁ,ﬁmg
m‘ﬁmﬁﬁb«%

daa

c;nchuingﬁég %;‘

‘ §§§&$ PRI

Bad &&&n&q@haw 0 §ﬁ£$§w

7 5

waa@ﬁgmqts dnl anilbasd

Ila laysnsy ol sonss Iosupstt bus

HYOBBHIOTT (BolAmowter siomes ol

ol srstugees aremoacyis plintd Jbeslilswdnsc

P

bes Dmmplssh

g Frowiss g

y,
24

fiad w0% 30 wbog sabdfesupsy ady wd

sponsnliel PO ol noliosese Nssd lslistweg

« FBEmEBOS TS L4 ol

1.1 Distributed Systems

Distributed computing occurs when two or more computer
processors join in a cooperative venture to get a particular
job done. It has been characterized (Metcalfe76) as including
an entire range of computational organizations: multiprocessing,
local networking, and remote networking. The properties of
these systems differ in degree, rather than in kind.

In multiprocessing, processors are usﬁally small,'in
proximity physically, and lack an ability to function
autonomously. Programs are executed in a highly parallel
fashion by meting out independent tasks to each processor for
concurrent handling. Interprocessor communication is swift
and frequent since, in general, all processors share the same
memory.

In remote networking, processors are.dften large, powerful,
centralized, highly autonomous computers in their own right.
They may be designed and built independently, and connected
together in a network as an afterthought. Remote networks
may extend over many miles (for example, the Arpanet is
nationwide). In these systems, interprocessor requests are
usually for certain kinds of services that cannot be performed
by the requesting node ;or for bulk information transfer. The
notion of highly parallel task execution is not indigenous
to this arrangement. '

Local networking lies soﬁewhere in between multiprocessing
and remote networking, although it is much closer to the

8

latter. Local networks may extend anywhere from several yards
to a few miles. Often, too, the processing power of loéal
netvwork processors is intermediate to those of multiprocessing
or remote networking systems. Local network processors may,
at times, be highly autonomous and, at other times, be highly
cooperative. _

In genefal, there are no strict dividing lines separating'
remote networking, local networking, and multiprocegaing.
Systems are often assigned to one category or another, as
discussed above, on the basis of imprecise properties such as
distance between processors (Metcalfe76) or degree of autonomy
(Svobodova79 - this report, incidentally, provides an excellent
introduction to many of the issues and problems involved in
distributed computing). Thus, we say that a system is a remote
network when its processors are separated:dy about ten
kilometers or more, or we say that a system is not of the
multiprocessing type because its processors are highly
autonomous.

For our purposes, it is useful to classify these three
systems by another method (which is no less hazy than those
mentioned above). To us, the key characteristic of a
distributed system is that it is impossible to appraise
simultaneousgly all processors (hence, the different segments
of program code executing on these various processors) of the
occurrence of some particular system event. We distinguish
the three system types by a value, A, representing the average
time interval between the informing of the first processor and

9

the informing of the last processor of the occurrence of the
event. In multiprocessing systems this value is quite small.
In remote networks, this value is often quite large. 1In local
networks, of course, the value of 4t is intermediate to these
two.

We are interested in those systems for which &t is
significant in comparison to the time it tekes to execute
instructions on any processor (a system may contain processors
which operate at varying speeds). Another way of saying this
is that we will be concerned with syetems where &t is
significent when campared to the time interval between
succeasive gyents on any pfoceseor. Multiprocessor organiga-
tions typically do not possess thia characteristic. Local and
remote networks do. Thus, in this thesis, we are interested
mainly in the latter two types.

The utility of this particular outlook towards distributed
systems will be made clear presently.

10

1.2 Distributed Programs

Many problems suitable for solution by computer are
capable of being broken down into a number of smaller subtasks
which can be processed independently. These types of problems
lend themselves to handling by some distributed system
organization. The progrémmer codes‘his solution as a set of
processes, assigning each one of these to some processor in
the system. A progess is, "a seé of evehts with an a priori
total ordering." (lamport78). That is, a process is a
chronological sequence of events. (4n event may be, for
example, the execuﬁion of a single machine instruction.) A
distributed system can execute a set of indépendent processes
in parallel. Thus, distributed programming implies parallel
processing.

However, the converse is not necessarily true. Parallel
processing may be simulated on a single processor fhrough some
kind of interleaving mechanism whereby the processor now
executes in the context of process A, now changes state to
execute in the context of process B, now process C, and later,
perheps, back to process A again.

Our model of a distributed program is one which combines
both genuine and pseudo parallel processing. A distributed
program 1s considered to consist of a set of processes,
partitioned into non-intersecting subsets with varying
cardinality. Each such subset is assigned to a single

processor in the distributed system. That processor performs

1"

pseuto parallel process;ng on this subset of processes via an
interleaving mechanism. Genuine parallel processing occurs
between the procesees‘residing at distinct processors (see
figure 1.1). Usually, some mechanism exists to allow the
various processes to communicate in a cooperative fashion.

In light of the classification discussed in the previous
section, we say that all processes gt the same processor can
simultaneously be appraised of the occurrence of Qome systenm
event., Processes residing at distinct processors, however,
cannot be so appraised. In this thesis, we are interested in
those systems in which &t is not inaignificant in comparison
to the time needed to perform any two consecutive events
within any process belonging to the diatributed program being

executed.

other
processors

procese
By 3

12

Processor A

process.
1

Pr::°’s proces

A3 -

process

process
B,

Processor B

process

communications
medium

process
c

other
‘ '

procésses

Processor C

v B A

13

1.5 Debugging, Monitoring and Transparency

We will be concerned with one particular aspect of
programming in a distributed eysfem.‘ We will examine the
problem of debugging distributed programs. More precisely, we
analyze the difficulties behind jinteractively debugging (that
is, debugging while execution is in prograsg) such distributed
programs as discussed above, and will prbposa a practical
facility to accomplish this.

Related to interactive debugging is the concept of
monitoring. A user of a debugger has no basis on which to
perform his debugging if he cannot monitor the behavior of
his program. The faoility to be introduced in this thesis
allows user monitoring of certain specific classees of program
events as well as debugging of those events. These events are
those having to do with interprocess communications. This
will be discussed more fully in chapter two;

The interactive debugging of distributed programs requires
a different set of'tools from those employed in currently
existing debuggera or debugging systems. We now see why this
is s=o.

Interactive debugging almost universally depends heavily
upon the concept of breakpointing. It is-a somewhat
fortunate characteristic of computers that they are able to
perform their various functions at speeds far in excess of the
speeds at which humans can keep track of what they are doing.
When interactively debugging, the human user must be aware

14

of what has already been accomplished in order to make
decisions about what is to happen next. This is done by
allowing the computer to execute for a period of time and then
suspending execution at a designated point in the program (the
breakpoint) to allow the user to "catch up". The breakpoint
concludes when the user has examined the state of the machine,
has, perhaps, made various alterations in this éfate, and has
allowed execution to recommence. Theoretically, it is the job
of the debugger to insure that the astate observed by the
program being debugged upon execution restart is identical to
the state observed at the breakpoint (with the exception, of
course, of changes caused by the user), Then the fact that a
breakpoint occurred will be invisible to the executing program.
The debugger has made the breakpoint transparent.

Transparency is an extremely desirable property for a
debugger to possess. We define trapsparency as being achieved
by a debugger just when the events that constitute the program
being debugged areli&entical in the presence or in the abeence
of the debugger (aside from user initiated alterations
performed when the debugger is present). This means that the
debugger, itself, does not affect the program being debugged.
A lack of transparency implies that the program being debugged
is not quite the one that the program writer had in mind. A
lack of debugger transparency affects the behavior of the
program being debugged. The less tfanepafent the debugger,
the more this behavior is affected.

Total transparency is a theoretical concept. In practice,

15

no debugger is completely transparent to the program it is
being used to debug, A debugger only possesses a higher or
lower degree of transparency towards that program.

Now, in a non-distributed system, it is relatively easy
for a debugger to maintain a high degree of transparency (1.e.
to accomplish highly transparent breakpointing) towards a
non-distributed program. One reason for this is that it is
easy to suspend simultaneously all processes making up that
progranm.

Simultaneous suspension of all processes means that the
entire program is halted at a definite instant in time, when
the machine is in a definite state. It is not difficult to
save this state and to restore it when all processes recommence
execution simultaneously at some lﬁtgr ingtant in time. Then
the processes making up this non-distributed program are
unaware that any debugger induced execution break has occurred.

In a distributed system, however, such simultaneous
suspension is not possible. This is because all processes
cannot be appraised simultaneously of the occurrence of any
system event. For example, suppose the user stipulates that
a breakpoint is to occur just before the execution of
statement X in process Y residing at processor Z. When this
occurs, processor Z sends messages to all other processes
commanding them to suspend execution. It is not possible for
all processors to simultaneously receive such commands. At 1s
always greater than zero.

It is also not possible for the user to inform all

16

processors before execution begins that they must all suspend
themselves at some future time V (even if this capability were
possible, it is not clear that it would be at all useful).
Completely accurate synchronization of the time of day clocks
ezisting at each processor can never be achieved (Lamport78).
Thus, each processor will read time V at a slightly different
real time than any other processor. Again, At will be greafer
than zero.

In those systems where At is significant, the fact that
simultaneous breakpointing is impossible to achieve means that
it is very difficult to maintain a high degree of debugger
transparency. The greater the At value, the harder it is to
maintain such transparency.

To see this, consider the program consisting of two
processes, A and B, residing at distinct processors. Consider
the interval, At, between the time that A receives a comhand to
suspend and the time that B receives a command to suspend.

This At value is considered to be larger than the time it takes
to execute two consecutive instructions in process B. In this
interval, A is suspended while B continues to execute. If B
was to receive some kind of communication from A during this
interval had A not been suspended, transparency would be lost.
The suspension of A'by the debugger would prevent B from
receiving its communication. Obviously, the greater At is, the
gteater the probability that B was to receive a communication
from A during the interval, hence, the greater the probability
that the debugger would prevent this communication from taking

17

place leading to a loss of debugger transparency. Notice that
if At was not at all significant, then B would not have a
chance to execute any instructions during the interval. 1In
distributed systems with such a At (highly integrated
multiprocessing organizations), completely simultaneous
breakpointing is nearly achievable, As-a result, little
transparency is lost because of this problem.

Currently existing debuggers have not been able to provide
interactive service via breakpointing for distributed systems
in which At is significant, because they have not been able
to solve this transparency problem. For these systems, a
method is needed which does not depend ox the simultaneous
appraisal of events, the concept on which bBreakpointing is
based. In this thesis, we present an interactive debugging
facility for such systems. This facility maintains a high
degree of transparency towards the distributed program being
debugged. It in no way depends upon the concept of
simultaneous appraisal.

18

1.4 Previous Work

A good introduction to many of the issues involved in
program debugging and monitoring c¢an be found in Model
(Model79). Brief descriptions of some debugger implementations
may be found in Myers (MyersS80). The reader is referred to the
bibliographies of those fwo works for in depth information on
particular subjects in this field.

The earliest debuggers were suited for single process
programs. As programming languages with parallel processing
 capabilities have come into vogue, and as computational
systems have grown in complexity, tools for momnitoring and
debugging concurrently executing prooesses have arisen.
COPILOT (Swinehart74) was capable of displaying information
about many processes‘simultaneously while permitting the user
to interactively issue debugging commands. -DLISPa(Teitalnan77)
is a graphics pnckagn~whiah uses multip&u’vtndbws (designnted
display screen areas) to facilitate tha l&nuatanoous—reporting
of information about various concurrent processes. Model's
system possesses the nultiple éinplaw ca@nbilities of DLISP

and COPILOT as well as the. ability to~orsaxe -a history tape
of the program's execution, which may be played back later at
the user's leisure., It should be notsd that these three
facilities are tailored to uniprocessor or amultiprocessor
systems, or, in general, to systems in which At is insigni-
ficant.

An attempt to extend a debugging tool to a local network,

19

the Ethernet (Metcalfe76), where At is significant, may be
found in the Metric system. Metric consists of three portions.
"There is a probe in the user's gbleci gystem, an accountant
that collects information from the probe, and an gnalyst that
processes the information and presents it in an intelligible
format. Measurement gvents are those data that the probe
transmits to the accountant, and:which are subsequently
processed by the analyst.” (McBaniel77) The object system
probe exists at each processor on which the program to be
debugged is executing. The accountant and analyst reside on
processors distinct from any of these. Metrioc is itself a
distributed progranm.

There are three arrangements of Metric (sse figure 1.2).
Ve mention these briefly in order of increasing complexity.

The Line - This consists of a aingle probe and a single
accountant.

The Tree - This conaists of an arhitrary number of probes
simul taneously transmitting event data to a single
accountant. ¥We will see that the debu facility wve
propose in this thesis is closest to thi -type of structure.
The Network - Thia consists of an arbitrnry nunber of
probes simultaneously transmitting ewvent data to an
arbitrary number of accountants, the latter perhaps
operating in a cooperative fashion. e will have reason %o
refer back to this structure in chapterfi'n.

We must emphasigze that Metric is pot an interactive
debugging facility. Thus, the fact that it operates in a
system with a significant At value is not really of any great
import. Metric, like Model's facility, collects event reports

on a history log. The user examines this log after the program

20

accountant accountant

) A

%
l ¢

object system (o.s.) 0.8, 0.8. o.s.
The Line The Tree
accountant accountant

0.8, 0.8, O.8. 0.8, 0.8, 0.8,
The Network

Figure 1.2
(from (McDaniel77), fig. 3)

21

to be debugged has ceased execution. The user does not
debug while execution proceeds.

However, Metric is important to us because it does
represent an attempt at debugging programs that do not execute
in uni- or multiprocessor environments. Furthermore, Metric
provideé a primitive facility for the detection of lurking
bugs (to be discussed in chapter two) in distributed programs.

Other work related to ours, which are not strictly
debugging tools, include the Virtual Machine Emulator (Canon80)
and research by Bryant (Bryant77). The Emulator adopted the
expedient of having programs execute in a wvirtus]l tipe
environment, reading virtual clocks which do not "tick" in
real time, Our debugging facility also makes use of a virtual
time environment. We point out that our use of this concept
is different from that used in the Emulator. However, we
received some inspirstion from that projects approach.

Finally, Bryant treats the subject of simulation in a
distributed system. A number of the techniques he employed
(timestamping, for example) are similar to techniques used in
our debugging facility. Bryant, however, does not attempt to
extend his work in simulation to the realm of interactive
debugging of distributed programs.

22

1.5 Hardware Environment for this Project

Our debugging facility is implemented on the Ethernet
network, a local network with a significant At value., There
is no reason why the same facility could not be implemented
on a remote network., In other words, there is no maximum At
value beyond which the facility will cease to operate.
Howéver, as we move from networks with small At values to those
with large At values, we often find a decrease in the number
and importance of truly distributed applications implemented
upon thgm. Therefore, the need for our debugging facility
on many large At netwoi'ks may not be very great.

". « « Ethernet uses tapped coaxial cables to carry
variable length digital data packets among, for example,
personal minicomputers, printing facilities, large file
storage devices, magnetic tape backup stations, larger central
computers, and longer-haul communication equipment.”
(Metcalfe76) Interprocess communication between processes
residing at distinct processors occurs through explicit
message passing. The Ethernet hardware does not guarantee
the errorless delivery of such messages. Messages arrive at
their destinations only with high probability. If the program
requires a probability greater than the Ethernet can provide,
it must implement, in software, some packet transmission
protocol to mask hardware packet loss. See Poﬁzin and
Zimmermann (Pouzin78) for an introduction to packet trans-

mission protocols.

23

Each processor on the network is an Alto desktop personal

computer (Xerox79a). This is a minicomputer containing 64K ‘
16-Bit memory words, one or two 2.5 Mbyte removable cartridge
disks, a sophisticated 875 line display screen, and an inter-
face to the Ethernet. Each Alto is capable of operating in a

stand alone mode, or in cooperation with various other

machines on the network.

24

1.6 Software Environment fcr this Project

The software environment for our debugging facility is
provided by the Alto/Mesa system (Xerox79b). The programming
language used in this system, Mesa, is a Pascal-like language
which permits concurrent execution of multiple processes
(Mitchell79). Our facility has been implemented in Mesa. 1In
this section, we discuss some of the important concurrency
features of Mesa and the Alto/Mesa system (see Lampson and Redell
(Lampson80) for more detail). We do this in order for the reader
to be able to appreciate some of the implementation details in
later chapters.

Mesa allows the creation of a new process to be accomplished
via the FORK call. A previously ‘existing ‘process may fork any
number of new processes to execute in parallel via the inter-
leaving mechanism of the Alto procéessor. YForked processes are
deleted via a JOIN statement. The JOIN ‘mtatement permits the
joining process %o retrieve whatever results have been computed
by the joined process. The aystem then destroys the joined
process. Forked processes whioch do not compute explicit results
may be detached. Detachsd processes are never joined.

Thus a usual paradigm is for some ‘process to fork another,
execute some code independently of the forked process, and
attempt to rejoin the forked process at some later time to
retrieve its results.

"This mechanism may at times be too restrictive. Processes
often need to interact in a more highly sophisticated manner

25

than the fork-join apparatus allows. Thus Mesa possesses a
ponitor mechanism (Hoare74) which allows processes to have
synchronized access to shared data.in memory through explicit
procedﬁro calls. Synchronization is achieved through mutual
exclusion by the use of a mopitor Jlock which must be acquired
before the process may enter that monitor and access its
protected data. When a process acquires the monitor lock it
effectively shuts out all other processes from that monitor.
The process may then access the data without worrying about

- concurrent access by some other process. Many interprocess
timing difficulties are solved in thias fashion. When the
process is finished with the sonitor data it :releases the
monitor lock, and any othsr process may then acquire it., It
is obvious that only proceases residing at the sams processor
(Alto) may interact through the monitor meghanism since such
interaction is achieved through shared memory.

Implicit in the monitor mechanism is the notion of a
mondtor Jovarisnt. The invariant is "an asssrtion defining
what constitutes a 'good state' of the data for that particular
monitor.” (Mitchell79). This invarisnt must be true vhenever
a process acquires the monitor lock and is about to access the
state of the monitor data. A process inside a monitor can
make the invariant. false, 1f~i§»plnagaa,vbu¢ must restore the
invariant before it relinquishes ths lock. Thus, when a process
acquires a monitor lock it may see any of a range of states,
all of which satisfy the monitor invariant.

At times, a process may enter a monitor and find that,

26

although the invariant is satisfied, the state is such that

it cannot proceed. It must WAIT for some other process to
enter the monitor and satisfy whatever condition it requires.
The process waits on a condition varjable and releases the
monitor lock (after, of course, reatoring the invariant) until
some later time when the condition is satisfied. Eventually,

perhaps, another process will come along to satisfy the
condition being awaited. This new process will NOTIFY the
waiting process that the condition has been satisfied. The
latter may attempt to reacquire the monitor lock at some
future time and continue execution from the point where it
left off. If a notify occurs on a condition on which no
process is currently waiting, that notify is simply discarded.
Occasionally, it happena that a process decides it has
been waiting too long to receive a notify. A timeout value
is assigned to each condition variable specifying the maximum
amount of time that a process should wait on it before it
"wakes up" of its own accord. Processes may time out when
some failure occurs in the communications mechanism or s imply
vhen no other process has been able to;éatisiy the condition
in a reasonable amount of time. Timeouts may be disabled for
a particular condition variable. In that case, a process
waiting on that condition will never wake up by itself. To
resume execution, it pust be notified by some other process.
Processes acquire the processor for execution by first
joining a ready 1list (this "join", of course, has nothing at
all to do with the "join" discussed above). The ready list is

27

a linked 1list of process state blocks (PSBs) which represent
various important information about each process. When a PSB
reaches the front of the ready list, the process it represents
is eligible for execution by the processor. Generally, PSBa
join and exit the ready list in a first in - first out order.
However, certain processes may be assigned a higher priority
than cthers. High priority processes have their P3SBs placed
on the ready list ahead of the PSBs of all low priority
processes. In fact, a high priority process will preempt a
low priority process that is currently in execution. After
the high priority process has relinquished the processor, the
preempted process is able to reacquire it right away without
having to go back to the end of the ready list.

Each PSB contains a priority field indicating the priority
of the process it represents. It also contains a tlmeout field
indicating the time at which the process it represents will
timeout (based on a hardware timeout clock) if it is currently
waiting on a condition variable. If this field is zero, and the
process is currently waiting on a condition wvariable, then that
condition variable has had its timeout disabled.

Processes control the processor until they conclude their
execution, until they are forced to wait, until they attempt to
enter a locked monitor, or until they are interrupted. There
is no attempt by the processor to implement a fair scheduling
policy among the various processes. Occasionally, a process
that has been executing too long will voluntarily yield the

processor to other processes of equal priority.

28

1.7 The Internet Protocol

Our debugging facility is implemented on top of the
Internet Protocol (ISI80). This protocol allows interprocess
communication to take place via explicit packet tranamission.
These packets, or datagrams, may be received by the Internet
Protocol from higher level protocols (TCP, for example) and
are, in turn, handed down to the hardware for actual trans-
mission over the Ethernet. The Internet Protocol merely
provides for datagram transmission acroass the network. "There
are no mechanisms to promote data reliability, flow control,
sequencing, or other services commonly found in host-to-host
protocols." (ISI80) .

A datagram receives an internet header in order to
facilitate its transmission. This header includes a number of
fields worth mentioning here:

Source Address - The 32 bit internet address of the processor
at which the datagram was created. Some process at that site
was responsible for creating thiq dgtagram,

Destination Address - The 32 bit internet address of the
processor to which the datagram is toc be sent. Some process
at that site will accept this datggran _
Identification - A 16 bit value assigned by the sending
process that distinguishes this datagram from any other
created at that site.

Protocol - An 8 bit value indicating the “"type" of the
datagram. This field is used to determine what process the
datagram should be routed to at the destination processor.

