
Display Management 

in an 

lnteg rated Office Workstation 

by 

Larry S. Rosenstein 

Massachusetts Institute of Technology 
Laboratory for Computer Science 
Cam bridge, Massachusetts 02139 



This blank page was inserted to presenie pagination. 



Display Management 
in an 

Integrated Office Workstation 

by 

Larry S. Rosenstein 

Abstract 

Advances in technology now make it possible to build office workstations that have a large amount of 
local computing power and high-resolution output devices. Such workstations can be used for 
various office applications, such as document preparation, personal databases, and electronic mail. 
In developing applications for such an office workstation, it is desirable to have a common software 
foundation upon which to build. This not only reduces development time, but also helps to integrate 
the various applications. Integration, in turn, helps to make the subsystems easy to use and easy to 
learn. 

One component of such a software foundation is a display manager, which is used to organize 
information on the screen. This report describes the design and implementation of the display 
manager for a software foundation called Ecole. The Ecole display manager provides output services 
to application programs at three levels: (1) primitive output operations, (2) mechanisms for organizing 
information on the display, and (3) common display functions. 

Thesis Supervisor: Michael Hammer 
Title: Associate Professor of Computer Science 

Key Words: Display management 
Man computer interface 
Office automation 

The research described In this report was funded by 
Exxon Enterprises Inc. 

December 1978 

An earlier version of this report was submitted to the 
Department of Electrical Engineering and Computer Science 

on January 27, 1982 in partial fulfillment of 
the requirements for the degree of Master of Science 

Copyright © 1982 M~chusetts Institute of Technology 

1 



This empty page was substih1ted for a 
blank page in the original document. 



Table of Contents 

Chapter One: Introduction 

1.1 Office Workstation Design 

1.2 Research Context. 
1.2.1 Etude 
1.2.2 Ecole 

Chapter Two: Functional Requirements 

2.1 Primitive Output Operations 

2.2 Display Organization 

2.3 Common Display Functions 

2.4Summary 

Chapter Three: Other Research 

3.1 Etude 
3.1 .1 Pictures and Hoses . 
3.1.2 Incremental Redisplay of Column Pictures 

3.2Emacs 

3.3 The Queen Mary College Text Terminal 
3.3.1 The Reactive Desk 
3.3.2 The Text Terminal 
3.3.3 Bitmap Displays 

3.4 Xerox Personal Workstations 
3.4.1 DLisp and ADIS 

3.5 The MIT Lisp Machine 

3.6Summary 

Chapter Four: Prototype Implementation 

4.1 Overview 

4.2 Implementation Details 
4.2.1 Areas 
4.2.2 Virtual Screens 
4.2.3 Windows 
4.2.4 Example Redisplay Procedures 

4.3 Evaluation 

Chapter Five: Current Architecture 

5.1 Overview 

5.2Glyphs 

5.3Fonts 

3 

7 

7 

8 
9 
9 

13 

14 

15 

16 

18 

19 

19 
19 
20 

21 

24 
24 
25 
25 

26 
26 

28 

30 

33 

33 

34 
34 
36 
37 
39 

40 

43 

43 

44 

45 



5.4 Redisplay 

5.5 Window Allocation 

5.6 Evaluation 

Chapter Six: Summary and Fu tu re Work 

References 

4 

46 

48 

49 

51 

53 



Table of Figures 

Figure 4-1: An area object (A) divided into six slices (B). 

Figure 4-2: The empty part of a compound window (shaded). 

5 

35 

38 



This empty page was substih1ted for a 
blank page in the original document. 



Chapter One 

Introduction 

1.1 Office Workstation Design 

Advances in technology now make it possible to build sophisticated office workstations, which 

have built-in microcomputers and high-resolution, bitmap video displays.1 These displays are very 

flexible; they can display text in multiple fonts, graphics, and even halftone pictures. Several such 

workstations can be connected to a high-resolution printer to produce typeset-quality documents. In 

addition to document production, these workstations have sufficient processing power for other 

tasks, such as processing electronic mail, producing graphics, and maintaining personal databases. 

The user group for an office workstation includes secretaries and managers, who generally will not 

be familiar with computer systems. Therefore, the application programs (or subsystems) must be 

carefully designed; inexperienced users expect a fast, consistent response and a natural command 

language. There are several principles that help to make an easy-to-use interface: 

• Allow users to express commands in a high-level, English-like form; for example in the 
form of VERB MODIFIER OBJECT, rather than as meaningless sequences of keystrokes. 
Also, commands should have an intuitive effect; DELETE NEXT WORD should, in factt 
delete the next word. 

•Provide help to the user, whenever he needs it, about the effect of a particular command 
or about his current situation (ie., what command he is working on and what he can do 
next). 

•Provide an UNDO command, which can be invoked after any other command to reverse 
the latter's effects. If such a feature is available, users can try a command without the 
fear of causing a permanent change. 

The three features listed above form the basis of an input model that can be used in any subsystem; 

the subsystem programmer would simply customize the user interface with information such as the 

kinds of objects each command manipulates. A user who understands the structure should be able to 

use any subsystem with little additional training. 

In addition to providing a consistent input model, the workstation must also provide a consistent 

output model. The video display is a scarce resource, parts of which must be dynamically allocated 

for subsystems' output, as well as information such as menus and help. Information must be 

presented in an easily comprehensible manner-a subsystem is useless if the user cannot understand 

1 
A bitmap display consists of many individual dots or pixels, each of which can be turned on or off. Conventional displays are 

character-oriented; the screen is divided into a fixed number of positions, each of which can contain one character. 

7 



its output. Also, the process of updating the display must be efficient, since it contributes to the 

workstation's overall response time. 

Subsystems should not only be easy-to-use individually, but also work together well. For example, 

if the user wants to put an illustration into a d~cument, he should not have to exit from the text editor, 

use a separate graphics editor, and merge the text and illustration. Instead, the text editor should 

create a blank area in the document for the illustration, and allow the user to edit either the text or the 

drawing. The user's commands are directed to one subsystem or the other, depending on the part of 

the screen he refers to. The fact that two different programs are used is invisible to him. 

Uniform input and output models can help ensure that subsystems work together well. Because 

each subsystem uses the same input model, the user does not have to worry about differences in 

subsystem command languages. A good output model helps to organize information on the display, 

so that the user can have more than one subsystem running simultaneously without becoming 

confused by their outputs. 

General-purpose input and output models are beneficial to application programmers as well as the 

workstation's users. The programmer's main task is to design and implement the data structures 

needed by his application, and procedures for manipulating those data structures. In a document 

editor, for example, this involves representing a document inside the computer and defining 

procedures for inserting and deleting text. Although the input and output interfaces are equally 

important to the implementation of a subsystem, they are not directly related to the programmer's 

application. Providing a general interface, therefore, reduces the amount of work needed to 

implement a new application. 

The general-purpose input and output interfaces form a software foundation, upon which a variety 

of office applications can be built. We refer to the two parts of the foundation as the command 

parser, which handles input to subsystems, and the display manager, which handles output from 

subsystems. Besides providing functions that actually perform input and output, this software 

foundation also defines a systematic way for applications to use the facilities it provides. 

1.2 Research Context 

The purpose of the research described in this report is to design and implement a display manager 

for such a softWare foundation. This work is part of a larger project to design an integrated office 

workstation, which is being done in the Office Automation Group of the MIT Laboratory for Computer 

Science. (See (24] for a description of the Group's research.) The workstation is being developed to 

run on a single-user machine with a high-resolution, bitmap video display, initially the Domain system 

manufactured by Apollo Computer, and ultimately the Nu workstation (36), which is being built by the 

Real Time Systems Group of the Laboratory. 

8 

-----------------~-- ----~-



1.2.1 Etude 

The first office application developed by our Group was an interactive text processing system, 

called Etude.2 (More detailed information about Etude can be found in [8, 13, 14, 15, 28).) The first 

implementation of Etude was not intended to be a "production" system; rather, it was meant to 

provide a testbed for some new ideas about text processing systems and user interfaces in general. 

Consequently, little consideration was given to efficiency or the long range goat of integrating Etude 

with other subsystems, as part of a general workstation. 

Etude is a synthesis of several existing text editors and formatters, including Bravo (17], 

Scribe (27), and TEX [16]. It is designed to allow office workers, who usually will not be experts In 

computer systems or typography, to easily prepare high-quality documents. Some of its important 

features are: 

• The user can see on the screen a representation of the document as it will look when 
printed. This is possible because a bitmap display can display characters in the same 
type fonts as the printer uses. 

• Etude is easy to use. Its command structure is that of imperative English sentences, 
composed of verbs, modifiers, and objects; for example, DELETE NEXT 2 WORDS is a 
typical command. In addition, the system provides the user with help, when requested, 
and implements an UNDO command for correcting user mistakes.3 

• Formatting a document is done by describing the logical structure of the document, 
rather than specifying detailed formatting commands. For example, a user might identify 
his document as a letter, and indicate the blocks of text that make up the return address, 
salutation, etc.; the system will determine the proper formatting for each part, using 
information contained in a database. 

The initial version of Etude was implemented on a DECsystem-20 computer in the CLU 

programming language (18], using a prototype version of the Nu machine as an intelligent 

terminal [23]. The implementation was begun in. September 1979 and completed in February 1980. 

Despite the fact that its response time is very poor, the system does demonstrate our novel approach 

to easy~to-use document preparation systems. 

1.2.2 Ecole 

Although Etude's command parser and display manager were adequate for a prototype system, 

they were not general enough to be used as the basis of other office applications. In addition, there 

were some inherent shortcomings in their design; for example, the dispfay manager sometimes did 

2an acronym for "Easy To Use Display Editor" 

3Michaet Good, a member of our research group, taught a group of office wofkers with no computer experience how to use 
Etude, and then compared the system to a standard typewriter with respect to users' teaming time, editing time, and attitudes. 
He concluded that Etude was easy for these people to learn and evoked favorable attitudes. although the users required more 
time to perform editing and typing tasks [9]. (The latter result may have been cauaed by Etude's poor responae time, however.) 

9 



not correctly update the screen when information was added or removed. For these reasons, our 

research group decided to implement, from scratch, a more general software foundation for the 

workstation, called Ecole.4 Ecole consists of a command parser and display manager, as well as a set 

of conventions for their use by subsystems. 

The Ecole command parser handles all the input to a subsystem, which includes reading the user's 

keystrokes, and constructing and executing commands. Commands are constructed out of verbs 

(such as DELETE), modifiers (NEXT), and objects (SENTENCE). A subsystem programmer is 

responsible for defining the "words" appropriate to his application. For the most part, the verbs will 

be the same in every case and only th~ modifiers and objects will change; for example, a subsystem 

for editing graphics would not refer to sentences and paragraphs, but instead to points and lines. 

The keystrokes typed by the user are converted to a series of words, which are accumulated by the 

command parser and interpreted as a subsystem command. The interpretation (or parsing) of words 

is done using a set of syntactic and semantic rules also supplied by the subsystem programmer. The 

rule for a DELETE command would specify the classes of objects that could be deleted; each class 

would, in turn, have rules specifying how a member of that class is defined by the user. Lastly, the 

command parser executes the command. For each vem, there is a software procedure which 

executes commands that involve the verb. 

In addition to reading and executing commands, the command parser also keeps track of the 

session state. The session state is a record of the most recent commands executed by the user, the 

parts of the current command that have been completed, and the parts that are left to do. This 

information is necessary for displaying menus and help messages which are relevant to the user's 

current situation, and for implementing an UNDO command. 

This report describes the other major component of Ecole, the display manager. The display 

manager provides output services to subsystems in the same way that the command parser provides 

input services. These services are at three levels: 

• Primitive output operations, which a subsystem uses to update the screen. 

• Mechanisms for organizing information on the screen. 

• Functions for performing common display tasks. 

Two versions of the Ecole display manager were designed and built. The first was implemented in 

CLU and provided the programmer with a sophisticated set of capabilities, including the ·ability to 

4
1n French, an etude ("study") would be undertaken in the context of an eco/e ("school"). 

