
MIT/LCS{fR-297

FUNDAMENTAL DESIGN PROBLEMS
OF DISTRIBUTED SYSTEMS FOR

THE HARD-REAL-TIME
ENVIRONMENT

Aloysius Ka-Lau Mok

May 1983

This blank page was inserted to presenie pagination.

,:;.>•-...'

FUNDAMENTAL DESIGN PROBLEMS OF DISTRIBUTED SYSTEMS FOR THE

HA RD· REAL-TIME ENVIRONMENT

by

Aloysius Ka-Lau Mok

S.B., Massachusetts Institute of Technology
(1977)

S.M., Massachusetts Institute of Technology
(1977)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May, 1983

. © Massachusetts Institute of Technology 1983

Certified by
· Thesis Supervisor ·

Accepted by .. .
Chairman, Departmental Committee on Graduate Students

·2·

FUNDAMENTAL DESIGN PROBLEMS OF DISTRIBUTED SYSTEMS FOR THE
HARD·REAL·TIME ENVIRONMENT

by Aloysius K. Mok

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 1983, in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

Abstract

Software designed to function in a hard-real-time environment where strict timing
constraints must be met often entails implicit assumptions about a programming
language and the underlying system which supports it. Programs which are logically
correct, i.e., they implement the intended algorithms, may not function correctly if their
assumed timing characteristics are not met. This can occur if the programming
language is not expressive enough to permit an adequate specification of the desired
timing characteristics of the software or if the expressible timing characteristics cannot
be verified before run time. For distributed systems in particular, the software must be
tailored to a myriad of implementation parameters, e.g., communication bandwidth, thus
rendering subsequent modifications hazardous.

Our research investigates the basic problems in automating the design and mainte­
nance of hard real-time sottWare. After examining the limitations of the traditional ap­
proach to real-time software design via process-based models, we shall provide a
graph-based computation model which is more suitable for expressing the computation­
al requirements of the hard real-time environment. This model is an extension of CON­
SORT (Control Structure Optimized for Real-Time), an experimental software design sys­
tem which has been implemented to generate process control application programs
from block diagram schemata. While our graph-based model is abstract, it can serve
as a useful intermediate representation between textual requirements specifications and
target apptication programs. Using the graph-based model, the complexity of the
relevant resource allocation problems for meeting stringent timing constraints is investi­
gated.

Name and Title of Thesis Superviser:
· Stephen A. Ward

Associate Professor of Electrical Engineering and Computer Science

Keywords and Phrases:
hard real-time systems, real-time scheduling, distributed systems,
software engineering, design automation, embedded systems

-3-

Acknowledgements

I wish to thank my thesis supervisor Steve Ward for providing the anarchistic en­

vironment which is the RTS (Real Time Systems) Group of the Laboratory for Computer

Science at MIT. His good nature and confidence in my abilities are perhaps the best

support that a graduate student can hope for; and I shall always remember the advice:

"Don't panic! Sweat" which Steve passed on to me from his own graduate advisor,

Professor Michael Dertouzos.

My thesis committee (professors Ward, Dertouzos and Charles Leiserson) must be

commended for the efficiency with which they read my thesis. Charles especially has

been very gracious despite my unreasonable demands on his time at short notice. Let

me hope that the th~eat, "You will regret it if you become a professor" Charles uttered

on an occasion when I was pestering htm will not come true.

The members of RTS must be thanked for their warm camaraderie at all hours of

the day (and night). In them, especially Chris Cesar, I have found so many wonderful

personal qualities that I would do well to emulate. Their company will be sorely missed.

And of course, my family has my deepest gratitude for their moral support. The

thought that they are always behind me is sometimes the only thing that keeps me go.

ing.

Without the love and motiyation of my wife Amy, I might never get out of graduate

school. But then she is a psychologist.

------------------------ --------------

This research was supported by the Defense Advanced Research Projects Agency of

the Department of Defense and was monitored by the Office of Naval Research under

contract number N00014-75-C-0661.

.5.

Table of Contents

Chapter 1 Introduction to Hard Real-Time Systems

1.1 Introduction
1.1.1 Elimination of Timing Related Bugs
1.1.2 More Reliable Man/Machine Interface
1.1.3 Improvement in System Throughput

1.2 Systems Issues
1.2.1 The Maintainability/Efficiency Dichotomy
1.2.2 System Integrability
1.2.3 Implementation Independence

1.3 Software Automation
1.4 Review of Past Work

1.4.1 Virtual Processor Methodology
1.4.2 Processor Sharing Methodology

1.5 Synopsis

Chapter 2 Design via Traditional Process Models

9
11
15

. 17
19
19
21
23
24
25
26
28
31

2.1 Process-Based Models of Computation for the Hard Real-Time Environment 32
2.2 The Scheduling Model and Timing Constraints 35
2.3 Real-Time Process Scheduling ~

2.3.1 Single Processor Scheduling 38
2.3.2 The Deterministic Rendezvous Model 50
2.3.3 The Kemelized Monitor Model 57

2.4 Implications on the Design of Real-Time Languages 66
2.4.1 Incorporation of Performance Objectives into a Real-Time Language 66
2.4.2 Choice of Concurrency Control Mechanisms 69
2.4.3 Scheduling of Indeterministic Constructs 72

Chapter 3 Design via a Graph-Based Model

3.1 Graph-Based Model of Computation tor the Hard Real-Time Environment
3.2 Decomposition of Desigri Requirements: an Example

3.2.1 Statement of Design Requirements
3.2.2 Implementation Environment
3.2.3 Summary of Example Process-Based Real-Time Language
3.2.4 Decomposition by Timing Constraints
3.2.5 Decomposition by Minimizing Interprocess Communication
3.2.6 Decomposition by Maximizing Concurrent Processes
3.2.7 Comparison of Decomposition Strategies
3.2.8 Implications of the Semantic Gap on Software Automation

3.3 Definition of a Graph-Based Computation Model
3.3.1 Scheduling Problems with the Graph-Based Computation Model
3.3.2 Design Constraints on the Run· Time Scheduler

3.4 Latency Scheduling .
3.4.1 Upper Bound on the Length of a Static Schedule
3.4.2 Computing Static Schedules for Asynchronou!) Timing Constraints

3.5 Computing Static Schedules for the Graph-Based Computation Model

75
76
76
78
79
80
84
89
92
94
96
102
103
105
108
121
131

-6·

Chapter 4 Design Issues of Distributed Systems

4.1 Resource Sharing in a Distributed System
4.2 The Processor Allocation Problem in the Hard Real-Time Environment

4.2.1 Another Time Bomb
4.2.2 A Robust Formulation of the Processor Allocation Problem

4.3 Scheduling Mechanism for the Broadcast Data Bus
4.3.1 The Earliest Deadline Algorithm for Bus Scheduling
4.3.2 The Distributed Arbitration Hardware

4.4 Complexity of the Processor Allocation Problem
4.5 Hierarchical Approach to Resource Allocation

Chapter 5 Automation of Software Design

5.1 Design System for Hard Real-Time Software
5.2 The CONSORT Design . System
5.3 Implementation Ideas

5.3.1 The User Interface
5.3.2 Automatic Pipelining of Operations
5.3.3 DetectiQn and Queueing of Activation Conditions
5.3.4 Dynamic Computation Requirements

Chapter 6 Conclusion

6.1 Summary of Thesis
6.2 The Domain Specific Model Approach to Software Automation
6.3 Avenues for Further Research

Appendix

Bibliography

--------· --~----··

136
137
138
141
147
147
149
153
157

158
159
159
1eo
161
162
164

167
169
171

173

180

.7.

list of Flgu res

Figure 2.1 Example of time slice swapping 40

Figure 2.2 Example for adversary argument in theorem 2.2 43

Figure 2.3 The form of any feasible schedule in theorem 2.4 48

Figure 2.4 Example of scheduling constraint imposed by interprocessor synchronization 52

Figure 2.5 Example of a forbidden region imposed by mutual exclusion constraints 59

Figure 3.1 Example control system function block diagram 77

Figure 3.2 Gantt chart for decomposition by timing constraint 83

Figure 3.3 Gantt chart for example of eliminating redundant function calls 83

Figure 3.4 Example of decomposition by minimizing communication and pipelining 86

Figure 3.5 Example Gantt chart for decomposition by maximizing concurrent processes 91

Figure 3.6 Specification of design example in graph-based model 99

Figure 3.7 Simulation of the execution trace "AABCDEE" 111

Figure 3.8 Reduction of SET PARTITION to latency scheduling problem 126 ·

Figure 3.9 The form of any feasible schedule in theorem 3.11 133

Figure 4.1 Timing. constraints augmented by transmission operations 143

Figure 4.2 Timing constraints on transmission operations induced by allocating
a function to a processor 146

Figure 4.3 Example of distribut~ contention on a broadcast bus · 151

Figure 5.1 The CONSORT design system 160

·8·

Index for Lemmas and Theorems

Theorem 2.1 39

Theorem 2.2 41

Lemma 2.3 43

Theorem 2.4 46

Lemma 2.5 54

Theorem 2.6 54

Theorem 2.7 62

Theorem 3.1 103

Lemma 3.2 112

Lemma 3.3 114

Lemma 3.4 114

Theorem 3.5 118

Theorem 3.6 119

Theorem 3.7 122

Theorem 3.8 122

Theorem 3.9 124

Theorem 3.10 127

Theorem 3.11 132

Theorem 4.1 155

.9.

Chapter 1

Introduction to Hard Real-Time Systems

1.1 Introduction

A major application of computers has been to control physical processes such as

regulating a power plant or manipulating a robot arm. In these applications, the compu­

tation required for responding to external events is often repetitive and cannot be de­

layed beyond certain time limits which are determined by the nature of the physical

processes under control. Failure to observe critical timing constraints might bring about

castastrophic results with the destruction of physical plants and even loss of lives.

Computer systems which must continuously observe critical timing constraints are said

to function in a hard real-time environment. For these systems, it is not sufficient for

the software to be logically correct, i.e., to implement the intended algorithms. The sys­

tem must also respond in a _timely fashion so as to meet stringent timing constraints

such as maximum response time or minimum periodic computation rates.

There are many hurdles. to cross in meeting this requirement. A serious difficulty is

that the actual timing characteristics of software is determined not only by raw proces·

sor speed, but also by the sharing policy for scarce resources. For example, the real·

time response of a time-shared system depends heavily on the processor scheduling

strategy of its operating system. In most high level languages, this dependency is con·

sidered as non-essential detail that is to be hidden from the programmer. As a result,

the performance of software implemented in these languages becomes sensitive to sys­

tem resource allocation strategies and outside the control of individual programmers.

System reliability is often contingent on a number of implicit assumptions about inter·.

face details between a programming language and the run-time system which supports

it. More complex resources such as the communication subsystem of multiprocessor

-10·

distributed systems further accentuates the problem with the introduction of (sometimes

distributed) resource allocation algorithms which are usually inaccessible to the appli­

cation programmer.

Current practice in designing systems for the hard real-time -environment is rather

ad hoc. There are few tools to verify that timing constraint specifications can invari­

ably be satisfied. In fact, systems are often built with little provision for guaranteeing

that stringent timing specifications can be met. Performance evaluation is accom­

plished either by stochastic simulation or by actual measurements on prototype

testbeds, and system performance is improved by fine tuning certain system parame·

ters. When specifications cannot be met, structural modifications may become neces­

sary so that at least_ the major performance objectives can be achieved. While this

iterative approach seems to suffice for building the less critical data processing sys­

tems, it is not suitable for systems which must function in a hard real-time environment.

Unless the interactions among different components of a system are well understood

and taken into account in the design process, there is no easy way to simultaneously

satisfy multiple stringent timing constraints by fine tuning. Furthermore, there is no ab·

solute guarantee that a timing constraint will invariably be met by the use of stochastic

simulation or by taking performance measurements for a limited set of load conditions.

For this reason, most current ~ystems are better categorized as ·soft real-time in that

they lack hard guarantee on vital performance characteristics.

The objective of this thesis is to develop a methodology, i.e., a basis for mechaniz·

ing the design and maintenance of software which must operate in the hard real-time

environment. While impressive systems have been built for many hard real-time applica·

tions, as witnessed by the progress in space exptoration, problems in the reliability and

maintainability of current systems, mostly soft real-time, are far from being solved. For

example, the first flight of the Space Shuttle was delayed by a synchronization error

----------- - ----- --

-11-

which was traced to an improbable race condition in the flight control software [GARM

81]. Indeed, the largely undisciplined approach that is current practice in designing

real-time systems exacts a heavy price, e.g., a study by B.W. Boehm of TRW Corpora-

tion indicated that the life-cycle cost of . real-time software products has been three

times as much as analytical software products, not to mention the less readily

quantifiable but important costs of safety risks to life and property. As a reflection on

the state of the art, designers of one complicated system reportedly opted for retaining

existing software and instead modified the hardware to accomodate design change re•

quests.*

In proposing an alternative methodology, however, it is incumbent upon us to justi+

fy that the ability to design truly hard real-time systems as pursued in this thesis offers

significant advantages over the traditional soft real-time approach. The following points

will hopefully convince the reader of the value of the hard real-time approach.

