The
MDL
Programming Language
Primer

Michael Dornbrook
Marc Blank

Laboratory for Computer Science
Massachusetts Institute of Technolog
Cambridge, Massachusetis 02139






6. Simple Functions

6.1. General
6.2. Defining FUNCTIONS
6.3. Application of FUNCTIONs: Binding
6.4. DEFINEing Some Simple FUNCTIONs
6.5, Pretty-Printing

6.5.1. Editors and Pretty Printing
6.6. Loading a File

7.MDL TYPEs

7.1. TYPEs and PRIMTYPEs

7.2. Introduction to MDL Structures

7.3. The TYPET Predicate

7.4. Printing of MDL Objects

7.5. Significance of PRIMTYPEs / CHTYPE
7.6. Creating new TYPEs

8. MDL Structures

8.1. Equality
8.2. PRIMTYPE LIST

8.2.1. Creating LISTs
8.2.2. EVALing LISTs
8.2.3. Manipulating LISTs
8.2.4. FIXes First in FORMs
B.2.5. FORMs
8.2.6. FALSEs
8.2.7. SEGMENTs
8.3. PRIMTYPE VECTOR
8.3.1. Creating VECTORs
8.3.2. EVALing VECTORSs
8.3.3. Manipulating VECTORs
8.3.4. UVECTORs
8.4. PRIMTYPE STRING
8.4.1. ASCII
B8.4.2. Creating STRINGs
8.4.3. EVALing STRINGs
8.4.4. Manipulating STRINGs
B.5. Building Large Structures
8.6. Searching Structures
8.7. Garbage: Quoting Structures
8.8. Garbage: Building Lists
8.9. Structured NEWTYPEs
8.10. Summary of MDL Structures
8.11. Practice Quiz

9. Programming Constructs
9.1. Boolean Operators

THE MDL PRIMER

L
=

BLLEBR & LRB8BIN

-1
ey

s N

8333282282 BLLRA028884648




iii : THE MDL PRIMER

8.1.1. NOT 69
9.1.2. AND 69
8.1.3.0R 70
9.2. COND 70
9.2.1. Examples 7
8.3. Shortcuts with Conditionals 72
8.3.1. Using AND and OR with CONDs 72
8.3.2. Embedded Unconditionals 73
9.4. Examples 74
10. Looping 77
10.1. PROG 77
10.2. REPEAT 78
10.3. Non-local RETURNs, etc. 78
10.4. MAPF 79
10.4.1. Looping Through a Structure 79
10.4.2. Other Than One Structure 80
10.4.3. Using Intermediate Results 81
10.4.4. MAPRET and MAPSTOP

10.4.5. MAPR
10.4.6. MAPF/R Summary
10.5. Looping vs. Recursion

11. Argument Lists in FUNCTIONs

11.1. Arguments Not EVALed
11.2. Optional Arguments
11.3. Arbitrary Numbers of EVALed Arguments
11.4. Arbitrary Numbers of un-EVALed Arguments
11.5. Temporary Variables
11.6. Order of Evaluation in Argument Lists
11.7. Variable Declarations ;
11.8. Structures: DECLs and NEWTYPEs

11.8.1. To NEWTYPE or Not To NEWTYPE
11.9. Good Habits / Bad Habils
11.10. Review of Argument List Syntax

12. Input/Output

12.1. Basics of 1/0
12.2. Conversion 1/0 - Input
12.2.1. READ
12.2.2. READCHR
12.2.2.1. NEXTCHR
12.3. Conversion 170 - Qutput
12.3.1. PRINT
12.3.2. PRIN1
12.3.3. PRINC
12.3.4. CRLF

BEBBBBRBBBY Y RRLB2C8BRER SRRy




iv THE MDL PRIMER

12.4. CHANNEL (the TYPE) 100
12.4.1. OPEN 100
124.2. FILE-EXISTS? 101
12.4.3. CLOSE 101
12.4.4. CHANLIST 10
12.4.5. INCHAN and OUTCHAN 1M

12.5. End-of-File "Routine" 102

12.6. Additional 1/0 SUBRs 102
12.6.1. READSTRING 103
12.6.2. PRINTSTRING 104

12.7. SAVE Files 105
12.7.1. SAVE 105
12.7.2. RESTORE 105

12.8. PARSE, LPARSE, and UNPARSE 105

12.9. Other 170 Functions 108
12.9.1. FLOAD 106
12.9.2. SNAME 106
12.90.3. FILE-LENGTH 107
12.9.4. RESET 107
12.9.5. RENAME 107

12.10. Terminal CHANNELs 108
1210.1, TY1 108

13. Making Tables 109

13.1,Usea LIST 108

13.2. Use a VECTOR ' 110

13.3. Use an ATOM 110

13.4. Use an Association 111
13.4.1. Hashing 112

13.5. Use an OBLIST : 112

13.6. 0BLISTs, READ, and PRINT 114

14. Debugging MDL Programs - An Introduction 115

14.1, Method 1: Start Over ; 116

14.2. Method 2: Forcing FRAMES to Return Values 117

14.3. Method 3: Use EDIT to Repair your FUNCT IONs 118

14.4. Method 4: Altering FRAMEs / RETRY ' 120

14.5. Summary 120

Index 123




THE MDL PRIMER

List of Figures

Figure 8-1: The MDL notion of equality is demonstrated in this figure, which shows the
distinction between single-equal =7 and double-equal ==7,

Figure 8-2: The LIST (1 2 3)

Figure 8-3: Removing a LIST element by moving only one pointer

Figure 8-4: RESTofa LIST

Figure 8-5: PUTsinto LISTs

Figure 8-6: Pointers vs. Structures

Figure 8-7: PUTREST

Figure 8-8: Removing an element from a LIST using PUTREST

Figure 8-9: Splicing LISTs together using PUTREST

Figure 8-10: The VECTOR [1 2 3 4]

Figure 8-11: REST of a VECTOR

Figure 8-12: BACK of a VECTOR

Figure 14-1: Diagram for the example in this chapter

o
[3+]

NBLGBEELEELE

s







THE MDL PRIMER 1

Introduction

Over the years the original MDL (pronounced "Muddle") Primer by Greg Pfister [Pfister 72] became
more and more a reference manual and less a Primer from which a novice could learn the language.
Some of the text of the original has been re-used in this document, but much has bzen eliminated,
changed, or re-ordered, and a reasonable amount of new material has been added. In particular, a
number of figures and many more examples have been added to make some of the more difficult
concepts easier to understand.

This Primer is intended as an introduction to MDL. After assimilating the information contained
herein, you should be able to write very good programs. However, for any individual topic in the MDL
Primer there is likely to be more information available in The MDL Programming Language [Galley 79]
and The MDL Programming Environment [Lebling 80], and there are many topics in these documents
which are not addressed in the Primer. Anyone who plans to do any serious work with MDL should
read these documents.

One of the difficulties in writing a Primer is to make it useful to those who don't know anything at all
about programming without boring those who know a lot of the basics. Hopefully those at both
extremes will find this to be easy to read. If you are a complete novice, however, there may be some
unfamiliar references and some material which doesn't make sense on your first reading.

Why MDL?

Many people ask this. It is often hard for those who use MDL to put into words their reasons for
liking it. Those of us who use MDL are convinced that it is a better language than any other we've
encountered. Unfortunately, very little has been done to convince others of this and spread the use of
this marvelous tool.

MDL was created in the early 1970's by a group at the Dynamic Modelling/Computer Graphics
division of MIT's Project MAC (later renamed the Laboratory for Computer Science). It is an offshoot
of the original Lisp. There have been quite a few ofishoots of Lisp in the past 10 years - Maclisp,
InterLisp, Lisp Machine Lisp, Lisp1.5, UCI Lisp, Franz Lisp, etc., etc. - but none of them are like MDL.

Since MDL is a distant relative of Lisp and many of those first learning MDL have some familiarity
with Lisp, a short comparison of the two languages follows. If you are not lamiliar with Lisp (or, better
still, with any other languages) count your blessings (you don't have any bad habits to unlearn) and
skip the following discussion.

MDL's similarities to Lisp: MDL shares the advantages of Lisp over the more popular languages
such as Basic, Fortran, Cobol, Algol, Pascal, etc.

- It has an interpreter which allows real-time interaction and allows you to define and test
individual functions separately.

EHTRODUCTION

e




2 THE MDL PRIMER

- Its syntax is very simple.

- Any data object or function can be passed as an argument or returned as a value.

- It has list structures equivalent to Lisp's. |
- Recursive functions can be written quite easily,

The similarities between MDL and Lisp are such that in many cases a few minor changes to Lisp
code will convert it into working MDL code. Given the other features of MDL, no MDL programmer
would write the program in the same Lisp style.

MDL's dissimilarities to Lisp: Many objections to Lisp are answered in MDL.

- Strongly typed languages provide much better error detection tools than Lisp. MDL
allows declarations of all variable types to whalever level of complexity is desired. A
variable can be declared to be one of several types.

- Recursion is a useful tool, but often is not a very efficient way to solve the problem. Lisp's
metio "To iterate is human, to recurse divine," is not one of MDL's tenets. MDL allows
recursion, but provides excellent facilities for iteration.

- MDL has a very powerful set of data structures - Lists, Strings, Vectors, and Uniform
Vectors. Although lists are a very useful and flexible form of structure, they are certainly
not optimal in all cases. MDL's various structures allow the user to save space and
access time. MDL's structures are also "first class,” in that the standard functions for
manipulating data structures can be used on all of them equivalently.

- Probably the biggest complaint against Lisp-like languages is that they are unsuitable for
"production programming” because they are too slow., MDL has an excellent compiler
which as far as we know is the best compiler for a Lisp-like language. It produces
machine code equivalent in efficiency to Fortran and Cobol, which are considered very
efficient. ;

- MDL has a rich library of useful program aids. The editing and debugging functions are
among the best. The package system allows building of very large programs from small
sections, usually written by different people, without worrying about variable name
conflicts.

- Probably the most distinctive feature of MDL is its mechanism for user-defined types,
which is the best of any language with which we are familiar. User-defined types have
been retrofitted on some of the newer versions of Lisp, but in most cases they can be
used only with special functions and cannot be used in the same general way that Lists
can.

Hopefully some of your questions have been answered and you have some ready answers when
you get flak from your non-MDL programming friends. Learning MDL should be an enjoyable and
woithwhile experience. Your reactions to this Primer and suggestions for changes are always
welcome. Good luck!

INTE ST




THE MOL PRIMER 3

Warning! You are a_bnut tF: embark on an undertaking fraught with peril. MDL programming has
been proven to be habit-forming. Once you begin, you may find the habit hard to kick!

INTRODUCTION




THE MDL PRIMER

ACKENOWLEDCMT NS




L

5 THE MDL FRIMER

Acknowledgments

We are deeply indebted to our predecessors for their work on this topic: Greg Plister, who wrote
the original A Muddle Primer [Plister 72], and Stuart Galley, who updated that document and added
significantly to it to create The MDL Programming Language [Galley 79] document. Some of the text
and examples of the original documents survive here, and some other material was simply rewritten in
an order and style which we consider more comprehensible.

Special thanks to Chris Reeve, Dave Lebling, Stu Galley, Poh Lim, Thomas Michalek, Dave
Scrimshaw, Tim Anderson, Mark Plotnick, and Prol. J.C.R. Licklider for their many comments and

suggestions.

No document on MDL would be complete without acknowledging the “original implementors.” |f
not for their inspiring work, this fine language would not exist. We are forever grateful to Gerald
Sussman, Carl Hewitl, Chris Reeve, Dave Cressey, and Bruce Daniels. Thanks are also extended to
the many unnamed hackers who have improved the language and the programming environment over
the years,

This work was supported by the Advanced Research Projects Agency of the Department of
Defense and was monitored by the Office of Naval Research under contract NOOD14-75-C-0661.

This document was prepared using Scribe and printed on the Xerox Dover printer.

(e) Copyright 1981 Massachusetls Institute
of Technology. All rights icserved.




THE MDL PRIMER

DASIC INTERACTION SECTION 1.0




THE MOL PRIMER

1. Basic Interaction

The purpose of this chapter is to provide you with that minimal amount of information needed to
experiment with MDL (pronounced, affectionately, as Muddie) while reading this document. It
strongly recommended that you do experiment, especially upon reaching chapter 6 (page 27) (Simple

Functions).

1.1. Loading MDL

First, catch your rabbit. Somehow get the interpreter running -- the program in the file SYS:TS
MDL in the ITS version or SYS :MDL . SAV in the Tenex version or SYS :MDL . EXE in the Tops-20 version.

[Just type :MDL to ITS, MDL or MUDDLE to Tops-20.] The interpreter will then type

MUDDLE nnn IN OPERATION.
LISTENING-AT-LEVEL 1 PROCESS 1

and then wait for you to type something.

The program which you are now running is an interpreter for the language MDL. All it knows how
to do is interpret MDL expressions. There is no special "command language"; you communicate with
the program -- make it do things for you -- by actually typing legal MDL expressions, which it then
interprets. Everything you can do at a terminal can be done in a program, and vice versa, in exactly
the same way.

The program will be referred to as just "MDL" (or "the interpreter™) from here on.

1.2. Typing

Typing a character at MDL normally just causes that character to' be echoed (printed on your
terminal) and remembered in a buffer. The only characters for which this is normally not true act

follows:

Typing the "Escape” or "Alt-Mode" key, which we will always rafer to as $ (dollar-sign), causes

SECTION 10 BASIC INTERACTION




8 THE MDL PRIMER

MDL to echo dollar-sign and causes the contents of the buffer (the characters which you've typed) to
be interpreted as an expression(s) in MDL. When this interpretation is done, the result will be printed
and MDL will wait for more typing.

Typing the rubout character (DEL in the ITS and Tops-20 versions, control-A in the Tenex version)
causes the last character in the buffer -- the one most recently typed -- 1o be thrown away (deleted). If
you now immediately type another rubout, once again the last character is deleted -- namely, the
second most recently typed. Etc. The character deleted is echoed, so you can see what you're
doing. On some "display” terminals, rubout will "echo” by causing the deleted character to
disappear. If no characters are in the buffer, rubout echoes as carriage-return line-feed.

Typing *+@ (control-atsign) deletes everything you have typed since the last §, and prints a carriage-
return line-feed.

Typing D (control-D) causes the current input buffer to be typed back out at you. This allows you
to see what you really have, without the confusing re-echoed characters produced by rubout.

Typing tL (control-L) produces the same effect as typing +D, except that, if your terminal is a
“display" terminal (for example, VT100, VT52, H19, ...), the screen is cleared before the input buffer is
retyped.

Typing *6 (control-G) causes MDL to stop whatever it is doing and act as if an error had occurred
(section 1.2 (page 9)). *G is generally most useful for temporary interruptions to check the progress
of a computation. *+G is "reversible" -- that is, it does not destroy any of the "state" of the
computation it interrupts. To "undo” a 16, type the characters

{ERRET T>%

(This is discussed more fully far below, in chapter 14, page 115 (Debugging MDL Programs}.)

Typing *$ (control-S) causes MDL to throw away what it is currently doing and return to a normal
“listening” state. (In the Tenex and Tops-20 versions, 0 also should have the same effect) *Sis
generally most useful for aborting infinite loops and similar terrible things. *+S destroys whatever is
going on, and so it is not reversible.

Most expressions in MDL include "brackets” [generically meant) that must be correctly paired and
nested. |If you end your typing with the pair of characters 1§ (exclamation-point ESC), all currently
unpaired brackets (but not double-quotes, which bracket strings of characters) will automatically be
paired and interpretation will start. Without the 1, MDL will just sit there waiting for you to pair them.
If you have improperly nested parentheses, brackets, etc., within the expression you typed, an error
will occur, and MDL will tell you what is wrong.

Once the brackels are properly paired and $ (ESC]) is typed, MDL will immediately echo carriage-
return and line-feed, and the next thing it prints will be the resull of the evaluation. Thus, ifaplain$is
nol so echoed, you have some axpression unclused. In that case, il you have not lyped any

BASIC INTCRACTION SECTION 1.2

—#




THE MDL PRIMER ’ 2]

characters beyond the §, you can usually rub out the $ and other characters back to the beginning of
the unclosed expression. Otherwise, what you have typed is beyond the help of rubout and +8; if you
want to abort it, use *8.

MDL accepts and distinguishes between upper and lower case. All "built-in functions” must be
relerenced in upper case.

1.3.Errors -- Simple Considerations

When MDL decides for some reason that something is wrong, the standard sequence of evaluation
is interrupted and an error function is called. This produces the following terminal output:

*ERROR®

often-hyphenated-reason
function-in-which-error-occurred
LISTENING-AT-LEVEL integer PROCESS integer

You can now interact with MDL as usual, typing expressions and having them evaluated. There
exist facilities (built-in functions) allowing you to find out what went wrong, restart, or abandon
whatever was going on. In particular, you can recover from an error -- that is, undo everything but
side effects and return to the initial typing phase -- by typing the following first line, to which MDL will
respond with the second line:

<ERRET>$S
LISTENING-AT-LEVEL 1 PROCESS 1

It you type the following line while still in the error state (before <ERRET>), MDL will print the
FRAMES it went through to evaluate the function:

<FRAMES>$

Typing FR& (pronounced 'frampersand') instead of FRAMES will cause MDL to print a condensed,
usually more readable output.

This will also be explained in chapter 14.

SECTION 1.2 BASIC INTERACTICN



THE MDL PRIMER
10

MOl BASICS SECTION 20




THE MDL PRIMER 11

2. MDL Basics

In a general sense, when you are interacting with MDL, you are dealing with a world inhabited only
by a particular set of things: MDL objects.

2.1. Introduction to MDL TYPES

MDL objects are best considered as abstract entities with abstract properties. The properties of a
particular MDL object depend upon the class of MDL objects to which it belongs. This class is known
as the TYPE of the object, and every MDL object has one. Easily recognized TYPEs include
FIX (integers) and FLOAT (real numbers). Examples of these might be 1 and 2.87, respectively. An
abbreviation often used is to refer to "a FIX" when referring to a MDL object whose TYPE is FIX. For
example, 1isa FIXand 2,687 isa FLOAT,

MDL TYPEs can be divided into two general classes: those with internal structure and those without
internal structure. The former will be referred to as being structured. Structured objects are those
which can be thought of as an ordered series of items held together in some way. There are a number
of ways in which these items can be held together, and sach of these is represented by a series of
MDL objects between a set of matched brackets (e.g. <>, (), []. {3 ""). As will be seen later, each
bracket type represents a different TYPE of MDL object, and some represent different ways of
internally storing the series of objects. Depending on the application, one of these may be more
suitable than another.

Here are some MDL objects which are not structured:

20
20.0
TWENTY

The first two are examples of TYPEs FIX and FLOAT, as noted above. The last is an ATOM, roughly
speaking an identifier or a variable, and will be discussed in Chapter 3.

Here are some MDL objects which are struciured:

SECTION 20 MDL BASICS



12 THE MDL PRIMER

<+ 1 2>
(+12)
[+12)
H‘+12I‘

These represent very similar notions: an ordered series of the MDL objects +, 1, and 2, the first of
these being an ATOM and the rest FIXes. These brackets correspond to the TYPEs FORM, LIST, and
VECTOR. The first of these, a FORM, is central to MDL, as it represents the application of a function to
arguments. The others will be considered later.

2.2. Printing of MDL Objects

We have already seen the printed representation of some MDL objects: FIXes, FLOATs, FORMs,
LISTs and VECTORs. As will be mentioned later. MDL allows an almost unlimited number of data
types. Obviously, there are not enough bracket types to make each data type recognizable.
Therefore, most MDL types have a kind of generalized way of printing. This format is like this:

#lype-name value

where type-name is the name of a MDL TYPE and value describes the 'value' of the object. Suffice it
for now to say that an object which prints like:

#FALSE ()
is of TYPE FALSE and an object which prints like
#MUMBLE [1 2 3]

is of TYPE MUMBLE.

2.3. MDL FORMS

A FORM in MDL is printed as: an open angle bracket (<), the name of the function to be applied, the
arguments to which the function is being applied, and finally a closing angle bracket (»). MDL's angle
brackets are one of its distinguishing features (almost as distinctive as Lisp's parentheses).

MDL has a large number of built-in functions. These are usually of TYPE SUBR (short for
subrouting). For example:

MOL BASICS SECTION 2.1




THE MDL PRIMER 13

+12 3

will, when given to the MDL interpreter, return 8. The way in which the name for a function, in this
case +, is associated with its functional part (i.e. in this case, the thing which actually performs the
addition) is described later. Suffice it for now to say that these functions can be referenced by their
name (an ATOM), as was done in the example.

2.4. Prefix Notation

MDL is 2 distant relative, a much-improved descendant of LISP. The "desirable features” of LISP
were included in MDL. One of those features, prefix notation, you have just seen.

Prefix notation, sometimes referred to as Polish notation, is different from the infix notation of
ordinary arithmetic and reverse-Polish notation of some calculators. Below are some examples of
equivalents in infix and prefix notation:

4 + 7
<+ 4 7>

8 -8
{- 8 & 3

8 - (3 +2)
<- 8 <+ 3 2»

9+ (4*6-67213)
B (-<C* 48 </8 DY

7T+3+4+8+ 11
+73481D

It will take you some time to become accustomed to prefix notation. One thing you will have to
keep in mind is balancing of brackets. Notice that with prefix notation an operatar can take an
arbitrary number of arguments and that the nesting is never ambiguous (i.e. the parentheses of infix
notation are not necessary).

2.5. Evaluation of FORMS

Evaluation of a MDL FORM proceeds from left to right. The first item is the name of the function
which will be applied to the arguments which follow. The arguments may lhemsclves be FORMs which

SECTION 23 MOL BASICS




___ﬁ
14 THE MDL PRIMER

will be evaluated in the same way. For example, this FORM:

1D

when evaluated will apply the addition function to the evaluation of the first argument (which, since it ‘
is itself a form, will be recursively evaluated until it returns a value) and then to the evaluation of the I
second argument. The arguments may be much more complex than this and require many levels of
evaluation before a result is returned. It is important to note that unlike many other languages, every

evaluation has a resulting value. As we will S€€, even such operations as printing or setting the values
of variables return valpes,

2.6. Introduction to Truth

In MDL, anything which does not evaluate to an object of TYPE FALSE is considered true. If an
expression returns false, MDL usually prints it as #FALSE ().

MOL BASICS SECTION 25




NAE Ty mm AR e

THE MDL PRIMER - 15

3. Read, Evaluate, and Print

3.1. General

Once you type $ and all brackets are correctly paired and nested, the current contents of the input
buffer go through processing by three functions successively: first READ, which passes its output to
EVAL ("evaluate”), which passes its output to PRINT, which types its output on the terminal.

Functionally,
READ: printed representations --> MDL objects

EVAL: MDL objects --> MDL objects

PRINT: MDL objects --> printed representations

That is, READ takes ASCIl text, such as is typed in at a terminal, and creates the MDL objects
represented by that text. PRINT takes MDL objects, creates ASCII text representations of them, and
types them out. EVAL, which is the really important one, performs transformations on MDL objects.

3.2.EVAL and TYPEs

The laws of the MDL world are defined by EVAL. Ina very real sense, EVAL is the only MDL object
which “acts", which "does something”. In "acting”, EVAL is always "following the directions” of
some MDL cbject. Every MDL object should be looked upon as supplying a set of directions to EVAL:
what these directions are depends heavily on the TYPE of the MDL object.

Since EVAL is so ever-present, an abbreviation is in order: "evaluates to something" or "EVALs to

something" should be taken as an abbreviation for "when given to EVAL, causes EVAL to return
something".