10 



display multiple, overlapping windows.5 Overlapping windows are useful because they give the 

programmer and user more flexibility in organizing information on the display. 

The first version of the display manager was not completed6 because our research group switched 

implementation languages from CLU .to MDL [6], which is a language closely related to Lisp. This 

switch necessitated a new implementation of the display manager, and gave me the opportunity to 

reconsider its architecture. The MDL display manager sacrifices some of the advanced capabilities of 

the CLU version in favor of more efficient operation. Its display model is more restrictive; windows, for 

example, cannot overlap in arbitrary ways. Since we are not implementing a general-purpose 

workstation, these restrictions are not serious limitations. The MDL version improves upon the CLU 

version, however, because it includes a systematic way of using the display manager's capabilities. 

The following chapter describes the functional requirements of the Ecole display manager. 

Chapter 3 describes other research projects related to the problem of display management. Chapters 

4 and 5 describe the CLU and MOL versions of the display manager, respectively. The final chapter 

summarizes the project and discusses areas for future work. 

5 
A window is a part of the physical display that contains a particular piece of information, such as a document or menu. They 

are described in more detail in Section 2.2, page 15. 

6although It is being used by another part of our research group, in their calendar management programs~ (10, 11, 12]. 

11 



Chapter Two 

Functional Requirements 

Although there are many different subsystems that will be implemented on our office workstation, 

they all share a common structure; understanding that structure is important to understanding how 

subsystems use the display manager. All subsystems manipulate information-for example, 

documents, calendars, and databases. Inside the computer, these objects are represented by 

particular data structures, which are designed and implemented by the application programmer. 

On the display, the user sees an ima.ge of one or more of these data structures. The relationship 

between a data structure and its display image is similar to the relationship between raw statistics and 

a graph of the same data. And just as the same numbers can be presented in different ways, the same 

data structure can be displayed in different ways. An Etude document, for example, can appear as a 

galley,7 a fully-paginated document, or a table of contents. 

When a user gives a command to a subsystem, the following steps normally take place: 

• The command parser interprets the user's keystrokes as a specific command, and checks 
the command's syntax. 

• The parser invokes a programmer-supplied procedure to execute the command; the 
result of executing a command is some change to the subsystem's internal data 
structures. 

• The subsystem updates the appropriate images on the screen, in order to reflect the 
changes to the underlying data structures. 

Certain actions by the user can cause other changes to th~ displayed images. For example, when the 

user asks for a menu, the parser constructs a list of the possible choices and displays it on the screen. 

The image of the menu must be added to the images already displayed on the screen, which might 

require some rearrangement of those images. 

The model supported by the Ecole display manager must be capable of displaying images of 

different data structures and dynamically arranging those images on the screen. The rest of this 

chapter discusses the specific features that are needed to support this model. These features can be 

classified into three categories: (1) primitive output operations, (2) mechanisms for organizing 

information on the display, and (3) common display functions. 

7 
A galley is a long cot~mn of text that is formatted into. lines, but not broken into pages. 

13 



2.1 Primitive Output Operations 

The most basic operations provided by the display manager are ones for modifying the display. 

Our workstation is being designed to use a bitmap display-although some applications will be able to 

use more conventional screens-because It is becoming economically feasible to put such displays 

and compatible bitmap printers into an office. And compared to a conventional terminal, a bitmap 

screen can display a wider variety of information, including: 

• characters in different fonts (bold and italic faces, special symbols, etc.), which can vary 
in width, making the output more pleasing to read 

• drawings made up of lines and curves 

•halftone pictures 

The Ecole display manager will provide procedures for displaying each of these types of information, 

as well as more general array operations.8 An array operation manipulates individual display pixels, 

and can be used to copy pixels from one part of the screen to another or to erase an area of the 

screen. 

In addition to displaying information such as text, subsystems operating under Ecole need to 

visually mark positions on the display. Conventional terminals usually mark the character position in 

which the next typed character will appear with a blinking cursor. On a bitmap screen, however, it is 

possible to display multiple cursors, as well. as change their appearances to distinguish different 

operating modes. 

The interface to these · primitives is designed around two concepts. The first is device 

independence. Device independence isolates the details of the physical display hardware from the 

subsystems; there is a uniform interface to the display manager, regardless of the type of display. If a 
particular output operation cannot be directly performed by the display, the display manager 

simulates it as closely as possible. For example, conventional terminals cannot display italic 

characters; instead, italics might be simulated by underlining. 

Device independence is important in Ecole, because our research group currently has many more 

conventional terminals than bitmap displays. Consequently, most of the software development and 

testing will be done using the simpler type of hardware. Also, we do not want Ecole to be restricted to 

running on bitmap displays, since most subsystems can work adequately on standard terminals. 

Similarly, we want to be able to take advantage of future advances in technology, such as larger sized 

screens. 

The second concept is device simulation, which is the ability to simulate one output device on 

8reterre<i to by Newman and Sproull (22] as RasterOps 

14 



another. One of the overall goals of the workstation is that information be displayed on the screen as 

it will look when printed; this is especially important for documents, which can contain figures or 

tables. The main problem in meeting this goal is that the resolution of a laser printer is higher than 

that of a bitmap screen. Consequently, their respective character sets are slightly different. Device 

simulation is used to hide these differences from subsystems. · 

One situation where these concepts affect the display manager design is the selection of character 

fonts by subsystems. Instead of referring to a font by its typographic name, for example "10-point 

Times Roman Boldface," subsystems will use a specification similar to that used in the text formatter 

Scribe (27]. The font specification will include three parts: the intended output device, a font family, 

and a face name.9 Given such a specification, the display manager would choose a method for 

indicating the font on the screen, depending on the type of display (for example, using underlining to 

represent italics). Note that the font specification is the same regardless of the display hardware, so 

that this scheme satisfies the goal of device independence. 

2.2 Display Organization 

An important goat of the workstation project is subsystem integration. The purpose of integration is 

to facilitate the transfer of information between subsystems. Often the user will want to use part of the 

output of one subsystem (for example, a document name received via electronic mail) as input to 

another subsystem (the document editor). Conventional computer systems generally do not provide 

mechanisms for arbitrary subsystem communication; if the desired communications path was not 

explicitly implemented, the user must manually re-enter the information. 

If the amount of information is small, such as a document name, then manually re-entering it is 

feasible. One problem with doing this, however, is that people have a small short-term memory, which 

makes it difficult for them to remember the data and re-enter it accurately. They cannot always copy 

the information directly from the screen either, because most computer systems so not preserve the 

output from subsystems; when a ~r switches subsystems, he generally loses part of his display 

context, which might contain the data to be copied. The only solution is to copy the information to 

paper before switching subs~stems. A display manager can help support integration by organizing 

information on the screen, so that the needed information is not lost when the user switches 

subsystems. 

The fundamental concept in display organization is the window. A window represents an 

association between an area of the display and an image of a data structure. Since the total image is 

usually larger than the size of the window, only a part of it is displayed at any time; the image in the 

90ifferent font families would be used for the body text, footnotes, and headings of a document; the face component would 
select the roman, bold, fixed-width, etc. member of a family. 

15 



window scrolls so that the part of interest to the user is always visible. In Etude, for example, the 

user's point of interest is the position of the editing cursor. 

Each subsystem is assigned its own window, which it uses for all its output. In the same way, a 

menu that is generated by the command parser would be displayed in a temporary., popup window. 

By arranging these windows correctly, the display manager can simultaneously maintain on the 

display more than one of the user's current points of interest. 

Windows have two properties that make it easier for applications to use them for displaying 

information. First, there is a separate coordinate system associated with each window, which is 

independent of the window's position on the physical display. This allows a subsystem to position 

information within a window without knowing v.:here on the screen it will appear; the display manager 

automatically makes the transformation from a window's coordinate system to the physical coordinate 

system. 

The second desirable property is that output directed to a window is confined within the window's 

boundaries; this is also known as clipping. This property is used to guarantee that one subsystem 

cannot affect the output of another. In order for this to work, however, the display manager must 

arrange for each subsystem to use a different window for its output, and ensure that each point on the 

display "belongs" to at most one window. One· way to accomplish the latter is to prohibit two 

windows from overlapping. In a more powerful display model, windows behave like pieces of paper 

on a desk; if two windows overlap, one will obscure part of the other. The programmer would then 

specify the front-to-baqk ordering of windows as well as their horizontal and vertical positions. 

Windows are not only used for assigning parts of the display area to different subsystems. Many of 

their properties, especially their independent coordinate system, are useful to a subsystem for 

dividing its assigned window into pieces. For example, a document page might consist of one or 

more text columns, a header and footer, and an embedded figure. Each of these components could 

have an associated window, which is positioned within a larger page window. The arrangement of 

these windows would directly correspond to the desired page layout. The same process could be 

carried further; the window associated with the figure could itself contain windows for a graphic and a 

caption. 

2.3 Common Display Functions 

The procedures described in the previous two sections are tools that programmers use to organize 

and update information on the display. In addition, the display manager must provide a systematic 

way to use these toots, in order to simplify the programmer's job and ensure that subsystems use the 

display in a consistent manner. Two areas in which such common functions are needed are: (1) 

managing the placement of windows and (2) efficiently updating images on the display. 

16 



One issue in allocating space for a new window is deciding where the window should appear on the 

display. There are three main factors to consider in making this decision. First, the new window 

should not obscure any of the user's current points of interest. Second, windows of the same type 

should be positioned consistently each time they appear; for example, menus might always appear at 

the top of the screen. This consistency is especially desirable for inexperienced users, who otherwise 

might become confused. Finally, windows containing related information should be positioned close 

together; a help message should appear near the window of the subsystem to which it pertains. 

The process of adding a window to the screen starts with a user request to the command parser, 

such as to display a menu or r~n a subsystem. The role of the display manager is to negotiate with 

one or more active subsystems to use part of their display area, and try to satisfy the three constraints 

listed above. This negotiation may require a subsystem to scroll its window, in order to keep an 

important piece of information on the screen. 

The second common function provided by the display manager is a mechanism for efficiently 

updating the display. The images on the screen should always reflect the state of the underlying data 

structures. After a subsystem changes a data structure, it must also redisplay the data structure; that 

is, change the data structure's display image. Another part of a subsystem's redisplay process is 

correctly positioning its cursors on the screen. 

The process of updating the display should be as efficient as possible, since it contributes to the 

workstation's overall response time. In most applications, it is possible to use an incremental 

redisplay algorithm to do the updating. The principle behind an incremental redisplay algorithm is 

that when a command makes only a small change to a data structure, the change to the associated 

image should also be small. Inserting a character into an Etude document, for example, generally 

changes only a single line on the display. Rather than redisplaying the entire data structure, an 

incremental redisplay algorithm redisplays only its changed parts. Such an algorithm could also use 

array operations to Quickly move parts of an image on the display; if a document line is deleted, for 

instance, the subsequent lines in the window could be moved up by an array operation, rather than 

completely redisplayed. 

An incremental redisplay algorithm must be able to determine what parts of the data structure have 

changed, and where these parts are displayed on the screen (or that they are not on the screen). The 

former information is gotten from the subsystem, while the latter is maintained by the redisplay 

function itself. The incremental redisplay information describes the current content of the window, 

and is stored by the display manager as a component of that window. 

One issue in designing the incremental redisplay algorithm is the nature of this information. There 

is a tradeoff between the level of its description and its memory requirements. It is not practical to 

record the state of each pixel in the window. Instead, the algorithm would divide the image and its 

underlying data structure into larger chunks, and remember the size and position of each displayed 

17 



chunk; a document, for example, might be divided into lines. Each chunk is treated as an atomic 

object in the sense that if any part of it changes, the entire chunk is redisplayed. 

Although an incremental redisplay algorithm that deals with lines could be used in many situations, 

sometimes a specialized algorithm is more appropriate. For example,· if a window contained only one 

text line, then its incremental redisplay algorithm should operate on smaller chunks, such as words or 

characters. Similarly, although a menu could be redisplayed by the line-oriented algorithm, a specific 

menu redisplay algorithm would be faster, since the types of changes that are made to a menu's 

image are much simpler than those made to a document. 

