The
MDL

Programming Language

S. W. Calley and Greg Pfister

Laboratory for Computer Science

Massachusetts Institute of Technology

Massachusetts 02139

2 The MDL Programming Language

Abstract

The MDL programming langnage began existence in lfate 1970 (under the name Muddle) as a
suceessor 10 Lisp (Moon, 1974), a candidate vehicle for the Dynamic Modeling System, and a possible
base for implementation of Planner (Hewitt, 1969). The original design goals included an
interactive integrated environment for programming, debugging, loading, and editing: ease in
learning and use: facilities for structurcd, modular, shared programs: extensibility of syntax, data
types and operatnrs: data-type cheching for debugging and optional data-type declarations for
compiled efficiency: associative storage, corontining. and graphics. Along the way to reaching those
goals. it developed flexible input/output (including the ARPA Network), and flexible interrupt and
signal handling. 1t now serves as a base for software prototyping, research, development, education,
and implementation of the majority of programs at MIT-DMS: a library of sharable modules, a
coherent user interface. special research projects, autonomous daenons, etc.

This dociment was originally intended to be a simple low-level introduction to MDL. It has,
however, acquired a case of elephantiasis and now amounts to a discursive description of the whole
interpreter, as realized in MDL release numbers 55 (ITS version) and 105 (Tenex and Tops-20
versions). (Significant changes from the previous edition are marked in the margin.) A low-level
introduction may still be had by restricting one’s attention to specially-marked sections only. The
scope of the dncument is confined as much as possible to the interpreter itself. Other adjuncts
(compiler. assembler. pre-loaded user programs, library) are mentioned as little as possible, despite
their value in promnting the language seen by a user from "basic survival® to "comfortable living™.
Indeed, MDIL could not fulfill the above design goals without the compiler, assembler, structure
editor, contral-stack printer, context prinier, pretty-printer, dynamic loader, and library system - all
of which are not part of the interpreter but programs written in MDL and symbiotic with one
another. Further information on these adjuncts ean be found in Lebling's (1979) document.

KEY WORDS: MDL
Muddle
Programming Languages

(¢) Copyright 1979 Massachusetts Institute of Technology. All rights reserved.

The MDL Programming Language 3

Acknowledgements

I was not a member of the original group which labored for two years in the design and initial
implementation of Muddle: that group was composed principally of Gerald Sussman, Carl Hewitt,
Chris Reeve, Dave Cressey, and later Bruce Daniels. I would therefore like to take this opportunity
to thank my Muddle mentors, chiefly Chris Reeve and Bruce Daniels, for remaining civil through
several months of verbal badgering. 1 believe that I learned more than "just another programming
language” in learning Muddle, and I am grateful for this opportunity to pass on some of that
knowledge. What I cannot pass on is the knowledge gained by using Muddle as a system; that I can
only ask you to share.

For editing the content of this document and correcting some misconceptions, I would like to thank
Chris Reeve, Bruce Daniels and especially Gerald Sussman, one of whose good ideas I finally did use.

Greg Pfister
December 15, 1972

Since Greg left the fold, I have taken up the banner and updated his document. The main sources
for small revisions have been the on-line file of changes to MDL, for which credit goes to Neal
Ryan as well as Reeve and Daniels, and the set of on-line abstracts for interpreter Subroutines,
contributed by unnamed members of the Programming Technology Division. Some new sections
were written almost entirely by others: Dave Lebling wrote chapter 14 and appendix 3, Jim Michener
section 14.3, Reeve chapler 19 and appendix I, Daniels and Reeve appendix 2, Brian Berkowitz
section 22.7, Tak To section 17.2.2, and Ryan section 17.1.3. Sue Pitkin did the tedious task
of marking phrases in the manuscript for indexing. Pitts Jarvis and Jack Haverty advised on the
use of PUB and the XGP. Many PTD people commented helpfully on a draft version.

My task has been to impose some uniformity and structure on these diverse sources (so that the
result sounds less like a dozen hackers typing at a dozen terminals for a dozen days) and to enjoy
some of the richiness of MDL from the inside. I especially thank Chris Reeve ("the oracle”) for the
patience to answer questions and resolve doubts, as he no doubt has done innumerable times before.

5. W. Galley
May 23, 1979

This work was supported by the Advanced Research Projects Agency of the Departinent of Defense
and was monitored by the Office of Naval Research under contract N00014-75-C-0661.

This document was prepared using the PUB system (originally from the Stanford Artificial

Intellfgmce Laboratory) and printed on the Xerox Graphics Printer of the M.LT. Artificial
Intelligence Laboratory.

4 The MDL Programming Language

Foreword

Trying to explain MDL to an uninitiate is somewhat like trying to untie a Gordian knot. Whatever
topic one chaoses to discuss first, full discussion of it appears to imply discussion of everything
else, What follows is a discursive presentation of MDL in an order apparently requiring the fewest
forward references. It is not perfect in that regardi however, if you are patient and willing to

accept a few, stated things as "magic” until they can be explained better, you will probably not have
too many problems understanding what is going on.

There are no “practice problems™ you are assumed to be learning MDL for some purpose, and your
work in achieving that purpose will be more useful and motivated than artificial problems. In

several cases. the examples contain illustrations of important points which are not covered in the
text. lgnore examples atr your peril.

This document does not assume knowledge of any specific programming language on the your part.
However, "computational literacy” is assumed: you should have written at least one program before.
Also, very little familiarity is assumed with the interactive time-sharing operating systems under
which MDL runs - ITS, Tenex, and Tops-20 - namely just file and user naming conventions.

Notation:

Sections marked [I] are recommended for an uninitiate’s first reading, in lieu of a separate

introduction or primer for MDL. [On first reading. text within brackets like these should be
ignored.]

Most specifically indicated examples licrein are composed of pairs of lines. The first line of a pair,
the input, always ends in § (which is liow the ASCII character ESC is represented, and which always
represents it). The sccond line is the result of MDL's groveling over the first. If you were to type
all the first lines at MDL. it would respond with all the second lines. (More exactly, the “first line”

is one or more objects in MDL followed by $, and the "second line” is everything up to the next
"first line".)

Anything which is written in the MDL language or which is typed on a computer terminal appears
herein in a gothic font, as in ROOT. A metasyntactic variable - something to be replaced in actual
use by something else - appears as radixfix, in an italic font: often the variable will have both a
meaning and a data type (as here), but sometimes one of those will be omitted, for obvious reasons.

An ellipsis (...) indicates that something uninteresting has been omitted. The character * means
that the follewing character is to be “controllified™ it is usually typed by holding down a terminal’s
CTRL key and striking the other key.

- e
i —

The MDL Programming Language

List of Chapters

Page Nawme

16 1. Basic Interaction

20 2. Read, Evaluate, and Primt
27 3. Nuilr-in Functions

30 4. Values of Atoms

35 5. Simple Functions

43 6. Dara Types

52 7. Structured Ob jects

71 8 Truth

78 0. Funciions

89 10. Looping

98 I Input/Output

116 12, Locatives

120 13, Assaciation (Propertics)
124 14, Data-type Declarations
138 15 Lexical Rincking

146 16. Errnrs, Frames, cle,

152 17. Macro-nperations

159 I8 Machine Words and Rirs
163 19. Compiled Programs

169 20. Cornutines

177 20 Interrupts

192 22 Storage Management

201 23. MDL as a System Process
204 24. Efficicncy and Tastefulness

6 The MDL Programming Language
List of Sections

Page Sectinn

16 Chapter 1. Basic Interaction

16 1.l Loading MDL [I]

16 1.2 Typing [I]

18 1.3 Loading a File [I]

18 1.4 Errors -- Simple Considerations [1]

20 Chapter 2. Read, Evaluate, and Print

20 2.1 General [I]

20 2.2 Philosophy (TYPEs) [I]

21 2.3 Example (TYPE FIX) [I]

22 2.4 Example (TYPE TLOAT) (1]

0 2.5 Example (TYPE ATOM, PNAME) (1]

22 2.6 F1¥es, FLOATs, and ATOMs versus READ: Specifics
22 2.6.1 READ and F IXed-point Numbers

23 2.6.2 READ and PRINT versus FLOATing-point Numbers
24 2.6.3 KEAD and PNAHES

24 2.6.3.1 Non-PNAMES

24 2.6.3.2 Examples

25 26335 N\ (Backslash) in ATOMs

26 2.6.5.4 Examples of Awful ATOMs

27 Chapter 5. Built-in Functions

27 3.1 Representation (1]

27 3.2 Evaluation [1]

28 3.3 Built-in Functions (TYPE SUBR, TYPE FSUBR) (1]
28 3.4 Fxamples (+ and FIX; Arithmetic) [1]

29 3.5 Arithanetic: Details

30 Chapter -1 Values of Atoms
30 4.1 General [1)

30 4.2 Global Values

30 4.2.1 SETG[1]

31 422 GVAL[1)

31 4.2.3 Note on SUBRs and FSUBRs
32 4.2.-1 GUNASSIGN

32 4.5 Local Values

32 4.3.1 SCT 1]

32 4.3.2 LVAL [1]

33 4.3.3 UNASSIGN

33 4.4 VALUE

List of Sections

B

The MDL Programming Language

35 Chapter 5. Simple Functions

35 5.1 General [1]

35 5.2 Representation [l]

36 5.3 Application of FUNCTIONs; Binding [1]

39 5.4 Defining FUNCTIONs (FUNCTION and DEFINE) [1]
40 5.5 Examples (Comments) [1]

43 Chapter 6. Data Types
43 6.1 General [1]

43 6.2 Printed Representation [1]
44 6.3 SUBRs Related to TYPEs

44 6.3.1 TYPE [1]

44 6.3.2 PRIMTYPE [1]

45 6.3.3 TYPEPRIM [I)]

45 6.3.4 CHTYPE [i]

46 6.4 Morc SUBRs Related to TYPEs
46 6.4.1 ALLTYPES

46 6.4.2 VALID-TYPE?

46 6.4.3 NEWTYPE

48 6.4.4 PRINTTYPE, EVALTYPE and APPLYTYPE

52 Chapter 7. Structured Ob jects
52 7.1 Manipulation

52 7.1.1 LENGTH [1]

52 712 NTH 1]

52 7.13 REST 1]

53 7..4 PUTI]

53 7.1.5 GET

53 7.1.6 APPLYing a FIX [I]

54 7.1.7 SUBSTRUC

54 1.2 Representation of Basic Structures
54 7.2.1 LIST[1]

54 7.2.2 VECTOR [I]

54 7.2.3 UVECTOR [1]

55 7.2.4 STRING [1)

55 7.2.5 BYTES

55 7.2.6 TEMPLATE

55 7.3 Evaluation of Basic Structures [I]
55 7.4 Examples [1)

56 7.5 Generation of Rasic Structures

56 7.5.1 Direct Representation [l]

56 7.5.2 QUOTE [1]

57 7.5.3 LIST, VECTOR, UVECTOR, and STRING (the S5UBRs) [1)
57 7.5.4 IL1ST, IVECTOR, IUVECTOR, and ISTRING [I]
58 7.5.5 FORM and IFORM

List of Sections

The MDL Programming Language

59 7.6 Unique Properties of Primitive TYPEs
59 7.6.1 LIST (the PRIMTYPE) [1]

59 7.6.1.1 PUTREST [I]

59 7.6.1.2 CONS

60 7.6.2 "Array” PRIMTYPEs [I]

60 7.6.2.1 BACK [1]

60 7.6.2.2 TOP [1)

60 7.6.3 “Vector” PRIMTYPEs

60 7.6.3.1 GROW

61 7.6.3.2 SORT

63 7.6.4 VECTOR (the PRIMTYPE) [I]
63 7.6.5 UVECTOR (the PRINTYPE) [1]
63 7.6.5.1 UTYPE [I]

64 7.6.5.2 CHUTYPE [1]

64 7.6.6 STRING (the PRIMTYPE) and CHARACTER [I]
65 7.6.6.1 ASCII [I]

65 7.6.6.2 PARSE [I]

65 7.6.6.3 LPARSE [1]

65 7.6.6.4 UNPARSE [1]

65 7.6.7 BYTES

66 7.6.8 TEMPLATE

66 7.7 SEGHENTs [1]

66 7.7.1 Representation (I}

67 7.7.2 Evaluation [1]

67 7.7.3 Examples [I]

68 7.7.4 Note on Efficiency [I]

69 7.7.5 SEGMENTs in FORMs [I]

69 7.8 Self-referencing Structures

69 7.8.1 Self-subset

70 7.8.2 Self-element

71 Chapter 8. Truth

71 8.1 Truth Values [I]

71 8.2 Predicates [I]

71 8.2.1 Arithmetic 1)

72 8.2.2 Equality and Membership [1]
73 8.2.3 Boolean Operators [1]

74 8.2.4 Object Properties [1]

5 8.3 COND [1]

75 8.3.1 Examples [1]

76 8.4 Shortcuts with Conditionals
76 8.4.1 AND and OR as Short CONDs
77 8.4.2 Embedded Unconditionals

78 Chapter 9. Functions

List of Sections

The MDL Programming Language

78 0.1 "OP1IONAL"™ [I]
79 9.2 TUPLEs

79 9.2.1 "TUPLE"™ and TUPLE (the TYPE) [1}

80 9.2.2 TUPLE {the SUBR) and ITUPLE

&1 9.3 "Aux" 1]

B2 0.4 QUOTEd arguments

82 9.5 "ARGS"

83 9.6 "CALL"

83 97 EVAL and "BIND®

84 9.7.1 Local Values versus ENVIRONMENTSs

84 0.8 ACTIVATION, “NAMC®, "ACT", AGAIN, and RETURN [I)
86 9.9 Argument List Summary

88 .10 APPLY [1]
a8 9.11 CLOSURE

89 Chapter 10. [ooping

&9 10.1 PROG and REPEAT [I]

81 10.1.1 Basic EVALuation [1)
90 10,12 AGATH and RECTURN in PROG and REPEAT [1]
90 1015 Examples [1]

1] 10.2 MAPF and MAPR: Basices [I)
92 10.2.1 MAPRT [1]

92 10.2.2 MAPR [1]

22 10.2.3 Examples [1]

94 10.5 More on MAPF and MAPR
94 10.3.1 MAPRLT

25 In52 HAPSTOP

95 10.5.3 MAPLEAVE

95 1031 Only two arguments
96 I0.3.5 STACKFORM

9% 104 GO and TAG

97 10.5 Looping versus Recursion

98 Chapter 11 Input/Output

98 1LY Conversion 1/O
08 HLLT Inpun

99 11111 READ

27 1LLL2 REARCIR
99 11.1.1.3 HEXICHR
29 HLE2 Output

99 11121 PRINT
99 1LL22 PRIN]
100 1L.1.2.3 PRINC
100 [1.1.2.4 TERPRI
oo 11.1.2.5 CRLF

List of Sections

100
101
1
102
102
103
103
103
103
104
104
105
105
106
106
106
106
106
106
106
107
107
107
107
108
108
109
109
109
e
1o
1o
1o
1
m
i
m
112
1
13
13
13
114
115
115

1.1.2.6 FLATSIZE
11.2 CHARNFL (the TYPL)
11.2.1 OPEN
11.2.2 OPEN-HR
11.2.3 CHANNEL (the SUBR)
11.2.4 FILE-EXISTS?
11.2.5 CLOSE
11.2.6 CHANLIST
1127 INCHAN and OUTCIIAN
11.2.8 Contents of CHANNELs
11.2.8.1 Owiput CHANHELs
11.2.8.2 Input CHANNELs
11.3 Fnd-of -File "Routine”
11.4 Imaged 1/0
1140 Input
11.4.1.1 READB
11.4.1.2 READSTRING
11.4.2 Omput
11.4.2.1 PRINTE
11.4.22 PRINTSTRING
11.44.2.3 THAGE
11.5 Dumped 1O
11.5.1 Output: GC-DUNP
11.5.2 Input: GC-READ
11.G SAVE Files
11.6.] SAVE
11.6.2 RESTORE
1.7 Other O Functions
11.7.1 LOAD
11.7.2 FLOAD
11.7.3 SHAHE
11.7.4 ACCESS
11.7.5 FILE-LENGTH
11.7.6 FILECOPY
10L.7.7 RESET
11.7.8 BUi OUT
11.7.9 REHAME
11.8 Terminal CHARNELs
11.8.1 ECHOPAIR
1182 TTIYECHO
I1.83 1YI
11.9 Intermal CHANKELs
11.10 The "HET® Device: the ARPA Network
11101 HETSTATE
11.10.2 NETACC

List of Sections

The MDL Programming Language

The MDL Programming Language

116
116
116
17
n7
uz
uz
1s
s
s
119

120
120
120
120
120
121
121
121
121
123

124
125
128
130
131
131
131
132
132
133
134
134
134
134
135
135
136

138
138

11.10.3 NETS

Chapter 12. Locatives

12.1 Obtaining Locatives
12.1.1 LLOC
12.1.2 GLOC
12.1.3 AT
12.1.4 GETPL and GETL
12.2 LOCATIVE?
12.3 Using Locatives
12.3.1 IN
12.3.2 SETLOC
12.4 Note on Locatives

Chapter 13. Association (Properties)

13.1 Associative Storage

13.1.1 PUTPROP

15.1.2 PUT

13.1.3 Removing Associations
13.2 Associative Relrieval

13.2.1 GETPROP

13.2.2 GET
13.3 Examples of Association
13.4 Examining Associations

Chapter 14. Data-type Declarations

14.1 Patierns

14.2 Examples

14.3 The DECL Syntax

14.4 Good DECLs

14.5 Clobal DECLs
14.5.1 GDECL and MANIFEST
14.5.2 MANIFEST? and UNMANIFEST
14.5.3 GBOUND?

14.6 NEWTYPE {again)

14.7 Controlling DECL Checking
14.7.1 DECL-CHECK
14.7.2 SPECIAL-CHECK and SPECIAL-MOODE
14.7.3 GET-DECL and PUT-DECL
14.7.4 DECL?

14.8 OFFSET

14.9 The RSUBR DECL

Chapter I5. Lexical Blocking

15.1 Basic Considerations

List of Sections

11

12

139
139
140
140
140
141
141
142
142
142
143
143
143
143
143
144
144
144

146
146
147
147
148
148
148
148
148
150
150
150
151
151

152
152
152
153
153
153
155
156
156
156
157

15.2 OBLISTs
15.2.1 OBLIST Names
i5.2.2 MDBLIST
15.2.3 OBLIST?
15.3 READ and OBLISTs
154 PRINT and OBLISTs
15.5 Initial Siate
15.6 BLOCK and ENDBLOCK
15.7 SUBRs Associated with Lexical Blocking
15.7.1 READ (again)
15.7.2 PARSE and LPARSE (again)
15.7.3 LOOKUP
15.7.4 ATOM
15.7.5 REMOVE
15.7.6 INSERT
15.7.7 PNAME
15.7.8 SPNAME
15.8 Example: Another Solution to the INC Problem

Chapter 16. Errors, Frames, etc.

16.1 LISTEN
16.2 ERROR
16.3 FRAME (the TYPE)
16.3.1 ARGS
16.3.2 FUNCT
16.3.3 FRAME (the SUBR)
16.3.4 Examples
16.4 ERRET
16.5 RETRY
16.6 UNWIND
16.7 Control-GG (*6)
16.8 Control-5 (*5)
16.9 OVERFLOW

Chapter 17. Macro-operations

17.1 READ Macros
17.1.1 % and %%
17.1.2 LINK
17.1.3 Program-defined Macro-characters
17.1.3.1 READ (finally)
17.1.5.2 Examples
17.1.3.3 PARSE and LPARSE (finally)
17.2 EVAL Macros
17.2:1 DEFMAC and EXPAND
17.2.2 Example

List of Sections

The MDL Programming Language

The MDL Programming Language

159 Chapter 18. Machine Words and Bits
159 I18.1 WORDs

160 18.2 BITS

160 I18.3 GETBITS

161 18.4 PUTBITS

161 I8.5 Bitwise Boolean Operations

162 I8.6 Bitwise Shifting Operations

163 Chaprer 19. Compiled Programs
163 19.1 RSUBR (the TYPE)

163 19.2 The Reference Vector
164 19.3 RSUBR Linking

164 19.4 Pure and Impure Code

165 19.5 TYPE-C and TYPE-W
165 19.6 RSUBR (the SUBR)
166 19.7 RSUBR-ENTRY

166 19.8 RSUBRs in Files
167 19.9 Fixups

169 Chapter 20. Coroutines
169 20.1 PROCESS (the TYPE)
170 20.2 STATE of a PROCESS

170 20.3 PROCESS (the SUBR)

170 20.4 RCSUME

17 20.5 Swirching PROCESSes

171 20.5.1 Starting Up a New PROCESS
171 20.5.2 Top-level Return

172 20.5.3 Symmetric RESUMEing

173 20.6 Example
173 20.7 Other Coroutining Features

173 20.7.1 BREAK-SEQ

174 20.7.2 MAIN

174 20.7.3 ME

174 20.7.4 RESUMER

174 20.7.5 SUICIDE

175 20.7.6 I1STEP

175 20.7.7 FREE-RUN

175 20.8 Sneakiness with PROCESSes

176 20.9 Final Notes

177 Chapter 21. Interrupts

177 211 Definitions of Terms
178 21.2 EVENT
179 21.3 HAKDLER (thve SUBR)

179 21.4 OFF

List of Sections

14

180
180
181
181
182
182
183
183
184
184
185
185
186
186
187
187
187
187
188
188
189
189
189
189
190
191
191
191

192
192
193
194
194
194
194
195
195
196
198
199
199
199
199

21.5 IHEADER and HANDLER (the TYPEs)
21.5.1 THEADER
21.5.2 HANDLER
21.6 Other SUBRs
21.7 Priorities and Interrupt Levels
21.7.1 Interrupt Processing
21.7.2 INT-LEVEL
21.7.3 DISHISS
21.8 Specific Interrupts
21.8.1 *CHAR" reccived
21.8.2 "CHAR™ wanted
21.8.3 "CHAR" for new line
21.8.4 "&C"
21.8.5 "DIVERT-AGC"
21.8.6 "CLOCK™
21.8.7 "BLOCKED"
21.8.8 "UNBLOCKED"
21.8.9 "READ"™ and "WRITE"
21.8.10 *SYSDOWN®
2L.8.11 "ERROR™
21.8.12 "1PC"
21.8.13 "INFERIOR"
21.8.14 "RUNT" and "REALT"
21.8.15 "Dangerous” Interrupts
21.9 User-Defined Interrupts (INTERRUPT)
21.10 Waiting for Interrupts
21.10.1 HANG
21.10.2 SLEEP

Chapter 22. Storage Management

22.1 Movable Garbage-collecied Storage
22.1.1 Stacks and Other Internal Vectors
22.2 lmmovable Storage
22.2.1 Garbage-collected: FREEZE
22.2.2 Non-garbage-collected: STORAGE (the PRIMTYPE)
22.3 Other Storage
22.4 Garbage Collection: Details
225 6C
22.6 BLOAT
22.7 BLOAT-STAT
22.8 GC-HON
22.9 Related Subroutines
22.9.1 SUBSTITUTE
22.9.2 PURIFY

List of Sections

The MDL Programming Language

The MDL Programming Language

201
201
201
202
202
202
203
203
203
203

204
204
205
207
208
208
208
209
209
21
225
258
260

265

267

271

Chapter 23. MDL as a System Process

23.1 TIHE

23.2 Names

23.3 Exits

234 Inter-process Communication
23.0.1 SEND and SEND-WAIT
2342 The "IPC" Interrupt
23.4.3 IPC-OFF
23.-0.41 1PC-ON
23.4.5 DEHSIG

Chapter 24. Fificiency and Tastefulness
24.1 FfTiciency
24.1.1 Example
24.2 Creating a LIST in Forward Order
213 Read-only Free Variables
244 Glnhal and Local Values
215 Making Offsets for Arrays
24.6 Tables
24.7 Nesting
Appendix 1. A Look Inside
Appendix 2. Predefined Subroutines
Appendix 3. Predeflined Types
Appendix 4. Error Messages
Appendix 5. Initial Settings
Reflerences

Topic Index

Nawme Index

List of Sections

15

16 The MDL Programming Language

Chapter 1. Basic Interaction

The purpose of this chapter is 1o provide you with that minimal amount of information needed to
experiment with MDIL while reading this document. It is strongly recommended that you do
experiment, especially upon reaching chapter 5 (Simple Functions).

L.l Loading MDL [I]

First, catch your rabhit. Somchow get the interpreter running - the program in the file SYS:T3 MDL

in the ITS version or SYS:MDL.SAV in the Tenex version or S5YS:MDL.EXE in the Tops-20 version.

The intecpreter will first type out some news relating to MDL, if any, then type
ILISTEMING-AT-LEVEL 1 PROCESS 1

and then wait for you to type something.

The programn which you are now running is an interpreter for the language MDL. All it knows how
to do is interpret MDL expressions. There is no special "command language™ you communicate
with the program -- make it do things for you - by actually typing legal MDL expressions, which it
then interprets. Everything you can do at a terminal can be done in a program, and vice versa, in
exactly the same way.

The program will bie referred 1o as just "MDL" (or “the interpreter”) from here on. There is no
ambiguity, since the program is just an incarnation of the concept "MDL".

1.2. Typing [1]

Typing a character a1t MDL normally just causes that character to be echoed (printed on your
terminal) and remiembered in a buffer. The only characters for which this is normally not true act
as follows:

Typing $ (ESC) canses MDL 1o echo dollar-sign and causes the contents of the buffer (the characters

1-12 Basic Interaction

SE— =

The MDL Programming Language 17

which you've typed) to be interpreted as an expression(s) in MDL. When this interpretation is done,
the result will be printed and MDL will wait for more typing. ESC will be represented by the glyph
$ in this document.

Typing the rubout character (DEL in the ITS and Tops-20 versions, control-A in the Tenex version)
causes the last character in the buffer -- the one most recently typed — to be thrown away (deleted).
If you now immediately type another rubout, once again the last character is deleted -- namely, the
second most recently typed. Etc. The character deleted is echoed, so you can see what you're doing.
On some “display” terminals, rubout will "echo” by causing the deleted character to disappear. If no
characters are in the buffer, rubout echoes as carriage-return line-feed.

Typing ~@ (control-atsign) deletes everything you have typed since the last §, and prints a carriage-
return line-feed.

Typing *0 (control-D) causes the current input buffer to be typed back out at you. This allows you
to see what you really have, without the confusing re-echoed characters produced by rubout.

Typing ~L (control-L) produces the same effect as typing "D, except that, if your terminal is a
"display” terminal (for example, IMLAC, ARDS, Datapoint), it first clears the screen.

Typing “G (control-G) causes MDL to stop whatever it is doing and act as if an error had occurred
(section 1.4). “G is generally most useful for temporary interruptions to check the progress of a
computation. ~G is "reversible” - that is, it does not destroy any of the "state” of the computation it
interrupts. To "undo” a *6, type the characters

<ERRET T>%
(This is discussed more fully far below, in section 16.4.)

Typing ~S (control-S) canses MDL to throw away what it is currently doing and return to a normal
“listening” state. (In the Tenex and Tops-20 versions, 0 also should have the same effect.) S is

generally most useful for aborting infinite loops and similar terrible things. “5S destroys whatever
is going on, and so it is not reversible.

Most expressions in MDL include "brackets” (generically meant) that must be correctly paired and
nested. If you cud your typing with the pair of characters ! $ (exclamation-point ESC), all currently
unpaired brackers (but not double-quotes, which bracket strings of characters) will automatically be
paired and interpretation will start. Without the !, MDL will just sit there waiting for you to pair
them. If you have improperly nested parentheses, brackets, etc., within the expression you typed, an
error will occur, and MDL will tell you what is wrong.

Once the brackets are properly paired, MDL will immediately echo carriage-return and line-feed, and
the next thing it prints will be the result of the evaluation. Thus, if a plain $ is not so echoed, you

1.2 Basic Interaction

18 The MDL Programming Language

have some expression unclosed. In that case, if you have not typed any characters beyond the §,
you can usually rub out the 5 and other characters back to the beginning of the unclosed expression.

Otherwise, what you have typed is beyond the help of rubout and “@; if you want to abort it, use
5

MDL accepts and distinguishes between upper and lower case. All "built-in functions” must be
referenced in upper case,

1.3. Loading a File [I]

If you have a program in MDL that you have written as an ASCII file on some device, you can
"load” it by typing

{FLOAD file>3%

where file is the name of the file, in standard operating-system syntax, enclosed in "s (double-
quotes). Omitted parts of the file naine are taken by default from the file name "DSK: INPUT >*

(in the ITS version) or "DSK: INPUT.MUD" (in the Tenex and Tops-20 versions) in the current disk
directory.

Once you type $, MDL will process the text in the file (including FLOADs) exactly as if you had
typed it on a terminal and followed it with §, except that "values” produced by the computations
are not printed. When MDL is finished processing the file, it will print "DONE",

When MDL starts running, it will FLOAD the file *"MUDDLE INIT" (ITS version) or "MUDDLE.INIT"
(Tenex and Tops-20 versions), if it exists.

1.4. Errors -- Simple Considerations [1]

When MDL decides for some reason that something is wrong, the standard sequence of evaluation is
interrupted and an error function is called. This produces the following terminal output:

*ERROR™

often-hyphenated-reason
function-in-which-error-occurred
LISTENING-AT-LEVEL integer PROCESS infeger

You can now interact with MDL as usual, typing expressions and having them evaluated. There

exist facilities (built-in functions) allowing you to find out what went wrong, restart, or abandon
whatever was going on. In particular, you can recover from an error - that is, undo everything but

1.2-14 Basic Interaction

The MDL Programming Language i9

side effects and return to the initial typing phase - by typing the following first line, to which
MDL will respond with the second line:

CERRET>%
LISTENTNG-AT-LEVEL 1 PROCESS 1

If you type the following first line while still in the error state (before <ERRETY), MDL will print, as
shown. the arguments (or “parameters” or “inputs” or “independent variables”) which gave
indigestion to the unhappy function:

CARGS {FRAME <FRAME>>>%
[arguments to unhappy function]

This will be explained by and by.

1.4 Basic Interaction

29 The MDL Programming Language

Chapter 2. Read, Evaluate, and Print

2.1. General [1]

Once you type 3 and all brackets are correctly paired and nested, the current contents of the input
buffer go through processing by three functions successively: first READ, which passes its output to
EVAL ("evaluate”). which passes its output to PRINT, whose output is typed on the terminal.

[Actually, the scquence is more like READ, CRLF, EVAL, PRIN1, CRLF (explained in chapter 11}
MDL gives you a carriage-return line-feed when the READ is complete, that is, when all brackets are
paired.]
Functionally,

READ: printable representations --> MDL ob jects

EVAL: MDL objects --> MDL ob jects

PRINT: MDL objects --> printable representations
That is, READ takes ASCII text, such as is typed in at a terminal, and creates the MDL ob jects

represented by rhat text. PRINT takes MDL ob jects, creates ASCII text representations of them, and

types them out. EVAL, which is the really important one, performs transformations on MDL
ob jects.

2.2. Philnsophy (TYPCs) [1]

In a general sense. when you are interacting with MDL, you are dealing with a world inhabited only
by a particular set of objects: MDL ob jects.

MDL objects are best considered as abstract entities with abstract properties. The properties of a
particular MDL object depend upon the class of MDL objects to which it belongs. This class is the

2-.22 Read, Evaluate, and Print

e

it

The MDL Programming Language 21

TYPE of the MDL object. Every MDL object has a TYPE, and every TYPE has its own peculiarities.
There are many different TYPEs in MDL: they will gradually be introduced below, but in the
meantime here is a representative sample: SUBR (the TYPE of READ, EVAL and PRINT), FSUBR, LIST,
VECTOR, FORM, FUNCTION, etc. Since every object has a TYPE, one often abbreviates "an ob ject of
TYPE type” by saying "a type".

The laws of the MDL world are defined by EVAL. In a very real sense, EVAL is the only MDL ob ject
which "acts”, which "does something”. In "acting”, EVAL is always "following the directions” of some
MDL object. Every MDL object should be looked upon as supplying a set of directions to EVAL;
what these directions are depends heavily on the TYPE of the MDL ob ject.

Since EVAL is so ever-present, an abbreviation is in order: “evaluates to something” or "EVALs to

something” should be taken as an abbreviation for "when given to EVAL, causes EVAL to return
something™.

As abstract entitics, MDL objects are, of course, not "visible”. There is, however, a standard way of
representing abstract MDL objects in the real world. The standard way of representing any given
TYPE of MDL object will be given below when the TYPE is introduced. These standard
representations are what READ understands, and what PRINT produces.

2.3. Example (TYPE FIX) [1]

1%

The following has occurred:

First. READ recognized the character 1 as the representation for an object of TYPE FIX, in particular
the one which corresponds to the integer one. (FIX means integer, because the decimal point is
understood always to be in a fixed position: at the right-hand end.) READ built the MDL ob ject
corresponding to the decimal representation typed, and returned it.

Then EVAL noted that its input was of TYPE FIX. An object of TYPE FIX evaluates to itself, so
EVAL returned its input undisturbed.

Then PRINT saw that its input was of TYPE FIX, and printed on the terminal the decimal character
representation of the corresponding integer.

22-23 Read, Evaluate, and Print

22 The MDL Programming Language

2.4. Example (TYPE FLOAT) [I]

1.0%

What went on was entircly analogous to the preceding example, except that the MDL ob ject was of
TYPE FLOAT. (FLOAT means a real number (of limited precision), because the decimal point can float
around to any convenient position: an internal exponent part tells where it “really” belongs.)

2.5. Example (TYPE ATOHM, PHNAME] [I]

GCORGLS
GEORGE

This time a lot more happened.

READ noted that what was typed had no special meaning, and therefore assumed that it was the
representation of an identifier, that is, an object of TYPE ATOM. ("Atom” means more or less
indivisible.) READ thercfore attempted to look up the representation in a table it keeps for such
purposes [a LIST of OBLISTs, available as the local value of the ATOM OBLIST}: IF READ finds an
ATOM in its table corresponding to the representation, that ATOM is returned as READ's value. If READ
fails in looking up, it creates a new ATOM, puts it in the table with the representation read [INSERT
into <1 .OBLIST> wusually], and returns the mew ATOM. Nothing which could in any way be
referenced as a legal "value” is attached to the new ATOM. The initially-typed representation of an
ATOM becomes its PNAME, meaning its name for PRINT. One often abbreviates “ob ject of TYPE ATOM

with PNAME name” by saying "ATOM name".
EVAL, given an ATOM, returned just that ATOM.

PRINT, given an ATOM, typed out its PNAME.

At the end of this chapter, the question "what is a legal PNAME™ will be considered. Further on, the
methods used (o attach values to ATOMs will be described.

2.6. FIXes. FLOATs. and ATOMs versus READ: Specifics

2.6.1. READ and F IXed-point Numbers

READ considers any grouping of characters which are solely digits to be a FIX, and the radix of the

2.4-261 Read, Evaluate, and Print

EE2 o 0= T n

=

The MDL Programming Language 2%

representation is decimal by default. A - (hyphen) immediately preceding such a grouping
represents a negative FIX. The largest FIX representable on the PDP-10 is two to the 35th power
minus one, or 34 359 738 367 (decimalk the smallest is one less than the negative of that number. If
you attempt o type in a FIX outside that range, READ converts it to a FLOAT; if a program you
write attempts to produce a FIX outside that range, an overflow error will occur (unless it is

- disabled).

The radix used by READ and PRINT is changeable by the user: however, there are two formats for

representations of FIXes which cause READ to use a specified radix independent of the current one.
These are as follows:

(1) If a group of digits is immediately followed by a period (.), READ interprets that group as
the decimal representation of a FIX. For example, 10. is always interpreted by READ as the
decimal representation of ten.

(2) If a group of digits is immediately enclosed on both sides by asterisks (%), READ interprets

that group as the octal representation of a FIX. For example, ®*10* is always interpreted by
READ as the octal representation of eight.

2.6.2. READ and PRINT versus FLOATing-point Numbers

PRINT can produce, and READ can understand, two different formats for objects of TYPE FLOAT.

The first is “decimal-point” notation, the second is “scientific” notation. Decimal radix is always
used for representations of FLOATs.

"Decimal-point” notation for a FLOAT consists of an arbitrarily long string of digits containing one
. {period) which is followed by at least one digit. READ will make a FLOAT out of any such ob ject,
with a limit of precision of one part in 2 to the 27th power.

"Scientific” notation consists of:

(1) a number,

(21 immediately followed by E or e (upper or lower case letter E),
(3) immediately followed by an exponent,

where a "number” is an arbitrarily long string of digits, with or without a decimal point (see
following notek and an “exponent” is up to two digits worth of FIX. This notation represents the
"number” to the “exponent” power of ten. Note: if the "number” as above would by itself be a FIX,
and if the "exponent” is positive, and if the result is within the allowed range of FIXes, then the

result will be a FIX. For example, READ understands 10E1 as 100 (2 FIX), but 10E-1 as 1.0000000 (a
FLOAT).

The largest-magnitude FLOAT which can be handled without overflow is 1.7014118E+38 (decimal
radix). The smallest-magnitude FLOAT which can be handled without underflow is .14693679E-38.

2.6, - 2.6.2 Read, Evaluate, and Print

24 The MDL Programming Language

2.6.3. READ and MPNAMEs

The question “what is a legal PNAME?" is actually not a reasonable one to ask: any non-empty string
of arbitrary characters can be the PNAME of an ATOM. However, some PNAMEs are easier to type to
READ than others. But even the question “what are easily typed PNAMEs>" is not too reasonable,
because: READ decides that a group of characters is a PNAME by default: if it can’t possibly be
anything eclse, it’s a PNAME. So, the rules governing the specification of PNAMEs are messy, and best
expressed in terms of what is not a PNAME. For simplicity, you can just consider any uninterrupted
group of upper- and lower-case letters and (customarily) hyphens to be a PNAME; that will always
work. If you are neither a perfectionist nor a masochist, skip to the next chapter.

2.6.3.1. Non-PNAMCs

A group of characters is not a PNAME if:
(1) 1t represents a FLOAT or a FIX, as described above - that is, it is composed wholly of digits,
or digits and a single . (period), or digits and a . and the letter E or e (with optional minus
signs in the right places).

(2) 11t begins with a . (period),

(3) It contains - if typed interactively -- any of the characters which have special interactive
effects: “@, D, L, *G, S, *0, $ (ESC). rubout.

(4) Tt contains a fermat character - space, carriage-return, line-feed, form-feed, horizontal tab,
vertical tab.

(5) Tt contains a , {comma) or a # (number sign) or a * (single quote) or a ; (semicolon) or a %
(percent sign).

(6) It contains any variety of bracket -- { or) or [or Jor <or > or {or Jor"™.
In addition. the character \ (backslash) has a special interpretation, as mentioned below. Also, the
pair of characters !- (exclamation-point hyphen) has an extremely special interpretation, which you
will reach at chapter 15.
The characters mentioned in cases 4 through 6 are “separators” -- that is, they signal to READ that
whatever it was that the preceding characters represented, it's done now. They can also indicate the
start of a new ob ject’s representation (all the opening “brackets™ do just that).

2.6.3.2. Examples

The following examples are not in the "standard format™ of “line typed in$ resull printed”, because
they are not. in some cases, complete ob jects; hence, READ would continue waiting for the brackets to

2.6.3 -2.6.3.2 Read, Evaluate, and Print

ng
to
e,
be
ast
ed
¥s

ts,
us

ve

he
u

at
he

to

nt

The MDL Programming Language 25

be clased. In other cases, they will produce errors during EVALuation if other -- currently irrelevant
-- conditions are not met. Instead, the right-hand column will be used to state just what READ
thought the input in the left-hand column really was.

ABCSY an ATOM of PNAME ABC

abck an ATOM of PNAME abc

ARBITRARILY-LONG-PNAMES an ATOM of PNAME ARBITRARILY-LONG-PNAME

1.2345% a FLOAT, PRINTed as 1.2345000

1.2.345% an ATOM of PNAME 1.2.345

A.or .B% an ATOM of PNAME A.or.B

-A.or.BS not an ATOM, but (as explained later) a FORM containing
an ATOM of PNAME A.or.B

MORE THAN ONESR three ATOMs, with PNAMEs MORE, and THAN, and ONE

ab{cds an ATOM of PNAME ab, followed by the start of something

else (The something else will contain an ATOM of PNAME
beginning cd.)

123450343 an ATOM of PNAME 12345A34 (If the A had been an E, the
ob ject would have been a FLOAT.)

2.6.3.3. \ (Backslash} in ATOMs

If you have a strange, uncontrollable compulsion to have what were referred to as "separators” above
as part of the PNAMEs of your ATOMs, you can do so by preceding them with the character \
(backslashl. \ will also magically turn an otherwise normal FIX or FLOAT into an ATOM if it appears
amongst the digits. In fact, backslash in front of any character changes it from something special
to "just annther characier” (including the character \). It is an escape character.

Wihen PRINT confronts an ATOM which had to be backslashed in order to be an ATOM, it will
dutifully type out the required \s. They will not, however, necessarily be where you typed them;
they will instcad be at those positions which will cause READ the least grief. For example, PRINT will
type out a PNAME which consists wholly of digits by first typing a \ and then typing the digits - no
atter where you originally typed the \ (or \s).

2.6.3.2 - 2633 Read, Evaluate, and Print

26 The MDL Programming Language

2.6.3.4. Examples of Awful ATOMs

The following examples illustrate the amount of insanity that can be perpetrated by using \. The
format of the examples is again non-standard, this time not because anything is unfinished or in
error, but because commenting is needed: PRINT doesn't do it full justice.

a\ one\ and\ a\ two$ one ATOM, whose PNAME has four spaces in it

1234456789% an ATOM of PNAME 123456789, which PRINTs as
4123456789

123N 5 an ATOM of PNAME 123space, which PRINTs as \123\ ,

with a space on the end

AR an ATOM whose PNAME is a single backslash

2.65.4 Read, Evaluate, and Print

e

I—— 7

EE

he
in

as

it

The MDL Programming Language 27

Chapter 3. Built-in Functions

3.1. Representation [I]

Up to this point, all the objects we have been concerned with have had no internal structure
discernible in MDL. While the characteristics of objects with internal structure differ greatly, the
way READ and PRINT handle them is uniform, to wit:

READ, when applicd to the representation of a structured ob ject, builds and returns an ob ject of
the indicated TYPE with elements formed by applying READ to each of their representations in
turn.

PRINT, when applied to a structured object, produces a representation of the object, with its
elements represented as PRINT applied to each of them in turn.

A MDL object which is used to represent the application of a function to its arguments is an ob ject
of TYPE FORM. Its printed representation is

< func arg-1 arg-2 .., arg-N »
where func is an object which designates the function to be applied, and arg-l through arg-N are
objects which designate the arguments or "actual parameters” or “inputs”. A FORM is just a
Structurced ob ject which is stored and can be manipulated like a LIST (its "primitive type” is LIST -

chapter 6). The application of the function to the arguments is done by EVAL. The usual meaning
of "function” (uncapitalized) in this document will be anything applicable to arguments.

3.2. Evaluation [I]
EVAL applied to a FORM acts as if following these directions:

First, examine the func (First element) of the FORM, If it is an ATOM, look at its "value” (global or
local. in that order -- see next chapter). If it is not an ATOM, EVAL it and look at the result of the

3-32 Built-in Functions

28 The MDL Programming Language

evaluation. If what you arc looking at is not something which can be applied to arguments,
complain (via the ERROR function). Otherwise, inspect what you are looking at and follow its

directions in evaluating or not evaluating the arguments (chapters 9 and 19) and then “apply the
function” -- that is, EVAL the body of the ob ject gotten from func.

3.3. Built-in Functions (TYPE SUBR, TYPE FSUBR) [1]

The built-in functions of MDL come in two varieties: those which have all their arguments EVALed
before opcrating on them (TYPE SUBR, for "subroutine”, pronounced “subber”) and those which have
none of their arguments EVALed (TYPE FSUBR, historically from Lisp (Moon, 1974), pronounced
“effsubber”). Collectively they will be calied F/SUBRs. although that term is not meaningful to the
interpreter. See appendix 2 for a listing of all F/SUBRs and short descriptions. The term

"Subroutine” will be used lierein to mean both F/SUBRs and compiled user programs (RSUBRs and
RSUBR-ENTRYs - chapter 19),

Unless otherwise stated, every MDL built-in Subroutine mentioned is of TYPE SUBR. Also, when it

is stated that an argument of a SUBR must be of a particular TYPE, note that this means that EVAL
of what is there must be of the particular TYPE.

Another convenient abbreviation which will be used is “the SUBR pname” in place of “"the SUBR which

is initially the ‘value’ of the ATOM of PNAME pname”. "The FSUBR pname” will be used with a similar
meaning.

3.4. Examples (+ and FIX; Arithmetic) [1]

<+ Z2 4 6%
12

The SUBR + adds numbers, Most of the usual arithmetic functions are MDL SUBRs: +, -, =, J,
MIN, MAX, MOD, SIN, COS, ATAN, SQRT, LOG, EXP, ABS. (See appendix 2 for short descriptions
of these) All except MOD, which wants FIXes, are indifferent as to whether their arguments are

FLOAT or FIX or a mixture. In the last case, they exhibit “contagious FLOATing™ one argument of
TYPE FLOAT forces the result to be of TYPE FLOAT.

{FIX 1.0>%
1

The SUBR FIX explicitly returns a FIXed-point number corresponding to a FLOATing-point number.
FLOAT does the opposite.

{+ 5 {= 7 333§

32-34 Built-in Functions

BE

is,
its

ed
ve

he

nd

it
AL

ch
ar

ns
re
of

Er.

The MDL Programming Language 29

11

CSQRT <+ <= 3 3> <* 4 4308
5.0

{- 53 2>}

0

<= 523

it

<MIN 1 2.03%
1.0

</ 11 7 2.00%
0.5

Note this last result: the division of two FIXes gives a FIX with truncation, not rounding, of the
remainder: the intermediate result remains a FIX until a FLOAT argument is encountered.

3.5. Arithmetic: Details

*+ = *. /. MIN, and MAX all take any number of arguments. doing the operation with the first
argument and the second, then with that result and the third argument, etc. If called with no
arguments, each returns the identity for its operation (0, 0, 1, 1, the greatest FLOAT, and the
least FLOAT, respectively): if called with one argument, each acts as if the identity and the argument
had been supplied. They all will cause an overflow or underflow error if any result, intermediate or

final. is too large or too small for the machine's capacity. (That error can be disabled, if necessary
-- section 16.9),

One arithmetic function that always requires some discussion is the pseudo-random-number
generator. MDL’s is named RANDOM, and it always returns a FIX, uniformly distributed over the
whole range of FIXes. 1f RANDOM is never called with arguments, it always returns the exact same
sequence of numbers, for convenience in debugging. "Debugged” programs should give RANDOM two
arguments on the first call, which become the seeds for a new sequence. Popular choices of new

seeds are the numbers given by TIME (which see), possibly with bits modified (chapter 18). Example
("pick a number from one to ten”):

£+ 1 <MOD <RANDOM> 103>%
4

54 -85 Built-in Functions

30 The MDL Programming Language

Chapter 4. Values of Atoms

4.1. General [1]

There are two kinds of “value” which can be attached to an ATOM. An ATOM can have either, both, or
neither, They interact in no way (except that alternately referring to one and then the other is
inefficicnt). These two values are referred to as the local value and the global value of an ATOM.
The terms “local” and “global” are relative to PROCESSes (chapter 20), not functions or programs.
The SUBRs which reference the local and global values of an ATOM, and some of the characteristics
of local versus global values, follow.

4.2. Global Values

4.2.1. SETG [1]
A global value can be assigned to an ATOM by the SUBR SETG ("set global’), as in

<SETG alom any?
where afar must EVAL to an ATOM, and any can EVAL to anything. EVAL of the second argument
becomes the global value of EVAL of the first argument. The value returned by the SETG is its
second argument, namely the new global value of atom.

Examples:

{SETG FOO <SETG BAR 500>>3%
500

The above made the global values of both the ATOM FOO and the ATOM BAR equal to the FIXed-point
number 500.

¢{SETG BAR F00>%

4-421 Values of Atoms

nt
its

nt

The MDL Programming Language &

FOO

That made the global value of the ATOM BAR equal to the ATOM F0O.

4.2.2. GVAL [1]
The SUBR GVAL ("global value”) is used to reference the global value of an ATON.

CGVAL =zfom?»

returns as a value the global value of afom. If afom does not evaluate to an ATOM, or if the ATOM to
which it evaluates has no global value, an error occurs.

GVAL applicd to an ATOM anywhere, in any PROCESS, in any function, will return the same value.
Any SETG anywhere changes the global value for everybody. Global values are context-independent.

READ understands the character , (comma) as an abbreviation for an application of GVAL to

whatever follows it. PRINT always translates an application of GVAL into the comma format. The
following are ahsolutely equivalent:

Lalom <BVAL alom>»

Assuming the examples in section 4.2.1 were carried out in the order given, the following will
evaluate as indicated:

 FO0%

500

<GVAL FO0O0>%
500

,BARS

FOO

+ +BARS

500

4.2.3. Note on SUBRs and FSUBRs
The initial GVALs of the ATOMs used to refer to MDL “built-in™ Subroutines are the SUBRs and FSUBRs

which actually get applied when those ATOMs are referenced. If you don't like the way those
supplied routines work, you are perfectly free to SETG the ATOMs to your own versions.

421-423 Values of Atoms

32 The MDL Programming Language

424 GUNASSIGN
{GUNASSIGN atom?

("global unassign’) causes afom 1o have no assigned global value, whether or not it had one
previously. The storage used for the global value can become free for other uses.

4.3. Local Values

435.1. SET [1]

The SUBR SET is used to assign a local value to an ATOM. Applications of SET are of the form
¢SET atom any>

SET returns EVAL of any just like SETG.

Examples:

¢SET BAR <SET FOO 100>>%
100

Both BAR and FOO have been given local values equal to the FIXed-point number 100.

<SET FOO BAR>$S
BAR

FOO has been given the local value BAR.

Note that neither of the above did anything to any global values FOO and BAR might have had.

4.3.2. LVAL [1]

The SUBR used to extract the local value of an ATOM is named LVAL. As with GVAL, READ
understands an abbreviation for an application of LVAL: the character . (period), and PRINT
produces it. The following two representations are equivalent, and when EVAL operates on the
corresponding MDL object, it returns the current local value of atom:

{LVAL afom> .atom

424432 Values of Atoms

1e

iT

The MDL Programming Language &

The local value of an ATOM is unique within a PROCESS. SETting an ATOM in one PROCESS has no
effect on its LVAL in another PROCESS, because each PROCESS has its own "control stack” (chapters

20 and 22).

Assume all of the previous examples in this chapter have been done. Then the following evaluate as
indicated:

.BARS

100

<LVAL BAR>S
100

.FOO3

BAR

. .FOOS

FOO

4.3.3. UNASSIGN

CUNASSIGN atom>

causes atom to have no assigned local value, whether or not it had one previously.

4.4. VALUE
VALUE is a SUBR which takes an ATOM as an argument, and then:

(1) if the ATOM has an LVAL, returns the LVAL;
(2) if the ATOM has no LVAL but has a GVAL, returns the GVAL:;
(3) if the ATOM has neither a GVAL nor an LVAL, calls the ERROR function,

This order of seeking a value is the opposite of that used when an ATOM is the first element of a
FORM. The latter will be called the G/LVAL, even though that name is not used in MDL.

Example:

CUNASSIGN A>3
A

{SETG A 1>%

1

{VALUE A>$

1

{SET A 2>%

432 -44 Values of Atoms

34

2

{VALUE A>S
2

,AS

1

44

The MDL Programming Language

Values of Atoms

. e s

The MDL Programming Language 15

Chapter 5. Simple Functions

5.1. General [1)

The MDL cquivalent of a "program” (uncompiled) is an object of TYPE FUNCTION. Actually, full-

blown "programs” are usually composcd of sets of FUNCTIONs, with most FUNCTIONs in the set acting
as “subprograms”.

A FUNCTION may be considered 1o be a SUBR or FSUBR which you yourself define. It is "run” by
using a FORM 10 apply it to arguments (for example, <function arg-1 arg-2 ...), and it always
“returns” a single object. which is used as the value of the FORM that applied it. The single ob ject
may be ignored by whatever “ran” the FUNCTION - equivalent to “returning no value” - or it may be
a structurcd object confaining many ob jects - equivalent to “returning many values”. MDL is an
“applicative” language. in contrast to “imperative” languages like Fortran. In MDL it is impossible
to return values through arguments in the normal case; they can be returned only as the value of the
FORM itself. or as side effects to structured ob jects or global values.

In this chapter a simple subset of the FUNCTIONs you can write is presented, namely FUNCTIONs
which “act like” SUBRs with a fixed number of arguments. While this class corresponds to about 907
of the FUNCTIONs ever written, you won't be able to do very much with them until you read further
and learn more about MDL's control and manipulatory machinery. However, all that machinery is
Just a bunch of SUBRs and FSUBRs, and you already know how to "use” them; you just need to be told
what they do. Once you have FUNCTIONs under your belt, you can immediately make use of
everything presented from this point on in this document. In fact, we recommend that you do so.

5.2. Representation [I]

A FUNCTION is just another data object in MDL, of TYPE FUNCTION. It can be manipulated like any
other data object. PRINT represents a FUNCTION like this:

FFUNCTION (elements)

5-52 Simple Functions

———————

36 The MDL Programming Language

that is. a number sign, the ATOM FUNCTION, a left parenthesis, each of the elements of the
FUNCTION, and a right parenthesis. Since PRINT represents FUNCTIONs like this, you can type them
in to READ this way. (But there are a fow TYPEs for which that implication is false.)

The elemcenis of a FUNCTION can be "any number of anythings”; however, when you use a FUNCTION
(apply it with a FORM), EVAL will complain if the FUNCTION does not look like

PFUNCTION (act:atom argumentsiist decl body)

where act and dec! are aptional (section 9.8 and chapter 14k body is at Jeast one MDL ob ject - any
old MDI. oh ject: and, in this simple case, arguments is

(any number of ATOMSs)

that is. something RFAD and PRINTed as: left parenthesis, any number - including zero — of ATOMs,
right parenthesis. (This is actually a normal MDL ob ject of TYPE LIST, containing only ATOMs.)

Thus, these FUNCTTONs will canse errors - but only when used:

#FUNCTION () == no argument LIST or body
#FUNCTION ((1) 2 7.3) == non-ATOM in argument LIST
#FUNCTION ((A B C D)) == no body

#FUNRCTION (<+ 1 2> A C) == no argument LIST

These FUNCTIONs will never cause errors because of forman:

AFUNCTION (() 1 2 3 4 5)

FFUNCTION ((A) A)

SFUNCTION (O)OXO)O OO

#FUNCTION ((A B C D EEF G H HIYA) <+ .A LHIYAY)
#FUNCTION ((Q) <SETG € <= .Q »yC33 <+ <MOD ,C 3> .Q))

and the last two actually do something which might be useful. (The first three are rather
pathological, but legal.)

5.3. Application of FUNCTIONs: Binding [I]

FUNCTIONs. like SUBRs and FSUBRs. are applied using FORMs. So,

CEFUNCTION ((X) <= .X .X>) 558
25

applied the indicated FUNCTION to § and returned 25.

52-53 Simple Functions

e ——

The MDL Programming Language 57

What EVAL does when applying a FUNCTION is the following:

(1) Create a “world” in which the ATOMs of the argument LIST have been SET to the values
applicd to the FUNCTION, and all other ATOMs have their original values. This is called
"binding".

-= In the above, this is a "world” in which X is SET to 5.

(2) In that new “world”, evaluate all the objects in the body of the FUNCTION, one after the
other, from first to last.

= In the above, this means evaluate <* .X .X> in a "world” where X is SET 10 5.

(3) Throw away the “world” created, and restore the LVALs of all ATOMs bound in this
application of the FUNCTION to their originals (if any). This is called 'unhlnding'.

- In the above, this simply gives X back the local value, if any, that it had before binding.

(4) Return as a value the last value obtained when the FUNCTION's body was evaluated in step
(2).

== In the above, this means return 25 as the value.

The “world™ mentioned above is actually an object of TYPE ENVIRONMENT. The fact that such
“worlds” are separate from the FUNCTIONs which cause their generation means that all MDL
FUNCTIONs can be used recursively.

The only thing that is at all troublesome in this sequence is the effect of creating these new
“worlds”, in particular. the faet that the previous world is completely restored. This means that if,
inside a FUNCTION, you SET one of its argument ATOMs to something, that new LVAL will not be
remembered when EVAL leaves the FUNCTION, However, if you SET an ATOM which is not in the
argument LIST (or SETG any ATOM) the new local (or global) value will be remembered. Examples:

CSET X 0>%

0

CFFUNCTION ((X) CSET X <* .X .X») 5%
25

- X3

0

53 Simple Functions

T ——

38 The MDL Programming Language

On the other hand, |

CSET Y 0%

o

CAFUNCTION ((X) <SET Y <= .X .X>>) 5%
25

Y5

25

By using PRINT as a SUBR, we can "see” that an argument’s LVAL really is changed while EVALuating
the body of a FUNCTION:

{SET X 5>%

5

CFFUNCTION ((X) <PRINT .X> <+ .X 10>) 35§
3 13

XS

L]

The First number after the application FORM was typed out by the PRINT; the second is the value of
the application.

Remembering that LVALs of ATOMs not in argument LISTs are not changed, we can reference them
within FUNCTIONs, as in

<SET I 100>%

100

CAFUNCTION ((Y) </ .I .Y>) 5%
20

ATOMs used like Z or Y in the ahove examples are referred to as "free variables”. The use of free

variables, while often quite convenient, is rather dangerous unless you know exactly how a
FUNCTION will always be used: if a FUNCTION containing free variables is used within a FUNCTION
within a FUNCTION within . . ., one of those FUNCTIONs might just happen to use your free variable
in its argument LIST, binding it to some unknown value and possibly causing your use of it to be
erroneous. Please note that “dangerous”, as used above, really means that it may be effectively
impossible (1) for other people to use your FUNCTIONs, and (2) for you to use your FUNCTIONs a
month (two weeks?) later.

5.3 Simple Functions

B o 0 ZL0 o

— e o i iy

s e

The MDL Programming Laﬁguage 39

5.4. Defining FUNCTIONs (FUNCTION and DEF INE) [1]

Obviously. typing #FUNCTION (...) all the time is neither reasonable nor adequate for many
purposes. Normally, you just want a FUNCTION to be the GVAL of some ATOM -- the way SUBRs and
FSUBRs are -- s0 you can use it repeatedly (and recursively). Note that you generally do not want a
FUNCTION to be the LVAL of an ATOM; this has the same problems as free variables. (Of course, there
are always cascs where you are being clever and want the ATOM to be re-bound . . . J

One way to "name” a FUNCTION is

<SETG SQUARE #FUNCTION ((X) <= .X .X>)>$
FFUNCTION ((X) <= .X .X»)

So that

<SQUARE 5>%
25

<SQUARL 100>%
10000

Another way, which is somewhat cleaner in its typing:

<SETG SQUARE <FUNCTION (X) <= .X .X)>>$
#FUNCTION ((X) <* .X .X»)

FUNCTION is an FSUBR which simply makes a FUNCTION out of its arguments and returns the created
FUNCTION.

This. however, is generally the best way:

<DEFINE SQUARE (X) <= .X .X>>$
SQUARE

«SQUARES

#FFUNCTION ((X) <* .X .X>)

The last two lines immediately above are just to prove that DEFINE did the “right thing".

DEFINE is an FSUBR which SETGs EVAL of its first argument to the FUNCTION it makes from the rest
Of its arguments, and then returns EVAL of its first argument. DEFINE obviously requires the least
typing of the above methods, and is "best” from that standpoint. However, the real reason for using
DEFINE is the following: If EVAL of DEFINE's first argument already has a GVAL, DEFINE produces an
€rror. This helps tn keep you from accidently redefining things -- like MDL SUBRs and FSUBRs. The

SETG constructions should be used only when you really do want to redefine something. DEFINE will
be used in the rest of this document.

5.4 Simple Functions

F =

40 The MDL Programming Language

[Actually. if it is absolutely necessary to use DEFINE to “redefine” things, there is a "switch™ which
can be used: if the LVAL of the ATOM REDEFINE is T (or anything not of TYPE FALSE), DEFINE will
produce no errors. The normal state can be restored by evaluating <SET REDEFINE <>>. See
chapter 8.]

5.5. Examples (Comvments) [1]

Using SQUARE as defined above:

<DEFINE HYPOT (SIDE-1 SIDE-2)

:*This is a comment. This FUNCTION finds the
length of the hypotenuse of a right triangle
of sides SIDE-1 and SIDE-2."

¢SORT <+ ¢SQUARE .SIDE-1> (SQUARE .SIDE-2>>>>$
HYPOT
CHYPOT 3 45%
5.0

Note that carriage-returns, line-ferds, tabs, ete. are just separators, like spaces. A comment is any
single MDL object which follows a ; (semicolon). A comment can appear between any two MDL
objects. A comment is totally ignored by EVAL but remembered and associated by READ with the
place in the FUNCTION (or any other structured object) where it appeared. (This will become clearer
after chapter 13) The "s (doublc-quotes) serve to make everything between them a single MDL
object. whose TYPE is STRING (chapter 7). (SQRT is the SUBR which returns the square root of its
argument. It always returns a FLOAT))

A whimsical FUNCTION:

¢DEFINE OME (THETA) :"This FUNCTION always returns 1."
¢+ {SQUARLE <SIN .THETAS>
¢SQUARE <COS5 .THETA»>>>3
ONE
{ONE 533
0.94%9490%94
{ONE 0.23>%
0.99999999

ONE always returns (approximately) one, since the sum of the squares of sin(x) and cos(x) is unity
for any x. (SIN and COS always return FLOATs, and each takes its argument in radians. ATAN
(arctangent) returns its value in radians, Any other trigonometric function can be compounded
from these three.)

5.4-55 Simple Functions

et . i e —— ————————— =

-

s e e

T

an

rA

1y
IL
he
er

'L

ty
N

il

The MDL Programming Language 41

MDL doesn’t have a general "to the power™ SUBR, so let's define one using LOG and EXP (log base e,
and e to a power, respectivelyi again, they return FLOATSs).

CDEFINE =% (NUM PWR) <EXP <* .PMR <LOG .NUMD>>)S$
R

2 258

4.000000]

¢xx 5 3%

125.00000

<** 25 0.5

5.0000001

Two FUNCTIONs which use a single global variable (Since the GVAL is used, it cannot be rebound.):

C{DEFINE START () <SETG GV 0>>$
START

<DEFINE STEP () <SETG GV <+ ,GV 1>)>%
STEP

¢START>E

0

{STEP>$

1

{STEP>S

2

CSTEP>S

3

START and STEP take no arguments, so their argument LISTs are empty.

An interesting, but pathological, FUNCTION:

<DEFINE INC (ATH) <SET .ATM <+ ..ATM 13)>$
INC

<SET A 0338

0

CINC A>S

1

CINC A>S

2

A%

é

i:g takes an ATOM as an argument, and SETs that ATOM to its current LVAL plus 1. Note that inside
| + the ATOM ATM is SET to the ATOM which is its argument; thus ..ATM returns the LVAL of the

argument. However, there is a problem:

55 Simple Functions

42 The MDL Programming Language

<SET ATH 0>%
0
CINC ATH>S

[RROR*
ARG -WRONG-TYPE

-

LISTENTNG-AT-LEVEL 2 PROCESS 1
CARGS CFRAME <FRAME>>>$

[ATH 1]

The error occurred because (ATH was ATH, the argument to INC, and thus ..ATM was ATM also. We
really want the outermost . in ..ATM to be done in the “world" (ENVIRONMENT) which existed just
before INC was entered — and this definition of INC does both applications of LVAL in its own
“world”. Techniques for doing INC “correctly” will be covered below. Read on.