The particular implementation of the Internet Protocol

which we have used was implemented by Robert W. Baldwin at MIT.

29

We briefly discuss how this implementation is used by processes
to transmit and receive packets over the Ethernet. We describe
this here because these ideas will prove necessary for a full
understanding of the implementation of the debugging facility
to be described in chapter three.

In order for any process at a processor to make use of
the Internet Protocol, some process residing there had to have
issued a create-internet-package command. This initializes
various parameters necessary for communication. After this,
any process may assemble a packet for transmission by inter-
facing with various internet procedures. When the packet is
to actually be transmitted, the process calls the internet
Send procedure. At this point, the packet is made ready for
Ethernet transmission and the Internet Protocol hands it off
to the hardware for this purpose. Any proceas may send a
packet of any protocol type at any time after the internet
package has been initialized at the processor whare’it resides,

Processes. are somewhat:hnreflinygyd‘in,thpir ability to -
receive packets. A particular process may only receive
packets of one particular protocol typekat.a time, It
specifies the protocol value of packets it is willing to
receive by creating a hapdler for that protocol. Handler
creation simply means thst the internet package has been’
informed that this process is now willing to accept packets of
the specified protbcol type (and no other). A process that is
done accepting packets issues a destroy-handler command. A
process that desires to receive packets of a different

30

protocol type from the one it is'currently receiving must
issue a destroy-handler command first, and then may issue a
create-handler command for the new protoeol‘value. At any
time, only a single process at # pafticular processor may
accept packets with a given protocol fype.

Packets arriving at their destination processor are
handed by hardware mechanisms to the Ethernet Driver existing
there. This is a high priority process. The Ethernet Driver,
in turn, hands control of the packet to the Main Dispatcher,
yet another high priority process. The Main Dispatcher
interacts with the internet packégb‘to nbtify the appropriate
program process (based on the packet's pro%ééollfieid) of the
arrival of the packet.

The process that desires the packet must issue a special
request in order to obtain it. Tharé are fwo possible ways to
issue this request. The process éan call é'mgxbe-;gge;ve
procedure, which attempts to acquire a valid packet and
immediately returns if none is present. The process can also
call a receive procedure, which attempts to acquire a valid
packet and will wait on a condition 3ggggh;g‘if none is
present. Should a packet arrivé before'theiproéess times out,
it will be so notified by the Main Dispatéher and it will be
able to acquire e packet. If a timeout occurs before a
packet arrives, then the process may simply reissue its
receive command and recommence waiting on the same condition.

- Thus, we see that a call of maybe-receive is satisfied by
any packet that arrives strictly before the call. However, a

31

call of receive may be satisfied by anykpacket arriving before
the call ¢cr by any packet arriving in thg iﬁterval between the
time the process begins to wait on the condition variable and
the time it times out. This is a crucial point and one which
must be understood in order to appreciate the implementation
described in chapter three.

We add that if the condition varlable had a timeout of
zero (no waiting is done - this is different from having a
zero value in the timeout field Q: the EFSB, which would imply
that the condition has been disabled) then the receive and
maybe-receive calls are identical. | .

The efriéiency of our debugging facility heavily depends
on the length of the timeouf interval of this cbndition
variable (see section 3.4.2). As this interval is increased,
the facility will function more slowly. Indeed, if the interval
goes to infinity (i.e. the timeout is disabl?§)’the facility
will cease to function at all. The timeout of this particular
condition variable must under no g;gggggtggéga,be disabled if
use of the debugging facility is intended.‘»éince this condition
variable is embedded in the internet code, there is usually no
reason for the programmer to tamper with this value.

When no further interprocess communications need to be
performed by any of the processes residing at a processor,
some process there is free to call a destroy-internet-package

procedure.

32

1.8 DPlan of Thesis

Chapter two discusses how and why our debugging facility
will be used. It introduces the notion of a lurking-bug and
how the facility may be employed to detect these. It discusses
the issue of transparency introduced in this chapter and shows
both theoretically and practically hdwldebugger transparency
may be maintained while interactive debugging 6! distributed
programs proceeds.

Chapter three provides a detailed description of the
debugging facility we have implemented. Thﬁsé who have read
this far may skip to it directly, if they wish; ;s, for the
most part, it may be understood independently from the rest of
the thesais,

Chapter four proves that the debugging facility is correct
and useful. That is, it proves that the debugging facility may
be validly used to debug a distributed program and that the
program being debugged is the intended one. However, we see
that the facility is not quite totally transparent towards the
latter.

Chapter five discusses some ideas fhat we have not
implemented for various reasons. We suggest a number of

topics for future research and thought.

33

1.9 Some Definitions

We have repeatedly used a few terms in this thesis that
we felt were naturally understood. However, this may not be

the case. Thus, we define them here:

node - A node is a processor connected in a network.
Since we wiegh to emphasize that the program to be debugged

resides on seve;:%uéﬁggzggggggjg% processors, we refer to
them as nodes throy ut the rest of this thesis.

application - The applicgtion is the program to be debugged.
Both it and the debugger are distributed across the network.

user - The is the person who omplcys the debngging
facility to an application. The uper may or may not
be identical to the person who actually programned the

application (the programmer).

34

Chapter Two

Issues in the Design of a Debugging Facility

This chapter provides a detailed introduction to the

| problems involved in debugging an application that is distri-
buted across a computer network. The concept of transparency,
alluded to in the first chapter, has been important in guiding
our research. We motivate the design presented in chapter
three by explaining how it helps achieve a high degree of
transparency during inte:active debugging of distributed
applications.

Related to transparency is the notion of providing the
user with precise controel over events occurring during the
debugging session. In the following discussion, we indicate
how transparency implies thét interprocess communications (the
"events" with which we will be concerned) are controlled solely
by the user and are unaffected by the existence of the debugging
facility. In chapter three, we delve more fully into the
mechanisms provided by the facility for such precise control
(i.e. the ability to duplicate communications, to delay
communications for specified lengths of time, to prevent
communications from taking place, and, most importantly, to
create any pattern of interproceés communications that may be
desired).

This chapter deals with the theoretical as well as the
practical. It is our desire to describe not merely a particu-

lar scheme that works only for the Alto/Mesa/Internet

35

environment, but to present these ideas as a theoretically
reasonable mocel for future designers of debugging facilities

for any distributed system.

36

2.1 TUse of the Debugging Facility

We stated in chapter one that the facility herein
described has use both as a monitor and as a debugger of
distributed applications. We now assert that, as a debugger,
by far the most interesting use is in the detection of lyrking
bugs (Van Horn66), defined below, in programs consisting of sets
of processes executing in parallel. It is generally acknow-
ledged (Myers80) that the detection and elimination of lurking
bugs is one of the most difficult and frustrating of all
debugging related tasks., Yet, up to now, the tools available
to aid the programmer in this have been scant. Our debugging
facility does not guarantee detection of all lurking bugs. It
does, however, provide a tool for the skillful user, which tran-
scends previous debuggers in providing help in this important
area. The concept of a lurking bug will now be made precise,

An important feature of parallel processing is that of
nondeterminacy of computation. It is unusual for even a
moderately sized program consisting of two or more processes
executing in parallel to proceed in the same way during
distinct executions. This is because such executions are
performed in an arbitrarily timed (Van Horn66) manner. By
arbitrarily timed, we mean that the order in which processes
acquire the processor for execution is not well defined. In a
distributed environment, furthermore, the timing relationships
between processes executing on separate processors (e.g. which

processes execute before or after others, which processes

37

execute in parallel) are also not well defined. Stochastic
events are constantly at work in a system making it impossible
to predict, a priori, the timing relationships among the
various processes. For example, the resulis of a particular
execution might be affected "because of slight variations in
the speeds of autonomous proceasing units, because of replace-
ment of one system component by another of different speed,
because of variations in the duration of i/o activity, or,
perhaps most significantly, because of the scheduling strategy
of a multiprogrammed system." (Van Horné6)

Nondeterminacy means that it is impossible to predict the
next computation state of the machine based on the current
state, as is possible vhen analyzing a single process compu-
tation. Since it cannot be foretold which process (or group
of processes in a distributed system) will be the next to
begin execution from the current state, it camnot, in conse-
quence, be foretold how the state will change; what memory
and register locations will be affected and in what way.
Nondeterminacy is a given, however, The very nature of
parallel processing implies that interprocess timing relation-
ships may be very loose and may vary from exgcuxion to
execution. It is the burden of the programmer to insure that
nis application is robust (functions "éorrecf;y") for any
possible sequence in which the processes may be executed.

Now it is possible that not only will certain machine
states arise during a particular computation that may or may
not be seen again during the lifetime of the program (1.3. until

38

it is scrapped or replaced), but certain errors of this
fleeting type may be detected too. - Those errors that arise
during particular ocomputations, for which it ie impossible to
predict their recurrence in ensuing computations, and which
may neiur have manifested themselves before, and may never
manifest themselves again, but which gre there, are called
lurking bugs. Lurking bugs h;cono‘apparcnt~dur1ng a partiocular
computation because the order in which processes have executed
has shown up a logical flaw in the program. A different
execution ordering during another computation, may be
sufficient to mask this flaw,

We present an example (Van Horn66). Consider an
application conaisting of three processes. Process A writes a
value ¢t0 a memory oell which is then read and ocutput to a file
by process B. Proocess C contains an error in its coding. It
accidently puts an incorrect value into the same ocell that
process A is writing and process B is reading (it vas, say,
supposed to affect an entirely different cell). Now consider
the following two process execution sequences (on a uniprocessor
machine) for two posasible computations: -

BCABC...
CBACEB. ..

In computation i), process C never affects the memory cell

in question until process B has already read it and written it
to the file. Thus the affect of process C is invisible in the
final output. In computation ii), however, process C always

changes the value in the cell before process B is able to read

39

it. In this case all values written to the file are

incorrect. The lurking bug, an error in the coding of proocess
C, has become manifest due to the particular ordering of
process executions in canputatian ii). (The reader may easily
imagine certain exscution sequences interaediate to the
completely correct computation in i) and the completely
incorrect computation in i1i); for example, executions that
yield some correct values in the output file and some.incorrect
values. The reader may also imagine certain .questionable
computations. JIa, for example, ABBCABBC . . . “"correct”
or not? We return to this problem in chapter four.).

This is a simple example, but it showld be easy to see
how in large programs comeisting of many domens of cooperating
processes, it is difficult, if not impossible, to feel assured
that all lurking bugs have been eliminated in a program that
appears to work correctly.

Ve digress, for a moment, to point out that even users of
languages without parallel processing cepabilitiss (such as
Fortran, Algol60, etc.) are not immune to the problems of
nondeterminacy and lurking bugs. In todxy's computational
environments, no process is an island. Any ;pplication must
ceexipgt with various operating syéxih;ptodniada# schiedulers,
i/o routines, other user applications, and the like. Yet the
Fortran programmer who beldévés his application to be
determinate, because, for a éiven set qf inputs, he can trace
step by step through his listing predicting subsequent states
from earlier states until the fin;l iesﬁlta have been determined,

40

is s:fe in his naivete. This is because the designers and
implementors of the system being used have taken the burden of
worrying about lurking bugs on themselves. They have caused
user-system and user-user process interactions to be of the
simplest type so that the order in which system and user
programs execute is of minor consegquence. All programmers,
however, should be aware of these probleﬁa. fAs networking
grows and as languages which directly incorporate parallel
processing become more prevalent, the onus of ensuring correct-
ness in the face of nondeterminacy is no longer solely on the
shoulders of the systems programmer. Tools for the detection
and analysis of lurking bugs will become increasingly ;mportant
to both systems and applications programmers.

We have been careful so far to refer to the system
herein described as a "facility" or a "tool" for debugging,
not actually as a debugger itself. It allows the user to
monitor and influence directly only the interprocess
communications during a particular computation, not the
sequential instructions that define process events (as discussed
in the first chapter). By use of this fdcility, bugs can be
detected, be they lurking or otherwise, in an indirect fashion,
based on how these bugs manifest themselves as errors in the
communication streams. In conjunction with conventional
debuggers, which can be used to monitor and influence procees
events themselves, this facility provides a powerful debugging
system for distributed computations.

It is assumed that the debugging facility will be used in

41

a number of ways., We don't wish to overstate its use as a
detector of lurking bugs. DMost users will employ it simply
to check whether interprocess communications proceed in a
reasonable fashion. They will execute a ﬁandful of compu-
tations, permuting the order in which packets are sent and
received, varying transmission times for particular packets,
losing packets, etec, until they are reasonably certain that
their application functions correctly under most conditions.

A second, slightly more sophisticated, mode of use would
be to monitor and influence communications up through a qertain
point in the eomﬁutation. The user might then choose to
monitor or debug directly any one of the nodes 1pvolved in
the computation. He may employ a remote debugging facility
to examine another node directly from the node at which he is
situated. (In the Alto/Ethernet environment there exists a
remoté debugger called Teleswat (Xerox79¢) which allows any
node on the network to attempt to debug any other, with the
consent of the latter. This is achieved by passing messages
between the two sites.) He may also physically go to the
site he wishes to examine and make use of a conventional
debugger existing there. Debugging (by either means) can
proceed up through the next internode interaction involving
that site. This can be done for all nodes involved in the
computation. The user may alternate between using the
debugging facility to monitor communications and debugging
sites individually, remotely or otherwise.

Finally, the facility may be used to detect lurking bugs,

42

No claim is made that all lurking bugs will, or even can, be
detected since it is usually impossible to test all pessidle
process execution sequences for correctness. For any untested
execution sequence there may exist undetected lurking bugs.
However, we hypothesize (with fairly strong feelings of
justification) that it is often the case that the user has a
general "feeling" for his program that tells him which particu-
lar execution sequences are more likely to house lurking bugs
than others. The facility provides a tool to allow the
re-creation of those execution sequences which are of
particular interest, via manipulation of the communication
streams. The user chooses for examination a small subset of
the myriad of possible computations.

As an example, the user may formulate a set of computations
that causes all the code in every,ﬁrocesa'to be executed at
least once. In communications software, a great deal of code
is often written to handle unusual conditions (for example,
extremely long packet transmission delays due to hardwvare
problems). Since these conditions rarely 6ccur, this software
is left untested. The debugging facility allows these
conditions to be simulated, creating a set of test cases in
which all program code is executed. I1f these yteld satis-
factory results, the user may presume (perhaps justifiably,
perhaps not) that his code is free of lurking bugs.

This example hints at how the debugging facility is used
to create different execution sequences. By delaying a packet,

for instance, the user may delay the execution of the receiving

43

process, thereby changing the order of processor acquisition
by processes at the receiving node. The user then determines
wvhether his program functions correctly for this particular
execution sequence which he has just produced.

Debugging in this fashion may be likened to a chess game,
During any move, the player has dozens ¢f avenues to explore,
and the deeper he searches the more rapidly the number of
alternatives increases. However, the vast majority of such
moves are tactically silly or meaningless. The player does
not get bogged down in analysis because he is able to
immediately dismias these possibilities and concentrate on the
handful of interesting moves., Like the chess player, the user
of this debugging facility is able to eliminate all those
possible computations that he feels are not necessary to
explore. He is given a to0ol which allows him to concentrate
only on the meanihgful alternatives. He possesses precise
control over the interprocess communications ocecurring during
the exscution of the program.

To continue the analogy, moreover, a single session with
the debugging facility can be likened to the chess player's
top-down exploration of a particular avenue of atfack. By a
sessjion, we mean the interactive use of the facility to monitor
and influence the application through the course of a single
computation. Just as the chess player mentally decides on a
move to bring the game tb a particular (usually ﬁore
advantageous) state, and then extrapolates his next move based

on this state and his opponent's reply, and so on, s0 the user

44

employs the facility to create various execution sequences to
bring his program to a particular state, and then decides on
his next "move" based on that state. This pattern continues
until the computation concludes.

We don't wish to carry this analogy too far, however. The
chess player possesses the luxury of’backtraéking when his
extrapolations lead to a poor position; the user does not.
Backtracking would require the inclusion of state recovery
mechanisms which are well beyond the scope of this thesis.

The addition of these mechanisms would, however, make for an
extremely powerful debugging facility, and this is a worthwhile

avenue for future exploration.1

Currently, the effects of
backtracking are achieved by the clumsy method of restarting
the computation from the beginning, bringing it back up to

the last state that the user was satisfied with, and proceeding
on new paths from that point. The ability to accomplish

this implies that the user posseéses the precise control
mentioned at the outset of this chapter. Howéver, we shall

see in chapter four that stochastic processes may work to
prevent precise control by destrojing‘the complete transparency
of the debugging facility. Stochastic processes can reduce

a completely transparent debugging tool tdydne that is only

more or less transparent.

1 This is currently being investigated as a Ph.D. thesis
topic at M.I1.T. by Wayne Gramlich.

45

2.2 Practical Considerations: Transparency and Artificially
Induced Communication Delays

The debugging facility is a program that enables
the user to be éware of any message packet t;ansmitted
by any process within the application being debugged.
The :acility possesses code that intercepts any such
packet before it is sent to its destination process and
reroutes it to a central debugging facility receiving
area.

This central area is reaponeiblé for reporting the
existence of the packet, as well as various other per-~
tinent information, to the user of the facility. The
user, then, is free to make decisions about whether this
packet is to actually be transmitted to its original
destination process, whether its transmission is to be
delayed for a specified amount of time, whether another
packet is to be transmitted in place of the one in
question, etc. The implementation of the debugging facil-
ity is described in much greater detail in the following
chapter,

Thus, the facility provides the user with the
capability to examine and make decisions about packets
after they are transmitted from the source process and
before they are received by the destination process. The

destination process does not receive its packet until

46

the user has given explicit permission for it to do so.
It is therefore obvious that interprocess communications
will be slowed down by many orders of megnitude. The
central problem to be addressed, then, is how to maintain
the execution of processes at computer sppeds in the

face of interprocess communications thatAproceed at
severely retarded, and quite arbitrary, speeda. The

user should be able to make decisions about packets at
his leisure, yet the computation. of the application must
remain coherent.

More than mere "coherence®™ is required, however.
What is desired is the complete transparency of the
debugging facility towards the application program. It
makes no sense to attempt to debug a program when its
behavior has been rendered unrecognisable by the
debugger itself. dJust as a thermometer ought not to
affect the temperature of a liquid which is being
measured, so the debugging facility ought not to affect
the application which is being debugged.

How is execution affected by arbitrary communica-
tion delays? Let us pretend that we have an applica-
tion in the midst of execution with.process I on the
ready list of one of the partieipating nodes at
time t. At time ¢t + 1, a communication packet arrives

47

for process Q, which is duly placed on the ready list at time

t + 2. At time t + 3, process J gets placed on the ready list.
Pinally, when process § executes it notifies a process L (time
t + 4) and vwhen process J executes it notifies a process M
(time t + 5). Thus the order in which the processes acquire
the processor is: 1, Q, J, L, M.

Now suppose that the packet that should have arrived at
time t + 1 is, in fact, delayed until time t + 10 (because the
user has been examining it). Then not only will process I
execute ahead of process Q, but @0 will process J. This
reordering of the execution sequence has no effect unless
processes Q and J directly communicate, say, through a monitor,
during their executions. (Striotly speaking, this is not quite
correct: if processes Q and J communicate even jndirectly
during their executions, then there may be an effect. Indirect
communication between Q and J implies the. existence of some
process X such that there are communication paths from both

Q to X and J to X. A gommunicstion path exists from processes

Hm to Hn’ donotedv!m -> nm+1“~>uus*2 ;> P 4 Nn, if for

every q, m¢=q<{n, a packet stream is open between nq and !§+1,

or a monitor exists that is accessible to both»ua and H§+1.
This definition is similar to the path concept found in
Bryant77.) Suppose that they do. Then, in the first case,
process Q enters the monitor before process J. In the second
case, the entry order is reversed. The consequence of this is
that both Q and J see different states of the monitor data than

they would have had the packet's arrival not been delayed by

48

the user. It is then possible that the actione performed by
both Q and J will be different from what would have been had
the packet not been delayed.

The fact that the processes will see different monitor
states than they would have is a consequence of the semantics
of the monitor construct. Upon entry to a monitor, a process
may see, not a particular state, bnsaany one of a range of
states that satisfy the monitor invariant. As far as program
correétness goes, as long as each entering process sees some
state that satisfies the invariant, the order of process
entries makes no difference. Monitors, then, are designed to
take into account the inherent nondeterminacy of parallel
processing.

Yet we wish to draw a distinction between program
correctness and the maintenance of debugger transparency. The
reader must realize that the scenario described above violates
the principle of transparency of the debugger facility. The
facility has made its presence known to the application by
causing various states to arise that would not have arisen had
it not been present.

Thus one effect of delaying the message lies in the
states that processes Q and J will see and the actions they
will take based on these states. Nor is this effect limited to
only processes Q and J. The order in which Q and J execute
will determine the order in which L and M, the processes Q and
J notify, execute. If L and M communicate via a monitor, then

the same problems apply to them as apply to Q and J. Thus it

49

is not difficult to see that a single debugger facility
induced change in the execution may propagate rapidly,

perhaps vastly altering events right therough.to the conclusion
of the execution.

Hoi ares these effects limited simply to differences in
the values of data seen by processes. Suppese that process I,
above, is in charge of making sure that the communication
stream between process Q and the procees sending the packet is
functioning correctly and terminating the connmection if it is
not. It may be that I and Q share a monitor whereby Q, upon
receiving its packet "leaves word" for I that the stream is:
functioning normally. 1 periodically waits, wakes up, and
checks this monitor. If I makes z consecutive checks without
finding that Q has received its packet, it aborts the entire
connection, destroying any related tables it may have set up
for bookkeeping purposes. When packets arrive on time, I and
Q alternate in execution (ignoring other processes at the node):
IQIQIQ... When packets habitually arrive late due to
the affects of the d ebugger facility, the execution might be
III...IQIIITI...QI. .. The risk of I destroying
a connection that ought not be destroyed is apparent.