1. 1 .1 Elimination of Timing Related Bugs

There are two kinds of software bugs that are attributable to timing faults. One

kind involves computational events that occur in an improper sequence and results in

undesirable system behavior such as deadlocks, lack of safety, e.g., buffer overflow, or

violating logical relations Of'.' data. These are relative timing faults and are identifiable

solely by the. relative order in which computational events occur, i.e., the absolute time

values marking event occurrences are irrelevant. Relative timing faults can be avoided

by prohibiting undesirable orderings of events. The other kind of bugs is caused by the

violation of some specified stringent timing constraints such as missing a deadline,

; The following news item about the F18 aircraft is from ACM SIGSOFT Engineering
Notes, vol. 6, no. 2, pp. 1. "Apparently the effort that has gone into developing and
testing the software is so extensive that, when _changes are required, it is now prefer·
able to modify the plane to fit the existing software, rather than to modify the software
to match the plane."

· 12·

thereby violating correctness assertions that involve the absolute timing of events.

These are absolute timing faults and are germane to hard real-time systems. The follow··

ing is an example of a program which is susceptible to an absolute timing fault.

EXAMPLE

/*COMMENT

*/

This program takes the derivative of a sensor input at nominally 5 seconds
intervals. The timer has a long enough range so that it never overflows
during the entire run of the program. The delay command suspends the
process for an interval at least as long as the argument, but has no effect ·
(i.e., a no-op) if the argument is non-positive.

process time_bomb

begin
variable nexLperiod,currenLtime,lasLtime: second;
variable currenLsample,lasLsample : sensor-data;
variable derivative : sensor_data per second;

do /*COMMENT initialization * /
{ nexLperiod : = 5;

lasLsample : = O;
lasLtime : ::i: O; ·

} od;

loop: delay(nexLperiod-read_timerO);

end

do I* COMMENT us)date the derivative • /
{ currenLsample : = read_sensorO;

currenLtime : = read_timerQ;

} od;

derivative : = (currenLsample-lasLsample)
I (currenLtime-lasLtime);

lasLsample : = currenLsample;
lasLtime : = currenLtime;

nexLperiod : = nexLperiod + 5;
goto loop;

The above program computes the derivative of a sensor input by taking the

difference between successive samples and dividing it by the length of the interval

between samples. Following the recommendation of the designers of Ada ~ [ADA MAN

·13·

80], the program uses a variable delay between samples to prevent cumulative drift in

the actual period which would occur had a constant been used for the delay argument.

As in Ada, the basic resolution of the timer can be as large as a second and the delay

command suspends a process for an interval at least as long as ·the argument, but has

no effect (i.e., the command is treated as an no-op) if the argument is non-positive.

The nominal sampling period is 5 seconds, but the actual interval between samples

may vary because of fluctuations in multiprocessing load.

· The hazard here is that a divide-by-zero exception may occur if at transient peak

load, a delay command actually takes over 10 seconds to complete. The arithmetic ex·

caption occurs because at the next time, the derivative may be updated twice without

at least 5 seconds i~ between. If it takes less than a second in real time to compute

the derivative twice, then the measured interval between the two updates might be O

second owing to the limited resolution of the timer.

A cautious programmer would of course provide a check to make sure that the

time between two samples is at least one second. However, this program will not cause

arithmetic exceptions if one makes the assumption that the program is run on a dedl·

cated processor of uniform speed, i.e., a program with the same input always takes the

same time to execute and this holds even if the processor is too slow to compute a

loop in 5 seconds. This is an especially tempting assumption since it is consistent with

the widely held programming principle that sequential processes should be programmed

to run on virtual processors. (In light of our example, "real-time programmers" should

be warned that a virtual processor may have a not only unknown but also variable pro·

cessor speed.) The important point here is not that a check should be included to

prevent an arithmetic overflow, but that a real-time program may depend on implicit as·

® Ada is a registered trade mark of the United States Defense Department.

·14·

sumptions about the absolute timing characteristics of the run-time system. These as­

sumptions may hold at the time the program is designed, but may be violated later on,

e.g., the timing fault in the example may not surface until the processor load reaches a

critical point after more computational requirements have been added by maintenance

programmers in the field. , ..

To avoid the arithmetic exception, the system must guarantee that the sensor input

is sampled once every 5 seconds. This is a hard real-time constraint which cannot be

enforced by the delay command of Ada since there is no upper bound on the delay·in

real time. In general, soft real-time systems are concerned almost exclusively with rela~

live timing faults which can be avoided by designing software to function without

knowledge of actual hardware speed. They do not eliminate absolute timing faults

which are left to be dealt with by recovery mechanisms. In contrast, hard real-time

systems prevent absolute timing faults by enforcing hard real-time constraints and

thereby maintaining correctness assertions that involve the absolute timing of even1s.

~ More coherent allocation of system resources

The capability to specify and enforce stringent timing constraints provides a

mechanism for the designer to control the allocation of system resources to achieve

multiple performance goals .. This mechanism is different from the run-time optimization

mechanisms in traditional operating systems in two significant ways. First, the stringent

timing constraints specified in hard real-time systems enables the designer to supply In­

formation directly from the application domain whereas the traditional source of infor­

mation for system optimization is from the observed behavior of application programs.

Second, it is possible to carry out deterministic analysis before run time to meet the

performance goals of a hard real-time system wf:lereas traditional operating systems use

mostly adaptive feedback techniques which are n~rily limited by the predictive

-15·

value of the stochastic models employed. In particular, while current stochastic

methods are relatively successful in analyzing aggregate system throughput, they are of

limited value in estimating or controlling response times.

In practice, simple scheduling disciplines such as round robin or static priority list

are often used for resource allocation in the hard real-time environment. While these

scheduling mechanisms are simple to implement, they offer only limited and rather

inflexible control over response times. Much better control can be achieved by making

use of timing constraint specifications. Consider the following example. · · ' , · · · ., •

A microprocessor is to be used for analyzing data from two sensors. The design

requires that data must be collected from sensor A every 20 milliseconds and from sen~

sor B, every 50 milliseconds. It takes 1 O milliseconds to process each sample of data

from sensor A and 25 millisecoflds for data from sensor B. A real-time clock which runs

continuously interrupts every 10 milliseconds so that scheduling decisions are made

every 1 O milliseconds or whe~ the processor becomes idle. It is easy to verify that nei·

ther a round robin scheduler (which switches to the next ready task at every schedul·

ing decision) nor a static priority scheduler (which selects the ready task with the

highest priority) is sufficiently flexible to satisfy the performance requirements which

can in fact be met by always selecting the task with the nearest deadline at every

scheduling decision.

The important point here is not what type of scheduling algorithm to use, but that

knowledge of the timing constraint specifications is essential to making proper schedu1·

ing· decisions in the hard real-time environment. It is therefore useful to incorporate

precise performance specifications in the design of the system resource scheduler.

1. 1.2 More Reliable Man/Machine Interface

Consider a toggle button which a human operator uses to interface with a comput·

-16·

er controlling some physical device. In a soft real-time system, .the time it takes the

computer to respond to a request to turn on/off the device may show considerable

variance, depending on the instantaneous work load. In particular, the response time

may be much longer under emergency conditions when the work· load on the computer

is likely to be heavy. Fearing that the button may not have been pushed properly, an

operator who has grown accustomed to a relatively fast response in ordinary times· will

be tempted to push the ·button again when the response is slow in coming, thus negat·

ing· the original request which the computer may in fact be processing. This

man/machine interface problem will be substantially alleviated if the operator can be

assured that the system will invariably respond within a specified deadline. There is ex•

perimental evidence ~ich seems to support that

"... increasing the variability of response time generates poorer performance and

lower user satisfaction. Users may prefer a system which always responds in 4.0

seconds to one which varies from 1.0 to 6.0 seconds, even though the average in the

second case is 3.5." [SHNE. 79].

Although the cited experiments pertain to common Interactive systems, it is not un-

reasonable to expect that similar conclusions can be drawn for life critical applications

where it is especially important to reduce the probability of. operator errors due to pan­

ic or confusion. t The cap~ility to specify and enforce response time limits for

different operator commands should be valuable for man/machine interface engineer·

ing.

T It is interesting to relate 'an observation that the author made while watching People
play a home-brew version of the arcade video game PACMAN .on a popular time­
sharing system. In this version, the movement of the player through a maze on a CRT ·
was controlled by pushing a set of keys on a standard keyboard. When the system was
heavily used, the time it took to respond to a push became highly variable. Since the
movement of the pursuing "monsters" and that of the player were not synchronized, it
was very difficult to track ·the player's position in refation to the "monsters". This ver·
sion of the game was never very popular.

-17-

1.1.3 Improvement in System Throughput

A potential bottleneck for distributed systems is the efficiency of interprocess com.

munication. Substantial overhead is often incurred by the overhead in synchronizing

the software running on different proc0S$0rs. This overhead can sometimes be re•

duced if there are guarantees on how fast messages are moved across the communica.,

tion network. Consider, for example, a communication processor which multiplexes data

packets from 10 satellite processors. The transmission delay between the communica<

tion and satellite processors is 10 milliseconds, and the communication processor au~

tomatically buffers one packet for each of the satellite processors. The transmission

length of a packet and the time it takes the communication processor to process an in­

put packet are both 100 microseconds.

If a satellite processor must wait for an acknowledge signal from the communica­

tion processor after sending each packet, then the effective bandwidth per satellite pro­

cessor will be .limited by the transmission delay to one packet per 1 O milliseconds. This

bandwidth ean be substantially increased if the communication processor guarantees

that a packet delivered to any input buffer in any order will be removed within a max.o

imum time bound. In this case, the communication processor requires 10 X 100 = 1000

microseconds to process packets from all of its input buffers. Since the transmission

length of a packet (100 microseconds) is shorter, the bandwidth limit per satellite pro•

cessor is decided by the processing time of the communication processor, resulting in

a tenfold increase in bandwidth. This improvement is possible only if· the communica­

tion software can be tailored to enforce a timing constraint on the processing time of

packets. With the anticipated wide use of fiber optics for data transmission, it is worth

noting that this optimization technique will be increasingly significant as transmission

delay dominates packet length.

In general, we can identify two extreme approaches to controlling distributed com-

-18-

putation. On one extreme, the distributed system is coordinated by a single system

clock to which all system components are synchronized so that computation progresses

by distinct steps as marked by the system clock and that communication is pro·

grammed to occur only at specific times. On another extreme, concurrent components

of a distributed system are synchronized only when necessary and do so by executing

appropriate hand-shake protocols. The former approach requires less communication

overhead but is rigid and not very robust, since all system components are designed· to

progress in lock step at all times. The latter approach is flexible but may be costly· in

terms of communication overhead, since many acknowledge signals may be required. to

maintain proper synchronization. The use of stringent timing constraints to establish a

weak form of synchronization among system components represents an alternative In

the middle.

; :>

·19·

1.2 Systems Issues

Given that the capability to design hard real-time systems is desirable, our task is

then to identify a suitable design methodology. The design problem can be tackled by

many approaches. For example, one can select a programming ·language and provide

tools for verifying any program against the timing constraint specfications when it is

run on some target hardware configuration. Alternatively, one can dictate a set·of

software design rules and specify restrictions on resource usage so that there is _an

efficient algorithm to determine, for any hardware configuration, if some program written

to conform with the rules can meet the specified timing constraints.

In general, a well defined methodology must have a model of computation in terms

of which the comp~ation requirements of the application domain can be expressed;

The function of a methodology is to provide (meta)rules and algorithms for feasibility

analysis and to suggest a solution when appropriate. For this purpose, the model of

computation must be sufficiently precise so that software tools can be brought to bear

to determine the feasibility of a design. A simple measure for evaluating the

effectiveness of a design methodology is its efficiency, i.e., the range of stringent

design requirements that can be met by adopting the design methodology. There are,

however, other systems issues that ought to be considered for judging the

effec::tiveness of a design methodology. These issues are not readily quantifiable but be-­

fore we formalize our problems, they should be reviewed so that pertinent system ob·

jectives will be given proper consideration.

1.2.1 The Maintainability/Efficiency Dichotomy

In practice, there is often a need to modify complex software systems to accomo­

date hardware updates or, during development, changes in design specifications.

Software modifications are especially error prone for hard real-time systems since they

-20-

may introduce subtle resource conflicts. For instance, the absolute timing fault shown

earlier will not occur if the processor load is sufficiently low, a condition which may

hold initially but which may be violated subsequently in the field as more computation

is added. The fact that it is possible to invoke an exception with the same input data

and no modification to the program itself attests to the hazardous nature of maintaining

hard real-time systems. In general, when design changes are made, the instance of the

computation model used by the design methodology must be modified to reflect

changes in application domain specifications. To evaluate the effectiveness of a design

methodology with respect to maintainability, we can examine the costs of modifying the

computation model.