55 Simple Functions

Th

It

PI
fr

Bi
in

|

Lol

age

just

wn

—————— e i —— i e e

——

The MDL Programming Language "

Chapter 6. Data Types

6.1. Gencral 1]

A MDL object consists of two parts: its TYPE and its "data part” (appendix 1). The interpretation of
the "daia part” of an ob ject depends of course on its TYPE. The structural organization of an ob ject,
that is, the way it is organized in storage, is referred to as its "primitive type”. While there are
many different TYPEs of ob jects in MDL, there are fewer primitive types.

All structured objects in MDL are ordered sequences of elements. As such, there are SUBRs which
operate an all of them uniformly. as ordered sequences. On the other hand, the reason for having
different primitive types of structured ob jects is that there are useful qualities of structured ob jects
which arc mutually incompatible. There are, therefore, SUBRs which do not work on all structured
ob jects: these SUBRs exist to take full advantage of those mutually incompatible qualities. The

most-commonly-used primitive types of structured objects are discussed in chapter 7, along with
those special SUBRs operating on them.

It is very easy to make a new MDL object that differs from an old one only in TYPE, as long as the
primitive type is unchanged. It is relatively difficult to make a new structured ob ject that differs
from an old one in primitive type, even if it has the same elements.

Before talking any more about structured objects, some information needs to be given about TYPEs
in general.

6.2. Printed Representation [I]

There are many TYPEs for which MDL has no specific representation. There aren't enough different
kinds of brackets. The representation used for TYPEs without any special representation is

#lvpe representation-as-if-it- were-ils-primitive-type

READ will understand that format for any TYPE, and PRINT will use it by default. This

6-62 Data Types

44 The MDL Programming Language

representational format will be referred to below as "# notation”. It was used above to represent
FUNCTIONs.

6.3. SUBRs Related 1o TYPEs

6.3.1. TYPE [I]
CTYPE any>

returns an ATOM whose PNAME corresponds to the TYPE of any. There is no TYPE "TYPE". To type a
TYPE (aren’t homonyms wonderful?), just type the appropriate ATOM, like FIX or FLOAT or ATOM etc.
However, in this document we will use the convention that a metasyntactic variable can have lype

for a "data type”: for example, foo:type means that the TYPE of foo is ATOM, but the ATOM must be
something that the SUBR TYPE can return.

Examples:

L{TYPE 1%

FI1X

CTYPE 1.03%
FLOAT

<TYPE +>%
ATOM

<TYPE ,+>%
SUBR .

<TYPE GEORGE>%
ATOM

6.3.2. PRIMTYPE [1]

CPRIMTYPE any>

evaluates to the primitive type of any. The PRIMTYPE of any is an ATOM which also represents a
TYPE. The way an object can be manipulated depends solely upon its PRIMTYPE; the way it is

evaluated depends upon its TYPE.
Examples:
<PRIMTYPE 1>%

WORD
CPRIMTYPE 1.0>%

6.2 - 632 Data Types

nt

ra
te.

be

The MDL Programming Language 45

WORD

<PRIMTYPE ,+>$
WORD

C(PRIMTYPE GEORGE>$
ATOM

6.3.3. TYPEPRIM [1]

<TYPEPRIM type>

returns the PRIMTYPE of an ob ject whose TYPE is fype. type is, as usual, an ATOM used to designate a
TYPE.

Examples:

CTYPEPRIM FIX>S
WORD

CTYPEPRIM FLOATYS
WORD

CTYPEPRIM SUBR>S
WORD

CTYPEPRIM ATOM>S
ATOM

{TYPEPRIM FORM>S
LIST

6.3.4. CHTYPE [I]

CCHTYPE any typed

("change type”) returns a new object that has TYPE type and the same “data part” as any (appendix
1).

CCHTYPE (+ 2 2) FORM>S
<+ 2 2>

An error is generated if the PRIMTYPE of any is not the same as the TYPEPRIM of type. An error will
also be generated if the attempted CHTYPE is dangerous and/or senseless, for example, CHTYPEing a
FIX to a Supg. Unfortunately, there are few useful examples we can do at this point.

[CHTYPEing a FIX to a FLOAT or vice versa produces, in general, nonsense, since the bit formats for
FIXes and FLOATs are different. The SUBRs FIX and FLOAT convert between those formats. Useful

6.3.2-6.3.4 Data Types

46 The MDL Programming Language

obscurity: because of their internal representations on the PDP-10, <CHTYPE <(MAX> FIX> gives the
least possible FIX, and analogously for MIN.]

Passing note: "# notation” is just an instruction to READ saying "READ the representation of the
PRIMTYPE normally and (literally) CHTYPE it to the specified TYPE" [Or, if the PRIMTYPE is
TEMPLATE, "apply the GVAL of the TYPE name (which should be a TEMPLATE constructor) to the given
elements of the PRIMTYPE TEMPLATE as arguments.”]

6.4. More SUBRs Related 1o TYPEs

6.4.1. ALLTYPES
{ALLTYPES>

returns a VECTOR (chapter 7) containing just those ATOMs which can currently be returned by TYPE
or PRIMTYPE. This is the very "TYPE vector™ (section 22.1) that the interpreter uses: look, but don't
touch. No examples: try it. or see appendix 3.

6.4.2. VALID-TYPE?
{VALID-TYPE? aftom)

returns #FALSE () if afom is nol the name of a TYPE, and the same object that <TYPE-C aftom>
(section 19.5) returns if it is.

6.4.3. NEWTYPL

MDL is a type-extensible language, in the sense that the programmer can invent new TYPEs and use
them in every way that the predefined TYPEs can be used. A program-defined TYPE is called a
NEWTYPE. New PRIMTYPEs cannot be invented except by changing the interpreter; thus the TYPEPRIN
of a NEWTYPE must he chosen from those already available. But the name of a NEWTYPE (an ATOM of
course) can be chiosen freely - so long as it does not conflict with an existing TYPE name. More
importantly. the program that defines a NEWTYPE can be included in a set of programs for

manipulating objects of the NEWTYPE in ways that are more meaningful than the predefined SUBRs
of MDI..

Typically an object of a NEWTYPE is a structure that is a model of some entity in the real world - or

whatever world the program is concerned with — and the elements of the structure are models of
parts or aspects of the real-world entity, A NEWTYPE definition is a convenient way of formalizing

6.34-643 Data Types

o i

Ti

2 & C =S -

= em e g e e

. the

the
E is
iven

TYPE
fon't

I use
ed a
PRIH
M of
dore

for
UBRs

- or
Is of
zing

Ypes

The MDL Programming Language 5

this correspondence, of writing it down for all to see and use rather than keeping it in your head.
If the defining sct of programs provides functions for manipulating the NEWTYPE objects in all
ways that are meaningful for the intended uses of the NEWTYPE, then any other program that wants
to use the NEWIYPE can call the manipulation functions for all its needs, and it need never know or
care about the internal details of the NEWTYPE objects. This technique is a standard way of
providing madularity and abstraction,

For example, suppose you wanted to deal with airline schedules. If you were to construct a set of
programs that define and manipulate a NEWTYPE called FLIGHT, then you could make that set into a
standard package of programs and call on it to handle 2ll information pertaining to scheduled
airline flight<. Since all FLIGHTs would have the same quantity of information (more or less) and
you would want quick access to individual elements, you would not want the TYPEPRIM to be LIST.
Since the elements would be of various TYPEs, you would not want the TYPEPRIM to be UVECTOR --
nor its variations STRING or BYTES. The natural clivice would be a TYPEPRIM of VECTOR (although
you could gain space and lose time with TEMPLATE instead).

Now, the individual elements of a FLIGHT would, no doubt, have TYPEs and meanings that don't
change. The clements of a FLIGHT might be airline code, flight number, originating-airport code,
list of intermediate stops, destination-airport code, type of aircraft, days of operation, etc. Each and
every FLIGHT would have the airline code for its first element (say), the flight number for its second,
and so on. It is natural ta invent names (ATOMs) for these elements and always refer to the elements
by mame. For example. you could <SETG AIRLINE 1> or <SETG AIRLINE <OFFSET 1 FLIGHT>> --
and in either case <MANIFEST AIRLINEY so the compiler can generate more efficient code. Then, if
the lacal value of F were a FLIGHT, <AIRLINE .F> would return the airline code, and <AIRLINE .F
AA> would set the airline code to AA. Once that is done, you can forget about which element comes
first: all you nerd 1o know are the names of the of fsets.

The next step is 1o notice that, outside the package of FLIGHT functions, no one needs to know
whether ATRLINC is just an offset or in fact a function of some kind. For example, the scheduled
duration of a flight wmight not be explicitly stored in a FLIGHT, just the scheduled times of
departure and arrival. But. if the package had the proper DURATION function for calculating the
duration, then the call <CDURATION .F> could return the duration, no matter how it is found, In this
way the internal details of the package are conveniently hidden from view and abstracted away.

The form of NEWTYPE definition allows for the TYPEs of all components of a NEWTYPE to be declared
(chapter L1, for use both by a programmer while debugging programs that use the NEWTYPE and by
the compiler for gencrating faster code. It is very convenient to have the type declaration in the
NEWTYPE definition itself, rather than replicating it everywhere the NEWTYPE is used. (If you think
jl:i: declaration might be obtrusive while debugging the programs in the NEWTYPE package, when
inconsistent improvements are being made to various programs, you can either disassociate any
declaration from the NCWTYPE or turn of f MDL type-checking completely. Actually this declaration
is typically more useful 1o a programuier during development than it is to the compiler.)

CNEWTYPE afom lype>

6.4.3 Data Types

*

48 The MDL Programming Language

i I
returns afom, after causing it to become the representation of a brand-new TYPE whose PRIMTYPE is p
CTYPEPRIM fyvpe>, What NEWTYPE actually does is make afom a legal argument to CHTYPE and .

TYPEPRIM. (Nnte that names of new TYPEs can be blocked lexically to prevent collision with other i
names, just like any other ATOMs -- chapter 15) Objects of a NEWTYPE-created TYPE can be generated f
by creating an abject of the appropriate PRIMTYPE and using CHTYPE. They will be PRINTed i
(initially). and can be directly typed in, by the use of "# notation” as described above. EVAL of any

object whose TYPE was created by NEWTYPE is initially the object itself, and, initially, you cannot I
APPLY somcthing of a generated TYPE to arguments. But see below. '

Examples:

{NEWTYPE GARGLLC FIX>S ;
GARGLE 1
{TYPEPRIM GARGLE>S 1
WORD

¢SET A <CHTYPE 1 GARGLE>>S

#GARGLE =000000000001% i
<SET B 4GARGLE 100>% |
#GARGLE *000000000144%

{TYPE .R>%

GARGLE

{PRIMTYPE .B>S

WORD

6.4.4. PRINTTYPE, EVALTYPE and APPLYTYPE

CPRINTTYPE type how?

{EVALTYPE {ype how?)

CAPPLYTYPE [vpe how?
all return fype. after specifying how MDL is to deal with it.
These three SUBRs can be used to make newly-generated TYPEs behave in arbitrary ways, or to
change the characteristics of standard MDL TYPEs. PRINTTYPE tells MDL how to print fype,
EVALTYPL how to evaluate it, and APPLYTYPE how to apply it in a FORM.
how can be either a TYPE or something that can be applied to arguments.

If how is a TYPE, MDL will treat fype just like the TYPE given as how. how must have the same
TYPEPRIM as v pe.

If how is applicable, it will be used in the following way:

6.43-644 Data Types

Eis
and
her
ited
Ted
any
not

* to
Ype,

ime

Ipes

The MDL Programming Language 49

For PRINTTYPE, how should take one argument: the object being output. how should output
something without formatting (PRINI-stylek its result is ignored. (Note: how canmot use an output
SUBR on /ow’s own f) pe: endless recursion will result. OUTCHAN is bound during the application to
the CHANNEL in use. or to a pseudo-internal channel for FLATSIZE — chapter 11.) If how is the SUBR
PRINT, fyoe will receive no special treatment in printing, that is, it will be printed as it was in an
initial MDL or immediately after its defining NEWTYPE.

For EVALTYPE, how should take one argument: the object being evaluated. The value returned by
how will be iised as EVAL of the object. If how is the SUBR EVAL, type will receive no specio
treatinent in evaluation,

For APPLYTYPE, fow should take at least one argument. The first argument will be the ob ject being
applicd: the rest will be the ob jects it was given as arguments. The result returned by how will be
used as the result of the application. If how is the SUBR APPLY, type will receive no special
treatment in application to arguinents,

If any of these SUDRs is given only one argument, that is if how is omitted, it returns the currently

active how (a TYPL or an applicable object), or else #FALSE () if type is receiving no special
treatiient in that operation,

Unfortunately. these examples are Fully understandable only after you have read through chapter 11.

<DEFINE ROMAN-PRINT (NUMB)

<COND (<OR <L=7 .NUMB 0) <G? -NUMB 39993>
CPRINC <CHTYPE .NUMB TIMED>)
(1
CRCPRINT </ .NUMB 1000)> AL
<RCPRINT </ .NUMB 100> "ILINC I\D '\ND
CRCPRINT </ .NUMB 10> IEAY AV AT)

{RCPRINT -NUMB ISAYSATARRY &Y P3Y
ROMAN-PRINT

<DEFINE RCPRINT (MODN V)
<SET MOON <MOD .MODN 103>

CCOND (<==7 0 .MODN>)
(€==7 1 .MODN> <PRINC <1 .V)})
(¢==7 2 .MODN> <PRINC <1 .V>> <PRINC <1 V)
(¢==7 3 .MODN> CPRINC <1 .V>> <PRINC <1 .V>> <PRINC <1 .V>»>)
(<==7 4 .MODN> CPRINC <1 .V>> <PRINC <2 V)
(<==7 5 .MODN> <PRINC <2 .V>))
(<==7 6 .MODN> <PRINC <2 .V>) <PRINC <] V)
(€==7 7 .MODN> <PRINC €2 .V>) <PRINC <1 .V>> <PRINC <1 .V»>)

(¢==7 8 .MODN>
CPRINC <2 .V»)
{PRINC <1 .v>»»

6.4.4 Data Types

The MDL Programming Language

{PRINC <1 .V>>
<PRINC {1 .V3>)

(<==7 9 _HMODN> <PRINC <1 .V>> <PRINC <3 .V>>)>>$
RCPRINT

<PRINTTYPE TIME FIX> ;"fairly harmless but necessary here"$

TIME

{PRINTTYPE FIX ,ROMAN-PRINT> ;"hee hee!"$§
FIX

{+ 2 2>%

v

19845

HCHLXXXIV

<PRINTTYPE FIX ,PRINT>S

FIX

CNEWTYPE GRITCH LIST> ;“a new TYPE of PRIMTYPE LIST"S
GRITCH

{EVALTYPE GRITCH>S

#TALSE ()

CEVALTYPE GRITCH LIST> ;"evaluated like a LIST"S
GRITCH

CEVALTYPE GRITCH>S

LIST

PGRITCH (A <+ 1 2 3> '{SET A "ABC®">) :*Type in one.®$
#GRITCH (A 6 I\A I\B !\()

CNEWTYPE HARRY VECTOR> ;"a new TYPE of PRIMTYPE VECTOR"S
HARRY

CEVALTYPE HARRY #FUNCTION ((X) <1 .X>)>

:"When a HARRY is EVALed, return its first element.”$
HHARRY

PHARRY [1 2 3 478
1

CNEWTYPE WINNER LIST> ;"a TYPE with funny application®$
WINHER

<{APPLYTYPE WINMER>S

#FALSE ()

CAPPLYTYPE WINMER <FUNCTION (W "TUPLE® T) (!.¥ !.T)$
WINNER

CAPPLYTYPE WINHER>S

PTUNCTION ((W "TUPLE" T) (LW 1.T))

CHAWINRER (A B C) <+ 1 2% q3§

(ABC 3 qg)

6.4.4

Data Types

T — e

The MDL Programming Language 51

The following sequence makes MDL look just like Lisp. (This example is understandable only if
you know Lisp (Moon, 1974) it is included only because it is so beautiful.)

{EVALTYPE LIST FORM>S
LIST
{EVALTYPE ATOM ,LVAL>S
ATOM

So now:

(= 12)8

k]

(SET 'A 5)%
5

AL

5

To complcte the job. of course, we would have to do some SETG's: car is 1, cdr is ,REST, and
lambda is ,FUNCTION. If you really do this example, you should “undo” it before continuing:

CEVALTYPE 'ATOM ,EVAL>S
ATOM
CEVALTYPE LIST ,EVAL>S
LIST

6.4.4 Data Types

52 The MDL Programming Language

Chapter 7. Structured Objects

This chapter discusses structured objects in general and the five basic structured PRIMTYPEs. [We
defer detailed discussion of the structured PRIMTYPEs TUPLE (section 9.2) and STORAGE (sectiom
22.2.2).)

7.1. Manipulation

The following SUBRs operate uniformly on all structured objects and generate an error if not
applied to a structured object. Hereafter, struclured represents a structured ob ject.

7.1.1. LENGTH [1]
{LENGTH struclured?

evaluates to the number of elements in siruclured.

7.1.2. NTH [I]
CNTH structured fix>

evaluates to the fixth element of slruclured. An error occurs if fix is less than 1 or greater than
CLENGTH struclured>. fix is optional, 1 by default.

7.1.3. REST (1)
{REST structured fix>
evaluates to structured without its first fix elements. fix is optional, 1 by default.

Obscure but important side effect: REST actually returns siructured "CHTYPEA™ (but not through

7-7.18 Structured Ob jects

fe

ot

The MDL Programming Language -

application of CHTYPE) to its PRIMTYPE. For example, REST of a FORM is a LIST. REST with an
explicit second argument of 0 has no effect except for this TYPE change.

7.1.4. PUT [1]

CPUT structured fix anything-legal

first makes anything-legal the fisth element of struclured, then evaluates to structured. anything-legal
is anything which can legally be an element of struclured often, this is synonymous with "any MDL
ob ject”, but see below. An error occurs if fix is less than 1 or greater than <LENGTH sfructured>.
(PUT is actually more general than this - chapter 13.)

7.1.5. GET

CGET structurcd fixy

evaluates the same as <NTH structured fix>. It is more general than NTH, however (chapter 13), and
is included here only for symmetry with PUT,

7.1.6. APPLYing a FIX [I]

EVAL understands the application of an object of TYPE FIX as a "shorthand” call to NTH or PUT,
depending on whether it is given one or two arguments, respectively [unless the APPLYTYPE of FIX is
changed]. That is, CVAL considers the f ollowing two to be identicak

fix struclured)
CNTH structured fixy

and these:

Cfix structured object?
SPUT structured fix object>

[(However, the compiler (Lebling, 1979) cannot generate efficient code from the longer forms unless

it is sure that fix is a FIX (section 9.10). The two constructs are not identical even to EVAL, if the
order of evaluation is significant: for example, these two:

CNTH .X CLENGTH <SET X .Y>» CCLENGTH <SET X .Y» X

are not identical.]

713-716 Structured Ob jects

54 The MDL Programming Language , 1

7.1.7. SUBSTRUC

SUBSTRUC ("substructure”) facilitates the construction of structures that are composed of sub-parts of
existing structures. A special case of this would be a "substring” function.

CSUBSTRUC fromstructured resldfix amount:fix fo:struclured?

copies the first anoun! elements of (REST from res!> into another object and returns the latter. All
arguments are optional except from, which must be of PRIMTYPE LIST, VECTOR, TUPLE (treated like
a VECTOR). STRING, BYTES, or UVECTOR. res! is 0 by default, and amount is all the elements by
default. fo. if given. receives the copied elements, starting at its beginning; it must be an object
whose TYPE is the PRINTYPE of from (a VECTOR if from is a TUPLEL If fo is not given, a new ob ject is
returncd. of TYPE <PRIMTYPE from> (a VECTOR if from is a TUPLE), which never shares with from.
The copying is done in one fell swoop, not an element at 2 time. Note: due to an implementation
restriction, if from is of PRIMTYPE LIST, it must not share any elements with lo.

7.2. Representation of Basic Structures

7.21. LIST 1]
(elemeni-| element-2 ... element-N)

represents a LIST of N elements.

7.2.2. VECTOR [I]
[element-1 element-2 ... elemen!-N]

represents a VECTOR of N elements. [A TUPLE is just like a VECTOR, but it lives on the control stack.]

7.2.3. UVECTOR [1]
‘[clement-1 element-2 ... element-N 1]

represents a UVECTOR (uniform vector) of N elements. The second ! {exclamation-point) is optional
for input. [A STORAGE is an archaic kind of UVECTOR that is not garbage-collected.]

T0.7-7238 Structured Ob jects

|
|

|
|

A e

[Ty -

—

lage

5 of

All
like

by
Jject
Mnis
rom.
tion

ck.)

ynal

gcts

——

P

- ——

e ———

.

The MDL Programming Lmtgu:ge -

7.2.4. STRING [I]

“eharacters™

represents a STRING of ASCII text. A STRING containing the character * (double-quote) is

represented by placing a \ (backslash) before the double-quote inside the STRING, A \in a STRING
is represented by two consecutive backslashes.

7.2.5. BYTES
#n {element-] element-2 ., elemenf-N)

represents a siring of N uniformly-sized bytes of size n bits.

7.2.6. TEMPLATE
{ element-1 element-2 .., elamen|-N }

represents a TEMPLATE of N elements when output, not input - when input, a # and a TYPE must
precede it.

7.3. Evaluation of Basic Structures [1]

This section and the next two describe how EVAL treats the basic structured TYPEs [in the absence of
any modifying EVALTYPE calls (section 6.4.4))

EVAL of a STRING [or BYTES or TEMPLATE] is just the original ob ject.

EVAL acts exactly rhe same with LISTs, VECTORs, and UVECTORs: it generates a new object with
elements cqual o EVAL of the elements it is given. This is one of the simplest means of
constructing a structure. Ilowever, see section 7.7,

7.4. Examples [1]

(1 2<+ 3438

(127)

<SET FOO [5 <- 3> <TYPE "ABC">1>%
[5 -3 STRING]

<2 .FOO>S$

124-74 Structured Ob jects

The MDL Programming Language ’

=3

{TYPE <3 .FOO>>%

ATOM

<SET BAR ![("meow") (.F0OO)I1>%
'[{"meow") ([5 -3 STRING])!]
{LENGTH .BARX%

2

<REST <1 <2 .BAR>>>%

[-3 STRING]

[<SUBSTRUC <1 <2 .BAR>> 0 2>]%

[[5 -3]]

<PUT .FOO 1 SNEAKY> ;"Watch out for .BAR !¥§
[SHEAKY -3 STRING]

.BARS

'[{"meow") ([SNCAKY -3 STRING])!]
{SET FOO <REST <1 <1 .BAR>> 2»§
Ilnw.
.BARS
I[(*meow") ([SNEAKY -3 STRING])!]

7.5. Generation of Rasic Structures

Since LISTs. VECTORs, UVECTORs, and STRINGs [and BYTESes] are all generated in a fairly uniform
manner, mcthods of generating them will be covered together here. [TEMPLATEs cannot be generated
by the interpreter itself: see Lebling (1979).]

7.5.1. Direct Representation [1]

Since EVAL of a LIST, VECTOR, nr UVECTOR is a mew LIST, VECTOR, or UVECTOR with elements which
are EVAL of the original elements. simply evaluating a representation of the object you want will
generate it. (Care must be taken when representing a UVECTOR that all elements have the same
TYPE.) This method of generation was exclusively used in the examples of section 7.4. Note that
new STRINGs [and BYTESes] will not be generated in this manner, since the contents of a STRING are
not interpreted or capicd by EVAL. The same is true of any other TYPE whose TYPEPRIM happens to
be LIST, VECTOR, or UVECTOR [again, assuming it neither has been EVALTYPEd nor has a built-in
EVALTYPE, as do FORM and SEGMENT]

7.5.2. QUOTE [1]

QUOTE is an FSUBR of one argument which returns its argument unevaluated. READ and PRINT

7.4 -7.52 Structured Ob jects

lage

ited

ich
will
ime
hat
are
5 10
I-in

INT

ects

The MDL Programming Language 57

understand the character * (single-quote) as an abbreviation for a call to QUOTE, the way period and
comma work for LVAL and GVAL. Examples:

<+ | 233
3

'+ 1 208
(+ | 2>

Any LIST, VECTOR, or UVECTOR in a program that is constant and need not have its elements
evaluated should be represented dircctly and inside a call to QUOTE. This technique prevents the
structure from heing copied each time that portion of the program is executed. Examples hereafter
will adhere to this dictum. (Note: one should never modify a QUOTED object. The compiler will one
day put it in read-only (pure) storage.)

7.53. LIST, VECTOR, UVECTOR, and STRING (the SUBRs) [1]

Each of the SUBRs LIST, VECTOR, UVECTOR, and STRING takes any number of arguments and
returns an object of the appropriate TYPE whose elements are EVAL of its arguments. There are

limitations on what the arguments 1o UVECTOR and STRING may EVAL to, due to the nature of the
ob jects generated. Sce sections 7.6.5 and 7.6.6.

LIST, VECTOR, and UVECTOR are generally used only in special cases, since Direct Representation
usually produces exactly the same effect (in the absence of errors). and the intention is more
apparent. [Note: if .Lisa LIST, <LIST !.L) makes a copy of .L whereas (!.L) doesn't; see section
7.7.] STRING, on the other hand, produces effects very different from literal STRINGs.

Examples:

CLIST 1 <+ 2 3> ABCSS

{1 5 ABC)

(1 <+ 2 3> ABC)S

{1 5 ABC)

CSTRING "A® <2 "QWERT"> CREST "ABC"> "hello®">$
"AWBChello"

“A <+ 2 3> (5)"S

"A <+ 2 3> (5)"

154 ILIST, IVECTOR, IUVECTOR, and ISTRING [I)

Each of the SUBRs ILIST, IVECTOR, IUVECTOR, and ISTRING (Cimplicit™ or “iterated” whatever)
Creates and returns an object of the obvious TYPE. The format of an application of any of them is

< Ithing number-of-elements.fix exprassion:any »

1.52.754 Structured Ob jects

58 The MDL Programming Language

where /thing is one of ILIST, IVECTOR, IUVECTOR, or ISTRING. An object of LENGTH number-of-
elements is generated, whose elements are EVAL of expression,

expression is optional. When it is not specified, ILIST, IVECTOR, and IUVECTOR return ob jects
filled with objects of TYPE LOSE (PRIMTYPE WORD) as place holders, a TYPE which can be passed
around and have its TYPE checked, but otherwise is an illegal argument. If expression is not
specified in ISTRING, you get a STRING made up of ~@ characters.

When espression is supplied as an argument, it is re-EVALuated each time a new element is

generated. (Actually, EVAL of expression is re-EVALuated, since all of these are SUBRs,) See the last
example for how this argument may be used.

[By the way, in a construct like <IUVECTOR 9 '.X>, even if the LVAL of X evaluates to itself, so that

the ' could be omitted without changing the result, the compiler is much happier with the ' in
place.]

IUVECTOR and 1STRING again have limitations on what expression may EVAL to; again, see sections
7.6.5 and 7.6.6.

Examples:

<ILIST 5 6>%
(6 666 6)
<IVLCTOR 2>%
[#LOSE *000000000000% #LOSE =000000000000%]

<SET A 02%

0

CIUVECTOR 9 '<(SET A <+ .A 123>§
If123456789]

7.5.5. FORM and IFORM

Sometimes the need arises 1o create a FORM without EVALing it or making it the body of a FUNCTION.
In such cases the SURRs FORM and IFORM ("implicit form”™) can be used (or QUOTE can be used). They
are entirely analogous to LIST and ILIST. Example:

CDEFINE INC-FORM (A)

¢FORM SET .A <FORM + 1 <FORM LVAL .A>>>>%
INC-FORN
{INC-FORM FOO>S
{SET FOOD <+ 1 .FOO0>>

754 -755 Structured Ob jects

i . =

=T

o

P

r-af-

ijects
assed
i not

nt is
> last

i that
' in

tions

"ION.
They

The MDL Programming Language =

7.6. Unique Properties of Primitive TYPEs

7.6.1. LIST (the PRIMTYPE) [1]

An object of PRIMNTYPE LIST may be considered as a "pointer chain” (appendix 1). Any MDL ob ject
may be an clement of a PRIMTYPE LIST. It is easy to add and remove elements of a PRIMTYPE

LIST, but the higher N is, the longer it takes to refer to the Nth element. The SUBRs which work
only on ob jects of PRIMTYPE LIST are these:

7.6.1.1. PUTREST [I]
CPUTREST head:primtype-iist tail:primtype-list)

changes hesd sn that CREST head is tail (actually <CHTYPE fal LIST)), then evaluates to head. Note
that this actually changes headt it also changes anything having head as an element or a value. For
example:

<SET BOW [<{SET ARF (B W)>]>$
[(B W)]

CPUTREST .ARF '(3 4)3%

(B 3 4)

.BOWS

[(B 3 4)]

PUTREST is probably most often used to splice lists together. For example, given that .L is of
PRINTYPE LIST, to leave the first m elements of it intact and take out the next n elements of it,
CPUTREST CREST .L ¢~ m 1>> CREST .L <+ m ndd). Specifically,

CSET NUMS (1 2345678 9)8
(1234567809)

CPUTREST <REST .NUMS 3> <REST .NUMS 7>3$
(48 9)

HUMS S

(1234809)

7.6.1.2. CONS
CCONS new list>

Ceonstruct”) adds rew to the front of fisl, without copying fisl, and returns the resulting LIST.
References 1o fist are not affected,

[EValu:tiug CCONS .E .LIST> is equivalent to evaluating (.E !.LIST) (section 7.7) but is less
Preferable 1o the compiler (Lebling. 1979).)

76- 7612 Structured Ob jects

|

60 The MDL Programming Language

7.6.2. "Array” PRIMTYPEs [1]

VECTORs, UVCCTORs, and STRINGs [and BYTESes and TEMPLATEs] may be considered as "arra}'s'-
(appendix 1). It is easy to refer to the Nth element irrespective of how large N is, and it is
relatively difficult 1o add and delete elements. The following SUBRs can be used only with an object |

of PRIMTYPE VECTOR, UVECTOR, or STRING [or BYTES or TEMPLATE] (In this section array represents
an ob ject of such a PRIMTYPE.)

7.6.2.1. BACK [I]

CBACK array fivd

This is the onpposite of REST. It evaluates to array, with fix elements put back ento its front end,

and changed to its PRIMTYPE. fix is optional, 1 by default. If fix is greater than the number of
elements which have been RESTed off, an error occurs. Example:

<5ET ZOP {REST '"!I[1 2 3 4] 3»»§ i
i[ar] :
<BACK .ZI0P 23>%]
iIf[z 3 41]

<3ET 5 {REST "Right is might.® 15>>% !
nm I
<BACK .5 6>%

"might."

7.6.2.2. TOP (1]
<TOP array>

"BACKs up all the way" -- that is, evaluates to array, with all the elements which have been RESTed
of f put back onte it, and changed to its PRIMTYPE. Example:

<TOP .ZOP>3
1123 41]

i —a

7.6.3. "Vector™ PRIMTYPEs

7.6.3.1. GROW
CGROW vu end:fix begfix>
adds/removes elements to/from either or both ends of vu, and returns the entire (TOPped) resultant

object. vu can be of PRIMTYPE VECTOR or UVECTOR. end specifies a lower bound for the number of

7627631 Structured Ob jects |

EETT -

gu The MDL Programming Language 61

elements 1o be added to the end of vui beg specifies the same for the beginning. A negative fix
specifics removal of clements.

rrays"

itr The number of elements added to each respective end is end or beg increased to an integral multiple
ab ject of X, where X is 32 for PRIMTYPE VECTOR and 64 for PRIMTYPE UVECTOR (1 produces 32 or 64; -1
Bsents produces 0). The clements added will be LOSEs if vu is of PRIMTYPE VECTOR, and "empty” whatever-

they-are's if vu is of PRIMTYPE UVECTOR. An “empty” object of PRIMTYPE WORD contains zero. An

"empty” object of any other PRIMTYPE has zero in its “value word” (appendix 1) and is not safe to
play with: it should be replaced via PUT,

Note that. if elements are added to the beginning of wu, previously-existing references to vu will
have to use TOP or BACK to gel at the added eleinents. '

Caution: GROW is a very expensive operation; it requires a garbage collection (section 22.4) every
time it is used. It should be reserved for very special circumstances, such as where the pattern of
shared elements is terribly important.

Example:

i1

* <SET A 'I[10>8
<GROW .A 0 1>%

?
: ?[Dﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
ﬂﬁDDODDﬂﬂDGDﬂﬂDDDEDHDO

DO0DODOOOODO0DO0000D0O0OD 1

7.63.2. SORT
ESTed

This SUBR will sort PRIMTYPEs VECTOR, UVECTOR and TUPLE (section 9.2). It works most
efficiently if the sort heys are of PRIMTYPE WORD, ATOM or STRING. However, the keys may be of
any TYPE, and SORT will still work. SORT acts on fixed-length records which consist of one or more
contiguons elements in the structure being sorted. One element in the record is declared to be the

sort key. Also, any number of additional structures can be rearranged based on how the main
structure is sorted.

<SORT pred =1 Il off s2 12 s3 13 ... sN INY

where:

pred is either (see chapter 8 for information about predicatesk

ultant

ber of (1) TYPE FALSE, in which case the TYPEs of all the sort keys must be the same; they must be of
PRIMTYPC WORD, STRING or ATOM; and a rldix-cxchangc sort is used; or

b jects Y 763.1-7632 Structured Objects

L

62 The MDL Programming Language

(2) something applicable to two sort keys which returns TYPE FALSE if the first is not bigger
than the second, in which case a shell sort is used. For example ,G? sorts numbers in ascending
order, ,L7 in descending order. Note: if your pred is buggy, the SORT inay never terminate.

sl ... sN arc the (PRIMTYPE) VECTORs, UVECTORs or TUPLEs being sorted, and s/ contains the sort
keys:

11 ... 1IN are the corresponding lengths of sort records (optional, one by default); and
off is the offset from start of record to sort key (optional, zero by default).
SORT returns the soried sl as a value.

Note: the SUBR SORT calls the RSUBR (chapter 19) SORTX; if the RSUBR must be loaded, you may see
some output from the loader on your terminal.

Examples:

CSORT <> <SET A CIUVECTOR 500 '<RANDOM>>»>$
R R |

sorts a UVECTOR of random integers.

CSET V [1 MONEY 2 SHOW 3 READY 4 60§
[...]

<S0RT ¢> .v 2 I>S

[4 GO 1 MONEY 3 READY 2 SHOW)

<{S0RT ,L? .v 238

[4 GO 3 READY 2 SHOW 1 MONEY]
Vs

[4 GO 3 READY 2 SHOW 1 MONEY) [

CSORT <> 1[2 1436587710 .18
I[12345678!]
V8]

[GO 4 READY 3 SHOW 2 MONEY 1)

The first sort was based on the ATOMs' PNAMES, considering records to be two elements. The second

one sorted based on the FIXes. The third interchanged pairs of elements of each of its structured
arguments,

1632 Structured Ob jects

8= M

mu

is
Ti

7.6

The MDL Programming Language 63

7.6.4. VECTOR (the PRTMTYPE) 1]

Any MDL object may be an element of a PRINTYPE VECTOR. A PRIMTYPE VECTOR takes two words
of storage more than an equivalent PRIMTYPE LIST, but takes it all in a contiguous chunk, whereas
a PRIMTYPE LIST may be physically spread out in storage (appendix 1). There are no SUBRs or

FSUBRs which operate only on PRINTYPE VECTOR.

7.6.5. UVECTOR (the PRIMTYPE) [1]

The difference between PRIMTYPEs UVECTOR and VECTOR is that every element of a PRIMTYPE
UVECTOR must be of the same TYPE. A PRIMTYPE UVECTOR takes approximately half the storage of
a PRIMTYPL VECTOR or PRIMTYPE LIST and, like a PRIMTYPE VECTOR, takes it in a contiguous chunk
(appendix).

[Note: due to an implementation restriction (appendix 1), PRIMTYPE STRINGs, BYTESes, LOCDs
(chapter 12), and ohjects on the control stack (chapter 22) may not be elements of PRIMTYPE
UVECTORs.]

The "same TYPE" restriction causes an equivalent restriction to apply to EVAL of the arguments to
either of the SUBRs UVECTOR or IUVECTOR. Note that atiempting to say

11 .A]

will cause READ to produce an error, since you're attempting to put a FORM and a FIX into the same
UVECTOR. On the ather hand,

CUVECTOR 1 .A>
is legal, and will EVAL to the appropriate UVECTOR without error if .A EVALs to a TYPE FIX.
The following SUBRs work on PRINTYPE UVECTORSs alone.
7.6.5.1. UTYPE [1]
SUTYPE primtype-uvector?
Cuniform type”) evaluates to the TYPE of every element in its argument. Example:

CUTYPE 'I[A B C]>8
ATOM

764 -7.6.5.1 Structured Ob jects

64 The MDL Programming Language

7.6.5.2. CHUTYPE [1]
CCHUTYPE uw:prim!ype-uveclor type?

("change uniform type”) changes the UTYPE of uv to fype, simultaneously changing the TYPE of all
elements of uv. and returns the new, changed, uv. This works only when the PRIMTYPE of the
elements of uv can remain the same through the whole procedure. (Exception: a uv of UTYPE LOSE
can be CHUTYPEd to any fype (legal in a UVECTOR of course); the resulting elements are “"empty”, as
for GROM,)

CHUTYPE actually changes uvi hence all references to that object will reflect the change. This is

fuite dif ferent from CHTYPE.
Examples:

¢SET LOST <IUVECTOR 2>>%

I[410SF =000000000000* #LOSE =000000000000%!]
SUTYPE .LOST»%

LOSE

<CHUTYPE .LOST FORM>S

<> €1]

LOST

< O]

<CHUTYPE .LOST LIST>S

i) ()]

7.6.6. STRING (the PRIMTYPE) and CHARACTER [I]

The best wental image of a PRIMTYPE STRING is a PRIMTYPE UVECTOR of CHARACTERs -- where
CHARACTER is the MDL TYPE for a single ASCII character. The representation of a CHARACTER, by
the way, is

N\any-ASCH-characler

That is. the characters !\ (exclamation-point backslash) preceding a single ASCII character
represent the corresponding object of TYPE CHARACTER (PRIMTYPE WORD). (The characters !*®
(exclamation-point double-quote) preceding a character are also acceptable for inputting a
CHARACTER, for historical reasons.)

The SUBR ISTRING will produce an error if you give it an argument that produces a non-
CHARACTER. STRING can take either CHARACTERs or STRINEs.

There are no SUBRs which uniquely manipulate PRIMTYPE STRINGs, but some are particularly useful
in connection with them:

7652-7.66 Structured Ob jects

e

——

_E!.I.I__' -

. o

]
al

[4
fc

UN
rej
(H
aci
us

76

(2]
dg:’

uage

fall

the
LOSE
S as

is is

icter
s 4.
E a

1on-

eful

jects

The MDL Programming Language 65

7.6.6.1. ASCIL [I]

CASCII fiv-or-characlery

If its argument is of TYPE FIX, ASCII evaluates to the CHARACTER with the 7-bit ASCII code of its
argument. Example: CASCII 65> evaluates to I\A.

If its argument is of TYPE CHARACTER, ASCII evaluates to the FIXed-point number which is its
argument’s 7-bit ASCII code. Example: CASCIT 1\2 evaluates to 90.

[Actually. a FIX can be CHTYPEd to a CHARACTER (or vice versa) directly, but ASCII checks in the
former case that the M'IX is within the permissible range.]

7.6.6.2. PARSE [I]

CPARSE string radivifivy

PARSE applies 1o its argument READ's algorithm for converting ASCII representations to MDL
objects and returns the first object created. The remainder of string, after the first object
represented, is ignored. radix (optional, ten by default) is used for converting any FIXes that occur.
[See also sections 15.7.2 and 17.1.3 for additional argunients.]

7.6.6.3. LPARSE [I]

LPARSE ("list parse”) is exactly like PARSE (above), except that it parses the entire sfring and returns a
LIST of all objects created. If given an empty STRING or one containing only separators, LPARSE
returns an empty LIST, whercas PARSE gets an error.

7.6.6.4. UNPARSE [1]
CUNPARSE any radivfixd

UNPARSE applies to its argument PRINT's algorithm for converting MDL objects to ASCII
Fepresentations and returns a STRING which contains the CHARACTERs PRINT would have typed out.
[(However, this STRING will not contain any of the gratuitous carriage-returns PRINT adds to
accommodate a CHANNELs Finite line-width (section 11.2.8).] radix (optional, ten by default) is
used for converting any FIXes that occur,

76.7. BYTES

A (PRIMTYPE) BYTES is a string of uniformly-sized bytes. The bytes can be any size between 1 and
Bits inclusive. A BYTES is similar in some ways to a UVECTOR of FIXes and in some ways to a
STRING of non-seven-bit bytes. The elements of a BYTES are always of TYPE FIX.

766.1-76.7 Structured Ob jects

66 The MDL Programming Lang

The SUBRs BYTES and IBYTES are similar to STRING and ISTRING, respectively, except that each of
the former takes a first argument giving the size of the bytes in the generated BYTES. BYTES takes
one required argument which is a FIX specifying a byte size and any number of PRIMTYPE WORDs.:

It returns an nbject of TYPE BYTES with that byte size containing the objects as elements. Then“
ob jects will be ANDBed with the appropriate mask of l-bits to fit in the byte size. IBYTES takes two
required T IXes and one optional argument. It uses the first FIX to specify the byte size and the
second to specify the number of elements. The third argument is repeatedly evaluated to generate
FIXes that become elements of the BYTES (if it is omitted, bytes filled with zeros are generated). The

analog to UTYPE is BYTE-SIZE. Examples: ﬁ

{BYTES 3 <+ 2 2> 9 -13%

#3 {417}
<SET A 033
0

CIBYTES 3 9 '<SET A <+ A 1D08
#3 (1 23456701)
{IBYTES 3 4>%

#3 {000 0}
¢BYTE-SIZE <BYTES 13>%
1

7.6.8. TEMPLATE

A TEMPLATE is similar to a PL/l “structure” of one level: the elements are packed together and
reduced in size to save storage space, while an auxiliary internal data structure describes the
packing format and the elements’ real TYPEs (appendix 1). The interpreter itself is not able to create
objects of PRIMIYPE TEMPLATE (Lebling, 1979k however, it can apply the standard built-in
Subroutines to them, with the same effects as with other "arrays™.

7.7, SEGMENTSs [1]

Objects of TYPE SEGMENT (whnse TYPEPRIM is LIST) look very much like FORMs. SEGMENTs, however,
undergo a non-standard evaluation designed to ease the construction of structured objects from
elements of other structured ob jects.

7.7.1. Representation [1]
The rcpresentation of an object of TYPE SEGHENT is the following:

V€ func arg-1 arg-2 ... arg-N 1>

76.7-7.71 Structured Ob jects

e

The MDL Programming Language 67

o where the second ! (exclamation-point) is optional, and func and arg-1 through arg-N are any legal
takes constituents of a FORM (that is, anything). The pointed brackets can be implicit, as in the period
IORDs, and conma notation for LVAL and GVAL.
These
s two All of the following are SEGMENTSs:
d the
ierate <3 .FOO> '.FOO I,FO0
The

7.7.2. Evaluation [I]

A SEGMENT is evaluated in exactly the same manner as a FORM, with the following three exceptions:

(1) 1t had better be done inside an EVAL of a structure: otherwise an error occurs. (See special
case of FORMs in section 7.7.5.)

(2) Tt had better EVAL to a structured ob ject; otherwise an error occurs.

(3) What actually gets inserted into the structure being built are the elements of the structure
returned hy the FORM-like evaluation.

7.7.3. Examples [1]

<3ET ZOP *1[2 3 47»s

. I[z2 3 4!1]
and <SET ARF (B 3 4)>%
s the (8 3 4)
Teate (.ARF !.Z0P)$
ilt-in ((B 3 4) 234)
| I[V.20P '<REST ARF>! 1%
{ 'I[2 343 41]

| CSET S "STRUNG.">$

"STRUNG.®
l (!.5)%
‘eYEr, (INS I\T 1\R "\U 1\N ING I\.)
fFrom
<SET NIL ()>s
()
[!.NIL]S
[]

jects 1773 Structured Ob jects

o —

The MDL Programming Langu

7.7.4. Note on Efficiency [I]

Most of the cases in which it is possible to use SEGMENTs require EVAL to generate an entire new
object. Naturally. this uses up both storage and time. However, there is one case which it is .
possible ro handle without capying, and EVAL uscs it. When the structure being built is a PRIMTYPE
LIST, and the segment value of a PRIMTYPE LIST is the last (rightmost) element being concatenated,
that last PRIMTYPE LIST is not copied. This case is similar to CONS and is the principle reason why
PRIMTYPE LISTs have their structures more easily varied than PRINTYPE VECTOR or UVECTOR.

Examples:

.ARFS$
(B 3 4)

This does nal copy ARF:

(1
(1

These do:

(1
(1
[1
[1
{1
(1

2 !'.ARF)S$
2B 34)

! _ARF 2) i"not last element™S
B 342)

2 V.ARF] :"not PRINTYPE LIST"S

2B 34)

2 '.ARF !<REST '(1)>) ;"still not last element"$
2B 3A4)

Note the following. which eccurs because copying does not take place:

<SET DOG (A !.ARF)>$

(A

B 3 4)

<PUT .ARF 1 "BOWOW">$
("BOWON™ 3 4)

.DOGS

(A "BOWOW"™ 3 4)

CPUT .DOG 3 "WOOF">$

(A "BOWOW™ "WOOF" 4)

.ARFS

{ "BOWON"™ =*WOOF*" 4)

Since ARF was not copied. it was literally part of DOG. Hence, when an element of ARF was changed,
DOG was changed. Similarly, when an element of DOG which ARF shared was changed, ARF was

changed too,

.74

Structured Ob jects

was

red,

[
l
|
1

The MDL Programming Language 69

7.7.5. SEGMENTs in FORMs [1]

When a SEGMCNT appears as an element of a FORM, the effect is approximately the same as if the
elements of EVAL of the SEGHINT were in the FORM. Example:

¢SET A '![1 2 3 41s

([123 4]
¢t 1A 558
15

Note: the clements of the structure segment-evaluated in a FORM are not re-evaluated if the thing
being applicd is a SUBR. Thus if A were (1 2 <+ 3 4> 5), the above example would produce an
error: you can't add up FORMs.

You could perform the same summation of 5 and the elements of A by using

<EVAL <CHTYPE {+ !.A 5) FORM>>
(Note that CVAL must be explicitly called as a SUBR; if it were not so called, you would just get the
FORM <+ 1 2 3 4 5> - not its "value™) Iowever, the latter is more expensive both in time and in

storage: when you use the SEGMENT directly in the FORM, a new FORM is, in fact, not generated as it is
in the latter case. (The elements are put on "the control stack™ with the other arguments.)

7.8. Self-referencing Structures

It is possible for a structured object to “contain” itself, cither as a subset or as an element, as an
element of a structured element, etc. Such an object cannot be PRINTed, because recursion begins
and never ferminates. Warning: if you try the examples in this section with a live MDL, be sure
you know how to use ~S (section 1.2) to save PRINT from endless agony. (Certain constructs with
ATOMs can give PRINT similar trouble: see chapters 12 and 15.)

7.8.1. Self-subset
CPUTREST head:primlype-list tailiprimlype-listy

If head is a subset of fai, that is, if CREST fail fix> is the same object as <REST head 0 for some fix,
then both head and tail will be "circular™ (and thus self-referencing) after the PUTREST. Example:

<SET WALTZ (1 2 3)>$

(12 3)

<PUTREST <REST .WALTZ 2> .WALTZ)>S
(3123123123123 ...

7.1.5-7.81 Structured Ob jects

70

The MDL Programming Language

7.8.2. Self-element

CPUT si:sfrucfured fix s2:structuredy

If 51 is the same object as 52 then it will "contain” itself (and thus be self-referencing) after the
PUT. Examples:

f s A R ——

¢SET S <LIST 1 2 3% s"or VECTOR"S

(12 3)

<PUT .5 3 .5)8

(1z7(12(12(2.

CSET B I[I[IDS 4.
NRIShLD

CPUT .U 1 .UDS

TSidititic I o

Test your reaction time or your terminal's bracket-maker. Amaze your friends.

7.8.2 Structured Ob jects

-

The MDL Mrogramming Language 71

| Chapter B. Truth

8.1. Truth Values [1]
| MDL represents "false” with an object of a particular TYPE: TYPE FALSE (unsurprisingly). TYPE
FALSE is structurcd: its PRIMTYPE is LIST. Thus, You can give reasons or excuses by making them
elements of a FALSE. (Again, EVALing a FALSE nreither copies it nor EVALs its elements, so it is not
necessary te QUOTE a FALSE appearing in a program.) Objects of TYPE FALSE are represented in “#
notation:

*FALSE lisi-of-its-elements

The empty FORH evaluates 1o the empty FALSE:

| <»5
PFAILSE ()

Anything which is not FALSE, is. reasonably enough, true. In this document the “data type” falze-
or-any in mectasyntactic variables means that the only significant attribute of the object in that
context is whether its TYPE is FALSE or not.

8.2. Predicates [1]
There are numerous MDL F/SUBRs which can return a FALSE or a true. See appendix 2 to find

them all. Most return cither #FALSE () or the ATOM with PNAME T. (The latter is for historical
reasons, namely Lisp (Moon, 1974).) Some predicates which are meaningful now are described next.

B.2.1. Arithmertie [I]
<0? fix-or-floalty
evaluates to T only if its argument is identically equal te 0 or 0.0,

8-821 Truth

!

72 The MDL Programming Language T

17 fiv-or-float»
evaluates te T only if its argument is identically equal to 1 or 1.0.

<G? ndiv-or=-floal miAix-or-floaly

H
evaluates ta T only if n is algebraically greater than m. L=7 is the Boolean complement of 67; that
is, it is T only if n is not algebraically greater than m.
r
CLY rn:dfriv-or-floal mdfixv-or=-float> 1!
T
evaluates 1o T only if nis algebraically less than m. 6=7 is the Boolean complement of L7. : f
I
8.2.2. Equality and Membership [1]
1
C==? pl:any eZ:anyd i:
evaluates to T only if el is the same object as e2 (appendix 1). Two objects that look the same I

when PRINTed may not be ==7. Two FIXes of the same “value” are "the same object™ so are two E

FLOATs of exactly the same “value®. Empty objects of PRIMTYPE LIST (and no other structured
PRIMTYPE) are ==7? if their TYPEs are the same. Example:

<==7 {5ET X "RANDOM STRING"> <TOP <REST .X 6>>>% |

T | q
£==7 .X% "RANDOM STRING">S <
#FFALSE ()

N==7 is the Boolean complement of ==
£=7 el:any eZ:any? |

evaluates 1o T il ol and e2 have the same TYPE and are structurally equal - that is, they “look the
same”, their printed representations are the same. =7 is much slower than ==7. =7 should be used
only when its characteristics are necessary: they are not in any comparisons of unstructured ob jects.
==7 and =7 always return the same value for FIXes, FLOATs, ATOMs, etc. (Mnemonically, ==7 tests for
"more equality” than =7?; in fact, it tests for actual physical identity.)

Example, illustrating non-copying of a SEGMENT in Direct Representation of a LIST:

<SET A "(1 2 3)3%
(12 3)
¢==7 _A (1.A}>%

T
“==7 A <5ET B <LIST !_.A>>>%

8.2.1-822 Truth

B

A EEEE

‘A .|Irl

The MDL Programming Language o5

#FALSE ()
<=7 .A .B>S
T

N=7 is the Roolean enmiplement of =7,
CMEMBER objoct:any strucluredy

runs down sfrucfured from First to last element, comparing each element of struclured with object.
If it Finds an clement of sfructured which is =? to object, it returns <REST structured i> (which is of
TYPE <PRINTYPLC stfruclured?), where the (i+<1ith element of siruclured is =7 to object. That is, the
first element of what it returns is the first clement of sfructured that is =7 to object.

If no element of structured is =7 to object, MEMBER returns #FALSE ().

The secarch is more efficient if structured is of PRINTYPE VECTOR (or UVECTOR, if possible) than if it
is of PRIMTYPE LIST. As usual if structured is constant. it should be QUOTEd.

If object and siructured are of PRIMTYPE STRING [or BYTES], MEMBER does a substring search.
Example:

<HMEMBER "PART"™ "S5UM OF PARTS">S
"PARTS"™

CHMEMQ object:any structured? (“member nuick”) is exactly the same as MEMBER, except that the
coOmparison (esl is ==7

CSTRCOMP =1 523

("string comparisen”) can be given either two STRINGs or two ATOMs as arguments. In the latter case
the PNAMCs arc used. It actually isn't a predicate, since it can return three possible values: 0 if sl is
=7 to s2 1 if sl sorts alphabetically after s2 and -1 if =/ sorts alphabetically before s2.

-A]ph:l.hr‘lil;‘n”}r" means, in this case, according te the numeric order of ASCII, with the standard
alphabetizing rules.

[A predicate suitabile for an ascending SORT (which see) is <G? <STRCOMP .ARG1 .ARGZ> 0>.]

8.2.3. Boolean Opcrators [1]
CHOT edalzsc-or-anys
evaluates 10 T only if e evaluates to a FALSE, and to #FALSE () otherwise.

<AND el 2 ... eN>

8.22 - 823 Truth

-
e
e ———

S — e, ;e ;,e,r,r,r,ererere— — —
e e e—
e e e e s —— e -
.

“ The MDL Programming Language

AND is an FSUBR. It evaluates its arguments from first to last as they appear in the FORHM. As soon
as one of them evaluates to a FALSE, it returns that FALSE, ignoring any remaining arguments. If
none of them evaluate 1o FALSE, it returns EVAL of its last argument. <AND> returns T. AND? is the
SUBR efquivalent to AND, that is, all its arguments are evaluated before any of them is tested.

COR el o2 ... eN>

OR is an FS5UBR. It evaluates its arguments from First to last as they appear in the FORM. As soon
as one of them evaluates to a non-FALSE, OR returns that non-FALSE value, ignoring any rclnaining
arguments. If this never occurs, it returns the last FALSE it saw. <OR> returns #FALSE (). ORT is

the SUBR equivalent 1o OR,
B8.2.4. Ob ject Properties [1]
STYPET? any lype-1 ... lype-N3>

evaluates 1o fype-i only if <==7 type-i <TYPE any>> is true. It is faster and gives more information
than ORing tests for cach TYPE. If the test fails for ail tyvpe-is, TYPET returns #FALSE ().

CAPPLICABLE? &>

evaluates to T only if ¢ is of a TYPE that can legally be applied to arguments in a FORM, that is, be
{EVAL of) the first elemcnt of a FORM being evaluated (appendix 3).

<MONAD? &>

evaluates to #FALSE () only if NTH and REST (with non-zero second argument) can be performed on

its argument without error. An unstructured or empty structured ob ject will cause HONAD? to return
T.

CSTRUCTURED? &3>

evaluates to T only if e is a structured object. It is not the inverse of HONAD?, since each returns T
if its argument is an cmpty structure.

SEMPTY? struclured>
evaluates te T only i its argument, which must be a structured ob ject, has no elements.
CLENGTH? structured fixd

evaluates to CLENGTH struclureds -:mt:,- if that is less than or equal to fix; otherwise, it evaluates 1o
#FALSE (). Moemonically, you can think of the first two letters of LENGTH? as signifying the "less
than or equal te” sense of the tesr,

823-824 Truth

=l LS ——————————

The MDL Programming Language 75

This SUBR was invented to use on lists, because MDL can determine their lengths only by stepping
along the list, counting the elements. If a program needs to know only how the length compares

with a given number, LENGTH? will tell without necessarily stepping all the way to the end of the
list, in contrasi to LENGTH.

[If struclured is a circular PRIMTYPE LIST, LENGTH? will return a value, whereas LENGTH will execute

forever. To sce if you can do <REST struclured <+ 1 fix>> without error, do the test <NOT <LENGTH?
structured fix3>.]

8.3. COND [I1]

The MDL Subroutine which is most used for varying evaluation depending on a truth value is the
FSUBR COND ("conditional”). A call to COND has this format:

CCOND clause-ldist ... clause-Nidist>

where /N is at least one.

COND always returns the result of the last evaluation it performs. The following rules determine the
order of evaluations perforined.

(I) Evaluate the first element of each clause (from first to last) until either a non-FALSE ob ject
results or the clauses are exhausted.

(2) If a non-FALSE object is found in (1), immediately evaluate the remaining elements (if any)
of that clause and ignore any remaining clauses.

In other words, COND goes walking down its clauses, EVALing the first element of each clause, looking
for a non-FALSE result. As soon as it finds a non-FALSE, it forgets about all the other clauses and
evaluates. in order, the other elements of the current clause and returns the last thing it evaluates.
If it can’t find a non-FALSE, it returns the last FALSE it saw.

8.3.1. Examples [I]

<SET F '(1)>%

(1)

<COND (<EMPTY? .F> EMP) (<17 <LENGTH .F>> ONE)>S$
ONE

<SET F ()>%
()

<COND (<EMPTY?T .F> EMP) (<17 <LENGTH .F>> ONE)>$S
EHMP

824 -83.1 Truth

e —

76 The MDL Programming Language

<SET F "(1 2 3)>3

(1 2 3)

CCOND (<EMPTY? .F> EHP) (<17 <LENGTH .F>> ONE)>$S
#FALSE ()

£COND (<LENGBTH? .F 2> SHMALL) (BIG)>S

BIG

<DEFINE FACT (N) ;:"the standard recursive factorial®
<COND (<07 .H> 1)
(ELSE <= .N <FACT <- .N 12>>>)2>>5
FACT
<FACT 5>3%
120

8.4. Shortculs with Conditionals

B.4.1. AND and OR as Short CONDs
Simce AND and OR are FSUBRs, they can be used as miniature CONDs. A comstruct of the form

<AND pre-condilions aclionis)?>
or

COR pre-exclusions action{s)»
will allow action(s) to be evaluated only if all the pre-condilions are true or only if all the pre-
exclusions are false, respectively. By nesting and using both AND and OR, fairly powerful constructs
can be made. OF course, if action(s) are more than one thing. you must be careful that none but the
last returns false or true, respectively. Watch out especially for TERPRI (chapter 11). Examples:

CAND <ASSIGNEDT FLAG> .FLAG <FCH .ARG>>

applies FCN only if someone else has SET FLAG to true. (ASSIGNED? is true if its argument ATOM has
an LVAL.) No crror can occur in the testing of FLAG because of the order of evaluation.

<AND <SET C <OPEN "READ®" ™A FILE®">»>> <LOAD .C> <CLOSE .C3>>

effectively FLOADs the file (chapter 11) without the possibility of getting an error if the file cannot
be opened.

8.3.1-84.1 Truth

The MDL Programming Language T

8.4.2. Embedded Uncondilionals

One of the disadvantages of COND is that there is no straightforward way to do things

uncoenditionally in between tests. QOne way around this problem is to insert a dummy clause that
never succeeds, because its only LIST element is an AND that returns a FALSE for the test. Example:

<COMND (<07 .N>» <F0O N>}
(<17 .NH» <F1 N>)
(<AND <SET N <= 2 <FIX </ .N 233>
:"Round .N down to even number.®
€32)
(<LENGTH? .VEC .N>» 'L1)
(T <REST .VEC <+ 1 N2>}

A wvariation is to make the last AND argument into the test for the COND clause. (That is, the third
and fourth clauses in the above example can be combined.) Of course, ¥ou must be careful that no
other AND argument evaluates (o a FALSE; most Subroutines do not return a FALSE without a very

good reasnn for it. (A notable exception is TERPRI (whieh see)l) Even safer is to use PROG (section
10.1) instead of AND.

H'\.I!ﬂTll(‘r variation s to Immcrease |III:‘ ne

sting with a new COND after the unconditional part. At least
this method docs ool make the code a

ppear to a human reader as though it does something other
than whar it really does. The above example could be done this way:

CCOND (<07 .N> <FO .N>)
(<17 .N> <F1 _N>)
(T
€5ET N <= 2 <FIK </ .N 253>
<COND (<LENGTH? .VEC .N> '[])
(T <REST .VEC <+ 1 .N>>)3)>

B.4.2 Truth

78 The MDL Programming Language

Chapter 8. Functions

This chapter eould he named "fun and games with argument LISTs". Its purpose is to explain the
mare complicated things which can Le done with FUNCTIONs, and this invelves, basically, explaining
all the varinus tokens which can appear in the argument LIST of a FUNCTION. Topics are covered
in what is approximately an order of increasing complexity. This order has little to do with the
order in which tolens can actually appear in an argument LIST, so what an argument LIST "looks
like™ overall gets rather lost in the shuffle. Te alleviate this problem, section 9.9 is a summary of

everything that can go inlo an argument LIST, in the correct order. If you find yourself getting
lost, please refer 1n that smmmary.

9.1. "OPTIONAL™ [I]

MDL provides very convenient means for allowing optional arguments. The STRING "OPTIONAL*®
(or "OPT" -« they're totally equivalent) in the argument LIST allows the specification of optional
arguments with valors te he assigned by default. The syntax of the "OPTIONAL" part of the

argument LIST is as follows:

"OPTIONAL" al-] a-2 ... al-N
First, there is the STRING "OPTIONAL". Then there is any number of either ATOMs or two-element
LISTs. intermixed. one per optional argument. The first element of each two-element LIST must be
an ATOM; this is the dummy variable. The second clement is an arbitrary MDL expression. If there
are required argnments, they must come before the "OPTIONAL®.

When EVAL is binding the variables of a FUNCTION and sees "OPTIONAL®, the following happens:

If an explicit argument was given in the position of an optional one, the explicit argument is
bound tn the corresponding dummy ATOM,

If there is no explicit argument and the ATOM stands alone, that is, it is not the first element of
a two.element LIST, that ATOM becomes "bound”, but ne local value is assigned to it [see below].
A local value can be assigned to it by using SET.

9.9l Functions

—
R = sy eI}
—_——— e ———————=——a e
—_———— s
e B
L
—
———eeeeeeeeeeee——or
e R R R R R R R R e "=
R R R I R R R R R R e = X}
e e e S e W
e —
e
e
—
S ST
R = —— T W
S
e e =y B
—————————eeeeeeeeeeee———————————————————, e
e — = e e L 2
es——————————————————— ..~~~ _————__ " V———————" "
S
e e S
_—— e e T S e
S

The MDL Programming Language 79

If there is no explicit argument and the ATOM is the first element of a two-element LIST, the
MDL expression in the LIST with the ATOM is evaluated and bound to the ATOM.

[Until an ATOM is assigned, any attempt to refFerence its LVAL will produce an error. The predicate
SUBRs BOUND? and ASSIGHED? can be used to check for such situations. BOUND? returns T if its
argument is currently bound via an argument LIST or has ever been SET while not bound via an
argument LIST. The latrer kind of binding is called "top-level binding”, because it is done outside
all active argument-LIST binding., ASSIGNED? will return #FALSE () if its argument is either
unassigned or unbound. By the way. there are two predicates for global values similar to BOUND?
and ASSIGNED?, namely GBOUND? and GASSIGNED?. Each returns T only if its argument, which (as
in BOUND? and ASS51GNED?) must be an ATOM, has a global value "slot” (chapter 22) or a global value,
respectively.]