2.4 Summary 

The following list summarizes the important features that are needed in the Ecole display manager: 

• Primitive Output Operations 

• text in multiple fonts; simple drawings; halftone pictures 

• multiple cursors on the display, which can have different appearances 

• interface designed to support device independence and device simulation 

• Screen Organization 

•concept of a window, which associates a data structure image with an area of the 
display 

• windows establish a local coordinate system and clip output at their boundaries 

• each subsystem is assigned a window that it uses for all output 

• windows can be arranged hierarchically; subsystems can use windows to organize 
their images within a larger window 

• Common Display Functions 

• dynamically adding windows to the display 

• efficiently updating the images on the display; incremental redisplay 

18 

--------------------- -------"----~-------------------



Chapter Three 

Other Research 

This chapter describes other research projects that address the problem of organizing and 

displaying information on a video screen. The projects described are: 

• The prototype version of Etude. The display manager implemented in this version of 
Etude contained many of the functions needed in the Ecole display manager. 

• Emacs, an interactive text editor that uses an incremental redisplay algorithm to update 
the screen. 

•The Queen Mary College Text Terminal. This project takes a different approach to 
quickly updating the screen-instead of a clever software algorithm, they use special­
purpose hardware. 

•General workstation research at Xerox Palo Alto Research Center (PARC). Xerox PARC 
is noted for their work in workstations, first with the Alto, and more recently with the 
Dorado machines (both designed at PARC). In addition, Xerox now markets the Star, 
which is an office workstation based on the Xerox PARC research. 

•The Lisp Machine developed at the MIT Artificial Intelligence laboratory. The Lisp 
Machine is a single-user workstation with a bitmap display, which is used in the 
development of large Lisp-based applications. 

3.1 Etude 

The display manager in the first version of Etude (described in more detail in [28)) included two 

features similar to ones required in the Ecole display manager: (1) picture and hose data types, used 

to organize information on the screen, and (2) an incremental redisplay mechanism. Although they 

could not be directly used in Ecole, they have provided valuable insight into the problems of 

designing a display manager. 

3.1.1 Pictures and Hoses 

The layout of the Etude screen is constructed using objects called pictures and hoses. The 

pictures and hoses model was developed by Edward Gilbert, one of the implementors of Etude (7). 

Pictures are the information that is displayed on the screen; hoses are analogous to optical fibers that 

transmit images from one end to another. If one end of a hose is put on a picture, the image of that 

picture can be seen at the other end. The loose ends of several hoses can be combined into a 

bundle, creating a composite image. Another hose can then be placed on this composite image and 

its loose end used in other bundles. 

In Etude, hoses have a scanning end, which is put onto a picture, and a viewing end, which is put 

19 



into bundles. The size and position of the scanning end of a hose can vary, in order to show different 

parts of the picture. The pictures and hoses model of the screen is simple, yet very powerful; for 

example, magnifying and rotating images could be done simply by varying the relative sizes and 

orientations of the hose's ends. The model's fuU- capabilities, however, were not implemented for 

Etude. 

A picture is displayed on the screen by placing the system-defined screen hose on the picture, and 

invoking the screen redisplay procedure. This procedure begins with the screen hose and 

decomposes the picture and hoses structure until it reaches elementary pictures. Each elementary 

picture is then displayed in a particula~ part of the screen, by a procedure appropriate to the type of 

picture. 

In Etude, the only type of elementary picture is the column picture. A column picture is a 

rectangular block of text-for example, one column of a document. Each column picture consists of 

a pointer to the sequence of lines it contains and information used to implement incremental 

redisplay. This information consists of a table of the lines in the column picture that were last 

displayed, and their sizes and positions on the screen. 

3.1 .2 Incremental Redisplay of Column Pictures 

In Etude, the column picture redisplay procedure is called with three arguments: (1) the column 

picture to redisplay, (2) the rectangular area of the screen in which to redisplay it, and (3) the 

coordinates of the point in the picture that should appear at the upper left corner of the rectangle. 

The redisplay procedure displays the column picture in two steps. 

First, it examines the lines of the column picture that are about to be displayed, and tries to find a 

sequence of unchanged lines that are already displayed on the screen, but in the wrong position. 

Changed lines are recognized by a flag in the line, which is set when the line is edited or formatted; 

the position of each displayed line is recorded in the column picture's internal table. 

The largest such sequence of lines, if any is found, is moved to the correct place on the screen 

using an array operation.10 Moving a block of lines with an array operation requires fewer transmitted 

characters than redisplaying each character of the line in its correct position; the savings in 

transmission time offsets the increased processing time needed to find the block of lines. Once the 

lines are moved, the redisplay procedure updates the internal table of the column picture, in order to 

record the lines' new positions. 

The second step in displaying a column picture is to fully redisplay the lines that are supposed to 

appear on the screen, and that are not already correctly displayed. A line does not need to be 

1~e main part of Etude ran on a large mainframe computer. Array operations, however, were executed by the Nu machine, 
which was programmed to act as an intelligent terminal. [23] 

20 
·. ~ ' 

• , .,.:.\1,_ •• 



redisplayed if it is unchanged and already correctly positioned. Other lines are redisplayed by first 

clearing the part of the screen they will occupy and displaying each of the line's characters. 

Characters overprint existing characters on the screen, rather than simply replacing them, so that 

characters in the italic font can be kerned.11 

The display manager in the first version of Etude was adequate for a prototype system. It provided 

mechanisms for organizing text on the screen and incrementally redisplaying the information. 

Frequently, however, the system did not correctly update the screen, because of software errors. The 

implementation also suffered from three more serious problems, which precluded its use in Ecole. 

First, the pictures and hoses mechanism, which was used to organize information on the display, 

was more complex than needed. Much of its complexity was due to the fact that pictures and hoses 

were originally intended to be used to position individual characters, as well as larger columns of text. 

Also, incremental redisplay was supposed to be driven by changes to the pictures and hoses 

structure. Midway through the Etude project, we decided not to use all of the potential of the 

mechanism, but were still unnecessarily burdened with some of its overhead. 

Second, the display manager did not provide procedures for handling important display functions. 

For example, there was no simple mechanism for adding a window to the display. Because the 

pictures and hoses mechanism did not permit overlapping pictures, it was necessary to shrink an 

existing window to create space for the new one. The display manager did not provide a procedure 

for performing this shrinking; instead the parser directly invoked procedures for changing the 

pictures and hoses structure. 

Finally, there was no centralized knowledge of what information was _displayed on the screen. Each 

column picture managed its own rectangular area, but there was no similar manager for the area 

between column pictures. Eventually, a procedure was added to the command parser, which tried to 

keep track of this area, but was not completely successful. There was a similar problem trying to 

update the screen after a window was shrunk, and a similar inadequate solution. 

3.2 Emacs 

Emacs is an interactive text editor developed by Richard Stallman of the MIT Artificial Intelligence 

Laboratory [5, 32]. It is implemented in T eco, a programming language that is weU-suited for text 

processing applications. Emacs is a real-time editor, which means that the user sees on the screen a 

representation of part of the file he is editing; the effects of each command can be seen immediately 

after it is executed. Emacs is also extensible. Users can write new Teco procedures to implement 

commands and to change the effects of some existing commands. 

11Kerning is a printer's term, referring to the situation where two consecutive character that are slanted similarly, such as I and 
i, are positioned closer together than normal in order to reduce the whitespace between them. 

21 



A great deal of effort was put into the design of Emacs' incremental redisplay algorithm. The 

algorithm handles the most common cases very well, yet does not require much memory for storing 

information about the text buffer. Emacs speeds up the display of the text buffer in up to three ways, 

depending on the extent of change to the buffer and the types of operations the terminal performs. 

First, Emacs does not redisplay screen lines 12 whose contents and positions are unchanged. These 

lines are found using an internal table, maintained by Emacs, with one table entry for each screen 

line. 

The entry is not simply a list of the characters that make up the line; such a representation would 

require too much memory to store the table, and too much processing time to maintain it. Instead, 

Emacs computes a 36-bit hash value from the characters in the line, and uses this single number to 

determine if two lines are the same; Emacs considers two lines to be the same if their hash values are 

equal. 

It is possible, however, for two completely different lines to have the same hash value, since the 

number of possible hash values is much smaller than the number of distinct lines. If the user 

performed a command that changed a line into one with the same hash value, then Emacs would not 

notice the change and the screen would not be updated. It is not practical to completely eliminate 

this problem, since to do so would require storing every character displayed on the screen. The 

choice of 36 bits to represent a screen line simplifies the implementation and reduces the chance of 

an error occurring in practice to a small value. 

The second kind qf redisplay improvement made by Emacs involves moving tines that are 

unchanged, but in the wrong place on the screen, to the correct position. On most terminals, Emacs 

moves lines using the insert line and delete line operations; to move a block of lines up on the screen, 

unneeded lines above the block are deleted and the same number of blank lines are inserted below 

the block. 

Situations in which lines can be moved on the screen are detected while Emacs is comparing the 

hash values of the tines. When Emacs finds a mismatch between the current line, which is atready on 

the screen, and the new line, which is about to be displayed, it performs one of three actions: 

• It the current line is supposed to appear further down on the screen, it is moved to that 
position. 

•It the new line is already displayed further down on the screen, it is moved up to the 
correct place. 

• Otherwise, the new line simply replaces the current line. 

12
Screen lines are different from text buffer lines. Buffer lines are defined by the user when he inserts a newline character; 

very long buffer lines are split by Emacs and displayed as multiple screen lines. The redisplay algorithm only deals with screen 
lines. 

22 



Emacs groups together lines that are supposed to be moved the same distance, and moves them 

together. All of the tests required by this algorithm can be made using only the saved hash values of 

the lines on the screen and the computed hash values of the new lines. 

The redisplay algorithms described above do not require any cooperation with the procedures that 

manipulate the text buffer. In fact, Emacs does allow for such cooperation and takes advantage of it. 

Each procedure implementing an Emacs command can give "advice" to the redisplay algorithm 

about what part of the buffer was changed. This advice can take one of three forms: 

•"Nothing has changed." In this case, Emacs does no redisplay, except to position the 
terminal cursor appropriately. 

•"Unknown changes have taken place." The buffer will be redisplayed using the 
algorithms described above. 

•"All the changes to the buffer are in the following region," along with a specification of 
the region. 

If the advice is of the third form, then Emacs will completely ignore lines that are outside of the 

specified region. In addition, if only a single line on the screen was changed, then Emacs will try to do 

intra-line editing. The purpose of intra-line editing is to update only the part of the line which has 

been changed. Intra-line editing can be done only if the changes to the line occur at the rightmost 

end of the line, or if the terminal provides operations for inserting and deleting characters In the 

middle of a line. 

Intra-line editing .works as follows. Suppose a screen line contains "This 1s the first 
line". If the line were changed to "This is the new 11ne", the intra-line editing algorithm 

would first delete two characters13 from the word "first", and then display "new" in place of the 

remaining three characters. If instead the new line were This 1s the currant 11na", then one 

character would be inserted between "the" and "11ne", before "currant" was output. (Of 

course, if the lengths of the current and new lines were equal, no characters would have to be 

inserted or deleted.) 

In order to do intra-line editing, Emacs remembers other information besides each line's hash 

value; specifically, the screen position in which each line begins and ends. The information, along 

with the redisplay advice, is sufficient to be able to determine the parts of the line which do not 

change (in the above example, "Th 1 s 1s the " and " 1 i ne"). Emacs can then calculate the size 

of the remaining part of the line, the screen columns in which this part begins and ends, and therefore 

number of characters that must be inserted or deleted. 

13 A character is deleted by shifting the characters that follow it on the same line left one position and adding a blank at the end 
of the line. Similarly, when a character is inserted, the subsequent characters are shifted right one pasition. 