This, then, is the real danger introdused by lack of
transparency on the part of the debugger facility: the destruc-
tion of communication streams (and consequently the disintegra-
tion of the computation) by processes which presume oommunica-
tion failures because their real-time expectations (that is,
their insistence that certain events must take place within

x seconds) have not been met.

50

How do we combat all of these problems? One way to mask
arbitrary communication delays due to the debugger facility is
to slow down the executions of the processes themselves to
maintain synchronigation with the slowed down communications.
This is achieved by process suspension, that is, artificially
delaying a process which is ready to execute from acquiring
the processor. Furthermore, when a process that is supposed
to receive a packet has its execution delayed because the
packet had been delayed, we prevent the execution of processes
that should not execute until after this one, by suspending
Tthpm. In the example discussed earlier, if the packet for
process Q is delayed, in turn delaying the executiocn of that
process, then process J shbuld be artificially delayed, or
suspended, until such time as process Q receives its packet
and executes. Then the problem of J entering a monitor before
process Q and seeing & state it would not have seen, and the
problem of J notifying M before Q can notify L thus altering
the sequence in which M and 1L execute, become nonexistent.

Ve state that for a given node, the problem of maintaining
transparency is solved by ensuring that the order in which
processes are placed on the ready list, hence the order in
which processes execute, is the same with the debugging
facility present as it would have been had the application
been executing without it. So far transparency has been
discussed only in an intultive manner, and we ask the reader
to. accept this above assertion intuitively; for the moment.

We postpone a more concrete discussion of transparency and a

o1

more detailed explanation of this statement until the next
section.

At any rate, in our example, when process Q cannot
execute because its packet has been delayed, we must make sure
that no other processes execute in the interim. This is easily
accomplished by having a debugging-facility-created process
seize the processor and loop until Q's packet arrives,at which
time the processor can be relinquished and Q can execute.

This mechanism is referred to as ngode guspension, since its
effect is to prevent any activity from taking place while Q's
packet is being awaited. At the time of relinquishment, it is
the job of the looping process to. restore the state encountered
when the processor was seized. Thuas, node suspension is
rendered invisible to the processes of the application being
debugged.

Of course, there is nothing new about this procedure.
Conventional debuggers have always used it to allow break-
pointing. The user has always been able to specify an
instruction at which he wishes his application to be suspended,
t0 examine énd alter the state of the computation at his leisure,
and to recommence execution when he desires. Theoretically, a
debugger guarantees that breakpointing is transparent by
restoring the state at the time the breakpoint ocourred when
execution restarts.

But now we are dealing with distributed systems, where it
is impossible to suspend the computation by seizing the

processor, because there is more than one processor. If we

52

suspend processes at one node and allow other nodes to
continue executing, then communications may break down

because the delay time of packets originating from the
suspended node will prove intolerable, and will appear to the
unsuspended processes as streanm failures. These processes
would close the streams and the computation would disintegrate.

Suspending one of the nodes involved in the computation
for x seconds causes this node to execute x seconds "behind"
all of the other nodes in the computation. This means that
other nodes will see (through the communications streams) all
events at this node occurring x seconds later than they would
have had the node not been suspended. The transparency of the
debugger facility would again be lost. Just as transparency
was lost when packets were delayed for user examination, it is
now lost because packets from this node have been delayed due
to node suspension.

One might attempt to solve this by suspending all nodes
simultaneously whenever any of the nodes needs to be suspended
creating a kind of internode breakpoint. Then, relatively
speaking, no node will be perceived as having lost x seconds
because all nodes will have lost the identical amount of time.
Conventional debuggers achieve breakpointing by stopping all
processes at the same point in time. This is easy to do vwhen
only one proceseor is present. It is, however, impossible to
achieve in a distributed system since one cannot guarantee
(due to unbredictable loss or delay) the simultaneous receipt
by all nodes of "suspension commend” packets. Nor would it

53

do, as an escape from the necessity of siwu. taneous receipt,
to include in each packet the time at which the node should
suspend itself (so that each node will suspend at some time,
X, in the future). This is because it is impossible to
maintain the perfect synchronization of the clocks at each
node, and, more importantly, it is ;gpoasible t0 guarantee
that transparency will not already be lost hefore time x is
reached. Thus, we cast about for a soluxion,wpich is
independent of the concept o: simultaneous events; independent
of the notion that suspension of all podes must occur at a
single point in time. ‘

We just now stated that a node will not notice that
another has been suspended until it examines its communication
ports. Herein lies our salvation. for as long as there is no
communication between the suspended and unsuspended nodes, the
latter cannot poassibly notice a loss of transparency.
Suspension need not be done until such time as oné.or the
proceasea_af the unsuspended node requests @ packet. Then this
node is suspended until it can receive its packet from the
original, suspended nodé, which, in tqrg, proceeds when the
user is through examining the orig@l delayed packet and
allows it to be sent. Thus, to render debugger facility
induced communication delays inviaiblg. the execution proceeds
with various nodes alternately in atates of execution and
suspension. Node suspension occurs whenever a process on that
node requests a packet. It may last for an arbiirary interval
of real time. It concludes either when the requested packet

54

arrives or when it is finally determined that no packet is
available to satisfy the request.

Now the procesgses of the application are no longer
executing in real time. Node suspension has caused sxecution
to slow down the same amount of time for each process on the
same node, but, since the length of suspension of one node is
unrelated to that of another, differemnt amounts of time for
processes residing on separate nodes. Each node now 1s
executing in a logica] time, reading its own Jogical clock that
is unrelated to the logical clock of any other node.

The conseguence of this is that the timing relationships
that would have existed between process executions on different
nodes are changed. '!hny are not.ths4sannzia.they'would have
been had all nodes been executing 1n‘geal‘t1ma. Hence, there
is.again a danger that transparency will be lost. For example,
suppose process A at node a commmnicates with process B at node
b and process C at node c. Furthermore, suppose that, due to
node suspension, node c¢ is executing behind node b in logical
time. Then it is possible that measage Dy, from process B, will
reach process A before message By from process C, when, had
execution been proceeding normally in real time (without the
debugger facility) the order of receipt would have been
reversed. This is one possible effect when a node has been
caused to execute more slowly than it would have.

Furthermore, the fact that a node executea behind
another in logical time implies that the latter is exeocuting
ghead of the first (of course). This leads to yet another set

55

of problems. Suppose process C, above, is exvnecting a packet
from process B. 1t is possible that process C will receive
the packet too early, earlier than it would have had execution
been proceeding normally in reel time. It is interesting to
note that a solution which takes into account the effects of
packets arriving too late must also consider the effects of
packets arriving too early.

All of these problems, which are due to the alteration of
internode timing relationships by the debugging facility, are
solved by a mechanism which caueses any process to see all ex-
ternal events (those due to other processes) in the same rela-
tive time and order as it would have seen them had the debugging
facility not been present. This is accomplished by assigning a
timestamp to all external events of which a process is aware
(in other words, assigning a timestamp to each packet in the
communication stream; a process cannot be aware of an external
event unless that event is reported to it via the communication
stream). Timestamping was first used (Johnson75) to order a
set of events when the danger of a different, incorrect,
ordering being perceived arose., Hoﬁcver, the mechanism was
used to solve an éntirely different problem than is examined
here. We defer until chapter three a description of the
method by which timestamps are formulated and assigned.

To summarize this section, then, we have stated a need to
maintain transparency in the face of artificially induced
communication delays. We suspend the process which is
expecting the delayed packet in order to render the delay invisible,

56

Then, to meke sure that other processes at the same node do
not notice monitor states that they should not because of this
suspension, we suspend the entire node. This ensures that the
ordering of events at the node is unaffected by the debugging
facllity, hence transparency is maintained at that node.
Finally, to keep the order in which all external events are
perceived invariant, we assign tiﬁeStaﬁps‘to these external
events., This preserves each proceéﬁ' ﬁérception‘of internode
timing relationships. Presefving the order in which events
occur at a specific node, and maintaining the order and timing
of external events as seen by each node is, we postulated,
both necessary and sufficient to déintain transparency towards
the application. The debugging'facility,'as a result, only
affects the application in ﬁaya dictated by the user. The
user possesses precise control over the events in the system.
The measuring tool, itself, does not affect that which it was

assigned to measure.

57

2.3 Theoretical Basis: Causality and Systems of Logical Clocks

We now wish to examine the issues discussed in the last
section from a more theoretical perspective. Our reason for
doing this is to show how a debugging facility ought to work
for any process system, not just for the Alto/Mesa environment
in which it has been implemented. DBefore we can do this,
however, we need to precisely derine‘a term we have used
somewhat loosely thus far.v

A gomputation, ¢, (Vam Horn66) is defined to be a single
execution of tho_process&s making up an application. It is \
represented by a ryn, R, (Van Horn66) which is, in turn,
defined as the ordered pair <3, fn> vhere S, is an initial
computation state (the state of the machine when the
computation commences) and Tp is a (possibly empty) trapsition
Bequence TO' T1, Tz, o o o tn where each Ti is ths set of
processes in execution during ths time interval (i, 1 + 1). The
__number of eilements in each set, Ti’ is limited by the number
of processors involved in the exgcuxion. The transition
Bequence, Tp, is a generalization of the gg;ngzhggﬁg:x concept

(Jaffe79). A turns history is merely a sequence of process
names, indicating the order in which processes execute on a
‘ginglg processor,

_ Because of nondeterminacy of execution, the run of a
computation performed af time t may differ from the run of a
computation performed at time t' even though th? executing
application is the same in both cases. Also, a run specifies

58

all the interprocess timing relationships among the processes
of the application. That is, by looking at the run, one may
determine which processes executed before or after others, and
which processes executed in parallel. For any time, t, the
identity of processes executing at that time may be d etermined.
Lamport (Lamport78) has devised a useful way to represent
sets of computations pictorially (see figure 2.1). In this
diagram, each vertical line repiesents the execution of a
distinct process involved in the application. The dots on each
vertical line represent the sequence of events that define that
process. The wavy arrows fepreaent any form of interprocess
communication. Lamport defines these as representing the
transmission of a packet by a process (the tail of each wavy
arrow) ahd the receipt of that packet by another process (the
head of each wavy arrow). Since, in our system, interprocess
communication is achieved either by the explicit tranamission
of packets or through monitor 1ntaractiong;_ve extend this
definition. The wavy arrows will also represent the release
of a monitor lock by one process (the tail of each wavy arrow)
and the acquisition by the next process of that same mon;tor
.loek (the head of each wavy arrow). The vertical direction
represents the passage of physical time. That is, the events
at the lower part of the diagram occur (in real time) before
those that are higher. The intersection of a dotted line and
a process arrow represents the instant when the clock for that
process reads time t. Since all process clocks run in real
time (assuming they are well synchronized) it is reasonable

59

Ty

process P process Q ~ process R

Pigure 2.1

(from (Lamport78), fig. 3)

60

that these dotted lines are horizontal.
Lamport defines what it means for an event to "happen
before" another in this systenm.

Definition. The relation "->" on the set of events of a
system is the smallest relation satisfying the following
three conditions: (1) If a and b are events in the same
process, and a comes before b, then a -> bd. (2) If a is
-the sending of a measage by one process and b is <the
receipt of the same-message by another process, then
a->b., (3) Ifa-~>band b ->»c then a => ¢c. Two
distinct events a and b are said to be gopcurrent if

a £ band b £ a.

e« o« o It is easy to see that a -> b means that one
can go from a to b in the diagram by moving forward in
time along process and me lines. Tor example, we
have p, -> r, in Figure £2.11.

" Adother’way of viswing the definition is to say
that a -> b means that it is possible for event a to
causally affect event b. 2Two events are concurrent if
neither can causally affect the other. For example,
events p; and q, of Pigure [2.1] are concurrent. (Lamport78)

Thus we see that a diagram such as this can be used to
show both "happened before" and "concurrenf" relationships,
existing among the events in the systdh. It repteeenta a get
~ of computations, rather than a particular computation, in that
there may be more than one run that’yields tha‘"happened before"
and "concurrent" relations depicted. That is, it is possible
that there are many sets of interprocess timing relationships
that yield the same causal dependences as shown in the diagram.

For example, if arrow m, represents a monitor entry, then
any computation with a run which has process Q entering the
monitor immediately followed by process R may be included in
the set of computations depicted by the diagram. The other
timing relationships in the diagram may serve to narrow down |

the set of represented computations somewhat further.

61

Suppose we decided to see what would happen if one of
the communication arrows in the figure (arrow m2) vas
lengthened (as in figure 2.2) so that the head of the arrow
intersected with the process line at a higher point, later in
real time, It ought to be clear that the causal relationships
defined by the original diagram have been lost. Whereas before
it was paséible'for a5 to0 causally affect P, (q5 - p4), now it
is true that a5 and p, are concurrent. Therefore, the new
diagram represents a new set of causal relationships distinct
from that of figure 2.1. (In fact, we point out that the
vlengthening of the arrow may mean that4event Py will not occur
at all, or will be replaced by event Z,» as in figure 2.3.
Then, certainly, the relations represented in the original
figure have been lost.)

We would like, however, to maintain ths\same causal
relationships as shown in the original diagram. We do not
mind changing the run (changing the interprocess timing
relationships to create a new set of computations) as long as
it is possible to retain the original "happened before" and
"concurrent” event relations. That this is possible we
already know, because it was stated above that more than one
computation may define the same set of‘causal relations. We
search for a new computation to maintain these in the face of
the lengthening of one of the communication arrows.

It is clear that in order to compensate fdr the stretching
of the arrow, the vertical process liné, P, must also be

stretched so that 95 can once again be seen as "happening before"

62

T4

3

T2

Py ~ ' q1 ® r1
b b

process P process Q process R

Figure 2.2

(based on (Lamport78), fig. 3)

63

z
2 m, Qg T4
% LT
9
93
s P 2
PZ q2
— Y —— —: a— F
! . ;
process P process Q process R
Figure 2.3

(vased on (Lamport78), fig. 3)

64

P, (see figure 2.4). Notice, however, that this will cause
the dashed line representing physical time to be bent away
from the horizontal. This implies that processes Q and P will
read the value x (the time represented by that dashed line) on
their respective clocks at totally different real times. This
is not possible in a systgm of well synchronized physical time
clocks. Here is the crux of the matter. A new set of
computations can be found to restoie the original causal
relationships, hcwever none of these computations are
executable in real, physical time. That is, an abstract
mechanism, a logical time clock {as opposed to a physical time
clock) must be introduced into the system. Furthermore, there
must be a private logical clock for each process, since
various alterations of the communication arrows may rapidly
cause all processes to be executing in their own unique logical
times. The new set of "logical time" computations may be
depicted as in figure 2.5. These logicél\time computations
and the original set of real time cohpﬁtations in figure 2.1
both yield the identical set of causal relationships.

Now we state the central point of this thesis. As

Lamport has pointed out, ". . . there is pno way to decide

which of the icture 8 2.1 is a better

epresentat " of 1 et ausa
relationships. Practically, this means that it is possible
to simulate the effects of the real time computations

using one of the logical time computations. Causality
can be maintained in the face of alterations in the

65

process ? process Q process R

Figure 2.4

(based on (Lamport78), fig. 3)

66

process P , process Q process R

Figure 2.5

(from (Lamport78), fig. 2)

67

lengths of the communications arrows.

The use of logical time is an attempt to have each
process "believe" that it is executing in real time. That is,
the process perceives that all events, both internal and
external, are occurring at the same time whether real or
logical time is being used. This occurs because processes,
under the simulation, are made to read logical rather than
physical clocks.

The relationship between this discussion and that of the
previous section ought to be clear. The extension of a
communication arrow corresponda to a debugger facility induced
packet transmission delay. The 1-n¢thcniﬂg of the vertical
line of the receiving process corresponds to the artificial
suspension of a process for a p§riod of time by the debugger
facility. Timestamping is achieved through the use of
logical clocks, refleoting the passage of logical time.

Furthermore, we now see that the concept of transparency
has been made more precise. Maintaining yhi order in which
processes execute at a node, énQ'maihtaining the correct
sequence and timing relationships of all external events
perceived by any process is another way of stating that the
causal relationships between events of the application have
been maintained. Transparency, then, is achieved by
maintaining these relationships in the face of artificial
communication delays caused by the presence of the debugging
facility.

We conclude this section by pointing out that the

58

identical solution to the transparency problem, discussed
in the previous section on a practical level, has now been

motivated on a theoretical plane.

69

2.4 The Uncertainty Principle of Program Debugging

It is the job of a debugger to maintain causality
relations while providing the user with the tools necessary
to detect bugs, lurking or otherwise, in his computation.
Only if the debugging tooi is reasonably transparent is it
useful. We have shown, both in a theoretical and practical
fashion, how such transparency might be maintained. After
describing a Mesa implementation of a debugging facility, we
return to the problem of transparency in chapter four. An
important question which we have not yet answered precisely
is, "What computations are we maintaining the causal
relationships of?" 1In other words, if we are maintaining
transparency, what are we maintaining transparency towards?
An analysis of this will show that, as previously stated,
complete transparency is an unattainable ideal. Stochastic
processes reduce our debugging facility to possessing merely
a high degree of transparency towards the application being
debugged. The tool must affect that which it is measuring.

70

Chapter Three

Implementation of the Debugging Facility

This chapter describes, in detail, the implementation of
2 debugging facility for distributed applications. The
hardware environment for this project was the Ethernet network
of Alto minicomputers, as described in chapter one. The
software environment was provided by’tﬂe Alto/Mesa programming
system, also discussed in the first chapter.

T

3.1 Overview of the Facility

The code for the debugging facility consists of two
physically separate units. These will be referred to as the

central debugger site code and the debugeer gub code. The

central debugger site code executes on a p;ff;cular node
designated the central debugger pjite. Usnilly, we will use

the shorter term, gentral gite, to refer either to.the central
debugger site orvthe central debuggér site code. Context
should make the intended meaning clear. Also; the debugger nub
- code will usually be referred to simply as the pub.

There is but a single central debugger site (hence a
single version of the central debugger site code). However,
there exists an identical version of the nub for each applica-
tion node participating in the debugging session (see figure
3.1). The nub processes execute alongside the application
processes residing at each application node via the inter-
leaving mechanism of the Alto processor. In the sense that
the central site and nubs each execute on physically distinct
nodes and in full cooperation, the debugging facility described
herein is, in itself, a truly distributed program;

The arrangement of the facility is quite similar to the
tree structure of Metric referred to in chapter one. Each nub
can be likened to one of Metric's object system probes. The
central site is akin to Metric's accountant and analyst
executing on the same node. Just as each probe sends packets

to the accountant describing events on the node it represents,

72

application node application node

application
processes

application
processes

communications
medium

central
site
application
application
processes processes
application node application node

Figure 3.1

73

80 each nub sends certain information reports to the central
site. However, the comparison ends at this point. The
central site is no "passive engine" as Metric's accountant
has been described to be. VWe shall asee that, as well as
merely collecting information, the central site actes on the
information by issuing commands or replies to the nubs. The
central site ggtjvely controls, to a large extent, the events
which take place at any node participating in the debugging

session.
3.1.1 The Central Site

Before the debugging session commences, the user
designates a node, distinct from any node on which application
processes are executing, from which to monitor and debug his
application. This node isvthe centrﬁi debugger site, and the
user causes the central debugger site code to begin executing
here. (The stipulation that the central site must be
physically distinct from any node on which application processes
are executing is partially a consequence of thﬁ'ansll memory
size of each Alto. The central debugger site code uses up much
of this memory, leaving little room for any application
processes to reside. Furthermore, the centrgl site makes
extensive use of the Alto screen for reporting information and
receiving user commands. Any application process also
requiring use of the screen would interfere with user monitoring

and debugging.)

74

The central site prbvides four essential functions.
First, it provides servicing for all nuly initiated requests
and handling for all nub initiated reports. These nub requests,
reports, and central site responses are transmitted in the
form of gverhead packets of which the user and the application
program are never made aware. Overhead packets are distinct
from the packets that are spawned by application processes
during the course of their executions. The latter are termed

t ets.

Second, the central site may issue commands to each nub
on its own initiative. The nub is required to obey each
command so issued. In this relationship, the central site is
clearly master, the nub is clearly slave.

Third, the central site acts as a temporary repository
for application packets. In this implementation, the secondary
storage of the Alto, a disk (or, occasionally, a pair of disks),
is used to cache these packets. Packets that are so cached
may take up disk space indefinitely, or may be released by the
central site on.order of the user in an effort to create more
free space. V¥We add that overhead packets are never cached in
this fashion. (This is another reason why the central site
code must execute at a physically distinct node. In order for
the debugging facility to function reasonably well, there must
be a certain minimum amount of disk space for caching arbitrary
size application packets for arbitrary lengths of time. The
presence of such disk space at an applicetion node cannot be

guaranteed. Thus a separate node is required.)

75

Pinally, the central site provides the user with an
interface to the system with which he is able to monitor and
control the proceedings. The information flow is bidirectional.
The central site reports to the user wvarious -events occurring
in the system and various data values. This allows the user
to monitor his application. The central site aggeptg from
the user various commands which must be obeyed. This allows
the user to debug his application.

3.1.2 The Nub

Before the debugging session commences, the user must
bind in a iersion of the nub with all application code to
reside at a partioular node. An identical nudb version must be
bound, in this faahion, at each node participating in the
session. This binding is done at the time the application
code is configured (that is, at the time the various application
modules at a particular node are linked together to form an
executable program - this is done after each individudl module
has been compiled). Thus the executing program at each node
is a combination of application processes and nub processes.

The nub performs a number of duties. It acts on behalf
of the application processes executing at the node on which it
resides, forming a kind of liaison between these and the
central site. As mentioned, it issues regquests to the central
site whenever some applicetion process reguires it and issues

status reports to the central site as necessary. Furthermore,

76

it processes the replies to these requests and reports.