Example:

COEFINE INC1 (A "OPTIONAL" (N 1)) <SET .A <+ ..A .N3>»>%
INC1

<5ET B 0>5
0

<INCI B>%

1

<INC1 B 5>3
G

Here we defined another (not quite working) increment FUNCTION. It now takes an optional
argument specifying how much to increment the ATOM it is given. If not given, the increment is 1.
Now, 1 is a pretty simple MDL expression: there is no reason why the optional argument cannot be
complicated -- for example. a call 1o a FUNCTION which reads a file on an 1I/O device.

9.2. TUPLEs

9.2.1. "TUPLE" and TUPLE (the TYPE) [1]

There are also times when you want to be able to have an arbitrary number of arguments. You can
always do this hy defining the FUNCTION as having a structure as its argument, with the arbitrary
number of arguments as elements of the structure. This can, however, lead to inelegant-looking
FORMs and extra garbage to be collected. The STRING “TUPLE® appearing in the argument LIST

allows you te avoid that. It must follow explicit and optional dummy arguments (if there are any
of either) and must be followed by an ATOM.

The effect of "TUPLE" appearing in an argument LIST is the following: any arguments left in the

9.1-521 Functions

(P

These SURBRs are the samoe as VECTOR and
the control stack)

below) The clear advantage of TUPLE and ITUPLE ("implicit tuple”) is in
efficicncy.

-1] The MDL Programming Language

FORM,. afrer satisfying explicit and optional argumen
an object of TYPEC and PRIMTYPE TUPLE.
in the argument LIST. If there
empty TUPLE is bound to the ATOM

is. are EVALed and made sequential elements of
The TUPLE is then bound to the ATOM following "TUPLE*
were no arguinents left by the time the "TUPLE® was reached, an

An object of TYPE TUPLE is exaclly the same as a VECTOR except that a TUPLE is not held in
garbage-collecied storage. It is instead held with ATOM bindings in a control stack. This does not
affect manipulation of the TUPLE within the function generating it or any function called within
that one: it can bie treated just like a VECTOR. Note, however, that a TUPLE ceases to exist when the
Function which generated it returns. Returning a TUPLE as a value is a good way to generate an
error. (A copy of a TUPLE can easily be generated by segment-evaluating the TUPLE into something;
that copy can be reiurned) The predicate LEGAL? returns #FALSE () if it is given a TUPLE

generated by an APPLICABLE ob ject which has already returned, and T if it is given a TUPLE which is
still “"good™.

Example:

<DEFINE NTHARG (N ®"TUPLE" T)
:"Get all but Tirst argument into T."
<CONHD (<==7 1 .N> 1)
:"IMf N is 1, return Ist arg, i1.a., .N,
i.e., 1. Note that <17 .N> would be
Ltrue even if .N were 1.0.%
(<L? <LENGTH .T> <SET N = N 13>
FFALSE ("DUMMY™))
i"Check to seea if there is an Nth arg,
and make N a good index into T while
yYou're at it.

If there isn't an Nth arg, complain.®
(ELSE <NTH .T .N>)>>

NTHARG, above. takes any number of arguments. Its first argument must be of TYPE FIX. It
returns EVAL of its Nth argument, if it has an Nth argument. If it doesn't, it returns #FALSE
("DUMMY"). (The FLSE is not absolutely necessary in the last clause. If the Nth argument is a
FALSE, the COND will return that FALSE.) Exercise for the reader: NTHARG will generate an error if
its first argument is not FIX. Where and why? (How about {NTHARG 1.5 2 3>?) Fix it

9.2.2. TUPLE (the SUBR) and ITUPLE

IVECTOR, except that they build TUPLEs (that is, vectors on
They can be used only at top level in an "OPTIONAL® list or "AUX" list (see

sturagcﬂnanagcment
They produce no garbage, since they are flushed automatically upon function return.

521 -9.22 Funections

ﬂ

rww | YWW Pv

M

PV‘IW

nm‘

The MDL Programming Language 81

Examples:

<DEFINE F (A B "AUX"™ (C <ITUPLE 10 3>)) ...>

creates a [0-clement TUPLE and SETs € to it

<DEFINE H ("OPTIONAL"™ (A <ITUPLE 10 '<I>>)
"AUX®" (B <TUPLE !'.A 1 2 3>))
-3

These are valid uses of TUPLE and ITUPLE. However, the following is not a valid use of TUPLE,
because it is not called at top level of the "AUX":

<DEFINE NO (A B “AUX"™ (C <REST <TUPLE !.A>>)) ...>

However, the desired effect could be achieved by

<DEFINE OK (A B "AUX™ (D <TUPLE !.A>) (C <REST .D>)) ...>

9.3. "AUX*" [i]

"AUX" (or "EXTRA"™ -—- they're totally equivalent) are STRINGs which, placed in an argument LIST,
serve to dynamically allocale temporary variables For the use of a Function.

"AUX" must appear in the arguwiment LIST after any information about explicit arguments. It is
followed by ATOMs or two-elcment LISTs as if it were "OPTIONAL". ATOMs in the two-element LISTs

are bound 1o EVAL of rhe seccond element in the LIST. Atoms not in such LISTs are initially
unassigned: they are explicitly given "no™ LVAL.

All binding specificd in an argument LIST is done sequentially from first to last, so initialization

expressions for "AUX" (or "OPTIONAL") can refer to objects which have Just been bound. For
example, this works:

<DEFINE AUXEX ("TUPLE" T
"AUX" (A <LENGTH .T>) (B <= 2 .A>))

'I[.A .B]>s
AUXEX
CAUXEX 1 2 "FOO">%
'Ifa 6]

922 -93 Functions

——————————— ———— —————————————————————————— = =

o The MDL Programming Language

9.4. QUOTEd argumments

If an ATOM in an argument LIST which is to be bound to a required or optional argument is
surroundoed En}r a call to QUOTE, that ATOM is bound 1o the unevaluated argument. Exampll::

CDEFINE Q2 (A 'B) (.A .B)>S
Q2

€02 <+ 1 2» €+ 1 23>%

(32 €+ 1 2¥)

It is not often appropriate for a funcition 1o take its arguments unevaluated, because such a practice
makes il less wmodular and harder 10 maintain: it and the programs that call it tend to need to know
more about cach other, and a change in its argument structure would tend to require more changes
in the programs that call it. And, since few Functions, in practice, do take unevaluated arguments,
users tend to assume that no functions do (except FSUBRs of course), and confusion inevitably
results.

9.5. "ARGS"

The indicator "ARGS" can appear in an argument LIST with precisely the same syntax as "TUPLE".
However, "ARGS" causes the ATOM following it 1o be bound to a LIST of the remaining unevaluated
argumecnis.

"ARGS" does nol cause any copying to take place. It simply gives you
CREST applicationsform fix2

with an appropriate fix. The TYPE change to LIST is a result of the REST. Since the LIST shares
all its elements with the original FORM, PUTs into the LIST will change the calling program,
however dangerous that may be.

Examples:

<DEFINE QIT (H "ARGS™ L) <.N .L>>%
QIT

€0IT 2 <+ 3 4> <LENGTH ,QALL> FOO>%
<LERGTH ,QALL>

<PDEFINE FUNCT1 (“ARGS"™ ARGL-AND-BODY)
SCHTYPE .ARGL-AND-BODY FUNCTION>>S

FUNCT]

CFUNCT1 (A B) <+ .A .B>>%

FFUNCTION ((A B) <+ .A .BX)

94-95 Functions

|

I

il

ikl

il

The MDL Programming Language &3

The last example is a perfectly valid equivalent of the FSUBR FUNCTION.

9.6. "CALL"

The indicator "CALL" is an ultimate "ARGS". If it appears in an argument LIST, it must be
followed by an ATOM and must be the only thing used to gather arguments. "CALL" causes the ATOM
which follows it to become bound to the actual FORM that is being evaluated -- that is, you get the

“"Function call” itself. Since "CALL" binds to the FORM itself, and not a copy, PUTs into that FORM will
change the calling code.

"CALL" exists as a Catch-22 for argument manipulation. If you can't do it with "CALL", it can't be
done.

9.7. EVAL and "BIND"

Obraining unevaluated arguments, for example. via QUOTE and "ARGS", very often implies that you

wish to evaluate them at some point. You can do this by explicitly calling EVAL, which is a SUBR.
Example:

<S5ET F "<+ 1 Z>>%

<+ 1 2>
<EVAL .F3>%
3

EVAL ecan take a second argument, of TYPE ENVIRONMENT (or others, see section 20.8). An
ENVIRONMENT consists basically of a state of ATOM bindings: it is the "world” mentioned in chapter 5.
MNow. singe binding changes the ENVIRONMENT, if you wish to use EVAL within a FUNCTION, you
probably want te get bold of the cavironment which existed before that FUNCTION's binding took
place. The indicator "BIND", which must. if it is used, be the Ffirst thing in an argument LIST,
provides this information. It binds the ATOM immediately following it to the ENVIRONMENT existing
“at call time” - that is. just before any binding is done for its FUNCTION. Example:

<SET A 0%

i]

<DEFINE WRONG ('B "AUX"™ (A 1)) <EVAL .B>>3

WRONG

<WRONG .A>S

1

CDEFINE RIGHT ("BIND™ E "B "AUX" (A 1)) <EVAL .B .E>>»%
RIGUT

9.5 - 9.7 Functions

e ==

84 The MDL Programming Language

{RIGHT .A>»S
0

9.7.1. Local Values versus FNVIRONMENTs

SET. LVAL, VALUE. BOUND?, ASSIGNED?, and UNASSIGN all take a final optional argument which
has not previonsly been mentioned: an ENVIRONMENT (or other TYPEs, see section 20.8). If this
argument s given, the SET or LVAL is done in the ENVIRONMENT specified. LVAL cannot be
abbreviated by . (period) if it is given an explicit second argument.

This featurc is just whar is needed to cure the INC bug mentioned in chapter 5. A “correct” INC can
be defined as Follows:

<DCFIME INC ("BIHD"™ OUTER ATH)
<S5ET .ATHM <+ 1 <LVAL .ATH .OUTER>> .OUTER>>

9.8. ACTIVATION, "NAME®, "ACT", AGAIN, and RETURN [I]

EVALuation of a FUNCTION, after the argument LIST has been taken care of, normally consists of
EVALuating cach of the objects in the body in the order given, and returning the value of the last
thing EVAled. If you want to vary this sequence, you need to know, at least, where the FUNCTION
begins. Actually, EVAL normally hasn’t the foggiest idea of where its current FUNCTION began.
"Where'd 1 start” information is bundled up with a TYPE called ACTIVATION. In “normal” FUNCTION

EVALuation. ACTIVATIONs are not gencrated: one can be generated, and bound to an ATOM, in either
of the two rh“ﬂ'n'ing: Ways:

(1) Put an ATOM immediately before the argument LIST. The ACTIVATION of the Function will
be bound to that ATOM.

(2) As the last thing in the argument LIST, insert either of the STRINGs "NAME® or "ACT"™ and
fFollow it with an ATOM. The ATOM will be bound to the ACTIVATION of the Function.

In this document "Function” (capitalized) will designate anything that can generate an ACTIVATION;
besides TYPE FUNCTION, this class includes the FSUBRs PROG, BIND, and REPEAT, yet to be
discussed,

Each ACTIVATION refers explicitly to a particular evaluation of a Function. For example, if a
recursive FUNCTION generates an ACTIVATION, a new ACTIVATION referring explicitly to each
recursion siep is gencrated on every recursion.

Like TUPLEs, ACTIVATIONs are held in a control stack. Unlike TUPLEs, there is no way to get a copy

0.7 -9.8 Functions

e~ S—

The MDL Programming Language B85

of an ACTIVATION which can usefully be returned as a value. (This is a consequence of the fact that
ACTIVATIONs refer to evaluations; when the evaluation is finished, the ACTIVATION no longer exists.)
ACTIVATIONs can be tested, like TUPLEs, by LEGAL? for legality. They are used by the SUBRs AGAIN
and RETURN.

AGAIN can take one argument: an ACTIVATION. It means “start doing this again®, where “this” is
specificd by the ACTIVATION. Specifically. AGAIN causes EVAL to return to where it started working
on the body of the Function in the evaluation specified by the ACTIVATION. The evaluation is not
redone completely: in particular, no re-binding {(of arguments. "AUX" variables, etc.) is done.

RETURN can fake two arguments: an arbitrary expression and an ACTIVATION, in that order. It
causes the Function evaluation whose ACTIVATION it is given to terminate and return EVAL of
RETURN's first argument. That is, RETURN means “quit doing this and return that”, where "this” is the
ACTIVATION -- its second argument -- and “that” is the expression — its first argument. Example:

<DEFINE MY+ ("TUPLE™ T "AUX™ (M D) "NAME"™ NH)
<COND (<EMPTY? .T> <RETURMN .M _.NHM>)>
CSET M <+ .M <1 .T»>
<S5ET T <REST .T>>»
CAGAIN .MNM>>S

MY+

<HY+ 1 3 <LENGTH "FOO">>%

7

CHMY+2>5%

1]

Note: suppose an ACTIVATION of onc Function (call it F1) is passed to another Function (call it F2) —
for example. via an application of F2 within F1 with Fl's ACTIVATION as an argument. If F2
RETURNs 1o Fl's ACTIVATION, F2 and Fl terminate immediately. and F1l returns the RETURN's first
argument. This technifque is suitable for error exits. AGAIN can clearly pull a similar trick. In the
following example. F1 computes the sum of F2 applied to each of its arguments; F2 computes the

product of the elements of its siructured argument, but it aborts if it finds an element that is not a
number.

<DEFINE F1 ACT ("TUPLE"™ T "AUX"™ (Tl .T))
<COND (<MNOT <EHPTYT .T1>>
<PUT .T1 1 <F2 <1 .T1l> .ACT>>
<35ET T1 <REST .TL>»>»
<CAGAIN .ACT>)
(ELSE <+ !.T>)>»>%
Fl

9.8 Functions

86 The MDL Programming Language

<DEFINE FZ (5 A "AUX" (51 .5))
CREPEAT HMY-ACT ((PRD 1))
<COND (<HOT <EHMPTY? .51>>
CCOND (<NOT <TYPE? <1 .51> FIX FLOAT>>
<RETURN SFALSE ("MON-NUMBER™) .AY)
(ELSE <SET PRD <= _.PRD <1 .513>>>)>
<SET 51 <REST .51>>)
{ELSE <RETURN .PRD>)>>>3%
F2

<F1 *(1 2) "(3 4)>%
14

<F1 (T 2) (3 4)>3
#FALSE ("NON-NUMBER"™)

9.9 Arcument List Summary

The following is a listing of all the various tokens which can appear in the argument LIST of a
FUNCTION, in the nrder in which they can occur. Short descriptions of their effects are included.
All of them are optional -- that is, any of them (in any position) can be left out or included -- but
the order in which they appear must be that of this list. "QUOTEd ATON", “matching object”, and "2-
list™ are defined below.

(1) *"BIND*"
must be followed by an ATOM. It binds that ATOM to the ENVIRONHENT which existed
when the FUNCTION was applied.

{2} ATOMs and QUOTEd ATOMs (any number)
are required arguments. QUOTEd ATOMs are bound to the matching ob ject. ATOMs are

bound to EVAL of the matching object in the ENVIRONHENT existing when the FUNCTION
was applied.

(2) "OPTIONAL™ or "OPT" (they're equivalent)

is followed by any number of ATOMs, QUOTEd ATOMs, or 2-lists. These are optional
arguments. If a maiching object exists, an ATOH — cither standing alone or the first
element of a 2-list — is bound to EVAL of the object, performed in the ENVIRONMENT
existing when the FUNCTION was applied. A QUOTEd ATOM — alone or in a 2-list — is
bound to the matching ob ject itself. If no such object exists, ATOMs and QUOTEd ATOMs
arc left unbound, and the Ffirst element of each 2-list is bound to EVAL of the
corresponding second element. (This EVAL is done in the new ENVIRONMENT of the
Function as it is being constructed.)

98-99 Functions

ip

ey

10001

iy

ip

01

The MDL Programming Language 87

(4) "ARG5"™ (and not "TUPLE")
must be followed by an ATOM. The ATOM is bound to a LIST of all the remaining
arguments, unevaluated. (If there are no more arguments, the LIST is empty.) This
LIST is actually a REST of the FORM applying the FUNCTION. If "ARGS" appears in the
argument LIST, "TUPLE" should not appear.

{(4) "TUPLE" {(and nor "ARGS")
must be followed by an ATOM. The ATOM is bound te a TUPLE ("VECTOR an the control
stack”™ of all the remaining arguments. evaluated in the environment existing when the

FUNCTION was applied. (If no arguments remain, the TUPLE is empty.) If “TUPLE"
appears in the argument LIST, "ARGS" should not appear.

(5) "AUX" or "EXTRA" {they're cquivalent)
is Followed by any number of ATOMs or 2-lists. These are auxiliary wvariables. bound
away from the previous environment for the use of this Function. ATOMs are bound in
the ENVIRONMENT of the Funetion, but they are unassigned: the first element of each 2-
list is both bound and assigned to EVAL of the corresponding second element. (This
EVAL is donec in the new ENVIRONMENT of the Function as it is being constructed.)

(B) "NAME" ar "ACT" flil.t'_‘r"r!" equivalent)

must be followed by an ATOM. The ATOM is bound to the ACTIVATION of the current
cvaluation of the Function.

ALSO -- in place of sections (2) (3) and (4), you can have

(2-3-4) "CaLL"

which must be followed by an ATOM. The ATOM is bound to the FORM which caused
application of this FUNCTION.

The special terms nsed above mean this:

"QUOTEd ATOM” -- a two-clement FORM whose first element is the ATOM QUOTE, and whose second
element is any ATOM. (Can be typed -- and will be PRINTed -- as 'afom.)

"Matching objeet” -- that clement of a FORM whose position in the FORM matches the position of a
required or optional argument in an argument LIST.

"2-list” - a two-element LIST whose first element is an ATOM (or QUOTEd ATOM: see below) and whose
second clement can be anything but a SEGHENT. EVAL of the second element is assigned to a new
binding of the first element (the ATOM) as the "value by default” in "OPTIONAL* or the “initial value”
in "AUX". In the case of "OPTIONAL", the first clement of a 2-list can be a QUOTEd ATOM: in this
case, an argument which is supplied is not EVALed, but if it is not supplied the second element of
the LIST is EVALed and assigned 1o the ATOM.

2.9 Functions

88 The MDL Programming Language

9.10. APPLY [1]

Occasionally there is a valid reason for the first element of a FORM not to be an ATOM. For example,
the object 1o be applied to arguments may be chosen at run time, or it may depend on the
arguments in some way. While EVAL is perfectly happy in this case to EVALuate the first element
and go on from there, the ecompiler (Lebling, 1979) can generate more efficient code if it knows
whether the result of the evaluation will (1) :I.Il.va}l:. be of TYPE FIX, (2) ;;'[w;:,lﬁ be an ;Pp”cnble nomn-
FIX object that evaluates all its arguments, or {3) neither. The easiest way to tell the compiler if (1)
or (2} is true is 1o use the ATON NTH (scction 7.1.2) or PUT (section 7.1.4) in case (1) or APPLY in case (2)
as the first clement of 1the FORM. (Note: case (1) can compile into in-line code, but case (2) compiles
into a fully mediated call into the interpreter.)

CAPPLY object arg=l ... arg-N»

evaluates objoc! and all the arg-is and then applies the former te all the latter. An error occurs if
object evaluates (o .-nnlrlhing nol apph:able, or (o an FSUBR, or to a FUNCTION {or user Subroutine --
chapter 19) with "ARGS"™ or "CALL" or QUOTEd arguments.

Example:

CAPPLY <NTH .ANALYZERS
<LENGTH <{MEMQ <TYPE .ARG> .ARGTYPES>>>
-ARG>

calls a function tn analyze .ARG. Which function is called depends on the TYPE of the argument;
this represents the idea of a dispatch table

9.11. CLOSURE
CCLOSURE funclion al ... al»

where funclion is a FUNCTTION, and a/ through aV are any number of ATOMs, returns an object of
TYPE CLOSURE. This can be applied like any other function, but, whenever it is applied, the ATOMs
given in the call 1o CLOSURE are first bound to the VALUEs they had when the CLOSURE was
generated, then the function is applied as normal. This is a "poor man's Tunarg”,

A CLOSURE is useful when a FUNCTION must have state information remembered between calls to it,
especially in these two cases: when the LVALs of external state ATOMs might be compromised by other
pregrams, or when more than one distinet sequence of calls are active concurrently. Example of the
latter: each objrct of a structured NEWTYPE might have an associated CLOSURE that coughs up one
element at a time, remembering between calls how far it got. Often only one ATOM will be included

in the CLOSURE, with a value in the CLOSURE that is a structure containing all the relevant
information.

9.10 - 9.11 Functions

The MDL Programming Language 89

Chapter 10. Looping

10.1. PROG and REPEAT [1]

PROG and REPEAT are almost identical FSUBRs which make it possible to vary the order of EVALuation
arbitrarily -- that is. to have "jumps”. The syntax of PROG ("program”) is

<PROG acl:afom auxdis! bodyd
where
act is an optional ATOM, which is bound to the ACTIVATION of the PROG.
Auy is a LIST which looks exactly like that part of a FUNCTION's argument LIST which follows
am "AUX", and serves exactly the same purpose. It is not opticnal. If you need no temporary
variables or "ACT", make it ().

body is a non-zero nuimber of arbitrary MDL expressions.

The syntax of REPEAT is identical. except that, of course, REPEAT is the first element of the FORM,
not PROG.

10.1.1. Basic EVALuation [1]

Upon enfering a PROG, an ACTIVATION is always gencrated. If there is an ATOM in the right place,
the ACTIVATION is also bound to that ATOM, The variables in the suw (if any) are then bound as
indicated in the sux. All of the expressions in body are then EVALuated in their order of occurrence.
If nothing untoward happens, you leave the PROG upon evaluating the last expression in body,
returning the value of that last expression.

PROG thus provides a way to package together a group of things you wish to do, in a somewhat more

limited way than can be done with a FUNCTION. But PROGs are generally used for their other
properties.

10 - 10.1.1 Looping

(Il

(Il

(i

(118

20 The MDL Programming Language

REPEAT acts in all ways exactly like a PROG whose last expression is <AGAIN>. The only way to leave
a REPEAT is to explicitly use RETURN (or GO with a TAG — section 10.4).

10.1.2. AGATN and RETURN in PROG and REPEAT [1]

Within a PROG or REPEAT, you always have a defined ACTIVATION, whether you bind it to an ATOM
or not. [In Fact the interpreter binds it to the ATOM LPROGY, !-INTERRUPTS ("last PROG™). The FSUBR
BIND is identical 1o PROG except that BIND does mot bind that ATOM, so that AGAIN and RETURN with
no ACTIVATION argument will not refer to it. This feature could be useful within HMACROs.]

If AGAIN is used with no arguments, it uses the ACTIVATION of the closest surrounding PROG or
REPEAT within the current function {an error occurs if there is none) and re-staris the PROG or
REPEAT without rebinding the aux variables, just the way it works in a FUNCTION. With an
argument. it can of course re-stari any Function (PROG or REPEAT or FUNCTION) within which it is
embedded at run time.

As with AGAINM, if RETURN is given no ACTIVATION argument, it uses the ACTIVATION of the closest
surrounding PROG or REPEAT within the current function and causes that PROG or REPEAT to

terminate and return RETURN's first argument. If RETURN is given no arguments, it causes the
closest surrounding PROG or REPEAT to return the ATOH T. Also like AGAIN, it can, with an
ACTIVATION argument, terminate any Function within which it is embedded at run time.

10.1.3. Examples [i]

Examples of the use of PROG arc difficult to find, since it is almost never necessary, and it slows
down the interpreter (chapter 24). PROG can be useful as a point of return from the middle of a
computation. or inside a COND (which see). but we won't exemplify these uses. Instead, what follows
is an example of a typically poor use of PROG which has been observed among Lisp (Moon. 1974)
programmers using MDL. Then, the same thing is done using REPEAT. In both cases, the example

FUNCTION just adds up all its arguments and returns the sumn. (The SUBR GO is discussed in section
10.4.)

;"Lisp style®
CDEFINE MY+ ("TUPLE"™ TUP)
<PROG (5UM)
<3ET SUM 0>
LP <COND (<EMPTY? .TUP> <RETURN .S5UM>)>

CSET SUM <+ .5UM <1 .TUP>>>
<SET TUP <REST .TUP>>
<GO LP>>>

10.1.1 - 10.1.3 Looping

A

The MDL FProgramming Language a1

:"MDL style"
CDEFINE MY+ ("TUPLE" TUP)
CREPEAT ((SUM 0))
<COND (<EMPTY? .TUP> <RETURN .SUM>)>
<SET SUM <+ .SUM <1 .TUP>>
<SET TUP <REST .TUP>>>}

OFf course. neither of the above is optimal MDL code for this problemn, since MY+ can be written
using SEGHENT evaluation as

CDEFINE MY+ (“TUPLE"™ TUP) <+ !.TUP>>

There are, of course, lots of problems which can't be handled so simply, and lots of uses for REPEAT.

10.2. MAPF and MAPR: Basies [1]

MAPF ("map first™) and HAPR ("map rest™) are two SUBRs which take care of a ma jority of cases which
require loops over data. The basic idea is the following:

Suppose you have a LIST (or other structure) of data, and you want to apply a particular function
te each element. That is exactly what MAPF does: you give it the function and the structure, and it
applies the functinn to each element of the structure, starting with the First.

On the. other hand, suppote you want to change each element of a structure according to a
particular algorithm. This can be done only with great pain using MAPF, since you don't have easy
access 1o the siruciure inside the functiont you have only the structure’s elements. MAPR solves the
problem hy applying a function to RESTs of a structure: first to <REST structure 0>, then to
SREST structure 12, cte. Thus, the function can change the structure by changing its argument,
fFor example. by a <PUT argumen! 1 something®. It can even PUT a new element farther down the
structure. which will be seen by the function on subsequent applications.

Now suppose, in addition 1o applying a function to a structure, you want to record the results -- the
values returned by the function - in another structure. Both MAPF and MAPR can do this: they both
take an additional function as an argument. and, when the looping is over, apply the additional
Function to all the results, and then return the result of that application. Thus, if the additional
Function is ,LIST, you get a LIST of the previous results: if it is ,VECTOR, ¥You get a VECTOR of
results: efe.

Finally. it might he the case that you really want to loop a function over more than one structure
simultaneously. For instance, consider creating a LIST whose elements are the element-by-element

sum of the contents of two other LI5STs. Both MAPF and MAPR allow this: you can, in fact, give each
of them any number of structures full of arguments for your looping function.

10.1.3 - 10.2 Looping

—
T R R R R R —=—
e
= ________————————————— ____ _ ___ _______ ______________________________.___________ ___ __ i
— e ——
e
T e R R ——————————————————s——————ss——s——————————————————==
e T
———— e ——eeeeeeeey
= e ————————————— e
———_— - ————- — - — — — - — —-——m— ™ — ™
e R R TR N e == ————————————
s s e R R R R R R —
T —
T A i, - - e €~
= ___ e — _——— — _____________ ___..--——————————————————
—_—emeeeeeeeee——
e T R R e R EEEEEEEEEEE———_————
R ——,—,—,—,Y,eeeee—e R R R EEEE——
— = ———————————
e
e S e ————————
e e s
e

9z The MDL Programming Language

This was all mentioncd beecause MAPF and MAPR appear to be complex when seen baldly, due to the
fact that the argument deseriptions must take into account the general case. Simpler, degenerate
cases are usually the ones used.
10.2.1. MAPF [I]
<MAPF finalf loopf sl s2 ... sN>
where (after argument evaluation)
finalf is somcthing applicable that evaluates all its arguments, or a FALSE;
feapf is snmething applicable to A arguments that evaluates all its arguments; and
sl throngh =N arc structurcd ob jects (any TYPE)
does the following:
(1) First, it applics loopf 1o N arguments: the first element of each of the structures. Then it
RESTs cach of the structures, and does the application again, looping until any of the structures
runs out of elcments. Each of the values returned by /oopf is recorded in a TUPLE.
(2} Then, it applics finalf 1o all the recorded values simultaneously, and returns the result of that
application. If finalf is a FALSE, the recorded values are “thrown away” (actually never recorded
in the Tirst place) and the MAPF returns only the last value returned by loopf. If any of the s/
struciures is ciply, 0 that foopf is never invoked, finall is applied to no arguments; if finalf is a
FALSE, MAPF rciurns #FALSE ().
10.2.2. MAPR [1]
<MAPR finalf loopf =] =22 ... sN»
acts just like MAPF, but, instead of applying loopf 10 NTHs of the structures -- that is, <NTH =/ 1>,
<NTH s/ 2%, etc. -- it applics it to RESTs of the structures — that is. <REST s/ 0>, <REST s/ 1>, etec.
10.2.3. Examples [1]
Make the clement-wise sum of two LISTs:
<MAPF ,LIST .+ *'(1 2 3 4) '(10 11 12 13)>§

(11 13 15 17)

10.2 - 10.2.3 Looping

11

L

i

'L

The MDL Programaning Language 93

Change a UVECTOR to contain double its values:

<SET UV 'I1[5 6 7 B 91>
I[56 78 91]

CHMAPR <>
FFUNCTION ({L) <PUT .L 1 <= €1 .L>» 2>>»)
UV RS

1{181]

JUVSE

'L10 12 14 16 181]
Create a STRING (from CIHARACTERSs:

<MAPF ,STRING 1 '["MODELING" "DEVELOPMENT" "LIBRARY"]>S
"MDL"™

Sum the squares of the elements of a UVECTOR :

<HMAPF .+ SFUNCTIOH ((N) <= N .N>) "I[3 4]>%

25
A parallel assignment FUNCTION (Note that the arguments to HAPF are of different lengths.):

<DEFINE PSET (™TUPLE™ TUP)

<HAPF <>

+3ET
-TUP
CREST .TUP </ <LENGTH .TUP> 23>>33%

PSET

<PSET A B C 1 2 3>%

3

AR

L

.B%

£

+C3

3

Mote: it is rcasy to forget that finalf must evaluate its arguments, which precludes the use of an
FSUBR. It is primarily for this reason that the SUBRs AND? and OR? were invented. As an example,
the predicate =7 could have been defined this way:

10.2.3 Looping

|

. The MDL Programming Language

<DEFINE =% (A B)
<COND (<MONAD? .A> <==7 .A .B>)
(<AND <NOT <HMOMAD? .B>>
<==7? {TYPE .A> <TYPE .B>>
€==7 <LENGTH .A> <LENGTH .B3>>>
CHAPF ,AND? =7 .A .B>)}>>

[By the way. the following shows how to construct a value that has the saine TYPE as an argument.
<DEFINE MAP-NOT (S)
<COND (<MEMQ <PRIMTYPE .5> "I[LIST VECTOR UVECTOR STRING]>
<CHTYPE <HAPF ,<PRIMTYPE .5> ,NOT .5>
CTYPE _S33>)>>

It works hecause the ATOMs that mname the common STRUCTURED PRIMTYPEs (LIST, VECTOR,
UVECTOR and STRING) have as GVALs the corresponding SUBRs to build ob jects of those TYPEs.]

10.3. More on MAPF and MAPR

10.3.1. MAPRET
MAPRET is a SUBR that enables the foopf being used in a HAPR or MAPF (and lexically within it, that is,
not separated from it by a function call) to return from zero to any number of values as opposed to

just one. For example, suppose a HAPF of the following form is used:

<MAPF ,LIST <FUNCTION (E) ...2> ...»

Now suppose that the programmer wants to add no elements to the final LIST on some calls to the
FUNCTION and add many on other calls to the FUNCTION. To accomplish this, the FUNCTION simply
calls MAPRET with the elements it wants added to the LIST. More generaHy, MAPRET causes its

arguments 1o be added to the final TUPLE of arguments to which the finalf will be applied.

Warning: MAPRET is guaranieed to work only if it is called from an explicit FUNCTION which is the
second arguinent 1o a MAPF or HAPR. In other words, the second argument to MAPF or MAPR must be
#FUNCTION (...) or <FUNCTION ...>»if HAPRET is to be used,

Example: the following returns a LIST of all the ATOMs in an OBLIST (chapter 15}
<DEFINE ATOMS (OB)
<HAPF ,LIST

<FUNCTION (BKT) <MAPRET !.BKT>>
.OB3>

10.2.3 - 10.3.1 Looping

WU L

The MDL Programming Language 95

10.3.2. MAPSTOP

MAPSTOP is the same as MAPRET, except that, after adding its arguments, if any, to the final TUPLE,
it forces the application of finalf 1o occur. whether or not the structured objects have run out of
elements. Example: the following copies the first ten (or all) elements of its argument into a LIST:

<DEFINE FIRST-TEN (STRUC ®AUX" (I 10))
<HMAPF ,LIST
<FUNCTION (E)
<COND (<07 <SET I <= .I 1>>> <MAPSTOP LE>)}>
E>
STRUC>>

10.3.3. MAPLEAVE

MAPLEAVE is analagous to RETURN, cxcopt that it works in (lexically within) MAPF or MAPR instead of
PROG or REPEAT. It flushes the aceumulated TUPLE of results and returns its argument {optional, T
by default) as the value of the MAPF or MAPR. (It finds the MAPF/R that should return in the current
binding of the ATOM LMAP\ !-INTCRRUPTS ("last map”)L) Example: the following finds and returns
the first non-zero clement of ifs argument, or #FALSE () if there Is none:

<DEFINE FIRST-NO (STRUC)
<HAPRF <>
<FUNCTION (X)

CCOND (<N==7 .X 0> <{MAPLEAVE .X>)>>
S TRUCS >

10.3.4. Only two arguments
If MAPF or MAPR is given only twe argumients, the iteration function foopf is applied to no arguments

each time, and the losping continucs indefinitely until a MAPLEAVE or MAPSTOP is invoked.
Example: the following returns a LIST of the integers from one less than its argument to zero.

<DEFINE LNUM (N)
<HAPF ,LIST
<FUNCTION ()
<COND (<07 <SET N <- .N 13>> <HAPSTOP 0>)
(ELSE .N)>>3>

One principle use of this form of MAPF/R involves processing input characters, in cases where you

don’t know hew many characlers are going to arrive. The example below demonstrates this, using
SUBRs which are more fully explained in chapter II. Another example can be found in chapter 13.

10.3.2 - 10.5.4 Looping

1/

96 The MDL Programming Language

Example: the following FUNCTION reads characters from the current input channel until an % (ESC)
is read. and then returns what was read as one STRING. (The SUBR READCHR reads one character from
the input channel aud returns it. NEXTCHR returns the next CHARACTER which READCHR will return —
chapter I1.)

<DEFINE RDSTR ()
<MAPF ,STRING
CFUNCTION () <COND (<MOT <==7 {NEXTCHR>» <ASCII 27>>>
<READCHR>)
(T
<HAPSTOP>)>>>>5
RDSTR

CPROG () <READCHR> ;"Flush the ESC ending this input.®

<RD5TR>>%
ABCL1Z3<+ 3 453 ABC123<+ 3 45"

10.3.5. STACKFORM

The FSUBR STACKFORM is archaie, due to improvements in the implementation of MAPF/R, and it
should not be used in new programs.

CHTACKFORM funclion arg pred>
is exactly equivalent to

<MAPF funclion
CFUHCTION () <COND (pred arg) (T <MAPSTOP>)>>>

In fact MAPF/R is more powerful, because MAPRET, MAPSTOP, and HAPLEAVE provide flexibility not
available with STACKFORM.

10.4. GO and TAR

GO is provided in MDL for penple who can't recover from a youthful experience with Basie, Fortran,
PL/I. ete. The SUBRs proviensly described in this chapter are much more tasteful for making good,
clean, "structured” programs. GO just bollixes things.

GO is a SUBR which allows you te break the normal order of evaluation and re-start just before any
top-level expression in a PROG or REPEAT. It can take two TYPEs of arguments: ATOM or TAG.

10.5.4 - 10.4 Looping

.
I ——
—
—_————————————————————————-s
————
I —
S
— m
e S
e
s
S
L
—
ey P
N
T
.
I —
—
———————————————————————————-—-v--—s—evs
e
S
e

The MDL Programming Language 97

Given an ATOM, GO scarches the rody of the immediately surrounding PROG or REPEAT within the
current Function. starting after aux. for an cccurrence of that ATOM at the tap level of body. (This

search is effectively a MEMQ.) IF it doesn't find the ATOM. an error occurs. If it does, evaluation is
resumed at the expression following the ATOM,

The SUBR TAG generates and returis objeets of TYPE TAG. This SUBR takes one argument: an ATOM
which wonld be a legal argument for a GO. An objeet of TYPE TAG contains sufficient information
to allow vou to GO In any top-level position in a PROG or REPEAT from within any funection called
inside the PROG or REPEAT. GO with a TAG is vaguely like AGAIN with an ACTIVATION: it allows you
to "go back” to the middle of Any PROG or REPEAT which called you. Also like ACTIVATIONs, TAGs

inte a PROG or RCPLAT can no longer be used after the PROG or REPEAT has returned. LEGAL? can be
used to see if a TAG is st1ill valid.

10.5. Looping versus R ecursion

Since any program in MDL can be ealled recursively. champions of "pure Lisp” (Moon, 1974) or
somesuch may be tempted to imploment any repetitive algorithm using recursion. The advantage

looping techninques deseribed in this chapter over recursion is that the overhead of calls s
eliminated. However, a long program (say, bigger than half a printed page) may be more difficult
o write itcratively than recursively and henece wore difficult te maintain. A program whose
repetition is controlled by a struciured ob ject (for example, “walking a tree” to visit each monad in

the objeci) often should use looping for covering one "level” of the structure and recursion to change
levels™.

10.4 - 10.5 Looping

o8 The MDL Programming Language

Chapter 11. Input/Output

The MDL interpreter can transmit information between an object in MDL and an external device
in three ways. Historically, the first way was to convert an object into a string of characters, or
vice versa. The transformation is nearly one-to-one (although some MDL objects, for example
TUPLEs. cannot be input in this way) and is similar in style to Fortran's formatted I/O. It is what
READ and PRINT do, and it is the normal method For terminal 1/O.

The second way is used for the contents of MDL objects rather than the objects themselves. Here

an image of numbers or characters within an objeet is transmitted, similar in style to Fortran's
unforimatied 1/0.

The third way is to dump an object in a clever format so that it can be reproduced exactly when
input the next time. Exact reproduction means that any sharing between siructures or self-
reference is preserved: only the garbage collector itself can do I/O in this way.

11.1. Conversion /O

All conversion-1JO SUBRs in MDL take an optional argument which directs their attention to a
specific 1/O channel. This section will describe SUBRs without their optional arguments. In this
situation, they all refer to a particular channel by default, initially the terminal running the MDL.
When given an optional argument, that argument follows any arguments indicated here. Some of
these SULRs also have additional optional arguments, relevant to conversion, discussion of which will
be deferred until later.

HLLL Input

All of the following input Subroutines, when directed at a terminal, hang until § (ESC) is typed and
allow normal use of rubout, ~D, =L and =@.

11 - 1111 Input/Output

The MDL Programming Language 89

11.1.1.1. READ

<READ 2>
This returns the entire MDL object whose character representation is next in the input stream.
Successive CREAD>s return successive ob jects. This is precisely the SUBR READ mentioned in chapter
2. See alsa sections 11.3, 15.7.1, and 17.1.% for optional arguments.

11.0.1.2. READCIIR

<READCHR >

("read character”) returns the next CHARACTER in the input stream. Successive <READCHR>»s return
successive CHARACTERs.

10.1.1.3. HEXTCHR
CNEXTCHR >
("next character”) returns the CHARACTER which READCHR will return the next time READCHR is called.

Multiple <NEXTCHR>s, with no input operations between them. all return the same thing.

1.2, Output

If an object to be output requires (or can tolerate) separators within it (for example, between the
clements in a structured objoct or after the TYPE name in “# notation”), these conversion-output
SUBRs will use a carriage-return/line-feed separator to prevent overflowing a line. Overflow is
detected in advance from elements of the CHANNEL in use (section 11.2.8).
11.1.2.1. PRINT

<PRINT any>

This outpurts. in order.
(1) a carriage-return line-feed,

(2} the character representation of EVAL of its argument (PRINT is a SUBR), and
(3) a space

and then returns EVAL of its argument. This is precisely the SUBR PRINT mentioned in chapter 2.
11.1.2.2. PRINI
CPRIN1 any>

cutputs just the representation of, and returns, EVAL of any.

ILLLL - 11.1.2.2 Input/Qutput

100 The MDL Programming Language

11.1.2.3. PRINC
CPRINC any>
{Cprint characters”) acts exactly like PRIN1, except that
(1) if its argument is a STRING or a CHARACTER, it suppresses the surrounding "s or initial !
respoctively: or,
(2) if irs argument is an ATOM, it suppresses any \s or OBLIST trailers (chapter 15) which would

otherwise be necessary.

If PRINC s argincint is a structure containing STRINGs. CHARACTERs, or ATOMs, the service mentioned
will be done For all of them. Ditte for the ATOM used to name the TYPE in “# notation”.

11.1.2.4. TERPRI

C{TERPRI>
("terminate printing”) outputs a carriage-return line-feed and then returns #FFALSE ()!
11.1.2.5. CRLF

<CRLF >
{"carringr.rpnun line-Feed”) outputs a carriage-return line-feed and then returns T.
11.1.2.6. FLATSIZIE

CFLATSIZIF any max:dfix radix:fixd
docs not actually cause any outputl to occur and does not take a CHANNEL argument. Instead, it
compares mav with the number of characters PRINI would take to print any. If max is less than the
number of characters needed (including the case where any is self-referencing), FLATSIZIE returns
#FALSE (); otherwise, it returns the number of characters needed to PRIN1 any. radix {(optional. ten

by default) is used for converting any FIXes that occur.

This SUBR is especially useful in conjunction with (section 11.2.8) those elements of a CHANNEL |
which specify the number of characlers per output line and the current position on an output line.

i.1.23 - 1L1.2.6 Input/Output

| —

L

L

LA

LN

The MDL Programming Language 101

11.2. CHANMEL (the TYPE)

/O channels are dynamically assigned in MDL, and are represented by an object of TYPE CHANNEL,
which is of PRIMIYPE VECTOR. The format of a CHANNEL will be explained later. in section
11.2.8. First, how to generale and use them.

11.2.1. OPEN
COPEN mode file-spec?
or

COPEN mode namel] name?2 device dir>

OPEN is a SUBR which creates and returns a CHANNEL. All its arguments must be of TYPE STRING,
and all arc nptional. The preceding statement is false when the device is "INT® or "NET"; see
sections 119 and 1LI0. Tf the attempted opening of an operating-system 1/O channel fails, OPEN
returns *FALSE (ressomsfring fle-specsstring status:dfix), where the reasson and the status are
supplicd by the operating system, and the file-spec is the standard name of the file (after any name
transformations by the operating system) that MDL was trying to open.

The choice nof mode is usually determined by which SUBRs will be used on the CHANNEL, and whether
or not the device is a terminal. The following table tells which SUBRs can be used with which modes,

where OK indicates an allowed use:

"READ" "PRINT" "READB" "PRINTB" mode / SUBRs

"PRINTO"
Ok Ok READ READCHR MNEXTCHR READSTRING FILECOPY FILE-LENGTH
LOAD
Ok QK= PRINT PRINI PRINC IMAGE CRLF TERPRI FILECOPY
PRINTSTRING BUFOUT NETS RENAME
Ok READE GC-READ
QK PRINTB GC-DUHMP
O Ok OK ACCESS
OK OK QK Ok RESET
oK Ok ECHOPAIR
O TTYECHO TYI

= PRINTing (or PRINling) an RSUBR (chapter 19) on a "PRINTB" or “PRINTO" CHANNEL has special
effects,

"PRINTB" differs Trom "PRINTO" in that the latter mode is used to update a “DSK" file without

copying it. "READB"™ and "PRINTB" are not used with terminals. "READ" is the mode used by
defaulr.

11.2 - 11.2.1 Input/Output

102 The MDL Programming Language

The next onc 1o four arguments to OPEN specify the file involved. If only one STRING is used, it
can confain the entire specification, according to standard operating-system syntax. Otherwise. the
string(s) are interpreted as follows:

ramel is the first file name. that part 1o the left of the space (in the ITS version) or period (in the

Tenex and Tops-20 versions). The name used by default is <VALUE KNM1>, if any, otherwise
"INPUT".

names is the second Tile name. that part to the right of the space (ITS) or period (Tenex and Topas-
20). The name uscd by defanlt is <VALUE NM23:, if any. otherwise ">»" (ITS) or "MUD" and highest
version number (Tenex) or generation number {Tnps-im.

device is the deviee name. The name used by default is <VALUE DEV>, if any. otherwise "D3K".
I| (Devices about which MDL has no special knowledge are assumed to behave like "D5K".)

dir is the disk-directory name. The name used by default is {VALUE SNM>, if any, otherwise the
"working-dircctory” name as defined by the operating systemn.

Examples:

<COPEN "PRINT" "TPL:"> opcns a conversion-outpul CHANNEL to the TPL device.

COPEN "PRINT®™ "DUMHY"™ "NAHMES® *TPL"> does the same.

COPEM "PRINT™ "TPL"> opens a CHANNEL to the file DSK:TPL > (ITS version) or DSK:TPL.MUD
(Tenex and Tops-20 versions).

<OPEN "READ" "FOO"™ "3>" "D5K" "GUEST"> opens a conversion-input CHANNEL to the given file.

<OPEN "READ" "GUEST:FOO"> does the saime in the ITS version.

11.2.2. OPEH-NR

OPEN-NR is the same as OPEN, except that the date and time of last reference of the opened file are
not changcd.

11.2.3. CHAKNEL (the SUBR)

CHANNEL is called exactly like OPEN, Lut it always returns an unopened CHANNEL, which can later be
opened by RESET (below) just as if it had once been open.

iL21 - 11.23 Input/Qutput

R R R R R R R R RRRRRRRRRRRTBRIIRR=

The MDL I‘rngrnuuuiug I.;nlglmge 103

11.2.4. FILE-EXISTS?

FILE-EXISTS? tests For the existence of a file without creating a CHANNEL, which occupies about a
lhundred machine words of storage. It takes file-name arguments just like OPEN (but no mode
nrgnlnrul! and returns cither T or #FFALSE {reasnn;s:rmg status:fix), where the reazon and the staltus
are supplied by the operating system. The date and time of last reference of the file are not
changed.

11.2.5. CLOSE

LCLOSE channel?>

closes channe! and returns its argument, with its "state” changed to "closed™. If channel is for output,
all buffered output is written out first. No harm is done if channe/ is already CLOSEd.

11.2.6. CHANLIST
CCHANLIST>

returns a LIST whose elements are all the currently open CHANNELs. The first two elements are
usually , INCHAN and ,OUTCHAN (see below)., A CHANNEL not referenced by anything except
SCHANLIST?> will be CLOSEd during garbage collection.

11.2.7. INCHAN and OUTCHAN

The channel used by default for input SUBRs is the local value of the ATOM INCHAN. The channel
used by default for output SUBRs is the local value of the ATOM OUTCHAN.

You can dircet I/0 to a CIANNEL by SETting INCHAN or OUTCHAN (remembering their old values
somewhere) or by giving the SUBR you wish to use an argument of TYPE CHANNEL. (These actually
have the same effect, because READ binds INCHAN to an explicit argument, and PRINT binds OUTCHAN

similarly. Thus the CHANNEL being used is available for READ macros (section 17.1) and PRINTTYPEs
(section 6.4.4).)

By the way. a good trick for playing with INCHAN and QUTCHAN within a function is to use the ATOMs
INCHAN and OUTCHAN as "AUX" variables, re-binding their local values to the CHANNEL you want.
When you leave, of course, the old LVALs are restored (which is the whele point). The ATOMs must be
declared SPECIAL {(chapter I4) for this trick 1o compile correctly.

INCHAN and OUTCHAN also have global values, initially the CHANNELs directed at the terminal running
MDL. Initially, INCHAN's and OUTCHAN's local and global values are the same.

11.2.4 - 11.2.7 Input/Qutput

—

=

104 The MDL Programming Language

11.2.8. Contents of CHANNELs

The conicnis of an object of TYPE CHANNEL are referred to by the I/O SUBRs each time such a SUBR
is wsed, If you change the contents of a CHANNEL (for cxample, with PUT). the next use of that
CHANNEL will be changed appropriately. Some elements of CHANNELs, however, should be played with
seldom, if ever. and only at your peril. These are marked below with an (asterisk). Caveat user.

There follows a table of the contents of a CHANNEL, the TYPE of each element, and an interpretation.
The Format used is the following:
elemenl-number: voe interpratation

11.2.8.1. Output CHAMNF Ls

The contents of a CHANNEL used for output are as follows:

-1: LIST transcript channcl(s) {see below)

« 0: varies device-dependent information

* 1: FIX chiannel number (ITS) or JFN (Tenex and Tops-20), 0 for internal or closed
= 2: STRING mogle

s 3: STRING First Tile name arguiment

e 4: STRING second file name argument

« 5: STRING device name argument

e 6: STRING directory name argument

& 7: STRING real First File name

+ B: STRING real second file name

« 9: STRING real deviee name

=10: STRING real directory name

«ll: FIX various status bits

«12: FIX PDP-10 instruction used to do one 1/O operation
13: FIX number of characters per line of output
I14: FIX currcnt character position on a line

15: FIX number of lines per page

16: FIX current line number on a page

17: FIX accrss pointer for ile-oriented devices
18: FIX radix for FIX conversion

19: FIX sink for an internal CHANNEL

N.B.: The clements of a CHANNEL below number 1 are usually invisible but are obtainable via <NTH
CTOP chanmne!> Fix>, For some Appropriate fiw,

The transcript-channcls slot has this meaning: if this slot contains a LIST of CHANNELs, then
anything input or eutput on the original CHANNEL is output on these CHANNELs. Caution: do not use
a CHANNEL as its own transcript channel: you probably won't live to tell about it

11.2.8 - 11.2.8.1 Input/Qutput

The MDL Programning Language 105

I1.2.8.2. Input CHANNELs

The contents of the elements up 1o number 12 of a CHANNEL used for input are the same as that for
output. The reinaining elements are as follows ((same) indicates that the use is the same as that for

outputl
13: varies ahject evaluated when end of file is reached
el4: FINX nne “look-ahead” character. used by READ
vl5: FIX PDP-10 instruction executed waiting for input
16: LIST fucuc of bulfers for input from a terminal
IV: FIX aceess pointer For File-oriented devices (same)
I8: FIX radix for FIX conversion (same)
19: STRING buffer for input or source for internal CHANNEL

11.3. End-of-File "Routine”

As mentinned above, an explicit CHANKEL is the first optional argument of all SUBRs used for
conversion 1/O. The second optional argument for conversion-input SUBRs is an “end-of-file
routine” -- that is. something for the input SUBR to EVAL and return, if it reaches the end of the file
it is reading. A typical end-of-file argument is a QUOTEd FORM which applies a function of yours.

The value of this argument used by default is a call to ERROR. Note: the CHANNEL has been CLOSEd
by the time this argument is evaluated.

Example: the following FUNCTION counts the occurrences of a character in a file, according 1o its
arguments. The file names, device, and directory are optional, with the usual names used by default.

<DEFTHE COUNT-CHAR
{CHAR "TUPLE™ FILE "AUX" (CNT 0) (CHN <OPEN “READ™ ' .FILE>)})
{CORD (.CHN ;"If CHN is FALSE, bad OPEN: return the FALSE

50 result can be tested by another FUNCTION.*
<REPEAT ()

CAND <==% .CHAR <READCHR .CHN ‘<RETURN>>>
CS5ET CNT <+ 1 .CNT>>>>

i"Until EOF, keep reading and testing a character at a time.™®
LCNT ;"Then return the count.")>>

11.2.8.2 - 11.5 Input/OQutput

R R R R R R R R R R R R —— 3

106 The MDL Programming Language

11.4. Tlmaged 1O

11.4.1. Inpum
11.4.1.1. READB

SREADB Inefferuvector-or-slorage channel eof:any>
The charne! st he apen in "READBE" mode. READB will read as many 36-bit binary words as
necessary to Fill the buffer (whose UTYPE must be of PRIMNTYPE WORD), unless it hits the end of file.
READB returns the number of words actually read, as a FIXed-point number. This will normally be
the lengih of the buffer, unless the end of file was read, in which case it will be less, and only the
beginning of buffer will have been filled (SUBSTRUC may help). An attempt to READB again. afrer
buffer is not filled, will evaluate the end-of-file routine eof, which is eptional, a call to ERROR by
defaulr.
11.4.1.2. READSTRING

CREADSTRING buffer wiring channel stepdix-or-sliring eofy
is the STRING aunalog to READB, where buffer and eof are as in READB, and channel is any input
CHANNEL (.INCHAN by default) stop tells when te stop inputting: if a FIX, read this many
CHARACTERs (Till up buffer by default): if a STRING, stop reading if any CHARACTER in this STRINEG is
read (don't include this CHARACTER in final STRING).
11.4.2. Qutput
I11.4.2.1. PRINTB

SPRINTR beofferwueeclor -or-sltorage channel?

This call writes the entire contents of the buffer into the specified channel open in “PRINTE® or
"PRINTO"™ mode. It returns buffer.

11.4.2.2. PRINTSTRING
CPRINTSTRING buffer:string channel count:d#ix>»

is analogous to READSTRING. It oulputs buffer on channel, either the whaole thing or the first count
characters. and returns the number of characters output.

11.4 - 11.42.2 Input/Output

Ll

The MDL Programming Language 107

11.4.2.3. IMAGE

CIMAGL fix channel?>

is a rather special-purpose SUBR. When any conversion-output routine outputs an ASCII control
character (with special exceptions like carriage-returns, line-feeds, etc.), it actually outputs two
characters: ™ (circumflex), followed by the upper-case character which has been control-shifted.
IMAGE, nn the other hand, always outputs the real thing: that ASCII character whose ASCII 7-bit
code is fiv. It is guaranieed not to give any gratuitous line-feeds or such. channel is optional.

-OUTCHAN by default. and its slots for current character position (number 14) and current line
number (16} are not updated. IMAGE returns fix.

11.5. Dumped 1O

11.5.1. Output: GC-DUMP
CGC-DUMP any printb:channel-or-false>

dumps any on printh in a clever format so that GC-READ (below) ean reproduce any exactly, including

sharing. any cannnt live on the control stack, nor can it be of PRIMTYPE PROCESS or LOCD or ASOC
(which see). anyv is returned as a value.

If printh is a CHAHMEL, it wust be open in "PRINTB® or "PRINTO" mode. If printt is a FALSE,
GC-DUMP instead returns a UVECTOR {of UTYPE PRIMTYPE WORD) that contains what it would have

output on a CHANHEL. This UVECTOR can be PRINTBed anywhere you desire, but, if it is changed in

any way. GC-READ will not be able to input it. Probably the only reason to get it is to check its
length belore outpur.

Except for the miniature garbage collection required, GC-DUMP is about twice as fast as PRINT, but
the amount of external storage used is iwo or three times as much.

11.5.2. Inpul: GC-READ
CGC-RLAD readbxhannel eof:any>

returns onc ob ject From the channel. which must be open in “READB® mode. The file must have been
produccd by GC-DUMP. eof is optional. GC-READ is about ten times faster than READ.

11.4.2.5 - 11.5.2 Input/Qutput

108 The MDL Programming Language

11.6. SAVE Files

The entire state of MDIL can be saved away in a file for later restoration: this is done with the SUBRs
SAVE and RESTORE. This is a very different form of 1/O from any mentioned up to now; the file
used contains an actual image of your MDL address space and is not, in general, “legible” 10 other
MDL routines. RESTORFing a SAVE file is much Faster than re-READing the ob jects it contains.

Sinece a SAVE file does not contain all extant MDL objects, only the impure and PURIFYed (section
22.9.2) anes. a change to the interpreter has the result of making all previous SAVE files unusable.
Ta prevent errors from arising from this, the interpreter has a release number, which is incremented
whenever changes are installed. The current release number is printed out on initially starting up
the program and is available as the GVAL of the ATOM MUDDLE. This release number is written out
as the very first part of each SAVE file. If RESTORE attempts to re-load a SAVE file whose release
number is wot the same as the interpreter being used, an error is produced. If desired. the release
number of a SAVE file can be obtained by deing a READ of that file. Only that initial READ will
work: the resi of the File is not ASCII,

11.6.1. SAVE

<SAVLC file-specsiring goPfalse-or-any
or

CSAVE namel name? device dir gc?false-or-any>
saves the entire state of your MDL away in the file specified by its arguments, and then returns
"SAVED®". AIll STRING arguments are optional, with "MUDDLE", "SAVE"™, "DSK", and <VALUE SNM>
used by default. ge? is optional and, if supplied and of TYPE FALSE, causes no garbage collection to
occur before SAVEIing. (FSAVE is an alias for SAVE that may be seen in old programs.)
If. after restoring. RESTORE Finds that <VALUE SNM> is the null STRING (**), it will ask the operating
systoem [or the name of the "working dircctory” and call SNAME with the result. This mechanism is
handy for "public”™ SAVE files, which should net point the user at a particular disk directory.
In the ITS veorsion, the file is actually written with the name _MUDS_ > and renamed to the
argument(s) only when complete, to prevent losing a previous SAVE file if a crash occurs. In the

Tenex and Tops-20 versions, version/generation numbers provide the same safety.

Example:

1.6 - 11.6.1 Input/Output

The MDL Programming Language 109

<DEFINE SAVE-IT (™OPTIONAL"
(FILE '(“PUBLIC® "SAVE™ *"DSK" "GUEST")}))
"AUX"™ (SNM ""))
CHSETUP>
<COND (<=7 "SAVED"™ <{SAVE !.FILE>> ;"See below."
<CLEANUP >
"Saved.")
(T
SCRLF>
<PRINC "Amazing program at your service.">
CCRLF>
CSTART-RUNNING>)>>

11.6.2. RESTORE
CRESTORE file-specy
or
CRESTORE rnamel nameZ device dir?

replaces the entire current state of your MDL with that SAVEd in the file specified. All arguments
are optional, with the same values used by default as by SAVE.

RESTORE completely replaces the contents of the MDL, including the state of execution existing
when the SAVE was done and the state of all open 1/O CHANNELs. If a file which was open when the

SAVE was done docs not exist when the RESTORE is done, a message to that effect will appear on the
terminal.

A RESTORE never returns (unless it gets an error): it causes a SAVE done some time ago to return
again (this time wirh rhe value *"RESTORED"™), cven if the SAVE was done in the midst of running a
program. In the latter case, the program will continue its execution upon RESTOREation.

LL.7.1. LOAD
<LOAD rnpul:channel look-up?

eventually returns "DONE". First. however, it READs and EVALs every MDL ob ject in the file pointed

1L.6.1 - 11.7.1 Input/Output

i

f

I

f

M

il

I

110 The MDL Programming Language
te by /nput. and then CLOSEs impuf. Any occurrences of rubout, ~8, D, ~L, etc., in the File are
given no special meaning: they are simply ATOM constituents.

feck-up is optional, used to specify a LIST of OBLISTs for the READ. .OBLIST is used by default
{(chapter 15).

11.7.2. FLOAD

<FLOAD file-spec look-up?

LFLOAD namel nameZ device dir look-up?
("file load”) acts just like LOAD, except that it takes arguments (with values used by default) like

OPEN, OPLN« the CHANHEL itself for reading. and CLOSEs the CHANNEL when done. foock-up is optional,
as im LOAD. If the OPEN Fails. an error occurs, giving the reason for failure.

11.7.3. SNAME
CSNAME string? (“system uame”, a hangover from ITS) is identical in effect with <SETG SNM string>,
thal is. it causes siring 1o become the dir argument used by default by all SUBRs which want file

specifications (in the absence of a local value for SNM). SNAME returns its argument.

<SNAME> is identical in effect with <GVAL SNM>, that is, it returns the current dir used by default.

11.7.4. ACCESS

<ACCESS channel fix>
returns chancel, after making the next character or binary word (depending on the mode of channel,
which should not be "PRINT") which will be input from or output to channe/ the (fix+I}st one from

the beginning of the file. channel/ must be open 1o a randomly accessible device ("DSK®, "USR",
ete.). A fix of 0 positions channe! at the beginning of the file.

11.7.5. FILE-LENGTH
<FILE-LENGTH snput:channsl>

returns a FIX, the length of the file open on input. This information is supplied by the operating

1.7.1 - 11.7.5 Input/Qutput

LELELELEELELELELELELEL

The MDL Programming Language 111

system. and it may not be available. for example, with the "NET" device (section 11.10L If input's
mode is "RCAD", the length is in characters (rounded up to a multiple of fivek if "READB", in
binary words. If ACCESS is applicd to /nput and this length or more, then the next input operation
will detect the end of file.

11.7.6. FILECOPY
CFILECOPY rinpul:.channel oulpul:channel>

copics characters From inpuf 1o oufpul until the end of file en input {thus closing input) and returns
the number of characters copied. Both arguments are optional, with .INCHAN and .OUTCHAN used by
defaull, respectively. The operation is essentially a READSTRING - PRINTSTRING loop. MNeither
CHANNEL need be freshly OPENed, and oufpu! need not be immediately CLOSEd. Restriction: internally
a CFILE=-LENGTH rnput> is cdone, which must succeed: thus FILECOPY |nighl lose if input is a "NET™
CHANNEL .

11.7.7. RESET
LRESET channel?

returns cfransel afier “resetting” it. Resetting a CHANNEL is like OPENing it afresh, with only the file-
name slots preserved. For an input CHANNEL, this means emptying all input buffers and, if it is a
CHANNEL to a [ile, doing an ACCESS o 0 on it. For an output CHANNEL, this means returning to the
beginning of the file -- which implies, if the mode is not "PRINTO", destroying any output done to
it so Far. If the opening fails (for example, if the mode slot of channel says input, and if the file
specified in its real-name slois does not exist), RESET (like OPEN) returns #FALSE (reason:slring file-
specsulring sfalusiiv) .

I1.7.8. BUFOUT
CRBUFOUT owlputxhanns!>
causes all internal MDL buffers for oculpul to be written out and returns its argument. This is

helpful if the operating system or MDL is flaky and you want to attempt to minimize your losses.
The outpul may be padded with up to four extra spaces, if oulpul’s mode is "PRINT".

11.7.9. RENAME
RENAME is for renaming and deleting files. It takes three kinds of arguments:

(al rwo file names. in cither single- or multi-STRING format, separated by the ATOM TO,
(b} one file name in cither format, or

1.7.5 - 11.7.9 Input/Qutput

12 The dM0OL Programming Language

{c) u CHANNEL and a file name in either format (only in the ITS version).

Omitted Dile-namie parts use e same values by default as does OPEN. If the operation is successful,
RENAME verurns |, otherwise sFALSE (reason:string status:fix).

In case (ai the file specificd by the first argument is renamed to the second argument. For example:
<RENAME "FL3 3% TO "RAR™> ;"Rename FOD 3 to BAR >."
In case (b} ihe single Tile name specifies a file to be deleted. For example:

CREMAME "FOO FOO DSK:HARRY:*> ;:"Delete file FOO FOO from
HARRY's direclory.”®

In case (c) the CHANNEL must be open in either "PRINT® ar "PRINTE™ mode, and a renzme while open

For writing is attempied. The real-name slots in the CHANNEL are updated to reflect any successful
change, l

11.8. Terminal CHANHELs

MDL bhehaves likbe the ITS version of the text editor Teco with respect to typing in carriage-return,
in that i autnmatically adds a line-feed. In order to type in a lone carriage-return, a carriage-return
followed by a rubinut must Le typed. Also PRINT, PRIN1 and PRINC do not automatically add a line-
feed when a carriage-refurn is output. This enables oversiriking on a terminal that lacks

backspacing capability. Tt also means that what goes on a terminal and what goes in a file are
more likely tn loolk the same.