SECTION 3D NCAD, EVALUATE. AND PRRINT




16 THE MDL PRIMER

3.3.Example (TYPE FIX)

1§
1

The following has occurred:

First, READ recognized the character 1 as the representation for an object of TYPE FIX, in
particular the one which corresponds to the integer one. (FIX means integer, because the decimal
point is understood always to be in a fixed position: at the right-hand end.) READ built the MDL cbject
corresponding to the decimal representation typed, and returned it.

Then EVAL noted that its input was of TYPE FIX. An object of TYPE FIX evaluates to itself, so |
EVAL returned its input undisturbed.

Then PRINT saw that its input was of TYPE FIX, and printed on the terminal the decimal character
representation of the corresponding integer. '

3.4.Example (TYPE FLOAT)

1.0%
1.0

What went on was entirely analogous to the preceding example, except that the MDL object was of
TYPE FLOAT. (FLOAT means a real number (of limited precision), because the decimal point can
float around to any convenient position: an internal exponent part tells where it "really” belongs.)

3.5. FIXes and FLOATs versus READ: Specifics

3.5.1. READ and FiXed-point Numbers

READ considers any grouping of characters which are solely digits to be a FIX, and the radix of the
representation is decimal (.e. the base is 10) by default. A - (hyphen) immeadiately preceding such a
grouping represents a negative FIX. The largest FIX representable on the PDP-10 is two to the 35th
power minus one, or 34,359,738,367 (decimal); the smallest is one less than the negative of that
number. If you attempt to type in a FIX oulside that range, READ converts it to a FLOAT; if a program
you write attempls to produce a FIX outside that range, an overflow error will occur (unless overflow
errors are disabled).

READ. EVALUATE, AND PRINT SECTIONZ3

f




aes

i

e s

THE MDL PRIMER 17

3.5.2. READ and PRINT versus FLOATing-point Numbers

PRINT can produce, and READ can understand, two different formats for objects of TYPE FLOAT.
The first is "decimal-point” notation, the second is "scientific” notation. Decimal radix is always used
for representations of FLOATs.

"Decimal-point” notation for a FLOAT consists of an arbitrarily long string of digits containing one .
{period) which is followed by at least one digit. READ will make a FLOAT out of any such object, with a
limit of precision of one part in 2 to the 27th power. (FIXed and FLOATing-point numbers are stored in
one 36-bit PDP-10 word. FLOATing-point numbers give up precision to gain their greater range.)

“Scientific" notation consists of:
1. a number, the mantissa
2. immediately followed by E or e (upper or lower case letter E),
3. immediately followed by an exponent,
where the mantissa is an arbitrarily long string of digits, with or without a decimal point (see following
note); and the "exponent” is up to two digits worth of FIX. This notation represents the “number” to
the "exponent” power of ten. Note: if the mantissa as above would by itself be a FIX, and if the

"exponent” is positive, and if the result is within the allowed range of FIXes, then the result will be a
FIX. For example, READ understands 10E1 as 100 (a FIX), but 10E-1as 1.0000000 {a FLOAT).

The largest-magnitude FLOAT which can be handled without overflow is 1. 7014118E+38 (decimal
radix). The smallest-magnitude FLOAT which can be handled without underflow is . 14603879E-38.

Examples:

1.001%
1.001000

.001%
1.0€-3

143E2%
14300

1234567891234§
1.2345878E+12

SECTION 35 HEAD. EVALUATE, AHD PRINT




18

THE MDL PRIMER

ATOMS AND TH I vaLlrs

SECTION 4.0




THE MDL PRIMER 18

4. Atoms and Their Values

4.1.Example (TYPE ATOM, PNAME)

In the previous chapter, the handling of FIXed and Floating point numbers by READ, EVAL, and
PRINT was discussed. If you type:

GEORGES
GEORGE

a lot more happens.

READ noted that what was typed had no special meaning, and therefore assumed that it was the
representation of an object of TYPE ATOM. ("Atom" means "more or less indivisible.") READ
therafore atltempted to look up the representation in a table it keeps for suth purposes, If READ finds
an ATOM in its table whose representation matches the representation just received, that ATOM is
returned as READ's value. If the look-up fails, READ creates a new ATOM, puls it in the table with the
representation read, and returns the new ATOM. Nothing which could in any way be referenced as a
legal "value” is attached to the new ATOM. The initially-typed representation of an ATOM becomes its
PNAME, meaning its name for PRINT (PRINT NAME). One often abbreviates "object of TYPE ATOM
with PNAME name"” by saying "ATOM name”. There is a reason for making this careful distinction.
Unlike other languages where atoms are names associated with values, a MDL ATOM is an object
which may have values (global and/or local) but which is distinct from its value(s).

EVAL, given an ATOM, returned just that ATOM.

PRINT, given an ATOM, typed out its PNAME.

4.2. READ and PNAMEs

The question "what is a legal PNAME?" is actually not a reasonable one to ask; any non-empty
siring of arbitrary characters can be the PNAME of an ATOM. However, some PNAMEs are easier to lype
to READ than others. But even the question "what are easily typed PNAMES?" is not loo reasonable,
because: READ decides that a group of characlers is a PNAME by delault; if it can't possibly be
anything else, it's a PNAME. So, the rules governing the specification ol PHAMES are massy, and best

SECTION 40 ATORES AHD THEIR VALLES




T

i |

20 THE MDL PRIMER

expressed in terms of what is not a PNAME. For simplicity, You can just consider any uninterrupted
group of upper- and lower-case letters and (customarily) hyphens to be a PNAME; that will always
work. If, for some reason, you need to know all the gory details about legal PNAMES, see Subsection
2.6.3 of The MDL Programming Language [Galley 79]. .

e

-

4.3. Values of ATOMS

4.3.1. General

Typing GEORGE to the MDL interpreter and causing it to create the ATOM with PNAME GEORGE does ln
not appear to be very useful, ATOMs in MDL serve as variables and as names for functions and data
Slruclures. They are definitely useful.

4.3.2. SETG

A global value can be assigned to an ATON by the SUBR SETG ("set global," pronounced 'set-gee’),
asin

<SETG atom any>

where atom must EVAL to an ATOM, and any can EVAL to anything. EVAL of the second argument
becomes the global value of EVAL of the first argument. The value returned by the SETG is its second
argument, namely the new global value of atom.

Examples:

CSETG FOO <SETG BAR 469>>8
469

The above made the global values of both the ATOM FO0O and the ATOM BAR equal to the FIXed-
point number 469.

ATOHNAS AND THEIR VAILUES SECTION 4.2




IER THE MDL PRIMER 21
ed <SETG BAR FOO0>$

ys FOO

on

That made the global value of the ATOM BAR equal to the ATOM F0O.

| 4.3.3.GVAL

The SUBR GVAL ("global value") is used to reference the global value of an ATOM.
! {GVAL atom>

fa returns as a value the global value of atom. If atom does not evaluate to an ATOM, or if the ATON to
- which it evaluates has no global value, an error occurs.

GVAL applied to an ATOM anywhere, in any function, will return the same value. Any SETG
anywhere changes the global value for everybody. Global values are context-independent.

L/ g R ]

READ understands the character , (comma) as an abbreviation for an application of GVAL to
whatever follows it. PRINT always translates an application of GVAL into the comma format. The
following are absolutely equivalent:

atom {GVAL atom)

Assuming the examples in section 4.3.2 (page 20) were carried out in the order given, the following
' will evaluate as indicated: ;

[' ., FOOS
489
<GVAL FO00>$
469
,BARS
FOO
. » +BARS
469

4.3.4, SET

The SUBR SET is used to assign a local value to an ATOM. Applications of SET are of the form

<SET atom any>

| SECTION 43 ATOMS AND THEIR VALULS

|
e ——




22 THE MDL PRIMER

SET returns EVAL of any just as SETG does.
Examples:

<SET BAR <SET F00 100>>s
100

Both BAR and FOO have been given local values equal to the FIXed-point number 100.

<SET F0OO BAR>S$
BAR

FOO has been given the local value BAR.

Note that neither of the above did anything to any global values FOO and BAR had or might have
had.

4.3.5. LVAL

The SUBR LVAL is used to return the local value of an ATOM. As with GVAL, READ understands an
abbreviation for an application of LVAL: the character , (period), and PRINT produces it. The
following two representations are equivalent, and when EVAL operates on the corresponding MDL
object, it returns the current local value of atom:

CLVAL atom> .atom

(Note: you will generally hear , FOO Pronounced as 'dot-foo’). Assume all of the previous examples
in this chapter have been done. Then the following evaluate as indicated:

.BARS

100

<{LVAL BAR>$
100

.FOO0$

BAR

» - FOO$

FOO

v+ - FOOS

469

ATOMS AND THEIR VALUCS SECTION 4.3

RS,




- o

THE MOL PRIMER _ 23

5. Built-in Functions

5.1. Evaluation of FORMs
EVAL applied to a FORM acts as if following these directions:

First, examine the func (first member) of the FORM. If it is an ATOM, look at its GVAL. If it is not an
ATOM, EVAL it and look at the result of the evaluation. If what you are looking at is not something
which can be applied to arguments, complain (via the ERROR function). Otherwise, inspect what you
are looking at and foliow its directions in evaluating or not evaiuating the arguments and then "apply
the function” -- that is, EVAL the body of the object gotten from func.

5.2. Built-in Functions (TYPE SUBR, TYPE FSUBR)

The buiit-in functions of MDL come in two varieties: those which have all their arguments EVALed
hefore operating on them (TYPE SUBR, for "subroutine”, pronounced 'subber’) and those which have
none of their arguments EVALed (TYPE FSUBR, historically from Lisp [Weinreb 78], pronounced
‘effsubber,” for 'funny-SUBR'). Collectively they will be called F/SUBRs, although that term is not
meaningful to the interpreter. See Appendix 2, Predefined Subroutines, in The MDL Programming
Language [Galley 78] manual for a listing of all F/SUBRs and short descriptions. The term
“Subroutine" will be used herein to mean both F/SUBRs and compiled user functions.

Unless otherwise stated, every MDL built-in Subroutine mentioned is of TYPE SUBR. Also, when it
is stated that an argument of a SUBR must be of a particular TYPE, note that this means that EVAL of
the argument must be of the particular TYPE.

Another convenient abbreviation which will be used is "the SUBR pname" in place of "the SUBR
which is initially the GVAL of the ATOM of PNAME pname". "The FSUBR pname" will be used with a
similar meaning. These distinctions are necessary. The SUBR is actually the global value of the ATOM
of PNAME pname. The important point is thal the ATOM effectively points at the “real function." For
instance,

{GVAL SET>$
#SUBR *000000746516*

SECTIONS.0 AUIL T-IN FUNCTIONS




24 : THE MDL PRIMER

If you were so inclined, you could change the ATOM which points 1o a given FUNCTION or have
many ATOMs point to the same FUNCTION. All buiit-in SUBRs and FSUBRs shall be referred to in this
book by the ATOM which points to them when MDL starts up. The point is that there is nothing sacred
about these names, but for clarity's sake it is recommended that you not rename them.

5.3.Examples (+ and FIX; Arithmetic)

<+ 2 4 8>8
12

The SUBR + adds numbers. Most of the usual arithmetic functions are MDL SUBRs: +, -, * / MIN,
MAX, MOD, SIN, COS, ATAN, SQRT, LOG, EXP, ABS. (See Appendix 2 of The MDL Programming
Language [Galley 79] manual for short descriptions of these.) All except MOD, which wants FIXes, are
indifferent as to whether their arguments are FLOAT or FIX or a mixture. In the last case, they exhibit
“contagious FLOATing": one argument of TYPE FLOAT forces the result to be of TYPE FLOAT.

<FIX 1.0>% 1

The SUBR FIX explicitly returns a FIXed-point number corresponding to a FLOATing-point number
(it truncates). The SUBR FLOAT returns the FLOATing point number equivalent to its argument.

<+ 6<* 2 3
11

<SQRT <+ <* 3 3> ¢* 4 I8
6.0

<- 5328

0

<- B>§

-6

<MIN 1 2.0>8
1.0

</ 117 2.008
0.6

Note this last result: the division of two FIXes gives a FIX with truncation, not rounding, of the
remainder; the intermediate result remains a FIX until a FLOAT argument is encountered.

BUILT-IN FUNCTIONS SECTIONS.2




MER

ave
this
red

238 =

THE MDL PRIMER 25

5.4. Arithmetic: Details

+, =, % /, MIN, and MAX all take any number of arguments, doing the operation with the first
argument and the second, then with that result and the third argument, etc. If called with no
arguments, each returns the identity for its operation (0, 0, 1, 1, the greatest FLOAT, and the least
FLOAT, respectively); if called with one argument, each acts as if the identity and the argument had
been supplied. They all will cause an overflow or underflow error if any result, intermediate or final, is
too large or too small for the machine's capacity. Examples:

{+>% {/>8 </ 3.008 {- 25§
0 1 0.33333333 -2

One arithmetic function that always requires some discussion is the pseudo-random-number
generator. MDL's is named RANDON, and it always returns a FIX, uniformly distributed over the whole
range of F1Xes. Example ("pick a number from one to ten"):

{+ 1 <MOD <RANDOM> 10>>$
4

5.5. Simple Predicates

The best analogy for a predicate in MDL {or LISP) is the predicate of an English-language question
such as "Is John taller than Jim?" MDL answers such a question with true or false. If there is no
other useful information to return, MDL will return T for true (£ la LISP) or #FALSE () for false.

The MDL predicate 07 takes one argument which can be either a FIX or a FLOAT. It evaluatesto T
only if its argument is exactly equalto 0 or 0. 0.

<07 1.2>%
#FALSE ()

The predicate 17 evaluatesto T only if its argument is exactly equal to 1 or 1.0. The predicate G7
takes two arguments, which again can be either FIXes or FLOAT=. It evaluates to T only if the first
argument is algebraically greater than the second. L=7 is the Boolean complement of G7; that is, it is
T only if the first argument is not algebraically greater than the second.

=7 3 O}
T

Similarly, L? evaluates to T only if its first argument is algebraically less than its second argument.
G=7 is the Boolean complement of L?.

==7 fakes two argumants of any TYPE. In the case of arguments which are FIXes or FLOATs. it

SECTION 5.4 OLILT AN FUNCTIONS



- -:
.I

6 THE MDL PRIMER

returns T for two FIXes of the same value or for two FLOATs of exactly the same value. A FIX can
never be ==7 {o a FLDAT.

C==7 17 17>8
.

<=2? 1.0 1>$
#FALSE ()

To compare a FIX to an equivalent FLOAT, the SUBRs FIX or FLOAT are used:

<SET A 17>8

17

<SET B 17.0>%

17.0

<==7 _A <FIX .B>>$
T

{==7 {FLOAT .A> .B>$
T

N==7 is the Boolean complement of == 7.

GASSIGNED? checks whether an ATOM has been assigned a global value,

<GASSIGNED? GAFWEEP>$
#FALSE ()

CSETG GAFWEEP 4023>$
4023

<GASSIGNED? GAFWEEP)>$
:

ASSIGNED? is the corresponding predicate which checks whether an ATOM has been assigned a local
value. f

It you wish to compare the LVALs of two ATOMs, A and B, where the LVAL of A is known to be a FIX
and the LVAL of Bisknawn to be a FLOAT, use the SUBRs FIX or FLOAT:

C==7 <{FLOAT .A> .B>$ |

or
{==7 A <FIX .B>>S$ T

i

|

f

|

FIUILT-IN FUNCTIONS SECTION 5.5 i

R R R R R R R R RRRESSEEEEE—SSSSSSS



THE MDL PRIMER ' 27

6. Simple Functions

6.1. General

The MDL equivalent of a "program” (uncompiled) is an object of TYPE FUNCTION. Actually, full-
blown “programs” are usually composed of sets of FUNCTIONs, with most FUNCTIONs in the set
acting as "subprograms”.

A FUNCTION may be considered to be a SUBR or FSUBR which you yourself define. It is "run™ by
using a FORM to apply it to arguments (for example, <function arg-1 arg-2 ... »), and it always
“returns” a single object, which becomes the value of the FORM that applied it. The single object may
be ignored by whatever "ran” the FUNCTION (equivalent to "returning no value"), or it may be a
structured object containing many objects (equivalent to "returning many values"). MDL is an
"applicative” language, in contrast to “imperative" languages such as Fortran. In MDL, it is
impossible to return values through arguments in the normal case (i.e. "call by name"); they are
returned normaily as the value of the FORM itself, or as side effects to structured objects or global
values.

In this chapter a simple subset of the FUNCTIONs you can write is presented, namely FUNCTIONs
which "act like” SUBRs with a fixed number of arguments. While this class corresponds to about 90%
of the FUNCTIONs ever written, you won't be able to do very much with them until you read further and
learn more about MDL's control and manipulatory machinery. However, all that machinery is just a
bunch of SUBRs and FSUBRs, and you already know how to "usa" them; you just need to be told what
they do. Once you have FUNCTIONs under your belt, you can immediately make use of everything
presented from this point on in this document. In fact, we recommend that you do s0.

6.2. Defining FUNCTIONS

<{DEFINE SQUARE (X) <* .X .X»>§
SQUARE

DEFINE is a MDL FSUBR (remember that FSUBRs have none of their arguments EVALed) for
delining your own FUNCTIONs. It takes an ATOM as the "name" for the FUNCTION, a lict of arguments,
and the FORMs which make.up the body of the FUNCTION. DEFINE SETGs EVAL of its first argument
(the ATOM) to an object of TYPL FUNCTION made from the other erguments and returns EVAL of the

SECTICNEB.O SIMPLE FUNC MNONS




28 THE MDL PRIMER

first argument (the ATOM “naming” the FUNCTION).

If EVAL of DEFINE’s first argument glready has a GVAL, DEFINE produces an error. This helps to
keep you from accidentally redefining things -- such as MDL SUBRs and FSUBRs (if you want to be
able to redefine without getting this error, type <SET REDEFINE T>. The ATOM SQUARE has been
SETGed to the FUNCTION which computes the square of a number. To use SQUARE, apply it to an
argument in 2 FORM:

<SQUARE 6>%
26

C{SQUARE 1.5>$
2.26

Using SQUARE with the wrong type of argument (anything other than a FIX or FLOAT) will produce an
error. Using SQUARE with the wrong number of arguments (anything other than one) will also
produce an error.

Taking the GVAL of SQUARE will show you what a FUNCTION looks like:

,SQUARES
#FUNCTION ((X) <* .X .X>)

What DEFINE did was 1o SETG SQUARE to #FUNCTION ((X) <* .x .X>). You could define a
FUNCTION the same way, if you wished, or you could apply the FUNCTION directly:

S#FUNCTION ((X) <* .X .X>) &8
26

<#FUNCTION ((X) <* .X .X>) 1.5>8
2.25

Obviously, this would become quite tedious.

6.3. Application of FUNCTIONSs: Binding

In order to make clear exactly what is happening in each of the examples in this section,
FUNCTIONs will be applied in the tedious, non-standard method just shown.

FUNCTIONSs, like SUBRs and FSUBRs, are applied using FORNs. Sg,

CHFUNCTION ((X) <* .X .X>) 6>$
26

SIMPLE FUNCTIONS SECTION G2




JER

Es

ga

n,

THE MDL PRIMER

applied the indicated FUNCTION to 6 and returned 285.

What EVAL does when applying a FUNCTION is the following:

1. Create a "world" in which the ATOMs of the argument LIST have been SET to the values
to which the FUNCTION was applied, and all other ATOMs have their original values. This
is called "binding”. (In the above, this is a "world" in which X is SET to 6.)

2. In that new "world", evaluate all the objects in the body of the FUNCTION, one after the
other, from first to last. (In the above, this means evaluate <* .X .X» in a "world"
where X is SETto 6.)

3. Throw away the "world" created, and restore the LVALs of all ATOMs bound in this
application of the FUNCTION to their originals (if any). This is called "unbinding”. (In the
above, this simply gives X back the local value, if any, that it had before binding.)

4. Return as a value the last value gbtained when the FUNCTION's body was evaluated in
step (2). (In the above, this means return 25 as the value.)

The fact that such "worlds" are separate from the FUNCTIONs which cause their generation means
that all MDL FUNCTIONs can be used recursively. (For those of you who understand the term, MDL is

"dynamically scoped.")

The only thing that is at all troublesome in this sequence is the effect of creating these new
“worlds", in particular, the fact that the previpus world is restored. This means that if, inside a
FUNCTION, you SET one of its argument ATOMs to something, that new LVAL will not be remembered
when EVAL leaves the FUNCTION. However, if you SET an ATOM which is not in the argument LIST

(or SETG any ATOM) the new local (or global) value will be remembered. Examples:

<SET X 038

0

CHFUNCTION ((X) <SET X <* .X .X>>) B&>$
26

XS

0

On the other hand,

<SET Z 038

0

CHFUNCTION ((X) <SET Z <* .X .X>>) B&>$
25

I3

26

SECTIONG3 SIANLE FUNCTIONS




30 ’ THE MDL PRIMER

By using PRINT as a SUBR, we can "see" that an argument's LVAL really is changed while
EVALuating the body of a FUNCTION:

CSET X B>$
5
CHFUNCTION ((X) <PRINT .X> <+ .X 10>) 38

3 13
-“
B

The first number after the application FORM was typed out by the PRINT; the second is the value of the
application.

Remembering that LVALs of ATOMs ngt in argument LISTs are not changed, we can reference
them within FUNCTIONs, as in

<SET Z 100>$

100

<#FUNCTION ((Y) </ .Z .Y>) ©&>8
20

ATOMs used like Z in the above examples are referred to as "free variables”. The use of free
variables, while often quite convenient, is rather dangerous unless you know exactly how a FUNCTION
will always be used: if a FUNCTION containing free variables is used within a FUNCTION within a
FUNCTION within . . ., one of those FUNCTIONs might just happen to use your free variable in its
argument LIST, binding it to some unknown value and possibly causing your use of it to be
erroneous. Please note that "dangerous”, as used above, really means that it may be effectively
impossible (1) for other people to use your FUNCTIONs, and (2) for you to use your FUNCTIONs a
month (two weeks?) later.

6.4. DEFINEing Some Simple FUNCTIONs

Using SQUARE as defined above, let's DEFINE a FUNCTION to compute the length of the
hypotenuse of a right triangle given the lengths of the two sides:

<DEFINE HYPOT (SIDE-1 SIDE-2)
<SQRT <+ <{SQUARE .SIDE-1> <SQUARE .SIDE-2>>>>$
HYPOT
<HYPOT 3 4>8%
6.0

SIMPLF FUNCTIONS SECTION 6.3

4’




THE MDL PRIMER 3

IMER
shile SQRT is the SUBR which returns the square root of its argument. It always returns a FLOAT.
A whimsical FUNCTION:
<DEFINE ONE (THETA)
<+ <{SQUARE <SIN .THETA»>
{SQUARE <COS .THETA>>>>$
ONE
<ONE 6>$%
0.09909994
<ONE 0.23>%
0.99999999
fthe
ONE always returns (approximately) one, since the sum of the squares of sin(x) and cos(x) is unity for
saoE any x.(SIN and COS always return FLOATs, and each takes its argument in radians. ATAN
(arctangent) returns its value in radians. Any other trigonometric function can be composed from
these three.)
MDL doesn't have a general "to the power" SUBR, so let's define one using LOG and EXP (log base
&, and e to a power, respectively; again, they return FLOATS).
l <DEFINE ** (NUM PWR)
<EXP <* .PWR <LOG .NUM>>>>$
free ae
ION {** 2 2%
“na 4.0000001
n its <** § S
ybe § 125.00000
s : <** 25 0.6>$
6.0000001
Two FUNCTIONs which use a single global variable (Since the GVAL is used, it cannot be rebound.):
.I
the

1 SECTION 6.4 SIVPLE FUNCTIONS




32 THE MDL PRIMER

<DEFINE START ()
<SETG GV 0X)$

START

<DEFINE STEP ()
(SETG GV <+ ,GV 1>

STEP

(START>S

0

<STEP>S

1

<STEP>S

2

<STEP>S

3

START and STEP take no arguments, so their argument LISTs are empty.

