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Abstract 

This thesis defines a property caJlcd "view-serializability," which formalizes internal consistency 
for a system of nested atomic transactions. Internal consistency is a stronger condition than the usual 
notion of database consistency, because it takes into account the views of transactions which will never 
commit. In a distributed system, local aborts of remote subactions and crashes of nodes can generate 
orphans-. active actions which are descendants of actions that have aborted or are guaranteed to abort. 
Because it is not always feasible or efficient to elimate orphans immediately, special care is needed to 
insure that they sec consistent system states when they are allowed to continue running. We investigate a 
particular dynamic detection strategy designed to detect orphans before they violate internal consistency. 
This algorithm piggybacks abort and crash information on the normal messages between nodes. We 
consider a simpler algorithm that only handles orphans arising from explicit aborts. We describe the 
simplified orphan detection algorithm at various levels of abstraction, using an algebraic model 
convenient for describing asynchronous systems. The highest-level model is specified in terms of a 
(virtual) global state. At this level of abstraction we require that the states generated by the model satisfy 
view-serializability. Lower-level models progressively localize the description of the algorithm's 
operation, and the lowest level of abstraction presents a fully distributed model of the (simplified) orphan 
detection scheme. 

Keywords: concurrency control, orphans, transaction, serializability, 
internal consistency. 
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J. Introduction 

Production of concurrent programs is a much more difficult task than production of sequential 

programs. The sequential nature of human thought severely limits programmers' ability to manage the 

complexity of parallel proceg;es. Distributed environments compound these difficulties; robust programs 

must cope with non-local failures and with incomplete information about the global state of a system. 

Primitives developed for local, sequential programming have proven inadequate for software 

development in distributed, concurrent systems. Additional mechanisms have been suggested which 

allow programmers to think about concurrent programs for distributed systems using largely sequential 

reasoning. 

Current research [Liskov82, Bcst81] stresses use of the atomic transaction as a tool for 

distributed software. Atomic transactions can insulate users from both the effects o( concurrency and the 

effects of failures, greatly simplifying reasoning about a system. If transactions are truly atomic, then 

neither users nor the tranSQ('tions themselves should see the effects of concurrency or failures. Our 

concern is with the internal consistency propeny of transactions' views. 

Recent proposals have extended the transaction model to include nested transactions, which 

allow sub-pieces of a transaction to run concurrently and fail independently (Reed78, Moss81]. In such a 

system the independent failure of (sub)transactions can generate orphan processes -- active processes 

which are running on behalf of a failed transaction. (We will refine and extend this definition below.) 

Orphans complicate the implementation of atomicity; insuring that orphans' views of the system state are 

"consistent" with atomicity requires a more sophisticated algorithm than one which ignores orphans' 

views. 

This thesis develops a formal model of a distributed nested transaction system, and it shows that 

the model satisfies a correctness condition representing "consistency of views." Our transaction system 

model includes a dynamic orphan detection scheme, which detects and exterminates orphans before they 

see inconsistencies. This model is based on the design for the Transaction Manager of the Argus language 

under development by the M.l.T. Distributed Systems Group [Liskov82]. Although the models in this 

thesis simplify both the mumptions made by Argus about the distributed environment, and the specifics 

of the Argus orphan detection algorithm, the results contribute to confidence in the correctness of this 

algorithm. 
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1.1 Nested Transactions 

1.1.1 Transactions and Atomicity 

An atomic transaction is a computation that appears to occur instantaneously and indivisibly 

from the point of view of any observer of its effects (except for an observer "inside" the transaction). 

("Observer" here might refer to another transaction, or to a user of transactions.) If all operations on a 

system take place through atomic transactions, then each transaction will have the illusion that it is run in 

isolation: the effects of concurrency are not visible to any transaction. This synchronization property is 

often referred to as serializabi/ity: for any observer (including the transactions themselves). the system 

state seems to be the result of a serial execution of transactions. An execution of transactions can be 

serializable without being serial (as a trivial example, if no two transactions access the same data objects, 

then any execution is serializable). 

Another property of atomic transactions is failure atomicity: each transaction appears to have 

run completely or not at all. An atomic transaction cannot "partially complete." A transaction which 

runs to completion is said to "commit;" a transaction which fails (and has no effect) is said to "abort" 

Failure atomicity simplifies specification of the possible effects of a transaction, since only "good" 

executions must be considered. 

Atomic transactions simplify reasoning about a system because the effects of concurrency and 

failures can be ignored. Atomicity implies that if an integrity constraint (an invariant) on the system state 

is preserved by all transactions when run in isolation and to completion, th('n this in variant is preserved 

by any (possibly concurrent) execution of these transactions. Local, sequential reasoning can be directly 

applied to a distributed, t'OllCu:rent environment 

1.1.2 Nested Transactions 

Nested transactions extend the usual single-level structure of transactions to a hie1archical 

structure. A nested transaction can contain other nested (sub)transactions, each of which is atomic with 

respect to the others. Nesting can be arbitrarily deep. Usual terminology for hierarchical relationships 

applies to nested transactions. (l'hus we refer to the "parent transaction" of a given transaction, or to its 

"children," etc. "Ancestor" and "descendant" are considered reflexive; "proper ancestor" and "proper 

descendant" are the corresponding irreflexive relations.) 
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The child transactions of any transaction can run concurrently; their concurrent execution must 

be scrializabJe. ChiJdrcn can also commit or abort independently; a child commits to its parent, and its 

effects wiIJ be undone if the parent subscqucntJy aborts. It follows that pemwne111 changes to the system 

state occur only when top-level transactions commit.1 (For details of the semantics of nested transactions, 

see [Moss81].) 

Nested transactions provide at least three advantages over single-level transactions: The abi1ity 

to create concurrent children at any Jevel increases the overall paraJleJism in a system, which might result 

in efficiency gains. Secondly, the independent abort of a child confines the effects of failure to the work 

done by that child; the parent can take an appropriate action without aborting itself. This failure isolation 

improves program robustness and simplifies error recovery. FinaJly, a program (or a transaction at any 

level) can use (sub)transactions without regard to their internal concurrency. Concurrency need not be 

compJeteJy specified at the top level, permitting a dccentraJized design strategy. 

1.1.3 Distributed Environment 

Two differences between distributed and centraJized systems make nested transactions 

particularly appropriate for distributed environments. First, because distributed systems provide real 

concurrency, a systematic method for managing paraUclism becomes both necessary and desirable (for 

efficiency). Second, the failure modes of distributed systems are much more complex than failure modes 

of centraJized systems because parts of the system can fail independently. For example, one node in a 

network can go down without affecting other nodes, or the network can fail without directly affecting any 

node. The nested transaction mode] allows applications to isolate these faiJures naturany. (Failure 

isolation aJso contributes to node autonomy: an application running at one node maintains control over 

the state at that node even if it spawns subtransactions at other nodes.) 

I. For modifications to remain permanent when nodes crash, each node must provide stable storage, and top-level oommit must 
insure that all changes are written to Slable storage. 
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1.2 The Argus System 

Although we have attempted to make the models in this thesis relatively general, the Argus 

system has been used as a starting point. We summarize here the characteristics of Argus which are 

relevant to this work. Argus is a programming language intended to support distributed applications; this 

language requires an extensive runtime system (for example, to handle transaction management). For 

details on the language, see [Liskov82). 

The distributed environment of Argus consists of a set of nOdes fully connected in some fashion 

by a network. Nodes can crash at any time, and recover after an arbitrary down period. Storage at a node 

is divided into volatile and stable storage; the contents of volatile storage are lost when the node crashes, 

while the contents of stable storage survive crashes. 

Nodes communicate by sending messages on the network. Delivery of messages is not 

guaranteed: messages can be Jost, duplicated, delayed arbitrarily, and reordered (i.e., delivered in an 

order other than the order in which they were sent). The network can be partitioned for any period of 

time. If one node attempts to send a message to another node, it might be unable to distinguish between 

a lost message, a partitioned network, a crashed respondent, or a respondent that is slow to answer. 

Data in the system is partitioned into objects-, objects are atomic or non-atomic. We assume that 

all objects are atomic. (Unconstrained use of non-atomic objects is discouraged in Argus; non-atomic 

objects are provided as loopholes to allow users to implement atomic types which are more efficient than 

the "basic" atomic types provided by the system.) While a precise definition of atomic objects is beyond 

the scope of this thesis (sec [Wcih182] for a discussion), we assume that all atomic objects are implemented 

using two-phase locks with a stack of versions as described in [Moss81]. When an action holds a Jock on 

an atomic object, other unrelated aetions are excluded from accessing the object 2 (Chapter 8 defines a 

structure which models the Jock and version stack of an atomic object) 

Computation is carried out through actions, which are atomic transactions. A (sub)action runs 

completely at one node, though it can spawn child actions at other nodes. Remote subactions are created 

by a remote procedure call, which sends a message from the originating node to the remote node. This 

message can contain parameters computed at the parent node. If the message is received correctly, the 

l Mms distinguishes between read and write operations; we will ignore this distinction for simplicity. 
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subaction runs and can return a message to the parent The child can commit to its parent, in which case 

results can be passed back to the parent with a commit message, or it might abon. lbe parent can abort 

the child at any time, but this abort is local to the parent's node; the child might stil1 be running at its own 

node. The parent cannot "commit" the child: the child is committed at the parent's node only if a 

commit message is received from the child. W c say an action commits to one of its ancestors if all actions 

"between" that action and its ancestor commit. We say an action commits through the top level if all 

ancestors of that action commit 

Effects of actions are written to stable storage when their top-level ancestor action commits. A 

two-phase commit protocol insures that the top-level action commits everywhere or not at all (again, 

consult (Liskov82] for details). If a node crashes after an action runs there, and that action has committed 

to its ancestor top-level action, then the crash will be detected during two-phase commit. Thus the 

top-level action will be aborted. It follows that a crash which undoes the effects of an action (i.e. a crash 

which precedes the recording of that action's effects on stable storage) guarantees that some ancestor of 

that action will abort. (This ancestor might not be the top-level ancestor: a lower ancestor might abort, 

and then the crashed node would not necessarily be checked at two-phase commit.) 

1.3 Orphans 

An orphan is an active action that is guaranteed not to commit through the top level. In Argus, 

orphans can be created in two ways: a proper ancestor can explicitly abort, or a crash can occur. 

1.3.l Creation of Orphans 

Argus allows parent actions to unilaterally abort their children, because user requirements 

might make it unacceptable to wait for confirmation of the abon from the child's node. Complete 

confirmation would require that each aborted child recursively abon its active children; thus the parent 

would have to wait until aJJ descendants of the child were halted. Since one of the main reasons for 

aborting the child might be that the child is not responding (perhaps because of a network partition, or 

because the child's node crashed), waiting for descendants to be halted could delay the parent 

indefinitely. Some applications cannot tolerate the possibility of indefinite delay. 

Since a parent action can abon a child at the parent's node only, aborted children (and their 
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descendants) might still be- active, and might thus be orphans. These orphans arc a necessary 

consequence of a user requirement for bounded delay: they are not the result of a "lazy extermination" 

strategy. 

Orphans result from a node crash when an active action at that node has active descendants at 

, other nodes. This situation is similar to the case of explicit aborts since the active ancestor is effectively 

"aborted" by the crash. A more complex type of orphan generation occurs when a crash releases a lock 

held by an action which has committed up to some ancestor, but not through the top level. The lowest 

active ancestor, and all its active descendants, become orphans since they are guaranteed not to commit 

through the top level. Since this lowest active ancestor might abort -- or be ·aborted by its parent -- the 

crash need not affect higher ancestors. If the lowest active ancestor commits to its parent. the parent and 

all active descendants of the parent become orphans. If the "infected" ancestor commits to its top-level 

ancestor, then the crash will be detected during two-phase commit. and the top-level ancestor wil1 abort. 

This type of orphan could be prevented by keeping locks and versions in stable storage. 

1.3.2 Problems Created by Orphans 

Orphans are unpleasant. though necessary, side-effects of aborts and crashes. Since their effects 

are destined to be undone, exterminating orphans cannot do harm. The main concern of this thesis is 

with the possible adverse consequences of not exterminating orphans "soon enough." 

1.3.2.1 Resource Wastage 

Orphans consume resources and compete with non-orphans for these resources. Orphans can 

deadlock with non-orphans, causing non-orphans to be aborted unnecessarily (depending on the 

deadlock strategy). Resource allocation problems are unlikely to be severe unless orphans are created 

very frequently. While efficiency issues might be crucial for a working system, this thesis only addresses 

the semantic problems associated with orphans. 
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1.3.2.2 Internal Consistency 

The transaction management algorithm described in [Moss81] does not guarantee atomicity 

from the point of view of orphans. Orphans can observe system states which are not consistent with 

serializability (i.e., they can observe the effects of concurrency). Moss's algorithm docs not preserve 

internal consistency. The orphan detection algorithm described in the next section is designed to 

guarantee internal consistency. 

We present two examples of such inconsistencies: 

I. (See Fig. 1.1. Note that conventions for figures appear in Appendix I.) Initially integers x 
and y (at different nodes) have values 0. There is an integrity constraint on the system state 
that x = y. Action Al runs, reads x = 0, (docs not modify x), and commits to A. A then 
holds a lock on x. (Sec [Moss81) for a detailed description of the locking protocol.) A then 
spawns action A2 (passing A2 the information that x = 0), and then A aborts (aft.er the 
message is sent to create A2), making A2 an orphan. The abort of A releases A's lock on x, 
allowing B to run to completion and increment both x and y through concurrent children Bl 
and 82. B commits, releasing its locks on x and y. If A2 (now an orphan) is aUowed to read 
y, it will view y = 1, which aJlows A2 to infer that x *- y (an "inconsistent" view, since x = y 
will always hold for any serial schedule). 

Fig. 1.1. Orphan from Explicit Abort 

/u~ 

/""" /""' 
A.a B,c 

A 1 • c t A2 B 1 • c 82 , c 
. 
x.o y x,O .Y. 0 

orphan 
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2. (See Fig. 1.2.) As in the above scenario, integers x arid y (at different nodes) have initial 
values 0, and there is an integrity constraint on the system state that x = y. 1lle same events 
occur as above: Al reads x and commits, and A creates A2. Instead of an abort at A, 
however, x's node crashes. This crash releases A's lock on x, and it makes A (and thus A2) an 
orphan. As above, n then runs to completion and increments both x and y. B commits, 
releasing its locks on x and y. If A2 (now an orphan) is allowed to ready, it will view y = 1, 
which allows A2 to infer that x *' y. 

It is not clear whether internal consistency is an important concern for a transaction system. 

One might argue that orphans' views arc not important. since orphans will be aborted (eventually) 

anyway. Since all actions expect a serializablc system history, however, programs might function 

"correctly" only when their views arc consistent. Their behavior when views are not consistent might be 

unpredictable or even catastrophic. (For example, an program guaranteed to terminate under normal 

conditions might be non-terminating when faced with an inconsistent view.) Orphans could also transmit 

their inconsistent views to outside parties, via channels which are not under the control of the transaction 

system. For example, when a user interactively debugs a process that is an orphan, he sees the orphan's 

(possibly inconsistent) view. This inconsistency might mislead the user, since he might have no direct 

way of determining that his process is an orphan. A system which permits terminal output by any action 

Fig. 1.2. Orphan from Crash 

u 

/~ 
A B,c 

/""- / ~ 
At,c---• 

x,O 

(x's node crashes 
after At runs) 

81,c 

y x,O 

orphans 

82,c 

y ,0 
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suffers the same problem. (Since terminal output is irreversible, the effects of any aborted action cannot 

be undone. The orphan's output represents a worse problem, however, since this output might reflect an 

inconsistent state.) 

1.3.3 Orphan Detection Scheme 

The basic orphan detection strategy in Argus piggybacks abort and crash information on all 

channels of infonnation flow between actions. This additional information is used to infer that processes 

are orphans: these processes are then exterminated. 

Our execution model ignores crashes; we deal only with orphans arising from explicit aborts. 

(We believe that the correctness condition for internal consistency that we develop in Chapter 3 should 

also apply to a model which includes crashes, although we have not investigated crashes in detail.) We 

present here a brief description of an orphan detection scheme similar to the portion of the Argus 

algorithm which handles explicit aborts. The transaction .system model we develop is based on this 

scheme. Our simplified algorithm ignores many of the optimizations envisioned for the actual Argus 

algorithm. 

User programs at nodes communicate via remote procedure calls and returns. In addition to 

these messages. transaction system messages are sent between nodes to update the status of actions as they 

commit and abort Commit and abort messages update the locks and versions of atomic objects. There 

are many possible strategics for communicating commit and abort infonnation. For example, when an 

action commits or aborts, a commit message could be sent immediately to all nodes where descendants of 

that action have run. Alternatively a querying strategy could be used where queries are sent about the 

status of an action only when another action wants a lock held by that action. (The commit and abort 

messages would then be possible responses to a query.) Our model will not focus on these strategies; we 

focus on the orphan information which is attached to messages wheneYer these messages are sent We 

regard the return message from a remote procedure call as a commit or abort message, depending on 

whether the child committed or aborted. The return message might include return values, but since our 

concern is only with orphan information we need not distinguish between return messages and 

transaction system messages. 

Our model has three types of messages: create, commit, and abort messages. A create message 

models a remote procedure call. Although in Argus a "create" message will only be sent directly from a 
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parent node to a child node, for simplicity we assume that a create message can be sent indirectly through 

any other node. Communication in our model is very unrestricted; essentially any node can send a 

message to any other node at any time. 'Ibc messages that a node can send are limited by what is known 

at that node (e.g., a node can only send a "commit A" message if it knows that A is committed), and by 

rules for piggybacking orphan information on messages. 

The orphan information at each node is a list, DONE, of known aborts. Any action which is a 

descendant of an action in DONE is an orphan and is exterminated. Our rules for piggybacking orphan 

information are quite simple: a create or commit message must include the entire DONE list from its 

sending node; this list is added to the OONE list at the receiving node when the message is received, and 

known orphans arc exterminated. An abort message need not indude any information from DONE. 

The information flow in this algorithm for the example given in Fig. 1.1 is shown in Fig. 1.3. 

When A aborts, the abort message releasing Al's lock on x adds A to x's node's DONE list This DONE 

list is transmitted to B's node when Bl commits. After B2 runs and commits to 8, and B commits, y's 

node wil1 eventuaUy learn of B's commit. The message that B has committed will contain the DONE 

from B's node (which now includes A). Thus y's node wiU know about A's abort The commit message 

of B releases B's lock on y, but A2 is now a known orphan at y: A2 is exterminated before it can acquire 

the lock on y and see an inconsistent state. 

The flow of crash information is similar to the flow of OONE information. (We describe the 

mechanism only superficially here; the actual algorithm is quite complex.) The basic scheme requires 

each node to maintain a stable crash count, which is incremented during recovery from any crash. The 

orphan information relating to crashes consists of currently known crash counts for nodes plus the crash 

counts seen by actions when they ran at these nodes. An orphan is detected when it is discovered that a 

crash count "depended on" by an action (essentiaUy a crash count for a node at which a committed 

relative has run) is lower than the currently known crash count for the same node. The discrepancy in 

crash counts implies that a node crash must have occurred since a committed relative ran at that node. 
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Fig. J .3. Orphan Detection 

A runs at node M, B at node N 
Al,Bl run at node X (object x resides at X) 
A2,B2 run at node Y (object y resides at Y) 

(1) Al runs and commits to A; A spawns A2 (A2 has not read y) 
B spawns Bl; Bl waits because A holds a lock on x 
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(2) A aborts; abort message sent to X, releasing lock to Bl. 
Bl increments x and conunits; commit message sent to N (with DONE) 
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(3) 82 runs and increments y and commits. B commits, sending commit 
message (with DONE) to X and Y. Commit of B arrives at X and Y, 
releasing B's locks. 

u 
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{A} 
{A} 
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(4) A2 is aborted because it is a known orphan at Y. 
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1.4 Related Work 

1.4.1 Transaction System 

Our transaction system model is based on the design presented in [Moss81]. Moss generalizes 

two-phase locking for nested transactions, and he develops a recovery scheme based on multiple (backup) 

versions of objects. His transaction manager functions in the presence of both node crashes and 

communications failures. He describes distributed algorithms for locking and version restoration, 

transaction management (including two-phase commit for top-level transactions), and deadlock detection. 

Although our formal model ignores many of the complexities that Moss considers (in particular, node 

crashes). it relies heavily on his basic framework. 

A different approach to nested transactions is explored by Recd in [Rced78). This scheme uses 

timestamps ("pseudo-times") for synchronization rather than using locks. Versions of objects associated 

with old timestamps can be used for backing up a system to a consistent state. It would be interesting to 

attempt to extend our models to a timestarnp-based scheme such as Reed's. While our lower-level 

execution models incorporate notions of locks and version stacks, the higher-level models are relatively 

general, relying only on a nesting relationship among actions and on a notion of "accessing" data. 

1.4.2 Orphan Detection Algorithms 

As mentioned above, the orphan detection algorithm we consider is based on the orphan 

algorithm designed for Argus [Liskov82]. Though we are aware of no implementations of orphan 

detection algorithms, Nelson explores several strategies for eliminating the orphans which result from 

node crashes [Nelson81). (Because his design is not based on atomic transactions, orphans from broken 

locks or explicitly aborted ancestors do not arise: his orphans are simply processes running on behalf of 

ancestors at crashed nodes.) The simplest such strategy is orphan extennination: After a node comes 

back up after a crash, it exterminates aU orphans by tracing all outstanding remote calls. As we discussed 

above, an "immediate extermination" strategy would not be practical for Argus because of user 

requirements for a bounded delay. 

Because communications or node failures can delay extermination during crash recovery 

indefinitely, Nelson suggests alternate mechanisms which can be used in these (probably rare) cases. 

Orphan expiration requires that a remote call inherit a time limit from its parent; when the time limit is 
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reached the process running the call is automatically killed. Expiration can cause needless failures since 

processes can be killed even if they are not orphans. The chosen time limit should be significantly longer 

than "nonnal" execution times to prevent these anomalies. 

Finally, Nelson suggests a scheme which resembles the crash count mechanism in Argus: When 

complete extennination during crash recovery is delayed, a node will declare a new epoch (i.e. increment 

an "epoch" counter). All messages carry the current known epoch from the sending node. If a node 

receives a message with an epoch greater than its known epoch, it must either extenninate all currently 

executing remote cans (assuming that they are orphans), or query the ancestors of remote calls to 

guarantee that they are not orphans. The system reaches equilibrium when all nodes have the same 

epoch. This approach is most similar to the Argus algorithm because potential orphans are detected 

dynamically based on information piggybacked onto normal information paths. 

1.4.3 Fonnal Models of Atomic Actions 

This thesis is a direct extension of the work described in (Lynch82]. Lynch gives the basic 

definitions for action trees and serializability that we use here. She presents an execution model (at 

several levels of abstraction) based on Moss's transaction management algorithm, and she shows that 

these executions satisfy external consistency. Our work extends the correctness condition for executions 

to include interiial consistency, and it modifies the execution models to incorporate orphan detection. 

Traditional concurrency control theory generally deals only with single-level transactions. The 

usual approach is to define a dependency relation among transactions based on reads and updates, and to 

show that acyclicity of this relation implies serializability (see [Papa79], for example). The basic theory of 

two-phase locking and scrializability for single-level transactions is developed in [EGLT76]: this work 

forms a basis for Moss's system and hence for our models. 

A formal model for nested atomic actions is developed in [Best81]. This model is based on a 

dependency graph for events, where the notion of "dependency" is left uninterpreted. Atomicity is 

defined in tenns of "colJapsing" an event graph to replace a set of events (the events from an "atomic" 

action) with a single (higher-level) event Sets of events are configured in a tree structure, representing 

the nesting relationship of actions. Acyclicity of inter-action dependencies is shown to be sufficient for 

atomicity. (Lynch uses a data dependency relation to derive a similar acyclicity condition for 

serialii.ability.) The authors also define a condition which they claim is a generalization of two-phase 
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locking. and they show that this condition implies atomicity. 

The main difficulty with this dependency graph model is that the graphs cannot be easily related 

to executions of a transaction system. The action trees developed by Lynch arc simply summaries of 

execution histories; "dependencies" are absent at this level of abstraction. (Although Lynch defines 

lower level "augmented" action trees which include an ordering on accesses to data, the "dependencies" 

expressed by this ordering reflect actual modifications to data in an execution sequence.) The advantage 

of this approach is that Lynch is able to define execution models formalizing a transaction management 

algorithm, and to prove that her high-level serializability condition is satisfied by these models. This 

connection between execution models and correctness conditions (for "atomicity") is not explored in 

[Best81). We have followed Lynch's approach: we define a condition modeling internal consistency at a 

high level (the level of action trees), and we develop (at several levels of abstraction) a model of an 

orphan detection strategy which guarantees this property. 

1.5 Outline of the Thesis 

Before attempting to show that our orphan detection strategy is correct, we must develop a 

considerable amount of fonnal machinery. Chapter 2 presents the basic action tree model as described in 

[Lynch82). (Some parts of this chapter arc taken directly from [Lynch82); though these definitions and 

theorems are not original work of this thesis, we include them here for completeness of presentation.) 

Serializability is defined for action trees, and a theorem is given relating serializability to acyclicity of data 

dependencies. 

Chapter 3 defines "view-serializability," which models internal consistency. We present a 

detailed argument explaining why this fonnal condition corresponds to our intuitive notion of "consistent 

views." The condition is defined in tenns of the action trees and serializability definitions of Chapter 2. 

Chapter 4 develops a general execution model for asynchronous systems, the "event-state 

algebra." We explore a strategy for hierarchical correctness proofs: A correctness condition for 

executions of a system is defined using a high-level model of its behavior (an algebra); lower-level models 

are then defined which are progressively closer to the "real" system, and mappings are described between 

adjacent levels. We also describe distributed event-state algebras, which model distributed systems. 

Chapters S - 10 define successive levels of event-state algebras modeling a transaction system 
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with orphan detection. The correctness condition (vicw-scrializability) appears at Level 0 (the highest 

level of abstraction). Level 7 (the lowest level of abstraction) is a distributed event-state algebra. At each 

new level we also construct a mapping to the previous (higher) level. 

Chapter 11 summarizes our results, and suggests possible directions for extensions to this work. 
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2. Action Trees and Serializability 

This chapter gives basic deji11itio11s and lemmas for action trees and serializability. We define a 

structure called an "action tree," which is an abstraction of an execution sequence of a nested transaction 

system. Serializability (and related properties) are expressed as properties of action trees. This approach 

presents minimal constraints 011 the implementation of a transaction system si11ce we make few assumptions 

about the details of co11cu"ency control and recovery algorithms. 

2.1 Notation 

If S is a set, and o is some order which tota11y orders the elements of S, then «S; o» denotes the 

sequence consisting of the elements of Sin the order given by o. 

If Sis a set, then ~S) denotes the powerset of S (the set of all subsets ofS). 

If Sis a set, and f: S - ~S), then we associate f with the obvious relation on S ( {(s,t): t E fls)} ), and we 

use standard notation for relations. Thus we refer to the closure of a set under a function, we describe a 

function as acyclic, etc. rt denotes the transitive closure of f, and f* denotes the reflexive-transitive 

closure off. 

2.2 Action Summaries and Action Trees 

2.2.1 Actions and Objects 

Let .Q);tl be a universal set of data objects. For each x E obj, let valueslxl denote the set of 

values x can assume, including a distinguished initial value, .ini.t{!}. A ~ assjgnment is a total 

mapping f: obj - values( obj), such that Vx E obj, f{x) E values()). 

Let ~ be a universal set of actions (i.e., transactions). Let ll be a distinguished action. We 

~ume that the actions are configured a priori into a tree, representing their nesting relationship, with U 

as the root For every A E act- {U}, Jet parcntlA) denote the unique parent action for A. Then 

siblings = {(A,B) E act2: parcnt(A) = parent(B)} 

If A E act, then chiJdrcn<A) = {BE act: parent(B) = A}. Letlm2 = chitdren(U). 
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~ = the set of ancestors of A, dcsc<A l = the set of descendants of A 

prop·anc(A) = anc(A) ·{A}, proo·desc(A) = desc(A) ·{A} 

For A E act· {U}, define crcator(A) as follows: 

A E top ==> creator(A) = A 

A ( top ==> crcator(A) = parent(A) 

If A,B E act, then let lca(A.Bl denote the least common ancestor of A and B. Let 

related = {(A,B) E act2: A E anc(B) V BE anc(A)} 

unrelated = act2 - related 

(Note that (A,B) E unrelated ==> lca(A,B) ( {A,B}.) 

If Sis a set of actions such that VA,B E S, (A,B) E related, then we say S 1§ fill ancestor dlfiln. 

If B ( anc(A), then Jct A.ill denote the single element of anc(B) n children(Jca(A,B)). (Note that if A E 

prop-anc(B), then lca(A,B) = A, and A!B E children(A).) 

It might be convenient for the reader to think of this a priori configuration of all possible actions 

into a tree as a preassigned "naming scheme" for actions. That is, the "name" of an action is assumed to 

carry within it information which locates that action in this universal tree of actions. In any particular 

execution, only some of these possible actions will be "activated." The (virtual) action U, the parent of all 

top-level actions, has been added for the sake ofunifonnity. 

Let .5£Q. ~ siblings be any fixed partial order, representing sequential dependency. If (A,B) E 

seq, then A is constrained to run before B. For the sake of notational simplicity, we are assuming this 

relation is also fixed a priori; we assume that the "name" of any action carries within it infonnation about 

which siblings the action can assume have completed. The use of an arbitrary partial order is a 

generalization of both the total order usua)]y specified for the steps which occur within a single-level 

transaction, and the unconstrained order usua11y specified among the transactions themselves. 

We also assume a priori determination of which actions actua1Jy access data, which objects they 

access, and the functions they perfonn on those objects: Let accesses denote the leaves of the tree 

described above. (We assume U ( accesses. so that the set of actions is nontrivial.) Let ~: accesses 

-+ obj be a fixed function representing which object is read by a particular access. If object( A)= x, we 



say that A ~ fill ~ lQ !. and we write A E acccsses(x). For A E accesses, let update(Al: 

values( object( A)) - values( object( A)) be a fixed function. Let sameobjcct denote {(A,B) E acccsses2: 

objcct(A} = objcct(B}}. 

We define the relation of one set of actions covering another. This concept will be useful for sets 

, of aborted actions used to detect potentially "harmful" orphans. The covering relation wilJ express the 

fact that a set has enough information to detect a harmful orphan. Let R,S k act be any sets of actions; 

we say S. ~ R. and we write R < S if and only if for each element A in R, there is an ancestor of A 

in S. The following lemma gives elementary properties of the covering relation: 

Lemma 2.2.1.1: Let R,S,Q,T ~ act, A E act, then 

b. < is transitive: R ~ S /\ S < T = R < T 

c. (R < S A Q ~ T) = R U Q < S U T 

d. R < S /\ anc(A) n S = 0 = anc(A) n R = 0 

Proof: Straightforward from the definition. I 

2.2.2 Action Summaries 

We describe an abstraction of execution sequences, using a structure called an "action 

summary." An action summary records the status of a particular set of actions (actions can be active, 

committed or aborted}. It also records the data values read by committed accesses. A slightly simpler 

structure, an "unlabeled action summary" (or UAS) records the same information except for the data 

values. An "action tree·· is any action summary which is a tree: 

An ~ summarv, S, has components ycrticesg. ~s· committeds, abortc<is, and ~s· 

where 

- vertiCCSs is a finite subset of act 

- actives, committcds, and aborte<Is comprise a partition of verticess. (These classifications 

indicate the current status of each known action. When an action is first created, it is classified as active. 
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At some later time, its classification can be changed to either committed or aborted. By "committed," we 

mean that the action is committed relative to its parent, but not necessarily committed permanently. 

Permanent commit of an action would be represented by classification of all ancestors of the action, 

except for U, as committed.) 

- label5: datastep5s - values(obj), (where datastCD5s = committed5 n accesses), with labe1s(A) 

€ values( object( A)). (The label of an access to an object is intended to represent the value read by that 

access. Since the access has an associated function, the value which the access writes into the object is 

deducible from the value read, and therefore need not be explicitly represented.) The read and update of 

an access are assumed to occur "instantaneously" when the access commits. (If an access aborts, it has no 

label because it never sees the object) 

Let ~s = committed5 U aborted5. Let ~(A) = 'active' (respectively, 'committed', 

'aboned') provided A E active5 (respectively, committe<ls, abone<ls>· Let accCSWSs = verticCSs n 
accesses, accesses5(x) = venice5s n accesses(x), and daraste0s5(x) = datasteps5 n accesses(x). Let ¥Qs 

= seq n (vertice55)2. Let anc-scg5 = {(A,B) E vertices/: 3B' E anc(B) n vertices5: (A,B') €seq}. Let 

children5(A) = children(A) n verticCSs. 

An unlabeled ~ summarv has all components described above except label5. An ~ 

~. T, is an action summary where vertice5r is a tree rooted at U: If A€ verticCS-r- {U}, then parent(A) 

E verticCSr 

lfT is an action summary, then unlabel(T) is the UAS obtained by omitting labelr Definitions 

and lemmas for UAS's carry over to action summaries in the obvious way (by applying them to 

unlabel(f)). 

2.2.3 Visible and Dead Actions 

We describe actions whose existence is intended to be known to other actions (i.e. which are not 

masked from those other actions by intervening aborts or active actions). We describe these properties 

for UAS's; corresponding definitions and lemmas hold for (labeled) action summaries and action trees. 

Let T be a UAS. For A € act. let .miJ2k.r(A) = {B € verticesy: anc(B) n prop-desc(lca(A,B)) 

{; committedr}. That is, visiblef:A) is just the set of actions whose existence is (potentially) known to A 
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in T, because they and an their ancestors, up to and not including some ancestor of A, have committed. 