In the ITS veorsion, MIDIL's primary terminal output channel {usually ,OUTCHAN) is nurmall}- not in
"display” mnde. except when PRINCing a STRING. Thus errors will rarely occur when a user is
typitg in texs containing display-mode control codes.,

In the ITS version, MDL can start up without a terminal, give control of the terminal away to an
inferior operating-system process or getl it back while running. Doing a RESET on either of the
terminal ehannels causes MDL 1o find out if it now has the terminal; if it does, the terminal is
reopencd amd the current screen size and device parameters are updated. If it doesn't have the
terminal. an internal Tlag is sef. causiug outpur to the terminal to be ignored and attempted input
from 1he lertanal 1o make the OpEri.ing-sysiem process go to sleep.

In the . 2SS veo ol thee arce some poyaliarities associated with pseudo-terminals (*STY™ and *STh"
devices). 17 the CUHANNIL given to RIADCHR is open in "READ® mode to a pseudo-terminal, and if no
input is aviidable, READCHR coturns -4, TYPE FIX. If the CHANMNEL given to READSTRIMG is open in

"READ™ minde 1o a psendo-teciinal, vending wiso stops if and when no more characters are available,
that is. when READCHR woulu return =1.

7.9 - 11.8 Input/Output

[LEE L

The MDL Programming Language 113

i11.8.1. ECHOPrAIR
SECHOPAILR flernvnal-imxchannel lerminal-out:xchannal >

returns its Tirst argenent. aftor making the two CHANNELs "know about each other™ so that rubour,
=@, S0 awd TLoon feooninal-m will cause the appropriate output on ferminal-oul.

11.8,2. TTY[CCLIO
LTTYECHD fernanal-inpul:chranneol predy

turns the echring of 1vped eharacters on ehanne! of f or on, according to whether or not pred is of
TYPE FALSLE, and veturns eftonnsl. It is wseful in conjunction with TYI (below) for a program that
wants 1o do character input and echoing in its own fashion.

11.83. TYI1
CTYI rernvnalq-inpufchannel s

refurns one CHARACTER Trom chanme) {optional, .INCHAN h}r default) when it is '[ypcd, rather than
after 5 (ESC) is 1yped. as is the case with READCHR. The following example echos input characters
as their ASCLHL values, until a carriage-return is typed:

YREPEAT ((FOO <TTYECHO .INCHAN <>3))
CAND <==7 13 <PRINC <ASCII <TYI .INCHAN>>>>
<RETURN <TTYECHO .INCHAN T>>>>

If the device specified in an OPEN is “"INT", a CHANNEL is created which does not refer to any 1/O
devier outside MDL. In this ease. the minde must be "READ" or "PRINT®, and there is another
Aargument, which must be a funetionn.

For a “"READ"™ CHANNLL, the function must 1ake no arguments. Whenever a CHARACTER is desired
From this CHANNEL, the function will be applied 10 no arguments and must return a CHARACTER.
This will occur once prer eall to READCUR using this CHANNEL, and several times per call to READ. In
The ITS version. the Function can signal thar its "end-of-file” has been reached by returning <CHTYPE
®777777000003% CHARACTER> (-1 in left half, control-C in right), which is the standard ITS end-of-
file signal. In the Tenex and Tops-20 versions, the function should return either that or <CHTYPE
®F77777000032* CUARACTIR? (-1 and control-Z}, the latter being their standard end-of-file signal.

11.8.1 - 11.9 Input/Output

i The MDL Programming Language

For a "PRINI® CHAHKHEL, the function must take one argument, which will be a CHARACTER. It can
dispose of it argument in any way it pleases, The value returned by the function is ignored.

Example: <OPCH “PRINT® ®=INT:* .FCHN> opens an internal cutput CHANNEL with ,FCN as its
character-gohhbler.

11.10. The "Hi 1" Device: the ARFA Network

The "NET" devicee is different in many ways from conventional devices. Inm the ITS version, it is
the only device hiesides "INT® that does not take all strings as its arguments to OPEN, and it must
take an additional optional argument to specify the byte size of the socket. The format of a call to
open a neitwork socker is

<OPEN mode:string local-socketdix foreign-socketdfix "MET*® foreign-host#ix byte-size:dfix>
where:

miade is the mnde of the desired CHANNEL. This must be either "READ™, "PRINT®, "READEB" or
"PRINTEB".

focal-sacket! is the local socket number. If it is -1, the operating system will generate a unique

local snchketr number. 10 it is not, in the Tenex and Tops-20 versions, the socket number is
“fork-relative™.

forcign sacke! is the forcign socket number. IF it is =1, this is an OPEN for "listening”.
forciza-has! is the forcign host number. IT it is an OPEN for listening, this argument is ignored.

Ly bir-vree is the aptional byte size. For "READ™ or "PRINT" this must be either 7 (used by
defauh)or . Far "READB” or "PRINTB", it can be any integer from 1 to 26 {used h}r default).

In the Touwex and Pops-20 versions, OPEN can instead be given a STRING argument of the form
"NET:...". in this cavwe the local socket number can be "directory-relative™.

Like any other OPEN, cither a CHARNEL or a FALSE is returned. Once open, a network CHANMNEL can
be uscd like any oiher CHANHEL, except that FILE-LEHGTH, ACCESS, RENAME, etc., cannot be done.
The "argument” Tirst-name, second-name, and directory-name slots in the CHANNEL are used for local
socket. forcign sociel, and foreign host (as specified in the call to OPEN)., respectively. The
carrcsponding "real” slots are uwsed somewhat differently. If a channel is OPENed with local socket
=1. the “real” firsi-name slot will contain the unique socket number generated by the operating
system. If a listening sochot is OPENed, the foreign socket and host numbers of the answering host
are stored in the “real” secaad-naine and direciory-name slots of the CHANNEL when the Request For
Connection is reecived.

1.9 - 11.10 Input/Output

s L s
B e e e e
—_———————=
—_————————————————————————————————————ora
— s
- IEFTIiL
e eSS, ————T
e N e 7 F v
=i L, ———___—__——_________. L =
S —
B R R e R s s
e
— ==
——
T _____ e E e eSS
= ________———— —— — _______________ s —— - =
—————————_——————————————————=viw—
o ————
@ e
R —| &
Simmme———————————————,LLL_ . ——————————————————_="__——"_ ——"_ LS S s S
e —
e e e e et B B
————— ==

l
E

s

The MD. Programming l:ntls:upgr 115

An intercapt (chapter 21) can be associated with a "NET"-device CHANNEL, so that a program will
know thar rthe CHANNLCL has or needs data, according to its mode.

There alsn exist several special-purpose SUBRs for the "NET® device. These are described next.

11.10.1. HETSTALI

CHETSTATE nelwark:channs!>»
returns a UVECTOR of three FIXes. The [irst is the state of the connection, the second is a code

specifying why a conneetion was closed, and the last is the number of bits available on the

conncction for anpit. The meaning of the state and close codes are installation-dependent and so
are not included here,

11.10.2. KETACC
CHETACE nefwor keelhanne! >

accepts a conneclion 1oa socket that is epen for listening and returns its argument. It will return a
FALSE il the conneetion is in the wrong state.

1L.1D.3. NETS
CHRETS metwaorlchannct?

returns it argument, after Forcing any system-buffered network output to be sent. 1TS normally
does this evory hall second anyway., Tenex and Tops-20 do not do it unless and until NETS is called.

HETS is sumilar to BUFOUT for normal CHANNELs, except that even operating-system buffers are
empticd now

11.10 - 11.10.3 Input/Output

—
e R R R R R R R —
e e R ——
_——- . — — —
B
e ——
e ———_————— - -
R R R —————
e = S S ———
S e e e ———— e ——|twIwW
e
—— e —=————
e
e
S e e ————————eeemmmme e
T e e ——————
e ——————
—_————_—_— . — — — e
e R R
S e == e L= e
D BRI IR S e —————————————————————————
— - e
e ———————————————————————
= e
. e e —
e —

The MDL Programming Language

Chapter 12. Locatives

There is i MDI. a Facility
corrcspoid 1o “pointers”
Generis .1“_1' I nnovw
Locativies exisg

for obtaining and working directly with objects which roughly
in_ assembly language or "lvals” in BCPL or PAL. In MDL. these are
as locarives (from "location™ and are of several TYPEs, as mentioned below.

o provide efficient means for altering structures: direct replacement as opposed 10
re-copying.

Locatives always vefer tn elements in structures, It is not possible to obtain a locative to something

(For example. an A1QN) which is net part of an structure. [t is possible to obtain a locative to an
[| ¥ P

clement in any structured object in MDL -- even o associations {chapter 12) and to the values of
ATOMs, structurings which are nor mally “hidden®,

In the J"-"-Ih-u:u-:;_ Tthe ob ject occupying

the structured position to which you have obrained a locative
will be reforred 1o as the ob

Ject pointed 1o by the locative.

12.1. Obtaining Locatives

I2.1.1. LLOC
LSLLOC afom emned

returns a locative (TYPE LOCD, “locative to iDentifier”) 1o the LVAL of atom in env. If atom is not

bound in en . an erior necurs. env is optional, with the current ENVIRONMENT used by default. The
locative retuvaed Liy | LOC s independent of future re-bindings of atom. That is. IN (see below) of

that Incative will veturn the same thing even if atem is re-bound 1o something else; SETLOC (see
below) wili affect ouly that prarticular binding of arom.

Since bindines are Lept o a stack (tra Ia), any atlempt 1o use a Jocative to an LVAL which has

become nubound will Ferch wp an error. (It breaks just likea TUPLE....) LEGAL? can, once again,

be used tn see if a LOCD is valid Caution: {<SET A <LLOC A>> creates a self-reference and can make
PRINT very unhappy.

12 - 12.1.1 Locatives

The MDL Programming Language 117

12.1.2. GLOC

<GLOC alom pred?
returns a locative (1¥YPE LOCD) to the GVAL of afem. If atom has no GVAL slot, an error occurs, unless
pred (optional) is given and not FALSE, in which case a slot is created (chapter 22). Caution: <SETG
A <GLOC A>>» creales a self-reference and can make PRINT very unhappy.
12.1.3. AT

A1 =trpectiired Nifiwv-or-offspl
returns a locative 1o the Vb clement in sfruclured. N is optional, 1 by default. The exact TYPE of
the locative returncd depends an the PRIMTYPE of strucfured: LOCL for LIST, LOCV for VECTOR, LOCU
for UVECIOK, LOCS for SIRING, LOCB for BYTES, LOCT for TEMPLATE, and LOCA for TUPLE. If N is
greater thai <LEHGTIH sfriuclurcd? or less than 1, or an OFFSET with a Pattern that doesn't match [
stroctured, an orror occurs. The locative is unaffected by applications of REST, BACK, TOP, GROW,
etc. to slteoctur ...
12.1.4. GETP. and GETL

CGETPL item:any indicator:any defaull:any
returns a locative (TYPL LOCAS) to the association of dem under indicafer. (See chapter 13 for
informatinng abowur associations,) If no such association exists, GETPL returns EVAL of defaull. defaull
is optinnal, =FALSE () by defaul
GETPL correspondds to GCTPROP amongst the association machinery. There also exists GETL, which

coarrespoids 1o GET, r:'lllrniug cither a LOCAS or a locative to the indicatorth clement of a structured
ttem. GETL is like AT if «/em is a structure and indicalor iz a FIX or OFFSET, and like GETPL if not. I

12.2. LOCATIVE?

This SUBR is a prodicate that rells whether or not its argument is a locative. It is cheaper than
CHEMQ <PRIMIYPE arz®> '"1[LOCD LOCI ...J3>.

12.1.2 - 12.2 Locatives

|

il

ll

it

I

|

118 The MDL Programming Language

12.3. Using Locatives

The following two SUBRs provide the means for working with locatives. They are independent of
the specific TYPE of the locative. The notation locafive indicates anything which could be returned
by LLOC, GLOC, AT, GETPL or GETL.

I2.3.1. IN
CIN localived

returns the ohjrct tn which locative points. The only way you can get an error using IN is when
focalive poinls lo an LVAL which has become unbound from-an ATOH. This is the same as the

problem in referencing TUPLEs as wentioned in section 9.2, and it can be avoided by first testing
<LEGAL? locd>.

Example:

<S5CT A 1>%

1

<IN <LLOC A>>3
1

12.3.2. SETLOC
CSETLOC localive any?

refurns any. after having made any the contents of that position in a structure pointed to by
focative. The structure itself is not otherwise disturbed. An error occurs if focalive is to a non-

LEGAL? LVAL or il you try to put an object of the wrong TYPE into a PRIMTYPE UVECTOR, STRING,
BYTES, or TEMPLATE.

Example:

{SET A (1 2 3)>8

(1 2 3)

<S5CTLOC <AT .A 2% HI>S
H1

AL

(1 HI 3)

12.3 - 12.3.2 Locatives

rlrrrr

I

The MDL Programming I.allguagl_‘ 119

12.4. Noitc nin Locatives

You may have naticed that locatives are, strictly speaking. unnecessary: you can do everything
locatives allow Ly appropriate use of, for example. SET, LVAL, PUT, NTH, etc. What locatives
provide is generality.

Basically. how you obtained a locative is irrelevant to SETLOC and IN: thus the same program can
play with GVALs, LVALs. objeets in explicit structures, ete., without being bothered by what function

it should use to do so. This is particularly truc with respect to locatives to LVALs: the fact that they

are independent of changes in binding can save a lot of fooling around with EVAL and
ENVIRONMENTS

12.4 Locatives

—_—

I ——SSSG———————————————————————————————S—I———=——== === === —————————

120 The MDL Programming Language

Chapter 13. Association (Properties)

There is an "associative” daia storage and retricval system embedded in MDL which allows the |

construction of dara structures with arbitrary selectors. It is used via the SUBRs described in this
chapiter.

13.1. Associative Siorage

13.1.1. PUTPHOP
<PUTIMROP item:any indicalar:any valueanyy

("put property”) returns ifem, having associated value with ifem under the indicator indicalor.

i13.1.2. pUT
SPUT dem:any indicator:any value:any

I is identical 1o PUIPROP, except that. if item is structured and indicator is of TYPE FIX or OFFSET, it
does <SETLOC <AT ifcm indicalord valuck. In other words, an element with an integral selector is

stored in the structure itself, instead of in association space. PUT (like AT) will get an error if
indicator is onl of range: PUTPROP will not.

13.L.3. Removing Associations

If PUTPROP is nised without its walue argument, it removes any association existing between its item

argument and its indicalor argument. If an association did exist, using PUTPROP in this way returns
the valuve which was associated. If no association existed, it returns #FALSE ().

PUT, with arguments which refer to association, can be used in the same way.

I3 - 13.1.3 Association (Properties)

e ——

The MDI. Programming Language 121

If cither item or indicator coase to exist (that is, no one was pointing to them, so they were garbage-
collected), and no locatives to the association exist, then the association between them ceases to exist
{is garbage-cnllected).

13.2. Associative HRetrieval

13.2.1. GETPROP
CGETPROP item:any indicator:any exp:anyd

("get property”) returns the value associated with item under indicator, if any. If there is no such
associatinn. GETPROP returns EVAL of exp (that is, exp geis EVALed both at call time and later).

exp is optional. IF not given. GETPROP returns #FALSE () if it cannot return a valve.

MNote: dlem and indicalor in GETPROP must be the same MDL ob jects used to establish the association:
that is. they must be ==7 to the objeets used by PUTPROP or PUT.

13.2.2. GET
<GET flemiany indicalor:any exp:anyy

is the inverse of PUT, using NTH or GETPROP depending on the test outlined in section 13.1.2. exp is
optional and used as in GETPROP.

13.3. Examples of Association

<SET L "(1 2 3 4)>5
(123 4)

<PUT .L FOO "L 1is a 1ist.">%
(1 2 3 4)

<GET .L FOOD>»3

="l 45 a list."
<PUIPROP .L 3 *1[4]>%
(12 3 a)

<GETPROP .L 3>%
i[4!]

<GET .L 3>%

3

13.1.3 - 13.3 Association (Properties)

THEGN T

OHNI

LELL

122 The MDL Programming Language

<SET N 0>3

1]

<PUT .N .L "list on a zero®>»§
1]

<GET .N *{1 2 3 4)>%

FFALSE ()

The last example failed because READ generated a new LIST — not the one which is L's LVAL.
However,

{GET 0 .L>»%
"list on a zero®

works becanse <==7 N 0> is true.

To associate something with the Nth position in a siructure, as opposed to its Nth element, associate
it with <RCST struclure N-1>, as in the following:

<PUT <RES1 .L 2> PERCENT 0.3>»%
(3 a)

CGET €2 .L> PERCENT>S

“TALSE () |
<GET <REST .L 2> PERCEMNT>S
0.30000000

Remember commoents?

€SET M "!'[A B C ;"third element™ D EJ]>S
IfTABCDE!]

<GF1 <REST .H 2> COMMENT»S

"third clement®

The * in the <57 N ... > is 1o keep EVAL from generating a new UVECTOR ("Direct
Representation™)., which would nnot have the comment on it (and which would be a necdless
duplicate). A "top-level” coinment -- one attached to the entire object returned by READ -- is PUT on
the CHANNCL in use. since there is mo position in any structure for it. If no top-level comment
Follows the abject. RTAD removes the value (<PUT ehanne! COMMENTY); so anybody that wants to see a
top-level conument must look for it after each READ.

If you need 1o have a siructure with sclectors in more than one dimension (for example, a sparse
matrix that does nnt deserve to be linearized), associations can be cascaded to achieve the desired
result. In effect an extra level of association maps two indicators into one. For example, to
associate value with fem under indicater-1 and indicator-2 simultaneously:

CPUTPROP indricator=1 indicator-2 T»

15.3 Association (Properties)

!‘

.
e
— —_—
— =
S
R —
e
e —
— .
N — .

(I
1t

|

The MDL Programming Language 12%

<PUTPROP ifem <GLTPL indicaler=l indicalor-23% value®

13.4. F_\.‘I i 'rng .-\unrjn_T_iﬂ-:

Associations (created by PUT and PUTPROP) are chained together in a doubly-linked list. internal to
MDL. The arder of associations in the chain is their order of ereation, newest first. There are
several SiHRRs for exasvining the chain of associations. ASSOCIATIONS returns the first association
in the chain, or =FALSE () if there are none. NEXT takes an association as an argument and returns
the pext association in thw chain, or #FALSE () if there are no more. ITEH, INDICATOR and AVALUE

all take an a<wociation as an argument and return the item, indicator and value, respectively.
Associatinus print as:

FASOC (ilem indicator value)

(sic: only one 5). Example: the following gathers all the existing associations into a LIST.

<PROG ({A <ASSOCIATIONS>))
<COND (<NOT .A> *())
(1 (.A '<HAPF ,LIST
CFUNCTION () <COND (<SET A <HNEXT .A>> .A)
(T <MAPSTOP>)>2>))>>

13.3 - 134 Association (Properties)

l

124 The MDL Programming Language

Chapter 14. Data-type Declarations

In MDI. it i« possible to declare the permissible range of “types” and/or structures that an ATOM's
values or a Function’s arguments or value may have. This is dene using a special TYPE, the DECL
("declaration”™. A DECL is of PRIMTYPE LIST but has a complicated internal structure. DECLs are

used by the interpreter to Flind TYPE errors in function calling and by the compiler to generate more
efficient code.

There arc 1wo kinds of DECLs. The first kind of DECL is the most common. It is called the ATOM
DECL and is used moast commonly to specify the type/structure of the LVALs of the ATOMs in the
argument LIST of a FUNCTION or aux LIST of a PROG or REPEAT. This DECL has the form:

*DCCL (atom=sdist Patters . s

where the pairing of a LIST of ATOMs and a "Pattern” can be repeated indefinitely. This declares the
ATOMs in a hi=f to be of the type/structure specified in the following Faltern. The special ATOM
VALUL, il ir appears, declares the result of a FUNCTION call or PROG or REPEAT evaluation to satisfy
the Paittern specilicd. An ATOM DECL is useful in only one place: immediately following the
argument LIST of a FUNCTION, PROG or REPEAT. It normally includes ATOMs in the argument LIST
and ATOMs whose LVALs are otherwise used in the Funetion body.

The second Lind of DECL js rarely seen by the casual MDL user, except in appendix 2. It is called

the RSUBR DECL. 11 is used to specify the type/siructure of the arguments and result of an RSUBR or
RSUBR-ENTRY (chapter 19), It is of the following form:

=DECL ("VALLUE®" Paltern Pallern .. -}
wherc 1he STRING "VALUE" precedes the specification of the type/siructure of the value of the call to
the RSURR, and the remaining Patterns specifly the arguments to the RSUBR in order. The full

specification of 1the RSUBR DECL will he given in section 14.9. The RSUBR DECL is useful in only
one place: as an clement of an RSUBR or RSUBR-ENTRY.

14 Data-type Declarations

|
|
= e

i
e
—
e ————e§$§Yenel e, § e e e e e e e _“@“— — — S ,s§ a a—a§e—mem, - ,— — — — — — — — — e —e—e—S—S—S S — — S —_—_—_—_—_—_ — — — ———
e
e
e e e e i

P R W} *

—
S R e S S
e —
e
S i
—
ot B L5
e
S —
e —
e —
—
e R e L
S
S R ———
.

T

The MDL Programming Language 125

14.1. Patterns

The simplest possible Pattern is to say that a value is exactly some other object, by giving that
ob ject, QUOTCd. For example, to declare that a variable is a particular ATOM:

#DECL ((X) 'T)
declares that . X is always the ATOM T. When variables are DECLed as "being” some other object in
this way. the test used is =7, and not ==?7. The distinction is usually not important, since ATOMs,

which are mnost connnonly used in this construction, are ==7 to each other if =7 anyway.

It is more commeon to wanl to specify that a value must be of a given TYPE. This is done with the
simplest nou-specific Pattern, a TYPE name. For example,

#DECL ((X) I'IX {(Y) FLOAT)

declares .X to be of TYPE FIX, and .Y of TYPE FLOAT. In addition to the names of all of the built-
in and created TYPEs, such as FIX, FLOAT and LIST, a few “compound” type names are allowed:

ANY allows any TYPE.

STRUCTURED allows any stractured TYPE, such as LIST, VECTOR, FALSE, CHAMNEL, etc
(appendix 3).

LOCATIVE allows any locative TYPE, such as are returned h}r LLOC, GLOC, AT, and so on
(chapter 12).

APPLICARILE allows any applicable TYPE, such as FUNCTION, SUBR, FIX (). etc. (appendix 3).
Any other ATOM can be used to stand for a more complex construet, if an association is
establishicd on thar ATOM and the ATOM DECL. A common example is to <PUT HUMBER DECL

'SOR FIX FLOAT>> (see helow). so that NUMBER can be used as a “compound type name”.

The single TYPE name can be generalized slightly. allowing anything of a given PRIMTYPE, using
the following constructinn:

FOECL ((X) <PRIMTYPE WORD> (Y) <PRIMTYPE LIST>)

This construction consists af a two-element FORM, where the first element is the ATOM PRIMTYPE,
and the second the name of a primitive type.

The next step is ta specify the elements of a structure. This is done in the simplest way as follows:

L struclured:dvpe Pallern Paltern ...%

14.1 Data-type Declarations

e e e Eaa=

126 The MDL Programming Language
where there is a one-lo-one correspondence beiween the Pallerns and the elements of the structure.
For example:

#DECL ((X) <VECTOR FIX FLOAT>)

declares . X tn e a VECTOR having at least two clements, the first of which is a FIX and the second a
FLOAT. It is often convenient 1o allow additional elements, so that only the elements being used in
the local neighborhood of the DECL need to be declared. To disallow additional elements, a SEGHENT
is used instcad of a TORM {the “cxcl-cd” brackets make it look more emphatic). For example:

#*DECL ((X) !'<VECTOR FIX FLOAT>)

declares . X 1o bie a VECTOR having cxactly two clements, the first of which is a FIX and the second a
FLOAT. Note that the Patterns given lfor elements can be any legal Pattern:

rDECL ((X) <VECTOR <VECTOR FIX FLOAT>> (Y) <<{PRIMTYPE LIST> LIST>)
declares .X to he a VECTOR containing another VECTOR of at lecast two clements, and .Y to be of
PRIMTYPE LIST, containing a LIST. In the case of a BYTES, the individual elements cannot be
declared (they must be FIXes anyway), only the size and number of the bytes:

#DECL ((B) <BYTES 7 3>»)

declares .0 to be a BYTES with BYTE-SIZE 7 and at least three elements.

It is possible to say that some number of elements of a structure satisfy a given Pattern (or
sequence of Patterns). This is called an "NTH construction”.

[number:dix Paltern Pattern ...]

states that the sequence of Palferns which is REST of the VECTOR is repeated the number of times
given. For example:

EDECL ((X) <VECTOR [3 FIX] FLOAT> (Y) <LIST [3 FIX FLOAT]>)

-¥ is declared to contain three FIXes and a FLOAT, perhaps followed by other elements. .Y is
declared to vepeat the sequence FIX-FLOAT three times. Note that there may be more repetitions of
the sequence in .¥ (bur not in .X): the DECL specifies only the First six elements.

For indelinite repetition, the same construction is used, but, instead of the number of repetitions of
the sequence of Patterns, the ATOM REST is given. This allows any number of repetitions, from zero
on up. For example:

*DCCL ((X) <VECTOR [REST FIX]> (Y) <LIST [3 FIX] [REST FIX]>

14.1 Data-type Declarations

[
e
: T
:
:

e

| The MDL Programming Language 127

A “REST ennstruction™ can contain any number of Patterns, just like an NTH construction:
#DECL ((X) <VECTOR [REST FIX FLOAT LIST]>)

declares that X is a VECTOR wherein the sequence FIX-FLOAT-LIST reperats indefinitely. It does not
declare that <LENGTH .X» is an even multiple of three: the VECTOR can end at any point.

A wvariation en REST is @FT {(or OPTIONAL) which is similar to REST except that the construction is
scanned once at most instead of indefinitely, and further undeclared elements can follow. For
example:

sPECL ({X) <VYFCTOR [OPT FIX]H)

deelares that .X is a VECTOR which is empty or whose [irst element is a FIX. Only a REST
constructing can follow an "0OPT construction”.

Nate that the BLST eonstruetion must always be the last element of the siructure declaration, since it
gives a Pattcin for the rest of the structure. Thus, the REST construction is different from all others
in that it has an unlimited range. No matter how many times the Pattern it gives is RESTed off of
thie stricture. the remainder of the steacture still has that Pattern.

This exhausts the possibile single Patterns that can be given in a declaration. However, there is also
a compound Pattern defined. 1t allows specification of several possible Patterns for one value:

<OR FPallcrny Pallern ... 2

Any non-compound Pattern can be included as one of the clements of the compound Pattern.
Finally. compounid Patterns can be used as Patterns for elements of structures, and so on.

¢fOECL ((X) <OR FIX FLOAT>
{(Y¥) <OR FIX <UVECTOR [RCST <OR FIX FLOAT>]>>)

The OR construction can be extended to any level of ridiculousness, but the higher the level of
complexity and compoundedness the less likely the compiler will find the DECL useful.

At the highest level, any Pattern at top level in an ATOM DECL can be enclosed in the construction
£ specialiycatom FPaltern 2

which explicitly declares the specialty of the ATON(s) in the preceding LIST. specially can be either
SPECIAL or UNSPECIAL. Specially is important only when the program is to be compiled. The word
comes from the contenl stack, which is called “'Ll'.lr:c'lalu in Lisp (Moon, 1974) because the garbage
collectar Tinds objeets on it and modifies their internal pointers when storage is compacted. (An
internal stack is used within the interpreter and is not accessible to programs — section 22.1.) In

14.1 Data-type Declarations
—
— - // -— - //—/——— — ——————=

— e —— =

i28 The MDL Programming Language

an interpreted program all ocal values are initially SPECIAL, because all bindings are put on the
control stack (hut see SPCCIAL-MODE below). When the program is compiled, only values declared
SPECIAL (which may or wmay unot he the declaration used by default) remain in bindings on the
control «tack. All nthers are taken care of simply by storing ob jects on the control stack: the ATOMs
involved are nnt needed and are oot created on loading. So, a program that SETs an ATOM's local
value for annther program 1o pick up must declare that ATOM 1o be SPECIAL. 1If it docsn’t, the ATOM's
binding will go away during compiling, and the program that needs to refer to the ATOM will cither
gel a no-value ereor or refer 1o an erroneous binding. Usually only ATOMs which have the opposile
specialty frmn that of the current SPECIAL-MODE are explicitly declared. The usual SPECIAL-MODE is
UNSPECTAL, sn iypically only SPCCIAL deelarations use this constructjon:

FDECL ((ACT) <SPECIAL ACTIVATIONY)

explicitly declares ACT 1o be SPECIAL.

Most well-written, modular programs get all their information from their arguments and from
GVALs. amd thus they rarely nse SPECIAL ATOMs. except perhaps for ACTIVATIONs and the ATOMs
whose | VAIs MM uses Ly defanlt: INCHAN, OUTCHAN, OBLIST, DEV, SNM, NM1, NMZ2. OUTCHAN is
a special case: the compiler thinks that all conversion-ourput SUBRs are called with an explicit
CHANNLL argument. whether or not the program being compiled thinks so. For example, <CRLF> is
compiled as though it were <CRLF .DUTCHANY. So you wmay use (or see) the binding (OUTCHAN
SLOUTCHANY in an argunment | TST, however odd that may appear, because that -- coupled with the

usual UNSPECIAL declaration by default -« makes only one reference to the current binding of
OUTCHAN and stuffs the result in a slot on the stack for use within the Function.

14.2. Examples
*NECL ({Q) <OR VECTOR CHANNEL>»)
declares .Q 10 be cither a VECTOR or a CHANNEL .
#DECL ({P Q R R} <PRIMTYPE LIST}>)
declares ., .Q, .R, and .5 all 10 be of PRINTYPE LIST.
"DECL ((F) <FORM [3 ANY]>)
deelares T te he a FORM whose length is at least three, containing ob jects of any old TYPE.
DECL ((LL) <<PRINTYPE LIST> [4 <LIST [REST FIX]>1>)

declares (LL ro he of PRIMTYPE LIST, and to have at least four elements, each of which are LISTs of
unspecified length {passibly empry) containing FIXes.

14.1 - 14.2 Data-type Declarations

e

I

The MDD Peogramiming | angnage 1?79

AT GL (VY)Y SVICTIOR PFIX ATOH CIHARACTCRY)

declares (VY 10 e a VTCTOR with at least three elements. Those elements are, in order, of TYPE FIX,
ATOM, amd CIHARPALTT R,

eECE (CLINY <LYIST ATOH [REST FLOAT]>)

doelares (LIE 1o bie a LIS whoee Uirst element is an ATOM and the rest of whose elements are FLOATs.
1t alsa says thar (L is at least ane element long.

#DECL ((TO0) <LIST [REST 'T FIXI>)

declares (100 10 hie a LIST whose sdd-poasitioned elements are the ATOM T and whose even-positioned
elements are I IXes,

CHMAPR < >
CLUNCTION (%)
+ICL ((X) <VECTOR [1 FIX]>»)
EPUT X 1 033
00D

declares X 1o e a VECTOR containing at least one FILX, The more restrictive [REST FIX] would take
excecave chedbinyg time by the interpreter, becanse the REST of the VECTOR would be checked on
each itreatinn of the HAPR, Tn this case hath DECEs are equally powerful, because checking the first
elemient of all 1t BESIs of 2 sdirneiure e !"tl1ll.l||",.' checks all r|.|r' clements. Alsn, since the FUNCTION
refers only 1o the Ligst element of X, this is as much declaration as the compiler can effectively use.
(I this VI C10R always vontains only FIXes, it should e a UVECTOR instead, for space efficiency.
Then a [REST P AXT Dl wonld make the interpreter check oanly the UTYPE. If the FIXes cover a
swall nen-negative sange. then a BYTES might be even better, with a DECL of <BYTES n 0>.)

CIMTTHE ThACT (H)
“ICE ((NY <HNSPECTAL FIXY)
SCORD (<07 .H> 1) (ELSE <% N <FACT <= .N 13>>>)>>

declares (N 1o be of TYPT F1X and UNSPCCIAL. This specialty declaration ensures that, independent
of SPECTAL -HOI during compiling, .H gets eompiled into a Mast control-stack refercnce,

<PROG ({1 (D))
PG ({L VALUD) <UNSPECTAL <LIST [REST FIX]>»>
(H) <CUNSIPECIAL FIX>)
<COND (<07 .H>» <RETURN .L>)>
<SCT L (<+ N €1 .L>>» '.L)>
CSCT H <= N 133>

14.2 Data-type Declarations

The MDL Programming Language

The above declares L and N to be UNSPECIAL, says that .Nis a FIX, and says that .L, along with
the valuc returned. is a LIST of any length composed entirely of FIXes.

14.3. The DEC) Syniax

This sectinn gives quasi-INF productions for the MDL DECL syntax. In the following table MDL
type-specilicrs are distinguished in this W b

decl s fFILCL (declprs)

decliprs ::

(allisL) pattern | declprs declprs

atlist rim Atam | alom atlist

pattern ::= pat | <UNSPECIAL pat> | <SPECIAL pat>»
pat frm unit | <OR unit ... unit>y

unit 1i= fype | <PRIMTYPE fyped | atam | tany

| ANY | STRUCTURCD | LOCATIVE | APPLICABLE

| <struc elts> | <<OR Struc ... struc) clts>

| '<struc elts> | t<<OR Struc ... struc)® olts>
| <bstruc fix> | <bstruc rfix fix>

| 1<bstrue fix fixs

struc ii= siructured-lype | <PRIMTYPE sfructured-typed
bstruc ::= BYTLS | <PRIMTYPC BYTES>
elts 2 paL | palL elts

| [fix pat ... pat]

I [fix pat ... pat] elts

| [opt pat ... pat] | [REST pat ... pat]
| Lopt pat ... pat] [REST pat ... pat]

opt t:= OPT | OPTIONAL

14.2 - 14.3 Data-type Declarations

The MIDI. FrngTalllllliug l.nllgunge 131

14.4. Googd DECLs

There are some rules of thumb concerning “good™ DECLs. A “good” DECL is one that is minimally
offensive 10 the DLCL-checking mechanisin and the compiler, but that gives the maximum amount
of information. It is. simple to state what gives offense to the compiler and DECL-checking
mechanism: g~ﬁlll|1]1'\if}'_ For example. a large compound DECL like:

#*DECL ((X) <OR FIX LIST UVECTOR FALSE>)

is a DECL that the compiler will Find totally useless. It might as well be ANY. The more involved
the OR, the lvss information the compiler will find useful in it. For example, if the function takes
<OR LIST VLCTOR WWLCTOR>, maybe ynu should really say STRUCTURED. Also, a very general DECL
indicates a very general program, which is not likely to be efficient when compiled (of course there
is a trade-nff here) Narrowing the DECL to one PRIMTYPE gives a great gain in compiled efficiency,
to one TYPE still wmnore.

Anather situation to he avoided is the ordinary j:u-gr,- DCCL, even il it is perfectly slraighlfurw:lrd,
If you have created a strueture which has a very specific DECL and is used all over your code, it
might e better as a NEWTYPE (sec below). The advantage of a NEWTYPE over a large explicit DECL is
twofald., Firsr, the entire structure must be cheeked only when it is ercated, that is. CHTYPEd fFrom
its PRIMIYPE. As a full DECL, it is checked completely on entering each function and on each
reassignient of ATOMs DECLed to be it. Second, the amount of storage saved in the DECLs of

FUNCTIONs and so on is large, not to mention the effort of typing in and keeping up to date several
instances of the full DCCL .

14.5. Global D ';IJ

14.5.1. GDECL and MANIFEST

There are two ways to declare GVALs for the DECL-checking mechanism. These are through the
FSUBR GDECL ("global declaration”) and the SUBR MANIFEST.

CGDFCL atoms:dist Pattern ...>

GDECL allows the type/structure of global values to be declared in much the samne way as local
values. Examplc:

<GDECL (X) FIX (Y) <LIST FIX>>
declares ,X to be a FIX, and ,Y to be a LIST containing at least one FIX.

CMANIFEST afom alom ...>»

' 14.4 - 14.5.1 Data-type Declarations

132 The MDL Programming Language

MANIFEST takes as arguments ATOMs whose GVALs are declared to be constants. It js used most
commonly to indicate that certain ATOMs are tlie names of of fsets in structures. For example:

<35E1G X 1>
<MANIFEST X>

allows the campiler to confidently open-compile applications of X (getting the first element of a
structurel. knowing thar , ¥ will not change. Any sort of object can be a HANIFEST value: if it does
not get embedded in the compiled code, it is included in the RSUBR's “reference vector™, for fast
access. flowever, as a general rule, structured ob jects should not be made HANIFEST: the SETG will
survive in the compiled version (for the use of new uncompiled programs), but uses of GVAL will

instead refer 10 a distinet copy of the object in each RSUBR that does a GVAL. A structured ob ject
should insicad be GDECLed.

An attempt 1o SETG a MANITFST ATOM will eause an error, unless either:
(1) the ATOM was previously globally unassigned;

(2} the old value is ==7 to the new value: or
(3) .REDLCr INE is not FALSE.

14.5.2. MANIFEST? and UNMANIFEST
<HAHIFEST? atom>
returns T il sfom is HMANIFEST, #FALSE () otherwise.

SUNMANIFEST atom alem ...>»

removes the MANIFEST of the global value of cach of its arguments so that the value can be changed.

14.5.3. GBOUND 7

<GROUNHD? atom>

("globally bLound?™) returns T if afom has a global value slot (that is, if it has ever been SETGed,
MANIFEST, GDECLcd. or GLOCed {chaprer 12) with a true sccond argument). FFALSE () otherwise.

14.5.1 - 14.5.3 Data-iype Declarations

>

The MDL Programming Language 133

14.6. NEWTYPL {acain)

NEWTYPE gives the progrannmer another way to DECL objects. The third (and optional) argument of
NEWTYPE is a QUOTEJ I"attern. IT given, it will be saved as the value of an association (chapter 13)
using the name of the HOCWTYPE as the item and the ATOM DECL as the indicator, and it will be used to
check any object that is about to be CHTYPEd 1o the NEWTYPE. For example:

CHEWTYPE COMPLCX-NUMBER VECTOR '<<{PRIMTYPE VECTOR> FLOAT FLOATS>>
creates a new TYPE, with irs first two elements declared to be FLOATs. If later someone types:

YCOMPLEX-HUMBER [1.0 2]

an error will result (the second element is not a FLOAT. The Pattern can be replaced by deing

another NEWTYPL for the same TYPE, or by putting a new value in the association. Further
examplos:

CHEWTYPE FOO LIST '<<PRIMTYPE LIST> FIX FLOAT [REST ATOMI>>
causes 00« 1o contain a N'IX and a FLOAT and any number of ATOMs.
SHEWTYPE BAR LIST>
<SET A #RAR (#BAR () 1 1.2 GRITCH)>
CHEWTYPE BAR LIST '<<PRIMTYPE LIST> BAR [REST FIX FLOAT ATOM]>>
This is an example of a recursively DECLed TYPE. Note that <1 .A> does not satisfy the DECL,

because it is empry, but it was CHTYPEd bLefore the DECL was associated with BAR. Now. even
SCHTYPE <1 .A> <TYPE <1 .A»>> will cause an error,

In each af theswe examples, the <<PRTMTIYPE ...> ...% construction was used, in order to permit
CHTYPEing an object into jtswelf. See what happens otherwise:

SHEWTYPE QOPMS LIST *<LIST ATOM FLOAT>»>S
o0Irs

<SET A <CHTYPE (E 2.71828) QOPS>>S
#00Prs (E 2.71828)

Now <CHTYPE .A 0OPS> will cause an error. Unfortunately. you must

CCHTYPE <CUHTYPE .A LIST> QOPS>S
FOOMS (E 2.71828)

14.6 Data-type Declarations

134 The MDL Programming Language

14.7. Controlling DECL Checking
There are scveral 5URRs and FSUBRs in MDL that are used to control and interact with the DECL-
checking mechanism.
14.7.1. DECL-CHICK
This entire vomplex cheeking mechanism can gel in the way during debugging. As a result, the
most crmmnnly weed DECL-oriented SUBR is DECL-CHECK . It is used to enable and disable the entire
DECL-checking wmechanism,

<DECL-CIHECK false-or-anv>
If its single arguwment is non-FALSE, DECL checking is turned on: if it is FALSE, DECL checking is
turned of f. The previous state is relurned as a value. If no argument is given, DECL-CHECK relurns
the current state. In an initial MDL DECL checking is on.
When NECI checking is on, the DECL of an ATOM is checked each time it is SET, the arguments and
results of calls to FUNCTIONs, RSUBRs, and RSUBR-ENTRYs are checked, and the values returned by
PROG and REPEAT are cheched. The same is done for SETGs and, in particular, attempts to change
MANIFFST glnhal wvalues. Attempts to CHTYPE an object to a NEWTYPE (if the NEWTYPE has the
optional DECL) are also checked. When DECL checking is of f, none of these checks is performed.
14.7.2. SPFCIAL-CIHECK and SPECIAL-MODE

CSPECIAL-CHECK falze-or-any>

contrels whether or not SPECTAL checking is performed at run time by the interpreter. It is initially
aff. Failure 1o declare an ATOM to be SPECTAL when it should be will produce buggy compiled code.

<SPLCTIAL-NODE =pecially:alom

sets the declaration nwsed by defauli {(for ATOMs not declared either way) and returns the previous such

declaration. or the current such declaration if no argument is given. The initial declaration used by
default is UNSPCCTAL .

14.7.3. GET-DLCL and PUT-DECL

GET-DECL and PUI-DLCL are used to examine and change the current DECL (of either the global or
the local value) of an ATOM.

CGET-NCCL locd>

14.7 - 14.7.3 Data-type Declarations

(CCAAAAAAAANRR

The MDL Programming Language 135

refurns the DECL Parteen (if any,

ntherwise #FFALSE ()) associated with the global or local value slot
of an ATON. For example:

| <PROG (X)
DECL ((X) <OR FIX FLOAT>)

CGET-DECL <LLOC X3»>>
-

would return <OR FIX FLOAT? as the result of the application of GET-DECL. MNote that because of
the use of LLOC (or GLOC, for global values) the ATON being examined must be bound: otherwise you

will get an ereor! This can be gotten around by testing first with BOUND? {or GBOUND?, or by giving
GLOC a secomd argument which is nnt FAL SE).

If the slot being examined is the global slot and the value is MANIFEST, then the ATOM MANIFEST is
returned. I the value being examined is not DCCLed, #FALSE () is returned.

CPUT=DECL focd Pallern®

makes Fattern be the DECL Cor the value and returns focd. If <DECL-CHECK> is true, the current value

must sarisfy the vew Pattern. PUT-DECL js normally used in dcbugging. to change the DECL of an

object in correspond 1o changes in the program. Note that it is not legal to PUT-DECL a “Pattern™ of
MANIFEST or #TALSE ().

14.7.4. DECL?
<PDFCL? Ay Pallernd
specifically checks any against Paltern. For example:

<DECL? '[1 2 3] '<VECTOR LREST FIX]>>S

T
<DECL? '[1 2.0 3.0] "<VECTOR [REST FIX]>>s
*I'ALSE ()

14.8. OFF SET

AN OFFSET is essentially a FIX witls a Pattern attached, considered as an APPLICABLE rather than a
Number. An OMFSET allows a program to specify the type of structure that its FIX applies to.

OFFSETs. like DECIS - if used properly - can make debugging considerably easier; they will
Eventually alvwe help the coinpiler generate more efficient code.

14.7.3 - 14.8 Data-type Declarations

o+
R R R R R R R R S —————————
R
—
e —————— T —— e
e —
S R e S—————————— L. — ———
R
e I e e e e e e e e e ===
e e LG} = =
R R ssssS——]——————————77777—mm7D7D—""—"——
- ———————————————————— —a
e

S e e eaeeeee———————
- ——=— ————~B~B~B W "=
e ————————
- 0 O O
e B e e
S L= e
e e — e — ¥ ¥ ¥ ¥ S e_—==——=——=—=—=—=—=——————
=—————————————s——————————————————————b—----—————----------,e_
= — ——_ e _ _ _ _ _ —_ _ " __ =Lk e - ———=
s e s e =—a— =
E———— s e ———

—

136 The MDL Programming Language

The SUER OFFSET takes twn arguments, a FIX and a Pattern, and returns an object of TYPE and
PRIMTYPC OTTSCT. Aw OFFSET, like a FIX, may be given as an argument to NTH or PUT and may be

applied 1o arguments. The enly difference is that the STRUCTURED argument must match the
Pattern contained in the OFFSET, or au error will result. Thus:

CSLTG o0 <OFFSET 1 "<CHANHEL FIX>>>5
WCOTTSET 1 "CCHANNCL FIX>>

<FOO ,IHCHAN>S

1

Cro0 <ROOT>>3

®FRROR=

ARG-WRONG-TYPE

NTH

LISTCHING-AT-LCVCL 2 PROCESS 1

Mote: when the enmpiler gets around 1o understanding OFFSETs, it will not do the right thing with

them unless they are MANIFEST. Since there's no geod reason not te MANIFEST them. this isn't a
problem.

The SUBR INDEX, given an OFFSET, returns its FIX:

CINDDXY ,FO0>%
|

GET-DECL of an OFFSET returns the associated Pattern: PUT-DECL of an OFFSET and a Pattern returns
a new OFFSCT with the same THDEX as the argument, but with a new Pattern:

<GET-DECL ,FOO>S

CCHANNEL FIX>

<PUT-DICL ,FO0 OBLIST>S
#LOFFSET 1 OBLIST>

. FOO%

RCOMFSCT 1 *<CHANNEL FIX>>

An OFFSET is not a struciured ob ject, as this example should make clear.

14.9. The RSUBR DECL

The RSURR DICL is similar tn the ATOM DECL, cxcept that the declarations are of argument positions

and value rather than of specific ATOMs. Patterns can be preceded by STRINGs which further
describe the argumment {or value)

14.8 - 14.9 Data-type Declarations

S

The MDIL. Progranuning Language 137
The simplest RSUDKE DECL is for an RSUBR or RSUBR-EHTRY {chapter 19) which has all of its
arguments evaluated and returns a DECLed value. For example:

“DECL ("VALUE"™ FIX FIX FLOAT)

declares that there are two arguments. a FIX and a FLOAT, and a result which is a FIX. While the
STRING "VALUE®™ is mol constrained to appear at the front of the DECL, it does appear there by

custom. 1t necd not appear at all, if the result is not to be declared, but {again by custom) in this
case it is nsnally declarcd ANY.

If any arguments are oplional, the STRING "OPTIONAL® {or "OPTY) is placed before the Pattern for
the lFirst optional argument:

FOECL ("VALUE®™ FIX FIX "OPTIOMAL™ FLOAT)
If any of the argmments is not to be cvaluated, it is preceded by the STRING "QUOTE™:
#DECL ("VALUE" FIX "QUOTE*® FORM)

declarcs nne arcument, which is not EVALed.

If the arguments are to be evaluated and gathered into a TUPLE, the Pattern for it is preceded by
the STRING "TUPLE":

SDECL ("VALUE®™ FIX "TUPLE®™ <TUPLE [REST FIXI>)

If the arguments are te be unevaluated and gathered into a LIST, or if the calling FORM is the only
“argument”, the Pattern is precedeed by the appropriate STRING:

FDECL ("VALUE®™ FIX ™ARGS"™ LIST)
#DECL ("WALUC™ FIX "CALL® <PRIMTYPE LIST>)
In every case the special indicator STRING is followed by a Pattern which describes the argument,

even though it may sometimes produce fairly ludicrous results, since the Pattern for "TUPLE" always
must be a TUPLE; for "ARGS", a LIST: and for "CALL", a FORH or SEGMENT.

14.9 Data-type Declarations

138 The MDL Programming Language

Chapter 15. Lexical Blocking

Lexical. or static, bincking is another tcans of preventing identifier collisions in MDL. (The first
was dynamic blocking - hinding and ENVIRONMENTs.) By using a subset of the MDL lexical

blocking Facilitics. the "block structure” of such languages as Algol, PL/1, SAIL, etc., can be
simulated, should you wish 1o do so.

15.1. ﬂ.‘i._"-in;‘ Consideratlions

Since what follows appears 1o be rather complex, a short discussion of the basic problem lexical
blocking solves and MDL's basie solution will be given first.

ATOMs are identifiers. It is 1hus essential that whenever you type an ATOHM, READ should respond
with the unique idemifier you wish to designate. The problem is that it is unreasonable to expect
the PHANEs of all ATOHs 1o be unique. When You use an ATOM A in a program. do you mean the A

You typed two minutes ago, the A you used in another one of Your programs. or the A used by some
library program?

Dynamic biacking (pushing down of LVALs) solves many such problems. However, there are some
which it dncs net solve <« such as state variables (whether impure or pure). Major problems with a
system having only dywnamic blocking usually arise only when attempts are made to share large
numbers of significant programs among many people.

The solution used in MDL is hasically as follows: READ must maintain at least one table of ATOMs to
guaraniee any uniqueness.. So. MDL allows many such tables and makes it ecasy for the user to
specify which one is wanted. Such a table is an object of TYPE OBLIST (“object list™). All the
complication which follows arises out of a desire 1o provide a powerful. easily used method of
working with OBLISTs, with reasonable values used by default.

15 - I5.1 Lexical Blocking

i
e
N —
—
—
—
e
T

—
—
e —
e —
e —
—
—
—
e —
e
e —
—
—
—
S
e

|
.'h-__

e R —————————————————————————————E———————————— e

The MDIL. Programming Language 139

{5.2. ORLISTs
An OBLIST i+ of FRINTYPE UVECTOR with UTYPE LIST; the LISTs hold ATOMs. (The ATOMs are ordered

by a hash coding on their PHAMEs: each LIST is a hashing bucket.) What follows is information
ai)ﬂllt ORLISTs as such.

15.2.1. ODLIST Names

Every wormally constituted OBLIST has a name. The name of an OBLIST is an ATOM associated with
the OBLIST under the indicator OBLIST. Thus.

SGCIPROPM obdizt OBLIST>
or

<GLCT oivizt ORLIST)>
returns the name of ablisl

Similarly. every name of an OBLIST is associated with its OBLIST, again under the indicator
OBLIST, so that

CGETPROM oblist-name:alom DBLIST>
or

CGLT oblizt-name:alom OBLIST>
returns the OBLIST whose name is oblisl-name.

Since thiere is nothing special about the association of OBLISTs and their names, the name of an
OBLIST can bie changed by use of PUTPROP, both on the OBLIST and its name. It is not wise to

change the OBLIST association without changing the name association, since ¥You are likely to
confuse RCAD and PRINT terribly.

You can alse use P or PUTPROP to remove the association between an OBLIST and its name
completely. If you wam the OBLIST 1o go away (be garbage collected). and you want to keep its
name aromwmd. this must be done: otherwise the asseciation will force it to stay. even if there are no
other references to i, (IT yon have no refercices 1o cither the name or the OBLIST (am ATOM -
including a 1¥PE name .- [roints to its OBLIST), both of them -- and their association -- will Eo away
Witliout Your having to remove the association. of course) It is not recommended that you remove
the nawme of an OBLTST without having it go away, since then ATOMs in that OBLIST will PRINT the
same as if they were in no ODLIST -- which is defeating the purpose of this whole exercise.

15.2 - 15.2.1 Lexical Blocking

140 The MDL Programming Language

15.2.2. MOBL 151

CHOBLTST afom fixd

("make obilist™) ereates and retarns a new OBLIST, confaining no ATOMs. whose name is afom, unless
there already existe an OBLIST of that name, in which case it returns the existing OBLIST. fix is the
size of the OBLTST created -- the number of hashing buckets. fix is optional (ignored if the OBLIST

already exists), 13 by default. If specified, fix should be a prime number, since that allows the
hashing 1o work better.

15.2.3. OBL1IST?

LOBLIST? alowm>

returns FFALSE () if alom is not in any OBLIST. If atom is in an OBLIST. it returns that OBLIST.

15.3. READ and OBL1STs

READ can he explicitly tald to lnok up an ATOH in a particular OBLIST by giving the ATOM a trailer.
A trailer consists of the characters |- (exclamation-point dash) foIInwing the ATOM, immedialely
followed by the name of the OBLIST. For example,

Al =00

specifies the unique AT0M of PHAME A which is in the OBLIST whose name is the ATOM OB.

Note thar the name of the OBLIST must follow the ! - with no separators (like space, tab, carriage-

return, efc.). There is a name used hy default (section 15.5) which iypes out and is typed in as
' =separalor,

Trailers can bie used recursively:
B!=-Al-0B

specifics the unique ATOM of PNAME B which is in the OBLIST whose name is the unique ATOM of

PNAME A which is in the DBLIST whose name is 03. (Whew!) The repetition is terminated via the
look-up and insertion deseriled below.,

If an ATOM wirh a given PNAMC is not found in the OBLIST specified by a trailer, a new ATOM with
that PNAME is created and inserted intn that OBLIST.

If an OBLTST whose namic is given in a trailer docs not exist, READ creates one, of length 13 buckets.

15.2.2 - 15.3 Lexical Blocking

IIII-'I

The MDN. Programming Language 141

If rrailer notatinon i~ ant used (e "normal”™ case), and for an ATOM that terminates a trailer. READ
leoks up the PHANT of the ATON in a LIST of OBLISTs, the LVAL of the ATOM OBLIST by default. This
look-up starfs with <1 .0BLIST> and continuwes until ,0BLIST is exhausted. IF the ATOM is not
found. READ usually inserts it into €1 .0BLIST>. (It is possible to force READ to use a different
clement nf the LIST of OBLISTs for new inscrtions. If the ATOM DEFAULT is in that LIST, the
OBLIST Mullowing thar ATOM will be used.)

15.4. PRINT and 01 151s

When PRINT is given an ATOM to output, it outputs as little of the trailer as is necessary to specify
the ATON uniqucly to RCAD. ‘That is, if the ATOH is the first ATOM of that PNAME which READ would
Find in itx pormal look-up in the current .OBLIST, no trailer is output. Otherwise, ! - is output and
the name of the OBLIST is recursively PRINIed.

Warning: there are abscure cases, which do not occur in normal practice, for which the PRINT trailer
recursion Jdeocs not terminare. For instance, if an ATON must have a trailer printed, and the name of
the OBLIST is an ATOH in that very same OBLIST, death. Any similar circular case will also give
PRINT a hernia.

15.5. Imitial State

In an initial MDL, .OBL1ST contains two OBLISTs. <1 .OBLISTS initially contains no ATOMs, and <2
SOBLIST> contains all the ATOMs wlhose GVALs are SUBRs or FSUBRs, as well as OBLIST, DEFAULT, T.
cte. It is difficult 1o lose track of the latter: the specific trailer !-separator will always cause
reference o thar OBILTST. In addition. the SUBR ROOT, which takes no arguments, always returns
that OBLIST.

The name of <ROOT> is ROOT i this ATOM is in <ROOT> and would cause infinite PRINT recursion were

it not for the use of -sepsrator. The name of the initial <1 .0BLIST> is INITIAL (really
INITIAL!=).

The ATOM OBLIST alen hias a GVAL. ,OBLIST is initially the same as .OBLIST; however, ,0BLIST is

not affected by the SUBRs used to manipulate the OBLIST structure. It is instead uscd only when
Errors occiir.

In the ease of an crinr, the eurrent -OBLTIST is checked to sce if it is "reasonable™ - that is. contains
nathing of the wrong 1YPF. (It is reasonable. but not standard. for .OBLIST to be a single OBLIST
instcad of a LIST of them) IF it is reasonable, that value stays current. Otherwise, OBLIST is SET to
+OBLIST. Noie that changes made o the ODLISTs on +OBLIST -- for example, new ATOMs added --
remain. If cven ,ORLIST is unreasonable, ODLIST is 5CT and SETGed to its initial value. <ERRET>
isection 16.44) always assunnes that .QBLIST is unreasonable,

15.3 - 15.5 Lexical Blocking

L—__

142 The MDL Programming Language

Three other OBL1STs exist in a virgin MDL: their names and purposes are as follows:
ERRORS! - contains ATONs whose PNAMES are used as error messages. It is returned by <ERRORS>.

INTERRUPTS!~ is wused by the interrupt system (section 21.5.1), It is returned by
CINTERRUPTS>.

HUDDLE ! = is wsed infrequently by the interpreter when loading compiled programs to fix up
reflerences 1o Incations within the interpreter.

The pre-lnading of compiled programs may crcale other OBLISTs in an initialized MDL {Lebling.
1979).

15.6. BLOCK amnd_EHDIL OCK

These SUBRs arc analogous to begin and end in Algol, ete, in the way they manipulate static
blocking (amd in no nther wayl

CELOCK fcoh-uplisi-of-oblists®

returns its argunment after “pushing”™ the current LVAL of the ATOM OBLIST and making its argument
the current LVAL. You usually want <ROOT> te be an element of look-up, normally its last.

LENDBLOCK >
"pops” tlhe LVAL of the ATOM OBLIST and returns the resultant LIST of OBLISTs.

MNote that this "pushing” and “popping” of .OBLIST is entirely independent of functional
application, hinding. cte.

15.7. SUBRs Assonciated with Lexical Blocking

15.7.1. RCAD {again)
SREAD channe! cof-rouline look-up?y

This is a Tuller call 10 RCAD. fook-up is an OBLIST or a LIST of thom, used as stated in section 15.3
to look up ATOMs and insert them in OBLISTs. If it is not specified, .OBLIST is used. See also
sections 1LLLL 113, and 17.1.3 for other arguments.

I55 - 15.7.1 Lexical Blocking

The MDL IP'rogramming Language 143

| 15.7.2. PARSE amd LPARSE fagain]

SPARSE steing radividlic look-up?

i as was previously mentioncd, applics READ's algorithm to siring and returns the first MDL ob ject
resulting. This includes looking up prospective ATOMs on fook-up, if given. or .0BLIST. LPARSE can

i I L]

{ be called in the same way. See also sections 7.6.6.2 and 17.1.3 for other arguments.

15.7.3. LOOKLIP
SLOOKUP siring oblisty

returns the ATON of PNANE string in the OBLIST oblist, if there is such an ATOM; otherwise. it returns

#FALSE (). IT =ling: would PARSE into an ATOM anyway. LOOKUP is Faster, although it looks in only
one OBLIST insicad of a LIST of them.

15.7.-¢. ATOM
<ATOM =tringy

creales and returns a spanking new ATOM of PNAME string which is guaranteed not to be on any
OBLIST.

An ATOM which is nol an any OBLIST is PRINTed with a trailer of | =#FALSE {).
15.7.5. RCMOVT

CREMOVE sl ing oblisl

remeoves the ATOH of PNAME string Fromn oblist and returns that ATOM. If there is no such ATOM,
REMOVE returns §FALSE |). Also,

CREHOVE atomd
removes afow Croan jis DBLISY, §f #t is on one. It returns alom if it was on an OBLIST; otherwise it

returns #FALSE ().

15.7.G. INSERT

CINSERT string-or-atom oblisty
15.7.2 - 15.7.6 Lexical Blocking

—

e e e ————
— e e e —s
————— e —/}/ - ——————————eee—ee———
e ——— -~ = ————————— ——— —_
. -~ ——— - - =
e e
T e e e e
e e e e S e e e . o oo . .. o 0 98 i i i i i i %8 i i i N io————
e e ———— e e -
e e ——————
e =
——_e——_____———————————————————
- " _ " " " .- " _ " " " " " " " " . " 4 <
=
——— e ———— —
I ———SS————————————SSSSSSSS———S——SSSSSS———S————————————SSSSSSSS————SSS—SSSSS—
R e e e S LS
— e i — ——
e e ———s—e—e—e—eeeeee——
——————-——— —
- - - —— ———
e
——— L e
m—— e ———————___— __—— _— ___——— __—_________________________ e m—

—e—

144 The MDL Programming Language

creates an ATOM of PHAHFE sfring, inserts it into oblis! and returns it. IF there is already an ATOM with
the same PHAME ax alonr in oblisf, an error occurs. The standard way to avoid the error and always
gel your aflom is

<OR <LOOKUP sirin: obdist> {INSERT =fring oblisi>>
As with REMOVE, THSERT can also take an ATOM as its first argument; this ATOM must not be on any

OBLIST - ir must have been REMOVEd, or just created by ATOM — clse an error occurs. The OBLIST

argument is never optional. If you would like the new ATOM to live in the OBLIST that READ would
have chosen, you can {PARSE sfring> instead.

15.7.7. PHAME
CIPHAME altom>

returns a STRING (newly created) which is alom’s PHAME ("printed name™}. If trailers are not nceded,
PNAME i» much faster than UHPARSE on atom. (In fact UNPARSE has to go all the way through the
PRINT algorithm twice, the first time 1o sce how long a STRING is needed.)

15.7.8. SPHAME

SPNAME ("shared printed name”) is identical 1o PHAME, except that the STRING it returns shares
storage with ofom {(appendix 1), which is more efficient if the STRING will not be modified. PUTting
into such a STRING will cause an crror.

15.8. Example: Another Solution 1o the THC Problem

What follows is an example of the way OBLISTs are "normally” used to provide "externally
available™ ATOMs and "local” ATOMs which are not so readily available externally. Lebling (1979)
describes a sysicmatic way to accomplish the same thing and more.

{HOBLLST 1MHCO 1>
;:"Crecate an OBLIST Lo hold your external symbols.
Its name is IHNCO!-INITIAL!- .®=

INC!=1HCO
; “Put your external symbols into that OBLIST.
If you have many. Jjust write them successively."

15.7.6 - 15.8 Lexical Blocking

=

Tl

=R

L Zz

re

The MDL Programming Language 145

COLOCK (<MOBLIST INCI!-INCO 1> <GET INCO OBLIST> <ROOT>)>
i"Creale a local OBLIST, naming it INCI!-INCO, and set up .OBLIST fTor
reading in your program. The OBLIST INCO is included in the BLOCK so
Lthat as your external symhols are used, they will be found in the
right place. HNoLe that the ATOM INCO is net in any DBLIST of the

BLOCK; therefore, trailer notation of !-INCO will not work within the
currant BLOCK-ENDBLOCK pair.®

<DEFINE INC :"INC is found in the IMCO OBLIST.®
(A) i"A is not found and is therefore put into INCI by READ."
fMECL ((VALUE A) <OR FIX FLOAT>)
<SET .A <+ _.A 13>> :"A11 other ATOMs are found in the ROOT.™

<ENDOLOCK >
This example is rather trivial, bot it contains all the issues, of which there are three.
The first idea is that you should ercate two OBLISTs. one 1o hold ATOMs which are to be known to
other users (THCO) and the ather to hold internal ATOMs which are not normally of inlerest to others
(INCI). The case above has one ATOM in each category.
Second, INCO is explicitly used without trailers so that surrounding BLOCKs and ENDBLOCKs will have
an effect on it. Thuws INCO will bse in the OBLIST desired by the user: INC will be in INCO, and the

user can refer 1o it by saying INC!-TNCO; INCI will also be in INCO, and can be referred to in the

same way: Finally. A is really A!'-INCI!-INCO. The point of all this is to structure the nesting of
OBLISTs.

Finally. if for some reason (like saving storage space) you wish to throw INCI away. you can follow
the ENDBLOCK witl

CHRIMOVE ®"THCI™ <GET INCO OBLIST>>

and thus remove all references to it. The ability te do such pruning is one reason for structuring
OBLIST references

MNote that. even after removing INCI, you ean “get A back” - that is, be able to type it in — by
saying somcthing of the form

CINSERT <1 <1 ,THC!-INCO3> €1 .OBLIST>>

thereby grabbing A out of the structure of INC and re-inserting it into an OBLIST. However, this
resurrects the name collision causcd by <INC!-INCO A>.

