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ABSTRACT 

A bisection of a graph with an even number of vertices is a partition of the 
vertex set into two disjoint sets of equal size. Given a bisection, the number of edges 
having one end in each of the two subsets of the bisection is called the size of the 
bisection. The bisection size of a graph is the minimum size of all possible bisections 
of the graph. Given a graph with an even number of vertices and a positive integer, 
the graph bisection problem is the problem of determining if the bisection size of 
the graph is less than the given number. The graph bisection problem is known to 
be NP-hard. 

In this thesis, we give probabilistic lower bounds and upper bounds for the 
bisection size of random graphs, graphs in which an edge appears between any two 
vertices with a certain fixed probability, say p, independent of all other edges. In 
particular, we show that, with probability 1, the bisection size of random graphs 

on 2n vertices is greater than or equal to n2p-o( n312vr'i . ..1- p)) and is less than 

n2p- o( nvp(l - p)). Upper bound and lower bound on the bisection size are 

given in the case p is a function of n, specifically when p = p( n) = j-. We also 
consider some heuristics for solving the graph bisection problem. 

Thesis Supervisor : Ronald L. Rivest 

.TilJ.e. : Associate Professor of Electrical Engineering and Computer Science 

Keywords : Random graphs, bisection size, probabilistic bounds. 
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Chapterl 

Introduction 

In this thesis, we study the graph bisection problem. We shall consider only 

undirected, simple graphs having unit cost on all of its edges, and an even number 

of vertices. We consider the problem of partitioning the vertex set into two disjoint 

sets of equal size which minimize the number of cut edges (edges having one 

endpoint in each subset of the partition). This problem is called the graph bisection 

problem1. 

By relaxing some constraints in the graph bisection problem we obtain the 

graph partitioning problem. Specifically, let an undirected, simple graph with costs 

on its edges be given. The graph partitioning problem is the problem of partitioning 

the set of vertices into disjoint subsets, each having cardinality smaller than a 

given fixed number, so as to minimize the total cost of the edges having ends in 

different subsets of the partition. Even though the graph bisection problem seems 

simpler than the graph partitioning problem, it still retains the important feature 

of the latter. Furthermore, an algorithm for solving the graph bisection problem 

can be adapted as a heuristic to approximately solve the general graph partitioning 

problem [KL70}. 

Aside from being of theoretical interest, the graph partitioning problem serves as 

an abstraction for various practical problems. An example is the problem of placing 

components of a circuit on printed circuit boards. The objective here is to perform 

1 For simplicity we use this definition here. The graph bisection problem will be defined more 
carefully in the next chapter as a decision problem. 
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the placement so as to minimize the number of connections between components 

on different boards, for these connections are slower and more expensive than those 

connecting components on the same board. This problem can be represented as 

a graph whose vertices depicting the components and the edges representing the 

connections of the circuit. The maximum cardinality of each subset of the partition 

corresponds to the maximum number of components each board can have. 

Another example arises in the management of a page or segmentation memory 

structure of a computer system. The problem here is to assign components (e.g. 

subroutines or procedures) of a large program into different fixed-size pages of the 

memory so that the number of references between components on different pages 

of the memory is minimized. 

In recent years, the graph partitioning problem has been used as a model for 

an important problem in the Very Large Scale Integration (VLSI) design process. 

This problem arises in the placement phase of the design process, in which tens or 

hundreds of thousands of components must be placed on a wafer subject to certain 

constraints. With such a large number of components to be arranged, it is desirable 

to have this process automated. At the present, most models for the placement 

problem are of the form of a graph partitioning problem [Br77). 

It is known that the graph partitioning problem (when phrased as a decision 

problem) is NP-complete [HR]. That means at the present no algorithm is known 

to solve the graph partitioning problem in time polynomial in the length of the 

input (assuming a reasonable encoding of the problem). Nonetheless, there are 

approximate algorithms, or heuristics to solve this problem. Hence, it is useful to 

know how good a solution a given heuristic can provide, without having to use 

empirical methods. It should be noted that if we consider the graph partitioning 

problem in which each subsets of the partition has size less than or equal to 2 then 

this is the problem of finding maximum matching, also if the size of each subset 

is restricted to be less than or equal to n - 1 where n is the number of vertices in 

t.he graph then this becomes the problem of finding a minimal cut set of the given 

graph. There exist polynomial-time algorithms for both of these problems. 

It can be easily shown that the graph bi~ection problem (when phrased as a 
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decision problem) is also NP-complete. There are several heuristics often used for 

this problem, all of which have the form of a hill-climbing search or some variation 

of it. The analysis of the performance of a heuristic would be facilitated if we have 

some information about the objects the heuristic is applied on. In other words, 

we would like the input to the heuristic to be in some structured class of objects. 

To this end we choose random graphs as input to the heuristics. By a random 

graph we mean a graph in which an edge appears between any two vertices with 

a certain probability, possibly dependent on the number of vertices of the graph, 

but independent of all other edges. The performance of the heuristic on this class 

of graphs may give insight to the typical behaviour of the heuristic in practice. 

To determine the performance of a heuristic, we must first know what kind 

of solution we expect to have, that is we must know the size of the optimal cut 

edge set of a random graph. Then by comparing this with the solution given by 

the heuristic we can determine how good the heuristic is. 

The thesis is divided as follows. In Chapter 2 we review some standard graph 

theoretic notions, define the graph bisection problem, introduce models for random 

graphs, and present some known results. In Chapter 3 we give probabilistic lower 

bound and upper bound for the bisection size of random graphs. We review 

some known algorithms for solving the graph bisection problem and present some 

empirical data on the performance of some heuristics on random graphs in Chapter 

4. Finally, Chapter 5 will provide a summary and some open questions. 
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Chapter2 

The Graph Bisection Problem 

I 

In this chapter we review the known results about the bisection size of graphs. 

To facilitate thypurpose and to lay the ground for later work we first present 

some stan~raph notions. We also give the definitions for our models of random 

graphs. The graph bisection problem is also defined formally. 