The nub is also responsible for the correct maintenance
of a designated memory location which is incremented at
periodic intervals by the Alto hardware. This counter
constitutes a logical c¢lock, of the type discussed in chapter
two. We note that there is only one such logical clock at
each node, regardless of the number of application processes
regiding there.

Related to this is the concept of timestamping, as
introduced in chapter two. This function is also performed by
the nub. A4ll application packets are timestamped based on
values read off logical clocks. Actually, the timestamping
mechanism involves the cooperation of two separate nub versions,
the one residing at the node from which the packet emanated,
and the one residing at the node where the packet is received.

Also related to this is the mechanism of node suspension.
The need for node suspension was motivated in the preceding
chapter. It is the job of the nub to make sure that node
suspension is performed correctly whenever it is required.
There are a number of coordination problems that arise here
which must be handled in a reasonable fashion.

Finally, the nub is responsible for intercepting
application packets and rerouting them to the central site
where they are cached for a period of time, as previously
discussed.

In conclusion, the nub is responsible for the coordination

and correct functioning of the node at which it resides. The

T

central site is responsible for the coordination arnd correct

functioning of the application as a whole.

78

3.2 Routing and Timestamping of Application Packets

We now follow the course of a packet spawned by some
application process as it makes its way through the debugging
facility system (see figure 3.2). We provide the reader with
an understanding of the distinct roles playe@ by the central
site and the nub and how they inte;rglate to form the larger
system. We also introduce the timestamping mechanism.

When an application process desireuktoveénd a packet to
some other application process it calllftho internet package's
Bend procedure. This, in turn, makes use of a §ggg§g;__;
procedure which eventually hands the packet off to hardware
mechanisms that actually do the sending. The nub possesses a
hook into this SendBuffer procedure. It causes the following
extra information to be appended to the application packet:

1) Time of Day - obtained by reading the sending node's
time of day clock, implemepted in hardware at each node.
All time of day clocks are ritsanably well synchronized
and reasonably dependable.
2) Logical Time - obtained by reading the sending node's
logical clock, as discussed previously.
Also, the identification field of the packet is replaced by a
unique debugging facility assigned identifier. The original
identifier is appended to the end of the packet body so it will
not be lost. The reason for assigning a special identifier in
this fashion is that the debugging facility must be guaranteed
that all packets emanating from a particular node are disting-
uishable (for purposes of acknowledgement). No two such

79

destination node source node sending

application
process

/
receiving
application
process

Figure 3.2

80

packets may possess the same identifier. Now it is probable
that application processes will have already made sure that
this is indeed the case. However, the facility cannot depend
on these processes to fulfill this function. The facility
‘mgst be robust in the face of errors or oversights in the
implementation of communication protocols for the application
program. Thus it takes this burden on itself.

The ability to add extra words of information to the end
of each packet implies that the maximum packet size allowed to
the programmer must be a few words less than the real, hardware
allowed maximum packet size. In the internet implementation,
a number of words at the end of each packet are made invisible
to the application writer. Thus, the required extra informa-
tion can be added regardless of packet size.

We obtain the two time values (real and logical) at the
very latest moment possible, just before the packet is handed
off to the hardware. This is done in order to avoid the
possibility that the times will be obtained and then the
sending process will be forced to wait on some monitor lock
for an arbitrary length of time, thus nullifying the appended
clock values. In the scheme presented here, any delays that
occur after the times have been obtained may be attributed to
hardware functionality, and are considered as part of
transmission delay time. |

With this extra informetion, then, the packet is sent
across the Ethernet, arriving at its destination node at some

later time. (It is possible that the source and destination

81

processes reside on the same node, in which case the packet
does not physically pass over the Ethernet. However, this is
unimportant for our purpoqes;) For simplic;ty, we assume thgt
the packet is not lost or discarded, and arrives intact. At
the destination node, the packet is routed through the Ethernet
Driver and Main Dispatcher (récallvqkapter one). The latter
hands processing off to an ;ggg;ggng'ifocodure. The nub at
the destination node possesses a hook into this procedure.
Its first job is to determine that the packet is indeed an
application packet that has been sent from‘sone_othar ggglica-
tion node (it is possible that the application packet has come
from the central site - we come to this later).

If this is the case, the packet timestamp is now obtained.
This is done by reading the time of day clock at the destina-
tion node and then performing ﬁhs following operation:

t = L + (R = 8) vwhers
t = packet timestamp
L = logical time packet was sent by source node (from
source node's logical clock)
R = time of day packet was received at destination node
(approximately - see below)
S = time of dny packet was sent by source node (from
source node's time of day clock)
L and S were appended to the packet by the nub at the source
node.
Thus the timestamp is equal to the logical time on the
sender's clock plus the delay time of packet transmission. R
is actually obtained just when the internet mechanism would

inform the receiving application process that a. packet bas

82

arrived. t, then, represents the precise logical time that
the presence of the packet is made known to application
processes executing on the destination node. The value t is
appended to the end of the packet.

It is interesting to note that the logical clock at the
destination node does not figure in the timestamping mechanism
in any way. Furthermore, it is clear that obtaining a correct
timestamp is a cooperative venturs between the nub at the
source node and the nub at the destination node.

Upon obtaining the timestamp, the nub substitutes the
address of the central site in the packet's destination field,
after first appending ite own address to the end of the packet
(exactly how the nub is appraised of the central site address
will be discussed later). Now the packet is In a suitable
condition for forwarding to the central site.

Notice how the nub at the destination node grabes control
of the packet away from the intermet code almost as soon as it
arrives and does not religquish this control at any time.
Timestamping and all other processing is done privately by the
nub, At this time, no application process is aware of the
packet's existence. Its arrival and departure are rendered
invisible to the application.

The packet now is again sent over the Ethernet, this time
to the central site. We assume that it arrives intact. Notice
that the packet has been routed to the central site by the
destination node, but maintains the address of the source node

in its source field (this field was untouched by the nub of

83

the destination node). Then, the first action taken by the
central site is to determine that the packet is indeed from
one of the nodes participating in the curreant debugging
session. If this is the case, then the central site causes an
acknowledgement packet to be sent to the sourge node (see
figure 3.3). The destination node of the packet need not
receive any acknowledgement, although that is the node that
routed the packet to the central site. If an acknowledgement
is not received by the source node in a reasonable amount of
time, it retransmits the packet to the destination node. The
central site, then, requires a mechanism to check for dupli-
cates of packets that have arrived due to ioat'acknowledge-
ments. (If the source node must retransmit the packet, it
first obtaine a new time of day, which replaces the o0ld time
of day previously appended. This is s0 that the delay time,
which will be recaloculated at the destination node in an effort
to compute a new timestamp for this packet, does not become
arbitrarily large. A new logical time is not obtained when
the packet is retransmitted.) The destination node need not
concern itself with any of this, however, ft blindly reroutes
any application packet it feceivos, whether original or
duplicate.

Having acknowledged the packet, the central site proceeds
to restore the original destination node address in the packet
destination field and to restore the original packet identifi-
cation number in the ID field (both of these values having
been appended to the packet body). It then caches the packet

transmitted

destination <:
node
packet
rerouted
t0 central
site
central
site

Figure 3.3

source

node

acknowledgement

St D T

85

(discarding the extra information that had been tacked on to
the packet, after saving it elsewhere) on a disk file
containing all packets bound for the node indicated in that
packet's destination field.

Here the packet remains until such time as it is determined
that the packet is to be returned to the receiving process on
the original destination node (we will soon speak in detail
about how it is decided whoh, or, indeed, if, a packet so
cached is to be sent back to ites destination node). When the
packet is to be returned, the central site retrieves it from
the disk. It proceeds to again append the packet identifier
to the packet body and to replace it with a unique central site
identifier for that perticular destination node. Each node
participating in the session must see unique identifiers for
each packet emanating from the central site (for acknowledgement
purposes). No particular correlation need exist, however, for
1dentifiera of packets destined for separate nodes. Also, the
central site replaces the original source address field with
the address of the node on which it is exeecuting, having
previously appended the original source address to the end of
the packet. This done, the central site sends the packet over
the Ethernet back to the destination node, periodically
retransmitting until it receives an acknowledgement in return.
Thus, the destination node ndw receives the packet for the
second time. Whereas the first time it received the packet it
only needed to blindly reroute it to the central site, now it
must be able to handle duplicates arriving due to lost

86

acknowledgenments.

Back at the destination node, the nub determines, by
inspecting the source address field, that this packet has
returned from the central site (it is not arriving for the
first time). The nudb restores the original packet identifier,
and the original source address. Finally, it causes the
packet to be handed off to the application process at that
node that is to receive it. It is at this point that the

application processes become aware of this packet's existence.

87

3.3 Nub - Central Site Interactions

We stated that the central site and each nub communicate
through overhead packets, those which are spawned by the
debugging facility for coordination purposes and which are
invisible to the application being debugged. Each overhead
packet receives a special debugger protocol value in its
protocol field (recall chapter one)., This value is not used
in any application packet types. It allews the receiver
(either the central site or a nub) to determine that this is
indeed an overhead packet, and not an application packet. We
now discuss each overhead packet type in turn, commenting on
the function of each. *

3.3.1 Initialization Packets
A number of packet types are transmitted back and forth

in an-effort to initially establish communication links between
the éentral site and each nub version. These packet types

include the greetings packet, the greeting-regponge packet, and
the uncondjitjonal-execute packet. The roles of these packets

will be described fully in the section on initialization

mechanisms.
3.3.2 Handler-Creation Packets

Handler-creation packets are transmitted by the nub to

88

the central site. Each must contain a unique value in its
identification field for acknowledgement purposes.

A handler-creation packet is used to inform the central
site that some application process at the sending nub's node
has created a new handler for receiving packets (recall chapter
one). It contains two words of information; a protocol number
and a timestamp. The protocol number indicates that the
application process will only receive packets with that number
in their protocol field. The timestamp {obtained by reading
the node's logical clock) represents the logical time at which
the handler was created.

Upon receiving a handler-creation packet, the central site
will acknowledge it and set up tables to indicate that‘a‘ncw
packet protocol type is open for receiving at the node from
which this packet arrived. Furthermore, all packets already
cached at the central site possessing destination fields
identical to the source field of this packet and protocol
numbers identical {0 the protoool value shipped by this packet
are examined. All such packets with timestamps less than the
handler-creation timestamp are flushad from the disk and
destroyed (on permission of the user), thereby opening up space
for new packets. This is because all packets arriving before
the handler was created (according to their timestamps) would

never be received by the application process (eee chapter one).

89

3.3.3 Receive-Request and Maybe-Receive-Request Packets

Receive-request and maybe-regejve-requeat packets are
. transmitted by the nub to the central site. Each packet must
contain a unique value in its identification field for
acknowledgement purposes.

A receive-request or maybe-receive-request packet is
used to inform the central site that some application process
at the sending nub's node has attempted to receive a packet on
its input port via a receive or a maybe-receive, respectively
(recall chapter one). Each such packet contains two words of
information, a protocol number and a timestamp. The protocol
number indicates that the requesting application process
receives only packets with that number in their protocol field.
The timestamp represents the logical time at which a packet
was requested.

Upon receiving a receive-request or a maybe-receive-
request packet, the central site will acknowledge it and fork
a new process with a function of determining the correct
application packet to be returned in reply, if indeed such a
packet exists. The algorithm by which this is accomplished
will be discussed in detail later. The correct packet to be
returned will have a destination field identical to thp source
field of the request packet and a protocol number identical to
the protoctl value shipped by this packet.

The central site responds to a receive-request packet with

an appropriate application packet, or with a conditional-

90

execute packet. It responds to a maybe-receive-request
packet with an appropriate application packet, or with a
cannot-be-satisfied packet. Conditional-execute and cannot-
be-satisfied packets are overhead packet types yet to be

discussed.

Z.3.4 Conditional-Execute Packets

Conditional-execute packets are tranemitted by the central
site to the nub. Each must contain a unique value in its

jdentification field for acknowledgement purposes.

A conditional-execute packet is sent in response to a
receive-request packet (it is never sent in response to a
maybe-receive-request packet) to the nub that issued the
request. It contains one word of information, a timestamp.
This packet is used to inform the nub that it must execute up
through the logical time indicated by the enclosed timestamp.

Upon receiving a conditional-execute packet, the nub will
acknowledge it and save the timestamp. It will then allow the
application processes at that node to execute until the
logical clock at that node reads the saved timestamp value.

At this point, the nub will suspend the node and transmit a
give-me-now packet to the central site, indicating that it
has performed the action requested of it.

3.3.5 Give-Me~Now Packets

Give-me-now packets are transmitted by the nub to the

N

central site., Each must contain a unique value in its
identification field for acknowledgement purposes.

A give-me-now packet is used to indicate that the nub has
already requested a packet from the central site, received a
conditional-execute packet in response, has executed up to
the appropriate logical time, and now expects the central site
to forward an application packet_to'aatisry the original
request. It contains 6ne word of information, a protocol
number. The receive-request packet that is being followed up
by this give-me-now packet is the last one~sent-with the given
protocol number. | ,

Upon receiving a give-me-now packet, the ceniral site will
acknowledge it and prepare to send back to the requesting node
either an application packet with the given protocol number,
another conditionsl-execute packet, or a cannot-be-satisfied
packet. We discuss this in greater detail later.

3.3.6 Caanot-Be-Satisfied Packets

c o e d packets are transmitted by the central
site to the nub. Each must contain a unique value in its
identification field for acknpulédgomgnt purposes.

A cannot-be-satisfied packet may be sent in response to a
maybe-receive-request packet or a give-me-now packet whenever
the central site cannot find an application packet to satisfy
the request. It contains no extra words of information.

Upon receiving a cannot-be-satisfied packet, the nub will

92

acknowiedge it and inform the application‘process on behalf of
which the last maybe-receive-request or give-me-now was made
that no application packet exists to satisfy the request. The
application processeé resume execution without further

interference from the nub,
3.3.7 Clock-Update Packets

Clock-update packets are transmitted by the nub to the
central site. They need not be ackﬁowledged.

A clock-update packet is sent to keep the centfal site
informed of the logical time at the nqde of the sending nub.
It contains one word of inforﬁation, a timestamp, signifying
the logical time at which the packet was sent. These packets
are transmitted periodically by the nub of each node
participating in the debugging session. In this way, the
central site is kept as up to date as possible regarding the
logical time of each node. Clock-update packets need not be
transmitted by the nub during néde suspension (see section 3.4.3).

A tradeoff between efficiency and thé number of clock-
update packets transmitted exists here. If these-packets are
transmitted frequently, the logical times can be kept more
up to date at the central site and decisions about which
application packet to send in response to any receive-request
or maybe-receive-request packet can be made more swiftly (see
section 3.4.2), However, if packets are transmitted too

frequently, they may bottle up the communications medium

93

causing hardware failures. We have attempted to find a

reasonable median here.
3.3.8 Package-Destroyed Packets

Package-degtroyed packets are transmitted by the nub to
the centrai site. Each must contain a unique value in its
identification field for acknowledgement purposes, '

A package-destroyed packet is sent when some application
process decides to close the internet commnnieafions package
at the node on which it resides. It contains no exfra words
of information. W | |

Upon receiving a package-destroyed packet,vthe central
site will acknowledge it and preﬁare to dismantle all internal
tables and data structures pertaining to that node. All
packets currently cached at the central site with that node's
address in their destination field are flushed from the disk
and destroyed (on permission of the user);v The net effect is
that the central site no longer considers that node to be
involved in the debugging session.

Upon receiving the acknowledgement from the central site,
and not before, the application is free to déstroy the internet
package at that node. The nub ceases to exebute there, and
further application execution takes place independently of the
debugging facility.

There is one caveat concerning all this. Subsequent to

destroying the internet package, no application process may

94

attempt to re-create it in order to rejoin the debugging
session. This is because it is impossible to tell whether the
central site has already destroyed some packets that should
have been received by the node when the debugging session
recommences (e.g. those packets that are destroyed which
contain timestamps thet are greater than the logical time at
vhich debugging recommences are possible candidates f or such
reception). If this capability is desired, the central site
must be altered so as not t¢ destroy these packets when a

package-destroyed packet arrives.
34349 Enter-Debugger Packets

Enter-debugger packets are transmitted by the central site
to the nub. Each must contain a unique value in its identi-
fication field for acknowledgement purposes.

An enter-debugger packet puts the destination node into
the Mesa debugger while under the control of the debugging
facility. The user is then able to physically go to the site
of this node and debug events occurring there up until the
next internode interaction at that site. This ability has not
been fully developed, however, as the nub is not coded to
correctly handle the logical clock mechanism in the presence of
the Mesa debugger.

Upon receiving an enter-debugger packet, the nub will
acknowledge it and call the Mesa debugger into execution.

3.3.10 Ack Packets

Ack packets are transmitted in either direction, nub to
central site, or central site to nub. 'Ack packets are used to
acknowledge the reception of various other overhead or
application packets. They contain one word of information,
the unique, debugging facility assigned identification field
of the packet that i1s being acknowledged. uick packets need
not, themselves, be acknowledged.

Upon receiving an ack packet, the receiving site (nub or
central site) will cease retransmission of the acknovledged
packet. ‘

96

3,4 Low Level Mechanisms
3.4.1 Initialization

One goal of the debugging facility is to allow the user
to station himself at any node on the network in order to debug
an application that may be executing at any other set of nodes
on the same network. Thus, when the debugging session
commences, the locations of the nub copies are unknown to the
central site, and the location of the central site is unknown
to any of the nubs. Some method i® needed to link up the
various parts of the facility, making sure that no application
packets are being lost while the linkasge is accomplished. Omly
after linkage has been performed can the debugging session
proper get under way. |

\First we state that the debugging facility places no
restriction on the order in which the various nodes involved
begin execution. That is, the central site and application
nodes may be brought up in any order and no application packets
will be lost. The facility will rnnetion correctly regardless
of this oxrder. ' '

When the central site begins execution (before or after
some or all of the application nodes), the user is immediately
asked to enter the internet addresses of all nodes participating
in the session. As each address is entered, the central site
transmits greetings packets to that node. These packets will
be sent periodically uhtil acknowledged. Since the node to

97

which this greetings packet has been gsent may not even be
executing yet, the central site has no way of knowing when a
reply might be received. Therefore it is willing to retransmit
greetings packets for a very long time. Eventually, however,

if no response is received the ceniral aite will alert the user
that contact has not been able to be established with that node.

The nub at an application node ie not initialized until
some application process at that node oreates the internet
package. Since no packets may be sent or received until this
is done, it is obvious that there is no need for the nub to
exist until this time. Thus the application processes at that node
execute independently until the internet package is created.

At that time, the debugging taciliiy assugpes control over
their exscution.

The nub possesses a hook into the internet creation
procedure. Its firat action is to cause a node suspension
until such time as a greetings packet is received from ths
central site. At this point it does not know the address of
the central site, but is able to determine that a greetings
packet has arrived by its special debug protneol number. When
the greetings packet arrives for the first time (late arriving
duplicates are ignored), the address of the central site is
recorded and a greeting-response packet is sent back in
acknowledgement. This greeting-response packet contains a
time value which will be described shortly.

After the nub sends a greeting-response packet it is pgot

free to allow application processes to0. recommence execution.

98

Node suspension is still in effect. The central site will
acknowledge the greeting-response packet as soon as it is
received. However, this is merely so the nub can cease
transmitting it. It 1s not an indication that execution may
recommence.

The final stage of the initialization mechanism occurs
vhen the central site receives this greeting-response packet
from the node (late arriving duplicates are ignored). It
records the fact that this node is aware of the existence and
location of the central site and is currently under its control.
When such a greeting-response packet is received from every
node address entered by the user, then the central site knows
that all participating nodes are aware of its existence and
location and that they are all under the control of the
debugging facility. At this point, unconditional-execute
packets are tranemitted by the central site to each of these :
nodes, indicating the fact that they are all free to recommence
execution of their application processes.

With the receipt and acknowledgement of the unconditional-
execute packets by each node, the initialization mechanisms
are concluded and application exscution proceeds.

An important procedure is the initialigation of logical
clocks. The user is given the ability to specify initial
values for each logical clock involved in the debugging
session. This, however, is an all or nothing proposition. He
must either specify initial values for all logical clocks,
or he cannot specify them for any. Logical clock assignment

is accomplished by some application process calling a special
logical clock assignment procedure bound in with the application
modules, but not really a part of the nub proper. The user has
the opportunity to specify either the logical time at which
execution of the application should comﬁence at that node, or
the logical time at which the internet package is created at
that node.

If the user has specified a time at which the internet
package is created (this must be done before the package is
actually created), this value is aimply saved for future use.

If he has specified a time at whichuexequfian should commence
(this must be done before execution begina; hence, it must be
the first statement executed at that nodg), this value is
immediately placed into the logical clock counter, which will
tick uninterrupted until the internet package is created.

When the internet package is created, the nub, as previously
mentioned, comes into being. It immediately records two values:
the real time of day (from the time of day clock) and whatever
value is currently in the logical clock counter. If the user
has specified a logical time at which the internet package is
to be created, both of these values are discarded and the user
specified value is sent to the central site inside the
greeting-response packet. If the user has specified a logical
time at which execution commences, the wvalue read off the
logical clock is converted to a value representing this
initial time plus the number of seconds elapsed between the

commencement of execution and the creation of the package.

100

This final value is sent to the central site inside of the
greeting-response packet. If no initial clock’value has been
specified by the user, the time of day is sent to the central
site inside of the'greeting-responae packet.

Thus the central site is informed of the initial value
to be assigned to each logical clock.

User assignment of logical clocks is useful in re-creating
computations and machine states of interest. It allows each
node to begin execution at a specified time relative to all
other nodes. It nullifies changes in computations caused by
changes in the relative time or order in which execution
begins at each node. Thus, the user can bring up each node at
his leisure without worrying about how this will affect the

computation.