A easy solution is to start from scratch and generate a new model from the revised

application domain specifications. However, this may not be desirable because of cost

considerations, or it may not be possible at all if only incomplete knowledge of the en­

tire system is available because of administrative reasons. For example, consider a sys­

tem of parallel processes where the only form of interprocess communication permitted

in the model is through the use of global variables and where every input device is

modelled by a periodically scheduled system process. Two subsystems A and B periodi·

cally update their outputs from the input value of a sensor which is computed by a

system process and stored in a global variable. Since A updates its output twice as

often as B, the period of the sensor process is initially set to that of A. Later, it is

found necessary to reduce the update rate of A fourfold because of numerical instabili•.

ties. Since the update rate of B is now twice that of A, the period of the sensor pro·

cess should only be doubled instead of multiplied by four. Clearly, knowledge of sub­

system A's specifications alone is insufficient to revise the period parameter of the sen·

sor process. Futhermore, local modifications may have far reaching consequences,

e.g., the output of A may be used by other processes, or the sensor process may refer-

-21 ·

ence the output of other processes to determine its own internal parameters such as

filter coefficients for signal processing. In general, it may not be easy to determine all

the necessary modifications to the computation model and certainly not without global

knowledge of the system.

Relative to a fixed class of design changes and a suitably defined metric on the

magnitude of a design change, one can presumably measure the effectiveness of : a

design methodology with respect to maintainability by studying the complexity of· the

computation required to determine the corresponding modifications to the computation

model. However, intuition suggests that maintainability is not free and one must consid-.

er the potential loss in efficiency. For instance, the maintainability problem in the above

example will be greatly eased if input devices are modelled as monitors (HOAR 74] so

that processes A and B can . individually request sensor input updates as they are

needed. However, an efficiency price is paid in this model in that the sensor must now

be sampled to field every indMdual request of all the calling processes, whereas only

one update may be sufficient to simultaneously satisfy multiple requests. This

represents redundant work and a waste in computing time.. . , ,

While maintainability and the control of design complexity are best achieved by US·

ing a computation model close to the application domain, efficiency in resource alloca·

tion requires more direct access to the available physical resources; these are

conflicting objectives. There are two keys to resolve this maintainabilty/efficiency dicho·

tomy. First, the translation of application domain specifications into the computation

model ought to be mechanizable. Second, the computation model should permit direct

expression of performance objectives for resource allocation purposes.

1.2.2 System Integrability

Owing to the size and complexity of many real-time systems, it is unlikely that a

-22·

single designer will be able to attend to all the details of an entire system. Thus an

effective design methodology should have provisions for integrating separately designed

components into a system to meet global requirements. For hard real-time systems, this

objective is complicated by the need to share resources for meeting timing constraints.

If each component is itself a hard real-time system, then system integration is achiev·

able only if it is possible to resolve the resource conflicts among the components, and

this in turn requires an ·appropriate quantification, specialized to the hard real-time en•

vironment, of the demand for various kinds of system resources. For example, the max~

imum bandwidth utilization of a shared data bus alone is in general insufficient , for

characterizing the demand for bus access if transmission delay cannot be ignored •. · In

other words, there is insufficient information to determine whether two hard real-time

systems sharing a data bus can function properly if we are given only the bus access

rates of both systems.

The effectiveness of a design methodology with respect to system integrability is

indicated by the variety of system resources that can be adequately characterized, i.e.,

given the computational requirements expressed in an instance of the computation

model, a decision procedure should exist which determines whether there is sufficient

resource of every type to satisfy the requirements. For an ideal design methodology,

the computation model should _be able to characterize the demanded load on any. kind

of existing or to-be-invented resource by a hard real-time system. More realistically, we

would like our design methodology to be able to integrate systems using conventional

hardware, e.g., shared data' busses, and the more esoteric VLSI devices such as systol·

ic arrays. We shall attempt to accomplish this objective by characterizing resources uni·

formly as (possibly distributed) servers capable of meeting some types of stringent tim·

Ing constraints.

-.. 'J:•,

·23·

1.2.3 Implementation Independence

For well defined design methodologies, implementation independence is achieved if

the computation model does not introduce any artificiality which biases the implementa·

tion towards a particular system architecture, i.e., the computation model should not be

based implicitly on the availability of certain kinds of hardware support. For instance, :a

model of parallel processes where interprocess communication is via global variables

only presumes the existence of a shared memory or an efficient broadcast facility in

general. A more subtle example is the use of acyclic data communication graphs to
·•,
'!

model industrial feedback controllers. This approach is predicated on the fact that

feedback loops can always be broken by storing the feedback information in state vari·

ables which are implicitly available to the processing nodes that would have formed a

cycle. Such assumptions are unrealistic when, for example, a sparsely connected net·
I

work of processors with local memories is used for implementation. A parallel processes

model which supports message passing is likely to be more appropriate in this case.

It is difficult to justify that a computation model is not biased against or in favor of

any particular system architecture. We note, however, that the primary purpose of the

computation model is to reduce the often informal application domain specifications

into precisely stated computational events which are physically implementable. To this

end, we can identify two primitive types of computational events: the functional

transformation and transmission of information. A computation model which builds on

these two types of primitive events alone is less likely to be biased. Moreover, there is

always the possibility of trahsf orming an unbiased model into one which is more amen·

able to optimization analysis that takes advantage of the special features of a given ar-

chitecture.

-24-

1.3 Software Automation

The above discussion of systems issues leads to a better perspective on our work.

Whereas the study of design methodologies has been the key activity in software en­

gineering research and many usefu·1 principles have been introduced for managing

design complexity, e.g., the use of layers of abstraction for vertical decomposition and

the encapsulation of data and procedures in modules for horizontal decomposition,

there has been only limited progress in providing a formal basis for the discipline which

often resorts to philosophical arguments. (Some related theoretical work is being· done1

most notably research in abstract data types.) This lack of an encompassing formal

framework should not be surprising since an important goal of software engineering is

to improve programming productivity which is mostly a human enterprise and as such

cannot be subject to formalization. Without formalization, however, it is very difficult to

compare the merits of contending methodologies or to evaluate a new design tech­

nique. Incremental improvements are limited in scope and more importantly, they do

not point to potential trouble spots or areas for further improvement

A more profitable approach is to judge a design methodology by how much it con~

tributes to software automation, i.e., the success in eliminating the intermediary pro­

grammer from the design loop. As the above discussion of systems issues illustrates, a

lot of the limitations of a design methodology can be related to the imperfections of

the underlying computation model. Thus the usefulness of any automation tool wiU ulti·

mately depend on the propriety of the computation model on which it is built. There­

fore, an important objective of our research is to identify an appropriate computation

model for the hard real-time environment before we can tackle some of fundamental

resource sharing problems in automating the design of hard real-time systems.

The rest of this chapter will review past research in real-time systems and give a

synopsis of our work.

·25·

1.4 Review of Past Work

There has been a lot of research in the production of real-time software. We shall

list only those that are intended for application in the hard real-time environment. Most

work reported in this area falls into one or more of three categories: specification tech•

niques, language concepts, design disciplines and related scheduling techniques.

Specification techniques are concerned mostly with the functional completeness and

consistency of the application domain descriptions of real-time systems. Examples are

[HAM & ZEL 76], [ALFO n]. The specification of stringent timing constraints is treated

in some detail in [DEW & PAI n], [COHE 78]. [HENI 80] describes a complete

specification of the avionics software of the A-7 aircraft including timing specification&

Some commercial lan~uages have been augmented by scheduling primitives to support

real-time programming, e.g., PL/1 [BARN 79], Fortran [KNEI 81], and a number of new

languages have been designed specifically for real-time applications, e.g., Toma! [HEN

et al 75], Pearl [MART 78], Iliad [KRUL 81]. The best known language of this genre is

probably Ada [ADA MAN 80]. Some authors have investigated special language con·

cepts for concurrent processes to facilitate real-time processing, e.g., [HANS 78a], [ICH

et al 79], [MAO & YEH 80].

For our purposes, the cited literature in specification falls short of defining ·a com­

putation model which can be . mechanically processed for feasibility analysis. Further

translation is needed to associate timing constraints with the concrete computation that

needs to be carried out, and it is not clear that the specification techniques provide

complete and consistent inlormation for this necessary step. However, the mentioned

work, especially [HENI 80] provides useful examples of application domain

specifications. The work in language concepts almost exclusively assumes a process·

based model. While innovative concepts for process coordination have been invented,

the use of processes as the syntactic unit for specifying performance requirements in-

·26·

trocluces artificialities which will become clear when we examine the problem of

translating application domain specifications into computation models.

The work that is most closely related to our research are the design methodologies

that have been proposed for writing real-ti.me programs. Some of these methodologies

are of limited use for hard real-time applications in that they do not discuss the prob·

lem of verifying compliance to timing constraint specifications. Almost all are process•

based and can be roughly categorized as adopting one of two approaches. · ·· · ·

.. '!

1.4.1 Virtual Processor Methodology

In this approach, each process is presumed to be running on a dedicated proces­

sor. The objective is to guarantee bounded completion time for all required computa­

tion. To this end, the designer needs to guarantee that no deadlock can result from

the control structure of the program and that no part of the computation will be denied

progress indefinitely, i.e. no live locks, provided that all resource schedulers are in

some sense fair. The problem of verifying compliance to timing constraint

specifications is deferred and must be solved for the actual scheduling strategy in an

implementation, presumably by computing the worst case bounds for all completion

times and comparing them against the specifications.

The viability of this approach is based on the availability of cheap computing

power such as multiprocessors on a chip, an assumption buttressed by the promise of

advances in VLSI technology, so that as long as all the computation can be carried out

in finite time, then the timing constraint problems should be solved, if necessary, by ad·

ding another processor. By the same token, scheduling is necessary only for the pur·

pose of process activation and suspension on individual processors which are not

shared. This approach requires minor extensions to existing high level languages to

support explicit process scheduling and some mechanism for interprocess communica·

-27-

ti on and coordination. An example of this approach is [YAU et al 81] where the time

bounds are computed by assuming round robin schedu1ing for all resources.

Wirth [WIRT 77] proposed a discipline for real-time programming which adopts the

conceptual simplicity of the virtual processor methodology but relies on priority inter­

rupts as an essential means for achieving response times for 110 devices. Cyclic timing;

constraints are imposed on device processes which are assigned static priorities. Furth~

ermore, it is assumed that high priority devices have proportionately longer cycle times

than low priority devices in order that all response times are met. The exact condition

for verifying compliance to timing constraints is, however, not given.

The virtual processor methodology is viable only if the premise about resource

availability is valid, and only up to the ·point that interprocessor communication does

not become a bottleneck. Even if there are enough processors so that each process

can be run on a dedicated processor, timing constraints may still be violated because

of the communication delay ~tween processors. In general, there is a tradeoff between

communication (routing delay) and computation (scheduling and context switching

overhead) costs. For more demanding applications, the simplistic approach of assigning

one process to one proces&or may not work. The basic problem of balancing comput­

ing and communication costs cannot always be ignored.

The communication bottleneck of the virtual processor methodology has been

recognized by Hansen [HANS 78b] who argued that a hierarchical organization of pro­

cessors will reduce communication overhead and is also a natural organizational struc­

ture for the solution of many practical problems. While a hierarchical organization may

be a good match for the solution strategy of many problems, its generality is limited.

We note, in particular, that if we associate a process with each state variable in the

standard state space formulation of control engineering problems, then the interprocess

communication pattern in the solution to the control problem is in general closer to a

·28·

densely connected graph than to a tree.

Some attempts have been made to formulate the processor allocation problem in ,

the presence of stringent timing constraints, e.g., [CHU et al 80], [MA et al 82]. Howev·

er, none of the published formulations seems to be satisfactory· since all of them are

formulated with algebraic constraints on mean value parameters such as communica· .

tion bandwidth and processor utilization factor. These parameters are in principle deriv-'

able from the process model, but unfortunately, they are more useful for average time

rather than worst case analysis. The bursty nature of many real-time applications is

such that there is no guarantee that individual timing constraint will be met even if the

average load does not exceed either processor or communication capacity. In this

thesis, we shall prov~de a formulation of the resource allocation problem that is more ·

amenable to the requirements of the hard real-time environment.

1.4.2 Processor Sharing Methodology

In this approach, processes are expected to be sharing resources subject to

known scheduling disciplines and usage restrictions which are part of the design

methodology. Since the ·scheduling disciplines are fixed, the run-time behavior of the

system is predictable and this offers potential for exploitation. First, the designer need

not guarantee that a process system is inherently deadlock-free or may have other un­

desirable properties; it is sufficient that the system will function properly under the

given resource scheduling disciplines. For example, the system scheduler might require

that all shared resources be explicitly declared and apply banker's algorith!ll for . .
resource allocation. Second, there may be (intentional) asym~try in the resource

scheduling disciplines which can be exploited to favor processes with tighter timing -

constraints. This can be facilitated by introducing scheduling attributes, e.g., deadlines

-------------------- ----

.29.

for interfacing with the system scheduler.