2.1. Some Graph Theoretic Defin,itions 

An (undirected) graph G = (V, E) consists of a set V of vertices and a set E 

of unordered pairs of vertices, called edges (we use the notation (a, b) to denote the 

unordered pair a and b). We consider only simple graphs, that is graphs satisfying 

the condition that, for all v E V, ( v, v) (£. E and there is at most one edge between 

any two vertices in V. Let IAI denote the cardinality of the set A. Let G = (V, E) 

be a graph, for each v E V, the degree of v, denoted by deg( v ), is defined as 

deg(v) =I{ w EV I (v, w) E E}I. (2-1) 

Let AC V, the subgraph of G induced by A is the graph obtained from G 

by deleting all vertices in V - A and all edges in E incident to those vertices in 

V - A. We call G a complete graph if IEI = (1~1). A sequence of vertices vi, ..• , Vm 

is called a path between v1 and Vm in G if for all i E { 1, ... , m -1 }, (vi, Vi+1) EE. 

If v1 = Vm then the path is called a cycle. G is said to be connected if there is a 

path between any two vertices in V. A tree is a connected graph having no cycle. 

If we label the vertices in V with the integers in { 1, 2, ... , IYI} so that each vertex 

has a distinct label, then the adjacency matrix A(G) of G, a square matrix of order 
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IVI, whose element in the ith row and the jth column is defined as follows. 

a .. -{1, 
i3 - o, 

if (i, j) EE; 

if (i,j) ~ E. 
(2-2) 

Now suppose IVI = 2n and let A,B CV. The pair (A,B) is called a bisection 

of G if AnB = 0,A U B = V, and IAI = IBI = n. Let (A,B) be a bisection of G. 

For each a E A define 

in(A,B)( a) = degree of a in the subgraph of G induced by A. (2-3) 

ex(A,B)(a) =degree of a in the subgraph ofG induced by {a} LJ B. (2-4) 

Similar definitions apply for each b E B. We shall omit the subscript (A, B) and 

just write in(a) and ex(a) when there is no confusion. We now define the size of 

(A, B) written l(A, B)I as 

l(A,B)I = E ex(a) 
aEA 

= E ex(b) 
bEB 

= IEI- !(E in(a) + E in(b)). 
2 aEA bEB 

The bisection size of G is defined as 

(2-5) 

(2-6) 

(2-7) 

C(G) =min{ l(A, B)l I (A, B) is a bisection of G }. (2-8) 

The graph bisection problem can now be stated. 

Instance : G = (V, E), IVI = 2n, 0 < k < IEI. 
Question : Is C( G) < k ? 

In this thesis we shall deal mainly with a special kind of graphs, namely the 

random graphs. Random graphs were first considered by Erdos [E59), [E61], and 

were studied in some details by Erdos and Renyi in [ER59], [ER60]. Random 

graphs have been used in nonconstructive proofs of combinatorial theorems, see, for 

example, the book by Erdos and Spencer [ES74). Random graphs have also been 

studied for their own interest and many results concerning random graphs have 

been discovered [BESSO, Bo81a, Bo81b, Bo82, BE76, GM75, Mat76, P76). For an 

extensive bibliography on the literature of ran9-om graphs see [Ka82]. The two most 
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often used models of random graphs are closely related. We start with a fixed set of 

n distinct (labeled) vertices. In the first model, we choose each of the (;) possible 

edges with a fixed probability p, 0 < p < 1, independent of the choices of all other 

edges. In the second model, we take all graphs on n vertices and m edges, where m 

may be dependent on n, and consider them as points of a probability space, having 

equal probability. In the first model we write 9( n, p) to denote the probability space 

of all graphs with a fixed set of n labeled vertices and the probability of a graph 

with m edges is pm q(2)-m, where q = 1 - p. In the second model we use 9( n, m) 

to denote the probability space containing all graphs on n vertices with m edges 

0 < m < (;),and each graph in 9(n, m) has equal probability. Another commonly 

used model of random graphs is the model g(n,p) with p being a function from l'l 

to (0, 1). It is useful to define the following concept which will be needed later. Let 

Q be a property of graphs in 9(n,p) or 9(n, m). We say almost every (a.e.) graph· 

in 9(n,p) has property Q if Pr{ G.,,,,p E 9(n,p) I Gn,p has Q}-+ 1 as n-+oo. Similar 

definition applies for graphs in 9( n, m ). Unless otherwise indicated, all logarithms 

in this thesis are natural logarithms. 

2.2. NP-completeness of the Graph Bisection Problem 

The NP-complete problems are the hardest problems in a class of problems, 

called NP, that can be solved in polynomial time by nondeterministic Turing 

machines. The corresponding class of probems which can be solved in polynomial 

time by deterministic Turing machines is called P. One of the most important open 

questions in theoretical computer science is whether P is equal to NP. This means 

that we do not now know any deterministic, polynomial time algorithms for solving 

an NP-complete problem. (Note that P C NP and the general consensus is that 

P is not equal to NP.) For more precise definition of NP-completeness see [GJ79]. 

The graph bisection problem can be easily shown to be NP-complete by reducing 

it to the simple max cut problem, which is known to be NP-complete (GJS76]. The 

simple max cut problem is the following problem. 

Instance : Graph G = (V, E), positive integer K. 

Question : Is there a partition of V into 2 disjoint sets such that the 

number of edges having one end in each of the two sets is at least K? 
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The proof of the following proposition is almost identical to the one given in 

[GJS76] for proving the NP-completeness of a problem slightly different from the 

graph bisection problem. 

Proposition 2.1. The graph bisection problem is NP-complete. 

Proof : We reduce the simple max cut problem to the graph bisection problem. 

Let G = (V, E) and K EN be an instance of the simple max cut problem. Let 

IVI = n, and U = { ui, ... , Un} be a set of new vertices. We construct an instance 

for the graph bisection problem as follows. Construct G' = (V', E') such that 

V'=VU u, 
E' = {(u, v) I u, v EV', (u, v) ~ E }, 

K'=n2 -K. 

In a sense G' is the complement of G, with the extra vertices. 

Claim : G has a max cut of at least size K if and only if G' has a bisection of size 

less than or equal to K'. 

Suppose (A, B) is a partition of G such that I{ (u, v) EE I u EA, v EB }I > K. 

Since K > 0, IAI, IBI > 0. Let j = n- IAI. Let 

A' = A LJ { u11 • •• , u; }, 

B' = V' -A'. 

