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Abstract

This thesis defines a property called "view-serializability,” which formalizes internal consistency
for a system of nested atomic transactions. Internal consistency is a stronger condition than the usual
notion of database consistency, because it takes into account the views of transactions which will never
commit. In a distributed system, local aborts of remote subactions and crashes of nodes can generate
orphans:. active actions which are descendants of actions that have aborted or are guaranteed to abort.
Because it is not always feasible or efficient to elimate orphans immediately, special care is needed to
insure that they sec consistent system states when they are allowed to continue running. We investigate a
particular dynamic dctection strategy designed to detect orphans before they violate internal consistency.
This algorithm piggybacks abort and crash information on the normal messages between nodes. We
consider a simpler algorithm that only handlcs orphans arising from explicit aborts. We describe the
simplified orphan detection algorithm at various levels of abstraction, using an algebraic model
convenient for describing asynchronous systems. The highest-level model is specified in terms of a
(virtual) global state. At this level of abstraction we require that the states generated by the model satisfy
view-serializability. Lower-level models progressively localize the description of the algorithm’s
operation, and the lowest level of abstraction presents a fully distributed model of the (simplificd) orphan
detection scheme.
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1. Introduction .

Production of concurrent programs is a much more difficult task than production of sequential
programs. The sequential nature of human thought severely limits programmers’ ability to manage the
complexity of parallel processes. Distributed environments compound these difficulties; robust programs
must cope with non-local failures and with incomplete information about the global state of a system.
Primitives developed for local, sequential programming have proven inadequate for software
-developmcnt in distributed, concurrent systems. Additional mechanisms have been suggested which
allow programmers to think about concurrent programs for distributed systems using largely scquential

reasoning.

Current research [Liskov82, Best81] stresses use of the atomic transaction as a tool for
distributed software. Atomic transactions can insulate users from both the effects of concurrency and the
effects of failures, greatly simplifying reasoning about a system. If transactions are truly atomic, then
neither users nor the transactions themselves should see the effects of concurrency or failures. Our

concern is with the internal consistency property of transactions’ views.

Recent proposals have extended the transaction model to include nested transactions, which
allow sub-pieces of a transaction to run concurrently and fail independently [Reed78, Moss81]. In such a
system the independent failure of (sub)transactions can generate orphan processes -- active processes
which are running on behalf of a failed transaction. (We will refine and extend this definition below.)
Orphans complicate the implementation of atomicity; insuring that orphans’ views of the system state are
"consistent” with atomicity requires a more sophisticated algorithm than one which ignores orphans’

views.

This thesis develops a formal model of a distributed nested transaction system, and it shows that
the model satisfies a correctness condition representing "consistency of views.” Our transaction system

model includes a dynamic orphan detection scheme, which detects and exterminates orphans before they

see inconsistencies. This model is based on the design for the Transaction Manager of the Argus language

under development by the M.L.T. Distributed Systems Group [Liskov82]. Although the modcls in this
thesis simplify both the assumptions made by Argus about the distributed environment, and the specifics
of the Argus orphan dctection algorithm, the results contribute to confidence in the correctness of this
algorithm.

e .



1.1 Nested Transactions
1.1.1 Transactions and Atomicity

An afomic transaction is a computation that appears to occur instantaneously and indivisibly
from the point of view of any obscrver of its effects (except for an observer "inside” the transaction).
("Observer" here might refer to another transaction, or to a user of transactions.) If all operations on a
system take place through atomic transactions, then each transaction will have the illusion that it is run in
isolation: the effects of concurrency are not visible to any transaction. This synchronization property is
often referred to as serializability: for any observer (including the transactions themselves), the system
state secms to be the result of a serial execution of transactions. An execution of transactions can be
scrializable without being serial {as a trivial example, if no two transactions access the same data objects,

then any execution is serializable).

Another property of atomic transactions is failure atomicity: each transaction appears to have
run completely or not at all. An atomic transaction cannot “partially complete.” A transaction which
runs to completion is said to "commit;” a transaction which fails (and has no effect) is said to “"abort.”
Failure atomicity simplifies specification of the possible effects of a transaction, since only "good"

executions must be considered.

Atomic transactions simplify reasoning about a system because the effects of concurrency and
failurés can be ignored. Atomicity implics that if an integrity constraint (an invarian{) on the system state
is preserved by all transactions when run in isolation and to completion, then this invariant is preserved
by any (possibly concurrent) execution of thesc transactions. Local, sequential reasoning can be directly

applicd to a distributed, coacurrent environment.

1.1.2 Nested Transactions

Nested transactions extend the usual single-level structure of transactions to a hietarchical
structure. A nested transaction can contain other nested (sub)transactions, cach of which is atomic with
respect to the others. Nesting can be arbitrarily deep. Usual terminology for hierarchical relationships
applics to nested transactions. (Thus we refer to the “parent transaction” of a given transaction, or to its
“children,” etc. “"Ancestor” and "descendant” are considered reflexive; “"proper ancestor” and “proper

descendant” are the corresponding irreflexive relations.)



The child transactions of any transaction can run concurrently; their concurrent exccution must
be scrializable. Children can also commit or abort independently; a child commits to its parent, and its
effects will be undone if the parent subsequently aborts. It follows that permanent changes to the system
state occur only when top-level transactions commit.! (For details of the semantics of nested transactions,
see [Moss81].)

Nested transactions provide at least three advantages over single-level transactions: The ability
to create concurrent children at any level increases the overall parallelism in a system, which might result
in efficiency gains. Secondly, the independent abort of a child confines the effects of failure to the work
done by that child; the parent can take an appropriate action without aborting itself. This failure isolation
improves program robustness and simplifies error recovery. Finally, a program (or a transaction at any
level) can use (sub)transactions without regard to their internal concurrency. Concurrency neced not be

completely specified at the top level, permitting a decentralized design strategy.

1.1.3 Distributed Environment

Two differences between distributed and centralized systems make nested transactions
particularly appropriate for distributed environments. First, because distributed systems provide real
concurrency, a systematic method for managing parallelism becomes both necessary and desirable (for
efficiency). Second, the failure modes of distributed systems are much more complex than failure modes
of centralized systems because parts of the system can fail independently. For example, one node in a
network can go down without affecting other nodes, or the network can fail without directly affecting any
node. The nested transaction model allows applications to isolate these failures naturally. (Failure
isolation also contributes to node autonomy: an application running at one node maintains control over

the state at that node even if it spawns subtransactions at other nodes.)

1. For modifications to remain permanent when nodes crash, each node must provide sfable storage, and top-level commit must
insure that all changes are written to siable storage.
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1.2 The Argus System

Although we have attempted to make the models in this thesis relatively general, the Argus
system has been used as a starting point. We summarize here the characteristics of Argus which are
relevant to this work. Argus is a programming language intended to support distributed applications; this
language requires an extensive runtime system (for example, to handle transaction management). For

details on the language, sce [Liskov82).

The distributed environment of Argus consists of a set of nodes fully connected in some fashion
by a network. Nodes can crash at any time, and recover after an arbitrary down period. Storage at a node
is divided into volatile and stable storage; the contents of volatile storage are lost when the node crashes,

while the contents of stable storage survive crashes.

Nodes communicate by sending messages on the network. Delivery of messages is not
guaranteed: messages can be lost, duplicated, delayed arbitrarily, and reordered (i.e., delivered in an
order other than the order in which they were sent). The network can be partitioned for any period of
time. If one node attempts to send a message to another node, it might be unable to distinguish between

a lost message, a partitioned network, a crashed respondent, or a respondent that is slow to answer.

Data in the system is partitioned into objects; objects are atomic or non-atomic. We assume that
all objects are atomic. (Unconstrained use of non-ator;]ic objects is discouraged in Argus; non-atomic
objects are provided as loopholes to allow users to implement atomic types which are more efficient than
the "basic" atomic types provided by the system.) While a precise definition of atomic objects is beyond
the scope of this thesis (sec [Weih182] for a discussion), we assume that all atomic objects are implemented
using two-phase locks with a stack of versions as described in [Moss81]. When an action holds a lock on
an atomic object, other unrclated actions are excluded from accessing the objcct.2 (Chapter 8 defines a

structure which models the lock and version stack of an atomic object.)

Computation is carried out through actions, which are atomic transactions. A (sub)action runs
completely at one node, though it can spawn child actions at other nodes. Remote subactions are created
by a remote procedure call, which sends a message from the originating node to the remote node. This

message can contain parameters computed at the parent node. If the message is received correctly, the

2. Moss distinguishes between read and write operations; we will ignore this distinction for smplicity.
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subaction runs and can return a message to the parent. The child can commit to its parent, in which case
results can be passed back to the parent with a commit message, or it might abort. The parent can abort
the child at any time, but this abort is local to the parent’s node; the child might still be running at its own
node. The parent cannot "commit” the child: the child is committed at the parent’s node only if a
commit message is received from the child. We say an action commits to one of its ancestors if all actions
“between" that action and its ancestor commit. We say an action commits through the top level if all

ancestors of that action commit.

Effects of actions are written to stable storage when their top-level ancestor action commits. A
two-phase commit protocol insures that the top-level action commits everywhere or not at all (again,
consult [Liskov82] for details). If a node crashes after an action runs there, and that action has committed
to its ancestor top-level action, then the crash will be detected during two-phasc commit. Thus the
top-level action will be aborted. It follows that a crash which undoes the effects of an action (i.e. a crash
which precedes the recording of that action’s effects on stable storage) guarantecs that some ancestor of
that action will abort. (This ancestor might not be the top-level ancestor: a lower ancestor might abort,

and then the crashed node would not necessarily be checked at two-phase commit.)

1.3 Orphans

An orphan is an active action that is guaranteed not to commit through the top level. In Argus,

orphans can be created in two ways: a proper ancestor can explicitly abort, or a crash can occur.

1.3.1 Creation of Orphans

Argus allows parent actions to unilaterally abort their children, because user requirements
might make it unacceptable to wait for confirmation of the abort from the child’s node. Com;ilete
confirmation would require that each aborted child recursively abort its active children; thus the parent
would have to wait until all descendants of the child were halted. Since one of the main reasons for
aborting the child might be that the child is not responding (perhaps because of a network partition, or
because the child’s node crashed), waiting for descendants to be halted could delay the parent
indefinitely. Some applications cannot tolerate the possibility of indefinite delay.

Since a parent action can abort a child at the parent’s node only, aborted children (and their
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descendants) might still be- active, and might thus be orphans. These orphans arc a necessary
conscquence of a user requirement for bounded delay; they are not the result of a "lazy extermination”

strategy.

Orphans result from a node crash when an active action at that node has active descendants at
other nodes. This situation is similar to the case of explicit aborts since the active ancestor is effectively
“aborted" by the crash. A more complex type of orphan generation occurs when a crash releases a lock
held by an action which has committed up to some ancestor, but not through the top level. The lowest
active ancestor, and all its active de'scendants, become orphans since they are guaranteed not to commit
through the top level. Since this lowest active ancestor might abort -- or be aborted by its parent -- the
crash need not affect higher ancestors. If the lowest active ancestor commits to its parent, the parent and
all active descendants of the parent become orphans. If the "infected™ ancestor commits to its top-level
ancestor, then the crash will be detected during two-phase commit, and the top-levél ancestor will abort.

This type of orphan could be prevented by keeping locks and versions in stable storage.

1.3.2 Problems Created by Orphans

Orphans are unpleasant, though necessary, side-effects of aborts and crashes. Since their effects
are destined to be undone, exterminating orphans cannot do harm. The main concern of this thesis is

with the possible adverse consequences of not exterminating orphans "soon enough.”

1.3.2.1 Resource Wastage

Orphans consume resources and compete with non-orphans for these resources. Orphans can
deadlock with non-orphans, causing non-orphans to be aborted unnecessarily (depending on the
deadlock strategy). Resource allocation problems are unlikely to be severe unless orphans are created
very frequently. While efficiency issues might be crucial for a working system, this thesis only addresses

the semantic problems associated with orphans.
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1.3.2.2 Internal Consistency

The transaction management algorithm described in [Moss81] does not guarantee atomicity
from the point of view of orphans. Orphans can observe system states which are not consistent with
serializability (i.e., they can observe the effects of concurrency). Moss’s algorithm does not preserve
internal consistency. The orphan detection algorithm described in the next section is designed to

guarantee internal consistency.
We present two examples of such inconsistencies:

1. (See Fig. 1.1. Note that conventions for figures appear in Appendix 1.) Initially integers x
and y (at different nodes) have values 0. There is an integrity constraint on the system state
that x = y. Action Al runs, rcads x = 0, (does not modify x), and commits to A. A then
holds a lock on x. (See [Moss81] for a detailed description of the locking protocol.) A then
spawns action A2 (passing A2 the information that x = 0), and then A aborts (after the
message is sent to creatc A2), making A2 an orphan. The abort of A releases A’s lock on x,
allowing B to run to completion and increment both x and y through concurrent children Bl
and B2. B commits, releasing its locks on x and y. If A2 (now an orphan) is allowed to read
y, it will view y = 1, which allows A2 to infer that x # y (an "inconsistent” view, sincex =y
will always hold for any serial schedule).

Fig. 1.1. Orphan from Explicit Abort

/\
N\ /\

Al,c —— A2 Bl.c ,C
x,0 y x.O y.0

orphan
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2. (See Fig. 1.2.) As in the above scenario, integers x and y (at different nodes) have initial
values 0, and there is an integrity constraint on the system state that x = y. The same events
occur as above: Al reads x and commits, and A creates A2. Instead of an abort at A,
however, x's node crashes. This crash releases A’s lock on x, and it makes A (and thus A2) an
orphan. As above, B then runs to completion and increments both x and y. B commits,
releasing its locks on x and y. If A2 (now an orphan) is allowed to read y, it will viewy = 1,
which allows A2 to infer that x # y.

It is not clear whether internal consistency is an important concern for a transaction system.
One might argue that orphans’ views are not important, since orphans will be aborted (eventually)
anyway. Since all actions expect a serializable system history, however, programs might function
"correctly” only when their views are consistent. Their behavior when views are not consistent might be
unpredictable or even catastrophic. (For example, an program guarantced to terminate under normal
conditions might be non-terminating when faced with an inconsistent view.) Orphans could also transmit
their inconsistent views to outside parties, via channels which are not under the control of the transaction
system. For example, when a user interactively debugs a process that is an orphan, he sees the orphan’s
(possibly inconsistent) view. This inconsistency might mislead the user, since he might have no direct

way of determining that his process is an orphan. A system which permits terminal output by any action

Fig. 1.2. Orphan from Crash

u
A B,c
Al,C wems——) A2 Bi,c B2,c
x,0 ' y x,0 y.0

(x's node crashes
after Al runs)

orphans
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suffers the same problem. (Since terminal output is irreversible, the effects of any aborted action cannot
be undone. The orphan’s output represents a worse problem, however, since this output might reflect an

inconsistent state.)

1.3.3 Orphan Detection Scheme

The basic orphan detection strategy in Argus piggybacks abort and crash information on all
channels of information flow between actions. This additional information is used to infer that processes

are orphans; these processes are then exterminated.

Our execution modecl ignores crashes; we deal only with orphans arising from explicit aborts.
{We believe that the correctness condition for internal consistency that we develop in Chapter 3 should
also apply to a model which includes crashes, although we have not investigated ctashes in detail.) We
present here a bricf description of an orphan detection scheme similar to the portion of the Argus
algorithm which handles explicit aborts. The transaction system model we develop is based on this
scheme. Our simplified algorithm ignores many of the optimizations envisioned for the actual Argus

algorithm,

User programs at nodes communicate via remote procedure calls and returns. In addition to
these messages, transaction system messages are sent between nodes to update the status of actions as they
commit and abort. Commit and abort messages update the locks and versions of atomic objects. There
are many possible strategies for communicating commit and abort information. For example, when an
action commits or aborts, a commit message could be sent immediately to all nodes where descendants of
that action have run. Alternatively a querying strategy could be used where queries are sent about the
status of an action only when another action wants a lock held by that action. (The commit and abort
messages would then be possible responses to a query.) Our model will not focus on these strategies; we
focus on the orphan information which is attached to messages whenever these messages are sent. We
regard the return message from a remote procedure call as a commit or abort message, depending on
whether the child committed or aborted. The return message might include return values, but since our
concern is only with orphan information we need not distinguish between return messages and

transaction system messages.

Our model has three types of messages: create, commit, and abort messages. A crecate message

models a remote procedure call. Although in Argus a “create” message will only be sent directly from a
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parent node to a child node, for simplicity we assume that a create message can be sent indirectly through
any other node. Communication in our model is very unrestricted; essentially any node can send a
message to any other node at any time. The messages that a node can send are limited by what is known
at that node (c.g., a node can only send a "commit A" message if it knows that A is committed), and by

rules for piggybacking orphan information on messages.

The orphan information at each node is a list, DONE, of known aborts. Any action which is a
descendant of an action in DONE is an orphan and is exterminated. Our rules for piggybacking orphan
information are quite simple: a create or commit message must include the entire DONE list from its
sending node; this list is added to the DONE list at the receiving node when the message is received, and

known orphans are exterminated. An abort message need not include any information from DONE.

The information flow in this algorithm for the example given in Fig. 1.1 is shown in Fig. 1.3.
When A aborts, the abort message releasing Al’s lock on x adds A to x’s node’s DONE list. This DONE
list is transmitted to B’s node when Bl commits. After B2 runs and commits to B, and B commits, y's
node will eventually learn of B’'s commit. The message that B has committed will contain the DONE
from B’s node (which now includes A). Thus y’s node will know about A’s abort. The commit message
of B releases B's lock on y, but A2 is now a known orphan aty: A2 is exterminated before it can acquire

the lock on y and see an inconsistent state.

. The flow of crash information is similar to the flow of DONE information. (We describe the
mechanism only superficially here; the actual algorithm is quite complex.) The basic scheme requires
each node to maintain a stable crash count, which is incremented during recovery from any crash. The
orphan information relating to crashes consists of currently known crash counts for nodes plus the crash
counts seen by actions when they ran at these nodes. An orphan is detected when it is discovered that a
crash count "depended on” by an action (essentially a crash count for a node at which a committed
relative has run) is lower than the currently known crash count for the same node. The discrepancy in

crash counts implies that a node crash must have occurred since a committed relative ran at that node.
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Fig. 1.3. Orphan Detection

A runs at node M, B at node N

A1,B1 run at node X (object x resides at X)
A2,B2 run at node Y (object y resides at Y)

(1) Al runs and commits to A; A spawns A2 (A2 has not read y)
B spawns B1; Bl waits because A holds a lock on x

DONE LOCKS/VERSIONS

]
v\
/

A1)C wp A2 B1

, held by A

<>xzX
[CRCRORN]

x=0
y=0
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(2) A aborts; abort message sent to X, releasing lock to Bl.
Bl increments x and commits; commit message sent to N (with DONE)

DONE LOCKS/VERSIONS
u
/ \ M {A}
A2 B N {A)
X {A} x=0, held by B
Alc =y A2 Bl,c Y ] y=0
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(3) B2 runs and increments y and commits. B commits, sending commit
message {with DONE) to X and Y. Commit of B arrives at X and Y,
releasing B's locks.
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(4) A2 is aborted because it is a known orphan at Y.
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1.4 Related Work
1.4.1 Transaction System

Our transaction system model is based on the design presented in [Moss81]. Moss gencralizes
two-phase locking for nested transactions, and he develops a recovery scheme based on multiple (backup)
versions of objects. His transaction manager functions in the presence of both node crashes and
communications failures. He describes distributed algorithms for locking and version restoration,
transaction management (including two-phase commit for top-level transactions), and deadlock detection.
Although our formal model ignores many of the complexitics that Moss considers (in particular, node

crashes), it relies heavily on his basic framework.

A different approach to nested transactions is explored by Reed in [Reed78). This scheme uses
timestamps ("pseudo-times™) for synchronization rather than using locks. Versions of objects associated
with old timestamps can be used for backing up a system to a consistent state. It would be interesting to
attempt to extend our models to a timestamp-based scheme such as Reed’s. While our lower-level
execution models incorporate notions of locks and version stacks, the higher-level models are relatively

general, relying only on a nesting relationship among actions and on a notion of "accessing” data.

1.4.2 Orphan Detection Algorithms

As mentioned above, the orphan detection algorithm we consider is based on the orphan
algorithm designed for Argus [Liskov82]. Though we are aware of no implementations of orphan
detection algorithms, Nelson explores several strategies for climinating the orphans which result from
node crashes [Nelson81). (Because his design is not based on afomic transactions, orphans from broken
locks or explicitly aborted ancestors do not arise: his orphans are simply processes running on behalf of
ancestors at crashed nodes.) The simplest such strategy is orphan extermination: After a node comes
back up after a crash, it exterminates all orphans by tracing all outstanding remote calls. As we discussed
above, an "immediate extermination” stratcgy would not be practical for Argus because of user

requirements for a bounded delay.

Because communications or node failures can declay extermination during crash recovery
indefinitely, Nelson suggests alternatec mechanisms which can be used in these (probably rare) cases.

Orphan expiration requires that a remote call inherit a time limit from its parent; when the time limit is
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reached the process running the call is automatically killed. Expiration can cause ncedless failures since
processes can be killed even if they are not orphans. The chosen time limit should be significantly longer

than “"normal” execution times to prevent these anomalies.

Finally, Nelson suggests a scheme which resembles the crash count mechanism in Argus: When
complete extermination during crash recovery is delayed, a node will declare a new epoch (i.e. increment
an "epoch” counter). All messages carry the current known epoch from the sending node. If a node
receives a message with an cpoch greater than its known epoch, it must either exterminate all currently
executing remote calls (assuming that they are orphans), or query the ancestors of remote calls to
guarantee that they are not orphans. The system reaches eguilibrium when all nodes have the same
epoch. This approach is most similar to the Argus algorithm because potential orphans are detected

dynamically based on information piggybacked onto normal information paths.

1.4.3 Formal Models of Atomic Actions

This thesis is a direct extension of the work described in [Lynch82]. Lynch gives the basic
definitions for action trees and serializability that we use here. She presents an execution model (at
several levels of abstraction) based on Moss’s transaction management algorithm, and she shows that
these executions satisfy external consistency. Our work extends the correctness condition for executions

to include internal consistency, and it modifies the exccution models to incorporate orphan detection.

Traditional concurrency control theory generally deals only with single-level transactions. The
usual approach is to define é dependency relation among transactions based on reads and updates, and to
show that acyclicity of this relation implies serializability (see [Papa79], for example). The basic theory of
two-phase locking and scrializability for single-level transactions is developed in [EGLT76]; this work

forms a basis for Moss’s system and hence for our models.

A formal mode! for nested atomic actions is developed in [Best81]. This model is based on a
dependency graph for events, where the notion of "dependency” is left uninterpreted. Atomicity is
defined in terms of “collapsing™ an event graph to replace a set of events (the events from an "atomic"
action) with a single (higher-level) event. Sets of events are configured in a tree structure, representing
the nesting relationship of actions. Acyclicity of inter-action dependencies is shown to be sufficient for
atomicity. (Lynch uses a data dependency relation to derive a similar acyclicity condition for
serializability.) The authors also define a condition which they claim is a generalization of two-phase
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locking, and they show that this condition implies atomicity.

The main difficulty with this dependency graph model is that the graphs cannot be easily related
to executions of a transaction system. The action trees developed by Lynch are simply summaries of
execution historics; "dependencies” are absent at this level of abstraction. (Although Lynch defines
lower level "augmented” action trees which include an ordering on accesses to data, the "dependencies”
expressed by this ordering reflect actual modifications to data in an execution sequence.) The advantage
of this approach is that Lynch is able to define execution models formalizing a transaction management
algorithm, and to prove that her high-level serializability condition is satisfied by these models. This
connection between execution models and correctness conditions (for "atomicity") is not explored in
[Best81]. We have followed Lynch’s approach: we define a condition modeling internal consistency at a
high level (the level of action trees), and We develop (at several levels of abstraction) a modcl of an

orphan detection strategy which guarantees this property.

1.5 Qutline of the Thesis

Before attempting to show that our orphan detection strategy is correct, we must develop a
considerable amount of formal machinery. Chapter 2 presents the basic action trec model as described in
[Lynch82]. (Some parts of this chapter are taken directly from [Lynch82]; though these definitions and
theorems are not original work of this thesis, we include them here for completeness of presentation.)
Serializability is defined for action trees, and a theorem is given relating serializability to acyclicity of data

dependencies.

Chapter 3 defines "view-serializability,” which models internal consistency. We present a
detailed argument explaining why this formal condition corresponds to our intuitive notion of "consistent

views."” The condition is defined in terms of the action trees and serializability definitions of Chapter 2.

Chapter 4 develops a general execution model for asynchronous systems, the "event-state
algebra.” We explore a strategy for hierarchical correctness proofs: A correctness condition for
executions of a system is defined using a high-level model of its behavior (an algebra); lower-level models
are then defined which are progressively closer to the "real” system, and mappings are described between
adjacent levels. We also describe distributed event-state algebras, which model distributed systems.

Chapters 5 - 10 define successive levels of event-state algebras modeling a transaction system
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with orphan detection. The correctness condition (view-scrializability) appears at Level 0 (the highest
level of abstraction). Level 7 (the lowest level of abstraction) is a distributed cvent-state algebra. At cach

new level we also construct a mapping to the previous (higher) level.

Chapter 11 summarizes our results, and suggests possible directions for extensions to this work.
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2. Action Trees and Serializability

This chapter gives basic definitions and lemmas for action trees and serializability. We define a
structure called an "action tree," which is an abstraction of an execution sequence of a nested transaction
system. Serializability (and related properties) are expressed as properties of action trees. This approach
presents minimal constraints on the implementation of a transaction system since we make few assumptions

about the details of concurrency control and recovery algorithms.

2.1 Notation

If S is a set, and o is some order which totally orders the elements of S, then <<S; 0>> denotes the

sequence consisting of the elements of S in the order given by o.
IfS is a set, then KS) denotes the powerset of S (the set of all subsets of S).

If Sisaset, and f: S — KS), then we associate f with the obvious relation on S ({(s,t): t € f{s)}), and we
use standard notation for relations. Thus we refer to the closure of a set under a function, we describe a
function as acyclic, etc. ft denotes the transitive closure of f, and f* denotes the reflexive-transitive

cldsure of f.
2.2 Action Summaries and Action Trees

2.2.1 Actions and Objects

Let obj be a universal set of data objects. For each x € obj, let values(x) denote the set of
values x can assume, including a distinguished initial value, jpit(x). A value assignment is a total
mapping f: obj — values(obj), such that Vx € obj, fx) € values(x).

Let act be a universal set of actions (i.e., transactions). Let U be a distinguished action. We
assume that the actions are configured a priori into a tree, representing their nesting relationship, with U

as the root. Forevery A € act- {U}, let pg_m_mmj denote the unique parent action for A. Then
siblings = {(A,B) € act2: parent(A) = parent(B)}

If A € act, then children(A) = {B € act: paren(B) = A}. Let top = children(U).
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anc(A) = the sct of ancestors of A, desc(A) = the sct of descendants of A
prop-anc{A) = anc(A) - {A}, prop-desc(A) = desc(A) - {A}

For A € act - {U}, define creator{A) as follows:
A €top = creator(A) = A
A ¢ top = creator(A) = parent(A)

If A,B € act, then let lca(A.B) denote the least common ancestor of A and B. Let

related = {(A,B) € act2: A € anc(B) V B € anc(A)}
unrelated = act2 - related

(Note that (A,B) € unrelated = Ica(A,B) € {A,B}.)
If S is a set of actions such that YA,B € S, (A,B) € related, then we say § s an ancestor chain.

If B € anc(A), then let ALB denote the single element of anc(B) N children(lca(A,B)). (Note that if A €
prop-anc(B), then Ica(A,B) = A, and A} B € children(A).)

It might be convenient for the reader to think of this a priori configuration of all possible actions
into a tree as a preassigned "naming scheme” for actions. That is, the "name” of an action is assumed to
carry within it information which locates that action in this universal trec of actions. In any particular
execution, only some of these possible actions will be "activated.” The (virtual) action U, the parent of all

top-level actions, has been added for the sake of uniformity.

Let seq C siblings be any fixed partial order, representing sequential dependency. If (A,B) €
seq, then A is constrained to run before B. For the sake of notational simplicity, we are assuming this
relation is also fixed a priori; we assume that the "name" of any action carries within it information about
which siblings the action can assume have completed. The use of an arbitrary partial order is a
generalization of both the total order usually specified for the steps which occur within a single-level

transaction, and the unconstrained order usually specified among the transactions themselves.

We also assume a priori determination of which actions actually access data, which objects they
access, and the functions they perform on those objects: Let accesses denote the leaves of the tree
described above. (We assume U € accesses, so that the set of actions is nontrivial.) Let gbject: accesses
— obj be a fixed function representing which object is read by a particular access. If object(A) = x, we
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say that A js an access to X, and we write A € accesses(x). For A € accesses, let update(A):
values(object(A)) — values(object(A)) be a fixed function. Let sameobiject denote {(A,B) € accesses2:
object(A) = object(B)}.

We define the relation of one set of actions covering another. This concept will be uscful for sets
of aborted actions used to detect potentially "harmful” orphans. The covering relation will express the
fact that a set has enough information to detect a harmful orphan. Let R,S C act be any sets of actions;
we say S covers R, and we write R 5 S if and only if for each element A in R, there is an ancestor of A

in S. The following lemma gives elementary properties of the covering relation:
Lemma 2.2.1.1: LctR,S,Q,T C act, A € act, then

a. RCS=R<LS
b. <istransitive: RS A ST = RLT
. RSSAQLT)=RUQLSUT

d RS A anc(A)NS =@ = ancA)NR =6

Proof: Straightforward from the definition. ]

2.2.2 Action Summaries

We describe an abstraction of execution sequences, using a structure called an "action
summary.” An action summary records the status of a particular set of actions (actions can be active,
committed or aborted). It also records the data values read by committed accesses. A slightly simpler
structure, an "unlabeled action summary” (or UAS) records the same information except for the data

values. An "action tree” is any action summary which is a tree:

An action summary. S, has components yertices. active, committed., aborted. and Jabel,

where

- verticcss is a finite subset of act
- activeg, commitiedg, and abortcdS comprise a partition of venicms. (These classifications

indicate the current status of each known action. When an action is first created, it is classified as active.
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At some later time, its classification can be changed to either committed or aborted. By “"committed,” we
mean that the action is committed relative to its parent, but not necessarily committed permanently.
Permanent commit of an action would be represented by classification of all ancestors of the action,

except for U, as committed.)

- labelS: datastepss — values(obj), (where gg_@s_{gpgs = committeds M accesses), with labels(A)
€ values(object(A)). (The label of an access to an object is intended to represent the value read by that
access. Since the access has an associated function, the value which the access writes into the object is
deducible from the value read, and therefore need not be explicitly represented.) The read and update of
an access are assumed to occur “instantaneously” when the access commits. (If an access aborts, it has no

label because it never sees the object.)

Let ﬂ_Q_rﬁS = committcdS U aborteds. Let mgugs(A) = ’active’ (respectively, ‘committed’,
‘aborted’) provided A € activc:s (respectively, committeds, aboneds). Let aCCessesg = verticesS N
accesses, accessesc(x) = verticcss M accesses(x), and dmggp_ss(x) = datastepsg M accesses(x). Let seqq
=seq N (veru‘cess)z. Let anc-seqq = {(A,B) € venicesszz B’ € anc(B) N vertices: (AB) € seq}. Let
gllilgr_mS(A) = children(A) N verticcss.

An unlabeled action summary has all components described above except labels. An action
tree, T, is an action summary where verticcsr isatreerooted at U: IfA € verticesr - {U}, then parent(A)
€ vertices,.

If T is an action summary, then unlabel(T) is the UAS obtained by omitting label,. Definitions
and lemmas for UAS’s carry over to action summaries in the obvious way (by applying them to

unlabel(T)).

2.2.3 Visible and Dead Actions

We describe actions whose existence is intended to be known to other actions (i.e. which are not
masked from those other actions by intervening aborts or active actions). We describe these properties

for UAS's; corrcsponding definitions and lemmas hold for (labeled) action summaries and action trees.