Some examples of the processor sharing methodology are found in (WEI et al 80)

and in [REG et al 78]. In both cases, processes are assigned deadline and period attri·

butes and are run on a single processor. The scheduling disciplines used are variations

of the earliest deadline algorithm which always runs the ready process with the nearest

deadline, or the rate monotonic static priority algorithm which assigns higher (fixed)

priorities to processes with higher repetition rates. In [LEIN 78], processes may also

contain device segments (1/0 delays) and resource segments (critical sections) which

are scheduled on a FIFO basis.

An earlier methodology was proposed by Dertouzos [DERT 74] where process-like

daemons are given boolean conditions for their activation. Conditions must be recog­

nized within certain recognition times and the daemons must complete their computa·

tion within given deadlines. Daemons are supposed to be implemented on a multipro­

cessor architecture with global memory. The earliest deadline algorithm is used for dae·

mon scheduling on each processor and (ignoring scheduling and context switch over­

heads) has been shown to be optimal (DERT 74] in the sense that it always results in a

feasible schedule if one exists. However, it is no longer optimal when there are mutual

exclusion restrictions or when there are two or more processors.

It should be noted that if we can find an optimal scheduling algorithm for every

resource, then there is no reason why the processor sharing methodology should not

be adopted with the optimal scheduling disciplines. However, it can be shown (MOK &

DER 78] that when processes may request service with no a priori known request

times, then not all feasible sets of timing constraints can be met by any one multipro­

cessor scheduling algorithm.

In general, the processor sharing methodology makes better use of system

resources than the virtual processor methodology. However, there may not be any easy

.30.

way to systematically take advantage of the resource scheduling disciplines adopted by

a processor sharing methodology. For example, while there is an efficient assignment of

static priorities to processes when every timing constraint can be expressed in terms of

a deadline on a periodic process t ,· there is a significant semantic gap between static

process priorities and timing constraints that involve the cooperation of two or more

processes to satisfy. However, the use of a static priority as a process scheduling attri-

bute has been adopted by many "real-time languages", most notably Ada.

f The combinatorial problem of static priority assignment has been treated in (LIU &
LAY 73). The proof of theorem 1 in the cited paper is, however, not quite complete
since it does not deal with the case when a task of higher priority is being executed at
the request time of the task being analyzed for its critical instant [CESA 80], but the
theorem and the priority assignment procedure given are correct.

·31·

1.5 A Synopsis

In this chapter, we have argued that there are significant advantages in building

hard real-time systems and that we need a better understanding of the fundamental

problems for automating the design and maintenance of these systems. Since the obvl·

ous way to organize the software for these systems is via straightforward extensions to

process-based models, we shall formulate in chapter two the problems of designing

hard real-time software ·in terms of process-based models and discuss some techniques

for· on-line scheduling. There is, however, a serious semantic gap between process­

based models and hard real-time applications. After discussing the intrinsic weaknesses

of process-based models, we shall introduce in chapter three an alternative graph·

based model (a gen~ralization of the CONSORT block diagram schemata [WARD 78])

on which stringent timing constraints can be naturally expressed. This model is

machine independent and makes no assumption about the availability of physical

resources. Relevant problems in resource scheduling with critical timing constraints can

then be formulated and studied. A technique called latency scheduling which can be

used to meet asynchronous timing constraints (spontaneous service requests) by shift­

ing most of the work off-line will be formalized and studied in terms of the graph-based

model. Chapter 4 presents a general approach to model the constraints imposed by

communication delays in a dis_tributed system so as to provide a ·precise formulation of

the processor allocation problem for the hard real-time environment. We shall also

show how communication delay constraints can be met by solving analogous deadline

scheduling problems for a broadcast communication system such as a backplane bus.

Chapter 5 .describes the architecture of a design system and also some implementation·

ideas. Chapter 6 is the conclusion and remarks about avenues for further research.

-32-

Chapter 2

Design via Traditional Process Models

2.1 Process-Based Models of Computation for the Hard Real-Time Environment

Our objective in this chapter is twofold: to examine the use of process-based

models for the design of hard real-time systems, and to introduce on-line scheduling

techniques for meeting stringent timing constraints. There are two incentives for exa­

mining process-based models. First, they represent a conservative extension of , the

vast majority of sequential programming languages in providing a parallel processing

capability. Design techniques for process-based models are therefore of 6onsiderable

practical interest. Second, by investigating the problems with process-based models, we

can gain a better appreciation of the computational requirements of the hard real-time

environment. Our investigation will also provide justifications for an alternative computa­

tion model which is more suitable for expressing performance requirements in the hard

real-time environment.

Informally, a (sequential) process is an abstraction of a single sequence computer

which, at any point of a computation, can be characterized by its state information,

namely, the program counter, the stack and the value of its static variables. A process

interacts with another process by exchanging information only at specific points in Its

program and has only one thread of control, i.e., the program counter of a process is

determined solely by the result of its own computation and cannot be set directly by

asynchronous external events. (Thus interrupts are a processor-related concept and are

logically transparent to a process.) A variety of process-based models for parallel pro­

cessing have been proposed, e.g., communicating sequential processes [HOAR 78),

distributed processes [HANS 78a], the tasking model of Ada [ICH et al 79]. These

models differ primarily in the mechanisms they provide for interprocess communication

----- - -------

.33.

and in the amount of internal parallelism (coroutining) inside a process. We shall con·

cern ourselves with only those problems about process-based models that are relevant

to the design of hard real-time systems. Pt{

- .-·:
• Decomposition of computational requirements

Given the performance specifications of a hard real-time system, the problem is

how to decompose the required computation into processes with the appropriate timing
. "li (

constraints so as to meet performance and other system objectives.
t ••• l

• Process scheduling

Given a set of processes with timing constraints, the problem is how to schedule

them at run time so as to meet their timing constraints.

• Adequacy for concurrency control

Resource sharing in the hard real-time environment requires facilities for con·

currency control. The problem· is to determine the appropriate interprocess coordination

mechanisms which support control structures commonly required for hard real·tirne sys·

terns.

It should be emphasized that the above problems are not independent of one oth·

er. In particular, many simple primitives for concurrency control are so powerful that

their unstructured use may cause undesirable system behavior which is very difficult to

analyze. The corresponding scheduling problem is likewise computationlly intractable.

On the other hand, scheduling algorithms which are efficient to analyze and implement

may permit so little concurrency control that they are adequate for only a very limited

class of problems. We shall provide some answers to the above problems by analyzing

a sequence of increasingly sophisticated process-based models. Our investigation will

also reveal some semantic weaknesses and possible improvements to current process-

-34-

based "real-time languages" such as Ada.

-35-

2.2 The Scheduling Model and Timing Constraints

For scheduling purposes, a process Ti consists of a chain of scheduling blocks, {

\j• j = 1,ni } where Ti,j is a piece of code to be executed after \j-1. Each Ti,j has a

bound on computation time, ci,j which is known a priori and the sum of the ci,j is the

total computation time, ci of process Ti. Interprocess coordination is achieved throug~.

communication primitives which may appear only between scheduling blocks. These

communication primitives are used to pass information among processes or for coordi-'

nation purposes. Their semantics is important only to the extent that they impose cer.;

tain scheduling restrictions which will be defined for each process model.

When a process is made ready to run, say at time t, it must be finished by a

specified deadline, di relative to t, i.e., the last scheduling block of Ti must complete

execution on or before t +di. There are two types of processes: periodic and sporadic.­

If Ti is periodic, it is requested (becomes ready to run) every pi time units, starting from

time o. The deadlines of periodic processes are normally shorter than the correspond·

ing periods.· If it is sporadic, then it may be requested at any time, but consecutive re-

quests of Ti are kept at least pi time units apart, where pi is a specified minimum
l

period which is required to prevent a sporadic process from monopolizing system
::.

resources. (In practice, sporadic processes are often invoked by external events, e.g.,

device interrupts. The minimum period restriction may be enforced by keeping a queue

of pending requests for Ti which is made ready every pi time units until all pending re­

quests are exhausted.)

Formally, an instance of a process model M = MPUMsis a finite set of processes

which is the union of two disjoint subsets: MP (the periodic processes) and M8 (the

sporadic processes). The ith process, Ti = (ci,pi,di) has three parameters: ci (compu·

tation time), di (deadline), pi (period) such that ci<diSpi. If a process Ti E MP, then it

is requested at time= kpi for every non-negative integer k. If on the other hand, T1 €

-36-

Ms, then it can be requested at any time instant t, but two successive requests must

be at least pi time units apart. All time parameters are non-negative integers. (In prac•

tice, time parameters are presumably given in integral multiples of a basic time unit,

e.g., a processor instruction cycle.) Process preemptions are allowable only at integral

time instants and may be subject to additional scheduling restrictions imposed by com-

munication primitives placed between scheduling blocks of a process. A set of

processes is schedulable if at a request-time t, the process (c,p,d) requested is execut-

ed completely on a processor for c units of computation time in the interval [t,t + d].

.37.

2.3 Real-Time Process Scheduling

Although much progress has been made in deterministic scheduling theory in the

last decade, the classical scheduling model studied by most authors (e.g., (LAG et al

81] contains a complexity classification of deterministic scheduling problems based on

a parameterized model) deals with tasks that are to be performed only once, i.e., each

task has a given request-time after which it can be scheduled, and a task is never con-

sidered again after it has been completed. These results are not directly applicable to

our- problem which differs from them in two essential aspects: our tasks (processes)

may be invoked an infinite number of times, and the request-times of sporadic

processes are not known a priori.

Nevertheless, w~ can use so":le of the techniques developed for the classical

model if all processes are periodic in which case it is sufficient to examine schedules

of length on the order of the least common multiple of the periods. Although algo­

rithms following this approach are at best pseudo-polynomial in complexity, they suffice

in many practical applications since the parameters involved (deadlines, periods) are

neither expected to be very large integers nor relatively prime. However, it should be

noted that complexity results derived for the classical model cannot be carried over

directly to our model owing to the periodicity of processes. Specifically, a necessary
.1.

condition for scheduling in our model is that the sum of the utilization factors, ci/p1 of

all the processes must not be greater than the number of available processors. Difficult

problems in the classical model may not be computationally intractable when they are

restricted to· the subsets 'which meet the utilization constraint. To emphasize the

difference between the classical deterministic scheduling problems and our problems,

the problems of continuously meeting periodic and sporadic timing constraints in real-

time will be called real-time scheduling problems. Algorithms which solve real-time

.38.

scheduling problems are real-time scheduling algorithms.

In general, a real-time scheduling problem involves two schedulers: an off-One

scheduler and a run-time scheduler. The off-line scheduler examines the instance of

the process model and creates a run-time scheduler together with a database for mak·

ing scheduling decisions at run time. The run-time scheduler is the code for allocating.

resources in response to requests generated at run time, e.g., timer or external device
}

interrupts. The purpose of a real-time scheduling algorithm is to create an off-line

scheduler for a class of real-time scheduling problems. A run-time scheduler is totally

on-line if its decisions do not depend on a priori knowledge of the future request-times

of the process(es). A run-time scheduler is clairvoyant if it has an oracle which can

predict with absolute certainty the future request-times of all processes. A run-time

scheduler is optimal if it always produces a feasible schedule whenever it is possible

for a clairvoyant scheduler to do so.

2.3.1 Singl~ Processor Scheduling

For the case of a single processor, Dertouzos [DERT 74] showed the existence of

a totally on-line, optimal run-time scheduler for the case where interprocess communi·

cation primitives do not impose any scheduling restrictions, i.e., the scheduler can

choose to preempt a proc~ by any other ready process at integral time instants. The

algorithm embodied in the run-time scheduler is the earliest deadline algorithm which

runs at every instant the ready process with the nearest deadline. It is interesting to

note that there are more than one totally on-line optimal scheduler under the same 88·

sumption. Let us denote the remaining computation of a ready process at time t by

c(t) and its current deadline by d(t) and define the slack of the process at time t by

maximum{d(t)-t-c(t),O}, i.e., the slack is the ma?<imum time the run-time scheduler can

delay running the process before it is bound to miss the current deadline. Another to·

.39.

tally on-line optimal algorithm is the least slack algorithm which schedules at any time

the ready process with the least slack, ties being broken arbitrarily. The optimality of

the least slack algorithm can be proved by the same "time slice swapping" technique

used in [DERT 74].

Theorem 2.1
'•:\._;

The least slack algorithm can be used as a totally on-line optimal run-time

scheduler under the assumption that the scheduler can choose to preempt a process

by any other ready process at any integral time instants.