101

3.4.2 Application Packet Selection Algorithm

When the central site receives a receive-request or a
maybe-receive-request packet, how doea it decide which is the
correct application packet, if any, to respond with? We now
examine the algorithm that determines this.

Upon receiving the request packet, the central site
records the address of the node from which it came, the packet
protocol number desired, and the timeatgmp representing the
logical time at which the request was issued by the application
process. A new central site process is detached with a function
of determining the correct response to the request. When fhie
is finally accomplished, that process is destroyed.

Recall, from chupter one, that a maybe-receive-request
can only be satisfied by an application packet which arrives
before the request is made. However, a receive-request may
be satisfied by an application packet arriving ejither before
the request is made 9r in the interval between the time the
requesting process begins to wait on a condition variable and
the time this condition variable times out. In the ensuing
discussion, the length of this timeout 1ﬁtorval is called t.

The process that is forked by the central site searches
through all currently cached packets with a protocol number
identical to that found in the request packet and a destination
address equal to the source address of that packet.

Let us first examine how a maybe-receive-request is
handled (see figure 3.4).

102

Maybe-Receive Request

Application packet p cached with:
1. eorreet protocol =
2. correct destination
3. timestamp that is:
ag £ request timestamp
b) 9 last handler-cfreation
timestamp for this
© protocol & destination
c) € timsta:g of any other
~ such packet? - ‘ :

"

Any other logical clock
€ request timestamp?

. {.clock ¢ timestamp
RS T

\ 9
Any other logical
k(p)D,
. 15

wait for
1 new status

4

to send?

Figure 3.4

103

The application packet with correct protocol and
destination fields that possesses a timestamp which is less
than that of the request, greater than that of the last
handler-creation timestamp for that protocol and destination,
and less than the timestamp of él;iothnr such packets, is
selected by the central site (box 1). Call this packet p.
Suppose such a packet is not curreatly cached (box 1, arrow F).
Then it must be determined whether any logical clock, aside
from the logical clock of the roqusating node, reads less than
the timestamp of the naybe-receive—rcqnnat (box 2) If none
do (box 2, arrow F), then no applicajian packlt can possibly be
found with a timestamp striotly ‘less than the timestamp of the
request which also qontains the ca;ract protoool and destina-
tion fields. In this case, & cozrect nesponao to the request-
ing node is a cannnt-bo-satiuficd packet (box 3). The central
site will report its intention to send a cannot-be-satisfied
packet to the requesting node (box 4). The user is given-a
chance to respond to thias intention (boxes 5,.6 amd 7 - see
section 3.5).

If some logical clock exists which reads less than the
timestamp of the request (box 2, arrow T) them it is possible
that some process at this node will yet spawn a packet to
satisfy the requirements in box 1. The central site does not
yet know whether this will occur. Thus the process that is
attempting to find a correct response to the maybe-receive-
request must wait for some new status to arise which will

allow it to make a decision (box 8).

104

At any given time, there are various processes at the
central site in states of suspension, waiting for conditions
to change so that they may determine the correctbreeponse to
the request they were created to serve. The central site
wakes up all of these processes vhenever an updatéd logical
time value is received for some logiéal clock or whenever a
new application packet arrives. Each proécss will recommence
its search for a reply. Perhaps now the cbrfect response can
be determined. If not, a process will return to the suspended
state awaiting further application packets or logical clock
updates. This algorithm is continued until a correct response
can be found. | |

Now, suppose that packet p is found (box 1, arrow T). Ve
ask if any logical clock, aside from the clock at the node of
the requesting process, reads less than the timestamp of p
(box 9). If not, thenm p must be the earliest packet \capable
of satisfying the request (box 9, at?bi‘?;'box 10). The
central site informs the user of its intention to returm p to
the requesting node (box 11). The user responds to this
intention (boxes 12, 13 and 14).

Finally, suppose that p is found and there does exist a
logical clock reading a time less than this packet's timestamp
(box 9, arrow T). Then it is poseible'fhat some process at
this node will spawn a packet which can satisfy the request
possessing a timestamp less than thé timestamp of p. Since
the central site cannot determine at this time whether such a

packet will be created, the servicing process must wait for a

105

new status to arise (box 15%,

The algorithm for a receive-request is somewhat more
complicated (see figure 3.5).

The application packet with correct protocol and destina-
tion fields that possesses a timestamp less than that of the
request plus t, greater than that of ths'lggt handler-creation
timestamp for that protocol and destination, and less than the
timestamp of all other such gackete, is selected by the central
site (box 1). Call this packet p. If not present (box 1,
arrow F), we ask if any other logical clocks read less than
the request timestamp plus t (box 2): If not (box 2, arrow F),
the only processes capable of creating a packet to satisfy the
request are those yet to execute between the request time and
the request time plus t at the requesting node (box 3). 4
conditional-execute packet with timestamp equal to the request
time plus t (the time the requesting process will time out) is
therefore sent by the central site in reply (box 4). This will
be responded to with a give-me-now’packet when the requesting
node reaches the logical time specified by the conditional-
execute. However, if before this, éqme application packet
possessing correct protocol and destination is indeed spawned
by one of the processes at that node (box 5, arrow T), then
this is the packet to safisfy the request (box 11). This is
reported to the user (boxes 12, 13, 14 and 15). If no such
application packet arrives before the give-me-now (box 5,
arrow F; box 6), then the request camnot be satisfied (box 7).

This is reported to the user (boxes 8, 9 and 10).

106

Receive Request

Application packet p cached wivh: -
i{. correct protocol ;
2. correct destination
3. timestamp that is:
a request timestamp + t
) last handler-creation.
timestamp for this
protocol and destination
c) € timestamp of any other
o sucb packet°

Any other logical clock Y
& request timestamp + t? J

vait for A&
new status

request cannot be
satisfied by any
process at any

other node

end conditional-
xecute packet with
imestamp = request
imestamp + t

send conditional-~
iexecute packet
dwith timesta?p

4 Any arriving applicaticn
packet r with:
1. correct protocol
2. correct destination
3. source identical to
destination :

4. timestamp &£ request

. timestamp + t7?

A Y

107

report o ussr’y
request cannot be
satisfied

user permission
- to mend?

Any arriving spplication: packet q with:
1. correat protooel '
2. correct destination:
3. source identical to
‘destination
4. timestamp ¢ timestamp (p)?
— A

108

If there is a logical clock reading less than the request
timestamp plus t (box 2, arrow T), then a reply cannot yet be
determined. A new status must be awaited (box 16).

If p does indeed exist (box 1,5arrow T7), then it is
determined whether some other logical clock possesses a time-
stamp less than the timestamp of this packet (box 17). If not
(box 17, arrow F), we ask if the timestamp of p is greater
than the timestamp of the request (box 18). If not (box 18,
arrow F), p has been determined to satisfy the request (box 19).
This is reported to the user (boxes 20, 21, 22 and 23). If so
(box 18, arrow T), a conditional-execute packet is sent to the
requesting node indicating that it must execute up to the
logical time given by.the timestamp of packet p (box 24). If
some satisfying application packet arrives from that node
before the ensuing give-me-now (box 25, arrow T), this is the
'packet to satisfy the request (box 32). This is reported to
the user (boxes 33, 34, 35 and 36). If the give-me-now
packet arrives first (box 26), packet p satisfies the request
(box 27). This is reported to the user (boxes 28, 29, 30 and
31).

Finally, if p exists and there is a logical clock reading
less than the timestamp of this packet (box 17, arrow T), then
a new status must be awaited (box 37).

Notice that no reporting to the user is done until such
time as the central site has determined the correct reply to
the request.

Also notice that whenever a node executes conditionally

PORFEEE IR L AR T

109

up through a specified logical time, it is possible that the
application processes at that node will spawn packet requests
(for differing protocol types, as only one protocol type can
be requested at a time), rather than packets. This serves to
complicate thQ central site request handling mechanism.
However, it pfesents no new conceptual difficulties, and we
will not discuss this further.

3.4.3 Node Suspension and Logicai Clock Maintenance

In chapter two we motivated the need for node-suapension
and logical clocks. We now discuss how both are implemented
in our debugging facility. |

A node's logical clock advances in rsal time whenever
application processes at that node are executing. A logical
clock ceases to advance whenever the nub causes a node suspen~
sion to occur. Node suspeneion prevents the execution of
applicétion processes because, in effect, the nub seizes
complete control of the processor.

Node suspension occurs at a node whenever the nub needs
to communicate with the central site and some acknowledgement
of this communication is required. Node suspension terminates
upon receipt of a valid reply from the central sits.

We now list those occasions upon which node suspension

commences aﬁd terminates:

Commences:
Terminates:

Commences:

Terminates:

Commences:

Terminates:

Commences:

Terminates:

Commences:
Terminates:

Commences:
Terminates:

- Upon

. pac

110

Upon internet package creation.

Upon receiving an unconditional-execute
packet from the central site (see section
3.4.1 for more details).

Upon sending an application packet spawned
at that node to its destination node (from
vwhich 1t is rerouted ‘to the: cemtral site).

Upon receiviag an acknewledgement of
receipt of that packot from the central
site.

Upon. tranamitting a regsive-request or
maybe-receive-request packet on behalf of
some applicatian process.

Upon receiving from the central aite in
reply, an application ‘packet, a conditional-
execute packet, or a cannot-be-satisfied

‘packet (see smeotion 3.4.2 for more details).

 the logleal time value
indicated in a conditional-execute packet
and ;gending a give-ms-iiovw td the ventral
site.

Upon receiving from the central site in
reply, an application p t, a cannot-be~
satisfied packet, or‘another ‘conditional-

execute packet (see t;ons 3.4.2 and

'3.4.4 for further deta:

Upon sending a handler-creation packet.

Upon acknowledgenent ‘of receipt of the
handler—creation packet by the central site.

Upon aending a packago—destroyed packet.

Upon acknowlcdgenent ‘of receipt of the
e-destroyed packet by the central .
site (whereupon the nub at the node ceases
to exiat). ‘ ‘

Now we examine how node suspension is accomplished.

The nub possesses a hook into each intermet procedure
which, upon being invoked by some application process, requires
some kind of interaction with the central site. The first

action performed by the nub in every case is to save the

111

current value on the node's logical clock. Then the nub
searches all PSB's‘(recall chapter one) to find all processes
at priority one (low priority) thet are waiting on a (not
disabled) condition variable. The timeout field in each such
PSB is saved and then set to zero. In other words, the time-
out is disabled. The nét effect of this is that all priority
one processes waiting on some condition will not wake up while
the node is suspended. The nud accqmplgahes all this in a way
that‘guaranteea it will not de 1nterru§teﬁ by any other process
(regardless of priority) existing at that node.

Now the nub causes the invoking application process to
wait until a response is received from the central site. The
nub wakes up theylggjgz; a speoial~high priority process which
possesses no function except to executé an infinite loop to
frevent any application processes (at low priority) from
acquiring the processor. The looper periodically yields the
procesesor to other procgeaea‘at the same priority and can be
preempted by proéeaﬂes‘iﬁ.a.hishar‘ario:itya This allows other
high priority nub processes to execute (as well as processes
handling packet reception) buf efigéti;éiy locka oux’all appli-
cation processes. By this means, ﬁqdé suspension is achieved.

We point out that the implementation guarantees that the
looper is indeed waiting on its conditipnyvag;gble when it is
notified to begin execution. If this were ngt the case, the
notifying signal would be lost and the looper would not grab
immediate control, perhaps}allowing,thg_exggntion of application

processes while a node suspension was supposed to be in effect.

112

The looper continues to loop (hence, node suspenéion is
in effect) until such time as the nub receives a valid reply
from the central site. When this occurs, the looping process
is notified. It will determine the amount of time node |
suspension was in effect by subtracting the current time on
the logical clock from the logical clock value saved by the
nub at the start of this suspension. It will then restore the
timeout field in the PSB of each pridrity one process that was
disabled by adding the node suspension time (adjusted to the
units of the hardware timeout clock) to the original saved
timeout value. It will then restore to the logical clock, the
saved logical time that was first read when node suspension
commenced. Finally, it will cause the original interrupted
application process to regain the processor.

The net effect of all this is that node suspension is
rendered invisible to the application processes. Logical time
has not advanced. All application proceéées Qaiting on
condition variables have not noticed any'passage of real time.
The interrupted application process is handed back control of
the processor at the point of interruption. The ordering of
processes on the ready list has not been altered. No user
data has been touched. In short, upon relinguishment of the
processor, the looper leaves the state of the application in
the exact same state it found it when node suspension commenced.

Incidentally, we stated that only priority one processes
are locked out by the looper and that only priority one
processes have their timeout fields adjusted. Processes with

113

priority higher than one (e.g. the processes controlling the
keyboard and disk) are not affected. This may alter the
relative order of processor acquisition between high and low
priority processes, causing the nodg suspension to be not
quite transparent to the application.

This cannot be helped,\however: We take the position
that a high priority process has received that priority because
of a desire to insure that it will execute a particular
minimnm number of times in some time interval, regardless of
how long a particular application process attempts to con'trol
the processor (this is why, in the Haa@ system; application
processes are expected,tor the most part, to execute at
priority one). Furthermore, any ayﬁtan process at priority
one is not guaranteed te execute any minimum number of times
in some interval because program correctness must in no way
depend upon a process yielding the processor within a certain
length of time. Thus we feel that (1) we may suspend priority
one processes indefinitely and expect no adverse effect on the
application program, and (2) we may not suspend processes with
priorities greater than one at all, since these processes
evidently must execute with a certain minimum frequency. These
two statements may not always be true, but they are reasonable
in most Egses. They imply, then, that when using this |
debugging facility, all application processes must be at
priority one. This requirement ié not particularly difficult
to satisfy.

114

2.4.4 Deadlocks

Two kinds of deadlocks may arise in the use of the
debugging facility, causing a premature abortion of the
debugging session. One kind arises due to problems with the
application program. These are deadlocks that woul@ have
arisen regardless of the presence of the debugging'facility.
They ought to be seen when the debugging facility is in use,
and need not concern us at all.

The second kind is somewhat more troublesome. Deadlocks
may arise due to the debugging facility mechanism. If they are
not taken care of, they will prevent the debugging of that part
of the application yet to execute when the deadlock occurs.

Deadlocks arise when all participating application nodes
are in states of suspension because some application process
at each node hqa performed a receive-request or a maybe-receive-
request. As long as at least one application node is not
suspended, then the application execution is making progress,
and there is no deadlock. Deadlocks aridé because the debugging
facility suspends the entire node whenever a single application
process at that node requests a packet. Obviously, this does
not occur when the application is executing by itself.

We present two simple examples of deadiock., The first
(see figure 3.6) occurs when some application process at each
node requests a packet that will be sent at a later time by
some other application process at the same node. Since each

node is suspended when the request is done, the subsequent

Sty Wz

15

send
after
request

proc

application node A application node B

application node C application node D

send

send ‘
after after
request ' request

Figure 3.6

116

send at each node will never have a chance to be performed.
This deadlock is called the gend-to-gelf problem.

A more general form of this problem (see figure 3.7)
arises when each node expects to receive a packet from some
other node, forming a circular request chain, and each node
will not send a packet until it has received one. Each node
says to the other, "After you!" and nofhing ever gets done.
This is called the girgular-send problem.

When the central site perceives a deadlock, it attempts
to "unwind" it in the following fashion. It sends a
conditional-execute packet to. the node possessing the logical
clock at the earliest logical time. The timestamp sent in
~this packet is the time of the next earliest node's logical
cleck. The receiving node is then free to execute up to this
logical time. During this execution, it is possible that some
application packet will be spawned to satisfy soﬁe requesting
node, or that logical time will advance to enable the central
site to perceive a correct response to some outstanding
request. In either case, the deadlock is broken.

If neither of these possibilities comes to pass, however,
the situation becomes just a bit more sticky. Now two logical
clocks read the same minimum time. The central site chooses
one of these, and sends a conditional-execute packet to that
node indicating that it may execute for one logical tick. If
the deadlock is still not broken, the central site transmits
an identical packet to the other node. This alternation
continues until either the deadlock is broken or until both

17

application
node
A

’ application
*<:A nod
. B

send
nessage

= L
message nessage

application application
ngdc ngdo

Figure 3.7

118

logical clocks have reached the time on the third minimum
logical clock. At this point alternation continues among &ll
three nodes. The pattern continues until the deadlock is
broken. |

If the deadlock is not broken no matter how long this
algorithm continues, then it is possible that the deadlock has
been caused by the application process itself. However, the
central site never decides this conclusively, and it is up to
the user to abort the session when he rums out of patience.

Incidentally, we point out that when a node executes
conditionally, it may, rather then break the deadlock, simply
spawn another request for packet! This further complicates
the deadlock handling mechanism at the central site. However,
it adds no new gonceptual difficulties, and we do not discuss

it further.
3.4.5 Termination

From the description of the deadlock handler, it is clear
that the debugging facility will always cause progress to be
made in the execution of the application. Thus, if the
apflication itself terminates, so will the debugging session,
provided the user has enough patience. The central site will
conclude the session upon receiving package-destroyed packets
from allkparticipating application nodes.

The only problem that may arise here is caused by listener

processes (see chapter five) that never destroy the internet

119

package but unceasingly monitor the communicetions lines for
packets, If the application to be debugged contains a listener,
then the central site can never determine that the session heas
indeed come to a close (unless, of course, it could somehow be
appraised that all other application procesees have been
destroyed). In this case, it is up to the user to terminate
the session when he is through.

120

2.5 User Interface

The debugging facility provides a fairly simple interface
to the user to permit both monitoring and debugg;ng of the
application to take place. We discuss both of these
possibilities in this section.

3.5.1 Monitoring

When the central site is about to eend an application
packet back to a node in response to a receive-request packet,
a maybe~receive-request packet, or a foliow up give-me-now
packet (or as soon as it has decidéd;that;the*rcqusst or give-
me-now is unsatisfiable), it reports this to the user via the
Alto screen. These are the only eventé which the facility is
capable of reporting.

Each time an application packet is about to be sent by

A Y

the central site to the requesting nub, the following

information is reported to the user:

1. A special identifier assigned to that packet by the
central site to which the user may refer at any time
until this packet is discarded. This interface
identifier is in no way related to the real identifier
of the packet as assigned by the application process
which spawned it.

2. The real identifier of the packet.

3. The internet address. (in octal) of the packet's source
node.

4., The internet address (in octal) of the packet's
destination node.

R i

121

5. The protocol number of the packet.

6. The number of requests by the application process th
which has requested this packet (e.g. this is the n
packet request from that process).

7. Whether this reguest was through a receive-request
packet or a maybe-receive-request packet.

Each time a cannot-be-satisfied packet is about to be
sent by the central site to the requesting nub, the following
information is reported to the user:

1. The internet address (in octal) of the node at which
the requesting application process resides.

2. The protocol aumber of packets which the requesting
process is willing to accept.

3. The number of requests by that application process
(e.g. this is the ngh packet request from that process).

4, Whether this request uns~thxougkva receive~request
packet or a maybe-receive-request packet.
The reporting of this information allows the user to
monitor all interprooess communications via message passing
that occurs during the exscution of the application.

3.5.2 Debugging (User Commands)

The user is given the opportunity to respond whenever an
event is reported in the manner described above. He has a
number of commands at his disposal for such respomse. We wish
to emphasize that events are reported to the user by the
central site before they actually occur. Thus, the user is
able to debug his application because he decides whether these

128

events will actually 5eke :PABCRs .t Lisr-rd 700080 8 10 I940AG

e g ey b P i o am e ek PRI P ; [I <
R G RN s N aoid 10% ¢8Y 1081l oo Bl sinal
! T § : i R O
58¢922r ko300 : 300 Compendos: oo od hluodn Tedosy noiraniigus
vl nT @z w3 wol sldevisw ”i Fi ﬁf‘ixﬁ:?w gl wbdAT JTuddarqg

wmm&tw;tﬂ the weeRrews
vishes MM peched. ta e mants eciaened thegamd
Aouand.» - kmfmmmwmmm
mmmmm M WQms 8
aineerdad, Mmr |
wants the cwmtwm m o K m.mm
mammmw L anen, a
mm-ﬁmm m;émq s medw ehoo edy Yesd o 1o

N\

currontly reported eveat concludes. Laldartelireany

3.5.2.2 The Withhold Commoadvs::r25 bms soaigei =dT €.8.8.8

)

~kie - Sl mwxmmm does

Pmﬂﬂhmmm %M ammmd
Kb, SPARE - TR i pOBOc TAS R
be TepOrtad: agniR.;ARit S50 Wb

123

packet or a cannot-be-satisfied indication.

There is no direct way for the user to specify that the
application packet should be replaced by a cannot-be-satisfied
packet. This is because it is desirable for the user to be
avare of all possible application psekets that can satisfy a
request. It is better for the user t¢ rejeet all such
packets one by ome, then to allow a #ingle withhold command to
reject all of them. Thus, replacing an application packet bdy
a cannot-be-satisfied packet may only be achieved indirectly
by the user issuing the withhold eommsand:every time the same
request comes up. Eventually, the Pequest must come back as
unsatisfiable.

The withhold command can be used to simulate packet loss
or to test the code when a particulsr packet is never sent.

There is no ‘withhold command when the reported request is
unsatisfiable.