An interesting, but pathological, FUNCT ION:

<DEFINE INC (ATM)
<SET LATM <+ ..ATM 1538

INC

<SET A 0>$

0

<INC ADS

1

<IN A>S

2

.AS

2

INC takes an ATOM as an argument, and SETs that ATOM to its current LVAL plus 1. Note that inside
INC, the ATOM ATM is SET to the ATOM which is its argument; thus . .ATM returns the LVAL of the
argument. However, there is a problem: |

<SET ATM 0)%
0
CINC ATNDS i

*ERROR®*
ARG-WRONG-TYPE

: |

LISTENING-AT-LEVEL 2 PROCESS 1

-

|1

The error occurred because . ATM was ATM, the argument to INC, and thus . .ATM was ATM also. We IT|’

SIMPLE FUNCTIONS SCCTION 6.4

R R R .,

| T




PRIMER

nside
of the

. We

THE MDL PRIMER ’ a3

really want the outermost . in . .ATM to be done in the "world" (ENVIRONMENT) which existed just
re INC was entered -- and this definition of INC does both applications of LVAL in its own

"world".

6.5. Pretty-Printing

in MDL, carriage-returns, linefeeds, tabs, etc., are just separators, like spaces. At least one space
is needed between MDL objects, but there is no maximum number.

(oo 3
4>%
81

Using only one space at all times results in code which is effectively unreadable. This is even
demonstrable with tiny FUNCT IONs similar to the ones created in this chapter. For example:

<DEFINE ZERO (THETA)
¢~ <+ <SQUARE <SIN .THETA>)
<SQUARE <COS .THETA>>>
<+ <SQUARE <SIN .THETA>>
<SQUARE <COS .THETA>>>>>$
ZERO

Typing , ZEROS$ to MDL will cause it to return:

#FUNCTION ((THETA) <- <+ <SQUARE <SIN .THETA>> <SQUARE <COS
.THETA>>> <+ <SQUARE <SIN .THETA>> <{SQUARE <COS .THETA>>>>)

Long FUNCTIONs printed like this would be very difficult to read. MDL has a "pretty-printer” (for full
details see The MDL Programming Environment [Lebling 80]), called PPRINT which prints functions
with spacing similar to the examples in this chapter.

<PPRINT ZERO>$

<DEFINE ZERO (THETA)
{- <+ {SQUARE <SIN .THETA>> <SQUARE <CO05S .THETA>>>
{+ <{SQUARE <SIN .THETA>> <SQUARE <COS .THETA>>>>

The general idea behind MDL pretty printing is: if all the arguments to a function fit on one line they
are printed on one ling, if not, arguments are printed on successive lines indented by the same
amount. This allows you to see the level of "nesting” at a glance, and makes it easier to see what is
happening. ’

SECTION 6.4 SIAPLE FUNCTIONS



34 THE MOL PRIMER

6.5.1. Editors and Pretty Printing

'.i

A good display editor (such as RMODE [Lebling 77] or EMACS [Stallman 79]) will have built-in
commands which assist you in formatting your programs in pretty-print style. It is strongly
recommended that you get in the habit of using these tools from the beginning. Your code will be |
more easily understood by others and, more importantly, by you several months after you write it. E 1
Bracket balancing also becomes much easier and errors with brackets become quite rare. |

6.6. Loading a File
If you have a MDL program in a file, you can “load" it by typing

<FLOAD file>$

where file is the name of the file, in standard operating-system syntax, enclosed in "s (double-
quotes). In the Tenex and Tops-20 versions, if the file name extension is .MUD, the extension can be
omitted. For instance, to load the file ZERO. MUD you could type one of the following:

<FLOAD "ZERO">$ <FLOAD "ZERO.MUD">$

Once you type §, MDL will process the text in the file (including FLOADs of yet other files) exactly as
if you had typed it on a terminal and followed it with §, except that "values" produced by the
computations are not printed. When MDL is finished processing the file, it will print "DONE".

If there is more than one generation of the file ZERO. MUD, MDL will load the highest one unless a
generation number is specifically included in the argument to FLOAD ({e.g. <FLOAD
"ZERO.MUD.69106">).

When MDL starts running, it will FLOAD the file "MUDDLE. INIT" (Tenex and Tops-20 versions), if it
exists. This allows you to have your working file or any other files you wish loaded into your MDL
when you begin a session. It also allows you to "customize" your MDL by setting certain flags,
redefining FUNCTIONs, etc.

-
:

SIPLE L INCTIONS SECTIONGS

w




3

THE MDL PRIMER as

7. MDL TYPEs

In Chapter 2, we provided an introduction to the MDL TYPE system. This chapter will expand on
that introduction and explain the creation of user-definable MDL TYPEs.

7.1. TYPEs and PRIMTYPEs

In Chapter 2 it was stated that every MDL object has a TYPE. The SUBR TYPE, given a MDL object,
returns an ATOM which is the name of the object's TYPE.

<TYPE 1258
FIX

<TYPE (1 2 3)>$
LIST

In MDL, each TYPE can be thought of as a member of a smaller number of more 'primitive' TYPEs. In
MDL, these ‘primitive’ TYPEs are known as PRIMTYPEs. Just as every MDL object has a TYPE, so
every MDL object has a PRIMTYPE. A SUBR called PRIMTYPE, given a MDL object, returns an ATOM
which is the name of the object's PRIMTYPE.

We have already seen examples of a number of MDL PRIMTYPEs without ever mentioning the
notion of PRIMTYPE. Here are the mast important PRIMTYPEs in MDL.

- WORD - the PRIMTYPE of all FIXes, FLOATs, and CHARACTERs. Any MDL object which
can be thought of as a number will be of PRIMTYPE WORD (CHARACTERs are internally
stored as their ASCIl values).

- ATOM - the PRIMTYPE of ATOMs.

- LIST - the PRIMTYPE of LISTs, FORMs, and FALSEs.

- VECTOR - the PRIMTYPE of VECTORSs.

- STRING - the PRIMTYPE of STRINGs.

SECTION 7.0 ML TYPES




36 . THE MDL PRIMER

7.2. Introduction to MDL Structures

As we saw in Chapter 2, MDL objects may be either structured or not. A Structure can be thought
of as an ordered series of MDL objects. MDL has a number of different 'classes' of structures, each
with different properties. These 'classes’ are the structured PRIMTYPEs: LIST, VECTOR, and STRING.
In Chapter 2, it was also noted that matching brackets are used to represent these structured objects.
Each of the structured PRIMTYPEs has its own unique bracket type by which it can be identified. The
brackets used for the structured PRIMTYPEs are as follows:

- LIST - matching parentheses
- VECTOR - matching square brackets

- STRING - paired double quotes

<SET A (1 2 3)>%

(123)

{TYPE .A>$

LIST

{TYPE <TYPE .A>>$

ATOM

{PRINTYPE .A>§

LIST

{SET B <+ 1 2>>§

3 ;"Oops|”
{SET B '<+ 1 2>>§%

412 :"That's betterl”®
<TYPE .B>S$

FORM

<PRIMTYPE .B>%

LIST

In the example, notice that the FORM <+ 1 2> will get evaluated in the call to SET. In order to SET B
to the FORM instead of the result of its evaluation, a single-quote is placed before the FORM. The
single-quote tells MDL not to evaluate the following object.

7.3.The TYPE? Predicate

The SUBR TYPE? can be used to check the TYPE of a given object against a particular set of TYPE
names. TYPE? takes a MDL object and any number of ATOMs, which must each be the name of a MDL
TYPE. If the object is not one of those TYPE names given, TYPE? returns #FALSE (). Otherwise, it
returns the TYPE of the object.

MDL TYPES SECTIONT 2




THE MOL PRIMER a7

CTYPE? 10 ATOM VECTORS
#FALSE ()

CTYPE? 10 FIX FLOAT ATOMDS$
FIX

7.4. Printing of MDL Objects

In general, the printing of a MDL object is dependent on the PRIMTYPE of that object. MDL objects
will usually be printed as follows:

#type-name objeci-as-il-PRIMTYPE

Usually, if the TYPE of the object and the PRIMTYPE of the object are not the same, the number-sign
and type-name are printed. There are a few exceptions to this: the TYPEs FIX, FLOAT, CHARACTER,
and FORM all print in a more simplified manner because of their common use.

We have already seen an example of this ‘'number-sign notation® with the TYPE FALSE. You may
have noticed that it prints as a number-sign, the ATOM FALSE, and an 'empty’ LIST. The meaning of
this is that FALSEs are of PRIMTYPE LIST: the #FALSE must ba used in both input and output to
distinguish the object from objects of TYPE LIST. In general, you can tell the PRIMTYPE of an
unknown type in 'number-sign notation' by looking at the part after the type-name. I it has square-
brackets, it's a PRIMTYPE VECTOR. Parentheses, it's a PRIMTYPE LIST. Etc.

{PRIMTYPE #TABLE [1 2 3]>§
VECTOR

{PRINTYPE #TEXT "ABCDE">$
STRING

{PRIMTYPE #NUMBER 10>
WORD

Note that the TYPEs TABLE, TEXT, and NUMBER are not defined in MDL; a user might have created
them, however (see later), and their PRIMTYPEs are obvious from the part after the type-name,

7.5. Significance of PRIMTYPEs / CHTYPE

The notion of PRINTYPE is very important. The PRIMTYPE of an object tells MDL what the ocbject
looks like internally to MDL. As far as MDL is concerned, any two objects of the same PRIMTYPE are
more or less intarchangeable (e.g. most SUDRs which can be used on LISTs can also be used on
FALSEs.)

SECTIONT A MDL TYPLES




a8 ) THE MDL PRIMER

This notion of interchangeability is a very powerful one. In fact, MDL allows you to arbitrarily
change the TYPE of virtually any MDL object to another TYPE, as long as objects of that other TYPE
have the same PRIMTYPE as the original. The SUBR which ‘changes’ TYPEs is called
CHTYPE (pronounced ‘chitype’). It takes a MDL object and the name of a TYPE (ATOM), and returns
the MDL object 'changed’ to that TYPE.

CCHTYPE (+ 1 2) FORMDS
+12

<CHTYPE (A B C) FALSE>S$
#FALSE (A B C)

CCHTYPE 2.5 LIST>$

*ERROR®

STORAGE-TYPES-DIFFER

CHTYPE

LISTENING-AT-LEVEL 2 PROCESS 1

Often one would like to know what the PRIMTYPE of an object of a certain TYPE would be. This can
be found out by using the SUBR TYPEPRIM: given a name of a TYPE, it returns the name of the
PRIMTYPE of objects of that TYPE.

<{TYPEPRIM FALSE>$
LIST
{TYPEPRIM FLOAT>S
WORD

To restate the conditions for a successful CHTYPE in terms of TYPEPRIM: the PRIMTYPE of the first
argument must be the same as the TYPEPRIM of the second. lsn't that much clearer?

7.6. Creating new TYPEs

Given the interchangeability among objects with the same PRIMTYPE, it should not be surprising
that MDL will allow you to create any arbitrary new TYPE, so long as you define it to have a known
MDL PRIMTYPE. The SUBR which creates new TYPEs is, not surprisingly, NEWTYPE. NEWTYPE takes
an ATOM (the name for your new TYPE) and the name of the TYPEPRIM lor that new TYPE (also an
ATOM). It returns its first argument. NEWTYPEs will defaultly print out (and can be read back) in
‘number-sign notation'.

ML TYPES SECTION 7.5




=1

THE MOL PRIMER : 38

CNEWTYPE TABLE VECTORDS

TABLE

CSET X #TABLE [JOE 1 JOHN 2]>$
#TABLE [JOE 1 JOHN 2]

CCHTYPE .X VECTOR>$

[JOE 1 JOHN 2]

There are only two ways to create an object of a user-defined TYPE: type the object in directly (as
was done in the previous example) or to use the SUBR CHTYPE explicitly,

CCHTYPE [JIM 2 JANE 4] TABLE>S
#TABLE [JIN 2 JANE 4]

SECTIONT S MOL TYFES




THE MOL PRIMER

MOL STRUCTURES SECTIONB.O




THE MOL PRIMER ‘ 4

8. MDL Structures

As we saw in Chapter 2, MDL objects may be either structured or not. It was stated that structures
can be thought of as ordered series of MDL objects and that different classes of structures existed. In
this chapter we will describe the common structures used in MDL.

8.1. Equality

It is necessary here to mention the notion of equality. In MDL, there are two types of equal: double-
equal and single-equal. The SUBRs which represent these concepts are ==7 and =7, respectively,
Simply stated, two MDL objects which are the same thing are double-equal. Two objects which look
the same, i.e. are printed the same way, are single-equal. This confusing distinction is unimportant
for objects which aren’t structured. Two non-structured objects which print the same are the same.
For example, there is one and only one MDL object representing the FIX 19. However, one can
easily build two structures at two different times which /ook the same, but which are not the same.
This will be explained below in the discussion about LISTs. As an example of the use of =7, assume
that you have written a program which takes some input from the user and wants to see if he typed the
word FOO. Let's assume an input routine called INPUT which returns a STRING.

<SET STR <INPUT>>$
"FOO"

¢==7 .STR "FOO">$
#FALSE ()

<=? .STR "FOO">$

5

This is because the two STRINGs were not identical; they look the same, however, and therefore are
=7. Figure 8-1 purports to demonstrate the distinction between types of equality.

8.2, PRIMTYPE LIST

MDL objects of PRIMTYPE LIST may be thought of as an ordered series of MDL objects, whase
conneclive link is a "pointer’, This means that in order to find the Nth element of a LIST one must
look at each of the previous N-1 elements. This is shown in Figure 8-2. This becomes rather tedious

SECTION 8.0 MDL STRUCTURES




42

THE MDL PRIMER

The representation of a MDL object is:

<iype>

<valug>

where <type> is the TYPE of the object and <value> is a pointer for Structured
lypes, or a number.,

A
Fix
10
]
[ LisT . A - 10
B - (10}
T | FIX c - o)
E- jo
LIST F— 10
1> | FIx
1] 10
LIST

Definition: Two MDL objects are ==7 if and only if the {type> and
<value> parts are the same. They are =7 if they logk the
same.

Question: Areanyof B, C, or D ==7 to each other?

Answer; Cand D. They have the same TYPE and point to the same
structure. B and C are *f,asareBandD - they logk alike,
but are not identical,

Question: Are any of A, E, or F ==7 1o each other?

Answer; They are all ==7 to each other.

Figure 8-1: The MDL notion of equality is demonstrated in this figure,
which shows the distinction between single-equal =7 and double-equal

MOL STRUCTURES

Ll

SECTIONS.2




THE MOL PRIMER

43

when one is interested in finding the 245th element of a LIST. You can see that large LISTs have the
property of being rather inefficient to 'random-access'. On the other hand, LISTs can easily be
modified (adding elements, removing elements, etc) simply by changing the linking 'pointers’. In
Figure 83 you can see pictorially how an element of a LIST might be removed. Notice that the
removed element still 'exists’, but that the LIST is no longer 'pointing’ at it.

Two SUBRs which should be mentioned here are LENGTH and EMPTY?: the first, given a LIST,
returns the number of elements in that LIST (as a FIX), and the second, given a LIST, returns the
ATOM Tor #FALSE (),i.e. whether the LIST had no elements.

FIX| —Ft—]| FiX J .
: 2

Figure 8-2: The LIST (1 2 3)

FIX | -r"-"':::r FIx | ‘.\:

This LIST isnow (1

Figure 8-3: Removing a LIST element by moving only one pointer

2

3).

8.2.1. Creating LISTs

FIX

Creating a LIST is very simple. Simply type in the printed representation of it, which (as described
belore) is a series of MDL objects surrounded by parentheses.

SECTION 8.2

MO STRUCTURES




THE MDL PRIMER

<SET A (1 TWO 3.0)>8
(1 TWO 3.0)

<(SET B (A .A C)>$

(A (1 TWO 3.0) C)

Using this method, every MDL object placed between the matching parentheses is EVALed., Thus, the
LVAL of A was placed in the LIST,

<SET B (X Y 2)>$

(XY 2)

<LENGTH .B>$

3

<EMPTY? .B>$

#FALSE ()

CDEFINE EMPTY? (LIST) <==? CLENGTH .LIST> 08
EMPTY?

The end of the previous example gives a definition of EMPTY? in MDL, given only the SUBRs LENGTH
and ==7,

which are EVALed, and makes a list with the evaluated arguments as elements. The effect is the same
as in the first method.

<SET A <LIST 1 TWO 3.0>>$
(1 TWO 3.0)

In both methods, a new L IST is created.

<SET A (1 2 3)>8
(12 3)

<SET B (1 2 3)>$
(12 3)

<==7 A .B>$
#FALSE ()

<=7 .A .B>$

T

The two lists A and B are not double-equal because the construction of LISTs is guaranteed to
generate a new LIST. Theyare single-equal by the definition of single-equal.

MOL STRUCTURES SECTION &2




===

THE MDL PRIMER E 45

8.2.2. EVALing LISTs

LISTs, when EVALed, make a new copy of the LIST with all of the elements re-EVALed.

CSET A (1 2 3)>$
(12 3)

<==7 <EVAL .A> .A>$
#FALSE ()

8.2.3. Manipulating LISTs

In order to discuss LISTs more fully, we need to know a few ways to manipulate them. We will
introduce two SUBRs here, NTH (pronounced 'enth’) and REST. The SUBR NTH, given a LIST and a
FIX, will return the FIXth element of the LIST. REST, given a LIST and a FIX, will return the LIST,
with the first FIX elements at the beginning removed. The second argument to both NTH and REST
has a default value of 1. Some examples:

CSET L (A B C D)>$

(A B C D)
NTH .L 38

c

{NTH .L 2>§

B

CSET LL <REST .L 2>)%
(¢ D)

CREST .L 438

Q0

LS

(A B C D)

Notice that REST has no side-effects. In other words, it simply returns a pointer farther down the
'chain’ of elements in the LIST without changing anything. This is illustrated in Figure 8-4. Another
important operation on LISTs is called PUT. As its name suggests, PUT puts an element into a LIST,
Given a LIST, an element number (FIX, as in NTH), and an arbitrary object, PUT makes the FIXth
element of LIST become that object, and returns the LIST. Let's continue from the example given in
Figure 8-4 with L and LL already defined.

<PUT .LL 1 HAHA>S
(HAHA D)

LS

(A B HAHA D)

What happened here is shown in Figure 8 5. Since LL was a 'subset’ of L, any change in LL was
reflected in L (the apposite would alsu be true, i.e. a PUT into the third or fourth elements of L would

SECTION B.2 MOL STRUCTURES




48 THE MDL PRIMER

¢SET L (A B C D)>$
(ABCD)

- [irou] o arow]
@——————”HFE:I— B ¢

CSET LL <REST .L 2>>$
(€ D)

Notice that the LIST (C D) is a subset of the LIST (A B C D) because of
the way REST works.

Figure 8-4: REST of a LIST

be reflected in LL.)

ATOM| o

@_/'4

The only effect is that the contents of the third element was changed,

from » aTom | . No pointers have
moved. c HAHA

Figure 8-5: PUTs into LISTs

Let's continue:;

MDL STHUCTURES SECTION B2




THE MDL PRIMER 47

CSET N .S

(A B HAHA D)

CSET L (1 2 3)>$
(123)

.N$

(A B HAHA D)

LLS$

(HAHA D)

<==? <REST .M 2> .LL>$
5

If you understand this, good. Otherwise, pay close attention to Figure 8-6, in which this example is
diagrammed. It is of crucial importance that the distinction be learned between a structure and a
pointer to a structure. Changing a structure (e.g. with PUT) will be reflected in any object which
points to it. Changing the pointer to a structure doesn't affect any other pointers. If you don't
understand this distinction, you will probably become more and more lost. Ask someone for help.

FiIx] ——» |[FiX] o

el e T T L e e ——

ToM| —1 jATOM]| —» |ATOM o
[ HAHA D

TEEEEETT. o=

LL

LG

<SET M .L> made M point to where L pointed at that time.
<SET L (1 2 3)> merely puinted L somewhere else.
The values of M and LL are not affected, then, by reSETting L.

Figure 8-6: Pointers vs. Structures

e ——

Now things get a little more complex. However, if you understood the previous examplas, this should
be no diferent. Earlier, we talked about 'moving' pointers to effect removal of objects from a LIST.

SECTION B 2 LA STRUCTURES




48 ' THE MDL PRIMER

This movement can be accomplished in MDL using the SUBR PUTREST. PUTREST (eguivalent to
Lisp's replacd) is probably the most confusing SUBR to beginners, and even to accomplished MDLers.
Its effect is very simple: given two LISTs, say A and B, it causes the REST of A to become B, and then

returns A. This probably sounds very obscure. Before total confusion sets in, take a look at the
example and then at Figure 8-7.

<SET A (1 2 3)8
(123)

<SET B (4 6 8)>$
<PUTREST .A .B>$
(1468)

.BS

(4 6 8)

All that has happened is that one pointer has been moved: the one connecting the first element of A to
its succeeding element has been changed to a pointer to B. That's all. Notice that any object which

points to the same place that A points has been changed. However, also notice that any object which
points to the REST of A has not been changed.

{PUTREST .A .B>

Fix | - FIX ——» | FiX | o
I 2 3

Only one pointer has been moved. A is changed, but B is not. Notice that a
hypothetical C, previously SET to REST of A, is also not changed.

Figure 8-7: PUTREST

Using PUTREST, it is easy to remove elements from a LIST.

MOL STRUCTURES SECTIONSB.2




THE MOL PRIMER 49

CSET A (1 2 3 4)>8
(1234)

CPUTREST .A <REST .A 2>)$
(13 4)

What we have done is to make the first element of A (1 in the example) point to the value of A RESTed
twice. This is demonstrated in Figure 8-8,

I REST AL >

{PUTREST .A <REST .A 2» L

]
Fix | 3 | FiIXx —_— FIX —» | Fix]| o
I 2 3 4

The REST of A has become A RESTed twice. The effect is to remove the FIX
2 from the LIST.

Figure 8-8: Removing an element from a LIST using PUTREST

Notice that you can not use this method to remove the first element of a LIST, since PUTREST only
changes the pointer which connects the flirst element to the second element. However, one can
always use REST for this purpose, but be careful:

CSET A (1 2 3 4)8
(1234)

CREST .A>S

(2 3 4)

.AS

(1234)

As we noted earlier, REST has no side-effects, unlike PUTREST, which does. The right thing to dois

CSET A <REST .A>>$
(2 3 4)

.AS

(234

One can cause a LIST to terminate at any point by giving PUTREST a second argument of an empty

SECTIONB.2 MDL STRUCTURES




50 THE MDL PRIMER

LIST.

CSET A (1 2 3 4)>8
(1234)
CPUTREST .A ()>$

(1)
As advertised, the REST of A has been made the second argument to PUTREST, i.e. the empty LIST.

To combine LISTs, one can use PUTREST also. Try to think of how you would combine the LISTs
in the following example. Think pointers.

<SET A (1 2 3)>8
(123)
<SET B (4 5 8)>$
(4 6 8)

The idea is to make the third element of A (the FIX 3)to point to the LIST B. In terms of PUTREST,
we want B to become the REST of which LIST? The answer is

<PUTREST <REST .A 2> .B>$
(3 468)

.AS$

(123458)

PUTREST returned its first argument, which was A RESTed twice. A, however, was changed. Refer to
figure 8-9 if confused.