For A E act, x E obj, Jet ~.f A,x) = visiblef A) n datastcps.r<x). Let jnvjsiblC-r(A) = verticCSr -

visible.fA). The foJJowing lemma, which describes elementary properties of "visibility," is proved in 

[Lynch82): 

Lemma 12.3.l: Let T be a UAS, A,B,C E act 

a. A E desc(B) /\ B E verticCSr => B E visible,.(A) 

b. A E visibJerCB) - A E visibk1.(lca(A,B)) 

c. A E visible.f B) /\ B E visiblerCC) => A E visiblei{C) 

d. A E desc(B) /\ C E visibJeiB) => C E visiblef A) 

e. A E desc(B) /\ B E verticef>r /\ A E visiblef C) =t BE visiblefC} 

Actions which are not visible to another action might be masked by an intervening abort, or by 

active actions only. If Bis masked from A by an intervening abort, we say Bis~ lQ A in I: if Tis a 

UAS, and A E act, we define ~{A) = {B E verticCf>r: anc(B) n prop-dcsc(Jca(A,B)) n aborted.r :1: 

0}. Note that visiblcfA) n deadr(A) = 0. If A E act, x € obj, then ~A,x) = d~A) n 
datastep¥ x). If B is not dead to A in T, we say that.Bis m lQ A in I. If A E vertices... then we say A is 

m .in I iff anC(A) n aborte<tr = 0, and A is ~ in I otherwise. If T is a UAS, A E vertices,-. and A 

is dead in T, then we define the ~ ill2n m A in I. denoted ~..-(A), as the lowest aborted 

ancestor of A in T: i.e., if S = anc(A) n abortc<Lr, then crucial.r<A) E S, and VB € S, crucialf A) € 

desc(B). (If A is not dead in T, then crucial-fA) is undefined. In this case we will consider that 

{cruciali.(A)} = flJ, for convenience.) 

Let T be a UAS, A € verticCf>r. then we define 

!:S.QtA) = {B: (8,A) €seq /\ B :I: A} n visibJ;.(A) 

W 1{A) = {8: (B.A} E seq /\ B ¢ A} n invisibi;(A) 

y-auc-segi{A) = {B: (B,A) € anc-seqT /\ 8 f anC(A)} n visiblefA) (see Fig. 2.1.) 

i·anc·sca.f A) = {B: (8,A) E anc-seqT /\ B f anc(A)} n invisiblef A) (see Fig. 2.1.) 
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~"I{A) = chiJdren(A) n visiblefA) 

tmililf A) = children(A) n invisiblef A) 

~f A) = dcsc(A) n visiblefA) 

~f A) = desc(A) n invisiblt;-(A) 

2.3 Augmented Action Trees 

We define a new structure called an augmented~ summary (or AAS). We can regard 

AAS's as action summaries with an additional component: an ordering on the datastcps accessing each 

object. Formally we define an AAS as a pair T = <S.O>, where Sis an action summary, and 0: obj -

~sameobject), where for all x E obj, O(x) is a total order on datastep5s{x). (Thus O(x) ~ datasteps;(x).) 

If T = <S,O> is an AAS, then we define ~T) = S, .QDk_r(f) = 0. We extend our notation for 

Fig. 2.1. Visible and Invisible Ancestor-Sequence 

\ 
\ 

\ 
\ 

B E v-anc-seqr(A) 

p 

B,~_)A' 
\ 

\ 
\ 

A 

\ 

'A 

B E i-anc-seqr(A) 

(or B could be active) 
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component-; and functions of action summaries to components and functions of AAS's in the obvious 

way, by applying them to erase(T). (For example if T = <S,O>, then we will use "verticeSy" to refer to 

vertices8.) Definitions for action summaries and UAS's carry over to AAS's in the obvious way (by 

applying them to erasc(T) or to unJabel(erasc(T))). IfT = <S,O>, then we define ~ = U O(x) . 
It OOJ 

An augmented action~ (AA T) is an AAS where erase(T) is an action tree. 

Let T be an AAS, A E verticeSy. then we define 

v·data.fA) = {B: (B,A) E dala.r /\ B * A} n visibl;(A) 

blfili!iA) = {B: (B,A) E datar /\ B * A} n invisibl;(A) 

v·data-ancr<A) = Li{A!B} 
B E v·dat;.(A) 

i-data-ancr<A) = U{crucial...(B)} 
BE i-dat;.(A1 . 

v-precede5T(A) = v-anc-seqT(A) U v·childrCA) U v·data·anc.r<A) 

i·precede¥A) = i-anc-seqT(A) U i-chi14A) U i-data·anc.rCA) 

The "visible precedence" relation, v·precede51.., wilt be used in Chapter 3 to define a "view tree" 

which represents an action's view of an execution history. We state here some elementary properties of 

this relation. 

Lemma 2.3.1: Let T be an AAS, A E verticCSy. Then 

B E v-precedes.f A) =t parent(B) = lca(A,B). 

Proof: 

1. B E v-anc-seqr<A) =t (B,A') E seq for some A' E anc(A), and B * A'. Thus 
parent(B) = parcnt(A') = lca(A,B). 

2. B E v-childrCA) ===> parent(B) = A = lca(A,B). 

3. B E v·data·anc,.(A) =t B = Alb for some b E accesses. Thus B E 
childrcn(lca(A,8)), ===> parcnt(B) = lca(A,B). I 

Lemma 2.3.2: Let T be an AAS, A E verticCSy- Then B E v·preccdes;(A) =t 
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BE visiblc.r(A), and BE committedr. 

Proof: B E visiblcf A) is obvious from transitivity of visibleT (Lemma 2.2.3.lc). To sec that 

B E committc<i.p note that if B E visible.r<C) for some C, then B E committe<tr or B € 

anc(C). 

But B E v-precedcs~{A) == B E v-prccede¥C) for some C, == B € visibl<;(C). But B ( 

anc(C), by Lemma 2.3.1, so BE committedr. I 

If Tis an AAS, A E vertic5r· then we define the view st Qf b. in I as the v-precedeSr·dosure of 

A: ~A) = v-prccedesj(A). The following lemma gives elementary closure properties of view sets. 

Lemma 2.3.3: Let T be an AAS, A E vertic51., B E vsetr(A). Then 

a. vseyn> ~ vscyA) 

b. v-desc-r<B> ~ vsetr<A) 

c. v-dalar(B) ~ vset,-(A) 

Proof: (a) is obvious from the definition. v-desc,--ctosure (b) follows inductively from 

v-childr ~ v-preced~. We show (c): 

Suppose CE v-da~B). Then B!C E v-data·anc-r<B> 

== B!C € vseyA), since vse'T(A) is v-precedesr·closed. 

C € visible,-.(B) =t CE v-dcsc,{B!C). 

But vsetr(A) is v-dCSCr-closed by (b), =t CE vsetr(A). I 

The following lemma gives an ancestor-closure property for view sets (the view set itself is not 

ancestor closed. but the view set of an action together with the proper ancestors of that action fonns an 

ancestor-closed set). 

l..emma 2.3.4: Let T be an AAS. A€ verticesr. JfW = vsetr(A) U prop-anc(A), then Wis 

anc-c1osed. 

Proof: Let V = vse'T(A). We show inductively that B E V =t anc(B) t; W. Since B € 

.r 
=-
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prop-anc(A) = anc(Jl).~ prop-anc(A) ~ W, anc-closure fol1ows. 

Basis: A E W, anc(A) E {A} U prop-anc(A). 

Induction: Assume B E V, anc(B) ~ W, and take C E v-preccdeS-r(B). By Lemma 2.3.1, 

parent(C) = lca(B.C) = prop-anc(C) ~ anc(B) ~ W. But C E V = {C} ~ W = anc(C) 

~W. I 

2.4 Serializability 

We define serializability for action trees. Let T be an action tree. A partial order p ~ siblings 

is linearizing for T provided p totally orders all siblings in T. A linearizing partial order p induces a total 

order, induce!.lr.p• on accesse5i-, in the obvious way: {A,B) E inducedf,p ~ (B!A,A!B) E p. If A E 

accesses.r<x) and p is a linearizing partial order for T, let oredsT (A) denote the sequence «{B E ,p 

visiblerCA,x): (B,A) E inducedr A B ~ A}; inducen ». ,p l,p 

If x E obj and s is some finite sequence of accesses, then we define result(x,s) as follows: Ifs is 

the empty sequence, then result(x,s) = init(x). Otherwise let s = s'A, where A E accesses. Then 

result(x,s) = update{A){rcsult(x,s')) if A is an access to x, = result(x,s') otherwise. 

A linearizing partial order p for T is said to be a serializing partial order for T provided p is 

consistent with seq, and labelfA) = result(x,preds.... (A)), for all A E datastcpsf x). This definition says -1.p 

that the value seen by each datastep is equivalent to the result of a serial execution in the order given by 

p, where only committed actions have any affect T is said to be scrializable provided there exists some 

serializing partial order for T. 

2.5 Serializability of Augmented Action Trees 

An AA T, T, is serializable iff erase(T) is a seria1izable action tree. It is convenient to define a 

stronger condition than scrializability for AATs, which we can "data-serializability." An AAT, T, is 

data-serializable iff there exists p, a serializing partial order for erase{T), with the additional property that 

induce<Lr.p is consistent with dala.r. Obviously ifT is data-serializable, then it is serializable. 

Data-seriali1..ability has a cycle-free characterization similar to those in usual concurrency control 
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theory. First, we give a definition which says that the label of each access describes the correct object 

value which the access should see, if the versions of objects are ordered according to the dataT order. 

Formally, an AA Tis version-compatible iff for every object x E obj, and every A E datasteps.f x), it is the 

case that labelT(A) = result(x,s), wheres = «v-da~(A); datar»· The following theorem is proved in 

[Lynch82]: 

Theorem 2.5.1: An AAT, Tis data-serializable if and only if both of the following are true: 

a. T is version-compatible. 

b. There are no cycles oflength greater than one in seqr U sibling-da~. 

2.6 Restrictions of Trees 

It is often useful to project an action tree (or an AAT) onto a particular set of vertices. We call 

the resulting action summary a restriction of the original tree. 

Defn 2.6.1: Let T be an action tree (or an AAT), V ~vertices,-. We define the restriction Qf 

I lQ y_, denoted TIV. as follows: (let S = TIV) 

vertic~ = V 

"Iv EV, status8(v) = status.f v) 

VA E datastep55, label8(A) = label-fA) 

If T is an AA T, then da!as === V2 n dat&r 

We say£~ e restriction Qf 1: iff S = Tlvertice55. We say£~ .a subtree Qf I iff S is a 

restriction ofT which is also a tree rooted at U (i.e. vertice55 is anc-closed). 

Stating the simplest correctness requirements for executions only requires consideration of 

actions whose e~ects become "pennanent" For an action tree (or AAT), T, we define a restriction ofT to 

all actions which have committed through the top level: oeanCn = Tlvisibl¥LJ). It is easy to verify 

that pcnn(T) is a subtree of T. 

The following lemma shows that if an action has no descendants in datasteps,-. then it cannot 
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affect scriatizability of T: 

Lemma 2.6.2: Let T be an action tree, A E vertic~ - {U}. If dcsc(A) n datastepSr = 0, 

then Tis serializable if and only if TKvertic~ - desc(A)) is scrializable. 

Proof: Let T = TKvertic~ -desc(A)). 

First we show T serializable == T seriatizable. Let p be a serializing partial order for T, and 

let p' be p restricted to vertic~. Then p' is obviously a linearizing partial order for T. Let 

B E datasteps.p. 

labelrCB) = Jabelr(B) = result(x,predSr.p(B)), since p is serializing for T. But desc(A) n 
datastepSr = 0, == preds_ .(B) = preds.... (B). Thus p' is a seriali1fag order for T. -1 ,p -1.p 

Now assume T is serializable, and let p' be a serializing partial order for T. Let p be any 

linearizing order for T that is consistent with p'. Let BE datastePSr· Then BE datastep7. 

labelrCB) = labelr(B) = result(x,predS-r .. (B)), since p' is serializing for T. But desc(A) n ,p 

datastepS-r = 0, == predS-r .• p.(B) = predS-r.p<B>. since pis consistent with p'. Thus pis a 

serializing order for T. I 

We wi11 frequently use trees that are restrictions of the global action tree with the exception that 

the proper ancestors of one action are considered active (instead of whatever status they have in the global 

action tree). We tenn this process "backing up" an action tree since we are effectively undoing whatever 

commits or aborts of the proper ancestors might have occurred. This construction will be useful for 

defining trees representing the "view" of an action, since the action will believe its proper ancestors to be 

active (whether or not they have already committed or aborted). 

Defn 2.6.3: Let T be an action tree (or an AA n. A E vertiCCSr· We define the tree I backed 

lU2 through A. denoted T //A, as follows: (let S = T II A) 

verticesg = verticesr 

BE prop-anc(A) => statuSs(B) = 'active' 

BE vertic~ - prop-anc(A) =- statu8s(B) = statusy(B) 

VA E datastePSs· label5(A) = labeJ.r<A) 
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lfT is an AA T, then datas = dataT 

Finally, for functions from actions to sets of actions we will occasionally want to exclude some 

actions from the domain of a function. The set of actions excluded will always be the proper ancestors of 

a particular action, so we define exclusion with respect to this action: 

Dcfn 2.6.4: Let f: act--+ <]{act). We define the exclusion off from f1, denoted fl/ A, as the 

function: 

(fl/ A)(s) = f(s). ifs Ii: prop-anc(A), 

= 0, ifs E prop-anc(A) 
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3. View·Serializability 

This chapter presents a correclness condition for action systems, which we ca/1-vie'l'rserializability. 

The definitions relating to -vie'l'rserializability are developed using action trees: no specific execution model 

for generating these trees is yet assumed Vie'l'rserializability is intended to model "internal consistency:" a 

system which generates only -vie'l'r serializable action trees will not allow actions to see inconsistent states, 

even if these actions are orphans. 

3.1 External Consistency and Internal Consistency 

A fundamental property of atomic actions is that the effects of their concurrent execution 

should be "equivalent to" an execution where each action is run in isolation, and (if the action commits) 

to completion. Different notions of "equivalence" give rise to different conditions mode1ing atomicity. 

External consistency of a transaction system requires that for any execution the view of an observer 

outside the system is identical to the view that would result from some serializ.ation of this execution. 

There might be interaction between an action and a user which is outside the scope of the "system" (e.g. 

output to a terminal, which cannot be undone when an action aborts). Since a transaction system can 

only make guarantees about the states of objects under system control, we will ignore the etf ects of 

"extra-system" communication on serializ.ability. (Insuring consistency in such an environment is the 

responsibility of user programs. At this level, "consistency" is an application-specific concept: for some 

applieations terminal output from actions which are Jater aborted might be acceptable, for example.) 

Given this restriction, only actions which commit through the top level can affect the system state as seen 

by an outside observer. 

Internal consistency requires that the effects of concurrency are masked from any action in the 

system. If a system provides external consistency, then all actions which commit through the top level 

must see system states consistent with some serial schedule. Other actions might see inconsistent states, 

however. In particular, the views of orphans are not considered for external consistency, since orphans 

cannot commit through the top level. 

We model external consistency by requiring that perm(f), the subtree of the action tree 

consisting of all actions which commit through the top level, be scrializ.abJe. In (Lynch82l a model for a 

distributed transaction system based on the locking protocol developed in [Moss81] is shown to be 

externally consistent: Lynch shows that for all action trees, T, generated by the model, perm(T) is 
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scriaJizable. 

To see that serializability of penn(T) is not sufficient to guarantee internal consistency, consider 

the example from Fig. 1.1 The consistency constraint x = y is violated for action A2, but pcnn(l) (which 

consists ofU, B, Bl, and B2) is scrializable. 

Although serializability of pcnn(T) is not sufficient for internal consistency, scriaJizability of the 

entire action tree is not necessary for internal consistency. We can easily construct action trees for 

executions which we believe are internally consistent (since no action can see an inconsistent state), but 

which are not serializable. Consider the example shown in Fig. 3.1. Again, the integrity constraint on 

the system state is x = y. Initial values of x and y are 0. Action Bl runs first, views x = 0, and then 

aborts. Then actions Al,A2.B2, and B3 run (in that order). Al and B2 increment x, and A2 and B3 

increment y. The tree is not scrializablc, because A must be seriaJized before B (since B2 views x = 1), 

yet Bl did not view the effect of Al. The tree is internally consistent, however, because no particular 

action was able to observe x * y. (Bl viewed x = 0, but it had no information about the value ofy. Since 

Bl aborted, it did not pass its view of x to the rest of B.) 

Thus serializability of the entire action tree is too strong a condition for internal consistency. 

We need a weaker condition which takes into account the views of aborted actions and orphans as well as 

the views of actions that commit through the top level. 

In the foUowing sections we will define the possible "views" of each action in an action tree, and 

we will state a condition modeling intemaJ consistency which is based on seria1izability of these views. 

Fig. 3.1. Non·serializablc, Internally Consistent Action Tree 
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Using this definition, the miJy view for action U wi11 be perm(T); thus our formal "view" for action U 

corresponds to our intuitive notion of the view of an "outside observer." Our condition for external 

consistency will then be a special case of our condition for internal consistency. 

3.2 Information Flow and Information Trees 

3.2.1 Information: Object Values and Execution Histories 

Internal consistency requires that any action's view of the system state must be consistent with 

an "illusion" of serial execution. To formalize internal consistency, we must attempt to be precise about 

what constitutes an action's "view" in a particular system state. A simple approach would try to capture 

the knowledge that an action has of the current values of objects. Thus for the example in Fig. 1.1, we 

might say that action A2 knows that x = 0, and if A2 is aUowed to read y then it win know that x = 0 and 

that y = l (an "inconsistent" view). 

A definition which describes the view of an action as a (partial) binding of objects to known 

values is not sufficient to handle more complex examples, however. Suppose that action A creates 

concurrent children Al and A2 to read and update object x. x is a boolean object, assuming only logical 

values (0 and 1). Both Al and A2 read x, and perform a logical not operation on x. Al returns the value 

0, and A2 returns the value 1. If A cannot determine which child ran first, then it is unsure of the 

"current" value of x. 

This uncertainty about "current" values can affect our notion of "consistency." Suppose, for 

example, that action C creates child Cl to read object x, and Cl returns the value x = 1. C then creates 

concurrent children C2 and C3, passing them the "information" that x = 1. But C2 and CJ both read and 

increment x. Depending on which action runs first. the later one will see an "inconsistency" between 

what its parent told it (x = 1) and the current state (x = 2). But if both C2 and CJ realize that the other 

might have run first, then both can explain this potential "inconsistency." 

These examples illustrate that direct information about the "current" value of an object is only 

available to accesses which directly read that object AJI other infonnation is "hearsay," in a sense, 

because it expresses only what another action saw or was told. We thus regard the "information" 

available to an action as its knowledge of the execution history of the system: an action might know with 

certainly that action B read y = 5, but it cannot automatically assume that the value of y is 5. By treating 
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information as infonnation about execution histories, we can explain the seeming ambiguities and 

conflicts described in the examples above. For the first example, A's information is that Al read x=O 

and A2 read x = 1. In the second example, the infonnation available to C2 and C3 is that "Cl ran and saw 

x= l." Neither C2 nor C3 can conclude that the current value ofx is 1. lfC2 were run sequentiaUy before 

C3 (and C had no other children), then C2 could conclude x = 1. This conclusion of C2 depends on a 

serializ.ability assumption, which is a basic part of consistency, and on C2's knowledge of the structure of 

other actions (in this case knowledge that no siblings can intervene between Cl and C2). We elaborate on 

these points in the following sections. 

3.2.2 Paths oflnformation Flow 

In designing system algorithms to guarantee consistency, we often take a "worst case" approach 

regarding information flow among actions. To define an action's view in this sense, we must consider all 

possible sources of information about the execution history to an action. We say that i11fonnation flows 

from action A to action B if B learns something about the execution history from A. The actual value(s) 

passed from A to B will gencraJly be some function of the values of objects seen by A; we lose no 

generality by assuming that A passes B its complete knowledge of the execution history. Again, this 

assumption amounts to a worst-case approach for information flow: If action A reads object x, and A 

passes some information to B, B does not necessarily have specific "infonnation" about the value of x 

seen by A. The actual values passed from A to B might be constants, for example, giving B no 

information at aU about the execution history. But since B might have any information that A might have 

had, we will assume that it does. 

Let A be an action whose view is being defined. We imagine that actions arc encapsulated in 

procedure-like structures, with well~defined inputs and outputs. Thus we assume that information can 

flow to A only in the following three ways: 

I. If A is an access to x (and A commits), then A reads the value ofL 

l parent( A) passes infonnation to A when A is created. 

3. Committed children of A pass information to A when they return (i.e. when they commit to 
A). 

Path (3) is limited to commilled children, reflecting an assumption that aborted children do not 



- 38 -

pass "information" to their parents. If aborted children are allowed to return values to their parents (as in 

Argus), then this assumption can be violated. In Argus, return values from aborted children are a 

recognized "loophole" in the system. We retain our assumption because it models the fundamental 

semantics of "abort" which arc derived from atomicity: An atomic action ru~s completely or not at all. If 

an atomic action aborts, all effects should be as if it had never run at aU, and an action which never runs 

cannot return values. 

A more subtle assumption is that the very fact that a child has aborted cannot give the parent 

any "information" about the execution history, other than the fact that the child aborted. A child which 

reads object x might be programmed to commit if it secs x = 1. for example, and to abort otherwise. If the 

child aborts, one might think that the parent could then assume that the chi1d read x and found x;!: 1. 

However, we make a basic assumption that an action can be aborted at any time by the system, and that 

the parent cannot necessarily distinguish between a system-initiated abort and an abort caused by the 

child itself. For example, the system might abort a child because of a communications fai1ure, even if the 

child were going to commit (In a practical system, such as Argus, it might be useful to identify the cause 

for a system-initiated abort, so the parent will know how to proceed. These explanations for aborts fall 

into the same "loophole" category as return values from aborted children.) Given the assumptions that 

aborted children cannot return values, and that aborts are always possible, whatever the system state, 

aborts serve as impenetrable barriers to information flow. 

3.2.3 Circularity of Information Flow 

We would like to describe the information available to an action in an action tree by listing all 

the actions which are (potential) sources of information to that action. Our formulation of the three paths 

of information flow is not convenient for this purpose, because it contains a confusing circularity: 

information flows from a parent to its children, and also from a (committed) child back to its parent By 

naively following the paths of information flow we would conclude that an action is a source of 

information to itself, which makes no sense. Of course this circularity is fictitious, because the flow of 

information from parent to child happens at a different time than the flow of information from child to 

parent 

One approach based directly on the three paths of information flow above would be to define 

the information available to an action as a function of time. By including time as a parameter of available 
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information, the circularity described above can be removed (i.e. "available information" will no longer 

be recursively defined). We would like to describe the information available to an action without 

referring to time, however. Although the information available to an action does change as an execution 

proceeds, we would like to capture the maximum amount of information that an action sees during an 

execution. Since an action's information can only increase over time, an action attains its maximum 

information at its latest active point in an execution (if it completes, this point is immediately before it 

commits or aborts). 

We achieve a "time-independent" definition of available information below by reformulating 

the paths of information flow. The alternate formulation contains no circularity. 

3.2.4 Information Flow from Siblings of Ancestors 

We remove the circularity in the paths of information flow by "short-circuiting" flow through 

ancestors: 

Information can flow between sibling actions via the parent only if one sibJing commits before 

another is created: upon commit, the first sibling passes information to its parent, and the parent passes 

this information to the next sibling when creating it (lbere can also be indirect information flow via 

objects.) In some systems, this path of information flow might allow an action to see information known 

by any sibling which had committed before the action was created. We assume that flow of information 

between siblings (via the parent) is restricted to flow from sequentially precedi11g committed siblings. We 

are making an assumption here that the control structure of actions does not permit direct flow of 

information between concurrent siblings. (This assumption holds in Argus, because all concurrent 

siblings must be created "at once" by a coenter statement. It is impossible for a concurrent sibling to 

commit before another is created; thus it is impossible for infonnation to flow directly between them. 

Concurrent siblings cannot communicate except by modifying shared objects.) 

Thus we can list the the sources of information to A's parent which can serve as sources of 

information to A (when A is created): (1) Sequentially preceding committed siblings of A, (2) Any action 

which was a source of information to A's parent when the parent was created. In "unwinding" this 

recursion, we can define the sources of infonnation to A when A is created as all actions which are 

committed and sequentially precede some ancestor of A. We thus obtain an equivalent definition of the 

sources of infonnation to an action by replacing (2) above with a path of infonnation flow from these 
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sequentially preceding committed siblings of ancestors: 

2. Information passed from B to A, where B has committed, and B sequentially precedes some 
ancestor of A (B E v-anc-scqi(A)). 

Using this second formulation we can give a single definition of the (maximum) information 

available to an action in any particular execution history (i.e. for any action tree). With the new 

specification of information source (2), the onJy paths of information flow are from committed actions 

(and from objects). We assume that committed actions release their complete (maximum) information to 

other actions when they commit 

3.2.5 Information Trees 

Since we are using action trees as an abstraction of execution histories (and hence of system 

states), we describe an action's view of the history as a particular (backed up) subtree of the (global) 

action tree. We call this tree the information m for an action. We can think of the information tree for 

action A as being defined recursively: it is constructed by merging all the information trees of actions 

from which information can flow to action A. 

Becau5e an action might be aware that some actions have aborted, these aborts should strictly be 

included in the information tree. (If action A sequentially precedes B, for example, then B will know that 

A has either committed or aborted.) Although aborts are part of the execution history, we have argued 

above that they convey no additional information. (In other words. the existence of an abort tells an 

action nothing other than that the abort occurred.) For simplicity, then, we exclude these aborted actions 

from the information tree. 

The vertices of the information tree for an action are simply all vertices reachable by "tracing 

back" the three paths of information flow listed above. Since the information tree is a subtree of the 

global action tree, path (I) is accounted for by the labels of datasteps. (In other words. if a datastep is 

labeled with "u" in the global action tree, it will be labeled with "u" in the information tree. This value 

read is part of the execution history of the datastcp, and should thus be included with the datastep.) Path 

(2) requires that if B is in the information tree, and C € v-anc-seqtf B), then C is in the information tree. 

Path (3) requires that if Bis in the information tree, and C is a committed child of 8, then C is in the 
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infonnation tree. 

Defn 3.2.5.1: Let T be an action tree, A E verticesr We define the infonnation set of A in I. 
* info-serf A) = (v-anc-scqT U v-childr) (A) 

And we define the infonnation tree of A in I. 
info-tree..-( A) = (TIW)// A, where W = info-selr(A) U prop-anc(A) 

We include proper ancestors of A in the infonnation tree, but since infonnation has only flowed 

through these ancestors from sequentially preceding committed siblings, we do not include them in the 

infonnation set The proper ancestors are considered active since A will regard them as active. (Thus the 

infonnation tree is "backed up" through A.) It is possible that some of these ancestors might have 

committed or aborted, but these changes in status should not be visible to A. 

The following lemma gives an equivalent definition of the infonnation set which is easier to use 

because it does not involve closures of functions. 

Lemma 3.2.5.2: Let T be an action tree, A E verticCSr. Then 

info-selr(A) = v-desyv-anc-seq..-(A) U {A}). 

* Proof: Let V = info-setr<A) = (v-anc-seqT U v-childr) (A), and let W = 

v-desc:fv·anc-seq..-(A) U {A}). It is obvious that Wk V. We show V CW by induction on 

V: 

Basis: A EV, but A E W because A E v-desc..-({A}). 

Induction: Let B E V, and assume B E W. Take C E v-childrCB) U v-anc-seq..-(B). We show 

CEW. 

Since BEW, BE v-dcscr<B'). for some B' E v-anc-seq..-(A) U {A}. lfC E v-childr(B), then 

C E v-dcscf B'). If C E v-anc-scqT(B), then either C E prop·dcscr<B'), or (C,B') E siblings, 

or C E v-anc-seqT(parent(B')). 

IfC E prop-dcscfB'), then CE v-desc:fB'). 

If(C,B') E siblings, then (C,B') E seq, =t CE v-anc-seqfA), by transitivity of seq. 
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IfC E v-anc-scqfparcnt(B')), then CE v-anc-seqf A). I 

We now use this equivalent definition of the infonnation set to prove three simple lemmas 

about infonnation sets and infonnation trees: 

Lenuna 3.2.5.3: Let T be an action tree, A E verticCSp W = info-scti..(A) U prop-anc(A). 

Then W is ancestor-closed. (Thus the information tree is in fact a tree.) 

Proof: Let 8 E W, C E prop-anc(B). We must show C E W. Let V = info-seti..(A). If B E 

prop-anc(A), then CE prop-anc(A) == C € W. 

If B E V then B E v-descf v-anc-seqfA) U {A}), by Lemma 3.2.5.2. If B E v-dCSC-r({A}), 

then CE v-destT({A}) U prop-anc(A) == CE W. 

Jf BE v-desc.r<v-anc-seqf A)). then either C E v-descf v·anc-seqf A)), or C € anc(A), == C 

EW. I 

Lenuna 3.2.5.4: Let T be an action tree, A E verticeSr. Then prop-anc(A) n info-seti..(A) = 
fi!J. 

Proof: FoJlows directly from Lemma 31.5.2. I 

Lenuna 3.2.5.5: Let T be an action tree, A E verticCSp and let S = info-tre;.(A). Then 

verticeSg ~ visiblC-r(A). 

Proof: Follows directly from Lemma 3.2.5.2. I 

3.3 Behavioral Constraints and View Trees 

The infonnation tree represents all infonnation about the execution history which might be 

available to a particular action as a result of information flow in this execution (except for infonnation 

about aborts.) For this information to be "consistent," it must not contradict the asRJmptions an action 

might have about the system's behavior. One of these assumptions is the Dlusion of serial execution: no 

action should sec the effects of concurrency. Failure atomicity also requires that no action should see the 

effects of aborted actions. An action might have additional expectations about the system's behavior, 
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however. Often these expectations are captured in invariants on the system state which all actions 

preserve (when run in isolation and to completion). An action might function correctly only if a 

particular invariant holds. (Its effects when the invariant does not hold might be unexpected or 

unspecified.) 

To develop a notion of "consistency," we imagine that an observer is placed at an action and is 

given that action's information tree. The observer is also informed of any invariants on the system state 

that are preserved by all actions in isolation, and he is told that the system executes actions in some serial 

order. (Of course, the actual order might not be serial, but the observer should be unaware of this 

interleaving.) There are two types of inconsistencies which he might find: (1) lbe observer sees the 

effects of concurrency. For example, action A spawns child Al to read x (no update), and finds x = 1. 

Then A spawns child A2 (sequentially following Al) to read x. and A2 returns x = 2. (A has no other 

children.) This situation is clearly inconsistent with serializability. (2) The observer might deduce that 

the system state violates an invariant. For example, an observer at action A2 in Fig.1.1 would see x ~ y. 

The first type of inconsistency can be prevented by requiring that the information tree be 

serializ.able. Scrializability of the information tree is too strong a condition, however, because the effects 

of other actions might be visible (through data objects) even though these actions are not in the 

information tree. 

Since we want to formulate a consistency condition which does not depend on particular 

invariants for particular applications, we will increase the amount of information we presume is available 

to an observer. In other words, we will provide a sufficient consistency condition, which might not be 

necessary to insure consistency in all cases. We now assume that an observer at an action has complete 

knowledge of the set of possible behaviors of all other actions in the system (when run in isolation and to 

completion). We might imagine that the observer is given program listings for all actions, for example. 

This knowledge is sufficient to determine any invariants. (Jn a sense invariants are just one way of 

specifying certain aspects of program behavior.) Other than the actions in his information tree. he does 

not know what particular actions have actually run in the current execution, but if he is told that a 

particular action did run he can deduce the possible effects that it had (by checking his program listings). 

The observer's view is consistent if he can explain the values in his information tree with a serial 

execution that conforms to the known behaviors of all actions. We stress again that the observer does not 

know what actions have run, but he can construct hypothetical execution histories based on his program 
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listings. This condition is existential: an information tree is consistent if there exists a scriali7.able "view 

tree" which contains the information tree and agrees with known behaviors of actions. 

The problem with a condition defined in terms of program behaviors is that the transaction 

system docs not have the program listings available to it (in a useful form). We imagine now that a 

, "transaction manager" is placed at an action, and given its information tree. The transaction manager 

must decide whether the information tree is "consistent." The transaction manager will design algorithms 

to insure that an observer docs not sec an inconsistent state, but the manager does not have access to the 

program listings. But the transaction manager can devise a sufficient test for consistency: Since every 

action must run according to its program, the actual behavior of any action in the current execution must 

be among the allowed behaviors. Thus the transaction manager will try to create a "view tree" by taking 

actions from the real global action tree. (Of course, the observer cannot sec this global tree.) Another 

way oflooking at this restriction is to imagine that the program listings given to the observer are modified 

so that the only possible behavior of an action is the behavior it exhibited in the current execution. 

The known behaviors of an action might include aborted actions as well as committed actions. 

For example, action B might run child B2 sequentially after child Bl in every execution. If B2 runs it can 

conclude that Bl has either committed or aborted. Moreover, if B commits, any other action can 

conclude that Bl committed or aborted, and that B2 committed or aborted. Note that if B aborted, then 

another action cannot conclude anything about Bl or B2 (since they might never have run at all). 

Strictly speaking, the transaction manager should incJude these known aborts in its view trees, 

because they are part of "behavior." Just as we argued that there is no need to include these aborts in 

information trees, we can argue that there is no need to include them in view trees: Since aborted actions 

provide no information about their proper descendants, these proper descendants need not be included in 

the view tree. But aborted actions without descendants cannot affect serializ.ability (by Lemma 2.6.2), so 

it is sufficient for the transaction manager to test for a seriali:zable view tree which does not include these 

known aborts. It suffices for the transaction manager to choose actions for the view tree which are visible 

to A. (In other words, if a serializ.able view tree exists which includes these aborted actions, then it will 

still be seriali:zable when the aborted actions are deleted. lbus we Jose no generality by considering only 

view trees which do not contain these aborted actions.) 

We place two restrictions on the selection of actions for this hypothetical view tree. First, the 

transaction manager must choose actions that are visible to the action whose tree he is constructing. 
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Second, because the behavior of an action might depend on any information available to it, if the 

transaction manager includes any action in his view tree, he must include the entire information tree of 

that action. 

Example: We consider again the scenario presented in Fig. 1.1. Suppose that except for 

action A, the top level actions in the system each create two (sequentially related) subactions; 

the first subaction reads and increments x, and the second subaction reads and increments y. 