Proof:

By definition, the least slack algorithm is totally on-line. The key observation is that

at any time t, we can always . transform a feasible schedule for the interval [O,t] (say

one that is produced by a clairvoyant scheduler) to one that is produced by the least

slack algorithm without missing a deadline within that interval. This is trivially true at

time t = O. Suppose the hypothesis holds for [O,t], and a process Ti is scheduled in the

interval [t,t+ 1) while there is another ready process Tj with a smaller slack at time t

Notice that the process Tj must be scheduled at least once before d(t), the current

deadline of process Ti in the feasible schedule. Otherwise, the slack of process r1
must be at least as big as d(t)-t which is greater than the slack of process Ti, a con­

tradiction. Thus, we can simply schedule process Ti in the interval [t,t + 1], and

schedule process Ti in the first unit interval occupied by process Tj before the deadline

d(t). The resulting schedule remains feasible. QED

Figure 2.1 gives an illustration of the "time slice swapping" technique involving

two processes: T 1 with computation time c1 = 1, deadline d1 = 4, and T 2 with c2 == 3,.

d2 = 5. The earliest deadline algorithm schedules process T 1 first whereas the least

slack algorithm would schedule process T 2 first.

.40.

proc~
c1 =1

T dl ~4

ti=l
T2

time
di=S

0 1 2 3 4 s

Figure2.l ' .
Example of time slice swapping

Co roll a ry (Liu and Layland)

For the case where the deadline and period are equal for the same process, (i.e.,

di= pi for every process Ti), a necessary and sufficient condition for scheduling a set of

all periodic processes on a .single processor is that I ci/pi < 1 where ci is the compu­

tation time of the process T1•

Proof:

This result was first proved in (LIU & LAY 73]. The technique of "time slice swap­

ping" used in the above theorem provides a simpler way to prove the same result

Specifically, we note that if a round robin scheduler allocates ClPi of every time unit

to process Ti, then Ti will be guaranteed to receive ci units of processor time in. every . .
period of length pi, thus meeting its deadline. Since preemptions ~re permitted only at

integral instants of the basic time unit, we have to transform the schedule produced by

the round robin scheduler to one in which process switching occurs only at integral in-

stants of time. This is easily done by using an optimal scheduler such as the earliest

.f'

-41·

deadline or the least slack algorithm and not allowing the processor to stay idle when-

ever there is an unfinished ready process. Since all request-times, computation times

and deadlines are integral, the "time slice swapping" technique will yield a schedule in

which process switching occurs only at integral instants of time. QED

Remark

There are in fact an infinite number of totally on-tine optimal schedulers, e.g., any

combination of the earliest deadline and the least slack algorithm may conceivably . be

used in a run-time scheduler to minimize process switching overheads.

The assumption that any ready process can be freely selected to preempt another

process poses a cubersome restriction on the design of some real-time software. For

example, the position of· an aircraft is updated by a periodic process which computes
'

the X and Y coordinates from sensor measurements. A sporadic process may read the

X value before being preempted by the tracking process and then reads the new Y

value. This !nconsistency can be prevented by enforcing a mutual exclusion constraint

on the two processes, i.e., they are not allowed to preempt each other. With this res-

triction on the real-time scheduling problem, however, the earliest deadline algorithm is

no tonger optimal. In fact, we can show that in general, a run-time scheduler cannot

be optimal unless it is clairvpyant.

Theorem 2.2

When there are mutual exclusion constraints, it is impossible to find a totally on-

line optimal run-time scheduler.

Proof:

Consider the following instance of a process model with two mutually exclusive

processes. T P is a periodic process with computation Jime cp = 2, deadline dp = 4, and

·42·

period Pp = 4. Process Ts is a sporadic process with computation time cs = 1, deadline

ds = 1, and minimum period Ps = 4. Let us examine the problem of scheduling them on

a single processor. We can always meet the deadline specifications by using a clairvoy•

ant scheduler as follows. At every instant t when process T P is requested, (i.e., t = 0

mod 4), schedule T P for the interval [t,t + 2) if the oracle claims that process T
9

will not

be requested at t + 1. Else defer running process T P to the interval [t + 2,t + 4). Schedule

process Ts immediately whenever it is requested. (Figure 2.2 illustrates the situation

where process T P is scheduled at time O and the adversary requests process T 9 at time

1.)
•·,'Of

For any totally on-line scheduler, we can prove that it is not optimal by giving an
-.r

adversary argument. Specifically, at any instant t<4, a decision must be made either to

run process T P in the interval [t,t + 2) or to defer it. If process T P is scheduled at ti~

t, then a request for process Ts at time t + 1 cannot be met since T P cannot be

preempted at time t + 1. If the decision is deferred, then the adversary will not request

process Ts at time t + 1, and the scheduler is forced to make the decision again. Since

the scheduler cannot defer mnning process T P past time t = 2, it is bound to miss one

of the deadlines. QED

Remark

This theorem can be generalized trivially to the case of multiprocessors by creating

for each additional processor, a periodic process whose deadline and computation time

are both equal to its period. More significantly, it can also be proved (MOK 76) that for

the multiprocessor case, it is impossible to find a totally on-line optimal run-time

scheduler even if any ready process is permitted to preempt any other process in pro·

gress.

----- --------· ----------

-43-

proc~
ep=2

Tpt l dp=Pp=4
I I

Ts ti cs=l

I I I .. time
ds=l

0 1 2 3 4 5 Ps=4

I w Adversary requests
I I T8 at~e=l

t ! IP, T P is periodic
0 1 2 3 4 s

··:·

Figure2.2
Example for adversary argument in theorem 2.2

The negative result above certainly does not imply that a clairvoyant scheduler is

required for ALL problem instances. One might suspect that the process model con-

cocted for the proof puts too heavy a load on the single available processor. However,

it is easily seen that the proof holds even if we set the period of both processes to any

integer bigger than 4. Thus an optimal scheduler may not exist even if the processor

utilization factor is kept amitrarity small. The crux of the problem lies in the relative ur- .

gency of the processes.

The following lemma shows that a clairvoyant scheduler is not necessary for

scheduling ·a set of sporadic processes if they can be replaced by a set of

"equivalent" (in the sense of the following lemma) periodic processes for which a

feasible on-lirie scheduler e~ists. For this purpose, let us define the nominal slack., Ii of

a process Ti to be Ii= dr-ci where di and ci are the deadline and .computation time of

process T1.

Lemma 2.3

Let M = MPUM8 be an instance of a process model. Suppose we replace every

.44.

sporadic process Ti=(ci,pi,di) E Ms by a periodic process T'i=(c'i·p'1,d'i) with c'i=c1,

p' i = MIN(li + 1,pi), and d' i = c1. If the resulting set of all periodic processes M' can be

successfully scheduled, then the original set of processes M can be scheduled without

a priori knowledge of the request-times of the sporadic processes in Ms.

Proof:
· i Cl

If the periodic processes in M' can be scheduled, then a run-time scheduler can
' i'i

repeat the finite schedule for the interval [O,L] ad infinitum to meet all future deadlines

where L is the LCM (least common multiple) of the periods. We can modify this

scheduler to schedule the original processes as follows. At a request-time of a process

Ti, if Ti E MP' then schedule it by following the recurring schedule above. If the pro­

cess T1 E Ms, then schedule it at the earliest time when an instance of its equivalent

periodic process is next run on the recurring schedule. This modified scheduler does

not use a priori knowledge of the request-times of the sporadic processes and it

remains for .us to show that the sporadic processes will not miss their deadlines.

The worst case occurs when the request-time of a sporadic process Ti occurs one

time unit after the latest instance of its equivalent periodic process has started running.

By the definition of the transformation, the next request-time of process T' 1 occurs . at

the most Ii + 1-1 = Ii time u11its later, and the next instance of process T' i is completed

c1 time units after that. Hence, the sporadic process is completed at the most Ii + c1 ""d1

time units after its request time. QED

Remark

The above scheduler makes use of a database (the finite schedule) which is com-

puted off-line by exploiting the fact that the request-times of periodic processes are

known a priori. Thus it is a question of philosophy whether to call the scheduler totally

on-line or not. We would choose to reserve the term totally on-line for schedulers

- .~

.45.

which do no make use of any a priori knowledge of request-times.

In general, we can replace a sporadic process T with computation time c, deadline

d and minimum period p by a periodic process T' with computation time c', deadline d'

and period p' as long as the following conditions are satisfied: (1) d>d'>c(2) c'=c;{3)

p'~d-d' + 1. This is an example of a general technique called latency scheduling which

is used to schedule sporadic computation by exploiting periodic computation and

which will be investigated in detail in the next chapter.

Intuitively, a sporadic process is more demanding (i.e., it makes it more unlikely to

find a run-time scheduler which is .not clairvoyant. for the problem instance) the shorter

its nominal slack is, and this is reflected in the shorter length of the period, p' i = Ii of

its "equivalent" periodic process. However, it is important to point out that the transfor­

mation used in the above lemma is not unique. In fact, there are many ways to

transform a sporadic process into equivalent periodic process{es). We shall defer the

scheduling problem of sporad.ic computation until the next chapter and deal with only

periodic timing constraints in the rest of this chapter. We shall also concentrate on the

single processor case since a discussion of the multiprocessor case is unrealistic

without addressing the related problem of interprocessor communication which we shall

address in a later chapter.

When there are no restrictions on selecting a process for preemption, we have al·

ready remarked that the feasibiUty problem of scheduling a set of periodic processes

whose deadlines and periods are equal can be solved efficiently. In general, we can

test for feasibility by using an optimal scheduler to simulate the execution of the

periodic processes over a sufficiently long interval. (If the deadlines are all shorter than

the periods, then the simulation interval needs no longer than the LCM of the periods.)

We now turn to the issue of interprocess coordination which is to be supported by the

·46·

communication primitives. We have noted that the ability to enforce mutual exclusion

constraints is important to some real-time applications. Our next task is then to select

the communication primitives which are sufficiently powerful for our purposes and study

their implications on the scheduling problem. In general, a communication primitive may

be used to coordinate parallel activities of concurrent processes and thus put some

restrictions on the run-time scheduler by disallowing a subset of of the schedules

which the scheduler may otherwise generate. Perhaps the most well known mechanism

for· interprocess coordination is the use of semaphores which are known to have wide

applications, e.g., it can be used to enforce mutual exclusion and precedence con·

straints. (The spinning lock implementation of the P operation is inappropriate In the

hard real-time envirc:>nment. One can assume that processes will be blocked and

queued at a semaphore when they cannot proceed.) The natural question to ask is

how difficult the scheduling problem becomes when P and V operations are permitted

to delineate the scheduling blocks of a process. Unfortunately, the problem of schedul·

ing a set of periodic processes to meet their deadlines is NP-hard even if semaphores

are used to enforce mutual exclusion only (i.e., each P(x) operation must be followed

by a V(x) operation and every semaphore is initialized to permit only one process to

proceed.) Our proof is a straightforward modification of the NP-completeness proof of

the SEQUENCEING WITHIN INJ'ERVALS problem [GAR & JOH 79·, pp. 102-103] which

uses the well known NP-complete 3-PARTITION problem.

Theorem 2.4

The problem of deciding whether it is possible to schedul~ a set of periodic

processes which use semaphores only to enforce mutual exclusion is NP-hard.

Proof:

We shall transform an instance of the 3-PARTITION problem to an instance of our

.47.

scheduling problem as follows. Let A= { a1 •82• ... , 83m } be a set of 3m elements, B a

positive integer, and w1, w2, ... , w3m be integral weights of the elements of A respec-:

tively such that Bl4<wi~B/2and l: wi = mB. The decision question is whether A can

be partitioned into m disjoint sets each of. which has weight (the sum of the weights of

its elements) B.

The corresponding instance of our scheduling problem has 3m + 1 processes all of

which have the following form. · ,,: ot

_: (. l

Attribute period = pi, deadline =di
P(x) :,. , · ' ·
{ Scheduling block which together with the P and V operations takes c1
time units}
V(x)

For each element 8i in A, we create a process Ti with pi = di = mB + m and ci = w1•

In addition, . we create a process T 3m + 1 with p3m + 1 = B + 1 and d3m + 1 = c3m + 1 = 1.