<REET AL >

@,.4 Fix]| —o[rix] — FiX| o-—
] 2 3

B Fix] —o|rix] Je[rix] «

{PUTREST <REST .A 2> .B>

Figure 8-8: Splicing LISTs together using PUTREST

MDL STRUCTURES SECTIONSB 2




T e

THE MOL PRIMER - 51

With your new-found expertise in PUTRESTing, you should take a moment and think about how you
would build a LIST backwards. For example, you wish to append the FIX 7 to the LIST from the last
example. What is the correct MDL expression? Hint: You have to create a LIST withthe FIX 7init.

CPUTREST <REST .A 6> (7)>$
(6 7)

.AS

(1234687)

Here are some problems to think about:

CSET L (1 2 3 4)>8

(1234

<SET LL <REST .L 1>)>$

(2 3 4)

¢SET LLL <REST .L 2»>%

(3 4)

CPUTREST <REST .L> <REST .L 3»>$
(2 4)

What are the LVALs of L, LL, and LLL now?

<SET WALTZ (2 3 1)>8
(2 3 1)
CPUTREST <REST .WALTZ 2> .WALTZ>$

If you try this, be ready to type +S. What has happened? What is the LENGTH of L now? Why
shouldn't you try to find out? Why is this a waitz?

CSET ONES (1 2 3)>$
(123)
CPUTREST .ONES .ONES)>$

What about this?

The last two examples demonstrate an important notion, that of circularity. There is absolutely no
restriction on the creation of circular and self-referencing structures. However, you should be sure
you know what you're doing. For example, linding the LENGTH of ONES or of WALTZ in the previous
examples is quite time-consuming. The SUBR called LENGTH? can be of use here. Given a LIST and
a FIX, LENGTH? will return the LENGTH of the LIST if it is less than or equal to FIX. Otherwise, it will
return #FALSE (). This is uselul if you suspect a LIST is self-referencing or to check on whether a
LIST is at least a certain length. For example, prior to trying to get the 12th element of a L1ST of
uncertain size, one might check that

(LENGTH? .LIST 11>

SECTIONB2 ML STRUCTURES




52 THE MDL PRIMER

returned #FALSE (), i.e. there are at least 12 elements in the LIST.

8.2.4. FiXes First in FORMs

If the first element of a FORM isa FIX or an ATOM whose GVAL is a FIX, this is considered to be a
shorthand call to NTH or PUT, depending on whether it is given one or two arguments, respectively,
Thus, the following two are EVALuated identically,

<11 .FoO>»
<NTH .FO0O0 11>

So are these:

<11 .F0O0 .BAR>
<PUT .FOO 11 .BAR>

Here is an example of an ATOM being used first in a FORM with the same effect:

<SET L (FOO BAR BLETCH)>$
(FOO BAR BLETCH)
<SETG FIRST 1>
1

<SETG SECOND 2>$
2

<FIRST .L>$

FOO

<SECOND .L>$

BAR

CFIRST .L FROBDS
(FROB BAR BLETCH)

8.2.5. FORMs

which can be done on LISTs can be done on them. Since they are evaluated in a special way,
Creating a FORM by inputting elements between angle brackets will require a single-quote. This is not
true if you are using the SUBR FORM.

MDL STRUCTURES SECTIONB.2




THE MOL PRIMER 53

<SET A <+ 1 2 3>>8

8

<SET A '<+ 1 2 3>>§%
+12 3

{SET A <FORM + 1 2 3>>§
+12 3

A special note should be made of the empty FORM: it evaluates to an empty FALSE. This is simply a
shorthand notation.

L4
#FALSE ()

8.2.6. FALSEs

Previously, you have seen examples of MDL objects of TYPE FALSE. All of them thus far have
been EMPTY?, although this is not always the case. MDL objects of TYPE FALSE are PRIMTYPE
LISTs and, as has been stated before, can be used in the same ways as any other PRIMTYPE LIST.
In particular, one can create FALSEs with any number of arbitrary elements. One use of this might be
to distinguish between two types of failures in a function. Thus, the FALSE can have two types of
meaning: its TYPE (which is FALSE) and its contents. One might simply want to detect failure by
checking the TYPE, but one might additionally want to detect failure and also have other information
about the failure available.

<SET VAL <OPEN "READ"™ "FOO.BAR">>$
#FALSE ("File not found" "FOO.BAR" 869106)
<1 .VAL>$

"File not found"

In this example, the SUBR OPEN was called in an attempt to open a file called FOO.BAR. The OPEN
failed, and returned a FALSE which contained three pieces of information: the reason (a STRING), the
file name (a STRING), and an internal error code (a FIX). One might have written a FUNCTION using
OPEN which only cares if OPEN returns a FALSE or not. On the other hand, one might want to print out
the reason for the failure to the FUNCTION's user. This would have been impossible had FALSEs not
been able to carry additional information. As you will find when doing your own programming, this is
a significant feature of MDL.

8.2.7. SEGMENTSs

A SEGMENT is a PRIMTYPE LIST, which is handled very specially by MDL. SEGMENTSs print as an
exclamation point followed by a FORM. When EVALed inside an expression, its meaning is as follows:
pretend that instead of using this SEGMENT, use instead all of the elements you get from EVALing the
FORM. There is an important implication here: that the FORM, when EVALed, returns a struclure. An

SECTION 8.2 MDL STRUCTURES




54 . THE MOL PRIMER

error will occur if this is not the case. Here are some examples:

<SET A (1 2 3)>%

(123)

<SET B (1.A 4 6 6)>$

(123 468) ;"This 1s a new 11st, not shared with A"
<SET C (l1.A 1.B 7)>$

(123123468617) i"No sharing here, either"”

<+ |.A>S
8

<SET L (BAR 10)>$
(BAR 10)

<SET 1.L>$

10 '

.BARS

10

This last example is quite pathological: note, however, that it is perfectly legitimate. The FORM was
read by MDL as having two elements, the ATOM SET and a SEGMENT. When the FORM was EVALed,
the SEGMENT acted as if it was really all of the elements of .L, i.e. the ATOM BAR and the FIX 10.
This is simply the case of SETting BAR to 10.

One last very important note: There is one way to add elements to the beginning of a LIST without
copying. This is the case in which a SEGMENT is the last element of a LIST and the SEGHENT's FORM

EVALsto a LIST. In this case only, there is no copying and the structures will share. This is similar to
CONS in LISP. 1

¢SET L (FOO BAR BLETCH)>$

(FOO BAR BLETCH)

CSET LL (123 1.L)>S  ;"The last element is a SEGMENT which
evaluates to a LIST"

(1 2 3 FOO BAR BLETCH)

<PUT .LL 4 SHARED»$

(1 2 3 SHARED BAR BLETCH)

LS

(SHARED BAR BLETCH)

LISTs are the most appropriate structure to use when elements are going to be added or removed.
The special use of SEGMENTs shown in the last example is the best way of adding elements to the
front of a LIST. However, the resulting LIST will be 'backward'. in that the most recently added
element will be at the 'front’ rather than at the 'back’ of the LIST. Later on, we will demonstrate the
correct way to add elements to the end of a LIST. As an exercise, see if you can figure oul a method
for doing so using PUTREST.

ML STRUCTURES SECTIONB.2




THE MDL PRIMER 55

Bemember that the previous use of SEGMENTs is an exception; in tha case of aobjects of PRIMTYPE
VECTOR and STRING (next sections) the use of a SEGMENT will cause copying of the elements from
the structure which is the EVALuation of the FORM.

8.3. PRIMTYPE VECTOR

A MDL object of PRIMTYPE VECTOR can be thought of as a linear array of MDL objects. In a
VECTOR, it is trivial to access the Nth element, as this simply requires finding the correct offset into the
structure (see Figure 8-10). Similarly, it is trivial to replace the Nth element with something else. On
the other hand, there is no way to add elements to a VECTOR without creating a new one, and
removing elements can be simulated, although it is rather difficult. If your eyes skipped back to the
section on PRIMTYPE LIST, you might notice that these properties of the two PRIMTYPEs are
reversed. Thig, then, is the rationale for having different structure 'classes’. The programmer is free
to choose the structure 'class’ (i.e. PRIMTYPE) he wants, based on the way in which it is to be used in
a program. For example, a structure which is always of known length should probably be a VECTOR,
while one which must undergo changes in size should probably be a LIST.

Schematic representation of a VECTOR

[123 4] FIX

FIX

FIX

FIX

Figure 8-10: The VECTOR [1 2 3 4]

8.3.1. Creating VECTORs

Creating a VECTOR is completely analogous to creating a LIST. There are two options: you can
type in the printed representation of a VECTOR, or you can use the SUBR VECTOR.

SECTICHEB 2 ML STRUCTURES




56 THE MDL PRIMER

<SET A [1 2 3]yg

[12 3]

<SET B <VECTOR 1 2 3>>$
[12 3] '
<==? .A .BD>$

#FALSE ()

<=7 .A .B>$

T

<SET C [.A 1.B]>$
[[1223)11¢2 3] i"C does not share with BI"

Both of these methods always create a new VECTOR. Therefore, two objects created in separate calls
to VECTOR will never be == 9,

8.3.2.EVALing VECTORs

As with LISTs, EVAL of a VECTOR makes a new copy of the VECTOR, with all of the elements
EVALed.

SSET A [<+ 12> ¢+ 12 11¢s 1 s
[3 <+ 12 ¢+ 12

<SET A <EVAL .A>>$

[33<+12)

CEVAL .A>$

[3 3 3]

8.3.3. Manipulating VECTORs

The SUBRs NTH, REST, PUT, LENGTH, EMPTY?, and LENGTH? all work on VECTORs just as they do on
LISTs.

<SET A [ONE TWO 37>$
[ONE TWO 3]

<NTH .A 2>8

WO

<PUT .A 3 THREE)S
[ONE TWO THREE]
AS

[ONE TWO THREE]

MOL STIICTURES SECTION 8.3




THE MDL PRIMER ' 57

CLENGTH .A>$

3

CREST .A 2>$
[THREE]

AS

[ONE TWO THREE]

RESTing VECTORs is shown in Figure 8-11,

<SET A [12 3 4] FIX
|

FIX
2

{SET B <REST .A 2>> FiX
3

o Fix
4

Figure 8-11: REST of a VECTOR

Since VECTORs are not pointer structures, the PUTREST operation will not work on them. However,
there are a few operations which are possible with VECTORs which are not possible with LISTs due to
their structure. The first of these is the inverse of REST: it is called BACK. Given a VECTOR and a FIX,
it tries to replace elements to the front of the VECTOR which were previously RESTed off. Like REST,
BACK has no side-effects. It simply returns a pointer to a different location in the VECTOR. An error
will occur if you attempt to BACK more elements than have been RESTed. The SUBR TOP, however,
given a VECTOR, will BACK as far as is legally possible.

<SET A [12 3 4]>5

[123 4]

<SET B <REST .A 2>>%

[3 4]

{PUT .B 1 HAHA>S§

[HAHA 4]

AS

[1 2 HAHA 4] i"B 1s a subset of A"

SECTIONBA MDL STRUCTURES



58 THE MDL PRIMER

<{BACK .B>S$

[2 HAHA 4]

.BS

[HAHA 4] i"BACK has no side-effects”
<{TOP .B>$

[1 2 HAHA 4]

(=27 <TOP .B> .A>$

T

BACKing of VECTORs is diagrammed in Figure 8-12.

SET B <BACK .B 2>

i

Figure 8-12: BACK of aVECTOR

8.3.4. UVECTORs

Although infrequently used, MDL has a PRIMTYPE called UVECTOR, for Uniform VECTOR.
UVECTORs are identical to VECTORs in most ways excep! that every element of a UVECTOR must have
the gsame TYPE. UVECTORs have a special input and output form: an exclamation point followed by
paired square brackets. Here are some UVECTORSs:

ML STRUCTURES SECTION B3

-



THE MDL PRIMER 59

{SET A I[A B C]>$

I[A B CI] ;:"Don't worry about the other | before the ]"
<1 .A8$

A

<REST .A 2>§

I[C1]

Analogously to a VECTOR, ‘there are two ways to create a UVECTOR: type it in, or use the SUBR

UVECTOR. When typing in a UVECTOR be careful that everything you type in is of the same TYPE,
before EVALuation, as well as after!

CSET X 1038
10
<SET A 1[20 .X]>$

*ERROR®

TYPES-DIFFER-IN-UNIFORM-VECTOR
READ

LISTENING-AT-LEVEL 2 PROCESS 1

This error occurred because . X is a FORM, even though it EVALs to a FIX. To do this properly,

<SET A <UVECTOR 20 .X>>$
1[20 10]

A SUBR called UTYPE returns the name of the TYPE of the elements of a given UVECTOR. There are a

few TYPEs which are illegal elements of UVECTORs: the only one you are likely to come across is
STRING.

UVECTORs are useful only for efficiency. They take up roughly half the storage of VECTORs. All
other considerations are the same as for VECTORs.

8.4. PRIMTYPE STRING

A MDL STRING is a sequence of MDL objects of TYPE CHARACTER. Obijects of TYPE CHARACTER

are represented by the sequence of characters: exclamation-point, backslash, and the character
itself.

SECTIONB 3 AL STIUICTIEE S




80 : THE MOL PRIMER

I\AS

I\A ‘
<TYPE I\A>$
CHARACTER
CASCII I\A>S
66

<ASCII 65>$
I\A :

This example has also demonstrated the use of the SUBR ASCII, which given a CHARACTER returns
its ASCII value, or given a FIX gives the CHARACTER with that ASCIl valye. A STRING is represented

ASCII, as used in MDL, is the name of a 7-bit code (i.e. 0000000 - 11111 11 base two, Corresponding

o 0 - 127 in base ten) used tg represent keyboard characters (upper and lower case, control
characters, punctuation, etc,) as small integers.

8.4.2. Creating STRINGs
STRINGs are created in exactly the same ways as the other structures,

CSET A "THIS 1§ A STRIH_‘E")!

"THIS IS A STRING"

<SET A <STRING INT INH A1 INS>>8
"THIS"

CSET A "THIS 18 A">§
"THIS IS A"

CSTRING .A » STRING">$
"THIS IS A STRING"

AS

"THIS IS A"

As with VECTORs. all STRINGs Created this way are new, i.e. not shareqd. Toputa double-quote inside
a string, you must place a backslash before the double-quote. This can De confusing.

MOL STRCTI N g SECTION B 4




Fe=rnags-

| S L

THE MDL PRIMER 61

(SET A "\"\"">§
'I!‘-\-I

{LENGTH .A>$

2

This STRING has two elements, each a double-quote. To put a backslash into a STRING, the
backslash must be preceded by another backslash. This is even more confusing.

CSET A "\\\"">§
I\\\HH

{LENGTH .A>$

2

This is another STRING of two elements: a backslash and a double-quote.

8.4.3.EVALiIng STRINGs

STRINGs are unlike LISTs and VECTORs in that they evaluate to themselves, rather than to copies
of themselves.

8.4.4. Manipulating STRINGs

STRINGs are manipulated exactly as are VECTORs. The CHARACTERs are stored sequentially; thus
PUTREST will not work, but BACK and TOP will. The only difference is that the only legal third
argument to PUT of a STRING is a CHARACTER. Anything else will cause an error.

It is important to note that STRINGs contain gnly CHARACTERs. CHARACTERSs with special meanings
elsewhwere in MDL are simply CHARACTERs in STRINGs.

CSET A "1 2 3 <+ 2 2>")8
"1 234+2 2"

3 .A>S

2

The above example shows that the 'FORM' in the STRING is not EVALed, it is merely 7 CHARACTERS in
a STRING. Spaces are CHARACTERs.

There is a major difference between the following two structures:

SECTIONEBA4 WML STRUCTURES




THE MOL PRIMER

CSET L ("1 23" "4 68" "7 8 9")>$
("1 23" 466" "789")

CSET S "(1 2 3) (4 6 8) (7 8 8)™S$
"(123) (468) (789)"

CLENGTH .L>$

3

CLENGTH .$>$

23

8.5. Building Large Structures

It is occasionally useful to create a large structure. It would be very painful to create, say, a VECTOR
of 100 elements by calling the SUBR VECTOR with 100 arguments. MDL provides a way to create
structures of a specific size, namely the SUBRs ILIST, IVECTOR, and ISTRING. These take two
arguments, a FIX (the number of elements) and a MDL object. MDL will build a structure (LIST,
VECTOR, or STRING, respectively) with FIX elements, each of which is the result of evaluating the
second argument to the SUBR. Some examples:

<ILIST 10 0>$

(000000000 O0)

CIVECTOR 6 <>>$

[#FALSE () #FALSE () #FALSE () #FALSE () #FALSE ()]
KISTRING 30 1\W>$S

W W W W W W W ™

The second argument to ILIST and IVECTOR can be any MDL object. The second argument to
ISTRING must be a CHARACTER.

8.6. Searching Structures

There are two SUBRs which, given an arbitary MDL object and an arbitrary structure, will look
through the structure for that object. They are called MEMQ and MEMBER. What they do is this: starting
with the structure, they look at the first element and see if it is equal to the object in question. If so,
they return the structure. Otherwise, they REST the structure by 1, and repeat the procedure. When
the structure becomes EMPTY?T (i.e. the object wasn't in the original siructure), these SUBRs return
#FALSE (). This means that a successful MEMQ or MEMBER will return the original structure RESTed
down such that its firsl element is the object searched for.

You may have noticed a rather ambiguous "equal’ in the last paragraph, and this is the distinction

between MEMQ and MEMBER. In MEMQ, the test is double-equal {==7), while in MEMBER the test is
single-equal (=7).

MDL STUCTURES SECTION B4




THE MDL PRIMER ’ 63

<SET L (ONE 2 3.0 "FOUR")>$
(ONE 2 3.0 "FOUR")

CMEMQ 2 .L>S

(2 3.0 "FOUR")

<MEMQ "FOUR" .L>$

#FALSE ()

<MEMBER "FOUR" ,L>$
("FOUR")

8.7. Garbage: Quoting Structures

Often in writing programs, one includes a structure in a FORM. For example, one might have a FORM
that looks like this:

<{NTH [ADD SUB MUL DIV] .OPCODE>

This is very inefficient because the VECTOR in the FORM is EVALed every time the FORM is EVALed with
the result that a new VECTOR is created. This creates a lot of 'garbage’, where 'garbage’ is defined as
some piece of structure which is no longer used (i.e. there are no pointers to it}). Since your MDL
resides in a machine with finite memory, it pays to think about ways of making programs relatively
storage-efficient. The proper way of writing the FORM in the previous example is

<NTH '[ADD SUB MUL DIV] .OPCODE>

As mentioned earlier, the quote will ensure that the VECTOR will not be EVALed when the FORM is
EVALed. Thus, only one copy of the VECTOR will exist. Note that 'quoting’ structures in this way
should be used for VECTORs and LISTs. STRINGs EVAL to themselves! You are warned: NEVER do a
PUT into a quoted structure!

8.8. Garbage: Building Lists

It is often necessary in a program to build up a LIST of elements. Assume that you have a
FUNCTION which gets elements one at a time and wants to build a list in the order in which they were
received. Assume a LIST L and an element to be added, say .0BJ. One way of doing this is as
follows:

{SET L (!.L .0BJ)>

This is not good practice, as the LIST created is a copy of the old one with an element added at the

SECTION 86 MDOL STRUCTURES



84 THE MDL PRIMER

end. Assuming that nothing else but the valye of L points to the LIST .L, the old LIST .L wili
become garbage. If you assume adding 100 elements using this method, it becomes clear that
thousands of LIST elements are needlessly becoming garbage. Equally as bad would be to use a
VECTOR. The best way of doing this is using PUTREST. Follow this example:

<SET L (1 2 3)>
(123)

CPUTREST <REST .L 2> (4)>8
(3 4)

LS

(1234

Notice that in the general ¢ase, one can add an element to the end of a LIST by saying:

CPUTREST <REST .LIST ¢- CLENGTH .LIST> 1> (.ELEMENT)>

This is good programming except that LENGTH and REST get called, both of which are quite slow for
long LISTs. Remember that LENGTH must follow all of the pointers to the end to count up the
elements. Here's another way of doing this:

<SETG L (T)>$
(7)
<SETG6 LL ,L>$
(T)
CDEFINE ADD-TO-END (ELEMENT)
<SETG LL <REST <PUTREST .LL (.ELEMENT)> 1))
ADD-TO-END :
<ADD-TO-END 100>$
(100)
<ADD-TO-END 200>$
(200)
.L$
(T 100 200)

effect of the program ADD-TO-END is 1o append the element to a LIST (LL) which is RESTed each
time. This saves having to perform long LENGTH and REST Operations. SinceLLisa sub-listof L, L is
being changed with every PUTREST. Thus, L is the complete LIST, and LL is always L RESTed down
to its last element. You should remember, of Course, that the initial T in the LIST should be removed
at a later time....

MOL STRUCTURES SECTION 8BS




THE MDL PRIMER 65

8.9. Structured NEWTYPEs

In the previous chapter, we saw that MDL is a type-extensible language in that the programmer can
create his own TYPEs. Typically, an object of a NEWTYPE will be a structure that is a model of some
real world entity with the elements of the structure models of parts or aspects of that entity. The
creator of the NEWTYPE will usually provide functions for manipulating the NEWTYPE objects in all of
the ways which are considered meaningful for the intended uses of that NEWTYPE. This means that
other users of the NEWTYPE can use these creator-defined manipulation routines and never need to
know the internal structure of the NEWTYPE. This provides both modularity of programming and data
abstraction.

For example, suppose you wanted to deal with airline schedules. If you were to construct a set of
programs that define and manipulate a NEWTYPE called FLIGHT, then you could make that setinto a
standard package of programs and call on it to handle all information pertaining to scheduled airline
flights. Since all FLIGHTs would have the same quantity of information (more or less) and you would
want quick access to individual elements, you would not want the TYPEPRIM to be LIST. Since the
elements would be of various TYPEs, you would not want the TYPEPRIM to be UVECTOR. The natural
choice would be a TYPEPRIM of VECTOR.

Now, the individual elements of a FLIGHT would, no doubt, have TYPEs and meanings that don't
change. The elements of a FLIGHT might be airline code, flight number, originating-airport code, list
of intermediate stops, destination-airport code, type of aircralt, days of operation, etc. Each and
every FLIGHT would have the airline code for its first element (say), the flight number for its second,
and so on. Itis natural to invent names (ATOMs) for these elements and always refer to the elements by
name. For example, you could <SETG AIRLINE 1>. Then, if the local value of F were a FLIGHT,
<AIRLINE .F> would return the airline code, and <AIRLINE .F AA> would set the airline code to
AA. Once that is done, you can forget about which element comes first; all you need to know are the
names of the offsets.

The next step is to notice that, outside the package of FLIGHT functions, no one needs to know
whether AIRLINE is just an ofiset or in fact a function of some kind. For example, the scheduled
duration of a flight might not be explicitly stored in a FLIGHT, just the scheduled times of departure
and arrival. But, if the package had the proper DURAT ION function for calculating the duration, then
the call <DURATICNK .F> could return the duration, no matter how it is found. In this way the internal
details of the package are conveniently hidden from view and abstracted away.

8.10. Summary of MDL Structures

A few points should be obvious from the previous discussions of the various structured
PRIMTYPEs:

1. All structures can be created in the same two ways: Either type in the printed
representation, or use the SUBR whose name is the name of the PRIMTYPE.