Then (A', B') is a bisection of G'. Also, it is easily seen that 

l(A', B') I = n 2 
- I { ( u, v) ~ E' I u E A', v E B' } I 

= n2
- l{(u,v) EE I u EA,v E B}I 

< n2 -K 

=K'. 

Conversely, if (A', B') is a bisection of G', such that l(A',B'~ < n2 -K = K'. then 

let A = A' n V and B = B' n V, clearly (A, B) is a partition of G satisfying 

l(A,B)I =I{ (u, v) EE I u E A,v E B}I 
= n 2 

- I{ (u, v) .i E' I u EA', v EB' }I 
> n2 -(n2 -K) 
=K. 

This proves the claim and the proposition. I 
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2.3. Known Lower Bounds on the Bisection Size of Graphs 

As indicated in the previous section the graph bisection problem is NP­

complete, this means that at the present an algorithm to determine the bisection 

size of a graph takes time exponential in the size of the graph (e.g. the number of 

the vertices). It is, therefore, useful to know a lower bound of the bisection size of 

a given graph so that one can determine how good is an approximate algorithm 

for finding the bisection size. The first few results presented below give the lower 

bounds for bisection size based on the knowledge of the adjacency matrix of the 

graph. Let G = (V,E) be graph with IVI = 2n. Let A(G) be the adjacency matrix 

of G and let U be an arbitrary diagonal matrix of order 2n such that 

2n 

L ti.ii = -2 IEI. (2-9) 
i=l 

We denote by >.i, A2 the two largest eigenvalues of the real symmetric matrix 

(A+U). 

Proposition 2.2. [DH73) Let G = (V, E) be a graph with IVI = 2n and let 

A, U, >.1 1 >-2 be defined as above, then 

(2-10) 

If we know the maximum degree of the vertices in G then we have the following 

stronger result than Proposition 2.2. 

Proposition 2.3. [DH73} Let G = (V, E) be a graph with IVI = 2n and let 

A, U, >.i, A2 be defined as above, and for all v E V, deg(v) < d for some 

fixed constant d. Let c5i, c52 be in the closed interval (0, 11' /4L and let x be the 

simultaneous solution to the following equations. 

x sin 261 = ( 1 - x) sin 2~ 

_!(01 + c52) = x[l - sin2c51+2(d-1)(1- cos(c51 + ~))] 2 . 

then 

C(G) > Xf!.. 
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Given n and m, if we define Cn,m to be the maximal bisection size of all graphs on 

n vertices and m edges, then we have the following result given by Goldberg and 

Gardner [GG82). 

Proposition 2.4.[GG82] Let n and m be given. Lets be the largest integer such 

that m > s(2n -1) - ~s(s - 1), and let r = m - 2(2n -1) + !s(s -1). 

C2n,m > [~( 2n - ~)]+max{ 0, r -rn -~l-1} (2-14) 

where [a] denotes the integer nearest to a. 

Proof: We shall construct a graph G = (V,E) with IVI = 2n, IEI = m and such 

that C(G) equals the right hand side of (2-14). We define Gas follows. 

V = {Xi, ... , X2n }, 

E = { (Xi, x;) I i = 1, ... , s; j = 1, ... , n; i ~ j} 
U {(xs+11x3)li=s+2, ... ,s+r+1}. 

Thus G has a clique of size s and each vertex of that clique is also connected 

to all other vertices in V. There is also one vertex outside of the clique, namely 

x8+i, which is connected to r other vertices not inside the clique. Let (A, B) be 

an optimal bisection of G. Assume that a is the number of vertices in the clique 

that appear in A and hence there are s - a vertices of the clique appearing in B. 

Without loss of generality assume that a < ~ then a < s - a. It is clear that 

C(G) = l(A,B)I < (s-a)n+a(n-(s-a))+max{O,r-(n-a)-1} 

hence for the optimal bisection we must have a = ~. That is 

C( G) = [ s( n - ~)] +max{ 0, r - r n - ~ 1- 1 } 

completing the proof of the proposition. I 

For random graphs in 9(2n, m) the following lower bound is given in [Mac78]. 

Proposition 2.5.[Mac78] Let s > 9 be fixed. Let G2n,m be a random graph in 

9(2n,m), with m = 2sn. Then 

(2-15) 

as n-+oo. 
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2.4. Known Upper Bounds on the Bisection Size of' Graphs 

By counting argument we can easily get the following upper bound on the 

bisection size of graphs in general. 

Proposition 2.6.[GG82] Let G = (V, E) be a graph with IVI = 2n, IEI = m. 

Then 

C(G) < mn . 
- 2n-1 

Proof: Since the number of different bisections is !(2:), we have 

!(2n)c(G) < E l(A, B)I 
2 n (A,B) 

(2-16) 

(2-17) 

where the sum is over all possible bisections of G. It is easily shown that each edge 

in G appears (2: ..="}) times in the sum on the right hand side of (2-17). Hence 

the above inequality becomes 

!(2n)c(G) < (2n -2)m. 
2 n n-1 

Thus 
2(2n-2)m 

C(G) < n-1 = mn I 
- (2:) 2n- l 

The above result holds for any graph. 

In the case of random graphs in 9(2n, m) we have the following upper bound 

given in (Mac78]. 

Proposition 2.7. Choose s > 0. Let G2n,m be a random graph in 9(2n, m) 

where m = 2sn. Then with probability 1, C(G2n,m) is less than or equal to 

m(~ -H(s)), as n-+oo, where H(s) ~ 0.238s-1/ 2 as s-+oo. This approximation 

is also good for s as small as 1. 

This upper bound is established by constructive method. An algorithm is 

exhibited and its performance is used to derive the upper bound. In practice, this 

algorithm is found to be inferior to most other well known algorithms for finding 

bisection size. The problem is that these superior algorithms are too complex to 

enable an analytical analysis be made on their performances. Therefore, one would 

expect that even if the random variable denoting the bisection size of random 
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graphs in 9(2n, m) does not converge, the actual upper bound will be lower than 

that given in Proposition 2.7. It should be noted that the upper bound given in 

Proposition 2.7 is only for random graphs in 9(2n, m) with a linear number of 

edges. 