This transformation obviously takes polynomial time. Notice that all feasible schedules

must run process Tam+ 1 in the intervals [t,t+1] where t=O {modulo 8+1) since
·.,

T 3m + 1 has O nominal slack. This leaves m separate slots of time each of which has

length B in the interval [O,mB + m]. There can be no idle time in any of these slots

since the m processes corresponding to the elements of A must be executed once be-

fore mB + m. Furthermore, none of these m processes can appear in more than one

slot, otherwise process T 3m + 1 would have been blocked from running by the sema­

phore. (Figure 2.3 illustrates the form which any feasible schedule must take.) Thus a

feasible schedule exists for the interval [O,mB + m] iff the 3-PARTITION problem can be

solved. The scheduling problem obviously cannot be solve if there is no feasible

schedule for [O,mB + m]. If there is one, then a run-qme scheduler can simply repeat

·48-

this finite schedule ad infinitum to meet the deadlines. Hence our scheduling problem

is at least as hard as 3-PARTITION. QED

T3m+l

D
0 i'

T3m+l

B
n
?~

Subset of p~ with
computation time = B

Figure2.3

B

T3m+l

____ D ,,.. time

The form of any feasible schedule in theorem 2.4

• ·1··-

Thus there is strong evidence to· support that insisting on finding a run-time

scheduler whenever one exists. can be prohibitively expensive. One alternative is to use

suboptimal algorithms. (It should be emphasized that the run-time scheduler must be

guaranteed not to miss any deadline. Sub-optimal algorithms are permissible only for

off-line computation.) Another alternative is to put as many restrictions on the use of

the communication primitives. as it is deemed reasonable for programming real-time·sys·

terns and hope that the restricted scheduling problem can be efficiently solved. The

simple form of the periodic processes in the NP-hardness proof above seems to sug•

gest that not much more can. be done by way of restricting the use of the P and V

primitives. The reason for the "NP-hardness" of the above scheduling problem lies in

the possibility that there are mutually exclusive scheduling blocks which have different

computation times. (These mutually exclusive scheduling blocks are similar to the criti-
,

cal sections of Dijkstra who originally defined a critical section as a single code seg.

ment which is shared by two or more processes such that at most one process may be.

executing it at any time.) As we shall show later, the scheduling problem becomes a lot

more tractible if mutually exclusive scheduling blocks must have the same computation

-49-

time.

In general, interprocess coordination by means of semaphores is far too unstruc­

tured for our analysis, e.g., the same semaphore may be used to enforce mutual exclu­

sion sometimes and to enforce a precedence constraint at other ·times. The complexity

of the corresponding scheduling problem will very easily get out of hand. While we can

impose conventions to structure the use of semaphores and thus keep the analysis

more manageable, the availability of a global memory implied by the use of semaphores

imposes an architectural constraint which is hard to justify if we are to apply our

results to distributed systems. For these reasons, we shall adopt a communication prim­

itive which is closer to message passing among processes. Specifically, we shall allow

a process to rendezv~us (borrowing the terminology from Ada) with another process .

. !

.50.

2.3.2 The Deterministic Rendezvous Model

The rendezvous communication primitive has the following syntax and may be

used to delineate scheduling blocks within a process. -

rendezvous (process_name) .

For brevity, we define processes which have rendezvous primitives targetting each

other to be communicants. (This definition induces a communicant relation on the set

of processes.) When a process Ti attempts to execute a rendezvous primitive, it must

wait until the corresponding communicant also executes a rendezvous primitive with Ti

as its argument. Presumably, information may be exchanged by the two processes at 1a

rendezvous, but the nature of the exchange is not of interest to us. The primary pur-

pose of the rendezvous primitive is for synchronizing two processes. More specifically,

a rendezvous establishes a precedence constraint which requires that all the computa-

tion before the rendezvous primitive in each process must precede all the computation
I

after the corre~ponding rendezvous primitive in the other process.

For scheduling purposes, a rendezvous is assumed to take zero time. In practice,

this can be justified by splitting the rendezvous overhead and including it in the

scheduling blocks right before the rendezvous. This raises a fine point in that a ren-..
dezvous may be interrupted if the run-time scheduler preempts the process to which

the rendezvous overhead has been charged. The rendezvous primitive by itself does

not guarantee mutual exclusion, e.g., it should not be used to manipulate sets of varl-

ables for which some mutual consistency constraint must be maintained.

It should be pointed ·out that a rendezvous between a periodic process and a

sporadic process is incompatible with the semantics of the timing constraints since a

periodic process must be executed regularly while by definition, there is no guarantee

that a sporadic process will request computation at all. If a periodic process must com-

municate with another process, then that other process must be made ready regularly

. - - ·-·----------

·51·

and is no longer sporadic. However, if two periodic processes with different periods

need to communicate with the same process Ti, then there is the question of how to

model Ti. We may specify Ti as a periodic process with appropriate parameters or we

may treat Ti as a sporadic process with the provision that Ti is made ready whenever a

periodic process wants to communicate with it. The second alternative suggests that

these processes are likely to be "servers" which cater to the periodic processes on
._ i :

demand. These "pseudo sporadic" processes will be treated separately in the next

model.

Two periodic processes are defined to be compatible if they have the same period

or if one period is an exact multiple of the other. We require that if two processes are

related via the transitive closure of the communicant relation, then they must be com-

patible. This requirement does. not seem to be too restrictive since processes which

must synchronize with one another are likely to have the same period; in any case, the

scheduling problem is not siQnificantly harder without this restriction. Also, two com-

municants are assumed execute the same number of rendezvous primitives targettlng

each other in every (the longer of the two) period in order not to miss any deadline.

The scheduling problem will now be tackled. The following example shows that the

earliest deadline algorithm modified to run the ready process which has the nearest

deadline and which is not blocked by a rendezvous primitive is not optimal.

Example

There are three periodic processes. T 1 consists of two scheduling blocks with

c11 = c12 = 1, d1 = 3, p1 = 5. T 2 has two scheduling blocks with c21 = 1, c22 = 3,

d2 = p2 = 10. T 3 has one scheduling block with ta= 1, d3 = 9, Pa= 10. T 1 must rendez·

vous with T 2 after the first scheduling block, and T 2 must rendezvous with T 1 after the

------- - ------

-52-

first and second scheduling block.

The earliest deadline algorithm fails because it does not make use of the informa-

tion that T 2 is forced by the second rendezvous to finish before the second deadline

of T 1, i.e., the real deadline for T 2 is at time 7 instead of at time 10 and is therefore

nearer than the deadline of T 3 which is at time 9. Figure 2.4 illustrates the situation

when the earliest deadline algorithm fails.

C21

t I I
0 1 2

I ell I c21 I c12

ti2

I I I I I G
3 4 ,5 6 7 8 9

C3 I ci2 I en I C22 I c12 l
. Figure2.4

Proc~

T2

T3

I
10

> time

pl= 5, dl = 3 , ,
c11 =c12=1

p2=di=10
C21 = l, ei2=3

p3 =10.~=9
C3=l

Earliest Deadline Schedule
fails at time = 8

Example of scheduling constraint imposed by interprocess synchronization

This problem can be easily fixed by adopting a technique for revising deadlines to

eliminate precedence constraints in the classical model of scheduling e.g., [BLAZ 76).

We shall apply this technique to build a database for the run-time scheduler so that

the earliest deadline algorithm can again be used with dynamically assigned process

deadlines. Let us consider the computation that must be performed for process T; in

-53-

the interval (O,L] where L is the longest period among the processes which belong to

the same equivalence class (induced by the communicant relation) as Ti. Denote the

chain of scheduling blocks generated in chronological order for Ti in [O,L] by Ti(1),

Ti(2}, ... , Ti(ni). These scheduling blocks. must also obey additional precedence con­

straints introduced by the rendezvous primitives. Specifically, suppose process -T; tar~

gets process Tj for a rendezvous between the scheduling blocks Ti(k) and Ti(k + 1), and

the corresponding rendezvous primitive occurs between the scheduling blocks Tj(I) and

Tj(I + 1). Then Ti(k) -+ Tj(I + 1), and Tj(I) -+ Ti(k + 1). Having thus defined the precedence

constraints, we proceed to assign a deadline to each of the scheduling blocks generat.,

ed in [O,L].

(1) Sort the scheduling blocks generated in [O,L] in reverse topological order.

(2) Initialize the deadline of the kth instance of Ti,j to (k-1)•p1 + d1•

(3) Revise the deadlines in reverse topological order by the formula: dg =
MIN(d8,{d8 .:-e8, : s -+ S'}) where s and S' are scheduling blocks and c5, ds ar:e

respectively the computation time and current deadline of S.
I

The purpose of the above procedure is to move up the deadline of a scheduling

block if it must precede another scheduling . block which has a nearer deadline but

which is not yet ready to f\ln. These revised deadlines can now be used to update the

current deadlines of the processes at run-time by recycling them every L time units.

Specifically, if a process Ti is executing the kth (modulo L/pi) instance of its jth

scheduling block, then it must be assigned a deadline equal to the revised deadline

(relative to the kth request-time of Ti in [O,L]) of the kth instance of the jth scheduling

block generated in [O,L]. Since all the revised deadlines have been moved up, a sue-

cessful schedule obeying the revised deadlines (::ertainly meet the old deadlines. On the

other hand, the amount of time .by which a deadline h.as been moved up is sufficiently

-54-

tight (consider the chain along which the MIN function returns its value.) so that any

schedule which violates a revised deadline must also miss one of the original dead.;

lines. We summarize the above arguments in

Lemma 2.5

Suppose M is a process model and all of the processes in M are periodic and may

have rendezvous communication primitives. Then the feasibility of the process model M
'~' .

is not affected by dynamically updating the process deadlines as described by the pro·
J ·. '--.

cedure above. Furthermore, whenever the dynamic deadline of a ready process Ti is

nearer than that of another ready . process Tj, th.en scheduling Ti ahead of Tj will ~~t

violate any precedence constraints involving the two processes.

Proof:

Let S and S' be two scheduling blocks in [O,L]. It follows directly from the formula

for revising deadlines that ds. < d8• if S -.s•. The claim in the lemma simply states the

contrapositive of this statement. QED

Theorem 2.6

If a feasible schedule exists for an instance of a process model restricted by ren-

dezvous scheduling constraints, then it can be scheduled by the earliest deadline algo­

rithm modified to schedule the ready process which is not blocked by a rendezvous

and which has the nearest dynamic deadline.

Proof:

The "time slice swapping" technique can be applied to transform any good

schedule to one produced by the modified earliest deadline algorithm. Lemma 2.5

guarantees that swapping will not violate any precedence constraint imposed by ren-

dezvosu primitives as long as the process with the nearest dynamic deadline is

-55-

scheduled first. QED

Remark

Obviously, scheduling is feasible if the modified earliest deadline algorithm pro­

duces a feasible schedule for the interval [O,L). In practice, it may not be necessary

for the earliest deadline scheduler to observe all the dynamic deadlines if the timing

constraints are not too demanding. A simple procedure for minimizing the size of the
''f•

database is to use the process (static) deadlines for scheduling until a deadline is

missed. In that case, insert dynamic deadline(s) one by one in reverse chronological

order until the missed deadline can again be met.

Monitors

To deal with the "pseudo periodic" processes that we alluded to earlier, we now

introduce a special type of process called a monitor which performs some service for

ordinary processes on demand. Our monitors are a simplified version of Hoare's con·

cept [HOAR 74] and have the following syntax.

Process <monitor_ name>

Attribute monitor
rendezvous(ANY _PROCESS Ti)
{ A single scheduling block with no communication primitives}
rendezvous(T1)

end <monitor _name>

The body of a monitor consists of a single scheduling block which is prefixed by a

rendezvous primitive with any process (a wild card) as the target. An ordinary prpcess . .
requests service from a monitor by attempting to rendezvous with tl)e monitor. If two or

more processes are requesting service, the system scheduler is free to choose (in ac-

cordance with some scheduling policy) a single process to rendezvous with the monl·

tor. The wild-card parameter is needed to avoid deadlocks which might result if the

·56·

monitor must rendezvous with user processes in a fixed order. After the scheduling

block has been executed, the monitor attempts to rendezvous with the same process a

second time. Even though a monitor does not have an explicit timing constraint attrl·

bute, it must meet the current deadline of . the process for which it is performing a ser-

vice.

It is obvious that a monitor realizes a critical section and so can be used to en-
force mutual exclusion constraints. For example, a binary semaphore may be imple-

mented by using the first rendezvous as a P operation and the second rendezvous as

a V operation. The scheduling problem with monitors is therefore NP-hard (in the

strong sense) by Theorem 2.4. As we have mentioned earlier, the problem becomes a

lot more manageable if mutually exclusive scheduling blocks must have the same com-

putation time. This can be enforced by requiring processes to execute the second

rendezvous with a monitor immediately after the first one, i.e., the two rendezvous prim·

itives targetting the same monitor must occur one right after the other in the code. This

has the same effect as using the two rendezvous primitives as a macro for inserting the

scheduling block of the monitor into a process with the guarantee that no more than

one process can be executing the monitor code at any one time {i.e., a critical sec-

tion). For scheduling purposes, every monitor will be treated as a critical section. The

monitor concept is brought in so that we may look at the related scheduling problem

(which is NP-hard in general), and also to be consistent with our goal of not relying on

a global memory for process coordination in our process model.