3.5.2.3 The Replace and Retrieve Commande

If the reported request is satisfiable, but the user
wishes to replace tha‘applioafion«pack6ﬁ7t0~be‘sent with a
different application packet, he issues the replace command.
He is asked to enter the interface identifier of the replacing
packet (therefore, the replacing packet must be one that has
been reported to the user previously in comnection with some
other event, and the user must have reéuostod'that this packet

be saved for future transmission, or he must heave replaced

124

this packet using this seme replace command, or he must have
delayed this packet -~ see the next section ~ or he must have
created¢ it - see section 3.5.2.6). If the packet with the
indicated interface identifier cannot be found, the user is so
informed and no replacement is made. If it can be found, the
replaced packet is recached on fhe disk for future use. If
the replacing packet's destination or protocol number is
different from the packet being replaced, these will be
altered to make the wvaluea identical. The user will be
informed of this change. ;

‘If the user is dissatisfied with his new packet, he may
reissue the replace command to obtain yet another ome. When
he is done issuing replace commands, he may issue a send, a
withhold, or a delay (or perhaps even a display or create)
command. |

If the reported request is unsatisfiable, the user may
replace the cannot-be-satisfied packet which would be
transmitted by the central site with any application packet of
which he is currently aware. Since no application packet is
actually being replaced, the user issuss the retrieve command
instead. Subsequent to this, the replace command may be
issued as many times as desired.

3.5.2.4 The Delay Command

If the reported request is satisfiable, but the user
wishes to delay the requesting application node's receipt of

125

the packet, he issues the delay command. He is then asked to
enter a delay interval value. This delay value (after
suitable units conversion) is added to the timestamp of the
application packet. The packet is then recached on the disk
for future use. The central site will fork a new process with
a function of finding a new packet to satisfy the request. If
the delay time is small, the very same packet may be found.
If the delay is large, some other packet may be found or it may
be determined that the request is now unsatisfiable. Thus, at
some later time, the same event may be reported again, with the
same or different applicafion packet or a cannot-be-satisfied
indication.

The delay command may be used to simulate packet trans-
mission delays due to hardware malfunctions.

There is no delay command when the reported request is
unsatisfiable.

3.5.2.5 The Display Command

The user may at any time display the contents of the
application packet that is to be sent in reaponse to the
current reported request. He may display any header field or
the packet body. The display command is issuable whenever
such a packet is present (e.g. even after a replace or retrieve
command has been given). The display is in octal.

There is, of course, no display command when the request

is unsatisfiable (unless a retrieve command has been issued).

2.5.2.6 The Create. Command

The user may at any time create a new application packet.
He is asked to enter all necessarj header fields as well as
the packet body. This is all done in octal. The central site
will make the packet, report the interface identifier as;igned
to that packet, and cache it on disk for future use. The user
may then employ this packet in a subsequent replace or
retrieve command.

T~

3.5.2.7 The Call Debugger Command

The user possessas a rudimentary ability to cause some
application node to be placed into the Mesa debugger. Upon
entry of a gall debugger command and the internet address of
the desired node, the central site will spawn an enter-
debugger packet to be sent to that node. The user may then
phyeically go to that node and debug events occurring there
via the Mesa debugger.

2.5.2.8 The Quit Command

The user may at any time enter the gujit command,
terminating the debugging session.

This empty page was substituted for a
blank page in the original document.

127

Chaptér Four

Correctness and Usefulness of the Debugging Facility

We expect that many of the issues discussed in chapter
two and some of the implementation aspects of éhapter three
are familiar to those with knowledge of simulation technigues.
Our debugging facility is merely a simulator of distributed
applications which alsoc allows iﬁteractive debugging to take
place during the simulation. More than this, however, the
debugging facility causes a probable gimulation to take place.
This is a term which will be def;ﬁpd léter,_ Probable
simulation, we will find, is closely related to the concept of
transparency. However, it is a much weaker condition. As
stated in the concluding paragraph of chapter two, complete
transparency is an ideal which is unattaingble by the &ebugging
facility. Therefore, the next best goal has been thed for,
that of probable simulation.

Now that we have presented a detailed description of the
design and implementation of our debugging facility, we wish
to argue for its correctness and usefulness. This chapter
presents the basic ideas of such an argument. At times we
proceed somewhat informally, as a strictly rigorouse discussion
is beyond the scope of this work.

The argument can be broken down into three steps. Lamport
(Lamport78) points out that for any system of clocks to be
correct, a single condition, termed the clock condition, must
hold for that system. Thus, the first question to be asked is,

128

"Does our debugging facility maintain the clock condition?"

Ndw a system may obey the clock condition without doing
anything particularly useful. For our purposes, the useful
goal is that we be able to interactively debug an application,
P. The first step toﬁgrds such usefulness is that the facility
simulates that system;:P. Our secoﬂd question, then, is, "Does
our debugging facility simulate P?"

However, we will find (in discussing simulation in a
later section) that the mere simulation of P may not always'be
useful. We will show that the debugging facility is useful
only when it pértorns a probable simulation.k Therefore, the
final question to be posed is, "Does oﬁi‘deﬁugging facility
perform a probable simulation of P?" ' |

Question one determines the correctness of the debugging
facility. Questions two and three determine its usefulness.

A positive answer to all three qﬁestibnh will be motivated in
what follows.

129

4.1 Maintenance of the Clock Condition

Laﬁport (Lamport78) defines a logiecal clock, C;» for each
process, P,, in a system. For an event, b, in process Pi.‘ci(b)
is the time of the event as determined by reading the logical
clock, ci. Moreover, C i8 a global function over all civsnch
that C(b) = ci(b) if b is an event in process P,. The clook
condition is as follows:

Clock Condition. For any events a, b
if a~>b then C(a) € C(d).
4All this means is that 1: one event 'happena"bafore' another,
then the logical clock ayatem should rotlcct thia by rocording
the former as occurring oarlier in logical time than the latter.
This would appear to be the most reasonable condition to set on
a system that is divorced from real timc

From the definition of the -) relation (as discussed in
chapter two), Lamport states two more conditions that, if true,
imply the clock condition: o

c1. %ﬁf:r:n% bt::: cv?:§skig ?ggcnss Pi' and a comes
C2. If a is the sending of a mnasagn”by'ﬁroceae Pi and b
is the receipt of that message by process P,
then Gi(a) < Oj(b)]
To these we add a third condition, because processes in our
system may communicate through monitors as well as through
explicit transmission of packets: |

130
C3. If a is the relinquishment of a monitor lock by
process Pi and b 13 the next aocquisition of that lock,
by process P 30 then C (a) £C (b)

It should be easy to see that in a system which allows
process communication through both message passing and
monitor interaotions, conditions cf, C2 and C3 together imply
the clock condition. We now show that the implementation
described in the previous chapter satisfies these three
conditions.

First, remember that, in our_systen, thoge does not
exist a one~-to-one relationship botioon procoéaes, Pk’ and
clocks, C, . Our implementation allows an arbitrary number
of processes to read ths same clock. Thia, ‘however does not
make any difference towards the satiafaction of the three
conditions. ,

C1 is the most straigﬁttorward. Each process clock, ci,
is inp&cmnptod by a counter that inoreases nonqtonically. Thus,
in a single process, later events will always occur at greater
logical times than earlier events. yottcoursp, it is assumed
that the counter "ticks" fast enough ®o thﬁx no two events see
the same logical clock value. This may %ot be physically
realizable, but the impliéationé of this appear unimportant.

C2 is the most interesting case. Lupor‘t* suggests the
following implementation rule to guarantee thkt C2 holds:

IR2. If event a is the aending of a masango m by process
P,, then the message m contains a timestamp T = 6, (a).
Upon receiving a message m, process P

sets cj greater than or equal to ite 3 present
value Y and greater than T

11

We have not followed Lamport's suggestion. Instead, we achieve
C2 in a slightly different fashion., Instead of updating Cj to

conform to the timestamp Tm, we allow C, to tieck, withholding

m from Pj until Cj Y T, This is more in keeping with the
spirit of transparency in that the process will not be able to
detect whether it is executing in physical or logical time.
Using Lamport's method, a process could notice unexplainable
jumps of its clock, thereby inferring that it is not executing
in real time.

The difference in approach is actually a very interesting
point, It arises because the problem Lamport is trying to
golve is only one part of the problem we are trying to solve.
Lamport is attempting to produce correct timing behavior in the
execution of any system of distributed processes. We are
attempting to reproduce the causal relationships between events
that would have occurred had the debugging facility not been
present while simultaneously maintaining this correct timing
behavior. The transparency issue has modified our approach.

Finally, condition C3 is satisfied by the simple expedient
of having all processes that can interact with a monitor M
read the same loglcal clock Ci. This is easy to do since the
processes residing at a particular node form a natural subset
for this purpose. That is, all processes at a node may
interact with any monitor module at that node, but may not
interact with any monitor modules at any foreign nodes.
Furthermore, all processes with access to a particular monitor

share the same memory and, hence, are able to read the same

132

logical clock.

Then, by the semantics of the monitor lock comnstruct, and
by virtue of the fact that each logical clock is implemented
as a monotonically increasing counter, comdition C3 is found
to hold. :

It is admitted that the assignment of a aingle clock to
all processes residing at a node is somewhat artificial. For
the dissatisfied reader, we will discuss, in chapter five, a
possible alternative debugging facility design that assigns a
unique logical cloek to each process in the system. This was
not implemented because of the diffieulsy in maintaining the
correct logical time on each logical cloock.

In conclusion, having shown that conditions C1, C2, and
C3 are all satiasfied, we may atate that the debugging facility
implementation obeys the clock condition.

133

4,2 Proof of Simulation

The first step in determining whether the debugging
facility simulates the process system P is to come to a clear
definition of simulation. In order to do this, however, we
must first introduce the notion of a history array. Our
conception of a history array is a slight modification of the
history arrays discussed in Ven Horn's thesis (Van Horné66).

During the course of the execution or a particular
computation, information is constantly being written to the
various objects (variables and data structures) involved in
the application. Imagine an array (see figure 4.1), to be
called the history array, in which there éxiats a unique row

ith element of each row contains the

for each object and the
information writter by the ith write to that row's object.

The Oth element of each row is considered to house the initial
state of the row's object. (Fof the sake of consistency, we
draw a distinction between the creation of an object and the
first write to that object. The value assigned to an object

6% column of the proper

at its creation is entered into the.
row, The value of the next write to that object, if any, is
entered into the first column of the same row. Certain objects
may already exist at the commencement of the computation; hence
they are not created during the computation. An object of this
class is handled by placing ite initial value into the OB
column of the proper row and the value of the first write, if

any, to the object into the first column of the same row.) As

object
P

object

object

object
S

object
T

134

HISTORY ARRAY

column column column column coiumn . . .
0 1 ' 2 3 4 ‘

Figure 4.1

(pased on (Van Hormé66), fig. 4.1(c))

135

execution proceeds the array enlarges since new values are
added to the end of each row as new writes occur to that row's
object during the computation. Furthermore, at‘any time the
array may possess a jagged right eﬁgei(in other words, the
number of elements in each row 1is not necessarily the same)
since the number of writes to each object may be independent of
the number of writes to any other object. Each row represents
the complete history of ap object during the computation. (4
row of this array is similar in concept to the gbject history
of Reed (Reed79).) The array, as a whole, specifies the
complete behavior of the executed computation. |

This definition of a hiatory'arndy differs from that
proposed by Van Horn in two reepeéts. First, a row exists
only for each object involved in the computation. In Van
Horn's scheme, a row exists for each "cell" in the machine.
Without going into detail about exactly what a cell is, we
simply note that cells include all memory words in the maching,
as wvell as other, more esoteric constructs; We, however, are
not interested in the values of all the memory cells in the
machine. Many of them will possess histories having no
importance to the computation in question. As a computation
progresses, an observer is interested in determining thevvaluee
of only, say, x items. To us this implies that there are
exactly x objects involved in the computation. Thus, there are
exactly x rows in that computation's history array.

Second, the 0th column of the history array as defined by
Van Horn is identical to SR' where SR is the initial state of

136

the run R = <SR' Té) corresponding to the computation that is
about to commence. In our scheme, it is obvious that the 0th
column may contain values that arise after the computation has
started executing, as new objects are created.

Now we present a definition of simulation.

Definition: The behavior of a set of processes P is
§1gg;g£g% by a set of proceases Q just when an execution of
any possible computation of Q (that is, an execution of any
possible run R of the system Q - recall chapter two) produces
a history array that is either identical to or gontains the
hiatory array produced by the execution of some possible
computation ¢ of F.

By "contains" we mean that the history array produced by R
possesses all of the rows of the history array produced by

¢ (with, of course, the identical number of ‘elements in each
row and the identical values for each element) plug other
rows denoting the historiss of objects absent from the
history array produced by c.

One may speak of the c by Q
when the execution of a p ' omputati Q
produces a history array which either contains, or is
identical to, the history array produced by P during the
computation c.

One consequence of this definition of simulation is that
the process system Q may be substituted for the process system
P and this will be invisible to an observer who is unaware
that the substitution has occurred. An observer who is aware
that a simulation is taking place is interested in, and can
determine, the histories of the set Z of z objects involved in
the simulation. This set possesses a (possibly proper) subset
X with cardinality x (x {= z) containing all objects involved
in the simulated computation. An observer who believes himself

to be witnessing the execution of his system, and not a

simulation thereof, will be interested in, and able to determine,

137

only the histories of objects in the set X. To him, the
ﬁistories of the objects in the set Z - X are meaningless
state values for which he has no use or concern. Furthermore,
this uninformed observer will be able to construct some
computation ¢ of P which could have produced the resulting
history array of the objects in set X. Thus, he is made to
believe that he has, in fact, observed the computation c of
his system of processes P.

Notice that this definition of simulation does not at all
imply that the probability of Q simulating a particular
computation ¢ is in any way related to the probability of c
occurring when the system P runs by itself. Thus, the unaware
observer may perceive highly unlikely behavior when a simulation
is taking place, but he will be unable to state conclusively
that he is indeed watching a simulation. This is an issue we
will discuss at some length in the next section.

Now it will be proven that a simple condition placed on
the set of processes Q is sufficient (althoﬁgh‘not necessary)
to guarantee that an execution of any computation of Q will
yield a simulation of some computation ¢ of P. Hence, the
"condition implies that Q simulates P.

Simulation Condition: A process system Q containing q

processes will always simulate a process system P containing
p processes if:

1) ad=p
2) p processes can be chosen from Q such that each process
has the same functjonality as some distinct process in

P (that is, a one-to-one functionality correspondence
exists between the processes of P and the p processes
chosen from Q). Call this set of processes with

138

cardinality p, set A.

3) +the remaipning q - p processes of Q never write any
object read or written by the p processes chosen in
condition two. Call this set of procesases with cardinality
q - p, set B.

Thus, 4 U B equals the process system Qand A A B is the
null set.

The term "functionality", as used above, requirés defini-
tion. The functionality of a process signifies what that
process will "do" when presented with a system state, S, upon
acquiring the processor. In other words, giveﬁ a history array
(representing the history of the:éomputétion up to a point),
the functionality of a process determines how that history
array will be altered (enlarged) during the course of the
execution of that process and how ‘the history array will appear
upon relinquishment of the proééssor by thﬁt pfocess;

It is possible to speak of the functionﬁlity of a process,
because processes, consisting of a single sequence of eventa,
execute in a deterministic manner; TSyétems of processes, as

discussed in chapter two, do not execute determiﬁisticélly,
hence it is meaningless to‘reter to théir-“funétionalify".

-

Theorem: If a system of processes Q obeys the simulation
condition towardes a lystem of processes P, then Q
simulates P.

Once the above assertion has been proven, it will be
shown that the debugging facility is a systeﬁ of piooesses Q
which'obeys the simulation condition towards a system of

139

processes P where P is thé application being debugged. This
implies that the debugging facility does indeed simulate the
application P.

Before the proof can be presented, however, we must
provide three more definitions, two of them notational.

For convenience, we define the function H(R) to represent
the history array resulting from fhe execution of a run R
defining some computation c.

We also introduce the concept of a prefix run. Given a
run R = <SR' TR) where the trensition sequence T, contains n
elements (each element being a set of process names), a prefix
run of R, ds defined to be any run of the form P = <s;, T
where SP = SR and the transition sequence TP’contains m elements
such that O €= m €= n and these m elements are identical to the
first m elements of the transition sequence‘TR. In other words,
run P is either identical to run R or is an aborted version
of run R.

Finally, the notation R is defined to be the prefix run
of run R with transition sequence of length m (0 {&=m{=n, n
being the number of elements in the transition sequence of R).

Row for the proof, which proceeds by induction on the

transition sequence of the run of an arbitrary computation of

Q.

140

Proof: Let V be the run of any possible computation of Q
such that V = <SV' Tv). Tv, of course, consists of the
(possibly empty) sequence Tos Tys - « o4 T, where each T,

(0€= 1 <= n) is the set of all processes in acquisition of
the processors during the time interval fi, i + 1) (recall
chapter two).)

The induction is performed over i. In other words, it
proceeds over the successively longer prefix runs of run V

of the arbitrary computation.

Initially: 1 =0

H(Vo) represents the state of all objects (in Z, not in
X - the sets Z and X have been previously defined) already in
existence at the time of commencement of the computation with
run Vo. No row in thb array possesses more than one element.

It is easy to see that the computation with run Vo

similates a computation of P with run W' =<5, Tw'7 such
that S, = Sy and Ty, is an empty transition sequence. This
is because H(Vo) is either identical to or contains H(W').
Thus, the simulated computation ¢ of P is that computation
with run W'. The computation of Q with run Vo simulates c.

- (In fact, the computation of Q with run Vo may simulate other
possible computations of P, those where S, ¥ Sy but the
objects in X possess the same values in SW' as they do in SV'
However, we are concerned with the existence of only one

computation ¢ and do not worry about these others.)

141

Inductive Hypothesis: 1 =m, 0{=m{n

Assume the computation of Q with run Vm simulates some
computation ¢ of P with run W'', That is, H(Vm) either
contains or is identical to H(W'').

Given this, it must now be shown that the computation of
Q with run Vm+1 simulates someAcompuiation ¢ of P with run
w'''. That is, H(V__,) must be proven to cqnfain or be
identical to H(W''')., Thus:

Prove for i=m+ 1, 0<{(m+1{=n

T (the last element in the transition sequence of the
run Vm+1 and the only element of that transition sequence not
to appear in the transition sequence of Vh) is a set containing
j processes (0 {= j {= the number 6f processors involved in
the execution of the system Q). Of these, k belong to set A
(defined in part two of the simulation condition) and j - k
belong to set B (defined in part three of the simulation
condition). Since A and B are diéjoint, these two groups are
also disjoint. |

Accordingly, the next section of the proof is divided into
two parts:

a) Consideration of the effects on H(Vm) bykthe execution of
the j - k processes in me1 belonging‘to'tﬁe set B of the
simulation condition. |

b) Consideration of the effects on H(Vm) by the execution of
the k processes in Tm+1 belonging to the set A of the simulation

condition.

142

a) The j -k proceéses do not write any of the objects read
or written by the processes in set A. Furthermore, the
processes of set A possess a one-to-one functionality
correspondence with the p processes of the system P. Thus, it
is clear that the j - k processes do not write any of the
objects read or written by the processes of P. Therefore,
only objects which are never read or written by the processes
of P are ﬁritten by the j - k processes. Objects which are
never read or written by any process in P are, it stands to
reason, absent from H(W''). Thus, the only effect these j - k
processes can possibly have on H(Vm) is to add values to those
rows which are absent from H(W''). Thus, the history array
resulting subsequent to the execution of these] - k processes
vill contain, or be identical to, H(W''') where W''' = W'',
Therefore, the simulated computation ¢ of P is that computation
with run W''' = W'*',

b) The processes of set A possess a one-to-one functionality
correspondbhce with fhe P proceaéés of th; Systém P. Therefore,
the k processes possess a one-toébne functionality correspon-
dence with a subset G of the processes of P, having cardinality
k. Then the execution of the k processes has an effect on
H(Vm) which is identical to the effect on H(W'') produced by
the execution of the subset G. Thﬁs, the history array
resulting subsequent to the execution of these k processes will
contain, or be identical to, H(W''') where W''' is a run sich
that W'' is the greatest ptefix run of W''' not'équal to W,
itself, and the last element of T,,,, contains the subset G

143

just delineated. Therefore, the simulated computation ¢ of P
is that computation with run W''' as specified.

At first glance it would appear that we are implying that
the functionality of both systems of k processes are identical.
This, of course, contradicts what was stated earlier, namely
that it is meaningless to talk about the functionality of a
system of processes because of stochastic effects that cause
nondeterminacy. However, we get around this by considering any
Ti to represent the set of processes in execution during an
interval Ui, 1 + 1) which is sufficiently small so thaf sto-
chastic variables, such as processor speed, do not have a
chance to affect the computation.

Alternatively, we can say that the simulated computation
c of P is that which arises when the stochastic proéesses
during the interval represented by the last element of TW""
and the stochastic processes during the interval represented

by T , affect the causality relationships between events

m+1
in the k executing processes (in either P or Q) in identical

ways.
*

¥We have shown thus far that some possible computation ¢
of P is simulated when T__, Gonsists of either the j - k
processes of part a) or the k processes of part b). It needs
merely to be shown that Tm+1 mey consist of both sets of
processes simultaneously, since that is what we originally
hypothesized Tm+1 to be. This is easy to show. But one

further coruscation and we are home,

The requirement that the j - k processes of { never write

144

any object read or written by the k processes of Q implies
fhat the existence of the J - k processes is invisible to the
k processes. Thus, the functionality of the k processes is
not affected by the jJ -—k processes, This, in turn, implies
that the j = k processes may coexist in execution time with
the k processes without affecting the alteration of H(Vm) by
any of the latter. The resulting K(Vm+{) will then still be
identical to, or contain, H(W'''). Thus, T,,q Day consist of
the sum of both the set of k processes and the set of j - k
processes. The simulated computation ¢ of P is that computa-
tion with run W''' as defined in part b), above. The
computation of Q with run Vm+1 simxlates c.

We have shown that any prefix run of V will simulate some
computation ¢ of P. Since V was a run of an arbitrary
computation, we have that any computation of Q simulates some
computation of P. Thus, Q simulates P.