Let T be a UAS. For A € act, let visible (A) = {B € vertices;: anc(B) N prop-desc(ica(A,B))
C committed}. That is, visible(A) is just the set of actions whose existence is (potentially) known to A
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in T, because they and all their ancestors, up to and not including some ancestor of A, have committed.

For A € act, x € obj, let visible-(A,x) = visible(A) N datasteps (x). Let invisible (A) = vertices,. -
visibleT(A). The following lemma, which describes elementary properties of “visibility,” is proved in

[Lynch82}:
Lemma 2.2.3.1: Let T bea UAS, AB,C € act

a. A€desc(B) A BE vertices, = B€ visible.l(A)

b. A € visible(B) = A € visible(ca(A,B))

c. A€ visible(B) A B € visible(C) = A € visible (C)
d. A€ desc(B) A C € visible(B) = C € visible(A)

e. A€desc(B) A BE vertices; A A € visible(C) = B € visiblcr(C)

Actions which are not visible to another action might be masked by an intervening abort, or by
active actions only. If B is masked from A by an intervening abort, we say BisdeadtoAinT: if Tisa
UAS, and A € act, we definc dead (A) = {B € vertices: anc(B) N prop-desc(ica(A,B)) N aborted . #
©}. Note that visible(A) N dead (A) = @. If A € act, x € obj, then dead (A,x) = dead(A) N
datasteps(x). If Bisnotdeadto Ain T, wesay thatBislivetoAinT- If A € vertices, then we say A is
livein T iff anc(A) N aborted, = @, and A is dead in T otherwise. If Tis a UAS,A € vertices], and A
is dead in T, then we define the crucial abort of A in T, denoted ngiaHA). as the lowest aborted
ancestor of A in T: i.e., if S = anc(A) N aborted,, then crucial(A) €S,and VB €S, crucial (A) €
desc(B). (If A is not dead in T, then crucialT(A) is undefined. In this case we will consider that
{crucial (A)} = @, for convenience.)

Let T be a UAS, A € vertices, then we define

¥-5eg{A) = {B: (B,A) € seq A B # A} N visible(A)

i-seq,(A) = {B: (B.A) € seq A B # A} N invisible(A)

y-anc-5¢g,(A) = {B: (B,A) € anc-seq. A B € anc(A)} N visible(A) (sce Fig. 2.1.)

i-anc-seg(A) = {B: (B,A) € anc-seq A B ¢ anc(A)} N invisible {A) (see Fig. 2.1.)
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v-child {A) = children(A) N visible(A)
i-child,(A) = children(A) N invisible(A)
v-desc(A) = desc(A) N visible (A)

i-desc (A) = desc(A) N invisible(A)

2.3 Augmented Action Trees

We define a new structure called an aygmented action summary (or AAS). We can regard
AAS’s as action summaries with an additional component: an ordering on the datasteps accessing each
object. Formally we define an AAS as a pair T = <S,0>, where § is an action summary, and O: obj —
K sameobject), where for all x € obj, O(x) is a total order on datastepsg(x). (Thus O(x) C datastepsé(x).)
If T = <S,0> is an AAS, then we define crase(T) = S, order(l') = 0. We extend our notation for

Fig. 2.1. Visible and Invisible Ancestor-Sequence

P
B,C/—}\A\'

\
\

\
A

A

B € v-anc-seqy(A)

P
B,a/—-Q\A’ {or B could be active)

\

\
\
\

A

B € i-anc-seqp(A)
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components and functions of action summaries to components and functions of AAS’s in the obvious
way, by applying them to erase(T). (For example if T = <S,0), then we will use "verticesT" to refer to
vertjcess.) Definitions for action summarics and UAS's carry over to AAS’s in the obvious way (by
applying them to erase(T) or to unlabel(erase(T))). If T = <§,03, then we define data, = x? gj(x) .
An augmented action tree (AAT) is an AAS where crase(T) is an action tree.

Let Tbean AAS, A € vcrticesP then we define
v-data (A) = {B: (BA) € data, A B#AlIN visible,r(A)
i-data (A) = {B: (BA) € data, A B# A} N invisible(A)

v-data-anc(A) = {AlB}
B € v-daia(A)

i-data-anc(A) = Ufcrucial (B)}

B € i-data(A
y-precedes (A) = v-anc-seq(A) U v-child{A) U v-data-anc(A)
i-precedes (A) = i-anc-seq(A) U i-childr(A) U i-data-anc.l.(A)

The "visible precedence” relation, v-precedesy, will be used in Chapter 3 to define a "view tree”
which represents an action’s view of an execution histoi'y. We state here some elementary properties of

this relation.

Lemma 2.3.1: Let T be an AAS, A € vertices|. Then
B € v-precedes {A) = parent(B) = Ica(A,B).

Proof:

1. B€ v-anc-seq{A) = (B,A’) € seq for some A’ € anco(A), and B # A’, Thus
parent(B) = parent(A’) = ka(A,B).

2.B€ v-child,I(A) = parent{B) = A = lca(A,B).

3.B¢ v-data-anc,(A) = B = Alb for some b € accesscs. Thus B €
children(ica(A,B)), = parent(B) = lkca(A,B). 1§

Lemma 2.3.2: Let T bean AAS, A € vertices;. Then B € v-precedesT(A) =




BE visiblcr(A). and B € committedr.

Proof: B € visiblc,[(/\) is obvious from transitivity of visibleT (Lemma 2.2.3.1c). To see that
B € committed., note that if B € visible. (C) for some C, then B € committed,. or B €
anc(C).

But B € v-precedesT(A) = B € v-precedes (C) for some C, = B € visible (C). But B ¢
anc(C), by Lemma 2.3.1,s0 B€ committed. B

If Tis an AAS, A € vertices, then we define the view set of A in T as the v-precedesr-closure of
A: yset(A) = v-precedes}(A). The following lemma gives elementary closure praperties of view sets.

Lemma 2.3.3: letTbean AAS, A € vertices,, B € vset{A). Then

a. vseL(D) € vset (A)
b. v-desc{B) C vset{A)

c. v-data(B) C vset(A)

Proof: (a) is obvious from the definition. v-descT—closure (b) follows inductively from

v-child C v-precedes,. We show (c):

Suppose C € v-data(B). Then BJC € v-data-anc,(B)

= BJC € vset{(A), since vset{A) is v-precedes -closed.
C € visible (B) = C € v-desc(B|C).
But vset {A) is v-desc -closed by (b), = C € vset(A). @

The following lemma gives an ancestor-closure property for view sets (the view set itself is not
ancestor closed, but the view set of an action together with the proper ancestors of that action forms an

ancestor-closed set).

Lemma 2.3.4: Let T be an AAS, A € vertices;. If W = vset,{A) U prop-anc(A), then W is
anc-closed.

Proof: Let V = vset;(A). We show inductively that B € V = anc(B) C W. Since B €
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prop-anc(A) = anc(B)-.C prop-anc(A) C W, anc-closure follows.
Basis: A € W, anc(A) € {A} U prop-anc(A).

Induction: Assume B € V, anc(B) C W, and take C € v-precedesr(B). By Lemma 2.3.1,
parent(C) = Ica(B,C) = prop-anc(C) C anc(B)C W. ButC €V = {C} C W = anc(C)
cw. 1

2.4 Serializability

We define serializability for action trees. Let T be an action tree. A partial order p C siblings
is lincarizing for T provided p totally orders all siblings in T. A linearizing partial order p induces a total
order, induced, p ON accessesy, in the obvious way: (A,B) € inducedrp = (BJALA|B) €Ep. IfA €

accesses(x) and p is a lincarizing partial order for T, let preds, p(A) denote the sequence <{{B €
visible(A,x): (B,A) € inducedr'p A B=A}; induced,r. p>>.

If x € obj and s is some finite sequence of accesses, then we define result(x,s) as follows: Ifsis
the empty sequence, then result(x,s) = init(x). Otherwise let s = s’A, where A € accesses. Then

result(x,s) = update(A Xresult(x,s’)) if A is an access to x, = result(x,s’) otherwise,

A linearizing partial order p for T is said to be a serializing partial order for T provided p is
consistent with seq, and labeIT(A) = resu]t(x,predsr‘p(A)), forall A € datasteps{x). This definition says
that the value seen by each datastep is equivalent to the result of a serial execution in the order given by
p, where only committed actions have any affect. T is said to be scrializable provided there exists some

serializing partial order for T.

2.5 Serializability of Augmented Action Trees

An AAT, T, is serializable iff erase(T) is a serializable action tree. It is convenient to define a
stronger condition than scrializability for AATs, which we call "data-serializability." An AAT, T, is
data-serialjzable iff there cxists p, a serializing partial order for erase(T), with the additional property that

induced, p is consistent with data. Obviously if T is data-serializable, then it is serializable.

Data-serializability has a cycle-free characterization similar to those in usual concurrency control
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theory. First, we give a definition which says that the label of each access describes the correct object
value which the access should see, if the versions of objects are ordered according to the data order.

Formally, an AAT is version-compatible iff for every object x € obj, and every A € datasteps,(x), it is the
casc that labelT(A) = result(x,s), where s = Kv-data(A); data;>>. The following theorem is proved in

[Lynch82):
Theorem 2.5.1: An AAT, T is data-serializable if and only if both of the following are true:

a. Tis version-compatible.

b. There are no cycles of length greater than one in seqy U sibling-datar.

2.6 Restrictions of Trees

It is often useful to project an action tree (or an AAT) onto a particular set of vertices. We call

the resulting action summary a restriction of the original tree.

Defn 2.6.1: Let T be an action tree (or an AAT), VC vertices . We define the restriction of
T to V, denoted T}V, as follows: (let S = T|V)

verticesS =V
Vveyv, statuss(v) = statusl(v)
VA € datasteps, label(A) = label(A)

If T is an AAT, then datag = V2N data

We say S is a restriction of Tiff S = Tivertices;, We say § js a subtree of T iff S is a

restriction of T which is also a tree rooted at U (i.e. verticesg is anc-closed).

Stating the simplest correctness requirements for executions only requires consideration of
actions whose cffects become "permanent.” For an action trec (or AAT), T, we define a restriction of T to
all actions which have committed through the top level: perm(l) = Tivisible(U). It is casy to verify
that perm(T) is a subtrec of T.

The following lemma shows that if an action has no descendants in datastepsr, then it cannot
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affect scrializability of T:

Lemma 2.6.2: Let T be an action tree, A € vertices|. - {U}. If desc(A) N datastepsy = 2,
then T is serializable if and only if Tl(verticesr - desc(A)) is serializable.

Proof: LetT = 'I‘I(verticesT - desc(A)).

First we show T serializable = T  serializable. Let p be a serializing partial order for T, and
let p’ be p restricted to vertices... Then p’ is obviously a linearizing partial order for T". Let
B € datasteps,..

label(B) = label(B) = result(x,preds; p(B)), since p is serializing for T. But desc(A) N
datasteps, = g, = predsr p.(B) = prcdsl. p(B). Thus p’ is a serializing order for T".

Now assume T is serializable, and let p’ be a serializing partial order for T". Let p be any

linearizing order for T that is consistent with p’. Let B € datasteps;. Then B € datasteps..

labelT(B) = label.r.(B) = rcsult(x,predsr. p,(B)), since p’ is serializing for T". But desc(A) N
datasteps.r =@, = preds,. p.(B) = preds; p(B), since p is consistent with p’. Thus pis a

serializing order for T. B

We will frequently use trees that are restrictions of the global action tree with the exception that
the proper ancestors of one action are considered active (instcad of whatever status they have in the global
action tree). We term this process "backing up” an action tree since we are effectively undoing whatever
commits or aborts of the proper ancestors might have occurred. This construction will be useful for
defining trees represcnting the "view" of an action, since the action will believe its proper ancestors to be

active (whether or not they have already committed or aborted).

Defn 2.6.3: Let T be an action tree (or an AAT), A € verticesr. We define the tree T backed
up through A, denoted T//A, as follows: (let S = T//A)

vertice:ss = verticesy.
B € prop-anc(A) = statuss(B) = "active’
B¢ verticesr - prop-anc(A) = statuss(B) = statusr(B)

VA € datasteps, labelg(A) = label(A)
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If T is an AAT, then datas = dataT

Finally, for functions from actions to scts of actions we will occasionally want to exclude some
actions from the domain of a function. The set of actions excluded will always be the proper ancestors of

a particular action, so we define exclusion with respect to this action:

Defn 2.6.4; Let f: act — Kact). We define the exclusion of f from A, denoted f//A, as the

function:

(f7/AXs) = fis). if s € prop-anc(A),
= @&, if s € prop-anc(A)



3. View-Serializability

This chapter presents a correctness condition for action systems, which we call view-serializability.
The definitions relating to view-serializability are developed using action trees: no specific execution model
Jor generating these trees is yet assumed. View-serializability is intended to model "internal consistency:" a
system which generales only view-serializable action trees will not allow actions 1o see inconsistent stales,

even if these actions are orphans.

3.1 External Consistency and Internal Consistency

A fundamental property of atomic actions is that the effects of their concurrent execution
should be "equivalent to” an execution where each action is run in isolation, and (if the action commits)
to completion. Different notions of "equivalence” give rise to different conditions modeling atomicity.
External consistency of a transaction system requires that for any execution the view of an observer
outside the system is identical to the view that would result from some serialization of this execution.
There might be interaction between an action and a user which is outside the scope of the "system"” (e.g.
output to a terminal, which cannot be undone when an action aborts). Since a transaction system can
only make guarantecs about the states of objects under system control, we will ignore the effects of
“extra-system" communication on serializability. (Insuring consistency in such an environment is the
responsibility of user programs. At this level, "consistency" is an application-specific concept: for some
applications terminal output from actions which are later aborted might be acceptable, for example.)
Given this restriction, only actions which commit through the top level can affect the system state as seen

by an outside observer.

Internal consistency requires that the effects of concurrency are masked from any action in the
system. If a system provides cxternal consistency, then all actions which commit through the top level
must see system states consistent with some serial schedule. Other actions might see inconsistent states,
however. In particular, the views of orphans are not considered for external consistency, since orphans

cannot commit through the top level.

We model external consistency by requiring that perm(T), the subtree of the action tree
consisting of all actions which commit through the top level, be serializable. 1n [Lynch82], a model for a
distributed transaction system based on the locking protocol developed in [Moss81] is shown to be
externally consistent: Lynch shows that for all action trees, T, generated by the model, perm(T) is
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serializable.

To see that serializability of perm(T) is not sufficient to guarantee internal consistency, consider
the example from Fig. 1.1 The consistency constraint x = y is violated for action A2, but perm(T) (which
consists of U, B, B, and B2) is serializable.

Although serializability of perm(T) is not sufficient for internal consistency, serializability of the
entire action tree is not necessary for internal consistency. We can easily construct action trees for
executions which we believe are internally consistent (since no action can see an inconsistent state), but
which are not serializable. Consider the example shown in Fig. 3.1. Again, the integrity constraint on
the system state is x = y. Initial values of x and y are 0. Action Bl runs first, views x = 0, and then
aborts. Then actions A1,A2,B2, and B3 run (in that order). Al and B2 increment x, and A2 and B3
increment y. The tree is not serializablc, because A must be serialized before B (since B2 views x = 1),
yet Bl did not view the effect of Al. The tree is internally consistent, however, because no particular
action was able to observe x # y. (Bl viewed x = 0, but it had no information about the value of y. Since

Bl aborted, it did not pass its view of x to the rest of B.)

Thus serializability of the entire action tree is too strong a condition for internal consistency.
We need a weaker condition which takes into account the views of aborted actions and orphans as well as

the views of actions that commit through the top level.

In the following sections we will define the possible "views™ of cach action in an action tree, and

we will state a condition modeling internal consistency which is based on serializability of these views.

Fig. 3.1. Non-serializable, Internally Consistent Action Tree
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Using this definition, the only view for action U will be perm(T); thus our formal "view" for action U
corresponds to our intuitive notion of the view of an "outside observer.” Our condition for external

consistency will then be a special case of our condition for internal consistency.

3.2 Information Flow and Information Trees
3.2.1 Information: Object Values and Execution Histories

Internal consistency requircs that any action’s view of the system state must be consistent with
an "illusion” of serial execution. To formalize internal consistency, we must attempt to be precise about
what constitutes an action’s “view" in a particular system state. A simple approach would try to capture
the knowledge that an action has of the current values of objects. Thus for the example in Fig. 1.1, we
might say that action A2 knows that x=0, and if A2 is allowed to read y then it will know that x=0 and

that y=1 (an "inconsistent” view).

A definition which describes the view of an action as a (partial) binding of objects to known
values is not sufficient to handle more complex examples, however. Suppose that action A creates
concurrent children Al and A2 to read and update object x. x is a boolean object, assuming only logical
values (0 and 1). Both Al and A2 read x, and perform a logical nor operation on x. Al returns the value
0, and A2 returns the value 1. If A cannot determine which child ran first, then it is unsure of the

"current” value of x. -

This uncertainty about "current™ values can affect our notion of "consistency.” Suppose, for
example, that action C creates child C1 to read object x, and C1 returns the value x=1. C then creates
concurrent children C2 and C3, passing them the "information” that x=1. But C2 and C3 both read and
increment x. Depending on which action runs first, the later one will sce an "inconsistency” between
what its parent told it (x=1) and the current state (x=2). But if both C2 and C3 realize that the other

might have run first, then both can explain this potential "inconsistency.”

These examples illustrate that dircct information about the "current” value of an object is only
available to accesses which directly read that obj“ect. All other information is “hearsay,” in a sense,
because it expresses only what another action saw or was told. We thus regard the “information”
available to an action as its knowledge of the execution history of the system: an action might know with

certainly that action B read y=35, but it cannot automatically assume that the value of y is 5. By treating
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information as information about execution histories, we can explain the sceming ambiguities and
conflicts described in the examples above. For the first example, A’s information is that Al read x=0
and A2 read x=1. In the second example, the information available to C2 and C3 is that "CI ran and saw
x=1." Neither C2 nor C3 can conclude that the current value of x is 1. If C2 were run sequentially before
C3 (and C had no other children), then C2 could conclude x=1. This conclusion of C2 depends on a
serializability assumption, which is a basic part of consistency, and on C2’s knowledge of the structure of
other actions (in this case knowledge that no siblings can intervene between C1 and C2). We claborate on

these points in the following sections.

3.2.2 Paths of Information Flow

In designing system algorithms to guarantee consistency, we often take a "worst casc” approach
regarding information flow among actions. To define an action’s view in this sense, we must consider all
possible sources of information about the execution history to an action. We say that infornation flows

. from action A to action B if B learns something about the execution history from A. The actual value(s)
passed from A to B will gencrally be some function of the values of objects seen by A; we lose no
generality by assuming that A passes B its complete knowledge of the execution history. Again, this
assumption amounts to a worst-case approach for information flow: If action A reads object x, and A
passes some information to B, B does not necessarily have specific "information” about the value of x
seen by A. The actual values passed from A to B might be constants, for example, giving B no
information at all about the exccution history. But since B might have any information that A might have

had, we will assume that it does.

Let A be an action whose view is being defined. We imagine that actions are encapsulated in
procedure-like structures, with well-defined inputs and outputs. Thus we assume that information can
flow to A only in the following three ways:

1. If A is an access to x (and A commits), then A reads the value of x.
2. parent(A) passes information to A when A is created.
3. Committed children of A pass information to A when they return (i.e. when they commit to

A).

Path (3) is limited to committed children, reflecting an assumption that aborted children do not
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pass "information™ to their parents. If aborted children are allowced to return values to their parents (as in
Argus), then this assumption can be violated. In Argus, return values from aborted children are a
recognized "loophole” in the system. We retain our assumption because it models the fundamental
semantics of "abort" which are derived from atomicity: An atomic action runs completely or not at all. If
an atomic action aborts, all effects should be as ifit had never run at all, and an action which never runs

cannot return values.

A more subtle assumption is that the very fact that a child has aborted cannot give the parent
any "information” about the execution history, other than the fact that the child aborted. A child which
reads object x might be programmed to commit if it sees x =1, for example, and to abort otherwise. If the
child aborts, one might think that the parent could then assume that the child read x and found x#1.
However, we make a basic assumption that an action can be aborted at any time by the system, and that
the parent cannot necessarily distinguish between a system-initiated abort and an abort caused by the
child itself. For example, the system might abort a child because of a communications failure, even if the
child were going to commit. (In a practical system, such as Argus, it might be useful to identify the cause
for a system-initiated abort, so the parent will know how to procecd. These explanations for aborts fall
into the same "loophole” category as return values from aborted children.) Given the assumptions that
aborted children cannot return values, and that aborts are always possible, whatever the system state,

aborts serve as impenetrable barriers to information flow.

3.2.3 Circularity of Information Flow

We would like to describe the information available td an action in an action trec by listing all
the actions which are (potential) sources of information to that action. Our formulation of the three paths
of information flow is not convenient for this purpose, because it contains a confusing circularity:
information flows from a parent to its children, and also from a (committed) child back to its parent. By
naively following the paths of information flow we would conclude that an action is a source of
information to itself, which makes no sense. Of course this circularity is fictitious, because the flow of

information from parent to child happens at a different fime than the flow of information from child to

parent.

One approach based directly on the three paths of information flow above would be to define

the information available to an action as a function of time. By including time as a parameter of available
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information, the circularity described above can be removed (i.e. "available information” will no longer
be recursively defined). We would like to describe the information available to an action without
\ referring to time, however. Although the information available to an action does change as an execution
proceeds, we would like to capture the maximum amount of information that an action sces during an
execution. Since an action’s information can only increase over time, an action attains its maximum
information at its Jatest active point in an execution (if it completes, this point is immediately before it

commits or aborts).

We achieve a "time-independent” definition of available information below by reformulating

the paths of information flow. The alternate formulation contains no circularity.

3.2.4 Information Flow from Siblings of Ancestors

We remove the circularity in the paths of information flow by "short-circuiting” flow through

ancestors:

Information can flow between sibling actions via the parent only if one sibling commits before
another is created: upon commit, the first sibling passes information to its parent, and the parent passes
this information to the next sibling when creating it. (There can also be indirect information flow via
objects.) In some systems, this path of information flow might allow an action to see information known
by any sibling which had committed before the action was created. We assume that flow of information
between siblings (via the parent) is restricted to flow from sequentially preceding committed siblings. We
are making an assumption here that the control structure of actions does not permit direct flow of
information between concurrent siblings. (This assumption holds in Argus, because all concurrent
siblings must be created "at once” by a coenter statement. It is impossible for a concurrent sibling to
commit before another is created; thus it is impossible for information to flow directly between them.

Concurrent siblings cannot communicate except by modifying shared objects.)

Thus we can list the the sources of information to A’s parent which can serve as sources of
information to A (when A is created): (1) chﬁentially preceding committed siblings of A, (2) Any action
which was a source of information to A’s parent when the parent was created. In "unwinding” this
recursion, we can define the sources of information to A when A is created as all actions which are
committed and sequentially precede some ancestor of A. We thus obtain an equi&alent definition of the

sources of information to an action by replacing (2) above with a path of information flow from these



sequentially preceding committed siblings of ancestors:

2. Information passed from B to A, where B has committed, and B sequentially precedes some
ancestor of A (B € v-anc-seq{A)).

Using this second formulation we can give a single definition of the (maximum) information
available to an action in any particular execution history (i.e. for any action tree). With the new
specification of information source (2), the only paths of information flow arc from committed actions
{and from objects). We assume that committed actions release their complete (maximum) information to

other actions when they commit.

3.2.5 Information Trees

Since we are using action trees as an abstraction of execution histories (and hence of system
states), we describe an action’s view of the history as a particular (backed up) subtree of the (global)
action tree. We call this tree the information tree for an action. We can think of the information tree for
action A as being defined recursively: it is constructed by merging all the information trees of actions

from which information can flow to action A.

Because an action might be aware that some actions have aborted, these aborts should strictly be
included in the information tree. (If action A sequentially precedes B, for example, then B will know that
A has either committed or aborted.) Although aborts are part of the execution history, we have argued
above that they convey no additional information. (In other words, the existence of an abort tells an
action nothing other than that the abort occurred.) For simplicity, then, we exclude these aborted actions
from the information tree. '

The vertices of the information tree for an action are simply all vertices reachable by "tracing
back™ the three paths of information flow listed above. Since the information tree is a subtree of the
global action tree, path (1) is accounted for by the labels of datasteps. (In other words, if a datastep is
labeled with "u” in the global action tree, it will be labeled with “u” in the information tree. This value
read is part of the execution history of the datastep, and should thus be included with the datastep.) Path
(2) requires that if B is in the information tree, and C € v-anc—seq.‘(B), then C is in the information tree.
Path (3) requires that if B is in the information tree, and C is a committed child of B, then C is in the




-4]-

information tree.

Defn 3.2.5.1: Let T be an action tree, A € veniccsr. We dcfine the information sct of Ain T,
info-set (A) = (v-anc-seqp U v-child,) (A)

e e .

info-treeT(A) = (T|W)//A, where W = info-seLl.(A) U prop-anc(A)

We include proper ancestors of A in the information tree, but since information has only flowed
through these ancestors from sequentially preceding committed siblings, we do not include them in the
information set. The proper ancestors are considered active since A will regard them as active. (Thus the
information tree is "backed up" through A.) It is possible that some of these ancestors might have

committed or aborted, but these changes in status should not be visible to A.

The following lemma gives an equivalent definition of the information set which is easier to use

because it does not involve closures of functions.

Lemma 3.2.5.2: LetT be an action tree, A € verticesr. Then
info-set (A) = v-desc(v-anc-seq{A) U {A}).

Proof: Let V = info-sctA) = (v-ancseq; U v-child) (A), and let W =
v-desc (v-anc-seq{A) U {A}). Itis obvious that W C V. We show V C W by induction on
V:

Basis: A €V, but A € W because A € v-desc({A}).

Induction: Let B € V, and assume B € W. Take C € v-child(B) U v-anc-seq(B). We show
cew.

Since B € W, B € v-desc(B’), for some B’ € v-anc-seq{A) U {A}. If C € v-child(B), then
ce¢ v-desc(B). IfC € v-anc-seq{(B), then either ce€ prop-desc(B’), or (C,B’) € siblings,
or C € v-anc-seq.(parent(B’)).

1f C € prop-desc(B’), then C € v-desc(B).
If (C,B’) € siblings, then (C,B’) € seq, = C€ v-anc-seq(A), by transitivity of seq.
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: »If C € v-anc-seq(parent(B’)), then C € v-anc-seq(A). |

We now use this equivalent definition of the information set to prove three simple lemmas

about information sets and information trees:

Lemma 3.253: Let T be an action tree, A € vertices,, W = info-sct;{A) U prop-anc(A).

Then W is ancestor-closed. (Thus the information tree is in fact a tree.)

Proof: Let B € W, C € prop-anc(B). We must show C € W. Let V = info-set(A). IfB€
prop-anc(A), then C € prop-anc(A) = CEW.

IfBEYV then B € v-desc1(v-anc-seqT(A) U {A}), by Lemma 3.252. IfB€ v-descl.({A}),
then C € v-desc{{A}) U prop-anc(A) = CEW.

IfB€ v-desc.(v-anc-seq{(A)), then either C € v-desc.l(v-anc-seqf(A)), orC € anc(A), = C
€EW. 8

Lemma 3.2.54: Let T be an action tree, A € vertices. Then prop-anc(A) N info-seLr(A) =
2.

Proof: Follows directly from Lemma 3.2.5.2. ]

Lemma 3.2.5.5: Let T be an action tree, A € vgrtice_sr, and let S = info-treer(A). Then
verticesg C visible(A).

Proof: Follows directly from Lemma 3.2.5.2. |

3.3 Behavioral Constraints and View Trees

The information tree represents all information about the execution history which might be
available to a particular action as a result of information flow in this execution (except for information
about aborts.) For this information to be "consistent,” it must not contradict the assumptions an action
might have about the system’s behavior. One of these assumptions is the illusion of serial exccution: no
action should sec the effects of concurrency. Failure atomicity also requires that no action should see the
effects of aborted actions. An action might have additional expectations about the system’s behavior,
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however. Often these expectations are captured in invariants on the system state which all actions
preserve (when run in isolation and to completion). An action might function correctly only if a
particular invariant holds. (Its effects when the invariant does not hold might be unexpected or

unspecified.)

To develop a notion of "consistency,” we imagine that an observer is placed at an action and is
given that action’s information tree. The observer is also informed of any invariants on the system state
that are preserved by all actions in isolation, and he is told that the system exccutes actions in some serial
order. (Of course, the actual order might not be serial, but the observer should be unaware of this
interleaving.) There are two types of inconsistencies which he might find: (1) The observer sees the
effects of concurrency. For example, action A spawns child Al to read x (no update), and finds x = 1.
Then A spawns child A2 (sequentially following A1) to read x, and A2 returns x = 2. (A has no other
children.) This situation is clearly inconsistent with serializability. (2) The observer might deduce that

the system state violates an invariant. For example, an observer at action A2 in Fig. 1.1 would see x # y.

The first type of inconsistency can be prevented by requiring that the information tree be
serializable. Scrializability of the information tree is too strong a condition, however, because the effects
of other actions might be visible (through data objects) even though these actions are not in the

information tree.

. Since we want to formulate a consistency condition which does not depend on particular
invariants for particular applications, we will increase the amount of information we presume is available
to an observer. In other words, we will provide a sufficient consistency condition, which might not be
necessary to insure consistency in all cases. We now assume that an observer at an action has complete
knowledge of the set of possible beh_aviors of all other actions in the system (when run in isolation and to
completion). We might imagine that the observer is given program listings for all actions, for example.
This knowledge is sufficient to determine any invariants. (In a sense invariants are just one way of
specifying certain aspects of program behavior.) Other than the actions in his information tree, he does
not know what particular actions have aciually run in the current execution, but if he is told that a

particular action did run he can deduce the possible effects that it had (by checking his program listings).

The observer's view is consistent if he can explain the valucs in his information tree with a serial
execution that conforms to the known behaviors of all actions. We stress again that the observer does not

know what actions have run, but he can construct hypothetical execution histories based on his program



listings. This condition is existential: an information trec is consistent if there exists a serializable "view

tree” which contains the information tree and agrecs with known behaviors of actions.

The'problem with a condition defined in terms of program behaviors is that the transaction
system does not have the program listings available to it (in a useful form). We imagine now that a
"transaction manager” is placed at an action, and given its information tree. The transaction manager
must decide whether the information tree is "consistent.” The transaction manager will design algorithms
to insure that an observer does not sec an inconsistent state, but the manager does not have access to the
program listings. But the transaction manager can devise a sufficient test for consistency: Since every
action must run according to its program, the actual behavior of any action in the current execution must
be among the allowed behaviors. Thus the transaction manager will try to create a "view tree” by taking
actions from the real global action tree. (Of course, the observer cannot see this global tree.) Another
way of looking at this restriction is to imagine that the program listings given to the observer are modified

so that the only possible behavior of an action is the behavior it exhibited in the current exccution.

The known behaviors of an action might include aborted actions as well as committed actions.
For example, action B might run child B2 sequentially after child Bl in every execution. If B2 runs it can
conclude that Bl has either committed or‘ aborted. Moreover, if B commits, any other action can
conclude that Bl committed or aborted, and that B2 committed or aborted. Note that if B aborted, then

another action cannot conclude anything about Bl or B2 (since they might never have run at all).

Strictly speaking, the transaction manager should include these known aborts in its view trees,
because they are part of "behavior.” Just as we argued that there is no need to include these aborts in
information trees, we can arguc that there is no nced to include them in view trees: Since aborted actions
provide no information about their proper descendants, these proper descendants need not be included in
the view tree. But aborted actions without descendants cannot affect serializability (by Lemma 2.6.2), so
it is sufficient for the transaction manager to test for a serializable view tree which does not include these
. known aborts. It suffices for the transaction manager to choose actions for the view tree which are visible
to A. (In other words, if a serializable view tree exists which includes these aborted actions, then it will
still be serializable when the aborted actions are deleted. Thus we lose no generality by considering only

view trees which do not contain these abortcd actions.)