(Action A simply reads x and then reads y.) The initial values of x and y are 0. The 

information tree for A2 from the tree in Fig. 1.1 indicates that x = 0, y = 1. If the transaction 

manager were allowed to create a view tree which included only part of action B (i.e. included 

descendant 82 but excluded Bl), he would conclude (wrongly) that A2's view is consistent 

Note also that the status of proper ancestors of the action should be 'activ.e', since the observer 

should be able to believe that its proper ancestors are active (though in fact they might have committed or 

aborted). We include these proper ancestor in the view tree, but we exclude them from the information 

set closure requirement because (as discussed in the section on information trees) we have short-circuited 

these ancestors with our definition of in formation flow. (lbus we require the vertices of the view tree to 

be info-sey1 A-dosed, rather than info-setr-closed) 

For convenience, we separate the serializability requirement from the other requirements, and 

we define a view tree as any tree which satisfies the proper closure properties. 

Defn 3.3.1: Let T be an action tree, A € vertict?S.r. Let S = (11V)// A, for some set V ~ 

vertic~. We say .S is il view ~for L\ in I itT 

1. A€ V 

2. V is anc-closed 

3. V is info-sey I A-closed 

4. V ~ visib1Cy(A) 

(Note that A € V and Vis info-sey I A-closed ~ info-treey(A) is a restriction ofS.) 

It is important to stress again that there is not enough infonnation in action trees alone to 

determine ~ view tree for an action: a view tree is one of possibly several explanations for an 
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infonnation tree. As a trivia] exampJe, suppose that actions Al, A2, and Bread object x in this order, but 

never update it. (Sec Fig. 3.2.) Then any combination of actions that indudes B fonns a scriaJiz.ab)e view 

tree for B. 

For AA Ts, we wiU define a particular view tree, using the data ordering. To conclude that this is 

, nccessariJy ~ view tree is incorrect: use of this particuJar view tree requires assumptions about how 

versions of objects are modified. We wi11 use this view tree for one of our system modcJs, but again note 

that the definition of a view tree is independent from the construction of this particu]ar view tree. 

Fig. 3.2. Multiple View Trees 

Global action tree: 

/I~ 
Al,c A2,c B,c 

x,O x,O x,O 

One view tree for B: u 

~ B,c 

x,O 

Another view tree for B: 

/(~ 
Al,c A2,c B.c 

x,O x,O x,O 
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3.4 View·Serializability 

The view of an action is "consistent" if it can be explained with a serializable view tree. An 

entire tree is "view-serializable" if every action has a serializable view tree. 

Dcfn 3.4.1: Let T be an action tree. We say Tis view-serializable provided the following is 

true: For each A E vertice5r, there exists a serializable view tree for A in T. 

View-serializability is our basic correctness condition modeling internal consistency. In fact 

view-serializ.ability is a strong enough condition to model external consistency as wen: The following 

lemma shows that perm(T) is the only possible view tree of the (virtual) top-action, U. 

Lemma 3.4.2: Let T be an action tree. Then S is a view tree for U in T if and only if S = 

perm(T). 

Proof: Suppose that S = (TIV)/ /U is a view tree for U in T; we show that S = perm(f). But 

prop-anc(U) = li!1 =t S = TIV. 

Since Vis info·sctrl IU-closcd, Vis info·setr·closcd (again. because prop-anc(U) = li!1). 

Thus Vis v-childr·closed, ~ v-dCSCr(U) ~ V (since U € V). 

But v-dCSCr(U) = visiblc,{U) =t visiblc,{U) ~ V. 

But V ~ visibl~U). since S is a view tree for U. 

Thus V = visibJC-r(U), =t S = Tlvisiblc,{U) = perm(f). 

Conversely, let S = perm(T); we show S is a view tree for U in T. As above. S = 

(flvisibl;(U))/ /U. Let W = visibJei-<U). We show that W satisfies the correct closure 

properties for view trees. 

1. U € W, since U E visible.r<U). 

2. If A € W, then anc(A) - {U} ~ committe<Lr- If B € anc(A) - {U}. then anc(B) -

{U} ~ committcd.p =t B € W. If B = U. then B € W by (1) above. Thus W is 
anc-closed 

3. We show that W is info-sey/U-closed, i.e. if A € W - {U}, and B E 
info-setr(A). then B € W. But A€ W- {U} =t A E visibl;(U), by definition. B 
€ info-sely(A) =t B E visibl;(A), by Lemma 3.2.S.S. Thus B E visibl;(U) by 
Lemma 2.2.3.lc, =t B € W. 
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4. W ~ visibl~~lJ) by definition. I 

Thus view-serializability implies serializability of penn(f); our condition for external 

consistency is covered by our condition for internal consistency. 

Lemma 3.4.3: Let T be an action tree, then 

T is view-serializable ~ penn(T) is serializable. 

Proof: Immediate from Lemma 3.4.2. I 

3.5 Augmented Action Trees and Data·cloSl.'CI View Trees 

We extend all definitions and lemmas for infonnation sets, infonnation.trees, view trees, and 

view-serializability to AA Ts in the obvious way (by applying them to erase(T)). (There is a subtle point 

that the definition of restriction of an AA T is different from the definition for an action tree, since a 

restriction of an AA T includes the data ordering from the original AA T. But the data ordering does not 

enter into any of the preceding definitions or lemmas, and erase(l)IV = erase(TIV) for all AA T's, T, and 

action sets. V.) 

For AA Ts we define a particular view tree by augmenting the infonnation tree via a type of 

data-closure. For the modcls that we wiJJ consider (in which only explicit aborts are allowed, and versions 

of objects change only in response to explicit commits and aborts), this view tree will be used to show 

view-serializability. 

Defn 3.5.1: Let T be an AAT, A E verticeSr· Define ~A) as follows: 

Let V = vsetr(A) ( = v-precedesj(A)) 

The components of S are as follows: 

- verticesg = V U prop-anc(A) 

-- statuSg is defined by 

1. B € V-{A} ~ statuSg(B) ='committed' 
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2. statuSs(A) = status.f A) 

3. A' E prop-anc(A) - V => statu58(A') = 'active' 

__ -- lfB € datastep8s, then label8(B) = labe1r(B). 

-- dat.as = date;- n verticCSs 2 

'; .·.!.! . • .. 

Unlike the situation for infonnation sets, the view set of an action might include proper 

ancestors of that action. (This case occurs only when the view set "cycles back" to ancestors of the action; 

proper ancestors are not originally included in the view set) The following lemma shows that vtreey(A) 

is a view tree for A if these cycles do not occur: 

Lemma 3.5.2: Let T be an AA T, A E vertices1., S = vtree.r<A). If prop-anc(A) n vselr(A) = 

l?J, then S is a view tree for A in T. 

Proof: Let V = vselr(A), W = V U prop-anc(A). First we show that S = (TIW)// A. 

By definition, verticCSs = V U prop·anc(A) = W. If B E V - {A}. then statu58(B) = 
'committed'. But by Lemma 2.3.2, status.fB) = 'committed'. For B € prop·anc(A) - V, 

statuSs(B) = 'active', by definition. But prop-anc(A) n V = ~ => prop-anc(A) - V = 

prop-anc(A). Thus B E prop-anc(A) == statu58(B) = 'active'. For action A, statuSs(A) = 
statu¥A), by definition. Thus the trees S and (llW)// A agree on the status of all actions. 

It is trivial to verify that these trees agree on all labels. and on the data ordering. 

Now we show that W satisfies the correct closure properties for view trees: 

1. A € W by definition 

2. W is anc-closed by Lemma 2.3.4. 

3. We show that Wis info-sey/A-closed. i.e. that (info-sey/A)(W) t; W. But 
by definition, info-sey I A is tlJ on prop-anc(A), and is identical to info-set,-

• otherwise. Thus we must show info-setr(V) C W. 

BU! V = vselr(A) - V is vset,--closed by Lemma 2J.3a. 

vset,- = vprecedes.f = (v-anc-seqT U v-childy U v-data-BDC.r)•. But 
info-sety = (v-anc-SCQy U v-cbildy)•. 
Thus info-sety(V) C vser,.<V). 
Thus V is vset,--closed ...,. vset,.(V) ~ V, - info-set,.(V) C V, • 
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info-set1(V) ~ W. 

4. V ~ visiblcrCA), prop-anc(A) ~ visiblc-r(A), 

= W ~ visiblc1(A). I 

We will show in Chapter 6 that these cycles can only occur for view sets of orphans, and that the 

orphan detection strategy which we present will eliminate these cycles. 

As examples of the construction of these data-closed view trees, vtree/A2) for the tree of Fig. 

1.1 is the entire tree, and it is not serializable. For the tree of Fig. 3.2, vtreeT(B) is also the entire tree, but 

it is serializable. 



. 51. 

4. Event·State Algebras 

This chapter defines our basic execution model: the event-state algebra. An event-state algebra is 

a state-transition model of a system where events can occur asynchronously. A co"ectness proof for an 

event-state algebra shows- that the states generated by valid event sequences satisfy some property. A strategy 

, of hierarchical correctness proofs is explained: We define mappings between event· state algebras, and we 

give conditions on these mappings which insure that they preserve w1lidity of event sequences. Finally. we 

present a model for distributed systems which is a special case of event-state algebras. 

4.1 Event Algebras 

4.1.1 Notation 

If S is a (finite or infinite) set of symbols, then S* denotes the set of finite sequences of symbols from S, 

including A·- the empty sequence. We wilJ often drop the distinction between a symbol and a sequence 

ofJcngth one. 

)( denotes the set of non-negative integers, and lul E Jr denotes the length of sequence u. 

If sequence u is a prefix of sequence v, then we write u < v. (Context will dictate whether"<" refers to 

the prefix relation on sequences or to numerical order on integers.) We say a set of sequences, W, is 

prefix-dosed if and only if atl prefixes of every sequence in Ware also in W: ('t/v E W)(u < v ~ u E 

W). 

If u E s• is a sequence, and e E S, then we write e E u iff e is among the elements of u. (Note that. a 

priori, e might be repeated in u many times.) We denote by 

€ S, then 

- the ordering on elements of u, i.e. if e,f u 

e-: f c::> u = a•e•b•f•c, for some sequences a,b,c Es•. 

Note that -: is transitive for any u E S*. It is not necessarily acyclic, since elements of a sequence can be 

repeated. 
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4.1.2 Events and Valid Execution Sequences 

An event algebra is a behavioral model of a system which describes the events in the system, and 

some constraints on "valid" executions imposed by the system. An execution of a system is any sequence 

of events from the system; the valid execution sequences will be some subset of these sequences. This 

type of model is useful for describing systems where events occur asynchronously and independently (as 

opposed to a program model, for example, where the allowable sequences of events are governed by a 

(generally sequential) program). It is also useful for describing properties of sequential systems which do 

not depend on the order of events (or depend on weaker ordering constraints than those enforced by the 

system). 

At this level of description. "events" arc completely uninterpreted: they should be regarded as 

textual symbols only. The only structure imposed by an event algebra is the ~t of valid execution 

sequences. 

Defn 4.1.2.1: An event algebra is a pair 

.A.= (S, T) 

where S is a set (called the~ of .A.), and 
• 'ris a prefix-closed subset of S (calle"d the~ execution sequences of .A.). 

(We will generally use symbols "e,f,g" to refer to individual events, and "u,v,w" to refer to sequences of 

events.) 

We can consider the general problem faced in reasoning about a system to be showing some 

properties of the valid execution sequences. We are not interested (at this level) in how the system 

enforces the constraints on execution sequences. The valid execution sequences are simply a specification 

of the "correct" behaviors of the system. 
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4.1.3 lntcrprctations 

We would often like to view a system at a higher level of abstraction than the one at which it is 

defined. In this section we describe an abstraction process for event algebras, and we show how this 

process can be used to organize proofs of system properties. 

Dcfn 4.1.3.1: Let .A.1 = (@!1, 'j). and .A2 = (@:2, 'fi) be event algebras. An intcmretation 

fuml ~ 1Q ~is a mapping h: g; - @:;. 

An interpretation, h, is valid iff h('fj_) ~ 'i· 

Note that any event sequence in one algebra can be interpreted as any sequence in another 

algebra: there are no constraints on this mapping. Although most interpretations of interest will have 

more structure (for example, h might be monotonic), it is not necessary to introduce this structure for 

these general definitions. 

In proving a property of valid execution sequences for some event algebra, it might be useful to 

state this property as a constraint on execution sequences of an event algebra which is at a higher level of 

abstraction than the low-level model of the system of interest (We might be interested only in particular 

events, for example, or we might regard a sequence of events as a single event at a higher level.} We 

might also want to break this abstraction process into several steps, constructing event algebras at 

intermediate levels of abstraction. We must then define valid interpretations between successive levels. 

Soundness of this technique follows directly from the following lemma: 

Lemma 4.1.3.2: Let .A.1, ~· .A3 be event algebras. If g is a valid interpretation from .A.1 to 

.A.2, and his a valid interpretation from~ to .A.3, then h0 g is a valid interpretation from .A.i to 

A3· 

Proof: Straightforward. I 

Of course, we must be careful in applying this technique to be sure that the composition of 

mappings from lower-level algebras to higher-level algebras is consistent with the abstraction we desire 

from the lowest-level event sequences to the "abstract" event sequences. 

We can reduce any problem of proving a property of valid execution sequences to an equivalent 
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. . 
problem of constructing a valid interpretation: Suppose .A1 = (S1, 't'j) is an event algebra, and P ~ S1 is 

some property of execution sequences. We want to show that P holds for all valid execution sequences in 

.A1, i.e. that 'i ~ P. We can construct a "higher-level" algebra,~ whose vaJid execution sequences are 

just those specified by P: Ao = (S1, P). If we define interpretation h from .A.1 to Ao as the identity map 

on event sequences, then 'i ~ P if and only if his valid. 

By defining a top-level event algebra whose valid execution sequences automatically satisfy a 

desired property, we create a very uniform structure for our proofs: A "correctness" proof consists of 

definitions for a sequence of algebras, definitions for interpretations between levels, and proofs that all 

interpretations are vaJid. 

4.1.4 Evcnt·Homomorphic Interpretations 

We defined interpretations very generally as any mapping between event sequences. Usually 

natural interpretations will have more structure, which wiJl simplify a proofof validity. We define here a 

class of interpretations called "event-homomorphic" which allow the interpretation of any sequence to be 

constructed inductively from an interpretation of each event in the sequence. 

• • Defn 4.1.4.1: Let .A.1 = (S1• fj_) and .A2 = (S2, fi> be event algebras, and h: S1 - S2 be 

an interpretation from .A.1 to .A.2. We say h is an event-homomorphic interpretation itT 

• Vu,v E S1, h(uv) = h(u)h(v) 

(Note that if his event-homomorphic, then h(A) = h(AA) = h(A)h(A); thus h(A) = A.) 

If an interpretation, h, is event-homomorphic, then the image of any sequence can be 

constructed from the images of each element in the sequence. Thus we can specify an 

• event-homomorphic interpretation as a mapping h: S1 - S2• 

Note that for an event-homomorphic interpretation, individual events in the lower-level algebra 

can be interpreted as any sequence of events in the higher-level algebra. A lower· level event which maps 

to A is effectively "abstracted out" at the higher level. A lower-level event which maps to a single event is 

visible at the higher level, although different lower-level events might map to the same higher-level event 

To model the usual notion of "abstraction," where several "concrete" events might implement a single 

"abstract" event, we could map the earlier steps of the concrete sequence to A. and map the last step to 
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the abstract event 

Our notion of "abstraction" is unusual, however, in that the image of a single lower-level event 

might be several higher-level events. We allow this case because the "observer" of a system might not be 

able to see the granularity of events directly: he might only see their effects (e.g. through changes in 

"state" caused by events). An "abstraction" in this sense might be a higher-level way of explaining these 

effects. It is possible that higher-level events can be "simpler" to understand, even though they are less 

"powerful" in that several higher-level events are needed to explain a single lower-level event 

We will deal only with event-homomorphic interpretations; in the remainder of this paper, 

"interpretation" always means "event-homomorphic interpretation." 

4.2 Event-State Algebras 

4.2.1 Events as State Transitions 

Although our notion of the behavior of a system depends only upon the events in the system 

and the valid execution sequences, it is often convenient to describe a system by referring to a "system 

state." Specifically, we can abstract from event sequences to "states" by interpreting events as operations 

on a state. We introduce a structure called an "event-state algebra," which includes state as a basic 

system component 

Following [Stark83], we regard the events in a system as the fundamental entities; we introduce 

states for convenience in specifying the valid event sequences. The concept of "state" allows us to 

describe valid event sequences inductively by giving "preconditions" on the current state for each event 

Because it is often simpler to reason incrementally about system behavior, states are a useful specification 

device. From this perspective, a system could be described (equally welJ) by several event-state algebras 

using different state spaces; these different state spaces would simply represent different ways of 

summarizing execution histories. 

Defn 4.2.1,.1: An event-state algebra is a quadruple 

where g is a set of mim. 
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I is the set of fil'.fil.£.!!l states. 

a E l: is the initial m1£!n ~. and 

., ~ g X I X I is the transition relation. 

LetT(e) = {(s,t) E I2: (e,s,t) E -r}. 

For convenience, we require that T(e) be a partial function on l:. i.e. 

(e,s,tl). (e,s,t2) E., =t t1 = t2. 

(We could allow T(e) to be an arbitrary relation, modeling a nondeterministic choice of the 

"next state." Because we wi11 not need this power, we restrict T(e) to a partial function.) 

We regard T(e) as a total function on I U {.J...} (where ..L represents "undefined") by 

defining 

T(e)(..L) = ..L. and 

T(e)(s) = ..L for s EI if there is no pair(s.t) E T(e). 

If s E I U {..L} and e E @:. then we write 

se for T(e)(s) 

We generally drop the distinction between the event e and the partial function T(e) when the 

meaning is clear. We extend our notation to sequences of events in the obvious way: 

. . 
If u E g , then we say au is the I£SYl! of execution sequence u. (Note that the result might 

be..L.) 

• If 3u E g : s2 = (sl)u, (for sl, s2 € I) then we write sl I- s2 in A. and we say J2 ii 

reachable ftmn li in J:. We will simply write sl I- s2 when the algebra is clear from 

context 

• If H C g , and s € I, then we define 

sH = {su: u E H} 

• • (Similarly if S ~ l: and u € g • we define Su. or if SC I and H ~ g , we define SH.) 
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'f{.A.), the set of ~ execution seayences of .A., consists of all sequences whose result is 

defined (i.e. each event in the sequence is defined on the result of the preceding sequence): 

e € 'f{.A.) - ae '* ....L 

c:Ri(.A.), the set of reachable™ in .A., is the set of all states that arc reachable from the initial 

state: 

c:Ri(.A.) = {s € I: a r s} (Thus ~(.A.) = a'f{.A.).) 

We extend this definition to sequences of reachable states as foUows: 

We will use boldface symbols to refer to vectors of states, e.g. s = <s1,s2, ••• ,S
8
). 

We denote by PRE .A.(e) the proper domain of 'r(e), for each e € S. (PRE .A.(e) = {s € I: 

'r(e)(s) *- ....L}.) We generally drop the subscript when the algebra is clear from context We 

* extend this notation to sequences u € g by defining: 

PRE(u) = {s € I: su '* ....L} 

(In general, if an event-state algebra is named ".A.n" for some subscript, "n", then we will 

abbreviate f{.A.n) as "f'n"· c:Ri(.A.n) as "~n"· and PRE .A. as "PR~.") 
n 

We are viewing event-state algebras as convenient structures for specifying event algebras. We 

say that an event-state algebra .A.' = (g', I', a',.,.') is il nrcsentatiop S2f event algebra .A. = (S, t') if and 

only if g· = g and 'f{.A.') = t: (Note that f{.A.') must be prefix closed by construction.) It folJows from 

this definition that several event-state algebra presentations might exist for a given event algebra, but each 

event-state algebra is a presentation of a unique event algebra. If .A.' is a presentation of .A., then we say 

that .A. is the embedded~ algebra for .A.'. 

We can show that an event-state algebra presentation exists for any event-algebra -- the 



degenerate presentation whose state is the entire execution history: 

Lemma 4.ll.2: For any event algebra .A. = (S, f), there exists an event-state algebra 

presentation of .A.. 

Proof: Let .A.' = (S', I', a', T'), where 
• S' = S, I' = S , a' = A, and T' = {(e,u,ue): e E g, ue E f}. Then t{.A.') = 'r. so .A.' is a 

presentation of .A.. I 

Thus we will deal only with event-state algebras from here, with no loss in generality. 

An interpretation from one event-state algebra to another is defined to be any interpretation 

between the embedded event algebras. This interpretation is valid if and only if the interpretation 

between embedded event algebras is valid. 

4.2.2 Possibilities Maps 

Because we are using states to describe the valid execution sequences of an event-state algebra, it 

is natural to use these states in proving that an interpretation between event-state algebras is valid. 

Capturing execution histories with states allows us to "ecify valid execution sequences inductively, by 

extending the event mapping of an interpretation to a mapping between state sets, we will give an 

inductive technique for proving that the interpretation is valid. 

The state mappings we will define are somewhat unusual in that we allow a mapping from states 

at the lower level to sets of states at the higher level. We call these mappings possjbiJitjes mam (if they 

satisfy certain properties), because they give a set of possible higher-level states which correspond to each 

lower-level state. Because the states in an event-state algebra can represent any convenient summary of 

execution histories, it is possible that the higher-level state might retain more information about 

executions than the lower-level state. In this case there is not enough information in the lower-level state 

to uniquely determine the higher-level state. Thus we permit "looser" mappings which specify the set of 

states which are consistent with (arc "possibilities" for) a given lower-level state. 

Possibilities maps are particularly useful when the lower-level state is disiributed, and the 

higher-level algebra is a global interpretation of the lower-level algebra. (It might be convenient to specify 

a distributed algorithm in terms of a "virtual" global state, for example.) Because the lower-level state is 
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partitioned among components, each component has only partial knowledge of the total system state. 

Thus there will generally be several higher-level states which are "possibilities" given the state at an 

individual component. This "partial information" property of distributed systems makes possibilities 

maps a natural tool for describing interpretations of these systems. 

Possibilities maps can be regarded as a generalization of the standard notion of homomorphism. 

The state mapping of a homomorphism is a single-valued function, because the higher-level state space is 

always "more abstract" (has less detailed information) than the lower-.level state space. 

If .A1 = (gl' Ir al' T 1) and .A.2 = (g2, I 2, a 2, .,. 2) are event-state algebras, then we will 
• write h: .A.1 - ..<.2 if h: g1 - g2 and h: II - ~I2). (We use "h" to denote both the event mapping 

and the state mapping; the meaning will be dear from context.) Note that h: ..<.1 - ..<.2 does not 

necessarily imply that h satisfies any special properties; in particular, h need not be a possibilities map. 

We say that the~ domain Qfb (of the state mapping) is: domain(h) = {s € I 1: h(s) *-fl'}. 

We extend a mapping h: I 1 - ~I2) to a mapping h: I~ - ~I~) by defining h(<5i·8i·····sn>) 

= {<tl't2, ... , t
0
>: t. € h(si), for i = 1,2, ... ,n}. 

Dcfn 4.2.2.1: Let .A.I = (@:I, Ir a I, "I) and .A.2 = (@:2, I 2, a2, .,.2) be event-state algebras, 

and let h: .A.I - .A.i· We say his a possjbilitics DW2 iff 

1. b preserves initial ~ 

2. h oreseryes ~ 

s € PREi(e) n ~rt€ h(s) n ~2 
~ (t)h(e) € h(se) 

(Note that (t)h(e) € h(sc) ~ (t)h(e) * .. .L.. since h(se) ~ 1:2.) 

In many cases we will not need the full power of possibilities maps to map from states to sets of 

states. If a mapping h: .A.1 - .Ai has the property that Vs € 1:1, lh(s)I < 1, then we wi11 consider h to 

be a partial mapping from I 1 to1:2, and we wiH change our notation accordingly. (For example, we will 
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write t = h(s) instead oft E h(s).) 

We will use the properties of possibilities maps to prove inductively that a mapping is valid. As 

an intermediate step, we define the notion of a faithful mapping. We then show the main result for 

possibilities maps: any possibilities map is a valid interpretation. 

Dcfn 4.2.2.2: Let .A.1 = (gl' l:l' a 1, .,. 1) and .A.2 = (g2, 1:2, a 2, .,. 2) be event-state 

algebras, and let h: .A.1 - .A.2. For k E X we say that his k-faithful iff (Vv E 'fi_: M < k), 

a 2h(v) E h(a1v). We say h~ faithful iffh is k-faithful for all k E .K. Note that h preserves 

initial states if and only if h is 0-faithful. 

Lemma 4.2.2.3: Let .A.1 = ((;1, 1:1, a 1, T1) and .A.2 = (g2, 1:2, a2, .,.2) be event-state 

algebras, and let h: ...t1 - ...t2. lben his faithful= his a valid interpretation. 

Lemma 4.2.2.4: Let .A.1 = (g1, l:l' al' T 1) and .A.2 = (g2, 1:2, a2, .,.2) be event-state 

algebras, and let h: .A1 - ~- Then h is a possibilities map = h is faithful. 

Proof: Suppose h is a possibilities map. Then h preserves initial states = h is 0-faithful. We 

show h is k-faithful = h is k + I-faithful. 

Let ve E 'i· M = k, e E gl" Since his k-faithful, a 2h(v) E h(a1v). But ve E 'fi_ = a 1v € 

PREi_(e) n ~1. And a 2h(v) € h(a1v) n ~2. Since h preserves events, a 2h(v)h(e) E 

h(a1ve), = his k+l-faithful. I 

Lemma 4.2.2.S: Let .A.1 = (g1, l:l' al' .,.1) and ~ = (g2, I 2, u2, .,.2) be event-state 

algebras, and let h: .A1 - ~· Then his a possibilities map= h is a valid interpretation. 

Proof: Immediate corollary of Lemmas 4.2.2.4 and 4.2.2.3. I 

We wiU often find it useful to prove preservation of events in two parts: We will assume that 

preconditions are satisfied and show that transitions behave correctly under the interpretation: we will 

show separately that preconditions are satisfied: 

----------------- ------------------
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Lemma 4.2.2.6: Let .A.1 = (S1, I 1, a 1, T1) and .A.2 = (&2, I 2• a2, T 2) be event-state 

aJgebras, and Jet h: .A.1 - .A.2. Then h preserves events if and only if 

1. h preserves transitions: 

s E PRE1(e) n ~1 • t E h(s) n PREi(h(e)) n c:i,2 
=t (t)h(e) E h(se) 

2. h preserves orcconditions: 

s E PRE1(c) n ~1• t E h(s) n ~2 
=t t E PRE2(h( e)) 

Proof: Suppose h preserves events. Then 

s E PRE1(e) n ~1• t E h(s) n ~2• 

=t (t)h(e) E h(se), 

=t (t)h(e) ~ .1_, 

=t t E PRF--i(h(e}), so h preserves preconditions. 

s E PRE1(e) n ~1• t E h(s) n PREiCh(e)) n c:i,2, 

=t s E PRE1(e) n c:Ril' t E h(s) n ~2• 

=t (t)h(e) E h(se). so h preserves transitions. 

Conversely, suppose h preserves preconditions and transitions. Then 

s E PREi(e) n ~1• t E h(s) n !li2, 

=t t E PREiCh(e)), since h preserves preconditions. 

Thus s E PREi(e) n ~l' t E h(s) n PREi(h(e)) n !ii2, 
=t (t)h(e) E h(se), since h preserves transitions. I 

4.2.3 Canonical Possibilities Map 

We cal) show that the method of constructing a possibilities map between event-state algebras is 

a completely general technique for proving validity: Given any (event-homomorphic) valid 

interpretation, an extension of this interpretation t.o a possibilities map always exisas: 
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* algebras, and h: g1 - g2 be a valid interpretation from .A.1 to ~- Then if we extend h to a 

state-set mapping as follows: 

then h is a possibilities map from .A.1 to .A.2. 

Proof: First we show that p(s) ~ I 2 for all s E I 1 (i.e. J_ ':I= h(s)): u 1 u = s =t u E 'i 
=> h(u) E 'i (since his valid) => a 2h(u) *- J... Thus h does define a mapping from I 1 to 

~I2>· 

Now we show that h satisfies the conditions for a possibilities map: 

1. h preserves initial ~ 

a 2 = a2A = aib(A) (since his event-homomorphiC); 

a 2h(A) E {a2h(u): a 1u = a 1} = h(a1). 

2. h preserves events: 

s E PREi(c) n ~1• t € h(s) n ~2. 

Lets= C71V· v E 'i· 
Sot€ h(s) = {a2h(u): a1u = a1v}, 

~ t = a 2h(u) for some u: a 1u = a 1v. 

Now (t)h(e) = a 2h(u)h(e) = ati(ue) 

€ {aib(w): a1w = a1ve} = h(se). I 

Note that the set h(s) = {a2h(u): a 1u = s} corresponds intuitively to the "possibilities" for 

higher-level states associated with lower-level state s: The sequences {u: CJ1u = s} are the possible 

histories which might have generated state s; oib(u) is the higher-level state that would have resulted 

from execution of u. Thus if we only know states, then we can only "pin down" the possible higher-level 

state to the set {oih(u): u1u = s}. 
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4.2.4 Invariants 

We have reduced the task of showing that interpretation is valid to the task of proving that a 

mapping (on both states and events) is a possibiJities map. It will often be convenient to use properties of 

reachable states (at both the higher and lower levels) in showing that a mapping is a pos.9bilities map. We 

generalize the notion of an invariant to include properties of sequences of states as well as properties of 

single states. We also describe properties of individual components of the state. since we will show below 

that if a component is preserved by a state mapping between algebras, then in some cases we can carry 

invariants proved at the higher level for this component downward to the lower level (without re-proving 

the invariants at the lower level). Our development of an event-state algebra hierarchy for a transaction 

system will make extensive use of this method of carrying invariants down from higher level algebras. 

4.2.4.1 Basic Definitions 

Defn 4.2.4.1.1: Let A = (g, I, er, T) be an event-state algebra. Ifl ~In, we say that 1 ism 

n.:m orooeny in~ If n = 1, then we will simply say "I is a property," and if n = 2, we will 

say "I is a pair-property." 

Defn 4.2.4.1.2: Let A = (g, I, er, T) be an event-state algebra, and let k EX lfl is an n-ary 

property in A. we say that I is k·invariant in .J: iff the folJowing is true: For all sequences 

(vl'v2' ... ,vn) E t'1 such that v1 < v2 < ... < vn, and lvnl S k, we have (uvl'uv2,. •• ,uvn) €I. 

We say that 1 is invariant in J, iff Vk E .N, I is k-invariant in A. Thus I is invariant in A iff 

~(n)(.A.)~ I. 

We will usually drop the qualification "in .A." when the algebra is clear from context Note 

that the case n = I corresponds to the usual notion of an "invariant" When we say that "I is 

an invariant," we will generally mean that I is a 1-ary property which is invariant Similarly 

we will say "J is a pair-invariant" if J is a pair-property which is invariant 
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4.2.4.2 Relative Imariants and Relathc Possiblities Maps 

To prove that a particular mapping is a possibilities map, we will frequently prove first some 

useful invariants for the higher and lower-level algebras. If we organize a proof hierarchically (with 

several levels of event-state algebras), we might find that we need the same invariants at several of these 

levels. While we could prove the needed invariants independently at each level, to do so might repeat a 

lot of work unnecessarily. Since faithful mappings map reachable states into reachable states, it might be 

easy to infer that higher-level invariants hold at the lower level if we knew that the mapping between 

algebras were faithful. In some cases, however, we might want to use these invariants to show that the 

mapping is a possibilities map (and hence is faithful, by Lemma 4.2.2.4). In these cases we arc faced with 

a mutual dependency between invariants and a possibilities mapping. 

Our solution to this mutual dependency depends on the fact that both invariants and 

possibilities maps are generally proved inductively. Conceptually, then, we will prove both an invariant 

and the possibilities map together with the same induction. For convenience, we separate the 

dependencies in our definitions; we define an invariant relative to a mapping, and a possibilities map 

relative to a property. Because the key property of possibilities maps is faithfulness, we also define 

faithfulness relative to a property, and we prove a lemma which is the "relative" version of Lemma 

4.2.2.4. We also state a "relative" version of Lemma 4.2.2.6. 

Dcfn 4.2.4.2.1: Let .A1 = (@:1, l:1• ul' T1) and Ai = (g2, l:2, u2, T 2) be event-state 

algebras, and let h: ..A.1 -+ ..A.2. Let P k l:1 be a property in ..(1" 

We say h is a oossibilitics map relative !Q f iff 

1. h preserves initial states (er 2 E h( u 1)) 

2. h preserves events relative 1Q f;, 

s E PREl(e) n ~l n P, t E h(s) n ~2 
=> (t)h(e) E h(se) 

Dcfn 4.2.4.2.2: Let .A1 = (@:1, l:l' ul' T1) and .A.2 = (g2, I 2, u2, T2) be event-state 

algebras, P ~ Ir and let h: ..A.1 -+ ..A.2. 
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We say h ~ faithful relative to f iff 

1. h is 0-faithful 

2. (Vk E .H) h is k-faithful, and Pis k-invariant ~ h is k +I-faithful 

Lemma 4.2.4.2.3: Let .A.1 = (gl' l:l' al' 'T 1) and .A.i = (@:2, l:2, a 2, 'T 2) be event-state 

algebras, P ~ l:l' h: .A.1 - .A.2. If h is a possibilities map relative to P, then h is faithful 

relative to P. 

Proof: h preserves initial state, so h is 0-faithful. Now suppose h is k-faithful, and P is 

k-invariant, for some k E X We show his k +I-faithful. 

Take v E 'fj_. lvl ~ k+l. We must show that a 2h(v) E h(a1v). If lvl < k then the result 

follows directly since h is k-faithful, so assume lvl = k + 1. Let v = ue, for some u E 'i· e E 

@:1 (lul = k). 

Since his k-faithful, a 2h(u) E h(a1u). But Pis k-invariant. so a 1u E P. Since ue E 'fj_, a 1u E 

PRE1(e). 