23 



One drawback to Emacs' incremental redisplay mechanism is that a command can give the 

redisplay algorithm the wrong advice; ie., the advice is not generated automatically based on the 

changes the command makes. If the advice specifies too large a region or is "unknown changes 

have taken place," then Emacs would do more work than necessary to display the buffer. This is not 

disastrous, but it will make the redisplay process slower. On the other hand, if the advice fails to 

indicate a part of the buffer that has changed, then the image on the screen will be inconsistent with 

the text in the buffer, which is a serious problem. This problem should never occur in a fully 

debugged command, but if it does occur the user will become confused. The design choices made in 

Emacs are reasonable, however, since the incremental redisplay algorithm handles all ~he likely cases 

and is very efficient. 

3.3 The Queen Mary College Text Terminal 

3.3.1 The Reactive Desk 

The Queen Mary College (QMC) Text Terminal (3, 25, 26) is a display device intended to be the 

basis of an integrated office workstation. Researchers in the Computer Systems Laboratory at QMC 

have taken the approach that the handling of information (creating, filing, distributing, etc.), which is 

now done by hand, could be effectively done by computer. The goal is to provide a computer system 

with an easy-to-use interface, which also has the same capabilities as the old "paper-based" system. 

Their notion is that the screen should be a reactive desk; the computer system would present several 

windows, which correspond to pieces of paper on a real desk. Windows could contain different files 

or documents, and could be updated and rearranged as desired. 

Based on these goals, the QMC researchers determined three necessary characteristics of the 

display system [3]. First, it should be able to display a number of independent windows on the screen 

at one time. Each window acts like a virtual display (29], within which a program can run. The user 

could have several programs running concurrently, and switch between them as needed. 

Second, a display system should have a.pointing device. A pointing device aHows the user to 

position the display cursor quickly and accurately; rather than viewing the screen passively, he can 

interact with it. Several types of in~eractions are possible with pointing devices. In addition to 

identifying points on the screen, for example, a user could "thumb" through a document by moving 

the cursor over a corner of a window. Also, some pointing devices have one or more switches built 

into the device, which can be used to give commands to programs. 

Finally, the OMC group considers feedback to be important in an office workstation. Many kinds of 

feedback are possible, ranging from a summary of the user's current context (for example, the name 

of the file being edited) to an indication of misspelled words in a document. Feedback can be 

distinguished from other information on the screen using different colors or fonts; alternatively, more 

exotic devices such as a speech synthesizer could be used. 

24 



3.3.2 The Text Terminal 

The QMC Text Terminal was designed to meet the three requirements listed above. It 

communicates with a host computer over a standard terminal line, and displays 22 lines, each of 80 

characters, in multiple colors. The Terminal contains two microcomputers. One is used to handle the 

keyboard, pointing device, and other input/output devices. The other microcomputer is a specialized 

display processor that implements a high-level model of the screen, which includes the concept of a 

window. 

The model is one of pages arranged on a desk. The screen acts as a viewport onto the desk, 

showing a small piece of the entire surface. A user can move the viewport across the desk, in order to 

make any desired page visible. Internally, the arrangement of pages is represented in a display file. 

The display processor interprets the display file and generates from it the characters that appear on 

the screen. 

The display file is a three-level hierarchical structure. At its base is information describing the 

whole screen, such as its background color and the coordinates of its upper left corner relative to the 

entire "desk." The next level consists of one entry for each window displayed on the screen, which 

contains the size, position, and background color of the window. Finally, each window descriptor 

points to the sequence of lines contained in the window. 

The display processor scans the display file, determines which characters of each window are 

visible on the screen, and displays only those characters. Because of the speed with which this 

process occur$, changes to the display file are immediately reflected on the screen. Also, the format 

of the display file was designed so that common screen manipulation operations, such as moving 

windows, changing the background color of a window, and scrolling text in a window, require only a 

small change to the display file. 

3.3.3 Bitmap Displays 

The designers of the Text Terminal decided to achieve their speed requirement by using a 

specialized display processor, which could update the screen very fast, rather than using a 

sophisticated, software update algorithm as is done in Emacs. Although the Text Terminal satisfies 

their goals, it does this at the expense of flexibility. They were forced to use a conventional character­

oriented display, instead of a bitmap display, which cannot display variable-width characters or 

graphics. 

The OMC researchers realized, however, that the flexibility of the bitmap display is as important as 

the requirement of updating the screen quickly. Other than cost, they see little problem in building a 

bitmap display with current technology. It is the dynamic requirements that present the real problem; 

updating a large bitmap display within the time constraints they feel are necessary requires an 

enormous amount of computing power. 

25 



The solution they are now exploring involves building a highly parallel display processor, called a 

disarray (display array) (26), which quickly manipulates two-dimensional bitmaps. The architecture of 

the machine consists of a small number of processing elements (PEs) arranged in a matrix, under the 

control of an external processor. The external processor manages the PEs; for example, it generates 

instructions for them to execute from a display file similar to the one described earlier. By using this 

distributed approach, the QMC group expects to achieve a sufficiently high update speed to satisfy 

their requirements. 

3.4 Xerox Personal Workstations 

Researchers as Xerox's Palo Alto Research Center (PARC) are noted for their work with personal 

workstations. In 1973, they developed the Al~o computer [35) to provide a vehicle for experimenting 

with single-user machines. Although the Alto has been made obsolete by the development of more 

powerful machines, such as the Dorado (2), there are still Altos in use at various Xerox divisions and 

university computer science laboratories (including the MIT Laboratory for Computer Science). Also, 

Xerox recently announced a commercial product, called the Star [30), which is an office workstation 

based on the research done at PARC. 

The Alto, Dorado, and Star share a common hardware configuration. Besides the processor, there 

is a high-resolution bitmap display, a pointing device called a mouse,14 a keyboard, local disks, and a 

network interface. Most application programs were designed to use the full capabilities of the display 

and mouse. For example, the Alto document editor, called Bravo [17), displays documents as they will 

look when printed; that is, with justified lines, and using multiple type fonts. The mouse is used to 

select pieces of text as arguments to commands, and to scroll through the document. 

3.4. 1 Dlisp and ADIS 

The main purpose of the Alto was to experiment with a variety of user interfaces, and determine the 

characteristics of a good interface. There was no attempt, therefore, to develop consistent interfaces 

or to integrate the Alto application programs. Some individual programs, however, were themselves 

integrated software environments .. One of these applications is Dlisp ("Display Lisp") developed by 

Warren Teitelman (33). Dlisp is an extension of Interlisp [34] that provides a Lisp programmer with 

easy access to a number of programming aids.15 

The interface to Dlisp is through a number of overlapping windows; this approach allows the user 

to have simultaneous access to more information. A window can display part of the user's context, 

14 A mouse is a smaU box with wheels, which roUs on a desk. The hardware detects movement of the mouse and updates the 
position of the screen cursor accordingly. There are also two or three buttons on top of the mouse, which can be used to give 
commands to a program. 

151n Dlisp, the Alto is used as a graphics terminal, while Interlisp itself runs on a larger machine. Given a more powerful 
workstation, such as the Dorado, the total system could be implemented on a single machine. 

26 



such as his input to the Lisp interpreter or a trace of his program. Dlisp provides other services, such 

as an interactive programmer's manual and electronic mail; each of these applications also has an 

associated window. The user can also copy text from one window to another. A Lisp procedure 

definition could be received as mail, and directly entered into the user's Lisp environment, for 

example. 

The Dlisp window system is based on the ADIS graphics package (31 ]. The fundamental object in 

ADIS is the region. Each output operation is directed to a particular region, and all output is clipped 

at the region boundaries. ADIS provides operations for displaying text in different fonts, drawing lines 

and curves, and directly manipulating display pixels (so called RasterOps [22j). ADIS also allows an 

application program to display a blinking cursor on the screen,· whose shape is an arbitrary 16-by-16 

array of pixels. The region object contains state variables, such as the current cursor position, and 

current text font, which control the effect of output operations. These variables are either set 

explicitly by ADIS subroutines, or implicitly as a result of an output operations. 

ADIS does not provide any mechanisms for managing the organization of regions-ie., there is no 

concept of window objects that can overlap on the screen. Instead, the application program Is 

responsible for creating appropriate regions, in order to properly update the screen. Generally, there 

will be a 1-to-1 correspondence between windows and regions. To update a partially obscured 

window, however, the program must divide it into a number of rectangular pieces, create a region for 

each piece, and update the contents .of each region individually. The fact that regions clip output at 

their boundaries ensures that updating one region does affect any other part of the screen. 

The advantage of this approach is that it is flexible; an application program can manage its 

windows as it chooses. Also, if the program chooses a simple organization of windows, it is not 

burdened with the overhead needed to manage overlapping windows. In addition, the program can 

update the screen more easily than could a general display manager, since it has direct knowledge of 

how the underlying data structures have been changed. 

The experience gained from the Alto and its applications, especially ones such as Dlisp, led the 

PARC researchers to develop specifications for the next generation of research hardware and 

software [4]. Three of the important requirements they identified were (1) a large virtual address 

space and support for memory management, (2) uniform screen management, and (3) uniformity in 

command interface; the latter two requirements are ones we identified as important in an integrated 

office workstation. The result of these specifications was the Dorado personal machine and its 

associated programming environment, Cedar [20, 21 ]. Cedar is similar to Dlisp, except that it 

provides support for building Mesa (19) programs. Because the Dorado is a more powerful machine, 

the Cedar display manager is much more sophisticated than ADIS. 

The workstation research done at PARC also led to the development of a commercial office 

workstation, the Xerox Star [30). The subsystems available on the Star are similar to those on the 

27 



Alto, except that the input and output interfaces are more consistent. The Star organizes windows on 

the display in two columns. Most windows have a default position, either on the left or right side of the 

screen; one exception to this rule are small menus, which appear in the corner of an existing window. 

The Star user has limited control over the size and position of a window. He can change the side 

on which it appears, or move the boundary between the windows in a column. This display model is 

much simpler than the Dlisp model and, therefore, simplifies the implementation. It is alsq easier for 

the user to understand the arrangement of windows and anticipate where new windows will be 

positioned. 

3.5 The MIT Lisp Machine 

The Lisp Machine is a powerful, single-user computer developed at the MIT Artificial Intelligence 

Laboratory [1, 37). The hardware includes a processor, large keyboard, one or more bitmap displays, 

a mouse, and network interface. The name "Lisp Machine" is derived from the fact that the set of 

instructions executed by the processor is designed to simplify the running of Lisp programs; all 

programs on the system are written in a dialect of lisp. There are also machine-level instructions 

specifically for manipulating the bitmap display.16 

The user interface of the Lisp Machine is similar to that of Dlisp; each program running on the 

system has an associated window, which is used for its output. At any point in time the user 

designates the window with which he interacts. All keyboard and mouse input is directed to the 

selected window, but .other processes are still able to run in the background and, in some cases, 

output to the screen. To effectively use the Lisp Machine, therefore, the user must be able to create 

and rearrange windows on the screen. 

A process on the Lisp Machine can divide its assigned window into panes. Each pane is itself a 

window, so that windows form a hierarchical structure. The position of a window is specified relative 

to its superior window; thus, if the superior is moved, au the inferiors are automatically moved by the 

same amount. An inferior window cannot be displayed outside its ~perior's boundary. 

One component of a window is a screen array, which contains the pixels that make up the window's 

image on the screen. In the normal case of a window that is completely visible on the screen, the 

window's screen array points within its superior's screen array. At the base of the window hierarchy 

is a window corresponding to the physical screen; its screen array is located in a special part of the 

Lisp Machine's memory that is mapped onto the screen. 

Windows are not always completely visible, however. When two inferiors of a window overlap, one 

16
1n fact the instruction set is defined in software, rather than "wired" into the proceaaor; it Is possible, therefore, to easily add 

new machine instructions. 

28 

-------------------------



is partially obscured. In the Lisp Machine window system, a window that is completely visible is 

referred to as exposed. When a window is deexposed, its content is not necessarily lost. A window 

can have an associated bit-save array; if such a window is deexposed the pixels it contains are stored 

in the array. When the window is exposed again, the pixels are copied out of the bit-save array. (If the 

window has no bit-save array, then the screen manager tries to reconstruct the window's image, if 

possible.) 