15.8 Lexical Blocking

T

148 The MDL Programming Language

Chapter 16. Errors, Frames, etc.

16.1. LISTEH

This SUBR takes any number of arguments. Tt first checks the LVALs of INCHAN, OUTCHAN, and
OBLIST for reasonability and terminal usability. In each case, if the value is unreasonable, the ATOM
is rebound to the corresponding GVAL, if reasonable, or to an invented reasonable value. LISTEN

then does <TTYECHO .INCHAN T> and <ECHOPAIR .INCHAN .OUTCHAN>. Next, it PRINTs its
argumernts, then PRINTs

LISTENING-AT-LEVEL / PROCESS p

where / is an integer (FIX) which is incremented each time LISTEN is called recursively, and p is an
integer identifying the PROCESS (chapter 20) in which the LISTEN was EVALed. LISTEN then does
CAPPLY <VALUE RLP>>, if there is one, and if it is APPLICABLE. If not, it applies the SUBR REP

(without making a new FRAME -- sce below). This SUBR drops into an infinite READ-EVAL-PRINT loop,
which can be left via ERRET (section 16.4).

The standard LISTEN loop has two features for getting a handle on objects that you have typed in
and MDL has typed out. If the ATOM L-INS has a local value that is a LIST, LISTEN will keep
recent inputs (what READ returns) in it, most recent first. Similarly, if the ATOM L-OUTS has a local
value that is 2 LIST, LISTEN will keep recent outputs (what EVAL returns) in it, most recent First.
The keeping is done before the PRINTing, so that S does not defeat its purpose. The user can
decide how much to keep around by setting the length of each LIST. Even if L-OUTS is not used.

the atomn LAST-0OUT is always SET to the last object returned by EVAL in the standard LISTEN loop.
Example:

<SET L-IN5S (MEWEST MEWER MNEW)>$

(NEWEST NEWER MNEW)

L=-INSS

(.L-IN5 NEWEST NEWER)

<3ET FOO 69>%

69

CS5ET FIXIT <2 .L-INS>> ;"grab the last 1nput*$
<3ET FOO 69>

16 - 16.1 Errors, Frames, etc.

$
.

e s S S eSS S S e S
e e et
_——— s e —=————————————a
e
- —________ . —————____________________ = =
e ——————— =
R R R e I ——— L
= e
———————————————— e —— e — ey
= -
S e R e e e
S
=S
e ————— s
e
e —— e —————————————————
_— s e ——— — —————————————r ==
e e
e R ERERRRREEREREREREREREREREREERREERERERERERERERERERERETETETERERERERERERERERER T ——————————— —————————————————————rwx
5 —————————————————————————
-— e
——s s s —_—.—-——————
S R R R R R — 2
R R R —— . ¢
S ———— R

The MDL Programuming Language 147

L-IN5%

(-L-THS <507 FIXIT <2 .L-INS>> <SET FOO 692>)
<PUT _FIXIT 3 105>%

“3ET FOO 105>

<CVAL .FIXIT>»3

105

L=-TH5%

(.L-INS <EVAL .FIXIT> <PUT .FIXIT 3 105>)
.roos

105

16.2. £RRONI

This SUEBR is the same as LISTEN, except that (1) it generates an interrupt (chapter 21), if enabled,
and (2) it PRINTs *I2AOR* helnre PRINTing its arguments.

Wihen any SURR nr FSUBR detects an anomalous condition (for example, its arguments are of the
wrong TYPCL it calls CRROR with ar least iwe arguments, including:

(I} an ATON whose PNAME describes the pprroblem, normally from the OBLIST ERRORS! - {appendix
b
(2) the ATON that names the SUBR or FSUBR, and
{3} any ather information of interest.
and then returns whateves the call 10 ERROR returns. Exception: a few (for example DEFINE)} will

take further action thal depends on the value returned. This non-standard action is specified in the
error message (first FRROR argunient).

16.3. FRAME {1 hic TYTED

A FRAME is the ohjeet placed on a PROCESS'S conitrol stack (chapier 20) whenever a SUBR, FSUBR,
RSUBR, or RSUBR-LENIRY {chapier 19) s applied. (These objects are herein collectively called
"Subroutines") 1t contains information describing what was applied. plus a TUPLE whose elements
are the arguments o the Subroutine applied. 1f any of the Subroutine’s arguments are to be
evaluated, they will have heen by the time the FRAME is gEenerated.

A FRAME i~ an anomalous TYPE in the fnllnwiug ways:

) 1t cannot bie typed in. It can be generated only by applying a Subroutine,

(2) It doos nen 1ype out in any standard format. but rather as #FRAME followed by the PNAME of
the Subiroutine applicd,

16.1 - 16.3 Errors, Frames, elc.

148 The MDL Programming Language

16.3.1. ARGS
CARCS frame>

(Targumenis”) returns the argument TUPLE of frame.

18.3.2. FUNCT
CFUNCT framed

("function”) returns the ATOM whose G/LVAL is being applied in frame.

16.3.3. FRAME {thic SUNR)
CFRAME rFrame>

returns tlic FRANC stacked belore frame or, if thore is none, it will generate an error. The oldest
(lowest) FRANE that can be returned without error has a FUNCT of TOPLEVEL . If called with no
arguments, FRAME returns the topmost FRAME used in an application of ERROR or LISTEN, which was
bound by the interpreler to the ATOM LERR\ !-INTERRUPTS (“last error”).

16.3.4. Examples

Say you have gotten an crror. You can now type at ERROR's LISTEN loop and get things EVALed.
For example,

CTUNCT <FrRAMLC>>%

FREOR

CFUNCT <FRAME <FRAME 2205
Ihe-name-of-fhe-Subracline-whi ch-called-ERROR :alom
CARGS <FRAME <FRAME>>>3

the-ar puments-to-the-Subroutine -whi ch-called-ERROR:tuple

16.4. ERRLT
SERRET amv frame>

This SUBR ("error return®™) (1) causes the control stack ro be stripped down to the level of frame, and
(2) then returns #ra. The nel result is that the application which generated frame is forced to return

16.3.1 - 16.4 Errors, Frames, etc.

The MDN. 'rogramming Language 149
] any. Additional side effects that would have happened in the absence of an error may not have
happeoncd.

I The secand argumnent to ERRET is optional, by default the FRAME of the last invocation of ERROR or
LISTEN.

IF ERREY is called with no arguments, it drops you all the way down to the bottom of the control

stack — before the Jevel-l LISTEN loop - and then calls LISTEN. As always, LISTEN first ensures that
| MDL is recoprive.

Examples:
€™ 3 <+ a 1>>»5

=ERROR®

ARG-WILONG- TYPE

.

I ISTFNTNG-AT-LEVEL 2 PROCCSS 1
<ARGS <FRAME <FRAME>>>3$

[a 1]
<ERRLCT 5>% :"This causes the + to return 5."
15 :"finally returned by the ==

Note that when you are in a eall 1o ERROR, the most recent set of bindings is still in effect. This
means that you can examine values of dumny variables while still in the error state. For example,

SDEFIRE F (A "AUX"™ (B "a string™))
FDCCL ((VALUE) LIST (A) STRUCTURED (B) STRING)
(.G <RCST .A 2*) ;"Return this LIST." >5

F

<F '"(1)>%

"L RROR*

OUT -0F -BOUNDS

REST

LISTENING-AT-LEVEL 2 PROCESS 1

N3

(1)

.B%

"a string"®

CERRET *"(5)> i "Make the RECST return (5)."%
("a strimg" (5))

16.4 Errors, Frames, etc.

e ————

150 The MDL Programming Language

16.5. RE1RY
SRETRY frame>

causes the contral stack 10 he stripped down jusi beyond frame, and then causes the Subroutine call
that generated fr.:me to be done again. frame is optional, by default the FRANE of the last invocation
of ERROR or LISTEN. RETRY differs from AGAIN in that (I) it is not intended to be used in programs;
(2) it can retry any old frame (any Subroutine eall), whereas AGATN requires an ACTIVATION (PROG or
REPEAT or "ACT=Y and (3) if it retries the EVAL of a FORM that makes an ACTIVATION, it will cause
rebinding in the arguiment LIST, thus duplicating side effects.

16.6. UNWIND

UNWIND is an [SURR that rakes two Arguments, usually FORMs. It EVALs the first one, and, if the EVAL
returns normally, the value of the FVAL call js the value of UNWIND. If. however, during the EVAL a
non-local retnrn attempts to return below the UNWIND FRAME in the contrel stack, the second
argument is CVALed, irs valiue is ignored. and the non-local return is compleied. The second
argument i« evaluated in the environment that was present when the call to UNWIND was made. This
Facility is wseful For cleaning up dara bases that are in inconsistent states and for closing
Temporary CHANNELs 1hiat may be left around. FLOAD sels up an UNWIND 1o close its CHANNEL if the
user attempts 1o CRRECT withour finishing the FLOAD. Example:

<DEFINE CLEAN ACT ("AUX™ (C €OPEN "READ"™ "A FILE">))
¥DECL ({C) <OR CHANNEL FALSE> ...)
<COND (.C
CUNWIND <PROG () ... <CLOSE L3>
CCLOSE .C>>)3>

16.7. Control-G (~G)

Typing contrnl-G ("G, <ASCII 73} at MDL causes it to act just as if an error had occurred in
whatever was currently being done. You can then examine the values of variables as above,
continue by applying ERRET to one arguient (which is ignored), RETRY a FRAME lower on the control
stack, or flush everything by applying ERRET te no arguments.

16.5 - 16.7 Errors, Frames, etc.

The MDL Programming Language 151

16.8. Coniral-S (~5)

Typing contrnl-5 (*5, <ASCII 193) at MDL causes it to stop what is happening and return to the

FRAME .LERR\ !-INTERRUPTS, returning the ATOM T. (In the Tenex and Tops-20 versions, ~0 also
has the same cffcer)

16.9. OVERI LOW

COVERFIL.OW falzse-or-any>

There is one error that can be disabled: numeric overflow and underflow caused by the arithmetic
SUBRs (+, -, =, /). Thc SUBR OVERFLOW takes ome argument: if it is of TYPE FALSE,
underf/foverflow errors are disabled: otherwise they are enabled. The initial state is enabled.

OVERFLOW veturns T nr #FALSE (), reflecting the previous state. Calling it with no argument
returns the current state.

16.8 - 1G9 Errors. Frames, etc.

152 The MDL Programming Language

Chapter 17. Macro-operations

17.1. READ M ACros

1T7.1.1. % and %%

The tokens % and %% are interpreted by READ in such a way as to give a "macro” capability to MDL
similar 1o I'L/I'.

Whenever READ encounters a single % — anywhere, at any depth of recursion - it immediately,
without Jonking at the rest of the input, evaluates the ob ject following the X. The result of that
cvaluation is wsed by READ in place of the objcct following the X. That is, X means “don't really
READ rhis, use FVAI of it instead.™ % is often used in files in front of calls to ASCII, BITS (which
see), ete., although when the FUNCTION is compiled the compiler will do the evaluation if the
argumcints are constant, Also seen is %.INCHAN, read as the CHANNEL in use during LOAD or FLOAD;
For example, <PUT %.THCIIAN 18 8> causcs succeeding FIXes 1o be read as octal.

Whenever READ encoumnters KX, it likewise immediately evaluates the object following the %X%.

However, it complercly ignores the result of that evaluation. Side effects of that evaluation remain,
of course.

Example:

<DEFINE SETUP () <SET A [1 51 4

SETUp

“DEFINE NXT () <SET A <+ .A 132>3

HXT

[“R<SETUP> XCNXT> %CNXT> (RA<SETUP>) ACNXT>]S
C1 2 () 1]

17 - 17.1.1 Macro-operations

e
—
I —
—
—
—
—
|—
—
—
—
—
S —
—
—
—
—
—
S —
—
—
—
—
—

The MDL Programming Language i53

17.1.2. LINK
CLINK exp:any streing oblict>

creates an object of TYPE LINK, PRIMTYPE ATOM. A LINK looks vaguely like an ATOM; it has a
PHAMLE (the <friog argument). vesides in an OBLIST (the ablist argument) and has a “value” (the exp
argument). A LTNK has the strange property that, whenever it is encountered by READ (that is, its
PHAME i» read, just lile an ATOM, possibly with OBLIST trailers). READ substitutes the LINK's “value”
for the LINK immcdiately, The effect of READing a LINK's PNAME is exactly the same as the effect of
reading its "valuce”,

The obhs! argument is optional, €1 OBLIST> by default. LINK returns its Ffirst argument. The
LINK is vreatvd via INSERT, so an error results if there is already an ATOM or LINK in oblist with the
same PHANMIE .

The primary use of LINKs is in interactive work with MDL: expressions which are commonly used,
but annoyingly long to type. can be "linked” to PHAMEs which are shorter. The standard example is
the following:

CLINK *<ERRET> "“E" {ROOT>>

which links the ATOM of PHAME “E in the ROOT OBLIST to the expression <ERRET?>.

17.1.5. Proveam-delined Macro-charactors

DIIIEII':_'_ READIDg froan an input CHARNEL or PARSEing a STRING, any character can be made to have
a special meaning. A character can cause an arbitrary routine to be invoked, which can then return
any number of clemcnts 1o be put into the objeet being built by READ, PARSE, or LPARSE.
Translation of characters is also possible. This facility was designed for those persons who want to
use MDD READ 10 o large parts of their input but have to modify irs actions for some areas: for
example. onc might want (o treat lefl and right parentheses as tokens, rather than as delimiters
indicating a LIST.

17.1.3.1. READ {finally)

Associated with READ is an ATOM, READ-TABLE!-, whose local value, if any, must be a VECTOR of
elements, one Mor cach character up 10 and including all characters to be treated specially. Each
element indicates. if not 0, the action to be taken upon READ's encounter with that character. A
similar VECTOR,. the local value of PARSE-TABLE!~-, if any. is used to find the action to take for
characters enconnteied wlien PARSE or LPARSE is applicd to a STRING.

These tables can have up 1o 256G elements, one for each ASCII character and one for each possible

exclamation-point/ASClI-character pair. In MDL. the exclamation-point is used as a method of

7.1.2 - 17.1.5.1 Macro-operations

]
A R A R AR AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARARARARARNRNAN N N N=—Im—
e T R R R R R R ——S
s> ——— ——— """\, ————— """, ——————————,,.___- o —————————
Siammmm———________aaaeee————— — — ———___________a—————
_——— ——e———,—,——— @ —-—-—
- ===
——————,——————,—

R —— S— —

154 The MDL Programming Language

expanding the ASCIH character set, and an exclamation-point/character pair is treated as one logical
character when uot reading a STRING.

The clemwent corresponding 1o a characier is <NTH fable <+ 1 <ASCII char>>>. The element
corresponding 1o an exclamation-point/ASCII.character pair is <NTH table <+ 129 <ASCII char>>>.
The table can he shorter than 256 clements, in which case it is treated as if it were 256 long with 0
elements 1.::‘_‘.'1|I.HJ s actual length.,

An element of the 1aliles miust satisly one of the f(;l]u“ri“g DECL Patterns:
'O imlieates that o special action is to be taken when this character is encountered.

CHARACTE R indicates that the encountered character is to be translated into the given CHARACTER

whenever it appears, except when as an object of TYPE CHARACTER, or in a STRING, or
j.llll!ll'l“il.ll._'l_'.' followinger a \ .

FIX indicates thar the character is to be given the same treatmment as the character with the
ASCH value of the F1X. This allows ¥ou to cause other characters to be treated in the samme
way as A-L Cor example. The same exceptions apply as for a CHARACTER.

CLIST FTIXE indicates the same thing, except that the character does not by itsclf causc a break.
Therelfove. if it oceurs when reading an ATOM or number, it will be treated as part of that ATOM
or nuimnher.

APPLICARLL (1o one argument) indicates that the eharacter is 1o be a break character. Whenever
it is encountered, the reading of 1the current obiject is finished. and the corresponding element
of the table i« APPLYed to the ASCII CHARACTER. (If READ is called during the application, the
cnd-nf-file slor of the CHANNCL temporarily contains a special kind of ACTIVATION (TYPE
REAIAY =0 that endnl-Tile can he signalled properly 1o the original READ. Isn't that
wanderful?l The value returnied is taken to be what was read. unless an ob ject of TYPE SPLICE
is returned, 11 sa. the clements of this object. which is of PRIMTYPE LIST, are spliced in at the
point where MDD s reading. An cmply SPLICE allows one to return nothing. If a structured
object is oot heing built, and a SPLTCE is returned. elements after the Cirst will be ignored. A
SPLICE during reading is similar 1o a SEGMENT during evaluating, except that, in some sense, a
SPLICE says "expand me”, whereas the siructure containing a SEGHENT says "I will expand you™,

SLIST ARPLICARLES indicates the same thing. except that the character does not by itself cause

a break. Therefore, if it nceurs when reading an ATOM or number, it will be treated as part of
that ATOM or nmnhber.

READ take« an additional eptional argument, which is what to use instead of the local value of the

ATOM RLCAD-TABLE as the VECTOR of read-mnacro characters. If this argument is supplied, READ-TABLE

is rebound o it within the call 1o READ. READ takes from zero 1o four arguments. The fullest call to
READ is thus;

17.1.3.1 Macro-operations

S

—
e —
—
—
—
—
—
N —
—
—
—
—
e —
—
—
—
—
—
e —
—
—
—
—
—

The MDL Programming Language 155

CREAD channe! cof-routine look-up read-tablesvector
The othier arguments are explained in sections 1LLLL 113, and I5.7.1.
ERROR and L151EN reliind READ-TABLE to the GVAL of READ-TABLE, if any, else UNASSIGN it.
17.1.2.2. Examples
Examples of each of the different kinds of entries in macro tables:

<SCT READ-TABLE <IVECTOR 256 033
[---]

<PUT .READ-TADLE <+ 1 <ASCII 1\a>> '\A>
:"CHARACTER: translate a to A."S

abel
Abe

<MY L READ=-TABLE <+ 1 <ASCII INK>> CASCITI 1VA»D
:"F1X: make ¥ just a normal ASCII character."$

PSR

AXRCSE

ANKEC

<PUT .READ-TABLE <+ 1 <ASCII IY,>> (CASCII N, 2)>
s "CLIST rIX»>: make comma no longer a break
character, but still special if at a break."$
L.--]
A,DS5
ANLB
i"That was an ATOM wilh PHAME A,B .®
'.B%
. B
:"That was the FORM <GVAL B> _®

<CPUT .READ-TABLE <+ 1 <ASCII INza>

#TURCTION ((X) <LIST COLOM CREAD>>)>

i "APPLICABLE: make a new thing like [¢ and [.*%

[
B:A%
&
(colon A)
t::FOOL
(COLOHW (COLON {(COLON FOOQ))

17.1.3.1 - 17.1.9.2 Macro-operations

The MDL Programming Language
156

“PUT .RCAD-TABLE <+ 1 <ASCIT s>
*{#FUNCTI0ON ((X) <LIST COLON <RCAD>>))>
s "<LIST APPLICABLE>: like above, but not a break

now."%
RN
B:AS
B:A
$"Thal was an ATOM.®
:::F00%

(COLON (COLON (COLON FOO)))

17.1.3.3. PARSC and LPARSE (finally)
<IPARSE tring: radie look-ug parse-fablenvector lock-ahead:character

is the fullest call in PARSC. PARSE ean tale from zero to Ffive arguments. If PARSE is given no
tetirns the Tirst ob jeet parsed from the local value of the STRING PARSE-STRING and
additionally SF1« pARS =STRING 10 the STRING h.:uv:'ug those CHARACTERs which were parsed RESTed
of f. If PARSE is riven a STRING te parse. the ATOM PARSE-STRING is rebound to the STRING within
that call, If the . falle argument is given 1o PARSE, PARSE-TABLE is rebound to it within that
call 1o PARST . Finally, PARSE can lake a lock-ahead CHARACTER, which is treated as if it were
convatenated 1o the front of the string being parsed. Other arguments are described in

ArZmnmcnrs, ji

fogically
sections 7.6.6.2 and 15.7.2.
LPARSE is exactly Jike PA ISC. except that it tries to parse the whole STRING, returning a LIST of

the ob jects created,

17.2, EVAL Mac 0

An EVAL macrn Pravides the convenience of a FUNCTION without the overhead of calling, SPECIALs,
ere. in the compilod vorsion, A special-purpose funcrion that is called often by FUNCTIONs that will

be compiled is a good candidate for an EVAL Inacro.

17.2.1. DEFMAC and FXPAND

v s

DEFMAC ("deline macia™) js s¥niactically exactly the same as DEF INE. However, instead of crealing a
FUNCTION, nri1Mac vreates a HACRO. A MACRO is of PR IMTYPE LIST and in fact has a FUNCTION {or

other APPLICAII] IYPE) as i1s single element,

A MACRO can itscll he applicd 1o arguments, A MACRO is applied in a funny way, however: it is

17.1.3.2 - 17.2.1 Macro-operations

.. The MDI. Progrannning Language 157

| EvALed twiee. "T'he Tirst CVAL causes the MACRO's clement to be applied to the MACRO's arguments.
i Whatever that application returns {usually another FORM) is also EVALed. The result of the second
EVALuation is the result of applying the MACRO. EXPAND is used to perform the first EVAL without
the sccond

To avoid complications, the Cirst EVAL (bby EXPAND, 1o create the oh ject to be EVALed the second time
around) is done in a tep-level environment. The result of this peolicy is that two syntactically
identical invocations of a MACRO always return the same expansion to be EVALed in the second step.
The First WAL groarcales two oxtra FRAMEs: one for a call to EXPAND, and one for 2 call to EVAL the
MACRO application in a rep-level environment,

Example:

¢DEFMAC INC (ATM “OPTIONAL" (N 1))
FDECL ((VALUE) FORM (ATH) ATOM (N) <OR FIX FLOAT>)

<FORM SCT .ATM <FORM + <FORM LVAL .ATH> .N>>>%
THC

« LNCS

FMACRO (#FUNCTION ((ATHM "OPTIONAL" (H 1)) -..))
<3CT X 135

l

CINC X>%

£

D

s

<EXPANLD "<1NC X>>%

CSET X €+ X 1>»

Perhaps the imention is clearer if PARSE and % are used:
CDLFMAC IHNC (ATH "OPTIOHAL®™ (N 1))
FNECL {...)

CPPARSE “<SET ®.ATHM <+ %_ATH %.H3>%3>

MACROs veally exhiilyit their advantages when they are compiled. The compiler will simply cause the

first CVALluation to occur (via CXPAND) and compile the result. The single element of a compiled
MACRO is an RSUER or RSUBR-ENTRY.

17.2.2 Example

Suppeose you wanl 1o change the following simple FUNCTION to a MACRO:

<OEFINE DOUBLE (X) #DECL ((X) FIX) <+ .X% .X>>

17.2.1 - 17.2.2 Macro-operitions

You may be temprted 1o write:

The MDL Programming Language

CDEFMAC DOURBLE (X) #DECL ((X) FIX) <FORM + .X .X>>

This MACRO works, Tt only when the ar

CHET ITNI

If this FUNCT10H i« applied. the top-level binding of Y is used,
Compilation of this FUNCTION would probably f

application

TRIPLE (Y) <+

¥ CDOUBLE .¥>>>

would bave no tap-level binding for Y. Well, how about

CNEFHMAC DOUBRLE

Mow this is more like the original FUNCTION,

result evaluared again
<DEF THE
You might hope tha

CINC-AND=-DOUBLE 1> =->

-3

-3

-5

But, when NOUBLE is applicd to
SINC-AND-DOUBLE 13 -3

-3

-2

-3

So. since the evaluation af DOUBLE's argument has a side effect.
evaluartion i+ done exactly once,

("X) <FORM + X .X>>

NWC-AND-DOUBLE (Y) <DOUBLE <SET Y <+ 1 .Y33%>

<DOUBLE <S5ET ¥ <+ 1 13>
<DOUBLE 23

<+ 2 23
4q

that TORM, the argument is QUOTE, so:
COOUBLE <SET ¥ <+ 1 .¥>>>

SFORH + <S5ET Y <+ 1 .¥>> <SET ¥ <1
<+ 72 3>

5

say by FORM:

COEFHMAC DOUDLE ["AHY)

<FORM PROG

((X% _ANY)) #DECL ((X) FIX) *‘¢+ .%

As a banus, the DECL can once more be used.

This example is intended 1o show
FUNCTIONs. Rut the effor may be worthwhile

17.2.2

Guuient does not use temporary hindings. Consider

not the binding just ereated by the
ail. because the compiler probably

;"The DECL has to go."

biccause no longer is the argument evaluated and the
And TRIPLE works. But now consider

Y223

you should ensure that the

« K220

that writing good MACROs is a little trickier than writing good
if the compiled program must be speedy.

Macro-operations

I

T

The MDIL. Programming Language 159

Chapter 18. Machine Words and Bits

The MDL facility for dealing with uninterpreted machine words and bits involves two data TYPEs:
WORD and BITS. A WORD is simply an uninterpreted machine word, while a BITS is a "pointer” 1o a

set of hirs within a WORD. Operating on WORDs is usually done only when compiled programs are
used (chaprer 19)

18.1. WORNs

A WORD in MDL is & PDP-10 machine word of 3G bits. A WORD always PRINTs in "# format™ and its
contents are always printed in octal (hence preceded and followed by *). Examples:

#*WORD 0 :"all 0s"%
*WORD *000000000000=

“WOHRND =2000®= ;"one bit 1"%
#HORD =000000002000=

HWORD =L25257525252% i"every other bit 1"%5
FHORD =4H252525726252=

WORD is its own PRINTYPC: it is also the FRINTYPE of FIX, FLOAT, CHARACTER, and any other TYPE
which can fit jts dara inte ane machine word.

A WORD cannetr be an argument 1o +, -, or indeed any SUBRs except For CHTYPE, GETBITS, PUTBITS
and several bit-manipulating functions, all to be described below. Thus any arithmetic bit
manipulation must he done by CHTYPCing a WORD to FIX, doing the arithmetic. and then CHTYPEing
back to WORDL. Ilnwever, Lt manipulation can be done without CHTYPEing the thing to be played
with to a WORD, so longr as it is of PRIMTYPE WORD: the result of the manipulation will be of the
same TYPC as the original ob jeet or can be CHTYPEd 1o it.

18 - 18.1 Machine Words and Bits

e

L ——————————
e e e e e e e e ——
—_—
e —
—_—,,,—— . —-—e———————-—————
——------"-"-""-"""",,,,,,,,,,,,,,,,,,,,,,,—,—,—_—e—e e e e e
S e ——

e ——

160 The MDL Programming Language

An object of TYPE DITS is of PRIMTYPE WORD, and PRINTs just like a WORD. The internal form of a
BITS is precisely thar af a PDP-10 "byte pointer”™. which is, in fact, just what a BITS is.

For purposes of explaining what a 8115 is, assume that the bits in a WORD are numbered from right
to lefr. with the rightimos bit numbered 0 and the lefumost numbered 35, as in

dh 34 33 ... 210
{This is not the "standard™ ordering: the “standard” one goes from left to right.)
A BITS is mosr conveniently created via the SURBR BITS -

CBITS widlh:#ix righl-edeefix>

refurns a NHIS which “points " a ser of hits width wide, with rightmost bit rghf-edge. Both
arguments st be of TYPE FIX, and the second is optional, 0 by default.

Examples: the indicated application of BITS returns an object of TYPE BITS which points to the
indicated et of hits in a WORD:

<BITS 7> A% s 7 B ... D
<BITS 4 18> 35 ... 2221 20 19 18 17 ... O
<BIIS 36> a5 . 1]

18.3. GETB115
CGETRITS fromipricmdype=-word bulsd

where frac is an objeet of PRINTYPE WORD, returns a new object whose TYPE is WORD. This ob ject is
constrocted in the following way: the set of bits in from pointed to by bits is copied into the new
ab joect, right-ad justed, thar is. lined up against the right end (bit number 0) of the new object. All
those hits of the new objeet which are not copicd are set to zero. In other words, GETBITS takes bits

from an arbiitrary plice in from and puts them at the right end of a new object. The from argument
to GETRITS is ne afl fecled.

Examples:

18.2 - 18.3 Machine Words and Bits

The MDL Programnming Language 161

CGETHBITS <“WORD %777777777777% <BITS 3>>%
*WORD =000000000007=

<GUTRITS *"012345G70123% <BITS G 182>%
#WORND =000000000045=

I18.4. PUTRLIS

SPUTRITS flousrimt yvioe-ward Dils ."rnm:pnmr.r.—-p-e- woard»

where fo and frarm are of PRIMTYPE WORD,

returns a copy of fo, modified as follows: the set of bits
in fa which are pointed to Ly bifs are re

placed by the appropriate number of rightmost bits copied
from from (optional. D by default). In other words: PUTBITS takes bits from the right end of from

and stuffs them jnre an arbitrary position in a copy of fo. None of the arguments to PUTBITS is
affected,

Examples:

SPUIBLIS “WORD =777777777777% <BITS & 3333

rWORD =777777777007%

<PUTRITS #“WORD *G6G777000111% <BITS 5 153 #WORD =123%3>%
AUORD =GGG77630011]1=

TPUTBITS #WORD ®=765432107654= <BITS 18>3%

FHWORD *=765432000000%

18.5. Bitwise Boalean Op crations

Eacli of the Siliis AHDH, ORR, XORH,
WORD which is the bitwive Banlean
exclusive “or”l. respectively, of
Argmncot is piven,
anly one argumens
arguments are
third, eic.

and LQVB takes arguments of PRIMTYPE WORD and returns a
"and”, inclusive "ar”, exclusive "or”, or “equivalence” (inverse of
its arguwments. Each takes any number of arguments. If no
A WORD with all birs of f (ORB and XORB) or on (ANDB and EQVB) is returned. If
is mivew, it is returned unchanged but CHTYPEd to a WORD. IF wmore than two

given. the operator is applied to the first two. then applied to that result and the
lie sure not 1o confuse AND and OR with ANDBE and ORB.

183 - 185 Machine Words and Bits

. The MDL Programming Language '

! 18.6. Dirwise Shifting Operations

<L3SH Fror prinf yoo-word amounf:fivdy

[Feturns a new WORD cantaining the birs in from, shifted the number of birs specified by amount (mod
| 256, says the hag dware). Zero bits are brought in at the end being vacated: bits shifted out at the

other end are losi. If amount is positive, shifting is to the left; if amount is negative, shifting is to
: the righr Examplos:

CISH 8 G635

| #WORD =00000000]1000x
<L 8 -6>%
“WORD *000000000000™

<ROT fravmepe il Vpo-word amount #ix>

FETUrns a new WORD nitaining the hits in from, rofated the number of bits specificd by amount (inod

256, says the hardware), Retation is a cy¥elic hitwise shift where bits shifted out at one end are put
back in a1 the other. [f Aamaun! is positive, rotation is 1o the left; if amownt is negative, rotation is to
the righit. Exampics:

<HOT 8 nd>s%

*WORD *000000001000=
<ROT 8 -63>%

*WORD =100000000000%

18.6 Machine Words and Bits

l
I

(i

"

M

L

|

The MDL Frogramming Language 163

Chapter 18. Compiled Programs

19.1. RSUBR (the TYPE)

RSUBRs (“relncatable subroutines”) are machine-language programs written to run in the MDL
environment. They are usually produced by the MDL assembler {often from output produced by the
compiler) although this is not necessary. All RSUBRs have two components: the “reference vector™
and the “cnde vector™, In some cases the code vector is in pure storage. There is also a set of
“fixups™ associared with every RSUBR, although it may not be available in the running MDL.

19.2. The Reference Vector

An RSUBR is basically a VECTOR that has been CHTYPEd to TYPE RSUBR via the SUBR RSUBR (see
below). This ex-VECTOR is the refFercnee vector. The first three elements of the reference vector have
predefined mranings:

The First clenent is of TYPE CODE or PCODE and is the impure or pure code vector respectively.

The second clement is an ATOM and specifics the name of the RSUBR.

The third elewment is of TYPE DECL and declares the type/structure of the RSUBR's arguments and
result.

The rest of the clewents of the reference veetor are objects in garbage-collected storage that the
RSUBR needs 1o reference and any impure slots that the RSUBR needs to use.

When the RSUBR is running, one of the PDP-10 accumulators (with symbolic name R) is always
pointing to the reference vector, to perimit rapid access to the various elements.

19 - 19.2 Compiled Programs

164 The MDL Programming Language

19.3. RSUBR Liili.l-tlg

RSUBRs can call any APPLICABLE object. all in a uniform manner. In general, a call to an F/SUBR is
linked up ar assembly/eompile time so that the calling instruction (UUO) points directly at the code
in the interpreter for the F/SUBR. Ilowcver, the locations of most other APPLICABLEs are not
known ar assembly feompile time, Therelore, the calling ULIO is set Up to point ar a slot in the
reference vecior (by indexing off accumulator R). This slot initially contains the AToM whose
C/LVAL is the called ob ject. The calling mechanism (UUO handler) causes control 1o be transferred
ta the called obiject and. depending on the state of 1he RSUBR-link flag, the ATOM will be replaced by
its G/LVATL. (IF ihe call is of the “quick” variety. the called RSUBR or RSUBR-ENTRY will be CHTYPEd
1o a QUICK-RSUER or QUICK-ENTRY, respectively. before replacement.) Regardiess of the RSUBR-link
Flag’s state. calls in FUNCTIONs are nover permanently linked. A eall to a non-Subroutine gEenerates
AN extra TRAME, whose FUNCT s the dummy ATOM CALLER.

RSUBRs are linked tngether for Faster execution, but linking may not be desirable il the RSUBRs are
being debugged, ang various revisions are being re-loaded. A linked call will forever after EQ to the
same code, regardless of fhe current GC/LVAL of the called ATOM. Thus, while testing RSUBRs, You
may want to disable linking, by calling the RSUBR-LINK SUBR wiih a FALSE argument. Calling it
with a non-FALSE arguiuent enables linking thereafter. [t returns the previous state of the Jink flag,
cither T or #rALSE (). Calling it with no argument returns the current state.

19.4. Pure and linpure Code

The First element of an RSUBR is the code vector. of TYPE CODE or PCODE. TYPE CODE is of
PRIMTYPE UVEC TOR, and the UTYPE should be of PRIMTYPE WORD. The code vector is simply a block
of words thar are rthe instructions whicl comprise the RSUBR. Since the code vecior is stored just
like a standard UVECTOR, it will he moved around by the garbage collector., Therefore, all RSUBR
code is required 1o Le Incation-insensitive, The compiler gFuarantees the Jucaliun-irucnsirivil}- of its
output. The assembler hiclps to make the code location-insensitive by defining all Jabels as offsets
relative to the bBeginning of the code veelor and causing instructions that refer to labels to index
Aurtomatically off the PRP-10 accumulator symbolically named M. M, like R, is set up by the UUO
handler, bur iy pPoints 1o the cnde vector instead of tlhe reference veetor. The code vector of an
RSUBR can be frozen {using the FREEZE SUBR]} to prevent it from moving during debugging by DDT
in the superior MPCFATINE-system process.

IF the first element of ap RSUBR is of TYPE PCODE ("pure code”), the code vector of the RSUBR is pure
and sharable. TYPE PCODE i« of PRIMTYPE WORD. The left half of the word specifies an offset into
an internal tahle of pPure RSURRs, and the right half specifies an of fset into the block of code where
this RSUBR starts. The PCODE prints out as:

*<PCODE name:string offselfixy

193 - 19.4 Compiled Programs

[

i B

B EE

i O

o

The MDL Programming Language 165

where e names the eniry in the user’s pure-RSUBR table, and offsel is the offset. (Obviously,
PCODE i+ also the name of a SUBR, which generaies a pure code vector.) Pure RSUBRs may also move
around. Lut only by being included in MDL's page map at different places. Once again M can be
wsed exactly as hielfore 1o de Incatinn-independent address rcfcrcnciug. Individual pure code vectors
can he “unmapped” fmarked as heing nor in primary storage but in their original pure-code disk
files) if the space in siorage allocated for pure code is exhausted. An unmapped RSUBR is mapped in
| again whenever neciled. All pure RSUBRs are nnmapped before a SAVE file is written, so that the
v.':;uIP is not duplicated on disk. A purified RSUBR must use RGLOC ("relative GLOC™) instead of GLOC.
RGLOC produces objects of TYPE LOCR insiead of LOCD.

19.5. TYPE-C and TYPE-W

In order (o handle wser NCWTYPEs reasonably, the internal TYPE codes for them have to be able to be
dif ferent from one NMIDNL run te another, Therefore, references to the TYPE codes must be in the
reference vector rather than the code vector. To help Lhandle this problem, two TYPEs exist, TYPE-C
("type code”) and TYPE-W {"iype word”), both of PRIMTYPE WORD. They print as:

H#<IYPE-C Iype primlyvpe:alom?
RLTYPE-W {ype primiype:atom’

The SURR TYPC-C prodaces an internal TYPE code for the fype, and TYPE-W produces a prototype
"TYPE word” (appendix 1) for an object of that TYPE. The primlype argument is optional, included
only as a check against the call 10 NEWTYPE. TYPE-W can also take a third argument, of PRIMTYPE
WORD, whese right half is included in the generated "TYPE word”. If [vpe is not a valid TYPE, a
NEWTYPI is autommatically done.

To be complere, a similar SUBR and TYPE should be mientioned here.

SPRIMIYPL -C Fypo>
produces an intcrpal "ulnr:lgc allocation code” (appendix 1) for the fype. The wvalue is of TYPE
PRIMTYPE-C, PRIMTYPME WORD. In almost all cases the SUBR TYPEPRIM gives just as much

information, except in the case of TCHPLATEs: all TYPEs of TEHPLATEs have the same TYPEPRIM, but
they all have dif ferent PRIMTYPE=-Cs,

19.6. RSUBR (the Sill’.lﬂ
CRSURR [rocde name decl ref ref ...]>»

CHTYPEs its argument to an RSUBR, after checking it for legality. RSUBR is rarely called other than

19.4 - 19.6 Compiled Programs

R s LMl A A A A —A LA A A Al AN A A A M A A AL A A A A M AM A AL AL A Al l CBiRARRRRRARRAAAAERAAEEEEEE—EEEEECSEE—I——,..

|

166 The MDL Programming Language

in the MDL Assembler (Lebling. 1979). It can be used if

changes must be made to an RSUBR that are
prohibited by MDL's builr-in safety mechanis

ns. For example, if the GVAL of name is an RSUBR:

CSET FIXIT <CHTYPE ,name VECTOR>S
[-..1

«-.(changes to _FIXIT)...

CSETG name <RSUBR SFIXIT>>»%
#RSUBR [...]

i19.7. RSURR-ENTRY

RSUBRs can have multiple entry points. An RSUBR

-ENTRY can be applied to arguments exactly like
an RSUBR.

<RSUBR-ENTRY [rsubr-or-atom name:alom decl] offset:fixd>

returns the VECTOR argument CHTYPEd to an RSUBR-ENTRY

into the rsubr at the specified offset. IFf
the RSUBR-ENTRY is to have a DECL {RSUBR style), it should

ome as shown.

CENTRY-LOC rsubr-gnfryd

("entry location”) returns the offsel into the RSUBR of this entry.

19.8. RSUBRs in Files

There are three Linds of files that can contain RSUBRs

. identified by second names BINARY, NBINM
and FBIN. There is nothing magic about these n

ames, but they are used by convention.
A BINARY file is a completely ASCIT file containing complete impure RSUBRs in character
represciiation. Even a code veetor appears as #CODE followed by a UVECTOR of PRIMTYPE WORDs.
BIMNARY Files are generally slow te load, because of all the parsing that must be done.

An NBIN file contains a mixiure of ASCII characters and binary code. The start of a binary
Portion is signalled (o READ by the character control-C, so naive readers of an NBIM file on ITS may
incorrectly assume that it ends Lefore any binary code appears. An NBIN file cannot be edited with

4 text editor. An RSUBR is written in NBIN format by being PRINTed on a "PRINTB®™ CHANNEL. The
RSUBRs in NBIN files are not purified either.

196 - 19.8 Compiled Programs

The MDL Programming Language 167

An FBIN File is actually part of a triad of files. The FBIN File(s) itself is the impure part of a
collection of purified RSUBRs. It is simply ASCII and can be edited at will. (Exception: in the ITS
and Tops-20 versions, the first ob ject in the File should not be removed or changed in any way, lest
i a “grim reaper” program for FEIN files think that the other files in the triad are obsolete and delete

them.) The pure code itself resides (in the ITS and Tops-20 versions) in a special large file that
| contains all curvently-used pure code, or (in the Tenex version) in a file in a special disk directory
i with First name the same as the name argument to PCODE for the RSUBR. The pure-code fFile is page-
I mapped directly into MDL storage in read-only mode. 1t can be unmapped when the pure storage

must be reclaimed, and it can be mapped at a different storage address when pure storage must be

compacied. There is also a "fixup” file (see below) or portion of a file associated with the FBIN to
| round ont the triad.

An initial MDL can have pure RSUBRs in it that were "loaded” during the initialization procedure.
The files are not page-mapped in until they are actually needed. The "loading™ has other side
effects. such as the creation of OBLISTs (chapter 15). Exactly what is pre-loaded is outside the scope
of this documcnt.

19.9. Fixups

The purpose of "fixups” is to correct references in the RSUBR to parts of the interpreter that change
from one release of MDL to the next. The reason the fixups contain a release number is so that

they can be completely ignored when an RSUBR is loaded into the same release of MDL as that from
which it was last written out.

There are three forms of fixups, corresponding to the three kinds of RSUBR files. ASCII RSUBRs,
found in BINARY files, have ASCII fixups. The fixups are contained in a LIST that has the
following format:

(MOL-releasefix
name:alem valuedix (usedix usedix ...)
name:atom valuedix (usedix usedfix ...)

<)

The fixups in NBIN files and the fixup files associated with FBIN files are in a fast internal format
that looks like a UVECTOR of PRIMTYPE WORDSs.

Fixups are usually discarded after they are used during the loading procedure. However, if, while
reading a BINARY or NBIN file the ATOM KEEP-FIXUPS!- has a non-FALSE LVAL, the fixups will be
kept, via an association between the RSUBR and the ATOM RSUBR. It should be noted that, besides
correcting the code, the fixups themselves are corrected when KEEP-FIXUPS is bound and true. Also,
the asscmbler and compiler make the same association when they first create an RSUBR, so that It
can be written oul with its fixups.

19.8 - 19.9 Compiled Programs

e — S

168 The MDL Programming Language

In the case of pure RSUBRs (FBIN Ffiles), things are a little different. If a pure-code file exists for
this release of MDL, it is used immediately, and the fixups are completely ignored. If a pure-code
File for this release doesn’t exist, the fixup file is used to create a new copy of the file from an old
one. and also a new revision of the Tixup file is created to E° with the new pure-code file. This all

Eoes an automatically behind the user's back.

19.9 Compiled Programs

The MDL Programming Language 169

Chapter 20. Coroutines

This chapter purporis 1o explain the coroutine primitives of MDL. It does make some attempt to
explain coroutines as such, but only as required to specify the primitives. If you are unfamiliar
with the basic cancepts. confusion will probably reign.

A coroutine in MDL is implemented by an object of TYPE PROCESS. In this manual, this use of the
word "process” is distinguished by capitalization from its normal use of denoting an operating-
system process {(which various systems call a process. job, fork, task, ete.).

MDL's buili-in coroutine primitives do not include a "time-sharing system”. Only one PROCESS is
ever running ar a time, and contral is passed back and forth between PROCESSes on a coroutine-like
basis. The primitives are sufficient, however, to allow the writing of a "time-sharing system” in
MDL. with the additional use of the MDL interrupt primitives. This has, in fact, been done.

20.1. PROCESS (the TYPE)

A PROCESS is an object which contains the "current state” of a computation. This inciudes the
LVALs of ATOMs ("hindings”), "deprh” of functional application, and "position” within the application
of each applied function. Some of the things which are not part of any specific PROCESS are the
GVALs of ATOMs. assaciations (ASOCs), and the contents of OBLISTs. GVALs (with OBLISTs) are a chief
means of communication and sharing between PROCESSes (all PROCESSes can refer to the SUBR which

is the GVAL of +, for instance)l. Note that an LVAL in one PROCESS cannotl easily be directly
referenced from another PROCESS.

A PROCESS PRINTs as #PROCESS p. where p is a FIX which uniquely identifies the PROCESS; p is the
"PROCESS number” typed out by LISTEN. A PROCESS cannot be read in by READ.

The tern “rum a PROCESS” will be used below to mean “perform some computation, using the
PROCESS to record the intermediate states of that computation”.

MN.B.: A PROCESS is a rather large object: creating one will often cause a garbage collection.

20 - 20.1 Coroutines

. f
170 The MDL Programming Language

20.2, STJ"I.:.IF_rif_;_I"HDCE'SS_p
C3TATE process>

returns an ATOM {in the ROOT

OBLIST) which indicates the "state” of
which STATE can return, and 1

the PROCESS process. The ATOMs
heir meanings, are as follows:

RUNARLE (sic) -- erocess has never ever been run.

RUNNING -- process is currently running,

that is. it did the application of STATE.

RESUMABLE -- procress has been run,

is not currently funning, and can run again.

DEAD -- process has been run, but it ean not run againi it has “terminated”.

In addition, an interrupt (chapter 21) can
“"blocked™ (m.-ailing for terminal input) or
has not been implemented.)

be enabled to detect th

e time at which a PROCESS becomes
“"unblocked™ (terminal i

nput arrived). (The STATE BLOCKED

20.3. PROCESS (the SUBR)

CPROCESS starter rapplicabie>

creates and

returns a new PROCESS but does nol run
RUNABLE (sic)

it; the STATE of the returned PROCESS is

starter is something applicable 1o one argument,
starting and “terminating” a PROCESS.
value, that PROCESS becomes DEAD.

which must be evaluated.,

slarter is used both in
In particular, if the starter of a P

ROCESS ever returns a

20.4. RESUMF

The SUBR RESUME is used

10 cause a computation te
PROCESS. An ap

start or to continue running in another
plication of RESUME looks Jike this:

CRESUME reolv al:any process

where refval is the “returned value” (sce below) of the PROCESS that does the RESUME, and process is
the PROCESS to be staried or continued,

20.2 - 20.4 Coroutines

l
|

=

The MDL Programming Language 171

| The process argument (o RESUME is optional, by default the last PROCESS, if any, to RESUME the

PROCESS in which this RESUME is applicd. 1f and when the current PROCESS is later RESUMEd by
another PROCESS, that RESUME's refval is returned as the value of this RESUME.

20.5. Swirching PROCESSes

20.5.1. Starting Llp a New PROCESS

Let us say that we are running in some PROCESS, and that this original PROCESS is the BVAL of PD.
Somewhere, we have evaluated

<SETG Pl <PROCESS ,STARTER>>
where ,STARTLCR is some appropriate function. Now, in ,P0, we evaluate

<RESUME .A ,PL1>

and the rnllnlvilla_;: happens:

(1) In ,PO the arguments of the RESUME are evaluated: that is, we get that LVAL of A which is
current in , PO and the GVAL of P1.

(2) The STATE of ,P0 is changed to RESUMABLE and ,PD is "frozen" right where it is. in the
middle of the RESUME .

(3} The STATE aof ,P1 is changed to RUNNING, and ,STARTER is applied to ,PD's LVAL of A in
£PL. Pl now continues on its way, evaluating the body of ,STARTER.

The .A in the RESUME could have been anything. of course.

The important point is that, whatever it
is. it is evaluated in ,PO.

What happens next depends, of course, on what ,STARTER does.

20.5.2. Top-level Return

Let us initially assume that ,STARTER does nothing relating to PROCESSes, but instead simply
returns a value -- say sfarval, What happens when ,STARTER returns is this:

(1) The STATE of «P1l is changed to DEAD. ,P1 can never again be RESUMEd.

20.4 - 20.5.2 Coroutines

—

172 The MDL Programming Language

(2) The last PROCESS 1o RESUME ,Pl is found, namely .P0, and its STATE is chang-.-d to
RUNNING.

(3) starval is returncd in « PO as the value of the original RESUME, and , PO continues where jt
left off.

All in all. this simple case looks Jjust like an elaborate version of applying ,STARTER to .A in ,FO.

20.5.3. Symmetric RES UMEing

Now suppose that while still in

+P1 the following is evaluated, either in +STARTER or in something
called by ,STARTER:

<“RESUME .BAR ,PD>

This is what happens:

(1) The arguments of the RESUME are evaluated in ,P1.

(2) The STATE of ,P1 is changed to RESUMABLE, and ,P1 is “frozen™ right in the middie of the
RESUHE .

(3) The STATE of |, PO is changed to RUNNING, and +P1's LVAL of

BAR is returned as the value of
£P0's original RESUME .

+ PO then continues right where it left ofF,
This is the interesting case. because , PO can now do another RESUME of ,Pl: this will “"turn of "
+PO, pass a value ta ,P1 and “turn on” «Fl. Pl can now again RESUME ,PD. which can RESUME

» Pl back again. ete. ad navscam, with everything done in a perfectly symmetric manner. This can
obviously also be done with three or more PROCESSes in the same manner.

Note how this differs fromm
without destroying the state
“return” (RC

norinal funcrional application:
that funetion is in.
SUME). remembering your state, and later

yYou cannet "return” from a function
The whole point of PROCESSes is that you can
continue where you left off.

20.6. Example

20.5.2 - 2.6 Coroutines

——————eee——————————————————— e —————————————————————— e ———
e e ——— || | —————
e e R e ——— . — — ——— - e
e s

The MDL Programming Language 178

.*Initially, we are in LISTEN in some PROCESS."
<DEFINE SUM3 (A)

#DECL ((A) <OR FIX FLOAT>»)

CREPEAT ((5 .A))
! PFOECL ((S) <OR FIX FLOAT>)
! £SET 5 <+ .5 <RESUME "GOT 1">>>
<SET S <+ .5 <RESUME "GOT 2"3>>>
<SET S <RESUHE .S5>>>>%

SUM3

:"SUM3, used as the startup function of another PROCESS,
gets RESUMEd with numbers. It returns the sum of the last
three numbers it was given every third RESUME.™

£SETG SUMUP <PROCESS ,5UM3>>3
1 #PROCESS 2

:"Now we start SUMUP and give SUM3 its three numbers.®
{ <RESUME 5 ,SUMUP>3
| “GOT 1"
!

<RESUME 1 ,SUMUP>3
"GOT 2"
1 <RESUME 2 .SUMUP>3
| 8

Just as a note, by taking advantage of MDL's order of evaluation, SUM3 could have been written as:

| <DEFINE SUM3 (A)
<REPEAT ((S .A))
#DECL ((A S) <OR FIX FLOATY)
J <SET S <RESUME <+ .S <RESUME "GOT 1"> <RESUME "GOT Z">>>>>>

20.7. Other Corountining Features

20.7.1. BREMK-5SEQ
<BREAK-5E0Q any process?

("break evaluation sequence”) returns process, which must be RESUMABLE, after having modified it

| 50 that when it is next RESUMEd, it will first evaluale any and then do an absolutely normal RESUME ;
I| the value returned by any is thrown away, and the value given by the RESUME is used normally.
If a PROCESS is BREAK-SEQed more than once between RESUMEs, all of the anys BREAK-SEQed onto it
will be remembered and evaluated when the RESUME is finally done. The anys will be evaluated in
| ;
20.6 - 20.7.1 Coroutines

174 The MDL Programming Language

“last-in firsr-out” order. The FRAME generated by EVALing more than one any will have as its FUNCT
the dummy ATOM BREAKER.
20.7.2. MAIN

When you initially start up MDL, the PROCESS in which you are running is slightly “special” in
these two ways:

(1) Any attemp! to cause it to become DEAD will be met with an error.
(2) <MAIN> always returns that PROCESS.

The PROCESS number of <MAIN> is always 1. The initial GVAL of THIS-PROCESS is what MAIN always
returns, #PROCESS 1.

20.7.3. ME
<ME >

returns the PROCESS in which it is evaluated. The LVAL of THIS-PROCESS inm a RUNABLE (new)
PROCESS is what ME always returns.

20.7.4. RESUMER

<RESUMER process>
returns the PROCESS which last RESUMEd process. If no PROCESS has ever RESUMEd process, it returns
#FALSE (). process is optional, <ME> by default. Note that {MAIN> does not ever have any resumer.
Example:

ZPROG ((R <RESUMER>})) :"not effective in <HMAIN>"

#DECL ((R) <OR PROCESS FALSEX>)
<AND .R

£==7 {3TATE .R> RESUMABLE>
<RESUME T .R>>>

20.7.5. SUICIDE

CSUICIDE relval process>

20.7.1 - 20.7.5 Coroutines

IIII*II'II*!IIII!IIII*I'I-——-_- e

The MDL Programming Language 175

acts just like RESUME, but clobbers thve PROCESS (which cannot be <MAIN>) in which it is evaluated to
the STATE DEAD.

20.7.6. 1S5TEP

C1STEP process»
returns process, after putting it into "single-step mode”.

A PROCESS in single-step mode, whenever RESUMEd, runs only until an application of EVAL in it
begins or finishes. At that peint in time, the PROCESS that did the 1STEP is RESUMEd, with a refval
which is a TUPLE. If an application of EVAL just began, the TUPLE contains the ATOM EVLIN and
the arguments to EVAL. If an application of EVAL just finished, the TUPLE contains the ATOM
EVLOUT and the result of the evaluation.

process will remain in single-step mode until FREE-RUN (below) is applied to it. Until then. it will
stop before and after each EVAL in it. Exception: if it is RESUMEd from an EVLIN break with a retval
of TYPE DISMISS (PRIMTYPE ATOM), it will leave single-step mode only until the current call to

EVAL is about to return. Thus lower-level EVALs are skipped over without leaving the mode. The
usefulness of this mode in debugging is obvious.

20.7.7. FREE-RUN
<FREE-RUN process>»

takes its argument out of single-step mode. Only the PROCESS that put process into single-step
mode can take it oul of the mode: if another PROCESS tries, FREE-RUN returns a FALSE.

20.8. Sneakiness with PROCESSes

FRAMEs. ENVIRONMENTs. TAGs, and ACTIVATIONs are specific to the PROCESS which created them, and
each "knows its own Father”. Any SUBR which takes these objects as arguments can take one which
was gencrated by any PROCESS, noe matter where the SUBR is really applied. This provides a rather
sneaky means of crossing between PROCESSes. The various cases are as follows:

GO, RETURN, AGAIN, and ERRET, given arguments which lie in another PROCESS, each effectively
“restarts” the PROCESS of its argument and acts as if it were evaluated over there. If the PROCESS in
which it was executed is later RESUMEM, it returns a value just like RESUME!

SET, UNASSIGN, BOUND?, ASSIGNED?, LVAL, VALUE, and LLOC, given optional ENVIRONHENT

20.7.5 - 20.8 Coroutines

I76

The MDL Programming Language

arguments which lig in another PROCESS, w
in the orher PROCESS. The optional
ACTIVATION in another PROCESS

ill gleefully change, or return,
argument can equally well be a PROCESS, FRAME,

FRAME, ARGS. and FUNCT will be glad to return the FRAMEs, argument TUPLEs,
Subrourine names of another PROCESS .

and applied
If one is given 2 PROCESS (including <ME)) as an argument
instead of 3 FRAME, it returns all or the appropriate part of the lopmost FRAME on that PROCESS's
control stack.
If EVAL is applied in PROCESS p] with an ENVIRONMENT argument from a PROCESS P2, it will do the
evaluation in Pl but win

h P2's ENVIRONMENT (). That is, the other PROCESS's LVALs, etc. will be used,
ILs needed in the course of the evaluation will be created in P1; and (2) Pl will
- Note the following: if the EvaL in Pl eventually causes a RESUME of P2, P2
could functionally return 1o below the point where the ENVIRONMENT used in Pl is defined; a RESUME
of P1 at this Point would cause an error due o an invalid ENVIRONMENT. {(Once again, LEGAL? can
be used to foresial) this.)

but 1) ANy new FRAM
be RUNNING -- noi pz2

20.9. Final Notes
=== Final Notes

(I A RESUMABLE PROCESS can

be used jn place of an ENVIRONMENT in any
“eurrent” ENVIRONMENT of the PR

application. The
OCESS is cffectively used,

(2) FRAMES and ENVIRONMENTs can be CHTYPEd arbitrarn‘y to one ano
CHTYPEd to cither of them. and the result "works®

with different SUBRs -- FRAME with ERRET,
hence rhe invention of dif ferent

ther, or an ACTIVATION can be
Historically, these different TYPEs were First used

ENVIRONMENT with LVAL, ACTIVATION with RETURN —
TYPEs with similar properties.

(3) Bugs in multi-PROCESS gree of subtlety and nastiness otherwise
unknown te the hnum

an mind. If when attempting to work with multiple PROCESSes ¥You begin to
Feel that you are rapidly going insane, ¥You are in good company.

20.8 - 209 Coroutines

the local values of ATOMs

or
i in those cases, each uses the ENVIRONMENT which is current in the
Place specified.

BB
:
. —
| —
: e ——
. E—
| —
: —
: E—
— —
| —
Z ———
| —
| —

The MDL Programming Language 177

Chapter 21. Interrupts

The MDL interrupt-handling facilities provide the ability to say the following: whenever “this
event” occurs, stop whatever is being done at the time and perform “this action™ when “this action™
is Finished, continue with whatever was originally being done. "This event” can be things like the
typing of a character at a terminal, a time interval ending., a PROCESS becoming blocked, or a
program-defined and -gencrated “event”. “This action” is the application of a specified APPLICABLE
ob ject 1o arguments provided by the MDL interrupt system. The sets of events and actions can be
changed in exiremely flexible ways, which accounts for both the variety of SUBRs and arguments,
and the rich interweaving of the topics in this chapter. Interrupt handling is a kind of parallel
processing: a program can be divided into a "main-level” part and one or more interrupt handlers
that execute only when conditions are ripe.

21.1. Definitions of Terins

An interrupt is not an object in MDL, but rather a class of events, for example, “ticks™ of a clock,
garbage caollections, the typing of a character at a terminal, ete.

An interrupt is said oceur when one of the events in its class takes place.

An external interrupt is one whose occurrences are signaled to MDL by the operating system, for
example, "ticks” of a clnck. Awn internal interrupt is one whose occurrences are detected by MDL
itself, for example. garbage collections. MDL can arrange for the operating system not to signal

occurrcnces of an external interrupt to it; then, as far as MDL is concerned, that interrupt does not
occur,

Each interrupt has a name which is either a STRING {for example, "GC*, "CHAR", "WRITE") or an
ATOM wirh thar PHNAME in a special OBLIST, named INTERRUPTS!- . (This OBLIST is returned by
CINTERRUPTS>.) Certain names must always be further specified by a CHANNEL or a LOCATIVE to
tell which interrupt by that name is meant.

When an interrupt nccurs, the interpreter looks For an association on the interrupt’s name. If there
is an association, its AVALUE should be an IHEADER, which heads a list of actions to be performed.
In each IHEADER is the name of the interrupt with which the IHEADER is or was associated.

21 - 211 Interrupts

178 The MDL Programming Language

In each THEADER is an element telling whether it is disabled. If an IHEADER is disabled. then none of
its actions is performed. The opposite of disabled is enabled. It is sometimes useful to disable an
IHEADER temiporarily, but removing its association with the interrupt’s name is better than long-
term disabling. There are SURRs for creating an IHEADER, associating it with an interrupt, and later
removing the association.

In each IHEADER is a priority. a FIX creater than 0 which specifies the interrupt's "importance”.
The processing of a higher-priority (larger-numbered) interrupt will supersede the processing of a
lower-priority (smaller-nnmbercd) tnterrupt until the high-priority interrupt has been handled.

In each THEADER is a {possibly empty) list of HANDLERs. (This list is not a MDL LIST.) Each
HANDLER corresponds te an action lo perform. There are SUBRs for creating a HANDLER, adding it to
an IHEADCR's list, and later removing it

In each HANDLER is a function that we will eall a handler (in lower case), despite possible confusion,
because that is really the best name for i1, An action consists of applying a handler to arguments
supplicd by the interrupt system. The number and meaning of the arguments depend on the name
of the interrupt. In each HANDLER is an element telling in which PROCESS the action should be
performed. i

21.2. EVENT
CEVCNT name prierify whichy

creates and returns an enabled IHEADER with no HANDLERs. The name may be an ATOM in the
INTERRUPTS OBLIST or a STRING; if i1 is a STRING, EVENT does a LOOKUP or INSERT in

CINTERRUPTS>. If there already is an IHEADER associated with name, EVENT just returns it, ignoring
the giv’l:'ll eriorify

which must be given only for certain names:

It must be a CHANNEL if and only if name is "CHAR" {or CHAR!-INTERRUPTS). In this case it is
the inpur CHANNEL from the (pseudo-lterminal or Network socket whose received characters will
cause the interrupt 1o occur. or the output CHANNEL to the pseudo-terminal or Network socket
whose desired characters will cause the interrupt to occur. (See below. Pseudo-terminals are not
available in the Tenex and Tops-20 versions.)

The argument must be a LOCATIVE if and only if name is "READ* (or READ!-INTERRUPTS) or
"WRITE" (or WRITE!-INTERRUPTS). In this case it specifies an object to be “monitored” for

usage by (interpreted) MDL pregrams {section 21.8.9),

If the interrupt is external, MDL arranges for the operating system to signal its occurrences.

2L1 - 21.2 Interrupits

The MDL Programming Language

2L.3. ._H“”_DLE_{”L'“;F”‘
: R
{HANDLER iheader applicable processd

creates a HANDLER, adds it to the front of iheader's HANDLER list (first action to be performed). and
returns it as a value. applicable may be any APPLICABLE object that takes the proper number of
argumenis. {(None of the arguiments can be QUOTEd: they must all be evaluated at call time.) process
is the PROCESS in which the handler will be applied, by default whatever PROCESS was running when
the interrupt occurred.

The value returncd by the handler is ignored, unless it is of TYPE DISMISS (PRIMTYPE ATOM), in
| which casc none of the remaining actions in the list will be performed.

The processing of an interrupt’s actions can terminate prematurely if a handler calls the SUBR
DISHMISS (sce below)

<OFF iheadery
removes the association between iheader and the name of its interrupt, and then disables iheader and
returns it. (Awn crror occurs if there is no association.) If the interrupt is external, MDL arranges for

the operating system nol to signal ifs occurrences.

COFF name which>
fFinds the IHEADER associated with mame and proceeds as above, returning the IHEADER. which must
be given only for certain names, as for EVENT. Caution: if you <OFF "CHAR®™ , INCHAN>, MDL will
become deaf.

COFF harwiler>

returns frandler after removing i1 from its list of actions. There is no effect on any other HANDLERs
in the list.

Now that you know how 1o remove IHEADERs and HANDLERs from their normal places, you need to
know how to put them back:

CEVENT ihcador?>

If iheader was previnusly disabled or disassociated from its name, EVENT will associate and enable it

<HANDLER iheader handler?

21.3 - 214 Interrupts

-

180 The MDL Programming Language

If handlor was previously removed from its list, HANDLER will add it to the front of iheader's list of
actions. MNote that process cannot be specified.

21.5. THEADER and HANDLER (the TYPEs)

Both these TYPEs are of PRIMTYPE VECTOR, but they do not PRINT that way, since they are self-
referencing. Instcad they PRINT as

#tvpe mosf-interesting-element

The contents of IHEADERs and HANDLERs can be changed by PUT, and the new walues will then
determine thie behavior of MDL.