2.5. Bounds for Graphs with Special Structures 

In general if the graph possesses some special structure we can produce a 

tighter bounds on its bisection size. The following results are given in [Mac78] we 

present them here without proof. 

Proposition 2.8. Let G = (V,E) be a graph d =max{ deg(v) Iv EV}> 3, with 

IEI = m, then 

(2-18) 

Proposition 2.9. Let G = (V, E) be a graph with IVI = 2n, IEI = m, if m < n 

then C(G) = 0. 

Proposition 2.10. Let s E (1/2, 3/2) be given. Then there exists an f > 0 such 

that for any no there is n > no and a graph G = (V, E) with IVI = n, IEI < sn 

such that max{ deg(v) I v EV} < 3 and C(G) > En. 

Proposition 2.11. Given a tree G with n vertices and let d be the maximum 

degree of all the vertices. Then 

if d = 3 or4; 

if d > 5. 
(2-19) 

Proposition 2.12. Let G be a complete ternary tree having n vertices with 

n = !(3l - 1), for some l even. Then 

C( G) > flog3 n l - r1og3 log3 n l · (2-20) 

The above proposition also holds for odd l, but then the number of vertices in 

the tree is odd and it does not have a bisection as defined in the first section of this 

chapter. 
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In this chapter we have reviewed the known results concerning the bisection 

size of graphs. Except for the results given by MacGregor [Mac78] for random 

graphs in 9(2n, m) all the other results are given only to first order term. In the 

next chapter we shall give bounds for random graphs to second order term. We 

also expand our model of random graphs to deal with random graphs having a 

nonlinear number of edges, in contrast to MacGregor's results. 
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Chapter3 

Bounds for Bisection Size of Graphs in g (2n,p). 

In this chapter we consider random graphs in 9(2n,p). We defined 9(2n,p) 

in Chapter 2 as a probability space consists of all graphs on 2n vertices, and the 

probability of a graph on 2n vertices and m edges is pmq(22)-m, where q = 1- p. 

We show in this chapter that with probability 1 the bisection size of G2n,p E 9(2n, p) 

is less than n2p-O(n) and is greater than n2p-O(n312). We then extend our model 

so that p can be a function of n (from N to (0, 1)). In particular we consider the 

function p = p(n) = ~· Under this model, we show that a.e. graph in 9(2n,p(n)) 

has bisection size greater than en - n../2e log 2 and less than en - 0.476c112n. 

3.1. Preliminary Results 

In this section we first present without proofs some elementary results in 

probability theory which will be needed later in the chapter. Proofs of these results 

can be found in most books on probability theory, e.g. [F74). We next present some 

fundamental results about random graphs. 

Chebyshev's Inequality Let X be a random variable, for any t > 0, we have 

(3-1) 

In particular, if E(X) = µ then 

Pr{ IX - I> t} < Var(X) 
µ - - t2 (3-2) 

where E(X) and Var(X) are the expectation and variance of X, respectively. 
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In our proofs we need to approximate expressions which contain the binomial 

random variable. For this purpose we use the following approximation given in 

(JK69] to approximate the binomial random variable by the normal random variable. 

where 

and 

(
k+ !-np) 

Pr{ Sn < k } ~ JI .jnpq , 

Pr{ Sn < k } = t (~)piqn-i 
i=O i 

Jl(x) = _1_ lz e-b2 dy 
~ -oo 

(3-3) 

(3-4) 

(3-5) 

is the normal distribution function. The following approximation of the normal 

random variable given in (F7 4] will also be needed later. 

Jl(-x) ~ 1 - Jl(x) R:: x-117(x) (3~) 

as x-+oo, where 
1 l. 2 TJ(x) = -e-zz 
~ 

(3-7) 

is the normal density function. In our computation we also use the following form 

of Stirling's formula for factorial 

(3-8) 

from which we can easily show that 

(
2n) ~ 2

2
" • 

n ..fin 
(3-9) 

By a simple application of the Chebyshev's inequality we get the first part of 

the following result. 

Proposition 3.1. Given f > 0 and p E (0, 1) fixed. A.e. graph in 9(n,p) has at 

least ~(p - f}n2 edges and at most !(P + f)n2 edges. If p is a function from N 

to (0, 1) such that n2p(n)-+oo and (1 - p(n))n2-+oo then we again have : a.e. 

graph in g(n,p(n)) has at least !(p(n)- f)n2 edges and at most !(p(n) + e)n2 

edges, for any f > 0. 
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The proof of the second part of the above proposition is given in the proof of 

Proposition 3.2. 

As mentioned in the previous chapter, the models g ( n, p) and g ( n, m) are 

closely related. We show now under what conditions, properties of graphs in one 

model can be translated to properties of graphs in the other model. We first 

introduce the concept of convex property. Let r* be a collection of sets, r* is 

convex if Ai C A C A2 for some Ai, A2 E r* implies A E r*. We can then define 

a convex property of graph similarly. 

Proposition 3.2.[Bo79] Let p = p(n) be a function from N to (0, 1) such that 

n2p(n)-+oo and (1 - p(n))n2-+oo as n-+oo, let Q be a graph property, and let 

N= (;). 

(i) Letf. > 0 be fixed, and suppose that if(l-f.)Np(n) < m < (l+f.)Np(n) 
then a.e. graph in 9(n,m) has Q. Then a.e. graph in 9(n,p(n)) has Q. 

(ii) If Q is a convex property and a.e. graph in 9(n,p(n)) has Q, then a.e. 

graph in g(n, lNp(n)J) has Q. 

Proof : Let r denote the set of graphs in 9( n, p) and let rm denote the set of 

graphs in 9(n, m). Then r = U~=o rm, and 

(3-10) 

therefore, 
Pr(rm) m+ 1 q 

Pr{rm+1) = N-mp (3-11) 

and Pr{f m) is maximal for some m E [Np - 1, Np+ 1]. Let f. E (0, 1) be given, 

since n2p-+oo as n-+oo, for sufficiently large n we have 

Hence 

Pr{f m) {1 - f. 
Pr(r m+1) < (1 + f}-1 

if m < ( 1 - t: )Np; 

if m > (1 + e}Np. 

Pr( (l-UNp rm) -+ 1 
m=(l+f)Np 

as n-+oo. 