An important feature of the Lisp Machine window system is that the system automatically handles 

simple screen management problems. The programmer does not necessarily have to worry about 

exposing windows or resolving_ conflicts between overlapping windows. For example, a program can 

treat a window as a terminal, and move the cursor, display characters in different fonts, and clear 

parts of the window. In addition, the window system can divide long output lines into multiple screen 

lines, and pause when output reaches the bottom of the window. Finally, it is possible to draw lines 

and curves in a window, something which conventional terminals cannot do. 

The programmer can easily change the behavior of windows. Some window options are selected 

by setting state variables inside the window, such as whether character output procedures should 

pause at the bottom of the window. Other changes can be made using the general Lisp Machine 

flavor mechanism. 

A flavor on the Lisp Machine corresponds to an abstract data type in other programming 

languages; flavors are not used just for defining different types of windows. The flavor definition 

specifies the internal variables that each object of the flavor contains. It also specifies the set of 

messages accepted by that class of object, and procedures that process each message, which are 

called methods. Sending an object a message is similar to invoking a subroutine with the object as 

one argument. 

An important difference between the flavor system and conventional implementations of abstract 

data types is that flavors can be "mixed" together to form a new flavor. The programmer has some 

control over how the mixing is done, but generally each component flavor contributes its own internal 

variables and methods to the final flavor. Arbitrary flavors are not usually mixed together; instead, a 

basic flavor is defined along with several mixins, each of which slightly changes the behavior of the 

basic flavor. 

In the case of the window system, the basic flavor is called m1n111u11·w1ndow. This flavor 

understands messages for clearing and moving the window; there are no output operations, so that a 

window of this flavor is not very useful. Other mixins are provided, however, which add character or 

graphics operations, draw a border around the window, and display a label for the window. There is a 

predefined flavor (called w1 ndow) that most applications would use, which includes these four mixins 

and some others. 

29 



A more complicated kind of window is called a frame. There are several different flavors of frames, 

but they all provide a means for dividing a window into panes. There are two reasons for using 

frames. First, a frame defines a number of configurations of panes. An application program can 

select a configuration by name, and the window system will automatically arrange the panes 

accordingly; 

Second, the specification of a configuration is written a special constraint language. With this 

language, the size and position of each pane does not have to be specified absolutely. For example, 

a configuration could be made up of three panes, the first using one-fifth of the whole window, the 

second an amount calculated by a Lisp procedure, and the third the rest of the windows's space. If 

the user should change the siz~ of the whole window, then the size of each pane can be recomputed. 

A final type of object provided by the Lisp Machine window system is the blinker. Blinkers are used 

to mark particular points on the screen. There are several flavors of blinkers, each with its own 

appearance on the screen-for example, a blinker can appear as a filled or hollow rectangle, or as a 

particular character in a font. Each blinker is associated with a particular window, and is positioned 

relative to that window's upper left corner. The programmer can have the blinker follow the window's 

output cursor, or can explicitly set the blinker's position. 

3.6 Summary 

Of the requirements listed in Chapter 2, the category of common display functions is most needed 

in the Ecole display manager. One of the major problems with the display manager in Etude was the 

lack of such functions. The result was a tedious mechanism for adding information to the display and 

frequent errors when updating the screen. An important design goal of the Ecole display manager is 

to correct these deficiencies of the Etude display manager, as well as providing a more general set of 

capabilities. 

The goals of the workstation project are close to those of the Queen Mary College, Xerox, and Lisp 

Machine projects.17 Each of these projects i~volves building an advanced workstation that integrates 

a number of application programs. The QMC Text Terminal is not suitable for our purpose, since it is 

timited in its output capabilities. Both the Lisp Machine window system and ADIS have a sufficient set 

of low-level procedures, to allow either package to form the basis of the Ecole display manager. Each 

would still have to be augmented with specific higher-level function for allocating windows on the 

display, performing incremental redisplay, etc. 

This is not very surprising, because the goals of the lisp Machine and Xerox workstations are 

17 
The three projects described in this chapter are representative of the current work in workstation design, although there are 

other research projects at camegie-Mellon and Stanford Universities, and commercial products sold by Apollo Computer and 
Three Rivers Computer. 

30 



different from ours. Those workstations are designed to provide a flexible set of display tools that can 

be use by programmers in a variety of ways. The Lisp Machine window system, for example, includes 

a general choice facility, with which the programmer can control the behavior and appearance of 

menus on the screen. Another characteristic of these systems is that they each run on high­

performance hardware, which has machine instructions for quickly updating the display. This level of 

computing power is needed for the advanced capabilities and sophisticated display models that their 

designers wanted to support. 

The focus of our research is slightly different. We are not designing a general-purpose 

workstation, but rather one that will be used in an office. An office worker does not care about added 

flexibility; he is only concerned with getting his job done as quickly and accurately as possible. To 

these users, added flexibility means .more choices for them to make, which are irrelevant for 

accomplishing their tasks. 

Since we do not require the same degree of generality as the designers of the Lisp Machine, for 

example, we can use a cheaper, less powerful machine in our project. It was important to us to 

choose a machine that realistically might be found in an office, in order to add credibility to our 

results. Our initial implementation will be on a workstation sold by Apollo Computer, which is based 

on a 16-bit processor.18 The Apollo system is less powerful overall than either the Lisp Machine or the 

Dorado; it also has less hardware support for manipulating the bitmap screen.19 

Because the Ecole display manager will completely support only one display model, an Important 

part of the re~arch is to develop that model. It should be powerful enough to be used in a variety of 

subsystems, not just Etude, but have an efficient implementation. It is also important to consider the 

users of the workstation, to ensure that they will be able to understand the chosen display model. The 

following two chapters describes two separate implementations of the display manager, which take 

two different approaches to this problem. 

18For comparison, most of today's word processors contain 8-blt processors. 

19
The Apollo provides special hardware for quickly moving pixels from one part of the screen to another. Unlike the Lisp 

Machine or Xerox workstations, however, it cannot pei:form any Boolean operations on the pixels at the same time. 

31 



Chapter Four 

Prototype Implementation 

There are two distinct implementations of the Ecole display manager. We began our workstation 

project using CLU as the implementation language; the first version of the display manager was 

started in this context. This version supported multiple, overlapping windows on the screen, and a 

simple form of incremental redisplay. 

Various external factors caused us to switch languages from CLU to MDL, which required a new 

implementation of the display manager. Because of this switch, the CLU display manager did not 

progress beyond the prototype stage." It did not drive a bitmap display, for example, and was missing 

a more sophisticated incremental redisplay mechanism. Despite these limitations, the display 

manager was used in a calendar management project undertaken by another part of our research 

group [10, 11, 12]. 

The language switch was beneficial because it gave me the opportunity to reconsider the 

architecture of the display manager; feedback from the calendar implementors greatly helped in this 

re-evaluation. The current, MDL, implementation shares some of the characteristics of the CLU 

version, although it is less ambitious in its capabilities and therefore more efficient and practical. 

The rest of this chapter describes the CLU implementation of the Ecole display manager in more 

detail, and discusses the strengths and weaknesses of this design (Section 4.3). The following 

chapter describes architecture of the MOL version of the display manager. 

4.1 Overview 

In order for a programmer to display information on the screen, he must manipulate several types of 

data objects that are implemented within the Ecole display manager. The programmer defines the 

display images of his internal data structures by writing CLU procedures; these procedures each 

accept a data structure as an argument, and generates the output operations needed to update the 

display. It is possible to display the same object in different ways by using different redisplay 

procedures. The display manager captures the association between a data structure and such a 

redisplay procedure in the doc data type. The programmer creates a doc object by supplying the data 

structure and associated redisplay procedure. 

Once he has created the necessary doc objects, the programmer must then position the generated 

images on the screen. This is done using window objects. There are two kinds of windows: basic 

windows, which contain a single doc object, and compound windows, which contain zero or more 

other windows. Basic windows are used to define the part of an image that should appear on the 

display, while compound windows are used for arranging those images. 

33 



Windows contained within a compound window can overlap with one another. In addition to 

positioning the windows horizontally and vertically, the programmer specifies their front-to-back 

ordering; if two windows overlap, the one closer to the front will obscure part of the other. The 

display manager automatically resolves conHicts between overlapping windows and ensures that only 

information that is supposed to visible actually appears on the screen.· 

After the programmer builds the appropriate window structure, he can update parts of the display 

by invoking-a window redisplay procedure with any window as an argument. For compound windows, 

this procedure just redisplays the visible part of each contained window-calling itself recursively­

and clears the area between windows, which is supposed to be blank. To update basfc windows, the 

window redisplay procedure gets from the doc object the data structure to display and its associated 

redisplay procedure. The object's redisplay procedure is then called with the data structure and a 

virtual screen as arguments. 

The virtual screen data type20 implements the low-level output operations used to display data 

structures. The programmer does not have ta be concerned with creating the necessary virtual 

screens; that is handled automatically by the display manager. One purpose of screen objects is to 

define a local coordinate system which the programmer uses to position information on the actual 

display. Another purpose is to ensure that a redisplay procedure cannot change any part of the 

physical display outside of its associated window. To achieve this goal, the display manager 

automatically sets the boundary of the virtual .screen to correspond to the visible area of the window, 

and ensures that no characters can be displayed outside those boundaries. 

4.2 Implementation Details 

The previous section outlined the architecture of the prototype Ecole display manager, focusing on 

the steps a programmer would go through in order to put some information on the screen. This 

section describes in more detail the implementation of the various data types that were mentioned, 

beginning with the lowest-level objects. 

4.2.1 Areas 

The area data type is used extensively in the display manager, although it is not directly tied to the 

process of displaying information. An area object represents an arbitrary region that can be divided 

into a set of rectangles; in the. context of the display manger, areas represent the shapes of virtual 

screens and windows, and are used to keep track of the visible portions of windows. 

One way to understand the implementation of areas is to consider the area being modeled as a set 

of discrete points. (This is actually the appropriate model for all the display manager applications, 

20tn order to distinguish the physical screen, which is a piece of hardware, and screen objects, which are software concepts, 
the latter will be referred to as screen objects or virtual screens. 

34 



since these deal only with discrete pixels on the screen.) A straightforward implementation of such 

an area would simply list the set of points. The storage requirements can be reduced, however, by 

recognizing that rows with the same horizontal pattern of points are often adjacent, and listing that 

pattern only once along with the first and last row to which it applies. Similarly, the points within a row 

can be described by listing the start and end of consecutive sequences of points. 

Figure 4-1 illustrates the implementation of areas. The shaded area (A) is divided into six horizontal 

slices (B); the corresponding area object consists of a 6-element array of slices. Each slice consists 

of one or more rectangular pieces, all of which have the same upper and lower edges. Those two 

values are stored only once in the slice, along with the left and right edges of each rectangle. Both 

the slices of the area and the rectangles within the slice are sorted by their upper and left edges, 

respectively. 

{A) {B) 

Figure 4-1 :An area object (A) divided into six slices (B). 

The display manager supplies procedures for creating a rectangular area, given the coordinates of 

its four sides. More complicated areas are constructed by forming the union, intersection, or 

difference of existing areas. An area object also can be decomposed into its set of rectangles. This 

operations makes it easier for other programs to use areas; for example, there is a procedure that 

35 



accepts a virtual screen and area as arguments and clears the part of the virtual screen defined by the 

area. That procedure first decomposes the area and then clears each of the resulting rectangles. 

4.2.2 Virtual Screens 

Virtual screens provide the interface between a data structure'$ redisplay procedure and the 

physical display-all output operations are directed to a particular virtual screen. A virtual screen 

supports the same kinds of output operations as a conventional video terminal. It is possible to 

display characters with any combination of attributes (blink, reverse video, etc.), at any position within 

the virtual screen. There are other operations for erasing parts of the virtual screen and moving 

characters from one part of the virtual screen to another. 

Virtual screens share other characteristics with video terminals. Output operations directed to a 

virtual screen only affect information within its boundaries. Also, each virtual screen defines its own 

coordinate system, which is independent of its position on the physical display. 