We place two restrictions on the sclection of actions for this hypothetical view tree. First, the

transaction manager must choose actions that are visible to the action whose tree he is constructing.
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Sccond, because the behavior of an action might depend on any information available to it, if the
transaction manager includes any action in his view tree, he must include the entire information tree of

that action.

Example: We consider again the scenario presented in Fig. 1.1. Suppose that except for
action A, the top level actions in the system each create two (sequentially related) subactions;
the first subaction reads and increments x, and the second subaction reads and increments y.
(Action A simply reads x and then reads y.) The initial values of x and y are 0. The
information trec for A2 from the tree in Fig. 1.1 indicates that x = 0, y = 1. If the transaction
manager were allowed to create a view tree which included only part of action B (i.c. included

descendant B2 but excluded B1), he would conclude (wrongly) that A2’s view is consistent.

Note also that the status of proper ancestors of the action should be ’active’, since the observer
should be able to believe that its proper ancestors are active (though in fact they might have committed or
aborted). We include these proper ancestor in the view tree, but we _exclude them from the information
set closure requirement because (as discussed in the section .on information trees) we have short-circuited
these ancestors with our definition of information flow. (Thus we require the vertices of the view tree to

be info-set,].//A-c]osed, rather than info-set.r-closed.)

For convenience, we separate the scrializability requirement from the other requirements, and

we define a view tree as any tree which satisfies the proper closure properties.

Defn 3.3.1: Let T be an action tree, A € vertices;. Let S = (TIV)//A, for some set V C
vertices,. Wesay § s a view trec for A in T iff

1L AEYV

2. Vis anc-closed

3. Vis info-set//A-closed

4. VC visible (A)

(Notethat A€ Vand Vis info-setr//A-closed = info-treeT(A) is a restriction of S.)

It is important to stress again that there is not enough information in action trees alone to

determine the view tree for an action: a view tree is one of possibly several explanations for an




information tree. As a trivial example, suppose that actions Al, A2, and B rcad object x in this order, but
never update it. (Sec Fig. 3.2.) Then any combination of actions that includes B forms a serializable view

tree for B.

For AATs, we will dcfine a particular view tree, using the data ordering. To conclude that this is
necessarily the view tree is incorrect: usc of this particular view tree requires assumptions about how
versions of objects are modified. We will use this view tree for one of our system models, but again note

that the definition of a view tree is independent from the construction of this particular view tree.

Fig. 3.2. Muitiple View Trees

Global action tree: U\
Al,c/AZ.c B,c
x,0 x,0 x,0
One view tree for B: u
B,c
x,0
Another view tree for B: / U
Al,c A2,c B.c
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3.4 View-Serializability

The view of an action is "consistent” if it can be explained with a serializable view tree. An

entire tree is “view-serializable” if every action has a serializable view tree.

Defn 34.1: Let T be an action tree. We say T is view-serializable provided the following is

true: Foreach A € vcrticcsr, there exists a serializable view tree for Ain T.

View-serializability is our basic correctness condition modeling internal consistency. In fact
view-serializability is a strong enough condition to model external consistency as well: The following

lemma shows that penh(T) is the only possible view tree of the (virtual) top-action, U.

Lemma 3.4.2: Let T be an action tree. Then S is a view tree for U in T if and only if S =

perm(T).

Proof: Suppose that S = (T|V)//U is a view tree for U in T; we show that S = perm(T). But
prop-anc(U) = @ = S = T}V.

Since V is info-set;//U-closed, V is info-set-closed (again, because prop-anc(U) = &).
Thus Vis v-child-closed, = v-desc (U)C V (since U € V).

But v-desc.l-(U) = visiblc](U) = visiblel(U) cV.

ButVC visible (U), since § is a view tree for U.

Thus V = visible(U), = S = T|visible(U) = perny(T).

Conversely, let S = perm(T); we show S is a view tree for U in T. As above, § =
(Tlvisible (U))//U. Let W = visible (U). We show that W satisfies the correct closure
properties for view trees.

1. U € W, since U € visible(U).

2. If A € W, then anc(A) - {U} C committed. If B € anc(A) - {U}, then anc(B) -
{urc committedp, =» B € W. If B = U, then B € W by (1) above. Thus W is
anc-closed.

3. We show that W is info-set//U-closed, ic. if A € W - {U}, and B €
info-sebr(A), thenBEW. BUAEW-{U}=A¢€ visiblel(U). by definition. B
€ info-set(A) = B € visible(A), by Lemma 3.25.5. Thus B € visible (U) by
Lemma223.]lc,=»BEW.
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4. W C visible(U) by definition. 1

Thus view-serializability implies serializability of perm(T); our condition for external

consistency is covered by our condition for internal consistency.

Lemma 3.4.3: Let T be an action tree, then

T is view-serializable = perm(T) is serializable.

Proof: Immediate from Lemma 3.4.2. |

3.5 Augmented Action Trees and Data-closed View Trees

We extend all definitions and lemmas for information sets, information trees, view trees, and
view-serializability to AAT's in the obvious way (by applying them to erase(T)). (There is a subtle point
that the definition of restriction of an AAT is different from the definition for an action tree, since a
restriction of an AAT includes the data ordering from the original AAT. But the data ordering does not
enter into any of the preceding definitions or lemmas, and erase(T)|V = erase(T|V) for all AAT’s, T, and

action sets, V.)

For AAT’s we define a particular view tree by augmenting the information tree via a type of
data-closure. For the models that we will consider (in which only explicit aborts are allowed, and versions
of objects change only in response to explicit commits and aborts), this view tree will be used to show

view-serializability.
Defn 3.5.1: LetT bean AAT, A € vertices;. Define _v_mr(A) as follows:

Let V= vset.r(A) (= v-precedesf.(A))

The components of S are as follows:

- v'erticesS = V U prop-anc(A)
- statusg is defined by

1. BEV-{A} = statusy(B) = ‘committed’
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2. statusg(A) = statusl(A)
3. A’ € prop-anc(A) - V = statusg(A’) = "active’

- IfB€ datastepss, then labels(B) = labeIT(B).
- datas = datar N verticess2

LI . .
Doedlni .

Unlike the situation for information sets, the view set of an action might include proper
ancestors of that action. (This case occurs only when the view set "cycles back” to ancestors of the action;
proper ancestors are not originally included in the view set) The following lemma shows that vtree.l.(A)

is a view tree for A if these cycles do not occur:

Lemma 35.2: Let T be an AAT, A € vertices,, S = vtree(A). If prop-anc(A) N vset{A) =

@, then S is a view tree for A in T.
Proof: Let V = vset(A), W = V U prop-anc(A). First we show that § = (T[W)//A.

By definition, vertices; = V U prop-anc(A) = W. If B € V - {A}, then statusy(B) =
‘committed’. But by Lemma 2.3.2, statusl.(B) = ‘committed’. For B € prop-anc(A) - V,
statusg(B) = ’active’, by definition. But prop-anc(A) N V = @ = prop-anc(A) - V =
prop-anc(A). Thus B € prop-anc(A) = statuss(B) = ’active’. For action A, statusg(A) =
status,(A), by definition. Thus the trees S and (TI|W)//A agree on the status of all actions.

It is trivial to verify that these trees agree on all labels, and on the data ordering.

Now we show that W satisfies the correct closure properties for view trees:
1. A € W by definition

2. W is anc-closed by Lemma 2.3 4.

3. We show that W is info-set//A-closed, i.e. that (info-set;//AXW) C W. But
by definition, info-setlJ/A is @ on prop-anc(A), and is identical to info-set.r
" otherwise. Thus we must show info-set (V) C W.

BuyV = vseLl(A) = Visvsetr-closedbyl.emmazj.i!a.

vset; = vprecedesy = (v-anc-seqy U v-child, U v-data-anc;)*. But
info-set,l. = (v-am:-seq-r U v-childr)"'.

Thus info-set, (V) G veet (V).
Thus V is veetrclosed = vset(V) C V, = infoset(V) CV, =
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info-set (V) C W.

4. V C visible (A), prop-anc(A) € visible(A),
= W C visible(A). 1

We will show in Chapter 6 that these cycles can only occur for view sets of orphans, and that the

orphan detection strategy which we present will eliminate these cycles.

As examples of the construction of these data-closed view trees, vtree {(A2) for the tree of Fig.
1.1 is the entire tree, and it is not serializable. For the tree of Fig. 3.2, vtree,(B) 1s also the entire tree, but

it is serializable.
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4. Event-State Algebras

This chapter defines our basic execution model: the event-state algebra. An event-stale algebra is
a state-transition model of a system where events can occur asynchronously. A correctness proof for an
event-state algebra shows that the states generated by valid event sequences satisfy some property. A strategy
of hierarchical correctness proofs is explained: We define mappings between event-state algebras, and we
give conditions on these mappings which insure that they preserve validity of event sequences. Finally, we

present a model for distributed systems which is a special case of event-state algebras.

4.1 Event Algebras
4.1.1 Notation

If S is a (finite or infinite) set of symbols, then S* denotes the set of finite sequences of symbols from S,
including A -- the empty scquence. We will often drop the distinction between a symbol and a sequence

of length one.
N denotes the set of non-negative integers, and Ju| € N denotes the length of sequence u.

If sequence u is a prefix of sequence v, then we write u < v. (Context will dictate whether "<" refers to
the prefix relation on sequences or to numcrical order on integers.) We say a set of sequences, W, is -
prefix-closed if and only if all prefixes of every sequence in W are also in W: (VvE Wu < v= u€
W),

If u € S* is a sequence, and ¢ € S, then we writc e € u iff e is among the elements of u. (Note that, a
priori, e might be repeated in u many times.) We denote by e the ordering on elements of u, i.e. ife,f

€ S, then

e > fe u = asesbefec, for some sequences a,b,c € S*

Note that = is transitive for any u € S*. Itis not necessarily acyclic, since elements of a scquence can be

repeated.
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4.1.2 Events and Valid Execution Scquences

An event algebra is a behavioral model of a system which describes the events in the system, and
some constraints on "valid" executions imposed by the system. An execution of a system is any sequence
of events from the system; the valid execution sequences will be some subset of these sequences. This
type of model is useful for describing systems where events occur asynchronously and independently (as
opposed to a program model, for example, where the allowable sequences of events are governed by a
(gencrally sequential) program). It is also useful for describing properties of sequential systems which do
not depend on the order of events (or depend on weaker ordering constraints than those enforced by the

system).

At this level of description, "events" are completely uninterpreted: they should be regarded as
textual symbols only. The only structure imposed by an event algebra is the set of valid execution

sequences.

Defn 4.1.2.1: An event algebra is a pair
A=(89

where € is a set (called the events of A), and
s a prefix-closed subset of g (called the valid execution sequences of A).

(We will generally use symbols "e,f,g" to refer to individual events, and "u,v,w" to refer to sequences of

events.)

We can consider the gencral problem faced in reasoning about a system to be showing some
properties of the valid execution sequences. We are not interested (at this level) in how the system
enforces the constraints on execution sequences. The valid execution sequences are simply a specification

of the "correct” behaviors of the system.
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4.1.3 Interpretations

We would often like to view a system at a higher level of abstraction than the one at which it is
defined. In this section we describe an abstraction process for event algebras, and we show how this

process can be used to organize proofs of system properties.

Defn 4.1.3.1: Let U, = (81, 1’i), and A, = (82, ‘Tz) be event algebras. An jnierpretation
Lr_qm_.:(;t 1o A, is a mapping h: 8; - 8;.

An interpretation, h, is valid iff h(Ti) Cc 13

Note that any cevent sequence in one algebra can be interpreted as any sequence in another
algebra: there are no constraints on this mapping. Although most interpretations of interest will have
more structure (for example, h might be monotonic), it is not necessary to introduce this structure for

these general definitions.

In proving a property of valid execution sequences for some event algebra, it might be useful to
state this property as a constraint on execution sequences of an event algebra which is at a higher level of
abstraction than the low-level model of the system of interest. (We might be interested only in particular
events, for example, or we might regard a sequence of events as a single event at a higher level.) We
might also want to break this abstraction process into several steps, constructing event algebras at
intenhediate levels of abstraction. We must then define valid interpretations between successive levels.

Soundness of this technique follows directly from the following lemma:

Lemma 4.1.3.2: Let A, A,, A, be event algebras. If g is a valid interpretation from A, to
A,, and h is a valid interpretation from A, to .A,, then heg is a valid interpretation from A, to
0‘:3-

Proof: Straightforward. ]
Of course, we must be carcful in applying this technique to be sure that the composition of

mappings from lower-level algebras to higher-level algebras is consistent with the abstraction we desire

from the lowest-level event sequences to the "abstract” event sequem.

We can reduce any problem of proving a property of valid execution sequences to an equivalent
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problem of constructing a valid interpretation: Suppose A, = '(Sl, ‘Yi) is an event algebra, and P C S; is
some property of execution sequences. We want to show that P holds for all valid execution sequences in
A, ie. that ¥; C P. We can construct a "higher-level” algebra, Ay, whose valid exccution sequences are
just those specified by P: Ay = (81, P). If we define interpretation h from A, to .(0 as the identity map

on event sequences, then ‘Yi C P if and only if h is valid.

By defining a top-level event algebra whose valid execution sequences automatically satisfy a
desired property, we create a very uniform structure for our proofs: A “correctness” proof consists of
definitions for a sequence of algebras, definitions for interpretations between levels, and proofs that all

interpretations are valid.

4.1.4 Event-Homomorphic Interpretations

We defined interpretations very gencrally as any mapping between event sequences. Usually
natural interpretations will have more structure, which will simplify a proof of validity. We define here a
class of interpretations called "event-homomorphic” which allow the interpretation of any sequence to be

constructed inductively from an interpretation of each event in the sequence.

Defndldl: Letd = (8.%) and A, = (6, ;) be event algebras, and h: 8] — 8, be
an interpretation from A, to 42. We say h is an event-homomorphic interpretation iff

Vuv €8], h(uv) = h(uh(v)
(Note that if h is event-homomorphic, then h(A) = h(AA) = h(A)h(A); thush(A) = A)

If an interpretation, h, is event-homomorphic, then the image of any sequence can be
constructed from the images of each element in the sequence. Thus we can specify an

event-homomorphic interpretation as a mapping h: 81 - 8; .

Note that for an event-homomorphic interpretation, individual events in the lower-lcvel algebra
can be interpreted as any sequence of events in the higher-level algebra. A lower-level event which maps
to A is effectively "abstracted out"” at the higher level. A lower-level event which niaps to a single event is
- visible at the higher level, although different lower-level events might map to the same higher-level event.
To model the usual notion of "abstraction," where several "concrete” events might implement a single

“abstract” event, we could map the earlier steps of the concrete sequence to A, and map the last step to
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the abstract event.

Our notion of "abstraction" is unusual, however, in that the image of a single lower-level event
might be several higher-level events. We allow this case because the "observer” of a system might not be
able to sec the granularity of events directly: he might only see their effects (e.g. through changes in
"state” caused by events). An "abstraction" in this sense might be a higher-level way of explaining these
effects. It is possible that higher-level events can be "simpler” to understand, even though they are less

"powerful” in that several higher-level events are needed to explain a single lower-level event.

We will deal only with event-homomorphic interpretations; in the remainder of this paper,

"interpretation” always means "event-homomorphic interpretation.”

4.2 Event-State Algebras
4.2.1 Events as State Transitions

Although our notion of the behavior of a system depends only upon the events in the system
and the valid execution sequences, it is often convenient to describe a system by referring to a "system
state.” Specifically, we can abstract from event sequences to "states” by interpreting events as operations
on a state. We introduce a structure called an "event-state algebra,” which includes state as a basic

system component.

Following [Stark83], we regard the events in a system as the fundamental entities; we introduce
states for convenience in specifying the valid event scquences. The concept of "state™ allows us to
describe valid event sequences inductively by giving "preconditions” on the current state for each event.
Because it is often simpler to reason incrementally about system behavior, states are a useful specification
device. From this perspective, a system could be described (equally well) by several event-state algebras
using different state spaces; these different state spaces would simply represent different ways of

summarizing execution histories.
Defn 4.2.1.1: An gvent-state algebra is a quadruple
A= (820,71

where € is a sct of events,




2 is the set of system states,

o € X is the initial system state, and
7 C 8 X £ X Zis the transition relation.

Let7(e) = {(s.t) € 32 (est) €1}
For convenience, we require that 7(e) be a partial function on Z, i.e.
(estl), (es)€r = tl = 2.
(We could allow 7(e) to be an arbitrary relation, modeling a nondeterministic choice of the

"next state.” Because we will not necd this power, we restrict 7(e) to a partial function.)

We regard (c) as a total function on £ U {1 } (where 1 represents "undefined") by
defining

r(eX1) = L, and

7(e)s) = _L fors € Z if there is no pair (s,t) € 7(e).

If s€ZU{L} and e € &, then we write
se for r(eXs)

We generally drop the distinction between the event e and the partial function r(e) when the

meaning is clear. We extend our notation to sequences of events in the obvious way:
(s)(elez...en) = (((s)°1)°2)---°n)

Ifué€ 8‘, then we say ou is the result of execution sequence u. (Note that the result might
be 1.)

If3u € 8‘: 52 = (sl)u, (for sl, s2 € X) then we write sl I s2in .4, and we say §2 js
reachable from sl jn A. We will simply write s1  s2 when the algebra is clear from

context.
IFHC &, ands € £, then we define
sH = {su:u € H}

(Similarly if SC Zand u € 8., we define Su, orif SC 2 and HC 8., we define SH.)
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f(A), the set of valid execution sequences of A, consists of all sequences whose result is
defined (i.e. each event in the sequence is defined on the result of the preceding sequence):
e€NUA) = oe# L

%(.A), the set of reachable states in A, is the sct of all states that are reachable ﬁom the initial
state:

R(A) = {s€Z:0 s} (ThusR(A) = of{A))

We extend ﬁis definition to sequences of reachable states as follows:
2 y) = {<s;8ps > €EZMa 5 s, 5}

Note that %0)(4) C @()".

We will use boldface symbols to refer to vectors of states, e.g. s = <55,,....8 >

We denote by PRE 4(¢) the proper domain of (e), for each e € &. (PRE () = {s€ 2
r(e)s) # _L.}.) We generally drop the subscript when the algebra is clear from context. We

extend this notation to sequences u € g* by defining:
PRE(u) = {s€ Z:su# 1}

(In general, if an event-state algebra is named ".An" for some subscript, "n", then we will
“abbreviate Ay as"¥,", R(A;)as "% ", and PRE , as"PRE,.")
n

We are viewing event-state algebras as convenient structures for specifying event algebras. We

say that an event-state algebra A’ = (€', Z’, 6’, 7°) is 2 presentation of event algebra A = (8, 1) if and
onlyif & = 8 and {L’) = T. (Note that ¥{.4’) must be prefix closed by construction.) It follows from

this definition that scveral event-statc algebra presentations might exist for a given event algebra, but each

event-state algebra is a presentation of a unique cvent algebra. If A’ is a presentation of A, then we say

that A is the gmbedded event algebra for A’.

We can show that an event-state algebra presentation exists for any event-algebra -- the
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degenerate presentation whose state is the entire exccution history:

Lemma 4.2.1.2: For any event algcbra A = (8, ¥), there exists an event-state algebra

presentation of A.

Proof: Let L’ = (8, 2, ¢’, 7°), where
£=8=8.0=Aand v = {(cuue)e €& ue €Y. Then L) = so L isa
presentation of A. 1

Thus we will deal only with event-state algebras from here, with no loss in generality.

An interpretation from one event-state algebra to another is defined to be any interpretation
between the embedded event algebras. This interpretation is valid if and only if the interpretation

between embedded event algebras is valid.

4.2.2 Possibilitics Maps

Because we are using states to describe the valid execution sequences of an event-state algebra, it
is natural to use these states in proving that an interpretation between event-state algebras is valid.
Capturing execution histories with states allows us to specify valid execution sequences inductively, by
extending the event mapping of an interpretation to a mapping between state sets, we will give an

inductive technique for proving that the interpretation is valid.

The state mappings we will define are somewhat unusual in that we allow a mapping from states
at the lower level to sefs of states at the higher level. We call these mappings possibilities maps (if they
satisfy certain properties), because they give a set of possible higher-level states which correspond to each
lower-level state. Because the states in an event-state algebra can represent any convenient summary of
execution histories, it is possible that the higher-level state might retain more information about
executions than the lower-level state. In this case there is not ecnough information in the Jower-level state
to uniquely determine the higher-level state. Thus we permit "looser” mappings which specify the set of

states which are consistent with (are "possibilitics” for) a given lower-level state.

Possibilities maps are particularly useful when the lower-level state is distributed, and the
higher-level algebra is a global interpretation of the lower-level algebra. (It might be convenient to specify
a distributed algorithm in terms of a “virtual” global state, for example.) Because the lower-level state is
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partitioned among components, each component has only partial knowledge of the total system state.
Thus there will generally be several higher-level states which are "possibilities™ given the state at an
individual component. This "partial information” property of distributed systems makes possibilities

maps a natural tool for describing interpretations of these systems.

Possibilities maps can be regarded as a gencralization of the standard notion of homomorphism.
The state mapping of a homomorphism is a single-valued function, because the higher-level state space is

always "more abstract” (has /ess detailed information) than the lower-level state space.

If A = (Sl, 2,0, "1) and .A2 = (82, 22, o, "2) are event-state algebras, then we will
write h: A, = U, if h: 81 - 8; and h: Z;, = 9’(22). (We use "h" to denote both the event mapping
and the state mapping; the meaning will be clear from context) Note that h: A, — "{2 does not
necessarily imply that h satisfies any special properties; in particular, h necd not be a possibilities map.

We say that the proper domain of b (of the state mapping) is: domain(h) = {s € Z,: h(s) # 8}.
We extend a mapping h: 2; — HZ,) to a mapping h: 2] — HZ)) by defining h(<s,s,,-...5 )

= {Ktpty,es 120 4 € 1(s), fori = 1,2,...n}

Defn4.2.2.1: Letd, = (€. 2,0, 7) and .,42 = (6,2
and let h: d; = U, We say h is a possibilitics map iff

O 7,) be event-state algebras,

1. h preserves initial states:
o, € h(ol)
2. h preserves events

s€ PREl(e) N R, t €h(s)N ®,
= (t)h(e) € h(se)

(Note that (t)h(e) € h(se) = (t)h(e) * _L, since h(se) C 22.)

In many cases we will not necd the full power of possibilities maps to map from states to sets of
states. Ifamapping h: A; — A, has the property that Vs €2, Ih(s)} < 1, then we will consider h to
be a partial mapping from 21 to 22, and we will change our notation accordingly. (For example, we will




write t = h(s) instcad of t € h(s).)

We will use the properties of possibilities maps to prove inductively that a mapping is valid. As
an intermediate step, we define the notion of a faithful mapping. We then show the main result for

possibilities maps: any possibilities map is a valid interpretation.

Defn 42.2.2: Let A, = (8, Z,, o),
algebras, and let h: .Al - "42' For k € N, we say that h js k-faithfy] iff (Vv € ‘Yi: vl £ k),
o,h(v) € h(o,v). We say h is faithful iff h is k-faithful for all k € N. Note that h preserves
initial states if and only if h is O-faithful.

7,) and A, = (82, 22, o, "2) be event-state

Lemma 4.2.2.3: lct A, = (8, Z,0,7) and A, = (82, 22, o) 12) be event-state
algebras, and let h: A4, — A,. Then his faithful = h is a valid interpretation.

Proof: his faithful = o,h(v) € h(o,v) Vv € ¥]. Thuso,h(v) # L = h(v)€ 1, 1

Lemma 4.224: Let A, = (8, 2.0,
algebras, and let h: A, = .,42 Then h is a possibilities map = h is faithful.

"1) and A, = (82, 22, o, 72) be event-state

Proof: Suppose h is a possibilities map. Then h preserves initial states = h is 0-faithful. We
show h is k-faithful = h is k+ 1-faithful.

Let ve € ¥, |v| = k, e € 8. Since h is k-faithful, o,h(v) € h(o,v). But ve €Y}, = o,v€
PRE (e) N %,. And o,h(v) € h(s;v) N B,. Since h preserves events, o,h(v)h(e) €
h(alve), = h is k+ 1-faithful. [ |

Lemma 4.2.25;. Let "(1 = (81, 21, o) 11) and .42 = (82, 22. o, 12) be event-state
algebras, and let h: A - “‘2 Then h is a possibilities map = h is a valid interpretation.

Proof: Immediate corollary of Lemmas 4.2.2.4 and 4.2.2.3. |

We will often find it useful to prove preservation of events in two parts: We will assume that
preconditions are satisfied and show that transitions behave correctly under the interpretation; we will

show separately that preconditions are satisfied:
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Lemma 42.26: let A, = (8, 2, 0, "1) and A4, = (82, 2, 0y 7,) be event-state
algebras, and let h: .Al - .,42. Then h preserves events if and only if

1. h preserves transitions:

s € PRE,(€) N%), t € h(s) N PRE,(h(e)) N %,
= (t)h(e) € h(se)

2. h preserves preconditions:

s€PRE(€)N%,, t€h(s) NS,
= t€ PRE,(h(e))

Proof. Supposc h preserves events. Then
s €PRE (e) N %, tE€h(s) N R,,
= (0h(e) € h(sc),
= (Dh(e) # L,
= t€ PRE,(h(e)), so h preserves preconditions.

s € PRE)(e) N %), t € h(s) N PRE,(h(e)) N B,
= SEPRE(c)N B, tEh(S N,

= (t)h(e) € h(se), so h prescrves transitions.

Conversely, suppose h preserves preconditions and transitions. Then
s €PRE|(e)N®), tEh(s)N R,
= t€ PREz(h(c)), since h preserves preconditions.

Thus s € PRE () N %, t € h(s) N PRE,(h(e)) N B,

= (t)h(e) € h(se), since h preserves transitions. |

4.2.3 Canonical Possibilities Map

We can show that the method of constructing a possibilities map between event-state algebras is
a completely general technique for proving validity: Given any (event-homomorphic) valid
interpretation, an extension of this interpretation to a possibilities map always exists:

Lemma 4.23.1: Let A, = @, 21' o, 1'1) and “2 = (8, 2, o, 12) be event-state
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algebras, and h: 8, — 8; be a valid interpretation from A; to A,. Then if we extend htoa

state-set mapping as follows:
h(s) = {ozh(u): o= s}
then h is a possibilities map from A, to A,

Proof: First we show thath(s) C Z, for alls € 2 (e L# h(s)): oju=s = u € Tl
= h(u) € ¥, (since h is valid) == o,h(u) # L. Thus h does define a mapping from Z, to
HZ,).

Now we show that h satisfies the conditions for a possibilities map:

1. h preserves initial states:

laz =0,A = azﬁ(A) (since h is évcnt-homomorphit:);
o,h(A) € {o,h(u): ou = 0,} = W o))

2. h preserves events;

s € PRE,(e) N %, t € h(s) N B,
Lets=opv,vEY,.

So t € h(s) = {o,h(u): o= o,v}

= t = g,h(u) forsome u: oyu = o,v.

Now (t)h(e) = o,h(u)h(e) = ozh(ue)
€ {o,h(w): o,w = g,ve} = h(se). 1§

Note that the set h(s) = {azh(u): ou = s} corresponds intuitively to the "possibilities” for
higher-level states associated with lower-level state s: The sequences {u: ou = s} are the possible
histories which might have generated state s; o,h(u) is the higher-level state that would have resulted
from execution of u. Thus if we only know state s, then we can only "pin down" the possible higher-level
state o the set {o,h(u): o,u = s}, |
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4.2.4 Invariants

We h&ve reduced the task of showing that interpretation is valid to the task of proving that a
mapping (on both states and events) is a possibilities map. It will often be convenient to use properties of
reachable states (at both the higher and lower levels) in showing that a mapping is a possibilities map. We
generalize the notion of an invariant to include properties of sequences of states as well as properties of
single states. We also describe properties of individual components of the state, since we will show below
that if a component is preserved by a state mapping between algebras, then in some cases we can carry
invariants proved at the higher level for this component downward to the lower level (without re-proving
the invariants at the lower level). Our development of an event-state algebra hierarchy for a transaction

system will make extensive use of this method of carrying invariants down from higher level algebras.

4.2.4.1 Basic Definitions

Defn 4.24.1.1: Let A = (8, Z, 0, 7) be an event-state algebra. IfI C " we say that ] js an
n-ary property in A. Ifn = 1, then we will simply say "I is a property,” and if n = 2, we will
say "I is a pair-property.”

Defn4.24.1.2: Let A = (8, Z, 0, 7) be an event-state algebra, and letk € N. If 1 is an n-ary
property in A, we say that ] is k-invariant in A iff the following is true: For all sequences
(V¥ € ™ such that v; €V, < .. < v, and |v, ] < k, we have (ov,,0V,,...0v) € L
We say that ] is invariant in A iff Vk € N, Iis k-invariant in A. Thus I is invariant in A iff
a™yCL

We will usually drop the qualification "in A" when the algebra is clear from context. Note
that the case n = 1 corresponds to the usual notion of an "invariant." When we say that "I is
an invariant,” we will generally mean that 1 is a 1-ary property which is invariant. Similarly

we will say "] is a pair-invariant™ if J is a pair-property which is invariant.




4.2.4.2 Relative Invariants and Relative Possiblities Maps

To prove that a particular mapping is a possibilitics map, we will frequently prove first some
useful invariants for the higher and lower-level algebras. If we organize a proof hierarchically (with
several levels of event-state algebras), we might find that we nced the same invariants at several of these
levels. While we could prove the needed invariants independently at each level, to do so might repeat a
lot of work unnecessarily. Since faithful mappings map reachable states into reachable states, it might be
easy to infer that higher-level invariants hold at the lower level if we knew that the mapping between
algebras were faithful. In some cases, however, we might want to use these invariants to show that the
mapping is a possibilities map (and hence is faithful, by Lemma 4.2.2.4). In these cases we arc faced with

a mutual dependency between invariants and a possibilities mapping.

Our solution to this mutual dependency depends on the fact that both invariants and
possibilities maps are generally proved inductively. Conceptually, then, we will prove both an invariant
and the possibilities map together with the same induction. For convenicnce, we separate the
dependencies in our definitions, we define an invariant relative to a mapping, and a possibilities map
relative to a property. Because the key property of possibilitics maps is faithfulness, we also define
faithfulness relative to a property, and we prove a lemma which is the "relative” version of Lemma

4.2.2.4. We also state a "relative” version of Lemma 4.2.2.6.

Defn 4.2.4.2.1: Let .Al = (Sl, El, o) "1) and -‘2 = (82, 22, oy 12) be event-state
algebras, and let h: A; — A,. LetP C Z, be a property in A,.

We say h is a possibilitics map relative to P iff

1. h preserves initial states (o, € h(g,))

2. h presecrves events relative to P;

s€ PRE;(e)N%, NP, t € h(s) N %,
= (t)h(e) € h(se)

Defn 42422 let A4, = (8,2,0,, 1) and A, = (8, Z,, 6, 7,) be cvent-state
algebras, PC Z,,and let h: A, = U,
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We say h is faithful relative to P iff

1. his 0-faithful

2. (Vk € N) his k-faithful, and P is k-invariant = h is k+ 1-faithful

Lemma 424.23: Let A, = (&, Z,0,7) and A, = (8, Z,, 0,,7,) be event-state
alg_ebraé, PCZ, h A, = A,. Ifhis a possibilities map relative to P, then h is faithful

relative to P,

Proof: h preserves initial state, so h is 0-faithful. Now suppose h is k-faithful, and P is
k-invariant, for some k € N. We show h is k + 1-faithful.

Take v € ;, |Vl < k+1. We must show that o,h(v) € h(o,¥). If |v| < k then the result
follows directly since h is k-faithful, so assume |v] = k+1. Letv = ue, for someu € ¥}, e €

8, (] = k).

Since h is k-faithful, o,h(u) € h(o,u). But P is k-invariant, so ou € P. Since ue € LAY €
PREl(e).