{3-12} 

{3-13} 

This proves (i) and also the second part of Proposition 3.1. To prove {ii) we note 

that from (3-11) we get 

(3-14} 
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for any 'T/ E (0, 1/2) and for sufficiently large n. From (3-13) and (3-14) we have : 

if r* C r is such that Pr(r*)---+ 1 as n-+oo then for any f > O, there exist m1 and 

m2 such that (1- f)Np < m1 < Np < m2 < (1 + f)Np and 

1r m, nr*I -+ 1 
1rm,I 

as n-+oo, i = 1,2. 

In particular if f * is a convex set then we have 

as n-+oo, 

(3-15) 

(3-16) 

if m1 < m < m2 , say m = l Np J. This proves (ii) and completes the proof of the 

proposition. I 

3.2. Lower Bounds on the Bisection Size 

We first consider model 9(2n, p) with p being a fixed constant in the interval 

(0, 1), independent of n. For each G2n,p E 9(2n,p) there are !(2:) distinct bisections. 

We label the bisections 1, ... , 1(2:). Let k be an integer in [O, n 2
]. For each i E 

{ 1, ... , 1(2:)} define the following random variable on 9(2n,p) 

(k) {1, 
Ai ( G2n,p) = O, 

if the ith bisection has size < k; 

otherwise. 
(3-17) 

We next define Bk(G2n,p) as a random variable on 9(2n,p) denoting the number 

of bisections of G2n,p having size less than or equal to k. That is 

(3-18) 

It is clear that 

E(A~k)) = E (n~)p1·qn2-j. 
j=O J 

(3-19) 

Now we are ready to give the lower bound for bisection size of graphs in 

9(2n,p). 

Proposition 3.3. Let f(n) be a function such that f(n) = o(l) and f(n) = O(k). 

Then a. e. graph in 9(2n, p), where p is a fixed constant, has bisection size 

greater than or equal to 

k(n) = n2p- ny'4npqlog 2- 2pqlogn - 2pqlog/(n) + 0(1). (3-20) 
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Proof : Fix n, let k = k( n) be given as in the statement of the proposition. Let 

G2n,p E 9(2n, p) be given. We have 

Pr(C(G2n,p) < k) = Pr(some bisections of G2n,p has size < k) 
= Pr(Bk =/; 0) 

< E(Bk)· 

Now let M = !(2:), then 

M 

E(Bk) = E E(~k)) 
i=l 

=LL n_ piqn2-i M k ( 2) 
i=l i=O J 

k (n2) . 2 . = M?: . p1qn -1 

J=O } 

~ !~(-1 ~ exp(--1 (np - !:)2)) 
2 vrn ..,fi;i n2p - k 2pq n 

~ f(n) + o(l) 

= o(l) 

by a straightforward application of (3-3) and Stirling's formula, and by our choice 

of k. Thus 

lim Pr(C(G2np) > k) = 1 
n-+oo ' 

this completes the proof of the proposition. I 

In Proposition 3.3 p is a constant, and hence by Proposition 3.1 the number 

of edges of random graphs in 9(2n, p), with probability 1, lies in the interval 

[(p- E}2n2, (p + E)2n2] for any f > 0. If we now instead consider pas a function of 

n, in particular p = ~ then again by Proposition 3.1 the number of edges of a.e. 

graph in 9(2n,p(n) =~)lies in the interval [(2c- E)n, (2c + E)n] for any€ > 0. In 

other words, graphs in 9(2n,p(n) = ~),with probability 1, have a linear number 

of edges. By using Propositions 3.1, 3.2, and 2.5 we get the following. 

Proposition 3.4. A.e. graph in 9(2n,p), where p = p(n) =~for some constant 

c > 9, has bisection size greater than o.r equal to 

k( n) = en - nv'2clo~ 2 ( 1 + o( 1 )) (3-21) 
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For the general case of p a function of n we conjecture that the following holds. 

Conjecture. Let p(n) be a function from N to (0, 1) such that n2p(n)-+oo as 

n-+oo. A.e. graph in 9(2n,p(n)) has bisection size greater than or equal to 

k(n) = n2p(n) - 2n312Jp(n)q(n) log 2 (1 + o(l)) (3-22) 

3.3. Upper Bounds on the Bisection Size 

As in the previous section, we first consider the model 9(2n,p) with p being 

a fixed constant in (0, 1). Define the random variables A!k) and Bk as in equations 

(3-18) and (3-19). We first need the following lemma which was given by Matula 

(Mat76} as a stronger version of the so called second moment method used frequently 

in [ES74). 

Lemma 3.5. Let X be a nonnegative, integer valued random variable with 

mean E(X), standard deviation u < oo, then 

E2(X) 
Pr{X ~ O} > E(X2) 

Proof : As 2ij < i2 + J°2, we have 

E2(X) = ( ~ tPr(X = i) )' 

00 00 

=LL ijPr(X = i)Pr(X = j) 
i=li=l 

< ! f f (i2 + j 2)Pr(X = i)Pr(X = j) 
2 i=l i=l 

= (,~ j 2
Pr(X = j)) '~ Pr(X = i) 

= E(X2)Pr(X ::/:- 0) 

Thus the lemma is proved. I 

(3-23) 

Proposition 3.6. Let p E (0, 1) be a fixed constant. A.e. graph 9(2n, p) has 

bisection size less than 

k(n) = n2p- an (3-24) 
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for some a < l1f VM· 

Proof : Fix n, let k = k( n) be given as above. It is clear from the definition of Bk 

that 

(3-25} 

where M = ! (2: ). The second moment of Bk is 

E(B~) = E[ (.~ Ajkl )'] 

= E[,~ ( Aj•l )' l + {~ ;~ Ajkl A~•l l 
i:Fi 

< E(Bk) + ! E[f f (~k))2(A~k))2] 
2 •=l 3=1 

i:Fi 
< E(Bk) + (M - l}E(Bk) 

= ME(Bk) (3-26) 

for our choice of k, the right hand side of the above expression goes to 1 as n-+oo. 