Thus a 1u E PRE1(e) n ~l n P, a 2h(u) E h(a1u) n S 2, 

~ a 2h(u)h(e) E h(a1ue), since his a possibilities map relative to P, 

~ a2h(v) E h(a1 v). I 

Lemma 4.2.4.2.4: Let~ = (@:1, l:1, al' T1) and .A.i = (g2, l:2, a 2, T2) be event-state 

algebras. and let h: .A1 - .A.2. Then h preserves events relative to P if and only if 

1. h. Preserves transjtjons re1ative 1Q f;_ 

s E PREiCe) n ~1 n P, t E h(s) n PRF.i(h(e)) n s 2 
~ (t)h(e) E h(se) 

2 . .h preserves Preconditions relative 1Q f;_ 

s E PREiCe) n s 1 n P, t E h(s) n s 2 
~ t E PRF.i(h(e)) 
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Proof: Similar to the proof of Lemma 4.2.2.6. I 

Dcfn 4.2.4.2.5: Let A1 = (Sl' I 1, al' T 1) and Ai = (t;2, I 2, a 2, T 2) be event-state 

algebras, P ~ Il' and let h: A1 - Ai· 

We say f is invariant relative 1Q h iff 

1. P is 0-invariant 

2. ('lk E .N) P is k-invariant, and h is k +I-faithful = Pis k +I-invariant 

We now show that we can prove invariants and possibilities maps together with the same 

induction: 

Lemma 4.2.4.2.6: Let A1 = (t;1, I 1, ul' T 1) and A2 = (t;2, I 2• u2, T 2) be event-state 

algebras, P ~ I 1. Let h be a possibilities map from A1 to Ai relative to P, and let P be 

invariant in A1 relative to h. lben h is a possibilities map, and Pis invariant in Ai· 

Proof: Since h is a possibilities map relative to P, h is faithful relative to P (by Lemma 

4.2.4.2.3). We show inductively on k that Pis k-invariant, and his k-faithful. Pis 0-invariant 

and h is 0-faithful by definition. Assume P is k-invariant, and h is k-faithful. Since h is a 

faithful relative to P, h is k +I-faithful. Since P is invariant relative to h, Pis k +I ·invariant 

Thus Pis invariant. To see that his a possibilities map, note that h preserves initial states by 

definition. h preserves events, because 

s E PRE1(e) n ~1 = s E P since Pis invariant I 

4.2.4.3 Invariants on Fixed Subspaces 

We have described a process for proving an invariant simultaneously with proving a possibilities 

map. In this section we show that this technique can be useful when a particular subspace of the 

lower-level state space is unchanged by the state mapping. 

Defn 4.2.4.3.J: Let A = (g, I, u, T) be an event-state algebra, let 3 be some index set, and 
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let I be the Cartesian product of component sets, r N' for N E J. We say that N is the name 

of component r N" We assume that each component has a unique name. (We will frequently 

denote a component by a variable name used for an instance of the component set For 

example, if I = r 1 X r 2, and we use <A.B> E I to represent an instance of the state. then we 

will refer to the "A-component." or the "B-component.") Let N1,N2""" Nk be distinct names 

from J. We say that f N X r N ••. X f N is a subsoace of I, with name N = <NrN2, ... ,Nk>. 
I 2 k 

(Note that each such composite name denotes a unique subspace.) Ifs E I, then "s.N" 

denotes the projection of s onto the subspace named by N. Ifs = <8i·5i·····sn> is a vector of 

states, then S;N is defined in the obvious way as <srN,s2.N, ... ,sn.N>. 

We extend the definitions of n-ary properties and invariants to properties which only depend on 

a particular subspace. 

Dcfn 4.2.4.3.2: Let .A. = (@;. I, a. ,-) be an event-state algebra, and let N name a subspace, 

r, on:. lfl ~ rn. we say thatlismrn prwertyfm:N. 

Let I be an n-ary property for N, and let I' = {s E In: s.N E I}. We say 1 is invariant fQI N 

in .J. iff I' is invariant in .A.. If k E X. then we say I ~ k-jnvariant fur N in .J. iff I' is 

k-invariant in .A.. 

Invariants for a subspace are of interest when the state mapping between two algebras fixes that 

subspace. We will show below that invariants for a fixed subspace can be "carried down" to the 

lower-level algebra. 

Defn 4.2.4.3.3: Let ..A.1 = (gl' II' al' ,-1) and Ai = (g2, I 2, a2, ,-2) be event-state 

algebras, and let h: ..A.1 - Ai· Suppose that the state spaces of ..A.1 and Ai both contain a 

subspace, r. with name N. We say that h .fim N iff for alls € Il' and for all t E h(s), tN = 

s.N. (Thus h does not change the N-subspace of the state.) It is straightforward to show that 

ifh fixes N. s E If, and t E h(s). then t.N = s.N. 

Now we show how we can carry higher level invariants for fixed subspaces down to the lower 

level. Because we might want to use these invariants in inductive proofs (in particular, as we explain 

below, in inductive proofs of other relative invariants for the lower level), we state this lemma in 
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"parameterized" fonn (i.e. in. tenns of k-invariants and k-faithful mappings). 

Lemma 4.2.4.3.4: Let . ..t1 = (Sl' Ir a1, ,.1) and ~ = (S2, I 2, a 2, -r2) be event-state 

algebras, let k E X. and let h: .A.1 - ...t.2 be k-faithful. Let N name subspace r in both I 1 

and I 2, and suppose that h fixes N. If n-ary property I~ rn is invariant for Nin Ai· then I 

is k-invariant for N in Ar 

Proof: Let 12 = {t E I~: t.N EI}, 11 = {s E I~: s.N E I}. I is invariant for Nin Ai· so ~~n) 

~ 12. We must show that that 11 is k-invariant in Ar Let <v1,v2, ... ,vn> E ~·with v1 < v2 < 
... vn, and lv

0
I < k; we show thats= <a1v1,a1v2, ... ,a1vn> E 11. Since his k-faithful, a 2h(vi) 

E h(a1vi) for i = 1,2 .. n. Lett= <a2h(v1),a2h(v2), ... ,a2h(vn)>. Then t E ~~n>, because each 

a 2h(vi) E ~2• and h(v1) < h(v2) < ... h(vn) since his event-homomorphic. 

. (n) . 
Smee t E ~2 , t E 12; thus t.N E I. Butt E h(s), and h fixes N, so t.N = s.N. Thus s.N E I, 

~ s€11. I 

Because a mapping which is a possibilities map is necessarily faithful, and hence k-faithful for 

all k, we have the following lemma: 

Lemma 4.2.4.3.S: Let A1 = (S1, Ir a1, .,1) and Ai = (S2• I 2, a2, -r2) be event-state 

algebras, and Jet h: A1 - ...t.2 be a possibilities map. Let N name subspace r in both I 1 and 

I 2• and suppose that h fixes N. If n-ary property I ~ rn is invariant for N in Ai· then I is 

invariant for Nin Ar 

Proof: Immediate corollary of Lemma 4.2.2.4 and Lemma 4.2.4.3.4. I 

We showed in Lemma 4.2.4.2.6 that if his a possibilities map from A1 to A2 relative to property 

P, and P is invariant for A1 relative to mapping h, then it follows that h is a possibilities map. Because of 

Lemma 41.43.4, we can use known invariants for fixed subspaces in Ai to prove that P is invariant 

relative to h. Note that in proving that Pis invariant relative to h, we can assume that his k+ I-faithful 

(instead of simply k-faithful) when showing Pis k +I-invariant. By Lemma 4.2.4.3.4, we can thus assume 

that invariants from Ai for fixed subspaces are k +I-invariant 

We will generally apply Lemma 41.4.3.4 to 1-ary or 2-ary invariants. We summarize the 
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(s.N, tN) E J 

~ t E P (by the Induction Hypothesis of the Lemma), 

~ Pis k +I-invariant I 

It is important to understand exactly what Lemma 41.4.3.6 says: We cannot assume that the 

higher-level invariants (I and J) are truly invariant in .A.1, but we can assume they are k+ I-invariant for 

the induction step of showing P invariant Because we construct the induction so that faithfulness of h 

stays "one step ahead" of invariance of P, we can assume both tN EI, and (s.N,tN) € J above. (If we 

only knew that h were k·faithful, instead of k +I ·faithful, then we would only be able to assume s.N E I.) 

4.2.5 Augmentation Maps and Auxiliary State 

The power of possibilities maps to map a single state into a set of states is useful when the 

lower-level algebra is somehow "more abstract" than the higher-level algebra. If the higher-level model 

retains more information about a system than a lower-level model, then the low-level state will not 

uniquely determine the high-level state. Another technique for showing a valid interpretation from one 

algebra to another is to augment the lower-level state with auxiliary variables. These variables are 

"virtual" components of the state, in that they do not enter into any preconditions for events, and the 

transition effects on other components of the state are ncit affected by the auxiliary variables. 

Defn 4.2.5.1: Let .A.1 = (Sl' I 1, a1• '} and .A.2 = (S2, I 2• a2, -r2) be event-state algebras. 

We say that~ is ill augmentation Qf .J+ with auxiliary~ Alli iff 

2. I 2 = I 1 X Aux 

3. a2 =(al'~ for some io E Aux 

4. Ve E S1, PREi(e) = PRE1(e) X Aux (i.e. the auxiliary state enters into no 

preconditions) 

5. (s,a) E PRP..i(e) =t ,.2(e)(s,a) = ('1'1(e)(s),a') for some a' E Aux (i.e. the 

auxiliary state does not affect transitions) 



- 71-

If .A.2 is an augmentation of ..t1 with Aux, then we define the augmentation ™· h: .A.1 -

~· as foJlows: 

Ve E &1, h(e) = e 

Vs E I 1, h(s) = {s} X Aux. 

Lemma 4.2.5.2: Let ..t1 = (&1, I 1• u 1, T 1) and ..t2 = (g2, I 2• u 2, .,. 2) be event-state algebras, 

and Jet ..t2 be an augmentation of ..t1 with auxiliary state Aux. Then I 1 is a subspace of I 2, 

and the augmentation map, h, fixes Ir 

Proof: Straightforward from the definition. I 

The foJJowing lemma shows a relationship between the technique of using auxiliary state, and 

the technique of defining a possibilities map: every augmentation map is a possibilities map. 

Lemma 4.2.5.3: Let ..t1 = (g1, Il' "r .,.1) and ..t2 = (g2, I 2• a2, .,.2) be event-state algebras, 

and let ..t2 be an augmentation of ..t1 with auxiliary state Aux. Then the augmentation map, 

h. is a possibilities map. 

Proof: 

1. h(a1) = {(ul'a): a E Aux}, 
==> (a1.3<>) E h(u1). 

2. Let s E PREi(e) n CJi1, t E h(s) n 9'2, 

==> t = {s,a) for some a E Aux. 

s E PRE1(e) ==> (s,a) E PREi(h(e)) = PRE:z(e), 
== (t)h(e) = te = .,.

2
(e)(t) = (.,.1(e)(s),a')forsomea'. 

But h(se) = {{se,a): a E Aux} = {(.,.1(e)(s),a): a€ Aux}, 
==> (t)h(e) € h(se). I 
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4.3 Distributed System Model 

We model a distributed system as a special type of event-state algebra. First we present a 

general framework for a "distributed algebra," and then we specialize further to a particular model for the 

distributed environment of our transaction system. While these models have considerably more structure 

than an arbitrary event-state algebra, it is important to note that they can still be described as special cases 

of event-state algebras. Thus we can apply our results for possibilities maps and invariants directly to 

these distributed algebras. 

4.3.J Distributed Event-State Algebras 

Dcfn 4.3.1.1: Let .A. = (g, .I, a, T) be an event-state algebra. let I be a finite index set, and 

let orig be a mapping orig: g - I. We say that .A. is distributed m.r l using .Qrig provided 

that the folJowing are true: 

a . .I is the Cartesian product of sets .Ii, for i E I. We will use index i as the 
component name for set .Ii. 

b. a is a vector of initial states, ai E .Ii, for i E I. 

c. For each i E I, there is a local transition relation Ti(;;; g X Ii X Ii" "i must 
satisfy the foJlowing "local precondition" property: If e E S, s E Ii' and orig(e) 
* i. then Ti(e)(s) * J_. Then Tis determined by the local transition relations as 
follows: or = {(e,s,t): (e,s.i,ti) E "i' Vi E I}. 

If orig( e) = i, then we say that component i is the originator of event e. 

Because the transition relation of a distributed event-state algebra is defined by combining locaJ 

transition relations for each component, the effect of each event on a component depends only on the 

current state of that component It is possible for an event to affect several components, however. (Thus 

we are permitting an arbitrary "inten:onnection" of components through events.) 

Although an event can have effects at several components. its precondition must be 1ocaJ to its 

originating component Only the originator can control when one of its own events can occur. 
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In [Lynch82], a "local mapping" technique is explored for constructing a possibilities map from 

a distributed event-state algebra to another event-state algebra; the possibilities map is defined as the 

intersection oflocal possibilities maps from the states of all components in the distributed algebra. 

4.3.2 Message-based Distributed Algebras 

We now restrict distributed event-state algebras further to model the particular distributed 

environment of this thesis. The basic system components are nodes. with local state spaces and local event 

sets. All communication between nodes must flow through a distinguished system component, the 

message buffer. We define distinguished send and receive events for communications through the 

message buffer. 

We give the message buffer a specific semantics: We postulate that messages are delivered in 

arbitrary order after they are sent, and that they can arrive any number of times (including 0) after they 

arc sent. These assumptions allow us to model the message buffer as a set of messages (the set of all 

messages ever sent). It is never necessary to remove a message from this set, because we assume that 

messages can be duplicated and delayed arbitrarily. 

Defn 4.3.2.1: Let ..A. = (S. l:, a, T) be an event-state algebra distributed over I using orig. 

Let Nodes be a finite set of nodes, let Msgsij be a set of messages from node i to node j (ij € 

Nodes), and let Msgs = U Msgs. . . We say that J. is a message-based algebra ~ ~ 
i ' j IJ 

l!filng Mw if the foJJowing arc true: 

a. I = Nodes U {buf}, where "buf' names the message buffer component 

b. ~ur = c:J(Msgs) (i.e. the message buffer is a set of messages). Let BUF = ~uf 

c. a.buf = fZJ (the message buffer is initially empty; thus no message can be 
received before it is sent). 

d. Let Comm = {send M: M € Msgs} U {receive M: M € Msgs} be the set of 
commu11ica1ions events. Then Comm ~ g_ If M € Msgsij' then orig(send M) = ~ 
orig(receive M) = buf: The originator of a send event is the source node for the 
message, and the originator of a receive event is the message buffer. (We regard the 
destination node for a message as passive in the communications process.) 
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e. If e E g - Comm, and i * orig( e ). then Ti( e) is the identity on Ii. Thus all "local" 
events (events not in Comm) must have only local effects. (Note that preconditions 
must be local by the definition of a distributed algebra). 

f. IfM E Msgsij' then Tk(send M) is the identity on Ik, fork'* buf,i. Ti(send M) 
~ {(a,a): a E Ii}. Thus although the sender of a message imposes a precondition 
on the sending of a message, the send has no effect on the sender's state. 

g. Tbu~scnd M) = {(b, b U {M}): b E BUF}. Thus the effect of a send event on 
the buffer is to add the message to the buffer. 

h. Tt(rcceive M) is the identity on Ik, fork* j,buf. Tj(receivc M)(a) * .. L Va E 
Ir Thus receipt of a message affects the state of the receiver, but the receiver 
cannot impose a precondition on receive events. (The originator of a receive event 
is the message buffer.) 

i. Tbu~receive M) = {(b,b): b E BUF I\ M E b}. Thus a receive ~vent for a 
message can occur whenever that message is in the buffer. A receive event has no 
effect on the state of the message buffer, however. (Messages are never removed). 

We stress that the message semantics we have chosen is not inherent in the distributed algebra 

framework; this semantics is simply convenient for describing our system. Our message-based model 

could be changed easily to provide for different communications semantics. For example, we could 

model a "reliable" communications system by making the message buffer an ordered list of messages, 

which only delivers messages from the head of the list and removes them upon delivery. 
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5. Proof Strategy 

In the fo11owing chapters we will specify several levels of an event-state algebra hierarchy; these 

algebras model a distributed transaction system. The algebras are presented in top-down order: the 

top-level algebra (Level 0) is the "most abstract," and the bottom-level algebra (Level 7) is the "most 

, concrete." At each level we specify the state, the initial state, the events, and the transition relation. At 

each level (except Level 0) we also specify a mapping from the new level to the previous (higher) level, 

and we show that this mapping is a possibilities map. 

Our goal is to show that the orphan detection strategy which we outlined in Chapter 1 

guarantees view-serializability. Thus our top-level model specifies our "correctness condition:" The 

Level 0 state is just the set of a)] action trees, and we define simple events to create, commit, and abort 

actions, and to perform an access. The only preconditions at Level 0 require that each state generated by 

any event be view-serializable. 

At Level I we add a data ordering to the state (thus states are now augmented action trees). We 

impose preconditions on events to restrict the reachable states to view-serializable AA T's. We define the 

set of aborts "depended on" by an action; as one of our preconditions we require that each state 

generated by any event satisfy condition ANC-ABORT -- no action can depend on an abort of one ofits 

ancestors. We then show that all reachable AA T's in Level I are view-serializ.ab]e. Thus the obvious 

mapping from Level I to Level 0 is a possibilities map. 

At Level 2 we remove the ANC-ABORT condition by adding a precondition to perform events. 

This precondition essentially states that an access should not see an abort dependency on an ancestor at 

the time it is performed. We show that the reachable states in Level 2 satisfy ANC-ABORT (using this 

new precondition); thus the obvious mapping from Level 2 to Level 1 is a possibilities map. We refer to 

this precondition as the "orphan detection" precondition. 

Levels 0 - 2 are global state algebras. in that we regard the transaction system as operating on a 

single global state. These levels can be thought of as "centralized" interpretations of the events in a 

distributed action system. Lower levels progressively "distribute" this global state and localize the 

preconditions and effects of events. 

At Level 3 we introduce "locations," which can be thought of as abstract nodes. F.ach action and 

each object has its own location. The information at a location consists of a (local) unlabeled action 
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summary, plus the datastep ordering from the AAT. We defin·e very simple "communications" events to 

transfer information to any location. We show that it is relatively simple to localize all preconditions 

except for the orphan detection precondition. The orphan detection condition must sti11 be expressed in 

terms of the global AAT. The implication of this result is that our communications steps at Level 3 do not 

include enough information to completely localize orphan detection. 

At Level 4 we introduce value maps -- a data structure which models the locks and versions of 

atomic objects. The Level 4 state consists of an AA T, a "local state" mapping from locations to UAS's, 

and a value map for each object. We regard the value map as a local data structure (conceptually each 

object has its own value map.) We replace some of the preconditions on perform events with 

preconditions on value maps, and we modify the transition effects of actions to update value maps 

appropriately. 

At Level 5 we succeed in localizing the orphan detection precondition by piggybacking abort 

information on the create and commit communications events. This abort information models the 

OONE lists of our simplified orphan detection algorithm. The key invariant proved for Level 5 states 

that each location always has "enough" abort information. 

Because all preconditions are localized at Level 5. the global AA T can be regarded as a "virtual" 

component of state. We project out this global state at Level 6, and we construct a trivial augmentation 

map between Level 6 and Level 5. Although the resulting algebra is "localized," it does not quite fit our 

definition of a "distributed" event-state algebra To define a distributed event-state algebra, we must 

assign "locations" (abstract nodes) to physical nodes. An additional complication results from the 

simplicity of our communications events at Levels 3 - 6: The transfer of information caused by these 

events is considered instantaneous at these levels. For a distributed event-state algebra we must model 

arbitrary communications delays. 

Level 7 presents a distributed event-state algebra. Many actions and objects can reside at a 

single node, and messages are sent asynchronously via a message buffer. In mapping from Level 7 to 

Level 6, we account for the communications delays in the message buffer by considering messages 

themselves to be abstract "locations." (One way to think of this device is to imagine that at Level 6 we 

can consider all communication events to be instantaneous, but all messages are seat via a third party. At 

Level 7, we "know" that this third party is really the memge buffer, but at Level 6 this ~1 is not 

necessary.) 
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6. Global State Models 

This chapter presents Levels 0 - 2 of the event-state algebra hierarchy. Level 0 describes our 

correctness condition: every action tree generated by the system must be view-serializable. Level 1 is a 

global state model based on AA Ts. Level 1 develops the crucial link between view-serializability and 

orphan detection: We define the "aborts dependency set" for an action in an AAT, and we require at 

Level I that no action can depend on an abort of one of its ancestors. Informally this condition, which 

we call ANC-ABORT, means that no action can "know" that it is an orphan. At Level 1 we show that the 

ANC-ABORT condition (along with other preconditions on events) implies view-scrializability. 

The ANC-ABORT condition is imposed at Level I by requiring that the next state generated by 

each event satisfy ANC-ABORT. At Level 2 we replace this restriction with a single precondition on data 

accesses, and we show that this precondition suffices to guarantee ANC-ABORT. 

We also make usc of an auxiliary algebra, which we call "Level A" (denoted La). Level A 

consists of Level I without the ANC-ABORT restriction. Thus Levels 1and2 are both logically "below" 

Level A. The advantage of using this auxiliary level is that we can easily construct a possibilities map 

from Level 2 to Level A; we will then usc Level A invariants in showing that there is a possibilities map 

from Level 2 to Level 1. 

We will usc the following distinguished symbols to define the initial states of the algebras: 

T 0 denotes the trivial AA T containing only vertex U with status 'active', and an empty data ordering: 

verticCSr = {U} 
0 

statu8r (U) = 'active' 
0 

labelT = f/J 
0 

dat&r ="' 0 

Ti= erase(To) (an action tree), and Tu= unlabel(Ti)(a UAS). 
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6.1 Level 0 Algebra 

The Level 0 state consists of a (global) action tree. The events at Level 0 are just those needed to 

create an action tree: we define events to create an action, commit and abort an action, and perform an 

access with a given value (this value gives the label of the datastep in the action tree). The only constraint 

on validity of an execution sequence at Level 0 is that the resulting action tree must be view-serializable. 

~0 ={create A, commit A, abort A, perfonn A,u} (see below). 

1:0 is the set of all action trees. 

a0 = Ti, the trivial action tree . 

.,. O' the transition relation, is specified below via preconditions and transition effects for each event: 

Let the current state be T. For each event, we give the transition function which maps T - Tl. The 

precondition for each event is a logically a condition on T, the current state, but we specify it as a 

condition on Tl. (Since T uniquely determines Tl, a condition on Tl maps directly into a condition on 

T.) The single precondition for each event requires that the next state (fl) be view-serializable. Let VSR 

denote the set {T: Tis a view·serializable action tree}. 

l.~.A (A € act - {U}) 

PRECONDmONS: 

a. Tl E VSR 

TRANSmONS: 

a verticCSr1 - verticCSr U {A} 

b. statuSr1(A) - 'active' 

2. commit.A (A € act - {U} - accesses) 

PRECONDITIONS: 
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a. Tl E VSR 

TRANSITIONS: 

a. statu511(A) +- 'committed' 

(A E act - {U}) 

PRECONDITIONS: 

a. Tl E VSR 

TRANSITIONS: 

a. statu511(A) +-'aborted' 

4. perform A.u (A E accesses(x), u E values(x)) 

PRECONDITIONS: 

a. Tl E VSR 

TRANSITIONS: 

a. statu511(A) +- 'committed' 

b. labeln(A) +- u 

The following lemma justifies our statement that LO defines our correctness condition, because 

an reachable states in LO are view-serializ.able action trees. 

Lemnia 6.1.1: Let TE ~0. Then T € VSR. 

Proof: Let T = Tiv, for some v € 'O· If v-:!: A, then T = T'e for some e E g0, T' E PREo(e), 

and by the VSR precondition for e, T E VSR. If v = A, then T = Ti which is trivially in 

VSR.I 
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6.2 Level I Algebra and Mapping h10 

The Level 1 state consists of a (global) AA T. The events are identical to those defined at Level 

0, but we modify the preconditions as we begin to specify in detail how the transaction system functions. 

g1 = g0 = {create A, commit A, abort A, perform A,u}. 

I 1 is the set of all augmented action trees. 

a 1 = T 0• the trivial AA T . 

., l' the transition relation, is specified below via preconditions and transition effects for each event 

We will define a condition, ANC-ABORT, on AATs, which essentially states that an action 

cannot know that it is an orphan. We include a precondition for each event in LI which requires that the 

next state generated by this event must satisfy ANC-ABORT. It wi11 follow trivially that ANC-ABORT is 

satisfied by all reachable states in Ll. 

6.2.J Aborts Dependencies and Condition ANC·ABORT 

We want to develop a condition which will rule out execution sequences in which orphans see 

"inconsistent" data. To devise a condition which can distinguish "bad" orphans from orphans which are 

not dangerous, we define the set of aborts upon which an action "depends." The ANC-ABORT 

condition simply states that an action cannot depend upon the abort of any of its ancestors. 

Informally, an action depends on any abort which allowed the action to proceed. Because of 

sequential dependencies, any abort of a sequentially preceding sibling is depended on by its following 

siblings and their descendants. A parent also depends on the aborts of any of its children. Any abort 

which "releases a Jock" on an object subsequently read by an action is depended upon by that action. 

Our Level I model does not have explicit "locks"; locks and versions are tepresentcd by the entire action 

tree. (Precondition Pl.4b below is essentialJy a "lock" condition which says that two actions (at any level) 

cannot interfere on the same object: one must either commit or abort before the other is allowed to 

proceed. Precondition PI.4c is essentially a "current version" condition which says that the current 

version seen by a datastep is the result of alJ preceding accesses which are visible to it) 
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An action also depends on all the aborts depended on by committed actions which might pass 

information to it (which for our purposes will be considered all the actions in its view set). Thus the 

aborts dependency set for an action is defined as the union over all actions in its view set of the 

"immediate aborts" preceding those actions. 

Defn 6.2.l .l: Let T be an AA T, A E vertic5r We define the fil2Qm depen<icncy ~ Qf A in 

I as follows: 

ABORIS!A) = Ui-preced51~B) 
B € vset,,<A) 

We define the set ANC-ABORT as the set of all AATs in which no action depends upon the 

abort of an ancestor: 

Defn 6.ll.2: ANC-ABORT = {I: VA E vertice8r, anc(A) n ABORTS.fA) = 0}. 

We also define a "sequential aborts set" which represents all the aborts upon which an action 

depends when it is first created. 

Defn 6.ll.3: Let I be an AAT, A E verticeS-r. We define the seauential ~dependency 

Kl Qf A in I as follows: 

SEO-ABORIS.fA) = i-anc-seq.fA) U LiABORTS..iB) 
BEv-an~Aj 

The following lemma relates the sequential aborts set of an action to the sequential aborts set of 

its parent: 

lemma 6.2.1.4: Let T be an AA I, and A E v~. If A :1: U, then 

SEQ-ABORJSfA) = SEQ-ABORIS.f parent( A)) U LiABORI5fB) U i-seqfA). 
Bt~A) 

And SEQ-ABORTSt<U) = 0. 

Proof: It is obvious that SEQ-ABORTSr<U> = 0. Take A :I: U. By definition of 

SEQ-ABORTS, 

SEQ-ABORJSfA) = i-anc-scq~A) U LiABORTS..JB). 
. B € v-anc-&eqfA) 
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But i-anc-seqr<A) = i·seqf A) U i-anc-seqt<Parent(A)), and v-anc·seqr<A) = v-seq1(A) U 

v-anc-seqt<J>arcnt(A)). Thus 

SEQ-ABORTSr<A) = i-seqt<A) U i-anc·seqr<parent(A)) U LiABORTSrCB) U 
BE v-seqfA) 

LJ ABORTS.,{B) . 
BE v-anc-seq1.{Jialent(A)) 

= SEQ·ABORTSr<parent(A)) U UABORTSr<B) U i-seqfA). I 
B € v-seQfA) 

The following lemma relates the flow of infonnation via view sets to the flow of abort 

infonnation via ABORTS sets: 

Lemma 6.2.1.S: Let T be an AAT, A € vertiCCf>p B € vseti{A), then 

Proof: ABORTSfA) = Ui-prccedcsfC} , while ABOR'fSrCB) = Ui-precedc;.(C) . 
C € vse"J'(A) C € vse!f B> 

But if BE vseyA), then vseyB) ~ vseyA) by Lemma 2.3.Ja. The lemma follows directly. 

I 

The definition of view sets as the closure under v·precedCSr allows us to write a recursive 

expr~ion for ABORTS.r: 

Lemma 6.2.1.6: Let T be an AAT, A € verticesy, then 

ABORTS,-(A) = i·precede8.i{A) U LiABORTS.1.(B) 
BE v·pr~A) 

Proof: vset,(A) = {A} U v-precedes;(A) 

=. {A} U Uvset,(B) 
B E v·pret:edesr(A) 

The Lemma foJlows directly. I 

Since action trees are always finite, we can use this recursive fonn in inductive proofs of 

properties of aborts sets if we show that tracing back the v·prccede&r relation will not result in cycles, i.e. 

that VA€ verticCSp A f v-precedes;(A). (Ifv-preccd~ were acyclic, then the induction might not be 

well-founded.) We will prove below that v·preccdt;- is acyclic for all reachable trees in La (and hence 
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for all reachable trees in LI). 

6.2.2 Specification of Event Preconditions and Transitions for L1 

Let the current state be T. For each event, we give the the transition function which maps T -+ 

' Tl. Preconditions are specified as a function ofT, except for the ANC-ABORT condition which requires 

that the next state be in ANC-ABORT. 

l.~A (A € act - {U}) 

PRECONDITIONS: 

a. A ( vcrticCSr 

b. parent(A) € activ~ 

c. (B,A) E seq, B * A ~ B E don~ 

d. Tl € ANC-ABORT 

TRANSITIONS: 

a vertices.r1 - vertices,. U {A} 

b. statuSr1(A) - 'active' 

2. commitA (A € act - {U} - accesses) 

PRECONDITIONS: 

a. A E activ~ 

b. childrent<A) t; donC-r 

c. Tl€ ANC-ABORT 

TRANSfflONS: 

a. statuSr1(A) +- 'committed' 
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3. fil2wlA (A' act - {U}) 

PRECONDITIONS: 

a. A E activC-r 

b. Tl E ANC-ABORT 

TRANSITIONS: 

a. statuSr1(A) +- 'aborted' 

4. perform A.l.l (A E accesscs(x), u E values(x)) 

PRECONDITIONS: 

b. BE datastcpSr(x) = B E visiblC-r(A,x) V B E dead,{A,x) 

c. u = result(x,s), where s = «visible.fA,x); dalay>> 

d. Tl E ANC-ABORT 

TRANSITIONS: 

a. statuSr1(A) +- 'committed' 

b. 1abc!r1(A) +- u 

c. data.r1 +- data.r U {(B,A): BE datastepSr(x)} U {(A,A)} 

6.2.3 Specification of Mappin& h10 

We define the mapping h10: Ll - l.D in the ~vious way. Our goal, of course, is to show that 

this mapping is a possibilities map. 

SlmMaDDin& 

E!mt Mappipg 



- 86 -

* h10: gl - go is the identity map on events. 

6.2.4 Proof Strategy for Showing h10 is a Possibilities Map 

We can show easily that h10 preserves initial states and transitions: 

Lemma 6.2.4.1: h10 preserves initial states. 

Proof: h10(T 0) = erase(T 0) = Ti, by definition. I 

Lemma 6.2.4.2: h10 preserves transitions. 

Proof: It is obvious by inspection that h10 preserves transitions, since transitions for all events 

arc identical at levels LO and Ll (except for transition Tl.4c, which involves the data ordering 

-- but dataT is projected out by the state mapping). I 

Showing that h10 preserves preconditions is more difficult. We use the following lemma to 

reduce this problem to a view-scrializability condition on reachable states in Ll: 

Lemma 6.2.4.3: Suppose that for all T E ~1 • T is view-serializable. lben h10 preserves 

preconditions. 

Proof: To show that h10 preserves preconditions, we must show that 

But the only precondition at Level 0 is that the next state must be in VSR. Thus 

h10(T) E PRE0(h10(c)) - h10("f)h10(e) E VSR. 

Since h preserves transitions, h10(T)h10(c) = h10(Tc) = erasc(Tc). Thus we must show that 

erasc(Te) E VSR. Since vicw-scrializability of AATs is defined to be view-scrializability of 

the corresponding action tree, we must show that 

TE PRE1(e) n ~1 • erasc(T) E ~o == Tc is view-serializable. 

But TE PRE1(e) n ~1 == Te E '!t1. 'Illus it suffices to show that all reachable states in LI 

are view-scrializable. I 
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View-scrializability of reachable states is thus our main theorem for U, which will imply that 

h
10 

preserves preconditions (and is thus a possibilities map). We state this theorem here, although its 

proof will be given in several stages: 

Theorem 6.2.4.4: Let TE <];,1. Then Tis vicw-scrializable. 

The proof of this theorem consists of showing that for each action A E verticcsT' vtrccT(/\) is a 

scrializable view tree for /\. The proof that S = vtrceiA) is a scrializable view tree is given in three 

subordinate lemmas which show that (1) Sis a view tree for A in T, (2) Sis version-compatible, and (3) 

there arc no cycles (of length 2 or greater) in scqs U sibling-datas. By Theorem 2.5.1, it follows that S is a 

scrializable view tree for /\. We state these lemmas here, although the proofs are deferred to later 

sections. 

Lemma 6.2.4.5: Let T E <];,l' let/\ E vcrticcsl' and let S = vtrecT(/\). Then S is a view tree 

for A in T. 

Lemma 6.2.4.6: Let T E <];,1, let A E vcrtices.f' and Jet S = vtreeT(/\). Then S is 

version-compatible. 

Lemma 6.2.4.7: Let T E <];,1, let A E verticeSi-, and Jct S 

sibling-datas has no cycles of length two or greater. 

6.3 Auxiliary Algebra La 

We define an "auxiliary" event-state algebra, La. (La is "auxiliary" because it is not part of our 

main event-state algebra hierarchy.) La is identical to Ll, except that the ANC-A BORT preconditions on 

events (preconditions Pl.Id. Pl.2c, Pl.3b, and Pl.4d) arc omitted. 

We define the trivial mapping h18: LI - La as the identity map on states and events. 

Theorem 6.3.1: h18 is a possibilities map. 