The internal representation of a virtual screen consists of an area object, which specifies its shape 

and position on the physical screen, the current position of the cursor, the current character 

attributes, and two integers that define the mapping from virtual screen to physical coordinates. 

Those integers are added to the virtual x· and y-coordinates to get the corresponding physical 

coordinates. 

The implementation of the virtual screen -output operations has two complications. First, each 

operation must clip output at the virtual screen's boundary. The character output procedure, for 

example, displays a character only if it falls completely within the virtual screen. This test is done 

using the operations defined on area objects. Similarly the operation for clearing part of a virtual 

screen ensures that only characters inside the virtual screen are erased. 

Second, each output operations tries to execute as fast as possible. The character output 

operation does this by consulting a map of the characters that are currently displayed on the screen, 

which is maintained by the display manager. If a character that is about to be displayed is the same 

as the corresponding entry in the screen map, it is not output again. This optimization automatically 

provides a very simple form of incre~ental redisplay on character-oriented terminals, which is useful 

in some applications. · 

Other output operations take advantage of the capabilities of certain video terminals to quickly 

move the cursor or clear areas of the display. The display manager determines the exact capabilities 

of the terminal, and uses them when possible; in other cases, the same operations are automatically 

simulated by a slower sequence of other operations operations. For example, there is an operation 

that moves characters from one part of the virtual screen to another. If the characters consist of one 

or more lines, then they can be moved using the terminal's insert and delete line functions.21 

21 A group of lines is moved up by deleting lines before the group, and inserting the same number of Hnes after the group. 

36 



Otherwise, the output procedure finds the characters to be moved in the screen map, and displays 

each character in its correct position. 

4.2.3 Windows 

The programmer does not directly create virtual screens, he only uses them for output. Instead, he 

creates and manipulates windows. Associated with each window is a screen object that is created 

and manipulated by the display manager, to correspond to the programmer's manipulations of the 

window. The reason for implementing both virtual screens and windows is to separate the low-level 

output functions, provided by virtual screens, from the higher-level organization functions, provided 

by windows. 

There are two kinds of windows, which differ in the kind of information they contain. Basic 

windows contain a doc object, which is' an association between a data structure and a procedure for 

producing its image on the display. The purpose of a basic window is to define the part of the image 

that is currently of interest. 

The second kind of window is the compound window, which contains zero or more windows of any 

kind. Compound windows allow the programmer to organize his windows into a hierarchical 

structure that can model the structure of the underlying data structures. Windows contained within a 

compound window can overlap with one another. The programmer specifies the front-to-back 

ordering of the windows, as well as their horizontal and vertical positions, and the display manager 

resolves conflicts between overlapping windows. 

There is one compound window built into the display manager: the physical window, which 

corresponds to the physical screen. The physical window is important to the programmer because it 

is used as the base of the window hierarchy; the information contained in a window will not appear on 

the display unless the window has the physical window as an ancestor. 

Internally, all windows contain a pointer to its containing (parent) window, if any, an area object 

that represents its shape and position on the physical screen, and a virtual screen that represents the 

part of the window currently visible on the display. The visible part of a window can be smaller than 

its total area if it is covered by another window, or if it is not completely contained within the visible 

part of its parent. 

Windows also have a content, the type of which is different for the two kinds of windows. Basic 

windows contain a doc data object and a pair of integers; the integers specify the point in the doc 

image that should appear in the upper left corner of the window. A doc object itself has a simple 

implementation; it contains a data structure and a procedure for displaying that structure within a 

virtual screen. The redisplay procedure accepts six arguments: the data structure, a virtual screen to 

use for output, and four integers that define the rectangular part of the image that should be 

displayed. 

37 





window hierarchy does not change the images on the physical display; the programmer must 

explicitly request that a window redisplay itself. Redisplaying a compound window consists of 

redisplaying the visible parts of each of the contained windows-by recursively invoking the window 

redisplay procedure-and then clearing the empty part of the window. 

Basic windows are handled differently. The window redisplay procedure gets the virtual screen 

and doc object contained in the window and passes them to the doc redisplay procedure. This 

procedure, in turn, gets the data structure and redisplay procedure contained in the doc object and 

invokes the latter with the appropriate arguments. The redisplay procedure is responsible for 

correctly updating the entire visible part of the window; depending on the application, it could use an 

incremental redisplay algorithm to speed up this process. Because the virtual screen operations 

automatically clip output at a virtual screen's boundaries, the redisplay procedure does not have to 

test that each character it wants to display actually falls within the visible part of the window. 

4.2.4 Example Redisplay Procedures 

The beginning of this section describes a general framework that can be used to display any type of 

data structure. One way to simplify the programmer's task is to provide a library of data types that 

interface to Ecole, and could be used in a variety of subsystems. As a start towards this goal, and to 

test the software framework, I implemented redisplay procedures for two general type of data 

structures. 

The first is a structure consisting ·of an array of strings. Such a data structure is suitable for 

displaying a static series of lines, such as a help message, although it is also possible to modify the 

array and change the image on the screen. The related redisplay procedure is relatively simple; its 

main function is to determine which characters of the array are supposed to be displayed, and to 

output them. It does not perform any incremental redisplay, other than that automatically provided by 

the optimization of the character output operation. 

The second type data structure that was implemented is the inp. An inp object consists of a text 

buffer that can be edited by the user and examined by the program. The editing operations are 

modeled after the basic Emacs command set, and include the following: 

• cursor motion, both one character of line at a time, and to the start or end of buffer 

• single character insertion and deletion 

• deletion of parts of lines or an arbitrary block of text 

• copying and movement of text, using a text save area 

lnternaHy, the inp object contains an array of strings, representing the text buffer, a basic window 

containing the buffer image, a character input buffer, and the coordinates of the editing cursor. The 

programmer creates an inp object by creating a compound window, positioning it on the display, and 

passing it as an argument to the inp create procedure. 

39 



There are three ways to change the content of the buffer. First, there is a procedure that erases the 

entire buffer. A second procedure implements a command loop, which reads a command from the 

keyboard, executes it, and redisplays the buffer. This procedure handles all the details of positioning 

the terminal's built-in cursor, and scrolling the buffer image if the cursor moves outside the window. 

The final way of changing the buffer is for the programmer to pass a sequence of characters to the 

inp object, which are interpreted as commands exactly as if they had been typed by a user. 

The programmer can retrieve the characters currently in the buffer at any time, provided the user is 

not in the process of editing the buffer. (Once that editing process begins, it continues uninterrupted 

until the user enters the exit command.) Examining the buffer does not affect its content or the 

internal state of the inp object; the position of the editing cursor, for example, does not change. 

These two data structures are general enough to be used in many situations; an inp object could be 

used to read information from the keyboard, and most data structures could be converted to an array 

of strings before being displayed. The programmer must decide whether to use one of these general 

data structures or to write specialized redisplay procedures for his application-specific structures. 

Often the former will be simpler to do, but the latter can result in better performance. For example, a 

menu could be displayed as a sequence of strings. A special menu redisplay procedure, however, 

could make use of the fact that the text of the menu does not change. Such a procedure would only 

have to update the "current" menu selection and scroll the menu image as needed. 

4.3 Evaluation 

The CLU implementation of the Ecole display manager satisfies most of the requirements listed in 

Chapter 2. It supports a hierarchical window structure, automatically resolves conflicts between 

overlapping windows, and provides a means for displaying any type of data structure. Because the 

implementation was abandoned when our research group switched languages, some important 

features were never implemented. For example, the software did not drive a bitmap display and did 

not have high-level facilities for managing the available display area. Also the architecture of the 

display manager contained some conceptual problems that were never resolved. 

First, the software is somewhat tedious to use; the programmer has to go through several steps in 

order to get a data structure to appear on the screen. He needs to first create a doc object to contain 

the data structure and redisplay procedure. Next, he has to create an area to define the shape of the 

basic window that contains the doc image, and create that window. Finally, he positions the basic 

window within a compound window. Although having a separate doc object was conceptually 

satisfying, because it captured the notion of an image of a data structure, the information it contained 

could have been integrated into the basic window itself, which would eliminate one step. Also, the 

shape of a window could have been limited to rectangles and more simply described by Its length and 

width. 

40 



Another problem with the implementation was the fact that the display manager did not 

automatically update the image on the display in response to changes to the window structure. For 
-

example, if the programmer moved a window, the corresponding information on the screen did not 

automatically move as well. There are two consequences of this problem. First, there can be an 

inconsistency between the state of the window hierarchy and the image on the screen, which makes it 

more difficult for a program to determine what information is currently displayed on the screen. 

Second, knowledge of how the window hierarchy changes would simplify the task of incrementally 

redisplaying the affected windows. Without this information, the individual redisplay algorithms must 

concern themselves with globa_I changes to the display, rather than only local changes to underlying 

data structures. The prototype version of Etude suffered from the same problem; the solution, which 

was not entirely satisfactory, required a complicated mechanism to keep track of the order in which 

images were redisplayed. 

Despite the fact that the display manager implementation contained these deficiencies, it is being 

used in a calendar management program, which was developed by another part of our research 

group (10, 11, 12). The display manager provided mechanisms for organizing information on the 

display, which were missing from the standard · CLU output system. In particular, the calendar 

implementors used its capabilities for displaying multiple, overlapping windows. 

The calendar program constantly displays several windows: two status lines, a part of the user's 

calendar, and a command input line. At various times, the program acids other temporary windows to 

the display. Messages to the user appear in a window that overlaps the right half of the calendar 

window. Also, when the program reads the arguments to a command, it displays a form for the user 

to fill in. A form consists of several small windows, which contain either a prompt string or a text 

buffer that can be edited. 

Internally, the calendar uses the two data structure types described in section 4.2.4 for interfacing 

to the display manager. lnp objects with a modified command set are used to react input from the 

user, and arrays of strings. are used to display other information, such as the calendar itself. The 

calendar programmers were able to use these general redisplay procedures, because their 

application did not require a more sophisticated incremental redisplay algorithm; the simple 

optimizations provided by the virtual screen output operations were sufficient. This decision also 

saved them the effort of writing specialized redisplay procedures. 

The programmers did have difficulties in organizing their software to effectively use the display 

manager. Most of their problems were due to the lack of a systematic method of using the tools 

provided by the display manager. For example, they had to develop their own method for displaying 

popup windows. To display such a window, they first add it to the window hierarchy, redisplay it, and 

then immediately remove it from the hierarchy. The information contained in the window would 

remain on the display until the window it covered was redisplayed. Although this technique seems to 

be unusual, it resulted in the correct sequence of images on the screen. 

41 



The switch in language from CLU to MDL gave me the opportunity to consider the problems with 

the first display manager implementation. The major improvement in the MDL version are specific 

mechanisms for performing tasks such as adding a window to the display. The following chapter 

describes the architecture of the current version of the Ecole display manager, which tries to address 

these issues. 

. ' 

42 



Chaple r Five 

Current Architecture 

The design of the CLU version of the display manager was strongly influenced by the Lisp Machine 

window system, in the sense that it provides similar advanced capabilities, such as overlapping 

windows, and handles all the associated low-level details. In retrospect, however, this approach was 

inappropriate for our project. The Lisp Machine Is intended to provide a general-purpose 

programming environment, which includes a flexible set of display tools. Our office workstation, 

however, is designed to provide a particular set of applications; the Ecole display manager, therefore, 

does not require the same degree of .flexibility as the Lisp Machine window system. One of our 

important design criteria is exactly the opposite; we want to encourage uniformity in the way in which 

subsystems use the screen. 

The current implementation of the Ecole display manager, which is written in MDL, takes a different 

approach from the CLU version. It provides a less sophisticated set of capabilities, but a more 

systematic way of using them. Most subsystems should be able to use the simpler display model 

defined by the display manager, without any fundamental limitation of their capabilities. In the few 

other cases, the programmer will be able to implement a more complicated display model, by 

handling some of the low-level details ~imself. 