This proves the proposition. I 

Consider next random graphs in 9(2n,p(n) = *)for some c > 1. We can use 

Proposition 3.2 to translate the upper bound given by Proposition 2.7 for graphs 

in .9{2n, m = 2cn), to an upper bound for graphs in .9{2n, p(n) = *)· 
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Proposition 3.7. Letp(n) = fi for some constantc > 1. A.e. graph in 9(2n,p(n)) 

has bisection size less than 

k(n) =en - 2H(c)cn. (3-27) 

where H(c) ~ 0.238c-1/ 2 . 

We conjecture that the following holds for a.e.graph in 9(n,p(n)) 

Conjecture. Let p(n) be a function from N to (0, 1) such that n2p(n)-+oo as 

n-+oo. A.e. graph in 9(2n,p(n)) has bisection size less than 

k(n) = n2p(n}- anJp(n)q(n) (3-28) 

for a< fi. 
From Proposition 3.1 we see that, with probability 1, graphs in 9(2n,p} have 

2n2p(l + o(l)} edges. Our results in this chapter show that about half of these 

edges will appear as cut edges in the optimal bisections. This conclusion can be 

drawn from Chapter 2, what is new here is the presence of the second order terms 

in the bounds. In fact we need these second order terms if we wish to use these 

bounds to judge the performance of a heuristic on random graphs. This is the case 

as, given a random graph, we can easily show that with high probability, a random 

bisection will have size equal to about half of the number of edges in the random 

graph. Thus any improvement by a heuristic over a random bisection will reflect 

only in the terms of order o(n2). 

In the next chapter we shall present some known approximate algorithms for 

solving the graph bisection problem, and some empirical data of their performances 

on random graphs. 
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Chapter4 

Graph Bisection Heuristics 

In this chapter we describe various heuristics that are used for solving the 

graph bisection problem. All of these heuristics have one basic working principle. 

They all start with a randomly chosen bisection, and improve upon that bisection. 

The differences among these heuristics are in how the improvement is done. The 

simplest of these is an algorithm which chooses the vertices to be exchanged by 

ordering the vertices in each part of the bisection based on the property of the 

initial bisection, and then choosing the best initial segments from each part of the 

bisection to be exchanged. The next approximation algorithm that we describe 

is given by Kernighan and Lin in [KL 70), this algorithm also orders the vertices 

in each part of the original bisection and chooses the best initial segments to be 

exchanged. However, the ordering is done dynamically. That is, the order of one 

vertex depends both on the original bisection and the vertices appearing before it 

in the ordering, whereas the order of one vertex in the previous alogrithm depends 

only on the original bisection. An interesting algorithm proposed by Kirkpatrick, 

Gelatt, and Vecchi [KGV82) uses ideas in statistical mechanics to help solve the 

graph bisection problem. In the last section of this chapter we shall present some 

empirical results. 

4.1. Descriptions of Some Heuristics 

There is one obvious way to solve the graph bisection problem, namely, 

enumerating all the possible bisections and choose one that has a minimum size. 
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However, to enumerate all the bisections of a graph on 2n vertices, it takes time 

proportional to (2:) which is exponential in n, hence this method is very inefficient 

for large n. 

Another method is to generate the bisections randomly, and keep the one that 

has the smallest size among the ones that have been produced so far. This is faster 

than the exhaustive procedure described above, nonetheless, by experience [KL] 

reported that the number of optimal bisections or near optimal bisection is very 

small, hence the probability of getting an optimal solution by this method is quite 

small. In fact, [KL] has experimented with a class of 0-1 matrices of size 32 X 32 

(these can be considered as the adjacency matrices) and found that the number of 

optimal bisections are typically 3 or 5 out of a total of n~) bisections, which means 

that the probability of success on any trial is less than 10-1 . 

By considering the given graph as a network and the cost of the edges in the 

given graph as the maximum flow capacity of the edges, then it seems that the 

graph bisection problem can be solved by using the well known Ford-Fulkerson 

max-flow, min-cut algorithm. This algorithm will give not only the maximum flow 

between any two points but also the minimum cut that separates those two points. 

Unfortunately, the algorithm does not have control over the size of the subsets 

of the partition, that is it will give the min-cut but the resulting two subsets of 

the partition need not have equal size as required by the graph bisection problem. 

Furthermore, there is no obvious way to modify the algorithm so that we have 

control over the size of the subsets of the bisection. 

We now describe a simple heuristic called the block heuristic. A similar heuristic 

is used in the proof of Proposition 2. 7 in [Mac78}. Let G = (V, E) be a graph 

with IVI = 2n, the algorithm starts with a random bisection, say (A, B) of G. We 

define the gain of each vertex in the graph with respect to that bisection as follows. 

Let a EA, the gain of A, denoted by ga, is the difference in the number of edges 

connecting a to vertices in B, and the number of edges connecting a to vertices 

in A. We extend this definition to pair of vertices one in A and one in B. More 

formally, define • 

9a,b = l(A, B)I - J(A', B')I (4-1) 
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where 

A'= (A-{a}) LJ{b} and B' = (B-{b}) LJ{a}. (4-2) 

In other words, ga,b is the reduction in the size of the bisection when a and b are 

interchanged. Clearly, 

where 

ga,b = ga + gb - 26(a, b) 

o(a,b)= {
1, 

o, 
if (a,b) EE; 

if (a,b) ~ E. 

(4-3) 

{4-4) 

This algorithm first calculates gv for all v EV. It then chooses ai EA, b1 EB, such 

that gai.bi is maximum. It then computes the size of the new bisection resulted 

when ai and bi are interchanged, and sets ai, b1 aside. Next it chooses the best pair 

aa, b2 in A- { ai} and B- {bi} such that 9a2 ,b2 is maximum, then sets a2, b2 aside. 

The process is repeated until there is only one pair of vertices left. The algorithm 

then returns the bisection with the smallest size found. Note that when choosing 

a2 and b2 the gains of a2 and ba have not been updated to account for the fact that 

ai and b1 have been interchanged. That is, at all stages we use the gains computed 

at the beginning of the algorithm. The algorithm can be described more formally 

as follows. 

begin 

1. Compute 9a 1 gb for each a EA, b EB. 

2. Let QA= 0,QB = 0. 

3. for i = 2 to n do 

begin 

4. Choose ai EA- QA and bi E B - QB such that g0 ,,b, 

is maximum over all choices of a and b. 