Proof: Since initial states are identical in Ll and La. and h18 is the identity on states, hla 
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preserves initial states .. Since all transitions and preconditions in Lcvcl l also appear at I ,evcl 

A. h
13 

must preserve transitions and preconditions. Thus h13 is a possibilities map, by Lemma 

4.2.2.6. I 

Since this mapping fixes T (it must fix T since T is the entire state), we will show that all invariants (and 

pair-invariants) for La arc imariant (or pair-invariant) for Ll. 

We prove below several basic lemmas for algebra La. We will then apply these results to the 

proofs of Lemmas 6.2.4.5, 6.2.4.6, and 6.2.4.7. 

The advantage of defining I .a is that we will also construct a trivial possibilities map between 

algebra L2 and algebra La. We will thus be able to apply Level /\ imariants directly to Level 2, and we 

will use these invariants to show that h21 (defined below) is a possibilities map. 

6.3.1 Basic Lemmas for La 

6.3.1.1 lnrnriants and Pair·lmariants for La 

Lemma 6.3.1.1.1: Let (T,Tl) E ~~21, and let/\ E vcrticcsr 'Jhcn the following arc true: 

a. verticc5r ~ vcrticcsTl, committcdT ~ committcdll' abortcdT ~ abortedr1, 

datar ~ daUr1 

b. If A E datastcpsr then labc\(A) = labeln(A) 

c. If A E datastcp5r and (B,A) E datan, then (B,A) E dalar 

d. visible/A)~ visiblcn(A) 

f. If A is live in Tl, then A is live in T 

g. If A is dead in T, then A is dead in Tl and {crucialn(A)} < {crucialT(A)} 

h. v-anc-scqn(A) = v-anc-scqiA), i-anc-scqn(A) = i-anc·seqf A) 

Proof: Straightforward. I 

Lemma 6.3.1.1.2: Let TE ~a· Then the following invariants hold: 
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a. Tis an AAT, i.e. A E vcrticesT = parent(A) E vertice5r 

b. If A E verticesT and (B,A) E seq and B '* A, then BE done,-

c. lf A E verticesT and parent(A) E committed!"' then A E doneT 

d. U E activeT 

e. lf (B,A) E datal' then BE visiblc1(A) V BE dead,{A) 

f. lf A E committed1 and B E desc(A) n verticesT' then. B E visiblc1{A) V BE 

dead,.(A) 

g. lf(B,A) E i-datar then crucialiB) is defined, and crncialT(B) E dcsc(A!B) 

Proof: All are obvious except for (r) and (f) ((g) follows directly from (e)): 

e) If 13 = A then the result is immediate. If B * A, then 

Let T = T0v, where v E 'fj_ can be written as cpwif;, with w = perform A,u. 

Let Tl = T0cp, and let T2 = T0cpw. 

By Lemma 6.3.l.l.lc, (B,A) E datan = B E datastepsn(x). By precondition Pa.4b for 

perform, BE visiblen(A.x) V BE dea<l,.1(A,x). 

BE visiblen(A,x) = BE visiblcT(A,x) (by Lemma 6.3.1.1.ld), = BE visiblC-i{A). 

BE dca~1(A,x) = BE dcadT(A,x) (by Lemma 6.3.1.1.le), = B E deadr(A). 

f) If B = A, then the result is immediate. So assume B E prop-dcsc(A}, and assume B * 
visiblC-i{A). Let C E prop-dcsc(A) n anc(B) be the highest ancestor of B which is not 

committed. lbcn parent(C) E committedi- = CE doneT (by Lemma 6.3.l.l.2c). But C ( 

committed-r by assumption = C E aborted-r. I 

Lemma 6.3.1.1.3: Let ff.Tl) E <Ji~2 >, and let A E committed, .. Then the following are true: 

a. childrenTI(A) = childrenfA) 
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b. v-childn(A) = v·childT(A), i-childn(A) = i-childiA) 

c. v·datan(A) = v-data.1~A), i-datan(A) = i-datar<A), 

v-data-ancn(A) = v-data-anc
1
{A) 

d. i-data-ancn(A) ~ i-data-ancr<A) 

e. v-precedesn(A) = v-precedcs-r<A), vsetr1(A) = vsetr(J\) 

f. i-precedes.n<J\) ~ i-precedes.r<A) 

Proof: 

a) Clearly children-rCA> ~ chi1drenT(A). Suppose D E childrcnn(A) - childreniA). (We 

can assume A ~accesses.) 

Let Tl = T0v, where v E ~can be written as cpwt/Jpy, with .,, = commit A, p = create B. 

Let T2 = T0q>wi/J. 

Then J\ E committedi-2. But precondition Pa.I b requires that A E activeT2. a contradiction. 

b) Follows directly from (a) and I .cmma 6.3.1.l.ld 

c) Because any datastep which occurs after perform A,u must follow A in the data ordering, 

v-datan(A) U i·datan(A) = v-datar(A) U i·data1{A). But i-dalai{A) ~ deadr(A) by 

Lemma 6.3.l.l.2e, and deadi{A) ~ dcadn(A) by Lemma 6.3.1.l.le. Thus i-dalar(A) ~ 

i-datar1(A). 

Bue v-data.r(A) ~ v-dacan(A) by Lemma 6.3.1.1.ld. It follow directly that v-datc;.(A) = 

v-data.r1(A), and i·dalai.(A) = i-datan(A}. Equality of v-data directly implies equality of 

v-data·anc. 

d) Follows directly from (c) and Lemma 6.3.1.1.lg 

e) Equality of v·precede5.r1(A) and v-precedc&r<A) follows directly from parts (b) and (c) 

and from Lemma 6.3.l.l.lh. To show that vsctr1(A) = vset.r<A). we can argue inductively 

since BE v-prccedCS-r(A) == BE committcdr by Lemma 2.3.2. 

t) FoJlows directly from parts (b} and (d) and from Lemma 6.3.1.1.lh. I 



- 91-

Lemma 6.3.1.1.4: Let '.f E ~a' A E committedi-. Then i-prccede51{A) ~ abortedi-. 

Proof: Let B E i-precedes.r<A). 

B E i-anc-seqT = B E doneT by Lemma 6.3.l.l.2b, = B E abortedi- (since B f. 

visiblcT(A)). 

B E i-chilcli- = B E doneT by Lemma 6.3.l.l.2c, = B E abortedi- (since B ( 

visible\( A)). 

B E i-data-ancT = B = crucialT(b), for b E i-datafA). By Lemma 6.3.l.l.2g, B is 

defined, = B E abortcdi-. I 

6.3.1.2 Event Orderings in La 

This section presents some constraints on the ordering of events in valid execution sequences for 

La. In the following lemmas (and in the proofs that follow) we will simplify our notation by referring to 

both "perform A,u" events and "commit A" events as "commit A." This convention causes no 

complications; it requires only that we realize that events written as "commit A" might refer to datasteps. 

temma 6.3.1.2.1: Let v E ~be a valid execution sequence from La, then -: is acyclic -- i.e., 

no event can be repeated in a valid execution sequence. 

Proof: Suppose event e could be repeated in a valid execution, v, i.e. v = a•e•b•e•c E 'r.· 
Let Tl= T0ae, T2 = T0aeb. By Lemma6.3.l.1.l, 

e = create A = A E vertice&r2• 

e = commit A = A E committedi-2. 

e = abort A = A E abortedn. 

But by the preconditions for events, 

e = create A requires A ( verticeSn (Pa.la). 

e = commit A requires A E activCi-2 (Pa.2a and Pa.4a). 

e = abort A requires A E activCri (Pa.3a). 

Thus no event can be repeated. I 
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Lemma 6.3.1.2.2: Let v E ~· T =To'" A E committedp then 

create A -: commit A 

Proof: v can be written as q>'IT'I/;, with .,, = commit A. 

Let Tl= T0q>. 

Precondition Pa.2a (or Pa.4a if A E accesses) requires A E activ<!-ri• 

= create A E 'J', 

= create A - commit A. I v 

Lemma 6.3.1.2.3: Let v E ~· T = T0v, /\ E abortedp then 

create A -: abort A 

Proof: Similar to the proofof 6.3.1.2.2 above. I 

Lemma 6.3.1.2.4: Let v E ~· T = T0v, (D,A} E dataf' B '*A. then 

commit B -: commit A 

Proof: v can be written as q>'IT'I/;, with.,, = commit A ( = perfonn A,u). 

Let Tl = T0cp, and let T2 = T0cpw. 

By Lemma 6.3.1.1.lc, CB.A) E daf.au. 

= B E committedrl' 

= commit B -: .,, ( = commit A). I 

Lemma 6.3.1.2.5: Let v Et;. T = T0v. A E datasteps, .. BE v-datcy:A). then 

commit AlB -: commit A 

Proof: A E datastepsT = commit A Ev. 

Thus v can be written as 'J'flt/I, with " = commit A ( = perform A,u}. 

Let Tl = T0'J', and Jct T2 = Tof"· 
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By Lemma 6.3.1.1.lc, (B,A) E data.1'2" 

By Lemma 6.3.l.l.2e. BE visible.n(A) V BE deadn(A). 

If BE deaddA) then BE deadr(A). = B ( visiblcT(A). a contradiction. 

Thus BE visible,.2(A). 

= ALB E committedf2, 

= commit ALB E fJ>, 

= commit ALB --: commit A. I 

Lemma 6.3.1.2.6: Let v E ~· T = T0v, A E verticesT' A' E prop-anc(A) - {U}, then 

create A· --: create A 

Proof: A E verticeS-i- = create A E v. 

Thus v can be written as qnn/;, with w = create A. 

Let Tl = T0rp. and let T2 = T 0cpw. 

By precondition Pa.lb. parent(!\) E activen, 

= create parent( A) --: create A (unless parent(A) = {U}). 

The Lemma follows by an obvious induction. I 

Lemma 6.3.1.2.7: Let v E ~· T = T0v, A E verticesT' BE v-anc-seqr<A), then 

commit B --: create A 

Proof: A E verticCSr = create A Ev. 

BE v-anc-seqr<A) = 3A' E anc(A}: (B,A') E seq. 

By Lemma 6.3.1.2.6, create A· --: •create A. 

v can be written as fi"'.lf· with w = create A'. 

Let Tl = T 0rp, and let T2 = T 0cpw. 
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Ily precondition Pa.Ic,.n E donen, 

= commit A -> create A' - • create A. I v v 

Lemma 6.3.1.2.8: Let v E ~· T = T0v. A E verticesr Il E i-anc-seq1{A), then 

abort B -: create A 

Proof: Similar to the proof of Lemma 6.3.l.2.7 above. I 

Lemma 6.3.1.2.9: I.ct "E ~· T = T0v. A E committedr BE v-prop-descT(A). then 

commit B -: commit A 

Proof: A E committed1 = commit/\ E v. Note that since A has a proper descendant, A E 

accesses. Assume that B E v-childr(A); the Lemma follows from this case by an obvious 

induction. 

v can be written as fl!'IT.r. with w = commit A. 

LetTl = T0fP,andlctl1 = T0cpw. 

But B cannot be created after A has committed. so B E vertices.fl' 

By precondition Pa.2b, B E donen, 

= commit B E cp, 

= commit B -: commit A. I 

Lemma 6.3.1.2.10: Let v E ~· T = T0v, A E committedf' BE i-childrCA), then 

abort B -: commit A 

Proof: Similar to the proof of Lemma 6.3.1.2.9 above. I 

Lemma 6.3.1.lll: Let v Et;.. T = T0v, A,B E committe<ip BE v-precedes;(A), then 

commit B -: commit A 
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Proof: We show CE v-prccedes.r(B) = commit C -: commit B. The Lemma follows by 

an obvious induction. 

C E v-precedes.r(B) = 
CE v-anc-seq1(B) V CE v-chil<YB) V CE v-data-anc1(B). 

If CE v-anc-seqT(Jl), then 

commit C -: create B by Lemma 6.3.1.2.7. 

But create B -: commit B by Lemma 6.3.1.2.2, 

= commit C -: commit B. 

If CE v-childT(B). then 

commit C -: commit B by Lemma 6.3.1.2.9. 

lfC E v-data-anc1(B). then 

C = Blc, where c E v-dara,,(B), 

= commit C -: commit B by Lemma 6.3.1.2.5. I 

Lc1mna 6.3.1.2.12: Let v E it;_. T = T0v, A,B E committedr. BE vset~(A), then 

commit B -: • commit A 

Proof: Immediate corollary of Lemma 6.3.1.2.11. I 

Lemma 6.3.1.2.13: Let v E it;_. T = T0v, A E committedr. BE i·precedes.y.(A), then 

create B -: commit A 

Proof: B E i-prccedCSr(A) = 
B E i-anc-seq1(A) V B E i-childf A) V BE i-data-anct<A). 

lfB E i-anc-scqt<A), then abort B -: create A by Lemma 6.3.1.2.8, and 

create B -: abort B, create A -: commit A, 

=> create B -: commit A. 
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If B E i-childr'A), then abort B -: commit A by Lemma 6.3.1.2.10, and create B -: 

abort B, 

= create B -: commit A. 

lfB E i-data-anciA}, then B = crucia11 (B') for some (B',A) E dalar. Thus BE desc(B'). 

But by Lemma 6.3.1.2.4, commit B' -: commit A, and by Lemma 6.3.1.2.6, create B -: 

create B' -: commit B' 

= create B -: commit A. I 

Lemma 6.3.1.2.14: Let v E ~· T = T0v, A,B E committedp B E vseyA), C E 

i-precedc~-(B), then 

create B -: commit A 

Proof: Immediate corollary of Lemmas 6.3.1.2.12 and 6.3.1.2.13. I 

6.3.2 Ycrsion-Compatibility in La 

Lemma 6.2.4.6 states that if T is a reachable AAT in LI, and A E vertices.f' then vtreCi..(A) is 

version-compatible. In this section we develop two lemmas which will be used in the proof of Lemma 

6.2.4.6. First we show that if T is any AA T which is ver5ion-compatible, then any restriction of T to a 

v-dalar-closed set is also version-compatible. We then show that any reachable tree in La is 

version-compatible. We will show in a later section that for any reachable tree, T, in Ll, vtrec.r<A) is a 

(backed up) restriction ofT to a v-dataT-closed set, which will complete the proof of Lemma 6.2.4.6. 

Lemma 6.3.2.1: Let T be an AA T, V ~ vertice5r, where V is anc-closcd and v-dalar-closcd. 

If Tis version-compatible, then TIV is version-compatible. 

Proof: Let S = TIV. Note that Sis an AAT since Vis anc-closcd. Let A E datastepSg(x). 

We must show that labels(A} = result(x,r), where r = «v-datas(A); dafas». 

By definition, labels(A) = label.r.(A). 

But T is version-compatible, 
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Thus it suffices to show r = r'. But datas ~ datar; thus it suffices to show set equality. It is 

obvious that r ~ r'. 

So suppose B E r', B * A, 

= BE visibleT(A) /\ (B,A) E datar, 

= BEV, since Vis v-datar·closcd and A EV, 

= BE visiblcs(A) /\ (B.A) E datas (since Vis anc-closed}, 

= BE r. I 

Lemma 6.3.2.2: Let TE ~a· Then Tis version-compatible. 

Proof: Let A E datasteps.l'(x). We must show that u ( = labelr(A)) = result(x,s), where s = 
«v·datar(A); datar»· 

Let T = T0v. where v E ~can be written as cpwlf, with w = perform A,u. 

LetTl = T0cp,andletT2 = T0cpw. 

By precondition Pa.4c, u = result(x,s'), where s' ::::: «visiblcn(A,x): datar1». 

Thus it suffices to shows = s', and since datar1 ~ datar it suffices to show set equality. 

First, Jct B E s. 

(B,A) E datar but A E datastcp8r2 = (B.A) E datar2• 

= B E datastep8r2, 

= B E datastep8r1(x). 

By precondition Pa.4b, BE datastepsn(x) = BE visiblc.nCA.x} V BE dcadn(A,x). 

But if BE deadi}A.x), then BE dead.1{A,x) by Lemma 6.3.1.1.le, 

= B ( visiblciA}. which is a contradiction. 

lbus BE visib1Cr1(A,x), =BE s'. 

Conversely, suppose BE s'. We know B * A since A ( datastCP8ri· 
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(B,A) E dataT2 = (B,A) E datar. 

BE visiblen(A,x) = BE visiblcT(A,x), = BE s. I 

6.3.3 Properties of Aborts Sets in La 

In this section we present some properties of aborts sets for reachable trees in La. The first 

lemma is not strictly a property of aborts sets, but it justifies use of the recursive form of ABORTS in 

inductive proofs. so we include it here. 

Lemma 6.3.3.1: Let TE ~a· A E vertices.I'" Then A ( v-prcccdes~(A). 

Proof: Let T = T0v for some v E ~- Suppose A E v-prccedes~(A). 

By Lemma 6.3.1.2.11, A E committedf' and 

commit A 7 commit A. 

But 7 is acyclic for v E ~· so this is impossible. I 

Lemma 6.3.3.2: Let TE ':Ai
3

, A E committedi., (A,B) E seq, A'* B, then 

ABORTSiA) n desc(B) = 0 

Proof: Let T = T0 v. for some v E ..-;_. 

ABORTST(A) = Ui-prccedes.r<C> . 
CE vset,r<A) 

Let D E i-precedcs.r<C), for some C E vseyA). We show D ( desc(B). Since A E 

committcd.r, create D 7 commit A, by Lemma 6.3.1.2.14. 

But if DE desc(B), then commit A 7 create D, by Lemma 6.3.1.2.7. But ~ must be 

acyclic, so we have a contradiction. I 

Lemma 6.3.3.3: Let (T,Tl) E ~!2>. and let A E committcdf' Then 

Proof: ABORTSTI(A) = Ui-prccedcs.n(B) 
BE vsct,n(A) 
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By Lemma 6.3.1.lJe, vsetriA> = vsetr(A) 

= ABORTSn(J\) = Ui-precedeS-r1(B) 
BE vseyA) 

But A E committedr, and v-prccedcs~-(A) ~ committedr by Lemma 2.3.2, 

= vsetr(J\) ~ committed1 by definition ofvsef-r. 

But B E committedr = i-precedesTl(n) < i-precedes..r(B), by Lemma 6.3.1.lJf, 

= ABORTSTl(A) < Ui-prcccdes..r(B) (using Lemma 2.2.1.1), 
BE vsct.fA) 

= ABORTSn(A) :5; ABORTST(A). I 

Lemma 6.3.3.4: Let (T,Tl) E GJi~2>. and let A E verticeS-r. 'lben 

SEQ-ABORTSnCA) :5; SEQ-ABORTS.rCA) 

Proof: SEQ-ABORTSn(A) = i-anc-seqn(A) U UABORTST1(B) 
B E v·anc·scqn(~) 

= i-anc-scqT(A) U UABORTSn(B) , by Lemma 6.3.1.1.lh. 
B E v·anc-seq'I~AJ 

But BE v-anc-scq-r<A) = BE committe~. 

= ABORTSn(B) < ADORTSr(ll), by Lemma 6.3.3.3. 

The lemma follows directly using Lemma 2.2.1.1. I 

6.4 Proof of Possibilities Map for h10 

We now return to the task of showing that h10 is a possibilities map. First we must prove 

Lemmas 6.2.4.5, 6.2.4.6, and 6.2.4.7. 

We first state an obvious lemma for Ll: all reachable AA Ts arc in ANC-ABORT. 

Lemma 6.4.1: Let TE ~1 . Then TE ANC-ABORT. 

Proof: Let T = T0v, for some v E fj. lfv *A, then T = Te for some e € S1, TE PRE1(e), 

and by the ANC-ABORT precondition fore, TE ANC-ABORT. If v = A, then T = T0 

which is trivially in ANC-ABORT. I 
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We will use this ANC-J\BORT property, together with results from La, to prove Lemmas 

6.2.4.5, 6.2.4.6, and 6.2.4.7. 

Let Ia denote the property of T which is the conjunction of the properties stated in Lemmas 6.3.1.1.2, 

6.3.1.1.4, 6.3.2.2, 6.3.3.l, and 6.3.3.2. (Recall that all invariant abbreviations arc cross-referenced to 

1cmmas in Appendix I.) 

Let Ja denote the pair-property of T which is the conjunction of the pair-properties stated in Lemmas 

6.3.1.1.1, 6.3.1.1.3, 6.3.3.3, and 6.3.3.4. 

Lemma 6.4.2: Ia is invariant in Ll, and Ja is pair-invariant in Ll. 

Proof: h
13 

is a possibilities map by ·n1eorcm 6.3.l. Rut h
13 

fixes T. Since Ia is invariant for T 

in La, Ia is invariant for T in Ll by Lemma 4.2.4.3.5. Similarly since Ja is pair-invariant for 

Tin La, Ja is pair-invariant for Tin LI, by Lemma 4.2.4.3.5. I 

Let Sa denote the property of event sequences which is the conjunction of the properties stated in 

Lemmas 6.3.1.2.l through 6.3.1.2.14. 

Lcnuna 6.4.3: Let v E fi. Then Sa holds for v. 

Proof: Since h
13 

is a possibilities map, it is a valid interpretation, by Lemma 4.2.2.5. Thus 

h
13

(v) E r;.. But h
13 

is the identity map on events, so h
13

(v) = v. Since Sa holds for a11 event 

sequences in r;.. Sa holds for v. I 

Now we prove a preliminary lemma for Ll, which shows that tracing back the visible precedence relation 

from any action cannot lead to an ancestor of that action. 

Lemma 6.4.4: I.ct TE ~1• and let A E verticcsr Then anc(A) n v-precedcs;(A) = 0. 

Proof: Suppose BE anc(A) n v-precedcs~(A). 

By Lemma 2.3.2, B E v-precedes;(A) = B E committedr By Lemma 6.3.l.l.2f. A E 

desc(B) = A E visiblcf B), or A E dcadr(B). 

If A E visiblc.r(B), then by Lemma 6.3.1.2.9, 
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commit A -: • commit B. 

But B E v-precedes~(J\), A E committedr = commit B -: commit A, by Lemma 

6.3.1.2.11, a contradiction. 

If A E dead1(B), then let C be the lowest (in ancestor order) action in anc(A) n v·deSCr(B). 

Clearly C E vset-rCB) = C E vsetr(A), by Lemma 2.3.3a. A E prop-desc(C) since A ( 

visiblc1(B). Let D = ClA. 

But D ( committedr, since otherwise D would be visible to B, contradicting our choice of C 

as the lowest visible descendant of B which is an ancestor of A. 

= DE abortedr (by Lemma 6.3.l.l.2c), 

= DE i-childr(C) = DE ABORTST(C). 

But CE vsetr(A) = ABORTST(C) ~ ABORTS1(A), by Lemma 6.2.1.S, 

= DE ABORTS1{A). 

But DE anc(A). which contradicts TE ANC·ABORT. I 

6.4.1 Proof of Lemma 6.2.4.S 

Let TE ~1• A E vertice5r. Let S = vtree1~A). By Lemma 6.4.4, anc(A) n v·precedesi(A) = 0, 

= prop-anc(A) n vsctr(A) = 0 (since vsetr(A) = v-precedes~(A) U {A}), 

= S is a view tree for A in T. by Lemma 3.5.2. I 

6.4.2 Proof of Lemma 6.2.4.6 

Let TE ~l' A E verticeSr. Let S = vtrefr(A). By Lemma 6.3.2.2. Tis version-compatible. 

Let W = vset,-(A) U prop-anc(A). By Lemmas 6.4.4 and 3.5.2, vtrefr(A) = (TjW)// A. W is 

v·datar·closcd by Lemma 2.3.3c. By Lemma 6.3.2.1, TIW is version-compatible. But since backing up 

proper ancestors of A to active status cannot affect the labels of ace~ of S, S is version-compatible. 

I 
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6.4.3 Proof of Lemma 6.2.4. 7 

Let T E l!l.1, A E vertices,.. 

We show that if S = vtrccr<A). then scqs U sibling·datas is acyclic. Let V = vsetr(A). W = vsctr(A) U 

prop-anc(A). By Lemmas 6.4.4 and 3.5.2, S = (TIW)// A. Thus datas ~ datap scqs ~ scqr The proof 

will be by contradiction: 

Let (A1, Ar·· An) be a cycle in scqs U sibling-datas (with n > 2). 

then CA1, A2, ... , An) is a cycle in scqT U sibling-dataf' and Ai E W. 

Let P be the common parent of {Ai}. 

We will use the convention that subscripts are taken modulo n, i.e. we regard An+ 1 = A1. 

First we prove a preliminary lemma: 

Lemma 6.4.3.1: If A ( dcsc(Ai) U desc(i\+ 1). then Ai E v-precedes~(Ai+l). 

Proof: We show Ai E vsctr(Ai + 1). Since Ai *- Ai+ l' the Lemma follows directly. 

(Ai, Ai+ 1> E scqs 

= (Ai, Ai+ 1) E scqT, and Ai, Ai+ 1 E visiblcrCA) (since verticess ~ visib1¥A).) 

But A ( dcsc(Ai) U dcsc(Ai+l) = Ai' Ai+l E visib1¥P), 

= '\ E v-seqrCAi+l), 

= A. E vscLiA. 1). 
I J' I+ 

(Ai, Ai+ 1) E sibling-datag 

= 3ai E dcsc(Ai), ai+l E dcsc(Ai+l): (ai, ai+l) E dataf' and ai' ai+l E visiblerCA)(since 

venicess ~ visiblc.r<A).) 

But A ( dcsc(\) U dcsc(Ai+l> = ai, ai+l E visib1¥P), 

= ai E visibJCi~ai+l>' = ai E v-dalar(ai+l), 

= Ai E v-data-ancr<ai+l). = Ai E vseyai+l). 

But ai + 1 E visib1¥P) 

= ai+l E v-deSCr(A.f+l), = ai+I E vselr(Ai+l>' 

= Ai E vsetr<Ai+l). I 
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Proof of Lemma 6.2.4. 7 (continued): 

Suppose that A ( dcsc(\) 'ii; then by Lemma 6.4.3.1. Ai E v-prcccdes;.(Ai+l> 'ii, 

= Ai E v-preccdcs~(t\) (since the Ai form a cyc1e), which contradicts Lemma 6.3.3.1. 

Thus A E desc(Ai), for some i. Assume without loss of generality that A E desc(An). 

Since n ~ 2, A1 * An. But A1 E vcrticess, and A1 ( anc(A), 

= A1 E vprecedcs~(A). 

A1 E vprcccdcs~(A) 

= ABORTST(A1) ~ ABORTST(A), by Lemma 6.2.1.5. 

Since (Ai.Ai+ 1) E scqs U sibling-datas· we have two following cases: 

1. (An,A1) E scqs 

2. (An.Al) E sibling-dat.as 

Case 1: (An,A1) E seq = i\ E doneT' by Lemma 6.3.l.l.2b. 

If An E abortedr, then An E i-anc-seqT(A1), = An E ABORTS1~A1), 
= An E ABORTS.-( A), which contradicts TE ANC-AOORT. 

If An E committcdi·· then An E v·anc·scqT(A1), = An E v·preccdCS-i.(A1), 

= An E v-preccdcs~(A). which contradicts Lemma 6.4.4. 

Case 2: (An,A1) E sibling·datas 

= 3bn E dcsc(An), b1 E dcsc(A1): (bn, b1) E data.y.. 

b1 E visible1~A) = b1 E visiblciP), = b1 E v·descT(A1), = b1 E vsct1{A1), 

= b1 E v-preccdes~(A), 

= ABORTS1(b1) ~ ABORTS1~A). 

Case 2a: bn E visibl<;-(b1), 

= bn E v·datai~b 1 ). = An E v·data·ancfb1), = An E v·prcccdeSi-(b1), 

= An E v·prcccdes~(A), contradicting Lemma 6.4.4. 
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Case 2b: b
8 
f visib1Ci.(b1) · 

= b
8 

E i·datyb1) (See Fig. 6.1.) 

Let B = crucial.1.(b8
). By Lemma 6.3.l.l.2g, B is defined, and B E desc(A

0
). 

BE i·data·anci.<b1) = BE ABORTS-r<b1). = BE ABORTS-r<A). 

But BE anc(A), since b
8 

E visible'I{A), contradicting TE ANC·AOORT. I 

6.4.4 Proof that h10 is a Possibilities Map 

We now have all the facts needed to show that h10 is a possibilities map: 

Theorem 6.4.4.1: h10 is a possibilities map. 

Proof: h10 preserves initial states by Lemma 6.2.4.1. h10 preserves transitions by Lemma 

62.4.2. We have proven Lemmas 6.2.4.5, 6.2.4.6, and 6.2.4.7; thus every reachable state in Ll 

is view·scrializable (Theorem 6.2.4.4). Thus h10 preserves preconditions by Lemma 6.2.4.3. 

By Lemma 4.2.2.6, h10 is a possibilities map. I 

Fig. 6.1. Case 2b, Lemma 6.2.4. 7 
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6.S Level 2 Algebra and Mapping h21 

At Level 2 we replace the ANC-AOORT condition with a precondition on perform events. 

Otherwise everything in Level 2 is identical to Level 1. 

S2 = S1 ={create A, commit A, abort A, perfonn A,u}. 

I 2 = Il' the set of all augmented action trees. 

T2, the transition relation, is obtained by deleting the ANC-ABORT preconditions Pl.Id, Pl.2c, Pl.3b, 

and Pl.4d, and by inserting a new precondition for perform events: 

(P2.4d) B € visibl;-(A.x) =t anc(A) n ABORTSr<A!B) = flJ 

U: 

We define the trivial mapping h2a: L2 - La as the identity map on states and events. 

Theorem 6.5.1: h2a is a possibilities map. 

Proof: BCcause the ANC-ABORT conditions do not appear in algebra La. every precondition 

at Level A also appears at Level 2 (in addition, Level 2 has precondition P2.4d). Thus h2a 

preserves preconditions. A11 transitions are identical in La and L2; thus h21 preserves 

transitions. Initial states are identical in L2 and La; thus h21 preserves initial states. By 

Lemma 4.2.2.6, h21 is a possibilities map. I 

Since h21 .fixes T. all invariants (and pair-invariants) for La are invariant (or pair-invariant) for 

Lemma 6.5.2: la is invariant in L2. and Ja is pair-invariant in L2. 

Proof: Since h.2a is a possibilities map which fixes T. and la is invariant for T in La, la is 

invariant for T in L2 by Lemma 4.2.4.3.5. Similarly since Ja is pair-invariant for T in La. Ja 

is pair-invariant for T in L2, by Lemma 4.2.4.3.5. I 
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6.5.1 Specification of Mapping h21 

We define the trivial mapping h21: L2 - L1 as the identity map on states and events. We must 

show that this mapping is a possibilities map. 

Lemma 6.5.1.1: h21 preserves initial states. 

Proof: Trivial, since a2 = Ur I 

Lemma 6.5.1.2: h21 preserves transitions. 

Proof: Trivial, since att transitions are identical in U and Ll. I 

We must also show that h21 preserves preconditions. We use the following lemma to reduce this 

problem to the ANC-ABORT condition on reachable states in U: 

Lemma 6.S.1.3: Suppose that for all T E ~2• T € ANC-ABORT. Then h21 preserves 

preconditions. 

Proof: It is obvious that h21 preserves all preconditions except for the ANC-ABORT 

conditions, since all other preconditions appear at Level 2. We must verify that the 

ANC-ABORT conditions hold; these conditions state that the next state is in ANC-ABORT, 

i.e. 

But h21(T)h21(e) is just Te, since h21 is the identity mapping. Thus we will must show 

TE PRP.i(e) n ~2• h21(T) E ~1 =- Te E ANC-ABORT. 

But TE PREi(e) n S 2 ,... Te E ~2. Thus it suffices to show that all reachable states in U 

are in ANC·ABORT. I 

Our main result for L2 is thus that all reachable states are in ANC-ABORT, which will imply 

that h21 preserves preconditions (and is thus a posibilities map): 
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Lenuna 6.5.1.4: Let T € ~2. Then TE ANC-ABORT. 

Proof: Take A E verticCSr. We show anc(A) n ABORTSt<A) = IZJ. 

The proof uses induction based on the recursive fonn of ABORTS: 

ABORTS,~A)::: i-preccdcyA) U LiABORTS.r(B) 
B t v-precedesy(A) 

Rcca11 that by Lemma 6.5.2, we can use any results from Ia or Ja since we have shown that 

these properties are invariant n L2. 

Thus Lemma 6.3.3.l (in la) justifies the use of the inductive proof method. 

Assume the Lemma holds for all B E v-prccedcyA): anc(B) n ABORTSt<B) = IZJ. 

First we show i-precedestA) n anc(A) = IZJ; 

BE i-anc·scqr<A> ===> (B,A') E seq, for some A'€ anc(A), B ~A', 

=t B f anc(A). 

B € i-child.r(A) =t BE childrcn(A), 

=t B ( anc(A). 

B € i·data-ancy(A) ===> 3B' € i-datay(A): B = crucialy(.B'). 

But by Lemma 6.3.l.l.2g. crucial1~B') € desc(AlB) 

===> B ( anc(A). 

Now we show B € v·precedestA) =t anc(A) n ABORTS.fB) = IZJ: 

a. B € v-anc-seqr<A) =t (B,A') €seq, for some A'€ anc(A), B ~A', 

== ABOR'I"Si~B) n desc(A') = IZJ, by Lemma 6.3.3.2. 
But by Induction Hypothesis, ABOR'fSt<B} n anc(B) = (IJ. 

But anc(B) = {B} U proper-anc(A'), since (B.A') €siblings. 
=- anc(A) t; desc(A') U anc(B). 

== ABORTSt<B) n anc(A) = llJ. 

b. BE v·child..CA) == AUOR'fSt<B) n anc(B) = 0, by Induction Hypothesis. 
But 8 € children(A) _. anc(A) t; anc(B), 

=- ABORTSr<B) n anc(A) = llJ. 
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c. BE v-data-anc.r<A) = 3B' E v-data.r<A): B = A!B', 

= A E datasleJ>Sr 

Let T = T0v, where v E 'i can be written as fPtrtf, with ,, = perform A,u. 

Let Tl = 1(,CJ>. and let TI = ToCJ>"· 

Let A,B' E datasteps(x). 
By Lemma 6.3.1.1.lc, (B',A) E dat&n, 
=t B' E datastepSr1(x). 