Thus o €PRE ()N ®, N P, o h(u) € h(olu) na,,
=3 uzh(u)h(e) € h(alue), since h is a possibilities map relative to P,
= ozh(v) € h(clv). 1

Lemma 4.24.24: Let ,(1 = (81, z, o) "1) and "2 = (82, 22, o, rz) be event-state
algebras, and let h: A, — A,. Then h preserves cvents relative to P if and only if

1. h preserves transitions relative to P;

s € PRE,(¢) N%, NP, t€ h(s) N PRE,(h(e)) N B,
= (t)h(e) € h(se)

2. h preserves preconditions relative to P:

s€PRE(€)N%, NP, tEh() N,
= t € PRE,(h(e))




Proof: Similar to the proof of Lemma4.2.26. 1

Defn 4.2.4.2.5: Let "(1 = (81, 21, o) 11) and J.z = (82, 22, g, 1-2) be event-state
algebras, P C 2, and let h: A; = A,.

We say P is invariant relative to h iff

1. Pis 0-invariant

2. (Vk € X) Pisk-invariant, and h is k+1-faithful = Pis k +1-invariant

We now show that we can prove invariants and possibilities maps together with the same

induction:

Lemma 4.2.4.2.6: Let "(l = (Sl, 21, o 71) and A, = (82, 22, o, 1'2) be event-state
algebras, P C 21. Let h be a possibilities map from "(1 to A, relative to P, and let P be

invariant in .,(1 relative to h. Then h is a possibilities map, and P is invariant in A

Proof: Since h is a possibilitics map relative to P, h is faithful relative to P (by Lemma
4.24.2.3). We show inductively on k that P is k-invariant, and h is k-faithful. P is 0-invariant
_and h is O-faithful by definition. Assume P is k-invariam, and h is k-faithful. Since his a
faithful relative to P, h is k+ 1-faithful. Since P is invariant relative to h, P is k+ 1-invariant.

Thus P is invariant. To sce that h is a possibilities map, note that h preserves initial states by
definition. h preserves events, because

s € PRE,(¢) "%, = s € Psince P is invariant. 1

4.2.4.3 Invariants on Fixed Subspaces

We have described a process for proving an invariant simultaneously with proving a possibilities
map. In this section we show that this technique can be useful when a particular subspace of the

lower-level state space is unchanged by the state mapping.

Defn 4.24.3.1: Let A = (8, X, o, 7) be an event-state algebra, let I be some index set, and
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let X be the Cartesian product of componém sets, I'y, for N € 3. We say that N is the name
of component T'y- We assume that each component has a unique name. (We will frequently
denote a component by a variable name used for an instance of the component set. For
example, if 2 = I'; X T,, and we use <A,B> € Z to represent an instance of the state, then we
will refer to the "A-component,” or the "B-component.”) Let N;N,... N, be distinct names
from J. We say that I‘Nl X I‘Nz - X an is a subspace of 2, with name N = <N,)N.....N.>.
(Note that each such composite name denotes a unique subspace.) If s € Z, then "s.N"
denotes the projection of s onto the subspace named by N. If s = <s.;5,,....5 > is a vector of

states, then s.N is defined in the obvious way as <sl.N,s2.N,...,sn.N).

We extend the dcefinitions of n-ary properties and invariants to properties which only depend on

a particular subspace.

Defn 4.24.3.2: Let A = (8, Z, o, 7) be an event-state algebra, and let N name a subspace,
T, of . IfI C I'", we say that ] is an n-ary property for N.

Let I be an n-ary property for N, and letI' = {s € =™: s N € I}. We say ] is invariant for N
in A iff I is invariant in A. If k € N, then we say ] is k-invariant for N in A iff I’ is

k-invariant in A.

Invariants for a subspace are of interest when the state mapping between two algebras fixes that
subspace. We will show below that invariants for a fixed subspace can be "carried down" to the

lower-level algebra.

Defn 42433 Let A, = (8,20, 7) and 4 = (6, Z,, 6, 7,) be event-state
algebras, and let h: A, — .A,. Suppose that the state spaces of ., and A, both contain a
subspace, I', with namc N. We say that h fixes N iff for all s € 21- and for all t € h(s), tN =
s.N. (Thus h does not change the N-subspace of the state.) It is straightforward to show that
ifh fixesN, s € =¥, and t € h(s), then t.N = sN.

Now we show how we can carry higher Icvel invariants for fixed subspaces down to the lower
level. Because we might want to use thesc invariants in inductive proofs (in particular, as we explain

below, in inductive proofs of other relative invariants for the lower level), we state this lemma in




"parameterized” form (i.e. in-terms of k-invariants and k-faithful mappings).

Lemma 4.2.4.34: Let .Al = (81, 21, o) 71) and .42 = (82, 22, o, 72) be event-state
~ algebras, let k € X, and let h: A, = A, be k-faithful. Let N name subspace I in both Z;
and 2, and suppose that h fixes N. If n-ary property I C '™ is invariant for N in A,, then |

is k-invariant for N in .Al.

Proof: Let12 = {t € ) tN €1}, 11 = {s € =0: s.N € I}. lis invariant for N in A,, 50 %}”
C 12. We must show that that 11 is k-invariant in ;. Let<v,.v,....v > € ‘V’l' with v, v, <
oV, and |vn| < k; we show that s = <0,¥,,0,V5s 0V > € I1. Since h is k-faithful, °2h("i)
€h(o,v) fori = 1L2.n. Lett = <0,1(v,).0,h(V,),...0,h(v )>. Then t € Hi", because each
ozh(vi) € ':Poz, and h(vl) < h(vz) <.. h(vn) since h is event-homomoeorphic.

Since t € %{", t € 12; thus tN € L. Butt € h(s), and h fixes N, so tN = s.N. ThussN €,
= s€IL 1

Because a mapping which is a possibilitics map is necessarily faithful, and hence k-faithful for

all k, we have the following lemma:

Lemma 4.2.4.3.5. Let A, = (81, Z, 0, 7)) and ""2 = (82, 22, oy 1’2) be event-state
algebras, and let h: A; = A, be a possibilities map. Let N name subspace I in both 2, and
Z,, and suppose that h fixes N. If n-ary property 1 C '™ is invariant for N in A,, then I is

invariant for N in .Al.

Proof: Immediate corollary of Lemma 4.2.2.4 and Lemma 4.24.34. 1

We showed in Lemma 4.2.4.2.6 that if h is a possibilities map from A, to A, relative to property
P, and P is invariant for A, relative to mapping h, then it follows that his a possibili;ies map. Because of
Lemma 42434, we can use known invariants for fixed subspaces in A, to prove that P is invariant
relative to h. Note that in proving that P is invariant relative to h, we can assume that h is k + 1-faithful
(instead of simply k-faithful) when showing P is k + 1-invariant. By Lemma 4.2.4,3.4, we can thus assume

that invariants from A, for fixed subspaces are k +1-invariant.

We will generally apply Lemma 4.2.4.3.4 to 1-ary or 2-ary invariants. We summarize the
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N, tN) €]
= t € P (by the Induction Hypothesis of the Lemma),

=+ Pisk+1-invariant. 8

It is important to undersiand exactly what Lemma 4.2.4.3.6 says: We cannot assume that the
higher-level invariants (I and J) are truly invariant in .Al, but we can assume they are k + I-invariant for
the induction step of showing P invariant. Because we construct the induction so that faithfulness of h
stays "one stcp ahead” of invariance of P, we can assume both t.N € I, and (s.N,L.N) € J above. (If we

only knew that h were k-faithful, instead of k + 1-faithful, then we would only be able to assume s.N € 1)

4.2.5 Augmentation Maps and Auxiliary State

The power of possibilities maps to map a single state into a set of states is useful when the
lower-level algebra is somehow "rhore abstract” than the higher-level algebra. If the higher-level model
retains more information about a system than a lower-level model, then the low-level state will not
uniquely determine the high-level state. Another technique for showing a valid interpretation from one
algebra to another is to augment the lower-level state with auxiliary variables. These variables are
"virtual” components of the state, in that they do not enter into any preconditions for events, and the

transition effects on other components of the state are not affected by the auxiliary variables.

Defn 4.2.5.1: Let A, = (8, 21, ). 11) and A, = (B, 22, oy 12) be event-state algebras.
We say that A, is an augmentation of A, with auxiliary state Aux iff

1.8 =8
2. 2, = Z; X Aux
3 o, = (ol,ao) for some a € Aux

4, Ve € 8, PREz(e) = PRE (e) X Aux (i.e. the auxiliary state enters into no
preconditions)

5. (s,a) € PREz(e) = r1(e)sa) = ('rl(e)(s).a’) for some a’ € Aux (i.e. the
auxiliary state does not affect transitions)
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If A, is an augmentation of A; with Aux, then we definc the augmentation map, h: A4, =
.42, as follows:

Ve€E, he)=e
Vs € 2, h(s) = {s} X Aux.

Lemma 4.2.5.2: Let .Al =(6,, 2, 9. 7)) and .12 = (82, 2‘.2, o, "2) be event-state algebras,
and let .Az be an augmentation of A, with auxiliary state Aux. Then 21 is a subspace of 2,

and the augmentation map, h, fixes Z,.

Proof: Straightforward from the definition. 1

The following lemma shows a relationship between the technique of using auxiliary state, and

the technique of defining a possibilities map: every augmentation map is a possibilities map.

Lemma 4.25.3;: Let A = (Sl, 2,0, 1) and “-z = (82, 2, o, 12) be event-state algebras,
and let A, be an augmentation of A, with auxiliary state Aux. Then the augmentation map,

h, is a possibilities map.
Proof:

1 o) = {(ol,a): a € Aux},
= (0}.3) € h(a,).

2. Let s € PRE;(€) N %, t € h(s) N B,
= t = (s,a) for some a € Aux.

s € PRE|(¢) = (s.a) € PRE,(h(e)) = PRE,(e),
= (th(e) =te = rz(c)(t) = (11(e)(s),a’) for some a’.

~ Buth(se) = {(se,a): a € Aux} = {(r,(eXs)a):a € Aux},
= (t)h(e) Eh(se).
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4.3 Distributed System Model

We model a distributed system as a special type of event-state algebra. First we present a
general framework for a "distributed algebra,” and then we specialize further to a particular model for the
distributed environment of our transaction system. While these models have considerably more structure
than an arbitrary event-state algebra, it is important to note that they can still be described as special cases -
of event-state algebras. Thus we can apply our results for possibilities maps and invariants directly to

these distributed algebras.

4.3.1 Distributed Event-State Algebras

Defn 4.3.1.1: Let A = (8, Z, 0, 7) be an event-state algebra, let | be a finite index set, and

let orig be a mapping orig: & — 1. We say that A js distributed over I using orig provided
that the following are true:

a. X is the Cartesian product of sets Z, for i € I. We will use index i as the
component name for set Zi.

b. o is a vector of initial states, LA € z, fori €1

c. For each i € I, there is a local transition relation 7,€ 8 X Z, X Z,. 7, must
satisfy the following “local precondition™ property: If e € 8, s € Z,, and orig(e)
# i, then -ri(e)(s) # | . Then 7 is determined by the local transition relations as
follows: 7 = {(e;st): (e,s.i,t.i) € T, Vi€ I}.

If orig(e) = i, then we say that component i is the griginator of event e.

Because the transition relation of a distributed event-state algebra is defined by combining local
transition relations for each component, the effect of each event on a component depends only on the
current state of that component. It is possible for an event to affect several components, however. (Thus

we are permitting an arbitrary “interconnection” of components through events.)

Although an event can have effects at several components, its precondition must be local to its

originating component. Only the originator can control when one of its own events can occur.
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In [Lynch82], a "local mapping” technique is explored for constructing a possibilitics map from
a distributed event-state algebra to another event-state algebra; the possibilities map is defined as the

intersection of local possibilities maps from the states of all components in the distributed algebra.

4.3.2 Message-based Distributed Algebras

We now restrict distributed event-state algebras further to model the particular distributed
environment of this thesis. The basic system components are nodes, with local state spaces and local event
sets. All communication between nodes must flow through a distinguished system component, the
message buffer. We define distinguished send and receive events for communications through the

message buffer.

We give the message buffer a specific semantics: We postulate that messages are delivered in
arbitrary order after they are sent, and that they can arrive any number of times (including 0) after they
are sent. These assumptions allow us to model the message buffer as a ser of messages (the set of all
messages ever sent). It is never necessary to remove a message from this set, because we assume that

messages can be duplicated and delayed arbitrarily.

Defn 4.3.2.1: Let A = (8, I, o, 7) be an event-state algebra distributed over I using orig.
Let Nodes be a finite set of nodes, let Msgsi j be a set of messages from node i to node j (ij €
Nodes), and let Msgs = iL'Jstgsi j- We say that A is a message-based algebra over Nodes
using Msgs if the following are true:

a. I = Nodes U {buf}, where "buf" names the message buffer component.
b. Zbuf = KMsgs) (i.e. the message buffer is a se of messages). Let BUF = Zbuf

c. o.buf = @ (the message buffer is initially empty; thus no message can be
received before it is sent).

d. Let Comm = {send M: M € Msgs} U {receive M: M € Msgs} be the set of
communications events. Then Comm C 8. IfM € Msgs; it then orig(send M) = i,
orig(receive M) = buf. The originator of a send event is the source node for the
message, and the originator of a receive event is the message buffer. (We regard the
destination node for a message as passive in the communications process.)
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e. Ife € & - Comm, and i # orig(c), then 7.(c) is the identity on Z,. Thusall "local”

events (events not in Comm) must have only local cffects. (Note that preconditions
must be local by the definition of a distributed algebra).

f.IFME Msgs, 7 then 7, (send M) is the identity on 2,, for k # bufi. 7(send M)
C {(a,2): a € Z;}. Thus although the sender of a message imposes a precondition
on the sending of a message, the send has no effect on the sender’s state.

g Ty, [(send M) = {(b, b U {M}): b € BUF}. Thus the effect of a send event on
the buffer is to add the message to the buffer.

h. 7 (receive M) is the identity on Z,, fork # j,buf. 'rj(receivc M)a)# 1,Va€
Zj. Thus receipt of a message affects the state of the receiver, but the receiver

cannot impose a precondition on receive events. (The originator of a receive event
is the message buffer.)

i 7, (receive M) = {(bb): b € BUF A M € b}. Thus a receive event for a

message can occur whencver that message is in the buffer. A receive event has no
effect on the state of the message buffer, however. (Messages are never removed).

We stress that the message semantics we have chosen is not inherent in the distributed algebra
framework; this semantics is simply convenient for describing our system. Our message-based model
could be changed easily to provide for different communications semantics. For example, we could
model a "reliable” communications system by making the message buffer an ordered list of messages,

which only delivers messages from the head of the list and removes them upon delivery.
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S. Proof Strategy

In the following chapters we will spcci.fy several levels of an event-state algebra hierarchy; these
algebras model a distributed transaction system. The algebras are presented in top-down order: the
top-level algebra (Level 0) is the "most abstract,” and the bottom-level algebra (Level 7) is the "most
concrete.” At each level we specify the state, the initial state, the events, and the transition relation. At
each level (except Level 0) we also specify a mapping from the new level to the previous (higher) level,

-and we show that this mapping is a possibilities map.

Our goal is to show that the orphan detection strategy which we outlined in Chapter 1
guarantees view-serializability. Thus our top-level model specifies our "correctness condition:” The
Level 0 state is just the set of all action trees, and we define simple events to create, commit, and abort
actions, and to perform an access. The only preconditions at Level 0 require that each state generated by

any event be view-serializable,

At Level 1 we add a data ordering to the state (thus states are now augmented action trees). We
impose preconditions on events to restrict the reachable states to view-serializable AAT’s. We define the
set of aborts "depended on" by an action; as one of our preconditions we require that each state
generated by any event satisfy condition ANC-ABORT -- no action can depend on an abort of one of its
ancestors. We then show that all reachable AAT's in Level 1 are view-serializable. Thus the obvious

mapping from Level 1 to Level 0 is a possibilities map.

At Level 2 we remove the ANC-ABORT condition by adding a precondition to perform events.
This precondition essentially states that an access should not see an abort dependency on an ancestor at
the time it is performed. We show that the reachable states in Level 2 satisfy ANC-ABORT (using this
new precondition); thus the obvious mapping from Level 2 to Level 1 is a possibilities map. We refer to

this precondition as the "orphan detection” precondition.

Levels 0 - 2 are global state algebras, in that we regard the transaction system as operating on a
single global state. These levels can be thought of as “centralized” interpretations of the events in a
distributed action system. Lower levels progressively "distribute™ this global state and localize the

preconditions and effects of events.

At Level 3 we introduce "locations,” which can be thought of as abstract nodes. Each action and
each object has its own location. The information at a location consists of a (local) unlabeled action




-76 -

summary, plus the datastep ordering from the AAT. We define very simple "communications” events to
transfer information to any location. We show that it is relatively simple to localize all preconditions
excep! for the orphan detection precondition. The orphah detection condition must still be expressed in
terms of the gldbal AAT. The implication of this result is that our communications steps at Level 3 do not

include enough information to completely localize orphan detection.

At Level 4 we introduce value maps -- a data structure which models the locks and versions of
atomic objects. The Level 4 state consists of an AAT, a "local state” mapping from locations to UAS’s,
and a value map for each object. We regard the value map as a local data structure (conceptually each
object has its own value map.) We replace some of the preconditions on perform events with

preconditions on value maps, and we modify the transition effects of actions to update value maps

appropriately.

At Level 5 we succeed in localizing the orphan detection precondition by piggybacking abort
information on the create and commit communications events. This abort information models the
DONE lists of our simplified orphan detection algorithm. The key. invariant proved for Level 5 states

that each location always has "enough" abort information.

Because all preconditions are localized at Level 5, the global AAT can be regarded as a "virtual”
component of state. We project out this global state at Level 6, and we construct a trivial augmentation
map between Level 6 and Level 5. Although the resulting algebra is "localized,” it does not quite fit our
definition of a "distributed” event-state algebra. To define a distributed event-state algebra, we must
assign "locations” (abstract nodes) to physical nodes. An additional complication results from the
simplicity of our communications events at Levels 3 - 6;: The transfer of information caused by these
events is considered instantaneous at these levels. For a distributed event-state algebra we must model

arbitrary communications delays.

Level 7 presents a distributed event-state algebra. Many actions and objects can reside at a
single node, and messages are sent asynchronously via a message buffer. In mapping from Level 7 to
Iz§e1 6, we account for the communications delays in the message buffer by considering messages
themselves to be abstract "locations.” (One way to think of this device is to imagine that at Level 6 we
can consider all communication events to be instantaneous, but all messages are sent via a third party. At
Level 7, we "know" that this third party is really the message buffer, but at Level 6 this detail ls not
necessary.)

| R
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6. Global State Models

This chapter presents Levels 0 - 2 of the event-state algebra hierarchy. Level 0 describes our
correctness condition: every action tree generated by the system must be view-serializable. Level 1is a
global state model based on AAT’s. Level 1 develops the crucial link between view-serializability and
orphan detection: We define the “aborts dependency set” for an action in an AAT, and we require at
Level 1 that no action can depend on an abort of one of its ancestors. Informally this condition, which
we call ANC-ABORT, means that no action can "know" that it is an orphan. At Level 1 we show that the

ANC-ABORT condition (along with other preconditions on events) implies view-serializability.

The ANC-ABORT condition is imposed at Level 1 by requiring that the next state generated by
each event satisfy ANC-ABORT. At Level 2 we replace this restriction with a single precondition on data

accesses, and we show that this precondition suffices to guarantee ANC-ABORT.

We also make use of an auxiliary algebra, which we call "Level A" (denoted La). Level A
consists of Level 1 without the ANC-ABORT restriction. Thus Levels 1 and 2 are both logically "below"
Level A. The advantage of using this auxiliary level is that we can easily construct a possibilities map
from Level 2 to Level A; we will then use Level A invariants in showing that there is a possibilities map
from Level 2 to Level 1. |

We will use the following distinguished symbols to define the initial states of the algebras:

T, denotes the trivial AAT containing only vertex U with status "active’, and an empty data ordering:

verticesro = {U}

stat U) = ’active’
usro( ) ve

labelTo =@

data-ro =2

T, = erase(T) (an action tree), and T, = unlabel(T)) (a UAS).
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6.1 Level 0 Algebra

The Level 0 state consists of a (global) action tree. The events at Level 0 are just those needed to
create an action tree: we define events to create an action, commit and abort an action, and perform an
access with a given value (this value gives the label of the datastep in the action tree). The only constraint

on validity of an execution sequence at Level 0 is that the resulting action tree must be view-serializable.
L0 = (80, 25 0 1'0)

80 = {create A, commit A, abort A, vperform A,u} (see below).

2, is the set of all action trees.

o, = T,, the trivial action tree.

7, the transition relation, is specified below via preconditions and transition effects for each event:

Let the current state be T. For each event, we give the transition function which maps T — T1. The
precondition for each event is a logically a condition on T, the current state, but we specify it as a
condition on T1. (Since T uniqucly determines T1, a condition on T1 maps directly into a condition on
T.) The single precondition for cach event requires that the next state (T'1) be view-serializable. Let VSR

denote the set {T: T is a view-serializable action tree}.

1. creatc A (A€act-{U})
PRECONDITIONS:
a. T1 € VSR
TRANSITIONS:
a. verticesy, + vertices, U {A}

b. statusp,(A) « ’active’

2. commit A (A € act - {U} - accesses)
PRECONDITIONS:
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a. T1 € VSR
TRANSITIONS:

a. statusrl(A) +« ‘committed’

3. abort A (A €act-{U})
PRECONDITIONS:
a. T1 € VSR
TRANSITIONS:

a. statusn(A) « ’aborted’

4. perform A,u (A € accesses(x), u € values(x))
PRECONDITIONS:
a. T1 € VSR
TRANSITIONS:
a. statusn(A) +— ‘committed’

b. labelTl(A) —u

The following lemma justifies our statement that L0 defines our correctness condition, because

all reachable states in L0 are view-serializable action trees.
Lemnia6.1.1: LetT€ ‘.%0. Then T € VSR.

Proof: LetT = Tiv, for some v € ‘V('). Ifv# A, then T = Te forsome e € So, T € PREo(e),
and by the VSR precondition for e, T € VSR. Ifv = AthenT = 'I‘i which is trivially in
VSR.1
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6.2 Level I Algebra and Mapping hy,,

The Level 1 state consists of a (global) AAT. The events are identical to those defined at Level
0, but we modify the preconditions as we begin to specify in detail how the transaction system functions.

Ll = (81, Zl, o) "1)
8, = §; = {create A, commit A, abort A, perform A,u}.
Z, is the set of all apgmented action trees.
o, = T, the trivial AAT.
7,. the transition relation, is specificd below via preconditions and transition effects for each event.

We will define a condition, ANC-ABORT, on AAT's, which essentially states that an action
cannot know that it is an orphan. We includc a precondition for each event in L1 which requires that the
next state generated by this event must satisfy ANC-ABORT. 1t will follow trivially that ANC-ABORT is
satisfied by all reachable states in L.1.

6.2.1 Aborts Dependencies and Condition ANC-ABORT

We want to develop a condition which will rule out execution sequences in which orphans see
"inconsistent” data. To devise a condition which can distinguish "bad” orphans from orphans which are
not dangerous, we define the set of aborts upon which an action "depends.” The ANC-ABORT

condition simply states that an action cannot depend upon the abort of any of its ancestors.

Infonnaily, an action dcpends on any abort which allowed the action to proceed. Because of
sequential dependencies, any abort of a sequentially preceding sibling is depended on by its following
siblings and their descendants. A parent also depends on the aborts of any of its childreén. Any abort
which “releases a lock™ on an object subsequently read by an action is depended upon by that action.
Our Level 1 model does not have explicit "locks™; locks and versions are sepresented by the entire action
tree. (Precondition P1.4b below is essentially a "lock” condition which says that two actions (at any level)
cannot interfere on the same object: one must either commit or abort before the other is allowed to
proceed. Precondition Pl.4c is essentially a “current version” condition which says that the current

version seen by a datastep is the result of all preceding accesses which are visible to it.)
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An action also depends on all the aborts depended on by committed actions which might pass
information to it (which for our purposes will be considered all the actions in its view set). Thus the
aborts dependency set for an action is defined as the union over all actions in its view set of the

"immediate aborts” preceding those actions.

Defn 6.2.1.1: Let T be an AAT, A € vertices;. We define the aborts dependency set of A in

T as follows:
ABORTS. (A) = i-preccdes (B
1( ) Blé,vsle)br(A) es,(B)
We define the set ANC-ABORT as the set of all AAT’s in which no action depends upon the
abort of an ancestor:
Defn 6.2.1.2: ANC-ABORT = {T: VA € vertices, anc(A) n ABORTSTJ(A) = @}.

We also define a "sequential aborts set” which represents all the aborts upon which an action

depends when it is first created.

Defn 6.2.1.3: Let T be an AAT, A € vertices;. We define the sequential aborts dependency
setof A in T as follows:

- TS(A) = i-anc-seq{A) U ABOR B
SEQ-ABORTS (A) (AU LAB ml,?ﬂ )
The following lemma relates the sequential aborts set of an action to the sequential aborts set of
its parent:
Lemma 6.2.1.4: Let Tbean AAT,and A € vertices . IfA # U, then
SEQ-ABORTS{A) = SEQ-ABORTS {parent(A)) U llJABORTST(B) U i-seq(A).
_ B v-seq.l(A) _

And SEQ-ABORTS (U) = @.
Proof: It is obvious that SEQ-ABORTS,(U) = #. Take A # U. By definition of

SEQ-ABORTS,

SEQ-ABOl.(TSﬁA) = iranc-seq{A) U B?ﬁ‘,"ﬁ&%m :
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But i-anc-seqj(/\) = i-seqT(A) U i-anc-seqT(parent(A)), and v-anc-seqT(A) = v-sch(A) U
v-anc-seq.l.(parcm(A)). Thus

SEQ-ABORTS,(A) = i-seq,(A) U i-anc-seq {parent(A)) U lzlixgqokgsj(n) U

ABORTS. (B) .
v-anc-seq nt(A))

= SEQ-ABORTS (parent(A)) U BLGJ:x&QII}AT)s,(B) U i-seq(A). I
The following lemma relates the flow of information via view sets to the flow of abort
information via ABORTS sets: |
Lemma 6.2.1.5: Let Tbean AAT, A € vertices, B € vseLl(A), then
ABORTS (B) C ABORTS(A)
Proof: ABORTS (A) = c zﬁrc‘c:)desr(C) while ABORTS(B) = Urp:le(cedesl(C)

Butif B € vset{A), then vset(B) C vset (A) by Lemma 2.3.3a. The lemma follows directly.
1

The definition of view sets as the closure under v-precedes,. allows us to write a recursive

expression for ABORTST:
Lemma 6.2.1.6: Let Tbean AAT, A € verticesl, then

ABORTS (A) = 1-precedes1(A) U lEJABO (B
V-pr

Proof: vset(A) = {A} U v-precedes1(A)

=AU B
MU Yre®

The Lemma follows directly. |

Since action trees are always finite, we can use this recursive form in inductive proofs of
properties of aborts sets if we show that tracing back the v-precedes . relation will not result in cycles, i.e.
that YA € vcrticesp A¢ v-precedes;(A). ar v-precedes»r were acyclic, then the induction might not be
well-founded.) We will prove below that v-precedes; is acyclic for all reachable trees in La (and hence
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for all reachable trees in L1).

6.2.2 Specification of Event Preconditions and Transitions for L1

Let the current state be T. For each event, we give the the transition function which maps T —
T1. Preconditions are specified as a function of T, except for the ANC-ABORT condition which requires
that the next state be in ANC-ABORT.

1. create A (A €act- {U})
PRECONDITIONS:
a. A ¢ vertices;
b. parent(A) € active
c. (BA)€seqB#A = B€ done.
d. T1 € ANC-ABORT
TRANSITIONS:
a. verticesp; + verticesp U {A}

b. statusn(A) + "active’

2. commit A (A € act - {U} - accesses)
PRECONDITIONS:
a. A € activey
b. children (A) C done,
c. T1 € ANC-ABORT
TRANSITIONS:

a. statusn(A) + ‘committed’
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3. abortA (A €act-{U})
PRECONDITIONS:
a. A € active,
b. T1 € ANC-ABORT
TRANSITIONS:

a. statusn(A) + ‘aborted’

4. perform A.u (A € accesses(x), u € values(x))
PRECONDITIONS:
a. A € active;
b. B € datasteps(x) = B € visible(A,x) V B‘€ dead (A,x)
¢. u = result(x,s), where s = <<visib1e1(A,x); dataT»
d. T1 € ANC-ABORT
TRANSITIONS:
a. statusrl(A) + ‘committed’
b. ‘label.n(A) ~u |

c. datag, « data, U {(BA): B€ démsteps‘(x)} U {(AA)}

6.2.3 Specification of Mapping hy,

We define the mapping hm: L1 — L0 in the obvious way. Our goal, of course, is to show that
this mapping is a possibilities map.

State Mapping
hy: X, = Z, is defined by h,(T) = erase(T), VTE€ Z,.

Event Mapping
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*
hyy! 81 - 80 is the identity map on cvents.

6.2.4 Proof Strategy for Showing h,, is a Possibilitics Map
We can show easily that h]0 preserves initial states and transitions:
Lemma 6.2.4.1: h,, preserves initial states.
Proof: hm(To) = erasc('l"o) = Ti, by definition. 1
Lemma 6.2.4.2: h,, preserves transitions.

Proof: 1t is obvious by inspection that h,, preserves transitions, since transitions for all events
are identical at levels 1.0 and L1 (except for transition T1.4c, which involves the data ordering

-- but data. is projected out by the state mapping). 1§

Showing that h]0 preserves preconditions is more difficult. We use the following lemma to

reduce this problem to a view-serializability condition on reachable states in L1:

Lemma 6.2.4.3: Suppose that for all T € 9‘61, T is view-serializable. Then h,, prescrves

preconditions.
Proof: To show thath 10 Preserves preconditions, we must show that
TEPRE()N D), hy((T) €Ry = h,(T) € PRE(h,(€)).

But the only precondition at Level 0 is that the next state must be in VSR. Thus
h,o(T) € PREy(ho(c)) = h (Dh(e) € VSR.

Since h preserves transitions, h(Th(e) = hlo('l‘e) = crase(Te). Thus we must show that
erase(T'e) € VSR. Sincc view-serializability of AAT’s is defined to be view-scrializability of

the corresponding action tree, we must show that
TE PRE,(c) N B, crase(T) € %, = Tcis vicw-serializable.

But TE PREl(e) N ?Rzl = Te€ %]. Thus it suffices to show that all reachable states in 1.1

are view-serializable. 1
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View-serializability of reachable states is thus our main theorem for L1, which will imply that
h,, preserves preconditions (and is thus a possibilities map). We state this thcorem here, although its

proof will be given in several stages:
Theorem 6.244: Let TER K Then T is view-serializable.

The proof of this thecorem consists of showing that for each action A € vertices., vtree (A) is a
serializable view tree for A, The proof that § = vtree (A) is a serializable view tree is given in three
subordinate lemmas which show that (1) S is a view tree for A in T, (2) S is version-compatible, and (3)
there are no cycles (of length 2 or greater) in seqg U sibling-datas. By Theorem 2.5.1, it follows that Sis a
scrializable view tree for A. We state these lemmas here, although the proofs are deferred to later

sections.

Lemma 6.2.4.5: LetT € ?R:l. let A € vcrticcs.l., andletS = vtrcc,].(/\). Then S is a view tree
forAinT.

Lemma 6.24.6: let T € G.Pol, let A € verticcsr, and let S = vtrceT(A). Then S is

version-compatible.

Lemma 6.247: LetT € %, let A € vertices, and let S = vtree(A). Then seqg U
sibling-dataS has no cycles of length two or greater.
6.3 Auxiliary Algebra La

We define an "auxiliary” event-state algebra, La. (La is "auxiliary” because it is not part of our
main event-state algebra hierarchy.) Lais identical to L1, except that the ANC-ABORT preconditions on
events (preconditions P1.1d, P1.2¢, P1.3b, and P1.4d) arc omitted.