QED

Moreover, given a particular computation of Q, with run V,
it is not difficult to determine what compuxation.c of P has
been simulated. If the ith element in the trangition sequence
of V contains d processes from the set A, then the simulated
computation ¢ possesses a run R =<Sﬁ, TR) where SR = Sv and
the ith element in the transition sequence of R consists of
the d processes of P having the one-to-one furctionality
correspondence with those processes. We pbint out thﬁt it is

145

possible that this computation with run V may als¢e simulate
some other computation of P. However, this is not assured,
and is immaterial since we only wish to know that one such
computation ¢ exists.

Now it is quite easy to show that the implementation of
the debugging facility obeys the simulation condition with
regard to the application being debugged. In other words,
the debugging facility is comparable to the system of processes
Q, while the application being'debugged is comparable to the
system of processes P. This is most easily shown by examining,

in turn, the three parts of the simulation condition:

1) The implementation of the debugging facility consists
of processes at the central site and processes at each
debugger nub along with the processes of the application
being debugged. Thus, q'P=p (in fact, ¢ D p).

2) The processes of the application are not modified in

any way by the presence of the central site and debugger

nub processes. That is, the events defining each application
process and the order in which these events occur are not
altered. It is obvious, then, that these processes possess

a one-to-one functionality relationship with themselves,
hence they form the set A, as Btipulated in the simulation
condition. .

3) It is the job of the central site and debugger nub
processes to maintain their invisibility towards the
application processes. 1t is obvious, from the implemen-
tation description in chapter three, that they do not write
any objects read or written by the latter group. In fact,
vhen they (the nub processes, anyway) relinquish a processor,
they attempt to restore the exact machine state they
observed upon acquiring that prooessor. Thus, these
processes form the set B, as stipulated in the simulation
condition. - -

1), 2) and 3) taken together imply what we have set out
to prove. Thus, we state that the debugging facility simulates
the application to be debugged.

146

4.3 Probable Simulation

As stated earlier, the knowledge that the debugging
facility simulates an application is not emough to feel assured
of its usefulness as a tool in debugging that application.
This is because it is possible for the debugging facility to
repeatedly simulate computations that would almost certainly
never occur in real use of the application. The determination
that lurking bugs are absent from certain improbable computa-
tions alone would not be sufficient to assure correctneas of
a practical application.

In chapter two, we considered the execution order of a set
of processes at an unsuspended node in the face of the suspen-
sion of another node where communication streams were open
between the nodes. We stated that during a normal execution
(that is, without node suapension) the execution sequence at
the unsuspended node was I Q I Q . . . With node suspension,
the execution sequence was along the lines of I I I . . .
IQIII...IQIII...

In the Alto/Mesa environment, one major design goal is
that all processes of the same priority have an equal oppor-
tunity to acquire the processor. Thus, in this environment,
we would classify the computatioh corresponding to the first
execution sequence I QI Q. . . as a‘gggggglg_ggnggigiigg,
one which we would not be particularly surprised to observe.
Moreover, since the second sequence I1 I I . . . would appear

to go against the grain of this design goal, we classify the
corresponding computation as an improbable computat .

147

We must point out that this discussion can only be
appreciated on an intuitive basis. We cannot draw a clear
distinction between probable and improbable computations.

There is no definite demarcation between the two. We can,
however, establish a correlation, of a sort, between improbable
computations and the notion of gystem failure.

As Lamport has pointed out, ". . . the entire concept of
failure is only meaningful in the context of physical time.
Without physical time, there is no way to distinguish a failed
process from one which is just pausing between events."
(Lamport78) We may oconsider such a "pausing between events"
to take place when a process relinquishes the processor to
allow the execution of other processes at that node. In
general, improbable computations (at least in this system, and
probably in many others) are marked by the unusually swift
"pause between events" of some processes and the unusually
lengthy "pause between events" of others. This leads to a
higher than normal failure perception rate by the former set
of processes for two reasons. First, the interval between
packet arrivals from the “long pause" processes is greatly
increased, proportionately increasing the chances that a "short
pause" process will mistakenly perceive a failure when there
is none. Second, the "short pause" processes execute many
times for each single execution of a "long pause" process. If
the "short pause" processes base their failure perceptions not
simply on elapsed time, but on the number of times a particular
variable is checked for a certain condition (this, in turn, is

148

actually based on elapsed physical time - so it does not
contradict Lamport's assertion that failure is based solely on
physical time), then it is likely that the number of checks
will be exceeded before the "long pause" process can make the
condition true. Again, failure perception is likely to occur.

To be more concrete, consider again the example of chapter
two. We said that process Q had a communication stream open
with a process on another node. Proosss I, on the same node
as process Q, was to make sure that this stream functioned
correctly and was to close the connection if it perceived g
fajlure. If the process with which Q was conversing was of the
"long pause” type, it caused an improbable computation, with
execution order I.I I .. .IQIII. .., to ocour at Q's
node. I made >z checks of a monitor variable, and, finding
no effect on this variable by Q, closed the conmection. The
causal chain of events was thus: use of the debugging facility
causing a "long pause" process to-arise causing an improbable
computation to occur at Q's node cauaing I to make >z checks on
some data before Q coﬁld affect that data causing I to perceive
failure causing the premature closing of the strean.

In shor$, to repeat what was said in chapter two, failures
occur because the "real time expectations" of processes are
not met during an improbable computation. We state, without
proof, that the more improbable the computation, the more likely
the chance of a perception of failure.

It should be pointed out that the occurrence of failures

depends on the semantics of the application in question. 1In

149

our discussion of lurking bugs, in chapter two, we asiked
whether the computation with process execution order
ABBCABBC .. . was correct? We now know that, in the
absence of bugs, it is meaningless to talk about & computation’'s
correctness. All possible computations are "correct". Ve
can only talk about a computation's probability (or improba-~
bility) of occurrence or whether it will produce a failure;
the latter is determined by semantics. For example, the
programmer may decide that two consecutive executions of B
ought to be.considered a failure and wirte code to print out
an error message when this occurs, or write code to abort. the
computation, or write code containing certain tests to make
sure that B will not read the same value twice. Alternatively,
he may decide that the results cf the execution are not made
incorrect by two consecutive executione of B. It all depends
on how the programmer attaches meaning to his application.
Finally, we state that there are vﬁryingwdogreea~of
failure severity. The premature closing of a communication
_ stream:is usually, but not always, a severe fallure. Some
other failure caused action may not be as severe (as, for
example, printing out a message as opposed to aborting a
computation, as discussed above). Thus, the set of improbable
computations may be considered to house a subset of computa-

tions, termed undes ns - those that lead to

severe failures due to the improbability of their corresponding

runs.

In this work, it is the task of the debugging facility to

150

produce a simulation of a probable computation to act as the
foundation upon which debugging is performed. The user may
then alter the communication streams as he is inclined, to
produce other computations of varying degrees of probability
in order to detect lurking bugs. This would seem to be the
most reasonable approach in designing a debugging tool for
distributed environments.

The notion of a probable computation is, again, somewhat
intuitive. It is a computation one would not be surprised to
observe in a particular syiten. Ite form depends on many
parameters - hardware characteristiecs, transmission medium,
distance between nodes, the particular dispatcher algorithm in
use, to name a few. For example, a dispatcher that favored
certain processes over others would generate: computations with
certain characteristics. The set of probable computations
for this system would reflect this. Moreover, the substitution
of a new dispatchsr in the same system would yield a different
set of probable computations. Again, the distance between
nodes has an effect on the delay time between. packet transmission
and reception which, in turn, may create computations with
particular characteristics. These are reflected in that system's
set of probable computations.

We speak of a get of probable computations. For complex
systemg with many independent processes, the number of probable
computations may be quite large. Thus, the question arises,
"Which probable computation (of this set) is the debugging
facility attempting to simulate?"

151

The goal of the debugging facility, when a debugging
session is started up at time t with machine state S, is to
attempt to simulate the computation ¢ that wog;d have arigen
beginning at time t with machine state S, if the application
had been executing wiﬁhout the debugging facility.

We must stress the intuitivehess (again) of the notion of
a computation which "would have arisen“.',eiven an initial
machine state it is, of course, impossible to determine what
computation will arise due to the inherent nondeterminacy of
parallel processing. Moreover, if the application commences
execution at time t under control of the debugging facility,
then one cannot tell which computation would have arisen had
execution commenced at time t without the debugging facility.
Thus, the computation ¢, above, is only a hypothetical, but
ugseful, idea. In short, it is possible to attempt to simulate
a computation without actually knowing what that computation is.

This particular computation, c, has been chosen to be
simulated for two reasons. First, the computation c is one
which it is possible for the debugging facility to simulate.
In the previous section, we proved that the facility will
simulate at least those computations with runs possessing initial
states identical to the initial state at which simulation
commences. Since both the simulation computation and the
hypothetical computation ¢ begin at time ¢, if is obvious that
the facility is capable of simulating c.

Secend, we postulate that the probability of this
computation, ¢, being a probable computation is high. Thus, it

152

is reasonable to expect that the facility is simulating a
probable computation. This may not always be true (for
example, during and after time t the communications medium
may be experiencing unusually heavy traffic leading to
unusually lengthy transmission delays) and may conceivably
lead to problems. However, we feel that it is too much to
ask of the debugging facility to create probable computations
under improbable conditions. The development of a tool to
handle this ought to provide an intriguing area for future
research.

We have stated that the goal of the debugging facility is
to attempt to simulate c. Is it actually able to do this?
Unfortunately, the ansvef is no. The mere existence of the
debugging facility will have an effect on the system causing
a different computation, ¢', to be simulated rather than c.
The facility affects the application both spatially and
temporally. It has a spatial effect by altering the layout of
the application code in memory, perhaps forcing some code to
disk that would have remained in main memory. Hence, a
resulting fetch to disk may occur that would not have occurred
had the debugging facility not been: present. This can alter
the computation that is performed. . Also, the debugging
facility code requires a finite amount of time to execute.
Hence there is a temporal effect in that any portion of the
application code will execute at time ¥ + x rather than at
time t + y with x » y. Furthermore, as execution continues,
application code will be executing later and later than it

153

would have had the debugging facility not been present. The
consequence of this is that stochastic processes (of the kind
mentioned in chapter two) will be in different states at time
t + x than they would have been at time t + y, having different
effects than they would have and possible causing a different
computation to be performed.

Let us be more concrete about this by again examining
the disk. One stochastic process involved in the disk operation
is how long it will take (seek time) to access a particular
disk location. Suppose process A requested a disk fetch of
that location, waiting to be notified by the high priority
disk controlling process, D. Then process B began to execute,
during the course of which process C was notified (placed on
the ready 1list). Now,without the debugging facility, the
request by A would have occurred at time t + a, and the disk
head would have been very near the location to be accessed.
Thus, D would have retrieved the contents of the requested
location and notified A, taking the processor away from B
before B could notify C. Then A would be placed on the ready
list before C. On the 6ther hand, when the debugging facility
is present, the request by A occurred at time t + b (b D a).
" At this time, the disk head was very far from the location to
be accessed. Thus, when B began executing it was able to
notify C before being preempted by D. Thus C was placed on
the ready list before A. A new set of causal relationships
ensued, hence a different computation, ¢', was performed

instead of the original computation c.

154

In light of all this, we can say that the facility
simulates the computation ¢ that would have arisen at time t
up through the point of execution where its first spatial or
temporal effect is made known to the application. If all
stochastic processes could be controlled throughout the entire
execution, then c could be simulated'completely./ Van Horn
(Van Horn66) discusses this possibility at some length. - When
stochastic processes are not controlled completely, the user
loses precise control (as discussed in chapter two) over the
events that occur during the -debugging session. Interprocess
communications are then governed not only by explicit user
commands, but also by implicit side effecta*caubed;by such
stochastic processes. In ourlexanple; the user is able to
control precisely only the events of the computation ¢°',
which are the events of the original computation ¢ as they
have been altered by stochastic processes.

Having shown that c¢' is simulated rather than ¢, we ask
whether c¢' is a probable computation? 1If so, then the third
question posed at the beginning of this chapter. is answered
in the affirmative, and we have proven all that we set out
to prove.

Remember that we have defined the probability of a
computation in terms of failure, or the lack thereof. This,
in turn, was shown to be related to the disparity between
"pause intervals between events" among the different processes
in the computation. But a process can only be made aware of
the pause interval of another process by the time it takes to

155

receive successive communications from that process. The
timestamp mechanism assures that this interval is (for the
system in question) a reasonable one in logical time for
communications that proceed by message passing (we obtain
"reasonable” intervals between successive communications by
ensuring that, if an average transmission delay time between
two nodes is x seconds, then the timestamp of a packet sent
from one of these nodes to the other will equal the logical
time of the sending node when the packet is actually sent
plus x seconds plus or minus €, where the value of &
depends on stochastic processes within the communications
hardware -~ see the timestaﬁping mech#nism described in
chapter three - and is usually much less than x). We note
that these stochastically dependent timestamps represent
those that would have been assigned in the computation 6',
not in the computation ¢. For communications that proceed by
monitor interactions, reasonable intervals are maintained by
assigning a single logical clock to all processes that can
access the same monitor,

Thus, each process has its "real time expectations”
reasonably well fulfilled by every other process. All
communicatibns are seen to proceed reasonably in time,
Therefore, ¢' is a probable computation (we state again, though,
that ¢' is probable to the extent that all stochastic processes
within the system possess probable values during the course
of the debugging session). Without the timestamping
mechanism, the computation that would be simulated, with

messages experiencing tranesmissiorn delays of minutes or

hours, is of an extremely low prcbability.

157

4.4 Probable Simulation vs. Transparency

In the previous section, we introduced two computations,
c and ¢', to make clear the difference between probable
simulation and transparency. If the debugging facility wefe
able to simulate the computation ¢, then the goal of complete
transparency would be achieved. To answer the question posed
at the very end of chapter two, then, this computation, ¢, is
that entity towards which we have attempted to maintain
transparency.

Ve have shown, however, that spatial and temporal effects,
ag well as stochastic processes, prevent the realization of
complete transparency. We are able only to simulate c', a
probable computation. Probable simulation is, as stated,
weaker than transparency because ¢' is not the computation
that would have arisen at time t, ¢ is. Thus, the debugging
facility is simulating the "wrong" probable computation. Ve
feel, however, that the computation c¢' is sufficiently
"similar" to the computation ¢ (we state this without proof
and ask the reader to accept the notion of "similarity" on an
intuitive basis) so that the facility is still quite worth-
while despite this shortboming.

This empty page was substituted for a
blank page in the original document.

158
Chapter Five

Related Ideas and Suggestions for Further Research

In this final chapter we discuss some of the short-
comings, problems and generally interesting aspects of the
implementation presented in chapter three. We also discuss
some of the possible ways in which the research reported here
can be extended. We touch on certain features that we did
not have time to implement, refused to implement because of
a firm belief that they were incorrect, or simply could not
figure out how to implement. Issues in all three areas are,
of course, open to the reéder_for examination. We hope that
this chapter will stimulate interest in further research in
debugging technigques for distributed systems. The field, as

we shall see, is by no means exhausted.

159

5.1 Fragmentation

The Internet Protocol definition provides for the passage
of large datagrams through networks that are not equipped to
handle such sizes by the method of fragmentation. Fragmenta-
tion consists of the splitting up of a large packet into
several smaller packets at the gateway entering the network,
and the reconstruction of the original datagram frbm these
packets at the gateway exiting the network. |

Our debugging facility currently operates at:the datagram
rather than the fragment level. That is, the user is not made
aware; and has no control ovef, the flow of frngm;nts during
interprocess communications. We have considered }ragmenta to
be below the level at which the user ought to be concerned.
However, it is conceded that the ability to debug at the
fragment level may at times prove useful and a deiugging
facility with this extended power might make a reasonable
research project.

The reason for the datagram rather than fragment orienta-
tion lies in the concept behind the timestamping mechaniam.

Ve assign a timestamp only when the entire packet has arrived
and the application process is about to be so notified by lower
level internet processes, The asaignment of a timestamp to

| each fragment would necessitate moving "deeper" into the code.
A fragment timestamp would represent the time at which some
internet process was first notified by yet a lower level

mechanism that a fragment had arrived. This is, of course,

160

possible to implement, but it was deemed advisable to me.intain
the hook into the debugging facility at as high a level as

possible, rather than deep inside the internet implementation.

161

5.2 Bottlenecking

It would seem reasonable that a debugging facility which
allows the user to simulate all kinds of error conditions such
as losing packets, causing packets to arrive out of order, etc,
would also provide a way to simulate bottlenecking. Bottle;
necking occurs when some portion of the transmission medium
experiences more traffic than it can handle. Since bottle-
necking is often a real danger, especially in complicated
systems with many concurrently executing applications, a user
would probably be interested in determining the reaction of
his application to'such artificially induced conditions.

It is 1nterestihg to point out that our debugging facility
does not allow bottlenecking to be simulated. This is because
8 user is permitted only to determine what packet is to be
received by a particular request for packet from some process.
He is not allowed to send packets indiscriminately when such
requests do not exist. In particular, he has no means at his
disposal to flood the network in order to create bottlenecks.

We do not consider this to be a shortocﬁing of our system.
The realm of the debugging facility extends over the function-
ality of an application, not of the communications hardware.
Insofar as the functionality, or lack thereof, of the hardware
affects the application itself, then bottlenecking ought to be
an issue for us. That is as far as we go. To be more concrete,
ﬁottlenecking. while conceivably affecting the communications

hardware in a number of adverse ways, has the same net effect

162

on the application as losing a group of packets (either through
physical loss by the hardware or by packet buffer overflow at
some node). Losing packets is something the user can indeed
simulate via the debugging facility. Hence, the need to

create bottlenecks is obviated. However, the design of some
kind of tool to debug hardware, working in tandem with our
debugging facility, might prove useful in certain cases.

163

5.3 Order of Event Reporting

To enable monitoring of the program being debugged,
conventional debugging tools report various events to the user.
These debuggers report items such as instruction traces or
state transitions of user specified program objects, among,
perhaps, others. Our facility reports events related to inter-
process communications, Specifically, it informs the user of
each request for a packet by any application process in the
system and discloses the result of that request. That is, it
tells whether the request is satisfiable and, if so, which
application packet is to be sent in response.

It is implicitly understood in most cases that when
conventional debuggers report events to users in a particular
sequence, that sequence represents the order of occurrence of
those events in real time. For example, an instruction trace
represents the order of execution, in real time, of a set of
instructions by the processor.

It ought to be clear, however, that our facility, being
divorced from real time, has some difficulty in complying with
this implicit assumption. In particular, the interface
reports an occurrence of a request for packet (an "event" in
our system) as soon as the correct response to that request
is determined. This is in no way related to the real time
order in which such requests are rendered. In fact, it is
also in no way related to the system logical time order in

which such requests are rendered. (By system logical time, we

164

are referring to Lamport's function C, a global function over
all logical clocks in the system such that C(b) = Ci(b) if v
is an event in process i which reads logical clock Ci.)

One improvement that could.be added to the user interface,
-ithen, is to cauyse events to be reported to the userrchronologi-
‘cally with respect to this function C. The central site

could delay reporting a request until all logical clocks have
exceeded that request's timestamp. Then the user is sure that
he is made aware of events in the order in which they occur in
logical time.

One interesting consequence of this is that if event a is
reported to the user before event b (implying C(a) < C(b)), it
i3 not necessarily true that event a is capable of causally
affecting event b (a #) b). In other words, a and b may still
be concurrent. As Lamport has correctly pointed out, the
converse of the clock condition is not necessarily true.

That is:

Clock Condition Converse: For any events a, b:
if C(a) € C(b) them a => b

does not necessarily hold.

A debugging tool which could make causal relationships
clear to the user would involve complicated mechanisms well
beyond the scope of this research. If is debatable whether
the information gaiﬁed would be worth the time apent in
constructing such a tool. This miéht mgke an interesting area

for future research.

165

5.4 The Multi-Application Prcblem

Lauer and Needham (Lauer78) discuass two distinct approaches
in the design and implementation of operating systems. These
two approaches have been termed message-orjented and procedure-—
oriented. Any operating system can be placed into either
category based on how it views the concepts of process and
synchronization., fThese alternate views greatly affect the way
in which the notion of an application is regardéd in that system.
"Process" and "application” are terms which we have used
extensively thus far.

- Procedure-oriented systems are marked by the sharing of
data between processes, which is controlled by synchronization
mechanisms such as monitors. In these systems, processes change
contexts for data access through procedure invocations, ". . .
which can take a process very rapidly from one context to
another. . . A process typically has only one goal or task,
but it wanders all over the system (by means of calling procedures
to enter different contexts) in order to get that thing done.

As a result, the system resources tend t0 be enéoded in common
or global data structures and the applications are associated
- with processes whose needs are encoded in calls to system-
provided procedures which access this data."” (Lauer78)

Message-oriented systems are characterized by, of course,
message passing for interprocess commuhicatidn. In these systems,
processes are resource guardians. "Each prdcess tends to operate
in a relatively static context. Virtual memories or address

spaces are usually placed in one-to-one correspondence with

166

processes. Processes rarely cross protection boundaries
(except to briefly enter the executive or kernel), and they
rarely share data in memory. 4s a result, processes tend to
be associated with system resources, and the needs of applica-
tions which the system exists to serve are encoded into data
to be passed around in messages." (Lauer78)

What is important here is the relationship between
processes and applications in the two systems. In procedure-
oriented systems, this relationship is tight in that a process,
or group of cooperating processes, can be clearly seen as
representing a particular application. In message-oriented
systemsa, however, processes are bound to resources, not
applications. Thus, a single process may concurrently service
the needs of many distinct applications. We show why this
leads to difficulties for our debugging facility.

It ought to be clear that distributed systems are, of
necessity closer to message-orieﬁted than procedure-oriented
environments. This 1s because it ié, in general, impossible
(ekcept for processes having the good tortune to reside at the
same node) for processes to communicate through shared data.
The system on which our debugging facility is implemented is
message-oriented. It contaiﬁs processes designated as listeners.
These listeners are, as mentioned above, the pfocesses which
control resources. They are constantly sensing the network
for resource requests from any application and then servicing
those requests (or, at least, handing them down to intermal
processes for servicing). An example of a listener is the

process existing at a file server which handles requests for

167

internode file transfers.