By precondition P2.4b, B' E visib1C-r1(A,x) V B' E deadr1(A,x). 

B' E v-data-r<A) =t B' E visib1C-r1(A,x), 
= anc(A) n ABORTSi-1CA!B') = flJ, by precondition P2.4d (the orphan 

detection precondition), 
=t anc(A) n ABORTS.n(B) = flJ. 

But ABORTSfB) < ABORTSi-1(B), by Lemma 6.3.3.3 (since B E 
committedn), 
= ABORTS-r<B) n anc(A) = 121, by Lemma 2.2.1.ld. I 

6.5.2 Proof that h21 is a Possibilities Map 

We now have aU the facts needed to show that h21 is a possibilities map: 

Theorem 6.5.2.1: h21 is a possibilities map. 

Proof: h21 preserves initial states by Lemma 6.5.1.1. h21 preserves transitions by Lemma 

6.5.1.2. Since we have shown that all reachable states in U arc in ANC-ABORT (Lemma 

6.5.1.4), h21 preserves preconditions by Lemma 6.5.1.3. By Lemma 4.2.2.6, h21 is a 

possibilities map. I 
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7. Partially Localized Model 

In a distributed event-state algebra all preconditions for events are localized to the nodes at 

which those events occur (or to the message buffer). lbe Level 2 model is defined in terms of a single 

global state, the global AA T. As we move towards a distributed model, we partition the state into distinct 

, components, and we attempt to localize preconditions to these components. At Level 3, we define an 

abstract set of locations, and we give each location a (local) state. This local state will consist of a UAS at 

each location, and an ordering on datasteps at each object (The data ordering in an AA T is already 

"localized," since data.r individually orders datasteps at each object) 

These locations are simply containers for information; they need not correspond directly to 

physical locations (nodes) at the lower levels. In a later chapter we will construct a mapping from a 

distributed model where state is partitioned among nodes, to this localized model where state is partitioned 

among locations. F.ssentially several abstract locations can reside at a single physical node. One 

advantage of using abstract locations at this higher level is that we need not be concerned with how 

information is physically distributed. 

We can think of locations as "abstract nodes." We will consider each action and object to be a 

separate location; the information at these locations will represent the view at that action or object It will 

be convenient to allow other (unspecified) locations as well. The events at trus level will be either "local 

steps," which are conceptually local to a particular location, or "communications steps," which transfer 

information from one location to another. Transfer of information is instantaneous (i.e. there is no analog 

to the message buffer at this level). (We will show later that we can model communications delays by 

regarding "message slots" in the message buffer as locations. Thus we do not specify the complete set of 

"locations" at this level; locations can be viewed abstractly as any information holders.) 

We show that it is straightforward to localize all preconditions except for the orphan detection 

condition (precondition P2.4d: B € visibl¥A.x) =t anc(A) n ADORTSy(A!B) = llJ). 

7.1 leYel 3 Algebn 
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Let~ (the "tree locations".) = (act- {U} - accesses) U obj. 

Let }Qk be a set of "locations," where tloc ~toe. 

(We exclude U from tloc because it is a vinual action; thus we associate no information with it directly. 

Also, we exclude accesses from tloc because we regard them as being coupled to their objects for 

in fonnation.) 

I 3 = { <T,L>}, where the components are 

Notation 

T - the "global state", an augmented action tree (as in U) 

L - the "local state", where L: loc-+ UAS 

lf"prop" is some propeny (function, relation, etc.) defined on UAS, then we denote propl..(a) by 

"@propL[a)" (for example, visiblel.(a)(A,x) = @visibleL[a)(A,x)). 

The "@" symbol flags components of the local state (as opposed to components of the global AA T). We 

also use the "@" symbol to distinguish communications events from "local" events, since the 

communications events only affect the 1oca1 state. 

We further abbreviate by writing @propL(A] for @propL[x] when A € accesses(x) 

T 0 - the trivial AA T, as in U 

l,,(a) = Tu· the trivial UAS, Va€ loc. 

E!egts: 

Events create, commit, abort, and perfonn are localized to individual locations (except for the orphan 

detection precondition). We regard an action as being created at the location of its creator, and 

committed or aborted at its own location (or the location of its object if it is an~). (Recall that for A 

¢ U, creator(A) = parent(A) unless A € top, and creator(A) = A for A E top.) 
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In addition to the "local" events (create, commit, abort, perfonn), we introduce "communications events" 

to move infonnation from one location to another. The "source" of information is arbitrary for each 

event: communications events are parameterized by a single location: the destination of the information 

transfer. At lower levels we wiJI parameterize communications events by the sender of information as 

wen. 

The communications events are as follows: 

@create[aJ A 

@commit[a] A 

@abort[a)A 

-- create action A at location a 

-- commit action A at location a 

-- abort action A at location a 

The transition relation is defined so that each communications event is idempotent, i.e., the effect of a 

communications event which occurs multiple times is the same as the effect of this event occurring a 

single time. ldcmpotency "filters out" duplicate communications events. 

Transitjon Rdation: 

Let e E S3, <T,L> € :t3, <T,L>e = <Tl.LI>. 

(A E act - {U}) 

PRECONDITIONS: 

a A ( @vertice5iJcreator(A)] 

b. parent(A) € @activeL(creator(A)] 

c. (B,A) € seq, B :I: A =t B € @doneL[creator(A)] 

TRANSmONS: 

a. verticesn - verticesr U {A} 

b. statusri(A) - 'active' 

c. @vertkesu[creator(A)] +- @verticesL[creator(A)) U {A} 
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d. @statusu[crcator(A)](A) +-- 'active' 

2. commitA (A E act - {U} - accesses) 

PRECONDITIONS: 

a. A E @activ;JAJ 

b. @childrenL[A](A) ~ @doneL[A) 

TRANSmONS: 

a statu5r1(A) +-'committed' 

b. @statusu[A](A) +- 'committed' 

3. ibQnA (A E act- {U}) 

PRECONDITIONS: 

a. A E @activeL[A) 

TRANSITIONS: 

a statuSr1(A) +-'aborted' 

b. @statusu[A](A) +- 'aborted' 

4. perform A& (A E accesses(x), u E values(x)) 

PRECONDfflONS: 

a. A E @activ~[x) 

b. B E @datastc1>5i.[x](x) ~ B E @visibleL[x](A,x) V B € @deadL[x)(A.x) 

c. u = resutt(x,s), where s = «@visibleL(x)(A,x); O(x)». and 0 = order(T). 

d. 8 € @visibleL[x)(A,x) =- anc(A) n ABOR'fS.rCA!B) = fiJ 

TRANSITIONS: 

a. statu5r1(A) +-'committed' 
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b. @statusu[x](A)- 'committed' 

c. labeln(A)- u 

d. data.r1 - dalar U {(B,A): B € datastepSy(x)} U {(A.A)} 

s. ®createJqJ A 

PRECONDITIONS: 

(A€ act- {U}, a€ loc) 

a. A € @verticesL[p), for some p € 1oc 

TRANSITIONS: 

a. @verticesu[a) - @venic~[a] U {A} 

b. A ( @verticesL(a) =t @statusu(a](A) - 'active' 

6. @commidqJ A 

PRECONDITTONS: 

(A€ act- {U}, a€ loc) 

a. A E @committcdL[p), for some p € loc 

TRANSITIONS: 

a. @verticesu[«] - @verticesL[a) U {A} 

b. @statu5L1[a](A) - 'committed' 

7. @abortla] A (A€ act- {U}, a€ loc) 

PRECONDITIONS: 

a. A € @abonedL[p), for some /J € 1oc 

TRANSmONS: 

a @vertic~1(cr] +- @vertic~(a] U {A} 

b. @statu5i.1(a)(A)- 'aborted' 
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7.2 Specification of Mapping h32 

We define a (single-state) mapping from L3 to U, h32: L3 - L2. (We abbreviate "h32" as "h" 

in this chapter.) 

&IRMaooing 

h: I 3 - 1:2 is defined by h(<T.L>) = T, V<T,L> E 1:3" Thus h fixes T. 

fumMaooing 

h: create A - create A 

commit A - commit A 

abort A - abort A 

perfonn A,u - perfonn A,u 

@create[a] A - A 

@commit[a] A - A 

@abort{a) A - A 

7.3 Level 3 Invariants 

The fotJowing simple pair-invariants are analogous to the Level A pair-invariants from Lemma 6.3.1.1.1: 

Lemma 7.3.1: Let (<T.L>,<Tl,Ll>) E ~~2>. Then the fo11owing pair-invariants hold (Let a 

E toe, x E obj, A,B E act): 

a. @venice51.JaJ C @venict;_1[a1 @commi~(a] ~ @committedu[«), 
@abortedL(a) ~ @abortedu[«), @doneL[cr) t; ~(«] 

b. Bis dead in l...(a) =t Bis dead in Ll(cr); Bis liv~ in Ll(a) =t Bis live in L(a) 

Proof: Straightforward. I 
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The following invariants relate local states to the global state. F.ssentiaUy each local state 

represents a "partial view" of the true global state. We show these invariants relative to mapping h: Since 

h fixes T, all invariants and pair-invariants for T in L2 can be applied to the proofs (by Lemma 4.2.4.3.6). 

Recall that we have shown in Lemma 6.5.2 that invariants Ia and Ja from Level A are invariant in L2. 

Lemma 7.3.2: Let (f,L> E ~3. Then the following are invariant relative to h. (Let a E loc. 

x E obj, A,B E act): 

a. A E verticeSr • {U} - A E @verticesL[creator(A)]; 
U E active,. A U E @activeL[a] (Va E doc) 

b. A E committedr - A E @com~ittedL[A] 

c. A E abortedr - A E @abortedL[A] 

d. A E done,. ..,. A E @doneL[A] 

e. A € datastepSr(x) - A E @datastcP5t[x)(x) 

f. @verticesl.[a] ~ verticCSr, @committedL[a] ~ committedr- @abortedL(a] C 
abortcdr, @doncl.[a] ~ done,. 
(Note: @.activeL[a] ~ active,. does not necessarily hold.) 

g. A E @activ~(A] :::o A E active,. 
(Note: not necessarily conversely) 

h. BE @visibleL[a](A) ~ BE visib1¥A) 

i. B E @dcadl[a](A) =t B € deadr<A) 

j. (B,A) E daia.r (A,B E accesses(x)) =t 

B € visiblcfA) - B E @visibleL[x](A) 

k. (B,A) E data,- (A,B E accesses(x)) -. 

. BE <iead.r(A) - B E @deadl[x)(A) 

1. (B,A) E data,- (A.B € accesses(x)) =t 

B ~ @dcadL[x)(A) =- {cruciaJ.r<B)} ~ @abortcdL[x] 

Proof: 
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a. If A '*- U, A E· vcrticcsT' then there must have been an event create A, which 
also has the effect of placing A in @verticcsL[crcator(A)]. Using Lemma 7.3.la, 
we conclude that A € verticCS-r =t A E @vcrtic~[creator(A)). 

Conversely. if A € @vertic~[creator(A)) then there must have been an event 
create A, or @crcatc[crcator(A)) A. Consider the first such event If it is create 
A then A € verticCS-r. Now suppose there were an event @create[ a) A, for some 
a, that preceded create A. Let e be the first such event, and let the state 
immediately before the execution of e be <Tl.LI>. By the precondition for e, A 
€ @verticesi_1(.8) for some fl. But if A E @verticesufllJ. then either fl = 
creator(A) and create A precedes e, or an event f = @creatcf,8] A precedes e. 
Both cases contradict our choice of e. 

U € active.y. by Lemma 6.3.1.l.2d. To see that U E @activeL[a], note that U E 
@active1i>[a), but no event can change U's status. 

b. Similar to (a). 

c. Similar to (a). 

d. Follows directly from (b) and (c). 

e. A€ datastep5r(x) - A€ committed,.. 
- A E @committedL[x] by (b), 

- A E @datastepsL(x](x). 

f. We argue @verticesl[a] t; verticCS-r; the other cases are similar: If a = 
creator(A), then the result follows directly from (a). Otherwise we can show 
@vcrticesl(a) t; verticCSr by induction on the number of events in a valid 
sequence generating <T,L>. In the initial state@vertic~(a) = verticesr = {U}. 
But vertic~[cr] can only increase when an event @treate(a) A occurs, which 
requires as precondition A E @vertic~1[/l] for some /J (where <Tl.LI> is the 
state before this event occurs). By induction hypothesis, A € @verticCSi.Jf/l] -. 

A € verticesr1 =- A E vel'licesr 

g. A E @activeL[A] == A E verticesr from (t). If A € donC-r then A € 
@doneL[A] by (d) -- a contradiction. Thus A € activey. 

h. B E @visibleL(cr](A) =t anc(A) n prop-desc(Jca(A,B)) ~ @committedL[aJ. 
But @committedL[a] ~ committed.r by (t), 
:::t B E visibler(A ). 

i. 8 E @dcadL[a~A) =t anc(A) n prop-desc(lca(A,8)) n @abortedL(a) - llJ. 
But@abortedL[cr] t; aborted.r by (t), 
=> B € deadr(A). 
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j. BE @visiblCi_(x}(A) ==> BE visiblcc'A) by (h). 
B E visib1¥A) ==> B € visib1¥A,x), 
==> BE @datastepsL[x}(x). Assume B ':/-:A (otherwise the result is obvious). 

Let <T,L> = U3V, v E '3· 
Let v = ""'"'·where tr = perfonn A,u, and Jet <Tl.LI> = a3f. 

(B,A) € dat;- ==> (8,A) E dat;-1• by Lemma 6.3.1.1.lc, ...,. BE datasteJ>Sn. 
==> B E @datastcJ>Si,1(x)(x), by (e), 
==> B E @visiblcu[x)(A.x) V B € @deadu[x)(A,x) by P3.4b. 

But B € @deadu[x)(A,x) ==> B E dead.r1(A,x) (by (i)), ==> B E dc00.r<A,x) -- a 
contradiction. Thus B E @visibleu[x)(A,x), 
==> BE @visibleL[x](A,x) (using Lemma 7.3.lc). 

k. Similar to (j) above. 

1. B E @deadL[x)(A,x) ==> anc(B) n @abonedL[x) ':/-: flS, 
=t @crucialL[x)(B) is defined. 

But anc(B) n @abonedL[x) (; anc(B) n aborted.p by (f), 
.. crucial1~B) E desc(@cruciall[x)(B)), 
==> {crucial1~B)} < @abortedJx]. 

7.4 Proor of Possibilities Map for h32 

We now show that h is a possibilities map. Let 13 denote the conjunction of all properties in 

Lemma 7.3.2. We will show that his a possibilities map relative to 13. 

Lenuru1 7.4.1: h preserves initial states. 

Proof: Immediate since h(<T&Y> = T0• I 

Lemma 7.4.2: h preserves transitions relative to 13. 

Proof: We must show that if <T,L> E PRF1 (e) n c:ti3 n 13, and h(<T,L>) E PRl?.i(h(e)) n 
«ii2, then h(<T ,L>e) = h(<T,L>)h(e). 

But h(<T,L>) = T, so we must show the following: 
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lf<T.L> € PR~(e) n ~3 n 13. and TE PRE.i(h(c)) n ~2• and <T.L>c =(fl.LI>. then Tl 

= (T)h(e). 

For the communications steps in L3 (e = @create. @commit. @abort), Tis not altered, and 

h(e) = A. so Tl = T = (T)h(e). 

For the local steps (c = create, commit. abort. perform). it is easily verified by inspection that 

the effects of events on T arc identical in L2 and L3. But h(e) = e, so Tl = (T)h(e) = (f)e. 

I 

Lenuna 7.4.3: h preserves preconditions relative to 13. 

Proof: We must show that if (f.L> E PRE3(e) n ~3 n 13, and h(<T,L>) € ~2• then 

h(<T.L>) € PRE2(h(c)). 

Since h(<T,L>) = T. we show 

<T.L> E PRE3(e) n ~3 n13. TE ~2 = TE PRE.i(h(e)). 

For communications stepS. e. h(e) = A, and preservation of preconditions follows vacuously. 

For local steps. h(e) = e. We prove preservation of preconditions for each local step in tum: 

1. create A 

a. P3.la .... A ( @verticesl(creator(A)). 
= A ( verticCSr· by Lemma 7 .3.2a. 

b. If A E top, then parent(A) = U. U € activ~ by Lemma 7.3.2a. 
Otherwise crcator(A) = parenl(A) • 
.... parent(A) € @activel(parent(A)) by P3.lb, 
= parent(A) € activ;. by Lemma 7.3.2g. 

c. (B,A) € seq, B ·~ A =- B € @doneL[creator(A)) by P3.lc, 
= B € don~ by Lemma 7.3.2g. 

2. commit A 
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a. P3.2a == A E @activeL[A], 
== A E activf-r by Lemma 7.3.2g. 

b. Let BE children.r<A). A~ U => Bf top, 

=> creator(B) = A, 
== BE @verticesL[A] by Lemma 7.3.2a, 
== BE @childrenL(A](A), 
== BE @doneL(A] by P3.2b, 
== BE doneT by Lemma 7.3.2f. 

3. abortA 

a. P3.3a == A E @activeL[A), 
== A E activf-r by Lemma 7.3.2g. 

4. perform A,u 

a. P3.4a == A E @activeL(x], 
== A E @activeL[A), 
== A E activf-r by Lemma 7.3.2g. 

b. BE datastep¥x> == BE @datasteP5i_[x)(x) by Lemma 7.3.2e, 
== BE @visibleL[x](A,x) V 8 E @deadL[x](A,x) by P3.4b. 

BE (i!visibleL[x)(A,x) == BE visibl;-(A.x) by Lemma 7.3.2h. 
B E @deadL[x](A,x) == BE deatifA.x) by Lemma 7.3.2i. 

c. P3.4c == u = rcsult(x,s), where s = «@visibleL[x](A,x); O(x)>>. 
and 0 = order(T). We must show s = s', where s' = 
«visibl;(A.x); da~>. By definition, O(x) and data.rare identical 
on datasteps(x), so it suffices to show @visibleL[x)(A,x) = 
visibl;(A.x). 

@visibleL[x)(A,x) C visiblf-r(A.x) by Lemma 7.3.2h. So take BE 
visibl;(A,x), 
== BE @datastep5i_[x)(A,x) by Lemma 7.3.2e, 
== BE @visibleL[x](A,x) V B E @deadL[x](A,x) by P3.4b . 

. But BE @deadL[x](A,x) == B. E deadr(A.x) (by Lemma 7J.2i)- a 
contradiction; 
== BE @~isibleL[x)(A,x). 
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d. B E visib1¥A,x) ~ B € @visibleL[x](A.x) (as in (c) above), 
~ anc(A) n ABORTS.rCA!B) = flJ by P3.4d. I 

Lemma 7.4.4: h is a possibilities map relative to 13. 

Proof: Follows immediately from Lemmas 7.4.1, 7.4.2. 7.4.3, and ftom Lemma 4.2.4.2.4. I 

Theorem 7.4.5: his a possibiJities map, and 13 is invariant in L3. 

Proof: By Lemma 7.3.2. 13 is invariant relative to h. By Lemma 7.4.4, h is a possibilities map 

relative to 13. We apply Lemma 4.2.4.2.6 to conclude that his a ~ibilities map, and 13 is an 

invariant I 

Since h32 is a possibilities map which fixes T. all invariants and pair-invariants from U carry 

down to L3. Let J3 denote the conjunction of all pair-properties from Lemma 7.3.1. We summarize the 

invariants for L3 as follows: 

Lemma 7.4.6: 13 is invariant in L3, Ia is invariant in L3. J3 is pair-invariant in L3, and Ja is 

pair-invariant in L3. 

Proof: Invariance ofl3 is shown in Theorem 7.4.5. J3 is pair-invariant in L3 by Lemma 7.3.1. 

Since h32 is a possibilities map which fixes T. and la is invariant for Tin L2 (by Lemma 6.S.2). 

Ia is invariant for T in L3. by Lemma 4.2.4.3.S. Similarly since Ja is pair-invariant for Tin U 

(by Lemma 6.5.2). Ja is pair-invariant for T in L3. by Lemma 4.2.4.3.5. I 
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8. Value Maps •• A Model of Atomic Objects 

At Level 4 we introduce value maps as a data structure for keeping lock and version infonnation 

about objects. A value map is a mapping from each object to a "stack of versions" for that object; each 

version is associated with an action lhat holds a lock on that object This data structure corresponds 

roughly to the implementation of atomic objects as described in [Moss81]. In Moss's locking scheme, a 

lock can be held on an atomic object at each level in the action tree. This scheme constrains all holders of 

a lock on a particular object to be related. We note again that we are dealing only with mutual exclusion 

locks. Moss develops a more general locking protocol which distinguishes between read locks and write 

locks. 

We regard these value maps as an abstraction of the information which is already present in the 

local UAS's at each object In this sense the value maps introduce no new infonnation into the state. As 

we stressed in Chapter 4. the state in an event-state algebra is simply one convenient way of capturing 

execution histories. Value maps are a convenient abstraction of execution histories because the 

preconditions on a perform event can be stated easily in tenns of value maps. 

Level 4 is no more "localized" than Level 3. The events in Level 4 arc identical to those in Level 

3 (though transitions and preconditions are reformulated in tenns ofvalue maps), and the event mapping 

h43 is the identity. In particular, then, the communications events at Level 4 are still very simple, and 

they do not include enough infonnation to allow localization of the orphan detection precondition. The 

non-local orphan detection precondition appears unchanged at Level 4. 

8.1 Level 4 Al&ebra 

,;4 = {<T.L. V>}. where the components are: 

T - the global state, an augmented action tree (as in U), 

L - the local state (mapping toe to UAS) (as in LJ), 

V - a value map . 

• 
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A value map gives a set of values for each object -- one value for each action which "holds a lock" (and 

thus a version) on that object 

V: obj X act - values U LL} 

(where VA E act. x E obj, V(x,A) E values(x) U {...L}). 

Define V(x) = {A E act: V(x,A) ~ ...L}. (V(x) represents the actions which hold Jocks on object x.) 

If V(x) forms an ancestor chain, then define 

V(x).holder = the lowest (in anc-order) element of(V(x)), i.e., 

V(x).holder E V(x), and VB E V(x), V(x).holder E desc(B). 

(If V(x) does not form an ancestor chain, then V(x).holder is undefined. For reachctble states in U, V(x) 

will always form an ancestor chain (see below).) 

If V(x).holder is defined, then define V(x).value = V(x,V(x).holder). V(x).value denotes the "current" 

value of object x which will be seen by any datastep accessing x. 

Vx €obj, V0(x.U) = init(x), 

V0(x.A) = ...L. VA~ U . 

. Events: 

g4 = g
3 

('The sets of events are identical in Levels 3 and 4, although preconditions and transitions differ.) 

Tcansitjog Relation 

l.~A (A E act - {U}) 

PRECONDITIONS: 
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a. A ( @vcrticesL[creator(A)] 

b. parent(A) E @activeL[creator(A)] 

c. (B,A) E seq, B '* A ~ Jl E @doneL[creator(A)] 

TRANSITIONS: 

a. verticCSr1 - verticCSr U {A} 

b. statuS-r1(A) - 'active' 

c. @verticesu[creator(A)) - @verticesL[creator(A)] U {A} 

d. @statusu[crcator(A)](A)- 'active' 

2. commit A (A E act - {U} - accesses) 

PRECONDITIONS: 

a. A E @activeL[A) 

b. @childrenL[A](A) ~ @don;JAJ 

TRANSITIONS: 

a. statuS-r1(A) - 'committed' 

b. @statu5i,1[A](A) - 'committed' 

3. !l2Q.aA. (A € act - {U}) 

PRECONDITIONS: 

a. A € @activeL(A) 

TRANSITIONS: 

a. StaluS-r1(A) +- 'aborted' 

b. @statusu[A](A) - 'aborted' 

4. oerfonn A& (A € accesses(x), u € values(x)) 

PRECONDmONS: 
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a. A E @activ;Jx] 

b. A E prop-dcsc(V(x).holder) 

c. u = V(x).valuc 

d. anc(A) n @abortedL[x] = flJ 

e. BE @visibleL[x](A,x) => anc(A) n ABORTS'l{A!B) = flJ 

TRANSITIONS: 

a. statuSr1(A) +--'committed' 

b. @statusu[x](A) +-- 'committed' 

c. labeln(A) +-- u 

d. data,-1 +-- datar U {(B,A): B € datastcps1{x)} U {(A,A)} 

e. Vl(x,parcnt(A)) +-- update(A)(u) 

5. @createfal A (A E act· {U}, a€ loc) 

PRECONDITIONS: 

a. A € @vertices.JP]. for some p E Joe 

TRANSITIONS: 

a. @vertic~1[a] +- @verticcsL[a] U {A} 

b. A ( @verticcsL[a] => @statusu[a](A) - 'active' 

6. @commitlgl A 

PRECONDITIONS: 

(A E act- {U}, a E loc) 

a. A € @.committcdL[p], for some p E Joe 

TRANSmONS: 

a. @verticesu[a) - @vcrticesL[cr) U {A} 

----- ----- -----------



b. @statu5i_1[a](A~ +-'committed' 

c. a E obj, V(a,A) :I: ..L ~ 
Vl(a,A) +- ..1.. 
Vl(a,parcnt(A)) +- V(a,A) 
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7. ®abortfol A (A E act - {U}, a E Joe) 

PRECONDITIONS: 

a A E @abortcdL[p], for some fJ E loc 

TRANSITIONS: 

a. @verticesu(a] +- @vcrticesL[a] U {A} 

b. @statu5i_1[a](A) +- 'aborted' 

c. a E obj, B E desc(A) ~ 
Vl(a,B) +- ..1.. 

Local create, commit, and abort events are identical in L4 and L3. The preconditions on 

perform events are given in terms of the value map. Note that we include a "local orphan detection" 

precondition (P4.4d): this condition is necessary for the value map to hold the proper versions, but it is 

not sufficient to detect all harmful orphans. Thus we retain the non-local orphan detection precondition 

(P4.4e). 

The effect of a perform event is to update the "current" version. A lock on the current version is 

held by the parent of the datastcp immediately after the perform event The value map is updated by 

commit and abort messages: a commit message for an action releases a lock held by that action to its 

parent (and the parent inherits its child's version). An abort memge for an action releases all locks held 

by descendants of that action (and the versions are discarded). 
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8.2 Specification of Mapping h43 

We define a (single-state) mapping from IA to L3, h43: IA -+ L3. (We abbreviate "h43" as "h" 

in this chapter.) 

StmMappin1 

h: I 4 -+ I
3 

is defined by h(<T,L, V>) = <T,L> V<T,L, V> E I 4• Thus h fixes cr,L>. 

~Mao0ing 

• h: g4 -+ g
3 

is the identity mapping on events, i.e. h(e) = e Ve E g4• 

8.3 Level 4 Invariants 

The following invariants relate the information in the value map, V, to the local data structure, 

L. We show these invariants relative to mapping h: Since h fixes cr,L>, all invariants and pair-invariants 

for cr,L> in L3 can be applied to the proofs (by Lemma 4.2.4.3.6). (Recall that we have shown in Lemma 

7.4.6that13 and Ia are invariant in L3, and J3 and Ja are pair-invariant in L3.) 

Lemma 8~3.1: Let <T,L,V> E ~4. Then the fo11owing are invariant rela~ve to h: 

(Vx E obj) (let M = L(x), and let() = ordel(I)): 

a. B E V(x) =t Bis live in M 

b. V(x) forms an ancestor chain 

c. V(x) n accesses= flJ 

d. B E daWte1>5M(1) =-
Bis dead in M V 3B' E anc(B) n V(x): B E visibl~(B') 

e. B E V(x), v-prop-d~(B) n V(x) =. flJ -. 
V(x,B) = result(x,s), wheres = «visibl<\t(B,x); O(x)» 

f. H = V(x).holder, BE desc(H), Bis live in M 
=t visibl~(B,x) = visibl<\{(H.x) 
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g. BE V(x), CE datastepsM =t exactly one of following holds: 

1. C E visibleM(B) 

2. C E dcadM(B) 

3. 3C' E prop-dcsc(B) n prop-anc(C) n V(x): 
(C E visiblcM(C')) /\ (C' f visibleM(B)) 

Proof: We show below that (f) and (g) follow from (a) - (e). It is trivial to show that (a) - (e) 

are 0-invariant (i.e. that they hold for a 4). The proofs that (b) and (c) are invariant relative to 

hare straightforward; we wilJ argue (a), (d), and (e). 

For the induction step, Jet <T,L,V> E ~4 n PRE5(e), and assume that (a) - (g) hold for 

<T,L,V>. Let <T,L',V'> = <T,L, V>e. Let 0 = order(T), O' = ordcr(T'), M = L(x), M' = 

L'(x). We must show that (a), (d), and (e) hold for <T,L',V'>. By Lemma 4.2.4.3.6, we can 

assume that <T,L,V> and <T,L',V'> satisfy any invariants from 13 or Ia, and we can assume 

that (<T,L,V>.<T,L',V'>) satisfy any pair-invariants from J3 or Ja. 

Since properties (a), (d), and (e) depend only on V(x), committedM, abortcdM, and O(x), we 

need only consider events, e, which modify these components. By inspection, these events are 

{abort A, perform A,u: A E accesses(x)} U {@commit{x] A, @abort(x) A}. 

1. abort A, A € ~x) 

abortedM. = aborte~ U {A}. 
committedM. = committ~. 
V' = V,O' = 0. 

a. B € V'(x) - B E V(x), =t Bis live in M (by (a)). 
But by (c), V(x) n accesses = ta, 
.. B f accesses. .,. anc(B) n. {A} = ta, .,. Bis live in M'. 

d. BE dat.astep8M.(x) .,. BE ~(x), 
=t B is dead in M V 38' € ~nc(B) n V(x): B E visib~(B'). But 
B is dead in M =- B is dead in M' by 7.3.lb. 
B' E anc(B) n V(x) =t B' E anc(B) n V'(x), and 
BE visibl~(B') =t BE visibl~.(B'). by 7.3.lc. 
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e. Immediate since all components unchanged .. 

2. perfonn A,u, A E acc~x) 

O'(x) = O(x) U {(B,A): B E datastep~(x)} U {(A,A)}. 
V'(x,parent(A)) = update(A)(V(x).value). 
V'(x,B) = V(x,B) VB :1; parent(A). 
V'(x) = V(x) U {parent(A)}. 
committedM. = committe~ U {A}. 
abonedM. = abonedM (thus live in M => live in M') .. 

Note that A E prop-dcsc(V(x).holder), by P4.4b, and A is live in M, by P4.4d. 

a. B E V'(x) => B E V(x) V B = parent(A). 
If BE V(x), then Bis live in M, so Bis live in M'. 
If B = parent(A), then anc(B) ~ anc(A), and A is live in M. Thus B 
is live in M. and B is live in M'. 

d. B E dataste~.(x) => B E datastep~(x) V B = A 
If 8 E datastep5M(x), then B is dead in M V 3B' E anc(B) n V(x): 
B E visibl~(B'). 

If B is dead in M, then Bis dead in M' by 7 .3.lb. 
If B' E anc(B) n V(x), then B' E anc(B) n V'(x), and B € 
visibleM(B') => B E visibleM.(B') by 7.3.lc. 

If B = A, then take B' = parent( A), because parent( A) E anc(A) n 
V'(x), and A E visibleM.(parent(A)). 

e. BE V'(x), v-prop-descM.(B) n V'(x) =ta. 
B E V'(x) => B E V(x) V B = parent(A). 

Case l: B E V(x). 
v-prop-descM(B) ~ v-prop-d~.(B), and V(x) ~ V'(x) 
=> v-prop-descM(B) n V(x) = flJ. 
Thus V(x.B) = V'(x,B) = result(x,s). where s = «visibl'\f(B.x); 
O(x)». 

We must show V'(x,B) = result(x.s'), where s' = «visibl'\f .(B.x); 
O'(x)». Since O(x) t; O'(x), it suffices to show visibl~.(B.x) = 
visibleM(B,x). Since A is the only action whose status changes ftom 
M to M', visibl~.(B.x) = visibleM(B,x) unless A E visibley.(B,x). 
So assume A € visl"bl'\f.(B.x). 

Since parent(A) € desc(V(x).holder) (by P4.4b), parent(A) € 
prop-desc(B) (since we assumed B ;t: parent(A)). But A € 
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visibleM.(B,x) =t parent(A) E v-prop-descM.(B) n V'(x) -- a 
contradiction. 

Case 2: B = parent(A). 
If B = parent( A), then V'(x,B) = updatc(A)(V(x).value). 
Let H = V(x).holder. Then by definition of holder 
v-prop-dcscM(H) n V(x) = fZJ. Thus V(x,H) = result(x,s), where s 
= «visibleM(H,x); O(x)». =t V'(x,B) = result(x,s'), where s' = 
«visiblcM(H,x) U {A}; O'(x)». 

·We must show that visibleM(H.x) U {A} = visibleM.(parent(A),x) . 
. Oearly visiblcM.(parent(A),x) = visiblcM(parcnt(A),x) U {A}, so we 

show visibleM(H,x) = visibleM(parent(A),x). 

But A E prop-desc(H) =t parent(A) E desc(H), and A live in M =t 

parent(A) live in M. llms visiblcM(H,x) = visiblcM(parent(A),x), 
by (t). 

3. @commit[x] A 

There are two cases: 

(1) If V(x,A) "* ...L, then 
V'(x) = V(x)- {A} U {parent(A)}, 
V(x,A)= ...L. 
V'(x,parent(A)) = V(x,A). 

(2) If V(x,A) = ...L. then V(x) = V'(x). 

committedM. = committcdM U {A}. 
aborte~. = abortcdM (thus live in M =- live in M'). 

datastep5M.(x) = datastep5M(x), since A E accesses(x) =- A E 
@committedL(p), for some /J, by P4.6a, =- A E committedr by Lemma 7.3.2f, 
=t A E @committcdM, by Lemma 7.3.2b. 

a. For case (1), B E V'(x) =t B E V(x) =- B is live in M - B is live 
in M'. 
For case (2), BE V'(x) =t BE V(x) or 8 = parent(A). IfB E V(x) 
then the proof is identical to case (1), otherwise we know A E V(x). 
and A is live in M. It follows that B is live in M .... B is live in M'. 