2. When LISTs and VECTORs are EVALed, a new copy of the structure is made, whose

SECTIONG S MOL STRUCTURES




4. The SUBRs NTH, ReST
structures. + PUT, LENGTH, LENGTH?, EMpTY?, MEMBER, and MEMQ work
' on ajff

5. The SUBRs BACK a,
and TOP w :
UVECTORs, and STRINGS) ork on all Consecutively stored Structures (i.e. VECTORs
!

L]
=
1]
w
=
m
=)
o
=
'
o]
m
0
put
=
=]
=
o
S
-
—
w
-]
L]
o
2
o2
(=8
o
E
[+ 8
g
B
k=]
]
=3
(=
' 4
L]
3
o
3
73
8
- 4
o

—
-4
L]
-
g
-
L
=
w
]
-
3
e
=)
L =]
3
m
=
1]
=
&
g
-
=
2
@
0
=
g
]
c
=)
=
g
<
4
L]
1]

7. The SUBRs ME
MEMQ uses =.:°a:“: ::H::"ﬁfkbe used to find & MDL object in an arbitrary s
down to the MDL object ¥ uses =?. Both return the original trary structure.
Iect which was found, or #FALSE () ginal structure RESTed

8.11. Practice Quiz }r
|

A large amount of im
portant material h
trying the followi as been covered in thi
OWing quiz, then check your answers by typing‘;h;c;a;m:dgf? Your understanding by
e nterpreter,

Please writ i
e below each line the result of typing that line into a MDL,

MOL STRUCTURES
SECTION 8.1
v {

5—

e .-




THE MOL PRIMER 69

9. Programming Constructs

In arder to write any interesting programs, an ability is required to test for various conditions and
take action only if those conditions are met. This chapter introduces the MDL SUBR= and FSUBRs
needed to do this.

9.1. Boolean Operators

9.1.1. NOT

The MDL predicate NOT takes one argument of any TYPE. It evaluates to T only if its argument
evaluates lo a FALSE, and to #FALSE () otherwise.

<NOT <L=T7 4 3>>35

T
9.1.2. AND
AND s an FSUBR, and it takes any number of arguments. It evaluates its arguments from first
toward last as they appear in the FORM. As soon as one of them evaluates to a FALSE, it returns that
FALSE, ignoring any remaining arguraents. If none of them evaluate to FALSE, il returns EVAL of its

last argument. <AND> returns T.
<AND <G7 4 3> <SET A B> <L? 4 3> <SET B 7>>%
#FALSE ()

A%
b

SECTIOON D.O PROGRAMMILIG CONSTRLIGTS



70 THE MDL PRIMER

.BS

*ERROR®*

UNBOUND VARIABLE
B

LVAL

LISTENING AT LEVEL n PROCESS 1

<AND <G? 4 3> <L? 3 4>
10
.C$
10

<SET C 10>>3

ANDT is the SUBR equivalent toc AND (all its arguments are evaluated before any of them is tested).

9.1.3. 0R

OR is also an FSUBR and also takes any number of arguments.
o last as they appear in the FORM. As soon as ang of them evalua
non-FALSE value, ignoring any remaining arguments. |t
saw. <OR> returns #FALSE ().

It evaluates its arguments from first
tes to a non-FALSE. OR returns that
this never occurs, it returns the last FALSE it

<OR <L7? 4 3> <SET D &> <SET E 13>>%
-]

SettingDto 8 returned 8, which is not a FALSE, so it was returned by OR and E was never set to 13.

ORT is the SUBR equivalent to OR.

ollowing example, you should have no trouble with MDL's boolean
operators. What is interesting about these two expressions? :

<NOT <OR .FOO .BAR «BLETCH>>

<AND <NOT .FOO> <NOT -BAR> <NOT .BLETCH>>

9.2. COND

The MDL subroutine which is mos

t used for varying evaluation de
FSUBR COND ("conditional”),

pPending on a truth value is the
The arguments to COND, called CON

D clauses, must be LISTs, and

FROGHARMMING CONSTRUCTS SECTIONG. 1




o

THE MDL PRIMER 71
! there must be at least one. COND always returns the result of the last evaluation it performs. The
fallowing rules determine the order of evaluations performed.

1. Evaluate the first element of each clause (from first toward last) until either a.non-FALSE
object results or the clauses are exhausted.

2. |f a non-FALSE object is found in (1), immediately evaluate the remaining elements (if any)
of that clause and ignore any remaining clauses.

in other words, COND goes walking down its clauses, EVALing the first element of each clause, looking
far a non-FALSE result. As soon as it finds a non-FALSE, it forgets about all the other clauses and
evaluates, in order, the other elements (if any) of the current clause and returns the last thing it
evaluates. Ifit can't find a non-FALSE first element, it returns the last FALSE it saw.

g9.2.1. Examples

<SET F '(1)>$

(1)
<COND (<EMPTY? .F>
EMP)
(€17 <LENGTH .F>>
ONE)>$
ONE
<SET F ()>8
()
<COND (<EMPTY? .F>
EMP)
(<17 <LENGTH .F>>
ONE)>$
EMP
<SET F '(1 2 3)>$
(1 2 3)
<COND (<EMPTY? .F>
EMP)
(€17 <LENGTH .F>>
ONE)>S
#FALSE ()
<COND (<LENGTH? .F 2>
SMALL)
(BIG)>S
BIG

SECTION 8.2 PROGRAMING CONSTRUCTS




7o THE MDL PRIMER

<DEFINE FACT (N) :"the standard recursive factorial®
<COND (<07 .N> 1)

(ELSE <* .N <FACT <- .N 1355)558%
FACT

<FACT B5>%
120

In the last example, the use of ELSE was not necessary, but it makes it a bit easier to read the
program. The atom T is often used for the same purpose.

9.3. Shortcuts with Conditionals

9.3.1. Using AND and OR with CONDs

Singce AND and OR are FSUBRs, they can be used as minjature CONDs, but this is usually bad
programming style. A construct of the form

CAND pre-condilions actionis)>

<OR pre-exclusions actionis)>

will allow acrion(s) to be evaluated only if all the pre-conditions are true or anly if all the pre-
exclusions are lalse, respectivaly. By nesting and using both AND and OR, fairly powerful constructs
can be made. However, using AND and OR in this way can lead to some major problems. If any of your
acfions returns false or true unexpectedly, the following ones will never be evaluated. Even worse,

programmers who get in the habit of doing this tend to write programs which are very difficult for
anyone else to follow.

AND and OR are intended to be used in COND clauses. If you wanted to make sure that an argument
called ARG passed to a function was a FIX between b and 10 inclusively:

PROGRAMMING CONSTPUCTS SECTION 9.2

—_—




THE MOL PRIMER

<COND (<AND (==7 £{TYPE .ARG> FIX>
<G=T7 .ARG B>
<L=7 .ARG 10>>
<what you want to do)
(ELSE <what you want to do otherwise>)>

If. instead, you wanted to make sure the argumentwas a FIX o itside that range:

<COND (<AND <==7 <TYPE .ARG> FIX>
<0R <GT .ARG 10>
<LT ARG B6>>>
<what you wanl! to do?)
(ELSE <what you want to do otherwise>)>

9.3.2. Embedded Unconditionals

One of the disadvantages of COND is that there is no straightforward way to do things
unconditionally in between tests. One way around this problem is to insart a dummy clause that naver
succeeds, because its only element is an AND that returns a FALSE for the test (this method is strongly

discouraged). Example:

<{COND (<07 .N> <FO0 .N>)

{<17 N> €F1 .N>)

(<AND <SET N <= 2 CFIX <7/ N 233>>
:"RBound .N down to evan number."
<)

(<LENGTH? .VEC .N> '[]1)

(T <REST NEC <+ 1 (N33 )2

sethod is to increase the nesting with a new COND aftsr the unconditional part. This

The preferred o
aas something other than

method does not make the code appear to a human reader as though it d
what it really does. The above example should be done this way:

<COND (<07 .N> <FO .N>)
(<17 .N> <F1 .N>)
(T
CSET N <® 2 <FIX </ .N 2>>>>
<COND (<LENGTH? .VEC .N> '[])
(T <REST .VEC <+ 1 .N>>)>)>

SECTION 9.3 FROGIRAMMING CIOMSTRUC

—




r: | THE MOL PRIMER

9.4. Examples

The fallowing program will print all the prime factors of a given number:

<DEFINE FACTOR (N)
<FACTOR-FROM .N 2>>

<DEFINE FACTOR-FROM (N TEST-DIVISOR) |
<COND (<67 <* .TEST-DIVISOR .TEST-DIVISOR> .N>

<CRLF>

.N)
(<07 <MOD .N .TEST-DIVISOR>>

<PRINT .TEST-DIVISOR>

{FACTOR-FROM </ .N .TEST-DIVISOR>

.TEST-DIVISOR>)

(ELSE <FACTOR-FROM .N <+ .TEST-DIVISOR 1>>)>>

If you are not familiar with recursion ¥ou should trace this by hand for a simple case like <FACTOR
12>. The first COND clause tests to sea if the test divisor is greater than the square rcot of N. If itis, N
must be prime so a carriage-return/line-fead is printed (see chapter 12) and the value of N is returned.
The second clause checks whether N is divisible by TEST-DIVISOR and, if it is. prints that TEST-
DIVISOR and then recursively calls FACTOR-FROM with the gquotient of N and TEST-DIVISOR and
with TEST-DIVISOR again. The third clause is executed if both the first and second return a FALSE.
In that case, FACTOR-FROM is called recursively with N and TEST-DIVISOR ncremented by ona,

If you are confused about how this works,
should be able to improve it (for instance the
tested). Why does the program return only p
tests only with prime numbers?

try typing it to a Muddle and experimant with it. You
re is no reason to test even numbers after 2 has bean
rime factors? Can you improve the program so that it

One way to write a test for prime numbers would ba:

<DEFINE PRIME? (X)
<==7 X <FACTOR .X>>>%

This would work, however yvou would probably want to write a new version of FACTOR for this which
didn’t print anything. Would this test for prime numbers improve FACTOR-FROM? Why not?

It i= hard to imagine a program of any complexity without COND clauses. The
very small part of a fairly famous program called Zork.
heard to say that Zork is a huge conditional).

following example is a
{(One of the implementors of Zork has been

PRSI ARMING € HETRUCTS LSTCTION 9.4

—

e ——




THE MOL PRIMER

| ¢DEFINE RUSTY-KNIFE-FUNCTION ()
‘ <COMD (<==7 ,VERB TAKE>
<COND (<INT ,SWORD . PLAYER>
<PRINC
"As you pick up the rusty knife, your sword gives a single
pulse of blinding blue Tight.">
<CRLF>)>
<>)
(<OR <AND <==7 ,<INDIRECT-0BJECT L/RUSTY-KNIFE>
¢MEMQ ,VERB '[ATTACK KILL]>>
<AND <MEMQ ,VERB '[SWING THROW]>
{=a7  DIRECT-O0BJECT JRUSTY-KNIFE>
,INDIRECT-0OBJECT>>
<REMOVE ,RUSTY-KNIFE>
<JIGS-UP
“a= the knife approaches its victim, your mind is submerged by
an overmastering will. Slowly, your hand turns, until the
rusty blade 1s an inch from your neck. The knifa seems to sing
as it savagely slits your throat.">)>>

This function is called whenever "the rusty knife" is referred to in any way. This function checks
whather the verb is "take" and the player has the "sword.” if so the first message is printed and
#FALSE () is returned. If the verb was not "take”, it checks whather gither the indirect object is
"rusty knite"” and the verb is "attack” or “kill", or the verb is "swing" or “throw" and the direct object
is “rusty knife” and there is an indirect object. If so, the “rusty knife" is removed from the game, an
interesting message is printed, and the player dias.

SECTION 5.4 PRIOGHARE

S —————————————————————E————e




THE MDL PRIMER

LOOPING SECTION 100

— =

e e




THE MOL PRIMER Fi

10. Looping

One of MDL's strongest points is its variety of powerful looping constructs. These will be covered
in this chapter.

10.1. PROG

PROG makes it possible to encapsulate sections of MDL code. A PROG is very much like a
FUNCTION in syntax. It takes a LIST which is similar in somea respects to an argument list, and an
arbitrary number of MDL objects which are EVALuated in turn. It returns the result of the EVALuation
of the last objact in its body. Here is a prosaic PROG:

<PROG () <SETG A <>> <S5ETG B <>> <INITIALIZE>>

Motice that each of the three FORMs in the PROG could have been done without using a PROG. PROGs,
howevear, are a bit more useful than this would indicate.

First, the LIST can contain any number of
- ATOMs
- LISTs containing an ATOM and an arbitrary initial value for that ATOM.

All of these ATOMs will be re-bound inside the PROG (i.e. as if a new FUNCTION were enterad.) When
the PROG returns, the ATOMs will be unbound (i.e. re-bound to their old values, if any.) Thus, a PROG
can be thought of as a mini- FUNCT I0N of no arguments.

<PROG (A B (C 10) (D .F00)) ....>

In this example, four new bindings are made. The ATOMs A and B are bound, but not assigned a value,
The ATOM C is bound to 10 and the ATOM D is bound to the current LVAL of the ATOM FOO. ATOMs
should be placed in this ‘argument’ LIST when they are used as temporary variables inside the PROG.

A full explanation of the use of temporary variables is in section 11.5.
Maore importantly, a PROG can be restarted or caused to return from the middle any time using the
SUBR= AGAIN and RETURN. At this paint, it is sufficient to say that AGATN with no arguiments starts
SECTION 100 LOOPIMG

e
R R R R R S e—————
=
-_— e ——
I e ———
- —— _____ - —————_ " . - ——— _— . ——— —__—— ..
_ = = = = == —=
 ———
e ———
s __________________.......-_——~ -—--—_ ... .............-...---..-..-.-----~———— >
_
- esss—ssss——.——————————————————  ——
———
________________________________________________________________________________________________
= — e e
e R R ———————————————————————————————————————————————————————————————————————————— AN AN —————
 ——————
—_————————————————————————————————
e R R R R R R S S e
S __________________. = L=
- ____________________________________________________________________________________________________________________________________________________________________________________________
R R R R R R R R —mm——RRREEIIII————
e ...  —__P D " " _ e L _
—_— - s ————————— =
—————————————————— e e

s




THE MDL PRIMER

executing the body of the PROG from the beginning (but bindings are not redone). RETURN of ona
argument forces the PROG to return that argument. Notice that AGAIN and RETURN as described will
always refer to the nearest surrounding PROG in the current FUNCTI ON.

PROG turns out

to be fairly useless in MDL, but the FSUBR REPEAT, which
enormously useful.

is very similar, is

10.2. REPEAT

REPEAT has the same syntax as PROG and may be thought of as a PROG in which the last item in the

body is <AGAIN>. In cther words, the body of the REPEAT will be repeatedly executed until a RETURN
isdone. There is no other way to leave a REPEAT except with a RETURN.

<REPEAT ((CNT &))
#DECL ((CNT) FIX)

<COND (<L? <SET CNT <- -CNT 1>> 0> <RETURN T>)
(T <PRINT +CNT>)>>%

O NW MK

10.3. Nnn-local_RETUHNs, etc.

There are cases in which one might like to RETURN or AGAIN to someplace other than the nearest
PROG or REPEAT, or for that matter someplace in a different FUNCTION. MDL allows you to 'name’ any
PROG, REPEAT. or FUNCTION by placing the STRING "NAME" followed by an ATOM at tha end of an
argument list or PROG/REPEAT list. This has the effect of binding that ATOM o an object of TYPE
ACTIVATION which becomes a legal additional argument to beth AGAIN and RETURN. Thus, AGAIN

can lake an optional ACTIVATION, and RETURN takes a return value and an optional ACTIVATION.

The most common use of RETURN/AGATINS to ‘'named activations’ s in error handling. Assume that
You have a FUNCTION FOO which calls a FUNCTION BAR which calls a FUNCTION BLETCH which
notices something wrong. BLETCH might want to causa FUNCTION FOO to return a FALSE, for

example, or print an error message. This is only possiblo if the FUNCTION FOOis defined to have a
‘named activation’, whosea 'mame’ is known to FUNCTION BLETCH.

LORO NG SECTHON 10.1




| THE MDL PRIMER -5

<DEFINE FOO (A)
<COND (<PROG ("MAME" ACT) <BAR .A>>
<PRINT .A> T)
(T <PRINT "ERROR IN YOUR PROGRAM"> T)>>$
FOO
<DEFINE BAR (X)
<BLETCH <* .X .X>>»>§
BAR '
<DEFINE BLETCH (Z)
<COND (<67 .Z 10> <RETURN #FALSE () .ACT>)
(T <SQRT .Z>)>>$
BLETCH
£FO0 2>%
2T
<FO0 4>%
"ERROR IN YOUR PROGRAM" T

10.4. MAPF

10.4.1. Looping Through a Structure

MAPF (pronounced 'map-efi’ for ‘map-first’) is mainly used 1o apply a function to each element ofa
structure, in turn. In this most simple farm, its first argument is a FALSE, its second argument a foop-
function, and its third argument a structure. Here is a simple MAPF:

<MAPF <>
<FUNCTION (X)
<PRINT .X>>
(123 4)>%

Bt

4

The last 4 is the result of the MAPF (the result of the last application of the foop-function to an elemeant
of the structure.

An FSUBR called FUNCTION is used in many places in this chapter. FUNCTION is very much like
DEFINE., except thal no name is specified. FUNCTIONs created with FUNCTION are said to be
anonymous'. They cannot be used outside the FORM in which they are imbeddad, since thay have no
name by which they can be referenced. Of course, If the loop function you wish to use had already
beon DEFINE, you would reler 1o it in a MAPF as the ylobal value of ils name

SECTION 0.2 LEAING

—
R AR A R R R R R R R R R R R R R R R R R R R R R R R R R R P R R AR R R RN NpTNrr i
e
- _______________________________________________________________________________________________________________________________________________________________________________
Siammm—— . aaaaee—————— - aaeeee——— —
- ____________________ ... ————— ... —
R =
e ———————————————————————————————————————_—————————
I ————————————————————————————————————————————————————————————————
= —_-.____-————————  —
S e e e
e —
A A R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R AR RN NN NP IE==—=——
- U0 b -
R
= —___________—____—_________ - —
=- .. _____________ —e————— - =
—_— e ———————————————————————————————————
e e e =
e
-_
e ——_ e ——
e ———
—_—e— e —_m,m— m—_, , _—_—_—_— _—_—e e e e e e 0 0O OOOU—U——=______—_—
A A A A A AR R R R R R R R R R R R R R R R R R R R R R R R R R R R AR AN NMNMNM =SB

e E———




==

THE MDL PRIMER

<DEFINE FOO (A B) <+ .A .B>>%
Foo

, FOOS

#FUNCTION ((A B) <+ .A .B>)
<FUNCTION (A B) <+ .A .B>>%
#FUNCTION ((A B) <+ .A .B>)

A MAPF can be prematurely stopped at any time if the foop-func

tion calls the SUBR MAPLEAVE,
MAPLEAVE takes one argument: it stops the MAPF and causes the

MAPF to return its argument.

<DEFINE BAR (L)
<MAPF <>
<FUNCTION (X)
<COND (<G7 .X 10> <MAPLEAVE F00>)
(T <PRINT .X>)>>

.L>>$ ]
BAR |

<BAR (1 2 3 4)>%
1

2
a
4 4

<BAR (1 2 16 7 6 2)>$
1

2 FOO

10.4.2. Other Than One Structure

One can simultaneously loop through any number of structures using MAPF. MAPF will apply the

loop-function to the first elements of each of the structures. The MAPE will stop when any of the
Elructures becomes EMPTY?.

<MAPF <>
<FUNCTION (A B C)
<PRINT <+ .A .B .C>>>

(136 7)
(2 4 6 8)
(3 6 7 9)>s

8

12

18

24 24

LOOPING SECTION 10.4

T ——————— — —— e ————ee
e e e
e o e e
————




THE MDL PRIMER ; 81

' <MAPF <>
<FUNCTION (A B C)
<PRINT <+ .A .B .C>>>
(1 3 6)
. (2 4 8)
' (3)>$
8 8 2

‘Other Than Ona' also includes zero, but this is a special case. A MAPF with only two arguments is
something like a REPEAT loop. It can only be terminated by an explicit call to MAPLEAVE. See section
10.5. If any of the structures is empty to begin with, MAPF returns #FALSE ().

10.4.3. Using Intermediate Resulis

By now you must be wondering why there is a FALSE as the first argument to MAPF. In fact, a
FALSE tells MDL not to do anything with the results of applying the joop-function to the elements of
the strucfura. However, il the first argument to MAPF is someathing which can be applied to arguments
{i.e. a FUNCTION or SUBR), then MDL will ‘'save’ the results of applying the lcop-function and, when
the looping is finished, apply the first argument (called the finai-function) to all of the 'saved’ results.
An example:

<MAPF ,LIST
{FUNCTION (X Y)
<+ X <SQRT .¥Y>2>>

(12 3)
(1 4 9)>%
(2 4 8)
<MAPF ,+

<FUNCTION (X Y)
<+ .X <SQRT .Y>>
(1 23)
(1 4 9)>8
12

In the first case, we built a LIST out of the results of the loop-funclion. In the sacond, we simply
added up all of the results.

10.4.4. MAPRET and MAPSTOP

There are cases in which you might want to have an arbitrary number of resulls 'saved’. This can
be done with the SUBR MAPRET which takes any number of arguments (including zero), causas the

SECTION 104 LG

S e ————




. |

THE IMDL PRIMER
funclion to terminate, and 'saves' all of its arguments.

<DEFINE PRIME-LIST (L)
<MAPF ,LIST
<FUNCTION (NUM) :
<COND (<PRIME? .NUM> .NUM)
(T <MAPRET>)>> |

L3>>§

'
PRIME-LIST '
<PRIME-LIST (2 4 11 65 73)>$

(2 11 73)

What happened here was that only prime numbers were allowed to be ‘saved’. Whenever PRIME?
returned FALSE, a MAPRET of no arguments was done; thus, no values were ‘saved' for this call to the
loop-function. MAPRET, of course, will not work if there is no final-function to return results to.

Assuming the function PRIME? described in chapter 9 has been written:

<DEFINE PRIME-AND-SQUARES-LIST (L)
<MAPF ,LIST
<FUNCTION (NUM)
<COND (<PRIME? .NUM> <MAPRET .NUM <* _NUM .NUM>>)
(T <MAPRET>)>>
L>>$
PRIME-AND-SQUARES-LIST

<FRIHE—AND—SQUARES—LIST (2 4 11 66)>%
(2 4 11 121)

A more useful function:

<DEFINE UPPERCASIFY-1 (STR)
<MAPF ,STRING
<FUNCTION (CHAR)
<SET ASC <ASCII .CHAR>>
<COND (<AND <G=7 ,.ASC <ASCII [\a>>
<L=? .ASC <ASCII I\z>>>
<MAPRET <ASCII <- ,ASC 325>>>)

(ELSE <MAPRET .CHAR> )2>
-STR>>%
UPPERCASIFY

<SET Z-STR "Now 1s ths tim
<UPPERCASIFY .Z=-STR>S

"NOW IS5 THE TIME FOR ALL GOOD MEN TO <FOO .BAR>"
.Z-5TRS

"Now 1s the time for alil good men to <FOO .BAR>"

e for a1l good men to <FOO .BAR>">

LOOmG SECTION 10.4




THE MDL PRIMER as

‘ The SUBR MAPSTOP is the same as MAPRET, except that, aflter 'saving’ its arguments, it finishes the
| MAPF, allowing the final-function to be applied to all of the 'saved’ results. Like MAPRET, MAPSTOP can
only be used if there is a final-function.

10.4.5. MAPR

The SUBR MAPR (for 'map-rest,’ pronounced ‘map-ar') is exactly like MAPF in every respect except
that the arguments passed to the loop-function, rather than being successive slements of the
structures, are the structures themselves RESTed down successively. The names for the two map
SUBRs are mnemonic: MAPFirst and MAPRest.