We dcfine the trivial mapping h 0 L1 —> la as the identity map on states and events.
Theorem 6.3.1: h,, is a possibilities map.

Proof: Since initial states are identical in L1 and La, and h,_ is the identity on states, h,,
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preserves initial states. - Since all transitions and preconditions in Level 1 also appear at Level
A, hla must preserve transitions and preconditions. Thush, isa possibilities map, by Lemma

4226. 1

Since this mapping fixes T (it must fix T since T is the entire state), we will show that all invariants (and

pair-invariants) for La arc invariant (or pair-invariant) for L1,

We prove below several basic lemmas for algebra LLa. We will then apply these results to the

proofs of .emmas 6.2.4.5, 6.2.4.6, and 6.2.4.7,

The advantage of defining 1.a is that we will also construct a trivial possibilitics map between
algebra 1.2 and algebra L.a. We will thus be able to apply Level A invariants directly to Level 2, and we

will use these invariants to show that h,, (defincd below) is a possibilitics map.
6.3.1 Basic Lemmas for La
6.3.1.1 Invariants and Pair-Invariants for La

Lemma 6.3.1.1.1: Let (I.T1) € %%, and let A € vertices . Then the following are true:

a. vertices, C vertices;, committed. C committed,, aborted; C aborted,,
data; C datay,

b. If A € datasteps,, then label (A) = label,(A)
c. IfFAE€ datasteps . and (B,A) € datar,, then (BA) € data

d. visible(A) C visibley(A)

o

. dead{A) - deadn(A)
f. IfAisliveinT], then Aislivein T _

g. If Aisdeadin T, then A is dead in T1 and {crucia]“(A)} < {crucialT(A)}

=

. v-anc-seq,(A) = v-anc-seq.(A), i-anc-schl(A) = i-anc—seqT(A)

Proof: Straightforward. |

Lemma 6.3.1.1.2: LetT € %,. Then the following invariants hold:
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o

Tisan AAT,ie. A € vertices = pareni(A) € vertices
b. If A € vertices and (B,A) € scqand B # A, then B € done
c. If A € vertices; and parent(A) € committed,, then A € done;

d. U € active

[¢]

. If(B,A) € dataj, then B € visible (A) V B € dead (A)

f.IfA € committed and B € desc(A) N vertices, then B € visiblc.l(A) V BE
deadT(A)

ga

. If(BA) € i-data,. then crucial B} is defined, and crucia]T(B) € desc(ALB)

Proof: All are obvious except for (¢) and (f) ((g) follows directly from (e)):
e) If B = A then the result is immediate. If B # A, then

Let T = Tyv, where v € ¥] can be written as @y, with # = perform A,u.

LetTl = Typ,and let T2 = T pw.

By Lemma 6.3.1.1.1c, (BA) € danal.2 = B € dalasteps“(x). By precondition Pa.4b for
perform, B € visible. (A.x) V B € dead (A x).

B¢ visibleTl(A,x) = RB€ visible.r(A,x) (by Lemma 6.3.1.1.1d), = B€ visiblcj(A).
B€ dead (A,x) = B € dead (A x) (by .emma 6.3.1.1.1¢), = B € dead (A).

f) If B = A, then the result is immediate. So assume B € prop-desc(A), and assume B #
visiblel(A). Let C € prop-desc(A) M anc(B) be the highest ancestor of B which is not

committed. Then parent(C) € committed,, = C € done, (by Lemma 6.3.1.1.2c). But C¢
committed,. by assumption = C € aborted,. |

Lemma 6.3.1.13: Let (I'T1) € % 2 andletA € committed,.. Then the following are true:

a. childrenTl(A) = childrch(A)




b. v-child;(A) = v-child (A), i-child; (A) = i-child,(A)

c. v-data;,(A) = v-datal(/\), i-data;,(A) = i-dataT(A),
v-data-anc . (A) = v-data-ancl(A)

d. i-data-anc,(A) < i-data-anc.r(/\)
e. v-precedes - (A) = v-prccedesr(A), vsctn(A) = vseLl.(A)

f. i-precedes; (A) < i-precedes (A)

Proof:

a) Clearly children(A) C children (A). Suppose B € children (A) - chi]dren1(A). (We

can assume A € accesses.)

Let T1 = Tjv, where v € ¥, can be written as @ py, with # = commit A, p = create B.
LetT2 = Typay.

Then A € committedn. But precondition Pa.1b requires that A € active,,, a contradiction.
b) Follows directly from (a) and 1.emma 6.3.1.1.1d

¢) Because any datastep which occurs after perform A,u must follow A in the data ordering,
v-data . (A) U i-data.n(A) = v-data (A) U i-data,](A). But i-data,l(A) C deadT(A) by
L.emma 6.3.1.1.2¢, and dcad.l(/\) C dead[,(A) by Lemma 6.3.1.1.1e. Thus i-dalar(A) c
i-datap (A).

But v-data (A) C v-datal.l(A) by Lemma 6.3.1.1.1d. It follow dircctly that v-da(aT(A) =
v-data; (A), and i-data(A) = i-datay,(A). Equality of v-data directly implics equality of

v-data-anc.
d) Follows directly from (c) and I.emma 6.3.1.1.1g

¢) Equality of v-prccedcsn(/\) and v-precedes(A) follows directly from parts (b) and (c)
and from Lemma 6.3.1.1.1h. To show that vset,(A) = vset (A), we can argue inductively
since B€ v-precedes(A) =» B € committed; by Lemma 2.3.2.

f) Follows directly from parts (b) and (d) and from Lemma 6.3.1.1.1h. |
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Lemma 6.3.1.14: lctT € %a, A € committed;. Then i-precedes {A) C aborted..

Proof: 1ctB€ i-precedes {A).
B € i-anc-seq.r = BE€ done; by Lemma 63.1.12b, = B € aborted (since B ¢

visible.(A)).

B € ichild, = BE€ done; by Lemma 6.3.1.12c, = B € aborted (since B ¢
visib]eT(A)).

B € i-data-anc; = B = crucial(b), for b € i-data (A). By Lemma 6.3.1.1.2g, B is

defined, = B € abortch. 1

6.3.1.2 Event Orderings in La

This section presents some constraints on the ordering of events in valid execution secquences for
La. In the following lemmas (and in the proofs that follow) we will simplify our notation by referring to
both "perform A,u” events and "commit A" events as “"commit A." This convention causes no

complications; it requires only that we realize that events written as "commit A™ might refer to datasteps.

Lemma 6.3.1.2.1: lLetv € °fa be a valid execution scquence from La, then -3 is acyclic - i.e.,

no event can be repeated in a valid execution sequence.

Proof: Suppose cvent ¢ could be repeated in a valid execution, v, i.e. v = a*e*becec € "(;.

letTl = Toac, T2 = 'l'anb. By Lemma 6.3.1.1.1,

e =create A = A€ verticesn.
e = commitA = A€ committed ,.

e =abortA = A€ aborted.n.

But by the preconditions for events,
¢ = create A requires A ¢ vertices, (Pa.la).
e = commit A requires A € active, (Pa.2aand Pa 4a).

e = abort A requires A € active, (Pa.3a).

Thus no event can be repeated. |
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Lemma 6.3.1.2.2; let vE ‘Ya, T= 'l‘ov, A€ committedl., then
createc A ' commit A

Proof: vcan be written as @@y, with o = commit A.

LetTl = T0<p.

Precondition Pa.2a (or Pada if A € accesses) requires A € active,,
= crcate A € ¢,
= create A =2 commitA. 1§

Lemma 6.3.1.2.3: Let v € 1’;, T=TyA € aborted,, then

create A < abort A

Proof: Similar to the proof of 6.3.1.2.2 above. B

Lemma 6.3.1.2.4: let v€ 1;, T= Tov. (B.A) € data,r, B # A, then
commit B r's commit A

Proof: vcan be written as pay, with 7 = commit A (= perform A,u).

LetT] = Typ, and let T2 = Typa.

By Lemma 6.3.1.1.1c, (B.A) € data,,
= B € committed,,

= commit B < 7 (= commitA). 1
Lemma 6.3.1.2.5: Let v€ ¥, T = Ty, A € datasicps,, B € v-data (A), then

commit AlB s commit A

Proof: A € datasteps; = commit A € v.
Thus v can be written as @uy, with # = commit A (= perform A,u).

LetT] = Typ, and let T2 = Tpm.
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Byl.emma 6.3.1.1.1c, (B,A) € data,.
By Lemma 6.3.1.1.2¢, B € visible ,(A) V B€ dead,,(A).
If B € dead,(A) then B € dead (A), = B ¢ visible,(A), a contradiction.

Thus B € visible,(A),

= A|B € committed ,,

= commit A|B € ¢,
= commit A|B - commitA. 1

Lemma 6.3.1.2.6: Let v € ¥, T = Tyv, A € vertices, A’ € prop-anc(A) - {U}, then
create A’ < create A

Proof: A € vertices. = create A €v.

Thus v can be written as gay, with o = create A.

Let Tl = Typ. and let 12 = Tyem.

By precondition Pa.1b. parent(A) € activer),

= create parent(A) 2 creatc A (unless parent(A) = {UD.

The Lemma follows by an obvious induction. |

Lemma 6.3.1.2.7: Let v€ ‘Y;, T =Ty, A € vertices, B € v-anc-seq,(A), then
commit B - cCreate A

Proof: A € vertices; = create A €v.
B € v-anc-seq{A) = 3A’ € anc(A): (B,A’) € seq.

By Lemma 6.3.1.2.6, create A" - * create A.

v can be written as gwy, with o = create A’.

LetTl = Typ, and let T2 = Typu.
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By precondition Pa.lc,.B € done,,,
= commit A ~> create A - ¢ create A R

Lemma 6.3.1.2.8: let vE€ ‘Ya, T= ’I‘Ov, A€ verticesr, B € i-anc-scq.l.(A), then
abort B —» create A

Proof: Similar to the proof of .emma 6.3.1.2.7 above. 1§

Lemma 6.3.1.2.9: let v€ ¥, T = Tyv. A € committed, B € v-prop-desc,(A), then
commit B - commit A

Proof: A € committed; = commit A € v. Note that since A has a proper descendant, A ¢
accesses. Assumc that B € v-child{A); the Lemma follows from this case by an obvious

induction.

v can be written as @@y, with o = commit A,

LetTl = Typ,andlet 12 = Typm.
But B cannot be created after A has committed, so B € vcrticesn.

By precondition Pa.2b, B € doneTl,
= commit B € ¢,

= commit B ' commitA. §
Lemma 6.3.1.2.10: Let vE 1;, T=T oV A€ committch, B€ i-childr(A), then
abort B ' commit A

Proof: Similar to the proof of Lemma 6.3.1.2.9 above. 1

Lemma 6.3.1.2.11: Let v€ ¥, T = Tyv, AB € committed;, B € v-precedes(A), then

commit B ' commit A
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Proof: Weshow C € v-precedes, (B) = commit C > commit B. The Lemma follows by
an obvious induction.

C € v-precedes (B) =
C € v-anc-seq,(B) V C € v-child(B) V C € v-data-anc,(B).

IfCe¢ v-anc-scq,l.(B), then

commit C > create B by l.emma 6.3.1.2.7.

But creatc B - commit B by l.emma 6.3.1.2.2,

= commit C e commit B.

IfC¢€ v-child (B). then

commitC - commit B by Lemma6.3.1.2.9.

IfCE€ v-data-anc (B), then
C = Blc,wherec € v-data(B),
= commitC - commit B by Lemma6.3.1.2.5. 8§
Lemma 6.3.1.212: Let v € ¥, T = Tyv, A,B € committed, B € vsetT(A), then

commit B e commit A

Proof: Immediate corollary of Lemma 6.3.1.2.11. ]

Lemma 6.3.1,2.13: Let v€ . T=Ty.A € committed,, B€ i-precedes (A), then
create B s commit A

Proof: B € i-precedes(A) =
B€ i-anc-seq;(A) V B € i-child (A) V B € i-data-anc(A).

IfFB€ i-anc-scq{A), then abort B = create A by Lemma 6.3.1.2.8, and
create B <> abort B, create A 2 commit A,

= create B ' commit A.




IfB€ i-child((A), then abort B -» commit A by Lemma 6.3.1.2.10, and create B -
abort B,

= create B ' commit A,
IfFBE i-data-ancﬁA), then B = crucial (B’) for some (B’,A) € data;. Thus B € desc(B’).

But by Lemma 6.3.1.2.4, commit B’ > commit A, and by Lemma 6.3.1.2.6, create B 3
create B - commit B’

= create B 3 commitA. |1

Lemma 6.3.1.2.14: let v € ‘Ya, T = Tov, AB € committed.l., B € vsct,r(A), C €
i-prcccdesl.(B), then

create B <> commit A

Proof: Immediate corollary of Lemmas 6.3.1.2.12 and 6.3.1.2.13. |

6.3.2 Version-Compatibility in La

Lemma 6.2.4.6 states that if T is a reachablc AAT in 1.1, and A € vertices, then vtree1(A) is
version-compatible. In this section we develop two lemmas which will be used in the proof of Lemma
6.2.4.6. First we show that if T is any AAT which is version-compatible, then any restriction of T to a
v-datap-closed set is also version-compatible. We then show that any reachable tree in La is
version-compatible. We will show in a later section that for any reachable tree, T, in L1, vtrccl(A) isa

(backed up) restriction of Tto a v-data,-closed set, which will complete the proof of Lemma 6.2.4.6.

Lemma 6.3.2.1: Let T bean AAT, VC verticesr, where V is anc-closed and v-dataT-closcd.

If T is version-compatible, then T]V is version-compatible.
Proof: LetS = T|V. Note that S is an AAT since V is anc-closed. L.et A € datastepsg(x).
We must show that labels(A) = result(x,r), where r = ((v-datas(A); datas».

By definition, labels(A) = labeLI(A).

But T is version-compatible,
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= labcl.].(A) = resuli(x,r’), where

r= <<v-data,l.(A); data,r».

Thus it suffices to show r = r’. But datag C data,; thus it suffices to show sct equality. It is

obviousthat rC 1.

Sosupposec BE ', B# A,
= B € visible (A) A (B,A) € data,
== B €V, since Vis v-data-closedand A €V,
= B€ visibles( A) A (B,A) € datag (since V is anc-closed),
= BE€r 1

Lemma 6.3.2.2: LetTE %,. Then T is version-compatible.

Proof: lect A€ dataslcps].(x). We must show that u (= labelT(A)) = result(x,s), where s =
<<v-data,r(A); data>>.

LetT = Tyv, wherev € ¥, can be written as pwy, with o = perform A,u.
Let Tl = Typ, and let T2 = T pa.
By precondition Pa.4c, u = result(x,s’), where s’ = <<visib]cTI(A,x): data,>.

Thus it suffices to show s = s, and since datap, C data,, it suffices to show sct equality.

First, let B € s.

(BA) € data,, but A € datasteps, = (B,A) € data .,
= B € datasteps,,
= BE€ datasteps ., ().

By precondition Pa.4b, B € datasteps,,(x) = B€ visible (Ax) V B € dcadn(A,x).

Butif B€ dead.“(A,x), then B € dcad](A,x) by l.emma 6.3.1.1.1¢,

=B¢ visible (A), which is a contradiction.
Thus B € visible,,(Ax), = BE s’

Conversely, suppose B €. We know B # A since A € datasteps,,.
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(BA) € data;, = (BA) € data,.
B € visible, (Ax) = BE visible (Ax), =BEs. 1

6.3.3 Propertics of Aborts Scts in La

In this section we present somce propertics of aborts sets for rcachable trees in La. The first
lemma is not strictly a property of aborts scts, but it justifies use of the recursive form of ABORTS in

inductive proofs, so we include it here.
Lemma63.3.1: LetT€ %,. A € vertices|. Then A ¢ v-prcccdes}(A).

Proof: LetT = Tyv forsome v € ¥,- Suppose A € v-preccdcs?(A).
By Lemmma 6.3.1.2.11,A € committed [, and

commit A 2 commit A.

But - is acyclic for v € ‘Ta. so this is impossible. |

Lemma 6.3.3.2: LetT €% , A € committed,, (A,B) € seq, A # B, then
ABORTS (A) N desc(B) =

Proof: LetT = 'I‘ v, for some v € 1"

ABORTS(A) = U. -precedes(C) .
c€ vseLI(A)

Let D € i-precedes(C), for some C € vset{A). We show D ¢ desc(B). Since A €

commitlch, create D < commit A, by L.emma 6.3.1.2.14.

But if D € desc(B), then commit A > create D, by Lemma 6.3.1.2.7. But < must be

acyclic, so we have a contradiction. |

Lemma 6.3.3.3: let (111 € %;2), andlet A € committed. Then
ABORTSTI(A) < ABORTS(A)

Proof: ABORTS. ](A)— Unprcccdcsrl(B)
vsen,“(A)
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By Lemma 6.3.1.1.3¢, vset((A) = vset | (A)

= ABORTS(A) = Un -precedes ., (B)
vsebr(A)

ButA € committed, and \-'-prcccdcs.].(/\) C committed by Lemma 232,

= vset(A) - committcd.r by dcfinition of vset,.

ButB € committedT = i-preccdes (B) < i-preccdesl(B) by L.emma 6.3.1.1.3f,

= ABORT Sn(/\) < U1 prcccdesr(B) (using Lemma 2.2.1.1),
\seLl(A)

= ABORTS;,(A) < ABORTS (A). 1

Lemma 6.3.3.4: Let (T,T1) € ®{?, and let A € vertices. Then
SEQ-ABORTS | (A) < SEQ-ABORTS(A)
Proof: SEQ-ABORTS(A) = i-anc-seq,(A) U UABORTS (B)
€ v-anc- Seqy R

= j-anc- scql(A) U UABOR"IS (B) ,by Lemma6.3.1.1.1h.

B € v-anc-seq. I‘Xi
But B € v-anc-seq(A) = B€ committed ,
= ABORTS,(B) < ABORTS(B), by Lemma 6.3.3.3.

The lemma follows directly using Lemma 2.2.1.1. 1

6.4 Proof of Possibilities Map for h,

We now return to the task of showing that h,, is a possibilities map. First we must prove

Lemmas 6.2.4.5, 6.2.4.6, and 6.2.4.7.
We first state an obvious lemma for L.1: all reachable AAT s are in ANC-ABORT.
Lemma 6.4.1: LetTE€ %l. Then T € ANC-ABORT.

Proof: Let T = Ty, for some v € T- Hv# A thenT = Teforsomec € &, T € PREl(c),
and by the ANC-ABORT precondition for e, T € ANC-ABORT. Ifv= A, thenT = T0
which is trivially in ANC-ABORT. i
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We will use this ANC-ABORT property, together with results from La, to prove Lemmas
6.2.4.5,6.2.4.6, and 6.2.4.7.

Let Ia denote the property of T which is the conjunction of the properties stated in Lemmas 6.3.1.1.2,
6.3.1.14, 6.3.2.2, 6.3.3.1, and 6.3.3.2. (Recall that all invariant abbreviations are cross-referenced to

lemmas in Appendix 1.)

Let Ja denote the pair-property of T which is the conjunction of the pair-properties stated in Lemmas

6.3.1.1.1,6.3.1.1.3,6.3.3.3,and 6.3.3.4,
Lemma 6.4.2: lais invariant in L1, and Ja is pair-invariant in L1.

Proof: h)_ is a possibilities map by Theorem 6.3.1. But h,, fixes T. Since Iais invariant for T
in La, Jais invariant for Tin L1 by l.emma 4.2.4.3.5. Similarly since Ja is pair-invariant for

Tin La, Jais pair-invariant for Tin L1, by Lemma 4.24.3.5. 1

Let Sa denote the property of event sequences which is the conjunction of the properties stated in

I.emmas 6.3.1.2.1 through 6.3.1.2.14,
Lemma 6.4.3: Letv € ¥]. Then Sa holds for v.

Proof: Since h]a is a possibilities map, it is a valid interpretation, by Lemma 4.2.2.5. Thus
hla(v) € ‘V;. But h] a is the identity map on events, so h] a(v) = v. Since Sa holds for all event

sequences in ¥, Sa holds for v.
Now we prove a preliminary lemma for L1, which shows that tracing back the visible precedence relation
from any action cannot lead to an ancestor of that action.

Lemma 64.4: Tet TE€ %, andletA € vertices,. Then anc(A) N v-precedcs;(A) = @.

Proof: Supposc B € anc(A) N v-precedcs.;(A).

By Lemma 232, B € v-prcccdcs?(/\) = B € committed. By Lemma 6.3.1.1.2f, A €
desc(B) = A € visible(B),orA € dead (B).

IfA€ visiblc].( B), then by L.emma 6.3.1.2.9,
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commit A > commit B.

But B € v-prccedcs}(/\), A € committed, = commit B - commit A, by Lemma

6.3.1.2.11, acontradiction.

IfA € dead (B), then let C be the lowest (in ancestor order) action in anc(A) N v-descl(B).
Clearly C € vseLr(B) = C¢ vscLl,(A), by l.emma 2.3.3a. A € prop-desc(C) since A €
visible (B). LetD = ClA.

But D ¢ committed., since otherwise ID would be visible to B, contradicting our choice of C
as the Jowest visible descendant of B which is an ancestor of A.

= DE aborted, (by l.emma 6.3.1.1.2¢),

= D € i-child (C) = D € ABORTS(C).

ButC € vseL].(A) = ABORT S.,V(C) C ABORTS(A), by Lemma 6.2.1.5,
= D € ABORTS(A).

But D € anc(A), which contradicts T € ANC-ABORT. |

6.4.1 Proof of Lemma 6.2.4.5

letT€ R, A € verticesy. LetS = vtree(A). By Lemma 6.4.4, anc(A) N v-prccedes;(A) =@,
= prop-anc(A) N vset(A) = & (since vseLl.(A) = v-preccdes;(A) U {A}),

= Sis a view tree for A in T, by Lemma 3.5.2. 1
6.4.2 Proof of Lemma 6.2.4.6

LetT € %1, A€ verticesy. LetS = vtree(A). By Lemma 6.3.2.2, T is version-compatible.

Let W = vset{A) U prop-anc(A). By Lemmas 64.4 and 352, vtree(A) = (TIW)//A. W is
v-data -closed by Lemma 2.3.3c. By Lemma 6.3.2.1, T|W is version-compatible. But since backing up
proper ancestors of A to active status cannot affect the labels of accesses of S, S is version-compatible.
|
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6.4.3 Proof of Lemma 6.2.4.7
LetT€ ?Ral, A€ venicesr.

We show that if § = vtrccT(A), then seqg U sibling-data\s is acyclic. Let V = vseL](A), W= vsct,r(A) U
prop-anc(A). By Lemmas 6.4.4 and 3.5.2, S = (T{W)//A. Thus datag C data, seqgq - seqy. The proof

will be by contradiction:

Let (A Ay, An) be acycle in seqg U sibling-datas (withn 2 2). .
then (Al, Az,..., An) is a cycle in seqp U sibling-datar, and Ai €EW.

Let P be the common parent of {Ai}'

We will use the convention that subscripts are taken modulo n, i.c. weregard A_ ;= A,.

First we prove a preliminary lemma:
Lemma6.4.3.1: 1f A ¢ desc(A) U desc(A, ). then ,Ai € v-preccdes’;(Ai +1-

Proof: We show A, € vset.r(/\i 1 Since A=A the I.cmma follows directly.

+1

(A, Ay, ) € seag

= (A, A 1) € seqp, and A, A, 4 € visiblcﬁ/\) (since vcrticesS - visibleT(A).)
But A € desc(A)) U desc(A, ) = A, A, € visible(P),

= Ai € v-seq1(Ai+l),

= A, € vset(A; , 1)-

(A, A, ) € sibling-datag
= 3a, € desc(A)). a, ,
verticesg C visible {A).)
But A ¢ desc(A) U desc(A, | ) = a, a, € visible(P),
= a € visible(a, ), = a, € v-data (a, +1),
= A, € v-data~anc].(ai 1= A € vset(a; +1).

€ desc(A, ) (a, a; ;) € dataj, and a, a,, € visible (A) (since

But a,_, € visible(P)
= ai+1 € V'descT(A_i+]), = ai+] € Vset’r(/\i"‘l)'
= A €vset(A, ). 8
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Proof of Lemma 6.2.4.7 (continucd):

Suppose that A € desc(A)) Vi then by Lemma 6.4.3.1, A€ v-prcccdcs.;“.(Ai Vi

= A € v-prcccdc&?( A;) (since the A, form a cycle), which contradicts Lemma 6.3.3.1,
Thus A € desc(A)), for some i. Assume without loss of generality that A € desc(A ).

Sincen >2, A, # A_. ButA € verticesg, and A € anc(A),

= A, € vprcccdch{(A).

A, € vprecedesT(A)
= ABORTS(A,) C ABORTS,(A), by Lemma 6.2.1.5.

Since (AjA, ;) € seqg U sibling-datag, we have two following cases:
L (AA)) € seqgq
2.(AA) € sibling-datag

Casel: (A_A)) €seq = A€ donc, by L.emma 6.3.1.1.2b.

IfA € aborted, then A_ € i-anc-seq{(A,), = A_ € ABORTS(A)),
= A € ABORTS (A), which contradicts T € ANC-ABORT.

If A, € committed, then A € v-anc-seq(A)), = A, € v-preccdes|(A,),

= A € v-prcccdcs.“;(/\). which contradicts ].emma 6.4.4.

Case 2: (A_A)) € sibling-dataS
= 3bn € desc(A ). b, € desc(A)): (b, b)) € datar.

b, € visib1e1(A) = b, € visiblc.r(P), = bl € v-descy(A)), = b, € vsct,l(Al),
= b € v-prcccdcs;f(A),
= ABORTS (b)) C ABORTS(A).

Case 2a: bn € visiblc.r(bl),
= b € v-data(b)). = A € v-data-anc((b,), = A € v-precedes(b,),

= A_ € v-precedes’(A), contradicting Lemma 6.4.4.
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Case 2b: b_ ¢ visible, (b))
=b 0 € i-dalaT(bl) (See Fig.6.1.)

LetB = crucial.](b n). By Lemma 6.3.1.1.2g, B is defined, and B € desc(An).
BE i-data-anc1(b1) = B€ ABORTSf(bl), = B€ ABOR'IST(A).

But B € anc(A), since b, € visible(A), contradicting T € ANC-ABORT. 1

6.4.4 Proof that h, is a Possibilities Map
We now have all the facts needed to show that hyisa possibilities map:
Theorem 6.4.4.1; hyisa possibilities map,

Proof: h,, preserves initial states by Lemma 6.2.4.1. h,, preserves transitions by Lemma
6.2.4.2. We have proven L.emmas 6.2.4.5, 6.2.4.6, and 6.2.4.7; thus every reachable state in L1
is view-serializable (Theorem 6.2.4.4). Thus h,, preserves preconditions by Lemma 6.2.4.3.

By Lemma 4.2.2.6, h ; is a possibilities map. 1§

Fig. 6.1. Case 2b, Lemma 6.2.4.7
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6.5 Level 2 Algebra and Mapping h,,

At Level 2 we replace the ANC-ABORT condition with a precondition on perform events.
Otherwise everything in Level 2 is identical to Level 1.

L2 = (), 2%, 0, 1)
8, = &, = {create A, commit A, abort A, perform Au}.
22 = Z,, the set of all augmented action trees.
o,=0,=T,

7,, the transition relation, is obtained by deleting the ANC-ABORT preconditions P1.1d, P1.2c, P1.3b,

and P1.4d, and by inserting a new precondition for perform events:
(P2.4d) B € visible (A,x) = anc(A) N ABORTS (A{B) = &
We define the trivial mapping h,,: L2 — La as the identity map on states and events.
Theorem 6.5.1: h, isa possibilities map.

Proof: Because the ANC-ABORT conditions do not appear in algebra La, every precondition
at Level A also appears at Level 2 (in addition, Level 2 has precondition P2.4d). Thus hh
preserves preconditions. All transitions are identical in La and L2; thus h,, preserves
transitions. Initial states are identical in L2 and La; thus h,, preserves initial states. By
Lemma 4.2.2.6, h,_ is a possibilities map. 8

Since hh_ﬁxes T, all invariants (and pair-invariants) for La are invariant (or pair-invariant) for

Lemma 6.5.2: laisinvariant in L2, and Ja is pair-invariant in L2.

Proof: Since h,, is a possibilities map which fixes T, and la is invariant for T in La, la is
invariant for T in L2 by Lemma 4.2.4.3.5. Similarly since Ja is pair-invariant for T in La, Ja
is pair-invariant for T in L2, by Lemma4.2.4.35. 1§
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6.5.1 Specification of Mapping h,;

We define the trivial mapping hn: L2 -~ L1 asthe identity map on states and events. We must

show that this mapping is a possibilitics map.
Lemma 6.5.1.1: h,, preserves initial states.

Proof: Trivial, since 0, =0, |

Lemma 6.5.1.2: h,, preserves transitions.

Proof: Trivial, since all transitions are identicalin L2and L1. #

We must also show that h,, preserves preconditions. We use the following lemma to reduce this

problem to the ANC-ABORT condition on reachable states in L2:

Lemma 6.5.1.3: Suppose that for all T € %, T € ANC-ABORT. Then h,, preserves

preconditions.

Proof: It is obvious that h,, preserves all preconditions except for the ANC-ABORT
conditions, since all other preconditions appear at Level 2. We must verify that the
ANC-ABORT conditions hold; these conditions state that the next state is in ANC-ABORT,

ie.

T € PRE(¢) N %,, h,(T) €%, = h, (T)h,,(e) € ANC-ABORT

But hn(r)hn(e) is just Te, since h, is the identity mapping. Thus we will must show

T € PRE(e) N %y, h, (T) €, == Te € ANC-ABORT.

But TE PRF,l(e) n 12 = Te € %2. Thus it suffices to show that all reachable states in L2

are in ANC-ABORT. 1

Our main result for L2 is thus that all reachable states are in ANC-ABORT, which will imply
that h,, preserves preconditions (and is thus a possibilities map):
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Lemma 6.5.14: LetT € %,. Then T € ANC-ABORT.
Proof: Take A € vertices;. We show anc(A) N ABORTS (A) = &.

The proof uses induction based on the recursive form of ABORTS:

ABOR A) = i-precedes {A) U ABOR B
TS1( ) P esi(A) Blgv-preced A))

Recall that by Lemma 6.5.2, we can use any results from la or Ja since we have shown that

these properties are invariant n 1.2,
Thus Lemma 6.3.3.1 (in Ia) justifies the use of the inductive proof method.

Assume the Lemma holds for all B € v-precedes(A): anc(B) N ABORTS(B) = @.
First we show i-preccdes,(A) N anc(A) = 2:

B€ i-anc-seqT(A) = (B,A’) € seq, for some A’ € anc(A), B= A’,
= B ¢ anc(A).

B€ i-child.l.(A) =» B € children(A),
= B ¢ anc(A).

B € i-data-ancy(A) = 3B € i-data (A): B = crucial (B).
But by Lemma 6.3.1.1.2g, crucial](B') € desc(A|B)
= B ¢ anc(A).

Now we show B € v-precedes{A) = anc(A) N ABORTS(B) = &:

a. B € v-anc-seq{A) = (B,A’) € seq, for some A’ € anc(A), B # A’,
= ABORTS(B) N des(A’) = @, by Lemma 6.3.32.
But by Induction Hypothesis, ABORTS (B) N anc(B) = a.
But anc(B) = {B} U proper-anc(A’), since (B,A’) € siblings,
= anc(A) C deso(A") U anc(B),
= ABORTS(B)N anc(A) = 2.

b. B € v-child (A) = ABORTS(B) N anc(B) = &, by Induction Hypothesis.

But B € children(A) = anc(A) C anc(B),
= ABORTS(B)N anc(A) = .
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c. B€ v-daa-anc{A) = 3B’ € v-data(A): B = A|B,
= A€ datastepsr.