-
d BE datasteJ)5M.(x) =t BE damsteJ>5M(x) 

=> B is dead in M V 38' € anc(B) n V(x): B E visibl~(B'). 

If B is dead in M then B is dead in M'. so suppose that B' E anc(B) 
n V(x). 
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For case (1), V'(x) = V(x), => B' € anc(B) n V'(x), and B € 
visibleM(B') => B E visibl~.(B'). 

For case (2), A E V(x), and V'(x) = V(x)- {A} U {parent(A)}. 
If B' * A, then B' E anc(B) n V'(x) and B E visibl~.(B') as above. 

If B' = A, then B E visibl~(A), and A € visibleM.(parent(A)) (since 
A E committe~ .. 
Thus B E visibleM.(parent(A)), and parent(A) E anc(B) n V'(x). 

e. B E V'(x), v-prop-descM.(B) n V'(x) = f2' 

Case 1: A E V(x), ~ V'(x) = V(x) - {A} U {parent(A)}. Thus B 
-:l:A 

Case Ja: B * parent(A). 
==> BE V(x). But v-prop-dcscM(B) ~ v-prop-desc~f(B), and V(x)­

{A} ~ V'(x). Thus (V(x)- {A}) n v-prop-descM(B) = 12'. 

But if A E v-prop-dcscM(B) and B * parent(A), then parent(A) E 
v-prop-descM(B) n V'(x) -- a contradiction. Thus v-prop-descM(B) 
n V(x) = 12'. 

Thus V(x,B) = V'(x,B) = result(x,s), where s = «visibleM(B,x); 
O(x)». 
We show that visibl~(B,x) = visibleM~B.x). Oearly visibleM(B,x) 
~ visibleM.(B,x). Let D E visiblt\f~B.x) - visibleM(B,x); we show 
that the existence of D leads to a contradiction. 

We apply (g) to D and B: We cannot have DE visibl~(B) by our 
assumption. If D E deadM(B), then D ( visibl~.(B) -- a 
contradiction. Thus we are left with the third case: 30' € 
PTOJ?·desc(B) n prop-anc(D) n V(x): (D € visibl~(D')) /\ (D' ( 
visibl~(B))). 

D E visibleM.(B) => D' E v-prop-d~.(B). But if D' ;t A. then D' 
€ V'(x) n v·prop·d~.(B) -- a contradiction. If D' = A. then 
parent(A) € V'(x) n v-prop·d~.(B) - a contradiction. 

Case lb: B = parent(A). 
v-prop·d~A) ~ v-prop·d~.(A) ~ v-prop·d~.(parent(A)), 

since A € visibl~.(parent(A)), and V(x) ~ V'(x) U {A}. Thus 
v-prop·d~(A) n V(x) = llJ. 

Thus V(x,A) = V'(x,parent(A)) = result(x,s), where s = 
«visibleM(A,x); O(x)». But visibl~.(parcnt(A),x) = visibl'VA.x) 
(since A € committedM~). and O'(x) = O(x). 
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Case 2: A ( V(x), ~ V'(x) = V(x). Thus B E V(x). 
v-prop·d~(B) ~ v-prop·d~.(B), ~ v-prop-descM(B) n V(x) 

= 0. Thus V(x,B) = V'(x,B) = result(x,s), where s = 
«visibleM(B,x); O(x)». We must show visibleM(B,x) = 
visibl~.(B,x). Oearly visibl~(B.x) ~ visibl~.(B,x). Let D E 
visibleM.(B,x) - visibleM(B,x); we show that the existence of D leads 
to a contradiction. 

As in case (la), we apply (g) to D and B; the only possible case is the 
third: 30' E prop-desc(B) n prop-anc(D) n V(x): (D € 
visibleM(D')) /\ (D' ( visibl~(B))). 

But D € visibleM.(8) =t D' € visibleM.(B) n V'(x) -- a 
contradiction. 

4. @abort[x] A 

V'(x) = V(x) - desc(A). 
BE V'(x) ~ V'(x,B) = V(x,B). 
committedM. = committe~. 
abortedM. = abortedM U {A}. 
O'(x) = O(x). 

a. B E V'(x) ~ B € V(x), B ( desc(A). Thus anc(B) n abo~ = 
0, :Q anc(B) n abortedM. = 0, since Bf desc(A) and abort~. 

= abortedM U {A}. Thus Bis live in M'. 

d. B € dataste~.(x) ~ B € da~(x) ~ B is dead in M V 
38' € anc(B) n V(x): B € visibl~(B'). 

If B is dead in M, then B is dead in M'. 

If B' € anc(B) n V(x), and B' ( desc(A), then B' € anc(B) n V'(x), 
and B E visibleM.(B') since B € visibl~(B'). 

If B' € desc(A) then B € desc(A), ...,. A € anc(B) n aborte~. =­
B is dead in M'. 

e. B € V'(x), v·prop·d~.(B) n V'(x) = tlJ, 
=- B € V(x), and B ( desc(A). 

Suppose C € v·prop·d~(B) n V(x); then C € v·prop-d~.(B) 
n V(x), =t C E desc(A) (since V'(x) = V(x)- desc.(A)). . . 
But B f desc(A), so A E prop-desc(B) n anc(C). Then C .f 

·, • •• •
1 

... 1hJ 

visibJ~(B) -- a contradiction. 
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Thus v-prop-descM(B) n V(x) = llJ, = V(x,B) = V'(x,B) = 
result(x,s), where s = «visibleM(B,x); O(x)» = «visibl~.(B,x); 
O'(x)». 

Proof of (g): First we show that at least one of the three conditions must hold: 

B E V(x), C E datastCP5M· But by (d), either C is dead in M, or 3C' E anc(C) n V(x): C E 

visibl~(C'). 

lfC is dead in M, then either CE deadM(B), or lca(B,C) is dead in M. But iflca(B,C) is dead 

in M, then B is dead in M, which contradicts (a). Thus we have case (g2). 

So suppose 3C' E anc(C) n V(x): C € visibleM(C'). If C' E visibleM(B), then C € 

visibleM(B), which is case (gl). If C' ( visibleM(B), then (B,C') E related, since V(x) fonns an 

ancestor chain (by (b )). But if C' € anc(B), then C' € visibleM(B). Thus C' € prop-desc(B) n 
prop-anc(C) n V(x), which is case (g3). 

To see that only one condition can hold, it is clear that (gl) and (g2) are mutually exclusive, 

and that (gl) and (g3) arc mutually exclusive. If (g3) holds, then C E visibteM(C'), and C' € 

V(x). But by (a), C' must be live in M, so C must be live in M; thus C ( deadM(B). Thus (g2) 

and (g3) are mutually exclusive. 

Proof of (f): H = V(x).holder, B E desc(H), B is live in M. We show visibleM(B,x) = 
visibleM(H,x). Since BE desc(H), it is obvious that visibleM(H,x) t; visibleM(B,x). If B = H 

then the result is obvious, so assume B E prop-desc(H). Suppose D E visibleM(B,x); we show 

D E visibleM(H,x). Let L = ka(B,D). 

D € visibl~(B,x) = DE visibleM(L), = L E prop-desc(H), since D ( visibl~(H). 

Now we apply (g) to D and H: lf(g2) holds, then Dis dead to H. But since Bis live in M, L 

is not dead to H; thus D must be dead to B. B_ul DE deadM(B) contradicts DE visibl~(B). 

(g3) cannot hold. because by definition of holder there is no D' E prop-desc(H) n V(x). 

Thus(gl)musthold, = DE visibl~(H). I 
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8.4 Proof of Possibilities Map for h43 

We now show that h is a possibilities map. Let 14 be the conjunction of all properties in Lemma 

8.3.1. We will show that h is a possibilities map relative to 14. 

Lemma 8.4.1: h preserves initial states. 

Lemma 8.4.2: h preserves transitions relative to 14. 

Proof: We must show that if <T,L,V> E PRE4(e) n '!Ri4 n 14. and h(<T,L,V>) E PRE
3
(h(e)) 

n '!Ri3, then h(<T,L,V>e) = h(<T,L,V>)h(e). 

But h(<T,L,V>) = <T,L> and h(e) = e, so we must show the following: 

If <T,L,V> E PREie) n ~4 n 14, and <T.L> € PRE3(h(e)) n 9.2, and <T,L,V>e = 

<Tl,Ll,Vl>, then <Tl,Ll> = <T,L>e. 

It is easily verified by inspection that the effects of all events on T and L are identical in L3 

and L4; thus h preserves transitions relative to 14. I 

Lemma 8.4.3: h preserves preconditions relative to 14. 

Proof: We must show that if <T,L, V> € PREie) n '!Ri4 n 14, and h(<T,L, V>) € 9.3, then 

h(<T,L,V>) E PR~(h(e)). 

Since h(<T,L, V>) = <T,L>, and h(e) = e, we must show 

<T.L.V> € PRE4(e) n '!Ri4 n 14, <T,L> € 9.3 == <T.L> € PR~(e). 

Preservati~n of preconditions is easily verific4 by inspection for a)) events other than perform, 

since preconditions are identical in L3 and IA. 

We prove preservation of preconditions for event e = perform A,u: 
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a. P4.4a = A E @activcL[x]. 

b. B € @datastcpsL[x](x) = B is dead in L(x) V 3B' € anc(B) n V(x): B E 
@visibleL[x](B'), by 8.3.ld 

If Bis dead in Ux), then anc(B) n @abortcdL[x] ~ f/J. But P4.4d = anc(A) n 
@abortcdL(x] = f/J, = anc(lca(A,B)) n @abortedL[x] = llJ. 

Thus anc(B) n prop-desc(lca(A,B)) n @abortedL[x] ~ f/J, = B E 
@deadL[x](A). 

If B' E anc(B) n V(x), then B' E anc(V(x).holder). 
But A E prop-desc(V(x).holdcr) by P4.4b, = A€ prop-desc(B'). 
Thus B E @visiblcL[x)(B') = B € @visibleL(x](A), by Lemma 2.2.3.ld 

c. P4.4c = u = V(x).value. Let H = V(x).holder (then u = V(x,H)). 

By 8.3.le, V(x,H) = result(x,s), wheres = «@visibleL[x](H,x); O(x)>>. 

But A E prop-desc(H) by P4.4b, and A is live in L(x) by P4.4d. 
= @visibleL[x](H,x) = @visibleL[x](A,x), by 8.3.lf. 

Thus u = result(x,s'), wheres' = «@visibleL[x](A,x); O(x)>>. 

d B € @visiblcL[x)(A,x) = anc(A) n ABORTSf A!B) = llJ, directly by P4.4e. 
I 

Lemma 8.4.4: h is a possibilities map relative to 14. 

Proof: Follows immediately from Lemmas 8.4.1, 8.4.2, 8.4.3, and from Lemma 4.2.4.2.4. I 

Theorem 8.4.5: h is a possibilities map, and 14 is invariant in I.A. 

Proof: By Lemma 8.3.1, 14 is invariant relative to h. By Lemma 8.4.4, h is a possibilities map 

relative to 14. We apply Lemma 4.2.4.2.6 to conclude that h is a possibilities map, and 14 is an 

invariant I 

Since h43 is a ~ibilities map which fixes <T,L>, all invariants and pair-invariants from L3 

carry down to lA. In the following Lemma we summarize all the known invariants and pair-invariants for 

I.A: 
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Lemma 8.4.6: Ia. 13. and 14 arc invariant in 1.4, and Ja, J3 arc pair-invariant in L4. 

Proof: Invariance of 14 is shown in Theorem 8.4.5. Since h43 is a possibilities map which 

fixes <T,L>. and Ia, 13 arc imariant in U, la and 13 are invariant in I.4, by Lemma 4.2.4.3.5. 

Similarly since Ja, J3 are pair-invariant in U, Ja and J3 arc pair-invariant in IA, by Lemma 

4.2.4.3.5. I 
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9. Fully Localized Models 

At Level 5 we completely localize all preconditions by "piggybacking" abon information on 

communications steps. This additional information flow allows us to replace the orphan detection 

precondition (P4.4e) with a local check for orphans. Other than the new abort information in 

, communication steps (and the elimination the non-local orphan precondition), Level 5 is identical to 

Levcl4. 

Because all preconditions are localized at Level 5, we can project out the "vinual" global state to 

define Level 6. 

9.1 Level S Algebra 

I 5 = I 4 = {<T,L,V>}, where the components are: 

EJents: 

T - the global state, an augmented action tree (as in 1..2), 

L - local UAS's (as in L3), 

V - value maps (as in U). 

The local steps are identical in LS and U, but for the communications events we introduce an 

explicit "sender" of information. (Thus communications events are now parameterized by two locations: 

the sender and the receiver.) lllis modification is ~eccssary to describe precisely the set of aborts which 

must be piggybacked on a communications event (In fact this set will be all aborts known to the sender). 

Communications events: 
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@createfP,a) A,d . -- send create message from p to a with aborts d 

@commit{P,a] A,d -- send commit message from fJ to a with aborts d 

@abort(,8,a) A -- send abort message from p to a 

The parameter "d" of create and commit messages models the DONE lists in remote invocation and 

, commit messages. 

As in previous levels, the transition relation will be defined so that each communications event is 

idempotent 

Transition Relation 

Let e E &5, <T,L.V> E I 5, <T,L, V>e = <Tl,Ll,Vl>. 

1.~A (A € act - {U}) 

PRECONDffiONS: 

a. A ( @verticesL[crcator(A)) 

b. parent(A) € @activeL[creator(A)) 

c. (B,A) € seq, B ~ A ~ B E @doneL[creator(A)) 

TRANSmONS: 

a. verticCSrJ. +- vertlces.r U {A} 

b. status.-1(A) +- 'active' 

c. @vertic~1[creator(A)) +- @verticesL[creator(A)] U {A} 

d. @statu5L1[creator(A)](A) +- 'active' 

2. commitA (A € act - {U} • aa:esses) 

PRECONDITIONS: 

a A € @activeL[A) 



b. @childrcnL[A)(A) C @doneL[A] 

TRANSITIONS: 

a statuSr1(A) +- 'committed' 

b. @statusu[A](A) +-- 'committed' 

3. il22.a.A (A E act - {U}) 

PRECONDITIONS: 

a. A E @activeL[A) 

TRANSITIONS: 

a. statuSr1(A) +-'aborted' 

b. @statusu[A](A) +-- 'aboned' 
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4. perfonn .A.ll (A E acccsses(x), u € values(x)) 

PRECONDITIONS: 

a. A E @activeL[x) 

b. A E prop-desc(V(x).holder) 

c. u = V(x).value 

d. anc(A) n @abonedL(x] = flJ 

TRANSITIONS: 

a. statU5rJ.(A) +- 'committed' 

b. @statusu[x](A) +--'committed' 

c. 1abe1n(A) +- u 

d. datar1 +-- datar U {(B,A): B E datastep5J{x)} U {(A.A)} 

e. Vl(x.parent(A)) +-- updatc(AXu) 
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5. @createlB.a] AJl (A E act- {U}, p,a E Joe, d ~act) 

PRECONDITIONS: 

a. A E @activeL[.8] 

b. d = @abortedL[p) 

TRANSITIONS: 

a. @verticeSi_1[a] +- @verticesL[a] U {A} 

b. A ( @vcrticcsL[a] ~ @statuSi_1[a](A) - 'active' 

c. @abortedu[a] +- @abortedL[a] U d 

d. a E obj, D E d, B E desc(D) =:t 

Vl(a,B) +- _L 

6. @commiUB.aJ AJl 

PRECONDITIONS: 

a. A E @committedL(.81 

b. d = @abortcdL[/l] 

TRANSITIONS: 

(A E act- {U}, p,a E loc, d ~act) 

a. @verticesul«J +- @verticesL[a] U {A} 

b. @statuSi_1[a](A) +- 'committed' 

c. a E obj, V(a.A) :¢ .L ==> 

Vl(a,A) +- _L 

Vl(a,parent(A)) +- V(a.A) 

d. @abortedu[a] +- @abortedL[a] U d 

e. a E obj, D E d, B E desc(D) =:t 

Vl(a.B) +- _L 

7. @abortW-alA (A E act- {U}, /J,a E Joe) 

PRECONDffiONS: 



a. A E @abortedL[p) 

TRANSITIONS: 

-140-

a @verticesu[a] - @vertic~[a] U {A} 

b. @statusu[aKA) - 'aborted' 

c. a E obj, B E desc(A) ~ 
Vl(a,B)-j_ 

The preconditions and transitions for all local events are identical in L5 and lA (except that the 

non-local orphan detection precondition, P4.4e, is eliminated at Level 5). Communications events are 

fundamentally different at Level 5, since orphan detection information is explicitly passed between 

locations with create and commit messages. 

The orphan information that we include with create and commit messages is quite simple: a 

sending location must piggyback all the aborts it knows about onto these messages. These messages now 

correspond closely to the create and commit messages of the simplified orphan detection algorithm that 

we presented in Chapter 1. The "known aborts set" in these messages models the "DONE'' list in the 

messages of this algorithm. While we show below that this information is sufficient (because there is a 

possibilities map from L5 to L4), other choices are possible. As a simple example, we conjecture that it is 

only necessary to send a covering subset of the known aborts in create and commit messages, because such 

a subset captures the same information about potential orphans. We have not attempted to take such 

optimizations into account, and we have focused on simplicity of description for our model. In general, at 

every level of our algebra hierarchy we make additional choices about the details of our model. and we 

further restrict the possible implementations which fit this model. 

In our Level 5 model we do not piggyback the known aborts set onto abort messages. We can 

explain the difference between abort messages and create or commit m~es by recalling (from Chapter 

3) that in our idealized transaction system, aborts transfer no infonnation (other than the fact that the 

abort occurred). Because the receiver of an abort message docs not "learn anything" about the execution 

history, the sender need not tell the receiver about all potential orphans. Internal consistency is achieved 

by coupling the flow of nonnal information with the flow of orphan information. (In this case "orphan 

information" is just the set of known aborts at the sender.) Of course, it would not hurt to piggyback 
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known aborts onto abort messages, and this additional infonnation might aUow some orphans to be 

detected sooner. 

9.2 Specification or Mapping h54 

We define a (single-state) mapping from LS to L4, h54: L5 - L4. (We abbreviate "h54" as "h" 

in this chapter.) 

5.tlk Mapoio2 

h: I
5 

- I 4 is the identity mapping: h(<T,L, V>) =<T,L,V> V<T,L,V> € I
5
. Thus h fixes <T,L, V>. 

facnt Maopin2 

* h: g5 - g4 is defined as follows. Let ord4 be an arbitrary total order on g4, and let aborts-in(d) = 

{@abon[a] D: D € d}. 

h: create A - create A 

commit A - commit A 

abort A - abort A 

perfonn A,u - perfonn A,u 

@crcatcfP,a] A,d 

@commitf.8,a] A,d 

@abortfP,aJ A 

- @creatc{a] A• «aborts·in(d); ortN>> 

- @commitfa) A• «aborts-in(d); ortN>> 

- @abort[a) A 

Note that we map communications· events @create and @commit into a sequence of events at Level 4. 

This sequence first creates or commits the primary action in the message, and then effectively aborts all 

actions in the aborts list, d. We will show that the order in which these abort events occur is unimportant; 

thus we let ord4 be an arbitrary order. 
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9.3 Level 5 Invariants 

Before staling the Level 5 invariants, we state two preliminary lemmas which will be used 

below: 

Lemma 9.3.1: Let <T,L,V> E ~5 n PRE5(e), and <T',L',V'> = <T.L,V>e. Suppose that 

<T,L,V> satisfies 13, and (<T,L,V>,<T',L',V'>) satisfies Ja and 13. If ABORTSi(A) < 
@abortedL[a). and A E @committedL[a), then 

Proof: If A E @committedL[a], then by Lemma 7.3.2f, A E committe<ip 

== ABORTST'(A) < ABORTST(A). by Lemma 6.3.3.3. 

But@abortedl[a] ~ @abortcdL'[a], by Lemma 7.3.la == @abortedL[a) S @abortedL'[a], 

by Lemma 2.2.1.la. 

And ABORTS.rCA) < @abortedL[a), by hypothesis. 

Thus ABORTSr(A) < @abortcdL.[a], by transitivity of<. I 

Lemma 9.3.2: Let (f,L,V> E ~5 n PRE5(c), and <T',L',V'> = <T,L,V>e. Suppose that 

<T,L,V> satisfies 13, and (<T,L,V>.<T.L',V'>) satisfies Ja and J3. If SEQ-ABORTSi(A) < 

@abortedL[a). and A E @activeL[a], then 

Proof: If A E @activclla], then by Lemma 7.3.2f, A E verticesp 

== SEQ-ABORTS.r<A) S SEQ-ABORTSfA), by Lemma 6.3.3.4. 

But@abortedl[a] ~ @abortedL'[a], by Lemma 7.3.la =t @abortcdL[a] S @abortedL~a], 
by Lemma 2.2.1.la. 

And SEQ-ABORTSfA) S @abortedL[a], by hypothesis. 

Thus SEQ-ABORTSy(A) < @abortcdL'[a], by transitivity of<. I 
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The following invariants arc our key result for Level 5. They express the fact that the local states 

have the proper abort infonnation at all times. We show these invariants relative to mapping h: Since h 

fixes <T,L,V>. all invariants and pair-invariants in L4 can be applied to the proofs (by Lemma 4.2.4.3.6). 

(Recall that we have shown in Lemma 8.4.6 that 14, 13, and Ia are invariant in L4, and J3 and Ja are 

pair-invariant in U.) 

Lemma 9.3.3: Let CT,L,V> € ~5. Then the following arc invariant relative to h: 

(Va€ toe) 

a. A € @committedL[a] = ABORTSf A) < @abortedL(a] 

b. A€ @activeL[a] = SEQ-ABORTST(A) < @abortedL(a) 

Proof: It is trivial to show that (a),(b) are 0-invariant (i.e. that they hold for a5): (a) holds 

vacuously, and for(b) only U € @verticesLo[a], but SEQ-ABORTS.r
0 

= llJ. 

For the induction step, let <T,L,V> E ~5 n PRE5(e), and assume that (a),(b) hold for 

CT,L,V>. Let <T',L',V'> = <T,L,V>e. We must show that (a),(b) hold for <T',L',V'>. By 

Lemma 4.2.4.3.6, we can assume that CT,L,V> and <T',L',V'> satisfy any invariants from 14, 13 

or Ia, and we can assume that (<T,L,V>,<T',L',V'>)'satisfy any pair-invariants from J3 or Ja 

Using the Induction Hypothesis, and invariants 13, J3, Ja, we can apply Lemmas 9.3.1 and 

9.3.2 to conclude that 

A E @committedL[a] = ABORTSy(A) < @abortedv[a]. 

Thus we need only show that (a) holds (respectively, (b) holds) for <T',L',V'> where A E 

@committedLtaJ - @committcdL(a] (respectively, A € @activeLta] - @activCi,[«]). We 

consider all ~ible events, e. for these remaining cases: 

1. create A (note that A ~ U) 

@commi~.[a] = @committcdL[a]. 
@activeLta] • @activ~[a] = {A}, for a = crcator(A). 
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@activeL~a] = @activeL[a], for a :I:- creator(A). 

a. Holds vacuously. 

b. (We need only consider a = creator(A).) 
By PS.lb, parent( A) € @activeL[a), 
== SEQ·ABORTST(parcnt(A)) < @abortedL'[a]. 

By PS.le, (B,A) € seq, B :I:- A == B € @doneL[a). Thus BE 

v·seqr(A) == B € @committedL[a], 
=> ABORTSr(B) < @abortedL'[a]. 

BE i·seqy(A) => B € @aboncdL[a) == B € @abonedL.[a], 
=> i-seqr(A) S @abonedL ~a). 

Thus SEQ-ABORTSy(parent(A)) U LJABOR"~(B) 
B t v-seqy(A) 

U i-seqT'(A) < @abortedL.[a], by Lemma 2.2.1.lc. 

Thus SEQ-ABORTSr(A) < @abortedvla1 by Lemma 6.2.1.4. 

2. commit A (note A ( accesses) 

@committcdL'[a] - @committedL{a] = {A}, for a = A. 
@committcdL ~a] = @committedL[a], for a '* A. 
@xtivcL~a] ~ @activeL[a]. 

a (We need only consider a = A.) 
ABORTSr(A) = i-precedes....(A) U LJ ABORTS....(B) . 

B t v-precec15r~A) 
Since A ( accesses. v-data-anCr(A) = i-data-anCr(A) = 21; thus 
v-precedCSr(A) = v-anc-seqr<A) U v-childr(A), and 
i-precedCSr(A) = i-anc-seqr(A) U i-childr(A). 

Thus ABORTSr(A) = i·anc-seqr<A) U LiABORTS....(B) U 
BE v·anc-secir<~> 

i·childr(A) U LiABOR~B). 
B t v-dli1¥A) 

= SEQ-ABORTS.i~(A) U i-childr(A) U LiABOR~(B) . 
BE v-dlilclr<A) 

But A E @activeL(A] by P5.2a. =- SEQ-ABORTSr<A) < 
@abortcdL.[A), by Lemma 9.3.2. 

If 8 € childreor<A), then B € children,~A). But by Lemma 7.3.la. 
B € childre¥A) => B E @verticesiJAJ; By PS.2b, 
@childrenL[A)(A) ~ @doneL[A]. From Lemma 7.3.2f, it follows 
that v-childr(A) ~ @committedL(Al and i-chil~A) ~ 
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@abortedL[A). 

Thus B E v-childi~(A) => ABORTSr(B) S @abortedL'[Al by 
Lemma 9.3.l. 

B E i-childr(A) => B E @abortedL[A) => B E @abortedL JAl by 
Lemma 7.3.la. 

Thus we have shown 
SEQ-ABORTS.r(A) < @abortedv[A], 
i-childr(A) < @abortedv[A), and 

Li A~RTSr(B) < @abortedv[A]. 
8 E v-dtlld.r(A) 

ABORTSr(A) < @abortedL.[A] follows directly from Lemma 
2.2.l.lc. 

b. Holds vacuously. 

3. abortA 

@committcdL.[a] = @committedL[cr] 
@activeL Ja) ~ @activeL[cr] 

a. Holds vacuously. 

b. Holds vacuously. 

4. perform A,u 

@committcdL.(a)- @committcd1Ja] = {A}, fora = x (x = object(A)) 
@committcdL Ja) = @committedL[a], fora t:. x 
@activeL'a] C @activeL[«) 

a. (We need only consider a = x) 
ABOR'I'Sr(A) = i-preccd¥A) U LiABOR'fS,..(B) . 

B E v-preced5rlA) 

Since A E ace~. v-chilclr(A) = i-childr(A) = flJ; thus 
v-preccde5r(A) = v-anc-seq,..<A) U v-data·aDC.r(A), and 
i-precede5r(A) = i-anc-seq.r'A) U i-data-ancy.(A). 

Thus ABORTSr(A) = i-anc-seq.r'A) U LiABORTS....lB) U 
BEv~~j 

i-data-anCy(A) U LiABORT&r(B) . 
B E v·data·ancy.tA) 

= SEQ-ABOR'I'Sy(A) U i-data-ancy(A) U UABORT'S.r(B) . 
BE \'-daaa-~A) 
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But A € @activcL[x] by P5.4a, => SEQ-ABORTSr(A) < 
@abortedL.[x].by Lemma 9.3.2. 

If (B,A) E v-datay. then BE @visibleL'x)(A), by Lemma 7.3.2j, => 

B E @visibleL[x](A). 
Thus A!B E @committedL(x], == ABORTSr(A!B) < 
@abortedL.[x), by Lemma 9.3.1. 

lf(B.A) E i-dalar., then BE @deadL.[x], by Lemma 7.3.2k. But BE 
@deadL'[x] => {crucialr(B)} < @abortedL.[x], by Lemma 7.3.21. 

Thus we have shown 
SEQ-ABORT8r.(A) < @abortedL'[xl 
i-data-ancr(A)::; @abortedL.[x], and 

LiABORl!r<B) < @abortedL.[x). 
8 E v-data·anT'A) 

ABORTSr(A) < @abortedL.[x] follows directly from ~a 
2.2.1.lc. 

b. Holds vacuously. 

5. @createfP,a) A,d 

@committedL'(y] = @committedL[y]. 
@verticC\,hJ = @verticesL(y] U {A}, for y = a (unchanged for all other 
locations). 
@activeL'a)- @activeL[a] ~{A} (might be flJ). 
@activeLb) = @activeL(y), for y •a. 

a. Holds vacuously. 

b. (We need only consider y = er.) 
By PS.Sa, A E @activeL[p): thus SEQ-ABORTS,-(A) < 
@abortedL[p], by Lemma 9.3.1. 

But d = @abortcdL(p) by PS.Sb, and d ~ @abortedL 'a) (by 
TS.SC). Thus SEQ-ABORl'S.r<A) S @abortedL'cr). 

But A € @activeL[p] -. A E vel'ticesr by Lemma 7.3.2f, ..,.. 
SEQ-ABORTSr(A) S SEQ·"BORTSy(A), by Lemma6.3.3.4. 

Thus SEQ-ABOR'I'Sr(A) < @abortedL 'al by transitivity of<. 
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6. @commit[p,cr) A,d 

@committedL.[cr] - @committed1Ja) ~ {A}. 
@committcdL.["y] = @committedL[y], for y ~a. 

@activeL.[y] ~ @activcL(y]. 

a. (We need only consider y = a.) 

By P5.6a, A E @committedL(ft); thus ABORTS.f A) S 
@abortedLLBJ. by Lemma 9.3.1. 

But d = @abortedL[p] by P5.6b, and d ~ @abortedL'[a) (by 
TS.Sd). Thus ABORTS.f A) < @abortedL'[a). 

But A E @committedL[p] ~ A E committedr by Lemma 7.3.2f. 
~ ABORTSr(A) < ABORTS.fA), by Lemma 6.3.3.3. 

Thus ABORTSr(A) < @abortedL.[a], by transitivity of<. 

b. Holds vacuously. 

7. @abort(ft,a] A 

@committedL.(y] = @comminedL[y]. 
@activcLbJ ~ @activeL[y]. 

a Holds vacuously. 

b. Holds vacuously. I 

9.4 Proof of Possibilities Map for h54 

We now show that his a possibilities map. Let 15 be the conjunction of all properties in Lemma 

9.3.3. We will show that his a possibilities map relative to IS. 

Lemma 9.4.1: h preserves initial states. 

Lemma 9.4.2: h preserves transitions relative to IS. 
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Proof: We must show that if <T,L,V> E PRE5(c) n ~5 n 15, and h(<T,L,V>) E PREih(e)) 

n ~4. then h(<T,L,V>e) = h(<T,L, V>)h(e). 

But h(<T,L,V>) = <T,L,V>, so we must show the fo11owing: 

Let <T,L,V> E PRE5(e) n ~5 n PRE4(h(e)) n ~4. 
Let <T,L,V>e = <Tl,Ll,VI> (in L5), <T2,L2,V2> = <T,L,V>h(e) (in L4). 

Then <Tl,Ll,Vl> = <T2,Ll,V2> 

For the local steps (create, commit, abort, perform), h(e) = e, and it is easily verified by 

inspection that the effects of these events on T, L, and V are identical in L5 and L4. It is also 

easily verified by inspection that the effect of @abort(,8,a] A is identical to the effect of 

@abort[a] A. 

For communications events @create and @commit. transition steps T5.5a,b, and T5.6a,b,c 

are identical to transition effects T4.5a,b, and T4,5a,b,c, respectively. Transition steps 

TS.Sc,d, and TS.6d,c, respectively, accomplish the same effect as the sequence of aborts 

«aborts-in(d); ord.f»: Adding an aborts ind to @abortedL[a] (Level 5) has the same effect 

as adding them individually (Level 4). To see that updating of value maps is also preserved. 

note that an abort at an object removes all descendants of the aborted action from the value 

map at that object But individually removing descendants of each action (Level 4) has the 

same effect as removing all descendants from actions in d at once (Level 5). Note that this 

removal of descendants is clearly commutative, and thus the order of abort steps in 

aborts-in( d) makes no difference. I 

Lemma 9.4.3: h preserves preconditions relative to 15. 

Proof: We must show that if <T,L, V> E PRE5(e) n ~s n 15, and h(<T,L, V>) E ~4• then 

h(<T,L, V>) E PRE4(h(e)). 

Since h(<T,L, V>) = <T,L,V>. we show 

<T,L, V> € PRE5(e) n ~s n 15 n ~4 =t <T,L, V> E PRE4(h(e)). 

Preservation of preconditions is easily verified by inspection for all local steps other than 

perform, since preconditions are identical in LS and L4. We prove preservation of 



-149-

preconditions for event· e = pcrfonn A,u, and for the communications steps: 

1. perform A,u 

a. P5.4a - P4.4a. 

b. P5.4b - P4.4b. 

c. P5.4c - P4.4c. 

d. P5.4d c:::> P4.4d. 

e. B E@visibleL[x)(A,x) ~ A!B E @committedL[x] 
~ ABORTS-rCA!B) < @abortedL[x] by Lemma 9.3.3a. 

But by P5.4d, anc(A) n @abortedL[x) = fi'J. Thus anc(A) n 
ABORTS-rCA!B) = 91, by Lemma2.2.l.ld. 

2. e = @creatc[/J,a) A,d 
h(e) = @create[ a) A • «aborts-in(d); ord.f>> 

First we show that <T,L,V> E PRE4(@create[a] A): 

a. P5.5a ~ A E @activeL[/J], ~ A E @vertic~[/J), which 
automatically satisfies P4.5a. (P4.5a requires that there be some /J for 
which A E @vertic<;,[/J).) 

Now let e' be the prefix of h(e) preceding @abort[a) D (where DE d), and let 
<Tl,Ll,Vl> = <T,L, V>c' (in L4). We show that <Tl,Ll,Vl> € PREi@abort(a] 
D): 

a. D E d ~ D E @abortedL[/J] ~ D E aborted.r by Lemma 7.3.2f, 
~ DE @abortcdL[D] by Lemma 7.3.2c, 
~ DE @abortedLl[D] by Lemma 7.3.la. 

3. @commit[/J,a] A,d e = @commit[/J,a] A,d 
h(e) = @commi~a] A • «aborts-in(d); orM>> 

First we show that <T,L, V> E PREi@commit(a] A): 

a P5.6a ~ A E @committedL[/J]. which satisfies P4.6a. 