5. Set QA= QA U {ai}, QB= QB U {bs} 

end 

6. Choose k E { 1, ... , n} to maximize Ef 1 9a. ,b,. 
7. Interchange the subsets {ali ... , ak} and {b1, ... , bk} to get the new bisection. 

end 
Figure 4.1. The Block Algorithm 
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Kernighan and Lin in [KL 70) give a heuristic for solving the graph bisection 

problem which seems to work well in practice. Let a graph G = (V, E), V = 2n be 

given. The main idea here is the same as before, that is to start with an arbitrary 

bisection, say (A, B), and improve upon it. The improvement is accomplished by 

interchanging subsets X C A, Y C B, and IXI = IYI < n so that the size of the 

bisection is decreased. If we consider all possible subsets of A and B, we shall be 

able to pick out the subsets, whose interchange will give us the optimal bisection. 

However, this will be an exponentially long procedure, which is undesirable. The 

Kernighan-Lin heuristic finds these subsets approximately by choosing elements of 

X and Y sequentially. This choosing process is done as follows. For each element 

a EA, b EB, let 9a,b be defined as before. The algorithm first computes 9a,b for all 

a EA, b EB. It then chooses ai EA, bi EB such that 

9ai,b1 =max{9a,b I a EA, b EB} 

The algorithm now updates the gains of all vertices in V, except ai and 

bi, with respect to the new bisection ((A-{ai}) U{bi}, (B-{bi}) U{a1}). The 

algorithm next repeats the process for this new bisection and chooses a new pair 

of vertices to be exchanged, except that ai and bi will not be considered anymore 

in choosing the next pair that will give the maximum reduction. That is, once a 

vertex is chosen to be exchanged it will no longer be considered in later stages. 

The process is repeated untill all vertices have been considered. We now have a 

list of pairs (ai, bi), ... , (an, bn}· Clearly if all these pairs are interchanged the total 

reduction is zero. The algorithm now chooses a k < n such that the interchange 

of the subsets {ai, ... , ak} and {bi, ... , bk} will give a maximum reduction over 

all choices of k < n. This whole process is called a pass of the algorithm. The 

algorithm can have several passes. Each pass, except the first one, starts with the 

bisection given as the result of the previous pass. The algorithm can have a fixed 

number of passes or it can run until no more improvement is possible. Another 

alternative is to have an entire new arbitrary bisection as the input to each pass, 

and keep the smallest bisection produced so far. 

We now describe the algorithm formally. Let G _ (V, E) be a graph with 

V = 2n. Let (A, B) be a bisection of G. F~r each a E A b E B define 9a.,b as 
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before. The heuristic is shown in Figure 4.2. Steps 7 and 9 of the algorithm can be 

easily checked that the values of the 9a and 9b are correctly updated with respect 

to the new bisection, that is after the sets { ai, . .. , ai} and {b1, ... , bi} have been 

interchanged. It is also easily shown that the running time of the algorithm is 

O(n2logn). 

begin 

1. Compute 9a 1 9b for each a E A, b E B. 

2. QA = 0, QB = 0. 
3. for i = 2 to n do 

begin 

4. Choose a, EA - QA and bi E B - QB such that 9a.;,b, 

is maximum over all choices of a and b. 

5. Set QA= QA U{ai},QB =QB U{bi} 

6. for each a EA-QA do 

7. 9a. = 9a. + 26(a, ai) - 26(a, bi) 

8. for each b E B - QB do 

9. 9b = 9b + 26(b, bi) - 26(b, a,) 

end 

10. · Choose k E {1, ... , n} to maximize Ef 1 9a..,b•· 

11. Interchange the subsets { ai, .. . , ak} and {b1, ... , bk} to get the new bisection. 

end 

Figure 4.2. One pass of the Kernighan-Lin bisection heuristic 

Other graph bisection heuristics which are variations of the Kernighan-Lin's 

heuristic have been considered by Macgregor [Mac78], he also considered hybrid of 

these heuristics. It should be noted that a slight variation of the Kernighan-Lin 

heuristic has been implemented by Fiduccia and Mattheyses [FM82} to run in linear 

time by using some clever data structures. 

Finally, we present an algorithm proposed by Kirkpatrick, et al., [KGV82}, 

which makes an interesting connection between the annealing process and the 
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iterative improvement process of the graph bisection heuristics. Consider a system 

consisting of a large number of atoms, such as a sample of liquid or solid 

matter. The aggregate behaviour of the system can be observed by considering 

the average behaviour taken over an ensemble of identical systems. We associate 

with each configuration of the system in the ensemble a Boltzmann's probability, 

exp(-E({ri})/kBT), where E({ri}) is the energy of the configuration defined by 

the atomic positions {ri}, kB is the Boltzman's constant, and Tis the temperature. 

One wishes to know what happens to the system in the limit of low temperature, 

for instance, whether atoms remain fluid or solidify. It is known that ground states 

and configurations having energy close to them are very rare, nonetheless, they 

dominate the behaviour of the system at low temperature because as T is lowered 

the Boltzmann distribution collapsed into the lowest energy state or states. To find 

the low temperature states of a system it is necessary to use an annealing process. 

That is to first melt the substance, then lower the temperature slowly, and spend 

a long time at the temperatures near the freezing point. Otherwise, the resulting 

configuration will be metastable. 

There is a simple algorithm given by Metropolis, et al. [M53] which simulates 

a collection of atoms in equilibrium at a given temperature. In each step of the 

algorithm, an atom is given a small random displacement, and the corresponding 

change in energy, 6.E, of the system is computed. If 6.E < O, then the displacment 

is accepted, and the configuration with the just displaced atom is used as the starting 

configuration for the next step. When 6.E > 0, the configuration is accepted with 

probability Pr(6.E) = exp(-6.E/kBT). A random number is chosen uniformly in 

the interval (0, 1), and compared with Pr(6.E). If it is less than Pr(6.E) then the 

new configuration is accepted, if not, the original configuration is retained and we 

repeat the process. 