<MAPR <>
<FUNCTION (X)
<PRINT .X>>
(1 2 3 4)>8
(12 3 4)
(2 3 4)
(2 4)
(4) (4)

MAPR is useful if it is necessary to change elements of the structure(s) that you are mapping down.
Here is a FUNCTION which takes a structure full of numbers and changes it to contain double the old
values:

<DEFINE DOUBLE (STR)
<MAPR <>
<FUNCTION (S)
<PUT .3 1 <* <1 .5> 2>>>
.STR>>S
DOUBLE
<SET L (1 2 3)>$
(1 2 3)
<DOUBLE .L>$
()
.LS
(2 4 8)

in UPPERCASIFY-1 a MAPF was used which generated a new structure. Using MAPR, a new
function can be written which modifies the original string:

SECTION 104 LOOPING




84 THE MOL PRIMER

<DEFINE UPPERCASIFY-2 (STR)
<MAPR <>
<FUNCTION (STR1)
<SET ASC <ASCII <1 .STR1>>>
<COND (<AND <G=7 .ASC <ASCII I\ad>
<L=7 .ASC <ASCII [\z>>>

<PUT .STR1 1 <ASCII <- .ASC 3233>)>>
-STR>

.STR>S
UPPERCASIFY-2

<UPPERCASIFY-2 <SET STR "MNow 1is the time for <BAR .BLETCH>">>$
"NOW IS5 THE TIME FOR <BAR .BLETCH>"
-STRS

"NOW IS THE TIME FOR <BAR .BLETCH>"

MAPR is not always used to change an existing structure.
use. This function marches down a structure and builds a n
the elements of the first structure appear only once.

The following example shows another
ew structure of the same type in which

<DEFINE UNIQUIFY {STRUC)
<COND (<NOT <STRUCTURED?T ~STRUC>>

#FALSE ("WRONG TYPE OF ARGUMENT"))

(ELSE

<CHTYPE

<MAPR ,<PRIMTYPE .STRUC)>
<FUNCTION (S)
<COND (<MEMQ <1 .S> <REST .S>>»
<MAPRET>)

(ELSE <MAPRET <1 .S>>)>>
.STRUC>

<TYPE .STRUC>>)>>%
UNIQUIFY

<UNIQUIFY #FROB (1 2 33 2 1 6)>$
#FROB (33 2 1 6)

If you wished to be able to remove elements which "look the same.” such as structures which ara =7
(like (1 2 3)and (1 2 3). or "FROTZ"™ and "FROTZ"), you would have to replace the MEMQ with
MEMBER, which is slower.

10.4.6. MAPF/R Summary

The syntax for MAPF /R is as follows:

LOOPING SECTION 10.4

e —




I THE MDL PRIMER 85

|
<MAPF/R final-function
loop-function
‘ structure-1

struclure-m»>

with only the first two arguments required.

10.5. Looping vs. Recursion

In the previous chapter, the "standard recursive factorial” was shown. It can now be rewritten
using the looping constructs introduced in this chapter.

<DEFINE FACT (N)
<REPEAT ((ANS 1))
<COND (<07 .N> <RETURN .ANS>)
(ELSE <SET ANS <*® _ANS .N>>
<SET N <= .N 1>>)>>>

Some might argue that this is a larger and more complicated program to write than the recursive form,
and therefore inferior. The iterative form just shown, however, is faster and more efficient.

The same program can also be written using MAPF.

<DEFINE FACT (N)
<SET ANS 1>
<MAPF <>
<FUNCTION ()
<COND (<07 .N> <MAPLEAVE .ANS3>)
(ELSE <SET ANS <* _ANS .N>>
<SET N <= .N 1>>)5>>>

Or, more elegantly:

<DEFINE FACT (N)
<MAPF .,®
<FUNCTION ()
<COND (<07 .N> <MAPSTOP2>)
(ELSE <+ 1 <SET N <= .N 1>>2)>>>>
s+ "<FACT 0> will return 1 since * of no arguments
returns 1."

SECTION 10.4 LT

s




85 _ THE MDL PRIMER w

elegant way to solve a problem,
ple of chapter 9. |5 you only inte
not cost much to

very recursive call of a function requires the creation
ating factorial of a large number will take a lot of time and computer
factorial shown above would be muech more efficient.

iteration is often more
efficient. Take, for exa

mple, the factorial exam
with very small numbers the recursive form will
being slightly easier 1o write. Howaver, since &
of a new ‘environment,’ caleul

mamory. The iterative forms of

In summary, the advantage of the looping techniques described in this chapter over recursion is
that the overhead of calis i= eliminated However, a leng program (say, bigger than half a printed
Ppage) may be more difficult to write it cursively and hence more difficult to maintain. A
Program whose repetition is controlled by a Structured object (for example, "walking a tree" to visit
each monad in the use looping for covering one "level" of the structure and
recursion to change "levels”,

LOOrNG SECTION 10.5

e ____ =

i b i - i i A A e e - ib)kio:




L

B

THE MOL PRIMER a7

11. Argument Lists in FUNCTIONSs

In Chapter &, the creation of a simple type of FUNCTION was explained: a FUNCTIOHN taking a fixed
numbear of arguments all of which get EVALed. While this may be sufficient for writing most of your
FUNCTIONs, there are other ways in which you might like arguments to be handled. Some of these
might include:

- FUNCTIONs which can take an arbitrary number of arguments (like the SUBRs +, =, LIST,
VECTOR, etc.)

- FUNCTIONs which act more like FSUBRs (i.e. they don't have their arguments EVALed.)
- FUNCTIONs which can take optional arguments, which can be defaulted.
In fact, all of these things (and a few more) can be done easily by specifying them in the argument list

of the FUNCTION. The remainder of this chapter will describe the complete syntax for MDL argument
lists.

11.1. Arguments Not EVALed

Placing a single-quote before an ATOM in the argument list will cause that ATOM to be given the
value of its respective argument without EVALuation.

<DEFINE FOO ('ITEM) .ITEM>S
FOO

<FOD <+ 1 2>>%

<+ 1 2>

Ware the ATOM ITEM not quoted in the argument list, the FUNCTION would have returned the FIX 3.
Quoting arguments, as it turns out, is not used often in MDL.

SECTION 11.0 ARGLIBCKT LIE 15 1M FUNCTIONS

s




&8 THE MDL PRIMER I

11.2. Optional Arguments |

MDL can be told to expect optional arguments by placing the STRING "OPTIONAL"™ in the
argument list affer all of the required arguments. Following the STRING can be any numbar of ATOMs,
which will be bound to the values of the optional arguments, if given. To specify that an optional
argument is to have a default value (i.e. if not passed as an argument), place a LIST containing the
ATOM and the default value in place of just the ATOM. Here's an example:

<DEFINE ADD-ONE (NUM "OPTIONAL™ (HOW-MANY 1))
€+ .NUM .HOW-MANY>>S

ADD-0ONE

<ADD-ONE 10>%

i1

<ADD-ONE 10 2>%

12

This rather useless FUNCTION adds the LVAL of HOW-MANY to its first argument. HOW-MANY is an
optional argument, whose default value is the FIX 1. Therefore, with ane argument, ADD-0MNE adds
one to its argument. With two arguments, it adds them.

As was mentioned earlier, it isn't necessary to supply a default value for an optional argument. If
there is no default value, and the optional argument is not supplied, the ATOM gets bound, but is not
assigned a value. LVAL of that ATOM will generate an error, because an ATOM must be both bound
and assigned to have a local value, One can tell whether an ATOM has been assigned a value by using
the SUBR ASSIGNED?, which returns T if its argument (an ATOM) is assigned; otherwise #FALSE ().
The following definition of ADD-0NE acts identically to the previous one:

<DEFINE ADD-ONE (NUM "OPTIONAL™ HOW-MANY)
<COND (<NOT <ASSIGNEDT HOW-MANY>>
<SET HOW-MANY 1>)>
<+ .NUM .HOW-MANY>>S
ADD-0NE

The use of single-quoted ATOMs is allowed with optional arguments as well as required ones. You
may supply your own example, if you can think of one. We can’t.

11.3. Arbitrary Numbers of EVALed Arguments

At any place in the argumant list, after any required and optional (if any) arguments, you can
specify that a/l of the remaining arguments (supplied at the time of call) be EVALed and grouped
together in a special structure called a TUPLE (for all practical purposes, TUPLEs may be thought of
as VECTORs, and can be manipulated in the same wiays) To do this, place the STRING
"TUPLE" lollowed by an ATOM in the argument list. The ATOM will be bound to the TUPLE. Here are

ANGLRT NT LISTS IN FUNCTIOMNS SECTION 11.2




THE MDL PRIMER 89

some examples:

<DEFINE MY+ ("TUPLE" NUMBERS) <+ | .NUMBERS>>%
| MY+

<MY+ 1 2 3 4 6 B6>%5

21

LMY+>S

0

<DEFINE MY-STRING ("TUPLE" STRINGS) <STRING | .STRINGS>>$
MY-STRING

<MY-STRING "THIS"™ "IS"™ "A" "BIG" "STRING" I\IDS
"THISISABIGSTRINGI"™

<DEFINE TIMES-PLUS (NUM "TUPLE" NUMBERS)
<* .NUM <+ 1.NUMBERS>>>$

TIMES-PLUS

<TIMES-PLUS 4 1 2 3>$

24

11.4. Arbitrary Numbers of un-EVALed Arguments

Instead of using "TUPLE", one could have used the STRING "ARGS". This has the effect of
binding the following ATOM to a LIST of all of the remaining arguments, unEVALuated. In fact, the
ATOM is bound to the LIST which is the FORM used to call the FUNCT I0ON RESTed down to the
remaining arguments. The use of "ARGS" allows one to write FSUBRs in MDL.

<DEFINE FOO ("ARGS" L) .L>%
FOO

<SET F '<FOD 1 2 3>>%

<FOD 1 2 3>

<SET LL <EVAL .F>>$

(1 2 3)
¢w=? .LL <REST .F 1>>%
T

In the previous example, we explicitly called the SUBR EVAL, which caused EVALuation of the FORM
£F0O0 1 2 3>». This returned the LIST (1 2 3),whichis == to0 <REST .F 1>

Mow we will write a FUNCTION to simulate the FSUBR DEFINE in MDL: this is just what MDL does
internally when the FSUUBR DEFINE is called.

SECTION 11.3 ARGUMENT LISTS 1M FLURCTIONS




q

80 THE MDL PRIMER

<DEFINE MY-DEFINE (NAM "ARGS" L)
£SETG .NAM <CHTYPE .L FUNCTION>>
.NAM>S

MY-DEFINE

<MY-DEFINE FOO (A B C) <+ .A .B .C>>%

FOO

. FOO$

#FUNCTION ((A B C) <+ .A .B C>)

<FOD 1 2 3>%

8

Mow that we have simulated DEFINE, let's try our hand at AND.

<DEFINE MY-AND ("ARGS" L)
<REPEAT ((LAST T))
<COND (<EMPTY? .L> <RETURN .LAST>)
(<NOT <SET LAST <EVAL <1 .L>>>>
<RETURN .LAST>)

(T <SET L <REST .L>>)>>>8
MY -AND

This will exactly simulate the behavior of AND. The REPEAT loop initializes the ATOM LAST to T,
because AND of no arguments is defined to return T. The loop itself first checks on whether the LIST
L has become EMPTY?. If so, the AND was successful, and LAST is returned. Otherwise, LAST is SET

to EVAL of €1 .L>. Ifthatis a FALSE, it is returned. Otherwisa, L is RESTed once and the loap is
repeated.

As an exercise, write OR and COND. It is legitimate to use COND in your COND simulator, but if you
call your simulator COND, watch out.

11.5. Temporary Variables

You may recall that chapter 6 referred to "free variables" as those variables (ATOMs) whose local
values are SET or accessed inside a FUNCT ION, but which are not bound inside that function.
should always avoid using "free variables” in MDL programs, but there is
whose values will contain temporary results. You can specify such variables to be bound inside a
FUNCTION by including the "AUX" (for auxiliary) followed by any number of ATOMs or LISTs of ATOMs
and values (like "OPTIONAL" arguments) at the end of the argument list.

Cne
aften a need for variables

ARGLUMENT LISTS I8 LINCTHOMNS SECTION 11.4

e

——e i




THE MDL PRIMER 91

<DEFINE SUM ("TUPLE"™ NUMS "AUX" (SUM 0))
<REPEAT ()
<COND (<EMPTY? .NUMS> <RETURN .SUM>)

(T
<SET SUM <+ _SUM <1 .NUMS>>>
<SET NUMS <REST .NUMS>>)>>>%

SUM '

<SUM 1 2 3 4>%

10

The FUNCTION SUM, in this example, simulates the SUBR +. The ATOM SUM is initialized to zero in
the argumeant list. The following is identical in effect, although poor in style:

<DEFINE SUM ("TUPLE™ NUMS "AUX"™ SUM)
<SET SUM 0>
CREPEAT ... >>

It should be noted that the part of the argument list which follows "EXTRA®™ or "AUX" is identical in
syntax and meaning to the 'argument list' which is the first argument to PROG and REPEAT.

11.6. Order of Evaluation in Argument Lists

Unlike many other languages, including LISP, ATOMic bindings after the required arguments are
done from left to right, rather than simultaneausly., This means that, for example, the default values
for optional arguments and extra variables can refer to the values of other ATOMs to their left in the
argument list.

<DEFINE FOO (A "OPTIONAL"™ (B <+ .A 10>) "AUX" (C <FOOBAR .B>))
>

Ihe previous example shows an example of what is possible in argument lists due to MDL's order of
evaluation.

11.7. Variable Declarations

MDL has a built-in facility for checking the TYPEs of argquments to FUNCTIONs as well as other
temporary variables. This is analogous to the checking which is done when F/SUBs are called: if
you call the SUBR + with an ATOM, for example, MDL will generate an error. In MDL, variablos can be
declared to be of a certain TYPE or group of TYPEs. This in done by placing an abject of TYPE
DECL (FRIMTYPE LIST) immediately alter the FUNCTION's argument list. [t may also follow the

SECTION 11.5 AFGUNMENT LIETS 1IN FURNCTIONS

sy




a2z THE MDL PRIMER

argument list of a PROG or REPEAT and declare the variables bound within The DECL (for
“"declaration,” pronounced 'deckle') has the form of repeating pairs of LISTs of ATOMs (the ATOMs to
be declared) and the declaration proper. The simplest TYPE declaration is the name of a TYPE or the
ATOM ANY. ;

#DECL ((FOO BAR) FIX (BLETCH) ATOM (MUMBLE) ANY)

This declares the ATOMs FOO and BAR to be FIXes, the ATOM BLETCH to be an ATOM, and the ATOM
MUMBLE to be anything.

Another declaration form is the union of different TYPEs, which is specified by a FORM whose first
element is the ATOM OR and the remainder legal TYPE names.

#DECL ((NUM) <OR FIX FLOAT> (STRUC) <OR LIST VECTOR>)

Also useful is the form <PRIMTYPE namea-of-a-PRIMTYPE>, which specifies anything of that
PRIMTYPE. For example:

#DECL ((PL) <PRIMTYPE LIST>)

will allow PL to be a LIST, a FORM, a SEGMENT, or any other PRIMTYPE LIST.

In fact, the full-blown MDL declaration syntax is far more baroque than has been described, but
these simple forms will suffice In almost all cases. For more information on DECL, consult The MDL
Programming Language [Galley 79]. Here are some examples of old friends, now including DECLs=.

<DEFINE MY-AND ("ARGS" L)
#DECL ((L) LIST)
{REPEAT ((LAST T))
#DECL ((LAST) ANY)
<COND (<EMPTY? .L> <RETURN .LAST>)
(<NOT <SET LAST <EVAL <1 .L>>>>
<RETURN .LAST>)

(T <SET L <REST .L>>)>>>%
MY-AND

ARGULIENT LISTS IN FUNCTIONS SECTION 11.7

—




THE MOL PRIMER a3

<DEFINE ADD-ONE (NUM "OPTIONAL" (HOW-MANY 1))
#DECL ((NUM) <OR FIX FLOAT> (HOW-MANY) FIX)
<+ .NUM .HOW-MANY>>S$

ADD-ONE

<ADD-ONE 2.3 1.2>$

: *ERROR®
TYPE-MISMATCH
HOW-MANY :*"The ATOM of incorrect TYPE"™
FIX :"The DECL for that ATOM"
1.2 :"Wwhat the ATOM was about to be SET tao"
EVAL s1"EVALing the FORM <ADD-ONE 2.3 1.2> caused 1t"

LISTENING-AT-LEVEL 2 PROCESS 1

Declarations have a number of purposes. First, they make your code easier for scomaone else to
understand, as the sorts of arguments your FUNCTIONs take can be deduced from them. It will also
help you read your own code at a later time when you may have fargotten how it all works. Second, it
helps in debugging your programs, since an error will be caused if the declaration is violated. Finally,
when your FUNCTIONs eventually get compiled, much better code can be produced with the
infarmation given by your declarations. Always DECL your FUNCTIONSs!

11.8. Structures: DECLs and NEWTYPEs

Before closing our discussion of DECLs, ona special type of declaration should be considered: that
of structures. The syntax for this declaration is:

<type-name <PRIMTYPE typeprim2
declaration-for-first-efement
declaration-for-second-element

declaration-for-last-element>»
For example, we could DECL a VECTOR of three elements as follows:
<VECTOR FIX LIST <VECTOR ATOM ATOM>>

This declares the VECTOR to have a FIX, a LIST, and a VECTOR which must contain two ATOMs.
There may be more elements in a strucfure than those DECLed. Any additional elements will be
considered to have thae DECL ANY.

<<PRIMTYPE LIST> ATOM <OR FIX FLOAT>>

SECTION 11.7 AMRIIAENT LIETS 1IN FURMCTRINES

-

————e—e—s:e————e—e—————eeee—_———,,e,—e,e,e, e, e e -/  ——]8Wvnvi i v —o—-




= THE MDL PRIMER

This declares a structure of PRIMTYPE LIST containing an ATOM and eithera FIX ora FLOAT.

We originally described the SUBR MNEWTYPE as taking two arguments: the new TYPE name and its
TYPEPRIM. Structured NEWTYPEs can take a third argument as well: a declaration, as described |
above. Let's use the airline problem from our earlier discussion. We will define a FLIGHT as follows:

CNEWTYPE FLIGHT
VECTOR
'C<PRIMTYPE VECTOR> ATOM FIX FIX>>%
FLIGHT
<SETG AIRLINE 1>5
1
<SETG FLIGHT-NUMBER 2>%
2
<S5ETG DURATION 3>3
3

Motice that the declaration of FLIGHT is quoted: this is because it is a FORM and NEWTYPE is a SUBR.
Mow that FLIGHT is a legal TYPE, it can be used in declarations. In fact, it is a lot easier to say

#DECL ((FL) FLIGHT)

than to say

#DECL ((FL) <VECTOR ATOM FIX FIX>)

especially when you add another ten elements to the definition of FLIGHTs. It is also a lot clearer for
both yourself and others to read.

11.8.1. ToNEWTYPE or Not To NEWTYPE

That iz the question most frequently asked. Should | make my table of house members a NEWTYPE?
Should it just be a VECTOR? Sad to tell, there is no cut and dried answer. In general, whenever a
structure has a "significant” amount of internal structure, or some readily understood ‘outside world
meaaning’, it is a good idea to make it a NEWTYPE. Most people would deem a structure to have
‘significant’ internal structure at the point when they type out the whole darn DECL for the ninety-
fourth time. Others think ahead.

AMCILILENT LISTS IN FURCTIONS SECTION 11.8




T

THE MDL PRIMER ’ a5

11.9. Good Habits / Bad Habits

This chapter has some suggestions for good pregramming practice. You may ignore them at your
risk, but we have found that people learning MDL are always more successful if they develop good
habits early on in their MDLIing. Here are the good habits:

- Always use "AUX"™ to bind temporary variables in your functions. Don't use "free
variables™|

- Always DECL your FUNCTIONs, PROGs, and REPEAT=s. Even if a variable can have any
value, it is good practice to DECL it as such, so that it is clear that you haven't simply
forgotten.

11.10. Review of Argument List Syntax
Here is a full-blown, ultra-hairy, and incredibly strange argumeant list:

<DEFINE HAIR (A 'B "OPTIONAL" (C 10) D
"TUPLE" NUMS
"AUX" (E <+ .A .B>)
(F <SQRT </ .E .C3>3)
"NAME" FOO0)
#DECL ((B C E) FIX
(A E) <OR FIX FLOAT>
(F D) FLOAT
(NUMS) TUPLE
(FOD) ACTIVATION)
<COND (<NOT <ASSIGNED? D>>
<SET D <ATAN .B>>)>
<+ .A .B .C .D .E .F |.NUMS>>S
HAIR

This poor excuse for a FUNCTIOM takes two required arguments, the second of which s
unEVALuated, two optional arguments, one of which defaults to 10, and any number of other
arguments, bunched together in a TUPLE called NUMS. Two lemporary variables E and F are also
used, bath of which refer to the LVALs of ather ATOMs to their left in the argument list.

SECTION 11.9 ANGIUIMMENT LIS TS IN FUNCTIONS

—

—_——————— e ——
— /Y
. :
. :

R R R R R R RO R R R R R R R R R R R R R EERRRRRRBRBRBRRRRBRRRBBEERBEEBBEDBDBEEZRSZR




o6 THE MDL PRIMER

INPUT OUTPUT SECTION 12.0

g
-
e ——— w—
_— s
— ———_ - — e ==
- - H ——. BB BBBBnBBBBBBBBB——————————————— .. .. . . - - - ———————————— . =
O T e ———————— e ———— o=
- __________________________________________________________________________________________________
e
— = __— LSS,
e ———————————————————
—————————————————————————————————————————————————————————————————————————————————————————————————————————aa
e ——
S ———————
— . ———
= _=
—  _ _ _____ __ _ —  _ __ ____ _ _ _ __ ________ __ ___ ______________________________________________—— ____"__
e e e e e
e ————mM el R RS e
e
e —  ——  —  — — —  — . ———%
-—,,|TY - s - e
_—
R ———————————————————————————————Em———————————
— e

.




a8 THE MDL PRIMER

12.2. Conversion I/0 - Input

All of the following input Subroutines, when directed at a terminal, hang until § (ESC) is typed and
allow normal use of rubout, +D, +L and +8.

12.2.1. READ

<READ>

This returns the entire MDL object whose character representation is next in the input stream.

Successive {READ>s return successive objects. This is precisely the SUBR READ mentioned in
chapter 3 (page 15).

12.2.2. READCHR

<READCHR>

("read character™) returns the next CHARACTER in the input stream. Successive <READCHR>s
return successive CHARACTERs.

12.2.2.1. NEXTCHR

CNEXTCHR>

("next character”) returns the CHARACTER which READCHR will return the next time READCHR is

called (if READCHR is the next input SUBR called. Multiple <NEXTCHR>»s, with no input cperations
belween them, all return the same thing.

12.3. Conversion 1/0 - Output

It an object to be output requires (or can tolerate) separators within it (for example, between the
elements in a structured ocbject or after the TYPE name in "# notation”), these conversion-output
SUBRs will use a carriage-return/line-feed separator to prevent overflowing a line. Owverflow is
detected in advance from elements of the CHANNEL in use.

INPLUT/AOUTPUT SECTION 12.2

il

——————— e




THE MDL PRIMER f==]

12.3.1. PRINT
<PRINT any>

This cutputs, in order,
1. a carriage-return Iine;-faed.
2. the character representation of EVAL of its argument (PRINT is a SUBR), and

3. aspace

and then returns EVAL of its argument. This is precisely the SUBR PRINT mentioned in chapter 3
(page 15).

12.3.2. PRIN1
<PRIN1 any>

outputs just the character representation of, and returns, EVAL of any.