Program writers consider these listeners to be a given
part of the system (almost like the hardware) and write their
code to correctly interface with them. 8Since they are assumed
to function correctly, the user is not at all concerned with
debugging them. It would be nice if the user could simply
install the application (which interacts with some listener)
on some set of nodes and begin debugging right away. Unfortu-
nately, he cénnot do this. This is because any process
involved in the application (including the listener) must be
suspendable by the debugging facility. If the listener is
sﬁspended (made to run slower) then the performance of all
other applications in the system interacting with it will be
degraded significantly, usually intolerably. The net effect is
that all users monitoring their private applications and
unaware that some user is currently debugging his own applica-
tion will notice inexplicable delays due to the slowdown of
the listener. This is a consequence of the fact that
processes, in a message-oriented facility, may simultaneously
"belong to" (interact with) more than one application. Thus,
we refer to this as the multi-appljcation problem.

Currently, of course, the user is‘forcéd to bring up his
own private copy of the listener on some private node. This
is not always possible, as the user may not possess access to
the listener code, may not understand the code even if he does,
and (for example, in the case of the file server) may not be

able to duplicate necessary conditions on his private node for

168

the correct execution of the listener process. This is a
tremendous liability which, because our implementation is so
heavily dependent on the notion of node suspension, we have
not been able to solve. A facility which allows the user to
simply "plug in" his application and start debugging right
away would make an extreﬁely'worthwhile project for future

research.

169

5.5 Controlling Monitor Entries

Our debugging facility allows the user to create many
different computations of his application in order to test each
of these for lurking bugs. However, the set of such computations
is only a proper subset of the set of all possible computations
of the application. Thus, there are sets of causal relation-
ships that it is beyond the power of the user to test.

In particular, the user is not given the ability to
specify or alter the order in which processes enter monitor
modulea. This entry order is decided within the system itself,
partially by the dispatcher, partially by process priorities,
partially by the algorithm in use to determine the next process
to acquire a monitor lock, partially by stochastic processes
which affect interprocess timing relationships, and, perhaps,
partially by yef other indirect causes. The user is able to
influence the order of monitor entries only indirectly by
influencing the order in which the processes in question receive
packets prior to acquiring the monitor lock. That is, if fwo
processes both receive a packet and then attempt to enter the
same monitor, the user can affect the entry order by delaying
the packet to one of the processes. However, this "feature"”
is merely a side effect that cannot be counted on. Nor is the
scenario which gives rise to it guaranteed, or even likely, to
occur.

Yet we have seen the duality between the two communications

methods - message passing and monitor interactions - and it

170

may seem somewhat artificial to limit the user's ability to

~ alter the former but not the latter. We regard monitor entry
as being akin to packet reception. Both consist of the
acquisition of an ability by a proceass to observe a data state
created and left by another process.: Likewise, exiting a .
monitor and packet transmission are &ual concepts since both
consist of relinquishing a data state constructed by a process
for the pmrpose of making it available to another process for
examination. In fact, there appears to be no semantic
difference between the two types of communication. The only
difference we note is in the method -~ any process at a node
may examine the state of a newly relinquished monitor while it
is usually the case in message passing that communication
channels exist only between specified pairs of processes. Of
course, this difference is easily eliminated through the use
of a "mailbox", where a process sends a packet to a particular
node's mailbox (some previously determined memory area) which
can be picked up by any process at that node willing to accept
it. Mailboxes and monitor hodulas appear to be identical cone
cepts.

(Incidentally, Lauer and Needham (Lauer78) attempt to
make a case for the duality of operating systems based on these
two types of communication mechanisms. They draw parallels
between various constructs in the two systems. Much to our
chagrin, however, they do not draw parallels between monitor
eﬁtries and exits and packet peceptions and transmissions. All
we can say is that, for our pumrposes, the comparisons we have

17

drawn are much more useful than those presented in that paper.)

It is probably not too difficult to implement a mechanism
that would halt a process vwhenever it tried to enter a monitor
(similar to halting a process when it attempted to receive a
packet) and reporting this attempt to the user. Probably,
since user processes may enter both user implemented and system
monitor modﬁles, entry into the latter would not be reported by
the facility as it would require the user to have extensive
knowledge of the underlying system. Such information vogld be
(to use a term coined by Model) "below the grain" of the
environment under investigation. In this way, the user could
control the sequence of gll interprocess communications (he is
given the ability to alter any of the wavy arrows in Lamport's
diagram, figure 2.1). He could create any possible set of
causal relationships, hence simulate any possible computation
of his application. The design and implementation of a tool to
accomplish this probably represents a worthwhile area for
- future investigation.

But how such a tool might be implemented is not so clear.
It would imply the ability to suspend a single process (delay
it from entering a monitor) while allowing other processes at
the same node to continue executing. This would appear to
render invalid the use of a single logical clock for all
processes at the node., REach process would need to have its
own private logical clock since the suspension of one process
would be independent of the suspension of any other at that
node. Then an aléorithm similar to that used for packet

172
reception nmight be employed for monitor entry, namely:
1. recording the logical time at which the process desires

to enter the monitor by reading its logical clock.

2. determining whether all other process clocks at that
node have gone beyond this logical time.

3. if not, suspending the process‘until suchfpime as this
becomes true. -

4, 1if so, determining whether the monitor is currently
locked by some other process (e.g. the parallel to
determining whether there is a packet ready to be
received.) : '

5. 1f the monitor is not currently locked, reporting this
entry attempt to the user and waiting for his reply.

6. whatever the state of the lock at this time, the process
attempts to acquire it while its logical clock ticks
(akin to a receive call with disabled timeout).

It must be pointed out, however, that our use of logiéal
clocks was solely for the purpose of maintaining transparency
towards the application. We wanted to simulate a probable
computation as a basis upon which debugging could be performed.
In the case discussed here, logical clocks would be used for
the same purpose. However, after much‘thoﬁght, we have not
been able to devise a reasonable method of assigning to and
advancing logical clocks when there exist multiple clocks at
each node (perhaps the reader would like to try his hend at
this). Thus, we are not sure whether logical clocks would
prove useful in this case.

We present a simple example to show some of the intricacies
involved in such a scheme. The central difficﬁlty is that the
maintenance of transparency necessitates a view of logical time

such that the logical clock of a process is considered to

173

advance whether or not that process is actually executing (as
long as it has not been artificially suspended by the debugging
facility). This is the method employed in our implementation.

Now, suppose that two processes, A and B, are residing at
the same node. A is currently executing; B is on the ready
list. Logical time is ddvancing for both processes. Suppose
process A wishes to enter a monitor, This event is duly
reported to the user who decides to delday A's entry until after
process B has entered that same monitor. Therefore A is
suspended (at logical time x) and B starts to execute. Now
the qﬁestion is, "What time do we assign to B's logical clock?"
More precisely, since it does not matfér (for our purposes)
what time B sees until it tries to enter a monitor or receive
a packet, what time is assigned to B's very next attempt to
perform one of these two actions? In the interest of trans-
parency, B should not be aware that A has been artificially |
suspended. Thus, at the outset of B's execution, B's clock
should read x plus however long A would have executed had it
not been suspended. But, of course, it is impossible at this
time for the facility to know how long that would have been.
Thus, the difficulty in assigning a reasonable time to B's
logical clock is apparent. It is easy to see how more compli-
cated execution patterns would render logical clock maintenance
by the debugger facility virtuallj impossible.

An alternative approach would be to abandon logical time
altogether and let the user be responsible for creating
probable computations. Then, transparency would no longer be

a goal of the implementation and debugging would entail a

174

sequence of decisions about which process ought to enter a
monitor next, or which process ought to receive a packet next.
The user would possess total control in determining which
computation is performed. Total control, of course, brings
with it a tremendous amount of detail'for the user to cope
with. The user becomes responsible for deciding all matters';
pertaining to interprocess timing relationships, both at a
single node and among separate nodes. As such, he must be
intimately familiar with the code he is attempting to debug,
if he is to debug intelligently. Coping with detail is a

significant research problem in itself.

175
5.6 Future User Interface

The interfacevpresented to the user by the central site
is currently of the form of a "glass telgtype" and is somewhat
primitive. ~The facility presents information to the user by
printing 6ut lines of text. Likewise, the user controls the
debugging session by typing in lines of text. Since the Alto
possesses powerful I/0 hardware and software facilities, there
is room for a good deal of improvement in this area. We see
this as yetAanother worthwhile subject for future research.

The interface reports two kinds of entities, events and
data. Events, which are defined to be requests by any process
to receive a packet, are reported sequentially to the user by
listing various pertinent information such as the node on which
the requesting process resides, whether the request is satis-
fiable and, if so, the identity of the satisfying packet, and
the process from which that.packet originated. Data,'which
consist of the contents (header and body) of packets, are
likewise reported in a simple fashion. The display is of the
form of a sequence of oétal values representing each word in
the packet. There are a number of ways by which this interface

can be improved upon.
5.6.1 Multistepping and Slow Stepping

- Model (Model79) has discussed in detail a number of worth-
while attributes concerning information display for interactive
debugging. As he has pointed out, one failing of many conven-
tional debuggers is that they report too much information to

176

the user, The user is either forced to discard much of it, or
is overwhelmed by it. The former is wasteful, the latter
catastrophic. Our implementation currently is also guilty of
this failing. Al]l events (as we have defined events) are
reported to the user. Since many dogens (hundreda, or even
thousands) of packets may be transmitted and received during
fairly simple transactions (e.g. & simple file transfer), it
seems clear that the user will not wish to be made aware of
all of them.

Even more debilitating, not only is the user informed
of each pending event, but he is asked to make a decision about
each one. This mode of operation is called gjingle stepping: a
pause occurs between each step (event) and the user is given
the opportunity for analysis. This can prove excruciaténgly
slow when each individual event accomplishes very little.

An enhancement on this is the concept of multistepping,
where only selected events are reported for user observation
and analysis. The events to be reported are selected either
by the system or the user. The user might instruct the system
to suppress the reporting of the next x requests from process
y or node z, all requests arising in the next w (logical)
seconds, all requests for packets with protocol u, etc. In
this way, unimportant events are easily filtered out and
debugging can proceed more swiftly.

Incidentally, Model states that the entity constituting
a "single step" is not always obvious. For example, in Algol,
", . . should the notion be defined in terms of single lines

177

of code, statements which do not contain other statements, or
individual operations in the language, such as function calls
and arithmetical operators?" (Model79) This ambiguity arises
because the concept of an "event" is not well defined. V¥e do
not have this problem because of our precise (although not
necessarily optimal) definition of what constitutes an event.
Somewhere in between single and multistepping lies the
notion of glow gtepning. This can be employed when the user
desires to be informed of all events in a certain class (as in
single stepping) but does not want to make decisions about each
one (as in multistepping). Thus, the emphasis is on monitoring
rather than debugging. The user ought to be able to apecify
how swiftly events are to be reported and should be able to
ad just- this rate at will. The ideal interface would allow
intermixing of single, multi, and slow stepping during different _
stages of the same débugsing session.

5.6.2 Graphical and Analogical Display of Data

One of the central themes espoused by Model is that
information ought to be presented, if possible, in a graphical
or analogical fashion. The hypothesis is that pictorial
displays are more swiftly and easily understood than sequences
of symbols (such as numbers). Thus an iteration variable
ought to be presented as a kind of "percent-done" indicator
(see figure 5.1) representing how much headway has been made
thus far. This is an example of an analogical diSplay; Data

178

% done
9
80%
60%
40%
30% done
thus far

Figure 5.1

(based on (Myers80), fig. 2.1)

179

structures ought to be displayed in the way they are intuitively
understood; the interrelationships between the various values
comprising the structure ought to be clearly marked. Thus, a
Lisp list should be displayed with pointers (see figure 5.2)
rather than as a sequence of octal values which the user must
fathom for himself.

Myers (Myers80) has implemented a system, called Incense,
for displaying graphically and analogically the data structures
of a program during interactive debugging. It possesses the
ability to display both predefined and user defined structures.
We feel that a powerful debugging tool would result from the
combination of an Incense-like facility and the facility
described herein. Incense could probably be modified without
too much effort to display the data structures ‘and other
information that make up datagrams. One simple approach is
to use the packét protocol number as a convention for deter-
mining how to display thé‘yackgf 1nfb£ma£;on. ‘Since packets
sent sequentially from the same procese'ma& represent different
portions of the msame data strpctufe (as 1n~the;transfer of a
file), perhaps a way could be ,dﬁ;!.ﬁsbd to. gz‘a?hically display
groups of packetsvtb~buildmﬁare‘éenpieté disgrams. This
concept could be used in conjunction with slow or multistepping
where the user could indicete that he wishes to see the
contents of the next x packets toaﬁe sent from process y, etec.

In short, since a picture is worth a thousand words (and
probably even more octal digits) and since many of the user's

debugging decisions will be based on the contents of particular

180

The 1ist (A(C (EF)D)B)

Figure 5.2

181

packets, analogic or graphic display of the contents ¢f these
packets should allow debugging to proceed more swiftly and
easily.

5.6.3 Dynamic Display of Events

Having discussed some possible ways to display data, we
now turn to future methods for displaying evenﬁs. Since
processes are made up of events, we may consider the totality
of all reportable events in eur system to represent a kind
of communication "process" (not at all like a Mesa process, of
course). Model has stated that in order to fully appreciate
the functionality of a process, one must view it as a flow of
events, a movie as it were, rather than as a series of snap-
shots of states arising from the execution of those events.

As it is currently constituted, our interface only displays
the communications process as an isolated sequence of events.

A more dynemic, movie-like display providing a graphic
representation of the communications process might prove quite
worthwhile. Such a display would have certain fixed areas set
aside on the screen to represent the various nodes involved in
fhe debugging session. The transmission of a packet could be
indicated by a dot flowing from the sending to the receiving
node. The user could focus his attention by examining
particular parts of the screen containing the nodes in which
he is currently interested. Thus, the interface might.look

not unlike an air-traffic controller's screen (this is not a

182

facetious comparison; Jjust as the air-traffic controller
directs the path of airplanes, so the user directs the path
of packets).

The advantage of such a dynamic approach is that it gives
the user a "feel" for certain aspects of the communications
process which it would be difficult or impossible to derive
from a more static, sequential—repd}ting of isolated events.
In particular, during slow stepping the user could learn where
communications are most extensive, where bottlenecks are most
likely to occur, and which nodes are busiest at what times.
These concepts could be inferréd from a more static approach,
but only with great difficulty.

Of necessity, however, a complicated display such as this
would require most of the memory of an Alto, leaving little
room.for the central debugger site code. One solution is for
the user to do his monitoring from two Altos placed in close
proximity. One could display the more advanced interface, and
the other could have the simple interface of chapter three,
with, perhaps, Incense-like display capabilities. The user
would enter his commands at the latter site. Coordination
between these two monitoring stations would proceéd through
message passing. Thus, a user command issued at one node would
be reflected by the user interface of the other node. This
configuration bears similarity to the network concept of
Metric, mentioned in chapter one. We do not speculate on how
easily such an implementation could be realized.

We point out that the network concept is made necessary

182

only by the small size and present performance capabilities
of each Alto. There is no inherent reason why the two
displays could not be handled by a single, more powerful
processor,

Incidentally, such a dynamic display would still sufrfer
from an inability to make clear the causality relationships

among the events it reported.

184

5.7 Towards an Integrated Debugging System for Distributed
Computational Environments

The reverse of the problem of the debugging facility
reporting too much information to the user (as discussed in
section 5.6.1) is the danger that it will report too little
~information. Requests for packets are but one class of event,
| and a small class at that. It may prove difficult for the
user to detect many kinds of lurking bugs based solely on
knowledge of the communications process. He may need a method
of getting at those system events that oeccur "between"
communication events. We are speaking, of course, of
traditional eventis such as assignment, arithmetic processing,
etc, which make up the bulk of most processes and which are
pérformed privately by the process in which they occur without
the need for any interprocess communication.

We have already spoken (see chapter two) of how the user
can be made aware of such events under the current implemen-
tation. After monitoring communications through some point in
the execution, he may abandon the central site and physically
g0 to the node at which reside the processes containing the
private events in which he is interested. At this node he is
able to monitor events using the conventional single node
debugger existing there (however, that debugger may need to be
modified in order to maintain accurately the logical clock
existing there by accounting for the correct flow of logical
time while the debugging takes place). Debugging can continue
in this fashion at this node until the next attempt at

185

interprocess communication via message passing At this
point, in order to maintain transparency, control must be
relinquished to the central debugger site. The user may then,
if he so chooses, abandon this node and physically go to
another node using the conventional debugger existing there to
monitor events private to that node., This can be repeated for
all nodes in the session.

We also said that the user may choose to employ some

rem a ¢ system (Teleswat, for

example). For large networks, the distance between nodes
would make a remote debugger imperative. Such a debugger
would allow the user to perform all of his debugging directly
from the central site. This would involwve the ability to
interrogate and to issue commands to remote nodes from the
central site. 1Issues of node autonomy may come into play in
this sarea. N

Tailoring a remote debugger to the environment presented
by the debugging facility described herein would be a profitable
pursuit. The resulting system would constitute a totally
integrated facility for debugging distributed applications.
All pertinent events could be monitored and debugged from a
central area, possessing total control over the proceedings.
Comyined with some of the other ideas in this chapter, it
would make for an extraordinarily powerful debugging tool.

(Bryant77)

(Canon80)

(Hoare74)

(I8180)

(Jaffe79)

(Johngon?S)
(Lamport78)
(Lampaoneo)

(Lauer78)

(McDaniel77)

(Metcalfe76)

186

References

Bryant, R.E., "Simulation of Packet Communication
Architecture Computer Systems", S.M. thesis,
M.I.?. Laboratory for Oomputer Science Technical
Report TR-188, !6venber 1977.

Canon, M.D., Pritz, D.H., Howard, J.H., Howell,
T.D., Mitoma, M.F. and Rodriguaz-noeell, Jey

" A Virtual Machine Emulator for Performence
Evaluation™, CACM- 23, 2, Pobruary 1980.

Hoare, C.A.R., "Monitors: An Operating System
Structuring Concept", CACM 17, 10, October 19374.

"DOD Standard Intcfnjt Proéocol" Information
Sciences Institute'(University of Southern
California) RPC #760 IBN #128, January 1980.

Jaffe, J.A., ”Pernllol‘eon ation: Synchroni-
zation, Scheduling, and So ®, Ph.D. thesis,
M.I.T. Laboratory for Com uxer Science Technical
Report TR-231, Angu;t L

tenance of Duplioat& Databtsts” Arpanet
RWG/RFPC #677, January 1975.

Lamport, L., "Time, Clocks, and the Ordering of
Events in a Distributed System®, CACHM 21, 7,
July 1978.

Lampson, B.W. and Redell, D.D., "ExperiencecWith
Processes and Monitors 1n Noaa" CACHM 23, 2,
Pebruary 1980.

Lauer, H.C. and Needham, R.M., "On the Duality
of Operating System Structures”, Second
International Symposium on Operating Systems,
IRIA, Rocquencourt, France, October 1978.

McDaniel, G., "Metric: A Kernel Instrumentation
System for Distributed Environments”, :
Proceedings of the Sixth Sysmposium on Operating
Systems Principles, November 1977.

Metcalfe, R.l. and Boggs, D.R., "Ethernet:
Distributed Packet Switehing for Local Computer
Networks™, CACM 19, 7, July 1976.

(Mitchell79)
(Model79)
(Myers80)

(Pouzin78)

(Reed79)

(Svobodova?9)
(Swinehart74)
' (TeitelmanTT)
(Van Hormé6)

(Xerox79a)

(Xerox79b)

(Xerox79c)

187

Mitchell, J.G., Maybury, W. and Sweet, R.,
"Mesa Language Manual", Version 5.0, Xerox
Palo Alto Research Center, Report CSL-79-3,
April 1979.

Model, M.L., "Monitoripg System Behavior in

a Complex canpnsatiaaal Epvironment™, Stanford
Ph.D. thesie available ®s Xerex Palo Alto
Research Center Report CSL—79-1, January 1979.

Myers, B.A., "Digplaying Dat& Structures for
Interactive Debugging”, M.I.T7. S.M. thesis
available as Xerqx Pale Alto-Research Center

Pougin, L. and . Ziﬂﬁirunnn. H.; "A Tutorial on
Protocols®, Proceedings cf th: IEEE 66, 11,
Novenber 1978. :

Reed, D.P., "Implementing Atomic Actions on
Decentralized Data®, Preprints for the Seventh

S on Operet dystsena Principles,
Facifio Grove, m&:m' “Devember 1979,
SVOW Jany MW' B. ﬂdchrk D.,
"Distributed 6ompu$er Systemsa: Structure and
Jemanties”, M.I.2. laborstery for Computer
Sexcnsn Technieal. quort !&a&%&. March 1979.

Swinn::;t Dlg., »COPILOT: A Mnltiple Process
Appro to Interective Programming Systems”,
Stanferd Eh.D. thesia svaislahle as SAIL Memo
3§§;2?87‘nd CSD Report SPAN-CH-T4-412,

4.,

Teitelman, W., "A Diapx.aVOriahted Programmer's
Assistant", Xerox Paloc Alto Research Center
Report CSL-77-3, March 1977.

'Van Hora, E.C., "Computer Design for

Ananchronoualy ‘Repredudible -Multiprocessing”,
Ph.D. theais, M.I.P. Preject MAC Technical
Report 13-34, November 1966

"Alto: A Personal Computer System Hardware
g:nﬂfé79 Xerox Btlo Alto E‘ac:rch Center,
y .

"Mesa System Documentation", Version 5.0, Xerox
Palo Alto Research Ceater, April 1979.

"Alto Subsystems",wxeroi'Palo Alto Research
Center, October 1979.