Let T = Tyv, where v € ¥, can be writien as pw i, with o = perform A,u.
Let T1 = Typ, and let T2 = Typw.

Let A,B’ € datasteps(x).
By Lemma 6.3.1.1.1c, (B',A) € datan,
= B’ € datasteps,(x).
By precondition P2.4b, B’ € visible;,(A,x) V B’ € dead(A.x).

B'€ v-data (A) = B € visib]en(A,x),
= anc(A) N ABORTS (AlB) = @, by precondition P2.4d (the orphan

detection precondition),
= anc(A) N ABORTS(B) = @.
But ABORTS(B) < ABORTS[(B), by Lemma 6333 (since B €

committed.n),
= ABORTS(B) N anc(A) = &, by Lemma2211d. &

6.5.2 Proof that h,, is a Possibilitics Map
We now have all the facts needed to show that h,, is a possibilities map:
Theorem 6.5.2.1: h,, is a possibilities map.

Proof: h,, preserves initial states by Lemma 6.5.1.1. h,, preserves transitions by Lemma
6.5.1.2. Since we have shown that all reachable states in 1.2 are in ANC-ABORT (Lemma
6.5.14), h,, preserves preconditions by Lemma 6.5.13. By Lemma 4226, hy is a

possibilities map. §
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7. Partially Localized Model

In a distributed event-statc algebra all preconditions for events are localized to the nodes at
which those events occur (or to the message buffer). The Level 2 model is defined in terms of a single
global siate, the global AAT. As we move towards a distributed model, we partition the state into distinct
components, and we attempt to localize preconditions to these components. At Level 3, we define an
abstract set of locations, and we give each location a (local) state. This local state will consist of a UAS at
each location, and an ordering on datasteps at each object. (The data ordering in an AAT is already
“localized,” since data, individually orders datasteps at each object.)

These locations are simply containers for information; they need not correspond directly to
physical locations (nodes) at the lower levels. In a later chapter we will construct a mapping from a
distributed model where state is partitioncd among nodes, to this Jocalized model where state is partitioned
among locations. Essentially several abstract locations can reside at a single physical node. One
advantage of using abstract locations at this higher level is that we need not be concerned with how

information is physically distributed.

We can think of locations as "abstract nodes.” We will consider each action and object to be a
separate location; the information at these locations will represent the view at that action or object. It will
be convenient to allow other (unspecified) locations as well. The events at this level will be either "local
steps,” which are conceptually local to a particular location, or "communications steps,” which transfer
information from one location to another. Transfer of information is instantaneous (i.e. there is no analog
to the message buffer at this level). (We will show later that we can model communications delays by
regarding "message slots” in the message buffer as locations. Thus we do not specify the complete set of
“locations" at this level; locations can be viewed abstractly as any information holders.)

We show that it is straightforward to localize all preconditions except for the orphan detection
condition (precondition P2.4d: B € visible(A.x) = anc(A) N ABORTS{(A|B) = @).
7.1 Level 3 Algebra
L3= (83, 23, o3 )

State Space:
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Lettloc (the "tree locations") = (act - {U} - accesses) U obj.
Let Joc be a set of "locations,” where tloc C loc.

(We exclude U from tloc because it is a virtual action; thus we associate no information with it directly.
Also, we exclude accesses from tloc because we regard them as being coupled to their objects for

information.)
Z, = {<T,L>}, where the components are

T - the "global state”, an augmented action tree (as in L2)
L - the "local state”, where L:loc = UAS

Notation

If "prop" is some property (function, relation, etc.) defined on UAS, then we denote PIOPy o) by
"@prop, [a]”  (for example, visibleu a)(A,x) = @visibleL[a](A,x)).

The "@" symbol flags components of the local state (as opposed to components of the global AAT). We

also use the "@" symbol to distinguish communications events from “local” events, since the

communications events only affect the local state.
We further abbreviate by writing @prop, [A] for @prop, [x] when A € accesses(x)
6y =<Tp Ly

T0 - the trivial AAT, asin L2,
Lo(a) = Tu - the trivial UAS, Va € loc.

Events:

Events create, commit, abort, and perform are localized to individual locations (except for the orphan
detection precondition). We regard an action as being created at the location of its creator, and
committed or aborted at its own location (or the location of its object if it is an access). (Recall that for A
# U, creator(A) = parent(A) unless A € top, and creator(A) = A for A € top.) '
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In addition to the "local” events (create, commit, abort, perform), we introduce "communications events”
to move information from one location to another. The "source” of information is arbitrary for each
event: communications events are parameterized by a single location: the destination of the information
transfer. At lower levels we will parameterize communications events by the sender of information as

well.

v

The communications events are as follows:

@createfa] A -- create action A at location a
@commita] A -- commit action A at location a
@abortfa] A -- abort action A at location a

The transition relation is defined so that each communications event is idempotent, i.e., the effect of a
communications event which occurs multiple times is the same as the effect of this event occurring a
single time. Idempotency "filters out” duplicate communications events.

Transition Relation:

Lete € 8,, <T.L> € £, <T,Lde = <TLLD.

1. create A (A €act-{U})
| PRECONDITIONS:
a. A ¢ @vertices, [creator(A)]
b. parent(A) € @active, [creator(A)]
c. (BA)€Eseq B#A = 'B € @donc [creator(A)]
T‘RANsmONS:
a. verticesy, « vertices; U {A}
b. statusy,(A) « active’

c. @vertices, j[creator(A)] — @vertices, [creator(A)] U {A}



-112-

d. @status, [creator(A)KA) « “active’

2. commit A (A € act - {U} - accesses)
PRECONDITIONS:
a. A € @active, [A]
b. @children, [AKA) C @done, [A]
TRANSITIONS:
a statusﬁ(A) + ‘committed’

b. @status.

_[AKA) « *committed”

3. abont A (A €act-{U})
PRECONDITIONS:

a. A € @active, [A]
TRANSITIONS:
a statusn(A) + 'aborted’

b. @statusu[A](A) + ’aborted’

4. perform A (A € accesses(x), u € values(x))
PRECONDITIONS:
a. A € @active, [x]
b. B € @datasteps, [xKx) = B € @yvisible, [x(A,x) V B € @dead, [xKA.x)
c. u = result(x,s), where s = <(@bvisible, [xKA.x); O(x)>>, and O = order(T).
d. B € @yvisible, [xKA,x) = anc(A) N ABORTS(A|B) = &
TRANSITIONS:

a. statusy,(A) — ‘committed’
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b. @status, ;[x(A) + ‘committed’
c. labeln(A) —u

d. data; « data, U {(B,A): B€ datastepsr(x)} U {(AA)}

5. @createlal A (A € act- {U}, a € loc)
PRECONDITIONS:
a. A € @vertices, [8], for some B € loc
TRANSITIONS:
a. @vertices, ;[a] — @vertices, [a] U {A}

b. A¢ @vertices, [a] = @status ,[alA) « "active’

6. @commit{a] A (A €act-{U}, @ € loc)
PRECONDITIONS:
a. A € @committed, [B], for some 8 € loc
TRANSITIONS:
a. @vertices; \[a] — @vertices, [a] U {A}

b. @status, [akA) — ‘committed’

7. @abortia] A (A €act-{U}, a € loc)

PRECONDITIONS:

a. A € @aborted, [B], for some B € loc
TRANSITIONS:

a. @vertices, ;[a} — @vertices, [a] U {A}

b. @Statusu[aKA) + aborted’
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7.2 Specification of Mapping h;,

We define a (single-statc) mapping from L3 10 L2, h,,: L3 — 1L.2. (We abbreviate "h,," as "h"

in this chapter.)

State Mapping

h: 2, Z, isdefined by hKT.L>) =T, V<T,L>€ Z,. Thush fixesT.
Event Mapping

h: 83 - S; is defined by

h: create A = create A
commitA  — commit A
abort A — abort A
perform Au — perform A\u

@createfa] A — A
@commitfa] A = A
@abortfja] A — A

7.3 Level 3 Invariants

The following simple pair-invariants are analogous to the Level A pair-invariants from Lemma 6.3.1.1.1:

Lemma 7.3.1: Let (CT.L><TLL1) € %{?. Then the following pair-invariants hold (Let a
€ loc, x € obj, A,B € act):

a. @vemcésI‘[a] C @vertices, ;la], @committed,[a] C @committed, ,[a],
@aborted, [a] C @aborted, ,[a), @done, [a] C @done, ,[a]

b. Bisdead in L{a) = Bisdcad in L1(a); Bislivein L1(a) = Bislive in L(a)

c. @visible, [akA) C @visible, \[al(A), @dead, [akA) C @dead, [a)A)

Proof: Straightforward. |
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The following invariants relate local states to the global state. Essentially each local state
represents a "partial view” of the truc global state. We show these invariants relative to mapping h: Since
h fixes T, all invariants and pair-invariants for T in L2 can be applied to the proofs (by Lemma 4.2.4.3.6).

Recall that we have shown in LLemma 6.5.2 that invariants Ia and Ja from Level A are invariant in L2.

Lemma 7.3.2: Let <T,L> € %,. Then the following are invariant relative to h. (Leta € loc,
x € obj, A,B € act):

a. A € vertices; - {U} = A € @vertices, [creator(A)];
U € active; A U € @active, [a] (Va € doc)

b. A € committed; < A € @committed, [A]
c. A € aborted; = A € @aborted, [A]

d. A € done; = A € @done, [A]

e. A € datasteps(x) = A € @datasteps, [xKx)

f. @vertices, [a] C vertices;, @committed, [a] C committed;, @aborted, [a] C
aborted,, @donc, [a] C done;
(Note: @active, [a] C active; does not necessarily hold.)

g A€ @activeL[A] = A € active
(Note: not necessarily conversely)

h. B € @visible, [alA) = B € visiblel(A)
i. B € @dead,[a(A) = B € dead (A)

j- (B,A) € data; (A.B € accesses(x)) =
B € visible{A) = B € @visible, [xKA)

k. (BA)E data. (A.B € accesses(x)) =
B€dead(A) = BE @deadL[x](A)

1. (BA)€ data; (A.B € accesses(x)) =
B € @dcad, [xKA) = {crucial (B)} S @aborted, [x]

Proof:
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alfA#U A€ vertices, then there must have been an event create A, which
also has the effect of placing A in @bvertices, [creator(A)]. Using Lemma 7.3.1a,
we conclude that A € vertices; = A € @vertices, [creator(A)].

Conversely, if A € @vertices, [creator(A)] then there must have been an event
create A, or @creatcfcrcator(A)] A. Consider the first such event. Ifitis create
A then A € vertices;. Now suppose there were an event @create|a] A, for some
a, that preceded create A. Let e be the first such event, and let the state
immediately before the execution of e be {T1,L1>. By the precondition for e, A
€ @vertices; [B] for some B. But if A € @bverticcs, ,[B]. then either 8 =
creator(A) and creatc A precedes e, or an event f = @creatc{f] A precedes e.
Both cases contradict our choice of e.

U € active| by Lemma 6.3.1.1.2d. To see that U € @activeL[a], note that U €
@active]_o[a]. but no event can change U's status. '

b. Similar to (a).
¢. Similar to (a).
d. Follows directly from (b) and (c).

e. A € datasteps(x) = A € committed,,
= A € @committed, [x] by (b),
= A € @datasteps, [xKx).

f. We argue @uvertices,[a] C vertices;; the other cases are similar: If a =
creator(A), then the result follows directly from (a). Otherwise we can show
@vertices [a] C vertices, by induction on the number of events in a valid
sequence generating <T,L). In the initial state @verticesl_[a] = vertices; = {U}.
But vertices; [a] can only increase when an event @createfa] A occurs, which
requires as precondition A € @verticesu(B] for some B (where <T1,LD is the
state before this event occurs). By induction hypothesis, A € @vertices, ,(8] =

A€vert.icesl.1 = A€verticesr

g A € @active;[A] = A € vertices; from (f). If A € done, then A €
@done, [A] by (d) -- a contradiction. Thus A € active.

h. B € @visible, [aKA) == anc(A) N prop-desc(ica(A,B)) © @committed, [a].
But @committed, [a] C committed,. by (f),
=+ B € visible(A).

i. B € @dcad, [aA) = anc(A) N prop-desc(ica(A,B)) N @aborted, [a] # 2.
But @aborted, [a] C aborted . by (f),

= B € dead (A).
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j- B € @visible, [x(A) = B € visible {A) by (h).
B € visible (A) = B € visible (A x),
= B € @datasteps, [xx). Assume B # A (otherwise the result is obvious).

Let<T,L> = L AA € 1"3
Letv = pwy, where w = perform A,u, and let<T1L1> = o49.

(B,A) € data, = (B,A) € data,, by Lemma 63.1.1.1c, = B € datasteps,,
= B € @datasteps ,[xKx), by (e),
= B € @yvisible, ,[xKAx) V B € @dead, ,[xkA,x) by P3.4b.

But B € @deadu[x](A,x) = B € dead,(Ax) (by ())),= B € dead(Ax) - a
contradiction. Thus B € @visiblcu[x](A,x),
= BE€ @visibleL[x](A,x) (using L.emma 7.3.1c).

k. Similar to (§) above.

L. B € @dead, [x}(A,x) = anc(B) N @aborted, [x] # &,
= @crucialL[x](B) is defined.
But anc(B) N @aborted, {x] C anc(B) N aborted, by (f),
= crucial (B) € desc(@crucialL[x](B)).
= {crucial,(B)} < @aborted, [x].

7.4 Proof of Possibilities Map for h;,

We now show that h is a possibilities map. Let I3 denote the conjunction of all properties in
Lemma 7.3.2. We will show that h is a possibilities map relative to I3.
Lemma 7.4.1: h preserves initial states.

Proof: Immediate since h(<Tg L) =T, 8

Lemma 7.4.2: h preserves transitions relative to I13.

Proof: We must show that if <T,L> € PR%(e) N %, N I3, and h(<T,L>) € PRE,(We)) N
’12, then h(<T,L>e) = h(<T,Lo)h(e).

But h(<T,L>) = T, so we must show the following:
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If<CT.L> € PRE(e) N %, N 13, and T € PRE,(h(e)) N B, and <T,Lde = <TLLD, then T1
= (Th(e).

For the communications steps in L3 (e = @create, @commit, @abort), T is not altered, and
h(e) = A,s0Tl =T = (T)h(e).

For the local steps (¢ = create, commit, abort, perform), it is easily verified by inspection that
the effects of events on T are identical in L2 and L3. But h(e) = ¢, so T1 = (T)h(e) = (Te.
1

Lemma 7.4.3: h preserves preconditions relative to 13.

Proof: We must show that if <T,L> € PRE3(e) n %3 N 13, and K{<T,L>) € Ekz, then
h{<T,1>) € PREz(h(c)).

Since h{(<T,L.>) = T, we show
<TL>EPRE(e) N R; N I3, TE R, = T € PRE,(h(e)).

For communications steps, e, h(e) = A, and prescrvation of preconditions follows vacuously.

For local steps, h(e) = e. We prove preservation of preconditions for each local step in turn:

1. create A

a. P3.la = A ¢ @vertices, [creator(A)],
= A¢ verticesy, by Lemma 7.3.2a.

b. If A € top, then parent(A) = U, U € active by Lemma 7.3.2a.
Otherwise crcator{A) = parent(A),
= parent(A) € @active, [parent(A)] by P3.1b,
= paren(A) € active by Lemma 7.3.2.

¢. (BA)€seq,B= A = B € @done, [creator(A)] by P3.1c,
= B€ done[ by Lemma7.32g

2. commit A
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a. P3.2a = A € @active [A},
= A € active; by Lemma 7.3.2g.

b. Let B € childreny(A). A# U = B ¢ top,
= creator(B) = A,
= B€ @verlicesL[A] by Lemma 7.3.2a,
= B € @children, [AKA),
= B € @done, [A] by P3.2b,
= B€ done; by Lemma 7.3.2f,

3. abortA

a. P3.3a = A € @active [A],
= A € active; by Lemma7.3.2g.

4. perform A,u

a. P34a = A € @active;[x],
= A € @ative [A],
=+ A € active;. by Lemma 7.3.2g.

b. B € datasteps,(x) = B € @datasteps, [xx) by Lemma 7.3.2e,
= BE€ @visib]eL[x)(A,x) V B € @dcad, [xKA.x) by P3.4b.

B € @visible, [xKA,x) = B € visible(Ax) by Lemma 7.3.2h.
B € @dead, [xkAx) = BE€ dead(Ax) by Lemma 7.3.2i.

c. P34c = u = result(x,s), where s = ((@visibleL[x](A,x); o(x)>,
and 0 = orden(T). We must show s = §, where § =
«visibler(A,x): data1>>. By definition, O(x) and datar are identical
on datasteps(x), so it suffices to show @visible [xKAx) =
visible (A x).

@visible, [xA,x) C visible;(A,x) by Lemma 7.3.2h. So take B €
visible(A.x),

= B € @datasteps, [xKA,x) by Lemma 7.3.2e,

= B € @visible, [xKA.x) V B € @dead, [xKA,x) by P3.4b.

But B € @dead, [xKA.x) = B € dead{A.x) (by Lemma 7.3.2i) - a
contradiction;
= B € @visible, [xKA x).
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d. B € visible(A,x) = B € @visible, [x}(A.x) (as in (c) above), -
= anc(A) N ABORTS(A|B) = @ byP34d. 1

Lemma 7.4.4: his a possibilitics map relative to 13.

Proof: Follows immediately from Lemmas 7.4.1, 74.2, 7.4.3, and from Lemma 4.24.24. 1

Theorem 7.4.5: h is a possibilities map, and 13 is invariant in L3.

Proof: By Lemma 7.3.2, 13 is invariant relative to h. By Lemma 7.4.4, h is a possibilities map
relative to 13. We apply L.emma 4.2.4.2.6 to conclude that h is a possibilities map, and 13 is an

invariant. 1§

Since h32 is a possibilities map which fixes T, all invariants and pair-invariants from L2 carry
down to L3. Let J3 denote the conjunction of all pair-properties from Lemma 7.3.1. We summarize the

invariants for L3 as follows:

Lemma 7.4.6: 13 is invariant in L3, la is invariant in L3, J3 is pair-invariant in L3, and Jais

pair-invariant in L3.

Proof: Invariance of 13 is shown in Theorem 7.4.5. J3 is pair-invariant in L3 by Lemma 7.3.1.
Since h,, is a possibilities map which fixes T, and Ia is invariant for T in L.2 (by Lemma 6.5.2),
Ia is invariant for T in L3, by Lemma 4.2.4.3.5. Similarly since Ja is pair-invariant for T in L2
(by Lemma 6.5.2), Ja is pair-invariant for T in L3, by Lemma 4.2.4.3.5. §
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8. Value Maps -- A Model of Atomic Objects

At Level 4 we introduce value maps as a data structure for keeping lock and version information
about objects. A value map is a mapping from each object to a "stack of versions™ for that object; each
version is associated with an action that holds a lock on that object. This data structure corresponds
roughly to the implementation of atomic objects as described in [Moss81]. In Moss’s locking scheme, a
lock can be held on an atomic object at each level in the action trec. This scheme constrains all holders of
a lock on a particular object to be related. We note again that we are dealing only with mutual exclusion
locks. Moss develops a more general locking protocol which distinguishes between read locks and write
locks.

We regard these value maps as an abstraction of the information which is already present in the
local UAS’s at cach object. In this sense the value maps introduce no new information into the state. As
we stressed in Chapter 4, the state in an cvent-state algebra is simply one convenient way of capturing
exccution histories. Value maps are a convenient abstraction of execution histories because the

preconditions on a perform event can be stated easily in terms of value maps.

Level 4 is no more "localized” than Level 3. The events in Level 4 are identical to those in Level
3 (though transitions and preconditions are reformulated in terms of value maps), and the event mapping
h43 is the identity. In particular, then, the communications events at Level 4 are still very simple, and
they do not include enough information to allow localization of the orphan detection precondition. The

non-local orphan detection precondition appears unchanged at Level 4.
8.1 Level 4 Algebra

L4 =8, 2,0,7)

State Space:

2, = {<T.L,V>}, where the components are:

T - the global state, an augmented action ”trce (asin L2),
L - the local state (mapping loc to UAS) (as in L3),
V - avalue map.
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A value map gives a sct of values for each object -- one value for each action which "holds a lock” (and
thus a version) on that object.

V:obj X act — values U {L}
(where VA € act, x € obj, V(x,A) € values(x) U {_L}).

Define V(x) = {A € act: V(x,A) # _L }. (V(x) represents the actions which hold locks on object x.)
If V(x) forms an ancestor chain, then define

V(x).holder = the lowest (in anc-order) element of (V(x)), i.e.,
V(x).holder € V(x), and VB € V(x), V(x).holder € desc(B).

(If V(x) does not form an ancestor chain, then V(x).holder is undefined. For reachable states in L4, V(x)

will always form an ancestor chain (see below).)

If V(x).holder is defined, then define V(x).value = V(x,V(x).holder). V(x).value denotes the "current”

value of object x which will be scen by any datastep accessing x.
o, = <T 0,L0,V0>, where

Vx € obj, Vy(x.U) = init(x),
VixA)= 1, VA= U.

- Events:
g .= 83 (The sets of events are identical in Levels 3 and 4, although preconditions and transitions differ.)
Transition Relati

Lete € 8, <T.LV> € I, <TLV>e = <TLLLVD.

L creatc A (A €act-{U})

PRECONDITIONS:
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aA¢ @veM&esL[creator(A)]

b. parent(A) € @active, [creator(A)]

c. (B,A)€seq, B# A = B € @done, [creator(A)]
TRANSITIONS:

a. verticesy, « vertices. U {A}

b. statusrl(A) + "active’

c. @vertices, [creator(A)] — @vertices, [creator(A)] U {A}

d. @status, ,[creator(A)|(A) « "active’

2. commit A (A € act - {U} - accesses)
PRECONDITIONS:
a. A € @active, [A]
b. @children; [AKA) C @done, [A]
TRANSITIONS:
a. statusy(A) — ‘committed’

b. @statusu[A](A) + ‘committed’

3. abortA (A€act-{UD
PRECONDITIONS:
a. A € @active, [A)
TRANSITIONS:
a. status;,(A) + "aborted’

b. @status, JAKA) + "aborted’

4. perform A.u (A € accesses(x), u € values(x))
PRECONDITIONS:
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a. A € @active;[x]

b. A € prop-desc(V(x).holder)

c. u = V(x).value

d. anc(A) N @aborted, [x] = &

e. B € @yvisible, [x(A,x) =» anc(A) N ABORTS (A|B) = &
TRANSITIONS:

a. status-n(A) +— ‘committed’

b. @status, |[xKA) — ‘committed’

c. labe]Tl(A) —u

d. data;, « data; U {(B,A): B € datasteps,(x)} U {(A,A)}

e. V1(x,parent(A)) — update(AXu)

5. @createla] A (A €act-{U}, a € loc)
PRECONDITIONS:
a. A € @uvertices, [B], for some B € loc
TRANSITIONS:
a. @vertices ;[a] — @vertices; [a] U {A}

b. A € @vertices, [a] = @status, [al(A) ~ "active’

6. @commitia] A (A €act- {U},a €loc)
PRECONDITIONS:
a. A € @committed, [B], for some B € loc
TRANSITIONS:

a. @vertices, ,[a] — @vertices, [a] U {A}
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b. @status; [akA) — committed’

c. a€obj, Vi@A)# | =
Vi{a,A) — L
V1(a,parent(A)) — V(a,A)

7. @abortla] A (A €act-{U}, a € loc)
PRECONDITIONS:
a. A € @aborted, [B], for some B € loc
TRANSITIONS:
a. @vertices, ,[a] — @vcrticesL[a] U {A}
b. @statusu[a](A) + "aborted’

C. a € obj, B € desc{A) =
Vi{a,B) — 1L

Local create, commit, and abort events are identical in 1.4 and L.3. The preconditions on
perform events are given in terms of the value map. Note that we include a "local orphan detection”
precondition (P4.4d): this condition is necessary for the value map to hold the proper versions, but it is

not sufficient to detect all harmful orphans. Thus we retain the non-local orphan detection precondition
(P4.4e).

The effect of a perform event is to update the "current” version. A lock on the current version is -
held by the parent of the datastep immediately after the perform event. The value map is updated by
commit and abort messages: a commit message for an action releases a lock held by that action to its
parent (and the parent inherits its child’s version). An abort message for an action releases all Jocks held
by descendants of that action (and the versions are discarded).
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8.2 Specification of Mapping h,;

We define a (single-state) mapping from LA to L3, h,,: L4 — L3. (We abbreviate "hyy" as "h"
in this chapter.)

State Mapping
h: 2, — Z,isdefined by h(<T,LV>) = <T,L> VKT,LV> € Z,. Thus h fixes <T,L.
Event Mapping

h:§,— 8; is the identity mapping on events, ie. h(e) =e Ve €8,

8.3 Level 4 Invariants

The following invariants relate the information in the value map, V, to the local data structure,
L. We show these invariants relative to mapping h: Since h fixes <T,L>, all invariants and pair-invariants
for <T\,L> in L3 can be applied to the proofs (by Lemma 4.2.4.3.6). (Recall that we have shown in Lemma
7.4.6 that I3 and Ia are invariant in L3, and J3 and Ja are pair-invariant in L3.)
Lemma 8.3.1: Let <T,L,V> € %,. Then the following are invariant relative to h:

(Vx € obj) (letM = 1(x), and let O = order(T)):

. BEV(x) = BisliveinM

-

o

. V(x) forms an ancestor chain

V(x) M accesses = @&

o

d. B € datasteps,(x) =
Bisdeadin M V 3B’ € anc(B) N V(x): B € visible, (B)

o

. B € V(x), v-prop-desc, (B) N V(x) = 2 =
V(x,B) = result(x,s), where s = «visibleMm.x); O(x)>>

™

H = V(x).holder, B € desc(H), Bis livein M
= visibleMw,x) = visible,,(H.x)
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g- B € V(x), C € datasteps,, = exactly one of following holds:
1. C€ visible,,(B)
2. C € dead, (B)

3. 3C € prop-desc(B) N prop-anc(C) N V(x):
(C € visibley(C) A (C ¢ visibley(B)) -

Proof: We show below that (f) and (g) follow from (a) - (e). It is trivial to show that (a) - (€)
are O-invariant (i.. that they hold for o,). The proofs that (b) and (c) are invariant relative to

h are straightforward; we will argue (a), (d), and ().

For the induction step, let <T,L,V> € %, N PRES(e), and assume that (a) - (g) hold for
<T,LV). Let<T,L',V> = <T,L,V>e. Let O = order(T), O’ = orden(T’), M = Lix)) M’ =
L’(x). We must show that (a), (d), and (¢) hold for <T",L’,V’>. By Lemma 4.2.4.3.6, we can
assume that <T,L,V> and <T",L’,V"> satisfy any invariants from 13 or Ia, and we can assume

that (K<T,L, V> KT",L", V") satisfy any pair-invariants from J3 or Ja.

Since properties (a), {(d), and (e) depend only on V(x), committed, , aborted, ,, and O(x), we
neecd only consider events, e, which modify these components. By inspection, these events are
{abort A, perform A,u: A € accesses(x)} U {@commit{x] A, @abort{x] A}.

1. abort A, A € accesses(x)

aborted,,. = aborted,, U {A}.
committch, = committedM.
V=V,0=0.

a. BEV(x) = B€ V(x), = Bislivein M (by (a)).
But by (c), V(x) N accesses = 2,
=» B ¢ accesses, =» anc(B) N {A} = @, == Bislive in M".

d. B€ datasteps, (x) == B € datasteps, (x),
= Bisdeadin M V 3B’ € anc(B) N V(x): B € visible, (B’). But
Bisdeadin M = Bis deadin M’ by 7.3.1b.
B’ € anc(B) N V(x) == B’ € anc(B) N V'(x), and
B € visible,(B) = B € visibley(B’), by 7.3.1c.
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e. Immediate since all components unchanged.

2. perform A,u, A € accesses(x)

0°(x) = O(x) U {(B,A): B € datasteps, (x)} U {(A,A)}.
V’(x,parent(A)) = update(A)V(x).value).

V’(x,B) = V(x,B) VB # parent(A).

V'(x) = V(x) U {parent(A)}.

committed,,. = committed,, U {A}.

aborted,,. = aborted,, (thuslivein M = livein M’). .

Note that A € prop-desc(V(x).holder), by P4.4b, and A is live in M, by P4.4d.

a. BEV'(x) = B€ V(x) V B = parent(A).
If B € V(x), then Bis live in M, so Bis live in M".
If B = parent(A), then anc(B) C anc(A), and A is live in M. Thus B
islivein M, and Bislivein M’.

d. B € datasteps,(x) = B € datasteps(x) VB = A
If B € datasteps,,(x), then B is dead in M V 3B’ € anc(B) N V(x):
B € visible,(B’).

If Bis dead in M, then B is dead in M’ by 7.3.1b.
If B € anc(B) N V(x), then B € anc(B) N V'(x), and B €
visibley,(B’) = B € visible,,(B’) by 7.3.1c.

If B = A, then take B’ = parent(A), because parent(A) € anc(A) N
V'(x), and A € visible,,{parent(A)).

e. BE V(x), v-prop-desc,,(B) NV(x) = 3.
B € V(x)= B€ V(x) V B = parent(A).

Case I: B € V(x).

v-prop-desc) (B) C v-prop-desc, ,(B), and V(x) C V'(x)

= v-prop-desc,,(B) N V(x) = @.

Thus V(x,B) = V'(x,B) = resuli(x;s), where s = <<visible,,(B,x);
Oo(x).

We must show V'(x,B) = result(x.s’), where s = ((visible, (Bx);
O'(x)». Since O(x) C 0'(x), it suffices to show visible, (Bx) =
visible, ((B.x). Since A is the only action whose status changes from
M o M’, visible, (B.x) = visible,,(B,x) unless A € visible,,(B.x).
So assume A € visible,,(B,x).

Since parent(A) € deso(V(x).holder) (by P4.4b), parent(A) €
prop-desc(B)  (since we assumed B # parent(A)). But A €
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visible, (B,x) = parent(A) € v-prop-desc, ,(B) N V) - a
contradiction.

Case 2: B = parent(A).

If B = parent(A), then V'(x,B) = update(AX V(x).value).

Let H = V(x).holder. Then by definition of holder
v-prop-dcscM(H) N V(x) = @. Thus V(x,H) = result(x,s), where s
= (<visibleM(H,x); 0(x)»>, = V'(x,B) = result(x,s’), where 8’ =
Kvisible ,(H,x) U {A}; O°(.

‘We must show that visible, ,(H.x) U {A} = visibleM.(parent(A),x).
_ Clearly visibch.(parent(A),x) = visibch(parcnt(A),x) U {A},so we
show visible,,(H,x) = visible, [(parent(A),x).

But A € prop-desc(H) =+ parent(A) € desc(H), and A livein M =
parent(A) live in M. Thus visibleM(H,x) = visibleM(parenl(A),x),

by (f).

3. @commit[x] A
There are two cases:

(DIfV(x,A) # 1, then
V(x) = V(x) - {A} U {pareny(A)},
Vi(x,A)= 1,
V'(x,parent(A)) = V(x,A).

Q) IfV(x,A) = _L_, then V(x) = V'(x).

committedy,. = committed,, U {A}.
aborted,,. = aborted,, (thuslivein M = live in M’).

datastépsM,(x) = datasteps) (x), since A € accesses(x) = A €
@comnmitted, [B], for some B, by P4.6a, = A € committed; by Lemma 7.3.2f,
= A€ @commitlch, by Lemma 7.3.2b.

a. Forcase (1), BE V((x) = B€ V(x) = Bislivein M == Bis live
in M’
For case (2), B € V'(x) = B € V(x) or B = parent(A). If B € V(x)
then the proof is identical to case (1), otherwise we know A € V(x),
and A is live in M. It follows that Bis livein M = Bis livein M’.

d. BE€ datasteps, (x) = B € datasteps, (x)
= Bisdeadin M V 3B’ € anc(B) N V(x): B € visible,,(B).