12.3.3. PRINC
<PRINC any>

("print characters") acts exactly like PRIN1, except that

1. if its argument is a STRING or a CHARACTER, it.su:mresse:s the surrounding "s or initial 1\
raspectively; or,

2. il its argument is an ATOM, it suppresses any \s or OBLIST trailers which would otherwise
be necessary.

If PRINC's argument is a structure containing STRINGs, CHARACTERs. or ATOMs, the services
mantionad will be done for all of them. Ditto for the ATOM used to name the TYPE in "# notation”.

12.3.4. CRLF

<CRLF>

SECTHON 12.3 INFUTAOUTRUT

R




100 THE MDOL PRIMER

("carriage-return line-feed™) outputs a carriage-return line-feed and then returns T.

12.4. CHANNEL (the TYPE)

MDL 170 ‘channels’ are represented by an object of TYPE CHANNEL, which i= of PRIMTYPE
VECTOR. The internal structure of a CHANNELs is not frequently examined or manipulated. Those
interested can consult the MDL manual for details.

12.4.1. OPEN

The SUBR OPEN is used to create and return a CHANNEL. It takes two arguments, a mode and a
file-name, both of which must be STRINGs. If successful, OPEN returns a CHANNEL; otherwise, it
returns a FALSE containing the reason for the failure and the file-name (both STRINGs.)

There are two commonly used modes: "READ" and "PRINT"™. These are used, reasonably enough,
for input and cutput, respectively. These modes input and output ASCIl characters (i.e. conversion
1/0).

File names are dependent on the host operating system. The following applies only to TOPS-20

systems. File names are composed of four parts: the device, the directory, a first file name, and a
second file name. A typical file name might be:

"DSK:<MARC>CALCULATOR.MUD"

MDL will use certain defaults for these four parts, if they are not specified explicitly. These are DSK,
your working directory, INPUT, and MUD, respectively. These defaults can be overridden by SETGing
the ATOMs DEV, SNM, NM1, and NM2 to the defaults you desire. These defaults must be STRINGs. For
some devicas, soma of the four parts of the file name are ignored, for example the line printer and the
terminal {(called TPL and TTY).

Here are some examples of the uses of OPEN:
<OPEN "PRINT™ "TPL:"> opens an output channel lo the line printer.

<OPEN "PRINT"™ *"<MARC>FOO"> opens an output channel to a disk file called FOO0.MUD.
Remember that the default device is DSK (i.e. the disk) and the default second file name is MUD.

<OPEN "READ"™ "FOO.TEST"™> opens an input channel to a disk file called FOO.TEST in the
default file directory (i.e. MARC).

It is good practice to give all of your MDL files a second name of MUD. This allows yvou to make use
of the MDL default second file name and also makes it easier lor both you and others to find files of

INPFUT AQUTPUT SECTION 12.3




THE MDOL PRIMER ’ 101

MDL code. In general, files containing only text should be given the second file name TXT.

12.4.2. FILE-EXISTS?

FILE-EXISTST tests for the existence of a file without creating a CHANNEL, which cccupiss about
a hundred machine words of storage. It takes a file-name argument (like QPEN) and returns either T or
a FALSE containing the reason (a STRING).

12.4.3. CLOSE

CLOSE, given a CHANNEL, closes that CHANNEL. An error will occur if any input or output is directed
to a CLOSEd CHANNEL.

It is possible to tell whether a CHANMEL is currently 'open’ or has been CLOSEd by looking at the

first element of the CHANNEL itself. This will always be a FIX, and is the ‘channel number' assigned by
the operating system. A 'channel number' of zero indicates a CLOSEd CHANNEL.

12.4.4. CHANLIST
<CHANLIST>

returns a LIST whose elements are all the currently open CHANNELs.

12.4.5. INCHAN and OUTCHAN

The channel used by default for input SUBRs is the local value of the ATOM INCHAN. The channel
used by default for output SUBRs is the local value of the ATOM OUTCHAN.

You can direct 170 to a CHANNEL by SETting INCHAN or OUTCHAHN (remembering their old values
somewhere), or by giving the SUBR you wish to use an argument of TYPE CHANNEL. (These actually
have the same effect, because READ binds INCHAN to an explicit argument, and PRINT binds
OUTCHAMN similarly.

By the way. a good trick for playing with INCHAN and OUTCHAN within a function is to use the ATOMs
INCHAN and QUTCHAMN as "AUX" variables, re-binding their local values to the CHANNEL you want.
When you leave, of course, the old LVALs are restored (which is the whole point).

INCHAN and OUTCHAN also have global values, initially the CHANNELs directed at the terminal

running MDL. Initially, THCHAN's and OUTCHAN's local and global valugs are the saime. Wheanever an
arror occurs in MDL, the local values of THEHAN and OUTCHAN are rebound to the global values of the
SECTION 12 4 INPUTAQUTFUT

e




102 THE MDOL PRIMER

same ATOMs. Unless you live dangerously and change the global values of these ATOMs, this will have
the effect of redirecting input and output to your terminal, where you are free to go about debugging.

12.5. End-of-File "Routine™

As mentioned above, an explicit CHANNEL is the first optional argument of all SUBRs used for
conversion 1/0. The second optional argument for conversion-inpyut SUBRs is an "end-of-file routine™
-- that is, something for the input SUBR to EVAL and return, if it reaches the end of the file it is reading.
A typical end-of-file argument is a QUOTEd FORM which applies a function of yours. The value of this
argument used by default is a call to ERROR. Note: the CHANNEL has been CLOSEd by the time this
argument is evaluated.

End-of-file routines are nor used with terminal input!

The following FUNCTION counts the occurrences of a character in a file, according to its
arguments.

<DEFINE CHAR-COUNT (CHAR FILE "EXTRA"™ CHN)
#DECL ((CHAR) CHARACTER (FILE) STRING
(CHN) <OR FALSE CHANNEL>)
<COND (<SET CHN <OPEN "READ" .FILE>>
<REPEAT ((CNT 0))
#DECL ((CNT) FIX)
<COND (<==7 <READCHR .CHN '<RETURN .CNT>>
.CHAR>
<SET CNT <+ .CNT 1>>)>>)>>

The idea here is that the FORM <RETURN .CNT> will be EVALuated when the end-of-file is reached.
Had READCHR been given only one argument, ERROR would have been called when end-of-file
occurred. Alsoc notice that the only way for this REPEAT to terminate is from within the call to
READCHR.

12.6. Additional 1/0 SUBRs

Thera are a few other extremely useful 170 routines which should be mentioned here.

INPUT/OUTPUT SCCTION 12.4




THE MODL PRIMER 103

12.6.1. READSTRING

READSTRING provides a mechanism of reading characters into a STRING until a specified condition
iz met. This condition may be one of two types:

1. A specified number of characters has been read.

2. One of a specified se:' of characters has been read.

READSTRING takes a STRING which will be filled with CHARACTERS read from its second argument, a
CHANNEL An optional third argument specifies the condition on which the READSTRING will
terminate. If the argumentisa FIX, FIX CHARACTERs will be read from CHANNEL. If the argument is a
STRING. CHARACTERs will be read until one is a MEMBER of the that STRING (MEMQ really). in either
case READSTRING will terminate when the STRING (i.e. the first argument) is filled, should this occur
prior to the meeting of the 'stop condition', or If the end-of-file is reached. If there is no third
argument, these latter two conditions are the only ways in which READSTRING will terminate.

READSTRING returns the number of CHARACTERs read at the time of its termination. Here's how to
interprat the return from READSTRING (it really isn't all that complicated, but it's hard to explain):

- If thare was no third argument, the return will either be the length of the STRING or a
smaller number. If a smaller number, the end-of-file was reached and that smaller
number is the number of CHARACTERs read before end-of-file was reached.

- If the third argument was a FIX and the return was less than that FIX, then end-of-Tile
was reached.

. If the third argument was a STRING, the return was the number of CHARACTERs read
before the termination CHARACTER was seen. It is very important to realize that the
termination CHARACTER is not read. In other words, it will not be in the STRING, and the
next time you try to input from CHANNEL, that termination CHARACTER will be lying in wait.
Mot taking this into account is the cause of many an error for navice MDLers.

If the terminating event was end-of-file and anorher READSTRING is performed, the end-of-file routine
will be EVALed. As with the other non-terminal-directed 1/0 input routines, the default end-of-lile
routine is a call to ERROR.

This must seem very confusing, but many of your programs will require reading from the terminal
and READSTRING is by far the best way to do this in MDL. One of the reasons for this is that
READSTRING will allow the person inputling to your program to edit his input by means of the rubout
key and the like. This facility is very hard to simulate if you are reading one CHARACTER at a time (2.9.
with READCHR).

A very important warning regarding READSTRING: MDL, you will recall, only starts processing
terminal input affer an escape is typed. This is true also for calls to READSTRING. This means that
you cannot expect to get a line of input from a user by doing a READSTRING with a 'stop condition' of
a carriage-return or a line-feed unless this is followed by an escape. There are ways around this
‘feature’, but they are beyond the scope of this primer Plense consult the manual or a seasonsd
rMODLer for help.

SECTION 126 MNPUT/OUTHFUT

—_

R A A A A A A R R R R R R R R R R R AR AR A AN NN N AAPAE—=—=—=——SBE——
B e e e e e e e
- __________________________________________________________________________________________________________________________________________________________________________________
e
= ———_____________________...————— ... —
T ——————————————
e ————————————————————————————————————————————————
I ————————
-——— ey
e
e
A R R AR R AR R AR A A AR RAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARARARLN N NN
— e __—==_u_
- """
e ——
= ______________________aa—————_________________ e
— — — —————————
e ————
——mm————————————————)e ===
= —————— LS, —————————————————V  —VVVVV—————— .
- ——M 7 ——--—-———-———e___—>"———e—-——-—-—--e——e——
S ——————————
A A A A A A A A A AAAAAAAAAAAAAAARARARARARARARARANANNINAMS=S A==
A A A A A A A AR AR A AL N W = ——_

e




104 THE MDL PRIMER

Here's a skeleton of a calculator program:

<DEFINE CALC (.. "AUX"™ .. CNT (BUFFER <ISTRING 100 I\ >) ..)
#DECL (... (CNT) FIX (BUFFER) STRING ...)
<REPEAT ()
<PRINC "~
>">

<SET CNT <READSTRING .BUFFER
 INCHAN
CSTRING <ASCII 2T7>>>>
<READCHR , INCHAN>
<COND (<07 .CNT>
<PRINC " Thanks for using the calculatorli™>
<RETURN:>)
(<==7 .CNT 100>
<PRINC "
Sorry, that one's too big for me. Please try
something a bit easier, 11ke 2 + 2.">)
(T <CALCULATE .BUFFER .CNT>)>>>

This calculator program is essentially a large REPEAT loop, as you might expect. Each time
through, it starts by printing a prompt (a carriage-return followed by a closing angle-bracket). It then
reads some input from the terminal into a STRING which is initialized at the start of the FUNCTION as
having a LENGTH of 100. The stop-condition is the presence of an escape (27 decimal in ASCII).
Since READSTRING will not read the terminating escape, a READCHR is performed. If one were to
check on what thea READCHR was returning, one would find it to always be an escape. If the value of
the call to READSTRING is zero, no input was typed before the escape. In this example, the program
terminates. If the return from READSTRING were 100, then the person typing to the program has
given an excessively long input (this is only true in this example; the FUNCTION could have been
written to accept much longer inputs) and he is told this. Otherwise, the function CALCULATE is
called with the user's input (. BUFFER) and the number of CHARACTERSs that the user typed (.CNT, i.e.
the number of "valid' CHARACTERs in .BUFFER). With any luck, CALCULATE will do something useful
with its arguments, like performing the requested calculation and printing the result(s).

Could you write this skeleton without using a REPEAT? There are at least two other reasonable
ways. If you cannot, try rereading Chapter 10.

12.6.2. PRINTSTRING

The SUBR PRINTSTRING is analogous to the SUBR READSTRING. It takes three arguments, a
STRING (the STRING to print), a CHANNEL (on which to print it), and a FIX (the number of characters
from the STRING to print). If the LENGTH of the STRING is less than the third argument,
PRINTSTRING just prints the STRING. In any event, PRINTSTRING returns the number of characters
actually printed.

INFLIT/AOUTPUT SECTION 126
il
e e e
- /——__— ————————————————
i

e - ———
S
e e ————— = = e o — e e
—




THE MODL PRIMER 105

12.7. SAVE Files

The entire state of MDL can be saved away in a file for later restoration: this is done with the SUERs
SAVE and RESTORE. This is a very different form of 1/0 from any mentioned up to now; the file used
contains an actual image of your MDL address space and is not, in general, "legible” to other MDL
routines. RESTOREing a SAVE file is much faster than re-READIng the cbjects it contains.

12.7.1. SAVE

Calling the SUBR SAVE with a file-name will save away the entire state of your MDL in a file with that
name. It then returns "SAVED". When a RESTORE is done later (to return to the 'saved’ state), the call
to SAVE returns "RESTORED"™.

<DEFINE SAVE-IT ("OPTIONAL"
(FILE "<{GUEST>PUBLIC.SAVE")
"AUX"™ (SHM ""))
<SETUP>
<COND (<=7 "SAVED" <SAVE .FILE>>
<CLEANUP>
"Saved.")
(T
<PRINC "
Amazing program at your service.">
<START-RUNNING>)>>

12.7.2. RESTORE

RESTORE, given a file-name, completely replaces-the contents of the MDL from that file, including
the state of execution existing when the SAVE was done and the state of all open I/O CHANNELs. Ifa
file which was opan when the SAVE was done does not exist when the RESTORE is doms, a massage 1o
that effect will appear on the terminal,

A RESTORE never returns (unless it gets an error): il causes a SAVE done some time ago to return

aqain (this time with the valus "RESTORED"), even if the SAVE was done in the midst of running a
program. In the latter case, the program will continue its execution upon RESTOREation.

12.8. PARSE, LPARSE, and UNPARSE

These SUBRs are borderline /0 routines. PARSE, given a STRING, uses READs algorithm for
converting text into MDL objects and returns the lirst one found

SECTION 12.7 IMEUT/ACUTPUT

R EEEEE————————————————————————————————————————————————————————————————————————————————————————————_—_—_—_—_——SRREEEE————_—_——,C




THE MDL PRIMER

<SET STR "(F0OO 1 2.3) HO-HUM">$
"(FOO 1 2.3) HO-HUM"™

<PARSE .STR>$

(FOO 1 2.3)

LPARSE, given a STRING, returns a LIST containin

g all of the items which READ would have found
in the STRING. Using the same example:

<LPARSE .STR>$
((FOO 1 2.3) HO-HUM)

UNPARSE is

the inverse of PARSE. Given a MDL object, UNPARSE returns a STRING. suitable for
MDL PRINTIng

<UNPARSE (A B C)>$
"(A B C)"

<UNPARSE 3.4>
"3.40000000"

All of these SUBRs are very expensive CPU-wise. They should be avoided if at all possible.

12.9. Other 1/0 Functions

12.9.1. FLOAD

FLOAD, given a file-name, READs and

EVALuates everything in the file, in order, and returns
"DONE". If the file specified does not

exist, FLOAD returns a FALSE containing the reason why.

12.9.2. SNAME

<SNAME string> is identical in effect with <SETG SNM string>, that is,
the dir argument used by default by all SUBRs which want fi
value for SNM). SNAME returns its argument.

it causes siring to become
le specifications (in the absence of a local

<SNAME?> is identical in eHect with <GVAL SHNM>, thatis, it returns the current dir usaed by default.

INFUT OUTPUT SECTION 12.8

—




THE MDL PRIMER 107

12.9.3. FILE-LENGTH

FILE-LEMGTH, given a CHANNEL cpen for input, returns the length in characters of the file
associated with that CHANNEL. Doing a FILE-LENGTH on an terminal CHANNEL is silly.

12.9.4. RESET
<RESET channel>

returns channel, after "resetting” it. Resetting a CHANNEL is like OPENing it afrash, with only the
file-name siots preserved. For an input CHANNEL, this means emptying all input buffers and, if it is a
CHANMEL to a file, doing an ACCESS to 0 on it. For an output CHANNEL, this means returning to the
beginning of the file -- which implies, if the mode is not "PRINTO", destroying any output done to it so
far. If the opening fails (for example, if the mode siot of channel says input, and if the file specified in
its real-name slots does not exist), RESET (like OPEN) returns #FALSE (reason:string fife-spec:string
status:fix).

12.8.5. RENAME

RENAME is for renaming and deleting files. It takes two kinds of arguments:

- (a) two file names, separaled by the ATOM TO

- (bB) ona file name

Cmitted file-name parts use the same values by default as does OPEN. If the operation is successful,
REMAME returns T, otherwise #FALSE (reason:string status:fix).

In case (a) the file specified by the first argument is renamed to the second argument. For example:

<RENAME "FOO"™ TO "BAR"> :"Rename FOO.MUD to BAR.MUD."™
In case (b) the single file name specifies a file to be deleted. For example:

{RENAME "<MARC>FOO.MUD"> :"Dalete file FOO.MUD
from MARC's directory."

SECTION 1249 I T AOUTEUT




108 THE MOL PRIMER

12.10. Terminal CHANNELSs

MDL automatically adds a line-feed, whenever a carriage-return is input from a terminal CHANNEL.
In order to type in a lone carriage:retum. a carriage-return followed by a rubout must be input.
PRINT, PRIN1 and PRINC do not automatically add a line-feed when a carriage-return is output. This
enables overstriking on a terminal that lacks backspacing capability. It also means that what goes on
a terminal and what goes in a file are more likely to look the same.

12.10.1.TYI

TYI. given a terminal input channel, returns one CHARACTER from it when it is typed, rather than
after $ (ESC) is typed, as is the case with READCHR. Novice MDLers tend to use TYI to read input
from the terminal. This is not recommended as a rule. Use READSTRING instead.

INPUT/AQUTPUT SECTION 12,10




THE MDL PRIMER 109

13. Making Tables

It seems that MDL programmers are always making tables of one thing or another. Someone’'s
Whois program may want a table relating a person's login name to his full name. Someone's
Calculator program may want a table to associate arbitrary variable names with values.

There are any number of ways to implement tables for these types of purposes; some of these may
already have come to mind. For our discussion, let's use the example of a calculator program which
accepts inputs of the form:

Without considering the actual details of how the calculator might be written, something must be
done to keep track of the fact that the variable A has a value of 7, and that B has a value of 56. What
follows are a number of different approaches to solving this sort of problem. Each should be
examined carefully and the advantages and disadvantages noted.

13.1. Use a LIST

This is the most common and possibly the most useful approach. For the given example, we can
create a LIST, which, for example, is the GVAL of the ATOM VARIABLES.

,VARIABLESS
(A 7 B 68)

If one wants to add a new variable, say C, with a value, say 100, one can do the following:
€SETG VARIABLES (C 100 !.VARIABLES)>
To check if a variable, say D, has a value, one can do this:

<MEMQ D ,VARIABLES>

SECTION 13.0 MAKING TARBLES

—
e e e e e e
— - — —_—— —_——--————=
i
i

R,




110 THE MDL PRIMER

To actually get D's most recent value,

<COND (<SET M <MEMQ D ,VARIABLES>>
<2 .M>)>

This COND clause returns a FALSE if D doesn't have a value: otherwise, it returns the value.

Remaoving variables from the LIST can be done with PUTREST. As an exercise, write a FUNCTION
which, given a variable name and a LIST (like the one we used above), removes the variable and its
value from the LIST. Be sure you handle the case in which the variable isn't in the LIST. One
solution to this is given at the end of the chapter. Don't peek, and don't be too frustrated. The
FUNCTION isn't that easy to write.

LISTs are very space-efficient. However, while LISTs are practical for smallish tables, larger ones
will tend to become very slow to access, since LISTs are not random-access structures (see Chapter
7). If your table needs to be more than a hundred elements long, you should probably try something
else.

13.2. Use a VECTOR

Think twice before you do. As we saw in Chapter 7, VECTORs have the property that they cannot be
added to and cannot have elements ramoved without creating an entirely new structure (which is very
garbage-creating). Therefore, using VECTORs is not a good idea unless the table is "pre-formead' and
elements nead never be removed or added. |If you have a table of ordered elements of relatively fixed
size, use of VECTORs with some sort of binary-searching algorithm is appropriate. For the calculator
example, don't use a VECTOR.

13.3. Use an ATOM

Another simple approach would be to SETG the variable name (which is an ATOM) to its value.
Then, you can use GASSIGNEDT to check if it has a value, GVAL to getit, and GUNASSIGN to remove it.
Lookup using GVALs is moderately fast, but there is a problem. Imagine the result of your poor
calculator user setling a variable whose name is the name of your program. The use of SET and LVAL
is also perilous.

MAKING TAOLES SECTION 13.1

ﬁ




THE MDL PRIMER 111

13.4. Use an Association

MDL allows you to assign a value to a pair of MDL objects. This can be done using the SUBR
PUTPROP. The value of such an 'association’ can be retrieved with the SUBR GETPRCP.

<PUTPROP MICHAEL AGE 2833
MICHAEL '

<GETPROP MICHAEL AGE>$S

28

One can associate any three MDL objects using PUTPROP. A useless, but legal, use might be:

<PUTPROP [1 2 3] (4 6 8) "FOOBAR">S$
[1 2 3]

<GETPROP [1 2 3] (4 6 8)>$

#FALSE ()

Why did the last GETPROP return #FALSE ()7 Hint: Are either of the argquments to GETPROP ==7 to
the arguments to PUTPROP?

By giving PUTPROP only two arguments, it returns what GETPROP would have returned, and then
removes the association.

<PUTPROP MICHAEL AGE>$S
28

<GETPROP MICHAEL AGE>S
#FALSE ()

In the calculator example, one could do something like this:

<PUTPROP A VARIABLE 7>%
A
<PUTPROP B VARIABLE 58>%
B

to set the variables’ value. One would retrieve the values like this:

<GETPROP A VARIABLE>S
7
<GETPROP B VARIABLE>S
68

Associalions are fast (they use a hashing scheme with a fixed number of bucksts), bul rather

SECTION 13.4 MAEK NG TAOLES




112 THE MDL PRIMER

space-inelficient. Large numbers of them will tend to crowd your core-image.

13.4.1. Hashing

Hashing, for those unfgmiliar with the notion, is an algorithm for table lookup which i= based on a
'directed search’'. A hash table can be thought of as a VECTOR of LISTs. These LIST= are commonly
called 'buckets’. Each actual item in the hash table is found in one of these 'buckets’. What makes
hash lookup fast is that there is a simple algorithm for determining which 'bucket’ an item is in. Once
that determination is made, the 'bucket’ is searched linearly for the item. Thus, a hash table of length
100, which contains 1000 items, would have an average of 10 ilems per 'bucket'. Thus, the access
time for looking up an item would be the same as that for MEMQ'ing a LIST of 10 elements plus the
small overhead of determining which ‘bucket’ the item is in. This is cbviously much faster than
linearly searching a LIST of 1000 elements, by a factor approaching 100.

13.5. Use an OBLIST

OBLISTs are tables of ATOMs which are hashed in such a way that finding an ATOM in one is very
fast. Similarly, inserting and removing ATOMs is simple.

To create an OBLIST of your own, use the SUBR MOBLIST (Make OBLIST), which takes a name
(ATOM) and the number of hash buckets for the OBLIST {(defaultly 17). For best results, the number of
buckets should be prime.

<SETG FOOBAR <MOBLIST FOOBAR 7>>$
FOBLIST 1L() O O O () O O]

MNote that there are seven empty LISTs in the OBLIST -- you guessed it ... each LISTisa bucket!