5. 1 Overview 

The two implementations of the display manager share a similar basis. In the MDL version, virtual 

screens are still used for performing output, while windows capture information about what is 

displayed in a virtual screen. The implementation of virtual screens is essentially the same as in the 

CLU version, except that virtual screens are only rectangular; the implementation of a window, 

however, is simpler than before. A window is composed of a virtual screen, a data structure, and 

information about the part of the data structure image that was displayed in the window. The latter 

component is used to implement incremental redisplay. 

Although the concepts are the same in the CLU and MDL versions of the display manager, the way 

in which these concepts are used is different. Previously, the programmer created and manipulated 

windows, and used virtual screens only for performing output. Now, the distinction between virtual 

screens and windows is not as sharp. One component of a window is a virtual screen. To create a 

window, the programmer simply supplies its virtual screen component; he can also retrieve the virtual 

screen contained within a window. This change means that the programmer creates virtual screens 

himself, with the help of utilities supplied by the display manager (see Section 5.5). 

43 



Another change in the MDL implementation concerns the ability of virtual screens to clip all output 

at their boundaries. In the CLU version, this ability, combined with the fact that only the display 

manager created virtual screens, ensured that no subsystem could display characters outside its 

assigned window. Clipping slows down the character output procedure, however; in order to improve 

efficiency, the MDL display manager allows the programmer to selectively turn off clipping. 

In fact, we expect that most subsystems will not use clipping, because subsystems format the 

information before they display it. The purpose of formatting is to ensure that the information fits 

within a specified boundary, which is usually within the subsystem's assigned virtual screen. If the 

formatter is working properly, then all characters displayed by a subsystem will appear inside its 

virtual screen, so clipping is unnecessary; if characters do appear outside the virtual screen, then 

there is an error in the subsystem's software. 

This approach is valid only if it does not add complexity to a subsystem's formatting and redisplay 

procedures. In particular, the procedures should not have to deal with virtual screens that are non· 

rectangular. The MDL display manager solves this problem by restricting the ways in which windows 

can overlap (see Section 5.5). 

Lastly, the MDL display manager includes four important features that correct deficiencies present 

in the CLU version: 

• a systematic way of positioning the display's built-in cursor 

• the ability to drive a bitmap screen and display multiple character fonts 

• support for incremental redisplay algorithms 

• a more structured mechanism for adding windows to the display 

The following four sections describes each of these additions in more detail. 

5.2 Glyphs 

The mechanism for positioning the built-in cursor used in the first version of the display manager 

was very simple; there was a procedure that moved the cursor to a point within a given window. This 

approach is inadequate for our workstation, because it does not address two important issues. First, 

there was no overall organization of the way in which this procedure was used. Such an organization 

is needed because the active subsystems, as well as the command parser, are all competing for the 

chance to position the cursor. In addition, performing output also moves the built-in cursor; the use 

of the cursor-positioning procedure, therefore, must be coordinated with the redisplay process. 

Second, there was no provision in the CLU implementation to display multiple cursors or cursors 

with different appearances. The ability to display multiple cursors helps to solve the problem of 

44 



competition-each subsystem can display a cursor if it chooses. Cursors with different appearances 

can be used to distinguish the different subsystems or different operating modes. 

The MDL version of the display manager addresses the problem of organizing the position of the 

built·in cursor with the glyph object fytpe. A glyph represents one potential position of the built-in 

cursor. Each subsystem is assigned a glyph that it positions as part of its redisplay process; the 

command parser then selects the glyph that should be associated with the built-in cursor. 

The implementation of glyphs is very simple. A glyph consists of a virtual screen and a pair of 

integers that specify its position within that virtual screen. The display manager provides procedures 

for positioning a glyph, changing its associated virtual screen,·and designating the "current" glyph 

(ie., the glyph associated with the built-in cursor). Each of these procedures updates the position of 

the built-in cursor, if necessary. 

Although this implementation of glyphs does not solve the second problem-multiple displayed 

cursors and multiple cursor appearances-the basic design could be extended to also address this 

issue. The display manager would have to include additional software to display glyphs, rather than 

using only the hardware cursor; it would also need a mechanism to allow the programmer to specify 

the glyph shape. An intermediate solution would display multiple glyphs, but not provide control over 

their appearances. Each glyph would look the same on the screen, except that the current glyph 

would be highlighted by blinking. 

Another extension to the implementation of glyphs would allow a glyph to refer to a rectangular part 

of a window. Such a glyph could identify a menu entry or a larger block of text such as a paragraph. 

The latter capability is especially desirable in Etude, because documents are represented as a 

hierarchical tree of objects. 

5.3 Fonts 

An important addition to the MDL'display manager is the ability to drive a bitmap screen. To do 

this, however, requires more than just software for performing output operations. Because of the 

flexibility of the bitmap screen, it is possible to display proportionally-spaced characters,22, as well as 

characters of different heights. Programmers need a mechanism for determining the size of displayed 

characters in different fonts, in order to properly format information on the screen. 

In the display manager, information about character fonts is captured in font objects. A font object 

contains the typographic name of the font (eg., "10-point Times Roman Boldface"), the height of the 

font in pixels, which is the same for all characters in the font, and the width In pixels of each 

22tn a proportionally-&paced font, characters vary in width; for example, the letter "I" Is narrower than the letter "M." 

45 

---~---------------------~-----



character. The display manager provides a procedure for retrieving any of these attributes, given a 

font object. 

The programmer gets a font object by calling a font lookup procedure with a font specification as 

an argument. This specification consists of three parts: 

• The intended output device. The device component is used to display information on the 
screen as it will look when printed on a particular hardcopy device. In the current 
implementation, the device component is ignored; the lookup procedure returns a font 
object that describes one of the fonts built into the display. 

• A font family. A font family refers to a group of character fonts, such as the body text, 
footnote, or title fonts. In the current implementation, this component is assumed to refer 
to body text fonts. 

• A face name. The face name selects one font of a family according to the purpose of the 
font. The current implementation defines four faces: Roman, bold, italic, and built-in; the 
last of these refers to the fixed-width font built into the display. Other faces that might be 
added are bold italic and mathematical symbols. 

Given a font specification, the display manager returns the font object that most closely satisfies 

that specification. On a conventional terminal, there is only one font, so the lookup procedure always 

returns the same object. In the case of a bitmap display, however, the lookup procedure currently 

can choose from four fonts-one for each of the defined face names. Again, despite the fact that the 

implementation is incomplete, the interface was designed to easily allow future extensions. 

5.4 Redisplay 

The redisplay process in the MDL display manager is more integrated with the command parser 

than was the one in the CLU version. The display manager invokes a subsystem's redisplay 

procedure using the parser's general mechanism for executing subsystem commands. Each 

subsystem programmer defines a dispatch table, which is a list of the procedures to use in order to 

perform a command. Entries in the dispatch table can also refer to internal commands that are 

invoked by Ecole itself, rather than by the user. This mechanism provides a general way for Ecole to 

interface to different subsystems. 

One internal command defined by the display manager is "REDISPLAY", which invokes the 

subsystem's redisplay procedure. A redisplay procedure accepts as arguments the object to 

redisplay, a window, and a glyph; the window, in turn, contains a virtual screen and information about 

what that virtual screen contains, which is used to implement incremental redisplay. The redisplay 

procedure is responsible for updating the image in the virtual screen, positioning the glyph, and 

returning the new value of the incremental redisplay information, which the display manager stores 

back into the window. 

46 

---------- --------------------



The information used to implement incremental redisplay can take any form, depending on the 

underlying data structure and algorithm used to update its image. In the case of an Etude document, 

this information is a list of the lines that were last displayed, along with the part of the virtual screen 

they occupied. The display manager also defines special cases for the incremental redisplay 

information, to correspond to situations in which the virtual screen is completely blank or in which 

nothing is known about the content of the virtual screen. 

The actual algorithm used to redisplay an Etude document is similar to the one used in the 

prototype version of Etude (described in Section 3.1.2). That first algorithm searched the lines that 

were about to be displayed for .a sequence of lines that were already on the screen, but in the wrong 

position; those lines were then moved to the correct position. Finally, the algorithm looked at the list 

of lines again, and completely redisplayed a line if either its content or position was changed. 

One problem with this algorithm was that it required several passes through the incremental 

redisplay information. the only way to:determine where a given line was displayed on the screen (if at 
all) was to look at the entire incremental redisplay table; because the algorithm tried to find the largest 

block to move, it had to do more searching than was usually necessary. The current algorithm is 

designed to handle only the typical cases of inserting, deleting, and moving lines, and ignores 

situations in which more complicated changes occur. This approach, which is the same as that taken 

by Emacs, requires less searching of the incremental redisplay information. 

Another way in which Etude's redisplay process was improved was by having the formatting and 

redisplay processes cooperate. The formatter already examines each line before it is redisplayed. 

Some of the information needed by the redisplay process can be gathered, therefore, during 

formatting. In particular, the formatter can determine the extent of the changes made to the 

document, which will limit the extent of the searching required during redisplay. This is also similar to 

Emacs, in which each command returns advice to the redisplay process about what part of the buffer 

it changed. 

The Etude incrmental redisplay algorithm does not efficiently handle the situations in which a single 

character is inserted or deleted; in these cases, it redisplayed the entire changed tine. These two 

operations make up a large fraction of the user's editing commands, and therefore should have an 

especially fast response time. There are two problems with adding an intra-Une editing algorithm to 

Etude, such as the one found in Emacs. 

First, lines in Etude are usually justified. Inserting or deleting a character, therefore, can change 

the sizes of all the inter·word spaces on the line; updating the display would require individually 

moving each word a small amount. Moving all the words on a line can be time-consuming, as well as 

distracting to the user. Bravo, however, is able to update the screen fast enough to avoid this 

problem. Another solution would be to justify the line containing the cursor so as to minimize the 

amount of movement, or suppress justification altogether. 

47 



Second, the current incremental redisplay algorithm would need to work more closely with the 

editor and formatter, in order to detect the case where a single character was inserted or deleted. 

The current algorithm, which operates on lines, has no way to determine what part of a line has 

changed. The solution is to provide a means for the editor and formatter to tell the redisplay 

procedure exactly what information was changed. 

5.5 Window Allocation 

As mentioned earlier, windows are created from virtual screens; the problem of allo~ating windows 

on the display is therefore equivalent to the problem of creating virtual screens. A virtual screen is 

created by specifying its length and width and the position of its upper left corner relative to an 

existing virtual screen. If the programmer chooses not to supply one, the containing virtual screen 

defaults to one that corresponds to the entire physical screen. It is also possible to change the size 

and position of a virtual screen after it has been created. 

Each subsystem is assigned a virtual screen, which it uses to create the additional virtual screens it 

needs internally. The display manager places no restrictions on the sizes of positions of these virtual 

screens. At the same time, it provides no support for resolving conflicts if to virtual screens overlap; 

the subsystem programmer is responsible for handling these low-level details. Generally, this will not 

be a problem, because subsystems will not usually require overlapping windows. It would make no 

sense, for example, if Etude displayed an image of a page in which two text c.olumns overlapped. 

The command parser also needs to allocate new windows on the display. It is responsible for 

displaying menus and help messages, as well as assigning windows to subsystems. Because the size 

ofthe display is limited, its entire area should be utilized at all times. A window allocated by the parser, 

therefore, must replace parts of existing windows. 

A display model that supports overlapping windows could be used in this situation. Because of the 

inefficiencies associated with implementing arbitrarily overlapping windows, we decided instead to 

adopt a more restrictive display model. In this model, the parser shrinks the sizes of one or more 

existing windows to create space for a new window. Furthermore, all the windows allocated by the 

parser extend the full width of the digplay. 

The prototype version of Etude used a similar display model. One important difference is that the 

Ecole display manager handles more of the details involved with shrinking a window and updating the 

screen. In particular, the image contained within· a shrunken window may have to be scrolled in order 

to preserve certain information on the screen. The Etude display manager performed this scrolling as 

part of the normal redisplay process, rather than as a special case; because of this, window allocation 

was not as efficient as it should have been. 

The display manager maintains a list of the windows already allocated by the command parser. 