-57-

2.3.3 The Kernelized Monitor Model

In this model, the operating system kernel enforces mutual exclusion by allocating

processor time only in uninterruptible quantums, say of size q which is chosen to be

bigger than the longest monitor. For simplicity, we shall require the computation times

of all scheduling blocks to be exact multiples of q so that each scheduling block takes

an integral number of quantums to execute. This restriction seems reasonable if. critical

sections are kept very short, e.g., for accessing a small set of variables which must be

kept mutually consistent. (In the next model, even this restriction will be relaxed.) In

fact, it will become obvious that the shorter the time quantum .is, the better · is: ,the

chance to design a run-time scheduler with a small database. Notice that with this pro­

cessor allocation discipline, critical sections no longer impose any more restrictions on

the scheduler. As far as the scheduling problem is concerned, the only difference

between the kernelized monitor model and the previous one is that a process may be

interrupted only after it has been allocated an integral number of time quantums. · . ;

We shall adopt a scheduling technique [GAR et al 81] involving a concept called

"forbidden regions" which has been invented to yield a necessary and sufficient condl·

tion for generating a (finite) schedule for a set of (one-time) unit-length tasks with reat

number request-times and deadlines in the classical scheduling model. For simplicity,

we shall assume that all (periodic) processes to be compatible and let L be the longest

period. Relaxing this constraint does not make the scheduling problem significantly

harder, but increases the size (from O(L) to O(LCM{pi})) of the database for the run·

time scheduler. The following example shows why a simplistic earliest deadline

scheduler might fail.

Example

There are two periodic processes T 1, T 2• T 1 consists of a single critical section of

-58-

length c1 = 2 and has a deadline d1 = 2 and period p1 = 5. T 2_ has two scheduling

blocks with the following parameters: c21 = 2, c22 = 2, p2 = d2 = 1 O. The second

scheduling block of T 2 is the same critical section as T 1. The preemption time quan·

tum is set to be 2.

The second deadline of T 1 will be missed if the second scheduling block of T 2 -is

scheduled at time 4, since the second instance of T 1 must be scheduled as soon as)t

is requested at time 5, · and T 2 cannot be preempted before it uses up the second r -

quantum of processor time allocated to it at time 4. A cleverer scheduler will- leave the

processor idle in the interval [4,5) and execute T 22 in [7,9). The (open) interval (3,5). is

an example of a forbidden region in which a scheduler must not allocate a new quan-

tum of processor tim~ to any process so that a future deadline may be met. Figure 2.5

illustrates the situation when the second instance of T 1 misses its deadline because

T 22 is started in the forbidden region (2,3).

-59-

1
Proces,,

1 i i pl =5, dl =2
Tl cl cl C1=2

1
v

i p2=<ii=l0

!] I j l T2
c21 I ti2 c21 =c22= 2

0 i 3 J 6 ~ TH and T42 are
L cnucal sections,
,1 : _,".'•

I
Forbidden· k· .. »I :·i 'I

region I T 1 misses deadline at time= 7

·~~
because T 22 starts in the ·

forbidden region (3,S)

I cl cl
I I > time

Figure2.S ·..,,-.

Example of a forbidden region imposed by mutual exclusion constraints

The da~abase to be used by the run-time scheduler contains a collection of forbid­

den regions in the interval [O,L] where L is the longest period among the (compatible)
~.; . ; . i :

processes. The run-time scheduler recycles the database every L time units to locate

forbidden regions at all future times t, and allocates a quantum of processor time to

the ready process which has the nearest dynamic deadline and which is not blocked

by a rendezvous iff t does not lie on the within a forbidden region. To compute the set

of forbidden regions, each process is considered to be a chain of mini scheduling

blocks each of which is a quantum (the basic time unit of processor allocation). Con-

sider all the mini scheduling blocks generated in the Interval [O,L]. As in the previous

section, these mini scheduling blocks form a partial order imposed by the (intra and In-

terprocess) precedence constraints, and each of these mini scheduling blocks can be

given a request-time and deadline consistent with the partial order as follows:

-60-

(1) Sort the mini scheduling blocks generated in [O,L) in forward topological order.

(2) Initialize the request-time of the kth instance of each mini scheduling block of Ti in

[O,L) to (k-1)*p1•

(3) Revise the request-times in forward topological order by the formula: rs =
MAX(rs,{rs• + q : S' -+S}) where S and S' are mini scheduling blocks in [O,L], and

rs, q are respectively the current request-time and the computation time of S (i.e. 'a

quantum); , ; ·._it

(4) Sort the mini scheduling blocks generated in [O,L) in reverse topological order.·· '· tn

(5) Initialize the deadline of the kth instance of each mini scheduling block of Ti · in

[O,L) to (k-1)*pi +di~ · ,i;

(6) Revise the deadlines in reverse · topological order by the formula: ds · •

MIN(d8,{d8 .-q : S -+S'}) where S and S' are mini scheduling blocks; ds and ds·

are respectively the current deadlines of S and S'.

The effect of the above procedure is to assign to each mini scheduling block $.in

[O,L] a request-time r8 which is the earliest time at which it can be scheduled, and a

deadline ds which is the latest time by which it must be completed if their partial ord~

ering is to be maintained. The request-times are optimistic for two reasons. Fir$t, two

mini scheduling blocks, S and S' may be assigned the same request-times if they are

unrelated, i.e., if it is not true that S-+S'or S'-+S. Second, the processor may have to

be be kept idle at time t in anticipation of more urgent computation that will not be

made ready until a short while after t. For each request-time r5, we can declare the ln­

terial: (x8,r8), q > r8-x8 >o to be a forbidden region if we cannot delay scheduling

the scheduling block S beyond x8 + q. If the processor is unwisely allocated to some

process after time= x8, then it cannot be released until after time = x5 + q whence it will.

be too late to schedule the scheduling block S. The set of forbidden regions in the in­

terval [O,L] is computed recursively by the following algorithm.

-61·

(1) Sort the request-times in reverse chronological order and determine the forbidden

region associated with each request-time as follows. Initially, there are no forbidden

regions.

(2) For each request-time, rs and any deadline d for which L>d~ds, let nr,d be the
. (

number of mini scheduling blocks which must be scheduled in the interval [r8 ,d],
'l

i.e., count the number of all scheduling blocks S' for which r8.>r8 and d8 .<d.

Given a set of forbidden regions in the interval [rs,d], schedule nr,d mini schedul­

·ing blocks (time slices of length q) in [r 8 ,d) so that none of them starts in a forbid·

den region. Let sr,d be the latest time at which the first mini scheduling block must

be so scheduled. (There may be more than one way to fit nr,d time slices in the in·'

terval [r 8 ,d] witho~t violating any forbidden regions. A easy way to find sr,d is to

work backwards in time and place each time slice as close as possible to the left

of the previous one, starting from time= d. If placing a time slice right next to the

previous one will result in the left boundary being inside a forbidden region, align

the left boundary of the. time slice with the left limit of the forbidden region.) If sr,d

< r8, (i.e., there is no_ way to fit nr,d time slices of size q each in the interval [r5 ,d]

without putting the left boundary of at least one of them in a forbidden region),

then declare failure. Otherwise, declare (sr,d - q,r8) to be a forbidden region if

sr,d <rs +q.

The above algorithm constructs a set of O(n) forbidden regions:

W = {(xi,yi) : yi is the revised request-time of some mini scheduling block in [O,L], and

· no process stlould start past xi before y1}

in time O(n2) where n is the number of mini scheduling blocks generated in [O,L]. The

set W can be used to locate forbidden regions at run time as follows: At any time t, t

lies in a forbidden region iff xi < t (mod L) < yi for some (xi,yi) € W.

We give a simple proof (different from the approach in [GAR et al 81]) that a run-

-62-

time scheduler can use the following modified earliest deadline algorithm to produce a

feasible schedule whenever one exists.

The kernelized monitor scheduler:

At any time t when the processor is fr:ee, and t does not lie in a· forbidden region,

the scheduler allocates the next quantum of processor time to the ready process- which

has the nearest dynamic deadline and is not blocked by a rendezvous. Ties are broken

arbitrarily. If t lies in a forbidden region, then the processor is allowed to idle until the·

end of the forbidden region.

Theorem 2.7

If a feasible schedule exists for an instance of the process model with rendezvous

and monitor communication primitives, then the kernelized monitor scheduler can be

used to produce a feasible schedule.

Proof:

By the ·construction of the kernelized monitor scheduler, we only need to concen-

trate on the interval [O,L]. First, we show by induction that if the algorithm for finding .

forbidden regions fails, then no feasible schedule can exist; furthermore, in any feasible

schedule, no mini scheduling block can start in a forbidden region.

If the algorithm declares failure when it is processing a request-time, Yj before any

forbidden region is declared, then there must be a deadline d such that the computa­

tion to be scheduled in the interval [yj,d] exceeds d-yj, a clearly hopeless situation.

For a forbidden region (xj,Yj), any mini scheduling block starting in it will not finish until

after time= xj + q. But by the construction of forbidden regions, Yj is the request-time of

some mini scheduling block which must be started no later than xj + q. Hence starting a

mini scheduling block in a forbidden region will cause a deadline to be missed.

Suppose the hypothesis is true for all forbidden regions associated with request-

.63.

times later than some request-time yi and the algorithm declares failure when it is pro­

cessing yi. Then there must be a deadline d such that the computation required in

[yi,d] cannot be fit into that interval without starting some mini scheduling blocks In a

forbidden region after Yi· By the induction hypothesis, no feasible schedule can exist.

Consider the forbidden region (xi,yi) such that the hypothesis holds for all forbidden re·

gions associated with request-times after time= Yi· From the algorithm for finding for·

bidden regions, there is a deadline d such that one of the mini scheduling blocks that

must be executed in the interval [Yi',d] must start running by time = xi + q in order not to

violate any of the forbidden regions in the interval [yi,d]. But any mini scheduling

block starting in the forbidden region (xi,yi) will not finish until after time= xi+ q, so no

mini scheduling blocks with request-times>yi can be executed before time= xi+ q, and

the induction step holds.

If a feasible schedule exists for the interval [O,L], there must be one whose com­

pletion time (i.e., the time at which the last mini scheduling block in it finishes) is the

earliest. If there is any processor idle time in this schedule, then it must be the case ei·

ther (i) the idle time lies in .a forbidden region or (ii) all the processes are either not

ready or are waiting to rendezvous with some not yet ready process. Otherwise, the

next mini scheduling block in the schedule can be started earlier, and we can repeat

the argument to postpone the. idle time to after the last mini scheduling block and ob·

tain another feasible schedule with a shorter completion time, a contradiction. We can

now apply the "time slice swapping" technique (with q as the size of a time slice) to

transform any feasible schedule with the shortest completion time to one that is pro·

duced by the kernelized monitor scheduler. Again, no precedence constraints will be

violated by swapping since the deadlines have been revised so that mini scheduling.

blocks with earlier deadlines cannot be preceded by ones with later deadlines. Further·

more, the resulting schedule will have idle time if and only if the kernelized monitor

--- --- -------------

-64·

scheduler also idles the processor. QED

Corollary

If a feasible schedule exists for the interval [O,L], then the kernelized monitor

scheduler always generates one with the earliest completion time. Furthermore, none of

the start-times in this schedule can be pushed to an earlier time without causing a

failure.
' ' ~· - 1"

Proof: 'l! . r·

Any idle time before the start-time of a mini scheduling block in the schedule gen-

erated by the above algorithm must be either (i}. inside a forbidden region or (ii) when

every process is eith,er not ready or is waiting for a rendezvous. In both cases, the

mini scheduling block cannot be started any earlier.

Remark

If the kernelized monitor scheduling algorithm generates a feasible schedule for

(O,L], then a run-time scheduler which repeats this schedule at run time is guaranteed

not to miss any deadline~ It is actually unnecessary to simulate the kernelized monitor
'ii

algorithm for the interval [O,L] since if the algorithm for computing forbidden regions

does not declare failure, then we can show that the kernelized monitor scheduler must

succeed at all times. To see · this, assume the contrary and let S be the first mini

scheduling block to miss its deadline, dg and let rs be its request-time. Notice that the

kernelized monitor scheduler guarantees us that all the mini scheduling block$ that . .
have been allocated processing time in the interval [r5,d5] must have deadlines no

later than d5. If there is no idle time in the interval [r s·dsJ. then the forbidden region

algorithm would have failed in trying to fit the mini scheduling block S and all the other

mini scheduling blocks in [r5 ,d5]. On the other hand, the kernelized monitor scheduler

.65.

guarantees us that the only processor idle time in the interval [r8,d8] must lie inside a

forbidden region since the process which contains the mini scheduling block S is ready

and cannot be waiting for a rendezvous after time= r8. Again, the algorithm for con­

structing forbidden region would have declared failure in computing the forbidden re·

gion associated with the request-time rs.