Now let e' be the prefix of h(e) preceding @abort( a] D (where DE d), and let 
CTl,Ll,Vl> = <T,L,V>c' (in L4). We show that <Tl,Ll.VI> E PREi@abort(a] 
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a. DE d ~ DE @abortcdL[p] ~ DE aborte~ by Lemma 7.3.2f. 
~ DE @abortedL[D] by Lemma 7.3.2c, 
~ D E @abortedu[D] by Lemma 7.3.la 

4. @abort[p,a] A 

a. P5.7a =t A E @abortedL[p), which satisfies P4.7a. I 

Lemma 9.4.4: h is a possibilities map relative to 15. 

Proof: Follows immediately from Lemmas 9.4.1, 9.4.2, 9.4.3, and from Lemma 4.2.4.2.4. I 

Theorem 9.4.5: h is a possibilities map, and 15 is invariant in LS. 

Proof: By Lemma 9.3.3, 15 is invariant relative to h. By Lemma 9.4.4, h is a possibilities map 

relative to 15. We apply Lemma 4.2.4.2.6 to conclude that h is a possibilities map, and 15 is an 

invariant I 

Since b54 is a possibilities map which fixes <T,L, V>, all invariants and pair-invariants from IA 

carry down to LS. We summarize the invariants for LS as follows: 

Lemma 9.4.6: la, 13, 14, and 15 are invariant in IA, and Ja, J3 are pair-invariant in IA. 

Proof: Invariance of 15 is shown in Theorem 9.4.5. Since b54 is a possibilities map which 

fixes <T,L, V>. and Ia, 13, and 14 are invariant in L3, Ia, 13, and I4 are invariant in IA, by 

Lemma 4.2.4.3.5. Similarly since Ja, J3 are pair-invariant in IA, Ja and J3 are pair-invariant 

in LS, by Lemma 4.2.4.3.5. I 
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9.5 Level 6 Al&cbra and Mapping ~ 

At Level 6 we remove the global action tree, T. Since we have localized all preconditions in 

Level 5, the global tree can now be properly regarded as a "virtual" component of the state. 

l:6 = { <L, V>}, where the components are: 

L - local UAS's (as in 1..3) 

V - value maps (as in I.A) 

Lo· v0 - as in U 

T 6 is identical to T 5, except that all transitions involving Tare disearded (f5.la,b, T5.2a, T5Ja, T5.4a,c,d). 

Let h65: L6 - LS be the augmentation map from Level 6 to Level 5 (Definition 4.2.5.1). Thus h65 is the 

identity map on events, and the state mapping maps <L,V> to all possible states <T,L. V> in l:5• 

Theorem 9.5.1: h65 is a possibilities map. 

Proof: Follows immediately from Lemma 4.2.5.3. I 

By Lemma 4.2.5.2, h65 fixes <L.V>. so all invariants and pair-invariants for Land V from LS carry down 

to L6. Most of these properties involve T, but all invariants from 14 except for 8.3.le do not involve T, 

nor do the pair-invariants J3. We summarize these invariants and pair-invariants for L6 in the following 

Lemma. Let 14' denote 14 with 8.3.le removed. (Thus 14' is just all invariants from 14 which apply to the 

local state <L. V>.) 

Lemma 9.5.2: 14' is invariant for L.6, and J3 is pair-invariant in I.6. 

Proof: Since h65 is a p<&ibilities map which fixes <L. V>. and 14' is invariant for <I.., V> in 1.5. 

14' is invariant in L6, by Lemma 4.2.4.3.5. Similarly since J3 is pair-invariant for <I.., V> in 1.5, 
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J3 is pair-im ariant in L6, b) Lemma 4.2.4.3.5. I 
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10. Distributed System Model 

Level 7 is our lowest-level model of the transaction system. At this level we partition the system 

state among nodes, and we use a communications model which takes into account arbitrary delays in 

me$age delivery. This model is a message-based distributed event-state algebra as described in Chapter 

, 4. Nodes communicate by sending and receiving messages via a message buffer. 

We require that each object and each action reside at a particular node (its "home node"). A 

node's state consists of a UAS and a value map for each object which resides there. We can thus view 

nodes as a grouping structure for the "tree locations" from Level 6. The mapping from node states (Level 

7) to local states at tree locations (Level 6) is a straightforward "explosion" of the node states. Similarly 

the Level 6 value map can be constructed from the value maps at each node. 

The only complexity in mapping from Level 7 to Level 6 is in modeling the communications 

delays at Level 7, since the communications events at Level 6 are "instantaneous." We resolve this 

discrepancy by treating messages themselves as locations. We regard a message as an initially empty 

"slot" for information; once this me$age is sent, the slot is filled. Since messages are never removed from 

the message buffer in our Level 7 model, it is natural to regard this message slot as a "location" at Level 6. 

The communications delay at Level 7 is explained at Level 6 by imagining that all mcmges are 

instantaneous, but that they are sent indirectly via another location (the ~ge slot). 

10.l Level 7 Aleebra 

The Level 7 Algebra is a message-based algebra as defined in Chapter 4 (Definition 4.3.2.1). Let 

~ = {1,2, .. .,n} name the nodes in the system, and let "bur· name the message buffer. We will user 

= ~ in this chapter, so that we can subscript the state space without confusing these subspaces with the 

state spaces of higher levels in our algebra hierarchy. 

We assume that each object in the system.resides at a particular node, and each action runs at a 

single node. We call this node the~ D.2fk of the action or object Formally, 

~: tloc - Nodes. (If A€ accesses, then we will use home(A) synonymously with homc(object(A)). 
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Letobj(i) = {x E obj: home{x) = i}, 

act(i) = {A E act- {U} - accesses: home{A) = i}, 

tloc(i) = obj(i) U act(i). 

The Jocal state at a node consists of a UAS for the node together with a "locaJ" value map for each object 

whose home is at that node: 

ri = {<l,v>: IE UAS, and v: obj(i) X act - values(obj) U {J_}}, where i E Nodes. 

If DE rand i E Nodes, then we denote the UAS and value map components of D.i by D.i.l and D.i.v, 

respectively. We extend the definitions of V(x), V(x).holder, V(x). value, etc., from value maps to "local 

value maps" in the obvious way. 

The set of messages is defined as follows: 

Msgs = 

u 
u 

{ #create(ij) A,d: ij E Nodes, A E act- {U}, d {;act} 

{ #commit(ij) A,d: ij E Nodes, A E act - {U} • accesses, d {; act} 

{ #abort(ij) A: ij E Nodes, A E act- {U}} 

The message buffer space is f buf = ~Msgs). 

If D E r. and i E Nodes, then we abbreviate any function propD.i.I by #propJi]. ('This notation is 

similar to the notation introduced for locations, but note that i is now a node rather than a location.) 

D0.buf = flJ, 

·Yi€ Nodes, D0.i.I = Tll, the trivial UAS, and 

D0.i.v(x,U) = init(x), Vx E obj(i), 

D0Jv(x,A) = J... VA~ U. 

The UAS and value map components of D0.i correspond in a natural way to Lo and V 0. 
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E•cnts: 

g7 consists oflocal events (create, commit. abort, perfonn), and communications events send M, 

receive M, for M € Msgs. Local events are similar to the corresponding local events at Level 6. 

At Level 7 we include a qualifier "(d)" on create, commit. and perfonn events. For example, a 

create event takes the fonn: create A (d), where d ~act The preconditions for the create, commit and 

perfonn events requires that "d" be the set ofknown aborts at the node where the event occurs. "d" does 

not enter into any transitions. We can thus regard "(d)" as recording the set of known aborts when the 

event occurs; including this qualifier does not change the semantics of the events. The qualifier "(d)" is 

useful when we construct a mapping from Level 7 to Level 6: "local" events at Level 7 will map into a 

local event at Level 6 plus a sequence of communications events at Level 6. (Conceptually in this 

mapping we regard the occurrence of an event at a node as an occurrence at a single .location at that node, 

followed by a broadcast of the event (with Level 6 communications events) to all other locations at that 

node. Of course, at Level 7 no "real" communications events occur.) Because these Level 6 

communications events require a "done" list, we extract it from the "(d)" in the Level 7 event 

(This device of qualifying events with a part of the state allows us to construct an 

evem-homomorphic mapping between algebras. If the qualifier were not used, then the proper mapping 

from a lower-level event to the higher-level sequence of events would depend on the lower-level state as 

weJl as on the lower-level event, i.e. the event mapping would not be event-homomorphic.) 

Transition Relation 

Although Definition 4.3.l.l describes the total transition relation of a message-based algebra in 

terms of local transition relations for each component, we will not describe local transition relations 

individually. Instead we present the total transition relation. It should be clear that preconditions and 

effects are properly localized (i.e. the local transition relations could be constructed easily from our total 

transition relation). 

I..ete € g7, D € r. De= Dl. 

(A€ act - {U}, homc(creator(A)) = i. d (;act) 

PRECONDmONS: 
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a. A ( # verticesJi] 

b. parent(A) E #activeJi] 

c. (B,A) E seq, B :I-: A ~ BE #doneJi] 

d. d = # abortedJiJ 

TRANSITIONS: 

a #vertices01[iJ- #verticesJi] U {A} 

b. #status01[i](A)- 'active' 

2. commit A UU (A E act - {U} - accesses, home(A) = L d C act) 

PRECONDITIONS: 

a. A E # activeJi] 

b. #chi1drcnJi)(A) ~ #doneofi] 

c. d = # abortedJi) 

TRANSITIONS: 

a. #status01[i](A) - 'committed' 

b. Vx € obj(i), D.i.v(x,A) :I-: .l. ~ 
Dl.i.v(x,A)- .l. 
Dl.i.v(x,parent(A))- D.i.v(x.A) 

3. ihmlA (A €act - {U}, home(A) = i) 

PRECONDITIONS: 

a A E # activen(i] 

TRANSITIONS: 

a #statuSn1[i)(A) - 'aborted' 

b. Vx € obj(i), 8 € dcsc(A) =­
Dl.i. v(x.B) +- .l. 
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4. perform A.YUU 

PRECONDITIONS: 

(A E accesses(x), u E valucs(x), home(x) = i, d ~ act) 

a. A E # activeJi) 

b. A E prop-desc(D.i.v(x).holder) 

c. u = D.i.v(x).value 

d. anc(A) n #abortedoliJ = 0 

e. d = # abortedoliJ 

TRANSITIONS: 

a. #status01[i](A) +-'committed' 

b. Dl.i.v(x,parent(A)) +- update(AXu) 

5. wul #creatcO.il AJ1 

PRECONDITIONS: 

a. A € # activeof iJ 

b. d = # abortedoli) 

TRANSITIONS: 

(A E act - {U}, ij € Nodes, d ~ act) 

a. Dl.buf +- D.buf U { # create(ij) A,d} 

6. r.m.iR # create(i.il AJ1 

PRECONDITIONS: 

a. #create(ij) A,d E D.buf 

TRANSITIONS: 

(A E act - {U}, ij E Nodes, d ~ act) 

a. #verticCSiJ1li1 +- #verticesoDJ U {A} 

b. A f #verticcsJiJ ==t #statuSi>10)(A) +-'active' 
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c. # aborted01 UJ +- # abortedJj] U d 

d. Vx € obj(j), C € d, B € desc(C) =t 

Dl.j.v(x,B) +- J_ 

7. m #commitCi.i) AJ1 

PRECONDITIONS: 

a. A € # committedJi] 

b. d = # abortedJi] 

TRANSITIONS: 

(A€ act- {U}, ij €Nodes, d C act) 

a. Dl.buf +- D.buf U #commit(ij) A,d 

8. ~ #commitli.i)AJl (A€ act- {U}, ij €Nodes, d C act) 

PRECONDITIONS: 

a. #commit(ij) A,d € D.buf 

TRANSITIONS: 

a #verticesn1UJ +- #verticesJj] U {A} 

b. #st.atuSi,1li)(A) +- 'committed' 

c. Vx € objG), Dj.v(x,A) 'I: ..!.. =t 

Dl.j.v(x,A) +- J_ 

Dl.j.v(x,parent(A)) +- D.j.v(x,A) 

d. #aborted01(j] +- #abortedJj] U d 

e. Vx € obj: home(x) = j, C € d, B € desc(C) .. 
Dl.j.v(x,B) +- J_ 

9. a #abonCLilA 

PRECONDmON: 

a A € #abortedolil 

TRANSITIONS: 

(A€ act - {U}, ij €Nodes) 
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a. Dl.buf +- D.buf U # abort(ij) 

10. receive # abQOCi.i) A (A E act - {U}, ij E Nodes) 

PRECONDITION: 

a. # abort(ij) A € D.buf 

TRANSITIONS: 

a. #vertices01fi] +- #verticesofj] U {A} 

b. #status01UKA) +- 'aborted' 

c. 'Vx E objG), BE desc(A) ~ 
Dl.j.v(x,B) +- ..l 

10.2 Specification of Mappin& h76 

We define a (single-state) mapping from L7 to L6, h76: L7 - L6. (We abbreviate "~6" as "h" 

in this chapter.) 

At this point we instantiate the (previous1y unspecified) set of locations, Joe; we define 

Joe = tloc U Msgs 

We regard a message as a location because it is a container for infonnation. The local infonnation at this 

location is essentially the infonnation contained in the message. As we explained above, we imagine that 

each message is a predefined "slot" for the particular combination of information that it represents. 

Originally this slot is empty; when the message is sent, the slot is filled. 

h: I., - :I6 is defined as follows. Let D E r. h(D) = <L. V>, then 

V = valuemap(D}, where valuemap(D) is defined as {((o,a),u): D.home(o).v(o,a) = u}. 

Valuemap is defined exactly as we expect: the "total" valuemap for Level 6 is constructed by combining 

all Joca1 value maps. This mapping is so trivial that we can almost regard it as a simple change in 
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notation. 

L is defined by: 

1. If a E tJoc, then L(a) = D.home(a).1 

2. If a E Msgs, and a f D.buf, then L(a) = Tu. 

3. If a E Msgs. and a E D.buf, then 

a. If a = #creatc(ij) A,d, then L(a) = T, where 
vcrtic~ = {U,A} U d 
committedr = fi?J 

abortedr = d 

b. If a = #commit(ij) A,d, then L(a) = T, where 
vertic~ = {U,A} U d 
committcdr = {A} 
abortedr = d 

c. If a = # abort(ij) A, then L(a) = T, where 
vertic~ = {U,A} 
committedr = fi?J 

abortedr = {A} 

If a€ tJoc, then L(a) is just the UAS at a's home node. For locations which are messages, ifthe message 

has not been sent then its location has "no infonnation" (i.e. its UAS is the trivia) UAS, Tu>· If the 

message has been sent, then the information in the UAS for its location corresponds exactly to the 

information in the message, i.e. it describes what actions are known to be committed, aborted, or active as 

a result of the message. 

fum!Mauin1 

• h: g7 - g6 is defined as follows. Let ort/6 be an arbitrary total order on G6. For each node, i, let Joc(i) 

be a distinguished doc whose home is that node. (We will use this tloc to define an explicit "sender" for 

messages from that node. If such a tloc does not exist. then it could be created just for this purpose.) 

h: create A (d) -+ create A• «{@createfP,a] A,d: p = creator(A), home(a) = home(JI)}; ord6>> 

commit A (d) -+ commit A• «{@commit(,8,a] A,d: p = A, homc(a) = home(JI)}; ord6>> 

abort A -+ abort A • «{@abort(,8,a] A: p = A, home( a) = homc(/.I)}; ord6>> 
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perform A,u (d) - perfonn A,u • «{@commit[p,a] A,d: fJ = x, homc(a) = home(p)}; ord6>> 

h(send M) is defined as fo11ows: 

IfM = #create(ij) A,d. then h: send M - @create[loc(i),M) A,d 

IfM = #commit(ij) A,d, then h: send M - @commit[loc(i),M) A,d 

lfM = #abort(ij) A, then h: send M - @abort[loc(i),M) A 

h(receive M) is defined as follows: 

If M = #create(ij) A,d, then h: receive M - «{@create(M,a] A,d: home( a) = j}; ord6>> 

IfM = #commit(ij) A,d, then h: receive M - «{@commit(M,a) A,d: home(a) = j}; ord6>> 

IfM = #abort(ij) A, then h: receive M - «{@abort[M,a] A: home(a) = j}; ord6>> 

We map local events to the corresponding local event at Level 6, followed by a sequence of 

communications events that "inform" all other locations based at the same node of the event (Note that 

we use the qualifier "(d)" on local events at Level 7.) We map a send event to a communications event at 

Level 6 with the message slot as the destination. (The "sender" at Level 6 is an arbitrarily selected tloc at 

the sending node.) We map a receive event to a sequence of communications events at Level 6 with the 

message slot as the sender, and all tlocs at the receiving node as receivers. In general we map a single 

pe,...node event which affects the node's state to to a sequence of pe,.../ocation events -- one for each tloc 

whose home is that node. 

10.3 Proof of Possibilities Map for h76 

We now show that h is a possibilities map. 

Lemma 10.3.1: h preserves initial states. 

Proof: Let h(D0) = <L, V>; then 

V = valuemap(Do> = VO' and 

L(a) = Tu if a € Msgs. since D0.buf = 0 

If a€ tloc, then L(cr) = q1.home(cr).1 =Tu. 

Thus L =Lo· I 

----- ------- -----
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Lenuna 10.3.2: h preserves transitions. 

Proof: We must show that if D E PRR,(e) n ~7• and h(D) E PRE6(h(e)) n ~6• then h(De) 

= h(D)h(e). 

Let De = DI, h(D) = <L,V>, h(Dl) = <LI.VI>, and <L, V>h(e) = <L',V'>, then we must 

show that LI = L', and VI = V'. 

We argue the cases e = create A (d), e =send M, and e = receive M for M = #create(ij) 

A,d. Other cases are similar. 

1. e = create A (d). Let p = creator(A), i = home(ft). 
h(e) =create A• «{@create[p,a] A,d: home(a) = i}; ord6>>. 

From transitions TI.la,b, we have 
Dl.buf = D.buf, Dl.j = D.j V j ~ i, 
Dl.i.v = D.i.v, 
#vertices01[i] = #verticesJi] U {A}, 

#statu5n1[i](A) = 'active'. 

1bus VI = V, and Ll(a) = L(a) Va ( tloc(i). If a E tloc(i), then 

@venicCSr,1[a] = @vertice8i,[a] U {A}, and @statuSu[a)(A) = 'active'. 

By inspection all events in h(e) only affect locations in tloc(i); thus L'(a) = l..(a) 
= Ll(a) Va f tloc(i). 

Define relation 1-+ on tloc(i) as fol1ows: al 1-+ a2 - al = p, or@creatcfP,al] 
A,d precedes @creatc[p,a2] A,d in ord6. (t-t is reflexive.) Let <U',V2'> = 
<L. V>u, where u is the prefix of h(e) up to and including event @create(p,a2] 
A,d. We can show inductively that 
@aboncduJa2], 
V2'(a,A) = V(a,A) Va E obj(i), A €act, 
al 1-+ a2 =- A E @activeu.[a11 

- (al 1-+ a2) =t A ( @verticesu~al]. 

(We wiJl not carry through the details of the induction here. The only subtle 
point is that event @crcatc(,8.a2] A,d cannot affect V(a2) (if a2 € obj(i)): If B 
E V(a2), then by Lemma 8.3.la, Bis Uve in L(a); thus 8 cannot be a descendant 
of an action in d. Note that we can apply 8.3.la because we know <L. V> E 9.6, 

and 14' is invariant in L6 by Lemma 9.5.2.) 

By applying the inductive result to the total sequence h(e), we conclude that 

V' = V and L'(a) = L(a) for all a in tloc(i). Thus Vl = V', and Ll = L'. 
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Dl.buf = D.buf U {M}; Dl.i = D.i Vi E Nodes. 

Since valuemap(D) docs not depend on D.buf, V' = V. But M ( obj, so h(e) 
cannot affect V (in L6). == VI = V. Thus VI = V'. 

Obviously Ll(a) = L(a) unless a = M. But Dl.i = D.i for all i E nodes. and if 
M' * M, then M' E D.buf - M' E Dl.buf. Thus L'(a) = L(a) for all a * M. 

For a = M, L'(a) = T, where 
vertices,-. = {U,A} U d 

cornmitte<Lr = li1' 
aborte<Lr = d 

Let Ll(a) =Tl, L(a) = T, then 
vertices,-1 = vertices,- U {A} U d 

committedr1 = committedr 

abortedr1 = abortedr U d 

But ifM E D.buf, then T = T == Tl= T. IfM ( D.buf, then T =Tu == Tl 

=T. 

Thus LI= L'. 

3. e =receive M, M = #create(ij) A,d. 
h(e) = «{@creatc[M,a] A,d: home(a) = j}; ord6>>. 

At node j, A is added to #verticesJj] (and made active if not already there), and 

dis merged into # abonedJj]; descendants of dare discarded from D.j.v. 

We show Ll = L' (the argument that VI = V' is similar). 
Let a E Joe. If a E Msgs, then clearly L'(a) = Ll(a) = L(a). If home(a) * j, 
then again L'(a) = Ll(a) = L(a). Otherwise Jet L(a) = T, Ll(a) = Tl, L'(a) 
= T. Then L(a) = D.j.J; L'(a) = Dl.j.l. 
Thus vertiCCSr = vertices,- U {A}, abone<Lr = abortedr U d (from transitions 
T7.a,c). 

But Tl differs from T by the effects of the message @create(Jj,a] A,d. in h(e), 
which has identical effect (from transitions T6.a,c), - Tl = T. Thus LI = L'. 

Lemma 10.3.3: h preserves preconditions. 

Proof: We must show that if DE PRF,(e) n l!li7, and h(D) € l!li6, then h(D) € P~(h(e)). 
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Leth(D) = <L,V>. 

We argue the cases e = pcrfonn A,u (d), e = send M, and e = receive M for M = 
#create(ij) A,d. Other cases are similar. 

1. e = pcrfonn A,u (d). Let x = object(A), i = home(x). 
h(e) = pcrfonn A,u • «{@commit[x,a] A,d: homc(a) = x}; ord6>>. 

First we show that <L, V> E PRE
6
(pcrfonn A,u). L(x) = D.i.1, V(x,a) = 

D.i.v(x,a), by definition ofh. 

a. A E #activeJi], by P7.4a, 
== A E @activeL[x]. 

b. A E prop-desc(D.i.v(x).holder), by P7.4b, 
== A E prop-desc(V(x).hotder). 

c. u = D.i.v(x).value, by P7.4c, 
= u = V(x). value. 

d. anc(A) n #abortedJil = 0, by P7.4d, 
= anc(A) n @abortedL(x) = 0. 

Now let e' be the prefix ofh(e) preceding @commit[x,a] A,d (for some a whose 
home is i), and let <Ll,Vl> = <L, V>e' (in 1..6). We show that <Ll,VD € 
PRE6(@commit[x,a] A,d): 

a We must show that A E @committedu[x]. But event perform A,u 
must be in e', == A € @commiuedu[x). 

b. We must show d = @abortedufx]. But d = #aborted.Ji] by 
P7.4e, = d = @abortedL(x). 
But none of the events in e' can change @abortedL(x] (perform A,u 
obviousJy does not change @abortedL(x). and if event @commit(x.x] 
A,d occurs in e', then d t;;. @abonedL[x] already). Thus d = 
@abortedu(x). 

i e ; receive M. M = #creatc(ij) A,d. 
h(e) = «{@crcatc(M,a) A,d: homc(a) = j}; ord6>>. 

None of the events in h(e) affect L(M), and the precondition for each event 
@crcatc[M,a) A,d depends only on L(M). Thus it suffices to show that <L, V> € 
PRE6(@create(M,a) A,d) for a11 a. 
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But M E D.buf by P7 .6a, so L(M) = T, where 
vertices.y. = {U,A} U d, 

committedr = '6, 
abortcdr = d 

Thus 

a. A E @activeL[M) 

b. d E @abortedL[M] 

3. e = send M, M = #create(ij) A,d 
h(e) = @crcate[loc(i),M) A,d 

homc(loc(i)) = i, by definition, so L(loc(i)) = D.i.1. 

a. A E # activeJi], by P7 .Sa, 
=o A € @activeL[loc(i)]. 

b. d = # abortedJi], by P7.Sb, 
=t d = @abortedL[Joc(i)]. I 

Theorem 10.3.4: .his a possibilities map. 

Proof: By Lemma 10.3.1, h preserves initial states. By Lemmas 10.3.2 and 10.3.3, and Lemma 

4.2.2.6, h preserves events. Thus h is a possibiJities map. I 

10.4 Mapping from Leve] 7 to Leve] 0 

We can now prove the main theorem of this thesis: valid execution sequences of our 

lowest-level model (Level 7), when suitably interpreted, generate only view-serialii.able action trees. 

Main Theorem: Let g: g7 - g~ be defined by 

g = h76oh65oh54oh43oh320h21 oblO 

Let v € '7 be some vaJid execution sequence in L7. Then TjS(v) is a view-seriaJii.abJe action 

tree. 
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Proof: We have shown that each h 1 is a possibilities map (Theorems 6.4.4.1, 6.5.2.1, 7.4.5, 
I+ .I 

8.4.5, 9.4.5, 9.5.1, and 10.3.4). By Lemma 4.2.2.5. each hi+l,i is a valid interpretation. By 

repeated application of Lemma 4.1.3.2. g is a Yalid interpretation from L7 to LO. Thus v E r; 
= g(v) E 'f0· By Lemma 6.1.1, Tig(v) is view-serializablc. I 
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11. Conclusions 

11.1 Summary and Evaluation 

We have presented a detailed proof that a particular transaction system model satisfies our 

definition of internal consistency. The proof was structured on several levels, corresponding to different 

levels of abstraction of the transaction system. While the lowest-level model is stiU quite "abstract" in 

that it is far removed from an actual implementation. we feel that it captures many of the basic design 

decisions made for the Argus transaction system. 

We believe our work has made two contributions: First, we have formalized internal 

consistency and we have related this formal condition to a particular orphan detection strategy. Second, 

we have explored a method for multi-level correctness proofs which might be useful in other contexts. 

11.1.l Orphan Detection and Internal Consistency 

Our definition of view-serializability appears to be a useful condition for internal consistency. 

In the development of the Argus orphan algorithm, designers have often relied on particular scenarios 

where inconsistencies arose to justify the need for including certain information in messages (or writing 

cenain information to stable storage.) While this type of reasoning can demonstrate shortcomin~ in the 

algorithm, it cannot prove the algorithm correct (we cannot "prove by example.") Perhaps the results of 

this thesis, and future extensions of these results. can partly subsume this "'reasoning by scenario." 

Although we have ignored crashes in our system models. the view-serializability condition 

appears to be applicable in an environment with crashes. We have applied this condition to scenarios of 

inconsistencies in Argus which result from crashes; these inconsistencies can be explained by showing 

that an action does not have a serialii.able view tree. (Since view-serializ.abiJity is a sufficient condition for 

internal consistency, any inconsistency should be explicable by the absence of a seria1iuble view tree.) 

11.l.2 Algebraic Models 

The multi-level structure of our correctness proof yields at least two benefits: First. since 

adjacent levels are generally closely related. the possibilities maps (and proofs of posibilities maps) 

between adjacent levels are relatively simple. Although we employ many levels. overall complexity is 
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reduced and understandability of the mappings is enhanced. 

Second, because the higher·JeveJ models are more abstract, they might prove to be useful 

abstractions of different implementations. At Level 1 we describe the ANC-ABORT property, at Level 2 

we describe a specific orphan detection precondition, and onJy at Level S do we expJain how this 

, detection is carried out kx:alty by piggybacking aborts lists onto messages. A different orphan strategy 

could be described at lower levels, but the higher-level models might still apply. As a trivial example, if 

all orphans are always exterminated immediately, then it is easy to _show that condition ANC-ABORT 

from Level I is satisfied. Thus the correctness proof from Level 1 could be carried over to a system using 

immediate extermination. As another example, if we change the specific information piggybacked onto 

create and commit messages at Level 5 (for example, we might choose to send only a covering subset of 

the known aborts set) then the Level 4 model might stilJ apply. 

Our notion of "homomorphism" is unusual in that we allow "possibilities" mappings to sets of 

states at higher levels. This approach allows us to explain the "auxiliary state" technique as a particular 

kind of possibilities map. For our algebra hierarchy, we used a multiple-state augmention mapping 

between Levels 6 and 5. We speculate that the use of possibilities maps instead of auxiliary state variables 

might simplify some correctness proofs. 

11.2 Directions for Further Research 

The application of fonnal techniques to distributed transaction systems is a vast topic; we limit 

our discussion to three pos.tjble extensions of our work. 

11.2.1 Crashes 

The most glaring deficiency of our model is that we do not consider node crashes. Node crashes 

are a more difficult problem than explicit aborts because the orphans created by a node crash might be 

ancestors (or relatives) of actions which ran at the crashed node and committed. The "infected" ancestor 

can commit arbitrarily far up the action tree before the crash is discovered (though it will eventually be 

caught at the top level during two-phase commit if it is not caught sooner). 

The (visible-data-closed) view tree which we used to prove view-serialil.ability for the explicit 

aborts case will not wort for a crash modet It is possible that a datastep can be "visible" to another access 

---------~-- ---------- -------------
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since it has committed to their least common ancestor, but the effect of this datastep might have been 

undone by a crash. Consider the tree of Fig. 11.1, for example. Object x has initial value 0. Action A 

spawns concurrent children Al and A2. Action Al runs, increments x. and commits to A. Then x's node 

crashes, allowing A2 to get a lock on x. Action A2 cannot see the effects of Al, because x's node crashes 

after Al commits to A. A2's view is consistent., because there exists a serializable view tree for A2, but 

this view tree does not include Al. (A2 is an orphan, because A is an orphan, but A2 is not yet a "bad" 

orphan.) Note also that if A2 commits to A, then A's view becomes inconsistent Thus an orphan 

detection strategy for a crash model must place restrictions on the commit of actions; for the explicit 

aborts case, we have shown that it is sufficient to put a precondition on perform events. 

We speculate that a high-level notion of "depending on a crash" could be developed to parallel 

our notion of depending on an abort, and that a sufficient condition for view-serializ.ability could be 

expressed in terms of these dependencies. Piggybacking of crash count information would appear at 

lower levels. A better approach would be to somehow unify aborts and crashes (i.e., treat them both as 

particular cases of a higher-level event), but we have made little progress in this direction. 

Fig. 11.J. Consistent View of Orphan Arisin& from a Node Crash 

x,0 ...........___. x,O 

(x's node crashes 
after Al COllllits) 

orphans 
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11.2.2 Lower-Level Models . 

Although our lowest-level model is "distributed." it ignores many of the optimizations and 

complications of a real orphan detection algorithm. A more satisfying "correctness proof' would extend 

our bottom level to even lower-level models which are closer to a real design. At least two areas for 

, refinement may be explored: First, since the system history of aborts will grow without bound. any 

operational orphan algorithm will not send DONE in entirety on each message. Reducing this overhead 

will require some connection information or garbage collection scheme (perhaps using some variant of 

orphan expiration [Nelson81]). It would be useful to prove that these modifications are indeed 

optimizations in that they do not violate internal consistency. 

Second, our model describes the possible flows of information, but it does not describe strategies 

for actually sending messages. (For example, do actions inform descendants immediately when they 

commit, or do they answer to queries from descendants?) Since our work focuses on correctness of 

reachable states, we have been able to ignore these questions. Of equal interest to designers, though, are 

properties of liveness (for example, will a commit message ever arrive) and bounds on delays. 

Formalization of these properties might require fundamentally different mechanisms. 

As lower-level models become more detailed, they will approach specifications for the programs 

of a transaction system. At this point the boundary blurs between these correctness proofs and program 

verification. 

11.2.3 User-Defmed Atomic Data Types 

We have limited the objects in our model to simple atomic objects implemented using mutual 

exclusion locks and a stack of versions. For some applications these objects might be inefficient: different 

implementations of atomic objects might provide additional concurrency or a more efficient backup and 

recovery mechanism. As explained in (W eih1821 the "atomicity" of a data type depends on the semantics 

of the operations available to users of that type. As a trivial example, if a type is "immutable" (none of 

1he operations change the abstract object), then it is automatically atomic. Our serializability condition is 

insufficient to describe this more general notion of atomicity. 

More general "user-defined" atomic types can be constructed from basic atomic objects (like 

those in our model) and completely nonatomic objects (which provide no sYDchronization or recovery). 
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(Again, see [W eih182] for examples of these constructions.) Because the effects of aborted actions might 

not be undone, undetected orphans can violate external consistency through non-atomic data (with 

catastrophic effects). Thus an orphan detection strategy is more important for systems which allow 

non-atomic objects. Although orphan detection does not guarantee view-serializability for systems with 

non-atomic objects, it might guarantee weaker properties which are useful to programmers trying to use 

, non-atomic objects to construct atomic types. We have begun to explore these properties (and more 

complex models which incorporate general atomic types). For example, it is relatively easy to show that 

the orphan detection strategy we have modeled constrains the order of datasteps on a non-atomic object 

to be consistent with the sequence ordering. (Without orphan detection, even this weak condition might 

not hold.) 
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Appendix I · Notational Conventions 

Fig. I.I. Comcntions for Figures 

The action tree, T, is usually implicit 

I I 
A, c A E committedT A.a A E abortedT 

A 

A = parent(B) 
B 

A 

I A E prop-anc(B) 
B 

A 
I , 

A E anc(B) , 
B 

A 

{/J prop-anc(B) n prop-desc(A) ~ committedT 

A---+. B (A. B) E seqT 

(A,B) E dataT 
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Fig. 1.2. Cross-Reference of lmariants to Lemmas 

Invariant Symbol 

Ia 

Ja 

Sa 

13 

J3 

14 

14' 

15 

Lemma(s) 

6.3.1.1.2, 6.3.1.1.4, 6.3.2.2, 6.3.3.1, and 6.3.3.2 

6.3.1.1.1, 6.3.1.1.3, 6.3.3.3, and 6.3.3.4 

6.3.1.2.1 through 6.3.1.2.14 

7.3.2 

7.3.1 

8.3.1 

8.3.1 except for 8.3.le 

9.3.3 
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