Before tescribing the elements of these TYPEs in detail, here are a picture and a Pattern, both
purporting to show lhiow they look:

#IHEADER [name:atom or which
disabled?

et TR 2 FHANDLER [#--ccommaaas > #HANDLER [#HANDLER [

priority] <=---=coeuca--. n o "
applicable | applicable
Process] f=cce-=- + process]

<IHEADER <OR ATOM CHANNEL LOCATIVE>
<OR '#LOSE 0 "#LOSE -1>

<HANDLER HANDLER <OR HANDLER IHEADER> APPLICABLE PROCESS>
FIX>

21.5.1. IHEADER
The elements of an THEADER are as follows:

(1) name of interrupt (ATOM, or CHANNEL if the name is "CHAR™, or LOCATIVE if the name is
"READ" or "WRITE")

(2) non-zere if and anly if disabled

(3) First HANDLER, if any, else a zero-length HANDLER

{4) priority

If you lose track of an INEADER, You can get it via the association:

For "CHAR"™ interrupts, <GET channel/ INTERRUPT> returns the THEADER or #FALSE () If there is

214 - 21.5.1 Interrupts

The MDL Programming Language 181

no association: <EVENT “CHAR® 0 channe/> returns the IHEADER, creating it if there is no
assnciation.

. ———————

For "READ" interrupls. <GET focalive READ!-INTERRUPTS> returns the IHEADER or #FALSE () if
| there is no association: <EVENT "READ®™ 0 lecalive? returns the IHEADER, creating it if there is
no asseciation,

For "WRITE" interrupis, <GET locative WRITE!-INTERRUPTS> returns the IHEADER or #FALSE ()
if there is no association: <EVENT "WRITE™ 0 focative? returns the IHEADER, creating it if there
is no association.

Otherwise, the IHEADER is PUT on the name ATOM with the indicator INTERRUPT. Thus, for
example, <GET CLOCK!-INTERRUPTS INTERRUPT> returns the IHEADER for the clock interrupt or
#FALSE () if there is no association: <EVENT "CLOCK"™ 0> returns the IHEADER, creating it if
there is no association.

21.5.2. HANDLER

A HANDLER specifics a particular action for a particular interrupt. The elements of a HANDLER are as
follows:

(1} next HANDLER if any, else a zero-length HANDLER

(2) previous IIANDLLR or the INEADER (Thus the HANDLERs of a given interrupt form a "doubly-
linked list™ chaining between each other and back to the THEADER.)

(3) handler ta be applied (anything APPLICABLE that evaluates its arguments -- the application
is done nnt by APPLY but by RUNINT, which can take a PROCESS argument: see next line)

{4) PROCCSS in which the handler will be applied, or #PROCESS 0, meaning whatever PROCESS
was running when the interrupt occurred (In the former case, RUNINT is applied to the handler
and its argmments in the currently running PROCESS, which causes an APPLY in the PROCESS
stored i the HANDLER, which PROCESS must be RESUMABLE. The r|..|.1|r|ing' PROCESS becomes
RESUMABLE, and the stored PROCESS becomes RUNNING, but no other PROCESS variables (for
example RESUMCR]) are changed.)

2L.6. Other SURRs
<0ON rname applicable priorit y:dix process which?

is equivalent to

21.5.1 - 21.6 Interrupts

R,

182 The MDL Programming Language

SHANDLER <EVENT name priority which>
spolicable processy

| ON is a combination of EVENT and HANOLER: i1 creates (or finds) the THEADER, associates and enables
it. adds a HANDILER 1o the front of the list {first to be performed), and returns the HANDLER.

SDISABLE rheader?

is effectively <PUT iheader 2 #LOSE -1%. Actually the TYPE LOSE is unimportant, but the -1
signifies that iheader is disabled.

CENABIE iheadery

is effectively <PUT iheader 2 #LOSE 03, Actually the TYPE LOSE is umimportant. but the 0
signifies thart iheader is enabled,

21.7. Priorities and lnterrupt Levels
4 L iy

At any given time there is a defined interrupt level. This is a FIX which determines which
interrupts can really "interrupt® - that is, cause the eurrent processing to be suspended while their
wants are satisficd. Normal, non-interrupt programs operale at an interrupt level of 0 (zero). An
interrupt is processed at an interrupt level equal to the interrupt’s priority.

2L.7.1. Interrupt Mrocessing

Interrupts "actually”™ occur only at well-defined peints in time: during a call to a Subroutine, or at
ceritical places within Subroutines (For example, during each iteration of MAPF on a LIST, which
may be circular), or while a PROCESS s "BLOCKED" (see below). No interrupts can occur during
garbage collection.

What actually happens when an cnabled interrupt occurs is that the priority of the interrupt is
comparcd with the current interrupt level, and the following is done:

If the priority is greater than the eurrent interrupt level, the current processing is “Frozen in its
tracks™ and processing of the action(s) specified For that interrupt begins.

If the priority is less than or equal to the current interrupt level, the interrupt occurrence is queued
== that is. the fact that it occurred is saved away for processing when the interrupt level becomes low
enough.

When the processing of an interrupt’s actions is completed, MDL usually (1) “acts as if” the

21.6 - 21.7.1 Interrupts

Sl

e
= e e L e ——————— ———————,,,,,.-
e — — — — — — — — — — — ===
 ———————————————EE L
5 ——————————————————————
R
e ——————————————————————————,,,,LLLL o e —————
S e e s—V——w——————
e R R R R N R ERZ2Z2B22ss2=22=2_aeS=mnmnnmnmrmrrrnmmrmmmmmmmmmmmmmmmm———— s eeDass=m=as
e e Y———s——s s —————————————— o
e eeeeeeenenrnrninnn:iieninnnninninniniiiininiioninnenrnononooi—’.ebe e v e~
e
T R S —
=S a——————————————————————-———————_--—— —~~——————__*——~——_————c
—E e ——————————————————_______ e L S
e e ————————— =
e e P
— e —— e as——a———
e
O R R e RN, e O R B R R O R R R R N —— R R =—=—"
=sa——————————————————— = ———————
-_— e I
e =~
=
. —

The MDL Programming Language 183

previously-existing interrupt fevel is restored, and processing continues on what was left off

| (perhaps for no time durationk and (2) "acts as if" any queued interrupt occurrences actually
i occurred right then, in their original order of occurrence.
o] 7.2. INT-LEVEL
Il
The SUBR INT-LEVEL is used to examine and change the current interrupt level directly.
<INT-LEVEL>
|
simply returns the current interrupt level
SINT-LEVEL fix>
changes the interrupt level 1o its argunent and returns the previously-existing interrupt level.
IF INT-LLVEL lowers the interrupt level, it does not "really” return until all queued occurrences of
interrupts of prierity higher than the targer priority have been processed.
Setting the INT-LEVCL extremely high (for example, <INT-LEVEL <CHTYPE <MIN> FIX>3) effectively
i disables all interrupts (but nccurrences of enabled interrupts will still be uewed).
' ! P q
j‘ If LISTEN or ERROR is called when the INT-LEVEL is not zero, then the typeout will be
| LISTENTNG=AT=-LEVEL / PROCESS p INT-LEVEL
21.7.3. DISMISS
DISMISS permits a handler to return an arbitrary value for an arbitrary ACTIVATION at an arbitrary
interrupt level. The call is as follows:
4. CDISMISS walue:any aclivation int-levelfixy

where only the value is required. If activation is omitled, return is to the place interrupted from, and
value is ignored. If inf-level is omitted. the INT-LEVEL prior to the current interrupt is restored.

21.7.1 - 21.7.3 Interrupts

e —

184 The MDL Programming Language

21.8. Specific Interrupts

Descriptions of the characteristics of particular "built-in” MDL interrupts follow. Each is named by
its STRING name. Expect this list 1o be incomplete yesterday.

"CHAR" is currently the most cotiplex buili-in interrupt, because it serves duty in several ways.
These different ways will be described in several different sections. All ways are concerned with
characters or machine words that arrive or depart at unpredictable times, because MDL is
communicating with a person or another processor. Each "CHAR® THEADER has a CHANNEL for the
element that names the interrupt. and the mode of the CHANNEL tells what kinds of =CHAR"
interrupts nccur 1o be handled through that IHEADER.

(1) If the CHANNEL is for input. "CHAR™ oceurs every time an “interesting” character (see below)
is received from the CHANMEL's real terminal, or any character is received from the
CHANHEL's pscudn-terminal, or a character or word is received from the CHANNEL's Network
saochel, or indeed {in 1he ITS version) the operating system generates an interrupt for any
reasogn,

(2) IF the CHANNFL is for outpur to a pscudo-terminal or Network socket, "CHAR" occurs every
lime a character or word is wanted.

{3) 1IF thie CHANNEL is For outpul to a terminal, "CHAR® occurs every time a line-feed character is

output or (in the ITS version) the operating system generates a screen-full interrupt for
the terminal.

21.8.1. "CHAR" received

A bandler for an input "CHAR" interrupt on a real terminal must take two arguments: the
CHARACTER which was typed. and the CHANNEL on which it was typed.

In the ITS version, the Tinteresting” characters are those “enabled for interrupts™ on a real terminal,
namely *2 through 6, “K through =~_, and DEL (that is, ASCII codes 0-7, 13-37, and 177 octal).

In the Tenex and Tops-20 versions, the opcrating system can be told which characters typed on a
terminal should cause this interrupt to occur, by calling the SUBR ACTIVATE-CHARS with a STRING
argument containing 1those characters (1o more than six. all with ASCIT codes less than 33 octal). IF
called with ne argument. ACTIVATE-CHARS returns a STRING containing the characters that currently
interrupt. Initially, only 6, “5, and ~0 interrupt.

An initial MDL already has "CHAR"™ enabled on s INCHAN with priority B feigllt}. the SUBR QUITTER
for a handler, to run in #PROCESS 0 (the running PROCESS) this is how ~G and ~5 are processed. In
addition, every time a new CHANNEL is OPENed in "READ® mode to a terminal, a similar IHEADER and
HANDLER are associated with that new CHANNEL automatically. These automatically-generated
IHEADERs and HANDLERs use the standard machinery, and they can be DISABLEd or OFFed at will.

However, the THCADLR for , INCHAN should not be OFFed: MDL knows that § is typed only by an
interrupt!

21.8 - 21.8.1 Interrupts

e T I S —

11111111111 11111111111

The MDL Programming Language 185

Example: the following causes the given message to be printed out whenever a °Y is typed on
i -INCHAN :

<5ET H <HANDLER <GET «INCHAN INTERRUPT?
#FUNCTION ((CHAR CHAN)
#DECL ((VALUE) ANY (CHAR) CHARACTER (CHAN) CHANNEL)
<AND <==7 _ClHAR INTY>
CPRINC * [Some of my best friends are “Ys.] ">3)>>%
FHARDLER #FUNCTION { {CHAR CHAN) ...)

<+ 2 *Y [Some of my best friends are “Ys.] 25%
£

{OFF .H>%
#HANDLER #FUNCTION (...)

Mote that ocenrrences of "CHAR™ do not wait for the $ 1o be typed. and the interrupting character is
omitted from the input srream.

A "CHAR" interrupt can also be associated with an input CHANNEL open to a Network socket ("NET™
device). A handler gets applicd to a NETSTATE array (which see) and the CHANNEL .

In the ITS version, a "CHAR™ interrupi can also be associated with an input CHANNEL open to a
pseudo-terminal ("STY" device and friends). An interrupt occurs when a character is available for
input. These interrupts are sef up in exactly the same way as real-terminal interrupts, except that a

handler gers applied to only one argument, the CHANNEL. Pseudo-terminals are not available in the
Tenex and Tops-20 versions.

For any other flavor of ITS channel interrupt, a handler gets applied to only one argument, the
CHANNEL .

21.8.2. "CHAR"™ wanted

A "CHAR"™ interrupt can be associated with an output CHANNEL open to a Network socket ("NET™
device). A handler gers applicd to a NETSTATE array (which see) and the CHANNEL .

In the ITS version, a "CHAR" interrupt can also be associated with an output CHANNEL open to a
Pseudo-terminal ("STY" device and friends). An interrupt occurs when the program at the other end

needs a characrer fand the operating-system buffer is empty). A handler gets applied to one
argument, the CHANNEL . Pseudo-terminals are not available in the Tenex and Tops-20 versions.

21.8.3. "CHAR" for new line

A handler for an oulput "CHAR" interrupt on a real terminal must take one o two arguments (using

21.8.1 - 21.8.3 Interrupts

—— e ——————————_——-—-———-—eee——_——_Y—e e
e
T e ——— e o — o
———

186 The MDL Programming Language

"OPTIONAL" or "TUPLE"): if two arguments are supplied by the interrupt system, they are the line
number (FIX) and the CHANNEL. respectively, and the interrupt is for a line-feed: if only one
argument is sapplicd {only in the I'TS version), it is the CHANMEL, and the interrupt is for a full
terminal screen. Note: the supplied line number comes from the CHANNEL, and it may not be
accurate if the program alters it in subtle ways, for example, via IMAGE calls or special control
characters. (The program ean compensate by PUTting the proper line number into the CHANNEL .)

21.8.4. "GC"

"GC" occurs just after every garbage collection. Enabling this interrupt is the only way a program
can know that a garbage collection has occurred. A handler for "GC" takes three arguments. The
first is a FILOAT indicating the number of scconds the garbage collection took. The second argument
is a FIX indicating the eause of the garbage collection, as follows {chapter 22):

. Program ealled GC.
. Movable storage was exhausted.

Controel stack overflowed.

Top-level LVALs overllowed.
. GVAL vector overflowed,

TYPE vectar nverf lowed
- Immovable garhage-collected storage was exhausted.
- Inmternal stack overflowed
. Bolh eontral and internal stacks overflowed (rarel
. Pure storage was exhausted.
10. Second. exhaustive garbage collection occurred.

VBN LE BN =0

The third argument is an ATOM indicating what initiated the garbage collection: GC-READ, BLOAT,
GROW. LIST, VECTOR, SET, SETG, FREEZE, GC, MNEWTYPE, PURIFY, PURE-PAGE-LOADER (pure
storage was exhausted), or INTERRUPT=HANDLER (stack overflow, uui’ortulutcly}_

2i.8.5. "DIVERT-AGCY

"DIVERT-AGC" ("Automatic Garbage Collection”) occurs just before a deferrable garbage collection
that is necded because of exhausted movable garbage-collected storage. Enabling this interrupt is
the only way a program can know that a garbage collection is about to occur. A handler takes two
arguments: a FIX telling the number of machine words needed and an ATOM telling what initiated
the garbage collection (sec above). If it wishes, a handler can try to prevent a garbage collection by
calling BLOAT with the FIX argument. If the pending request for garbage-collected storage cannot
then be satisficd, a garbage collection occurs anyway. AGC-FLAG is SET to T while the handler is
running. so that new storage requests do not try to cause a garbage collection.

21.83 -21.85 Interrupts

__-Eh-

e ——
e —
—
—
—
e —
e —
I ——— e —
—
—
—
e —
e —
—
—
—
—
e ——
e —
—
—
—
e —
e —

The M D1 Frngr.ﬂ.ltllllillg l.allguagc 187

21.8.6. "CLOCK"

scioCck”, when enabled, occurs every half second (the ITS "slow-clock”™ tick). It is mot available in
| the Tenex and Tops-20 versions. It wanis handlers which take no arguments. Example:

i CON "CLOCK"™ <FUNCTION () <PRINC "TICK ">> 1>

f 21.8.7. "BLOCKED"

=BLOCKED" occurs whenever any PROCESS (nol only the PROCESS which may be in a HANDLER) starts
waiting for tcrminal inpuot: rhat is, an occurrence indicates that somewhere, somebody did a READ,
| READCHR, NEXICIHR, 1¥1, etc. to a terminal. A handler for a "BLOCKED" interrupt should take one
| argument, namely the PROCESS which started waiting (which will also be the PROCESS in which the
handler runs, if no specific one is in the HANDLER).

Example: the fnl!nwing will cause MDL to acquire a = prmnpliug character.

<ON "BLOCKED" #FUNCTION ((IGNORE) <PRINC !\=>) 5>

21.8.8. "UNBLOCKED"

"UNBLOCKLED" occurs whenever a 3 (ESC) is typed on a terminal if a program was hanging and
waiting for input, or when a TYI ecall (which see) is satisfied. A handler takes one argument: the
| CHANNEL wvia which the % or character is input.

21.89. "READ" and "WRITE"

"READ" and “WRITE" are associated witl read or write references to MDL objects. These interrupts
are ofren called "monitors”, and enabling the interrupt is often called "monitoring™ the associated

| ob ject. A "read reference” 1o an ATOMs local value includes ;Fp]:r'j"g BOUND? or ASSIGNED? to the
ATOM; similarly for a global value and GASSIGNED?. If the INT-LEVEL is too high when "READ" or
"WRITE" occurs. an orror occurs. because occurrences of these interrupts cannot be queued.

Monitors are set nup with EVENT or ON, using a locative to the object being monitored as the extra
which argument, just as a CHANNEL is given for "CHAR". A handler for "READ" takes two arguments:
the locative and the FRAME of the function application that makes the reference. A handler for
"WRITE"™ takes throe arguments: the locative, the new value, and the FRAME. For example:

<SET A (1 2 3)>%
(1 2 3)

<SET B <AT .A 2>>%
FLOCL 2

21.86- 2189 Interrupts

R R R R R R R R R R R R R R R R R R R RS EEBEEEESEEE©EEBEBERDRR

188 The MDL Programming Language

<ON "WRITE" <FUNCTION (OBJ VAL FRH)
FDECL ((VALUE VAL) ANY (0BJ) LOCATIVE (FRH) FRAME)
SCRLF>
<PRINC "Program changed ">
<PRIN]1 .0BJ>
<PRINC * to "3
<PRIN]1 .VAL>
{PRIMNC " wvia ">
<PRIN1 .FRH>
CCRLF >>
10 .B>%
FHANDI FR #FUNCTION (...)
<1 A 10>%
(10 2 3)
<2 A Z20:%
Frogram changed #LOCL 2 to 20 wvia #FRAME PUT
(10 20 3)
<OFF "WRITE®" .B>»%
fIHLADER #LOCL 20

21.8.10. *"SYSDOWNH"

"SYSDOWN® occurs when a system-going-down or systemi-revived signal is received from ITS. It is
not available in the Tenex and Tops-20 versions. If no IHEADER is associated and enabled, a
warning is printed on the terminal. A handler takes one argument: a FIX giving the number of
thirtieths of a sccond until the shutdown (=1 for a reprieve).

21.8.1L. "ERROR™

In an effort tn simplify error handling by programs, MDL has a facility allowing errors to be
handled like interrupts. SETGing ERROR to a user function is a distasteful method, not safe if any
bugs arc around, An "CRROR" interrupt wants a handler thar takes any number of arguments, via
"TUPLE"™. When an error occurs. handlers are applied to the FRAME of the ERROR call and the TUPLE
of ERROR arguments. If a given handler “rakes care of the error”, it can ERRET with a value from the

ERROR FRAME, after having done <INT-LEVEL 0>. If no handler takes care of the error, it Falls into
the normal ERROR .

If an error occurs at am INT=-LEVEL greater than or equal to that of the "ERROR®™ interrupt. real
ERROR will be called, because "ERROR" interrupts cannot be queued.

?1.8.9 - 21.8.11 Interrupts

s e mE—

The MDL Programming Language 189

21.8.12. *IpPC”

“TPC"™ occurs when a IMcssage is received on the ITS IPC device {cthtcr 23). It is not available in
the Tencx and Tops-20 versions.

21.8.13. "INFERIOR"

"INFERIOR"™ occurs when an inferior 1TS process interrupts the MDL process. It is not available in

the Tenex and Tops-20 versions. A handler rakes one argument: a FIX between 0 and 7 inclusive,
telling which inferior process is interrupting.

21.8.14. "RUNT™ and "REALT™
These are not available in the Tenex and Tops-20 versions.

"RUNT™, if enabled. occurs once, N seconds of MDL running time (CPU time) after calling
SRUNTIMER NoAiv-or-float>, which returns its argument. A handler takes no arguments. If RUNTIMER
is called with no argument, it returns a FIX, the number of run-time seconds left until the interrupt
occurs, or #FALSE () if the interrupt is nof going to occur.

"REALT", if enabled. nccurs every & seconds of real-world time after calling <REALTIMER N:fixr-or-
float>. which returns its argument. A handler takes no arguments. <REALTIMER 0> tells the
operating system nol to gencrate real-time interrupts. If REALTIMER is called with no arguinent, it
returiis a FIX, the number of real-time seconds given in the most recent call to REALTIMER with an
argument. or #FALSE () if REALTIMER has not been ealled.

21.8.15. "Dangerous” Interrupis

"MPV™ ("memory-protection violation™ eccurs if MDL tries to refer to a storage address not in its
address space. "PURE"™ occurs if MDL tries to alter read-only storage. "ILOPR® occurs if MDL
executes an illegal instruction ("operator”). "PARITY" occurs if the CPU detects a parity error in
MDL's address space. All of these require a handler that takes one argument: the address {TYPE
WORD) following the instruction that was Lbeing executed at the time.

"I0C" occurs if MDL tries to deal illegally with an 1/O channel. A handler must take two

arguments: a three-clemient FALSE like one that OPEN might return, and the CHANNEL that got the
error.

Ideally, these interrupts should never oceur. In Fael, in the Tenex and Tops-20 versions, these

interrupts always go to the superior operating-system process instead of to MDL. In the ITS
version, if and when a "dangerous” interrupt does eccur:

21.8.12 - 21.8.15 Interrupts

190 The MDL Programming Language

If no THEADER is associated with the interrupt, then the interrupt goes to the superior
operating-system process.

If an INCADER is associated but disabled, the error DANGERQUS~-INTERRUPT-NOT-HANDLED occurs
(FILC-S5YSTCM-ERROR for "IOC").

If an THEADER is associated and enabled, but the INT-LEVEL is too high, the error ATTEMPT-TO=-
DEFER-UNDEFERABLE-INTERRUPT OCCurs.

21.9. User-Defined Interrupts (INTERRUPT)

If the interrupr name given to EVENT or ON is not one of the standard predefined interrupts of MDL.
they will gleefully create an ATOM in <INTERRUPTS> and an associated THEADER anyway, making the
assumption that you are setting up a “program-defined” interrupt.

Program-defined interrupts are made to occur by applying the SUBR INTERRUPT, as in

CINTERRUPT name argl ... argh'>

where mame is a STRING, ATOM aor THEADER, and argl through argh are the arguments wanted by the
handlers for thie interrupt.

IF the mmterrupt specificd by INTERRUPT is enabled, INTERRUPT returns T; otherwise it returns

#FALSE ()- ANl the nsual prinrity and qucncing rules hold, so that even if INTERRUPT returns T, it
is possible thal unrhiug "anI:I_'.r happened” (yet).

INTERRUPT can also be used to cause “artificial® occurrences of standard predefined MDL interrupts.

Making a program-defined interrupt occur is similar to calling a handler directly, but there are
dif ferences. The value returncd by a handler is ignored, so side effects must be used in order to
communivate infermation back to the caller, other than whether any handler ran or will run. One
good use for a program-defined interrupt is to use the priority and queueing machinery of INT-
LEVEL ta contrel the execution of functions that must not run concurrently. For example. if a
"CHAR™ handler just deposits characters in a buffer. then a funetion to process the bufFfered
characters should probably run at a higher priority level -- to prevent unpredictable changes to the
buffer dur ing the processing -- and it is natural to invoke the processing with INTERRUPT.

In more exotic applications, INTERRUPT can signal a condition to be handled by an unknown
number of independent and “nameless” functions. The functions are “nameless” because the caller
doesn’t know their names. only the name of the interrupt. This programming style is modular and
event-cdriven. and it is one way of implementing "heuristic” algorithms. In addition, each HANDLER
has a PROCESS in which to run its handler, and so the different handlers for a given condition ean

do their thing in different environments quite easily, with less explicit control than when using
RESUME .

21.8.15 - 219 Interrupts

The MDL Programming Language 191

21.10. Waiting for Interruplts

21.10.1. HANG

SHANG pred>

suspends executinn, interruptibly, without consuming any CPU time, potentially forever. HANG is
handy for a program that cannor do anything until an interrupt occurs. If the optional pred is
given. it is cevalualed every time an interrupt oceurs and is dismissed back into the HANG; if the
restilt of evaluation is not FALSE, HANG unhangs and rcturns it as a value. If pred is not given,
there had better be a named ACTIVATION somewhere to which a handler can return.

20.10.2. SLEEP
LALEEP frme:dix-or-floal pred>

suspends execution, 'rnTr‘rruE:rth}-l without cnn.f..um'rug any CPU time, for time seconds, where }Nme is

non-negative. and then returns T. pred is the same as for HANG .

2010 - 21.10.2 Interrupts

192 The MDL Programming Language

Chapter 22. Storage Management

The reason this chapler comes so late in This document is that, except for special cases, MDL
programs have their storage needs handled automatically. There is usually no need even to consider
storage mmanagecment, excopt as it affects efficicney (chapter 24). This chapter gives some

explanation of why this is so, and covers those special means by which a program can assume
control of storage management.

The MDI. address space is divided intn five parts, which are usually called

{1y movable garbage-collected space,

(2) immovable space (bath garbage-collected and not),
{3) user [rure/pace space,

{4) pure-RSBR mapping space, and

{5} internal storage.

Internal stnrage necupies hoth the highest and lowest addresses in the address space, and its size
never changes as MDL executes, The other Spaces can vary in size according 1o the needs of the
exccuting program. Generally the interpreter allocates a contiguous set of addresses For each space,

and each space gradually fills up as new objeets are created and as disk files are mapped in. The
action taken when a space hecomes full varies, as discussed below,

22.1. Movable Garbage-collecied Storage

Muost storage used explicitly by MDL programs is obtained from a pool of free storage managed by
a “garhage eallcetae” Storage is obtained from this poel by the SUBRs which construct ob jects.

When such a SUBR Finds that the ponl of available storage is exhausted. it automatically calls the
garbage eollecior

The garbare cnllector has twao algorithms available te it: the "copying” algorithm, which is used by
default, and rhe "mark-sweep” algorithm. Actually, one often speaks of two separate garbage
collectors. the "copying” one and the “mark-sweep” one, because each is an independent module that
is mapped in 1o the interpreter’s internal storage from disk only during garbage collection. For
simplicity, this document speaks of “the” garbage collector, which has two algorithins.

22 - 22.1 Storage Management

The MDL Programming Language 193

The garbage collector examines the storage pool and marks all the ob jects there, separating them
into two classes: these which cannot possibly be referenced by a program, and those which can.
The "eapying” algorithan then eopies the latter into one compact section of the pool, and the
remainder of the pool is made available for newly constructed objects. The "mark-sweep” algorithm,
instead. puts all oh jects in the former class {garbageh into “free lists”, where the Dbjerl—cullatruc!iun
SUBRs can find them and re-use their storage.

If the request for more storage still eannot be satisfied from reclaimed storage, the garbage collector
will attempi 1o obiain more toral starage from the operating system under which MDL runs. (Also,
if there is a gross superfluity of siorage space. the garbage collector will politely return some
storage fo the aperating system.) Ounly when the total system resources are exhausted will you
finally lose

Thus, if you just "Terget about” an object. that is, lose all possible means of referencing it. its
storage arca is antematically reclaimed. "Object™ in this context includes that stack-structured
storage space used in PROCESSes for functional application.

22.1.1. Stacks and Other Internal Vectors

Control stacks are used in MDL te control the changes in environmentl caused by ecalling and
binding. Each active PROCESS has its own control stack. On this stack are stored LVALs for ATOMs;
PRIMTYPE TUPLEs. which arc otherwise like VECTORs: PRIMTYPE FRAMEs, which are generated by
calling Subroutines: and ACTIVATIONs, which are gencrated by calling FUNCTIONs with named
ACTIVATION«, PROG, and REPEAT. TAG and LLOC can make TAGs and LOCDs {resptctivﬂy} that refer to
a sprecific place on a specific control stack. (LEGAL? returns T if and only if the portion of the
control stack in which its argument is found or to which its argument refers is still active, or if its
argument cdnesn’t care abont the control stack. The garbage collector may change a non-LEGAL?
ob ject 1o TYPE ILLEGAL hefore reclaiming it.) As the word “stack™ implies, things can be put on it
and removed froam it at only one cnd, called the top. It has a maximum size (or depth}. and
atfempling 1o put ton mwany things on it will cause overflow. A stack is stored like a VECTOR, and
it must be GROWn if and when it overflows.

A contral stack is actually two stacks in one. One scction is used for “top-level” LVALs - those SET
while the ATOM is not bound by any active Function's argument LIST or Subroutine’s SPECIAL
binding -- and the other section is used for everything else. Either section can overflow, of course.
The top-level-LVAL section is brlow the other one, so that a top-level LVAL will be found only if the
ATOM is not currently bound clsewhere, namcly in the other section.

MDL also has an internal siack, used for calling and temporary storage within the interpreter and
compiled programs. It too is stored like a VECTOR and can overflow. There are other internal
veetors that can overflow: the "global vector™ hiolds pairs ("slots”) of ATOMs and corresponding GVALs
("globally bound” or GBOUND? means that the ATOM in fquestion is in this vector, whether or not it

currently has a global value), and the "TYPE vector” holds TYPE names (predefined and NEWTYPEs) and
how they are 1o be treated.

22.1 - 22.1.1 Storage Management

194 The MDL Programming Language

22.2. Inumovable Siorage

22.2.1. Garbage-collecied: FREEZE

In very special cireumsiances, sich as debugging RSUBRs, you may need to prevent an object from
being moved by the garbage collector. FREEZE takes one argument, of PRIMTYPE VECTOR, UVECTOR,
STRING, BYTES or TUPLE. It copies ils argument into non-moving garbage-collected space. FREEZE

returns the copy CHUTYPEJ ta its PRINTYPE, except in the case of a TUPLE, which is changed to a
VECTOR .

22.2.2. Non-garbage-collected: STORAGE (tle PRIMTYPE)

An object of PRIMTYPE S10RAGE js really a frozen UVECTOR whose UTYPE is of PRIMTYPE WORD, but
it is always pointed 1o by samething internal to MDL and thus is never garbage-collectible. The use
of FREEZE is always preferable, except when for historical reasons a STORAGE is necessary.

22.3. Other Storage

User pure/page space serves lwao purposes. First, when a user program PURIFYs (see below) MDL
ob jects, they are copied into this space. Second, so-called hand-crafted RSUBRs (assembled but not

compiled) can call on the interpreter to map pages of disk Files into this space for arbitrary
pPuUurposes.

Pure-R5UBR Mapping space is uscd by the interpreter to dynam
pPrograms inte and out of 1he MDL address space,
the “transfer vector”, another internal vecior.

ically map pages of pure compiled
Pure code can refer to impure storage through

This space is the most vulnerable to being compressed
in size by the long-terms growih of other spaces.

Internal storage bas bioth pure and impure parts.

The interpreter program itself is pure and
sharable. while impure storage

is used for internal pointers, counters, and flags, for example,
peinters 1o the boundaries of other spaces. In the pure part of this Space are most of the ATOMs in
an inirial MDL, along with their OBLIST buckets (LISTs) and GVAL slots (a pure extension of the

global vector), where possible. A SET or SETG of a pure ATOM automatically impurifies the ATOM and
as much of its OBLIST bucket as needs 10 be impure.

22.2 - 223 Storage Management

(T

The MDL Programming Language 195

29 4. Garbage Collection: Details

When either of the garbage-collected spaces (movable or immovable) becomes full, MDL goes
through the following procedure:

(1) A "DIVERT-AGL" interrupt occurs if the garbage collection can be deferred temporarily by

shifting boundaries between storage spaces slightly. The interrupt handler may postpone a garbage
collcction by moving boundaries itsell with a call to BLOAT (below).

(2) The garbage collector begins execution. The “copying” algorithm creates an inferior operating-
ﬁ}"\TE‘J“ prrocess tnamed AGC in the 1I'TS version) whose address space is used to hold the new copies of
non-garhage ohjects. ML gains aceess 1o the inferior's address space through two pages ("frontier”
and um:lnw"] in its internal space that are shared with the inferior. If the garbage collection
occurrcil becanse mnovable garbage-collected space was exhausted, then the “mark-sweep™ algorithm
might be used instead (sece below), and no inferior process is created.

(3) The garbage collector marks all objects that can. possibly be referenced hereafter. It begins with
the <MAIN> PROCESS and the curre nily running PROCESS <ME>, considered as vectors containing the
contral stacks. objecl pointers in live registers, ete. Every object in these "PROCESS vectors” is
marked “accewsibile™ and every clement of these objects (bindings. ete.). and 30 on recursively. The
“eopying” algorithm woves objects into the inferior process’s address space as it marks them.

(4) If the garbage collection is “exbaustive” -- which is possible only in the “copying” algorithm -
then both the chain of assoclations and rop-level local/global bindings are examined thoroughly.

which takes more time but is more likely to uncover garbage therein. In a normal garbage
collection these constructs are not treated specially.

(5) Finally, the "mark-sweep” algorithm sweeps through the storage space, adding unmarked ob jects
te the internal free lists for later re-use. The “copying” algorithin maps the inferior process's
address space into MDL's own, replacing old garbagey storage with the new compact storage, and
the inferior process is destroyed.

"
I
W

5. GC
LGC rnwrnifix exhPfalse-or-any ms-fregq:ifixy

causes the garhage collector to run and returns the total number of words of storage reclaimed. All

of its arguments are optional: if they are not supplied. a call to GC simply causes a “copying”
garbage eollection

If min is explicitly supplicd as an argument, a garbage-collection parameter is changed permanently
before the garbage collector runs. min is the smallest number of words of “free” (unclaimed,

22,4 - 225 Storage Management

lllllllllllIlllllllllllllllIllllllllllll-Ill...............................|!llll..

196 The MDL Programming Language

available for use) movable garbage-collected storage the garbage collector will be satisfied with
having afrer it is done cach time. Initially it is 8192 words. If the total amount of reclaimed
starage is less than min, the garbage collector will ask the operating system for enough storage (in
1024-word bilocks) 1o make it up. N.B.: the system may be incivil enough not to grant the request: in
that case. the garbage collector will be content with what it has, unless that is not enough to satisfy
a pending request for storage. Then it will inform You that it is losing. A large min will result in
fewer total garbage collections, but they will take longer since the total quantity of storage to be
dealt with will generally be larger. Smaller mins result in shorter, more frequent garbage collections.

exh? tells whether or not this garbage collection should be “exhaustive”, It is optional, a FALSE by
default. The difference between normal and exhaustive "copying” garbage collections is whether
certain kinds of storage that require complicated treatment (for exammple, associations) are reclaimed.
An exhaustive garbage collection oceurs every eighth time that the "copying” algorithm is used. or

when GC is called with this argument true, or when a normal garbage collection cannot satisfy the
.'stnr:n;l:' Fenuest

ms-freq gives the number of times the "mark-sweep” algorithm should be used hereafter for every
time the normal “copying” algorithm is used. Civing 0 for ms-freq means never 1o use the "“mark-
sweep” algorithan, and giving <CHTYPE <MIN> FIX> means l:'c'ffectivrly:l ai'ways to use jt. The "mark-
sweep” algorithin uses considerably less processor time than the “copying” algorithm, but it never
shrinks the frec-storage ool and in fact the pool can become fragmented. The “mark-sweep”
algorithm could be uselful in a program system (such as the compiler) where the size of the pool
rarely changes, but ob jects are created and thrown away continuously.

22.6. BLOAT

BLOAT is wsed to cause a femporary cxpauwsion of the available storage space with or without
changing the garbage-collcction parameters. BLOAT is particularly useful for avoiding unnecessary
garbage collections when Inading a large file. It will cause (at most) one garbage collection, at the
end of which the available storage will be at Jeast the amount specified in the call 1o BLOAT.
(Unless., of course, the operating system is cranky and will not provide the storage. Then yYou will
Cet an error. <ERRFT 1> from this error will cause the BLOAT 1o return 1, which usually just causes

You to lose at a later time -- unless the operating system feels nicer when the storage is absolutely
necessary.)

A call to BLOAT lonks like this:

SELOAT fre stk et gib lvp slo psik
min plel pglb plyvp imp pur dpsik dsik>

where all arguments on the first line above are FIX, optional (0 by defauit) and indicate the
following:

225 - 22.6 Storage Management

g —

The MDL Programming Language 197

fre: number of words of free movable storage desired (for LISTs, VECTORs, ATOMs, elc.)

sth: mumber of words of free control-stack space desired (for functional applications and
binding of ATOMs)

felr number of new top-level LVALs for which to leave space (SETs of ATOMs which are not
currenily bound)

glb: number of new GVALs for which to leave space (in the global vector)
e nummber of new TYPE definitions for which to leave space {in the TYPE vector)
stor mmmber of words of innmovable garbage-collected storage desired

[l

psii: number of words of free internal-stack space desired (for READing large STRINGs, and
calling routines within the interpreter and compiled programs)

Arguments on the second line above are also FIX and optional, but they set garbage-collection
paramciers perinancntly, as follows:

miri: as for GC

plcl: number of slorts for LVALs added when the space for top-level LVALs is expanded (initially
64)

agll: number of slots for GVALs added when the global vector is grown (initially 64)
Pty p: number of slots for TYPCs added when the TYPE vector is grown (initially 32)

topr nmmber of words of immovable garbage-collected storage added when it is expanded
(initially 102.4)

pur: number of words reserved for pure compiled programs, if possible (initially 0)

destk: mnst desirable size for the internal stack. to prevent repeated shrinking and GROWing
(initially 512)

dsti: most desirable size for the control stack (initially 4096)

BLOAT returns the actual number of words of free movable garbage-collected storage available when
it is done.

22.6 Storage Management

e o —————————— s

198 The MDL Programiming Language

22.7. BLOAT-5TAT

BLOAT-STAT can be used with BLOAT to “tune” the garbage collector to particular program
requlrt‘lll?rl!\
BLOAT-STAT length-2 wveaclord

fills the ~rifor with inforina

ion ahout the state of storage of MDL. The argument should be a

UVELTOR of length 27 and UTYPE FIX. IF BLOAT-STAT does not get an arguwmnent, it will provide its
own UVECTOR. "T'he information returned is as follows: the first 8 elements indicate the number of
garbage callectinns that are a

trrilbiutabile to certain causes, and the other 19 give information about
certain arcas of starace. In detail:

numher of garbage eoliecrions cansed by exhaustion of movable garbage-collected storage

2, ditte by overfiow af control stack(s)

3. ditte by averflow of top-level-LVAL section of control stack(s)
. ditto by overfiow af rlobal vector

3. dirte by averliow al TYPE vector

6. ditto by exhia

st of immevable garbage-collected siorage
7. ditte by overflow of internal stack

B. ditto by bverflow of both stacks at the same time (rare)

9. number of words of movahle storage

0. numbier of words of movabhle storage used since Jlast BLOAT-STAT

L. maximumm number of words of ;ufr-..-ah].:- siorare ever existing

12, mumber of words of movahle storage used since MDL began'rum:ing
I3, maximinn cize of contenl stack

l4. number of words on control stack in use

I5. maximum size of contrnl stackis) ever reached

I6. nitnimmber ol slnts for tap-level LVALs

I7. number of top-level LVALs existing

18 mumiber of slois For GVALS in global vector

19. number nf GVALs cxisting -

20. nunnber of slnts For TYPFs in TYPE vector

ZL. number of TYPEs existing

22, number of wards of fimmoy able gari;&;g-r_m]ec;ed slorage
23. number of words of immavable storage nnused

24, size of larcost unused eontiguous immovable-storage block
25. number of words on internal stack

26. number of words on internal stack i use

27. maximum size of internal stack ever reachied

22.7 Storage Management

The MDL Programming Language 129

22 8. GC-MON
<GC-MON preds
("garbage-colleetor monitor”) determines whether or not the interpreter will hereafter print

information on the rterminal when a garbage collection starts and finishes, according to whether or
not its argumnent is true. [returns the previous state, C:![ing it with no argument returns the

current stale. The initial state is False,

When typing is enabled, the "copying” garbage collector prints, when it starts:
GIN reason subr-thal-caused:atom

and, when it Finishes:

GOUT secondz-neadead

The "mark-sweep” garbage collector prints MSGIN and MSEOUT instead of GIN and GOUT.

22.9. Relarted Sulyroun ines

Two SUBRs. described next, use only part of the garbage-collector algorithm, in order to find all
pointers to an object. GC-DUMP and GC-READ, as their names imply, also use part in order to
translate between MDL objects and binary representations thereof.

22.9.1. SUBSTITUTE
CSUBSTITUTE newany olfd:any

returns ol afrer cansing a miniature garbage collection to occur, during which all references to ofd
are chauged so as o refer to new. MNeither argument can be of PRIMTYPE STRING or BYTES or LOCD
ar live on the contral stack, unless both are of the same PRIMTYPE. One TYPE name cannot be
substituted for another, One of the few legitimate uses for it is to substitute the "right™ ATOM for
the "wrong” ane. after OBLISTs have been in the wrong state. This is more or less the way ATOMs are
impurified. Tt is alse useful for unlinking RSUBRs. SUBSTITUTE returns old as a Favor: unless you
hang onte old at thar point, it will be garbage.

22.9.2. PURIFY

SPURIFY anmy=1 ... any-N>

22.8 - 22.9.2 Storage Management

- — e ———————— _—_—,,e—————— —————
e R e ——
e = e e e e e e —
e e e LS ———

200 The MDL Programming Language

returns its last arguwment. after causing a miniature garbage collection that results in all the

arguments becoming pure and sharable, and ignored afterward by the garbage collector. No

argument can live an the control stack or be of PRIMTYPE PROCESS or LOCD or AS0C.
between operating-system

RESTOREd.

Sharing
processes actually occurs after a SAVE, if and when the SAVE file is

22.9.2 Storage Management

The MDL I"'rngr.'l.nnuing Language 201

Chapter 23. MDL as a System Process

This chapter treats MDL considered as execuling in an operating-system process, and interactions
between MDL and other operating-system processes. See also section 21.8.15.

23.1. TIME

TIME takes any number of arcuments, which are evaluated but ignored, and returns a FLOAT giving

the number of seconds of CPU time the MDL process has used so far. TIME is often used in

machine-level debugging to examine the values of its arguments, by having MDL's superior process
(say, DDT) plant a breakpoint in the code for TIME.

23.2, Names
CUNAME >

FEIUrns a STRING which is the "user name™ of MDL’s process. This is the "uname” process-control
variable in the ITS version and the logged-in directory in the Tenex and Tops-20 versions.

<XUNAME >

returns a STRING which is the “intended user name”™ of MDL's process. This is the "xuname” process-
control variable in the I'TS version and ideitical to {UNAME> in the Tenex and Tops-20 versions.

CJANAME »

reiurns a STRING which is the "job name” of MDL's process. This is the "jname” process-control
Variable in the ITS version and the SETNM name in the Tenex and Tops-20 versions. The characters

b:-inng to the "sixhit™ or “prinmting” subser of ASCII, namely those beiween <ASCII =40%> and
<ASCIT ®137=> inclusive.

CXJINAME »

23 - 23.2 MDL as a System Process

202 The MDL Programming Language

returns a STRTHNG which is the "intended job name” of MDL’s process. This is the "X jname” process-
control varialile in the ITS version and identical to <JNAME> in the Tenex and Tops-20 versions.

23.3. Exits
<LOGOUT>

attempts 1o log out the process in which it is executed. It will succeed only if the MDL is the top-

level process. thar is. i1 is running disowned or as a daemon. If it succeeds. it of COUrse never
returns. If it does nat, it returns #FFALSE ().

<QUIT>

causes MDIL ro stop running. in an orderly manner. In the ITS version, it is equivalent to a
[-LOGOUT 1, instruction. In the Tenex and Tops-20 versions, it is equivalent to a control-C signal,
and control passes 1o the superior process.

] CVALRLT sleing-or-fixd

("value return™ seldrm returns. It passes control back up the process tree to the superior of MDL,
passing its argument as a message to that superior. If it does return, the value is #FALSE (). If the
argument is a STRING, it is passed to the superior as commands to be executed, via -VALUE in the
ITS version and RSCAN in the Tops-20 version. If the argument is a FIX, it is passed to the superior

as the “effeetive address™ of a .BREAK 16, instruction in the ITS version and ignored in other
versions.

23.4. Inter-process Communication

| All of the SUBRs in this section are available only in the ITS version.
The IPC (“inter-process communication”) device is treated as an IO device by ITS but not
explicitly so by MDL: that is, it is never OPENed. It allows MDL te communicate with other ITS
processes by means of sending and receiving imessages. A process identifies itself as sender or

recipient of a moessage with an ordered pair of “sixbit™ STRINGs, which are often but not always
CUNAME> and <JNAME>. A wessage has a "body” and a "type”.

23.4.1. SEND and SEND-WAIT

CSEND othern! othern? body type mynamel myname2>

23.2 - 23.4.1 MDL as a Systemn Process

| The MDL Programming Language 2038

<SEND-WAIT othernl othernZ body lype mynamel mynameld

both send an IPC message 1o any process that is listening for it as othern! othernz. body must be
either a STRING, nra LUVECTOR of n'l'r_i_r‘t-rl. of PRIMTYPE WORD. typoe is an optional FIX, 0 b}r default,
which is part of the information the ather guy receives. The last two arguments are from whom the
message is 0 be sent. These are optional, and <UNAME S and <JNAME> respectively are used by
default. SEND returns a FALSE if no one is listening, while SEND-WAIT hangs until someone wants it.
Both return T if soancone accepls the nicssage,

23,42 The "IPC* llnrnupl
When your MIDXL process reccives an 1PC message, "IPC" occurs (chapter 21). A handler is called
with rcither four or six arguments gleaned from the received message. body, lype, othernl, and

athern are always supplied. myname! and myname? are supplied only if they are not this process's
CUNAME > and < JNAME > .

There is a built-in HANDLER for the "IPc® interrupt. with a handler named IPC-HANDLER and 0 in the
PROCESS slot. The handier prints out on the terminal the body, whom it is from, the lvpe if not o,

and whew it is to if not <CUNAME> <JINAME>. If the fype is 1 and the body is a STRING, then, after
the message information is printed out. the STRING is PARSED and EVALuated.

23.4.3. IPC-0OFF

<IPC-OFF > stops all listening on the IPC device.

23.4.4. IPC-ON
CIPC-0ON myname] mynama2d

causes listening on the 11PC device as myname | mynameZ2. If no arguments are provided, listening is
on <UNAME> <JINAMLC>. When a message arrives, "IPC" occurs.

MDL is initially listening as <UNAME> <JINAME> with the built-in HANDLER set up on the "IPC"

interrupt with a priority of 1.

23.4.5. DEMSIG
<DEMSIG daemaon:string?

signals to ITS (directly. not via the IPC device) thal the daemon named by its argument should run
now. It returns T if the dacmon exists, #FALSE () otherwise.

23.4.) - 23.4.5 MDL as a System Process

e ————
T e e e e —— et
e e e e —
— e —

204 The MDL Programming Language

Chapter 24. Efficiency and Tastefulness

24.1. Efficicncy

Actually. you make MDL programs efficient by thinking hard about what they really make the
interpreter do, and making them do less. Some guidelines, in order of decreasing expense:

{1} Free storage is expensive,
(2) Calling funetions is expensive.
{(3) PROG and REPEAT are cxpensive, except when compiled,

Explanation:

(1) Unnecessary use of free stor age (creating needless LISTs, VECTORs, UVECTORs, etc.) will cause the
garbage collectar ta run more often. This is expensive! A fairly large MDL (for example, 60 000 36-
bit wards) can take ten seconds of PDP-10 CPU time for a garbage collection. Be especially wary of
consiructions Jlike (0. Every time that is evaluated, it creates a new one-eleinent LIST; it is too

easy to write such things when they aren’t really necessary. Unless you are doing PUTs or PUTRESTs
on it. use '{0) instead.

{2} Sad. Lt true. Also generally ignored. If you call a function only once, or if it is short (less than
one linck you are much better of f in specd if you substitute its body in by hand. On the other
hand. you may be much worse off in modularity. There are techniques for combining several
FURCTIONs into one RSUBR (witl RSUBR-ENTRYs), either during or after compilation, and for
changing FUNCTIONs inie MACROs

{3) PROG is alimost never necessary, given (a) "AUX" in FUNCTIONs: {b) the fact that FUNCTIONs can
contain any nwmber of FORMs: (c) the fact that COND clauses can contain any number of FORMs: and
(d) the fact that wew variables ean be generated and initialized by REPEAT. However, PROG may be

| useful when an crror occurs, 10 establish bindings needed for cleaning things up or interacting with
| a human.

The use of PROG may be sensible when the normal flow of control can be cut short by unusual
conditions, so that the program wants 1o RETURN before reaching the end of the PROG. Of course,

24 -24.1 Efficiency and Tastefulness

i

i

it

i

il

r'

The MDL Programming Language 205

nested CONDs can accomplish the same end, but deep nesting may tend to make the program
unreadable. For exampile:

<PROG (TLCMP)
<0OR <5FT TEMP <OK-FOR-STEP=173>
LRETURN .TEMP>>»
C{S5TEP-1>
COR <3ET TEMP <0OK-FOR-STEP-27>>
CRETURN .TEMP>»>
CSTEP=-23>

could instead be written

<COND (<OK-FOR-STEP-17%>
<STEP-1>
<COND (<OK-FOR-STEP-27>
CSTEP-23)3)>

By the way, RCPEAT is faster than GO in a PROG. The <GO x> FORM has to he separately interpreted.

right? In fact. if you arganize things properly you very seldom need a GO; using GO is generally
considered “had siyle”, but in some cases it's needed. Very few.

In many cases. a RLPEAT can be replaced with a MAPF or MAPR, or an ILIST, IVECTOR, etc. of the
form

CILIST .N '<S5ET X <+ .%X 1»>
which generates an N-element LIST of successive numbers starting at X+1.
Whether a program is interpreted or compiled, the first two considerations mentioned above hold:
garbage collection and Minction calling romain expensive. Garbage collection is, clearly, exactly the
same. Function calling is velatively more expensive. However, the compiler careth not whether you

use REPEAT., GO, PROG, ILIST, MAPF, or whatnot: it all gets compiled into practically the same

thing. llowever, the REPEAT or PROG will be slower if it has an ACTIVATION that is SPECIAL or used
other than by RCTURN or AGAIN.

24.1.1 Example

There follows an example of a FUNCTION that does many things wrong. It is accompanied by
commentary. and two better versions of the same thing. (This function actually occurred in
Practice. MNeedless to say, names are withheld to protect the guilty.)

Blunt comment: this is terrible. Its purpose is to output the characters needed by a graphics

24.1 - 24.1.1 Efficiency and Tastefulness

206 The MDL Programming Language

terminal to draw lines connecting a set of points,

The points are specified by tweo input Jists: X
values and ¥ valucs

The ontput channel is the third argument. The actual characters for each line
are returned in a | TST by the funcrion TRANS .

<DEFINE PLOTVDSK (X Y CHN "AUX* L LIST)
CCOND (<NOT <==7 <SET L <LENGTH .X>>CLENETH .Y> >>
<ERROR "LENGTHS NOT EQUAE."'})}
<SET LIST (29)>
<REPEAT ((N 1})

<SET LIST (!.LIST '<TRANS <.N .X> <.N LY22)2
<COND (<G? <SET N <+ _.N 1>> .L><RETURN NXY> >
<SREPEAT ((N 1) (L1 CLENGTH .LIST>))
CPRINC <ASCII <.N .LIST>> LCHN>
<COND (<G? <SET N <+ .N 1> .L1>
CRETURN "DONE®3)> 2>

Comments:

(1) LIST is only temporarily necessary. It is Just ereated and then thrown away.

(2) Warse, the construet (!.LIST 'CTRANS ...>») copies the previous elements of LIST every time it
is execurcd!

(3) Indexing down the clements of LIST as in <. N

-LIST> takes a long time. if the LIST is long. <3
st OF €4

» o2 i% ot worth worrying about, but €10 ... is, and <100 . + 2 lakes quite a while.
Even il the indexing were nni phased out, the compiler would be happier with <NTH LIST .N>.
(4) The variable CHN is lintmeccssary if OUTCHAN is bound to the argument CHANNEL .

{5) It is tasteful to call ERRGR

in the same way that F/SUBRs do.
the ERRORS OBLIST (if oie is a

This includes using an ATOM from
pPpropriate) to tell what is wrong, at

id it includes identifying yourself.
So, do it this way:

24.1.1 Efficiency and Tastefulness

The MDI. Programming Language

207

<CDEFINE PLOTVDSK 0 OUTCHAN)
#*DECL ((OUTCHAN)} <SPECTAL CHANNEL »)
CCOND (<NOT <==7 SLENGTH .X» <LENGTH i

<ERROR UE'CIDF!-LENGTHE-DIFFER!-ERRDRS PLOTVDSK>) >
<CPRINC <ASCII 293>

<REPEAT ()

CCOND (<EMPTY? .X> CRETURN "DONE*>)>
CREPEAT ((OL <TRANS <1 .X> <1 .¥53>))
<PRINC <ASCII <1 .0OL>>>
CCOND (<EMPTY? <SET OL <REST .OL>>>
<RETURN>)3>3>
<SET X <REST .X>>
<KET Y <REST X220

OFf course. if you hinow how long is the LIST that TRANS returns,

REPEAT loop and have cxplicit PRINCs for cach element.
MAPF, as in the nexi version, which does exactly the same
to do the Rliﬁting and the end conditional:

This can be done even better by

<DEFINE PLOTVDSK (X Y OUTCHAN)
*DECL ((ou TCHAN) <SPECIAL CHANNEL >}
LCOND (<NOT <==7% CLENGTH .X> <LENGTH P

<ERROR UECT{JR—LENETHS—DIFFER'—ERRORS PLOTVDSK>)>
SPRINC <ASCITI 293>

SHAPF <>
#FUNCTION ((XE YE)

<MAPF <> #FUNCTION ((T) <PRINC <ASCII «T2>) <TRANS .XE -YE>>)
-
S

“"OONE"™ >

£3.2. Creating a LIST in Forward Order
If you must create the elemen
carlier ones when :nl-i:ng a la
argument of ,LIST:
Final call tn LIST.

stack yourself,

s of a LIST in sequence from first to Jast,

ler one to the end. One way
the elenienis are put

yeu can avoid copying
is to use MAPF or MAPR with a first
on the control stack rather than in free storage, until the
If you know how many clements there will he, You can put them on the control

Ina TUPLE built for that purpose. Another way is used when REPEAT is necessary:

24.01.1 - 249 Efficiency and Tastefulness

you can avoid using the inner

using
thing as the previous one, but uses MAPF

|
The MDL Programming Language

<REPEAT ((FIRST (T)) (LAST .FIRST) ...) '
#DECL ((VALUE FIRST LAST) LIST ...,

€5ET LAST <REST CPUTREST .LAST (-NEW)3>>

CRETURN <REST -FIRST>>
.

Here, .LAST Always Points 1o the current

last element of the LIST.
evaluation. the <SgT LAST

Because of the order of
-+« 2 could also be written <PUTREST

-LAST <SET LAST (.NEW)>»>.

24.3. Read-only Free Variables

If a Funcrion ses the value of 5 free variahje (<GVAL unmanifesi:alom> or <LVAL specialzafom)
the ceompiled version m

without changing ir. ay be more efficient if the value is assigned to a
dummy UNSPECTAL A TOM in the Function's "AUX" list. This is true because an UNSPECTAL ATOM gets
compiled inte a <o an the control stack, which is accessible very quickly. The trade-off js
Probably worthwhile il a special is referenced more than once, or if an vnmanifest is referenced more

than twice, Example:
“DEFINE MAP-LOOKUP (THINGS "aux~ (DB .UATA-BASEH

*NECL ((VALUE) VECTOR (THINGS DB} <UNSPECIAL <CPRIMTYPE LIST>>)
SMAPF .VECTOR <FUNCTION (T) <MEMQ .T .pB>> - THINGS >>

24.4. {;In_ll:_u!_;m_t__r I.rrrni_‘.’njl_lr_ﬁ_

In the interpreter the sequence

X ¥ L% .Xis slower than
between the GVAL and LvAL mechanisms (appendix 1). Thus jt

LVAL of the same ATOM Fri_-r“n:'nljy_ unless references o the LV
control stack references).

X X X % because of interference
is not good to use both the GVAL and
AL will be compiled away (made into

24.5. Making Offscts for Arrays

It is often the case tliar

You want to attach som
an element in

Uependently of other elements.,
I than integers (FI¥es or
Secondly, it is a iy

€& meaning to each el
Firstly, it js a good id
even OFFSETs) for offsets into the array, 1

ond idea to use the GVALs of the name ATOMs to rem
the ATOMs can be MANIFEST for the compiler's benefit. ThirdI_\-.. to

ement of an array and refer to
23 1o use names (ATOMs) rather
o make future changes easier.
ember the actual FIXes, so that
establish the EVALs, both the

24.2-24.5 Efficiency and Tastefulness

f=—

-

The MDL Programming Language 209

interpreter and the compiler will be happier with <SETE name offse!> rather than <DEFINE name
("TUPLE™ T) <offsel 1.T>>.

24.6. Tahles

There are several ways in MDL to store a table, that is. a collection of (names and) values that will
be searched. Unsurprisingly, chaosing the best way is often dictated by the size of the table and/or
the nature of the (names and) values.

For a small table, the names and values can be put in (separate) structures -- the choice of LIST or
arcay being determined by volatility and Iimjl:;hilia}- = which are searched using MEMQ or HEMBER.
This method is very space-efficient. If the table gets larger, and if the elements are completely
aorderable. a (uniforn) vectar can be used, kept sorted, and searched with a binary search.

For a large table, where reasonably efficient searches are required, a hashing scheme is probably
best. Two methods are available in MDL: associations and OBLISTs.

In the first method, PUTPROP and GETPROP are used. which are very fast. The number of hashing

buckets is fixed. Duplicares are eliminated by ==7 testing. If it is necessary to use =7 testing, or Lo
I Y g Y

find all the catries in the rable, you can duplicate the table in a LIST or array. to be used only for
those purposes,

In the second methad, THNSERT and LOOKUP on a specially-built OBLIST are used. (If the names are
not STRINGs, they can be converted to STRINGs using UNPARSE, which takes a little time.) The

number of bhashing buckers ean be chosen for hest efficiency. Duplicates are eliminated by =7
testing. MAPF/R can be used to find all the entries in the table.

24.7. Nesting
The beauty of deeply-nested control structures in a single FUNCTION is definitely in the eye of the

beholder. (PPRINT, a pre-loaded RSUBR, finds them trying. However, the compiler often produces
better code from them.) If you don’t like excessive nesting. then you will agree that

CHET X ...»
<COND (<07 .X> ...) ...>

looks better than

CCOND (<07 <SET X ...2% ...) ...>»

and that

24.5 - 24.7 Efficiency and Tastefulness

N

-
I ——
—

R e e e

—ﬁ

210 The MDL Programming Language

<REPEAT
<COND
(... €RETURN S

looks better than

<REPEAT
<COND
(... <RETURN .. s)

(ELSE ...)>
)

You can sce the ature of the choices. Nesmlg is still and all better than GO.

e —————————————

The MDL Frogramming Language 211

Appendix 1. A Look Inside

This appendix tells abiout the mapping between MDL ob jects and PDP-10 storage -- in other words,
the way things look "on the inside”. None of this information is essential to knowing how to
program in MDL. but it does give some reasons for capabilities and restrictions that otherwise you
have ta mcmorize. The notation and |t-rmj|mln_[:y get a little awkward in this discussion, because we
are in a twilight zone between the worlds of MDL ob jects and of bit patterns. In general the words
and phrases appearing in diagrams refer to bit patterns not MDL objects. A lower-case word (like
"tuple’) refers to the storage oceupicd by an ob ject of the corresponding PRIMTYPE (like TUPLE).

First some terminelogy necds discussion. The sine qua non of any MDL object is a pair of 36-bit
computer words. Tn general, lists consist of pairs chained tegether by pointers (addresses), and
vectors consist of contiguous blocks of pairs. ==7 essentially tests two pairs to see whether they
contain the same hit patterns,

The First (lower-addresced) word of a pair is called the TYPE word, because it contzins a numerie
TYPE code that represents the objeet’s TYPE. The second (higher-addressed) word of a pair is called
the value word, hecanse it contains (part of or the beginning of) the "data part” of the object. The

TYPE word (and sowctimes the value word) is considered to be made of a left half and a right half.
We will picture a pair like this:

| TYPE | |
et R L S S R S |
I value I
where & vertical bar in the middle of a word means the word's halves are used independently. You

can sce that the TYPE ende is confincd to the left half of the TYPE word. (Half-)words are sometimes

subdivided into ficlds appropriate for the context: fields are also pictured as separated by vertical

bars. The right half of the TYPE word is used for difFerent purposes depending on the TYPE of the
| ob ject and actual Incatinn of the value.

Actually the 18-hit TYPP Field is further decoded. The high-order {leftmost) bit is the mark bit, used
exclusively by the garbage collector when it runs. The next two bits are monitor bits, used to cause
"READ"™ and "WRITE" intcrrupis on read and write references to the pair. The next bit is used to
differentiare between list clements and veetor dope words. The next bit is unused but could be used
in the future for an "execute” monitor. The retaining 13 bits specify the actual TYPE code. What
CHTYPE does is to copy the pair and put a new TYPE code in the new pair.

Each data TYPE (predefined and NEWTYPEs) wmust belong to one of about 25 "storage allocation

classes” (roughly corresponding to MDL PRIMTYPEs). These classes are characterized primarily by
the manner in which the garbage collector treats themn. Some of these classes will now be described.

Appendix 1

e

212 The MDL Programming Language

"One Word”

This class includes all data that are not printers to some kind of structure.

All external (programs-
available) TYPEs in this class are of PRIMTYPE WORD. Example:

"Two Waord”

The members of 1lris class are all [18-bir

pointers to list elements. All external TYPEs in this class are
of PRIMTYPE LIST,. Example:

where pointer is a ranter (o the first list element.
I

If there are no elements, pointer is zero; thus
empty objects of PRIMTYPE LIST are ==7 if 1l

eir TYPEs are the samne.

"Two N Waord”

Membiers of this class are all “eounting pointers” to blocks of two-word pairs. The right half of a

counting painter is an address, and the left half is the negative of the number of 36-bit words in the
block. (This format is tailored to the PDP-10 ADBJN instruction.) The number of pairs in the block

(LENGTH) is half that mumber, since cach pair is two words. All external TYPEs in this class are of
PRIMTYPE VECTOR. Example: .

where length is the LENGTH of the VECTOR and pointer is the location of the start (the element
selected by an NTH argument of 1) of the VECTOR .

Appendix |

I‘II‘

1 [

rr‘

The MDIL. Programming Language 1%

“»N Word”™

This class is the same as the previous one, excepl that the block contains objects all of the same
TYPE withouw! individual TYPC words. The TYPE code for all the elements is in vector dope words.
which are a1t addresses just larger than the block itself. Thus, any object that carries information in
its TYPE word cannot go in the block: PRIMTYPEs STRING, BYTES, TUPLE {(and the corresponding
locatives LOCS, LOCB, LOCA) FRAME, and LOCD. All external TYPEs in this class are of PRIMTYPE
UVECTOR. Example:

where Tength is the LENGTH of the UVECTOR and pointer points to the beginning of the UVECTOR.

"Byte String” and "Characier String”

These two clas=es are almest identical. Dyte strings are byte pointers to strings of arbitrary-size
bytes. PRIMTYPE BYTES is the only member of this class. Character strings are byte pointers to
strings of ASCIL characters. PRIMTYPE STRING is the only member of this class. Both of these
classes consist of a leagth and a POP-10 byte pointer. In the case of character strings. the byte-size
field in the byrte pointer is always seven bits per byte (hence five bytes per word). Example:

where longth is the LENGTH of the STRING (in bytes) and byte-pointer points to a byte just before
the beginning of the siring (an ILDB instruction is needed 1o get the first bytel. A newly-created
STRING always has *010700% in the left half of byte-pointer. Unless the string was created by
SPNAME, byte-painter points te a uvector, where the elements (characters) of the STRING are stored.
packed together five 1o a word.