48 



When the user makes a request, such as for a menu, the command parser asks the display manager 

to create a new window of a given size at a particular place on the display. The display manager 

shrinks the windows currently occupying the desired area and creates a new virtual screen, which is 

returned to the parser. Shrinking a window is done in much the same way as the normal redisplay 

step; the display manager invokes a programmer-supplied procedure using an Ecole internal 

command (this was described earlier on page 46). 

The allocation procedure accepts the same arguments as the normal redisplay procedure-a data 

structure, window containing a virtual screen and incremental redisplay information, and a glyph-as 

well as the desired size of the new virtual screen. It is responsible for shrinking the virtual screen and 

updating the existing image to fit within the new boundaries. Unlike the more general redisplay 

procedure, however, the allocation procedure assumes that the image is already correctly displayed 

on the screen, but may have to be scrolled; because of this assumption, it can quickly process the 

allocation request. 

It is important to realize that this restrictive display model only applies to windows allocated by the 

command parser; a subsystem is free to create any size window it chooses, although the display 

manager does not handle overlapping windows. Although this display model limits the positions of 

the parser's windows, it greatly simplifies the window allocation problem for two reasons. First, the 

display manager can more easily keep track of such windows than it can windows that overlap 

arbitrarily. Also, the fact that the wind~ws are always rectangular reduces the need for clipping within 

the display manager. 

Second, subsystems, as weU as the command parser, can more easily deal with this shape of 

window. Most of the information they display is line-oriented; if the height of their window is reduced, 

they display fewer lines. If the width of their window is reduced, they would have to: (1) display only 

part of each line, or (2) reformat the information for the new width. 

There are cases, in which a more general allocation mechanism could be used. The calendar 

program, for example, partially overlaps the user's calendar window when it displays a help message. 

Usually this is not a problem because the information in the calendar window often does not extend 

the full width of the screen. A possible extension to the display manager would support shrinking the 

width of windows to create space for a new window. 

5.6 Evaluation 

The MDL version of the display manager is an improvement over the CLU version because it 

handles many of the details that were not addressed in the first implementation. For example, it 

provides more systematic ways to position the built-in cursor, update the display, and allocate 

windows. It also drives a bitmap display and provides support to the programmer for using multiple 

49 



character fonts. Finally, it was designed with more thought towards the power of the underlying 

hardware and the requirements of our workstation; the result is a simpler display model that is more 

efficient and should be adequate for our current project. 

The current implementation still does not meet all the requirements listed in Chapter 2. Some of the 

capabilities were omitted in order to simplify the project, and allow me to quickly build a working 

version of the display manager. The previous sections described some of the ways in which the 

display manager could be extended; in most cases, the interfaces were design so that the extension 

could be implemented without major changes to the programs that use the display manager. 

The next step in the evolution of the ·Ecole display manager will be to examine how well the current 

architecture satisfies the needs of subsystems. The only concrete examples we have of office 

applications are Etude and the calendar manager. Both could be implemented within the Ecole 

framework and use the existing display manager. There are other subsystems, such as a graphics 

editor and a database system, that have slightly different output requirements; supporting these 

applications within Ecole may require significant changes to the display manager. 

50 



Chapter Six 

Summary and Future Work 

The Ecole display manager is one part of a general software foundation, upon which programmers 

can build office applications. Its main goal is to provide services to programmers, so that they can 

more easily use the video display of the workstation. Having a single mechanism for interfacing to the 

display simplifies the programmer's task, by providing functions that he would otherwise have to 

implement himself. In addition, it encourages a standard way of using the display. 

There are two independent versions of the Ecole display manager. The first was done in CLU and 

implements a display model that includes the concept of overlapping windows. This version was 

never fully completed because the workstation project switched implementation languages from CLU 

to MDL Although the CLU version provided some sophisticated display tools, it lacked a systematic 

way of using them; for example, there was no mechanism for managing window allocation. In 

addition, there were serious conceptual problems with its design. Despite its deficiencies, this 

version of the display manager is being used in a calendar program implemented by another part of 

our research group. 

The switch in implementation language required a second version of the display manager, and 

gave me the opportunity to consider the problems with the CLU version. The display model 

implemented in the MDL version is not as sophisticated as the one implemented in CLU; it did not, for 

example, support overlapping windows. After considering the applications we wanted to provide on 

the workstation, we decided that a simpler display model would satisfy most of our needs, and be 

more efficient and easier to implement. 

The MDL display manager also corrects the major problem of the CLU version, which was 

mentioned above. It provides simple mechanisms for: 

• positioning cursors on the display 

• using multiple character fonts 

• allocating windows within the command parser 

Our experience with the CLU version of the display manager, as well as the prototype version of 

Etude, indicate that these kinds of high-level functions are critical components of the display manager 

in an office workstation. 

The next step in the design of the Ecole display manager will be to examine how well it satisfies the 

needs. of different application programs. The current design was based on our experiences with 

Etude and the calendar management program, and meets their display management needs. There 

51 



are other planned subsystems, however, that do not have the same style of output, in particular a 

graphics editor and a personal database manager. Some of the capabilities that did not seem to be 

important, such as a more flexible way of allocating windows on the screen, may have to be added to 

the display manager. 

Many of the restrictions imposed on the display manager were made to simplify the project and 

allow me to quickly build a working version. Removing these restrictions primarily involves writing 

additional software; there should not be any major changes to the display manager design or 

interface. An example of this is the extension to glyph objects to support different appearances on 

the screen. 

Other restrictions were made in order to improve the efficiency of the display manager, such 

avoiding clipping within virtual screens and prohibiting overlapping windows. Removing these 

restrictions involves more fundamental changes to the display manager. These changes would 

require more display support in workstation hardware and/or operating system. Functions such as 

clipping output, saving and restoring display pixels, and maintaining a screen map are best handled 

at a lower level than the display manager software; they should be integrated into the workstation's 

primitive output operations. 

It is important to realize, however, that the current implementation of Ecole has not yet run on an 

actual workstation. We have been implementing the software on a mainframe computer, and 

communicating with displays over standard communication lines. Some of the efficiency tradeoffs 

made in the display m.anager, may not be necessary when the display manager software is finally 

moved to a single-user machine and has more control over output operations. 

52 



References 

1. Cannon, Howard. Lisp Machine New Window System. Seminar, April 24, 1980. 

2. Clark, Douglas W. The Dorado: A High-Performance Personal Computer-Three Papers. Tech. 
Rep. CSL-81·1, XEROX Palo Alto Research Center, Jan., 1981. 

3. Cole, M.S. The Challenge of the Reactive Desk. Proceedings of the Electronic Displays '75 
Conference, Sept., 1975. Session 5 

4. Deutsch, L. Peter and Edw~rd A. Taft. Requirements for an Experimental Programming Envi· 
ronment. Tech. Rep. CSL-80-10, XEROX Palo Alto Research Center, June, 1980. 

5. Finseth, Craig A. Theory and Pra~tice of Text Editors or A Cookbook for an Emacs. Tech. Rep. 
TM-165, MIT Lab. for Computer Science, May, 1980. 

6. Galley, S. W. and Greg Pfister. The MDL Programming Language. MIT Lab. for Computer Science, 
1979. 

7. Gilbert, Edward J. Windowing in the Document Production System. Working Paper WP-005, MIT 
Lab. for Computer Science, Office Automation Group, June, 1979. 

8. Good, Michael. A Programmer's Guide to Etude. Memo OAM-014, MIT Lab. for Computer 
Science, Office Automation Group, April, 1980. 

9. Good, Michael. An Ease of Use Evaluation of an Integrated Editor and Formatter. Master Th., 
Massachusetts Institute of Technology, Aug., 1981. 

10. Greif, Irene. PCAL: A Personal Calendar. Tech. Rep. MIT /LCS/TM-213, MIT Lab. for Computer 
Science, Jan., 1982. 

11. Greif, Irene. Teleconferencing and the Computer Based Office Workstation. Teleconferencing 
and Interactive Media '82, May, 1982. Also available as a part of MIT Lab. for Computer Science 
report number MIT /LCS/TM-218. 

12. Greif, Irene. The User Interface of a Personal Calendar Program. Proceedings of the NYU 
Symposium on User Interfaces, May, 1982. Also available as a part of MIT Lab. for Computer Science 
report number MIT /LCS/TM-218. 

13. Hammer, Michael et al. The Implementation of Etude, An Integrated and Interactive Document 
Production System. SIGPLAN Notices 16(June1981), 137-146. 

14. Itson, Richard. An Integrated Approach to Formatted Document Production. Master Th., 
Massachusetts Institute of Technology, Aug., 1980. 

15. Uson, Richard and Michael Good. Etude: An Interactive Editor and Formatter. Memo OAM-029, 
MIT Lab. for Computer Science, Office Automation Group, March, 1981. Revised May 1981. 

16. Knuth, Donald E. TEX and METAFONT: New Directions in Typesetting. American Mathematical 
Society and Digital Press, 1979. 

53 



17. Lampson, Butler W. Bravo Manual. 1979. Published in Alto User's Handbook. 

18. Liskov, Barbara, et al. CLU Reference Manual. Tech. Rep. 225, MIT Lab. for Computer Science, 
Oct., 1979. 

19. Mitchell, James, et al. Mesa Language "'!anual, Version 5.0. XEROX Palo Alto Research Center, 
1979. 

20. Morris, James. The XEROX Cedar Project. Seminar, December 4, 1980. 

21. Myers, Brad A. Displaying Data Structures for Interactive Debugging. Tech. Rep. CSL-80-7, 
XEROX Palo Alto Research Center, June, 1980. 

22. Newman, William M. and Robert Sproull. Principles of Interactive· Computer Graphics, second 
edition. McGraw-Hill, 1979. 

23. Niamir, Bahram. A Virtual Terminal Interface for Text Processing Applications. Memo OAM-011, 
MIT Lab. for Computer Science, Office Automation Group, Dec., 1979. 

24. Office Automation Group. Annual Progress Report. Memo OAM-017, MIT Lab. for Computer 
Science, Office Automation Group, June, 1980. 

25. Page, Ian and Anthony Walsby. The Q.M.C. Text Terminal. Proceedings of the Electronic 
Displays '78 Conferente, Sept., 1978. Session 4 

26. Page, Ian. Display Systems in the Electronic Office. International Conference on The Electronic 
Office, Institute of Electronic and Radio Engineers, April, 1980, pp. 203-216 .. 

27. Reid, Brian K. and Janet H. Walker. Scribe Introductory User's Manual. Second edition, 1979. 

28. Rosenstein, Larry. The ETUDE Redisplay Implementation. Working Paper WP-021, MtT Lab. for 
Computer Science, Office Automation Group, April, 1980. 

29. Rowson, Jon and Ben Salama. Virtual Displays. Proceedings of the Electronic Displays '78 
Conference, Sept., 1978. Session 3 

30. Seybold, Jonathan. The Xerox Star: A 'Professional' Workstation. The Seybold Report on Word 
Processing 4, 5Month =May (1981). 

31. Sproull, Robert F. Raster Graphics for Interactive Programming Environments. Tech. Rep. CSL· 
79-6, XEROX Palo Alto Research Center, June, 1979. 

32. Stallman, Richard M. Emacs: The Extensible, Customizable, Self-Documenting, Display Editor. 
Tech. Rep. 519, MIT Artificial Intelligence Lab., Aug., 1979. 

33. Teitelman, Warren. A Display Oriented Programmer's Assistant. Tech. Rep. CSL-77-3, XEROX 
Palo Alto Research Center, March, 1977. 

34. Teitelman, Warren. Interlisp Reference Manual. XEROX Palo Alto Research Center, 1978. 

54 



35. Thacker, C. P. et al. Alto: A personal computer. Tech. Rep. CSL-79-11, XEROX Palo Alto 
Research Center, Aug., 1979. 

36. Ward, Stephen A. and Christopher J. Terman. An Approach to Personal Computing. Digest of 
Papers, Compcon'GO, IEEE, Feb., 1980, pp. t160-lf65. 

37. Weinreb, Daniel and David Moon. Lisp Machine Manual. Third edition, MIT Artificial Intelligence 
Lab., 1981. 

55 