IfBisdeadin M then B is dead in M’, so suppose that B’ € anc(B)
N V(x).
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For case (1), V'(x) = V(x), = B’ € anc(B) N V'(x), and B €
visible(B)) = B € visible, ,(B).

For case (2), A € V(x), and V'(x) = V(x)- {A} U {parent(A)}.
If B'# A, then B’ € ane(B) N V’(x)and B € visibleM(B') as above.

IfB = A, thenB€ visibley,(A), and A € visibleM.(parent(A)) (since
A€ committed, ..
Thus B € visibleM.(parent(A)), and parent(A) € anc(B) N V'(x).

. B € V'(x), v-prop-desc,,(B) N V) =92

Case 1: A€ V(x), = V'(x) = V(x) - {A} U {parent(A)}. Thus B
#A.

Case la: B # parent(A).
== B € V(x). But v-prop-dcscM(B) c v-prop-descM,(B), and V(x) -
{A} C V'(x). Thus (V(x) - {A}) N v-prop-descy,(B) = 2.

But if A € v-prop-desc,,(B) and B # parent(A), then parent(A) €
v-prop-desc, (B) N V'(x) - a contradiction. Thus v-prop-descM(B)
NVx) = @.

Thus V(x,B) = V'(x,B) = result(x,s), where s = <visible,(B,x);
o(x.

We show that visibleM(B,x) = visibleM.(B,x). Clearly visibleM(B,x)
Cc visibleM,(B,x). LetD € visibleu.(B,x) - visibleM(B,x); we show
that the existence of D leads to a contradiction.

We apply (g) to D and B: We cannot have D € visibleM(B) by our
assumption. If D € dead)(B), then D € visible, (B) - a
contradiction. Thus we are left with the third case: 3D €
prop-desc(B) N prop-anc(D) N V(x): (D € visibley (D)) A (D’ ¢
visibleMw))).

D € visible,,(B) = D' € v-prop-desc,,(B). But ifD'# A, then D
€ V'(x) N v-prop-desc,,(B) -- a contradiction. If D' = A, then
parent(A) € V’(x) N v-prop-desc, .(B) - a contradiction.

Case 1b: B = parent(A).

v-prop-descy(A) € v-prop-descy,(A) G v-prop-descy,(parent(A)),
since A € visible, (parent(A)), and V(x) C V'(x) U {A}. Thus
v-prop-desc, (A) N V(x) = 2. ‘

Thus V(x,A) = V(x,parent(A)) = result(x,s), where § =
<<visibleM(A,x); O(x)>. But visibleM.(parent(A),x) = visibleM(A.x)
(since A € committedM'.), and 0’(x) = O(x).
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Case2: A € V(x), = V'(x) = V(x). Thus B € V(x).
v-prop-desc, (B) C v-prop-desc,,(B), = v-prop-desc,(B) N V(x)
= @. Thus V(x,B) = V(x,B) = result(x,;s), where s =
Kvisible, (B,x); O(x)>>. We must show visibley,(Bx) =
visibley (B,x).  Clearly visible (B.x) C visible, (Bx). Let D €
visible,;.(B.x) - visible,,(B,x); we show that the existence of D leads
to a contradiction,

As in case (1a), we apply (g) to D and B; the only possible case is the
third: 3D’ € prop-deso(B) N prop-anc(D) N V(x): (D €
visibley (D)) A (D’ ¢ visible, (B))).

But D € visibleM.(B) = D € visibleM.(B) N VX - a
contradiction.

4. @abort[x] A

Vi(x) = V(x) - desc(A).

B € V(x) = V'(x,B) = V(x,B).
committedM. = committedM.
aborted,,. = aborted,, U {A}.

O’(x) = O(x).

a. B€ V'(x) = B € V(x), B ¢ desc(A). Thus anc(B) N aborted,, =
@, = anc(B) N aborted,,. = @, since B ¢ desc(A) and aborted, .
= abortedy,; U {A}. Thus Bis live in M",

d. B € datasteps,(x) = B € datasteps,(x) = Bis deadin M V
3B € anc(B) N V(x): B € visible,(B).

If Bis dead in M, then B is dead in M".

If B' € anc(B) N V(x), and B’ € desc(A), then B’ € anc(B) N V(x), -
and B € visible,, (B') since B € visible,, (B).

IfB’ € desc(A) then B € desc(A), = A € anc(B) N aborted,,, =
Bisdeadin M'.

e. B€ V(x), v-prop-desﬁM.(B) NVEk) =0,
=+ B € V(x), and B ¢ desc(A).

Suppose C € v-prop-desc,,(B) N V(x); then C € v-prop-desc,,.(B)
N V(x), = C € desc(A) (since V'(x) = V(x) - desc(A)).

But B ¢ desc(A), so A € prop-desc(B) N anc(C). ThenCh;C
visibleMm) -- acontradiction.
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Thus v-prop-descy(B) N Vix) = @, = VxB) = V(xB) =
result(x,s), where s = <Kvisible,,(B.x); O(x)>> = Lvisibley,.(Bx);
O'(x)>>.

Proof of (g): First we show that at least one of the three conditions must hold:

B€ V(x),CE€ datasteps,,. But by (d), cither C is dead in M, or 3C’ € anc(C)N V(x): C€
visibley,(C’).

If C is dead in M, then either C € dead, (B), or kca(B,C) is dead in M. But if ca(B,C) is dead
in M, then B is dead in M, which contradicts (a). Thus we have case (g2).

So suppose 3C’ € anc(C) N V(x): C € visible, (C'). If C € visibley,(B), then Ce¢
visibleM(B), which is case (g1). IfC' ¢ visibleM(B), then (B.C’) € related, since V(x) forms an
ancestor chain (by (b)). But if C’ € anc(B), then C’ € visible,(B). Thus C’ € prop-desc(B) N
prop-anc(C) N V(x), which is case (g3).

To see that only one condition can hold, it is clear that (g1) and (g2) are mutually exclusive,
and that (g1) and (g3) arc mutually exclusive. If (g3) holds, then C € visible,,(C’), and C’ €
V(x). But by (a), C’ must be live in M, so C must be live in M; thus C ¢ dead, (B). Thus (g2)

and (g3) are mutually exclusive.

Proof of (f): H = V(x).holder, B € desc(H), B is live in M. We show visible, (Bx) =
visibleM(H,x). Since B € desc(H), it is obvious that visibleM(H,x) c visibleM(B,x). IfB=H
then the result is obvious, so assume B € prop-deso(H). Suppose D € visible, (B ,x); we show
D € visible(H.x). LetL = ica(B,D).

D € visibley,(Bx) = D € visible,(L), = L € prop-desc(H), since D € visibley,(H).

Now we apply (g) to D and H: If (g2) holds, then D is dead to H. Butsince Bislivein M, L
is not dead to H; thus D must be dead to B. Qut D€ deadM(B) contradicts D € visibchm).

(83) cahnot hold, because by definition of holder there is noD € prop-desc(H) N V(x).

Thus (1) must hold, = D € visible,(H). §




-133-

8.4 Proof of Possibilitics Map for h,,
We now show that h is a possibilities map. Let I4 be the conjunction of all properties in Lemma
8.3.1. We will show that h is a possibilities map relative to I4.
Lemma 8.4.1: h preserves initial states.

Proof: Immediate, since h(<T, o,LO,VO>) =<T O’LO)‘ |

Lemma 8.4.2: h preserves transitions relative to 14.

Proof: We must show that if <T,L,V> € PRE (e) N %, N 14, and h(<T,L,V>) € PRE3(h(e))
N %,, then h(<T,L,V>e) = h(<T,L,V>)h(e).

But h(<T,L.,V>) = <T,L> and h(e) = e, so we must show the following:

IFCT,LV> € PRE(e) N &, N 14, and <T.L> € PRE;(h(e)) N ®,, and <T,L,V>e =
<T1,L1,VD>, then <T1,L1> = <T,L)e.

It is easily verified by inspection that the cffects of all events on T and 1. are identical in L3
and L4; thus h preserves transitions relative to 14. 8
Lemma 8.4.3: h preserves preconditions relative to 14.

Proof: We must show that if <T,L,V> € PRE () N %, N 14, and h(<T,L, VD) € 53, then
h(<T,L,V>) € PRE;(h(e)).

Since h(<T,L,V>) = <T,L, and h(e) = e, we must show
<T.LV> €EPRE(e)N %, N 14,<T,L> € %, = <T,L> € PRE(e).

Preservatiqn of preconditions is easily verificd by inspection for all events other than perform,

since preconditions are identical in L3 and LA.

We prove preservation of preconditions for event e = perform A,u:
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a. Pdda = A € @active,[x].

b. B € @datasteps; [x[(x) = B is dead in L{x) V 3B’ € anc(B) N V(x): B €
@visibleL[x](B'), by 8.3.1d.

If B is dead in L(x), then anc(B) N @abortch[x] # @. ButP4.4d = anc(A) N
@aborted, [x] = @, = anc(ica(A,B)) N @abonedL[x] =@.

Thus anc(B) N prop-desf(lca(A,B)) N @abonedL[x] # @8, = B €
@dead, [xKA).

If B’ € anc(B) N V(x), then B’ € anc(V(x).holder).

But A € prop-desc(V(x).holder) by P4.4b, = A € prop-desc(B’).

Thus B € @visible, [x(B') = B € @visible, [xKA), by Lemma 2.2.3.1d.
¢. P44c = u = V(x).value, LetH = V(x).holder (thenu = V(x,H)).

By 8.3.1e, V(x,H) = rcsult(x,s), where s = <<@visibch[x](H.x); O(x)>.

But A € prop-desc(H) by P4.4b, and A is live in L(x) by P4.4d,
= @visibleL[x](H,x) = @visibleL[x](A.x), by 8.3.1f.

Thus u = resuli(x,s’), where s’ = <K@visible, [xKA x); O(x)>>.

d. B € @yvisiblc [x(A,x) = anc(A) N ABORTS(A|B) = @, directly by P4.4e.
]
Lemma 8.4.4: h is a possibilities map relative to I4.

Proof: Follows immediately from Lemmas 8.4.1, 8.4.2, 8.4.3, and from Lemma 424.24. 1

Theorem 8.4.5: h is a possibilities map, and 14 is invariant in LA4.

Proof: By Lemma 8.3.1, 14 is invariant relative to h. By Lemma 8.4.4, h is a possibilitics map
relative to ]4. We apply Lemma 4.2.4.2.6 to conclude that h is a possibilities map, and 14 is an

invariant.

Since h,, is a possibilities map which fixes <T,L, all invariants and pair-invariants from L3
carry down to L4, In the following Lemma we summarize all the known invariants and pair-invariants for
1L4:



-135-

Lemma 8.4.6: la, 13, and 14 arc invariant in 1 4, and Ja, 13 are pair-invariant in 1.4,

Proof: Invariance of 14 is shown in Theorem 8.4.5. Since h, is a possibilities map which
fixes <T,I.>, and Ia, 13 are invariant in 1.3, la and 13 arc invariant in L4, by Lemma 4.2.4.3.5.
Similarly since Ja, J3 are pair-invariant in 1.3, Ja and J3 arc pair-invariant in .4, by Lemma

42435 1
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9. Fully Localized Models

At Level 5 we completely localize all preconditions by "piggybacking” abort information on
communications steps. This additional information flow allows us to replace the orphan detection
precondition (P4.4c) with a local check for orphans. Other than the new abort information in
communication steps (and the climination the non-local orphan precondition), Level § is identical to
Level 4.

Because all preconditions are localized at Level 5, we can project out the "virtual” global state to
define Level 6.
9.1 Level 5 Algebra
L5 = (85, Z a4 1’5)
State Space:
2y = 2, = {KT,L,V>}, where the components are:

T - the global state, an augmented action tree (as in L.2),
L - local UAS's (asin L3), ‘
V - value maps (as in L4).

0, =0, = (FO,LD,V0>.
Events:

The local steps are identical in L5 and L4, but for the communications events we introduce an
explicit "sender” of information. (Thus communications events are now parameterized by two locations:
the sender and the receiver.) This modification is necessary to describe precisely the set of aborts which
must be piggybacked on a communications event. (In fact this set will be all aborts known to the sender).

Communications events:
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@create[B.a] A.d - -- send create message from B to a with aborts d
@commit{f,a] A, d -- send commit message from 8 to a with aborts d
@abort[B.a] A -- send abort message from 8 to a

The parameter "d" of create and commit messages models the DONE lists in remote invocation and

commit messages.

As in previous levels, the transition relation will be defined so that each communications event is
idempotent.
Transition Relation

Lete € &, <T,L,V> € 2, <T,L,V>e = <TLLLVD.

1. create A (A €act-{U}
PRECONDITIONS:
a. A ¢ @vertices, [creator(A)]
b. parent(A) € @active, [creator(A)]
c. (BA)€seq.B# A = B € @done, [creator(A)]
TRANSITIONS:
a. vertices, + vertices; U {A}
b. statusn(A) + "active’
c. @vertices, j[creator(A)] — @vertices, [creator(A)] U {A}

d. @stamsu[creatm(A)](A) + "active’

2. commit A (A € act - {U} - accesses)
PRECONDITIONS: -

a. A € @active; [A]




-138 -

b. @children, [AKA) C @done; [A]
TRANSITIONS:
a. statusn(A) + ‘committed’

b. @status; ,[ANA) — ‘committed’

3. abortA (A €act-{U})
PRECONDITIONS:
a. A € @active, [A]
TRANSITIONS:
a. statusn(A) + "aborted’

b. @status JAA) — aborted’

4. perform A (A € accesses(x), u € values(x))
PRECONDITIONS:
a. A € @active, [x]
b. A € prop-desc(V(x).holder)
c. u = V(x).value
d. ano(A) N @aborted, [x] = &
TRANSITIONS:
a. statusn(A) — ’wmmi&ed’
b. @status, |[xKA) + ‘committed’
c. label.n(A) —u
d. datay, « data; U {(B,A): B € datasteps;(x)} U {(A,A)}

e. VI(x,parent(A)) — update(A)u)




-139-

5. @create]B.a] Ad (A €act-{U},B.a€loc,dC act)
PRECONDITIONS:
a. A € @active, [B]
b. d = @aborted, (8]
TRANSITIONS:
a. @vertices, ;[a] — @vertices, [a] U {A}
b.A¢ @vertices, [a] = @status; [a}(A) « "active’
c. @aborted, ;[a] — @aborted, [a] U d
d. a € obj, DE€d, B€ dese(D) =
Vi(a,B) — L
6. @commit(B.al Ad (A €act- {U}, B.a €loc, d C act)
PRECONDITIONS:
a. A € @committed, [8]
b. d = @aborted, |B]
TRANSITIONS:
a. @vertices, [a] — @vertices, [a] U {A}
b. @statusu[a](A) +~ ‘committed’
c. a€obj, V@aA)2 1 =
Vi(a,A) — L
V1(a,parent(A)) « V(a,A)
d. @aborted, ;{a] — @aborted, [a] U d
e. a €obj, D€, BE desc(D) = |
Vi(a.B) — L
7. @abortiB.al A (A € act- {U}, B.a € loc)
PRECONDITIONS:
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a. A € @aborted, [B]

TRANSITIONS:
a. @vertices; ;[a] — @vertices; [a] U {A}
b. @status;[al(A) — "aborted’

c. a € obj, B€ desc(A) =
Vi{a,B) +— L

The preconditions and transitions for all local events are identical in L5 and 1.4 (except that the
non-local orphan detection precondition, P4.4e, is eliminated at Level §). Communications cvents are
fundamentally different at Level 5, since orphan detection information is explicitly passed between

locations with create and commit messages.

The orphan information that we include with create and commit messages is quite simple: a
sending location must piggyback all the aborts it knows about onto these messages. These messages now
correspond closely to the create and commit messages of the simplified orphan detection algorithm that
we presented in Chapter 1. The "known aborts set” in these messages models the "DONE" list in the
messages of this algorithm. While we show below that this information is sufficient (because there is a
possibilities map from LS to L4), other choices are possible. As a simple example, we conjecture that it is
only necessary to send a covering subset of the known aborts in create and commit messages, because such
a subset captures the same information about potential orphans. We have not attempted to take such
optimizations into account, and we have focused on simplicity of description for our model. In general, at
every level of our algebra hierarchy we make additional choices about the details of our model, and we

further restrict the possible implementations which fit this model.

In our Level 5 model we do not piggyback the known aborts set onto aborf messages. We can
explain the difference between abort messages and create or commit messages by recalling (from Chapter '
3) that in our idealized transaction system, aborts transfer no information (other than the fact that the
abort occurred). Because the receiver of an abort xﬁessage does not "learn anything™ about the exccution
history, the sender need not tell the receiver about all potential orphans. Internal consistency is achieved
by coupling the flow of normal information with the flow of orphan information. (In this case "orphan

information” is just the set of known aborts at the sender.) Of course, it would not hurt to piggyback
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known aborts onto abort messages, and this additional information might allow some orphans to be

detected sooner.

9.2 Specification of Mapping hs,

We definc a (single-state) mapping from LS5 to L4, hg,: LS — 14. (We abbreviate "hs," as "h"
in this chapter.)

State Mapping
h: 25 - 24 is the identity mapping: h(<T,L,V>) =<T,L,V> WT,L, V> € )25. Thus h fixes <T,L. .

Event Mapping

h: 85 - 8: is defined as follows. Let ord4 be an arbitrary total order on & o and let aborts-in(d) =
{@abort{a] D: D € d}.

h: create A —» create A
commitA — commit A
abort A - abort A

perform A,u — perform A,u

@create[B.a] A,d — @creatca] A * <<aborts-in(d); ord>>
@commit{B,a] A,d — @commita] A * <Laborts-in(d); ordH>>
@abor{B.a]A  — @abort[a] A

Note that we map communications events @create and @commit into a scquence of events at Level 4.
This sequence first creates or commits the primary action in the message, and then effectively aborts all
actions in the aborts list, d. We will show that the order in which these abort events occur is unimportant;
thus we let ord4 be an arbitrary order.
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9.3 Level 5 Invariants

Before stating the Level 5 invariants, we state two preliminary lemmas which will be used

below:

Lemma 9.3.1: Let <T,L,V> € ®; N PRE(e), and <T",L',V’> = <T.L,V>e. Suppose that
<T.LV> satisfies I3, and (KT,L,V>,<T",L’,V") satisfies Ja and J3. If ABORTST(A) <
@aborted, [a], and A € @committed, [a], then

ABORTS(A) < @zborted, [a].

Proof: If A € @committed, [a], then by Lemma 7.3.2f, A € committed,
= ABORTST,(A) < ABORTST(A), by Lemma 6.3.3.3.

But @aborted, [a] C @aborted, [a], by Lemma 7.3.1a = @aborted, [a] < @aborted, fa],.
by Lemma 2.2.1.1a.

And ABORTS(A) < @aborted, [a], by hypothesis.
Thus ABORTS(A) < @aborted, [a], by transitivity of <. B
Lemma 9.3.2: Let<T,L,V> € %5 n PRES(C), and <T",L",V» = <T,L,V>e. Suppose that

<T,L,V) satisfics 13, and (<T,L,V><T",L’, V") satisfies Ja and J3. If SEQ—ABORTST(A) <
@abonedL[a]. and A € @active, [a], then

SEQ-ABORTS.(A) < @aborted, {a].

Proof: If A € @active, |a], then by Lemma 7.3.2f, A € vertices,
= SEQ-ABORTS(A) < SEQ-ABORTS{A), by Lemma 6.3.3.4.

But @aborted, [a] C @aborted, [a], by Lemma 7.3.1a = @aborted, [a] < @aborted, fa],
by Lemma 2.2.1.1a.

And SEQ-ABORTS{(A) < @aborted, [a], by hypothesis.

Thus SEQ-ABORTS.(A) £ @aborted, [a], by transitivity of <. #




- 143 -

The following invariants are our key result for Level 5. They express the fact that the local states
have the proper abort information at all times. We show these invariants relative to mapping h: Since h
fixes <T,L,V>, all invariants and pair-invariants in 1.4 can be applicd to the proofs (by Lemma 4.2.4.3.6).
(Recall that we have shown in Lemma 8.4.6 that 14, I3, and Ia are invariant in L4, and J3 and Ja are

pair-invariant in LA4.)
Lemma 9.3.3: Let<T,L,V> € %,. Then the following are invariant relative to h:
(Va € loc)
a. A € @committed, [a] = ABORTS(A) < @aborted, [a]

b. A € @active, [a] = SEQ-ABORTS (A) < @aborted, [a]

Proof: It is trivial to show that (a),(b) are O-invariant (i.e. that they hold for 05): (a) holds
vacuously, and for (b) only U € @verticcsLo[a], but SEQ-ABOR'I‘STO = @.

For the induction step, let <T,L,V> € % N PRES(e), and assume that (a),(b) hold for
CT,LV>. Let <T",L',V> = <T.L,V>e. We must show that (a),(b) hold for <T",L’.V>. By
Lemma 4.2.4.3.6, we can assume that <T,L,V> and <T",L’, V") satisfy any invariants from 14, I3
or la, and we can assume that (<T,L,V>.<T",1.’,V*>) satisfy any pair-invariants from J3 or Ja.

Using the Induction Hypothesis, and invariants I3, J3, Ja, we can apply Lemmas 9.3.1 and
9.3.2 to conclude that

A € @committed; [a] = ABORTS(A) < @aborted, [a].
A € @active; [a] = SEQ-ABORTS(A) < @aborted, Jal

Thus we need only show that (a) holds (respectively, (b) holds) for <T",L’,V"> where A €
@committed, {a] - @committed, [a] (respectively, A € @active, a] - @active, [a]). We

consider all possible events, e, for these remaining cases:

1. create A (note that A # U)

@committed, [a] = @committed, [a].
@active, [a] - @active, [a] = {A}, for @ = creato(A).
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@active, Ja] = @active, |a], for a # creator(A).

a. Holds vacuously.

b. (We need only consider a = creator(A).)

By P5.1b, parent{A) € @activeL[a],
= SEQ-ABORTS .(parent(A)) < @aborted, [a].

By PS.1c, (B,A) € seq, B# A = B € @done [a]. Thus B €
v-segr(A) = B € @committed, [a],
= ABORTS(B) < @aborted, fa].

B € i-seqr-(A) = B € @aborted, [a] = B € @aborted, fa],

= irseqr(A) < @aborted, [a].

Thus SEQ-ABORTS (parent(A)) U LéJABOR IS .(B)
v—seq.r

U i-seq(A) < @aborted, [a], by Lemma22.1.1c.

Thus SEQ-ABORTS(A) < @aborted, {a], by Lemma 6.2.14,

2. commit A (note A € accesses)

@committed, [a] - @committed, [a] = {A}, fora = A
@commited; la] = @commiuedL[a], for a # A.
@active; {a] C @active, [a].

a. (We need only consider a = A.)

ABORTS..(A) = i-precedes.(A) U L€JABOR ® .

Since A € accesses, v-data-anc[.(A) = i-data-anc(A) = @; thus
v-precedesp.(A) = v-anc-seq{A) U v-childT.(A), and
i-precedesr(A) = i-anc-seqT,(A) U i-childr.(A).

Thus ABORTS(A) = i-anc-seq(A) U n?ABORTSK(B) U

i-child (A) U Jz'ﬁ?ﬁ?,r“’
= SEQ-ABORTS,.(A) U i-child.(A) U n‘%’ﬁ?ﬁﬁ'@

But A € @xtive [A] by PS2a, = SEQABORTS(A) <
@aborted, [A], by Lemma 9.3.2.

IfBE children.(A), then B € children,(A). But by Lemma 7.3.2a,
B € children{A) = B € @verticesL[A].' By P5.2b,
@children, [AKA) € @done, [A]. From Lemma 7.3.2f, it follows
that v-child;(A) C @committed;[A}, and ichild(A) C
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@aborted, [A].

Thus B € v-child;(A) = ABORTS[(B) < @aborted, [A], by
Lemma 9.3.1.

B € i-child(A) = B € @aborted, [A] = B € @aborted, [A}, by
Lemma 7.3.1a.

Thus we have shown
SEQ-ABORTS{(A) £ @abortedL,[A].
i-child.r(A) < C'aborled JA), and

ABORTS.(B) < OabortedL(A]
v-d’nldT(A)

ABORTST(A) < @aborted; [A] follows directly from Lemma
2.21.1c.

b. Holds vacuously.

3. abort A

@committed, [a] = @committed, [a]
@active; [a] C @active, [a]

a. Holds vacuously.

b. Holds vacuously.

4. perform A,u

@committed, fa] - @committed, [a] = {A}, fora = x (x = object(A))
@commitied, fa] = @committed, [a], fora # x
@active, fa] C @active, [a]

a. (We need only consider a = x)
ABOR A) = i- des (A) U ABOR B) .
TS(A) = i-precedes(A) B?v_p :15.5(0)
Since A € accesses, v-childr(A) = i-child.l..(A) = @; thus
v-preccdesr(A) = v-anc-seqT.(A) v v-data-ancr(A), and
i-precedesr(A) = i-anc-seq.r( AU i-data-ancT.(A).

Thus ABORTS (A) = i-anc-seq.r(A) U lzlABORmK(B) U
B v-mc-seq,r.()

i-data-anc{A) U LGJA‘;I‘OR
v-gata-

= SEQ-ABORTS (A)U i- ta-ancr(A) U Blzlmn ® .
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But A € @active;[x] by P54a, = SEQ-ABORTS[(A) <
@aborted, [x], by Lemma 9.3.2.

If (BA) € v-data., then B € @visibleL.[x](A), by Lemma 7.3.2j, ==
B € @visible, [xl(A).

Thus AlB € @committedL[x], = ABORTSAlB) <
@aborted, [x], by Lemma 9.3.1.

If(B,A) € i-data ., then B € @dead, [x}, by Lemma 7.3.2k. ButB €
@dead, [x] = {crucial(B)} < @aborted, [x], by Lemma 7.3.21.

Thus we have shown

SEQ-ABORTS[(A) < @aborted, [x],
i-data-anc(A) < @aborted, [x], and
B‘EJ ABORTS {B) < @sborted, [x]

v-data- an

ABORTS(A) < @aborted, fx] follows directly from Lemma
2211c. '

b. Holds vacuously.

5. @create[B,a] A d

@committed, [y] = @committed, [y].

@vertices, fy] = @vertices, [y] U {A}, for y = a (unchanged for all other
Jocations).

@active, [a] - @active, [a] C {A} (might be B).

@active, Jy] = @active, [y], fory # a.

a. Holds vacuously,

b. (We need only consider y = a.)
By P55a A € @activeL[ﬂ]; thus SEQ-ABORTS(A) <
@aborted, [B], by Lemma 9.3.1.

But d = @aborted, [8] by P5.5b, and d C @aborted, Ja] (by
T5.5c). Thus SEQ-ABORTS.(A) < @aborted, a].

But A € @active, [B] = A € vertices, by Lemma 7.32f =
SEQ-ABORTS(A) £ SEQ-ABORTS,(A), by Lemma 6.3.3.4.

Thus SEQ-ABORTS.(A) < @aborted, [a], by transitivity of <.
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6. @commit{B.a] A, d

@committed, {a] - @committed, [a] C {A}.
@committed, [y] = @committed, [y}, for y # a.
@active; {y] C @active, [y].

a. (We need only consider y = a.)

By P56a, A € @committed [B]; thus ABORTS(A) <
@abortedL[ﬁ], by Lemma 9.3.1.

But d = @aborted, [8] by P5.6b, and d C @aborted, [a] (by
T5.5d). Thus ABORTS(A) < @aborted, [a].

But A € @committed, [8] = A € committed; by Lemma 7.3.2f,
= ABORTS(A) < ABORTS(A), by Lemma 6.3.33.

Thus ABORTS(A) < @aborted, {a], by transitivity of <.

b. Holds vacuously.

7. @abortB.a] A

@committed, [y} = @committed, [y].
@active, {y] C @active, [y].

a. Holds vacuously.

b. Holds vacuously. |

9.4 Proof of Possibilitiecs Map for hy,

We now show that h is a possibilities map. Let I5 be the conjunction of all properties in Lemma
9.3.3. We will show that h is a possibilitics map relative to 15.

Lemma 9.4.1: h preserves initial states.

Proof: Immediate since h(<T 0,LO,V0>) =T 0,L(,.VOP. |

Lemma 9.4.2: h preserves transitions relative to 1S.
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Proof: We must show that if <T,L,V> € PRE(¢) N % N 15, and h(<T,L, VD) € PRE (h(e))
N %, then h(KT,L,V>e) = h(<T,L,V>)h(e).

But h(<T,L,V>) = <T,L,V>, so we must show the following:

Let <T,L,V> € PRE((e) N % N PRE,(h(e)) N .
Let <T,L,V>e = <TLLLVD (in L5), <T2,L.2,V2> = <T,L,V>h(e) (in L4).
Then <TLLLVI> = <T21.2,V2>>

For the local steps (create, commit, abort, perform), h(e) = e, and it is easily verified by
inspection that the effects of these events on T, L, and V are identical in LS and L4. It is also
easily verificd by inspection that the effect of @abort[8,a] A is identical to the effect of
@abortfa] A.

For communications events @create and @commit, transition steps T5.5a,b, and T5.6a,b,c
are identical to transition effects T4.5ab, and T4,5a,b,c, respectively. Transition steps
T5.5¢.d, and T5.6d.e, respectively, accomplish the same effect as the sequence of aborts
<<aborts-in(d); ord$>>: Adding all aborts in d to @mbortedL[a] (Level 5) has the same effect
as adding them individually (Level 4). To see that updating of value maps is also preserved,
note that an abort at an object removes all descendants of the aborted action from the value
map at that object. But individually removing descendants of each action (Level 4) has the
same effect as removing all descendants from actions in d at once (Level 5). Note that this
removal of descendants is clearly commutative, and thus the order of abort steps in

aborts-in(d) makes no difference. 18

Lemma 9.4.3: h preserves preconditions relative to 15.

Proof: We must show that if <T,L, V> € PRES(e) n %5 N I5, and KT, L,VD) € %4, then
h(<T,L,V>) € PRE(h(e)).

Since h(<T,L.V>) = <T.L.V), we show
<TLVE PRES(e) n %S nisNs . = TLWE PRF,‘(h(e)).

Preservation of preconditions is easily verified by inspection for all local steps other than

perform, since preconditions are identical in LS and 14. We prove preservation of
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preconditions for event. e = perform A,u, and for the communications steps:

1. perform A,u
a. P54a = P4da.
b. P54b <= P4.4b.
c. P54c = PdA4c.
d. P54d = P44d.

e. B € @yvisible [x(A.x) = A|B € @committed, [x]
= ABORTS{A]B) < @aborted, [x] by Lemma 9.3.3a.

But by P54d, anc(A) N @aborted, [x] = @. Thus anc(A) N
ABORTS(A]B) = &, by Lemma 2.2.1.1d.

2. e = @create[B,a]Ad
h(e) = @create{a] A * < aborts-in(d); ordH>>
First we show that <T,L,V> € PRE (@createfa] A):

a.P55a = A € @active[B], = A € @vertices [B], which
* automatically satisfies P4.5a. (P4.5a requires that there be some B8 for
which A € @vertices, [8}.) )

Now let e’ be the prefix of h(e) preceding @abortfa] D (where D € d), and let
<TLLLVD> = <T,L,V>¢’ (in L4). We show that <T1L1,VD € PRE4(@aborl:[a]

D).

a. D€d = D € @aborted, [B] = D € aborted. by Lemma 7.3.2f,
= D € @aborted, [D] by Lemma 7.3.2c,
= D € @aborted, ,[D] by Lemma 7.3.1a.

3. @commit{8,a] A, d e = @commit{8,a] A, d
h(e) = @commitfa] A * <Kaborts-in(d); ord>>
First we show that <T,L,V> € PRE (@commit{a] A):
a. P5.6a = A € @committed, [B]. which satisfies P4.6a.

Now let ¢’ be the prefix of h(e) preceding @abort[a] D (where D € d), and let
<TLLLVD = {T.L,V>¢’ (in L4). We show that <T1L1.V1> € PRE4(@abort[a]
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D):

a. D€d = D € @aborted, [8] = D € aborted by Lemma7.3.2f,
= D € @aborted, [D] by Lemma 7.3.2c,
= D € @aborted, ,[D] by Lemma7.3.1a.