"Frame”

This class gives the user program a handle on its control and variable-reference structures. All
external TYPOs in this class are of PRIMTYPE FRAME . Three numbers are needed to designate a frame:
a unique I8-bit identifying number, a pointer to the frame's storage on a control stack, and a
pPrinter to the PROCESS associated with the frame. Example:

Appendix |1

:-__

214 The MDL Programming Language

| FRAME | PROCESS-pointer|

| uninue-1id | frame-pointer |

where PROCCSS-pointer points to the dope words of a PROCESS vector, and unigue-id is used for

validating (resting LEGAL?) the frame-pointer, which points to a frame for some Subroutine call
on the control stack.

"Tuple”

A tuple pointer is a counling poinler o a veclor on the control stack. It may be a pointer to the
arguments 1o a Subroutine or a pointer generated by the "TUPLE® declaration in a FUNCTION. Like
ob jects in the previous class, these ob jects contain a unique identifying number used for validation.

PRIMTYPE TUPLE is the only member of this class. Example: r
| TUFLE | unigue-id |
T T e i T T T R
| -Z2®lenqgth | pointer |

Other Storage Classes

The rest of the storage classes include strietly internal TYPEs and pointers to special kinds of lists
and vectnrs like locatives, ATOMs and ASOCs. A pair for any LOCATIVE except a LOCD looks like a
pair for the corvesponding strueture, cxcep! of course that the TYPE is different. A LOCD pair looks
like a tuple pair and needs a word and a half for its valuet the unique=-1id refers to a I:|n|"n|:|'|ngr on the

contrel stack or to the "global stack”™ if zero. Thus LOCDs are in a sense “stack objects”™ and are more |
restricied than oither Jocatives.

= —

An OFFSET is stared with the TNDEX in the right half of the value word and the Pattern in the left
| half. Since the Pattern can be either an ATOM or a FORM, the left half actually points to a pair, |
which points to the actual Pattern. The Pattern ANY is recognized as a special case: the left-half
pointer is zere, and un pair is usced. Thus, if you're making the production version of your program

and want o save some storage, you can do _r.murrlh.ing like <3ETG FOO <PUT-DECL ,FODO ANY>> for
all OFF5E Ts,

Appendix |

i
1

"M

"M

MM

l1111

The MDL Programming Language 215

Basic Data Structures

Lists

List clements are pairs linked together by the right halves of their first words. The list is
terminated by a zero in the right half of the last pair. For example the LIST (1 2 3) would look
like this:

The use of pointers 1o tie together elements explains why new elements can be added easily to a list,
how sharing and circularity work, ete. The links go in only one direction through the list, which is
why a list cannot be BACKed or TOPped: there's no way to find the RESTed elements.

Since some MDL values require a word and a half for the value in the pair, they do not fit directly
into list elements. This problem is solved by having "deferred pointers”. Instead of putting the
datum directly into the list element, a pointer 1o another pair is used as the value with the special
internal TYPE DEFLR, and the real datum is put in the deferred pair. For example the LIST (1
"hellao®™ 3) would lnok like this:

------------- | = === o= === | == ==

ISTRING] 5[<-
| = ===
|byte-pntr|

Appendix |

216 The MDL Programming Language

Vectors

A vector is a black of contiguous words. More than one pair can point to the block, possibly at
different places in the block: this is how sharing occurs among vectors. Pointers that are dif ferent
arise from REST or GROW/BACK operations. The block is Followed by two "dope words”, at addresses
Just larger than the largest address in the block. Dope words have the following format:

/ !
| I
I |
| typo I grow I
| = = = = = = = = ¢ = = = = = - |
I length | gc |

The various ficlds have the following meanings:

type -- The fourth bit from rthe left (the “vector bit®, 40000 octal) is always one, to distinguish these
vector dope words from a TYPE/value pair.

If the high-order bit is zero, then the vector is a UVECTOR, and the remaining bits specify the
uniform TYPE of the elements. CHUTYPE just puts a new TYPE code in this field. Each element
is limited to a nne-word value: clearly PRIMTYPE STRINGs and BYTESes and stack ob jects can't
go in unilform vectors.,

If the high-order bit is one and the TYPE Lits are zero, then this is a regular VECTOR.

If the high-nrder bir is one and the TYPE bits are not all zero, then this is either an ATOM, a
PROCESS, an ASOC, or a TEMPLATE. The special internal format of these ob jects will be
described a litrle later in this appendix.

Tength - The higlenrder bit is the mark bit, used by the garbage collector. The rest of this field
specifies the number of words in the block, including the dope words. This differs from the
lengrh given in pairs pointing to this vector. since such pairs may be the result of REST
operations.

grow -- This is actually two nine-bit fields, specifying either growth or shrinkage at both the high
and low ecnds of the vector. The fields are usually set only when a stack must be grown or
shrunk.

g¢ -- This is used by the garbage collector to specify where this vector is moving during
compaction,

Examples (mumbers in octalk: the VECTOR [1 "bye™ 3] looks like:

Appendix 1

:

The MDL Programming Language 217

| STRING | 3 |

| byte pointer |

| 10 I |
The UVECTOR '[-1 7 -41] lonks like:
UVECTOR | O |
e ow m omm [T eesassmee o
-3 | eemmmmeaas 3| -1 I
| 7 |

Altoms

Internally. atoms are special vector-like objects. An atom contains a value cell (the first two words

of the black

. Filled in whenever the global or local value of the ATOM is referenced and is not already

there), an OBLIST pointer, and a print name (PNAME), in the following format:

Appendix |

218 The MDL Programming Language
| type | bindid |
| pointer-to-value 1
| pointer-to-OBLIST |
| print-name |
I !
! /
| (ASCIT with NUL padding on end)]|
| ATOM | valid-type |
| = = = = = & = = == . ---—
I lenath I gc I

If the type ficld corresponds to TYPE UNBOUND, then the ATOM is locally and globally unbound.
(This is different from a pair. where the same TYPE UNBOUND is used to mean unassigned.) If it
corresponds 10 TYPE LOCI (an internal TYPE)L then the value cell points either to the global stack, if
bindid is zeto, or 10 a local control stack, if bindid is non-zero. The bindid field is used to verify
whether the local value pointed to by the value cell is valid in the current environment. The
pointer-to-0BLTST is either a counting pointer to an oblist (uvector), a positive offset into the
“transfer vector” (for pure ATOMs). or zero. imeaning that this ATOM is not on an OBLIST. The valid-
type ficld tclls whether or not the ATOM represents a TYPE and if so the code for that TYPE; grow
values arc never needed Tor atoms.

Associations

Associalions are also special vector-like ol jects. The first six words of the block contain TYPE/value
pairs for the ITEM, INDICATOR and AVALUE of the ASOC. The next word contains forward and
backward pointers in the chain for that bucket of the association hash table. The last word
contains forward and backward pointers in the chain of all the associations.

Appendix 1

(e

The MDL Programming Language 219
| ITEM l
| = mamierasie e el S el =
| pair |
| INDTCATOR |
I
| pair |
1 AVALUE |
e e i
| pair |
| buckot-chain pointers I
| association-chain pointers |
| ASOC I o |
e e N
| 12 octal | gc |

PROCESSes

A PROCESS vector looks exactly like a vector of TYPE/value pairs. It is different only in that the

garbage collecior ircats it differently from a normal vector, and it contains extremely volatile
information when the PROCESS is RUNNING.

Templates

In a template. the number in the type Field (left half of First dope word) identifies to which "storage
allocation class” this TEMPLATE belongs. and it is used to find PDP-10 instructions in internal tables
(frozen uvectors) Tar performing LENGTH, NTH, and PUT operations on any object of this TYPE.
The programs ro build these 1ables are not part of the interpreter, but the interpreter does know how
o use them properly. The compiler can put these instructions directly in compiled programs if a
TEMPLATE is never RESTed: otherwise it must let the interpreter discover the appropriate instruction.
The value word of a templare pair contains, not a counting pointer, but the number of elements
that have been RESTed of F in the left half and a pointer to the first dope word in the right half.

Appendix 1

e

220 The MDL Programming Language

The Control Stack

Accumulatars with symbaolic names AB, TB, and TP are all pointers into the RUNNING PROCESS's
control stack. AB ("argument base”) is a pointer to the arguments to the Subroutine now being run.
It is sel up Ly the Subroutine-call mediator, and its old value is always restored after a mediated
Subroutine call returns. TB (“temporaries base”) points to the frame for the running Subroutine and
also serves as a stack base pointer. The T8 pointer is really all that is necessary to return from a
Subroutine -- given a value te return, for example by ERRET -- since the frame specifies the entire
state of the calling rowtine. TP ("temporaries pointer”) is the actual stack pointer and always points
to the current top of the control stack.

While we're an the subject of accumulators, we might as well be complete. Each accumulator
contains the value word of a pair. the corresponding TYPE words residing in the RUNNING PROCESS
vector. When a PROCESS is not RUNNING (or when the garbage collector is running), the accumulator
contents are stared in the vector. so that the objects they point to look like elements of the PROCESS
and thus are not garbage-collectible.

Accumulators A, B, €, D, £ and O arc used almost entircly as scratch accumulators, and they are
not saved or restored across Subroutine calls. OF course the interrupt machinery always saves these
and all other accumnlators. A and B are used to return a pair as the value of a Subroutine call.
Other than that special feature, they are Just like the other serateh accumulators.

Mand R are nsed in running RSUBRs. M is always set up to point to the start of the RSUBR's code.
which is actually just a uniform vector of instructions. All jumps and other references to the code
use M as an index register. This makes the code location-insensitive, which is necessary because the
code uvector will move around, R is set up to point to the vector of objects necded by the RSUBR.
This accumulator is necessary because ob jects in garbage-collected space can move around. but the
pointers to them in the reference vector are always at the same place relative to its beginning.

FRHM is the internal frame pointer, used in compiled code to keep track of pending Subroutine calls
when the contral stack is hea vily used. P is the internal-stack peointer, used primarily for internal
calls in the interpreter.,

One of the nicest Teatures of the MDL environment is the uniformity of the calling and returning
sequence. Adl Subroutines -- both built-in F/SUBRs and compiled RSUBR(-ENTRY)s — are called in
exactly the same way and return the same way. Arguments are always passed on the control stack
and resulrs always cnd up in the same accumulators. For cfficiency reasons, a lot of internal calls
within the interpreter circumvent the calling sequence. Ilowever. all calls made by the interpreter
when running user programs go through the standard ealling sequence.

A Subroutine call is initiated by one of three UUOs (PDP-10 instructions executed by software
rather than hardware). MCALL ("MDL call’) is used when the number of arguments is known at
assemble or compile time. and this number is less than 16. QCALL ("quick call”) may be used if, in
addition. an RSUBR(-ENTRY) is being called that can be called “quickly”™ by virtue of its having

Appendix 1

ik

e e
T R R R R —=2
- ee———
-_—ssss—e—e—e—e—eseseses™se™e—S,seYeYe—e—ee __e,_,,YeYeY§NS§YS§S§S§,§s—s s s—m—§—s—§—§—§—s€§€w-€u€Uuee———e—e———e—e—e—e—-—eeeeoeeee’ve!oneNnNVennsononoonoooroooeEEECEEe———r-———
R ——
—
R R REERERERERRSRSRSSSSSSSSSSSSSSSSSSSSSSSSSSSyyyZ_]_D_D_———T—TTT7—— =
IR R R = S e ——
e ——— e
e T T L ey
.
S —
—_—_————_—__EEE==
e = =Y e e —
e e
eSS eSS e s
e
e T T R R R =
—_—————— -—_—— =¥ T ——
R R R —
s roeee——
e ——
.
e

The MDL Programming Lauguage 221

special information in its reference vector. ACALL ("accumulator call™) is used otherwise. The
general method of calling a Subroutine is to PUSH (a PDP-10 instruction) pairs representing the

| Arguinciis anto the conirol stack via TP and then either (1) MCALL or QCALL or {2} put the number of
arguments into an accumnulator and ACALL. Upon return the object returned by the Subroutine will
be in accumulators A and 8, and the arguments will have been POPped of f the control stack.

The call moediator stores the contents of P and TP and the address of the caliing instruction in the
current frame (pointed to by TBL 1t also stores MDL's "binding pointer” to the topmost binding in
the contrel stack., (The hindings are linked together through the control stack so that searching
through them is more efficient than Iﬁnk||pg at every object on the stack.) This frame now specifies
the cutire state of the caller when the call occurred. The mediator then builds a new frame on the
contral stack and stores a pointer back to the caller’s frame (the current contents of TB). a pointer to
the Subroutine being called, and the new contents of AB, which is a counting pointer to the
arguments and is computed from the infarmation in the MCALL or QCALL instruction or the ACALL
accumiulator. TB is then set up to point to the new frame. and its left half is incremented by one,
making a new unique-id. The mediater then transfers control to the Subroutine.

A control stack Frame has seven words as shown:

| EMIRY | called-addr |
| unique-id | prev frams |
- argumont potater |
| aaved binding potatsr 1
T saved & |
v saved TP |
| saved calVing sddesss |

The First three words are set up during the call to the Subroutine. The rest are filled in when this
routine calls another Subroutine. The left half of T8 is incremented every time a Subroutine call
occurs and is used as the unigue-id for the frame, stored in frame and tuple pairs as mentioned
before. Obviously this id is not strictly unique, since each 256K calls it wraps around to zero. The
right half of 18 is always lefr pointing one word past the saved-calling-address word in the frame.
TP is also lef pointing at that werd. since that is the top of the control stack at Subroutine entry.
The arguments to the called Subroutine are below the frame on the control stack (at lower storage
addresses), and the temporaries for the called Subroutine are above the frame (at higher storage
addresses). These arcuments and temporaries are just pairs stored on the control stack while needed;
they are all that remain of UNSPECIAL values in compiled programs.

Appendix |

e —

299 The MDL Programming Language
(4 B guag

The following figure shows what the control stack might look like after several Subroutine calls.

_________________ Lo
temps for 51	
——————————————————	
I I	
args for 52	
I	
_________________]	
frame for 52	===
————————————————— {_._..___

The above figurc shows the frames all linked together through the control stack (the “execution
Path”™). so rhat ir is casy to return to the caller of a given Subroutine (ERRET or RETRY).

Subroutine exit is accomplished simply by the eall mediator, which loads the right half of TE from

L

the previous frame poinrer. restores the "binding pointer”, P, and TP, and transfers control back to :
the instruction following the saved calling address. €

Appendix |
S

.
B, e
_— Y o o o o — o o e —————,oe s
- —— — —— —— — ——— —— — ——— — —— — ——— — —— _________ _—
e e e —————
e R R R ——
——

e ——— e e

The MDL Programming Language 2993

Variable Bindings

All local ATOM values are kept on the control stack of the PROCESS to which they are local. As
described before, the atom containg a word that points to the value on the control stack. The

pointer is actually to a six-word “binding block™ on the control stack. Binding blocks have the
fellowing format:

| BIND or UBIND | prev |
| pointoer to ATOM |
| value |
| = == === s =7 & saaie]
| pair |
| dec] I unigque=id I
| previous-binding |

where:

BIND mecans this is a binding for a SPECIAL ATOM (the only kind used by compiled programs),

and UBIND wmeans this is a binding for an UNSPECIAL ATOM -- for SPECIAL checking by the
interpreter:

prev poinis to the closest previous binding block for any ATOM (the "access path”™ - UNWIND
ob jects are also linked in this chain:

decl points ro a DECL associated with this binding, for SET(LOC) to check:

unigque=id is used Tor validation of this block: and
previous-binding points to the closest previous binding for this ATOM {used in u||hj||ding}_

Bindings are generated by an internal subroutine called SPECBIND (name comes from SPECIAL). The
caller to SPECBIND PUSHes eonsecutive six-word blocks onto the control stack via TP before calling
SPECBIND. The first word of each block contains the TYPE code for ATOM in its left half and all
ones in irs right half. SPECBIND uses this bit pattern to identify the binding blocks, SPECBIND's
caller alse Fills in the next three words and Jeaves the last two words cmpty. SPECBIND fills in the
rest and leaves the "binding peointer” pointing at the topmost binding on the control stack.
SPECBIND also stores a pointer to the eurrent binding in the value cell of the atom.

Appendix |

T

224 The MDL Programming Language

Uinbinding is accomplished during Subroutine return. When the previous frame is being restored,
the call mediator cheeks to see if the saved “binding pointer” and the current one are different: if
they arc. SPECSTORE is called, SPECSTORE runs through the binding blocks, restoring old value
pointers in atoms until the "hinding pointer” is efqual to the one saved in the frame.

Obviousiy variahle Linding is more complicated than this, because ATOMs can have both local and
glnbal values and cven different focal values in different PROCESSes. The solution to all of these
additional problems lics in the bindid Ficld of the atom. Fach PROCESS vector also contains a
current bindid. Whenever an ATOM's local value is desired, the RUNNING PROCESS's bindid js
checked against that of the atom: if they are the same, the atom peints to the current value: if not,
the current PROCESS's contrel stack st be searched to find a binding block for this ATOM. This
binding scheme might be called “shallow Linding™. The searching is facilitated by having all
binding blocks linked tagether. Referring 1o global variables is accomplished in a similar way,
using a VECTOR that is referred to as the "global stack™ The global stack has only an ATOM and a
value slnt for cach variable, since global values never get rebound.

EVAL with respeet 1o a dif ferent chvironment causes some additional problems. Whenever this kind
of EVAL is done. a brand new bindid is generated, forcing all current local value cells of aloms to
appear invali. Local values must now he oblained by searching the control stack, which is
inefficient campared tn Just pulling them out of the atoms. (The greatest inefficiency oceurs when
an ATOM's LVAL is never used twice in a row in the same environment.) A special block is built on
the control stack and linked into the binding-block chain. This block is called a "skip block” or

“environment splice”. and it diverts the “access path™ to the new environment, causing searches to
become relative to this new environment,

Appendix |

-

sy P o
- . ¥ = =
—_————
=——————— __ ______________....--——————————————— -~ ______
- —— —— ... —— = ——
R e e Sl
e e B e
————mm e ey P

= R
= e e = —
B e e
o e
- ===
S el | S—
= .. = " . =
= ______ si———m——— — ___ ____ __ _________
—_—— -
—— e ———
., R S T em—
R N S
————— s —————— e P I ey
et e —
—_— =T
———————————T YV 0 = == -r——

The MDL Programming Language 225
Appendix 2. Predefined Subroutines

The following is a very brief description of all the primitives (F/SUBRs) currently available in
MDL. ‘These descriptions are in no way to be considered a definition of the effects or values
produced by the primitives. They just try to be as complete and as accurate as is possible in a
single-statemoent description. However, because of the complexity of most primitives, many
important assumptions and restrietions have been omitted. Even though all primitives return a
value. some descriptions mention only the side effects produced by a primitive., because these
primitives are most often uscd for this effeet rather than the value.

A description is given in this format:

name (arguments)
decl
English description

This format is intended to look like a FUNCTION definition, omitting the call to DEFINE and all
internal variables and ende. The name is Just the ATOM that is used to refer to the primitive. The
names of the arguments are intended to be mnemonic or suggestive of their meanings. The dec/ is a
FUNCTION-siyle DECL fchapier 14) for the primitive. In some cases the DECL may look unusual,
because it is intended 1o convey information to a person about the uses of arguments, not to convey
information 1o the MDL interpreter or compiler. For example, <OR FALSE ANY> is functionally
equivalent ta ANY. but it indicates that only the "truth” of the argument is significant. Indeed. the
[OPT ...1 eanstruction is ofren wsed illegally. with other elements following it: be warned that
MDL would not accept it. An argument is included in the same LIST with VALUE (the value of the

primitive) only if the argument is actually returned by the primitive as a value. In other words,
#DECL ((VALUE ARG) ...) implics <==7 .VALUE .ARGY.

* ("TUPLE" FACTORS)
#DECL ((VAIUF) <OR FIX FLOAT>

(FACTORS) <TUPLE [REST <OR FIX FLOAT>1>)
multiplics all arguments together (arithmetic)

* ("TUPLE"™ TERMS)
#DECL ((VALUE) <OR FIX FLOAT>

(TERMS) <TUPLE [REST <OR FIX FLOAT>]>)
adds all arguments together {arithmetic)

Appendix 2

—

e ———

226 The MDL Programming Language

= ("OPTIONAL" MINUCND "TUPLE® SUBTRAME NDS)
#DECL ((VAL UE) <OR FIX FLOAT>
(MINUCHND) <OR FIX FLOAT>
(SURTRANCNNS) <TUPLE [REST <OR FIX FLOAT>]>)
subtracts other arguments from first argument (arithmetic)

/ ("OPTIONAL"™ DIVIDEND "TUPLE® DIVISORS)
#DECL ((VALUE) <OR FIX FLOAT>
(DIVIDEND) <OR FIX FLOATD
(DIVISORS) <TUPLE [REST <OR FIX FLOAT>]>)
divides first argnmcnt by other arguments (arithmetic)

07 (NUMBLR)
#DECL ((VALUCY <OR 'T '#FALSE (>
(HUMBLR) <OR FIX FLOATY)
tells whether a number is zern {predicate)

17 (NUMRLR)
#DECL ((VALUL) <OR *T *#FALSE ()>
(NUMRIR) <OR FTX FLOAT>)
tells whether a number is one (predicate)

1STEP (PROCCSS)
#DECL ((VALUE PROCESS) PROCESS)
causes a PROCESS 1o enler single-step mode

==7 (ORJILCT-1 OBJICCT-2)
#DECL ((VALUF) <OR 'T '#FALSE ()>
(OBJECT-1 QBJECT-2) ANTY)
tells whether two ob joets are “exactly” equal (predicate)

=? (OBJECT-1 OBJECT-?)
#DECL ((VALUE) <OR T ‘'#FALSE ()>
(OBJECT-1 OBJECT-2) ANY)
tells whether twn ol jecis are “structurally” equal (predicate)

ABS (NUMBER)
#DECL ((VALULC) <OR IIX FLOAT>
(HUMRFR) <OR FIX FI OAT>)
returns absolute value of a3 nuinber {arithmetic)

ACCESS (CHANNIL ACCESS-POINTER)
FDECL ((VALUF CHANNFL) CHANNEL
(ACCESS-POINTER) FIX)
sets access pointer for next 1/O transfer via a CHANNEL

Appendix 2

o
— e eSS
e e e —————— s

e —— e e S
e ————— e R e e e e e e
—

The MDL Programming Language o

l ACTIVATE-CHARS ("OPTIONAL"™ STRING)
#DECL ((VALUL STRING) STRING)
sets ar retnins intecoupl characters for terminal typing (Tenex and Tops-20 versions only)

AGAIN ("OrTIOHAL" (ACTIVATIOHN .LPROGY !-INTERRUPTS))
FDECL ((VALUE) ANY
(ACTIVATTIOR) ACTIVATION)
resumes excculion at the given ACTIVATION

ALLTYPES ()
#DECL ((VALUL) <VECTOR [REST ATOM]>)
returns the VECTOR of all type names

AND ("ARGS"™ ARGS)
#DECL ((VALUE) <OR FALSE ANY>
(ARGS) LIST)
computes logical "and” of truth-values, evaluated by the Subroutine

ANDY? (“"TUPLE"™ TUPLE)
#DECL (({WVALUE) <OR FALSE ANY>
(TUPLC) TUPLE)
computes logical "and” of truth-values, evaluated at call time

ANDB ("TUPLE"™ WORDS)
#DECL ({VAILUL) WORD
(WOIDS) <TUPILE [REST <PRIMTYPE WORD>]>)
computes bitwise "and”™ of machine words

APPLICABLE? (OBJCCT)
#DECL ((VALUE) <OR 'T '#FALSE ()>
(OBJECT) ANY)
tells whether argument is applicable (predicate)

APPLY (APPLICABLE "TUPLE"®™ ARGUMENTS)
FDECL ((VALUE)} ANY
(APPLICABLE) APPLICABLE (ARGUMENTS) TUPLE)
applies first argument to the other arguments

APPLYTYPE (TYPE "OPTIONAL™ HOW)
FDECL {((VALUL) <OR ATOM APPLICABLE ‘#FALSE ()»
{TYPE) ATOM (HOW) <OR ATOM APPLICABLE>)
specifies or relurns how a data type is applied

Appendix 2

R A AR A R LA A A LA B A A A AR M5 A AL A Al M Md B ALA A A N A R R AMffiE L S Ao NAMfsa e A R RRRARARRRRLAREPESRREBEEEEINEE

228 The MDL Programming Language

ARGS (CALL)
#FDECL ((VALUE) TUPLE
(CALL) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
returns arguimcnots of a given un-returned Subroutine call

ASCII (CODF-0OR-CHARACTER)
#DECL ((VALUE) <OR CHARACTER FIX>
(CONE-OR-CHARACTCR) <OR FIX CHARACTER>)
refurns CHARACTER with gj\-rn ASCII ende or vice versa

ASSIGNED?T (ATOM "OPTIONAL"™ ENV)
#DECL ((VALUE) <OR 'T '#FALSE ()>

(ATOM) ATOM (ENV) <OR TRAME ENVIRONMENT ACTIVATION PROCESS>)
tells whether an ATON has a Incal value (predicate)

ASSOCIATIONS ()
FDECL ((WALUE) <OR ASOC '#FALSE ()>»)
returns the Tirst object in the association chain

AT (STRUCTURLCD "OPTIOHNAL"™ (N 1))
#DECL ((VALUL) LOCATIVE
| (STRUCTURED) STRUCTURED (N) <OR FIX OFFSET>)
returns a Ilncative 1o the Nth clement of a siructure

ATAN (NUMDBER)
#DECL ((VALUE) FLOAT
(HUMBER) <OR FIX FLOAT>)
returns arc fangent of a number (arithmertic)

ATOM (PHAME)
¥DECL ((VALULY ATOM
(PHAMF)Y STRING)
creales an ATOM with a E_:i'n'r_-n mnane

AVALUE (ASSOCTIATION)
#DECL ((VALUE) ANY
(ASSOCIATION) ASOC)
returns the "valuc® field of an association

Appendix 2

= .

S e S el
- R R R === ="
—_—— s
=i, ., =
e ———— ., __,L,L,.->->>>S"——._...——_______._....————— —— —— —__—=>~—\ -\ =
—_——————— R e =
B e e e e

-_-—— - — B ————— == Wi ——%
= =S eSS
B e e e e EEE EE ES s
. e
—_———— = e =
R ——— —
S R eSS e
=i ________________________aa———————————— . _
R eS=—=—=—=—=—I—I=—I—AIAIABABBAB = = . a_————————————————————————————————=—ssss=—sss——s—sss———ssss———ss———————a =
— T R R N R = ——
N T R .,———————— e e I
e R = —
— e S
- . " =" " - —— — =
—_—
———————————eeeeee————————— = TS S

The MDL Programming Language 299

BACK (STRUCTURE "OPTIONAL™ N)
#DECL {((VALUE) <OR VECTOR TUPLE UVECTOR STORAGE STRING BYTES TEMPLATE>
(N) FIX
(STRUCTURE) <OR <PRIMTYPE VECTOR> <PRIMTYPE TUPLE>
<PRIMTYPE UVECTOR>»> <PRIMTYPE STORAGE>
<PRIMTYPE STRING> <PRIMTYPE BYTES>
CPRIMTYPE TEMPLATE>»>)
replaces some elements removed from a non-list structure by RESTing and changes to primitive data
Lype

BIND ("ARGS"™ ARGS)
#DECL ((WVALUE) ANY
(ARGS) <LIST [OPT ATOM] LIST [OPT DECL] ANY2>)
execules scquential expressions without providing a bound ACTIVATION

BITS (WIDTH "OPTIONAL" (RIGHT-EDGE 0})
#DECL ((VALUL) BITS

(WIDTH RIGIT-EDGL) FIX)
creates a hit mask for PUTHITS and GETBITS

BLOAT ("OPTIOUAL"™
(FRCE 0) (STACK 0) (LOCALS 0) (GLOBALS 0) (TYPES 0) (STORAGE 0) (P-STACK 0)
MIN GROW-1OCAL GROW-GLOBAL GROW-TYPE GROW-STORAGE PURE P-STACK-SIZE STACK-SIZE)
#DECL ((VALUE) FIX
(FREE STACK LOCALS GLOBALS TYPES STORAGE P-STACK MIN GROW-LOCAL GROW-GLOBAL
GROW-TYIME GROW-STORAGLC PURE P-STACK-SIZIE STACK-SIZE) FIX)
allocates extra storage temporarily

BLOAT-STAT ("OPTIONAL"™ STATS)
FDECL ((VALUF) <UVECTOR [27 FIX]>
(STATS) <UVECTOR [27 ANY]>)
gh'es g;uhagc.l-nnrctnr and storage statistics

BLOCK (LOOK-11P)
#DECLC(VALUE LOOK-UP) <OR OBLIST <L1ST [REST <OR OBLIST 'DEFAULT>]>>)
SETs OBLIST for Inoking up ATOMs during READing and PARSEIng

BOUND? (ATOM *OPTIOHAL™ ENV)
#DECL ((VALUE) <OR *T ‘*#FALSE ()>
(ATOM) ATOM (ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
tells whether an ATOM is locally bound (predicate)

Appendix 2

e

230 The MDL Programming Language

BREAK-SEQ (0OBJICT PROCESS)
#DECL ((VALUE PROCESS) PROCESS
(OBJECT) ANY)
modifies excocutinn sequence of another PROCESS

BUFOUT ("OPFTIONAL"™ (CHANNEL .OUTCHANI)
#DECL ((VALUE CHANHEL) CHANNEL)
writes out all internal MDL buffers for an output CHANNEL

BYTE-S51ZE (BYTLS)
#DECL ((VALUE) FIX
(BYTES) BYTES)
returns size of I.r_1.1rt in a h}*lr‘-xrring

BYTES (SIZE "TUPLE"™ ELEMENTS)
#DECL ((VALUE) BYTES
(STZE) FIX (ELEMENTS) <TUPLE [REST FIX]>»)

creates a byte-string from explicit arpuments

CHANLIST ()
#DECL ((VWALUF) <LTST [RFST CHANNCL1>)
returns a LIST of currently open 1JO CHANNELs

CHANNEL ("OPTTONAL®" (MODE "READ®™) "TUPLE® FILE-HAME)
#DECL ((VALUE) CHAHHEL
(MODE) STRING (FILE-NAME) TUPLE)
creates an unopencd /O CHANNEL

CHTYPE (OBJECT TYPE)
FDECL ((VALUE) AHY
(OBJECT) ANY (TYPE) ATOM)
makes a new pair with a given data type from an old one

CHUTYPE (UVECTOR TYPE)
FDECL ((VAILULC UVECTOR) <PRIMTYPE UVECTOR>
(TYPE) ATOM)
changes the data type of the elements of a uniform vector

CLOSE (CHANNLCL)
FDECL ((VALUF CHANNEL) CHANNEL)
closes an 1/O CHANNEL

Appendix 2

s

The MDL Programming Language 231

CLOSURE (FUNCTIOHN "TUPLE™ VARTABLES)
#DECL ((VALUE)} CLODSURE
(FUNCTION) FUNCTION (VARIABLES) <TUPLE [REST ATOM1>)
"hinds” the free variables of a FUNCTION to current values

COND ("ARGS"™ CLAUSES)
#DECL ((VALUL) ANY
(CLAUSES) <LIST <LIST <OR FALSE ANY>> [REST <LIST <OR FALSE ANY>>1>)
evaluates conditions and selected expression

CONS (NEW-EILCHMLCHNT LIST)
#DECL ((VALUE) L1517
{HEW-ELEMENT) ANY {(LIST) LIST)
adds an cloment (o the Front of a LIST

CO5S (NUMBER)
#DECL ((VALUE) FLOAT
(HUMBLCR) <OR FIX FLOAT>)
returns cosine of a number (arithmetic)

CRLF ("OPTIONAL®™ (CHANNEL .OUTCHAN))
#OECL ((VALUE) T
(CHANNFL) CHANNEL)
prints a carriage-return and line-feed via an output CHANNEL

DECL-CHECK ("OPTIONAL®™ SWITCIl)
#DECL ((VAILUFE) <OR *T '"#FALSE ()>
(SWITCH) <0OR FALSE ANY}>)
enables or disables type-deelaration checking

DECL? (OBDJECT PATIERN)
#DECL ((VALUE) <OR 'T "#FALSE ()>
(OBJECT) ANY (PATTERN) <OR ATOM FORM>)
tells whether an objeet matches a type declaration (predicate)

DEFINE (*MAME "ARGS" ARGS)
#DECL ((VALUE) ATOM
(HANE) ANY (ARGS) <LIST [OPT ATOM] LIST [OPT DECL] ANY>)
sets the global value of an ATOM 1o a FUNCTION

DEFMAC ({ "NAME "ARLS"™ ARGS)
#DECL {(VAILUE) ATOH
(MAME) ANY (ARGS) <LIST [OPT ATOM] LIST [OPT DECL] ANY>)
seils the global value of an ATOM to a MACRD

Appendix 2

i

S

R

232 The MDL Programming Language

DEHMSIG (MHAMLC)

#DECL ((VALUE) <OR 'T "#FALSE ()>
(NAME) STRING)

signals an ITS dacmon

DISABLE (INITFRRUFT)
#DECL ((VALUF INTERRUPT) IHEADER)
disablcs an interrupet

DISHISS (VAL "OPTIONAL®™ ACTIVATION INT-LEVEL)
#DECL ((VALUL WVAL) ARY
(ACTIVATION) ACTIVATION (INT-LEVEL) FIX)
dismisses an inrterrupt occurrence

ECHOPALIR (1IN OUT)
#DECL (({(VALUL IN) CHANHNEL
(DOUT) CHANNEL)
coordinates 1)O CHANNELs For echoing characters on rubout

EMPTY? (OBJECT)
#FDECL ({(VALUF) <OR 'T *'#FALSE ()>
(OBJECT) STRUCTURED)
tells whether a siructure has zero clements (predicate)

ENABLE (TNTERRUPT)
#DECL (({WALUE INIERRUPT)Y IHEADER)
enables an interrupt

ENDBLOCK ()
#DECL ((VALUE) <OR OBLIST <LIST [REST <OR OBLIST 'DEFAULT>]>>)
restores the .OBLIST that existed before corresponding call to BLOCK

ENTRY-LOC (ENTRY)
#DECL ((VALUE) FIX
(ENTRY) RSUBR-ENTRY)
returns the of fset in the code vector of an RSUBR-ENTRY

EQVE (“TUPLE®™ WORDS)
#DECL ((VALULC) WORD
(WORDS) <TUPLE [REST <PRIMTYPE WORDD>]>)
computes bitwise "equivalence” of machine words

Appendix 2

__-L
R R R R R — Y
R L

_ -
e e e . e 2,
- - — - _ " " """ %_| . " " " __ ' ' ' ' " -"_ ' ' ' — " —__ -} =
R R e ™1
R e =
e e = e
e —————_————_— -
— . &———— %.-
B e e e e e R S RS S e s e Ssl B
e S — T
L
S ————————————————————————————————————— e _____=—
-_______________ __ . - _ _— - ——_ =
R aiiiiitbibt)cis tiifhbkitiiinoa diirt iitiRiiAAb lkAAAd dki-il BrBls h A iAiiaaiiiA. At ainRARAAAAiAiAe;riAiRiRRAAAirAAAii A si i ?itkii¢ikiikkiirLiii!}ikbPAddaIIRI—MAbAdBAAdisdki<isiiiiikiHHAAtIHE§ilLLkkiiiBiRiiPBAIAiA AiAAiiO ISR
R R R = o=
R R R e ——
S L= eSS L E
e —— — ——7
D AAAAiiiAE=EEE————_—_—_—_—_—MM_BtBttEEEEEEEEERRRRRRALAEEEEEERRRERRR—_—_—_—_—<—<—<“<<<<<<<<——SS=————8———————_—_——————————————————————————————————EEEEEEEEEE—S —
. —— _ _—_ _— .- - - - = _ — — _ _ _ _ _ ____ _ " """ " " . " . &> ——~—
e R — &
e~ ALY
=

The MDL Programming Language 233

ERRET ("OPTIOHAL"™ WAL (FRAME .LERRY !-INTERRUPTS))
#DECL (({VALUE) ANY
(VAL) ANY (FRAME) FRAME)
continues evaluation from the last ERROR or LISTEN or from a given FRAME

ERROR ("TUPLE™ INFOD)
#DECL ((VALUL) ANY
{INFO) TUPLE}
stops and informms user of an error

ERRORS ()
#DECL ((VAILUE) ORI I5T)
returns the OBLIST where error messages are located

EVAL (ANY "OPTTOHAL"™ ENV)
#DECL ((VALUE) ANY

(ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
evaluates an cxpression in a given environment

EVALTYPE (TYPE "OPTIOHNAL"™ HOM)
#DECL ((VALUE) <OR ATOM APPLICABLE '#FALSE ()>
(TYPL) ATOM (HOW) <OR ATOM APPLICABLE>)
specilies or returns how a data type is evaluated

EVENT (NAME "OPTIONAL"™ PRIORITY WHICH)
fDECL ((VALUE) THEADER
(NAME) <OR STRING ATOM THEADER> (PRIORITY) FIX (WHICH) <OR CHANNEL LOCATIVE>)
sets up an interrupt

EXP (NUMBLCR)
#DECL ((VALUE) FIOAT
(NUMBER) <OR FIX FLOAT>)
returns “e” to the power of a number (arithmetic)

EXPAND (ANY)
#DECL ((VALUE) ANY
(ANY) ANY)
evaluates its argument (only once if a MACRO is involved) in the top-level environment

FILE-EXISTS? ("TUPLE" FILE=-NAME)

#DECL ((VALUE) <OR 'T <FALSE STRING FIX>>
(FILE-NAMLC) TUPLL)

tests for existence of a file (predicate)

Appendix 2

A o Rt A A A B A ATMfdy R A Al R R RA A A A A A A B A A R A AL AR A kLA, AsAo A B RBRRBRBPBRERPREREBERERPRRBRRRRRRRRE™

234 The MDL Programming Language

FILE-LENGTH (INCH)
#DECL ((VALUE) FTIX
(INCH) CHANHEL)
returns the system-provided length of a file open en an input CHANNEL

FILECOPY ("OPTIONAL®"™ (INMCH .INCHAN) (OUCH .CUTCHAN))
FDECL ((VALUE) FIX
(IMCH QUCH) CHANNEL)
copics characters froon one CHANNEL to another until end-of -file on the input CHANNEL

FIX (HUMBER)
#DECL ((VALUE) FIX

(HUMBER) <0OR TLOAT FIX>)
returns integer part of a number (arithmetic)

FLATSIZE (ANY MAX "OPTIONAL® {(RADIX 10))
#DECL ((VALULC) <OR FIX '#FALSE ()>
CANYY ANY (MAX RADIX) FIX)
returns number of characiers needed to PRINI an object, if not greater than given maximum

FLOAD ("TUPLE™ FILE=-NAML-AND=-LOOK-UP)
#DECL ((VALUE) *"DONE"
(FILE-HAME-AND-LOOK-UP) TUPLE)
reads and evaluates all nb jects in a file

FLOAT (HUMBLR)
#DECL ((VALUE) FLOAT
(HUMBER) <0OR FIX FLOATZ>)
returns (loating-point value of a number (arithmetic)

FORM ("TUPLE™ ELEMENTS)
#DECL ((VALUL) FORM
(ELFHMENTS) TUPLE)
creates a FORM Mrom explicit arguments

FRAME ("OPTIONAL" (FRAME .LERRY\ !=-INTERRUPTS))
#DECL ((VALUE)Y T RAME
(FRAME) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
returns a previous Subroutine call

FREE-RUN (PROCFES5)
#DECL ((VALUE) <OR PROCESS '#FALSE {)>
(PROCESS) PROCESS)
causes a PROCLCSS 1o leave single-step mode

Appendix 2

__-L-__

e e s =
-_——- s R R R R R R o e
—_—————
—_———=———————x=
—_————
-_— R i e ==
e R SSS—————————————————sss—s————s—s——————————————————————————— e e R T
e L e
e N — e ey
= — _________________ - aaa————————————————_______________________a———————— ————————— _—_——_ _
—_—_——— . - s = ———er—ee
e s
—— =N e
e ——— = R——
L, ———___— . e R
= ___________________aaaaaa————————————— || = = —
e e
T T T T R R e —
T —,sSeYeYke,e,e,—es---—-—. e R R R R R e e 8
e L e
= === e e e R S R e eSS
= . __.____ ... - — o~
e e e e e R R I R =S
e

The MDL Programming Language 235

FREEJE (STRUCTURE)
#DECL ((VALUE) <OR VECTOR UVECTOR STRIHG BYTES>
(STRUCTURE) <OR <PRIMTYPE VECTOR> <PRIMTYPE TUPLE> <PRIMTYPE UVECTOR>
CPRIMTYPE STRING> <PRIMTYFE BYTES>>)
makes copy nf argument in unu-muviug gnrbnge-cnl]ec_ted space

FUNCT (FRANLC)
#DECL ((VALUL) ATOM
(FRAME) <OR FRAMF ENVIRONHMENT ACTIVATION PROCESS>)
returns Subroutine name of a given previous Subroutine call

FUNCTION ("ARGS"™ ARGS)
#DECL ((VALUE) FUNCTION

(ARGS)Y <LIST [OPT ATOM] LIST [OPT DECL] ANY>)
creales a FTUNCTION

G=7 (NUMBER-1 NUMDBER-2)
#DECL ((VALUE) <OR 'T *#FALSE ()>
(HUMRCR-1 HUMBER-2) <OR FIX FLOAT>)
tells whether Cirst argument is greater than or equal to second {(predicate)

G?7 (NUMBER-1 NUMBER-2)
#DECL {((VALUr)Y <OR 'T '"#FALSE ()>»
(HUNBLR=-1 HUMBER-2) <OR FIX FLOAT>)
tells whether first argument is greater than second (predicate)

GASSIGNID? (ATOM)
#DECL ((VALUE) <OR 'T "#FALSE ()>»
(ATOM) ATOM)
tells whether an ATOM has a global value (predicate)

GBOUND? (ATOM)
FDECL ((VALUE) <OR 'T "#FALSE ()>
(ATOM) ATOM)
tells whether an ATOM cver had a global value (predicate)

GC ("OPTIOHAL"™ MIN (EXHAUSTIVE? <>) M5-FREQ)
fFDECL ((VALULC) FIX
(MIN M5=-TRIQ) FIX (EXHAUSTIVLC?) <OR FALSE ANY>)
causes a garbage eollection and changes garbage-collection parameters

GC-DUMP (ANY PRINTD)

#DECL ((VYAIUF) <OR ANY <UVCCTOR <PRIMTYPE WORD>>>
(ANY) ANY (PRINTB) <OR CHANHMEL FALSE>)

dumps an ob ject so that it can be reproduced exactly

Appendix 2

(e

396 The MDL Programming Language

GC-MON (*"OPTIONAL™ SWITCH)
#DECL ((VALUE) <OR 'T "#FALSE ()>
(SWITCHY <DR FAIL SE ANY>)
turns garbage-collectinn monitoring off or on

GC-READ (READB "OPTIONAL"™ (EOF-ROUTINE '<ERROR caw?))
#DECL {((VALUE) ANY
(READNB) CHANMEL (EOF-ROUTINE) ANY)
inputs an objeer thar was previously GC-DUMPed

GDECL ("ARGS™ ARGS)
#DECL ((VALUE) ANY

(ARGS) <LIST [REST <LIST [REST ATOM]> <OR ATOM FORM>]>)
declares the type/structure of the global value of ATOMs

GET (ITEM INDICATOR "OPTIONAL® (IF-NONE <»))
FOECL ((VALUL) ANY

I (11FM) <OR STRUCTURED ANY> (INDICATOR) <OR FIX OFFSET ANY> {IF-NONE} ANY)
does NTH or GETPROP

GET-DECL {(ATOM-OR OFFSET)

#DECL ((VAILUF) <OR ATOM FORM '#FALSE ()3
(ATOM-OR-OFFSET) <OR LOCD OFFSET>)

gets the 1ype declaration for an ATOM's value or an OFFSET

GETBITS (FROM FIELD)
#DECL ((VALUE) WORD

(FROM) <OR <PMPRIMTYPE WORD> CPRIMTYPE STORAGE>> (FIELD) BITS)
returns a it Ciecld of a machine word or STORAGE addross

GETL (ITEM INDICATOR "OPT IONAL"™ (IF=-NONE <3))
FDECL ((VALUC) <OR LOCATIVE LOCAS ANT>

I (ITCM) <OR STRUCTURED ANY > (INDICATOR) <OR FIX OFFSET ANY>» (IF-NONE) ANY)
does AT or GETPI

GETPL (ITCH INDICATOR "OPTIONAL®™ {IF-NOME <>))
#DECL ((VALUF) <OR LOCAS ANY>

(ITEM 1NDICATOR 1F-NONE) ANY)
returns a locative (o an associalion

GETPROP (LTEM INNICATOR "OPTIONAL® { IF-NOMNE <»))
#DECL ((VALUE) ANY
(ITEM INDICATOR IF-NONE) ANY)
returns the value associated with an item under an indicator

Appendix 2

}

The MDL Programuming Language 37

gLOC (ATOM “OPTIONAL® (MAKE-SLOT <>))
FDECL ((VALUE) LOCD
(ATOM) ATOM (MAKE-SLOT) <OR FALSE ANY2>)
returns a locative to the global-value cell of an ATOM

GO (LABEL)
#DECL ((VALUE) ANY
{LABEL) <OR ATOM TAG>»)
goes to a label and continues evaluation from there

GROW (U/VECTOR END BEG)
FDECL ((WVALUL) <OR <PRIHMTYPE VECTOR> <PRIMTYPE UVECTOR>>

(U/VECTOR) <OR <PRIMTYPE VECTOR> <PRIMTYPE UVECTOR>> (END BEG) FIX)
increases the size of a vector or uniform vector

GUNASSIGH (ATOM)
FDECL ((VALUE ATOM) ATOM)
causes an ATOM 1o have no global value

GVAL (ATOM)
FDECL ((VALUE) ANY
(ATOM) ATOH)
returns the global value of an ATOM

HANDLER (IHEADER HANDLER "OPTIONAL®™ (PROCESS #PROCESS 0))
FDECL ((VALUE) HAHNDLER
(TWEADER) IHEADER (HANDLER) <OR HANDLER APPLICABLE> (PROCESS) PROCESS)
creates an interrupt HANDLER

HANG ("OPTIONAL"®™ (UNHANG <>))
fFDECL ((VALUE) ANY
[UNHANG) ANY)
does nothing. interruptibly, potentially forever

IBYTES (SIZE LENGTH "OPTIONAL®" (ELEMENT 0))
#DECL ((VALUE) BYTES

(SIZE LENGTH) FIX (ELEMENT) ANY)
creates a byte-string from implicit arguments

IFORM (LENMGTH "OPTIONAL™ (ELEMENT #LOSE 0))
#DECL ((VALUE) FORH

(LENGTH) FIX (ELEMENT) ANY)
creates a FORM from implicit arguments

Appendix 2

e —

238 The MDL Programming Language

ILIST (LENGTH "OPTIONAL®™ (ELEMENT FLOSE 0))
#DECL ({VALUE) LIST
(LENGTH) FIX (ELEMENT) ANY)
creates a LIST from implicil arguments

IMAGE (CODE "OPTIONAL® (CHANNEL .OQUTCHAN))
#DECL (({(VALUE CODE) FIX
(CHANNEL) CHANNEL)
sends an image-mode character via an output CHANNEL

IN (POINTER)
#DECL ((VALUE) ANY
{POINTER) LOCATIVE)
returns fThe ob ject pointed fo by a locative

INDEX (OFFSET)
#DECL ((VALUE) FIX
(OFFSET) OFFSET)
fetches the integral part of an OFFSET

INDICATOR (ASSOCIATION)
#DECL ((VALUE) ANY
(ASSOCIATION) ASOC)
returns the "indicator™ field of an association

INSERT (PNAME OBLIST)
#DECL ((VALUE) ATOM

(PNAME) <OR ATOM STRING> (OBLIST) OBLIST)
adds an ATOM to an OBLIST

INT-LEVEL ("OPTIONAL®™ MNEW-INT-LEVEL)
#DECL ((VALUE) FIX
(NEW-INT-LEVEL) FIX)
returns and/or sets current interrupt level

INTERRUPT (MNAME *TUPLE™ HAMNDLER-ARGS)
#DECL ((VALUE) <OR 'T '#FALSE -()>
(NAME) <OR STRING ATOM IHEADER> (HANDLER-ARES) TUPLE)
causes an iuterrupl 1o OCCur

INTERRUPTS ()
#DECL ((VALUE) OBLIST)
returns the OBLIST on which inlerrupt names are kept

Appendix 2

__-L-_
L
—_— T R R R . =
_—
=————— __ __________. ___.....-——————————————— — — _____ — ________________ _.~
e ——-e————_———
e R — T ¥ =
R R RRRRRRRRRRRRRRRRRRRRRIR=—s——————s—s—ss———————s—s———— = O e ="

e N

s

The MDL Programming Language 239

IPC=-HANDI IR (RODY TYPE OTHER-NAME-1 OTHER-NAME-2
“OPTIONAL" (MY=-NAME-1 <UNAME>) (MY-NAME-2 <JNAME>))
#DECL ({VALUE) 'T
(RBOLY) <OR STRING UVECTOR> (TYPE) FIX
(OTHER-HAHME -1 OTHER-NAME-2 MY-NAME-1 MY-MAME-2) STRING)
is the buili-in handler for "IPC" (ITS version only)

IPC=0OTF ()
#DECL. ((vALUL) *1)
staps all listening on the IPC device (ITS version only)

IPC-0ON ("OPTTONAL"™ (MY-NAME-1 <UNAME>) (MY-NAME-2 <JNAHE>))
#DECL ((wALLIE) *T
(MY-NAME-1 MY-HAME-2) STRING)
listens on the 11°C deviee (UT'S version only)

ISTORAGE (LENGIH "OP1IONAL™ (ELEMENT #LOSE 0))
#DECL {(VALLUE) STORAGE
(LENGTH) FIX (CLEMENT) ANY)
creates a non-garbage-callected STORAGE From implicit arguments (archaic)

ISTRING (LENGTII "OPTIONAL"™ (ELEMENT 1\"2))
FDECL ((VALUL) STRING
(LENGTH) FIX (ELEMENT) ANY)
creates a character-string from implicit arguments

ITEM (ASSOCIATION)
#DECL ((VALUE) ANY
(ASSOCIATION) ASOC)
returns the "item” ficld of an association

ITUPLE (LLEHGTH "OPTTONAL™ (ELEMENT #LOSE 0))
#DECL ((VALUE) TUPLE
(LENGTH) FIX (ELEMENT) ANY)
creates a TUPLE from implicit arguments

IUVECTOR (LENGTH "OPTIONAL" (ELEMENT #LOSE 0))
#DECL ((VALULC) UWLCCTOR
(LENGTH) FIX (CLCHMENT) ANY)
creates a UVECTOR fronm implicit arguments

IVECTOR (LCHNGTII "OPTIOHAL™ (CELEMENT #LOSE 0))
#DECL ((VALUE)Y VECTOR
(LENGTH)Y FIX (ELEMENT} ANY)
creates a VECTOR from implicilt arguments

Appendix 2

-4

240 The MDL Programming Language

JHAME ()
YDECL ((VALULC) STRING)
returns the “joh name” of MDIL's process

L=7 (NUMBER-1 HNUMBER-2)
#DECL ((VALUE) <OR 'T "#FALSE ()>
(HUMBRER-1 NUMBER=-2) <OR FIX FLOAT>)
tells whether first argument is less than or equal to second (predicate)

L7 (NUMBIR~-1 NIIMARCR-2)
#DECL ((VALUE) <OR *'T "#FALSE ()=
(MUMBER=-1 HUMBER=-2) <OR FIX FLOAT>)
tells whether Tirst arguminent is less than second (predicate)

LEGAL? (STACK-0ORJLCT)
#DECL ((VALUE) <OR 'T *#FALSE ()>
(STACK-0RJECT) ANY)
tells whoetlher argument {wihiich I'|'||'_'¢_""E|l live on the control stack) is still J-Egﬂl Eprediczttl

LEMGTH {(ORJECT)
#DECL (({VALUE) FIX
(ORJIECT) STRUCTURED)
returns the nunmber of elements in a structure

LENGTH?Y (OQBJECT MAX)
#DECL {(VALLULC) <OR FIX *#FALSE ()>
(OBJECT) STRUCTURED (MAX) FIX)
tells whetlier lengih of structure is less than or equal to an integer (predicate)

LINK (EXPR PHAME “OPTTONAL" (OBLIST <1 .OBLIST>))
#DECL ((VALUE EXPR) ANY
(PHAME) STRING (OBLIST) OBLIST)
creates a symbnlic LINK to.any expression for READIng

LIST ("TUPLE"™ ELEMEN1S)
#DECL (({VALUE) LIST
(CLEMOCNTS) TUPLE)
creates a LIST from explicit arguments

LISTEN ("TUPLE"™ INFO)
#DECL ({VALULC) ANY
(INFO) TUPLE)
stops and informs user that MDL is listening

Appendix 2

"

The MDL Programming Language 241

LLOC (ATOM "OPTIONAL™ ENV)
#DECL ((VALUE) LOCD

(ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
returns a locative to the local-value cell of an ATOM

LOAD (CHANNEL "OPTIONAL®™ (LOOK-UP .OBLIST))
#DECL ((VALUE) *"DONE"
(LOOK-UP) <OR OBLIST <LIST [REST <OR OBLIST 'DEFAULT>]>>)
reads and evaluates all ob jects via an input CHANNEL

LOCATIVE? (OBJECT)
#DECL ((VALUE) <OR ‘T '#FALSE ()>
(OBJECT) ANY)
tells whethier an object is a locative (predicate)

LOG (NUMBCR)
#DECL ((VALUE) FLOAT
{NUMBER) <OR FIX FLOAT>)
returns natural legarithm of a number (arithmetic)

LOGOUT ()
#OECL ((VALUE) '#FALSE ())
logs out of the operating system (useful for background processes)

LOOKUP (PNAME OBLIST)
#DECL ((VALUE) <OR ATOM "#FALSE ()>
(PNAME) STRING (OBLIST) OBLIST)
returns an ATOM found on a given OBLIST

LPARSE ("OPTIONAL™
(STRING .PARSE-STRING) (RADIX 10) (LOOK-UP .OBLIST) PARSE-TABLE LOOK-AHEAD)
#DECL ((VAILUE) LIST
{STRING) STRING (RADIX) FIX (PARSE-TABLE) VECTOR (LOOK-AHEAD) CHARACTER
{LODK-UP) <OR OBLIST <LIST [REST <OR OBLIST 'DEFAULT>1>>)
returns a LIST of the ob jects parsed from a STRING (sections 7.6.6.3, 15.7.2, 17.1..3)

LSH (WORD AMOUNT)
#DECL {((VALUE) WORD
(WORD) <PRIMTYPE WORD> (AMOUNT) FIX)
shifts hits in a machine word

LVAL (ATOM "OPTIONAL®™ ENV)
FDECL ((VALUE) ANY
(ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
returns the local value of an ATOM

Appendix 2

R R A R A A AR A A B R R M B A A LM A A LAMAi AL A R A A A A A A A A MR A R LAl A s LMy A R ARAiiRALf R BBBBEERRRBEERRRRRTII=_[S

242 The MDL Programming Language

MAIN ()
FDECL ((VALUE) PROCESS)
returns FPROCESS 1 (the main PROCESS)

MANIFEST ("TUPLE"™ ATOMS)
FDECL ((VALUE) *T
(ATOMS) <TUPLE [REST ATOMI>)
declares the glﬂhal values of ATOMs to be constant

HANIFESTT (ATOM)
FDECL ((VALUC) <OR 'T *#FALSE ()>
(ATOM) ATOH)
tells whether the global value of an ATOM is constant (predicare)

MAPF (FINAL-FCN LOOP-FCN "TUPLE®" STRUCTURES)

FDECL ((VALUE) ANY
(FINAL-FCN) <0OR APPLICABLE FALSE>» (LOOP-FCN) APPLICABLE
(STRUCTURES) <TUPLE [REST STRUCTURED]>)

maps function onto clements of structures

HMAPLEAVE ("OPTIONAL® (VAL T))
FDECL (
(VAL) ANY)
leaves the most recent MAPF/R with a value

MAPR (FINAL-FCN LOOP-FCN "TUPLE® STRUCTURES)
FDECL ({(VALUE) ANY

{FINAL-FCN) <OR APPLICABLE FALSE> (LOOP-FCM) APPLICABLE
(STRUCTURES) <TUPLE [REST STRUCTURED]>)
maps Munction onto RESTs of structures

HMAPRET ("TUPLE"™ ELEMENTS)
#DECL
(ELCHMENTS) TUPLE)
returns a variable number of ob jects to the current MAPF/R

MAPSTOP ("TUPLE® ELEMENTS)
#DECL (

(ELEMENTS) TUPLE)
MAPRETs. then stops looping of MAPF/R and causes application

MAX ("TUPLE™ NUMHBERS)
#DECL ((VALUE) <OR FIX FLOAT>
(NUMBERS) <TUPLE [REST <OR FIX FLOAT>]>)
returns the greatest of its arguments (arithmetic)

Appendix 2

e

R EEEEEEEEEE—— e

The MDI. Programming Language 245

ME ()
#DECI ({VAIUF) PROCESS)
returns the current PROCESS

HEMBER (OBJCCT STRUCTURE)
#DECL ((VALUE) <OR STRUCTURED '#FALSE ()>
(OBJECT) ANY (STRUCTURE) STRUCTURED)
tells whether an object is "structurally” equal to some element of a structure (predicate)

MEMQ (OBJECT STRUCTURE)
#DECL ((VALUE) <OR STRUCTURED ‘"#FALSE ()>
(ORJECT) ANY (STRUCTURE) STRUCTURED)
tells whether an ob ject is “exactly” equal to some element of a structure (predicate)

MIN {("TUPLE™ NUHMBERS)
#DECL ((VALUL) <0R FIX FLOAT>»
(HUMBILRS) <TUPLEC [REST <OR FIX FLOAT>1>»)
returns the least of ifs ArEUINENnts {arithmetic)

MOBLIST (NAME “OPTIONHAL®™ (LENGTH 13))
#FDECL ((VALLUF) ORLIST

(HAME) ATOM (LENGTH) FIX)
creales or geis an QOBLIST

HOD {(MNUMBER HMODUILIIS)
#DECL ({VALUE) FIX
(HUMOER MODULUS) FIX)
returns nummnber-theoaretic remainder Iffi:hfd-puiul residue) (arithmetic)

HONAD? (OBJECT)
FODECL ({VALUE) <OR 'T '#FALSE ()>
(OBJECT) ANY)
tells whether an ob jeet is either unstructured or an emply structure (predicate)

N==7 (OBJCCT-1 OBJCCT-2)
PDECL ((VALUM) <OR *'T *#FALSE ()>
(ORJECT=1 OBJECT-2) ANY)
tells whethier 1wo ob jects are NOT “exactly” equal (predicate)

N=7 (ORIFCT-1 ORJECT-2)
#DECL ((VALUE) <OR 'T '#FALSE ()>
(OBJECT-1 OBJECT-2) ANY)
tells whether two ob jects are NOT “structurally” equal (predicate)

Appendix 2

V

244 The MDL Programming Language

METACC (CHANNEL)
#DECL ((VALUE) <OR CHANNEL '#FALSE ()>
(CHANNLL) CHANNEL)
Accepis a network connection

NETS (CHANNIEL)
#DECL ((VAILUI CHANNFEL) CHANMNEL)
forces operating-sysiem network-CHANNEL buffer to be senl

NETSTATE (CHANHECL)
#DECL ((VALIIL) <UVTCTOR FIX FIX FIX>
(CHANNEL) CHANNEL)
refurns siate information for a network CHANNEL

NEWTYPE (HIW-TYPE OILD-TYPE "OPTIONAL"™ PATTERN)
FDECL ((VAL LIE HEW=-TYPE) ATOM
(OLD-TYPE) ATOM (PATTERN) <OR ATOM FORM>)
defines a wew data 1y pe

NEXT (ASS0CIATION)
#DECL ((VALUE) <OR ASOC ‘*#FALSE ()>
(ASSOCTATION) ASO0C)
refurns the next object in the association chain

NEXTCHR ("OPTIONAL"™ {CHANNEL -INCHAN} (EOF-ROUTINE '<ERROR ...>))
FDECL ((VALUF) <OR CHARACTER FIX>
(CHANHFL) CHANNEL (FOF-ROUTINE) ANY)
returns the character thar will next be read via an input CHANNEL

NOT (OBJICT)

#DECL ((VAILUF) <OR 1 "#FALSE ()>
(OBJECT) <OR FALSE ANY>)

computes Ingical "not” of a truth-value

NTH (STRUCTURID "OPTIONAL®™ NJ)
#DECL ((VALUE)Y ANY
(H) <OR FIX OFFSET>)
ferches the Nil elemient of a structure

OBLIST? (ATOM)
#DECL ((VvAIUTC) <OR ORLIST "fFALSE ()>»

(ATOM) ATOH)
returns an ATOM's OBLIST or false if none (predicate)

Appendix 2

R R R R R R R R e e
e =l
—_————————————————— -
- — S == a— S
= e _________ . = . —————————— .= =
e e ——— —— - eorae———
R R R R R e = e
e R R ey
—_— e ———— e G —
e e
S ——— e
e B, W e —
e
e e e
e
e —————————— e
e ——— e ———————————— T
e e
P EERERERERERERERERERETETETE e ,———————————————————
e —EEE—E——EEEE—E—————T e
=~ =~~~ —".
e ———— e Y -
e e e el e e e
_———— e R e e v
e ——————ee——

The MDL. Programming Language 245

OFF (INTERRUPT "OPTIONAL" WHICH)
ADECL ((VAILUF)Y <OR IANDLER IHCADCR ‘#FALSE ()2
(INTERRUPT) <OR HANDLER IHEADER STRING ATOM> (WHICH) <OR CHANNEL LOCATIVE?>)
removes an interrupt HANDLER or destroys an interrupt

OFFSET (H PATTIRN)
#DECL ((VALUE) OFFSET
(M) FIX (PATTERN) <OR ATOM FORH2)
creates an infeger with attached type declaration

oM (NAME APPLICABLE PRIOCRITY “OPTIONAL® (PROCESS 0) WHICH)
#DECL ((WALULE)Y HAHDLER
(HMAMI) <OR STRING ATOM®> (APPLICABLE) APPLICABLE (PRIORITY) FIX
{PROCIESS) <0OR FIX PROCESS>»> (WHICH) <OR CHANMEL LOCATIVE>)
turns on an interrupt and creates an interrnpt HANDLER

OPFEN ("OM TONAL® (MODE "READ™) "TUPLE®™ FILC-NAME)
#DECL ((VWALUL) <OR CHANMEL <FAL3E STRING STRING FIX>>
(MODE) STRING (FILE-NAME) TUPLE)
creates and opens an 1/ CIHIANNEL

OPEN-NR ("OP110HAL™ (MODE "“READ") "TUPLE"™ FILE-NAME)
#DECL ((VALUEL) <OR CHANNEL <FALSE STRING STRING FIX>>
{MODE) STRING (FILE-NAME) TUPLE)
creates and apens an I/ CHANNEL without changing File’s reference date

OR ("ARGS"™ ARGS)
fADECL ((VALUL) <OR FALSE ANY>
(ARGS) LIST)
computes logical inclusive "or” of truth-values, evaluated by the Subroutine

OR? ("TUPIL™ TUPMLE)
#DECL ((VALUE) <OR FALSE ANY>
{TUPLE) TUPLE)
computes Ingical inclusive "or” of truth-values, evaluated at call time