It is observed m [KGV82} that the iterative improvement process in a 

combinatorial optimization problem such as the graph bisection problem is similar 

to the microscopic rearrangement processes modelled by statistical mechanics, where 

an appropriate cost function for the graph bisection problem will play the role of 

energy. Using this analogy we note that in the process of finding the solution if we 

only accept rearrangements that reduce the cost function, then this is like rapid 
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quenching from high temperature to T = 0, thus the resulting solutions will often 

be local optima and metastable. By utilizing the Metropolis' algorithm described 

above, in which rearrangements that increase the cost function are sometimes 

accepted, we can expect to get better solutions as indicated by the observation 

made in actual physical processes. This algorithm has not been extensively tested 

but the results found so far seem very favourable. 

4.2. Some Empirical Results 

In this section we give the results produced by the block and Kernighan-Lin 

algorithms when random graphs in 9( n, p = 1/2) are used as inputs. We ran both 

algorithms on graphs in 9( n, p = 1/2) as n varies from 20 to 800 in increments of 

20 and from 800 to 1000 in increments of 50. For each value of n 10 random graphs 

are generated, the results produced by each algorithm on these random graphs are 

averaged and used as the result of that algorithm for that value of n. 

To speed up the running time some modifications are made in both algorithms 

in implementing them. In both algorithms the most time consuming step is in 

choosing the best pair to be interchanged. Assume that the current bisection is 

(A, B), instead of considering each pair (a, b), a E A, b E B to find one with the 

largest 9a,b (defined in the previous section), we simply find the pair (a,b) such 

that 9a + 9b is largest, i.e., we can choose a and b independent of each other. In 

the block algorithm we further reduced the running time by considering blocks to 

be exchanged only of length less than n/2 for graphs with 2n vertices. That is, 

in step 3 of the block algorithm, the for loop runs from 2 to r n/21 instead of n. 

This is due to the observation in some experimentation that the length of the block 

to be exchanged in the block algorithm is almost always less than one fourth the 

number of vertices in the graph. The change in the performance as a result of these 

modifications is not significant, as observed and also reported in [Mac78]. 

For large value of n the Kernighan-Lin algorithm seems to perform quite better 

than the block algorithm but the running time is also longer. The bisection sizes 

produced by the Kernighan-Lin algorithm apparently lie well in halfway between 

the upper bounds and the lower bounds. The programs are written in MACLISP, 

and run on a DEC20. On an input of 1000 vertices the Kernighan-Lin algorithm 

-37-



takes approximately 283 seconds and the block algorithm takes approximately 240 

seconds. 
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Figure 4.3. Graph oY Vertex Size vs. Bisection Sizes 
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In Figure 4.3 the top curve is the upper bound given in Chapter 3, the curve 

second from the top is the bisection size produced by the block algorithm, the next 

curve represents the bisection sizes returned by the Kernighan-Lin algorithm, and 

the bottom curve is the lower bound given in Chapter 3. The graph was prepared 

using the MACSYMA program developed by the Mathlab group at MIT2 [MAC77]. 

2Work of the Mathlab group is currently supported in part, by the United States Energy 
Research and Development Administration under Contract Number E(ll-1)-3070 and by the 
National Aeronautics and Space Administration under Grant NSG 1323. 
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Chapters 

Conclusion 

In this thesis we have shown that almost every graph in 9(2n, p) has bisection 

size greater than n2p - o( n312 ...;pq) and less than n2p- o( n.;pq, ). We also show 

that a.e. graph in 9(2n,p(n) = ~) with e > 9 has bisection size greater than 

en - nv'2e log 2 and less than en - 0.476e112n. These, together with other known 

results on bisection size, seem to indicate that, except for specially structured 

graphs, we always have to remove about half the number of edges of a graph 

to bisect it. Empirical results also give evidence that there is no heuristic that 

performs well on all kind of graphs (Mac78). This suggests that if one wishes to 

obtain optimal or near optimal bisection of a graph, one needs to know more than 

just the number of vertices and edges. Knowing about the structure of the graph 

alone is not sufficient, however, one also needs special algorithms to exploit that 

structure. 

Efforts in proving how good is the performance of a graph bisection heuristic 

on random graphs have been in general unsuccessful. Even though most graph 

bisection heuristics are deterministic, except that choosing the starting bisection is 

done randomly, they are still very difficult to analyze. The difficulty lies in the fact 

that the updating process and the interchanging of vertices change the distribution 

of the edges in a random graph. It is useful to have provably good graph bisection 

heuristics, for besides from being of interest in itself, it also has been shown by 

Leighton (L82) that by using a provably good graph bisection heuristic, we can 

get provably good algorithm for the crossing number problem, and from which we 

-41-



can get provably good -algorithm for the graph layout problem. Given a graph, the 

assingment of the nodes and edges of the graph to the points and tracks (vertical 

and horizontal) of a rectangular grid is called an embedding of the graph. The 

graph layout problem is the problem of finding an embedding of the graph such that 

the following quantities of the grid are minimum : area, number of edge crossings, 

number of total edge length, and the maximum edge length. The crossing number 

of the graph is the minimum number of edge crossings over all possible embeddings 

of the graph. The crossing number problem is then, of course, the problem of 

determining the crossing number of a given graph. Both the layout problem and 

the crossing number problem are known to be NP-complete. The layout problem is 

one of the vital parts in the VLSI design process, especially of chips which can do 

a large amount of computation reliably and efficiently. 

Besides from the conjectures in Chapter 3, our main open question is to 

determine analytically how well a certain graph bisection heuristic does. In 

Proposition 3.4 we show the lower bound on the bisection size for random graphs 

having a linear number of edges, in particular this result only holds for the number 

of edges being greater than nine times the number of vertices. Recent experimental 

results by Goldberg and Gardner [GG82a] indicate that random graphs with the 

number of edges equal the number of vertices have bisection size between 25% and 

30% of the number of edges. Thus it is of interest to know what is the lower bound 

for the bisection size of random graphs when the number of edges is less than nine 

times the number of vertices. 

To more closely model the graph partitioning problem arising in actual 

application a more complicated model is needed. One possible model is the set of 

random hypergraphs. It would then be useful to have results for random hypergraphs 

similar to the known results for the random graphs._ Also in actual application we 

usually need to partition the graph into more than two parts, and at the moment 

there is no good uniform method for extending the known graph bisection heuristics 

to solve the general graph partitioning problem. These are a few possible directions 

for further study concerning this subject. 
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