To insert an ATOM into an OBLIST, use the SUBR INSERT. To remove an ATOM fram an OBLIST,
use the SUBR REMOVE. To look up an ATOM in an OBLIST, use the SUBR LOOKUP. Each of these
three SUBRs takes a STRING, the PNAME of the ATOM, and an OBLIST.

<INSERT "MIKE" ,FOOBAR>$S

MIKE | -FOOBAR

, FODBARS

#OBLIST I[() () () () (MIKE!-FOOBAR) () ()3
<LOOKUP "MIKE" ,FODBAR>S

MIKE|-FOOBAR

<LOOKUP "BLETCH" ,FOOBAR>S

#FALSE ()

MAKING TABLES SECTION 13.4




THE MDL PRIMER 113

There's something new here, namely the suffix to the name of the ATOM: an exclamation paint, a
hyphen, and an ATOM. This suffix is called an ‘oblist-trailer’ or simply a “trailer’. It is there so that
READ and PRINT can distinguish this new ATOM whose PNAME is FOOBAR from an ATOM on another
OBLIST whose PNAME is FODBAR. Therefore, to directly reference the ATOM of PNAME BLETCH in the
FOOBAR OBLIST, one musttype in the following:

BLETCH!-FOOBAR

In fact, typing BLETCH! -FOOBAR causes READ to create an ATOM with PNAME BLETCH in tha FOOBAR
OBLIST if none already existed. Mot only that, but typing FROB | -MUMBLE causes READ to create an
ATOM of PNAME FROB in the MUMBLE OBLIST (creating a MUMBLE OBLIST /f necessary) il none
already existed.

If you are interested in a more complete description ol OBLIST=s, refer to the next section. To
continue with the calculator example, we might start by creating an OBLIST for variables.

<SETG VARIABLES <MOBLIST VARIABLES>>%
#OBLIST ....

Then, we assign values to A and B as follows:

<DEFINE SET-VARIABLE (NAM VAL "AUX" (PNM <PNAME .NAM>))

#DECL ((MNAM) ATOM (VAL) ANY (PNM) STRING)

<SETG <COND (<LOOKUP .PNM ,VARIABLES>)

(T <INSERT .PNM ,VARIABLES>)>
JNVAL>>S

SET-VARIABLE :
<SET-VARIABLE A 7>§
.
<SET-VARIABLE B 66>$
66

To retrieve values, we might do this:

<DEFINE GET-VARIABLE (NAM "AUX" ATM)
#DECL ((NAM) ATOM (ATM) <OR FALSE ATOM>)
<COND (<SET ATM <LOOKUP <PNAME .NAM> ,VARIABLES>>
., .ATM)>>%
GET-VARIABLE
<GET-VARIABLE B>S
66
<GET-VARIABLE D>$
#FALSE ()

Using ODLISTs in this way solves the problem manlioned earlier regarding the use ol ATOMs: that of

SECTION 13.5 MAKING TADLES

_—_— — — —— — ——————————————————




e

114 THE DL PRIMER

variable conflicts. By using ATOMs in vour own private OBLIST, there is no danger of mistakenly
changing the value of someone else's (or your own...) ATOM. MNow, your calculator user can use
variable names which are the same as those of your calculator FUNCTIONs withaut fear of disaster.

To summarize, using OBLISTs is fast ATOMs are rather large; about the same size as an
association. Whereas the hashing table for associations is a fixed size, the hashing table for an
OBLIST can be determined when the OBLIST is created. ATOMs are more varsatile than associations,

and can be used in more ways. Good MDL proagrammers, given the choice, will use OBLISTs over
associations.

13.6. OBLISTs, READ, and PRINT

It was stated in section 4.1 that typing GEORGE to MDL caused READ to “look up the reprasentation
[ot GEORGE]" in a "table it keeps for such purposes....” It should now be clear that the "table it
keeps"” is, in fact, an OBLIST, and that it “looks up the representation” by using the SUBR LOOKUP.
¥ou are now ready to understand what, in fact, READ does.

When READ encounters something that it determines must be an ATOM (i.e. it can't be anything
else), it does LOOKUPs of the PNAME sequentially in all of the OBLISTsin .0OBLIST (i.e. the LVAL of the
ATOM OBLIST). [MDL sets up .OBLIST to be a LIST of OBLISTs. |Initially, .0OBLIST has two
OBLISTsin it: the INITIAL OBLIST (user ATOMs) and the ROOT OBLIST (MDL's ATOMs). The ATOMs
which poinl to the F/SUBRs all live in ROOT.] The value of the first LOOKUP to succeed becomes the

value of the call to READ. If the PNAME isn't found, an ATOM with that PNAME is INSERTed into <1
L.OBLIST>.

If READ (of ATOM=s) were written in MDL, it might look like this:

<DEFINE READ-ATOM (STR)
#DECL ((STR) STRING)
<COND (<MAPF <>
<FUNCTION (OBL "AUX" ATM)
#DECL ((OBL) OBLIST (ATM) <OR FALSE ATOM>)
<COND (<SET ATM <LOOKUP .STR .0BL>>
<MAPLEAVE .ATM>)>>
.OBLIST>)
(T <INSERT .STR <1 .0BLIST>>)>>

However, if an explicit trailer is given, the ATOM is placed in the OBLIST named in the trailer.
Trailers may be 'recursive’. For example, Al-BI1-C1-DI-E is an ATOM with PHAME A which is in an
OBLIST whose name is an ATOM with PNAME B which is on an OBLIST whose name.... The ATOM with
PNAME E will reside in one of the OBLISTs in -OBLIST. When PRINT attempts to print an ATOM of
this kind, it prints trailers until one of the OBLIST names can be found on an OBLIST in .0OBLIST.

MAKIMNG TABLES SECTION 135

e —— i - —
e e e e e S e e ———
e —— e e e e e e e e e T —
e




THE MDOL PRIMER 115

14. Debugging MDL Programs - An Introduction

If you have ever written a program which works completely carrectly on the first attempt, you most
likely have benefited from divine intervention. In the more likely event that one of your MOL programs
is "buggy", you will see messages which look like this:

*ERROR®

reason

informatian-about-error
function-which-generated-it
LISTENING-AT-LEVEL n PROCESS m

The information-about-error may be one or more than one object. The n is an indication of how many
levels of errors have cccurred, and m should be completely ignored. If you ever see a number othear
than 1 in that position, you prabably don't need to be reading this.

The meaning of this gobbledygook is that the MDL SUBR ERROR was invoked. This may have
happened from an explicit call to ERROR, as in the following:

<ERROR YOU-LOSE BECAUSE MY-FUNCTION>

More likely, however, the MDL interpreter discovered an error in your program, such as a variable
without a value, or a bad argument to a function, and called ERROR internally. The effect is the same:
*ERROR® iz printad, followead by all of the arguments to ERROR, and MDL starts LISTENiIng at the next
higher levei. In other words, LISTEN has been called recursively.

In the remainder of this chapter, we will be discussing the debugging of a particularly trivial error in
a sample FUNCTION. Please refer frequently to the figure at the end of the chapter in which parts of
the example are diagrammed and commented.

In order to correct an error, it is necessary to have some information about the history of MDL's

execution at the time of the error. To do this, the function FR& is called, usually without arguments.
Let us assume that the following FUNCTION is being called as follows:

SECTION 14.C DEBUGGING MDD PROGRAMS - AN INTRODUCTION

I




116 THE MDL PRIMER

<DEFINE GT10 (ARG) <G? .AGR 10>>$%
GT10

<GT10 11>$%

“ERROR*

UNBOUND-VARIABLE

AGR

LVAL

LISTENING-AT-LEVEL 2 PROCESS 1

<FR&>S

0 ERROR [UNBOUND-VARIABLE | -ERRORS AGR LVAL]
1 LVAL [AGR]

2 EVAL [.AGR]

3 EVAL [<G? .AGR 10>}

4 EVAL [<GT10 11>]

6 LISTEN [l

TOPLEVEL

What is shown here, one to a line, are the FRAMEs which have bean generated by MDL, starting from
the one called LISTEN, which is where MDL was waliting when the FORM <GT10 11> wasinput. The
lines above this one are the steps which MDL took until the error occurred, namely in the code for
LVAL. Each line has a number, by which the FRAME can be identified, the FUNCT of the FRAME
(always an ATOM), and the ARGS of the FRAME (always a TUPLE). For these purposes, a TUPLE can be
considered to be a VECTOR. Given a FRAME number, the FRAME can be refarenced by invoking the
function FRM, as follows:

<SET F <FRM 3>>%
#FRAME EVAL

<FUNCT .F>%$
EVAL
<ARGS .F>$

[<67 .AGR 10>]

Having gotten this far, it has become obvious that the problem is that the function GT10 is incorrect,
in that the reference to AGR was intended to be a reference to ARG. What follows are some ways of
fixing the problem, all of which will work. Although this is a trivial example of an error, as the problem
itsell was easy to spot, the methods of error recovery are always the samel

14.1. Method 1: Start Over

Edit the FUNCTION with your tavorite text editor and reload it, relype it in to MDL directly, or
whatever. Then invoke the SUBR ERRET with no arguments. This will cause MDL to return to its "top

DEBUGGING MDOL PROGRAMS - AN INTRODUCTION SECTION 14.0

R R R R R R R R R R R R R R R R R R R R R REEEEEEEEEZEESSBEEEEEBEESSES




THE MDL PRIMER 117

level”, i.e. LISTENING-AT-LEVEL 1. All parts of the execution in progress including all ATOMAc
bindings (except those made at "top level™) will be lost.

<ERRET>$

LISTENING-AT-LEVEL 1 PROCESS 1

14.2. Method 2: Forcing FRAMEs to Return Values

It is possible to cause MDL to force an arbitrary FRAME to return an arbitrary value and to continue
execution from that point. This is done by calling ERRET with either one or two arguments. The first
argument is the value for the FRAME to return, and the second, if given, is the FRAME which is to return
that value. If no second argument is givan, the FRAME immediately previous to the ERROR FRAME will
be used as a default.

<ERRET 9>$%
#FALSE ()

What happened was that the LVAL FRAME (i.e. <FRM 1> was caused to return 8. Execution
continued, such that the EVAL FRAME above (i.e. <FRM 3>) also returned 2, and the next frame
avaluated <67 9 10>, which returned an empty FALSE, which became the value of the call to GT10.
Maotice that in this case, the fact that 11 was originally passed to GT10 has become unimpaortant.
Another way of doing the same thing would have been to say

<ERRET 9 <FRM 1>>$
#FALSE () or
<ERRET 9 <FRM 2>>$
#FALSE ()

However, saying

<ERRET 9 <FRM 33>>%
8

has a different result. What happened was that the FORM <67 .AGR 10> was forced to return 9.
Since that FORM was the last in the body of the FUNCTION, the result of ils evaluation became the
result of the evaluation of the FUNCTION. Therefore, GT10 returned 9.

SECTION 14 1 DIOUGGING NMODL PROGRARMS AN INTRODUWETHDN

-

-——————_—_ _ —< < = e - e




118 THE MDL PRIMER

14.3. Method 3: Use EDIT to Repair your FUNCTIONSs

In the last method, nothing has been done to correct the raal problem, i.e. that the program has a
bug in it. One way to solve this is to use the MDL editor, a function called EDIT to alter the program
itself. EDIT is usually invoked with the name of a FUNCTION to be edited as the only argument. You
will now be "talking” to the MDL editor. Commands to the editor should be terminated with an
escape, and are one or two characters followed by some arguments, which are usually optional.
EDIT will display after each command your current “location” in the FUNCTION you are editing. To
move around, the commands L {left), R (right), U (up), and D (down) are used. These may be followed
by a numerical argument, the number of times to perform the command. The argumeants must be
preceded by a space. A vertical bar is used here to indicate your "position” in the edited FUNCTION.
In the real MDL editor, the "position” may be indicated by some other characters.

<EDIT GT10>%

#FUNCTION (] (ARG) <G7 .AGR 10>)
R 2%

#FUNCTION ((ARG) <G? .AGR 10> |)
LS

#FUNCTION ((ARG) | <67 .AGR 10>)

D3

<] 67 .AGR 10>

DS

ERROR, YOU CAN'T GO DOWN
<] 6% .AGR 10>

RS

<G? | .AGR 10>)

To alter the FUNCTICON the following commands may be used: | {insert), K (kill), and C (change). Insert
takes any number of objects as arguments and-inserts them all to the right of your "location”. Kill
takes an aptional number (default 1) and removes that many objects from the right of your "location”.
Change takes one argument and changes the object to the right of your "location” to it.

<67 | .AGR 10>
C .ARGS
<67 | .ARG 10>

This has had the effect of fixing the error in the program. To exit the editor, use the O command.

<GT | .ARG 10>
QsT

The T was the returned value of the call to EDIT. Now, a look at the FRAMEs using FR& shows the
following:

DEBUGGING MDL PROGRAMS . AN INTRODUCTION SECTION 14.3

.

R,




THE MDL PRIMER 118
<FRE&>S
0 ERROR [UNBOUND-VARIABLE | -ERRORS AGR LVALJ
1 LVAL [AGR]
2 EVAL [.AGR]
3 EVAL [<67 .ARG 10>]
4 EVAL : [<6T10 11>]
6 LISTEN [l
TOPLEVEL

Make sure you understand what has happened. The way the editor works for the case of the C
command is to PUT the argument to C into the structure. The FORMs contained in the ARGSs of
FRAMEs are simply pointers directly into the FUNCTION being executed. Thus, the PUT into the FORM
will change the argument to the FRAME which points to it! This is extremely important, and is
illustrated in the diagram at the end of the chapter. Think about this very carefully if you don't
understand this, and then be sure you convince yourself of why the argument to <FRM 2> has not
changed.

Mow that you have done this, it would be useful if vou could tell MDL to go back and retry <FRM 3>.
In fact you can, using the SUBR RETRY which takes a FRAME as an argument, and simply pretends
that nothing past that point in execution has ever happened. This works complately as long as the
axecution below that point hasn't had any side-effects. A MDL funclion is said to have side-eflects il it
does anything other than manipulate its local variables and return a value. Stated another way, a
function with no side-effects is a black-box with an input (arguments) and an output (valua), but no
effect on the 'outside world’. The most biatant side-effecting SUBRs are PUT, PUTREST, SETG, and
PRINT. SETting ATOM= which are not bound in a currently executing FUNCTION also has side-affects.
In a purist structured-programming sense, no function should have side-effects (with the obvious
exception of printing output). However, there are certainly cases in which PUT, PUTREST,. and SETG
are tremendously useful, if not vital. Care should be taken, however, since many bugs can be traced
to one function's causing a side-effect which causes another function to fail.

<RETRY <FRM 3>>%
T

Question: Would

<RETRY <FRM 4>>3%

have the same effect? The answer is yes, because you are restarting from an earlier level of
execution. What would be the effect of RETRYing <FRM 6>? Hint: It isn't a return of T. What would
be the effect of RETRYing <FRM 22>7 Hint: It isn't good. If you aren't completely sure of the answer to
these, try it in MDL.

EETION 143 DERUGGING RDL PROGITAKMS - &R INTRODLIC TN

i
e e e e
- — —87 -
i i
i i

B R ERRRRRRRRRRRRRESERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRREEERRRERRRRRRRRRRRRRRRRRRRRRRRRRRRERRRERRERREREERRRRRRRRRRRRRRRRERRRRRRERRRRRRRRRRERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRREEERRRRRRRRREERRRRERRRRRRRRRRERRRRRREERRRRRRRRERERRRRRRRRERRRRRRRRRRRRERRRERRRRRRRRRRRRRRERRRRRRRRRRRRRRRRRRERRRERRRRREREREREEREEPESSEEES EEBBEZESNSNS




120 THE MOL PRIMER

14.4. Method 4: Altering FRAMEs / RETRY
Let's try the following, starting from the point of the error:

<SET X <1 <ARGS <FRM 3>>>>$%

<G7? .AGR 10>

<PUT .X 2 ".ARG>S i "Why the guote?”
<G? .ARG 10>

<RETRY <FRM 3>>%

T

We have done the same thing as we did using methaod 3, but from a different angle. Question: What
does the FUNCTION GT10 look like now? Hint: Mot the same. If you don't see this, you didn't
understand why editing the FUNCT I0N worked either.

14.5. Summary

We have presented four different ways of handling errors in MDL. This list is not exhaustive, but it
should provide enough background to enable you to handle most situations. If this chapter has been
totally conlfusing, ask somecne for help and use method 1 in the meantime. Motice thal method 2
does not prevent the same error from recurring: it merely corrects the current instance of that error.
Methods 3 and 4 correct the general problem and the current instance of the error generated by the
problem. However, even though the FUNCTION is changed in your MDL, you still must alter it using
your favorite editor at a later time (or write out an updated copy of the file directly from MDL). The
changes made while in MDL are not reflected in your files! They will, howevar, allow you to proceed
without moving back and farth constantly between MDL and your editor.,

MDL has many other debugging aids including breakpoints (in EDIT), tracing, monitoring the
values of local and global variables, and more. For a detailed description of these facilities, consult
The MDL Programming Environment [Lebling 80].

OE DUGGING MDL PROGRAMS - AN INTRODUCTION SECTION 14.4

-

R ———————————————————————————————————————————




THE MDL PRIMER 121

Selected FRAMEs during execution of GT10 as described in the text. Mote that
the FRAMEs point directly at the structure of GT10 (e.g. the FORM in FRM3 is
==7 to the second element of the FUNCTION).

#FUNCTIONIL ARG) =G? .AGR 10> )
# ! 3o )

. l il -
2 7 Fd
& ’ -
FUMCT d Fd
1om| P 5
~ -
-~ /..""
x> s
List [ —4=|Form | ©
' ATM | o
| ARG
FRM
FORM | 3 ATOM | —1—=| FORM —] = | FiIx | o©
‘ G7? [ 10
7 Z \
- s Sy |_wlatom] —Je=[atord ©
< - PR LVAL ARG
FRM
FORM 2 ATOM —1 slatom | o
LvAL AGR
- &
A -
- -
< > FRM
atom | i
AGR
The dotted arrow and cross indicate the state of pointers aflgr
the FUNCTION has been edited. MNotice that <FRM 2> still
points to . AGR, even though <FRM 3> points to <67 ARG
3>.
" ERROR" e
FRAME

Figure 14-1: Diagram for the example in this chapter

SECTION 14.5 DEDUGGIRG MOL PROGRARS - AR INTRODUC TN

il
e
- _—______————
' |
' |

o




122 THE MDL PRIMER

References

[Galley 79]
S. W. Galley and Greg Pfister.
The MDL Programming Language.
M.LT. Laboratory for Computear Science, 1979,
[Lebling 77]
P. David Lebling, R. V. Baron and Bruce K. Danjels,
RMODE: A Real-time Edit Facility.
Technical Report SYS.04.07-1, MIT LCS Programming Technology Division. October, 1977.
[Lebling 80]
P. David Lebling.
The MOL Programming En vironment.
M.I.T. Laboratory for Computer Science, 1980,
[Pfister 72]
Greg Pfister.
A Muddie Primer,
Technical Report SYs.1 1.07, MIT Project Mac DM/CGS, May,

[Staliman 73]

Richard M. Stallman.
EMACS.

MIT Al Laboratory, 1979,

1972,

[Weinreb 78]

Daniel Weinreb and David Moon.
Lizp Machine Manual.
MIT Al Laboratory, 1978,




123 THE MDL PRIMER

Index
"ARGS™ B9
1 54 ASCII &0
15 8 ASSIGNEDT 28,88
I- 113 ATAN 24,31
I[ =8 ATOM 19, 35 09
1\ 58, 89 "AUX"™ 80,101
1] 58
BACK 57.B6
" 1,29 Binding 28,77
F 12, 37,88 CHANLIST 101
CHANNEL 100, 101
$ 7.88, 108 CHARACTER 35,59.61,83
CHTYPE 38
36, 63, 87 CLOSE 101
21
{ 11 COND 7O
CO5 24,31
)y n CRLF =8 _ -
= 24 DECL B1, 83
DEFINE B8
+ 24 . 22
» 21 EDIT 118
EMPTYT 43,65
- 2 =T 41
=P 25 41
22 Equality 41
ERRET 8, 116, 117
§ 24 ERROR 9, 115
EVAL 15, 23, 45, 65, 87, 83
oT 25 1 54
Ix 58
it 25 I- 113
15 8
< 1 I[ &8
17 58
==l 25 41 EXP 24 31
=7 41
Falze 14,625
> 1 FALSE 35, 37.53
FILE=EXISTST 101
ABS 24 FILE-LENGTH 107
ACTIVATION 7B FIX 11, 16, 17,24, 28, 35
AGAIN 77 FLOAD 34, 108
AND B3, 72, 80 FLOAT 11,16, 17,24, 28,35
ANDT TO FORM 12, 35




124

FR& 9, 115 OBLIST 59,112 114
FRAME 116 OPENM 100, 107
FRAMES 9 OPTIONAL B8

Frea variables 30, B0 OR 7O, 72

F5UBR 23, 63, 7O, 88 ORT VO

FUNCTION 27,78

OUTCHAN 101

G=7 25 PARSE 105
GT 25 -
Garbage B3 PMAME 19, 114
GASSIGNEDT 28, 110 FPRINT 33

GETPROP 111
GUNASSIGM 110

Predicates 25
Prefix Motation 13

GVAL 21.31 Preity Printing 33
FRIMTYPE 35,41,85

Hashing 112 PRIN1I 29, 108
PRINC 89, 108

ILIST 62 PRINT 15, 17,99, 108

INCHAN 101 PRINTSTRING 104

INIT 34 PROG 77

INSERT 112 PUT 45, 52,68

ISTRING B2 PUTPROP 111

lteration &6 PUTREST 47, 66

ITS &

IVECTOR &2 36, 63, a7

L=7 25 RANDOM 25

LT 25 READ 15, 18,98, 114

LENGTH 43, 65
LENGTHT 51,68

READCHR 58, 108
READSTRING 103

Lisp 1 Recursion 74,85
LIST 12, 35 41,44, 68 REMOVE 112
LISTEN 115 REHNAME 107
LOG 24,31 REFEAT 78
LOOKUP 112 RESET 107
LPARSE 106 REST 45,88
LVAL 22 29 RESTORE 105
RETRY 119
MAPF 79, B4 RETURN 77.78
MAFPLEAVE 80 Rubout 8,88
MAPR B3, B4
MAPRET E1 SAVE 105
MAPSTOP B2 SEGMENT 53, 66
MAX 24 SET 21,29
MDL 1 SETG 20,29
MEMBER 62, 66 SIN 24,31
MEM] 62, 65 SHAME 108
MIN 24 SHM 108
MOBLIST 112 SQRT 24, 30
MOD 24 STRING 35,50, 66, 99
MUDDLE 34 SUBR 23

“"MUDDLE. INIT® 34

Subroutine 23

H==7 26 T 25

"NMAME" TB Tanex B 34
NEWTYPE 38, 65, 83 TO 107
NEXTCHR 98 TOP 57.866
NOT 68 Tops-20 8,34

NTH 45, 52, 66

Trailar 113
True 25

THE MDOL PRIMER

il

=




125 THE MDL PRIMER

Truth 14
"TUPLE" B8
TYI 108

TYPE 11,15,35
TYPET 36

TYFEPRIM 38
UNFARSE 1046
UTYFE 58
UYECTOR 58,68

VECTOR 12,35, 54,60

WORD 35
Zark T4
L 11
“\ B8
71 11
& B,588
+D 8,08
+G8 B
+L 8.88
0 B8
+5 B8 51
£ n
} 11

-
R A R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R AR AN NN N NN NMP—=———BE———
- T e R R R , ——B—B—M__—
- ______________________________________________________________________________________________________________________________________________________________________________________
S _______________ e ————— S e —
— R —————
I I S e S e e s
— s e R

=