ORB (" TUPLE" WORDS)
#DECL ((VALUE) WORD
(WORDS) <TUPLE [REST <PRIMTYPE WORDZ>]1>)
computes bitwise inclusive "or” of machine words

OVERFLOW ("OPTIOHAL™ SWITCH)
#DECL ((VALUL) <OR *'T '#FALSE ()>
(SWITCH) <0OR ANY FALSE>)
enables or disables overflow error (arithmetic)

Appendix 2

=

e

246 The MDL Programming Language

PARSE ("OPTIOHAL"
(STRING .PARSE-STRING) (RADIX 10) (LOOK-UP .OBLIST) PARSE-TABLE LOOK-AHEAD)
#*DECL ((VAIUL) ANY
(STRING) STRING (RADTX) FIX (PARSE-TABLE) VECTOR (LOOK-AHEAD) CHARACTER
(LOOK-UP) <OR OBLIST <LIST [REST <OR OBLIST ‘DEFAULT>]>>)
parses a STRING intn an ob ject (seclions 7.6.6.2, 15.7.2. 17.1.3)

PCODE (NAME OFFSET)
#*DECL ((VYALUE) PCODE
(MANF) JSTRING (OFFSET) FIX)
creates |r|"ri|:1<'| in pure RSUBR code

PNAME (ATON)
YDECL. ((VAIUL) STRING
(ATOM) ATOM)
refurns the print-name of an ATOM as a distinet copy

PRIMTYPME {(OBJLCT)
#DECL ((VALLL) ATOM
(OBJECT) ANY)
returns the primitive data 1ype of an objeet

PRIMTYPE=-C (TYPL)
#DECL ((VALUE) PRIMTYPE=-C
(TYPC) ATOH)
gets a “storage allneatinn code” for a data type

PRINL (OBJECT "OPTIONAL"™ (CHANNEL .OUTCHAN))
#DECL ((VALUE OBJECT) ANY
{ CHANNEL) CHANKEL)
prints an nh ject via an outpuat CHANNEL

PRINC (OBJECT "OPTIONAL" (CHANMEL .OUTCHAN))
#DECL ({VAILUF ORICCT) ANY
(CHANNEL) CHANNEL)
prints an object via an onipnl CHANNEL without STRING or CHARACTER brackets or ATOM trailers

PRINT (OBROECT "0OP1T10MHAL"™ (CHANNEL .OUTCHAN))
#DECL ((VALUE OBJECT) ANY
(CHANNEL) CHANNEL)
pri.llTs. an nh_jt'ul via an oufput CHANNEL beiween new-line and space

Appendix 2

The MDL Programming Language 247

PRINTE (BUFFCR CHANNEL)
#DECL ((VALUE BUFFER) <<OR UVECTOR STORAGE>» [REST <PRIMTYPE WORD>]>
(CHANHEL) CHAMNEL)
writes binary information via an outpur CHANNEL

PRINTSTRING (BUFFER "QPTIONAL"™ (CHANNEL .QOUTCHAM) (COUNT <LENGTH -BUFFER>))
#FODECL ((VALUE COUNT) FIX

(BUFFER) STRING (CHANNEL) CHANNEL)
writes contents of a STRING via an output CHANNEL

PRINTTYPE (TYPE “"OPTIONAL® HOW)
#DECL ((VALULC) <OR ATOM APPLICABLE °*#FALSE ()>
(TYPE) ATOM (HOW) <OR ATOM APPLICABLE})
specifies or returns how a data type is printed

PROCESS (STARTUPR)
#DECL ((VAIUE) PROCESS
(STARTUP) APPLICABLE)
creales a new PROCESS with given startup function

PROG ("ARGS"™ NARGS)
#DECL ((VALUE) ANY
(ARGS) <LIST [OPT ATOM] LIST [OPT DECL] ANY2>)
executes sequential expressions

PURIFY ("TUPLE"™ TUPLE)
#DECL ((VALUE) ANY
(TUPLE) TUPLE)
purifies objects for sharing by different operating-system processes

PUT (ITEM INDICATOR "OPTIONAL™ VAL)
#FDECL ((VALUE) ANY

(ITEM) <OR STRUCTURED ANY> (INDICATOR) <OR FIX OFFSET ANY> (VAL) ANY)]
stores inlo structure or does PUTPROP

PUT-DECL (IDENTIFIER PATTERN)

#DECL ((VALUE IDENTIFIER) <OR LOCD OFFSET» |
(PATTERN) <OR ATOM FORM>)

changes the type declaration for an ATOM's value or an OFFSET I

PUTBITS (TO FIELD "OPTIONAL"™ (FROM 0))

#DECL ((VALUE) <PRIMTYPE WORD>

(TO FROM) <PRIMTYPE WORD> (FIELD) BITS)
sets a bit Tield in a machine word

Appendix 2

- —-—

e e —
e S
T ———————
-—
—
e e —
e e e S e e S e
e e —
R R R BREERRRRR—wSSSSNSNZNSD——ZSBEEE—————————————S————————————————sss-.
-
——— .
e ——— L —————
S
e —————
e —————————— e —— e
- s .
T ——
= e || == e = e ————————
e R e S —
e e
—
——— e ———————
e ———
e e

—_— e — = — ==

248

PUTPROP (ITEM INDICATOR "OPTIONMAL®™ VAL)
#DECL ((VALUE) ANY
(ITEM TNDICATOR WAL) ANY)
{dislassociates a value with an item under an indicator

PUTREST (HEAD TAIL)
FDECL ((VALUE HEAD) <PRIMTYPE LIST>
(TAIL) <PRIMTYPE LIST>)
replaces the rest of a list

QUIT ()
FDECL ((VALUE) "#FALSE (})
exits from MDL graccfully

QUITTER (WAS=-TYPED CHAMNEL)
#DECL ((VALUE WAS-TYPED) CHARACTER
{CHANNEL) CHAMMNEL)
is the interrupt handier for “6 and “~5 quit features

QUOTE ("ARGS™ ARGS)
FDECL ((VALUE) ANY
(ARGS) LIST)

returns II'II;‘ fir&t :-I'I'gl-l-ll-lfl‘ll l.lll.c'h":.ll.li'h.ld

RANDOM (“"OPTIONAL™ SEED-1 SEED-2)
FDECL ((VALUE) FIX
(SEED-1 SEED-2) FIX)
generates a uniform pseudo-random integer (arithmetic)

READ ("OPTIONAL™

The MDL Programming Language

(CHANNEL .INCHAM) (EOF-ROUTINE '<ERROR ...>) (LOOK-UP .OBLIST) READ-TABLE)

#DECL ((VALUE) ANY

(CHANNCL) CHANNEL (EOF-ROUTINE) ANY (READ-TABLE) VECTOR

(LOOK-UP) <OR OBLIST <LIST [REST <OR OBLIST

'DEFAULT>]>>)

reads one object via an input CHANNEL (sections 11.L.L1L, 11.3, 15.7.1, 17.1.3)

READEB (BUrFER CHANNEL "OPTIONAL™ (EOF-ROUTINE '<ERROR

FDECL ((VALUE) FIX

--2))

(BUFFER) <<OR UVECTOR STORAGE> [REST <PRIMTYPE WORD>1>

(CHANNEL) CHAMNEL (EOF-ROUTINE) ANY)
reads binary information via an input CHANNEL

Appendix 2

(it

The MDL Programming Language 249

READCHR ("OPTIONAL®™ (CHANNEL .INCHAN) (EOF-ROUTINE '<ERROR ...»))
#DECL ((VALUE) <OR CHARACTER FIX>

(CHANNEL) CHANNEL (EOF-ROUTINE) ANY)
reads one characier via an input CHANNEL

READSTRING (BUFFER "OPTIONAL® (CHANNEL .INCHAN) (STOP <LENGTH .BUFFER>)
(EOF-ROUTINE °"<ERROR ...>))
FDECL (({VALUE) FIX

(BUFFER) STRING (CHANNEL) CHANNEL (STOP) <OR FIX STRING> (EOF-ROUTINE) ANY)
reads into a STRING via an input CHANNEL

REALTIMER ("OPTIONAL®™ INTCRVAL)
#DECL ((VALUE) <OR FIX FLOAT "#FALSE ()>
{INTERVAL) <OR FIX FLOAT>)
sets or feiches interval for real-time interrupts (ITS version only)

REMOVE (PNAME "OPTIONAL®™ OBLIST)
#DECL ({VALUE) <OR ATOM "#FALSE ()>
(PNAME) <OR ATOH STRING»> (OBLIST) OBLIST)
removes an ATOM MTeom an OBLIST

RENAME ("TUPLE®" FILE-NHAME/S)

FDECL ((VALUE) <OR *T <FALSE STRING FIX>>
(FILE-HAME/S) <TUPLE <OR STRING CHANMEL>>)

renames or deletes a disk file

REP ()
#DECL ((VALUE) ANY)
is the buili-in function for READ-EVAL-PRINT loop

REPEAT ("ARGS"™ ARGS)
#DECL ((VALUE) ANY

(ARGS) <LIST [OPT ATOM] LIST [OPT DECL] ANY>)
executes sequential expressions repeatedly

RESET (CHANNEL)

#DECL ({VALUE) <OR CHANNEL <FALSE STRING STRING FIX>>
(CHANNCL) CIIANNEL)

reopens an IO CHANNEL at its beginning

REST (STRUCTURED "OPTIONAL™ (N 1))
#DECL ({(VALUE) STRUCTURED
(N) FIX)
removes the first N elements from a structure and changes to primitive data type

Appendix 2

B

I E————E——S——m—mRmSRSESEENNNNNNN——————————————————S—GR—————_—_—SSn—G——n—SSS

250 The MDL Programming Language

RESTORE ("OPTIONMAL®™ NAME-1 NAME-2 NAME-3 HNAME-4)
FDECL ((VALUE) "RESTORED"
(HAME=-1 NAME-2 NAME-3 NAME-4) STRINEG)
restores MDL's stiate from a File

RESUME (VAL "OPTIOMNAL"™ (PROCESS <RESUMER>))
FDECL ((VALUE) ANY

(VAL) ANY (PROCESS) PROCESS)
transfers execution to another PROCESS

RESUMER ("OPTIONAL®™ (PROCESS <ME>))
FDECL ((VALUE) <OR PROCESS "#FALSE ()>
(PROCESS) PROCESS)
returns the PROCESS that last resumed the given PROCESS

RETRY ("OPTIONAL™ FRAME)
FOECL (
(FRAHE) FRAME)
reiries a previous Subroutine call, usually from the error level

RETURN ("OPTIONAL®™ (VAL T) (ACTIVATION .LPROG\ I-INTERRUPTS))
#DECL ((VALUE) ANY

(VAL) ANY (ACTIVATION) ACTIVATION)
leaves a PROGSREPEAT with a value

RGLOC (ATOM "OPTIONAL®™ (MAKE-SLOT <3>))
#DECL ((VALUE) LOCR
(ATOM) ATOHM (MAKE-SLOT) <OR FALSE ANY>)
returns a locative to the global-value cell of an ATOM for pure-program use

ROOT ()
#DECL {((VALUE) OBLIST)
returns the OBLIST containing names of primitives

ROT (WORD AMOUNT)
#DECL ((VALUE) WORD

(WORD) <PRIHTYPE WORD> (AMOUNT) FIX)
rotates bits in a machine word

RSUBR (CANDIDATE)
#DECL ((VALUE) RSUBR
(CANDIDATE) <VECTOR <OR CODE PCODE> ATOM DECL [REST ANY1>)
creates an RSUBR

Appendix 2

N

— — :
T ——— s
' _— '
' ——— '
: e '
T ——
———— —— '
' —— '
' i '
: e '
— ——
' E — '
' r— '
' — '
: — I
T —— e
' — '
' —— '
: — '

e S
S ————

The MDL Programming Language 251

RSUBR-ENTRY (CANDIDATE OFFSET)
#DECL ((VALUE) RSUBR-ENTRY
(CANDINATE) <VLCTOR <OR ATOM RSUBR> ATOM DECL> (OFFSET) FIX)
adds an entry point 1o an RS5UBR

RSUBR-LINK ("OPTIOHNAL™ SWITCH)
#DECL ((VALUE) <OR 'T “FFALSE ()>
(SWITCH) <0OR FALSE ANY>»)
enables or disables the auntomatic RSUBR linl-.l'llg Feature

RUNINT ("TUPIii* TUPLE)
#DECL ((VALULE) ANRY
(TUFLE) TUPLE)
applies interrupt handler (For internal use only)

RUNTIMER ("OPTIONAL"™ INTERWVAL)
#DECL ((VALUE) <OR FIX FLOAT "#FALSE ()>
(INTCHVAL) <OR FIX FLOAT>)
sets or fetches interval Ffor run-time interrupt (ITS version only)

SAVE ("TUPLE"™ FILE-NAME-AND-GC?)
#DECL ((WALULC)Y ""SAVED"
(FILE-HAMF-AND=-GC?) <TUPLE [OPT STRING] [OPT STRING]
[OPT STRING] [OPT STRING] [OPT <OR FALSE ANY>1>)
writes the entire state of MDL to a file

SEND (OTHER-HAME-]1 OTHER-NAME-2 BODY
"OPTIQHAL™ (TYPE 0) (MY-NAME-1 <UNAME>) (MY-NAME-2 <JNAME>))
#DECL ((VALWLE) <OR 'T '#FALSE ()>
(OTHER-NHAHME -1 OTHER-NAME-2 MY-NAME-1 HMY-NAME-2) STRING {(TYPE) FIX
(BODY) <OR STRING S5TORAGE <UVECTOR [REST <PRIMTYPE WORD>]>>)
sends an [PC message (ITS version only)

SEND=-WAIT (OT1l H-NAHMI -1 OTHER-NAMC-2 BODY
"OFTIONAL® (TYPE 0) (MY-NAME-1 <UNAME>) {MY-NAME-2 <JNAME>))
#DECL ((VALUE) 'T
(OTHER-NAME-]1 OTHER-NAME=2 MY-NAME-1 HY-NAME-2) STRING (TYPE) FIX
(BODY) <OR STRING STORAGE <UVECTOR [REST <PRIMTYPE WORD>]>>)
sends an IPC message and wails for it 1o be received (ITS version only)

SET (ATOM LVAL "OPTIONAL"™ ENV)
#DECL ((VALUF LVALY ANY
(ATOM) ATOM (ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
changes the local value of an ATOM

Appendix 2

R R R RRRERRERRRRRRRRRRRRRRRRRRRRRRRRRERRERRRRRRRRRRRRRERRRRRRRRRRRRRRRRRERRRRRRERREREERRRRRRRRRRREERRRRRRRERRRERREERRRRRRRRENRRRRRRRRZES

252 The MDL Programming Language

SETG (ATOM GWVAL)
#DECL ((VALIIE GVAL) ANY
(ATOM) ATOM)
changes the global value of an ATON

SETLOC (POTNIFR OBJECT)
#DECL ((VALUE OBJECT) ANY
(POTHTER) LOCATIVE)
changes the contents poninted to by a locative

SIN (HUMRER)
#DECL ((VAILUE) FLOAT
(HUMBIRY <OR FTIX FLOAT>)
returns sine of a number (arithimetic)

SLEEP (<0OR TFIX FLOAT> "OPTIONAL"™ (UNHANG <3>))
#DECL ((WVAIUF) ANY
(UNHANG) ANY)
does nothing, interruptibly, the given number of seconds

SHAML ("OPTIOHAL™ DIRECTORY)
*#DECL ((VALUE DIRECTORY) STRING)
sets or relurns the dircetory name used by default for new 1JO CHANNELs

SORT (PRED KEY-STRUC "OPTIONAL"™ (RECORD-LENGTH 1) (KEY-OFFSET 0)
“TUPLE"™ OTHER=-STRUCS-AND-RECORD-LENGTHS)
#DECL ((VALUC KEY-STHUC) <OR <PRIMTYPE VECTOR> {PRIWMTYPE TUPLE> <PRIMTYPE UVECTORD>>
(PRED)Y <OR FALSE APPLICADLE> (RECORD-LENGTH KEY-OFF3ET) FIX
(DTHER=-5TRICS-AND-RECORDN-LENGTHS)
<TUPLE [REST <OR <PRIMTYPE VECTOR> <PRIMTYPE TUPLE> <PRIMTYPE UVECTOR>> FIX]>)
sorts clements of a structure and rearranges other siructures

SPECIAL-CHECK ("OPTIONAL™ SWITCH)

FDECL ((VALUE) <0OR 'T '"#FALSE ()>
(SWITCII) <OR ANY FALSE?>)

Turns :i||1|"r'i1|'|'l1,‘"r' s i;'ni-q_']:ll’"l;"ln.ll.l.g on or of f

SPECIAL-NODE ("OPTIOHNAL"™ SWITCH)

#DECL ({(WALULC) <0OR 'SPCCIAL ‘*UNSPECIAL>
(SW1TCH) <0OR °"SPECIAL "UNSPECIAL>)

sels specially declaration used by default

Appendix 2

.

R R R ———— e —————
L
- " .. -——————————
— T e e e e e e e
e R
e ———— e e —
e e e
e === aTa
e — e —— e —— — e o m—
= —— R
. e E—
S S e e e e
e S
e e
e e ——————————— —— e e g . e g =g
e ———— e e N
—_— o
e ——
maee e L e
e —— A ———— e
—_————— e ———————————_—_— e
T e e T e T e T e T e, e —
e R N | R Rt
R e e P S S
_— —e—e————————————————————————————— = = = = — e ——

The MDL Programming Language 253

SPNAME (ATOM)
#DECL ([(VALUE) STRING
(ATOM) ATOM)
returns the print-name of an ATOM by sharing it

SQRT (HUMIRLR)
FDECL ((VALLL) FLOAT
) (HUMBLR) <OR FIX FLOATY)
returns square rool of a number (arithmetic)

SQUOTA (SYMBOL)
#DECL ((VALUE) <OR FIX '#FALSE ()>
(SYMBOL) <PRIMTYPE WORD>)
gets the address of an internal interpreier symbol (for internal use only)

STACKFORM ("ARGS"™ ARGS)
#DECL ((VALUE) ANY
(ARGS) LIST)
applies a function ta stacked arguments (archaic)

STATE (PROCESS)
#DECL ((WVALULC) ATOM
{ PROCESS) PROCESS)
returns a PROCESS's current stale

STRCOMP (STRING-1 STRING-2)
#DECL ({VALUL) <OR *'1 "0 *=1>
(STRING-1 STRING-2) <OR ATOM STRING>)
comparcs twno character-strings or {wo print-names

STRING ("TUPLE®™ ELFEMENTS)
#DECL ({(VALUE) STRING

(ELEMCHTS) <TUPLE [REST <OR STRING CHARACTER>]>)
creates a character-string from explicit arguments

STRUCTURED? (OBJECT)
#DECL (({VALUC) <OR 'T '#FALSE ()>
(OBJFCT) ANY)
tells whether an object is structured (predicate)

SUBSTITUTC (NCW OLD)
#DECL ((VALUE OLD) ANY
(MEW) ANY)
substitutes one object for another in the entire address space

Appendix 2

R,

254 The MDL Programming Language

SUBSTRUC (rROM "OPTIONAL"™ (REST 0) (AMOUNT <- <LENGTH .OBJECT> .REST>) TO)
#DECL ((VAILUE 10) <OR LIST VECTOR UVECTOR STRING BYTES>
(FROM) <OR <PRIMTYPE LIST> <PRIMTYPE VECTOR> <PRIMTYPE TUPLE>
CPRIMTYPE UVECTOR> <PRIMTYPE STRING> <PRIMTYPE BYTES>»>
(REST AMOUNT) F1IX)
copies (part nf) a structure info another

SUICIDE (VAL "OPTIONAL®" (PROCESS <RESUMER>))
#DECL (({VALLC)Y ANY
(VYAL) ANY (PROCESS) PROCESS)
causes the current PROCESS to die and resumes another

TAG {(LABLL)
#DECL ((WVALUE)Y TAG
{LABEL) ATOM)
creatcs a TAG for use by GO

TERPRTI {"OPTIOHAL" (CHANHEL .OUTCHAN))
#DECL ((VALUE) '"#FALSE ()
(CHANNICL) CHANNLL)
prints a carriage-return and line-feed via an output CHANNEL

TIME ("TUPLL® IGHORED)
#DECL ((VALULLC) TLOAT
(IGHNORFD) TUPLE)
returns the clapsed execution time in seconds

TOP (STRUCTURFE)
#DECL ((VALUEL) <OR VECTOR TUPLE UVECTOR STORABE STRING BYTES TEMPLATE>
(STRUCTURE) <OR <PRIMTYPE VECTOR3® <PRIMTYPE TUPLE>»
<PRIMTYPE UVECTOR>» <PRIMTYPE STORAGE>»
CPRIMTYPE STRING> <PRIMTYPE BYTES» <PRIMTYPE TEMPLATE>>)

replaces all elements removed from a non-list structure by RESTing and changes to primitive data
l‘]']'!*"‘

TTYECHD ([(CHANHNEL SWITCH)
#DECL ((VALUE CHANNEL) CHAMNEL
(SWITCH) <0R FALSE ANY>)
turns cechoing (of characters typed on a terminal) on or of f

TUPLE ("TUPLE" ELEFMENTS)
#DECL ((VALUL) TUPLE
(ELTHENTS) TUPLEC)
creates a TUPLE fromn explicit arguments

Appendix 2

:
:
S
S S
—— e —————— e —————— — - -——_—_—— e - - — e
e e e

The MDL PProgramming Language 255

TYI ("OPTIONAL" CHANNEL)
#DECL ((VALULC) CHARACTER
(CHANNEL) CHANNEL)
inputs a CHARACTER from a terminal immediately

TYPE (OBJLCT)
#DECL ((VALUE) ATON
(OBJECT) AHY)
returns the data 1ype of an ob ject

TYPE-C (1¥PF “"OPTI0ONAL" PRIMTYPE)
#DECL ((VALUE) 1YPE-C
(TYPE PRIMTYPE) ATOM)
makes a data-1ype ende for pure-program use

TYPE-W (TYPE "OPTIONAL™ PRIMTYPE RIGHT-HALF)
FOECL ({(VALUL) TYPE-W
CTYPT PRIMTYPL) ATOM (RIGHT-HALF) <PRIMTYPE WORD>)
makes a data-type machine word for pure-program use

TYPE? (OBJECT ®TUPLE™ TYPES)
FDECL ((VALUF) <OR ATOM '#FALSE ()>
(OBJECT) ANY (TYPES) <TUPLE ATOM [REST ATOM]>)
tells whether an ol ject’s data type is one of the given types (predicate)

TYPEPRIM (TYFL)
#DECL ((VALUE) ATOH
(TYPE) ATOH)
returns a data type’s primitive type

UNAME ()
FOECL ((VALUL) STRING)
returns the “user name” of MIIL's process

UNASSIGHN (ATON "OPTIONAL"™ ENV)
#DECL ({VALUE ATOM) ATOM

(FNV) <OR FRAME CNVIRONMONT ACTIVATION PROCESSY)
causes an ATOM 1o have nn local value

UNMANIFEST ("TUPLE"™ ATOMS)
#DECL ((VvALULC) 'T
(ATOMS) <TUPLE [REST ATOM]>)
declares the giobal values of ATOMs nnl to be constants

Appendix 2

-l

e e —
. —————
E—_—————————— — — ——————————————————————————————————— = —the———————
=== == e e
=
T S— B B— _ — ————————— ————— — —— ———— 0
e e —————————— e
e
e — — i ——— - e
_— = . e s
e __________________ e — ——— -
e —
—————
e
B e e ——— e —— = e B T e
R —————— e e S S
= e e e e =,
e e
- e, ., ,_ _ Uo———
-— -
—-— . e, e e e __
S e —
—_— e
e ——— ———

s

256 The MDL Programming Language

UNPARSE (OBJOECT “OPTIONAL®™ RADIX)
#DECL ({VALUE)} ST1RING

(OBJECT) ARY (RADIX) FIX)
creates a STRING representation of an ob ject

UNWIND ("HORMAL *CLEAN=-UP)
#DECL ((VALUE) ANY
{NORMAL CLEAN-UP) ANY)
specifies cleaning-up during non-local return

UTYPE (UVECTOR)
#DECL ((VALUILC) ATOM
(UVECTOR) <PRIMTIYPE UVECTOR>)
returns the data 1ype of all clements of a uniferm vector

UVECTOR ("TUPIE™ CLLEMENIS)
#DECL ((VALUE) UVECTOR
(ELEMENTS) TUPLE)
creales a UVECTOR (rom ﬂ.\plirlT AFgUMENTLS

VALID-TYPE? (TYPE)
#DECL ((VALUE) <OR TYPE-C '#FALSE ()>
(TYPE) ATOM)
tells whether an ATOM is the name of a type (predicate)

VALRET (NCSSAGE)
#DECL ({VALUL) "#TALSLC ()
(MESSAGE) <OR STRING FIX>)
passes a message (o the superior aperating-system process

VALUE (ATOM "OPTIOHAL"™ EHV)
#DECL ((VALUE) AHY
(ATOM) ATOM (ENV) <OR FRAME ENVIRONHMENT ACTIVATION PROCESS>)
returns the local or else the glnbal value of an ATOM

VECTOR ("TUPLE" EFLEMENTS)
#DECL ((VALUE) VECTOR
(ELCMENTS) TUPLE)

creates a VICTOR fromn explicit arguments

XJINAME ()
#DECL ((VALUE)Y STRING)
returns the "intended job name” of MDL's process

Appendix 2

g S
T e e —
— emee—— e — _______________________ —A—o-o- - — — . = =" ———
———————— . = _—
= . .~ = = = ——mvn— —umx =
-— = ————
EEE—— e e e —
e e —————meIm e S B =" ———
e, — —
== ————————————— == s —
e e —————_——————
S amemem—____________________aaaaa————————————
e _____________ e _______ e e
R S —=====
= ———— — — — ———————————__—————___
_————mm m m mmm m m m m m————————————————————— e
—— — —— — — — s ————————
e e e e —
e R ————————
—,——— ===
———— _— ___————————————— = = — = _— - —
- = e——_—_—_—_—_—_“a0G—— e
— — — — — — — — — —— — — _ — — — — — — — — — — — — — — — — —— — — — — _ __—
e aaaaae—————————
e L

s

The MDL Programming Language 257

XORB ("TUPLE" WORDS)
#DECL ((VALUE) WORD
(WORNS) <TUPLE [REST <PRIMTYPE WORD>]>)
compiutes bitwise exclusive “or” of machine words
HUNAME ()

SDECL ((VALUE) STRING)
returns the “intended user name” of MDL's process

Appendix 2
-
—————sme e e—e—e—e— N R R R R ==
e
—aaa————————————————LL ———————————————————————————,,,L__ e ——————————————————————————,,,L.__ e ————————————————— .-
e —
e ——
e e —————m—m—m— e ——————————
e B e e —

P

258 The MDL Programming Language

Appendix 8. Predefined Types
On these twn pages is a table showing cach of MDL's predefined TYPEs, its primitive type Iif

different, aml various flags: 5 for STRUCTURED, E for EVALTYPE not QUOTE, and A for APPLICABLE.

¥ means thal an object of that TYPE cannot be CHTYPEd to and hence cannot be READ in (if
attempted. a CAN'T-CUTYPE -TNTO ercor is usual)

B means that an object of that TYPE cannot be READ in (if attempted, a STORAGE-TYPES-DIFFER
errar is usuall, that instead it is built by the interpreter or CHTYPEd to by a program. and that its

PRINTed representatinn makes it lonk as Illnllg]l its TYPEPRIM were different.

% means that an objeet of that TYPE is PRINTed using % notation and can be READ in only that way.

TYPE TYPEPRIM 5 E A COMMEeEnts

ACTIVATION F RARME b4

ASOC B sic: only one S

ATOM

BITS WOHD

BYTES 5

CHANNEL VECTOR > X

CHARACTER WoRD

CLOSURE LIST 5 A

CODE UVIECTOR 5

DECL LIST 5

DISHMISS ATOM can be returned by interrupt handler
ENVIRONMENT 1T RANME B

FALSE L151 5

FIX WORD A

FLOAT WORD

FORM LIS 5 E

FRAME B

FSUBR WORD A X

FUNCTION LTST S5 A

HANDLER VECTOR 5 x

IHEADER VECTOR 5 X “interrupt header”

ILLEGAL WORD ¥ Garbage collector may put this on non-LEGAL? ob ject.
INTERNAL INTCRNAL-TYPE X should not be seen by programs
LIMNK ATOM b4 for terminal shorthand

LIST 5 E

LOCA B locative to TUPLE

Appendix 3

I

l||||

The MDI. Programming Language

LOCAS
LOCE
LOCD
LOCL
LOCR
LOCS
LOCT
LOCU
LOCY
LOSE
MACRO
OBLIST
OFFSET
PCODE

PRIMTYPE-C

PROCESS

QUICK-ENTRY

QUICK-RSUBR

READA
RSUBR

RSUBR=-ENTRY

SEGMENT
SPLICE
STORAGE
STRING
SUBR
TAG
TEMPLATE
TIME
TUPLE
TYPE-C
TYPE-W
UNBOUND
UVECTOR
VECTOR
WORD

WORD
LIST
UVECTOR
OFFSET
WORND
WORD

VCCTOR

VECTOR
FRAME
VECTOR
VECTOR
LIST
LIST

WORD

VECTOR

WORD

WORD

WORD
WORD

A 7]

(LY

L]
m m

mooDodoR o

/B

w/B

& X

M W

259

locative to ASOC

locative to BYTES

lecative 10 G/LVAL

locative to LIST

locative to GVAL in pure program
locative to STRING

locative to TEMPLATE

locative to UVECTOR

locative to VECTOR

a place holder

“pure code”
“primtype code”

an RSUBR-ENTRY that has been QCALLed and RSUBR-
LINKed

an RSUBR that has been QCALLed and RSUBR-LINKed

in eof slol during recursive READ via READ-TABLE

if code vector is pure/impure, respectively

for returning many things via READ-TABLE
If possible, use FREEZE SUBR instead.

for non-local GOs

The interpreter itself can’t build one. See Lebling (1979).
used internally to identify FRAMEs

veclor on the control stack

“type code”

“type word”

value of unassigned but bound ATOM, as seen by locatives
"uniform vector”

Appendix 3

260

The MDL Programming Language

Appendix 4. Error Messages

This is a list of all error-naming ATOMs initially in the ERRORS OBLIST, in the left-hand column,
and appropriate examples or elucidations, where necessary, in the right-hand column.

ACCESS-FAILURE

ALREADY-DEFINED-ERRET-NON-FALSE-TO-REDEF INE

APPLY=-0R-STACKTORM-0OF -FS5URR

ARG-WRONG-TYPE
ARGUMLCNT-0OUT=-0OF -RANGE

ATOM-ALREADY=THERE

ATOM-NOT-TY¥PL-HAMEC-0OR-SPECIAL-SYMBOL
ATOM=0H=-DIFFERENI-ORBLIST
ATTEMPT=-TO=-BREAK -OWN-SEQUENCE
ATTEMPT-TO-CHANGE-MANIFEST-VARIABLE
ATTEMPT-TO-CLOSC=-1TY=-CHANNEL
ATTEMPT=TO-DEFFR-UNDEFERABLE-INTERRUPT

ATTEMPT-TO-GROW-YLCTOR-TOO-HUCH
ATTEMPI =10=-MING-ATOMS-PNAME
ATTEMPTI-TO-MUNG=-PURE-STRUCTURE
ATTEMPT-TO-SUICIDE-TO-5ELF
BAD-ARGUMLCNT-LIST
BAD-ASCIT-CHARACTER

BAD-BYTES-DECL
BAD=-CHANNEL
BAD-CLAUSE

BAD-DCCLARATION-LIST
BAD-DEFAUNL T-00L IST-SPECIFICATION
BAD-ENTRY-BLOCK

BAD=-ENVIRONMENT
BAD-F1XUPSs
BAD-FUHARG
BAD-GC-READ-FILE

Appendix 4

=
S R ———————————————— s e
= e e ————————— =
R —— e R—
-— s —————
S ===
=SS S e S e e
R IInINSnm=—§—§—m—§—m—sSs———— ———
_————————————————————--————
-———————————————————————————————————— . = ==&
=S IS eSS e
e~y
@ S
=~ ————————— - ——
== — ___ T _———___
s ___ __________________— — _— _— _______— __— — ________— — ___________ _ _— _——-—_
e~ e e S
e
R BE = ——=E=——
=== - —— —— —— — ___— ____— ________________——— — ______———— ——. =
- s—--_-—
—_——————————— s . =
—_——--——
e = T
e

ACCESS, RESTORE (Tenex and Tops-20
versions only)

First argument to APPLY, STACKFORM,
MAPF/R doesn’t EVAL all its arguments.

{ASCII 999>% Second argument to NTH
or REST toa big or small.

{INSERT "T" <ROOT>»>% <LINK Y- -
LROOT>>%

DECL problem

INSERT. LINK, REMOVE

<BREAK-5EQ T <ME>>3%

{CLOSE ,INCHAN>S

"Undeferable” interrupt (e.g. "ERRORY)
while INT-LEVEL is too high to handle it
GROW argument greater than <® 16 1024>
CPUT <SPHAME T> 1 I\T>%

altempt 1o write inlo pure page

{SUICIDE <ME>>%

<GDECL ("HI®) STRING>S

A character with wrong byte size or
ASCII code more than 177 octal has been
read (how?).

Argument te COND is non-LIST or empty
LIST.

DECL in bad form

bad use of DEFAULT in LIST of OBLISTs
RSUBR-ENTRY does mnot point to good
RSUBR.

CLOSURE in bad form

T .

The MDL Programming Language

BAD-INPUT-BUFFER
BAD-LINK
BAD-MACRO-TABLE

BAD-OBLIST-OR-LIST-THEREOF

BAD-PARSE-STRING
BAD-PNAME

BAD-PRIMTYPEC
BAD-TEMPLATE-DATA
BAD-TYPE-CODE
BAD-TYPE-NAME
BAD-TYPE-SPECIFICATION
BAD-USE-OF -BYTE-STRING
BAD-USE-OF -MACRO
BAD-USE-Or -SQUIGGLY-BRACKETS
BAD-VECTOR
BYTE-SIZE-BAD
CANT-CHTYPE-INTO
CANT-FIND-TEMPLATE

CANT-OPEN-OUTPUT-FILE
CANT-RETRY-ENTRY-GONE

CANT-SUBSTITUTE-WITH-STRING-OR-TUPLE-AND-DTHER
CAN\ 'T-PARSE

CHANNEL-CLOSED

CONTROL-G?
COUNT-GREATER-THAN-STRING-5IZE
DANGEROUS~-INTERRUPT-NOT-HANDLED
DATA-CANT-GO-IN-UNIFORM-VECTOR
DATA-CANN"T-GO-IN-STORAGE
DECL-ELEMENT-NOT-FORM-OR-ATOM
DECL-VIOLATION
DEVICE-OR-SNAME-DIFFERS
ELEMENT-TYPE-HOT-ATOM-FORHM-OR-VECTOR
EMPTY-FORM~-IN-DECL
EMPTY-OR/PRIMTYPE-FORHM

EMPTY-STRTING

END-OF=FILE

ERRET-TYPE-NAME-DESIRED
ERROR-IN-COMPILED=-CODE
FILE-NOT-FOUND

FILE-SYSTEM-ERROR

Appendix 4

(for a CHANMEL)

<GUNASSIEN <CHTYPE link ATOM>>
-READ-TABLE or .PARSE-TABLE is mnot a
vector.

Alleged look-up list is not of TYPE OBLIST
or LIST. i

non-STRING argument to PARSE

attempt to output ATOM with missing or
zero-length PNAME

ATOM purports to be a TYPE but isn't.
DECL problem
#35%

{13

Bad argument to RSUBR-ENTRY

"NET™ CHANMEL

<CHTYPE 1 SUBR>S

attempt to GC-READ a structure containing
a TEMPLATE whose TYPE does not exist
SAVE

attempt to RETRY a call to am RSUBR-
ENTRY whose RSUBR cannot be found
<SUBSTITUTE =T" T>%

<PARSE "">5% <PARSE ®")">3%

<READ <CLOSE channel>>%

~G

CPRINTSTRING ** _QUTCHAN 1>%

(See section 21.8.15)) (ITS version only)
I[L*"STRING"]% ![<FRAME>]S

FREEZE ISTORAGE

REMAME
DECL problem

COR> or <PRIMTYPE> in DECL
<READSTRING "">3

RESTORE

262

FIRST-ARG-WRONG-TYPE

FIRST-ELEMENT-OF -VECTOR-NOT-COQDE
FIRST-VECTOR-ELEMENT-NOT-REST-0R-A-FIX
FRAME-NO-LONGER-EXISTS
HANDLER-ALREADY-IN-USE
HAS-EMPTY-BODY

ILLEGAL

ILLEGAL-ARGUMENT-BLOCK

ILLEGAL-FRAME
ILLEGAL-LOCATIVE
ILLEGAL-SEGHENT

ILLEGAL-TENEX-FILE-NAME
INT-DEVICE-WRONG-TYPE-EVALUATION-RESULT

INTERNAL-BACK-OR-TOP-0OF-A-LIST
INTERNAL-INTERRUPT
INTERRUPT-UNAVAILACGLE -ON-TENEX
ITS=-CHANNFLS=-FXHAUSTED

HEANINGLESS-PARAMETER-DECLARATION
MESSAGE-TOO-BIG
MUDDLE-VERSIONS-DIFFER
NEGATIVE-ARGUMENT
NIL-LIST-OF-0BLISTS
NO-FIXUP-FILE

NO-IT5-CHANNELS-FREE
NO-MORE-PAGES
NO-PROCESS5-TO-RESUME
NO-ROOM-AVAILABLE

NO-SAV-FILE

NO-5STORAGE
HON-6-BIT-CHARACTER-IN-FILE-NAME
NON-APPLICABLE-REP
NON-APPLICABLE-TYPE
HON-ATOMIC-ARGUMENT
NON-ATOMIC-0BLIST-NHAME
NON-DSK-DEVICE
NON-EVALUATEABLE-TYPE
HON-EXISTENT-TAG

The MDL Programming Language

RSUBR in bad form.
#FDECL ((X) <LIST [FOO]>)
(unused)

CFFUNCTION ((X)) 1>%

attempt to PRINT a TUPLE that no longer
exists

Third and later arguments to MAPF/R
not STRUCTURED.

(Tenex and Tops-20 versions only)
function for "INT" input CHANNEL
returned non-CHARACTER .

in compiled code

(unused)

(Tenex and Tops-20 versions only)
Interpreter couldn’t open an ITS 1/O
channel.

bad object in argument LIST of Function
IPC (ITS version only)

RESTORE (version = release)

<SET OBLIST *"()> 7%

MDL couldnt find fixup file (section
19.9).

IPC=0N (ITS version only)

for pure-code mapping

<0R <RESUMER> <{RESUME>>S%

MDL couldn’t allocate a page to map im
pure code.

MDL couldn’t find pure-code file (section
19.9),

No free storage available For GROW.

<VALUE REP> not APPLICABLE

TI=-3%

(unused)
(unused)
(unused)

MNON-STRUCTURED-ARG-TO-INTERNAL-PUT-REST-NTH-TOP-OR-BACK in compiled code

Appendix 4

e S
S e e eSS
Em—————————— e e e
R EEEEEEEEEEEEEE———————
—
= - s
S ————————————————————
e e —————
e A m—— s
e e
e
s =
e
——
EEEEEEE—————————————————
o —————————————————— e —————————————————————————————————————— ———— e
——— e —
e .
R e = e —
= _______________________-——————— _ __________________ _—————
R R R R BB m———.
-— e ——
_—
e . ——— — _——_—_—
P EmmEmm—— e e e

e —

The MDL Programming Language

NON-TYPE-FOR-PRIMTYPE-ARG
NOT=-A=-TTY-TYPC-CHANNEL
NOT-HANDLED
HOT=IN-ARG-LIST

NOT-IN-MAP-FUNCTION

HNOT-THN=-PROG
HTH=-BY-A-NEGATIVE-HUMBER
NTH-REST-PUT-0UT-0r -RANGE
MULL-5STRI1ING

HUMBER-OUT-0OF -RANGE
ON-AN-ORLIST-ALREADY

oUT-0r -BOUNDS

OVERFLOW
PDL-OVERFLOW-BUFFER-EXHAUSTED

PROCESS-NOT=-RIE SUMARLIE
PROCESS-NOT-RUNABLE-OR-RESUMABLE
PURE-LOAD-FAILURE

READECR-SYNTAX-TRROR-CRRET-ANYTHING-TO-GO-0ON

RSUBR-FMNIRY-UNLINKLD

RSUBR-1IN-CAD-FORMAT
RSUBR-LACKS-F IXUPS

SECOND-ARG-WRONG-TYPE
STORAGE-TYPES-DIFFER

STRUCTURE-CONTAINS-UNDUMPABLE-TYPE
SUBSTITUTE-TYPE-FOR-TYPE
TEMPLATE=-TYPE-HAME-HOT-OF-TYPE-TEMPLATE

TEMPLATE-TYPE-VIOLATION
THIRD-ARG-WRONG-TYPE
TOO=-FEW-ARGUMI HTS-5UPPLIED
TOO-MANY-ARGS-TO=-PRIMTYPE-DECL
TOO-MANY-ARGS-TO-5PECIAL-UNSPECIAL-DECL
TOO-MANY-ARGIMENTS-SUPPLIED
TOP-LEVEL-FRANI
TYPE-ALREADY-EXISTS
TYPE-MISHATCH

TYPE-UNDLF INED
TYPES-DIFFER-IN-5TORAGE -0BJECT

263

<PRIHTYPE not-fype? in DECL

First argument to OFF not ONed.

TUPLE or ITUPLE called outside argument
LIST.

MAPRET, MAPLEAVE, MAPSTOP not within
MAPF/R

{RETURN>% <AGAIN>E

in compiled code

in compiled code

zero-length STRING

ZE3BS

CINSERT T <ROOT>>3

€1 '()*% BLOAT argument too large

</ 1 0>% <= 1E30 1E30>%

Stack overflow while trying to expand
stack: use RETRY.

use of another PROCESS's FRAME , etc.

Pure-code file disappeared.

RSUBR-ENTRY whose RSUBR cannot be
found

KEEP-FIXUPS should have been true when
RSUBR was input.

<CHTYPE 1 LIST>S <CHUTYPE *1[1]
LIST>S

<GC-DUMP <HE> <235

<SUBSTITUTE SUBR FSUBR>3

attempt to GC-READ a structure containing
a TEMPLATE whose TYPE is defined but is
not a TEMPLATE

<PRIMTYPE any ...>
<SPECIAL any ...>»

<ERRET> <FRAME <FRAME <FRAME>>>S%
NEWTYPE !

attempt to make a value violate its DECL

ISTORAGE

Appendix 4

-t =

T W S W -~

TYPES-DITFER-TH-UNIFORM-VECTOR
UNASSIGNED=-VARIABLE
UNATTACHLD-PATIH-RAME-SEPARATOR
UNBOUNHD-VARTARLE

UNMATCHED
UWVECTOR=-PUT=-TYPE-VIOLATION

VECTOR-LIUSS-TIAN-Z=-CLEMCNTS
WRONG=-DIRECT ION-CHANNEL

WRONG-NUMBER-OF ~ARGUMENTS

Appendix 4

The MDL Programming Language

ILT €238
-5

ENDBLOCK with no matching BLOCK

PUT, SETLOC, SUBSTRUC in compiled
code

#DECL ((X) <LIST [REST]>)
<OPEN "MYFILE">% (Mode
misspelt.)

missing or

il

—ieee—————— e — ________________—— S e — ————— = —___—
= L e e e = o
————————————————————————_——— - — e e ————
e o
—_—— = e
e ————— e i —
=, " ———————— =
e — . ________..-———————————————————— __— __ __ =
—— .
e T T T e R R R R R e —=—————=
@@ e O e
B = s —
e ——___—__ . .S oo _____——____________ =SSR = =
= = _______________________________________ =
e ——— eSS
e e e S

The MDL PProgramming Language 265
Appendix 5. Initial Settings

The various switches and useful variables in MDL are initially set up with the following values:

CACTIVATE=-CHARS <STRING <ASCII 7> <ASCII 19> <{ASCII 15>>>
:"Tenex and Tops-20 versions only”

<DECL-CHECK. T>

CUNASSIGHN <GUNASSIGH DEV>>

CHRC=-MON <>>

CS5ET THCHAN <SETG INCHAN <OPEN "READ"™ "TTY:">>>

SUNASSIGN KEEP-FIXUPS>

SUHASSIGN <GUHASSIGH NMI1>>

CUNASSTGH <GUNASSIGN NH2>>

€SET OBLIST <SETG OBLIST (<MOBLIST INITIAL 151> <ROOT>)>>

<S5ET OUTCHAN <SETG OQUTCHAM <OPEN "PRINT® "TTY:®22>

COVERFLOW T2

SUINASSIGN REDCFINE>

CRSUBR-LINK T2

C3ETG <UNASSIGH SNM> “working-direcltory®?

CSPECIAL-CHECK <3>

{SPCCTAL-MODE UNSPECIAL>

{SET TH1S-PROCESS <S5ETG THIS-PROCESS <MAIN>>>

<ON "CUAR" ,QUITTER 8 0 ,INCHANZ

<ON "IPC"™ ,IPC-HANDLER 1> ;"ITS version only™

Appendix 5

i,
e e e e
_— W ————— ==
i
i

R ERRRRBBRBRBRRBRRRRRRRRRREEEEEEDDmZRIIR=

The MDL Programming Language

References

Hewitt, Carl. Planner: A _Language for Manipulatin

r g Models and Proving Theorems in a Robot,
Proc. International Joint C

onference on Artificial Intelligence, May 1969,

Lebling, P. David,

The MDL Programming Environment,
M.L.T.. 1979

Laboratory for Computer Science,

Moon, David A.,
197 4.

MACILISP Reference Manual, Laboratory for Computer Science. M.LT., April

References

-
e o e —— s S
—_——— e e
- s .. s SE=——S—=——22——
e e S S eSS S eSS S RS
e e —

S

The MDL Programming Language 267

Topioc Index

Parenthesized words refer to other items in this index.

argum ents

arithmetic

array
assignment
binding
bits

block
boolean
bugs

call
change

character

circular
comina
commenis

comparison

conditional

=OPTIONAL® *TUPLE® "ARGS" (parameter)

+ - = / ABS EXP LOGC SIN COS ATAN MIN MAX RANDOM 07 17 ==7 L7 G7 L=7
=7 N==

VECTOR UVECTOR TUPLE STRING BYTES TEMPLATE

SET SETG DEFINE DEFMAC ENVIRONMENT (value parameter binding)

BOUND? GBOUND? ASSIGNED? GASSIGMED? LEGAL? (assignment value parameter)
WORD BITS PUTBITS GETBITS BYTES ANDE ORB XORB EQVEB LSH ROT

BIND PROG REPEAT BLOCK ENDBLOCK OBLIST MOBLIST OBLIST? !-

FALSE COND AND AND? OR OR? NOT {(comparison)

{errors)

FORM APPLY APPLICABLEY EVAL SEGMENT

PUT-DECL PUTPROP SET SETE (side effect)

CHARACTER STRING ASCII PRINC READCHR NEXTCHR FLATSIZE LISTEN PARSE
LPARSE UNPARSE

PUTREST PUT LENGTHT FLATSIZE
GVAL SETG
; FUNCTION ASSOCIATION

==7 N==7 =7 N=7 G7 L=7 LT G=7 07 17 MAX HMIN STRCOMP FLATSIZE LENGTHT
(boolean)

COND AND OR (boolean)

Topic Index

= .

e e

concatenation
coroutine

data type

decimal
do
dump
errors
escape
execule
exit

file system

goto
graphics
identifier
if
indexing
input
integer

interrupts
iteration

leave

The MDL Programming Language

SEGMENT STRING CONS

PROCESS STATE RESUME SUICIDE RESUMER HME MAIN BREAK-5EQ L3TEP FREE-RUN

TYPE TYPE? PRIMTYPE TYPEPRIM CHTYPE UTYPE CHUTYPE NEWTYFE PRINTTYPE
APPLYTYPE EVALTYPE ALLTYPES VALID-TYPE?

(loops execute call)

SAVE (output)

FRAME ARGS FUNCT ERROR ERRORS ERRET RETRY UNWIND
\ 6 °5 "0

EVAL APPLY QUOTE FSUBR “ARGS™ (call)

RETURN ACTIVATION (goto)

FILECOPY FILE-LENGTH RENAME OPEN OPEM-NR CHAMNNEL FILE-EXISTS? NM1 HM2
DEV 5HM SHAME

G0 TAG UNWIND PROG REPEAT AGAIN RETURN ACTIVATION "ACT" (loops)

STORAGE IMAGE

ATOM PNAME SPNAME LINK LOOKUP INSERT REMOVE OBLIST SPECIAL (parameter
value)

(conditional)
NTH OFFSET GET PUT BACKE TOP (loops)

READ READCHR NEXTCHR READB READSTRING READ-TABLE GC-READ ECHOPAIR
OPEN ACCESS LOAD FLOAD RESTORE RESET

FIX (arithmetic)

EVENT HANDLER ON OFF EMABLE DISABLE INT-LEVEL DISHISS INTERRUPT
(loops)

{qguit)

Topic Index

The MDL Programming Language 289

loading
location

loops

Imacro

monitor

multi-processing

octal

output

parameter
parenlheses
parse
period
pointer
predicate
primitives
procedure
quit

real
recursion
search
sharing

side cffect

FLOAD SAVE RESTORE LODAD
{painter)

REPEAT PROG RETURN GO ACTIVATION AGAIN MAPF MAPR ILIST IVECTOR
IUVECTOR ISTRING IBYTES IFORM

% %% LINK READ-TABLE PARSE-TABLE DEFMAC EXPAND MACRO
"READ" “"WRITE"

(coroutine)

PRINT PRIN]1 PRINC PRINTB PRINTSTRING IMAGE GC-DUMP ECHOPAIR FLATSIZE
SAVE TERPRI CRLF OPEN ACCESS RESET BUFOQUT MNETS

FUNCTION ATOM LVAL SET SPECIAL UNSPECIAL (identifier value)
LIST

PARSE LPARSE PARSE-TABLE UNPARSE

LVAL SET READ

LOCATIVE AT IN SETLOC LIST

{boolean)

5UBR FSUBR ROOT GVAL SETG

FURCTION DEFINE DEFMAC GVAL CLOSURE

G *5 "0 QUIT VALRET LOGOUT RETURNMN (loops)
FLOAT (arithmetic)

(always assumed and built in)

MEMQ MEMBER =7 ==7 (comparison)

SEGMENT GROW SUBSTRUC

PUT PUTREST SETLOC SUBSTRUC fcilallgﬂ

Topic Index

_— Y = e e ——————— e —————————
I ————————————IE————————————————————————————

270

sixbit
storage

structure

subroutine
Ttlﬂpﬂrar}'
terminal
Text
trailer

rue

tty

unbinding

value

The MDL Programming Language

JNAME XJNAME SEND SEND-WAIT IPC-ON
GC BLOAT BLOAT-STAT FREEZE TUPLE *gC® (structure)

LIST VECTOR UVECTOR STRING BYTES TEMPLATE STRUCTURED? EMPTY? MOMAD?
LENETH LENGTH? (concatenation)

{(procedure primitive)
“"AUX" BIND PROG REPEAT
(1ty)

{character)

!- OBLIST

(boolean)

LISTEN “L ~6 @ "D rubout ECHOPAIR TTYECHO TYI "BLOCKED™ "UNBLOCKED®
ACTIVATE-CHARS (character)

(binding)

LVAL GVAL VALUE IN SET SETG ENVIRONMENT ASSIGNEDT GASSIGNED? BOUNDT
GEOUND? "BIND"™ ACTIVATION "ACT® (parameter) RETURN (quit loops)

Topic Index

The MDL Programming Language

271
Name Index "NET™ 14
"OPT™ 78 86 137
"OPTIONAL" 78 81 86 137
"PARITY" 189
An underscored page number refers to a "PRINT™ 101
primary descriptiont an unadorned page "PRINTB" 101
number refers 1o a sccondary description, “PRINTO® 101
" PURE" 189

7]
-
&l
=]

"QUOTE"

15 17 "READ"

101 105 184 187 211
', 67 "READB" 101
1 - 1-10 "REALT" 189
! -#FALSE () 143 "RUNT" 189
. G7 206 "SAVE" 108
1< GG 206 =STY" 112
1> G6 "SYSDOWN® 188
' 51 "TUPLE" 79 87 105 137
LR G-1 100 "UNBLOCKED™ 187
1] 54 "VALUE" 137
"WRITE" 187 211
" 24 55 100
N 102 # 24 44 46 100
"ACT" 84 87
"ARGS™ R2 &7 L3 4 16 98 113 184 185 187
"AUX" 81 87 103 105
"BIND" 83 86 % 24 152
"BLOCKED" 182 187 %% 152
"CALL" 83 BY
*CHAR™ 1841 . 24 57
"CLOCK" 187
"DIVERT-AGC" 186 195 { 24 54
"“DSK*" N2 108
"ERROR" 188) 24 54
"EXTRA" K1 87
n"GC" 186 " 23 28 151 159
"ILOPR" 189
*INFERIOR" 189 * 28 151
"INPUT" 102
"INT™ 113 ’ 24 31
=I0oC" 189
"IpC" 149 203 - 28 151
IIHPU‘H ﬂ
"MUD" 102 - 23 24 32
"MUDDLE" 108
"NAME" 84 87

MName Index

The MDL Programming Language

28 151 BLOAT 186 196

BLOAT-STAT 198

07 i BLOCK 142 145
BLOCKED 170

17 72 BOUND? 79 175 187

ISTEP 175 BREAK-SEQ 173
BREAKER 174

: 24 40 BUFOUT 101 111 115
BYTE-SIZE 66

< 2] BYTES 55 65 GG 213

== 72 211 CALLER 164

=7 72 03 CHANLIST 103
CHANNEL 65 101 102 103 104 122

> LE CHARACTER 64 100 154
CHTYPE 45 211

ABS 28 . CHUTYPE 64 216

ACCESS 101 1o CLOSE 103

ACTIVATE=-CHARS 184 CLOSURE 88

ACTIVATION Y 150 183 193 205 CODE 164

AGAIN 85 20 150 175 COMMENT 122

AGC-FLAG 186 COND 75

ALLTYPES G CONS 59

AND 73 76 185 Cos 40

AND? 74 93 CRLF 100 101

ANDB Gh 161

ANY 125 DEAD 170 170

APPLICABLE 125 DECL 124 223

APPLICABLL? 74 DECL-CHECK 134

APPLY 1% 88 DECL? 135

APPLYTYPE 19 DEFAULT 141

ARGS 1-18 176 DEFINE 39 147

ASCII 5 DEFMAC 156

ASOC 123 169 218 DEMSIG 203

ASSIGNED? 76 790 175 187 DEV 102 265

ASSOCIATIONS 123 DISABLE 182

AT 17 DISHISS 175 179 183

ATAN 40

ATOM 22 100 143 194 217 ECHOPAIR 101 113 146

AVALUE 123 EHPTY? 74
EHABLE 182

BACK Gn 215 ENDBLOCK 142 145

BINARY 166 ENTRY=-LOC 166

BIND 84 20 ENVIRONMENT 37 83 B4

BITS 160 EQVE 161

Mame Index

e

ERRET

19 148 175 222 GETL 117
ERROR 18 1417 183 206 GETPL u7
ERRORS 112 147 206 GETPROP 121
EVAL 20 48 B3 175 GLOC 117 165
EVALTYPE 18 GO 96 175 205
EVENT 178 179 181 GROW 60 186
EVLIN 175 GUNASSIGHN 3z
EVLOUT 175 GVAL 31 39 41 117 169 193 194 208
EXP '_1_H
EXPAND 157 HANDLER 178 179 179 180 i85
HANG 191
FALSE 71
FBIN IR7 IBYTES 66
FILE-LENGTH 101 110 IFORM 58
FILE-EXISTS? in3 IHEADER 177 180
FILECOPY 100 1L ILIST 57 205
FIX 21 22 23 28 53 135 ILLEGAL 193
FLATSIZE 100 IMAGE i0l 107 186
FLOAD I8 76 110 150 IN 116 118 119
FLOAT 2 23 INCHAN 103 146
FORM 7 33 58 71 INDEX 136
FRAME 1-17 148 176 193 213 INDICATOR 123
FREE-RUN 175 INIT 18
FREEZE 164 186 194 INITIAL 141 265
FSAVE 108 INSERT 143 145
FSUBR 28 31 39 30 56 74 74 75 89 90 INT-LEVEL 183
UG 131 147 150 INTERHNAL 258
FUNCT 148 176 INTERNAL-TYPE 258
function 27 INTERRUPT 181 190
FUNCTION 35 39 78 B3 B4 INTERRUPT-HANDLER 186
Function B4 INTERRUPTS 142 177
IPC-IANDLER 203
G/LVAL 1-18 IPC-OFF 203
G=7 72 IPC-ON 203
G? Fir ISTORAGE 239
GASSIGNED? 0187 ISTRING 57 64
GBOUND? 79 132 193 ITEM 123
GC 186 195 ITsS 17 I8 102 108 112 113 114 115
GC-DUMP 101 107 199 166 167 184 184 187 188 189
GC-MON 199 189 189 195 202 202
GC-READ 101 107 186 199 ITUPLE 80
GDECL 131 IUVECTOR 57
GET 53 121 IVECTOR 57
GET-DECL 131 136
GETBITS 160

The MDL Programming Language

273

Mame Index

e —— e e e i i i i i i i,k klth,re e e e er,erererenenenenenenenenenenenenenenenihrnonorreereonnehiiih——
e e e e ——— —
e ———— B e e ——rererorererererereree e . . e e T —
— e 0V 0 0 0 0 0 V0 0 V = = —————————————

274 The MDL Programming Language

JNAME (L] MAPF 91 92
MAPLEAVE 95
KEEP-FIXUPS 167 265 HAPR 9] 92
MAPRET 94
L-INS 146G HAPSTOP a5
L-0UTS 116 MAX 28
L=7 72 ME 174 195
L? 72 MEMBER 73
LAST-0UT 116 MEMQ 73
LEGAL? HO 85 97 116 118 176 193 214 HIN 28
LENGTII 52 75 MOBLIST 140 144
LENGTH? 74 MOD 28
LERRY, 148 151 MONAD7? 74
LINK 5% HUDDLE 18 108 142
LIST 5.1 57 K7 50 G3 72 186 204 212
215 N==7 72
LISTEN 1-1G 119 1G9 183 N=7 73
LLOC 116G 175 193 NBIN 166
LHARY HE NETACC 115
LOAD jay 109 HETS 101 115
LOCA 117 NETSTATE 115
LOCAS 17 NEWTYPE 46 133 165 186 193
LOCATIVE 125 214 MEXT 123
LOCATIVE? 17 NEXTCHR 96 99 101 187
LOCE 117 NHM1 102 265
LOCD 116 117 193 214 NM2 102 265
LoclL 17 NOT 73
LOCR 165 NTH 52 B8
Locs L7
LOCT 17 OBLIST 100 139 141 146 169 194
Locu LI7 OBLIST? 140
Locv 117 OFF 179
LOG Al OFFSET 135 214
LOGOUT 202 ON 181
LOOKUP 143 OPEN 101 105 111 113 114 184
LOSE 58 Gl G4 OPEN-NR 102
LPARSE G5 1443 153 156 OPT 127
LPROGY no OPTIONAL 127
LSH 162 OR 74 76
LVAL 32 37 116G 119 169 175 193 208 OR? 74 93
ORB 161
MACRO 90 156 OUTCHAN 49 103 128 146
MAIN 171 174 195 OVERFLOW 151
MANIFEST 131
MANIFEST? 132 PARSE 65 143 143 153 156 157

Name Index

e

The MDL Programming Language 275
PARSE-STRING 156 RESUMABLE 170
PARSE-TABLE 153 RESUME 170 173 173 190
PCODE 164 RESUMER 174
PNAME 22 144 217 RETRY 150 222
PRIMTYPE 44 RETURN 85 90 175
PRIMTYPE-C 165 RGLOC 165
PRINI a9 101 112 ROOT 141 145
PRINC 100 101 112 ROT 162
PRINT 20 23 48 99 101 112 141 RSUBR 147 163 165 194
PRINTE 10l 106 RSUBR-ENTRY 147 166
PRINTSTRING 101 106 RSUBR-LINK 164 265
PRINTTYPE 48 rubout 17 98 113
PROCESS 146 169 170 190 193 219 RUNABLE 170
PROG 84 89 204 RUNINT 181
PURE=-PAGE-LOADER 186 RUNNING 170
PURIFY 108 186 194 199 RUNT IMER 189
PUT 53 56 68 B8 120
PUT-DECL 134 136 SAVE 108 108 165 200
PUTBITS 161 SEGMENT 66 72 154
PUTPROP 120 SEND 202
PUTREST 59 69 SEND-WAIT 202
SET 32 37 175 186 194
QUICK-ENTRY 164 259 SETG 30 37 186 194
QUICK-RSUBR 164 259 SETLOC 116 1I8 119
QUIT 202 SIN 40
QUITTER 184 SLEEP 191
QUOTE 56 82 83 SNAME 1o
SNH 102 108 110 265

RANDOM 29 SORT 61 73
READ 20 22 99 101 122 140 142 153 SORTX 62

187 SPECIAL 127 156 193 223

READ-TABLE 153 SPECIAL-CHECK 134
READA 154 SPECIAL-HMODE 128 134
READB 101 106 SPLICE 154
READCHR 9G 99 101 105 112 113 187 SPNAME 144
READSTRING 101 106 112 SQRT 40
REALTIMER 189 SQUOTA 253
REDEF INE 10 265 STACKFORM 96
REMOVE 143 145 STATE 170
RENAME 101 111 STORAGE 194

REP 146 STRCOMP 73
REPEAT 84 89 205 STRING 55 57 64 65 100 154 213
RESET 101 102 111 112 STRUCTURED 125
REST 52 56 75 126 219 STRUCTURED? 74
RESTORE 108 109 SUBR 28 51 147

|

MName Index

e ——

276 The MDL Programming Language
Subroutine 28 147
SUBSTITUTE 199 XJINAHE 201
SUBSTRUC 51 56 XORB 161
SUICIDI 174 XUNAME 201
T 7l [24 54
TAG G 193
TEMPLATE 55 GG 219 \ 25 55 100 154
Tenex I7 I8 102 108 113 U4 114 115
51 167 IV8 184 187 188 189] 24 54
180 18D |80 227
TERPRI Y6 100 101 -~ 4 107
THIS-PROCESS 174 174 ~@ 17 58 98 113
TIME 0] ~D 17 98 113
TO 11l G 17 150 184
TOP G0 215 g 17 98 113
TOPLEVEL IR ~0 17 151
Tops-20 I7 18 102 108 113 114 114 115 ~5 17 146 151 184
51 167 178 184 187 188 |89
I59 185 189 227 { 24 55
TTYECHO N1 113 116
TUPLE A0 R0 193 214 } 24 55
TYI 101 113 187 187
TYPE 20 44 74 94 193 211 218
TYPE-C
TYPE?
TYPEPRIM
UNAME 201
UNASSTGN 33 175
UNBOUND 218 259
UNMANIFES]T 152
UNPARSE 65 144
UNSPECTAI 127 221 223
UNWIND 150 223
UTYPE 03
UVECTOR 51 57 57 63 G5 204 213 217
VALID-TYPE? 16
VALRET 202
VALUE 33124 175
VECTOR 54 57 57 65 186 204 212 216

MName Index

e ————————