4. @abort[B,a] A

a. P57a = A€ @abonedL{ﬁ], which satisfiesP4.7a. 1§

Lemma 9.4.4: h is a possibilities map relative to IS.

Proof: Follows immediately from Lemmas 94.1,9.4.2, 9.4.3, and from Lemma 4.24.24. §

Theorem 9.4.5: h is a possibilities map, and IS is invariant in LS.

Proof: By Lemma 9.3.3, 15 is invariant relative to h. By Lemma 9.4.4, h is a possibilities map
relative to IS. We apply Lemma 4.2.4.2.6 to conclude that h is a possibilities map, and 15 is an

invariant. §

Since hg, is a possibilities map which fixes <T.,L,V>, all invariants and pair-invariants from L4

carry down to L5. We summarize the invariants for LS as follows:
Lemma 9.4.6: Ia, 13, 14, and IS are invariant in L4, and Ja, J3 are pair-invariant in L4.

Proof: Invariance of I5 is shown in Theorem 9.4.5. Since h,, is a possibilities map which '
fixes <T,L,V>, and Ia, I3, and 14 are invariant in L3, Ia, I3, and J4 are invariant in L4, by
Lemma 4.2.4.3.5. Similarly since Ja, J3 are pair-invariant in L4, Ja and J3 are pair-invariant
in L5, by Lemma4.2.4.3.5. 1
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9.5 Level 6 Algebra and Mapping hg

At Level 6 we remove the global action tree, T. Since we have localized all preconditions in

Level §, the global tree can now be properly regarded as a "virtual” component of the state.
L6 = (B, 2 0g, 7o)
26 = {<L,V>}, where the components are:

L - local UAS’s (as in L3)

V - value maps (as in’L4)
o, = <L0, Vo)

LO, VO - asinl4

g =8

6 S

7, is identical to 7, except that all transitions involving T are disearded (T5.1a,b, T5.2a, T5.3a, TS4a,c,d).

Let hss: L6 — LS5 be the aﬁgmcntation map from Level 6 to Level 5 (Definition 4.2.5.1). Thus h65 is the
identity map on events, and the state mapping maps <L,V> to all possible states <T,L.,V> in 25.

Theorem 9.5.1: hy, is a possibilities map.

Proof: Follows immediately from Lemma 4.2.5.3. 1

By Lemma 4.2.5.2, h65 fixes <L,V, so all invariants and pair-invariants for L. and V from LS carry down
to L6. Most of these properties involve T, but all invariants from 14 except for 8.3.1e do not involve T,
nor do the pair-invariants J3. We summarize these invariants and pair-invariants for L6 in the following
Lemma. Let 14’ denote 14 with 8.3.1¢ removed. (Thus 4 is just all invariants from 14 which apply to the
local state <L, VD.)

Lemma 9.5.2: 14’ is invariant for L6, and J3 is pair-invariant in L6.

Proof: Since hss is a possibilities map which fixes <.,V>, and 14’ is invariant for <L, V> in LS,
14’ is invariant in L6, by Lemma 4.2.4.3.5. Similarly since J3 is pair-invariant for <L,V in LS,
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13 is pair-invariant in 1,6, by Lemma 4.2.4.3.5. |
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10. Distributed System Model

Level 7 is our lowest-level model of the transaction system. At this level we partition the system
state among nodes, and we use a communications model which takes into account arbitrary delays in
message delivery. This modcl is a message-based distributed event-state algebra as described in Chapter

4. Nodes communicate by sending and receiving messages via a message buffer.

We require that each object and each action reside at a particular node (its "home node™). A
node’s state consists of a UAS and a valuc map for each object which resides there. We can thus view
nodes as a grouping structure for the "tree locations” from Level 6. The mapping from node states (Level
7) to local states at tree locations (Level 6) is a straightforward "explosion” of the node states. Similarly

the Level 6 value map can be constructed from the value maps at each node.

The only complexity in mapping from Level 7 to Level 6 is in modeling the communications
delays at Level 7, since the communications events at Level 6 are “instantaneous.” We resolve this
discrepancy by treating messages themselves as locations. We regard a message as an initially empty
"slot" for information; once this message is sent, the slot is filled. Since messages are never removed from
the message buffer in our Level 7 model, it is natural to regard this message slot as a "location” at Level 6.
The communications delay at Level 7 is explained at Level 6 by imagining that all messages are

instantancous, but that they are sent indirectly via another location (the message slot).
10.1 Level 7 Algebra

L7 = (87, 21, o, 77)

The Level 7 Algebra is a message-based algebra as defined in Chapter 4 (Definition 4.3.2.1). Let
Nodes = {1,2.....,n} name the nodes in the system, and let "buf” name the message buffer. We will use I’
= Z, in this chapter, so that we can subscript the state space without confusing these subspaces with the
state spaces of higher levels in our algebra hierarchy.

We assume that each object in the system resides at a particular node, and each action runs at a
single node. We call this nodc the home pode of the action or object. Formally,

home: tloc — Nodes. (If A € accesses, then we will use home(A) synonymously with home(object(A)).
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Let obj(i) = {x € obj: home(x) = i},
act(i) = {A € act - {U} - accesses: home(A) = i},
tloc(i) = obj(i) U act(i).

State Space:

The local state at a node consists of a UAS for the node together with a "local” value map for each object

whose home is at that node:
T, = {<Lv>:1€ UAS, and v: obj(i) X act — values(obj) U {_L}}, wherei € Nodes.

If D € T and i € Nodes, then we denote the UAS and value map components of D.i by D.i.l and D.i.v,
respectively. We extend the definitions of V(x), V(x).holder, V(x).value, etc., from value maps to "local

value maps” in the obvious way.
The set of messages is defined as follows:

Msgs = {#create(i,j) A,d: i,j € Nodes, A € act - {U},d C act}
U {#commit(ij) A,d: ij € Nodes, A € act - {U} - accesses, d C act}
U { #abort(ij) A: i,j € Nodes, A € act - {U}}

The message buffer space is I‘bur = K Msgs).

IfD €T, and i € Nodes, then we abbreviate any function prop,., by #proppfil. (This notation is

similar to the notation introduced for locations, but note that i is now a node rather than a location.)
0, = D, where D, is defined by

Do.buf =g,
Yi€ Nodes. Do.i.l =T w the trivial UAS, and

Dyi.v(x,U) = init(x). Vx € obj(i),
Dpiv(x,A)= 1, VA= U.

The UAS and value map components of Dyy.i correspond in a natural way to L and V.
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Events:

87 consists of local events (create, commit, abort, perform), and communications events send M,

receive M, for M € Msgs. Local events are similar to the corresponding local events at Level 6.

At Level 7 we include a qualifier "(d)" on create, commit, and perform events. For example, a
create event takes the form: create A (d), where d C act. The preconditions for the create, commit and
perform events requires that "d" be the set of known aborts at the node where the event occurs. "d" does
not enter into any transitions. We can thus regard "(d)" as recording the sct of known aborts when the
event occurs; including this qualificr does not change the semantics of the events. The qualifier "(d)" is
useful when we construct a mapping from Level 7 to Level 6: "local” events at Level 7 will map into a
local event at Level 6 plus a sequence of communications events at Level 6. (Conceptually in this
mapping we regard the occurrence of an event at a node as an occurrence at a single location at that node,
followed by a broadcast of the event (with Level 6 communications events) to all other locations at that
node. Of course, at Level 7 no "real” communications events occur.) Because these Level 6

communications events require a "done" list, we extract it from the "(d)" in the Level 7 event.

(This device of qualifying events with a part of the state allows us to construct an
eveni-homomorphic mapping between algebras. If the qualifier were not used, then the proper mapping
from a lower-level event to the higher-level sequence of events would depend on the lower-level siate as

well as on the lower-level event, i.e. the event mapping would not be event-homomorphic.)
Transition Relati

Although Definition 4.3.1.1 describes the total transition relation of a message-based algebra in
terms of Jocal transition relations for each component, we will not describe local transition relations
individually. Instead we present the total transition relation. It should be clear that preconditions and
effects are properly localized (i.e. the local transition relations could be constructed easily from our total
transition relation).

Lete €8, DET, De = D1.

1. creatc A (d) (A € act - {U}, home(creator(A)) = i, d C act)
PRECONDITIONS: |
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a. A ¢ #verticespi]
b. parent(A) € #activeD[i]
c. (BA) €seq, B# A = BE€ #donei]
d. d = #abortedi]
TRANSITIONS:
a. #vertices, [i] — # verticesp[i] U {A}

b. #statusm[i](A) + ’active’

2. commit A (d) (A € act - {U} - accesses, home(A) = i, d C act)
PRECONDITIONS:
a. A € #activey|i]
b. #childrenJi(A) C #donefi]
c. d = #aborted fi]
TRANSITIONS:
a. #statusyy [i(A) +— ‘committed’
b. Vx € obj(i), Div(x,A)# | =
DLiv(x,A)— |
D1.iv(x,parent(A)) + D.i.v(x,A)
3. abortA (A € act - {U}, home(A) = i)
PRECONDITIONS: |
a. A € #activeyfi]
TRANSITIONS:
a. #statusp [i(A) « "aborted’

b. Vx € obj(i), B € desc(A) =
DLiv(x,B)— L
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4. perform A (d) (A € accesses(x), u € values(x), home(x) = i, d C act)
PRECONDITIONS:
a. A € #activei]
b. A € prop-desc(D.i.v(x).holder)
¢. u = D..v(x).value
d. anc(A) N #abortedD[i] =@
e. d = #aborted[i] |
TRANSITIONS:
a. #statusyy [i(A) — ‘committed’

b. Dl.i.v(x,parent(A)) «— update(AXu)

5. send #create(if) A.d (A € act- {U}, ij € Nodes, d C act)
PRECONDITIONS:
a. A € #activefi]
b. d = #aborted[i}
TRANSITIONS:

a. D1.buf — D.buf U {#create(i,j) A,d}

6. receive #create(ij) Ad (A € act- {U}, ij € Nodes, d G act)
PRECONDITIONS:
a. #create(ij)A,d € D.buf
TRANSITIONS:
a. # verticesp, [j] — # verticespfi] U {A}

b. A € #verticesp[j] = #statusy; [iKA) + "active’
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c. #aborted,; [j] ~ #abortedp[j] U d
d. Vx € obj(j), C€d, B€ desc(C) =
D1.j.v(x,B) — 1L
7. send #commit(ij) A.d (A €act- {U}, ij € Nodes, d C act)
PRECONDITIONS:
a. A € #committed]i]
b. d = #aborted[i]
TRANSITIONS:

a. D1.buf « D.buf U #commit(i,j) A,d

8. receive # commit(ij) A.d (A € act- {U}, l.j € Nodes, d C act)
PRECONDITIONS:
a. #commit(ij) A, d € D.buf
TRANSITIONS:
a. #verticesy [i] — # vertices)[ij U {A}
b. #status, [i(A) « ‘committed’
c. Vx € obj(j), Djv(x,A)# | =
D1jv(x,A) « L
D1.j.v(x,parent(A)) — D.j.v(x,A)
d. #aborted [i] — #aborted[ij U d
e. Vx € obj: home(x) = j, C€d, B € desc(C) =
D1.j.v(x,B) — L
9. send #abort(id A (A €act - {U}, ij € Nodes)
PRECONDITION:

a A€ #abortedD[i]

TRANSITIONS:
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a. DL.buf « D.buf U #abort(i,j)

10. reccive #abort(ij) A (A €act- {U}, ij € Nodes)
PRECONDITION:
a. #abort(ij) A € D.buf
TRANSITIONS:
a. #verticesp [j] ~— # vertices[jj U {A}
b. #statusm[j](/\) + "aborted’

c. Vx € obj(j), B € desc(A) =
D1j.v(x,B) — L

10.2 Specification of Mapping h;

We define a (single-state) mapping from L7 to L6, h,: L7 — L6. (We abbreviate "h, " as "h"
in this chapter.)

At this point we instantiate the (previously unspecified) set of locations, loc; we define
loc = tloc U Msgs

We regard a message as a location because it is a container for information. The local information at this
location is essentially the information contained in the message. As we explained above, we imagine that
each message is a predefined "slot” for the particular combination of information that it represents.

Originally this slot is empty; when the message is sent, the slot is filled.

State Mapoing

h: Z, — Z is defined as follows. LetD € FF, h(D) = <L, V>, then

V = valuemap(D), where valuemap(D) is defined as {((0,a),u): D.home(0).v(0,a) = u}.

Valuemap is defined exactly as we expect: the “total” valuemap for Level 6 is constructed by combining
all local value maps. This mapping is so trivial that we can almost regard it as a simple change in
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notation.
L is defined by:

1. If a € tloc, then L(a) = D.home(a).l
2. If @ € Msgs, and a € D.buf, then L(a) = T .
3. If a € Msgs, and a € D.buf, then

a. If a = #create(ij) A.d, then L(a) = T, where
vertices = {U,A}Ud
committed. = 7]
aborteclr =d

b. If a = #commit(ij) A,d, then I(a) = T, where
venicesr = {UA}Ud
committed,. = {A}
aborted = d

c. Ifa = #abort(i,j) A, then L(a) = T, where
vertices = {U,A}
committed, = @
aborted, = {A}

If a € tloc, then L(a) is just the UAS at a’s home node. For locations which are messages, if the message
has not been sent then its location has "no information” (i.e. its UAS is the trivial UAS, Tu). If the
message has been sent, then the information in the UAS for its location corresponds exactly to the
information in the message, i.e. it describes what actions are known to be committed, aborted, or active as

a result of the message.

Event Mapping

h: &, — 8; is defined as follows. Let ordé be an arbitrary total order on 86. For each node, i, let loc(i)
be a distinguished tloc whose home is that node. (We will use this tloc to define an explicit "sender” for
messages from that node. If such a tloc does not exist, then it could be created just for this purpose.)

h:createA(d) — create A * <({@creatc[f,a] A,d: B = creator(A), home(a) = home(B)}; ord6>>
commitA(d) -» commitA * <<{@commit]8,a] A,d: 8 = A, home(a) = home(B)}; ord6>>
abort A — abort A * <{{@abort|8,a] A: B = A, home(a) = home(8)}; ord6>>
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perform A,u(d) = perform Au * <{@commit[8,a] A,d: B = x, home(a) = home(B)}; ord6d>
h(send M) is defined as follows:

IfM = #create(ij) A,d, then h:send M — @create[loc(i),M] A,d
IfM = #commit(ij) A,d, then h: send M = @commit{loc(i),M] A,d
IfM = #abort(i,j)A, then h:send M — @abort[loc(i),M] A

h(receive M) is defined as follows:

IfM = #create(i,j) A.d, then h: receive M — <{@create]M,a] A,d: home(a) = j}; ord6>>
IfM = #commit(ij) A,d, then h: receive M — {@commit{M,a] A,d: home(a) = j}; ord6>>
IfM = #abort(ij) A, then h: receive M  — <{@abort/M,a] A: home(a) = j}; ord6>>

We map local events to the corresponding local event at Level 6, followed by a sequence of
communications events that "inform" all other locations based at the same node of the event. (Note that
we use the qualifier “(d)” on local events at Level 7.) We map a send event to a communications event at
Level 6 with the message slot as the destination. (The "sender” at Level 6 is an arbitrarily selected tloc at
the sending node.) We map a receive event to a sequence of communications events at Level 6 with the
message slot as the sender, and all tlocs at the receiving node as receivers. In general we map a single
per-node event which affects the node’s state to to a sequence of per-location events -- one for each tloc

whose home is that node.
10.3 Proof of Possibilities Map for h,
We now show that h is a possibilities map.
Lemma 10.3.1: h preserves initial states.
Proof: Let h(Dy) = <L,V>; then

V = valuemap(D,) = V,, and

L{a) =T if @ € Msgs, since Dybuf = @

If a € tloc, then L(a) = Do.home(a).l = Tu.
Thus L=1, &
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Lemma 10.3.2: h preserves transitions.

Proof: We must show that if D € PRE,(e) n %,, and h(D) € PRE6(h(e)) N %, then h(De)
= h(D)h(e).

Let De = D1, k(D) = <L,V>, i(D1) = <L1,VD, and <L,V>h(e) = <L’,V", then we must
show thatLl = L’,and V1 = V',

We argue the cases e = create A (d), ¢ = send M, and e = receive M for M = #create(i,j)

A,d. Other cases are similar.

1. e = create A (d). Let 8 = creator(A), i = home(8).
h(e) = create A * <{{@create[B,a] A,d: home(a) = i}; ord6>>.

From transitions T7.1a,b, we have
Dlbuf = Dbuf, D1j=Dj Vj#i,
Dl.iv = D..yv,

#vertices) [i] = # verticesj[i] U {A},
#statusy, [iNA) = “active’.

Thus VI = V, and Ll(a) = L(a) Va ¢ toc(i). If @ € tloc(i), then
@vertices, ;[a] = @vertices; [a] U {A}, and @status; ,[a(A) = "active’.

By inspection all events in h(e) only affect locations in tloc(i); thus L'(«) = L(a)
= Ll(a) Va € tlocfi).

Define relation — on tloc(i) as follows: al — a2 = al = B, or @create{,al}
A.d precedes @create|B,a2] A,d in ord6. (— is reflexive)) Let <L2,V2 =
<L,V>u, where u is the prefix of h(e) up to and including event @create[8,a2}
A,d. We can show inductively that

@aborted, ,{a2],

V2'(a,A) = V(a,A) Va € obj(i), A € act,

al+ a2 = A € @active ,[al],

~(al— a2) = A ¢ @vertices ,{al].

(We will not carry through the details of the induction here. The only subtle
point is that event @creatc[.a2] A.d cannot affect V(a2) (if a2 € obj(i)): IfB
€ V(a2), then by Lemma 8.3.1a, B is live in L{a); thus B cannot be a descendant
of an action in d. Note that we can apply 8.3.1a because we know <L, V> € %,

and 14’ is invariant in L6 by Lemma 9.5.2))
By applying the inductive result to the total sequence h(e), we conclude that

V' = Vand L'(a) = L(a) for alt «in tloc(i). Thus V1 = V',and L1 = L.
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2. e = send M, M = #create(ij) A.d.
h(e) = @creatcfloc(i),M] A,d.

DLbuf = D.buf U {M}; D1.i = D.i Vi € Nodes.

Since valuemap(D) does not depend on D.buf, V' = V. But M € obj, so h(e)
cannot affect V(inL6),= Vi =V. ThusVl =V’

Obviously Ll(a) = I(a) unless a = M. But D1.i = D.i for all i € nodes, and if
M’ # M, then M’ € D.buf « M’ € D1L.buf. Thus L'(a) = 1{a) for all a # M.

Fora = M, L’(a) = T, where
vertices,., = {UA}YUd
committed . = @

aborted.r =d

Let Ll(a) = T1, I(a) = T, then
verticesy,, = vertices U {A}uUd
committedr1 = committed.l.
aborted.l.1 = abortedT Ud

Butif M € Dbuf thenT=T = T1 =T. IfMQD.buf,thenT:Tu = Tl
=T.

ThusLl = L.

3. e = receive M, M = #create(i,j) A,d.
h(e) = <{@create|M,a] A,d: home(a) = j}; ord6>>.

At node j, A is added to #verticesD[i] (and made active if not alrecady there), and
d is merged into # aborted,Jj}; descendants of d are discarded from Dj.v.

We show L1 = L’ (the argument that V1 = V’ is similar).

Let & € loc. If @ € Msgs, then clearly L'(a) = Ll(a) = L(a). If home(a) # j,
then again L'(a) = L1(a) = L{a). Otherwise let L(a) = T, Ll(a) = T1, L'(a)
= T. Then I(a) = Djl; L'(a) = D11

Thus vertices, = vertic:esr U {A}, aborted,. = aborted U d (from transitions
T7.a.c).

But T1 differs from T by the effects of the message @create[,a] A,d, in h(e),
which has identical effect (from transitions T6.a,c), = T1 = T". ThusLl = L.

Lemma 10.3.3: h preserves preconditions.

Proof: We must show that if D € PRE,(e) N %, and h(D) € B¢, then h(D) € PREs(h(e)).
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Let h(D) = <L,W.

We argue the cases e¢ = perform A,u(d), e = send M, and e = receive M for M =

#create(i,j) A,d. Other cases are similar.

1. e = perform Au(d). Let x = object(A), i = home(x).
h(e) = perform A,u * <<{@commit[x,a] A,d: home(a) = X}; ord6>>.

First we show that <L,V> € PRE (perforn Au). L(x) = Dil, V(xa) =
D.i.v(x,a), by definition of h.

a A€ #activeD[i], by P7.4a,
= A € @active, [x].

b. A € prop-desc(D.i.v(x).holder), by P7.4b,
= A € prop-desc(V(x).holder).

c. u = Di.v(x).value, by P7.4c,
= u = V(x).value.

d. anc(A) N #abortedfi] = B, by P7.44,
= anc(A) N @abonedL[x] =@.

Now let ¢’ be the prefix of h(e) preceding @commit[x,a] A,d (for some a whose
home is i), and let <L1,VI> = <L,V>¢’ (in L6). We show that <L1,VD> €

PREG(@commit[x,a] Ad):

a. We must show that A € @committed, ,[x]. But event perform A,u
mustbein €', = A € @committed, ,[x].

b. We must show d = @aborted, ,[x]. But d = #abortedy]i] by
P74de, = d = @aborted, [x].
But none of the events in €’ can change @aborted, [x] (perform A,u
obviously does not change @aborted, [x], and if event @commit[x,x]
A.d occurs in ¢, then d C @aborted, [x] already). Thus d =
@aborted, ,[x].

2. e = receive M, M = #create(i,j) Ad
h(e) = <<{@creatcefM,a] A,d: home(a) = j}; ord6d.

None of the events in h(e) affect L(M), and the precondition for each event
@crcatc[M,a] A,d depends only on L(M). Thus it suffices to show that <L,V> €
PRE(@create{M,a] A,d) for all a.
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But M € D.buf by P7.6a, so L{M) = T, where
vertices, = {U,A} U d,

committed,. = 2,

abortcd.l. =d.

Thus
a. A € @active; [M]
b. d € @aborted, [M]
3. e = send M, M = #create(ij) A, d.

h(e) = @createfloc(i),M] A,d.
home(loc(i)) = i, by definition, so L(loc(i)) = D.i.L

a. A € #activep[il, by P7.5a,

= A € @active, [loc(i)].

b. d = #aborted[i], by P1.5b,
= d = @aborted, [loc(i)]. 1

Theorem 10.3.4: h is a possibilities map.

Proof: By Lemma 10.3.1, h preserves initial states. By Lemmas 10.3.2 and 10.3.3, and Lemma
4.2.2.6, h preserves events. Thus h is a possibilities map. 1

10.4 Mapping from Level 7 to Level §

We can now prove the main theorem of this thesis: valid execution sequences of our

lowest-level model (Level 7), when suitably interpreted, generate only view-serializable action trees.
Main Theorem: Let g: &, — &, be defined by
8 = hygohgsohg,oh3ohyyohy ohy, |

Let v € 7, be some valid execution scquence in L7. Then T,g(v) is a view-serializable action
tree.
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Proof: We have shown that cach hi+1.1 is a possibilitics map (Theorems 6.4.4.1, 6.5.2.1, 7.4.5,

845,945, 95.1, and 10.3.4). By Lemma 4.2.2.5, cach hi+ i is a valid interpretation. By

1,
repeated application of L.emma 4.1.3.2, g is a valid interpretation from L7 to LO. Thus v € ¥

= g(v) € ‘1’0. By LLemma6.1.1, 'I‘ig(v) 1s view-serializable. 1§
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11. Conclusions

11.1 Summary and Evaluation

We have presented a detailed proof that a particular transaction system model satisfies our
definition of internal consistency. The proof was structured on several levels, corresponding to different
levels of abstraction of the transaction system. While the lowest-level model is still quite "abstract” in
that it is far removed from an actual implementation, we feel that it captures many of the basic design

decisions made for the Argus transaction system.

We believe our work has made two contributions: First, we have formalized internal
consistency and we have related this formal condition to a particular orphan detection strategy. Second,

we have explored a method for multi-level correctness proofs which might be useful in other contexts.

11.1.1 Orphan Detection and Internal Consistency

Our definition of view-serializability appears to be a useful condition for internal consistency.
In the development of the Argus orphan algorithm, designers have often relied on particular scenarios
where inconsistencies arose to justify the need for including certain information in messages (or writing
certain information to stable storage.) While this type of reasoning can demonstrate shortcomings in the
algorithm, it cannot prove the algorithm correct (we cannot "prove by example.™) Perhaps the results of

this thesis, and future extensions of these results, can partly subsume this "reasoning by scenario.”

Although we have ignored crashes in our system models, the view-serializability condition
appears to be applicable in an environment with crashes. We have applied this condition to scenarios of
inconsistencies in Argus which result from crashes; these inconsistencies can be explained by showing
that an action does not have a serializable view tree. (Since view-serializability is a sufficient condition for

internal consistency, any inconsistency should be explicable by the absence of a serializable view tree.)

11.1.2 Algebraic Models

The multi-level structure of our correctness proof yields at least two benefits: First, since
adjacent levels are generally closely related, the possibilities maps (and proofs of possibilities maps)

between adjacent levels are relatively simple. Although we employ many levels, overall complexity is
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reduced and understandability of the mappings is enhanced.

Second, because the higher-level models are more abstract, they might prove to be useful
abstractions of different implementations. At Level 1 we describe the ANC-ABORT property, at Level 2

we describe a specific orphan detection precondition, and only at Level 5 do we explain how this

« detection is carried out locally by piggybacking aborts lists onto messages. A different orphan strategy

could be described at lower levels, but the higher-level modcls might still apply. As a trivial example, if
all orphans are always exterminated immediately, then it is easy to show that condition ANC-ABORT
from Level 1 is satisfied. Thus the correctness proof from Level 1 could be carried over to a system using
immediate extermination. As another example, if we change the specific information piggybacked onto
create and commit messages at Level 5 (for example, we might choose to send only a covering subset of

the known aborts set) then the Level 4 model might still apply.

Our notion of "homomorphism” is unusual in that we allow "possibilities” mappings to sets of
states at higher levels. This approach allows us to explain the "auxiliary state™ technique as a particular
kind of possibilities map. For our algebra hicrarchy, we used a multiple-state augmention mapping
between Levels 6 and 5. We speculate that the use of possibilities maps instead of auxiliary state variables

might simplify some correctness proofs.

11.2 Directions for Further Research

The application of formal techniques to distributed transaction systems is a vast topic; we limit

our discussion to three possible extensions of our work.

11.2.1 Crashes

The most glaring deficiency of our model is that we do not consider node crashes. Node crashes
are a more difficult problem than explicit aborts because the orphans created by a nodc crash might be
ancestors (or relatives) of actions which ran at the crashed node and committed. The "infected” ancestor
can commit arbitrarily far up the action tree before the crash is discovered (though it will eventually be
caught at the top level during two-phase commit if it is not caught sooner).

The (visible-data-closed) view tree which we used to prove view-serializability for the explicit
aborts case will not work for a crash model. It is possible that a datastep can be "visible” to another access
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since it has committed to their least common ancestor, but the effect of this datastcp might have been
undone by a crash. Consider the tree of Fig. 11.1, for example. Object x has initial value 0. Action A
spawns concurrent children Al and A2. Action Al runs, increments x, and commits to A. Then x’s node
crashes, allowing A2 to get a lock on x. Action A2 cannot see the effects of Al, because x’s node crashes
after A1 commits to A. A2’s view is consistent, because there exists a serializable view tree for A2, but
this view tree does not include Al. (A2 is an orphan, because A is an orphan, but A2 is not yet a "bad"
orphan.) Note also that if A2 commits to A, then A’s view becomes inconsistent. Thus an orphan
detection strategy for a crash model must place restrictions on the commit of actions; for the explicit

aborts case, we have shown that it is sufficient to put a precondition on perform events.

We speculate that a high-level notion of "depending on a crash” could be developed to parallel
our notion of depending on an abort, and that a sufficient condition for view-serializability could be
expressed in terms of these dependencies. Piggybacking of crash count information would appear at
lower levels. A better approach would be to somechow unify aborts and crashes (i.e., treat them both as

particular cases of a higher-level event), but we have made little progress in this direction.

Fig. 11.1. Consistent View of Orphan Arising from a Node Crash

u
. /
/ \74 orphans
Al,c A2
x,0 x,0 "
\_,_)

(x's node crashes
after Al commits)
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11.2.2 Lower-Level Models .

Although our lowest-level model is "distributed,” it ignores many of the optimizations and
complications of a real orphan detection algorithm. A more satisfying "correctness proof” would extend
our bottom level to even lower-level models which are closer to a real design. At least two areas for
refincment may be explored: First, since the system history of aborts will grow without bound, any
operational orphan algorithm will not send DONE in entirety on each message. Reducing this overhead
will require some connection information or garbage collection scheme (perhaps using some variant of
orphan expiration [Nelson81]). It would be useful to prove that these modifications are indeed

optimizations in that they do not violate internal consistency.

Second, our model describes the possible flows of information, but it does not describe strategies
for actually sending messages. (For example, do actions inform descendants immediately when they
commit, or do they answer to queries from descendants?) Since our work focuses on correctness of
reachable states, we have been able to ignore these questions. Of equal interest to designers, though, are
properties of liveness (for example, will a commit message ever arrive) and bounds on delays.

Formalization of these properties might require fundamentally different mechanisms.

As lower-level models become more detailed, they will approach specifications for the programs
of a transaction system. At this point the boundary blurs between these correctness proofs and program

verification.

11.2.3 User-Defined Atomic Data Types

We have limited the objects in our model to simple atomic objects implemented using mutual
exclusion locks and a stack of versions. For some applications these objects might be inefficient: different
implementations of atomic objects might provide additional concurrency or a more efficient backup and
recovery mechanism. As explained in [Weihi82], the "atomicity” of a data type depends on the semantics
of the operations available to users of that type. As a trivial example, if a type is “immutable” (none of |
the operations change the abstract object), then it :s automatically atomic. Our serializability condition is

insufficient to describe this morc general notion of atomicity.

More general "user-defined™ atomic types can be constructed from basic atomic objects (like
those in our model) and completely nonatomic objects (which provide no synchronization or recovery).
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(Again, see [Weih182] for examples of these constructions.) Because the effects of aborted actions might
not be undone, undetected orphans can violate exfernal consistency through non-atomic data (with
catastrophic effects). Thus an orphan detection strategy is more important for systems which allow
non-atomic objects. Although orphan detection does not guarantee view-serializability for systems with
non-atomic objects, it might guarantee weaker properties which are useful to programmers trying to use
non-atomic objects to construct atomic types. We have begun to explore these properties (and more
complex models which incorporate general atomic types). For example, it is relatively easy to show that
the orphan detection strategy we have modeled constrains the order of datasteps on a non-atomic object
to be consistent with the sequence ordering. (Without orphan detection, even this weak condition might
not hold.)
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Appendix I - Notational Conventions

Fig.1.1. Conventions for Figures

The action tree, T, is usually implicit

/ /

A,c --- A € committedy A,a --- A € aborted;
A
/ --- A = parent(B)
B
A
/ --- A € prop-anc(B)
B
A
’
Is
! --- A € anc(B)
B
A
ﬁ --- prop-anc(B) N prop-desc(A) C committedy
B
A b B --- (A,B) € seqp

A—>8B --- (A,B) € datag



-173 -

Fig. 1.2. Cross-Reference of Invariants to Lemmas

Invariant Symbol

Ia

Ja

Sa

13

J3

14

I4'

15

Lemma(s)

6

6

3.

3.

1.

1.

.2

.1

1.

1.

2, 6.3.1.1.4, 6.3.2.2,

1, 6.3.1.1.3, 6.3.3.3,

.1.2.1 through 6.3.1.2.14

except for 8.3.1e

6.3.3.1, and 6.3.3.2

and 6.3.3.4
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