. .. q

The kernelized monitor model imposes two restrictions on the scheduler. First, it

disallows preemption of critical sections by ordinary scheduling blocks. Second, the

scheduler cannot take advantage of the semantic difference between different critical

sections since they are not permitted to preempt one another. Both restrictions are

tolerable if all critical sections are relatively short. This seems to be a plausible as·

sumption since in practice, an operating system usually assigns a process a minimum
-;·:

quantum of computation time in order to keep process switching overheads within rea-

sonable bounds. As long as the critical sections are short relative to the minimum

quantum, t~e scheduler can execute only an integral number of scheduling blocks

within a quantum without incurring unacceptable waste.

. ' ; r: .~: ; .

-66·

2.4 Implications on the Design of Real·Time Languages . ·-~"

The term "real-time languages" has been used loosely to denote a class of high·

level languages which are designed to support real-time applications t There is, howev­

er, little consensus on what qualifies as a real-time language. Some of the language

features that are often cited in relation to real-time applications are:

(1) Parallel processing capability

(2) Access to a timer

(3) Direct interface with 1/0 devices

(4) Fast execution

The last feature is primarily an implementation issue although it may be argued

that the selection of language primitives, especially facilities for concurrency control

can have significant influence on implementation efficiency. Direct access to a timer

and 110 devices are important for control applications, but they can usually be imple•

mented with an appropriate fL:tnction package and therefore do not require conceptuaj

innovations to conventional sequential languages. The capability to coordinate parallel

activities indeed raises many interesting issues, and many language constructs have

been proposed for concurrency control, e.g., Dijkstra's semaphore, Hoare's monitor,

Hansen's distributed process, the rendezvous concept in Ada, etc. While the later pro~

posals are generally "cleaner.", comparison among them often tends to be ad hoc.

Having examined the process scheduling problem in some detail, we are in a position

to shed some light on the subject by examining the implications of real-time scheduling

req·uirements on the design of process-based real-time languages.

2.4.1 Incorporation of Performance Objectives into a Real-Time Language

Since the basic unit for scheduling computation is the process, compliance with

f In military jargon, they are also known as embedded systems.

-61·

the stringent timing constraints required by an application must be achieved by proper

scheduling of processes. An obvious approach is to augment high-level languages with

a set of constructs, e.g., delay· <time>, start <process> at <time>, so that processes can

be explicitly scheduled. Unless every process runs on a dedicated processor, these ex·

plicit scheduling commands cannot always be used to guarantee that a process will be

started on time. For example, if a process is delayed to a time at which another pro­

cess is scheduled to run and there is only one processor, then the resource conflict Is

usually resolved according to some priority assignment so that except maybe for the

process with the highest priority, explicit scheduling commands can guarantee only

minimum but not maximum bounds on response times. Thus explicit scheduling com·

mands are convenient for building soft but not necessarily hard real-time systems.

More importantly, most explicit scheduling commands in current real-time languages are

too restrictive for specifying timing constraints since they usually leave little room for

resolving resource conflicts.

Conceivably, this problem can be solved by modifying these commands to take ad·

ditional arguments so as to allow for margins in their timing parameters. A more serious

pitfall with using explicit scheduling commands is that processes are scheduled with

respect to the "current" value of time which must be read from a timer, e.g., oomput·

ing a start-time for a process .tc;> be used as an argument in a start command. In a mul·

tiprocessing environment, a process may be interrupted for an indefinite amount of time

immediately after it reads the timer, thus invalidating the timer value. For this reason,

explicit scheduling commands must be executed without preemption so that oniy up­

to-date time values are used. Unless time-valued arguments are restricted to be simple

expressions, explicit scheduling commands represent non-preemptible scheduling

blocks of arbitrary length, thus greatly increasing the complexity of the scheduling

·68·

problem as we have seen.

In general, a penalty in efficiency is incurred if a programming language permits or

even requires individual processes to allocate system resources with an authority that is

normally delegated to the operating system. This is so because scheduling decisions

are best made with global information about system demand. The efficiency problem in

both carrying out the scheduling function and the resulting allocation of resources sug-

gests that
··''

the function of scheduling constructs should not be as much to directly allocate com•
I i.

putational resources as to implement a protocol between the system scheduler and the

user processes requesting for resources.

The assignment of static priorities to processes can be viewed as an example of
•:\

such a protocol which is widely used in practice. This protocol is not the most efficient

since it offers only limited control over response times. For example, consider the prob·

lem of scheduling a set of periodic processes whose deadlines are the same as their

periods. When there are no restrictions on the selection of processes for preemption, it
.,

has been shown [LIU & LAY 73] that there are sets of processes with a processor utili·

zation factor ~ 0.7 for which no static priority assignment can meet the timing con­
:).

straints, whereas full processor utilization is always achievable by using the simple ear-

liest deadline scheduling algorithm.

In practice, the assignment of priorities is often based on the relative importance

of the computation performed by a process, timing constraint specifications being only

secondary considerations. For example, periodic processes that are essential to the

continuous operation of a system are often assigned high priorities regardless of their

specified repetition rates. This precautionary approach is appropriate for soft real-time

systems where there need not be any absolute guarantee on response times; in such

cases, a conservative scheduling policy is in order. The penalty is that the processor

..

·69·

may not be fast enough to also meet the timing specifications of less essential

processes which are assigned lower priorities even if all the timing specifications can in

fact be met by an appropriate assignment of priorities. The ability to design truly hard

real-time systems offers a more effeetive alternative since essential processes are not

unnecessarily given higher priority at the expense of less essential ones. In fact, hard

real-time systems are made more robust since by design, monopolizing system.

resources should be deliberately forbidden. To support this assertion, we must also

deal with the contingency when the actual workload exceeds the specifications; the

robustness aspects of hard real-time systems against unfaithful usage specifications ,,will

be discussed later. We shall only note that ·

the use of static priorities as a protocol for resource allocation should be considered

primarily for robustness rather than efficiency reasons.

Given that the process is the atomic unit for scheduling, a straightforward protocol

for allocating computing res~urces is to add scheduling attributes (e.g., deadline;

period) to a process. (Static process priorities could be used to resolve conflicts when

there is insufficient computing resources to meet all of the timing constraint•

specifications.) In practice,· however, the specification of timing constraints is usually

complicated by the need for processes to communicate with one another. In the next

section, we shall discuss some implications of timing constraint requirements on the

use of concurrency control mechanisms.

2.4.2 Choice of Concurrency Control Mechanisms

Concurrency control mechanisms have traditionally been designed to meet two Im·

portant needs: synchronization between processes and the enforcement of mutual ex·

clusion constraints. It is well known that both types of interprocess coordination can be

implemented by the use of semaphores or simple message passing constructs (i.e.,

-70-

send, receive). These constructs have been considered to be too unstructured by re-

cent designers of real-time languages and a number of alternative concurrency control

mechanisms have been proposed. It is difficult, however, to make an objective evalua­

tion of the different proposals, since many of the pros and cons for one construct or

another is often based on conflicting language design principles. In the following, we

shall first review some of these principles and then attempt to evaluate their applicabill"-

ty in the context of the hard real-time environment.

• r

~ Localization of control information:

Programs tend to be difficult to maintain if the control information associated with
i .·'

a single type of interprocess coordination is allowed to be scattered over different

places in a program. ·This is especially true with the use of semaphores or simple mes-
1

sage passing constructs for which additional programming rules must be observed so

as not to subvert the intended use of a construct, e.g., a process may inadvertently

exit out of a critical section after tripping an exception handler before the proper exit

protocol has been performed. It has been suggested that the maintainability of a pro­

gram can be improved by keePing control information (both code and data) close to-

gather.

~ Minimality in language constr~cts:

While it is conceivable to achieve concurrency control by defining a language con,

struct for every major type of interprocess coordination, e.g., the monitor construct for

enforcing mutual exclusion,· the size of the resulting language may be too unwieidy as

to be practical. The opposite view is to strive for simplicity by minimizing the number of ·

distinct control structures that are built into a language. For example, the designers of

Ada have sought to unify mutual exclusion and synchronization between processes by

providing a single interprocess communication facility (the rendezvous construct of

-71-

Ada) which can be used for both purposes.

~ Implementation efficiency:

Informally, the run-time efficiency of a concurrency control mechanism can be

measured by the run-time overhead it incurs in realizing interprocess coordination (i.e.,

by the difference in length between the actual schedule which takes into account the

execution time of the concurrency control mechanism and the shortest ideal schedule

which miraculously meets all the concurrency constraints without any concurrency con-

trol mechanism at all.) There are two important reasons why the run-time efficiency of a

concurrency control mechanism may not approach the ideal. First, a mechanism may

be too restrictive as to exclude some schedules which would otherwise be acceptable,

i.e., the semantics of the mechanism may not permit the maximal amount of parallelism.

Second, the inherent cost_ of the coordination mechanism may be unacceptably high,

either in the amount of interprocess communication or the amount of compile-time

analysis n~ed to optimize the translation of the concurrency control mechanism into

executable code. For example, it has been reported [ROB et al 81] that a straightfor-

ward implementation of the rendezvous mechanism in Ada incurs, even for the simple

operation of transferring one byte of data from a sender task to a receiver task, sub-

stantial context switching ~verhead (between the run-time system scheduler and the

sender and receiver) whereas an alternative solution using semaphores requires essen-

tially no context switching at all (provided that no acknowledgement signal is required

from the receiving task.) The problem of optimally implementing the rendezvous

mechanism by means of semaphores is, however, non-trivial in general.

It should be obvious that the above design principles are not necessarily compati-

ble with one another. Whereas localizing contrc;>I information and keeping control con-

structs to a minimal are generally considered a plus tp the programmer, they often in-

-72-

cur an efficiency penalty which may not be negligible for real-time applications. These

conflicts have been alluded to in the previous chapter as manifestations of the

maintainability/efficiency dichotomy whose resolution ultimately depends on the degree

to which we can automate the proceS5 of generating efficient software. It follows that

a more objective criterion for evaluating a concurrency control mechanism is by its im­

pact on software automation; in this case, how does it impede or facilitate the con­

struction of scheduling tools to satisfy stringent timing constraints.

By this criterion, we have concrete evidence that the undisciplined use of sema­

phores is undesirable; the related scheduling problem quickly becomes NP-hard. Anoth­

er lesson from our study of scheduling problems is that there is substantial benefit in

making the enforcement of interprocess· synchronization and mutual exclusion syntacti­

cally distinct since this piece . of . information is crucial to the solution of the related

scheduling problems; and there may not be any easy way to deduce whether a control

construct is being used to e~force a synchronization or a mutual exclusion constraint.

It should be mentioned that the syntactic distinction need not be built into the pro­

gramming language and a .purist who feels strongly about minimizing the number of

language constructs may prefer to annotate each instance of a control construct in­

stead. However, stylized annotations of code in effect introduce subclasses of control

constructs and this extra information must be supplied to the code generator.

2.4.3 Scheduling of Indeterministic Constructs

Another design issue which is closely related to the choice of concurrency control

mechanisms and the incorporation of performance objectives and which is not very well

understood is the scheduling of indeterministic constructs. Other than process

scheduling, a system scheduler is also needed to make a choice among alternative

paths of execution when the real-time language has indeterministic constructs, e.g., the

.73.

select statement in Ada. There is, however, little concensus on how the scheduler

should behave other than that it ought to be in some sense "fair" (for which the com­

mon interpretation is round-robin scheduling.) This approach is problematical since a

straightforward implementation of a "fair" scheduler may not guarantee that the com­

putation will make progress.

For example, consider two variables x, y which are guarded by individual sema­

phores and are both updated by two processes T 1, T 2 with the provision that they

must be kept mutually consistent (i.e., if x is updated by T 1 before T 2, then y must

also be updated by T 1 before T 2 and vice versa.) In order to avoid a deadlock, the

order in which x and y are accessed may be arbitrarily fixed, (say x before y) by ad·

ministrative decree. t-:fowever, this solution is deemed unacceptable since it puts an in·

tolerable constraint on how future programs can be written. As a compromise, the ord·

er in which x and y are accessed at run-time is left to be decided by the execution of

an indeterministic construct in both T 1 and T 2, and both processes release the sema­

phores that they are holding whenever they are blocked by the other one. It is easy to

see that both processes may never make any progress If the execution of the indeter·

ministic construct which updates the variables follows the round-robin discipline in both

processes (e.g., T 1 may access x first and T 2 may access y first and so on.) The par­

ticular problem encountered here stems from the fact that fairnes8 is a global property

and may not be achieved by schedulers which are only locally fair. While the above ad·

mittedly academic problem can be solved by randomizing the scheduler, it serves to ii·

lustrate the p"roblems of specifying the semantics of the scheduler In general.

The stringent timing constraints of the hard real-time environment suggest an ap- ·

preach for resolving the above issue. The key observation is that indeterministic con·

structs need not be stochastic but are better regarded as providing a margin of free­

dom to the scheduler for achieving performance objectives. Instead of (over)specifying

.74.

the behavior of the scheduler, it is more profitable to devise language mechanisms with

which the scheduler can be manipulated to achieve desired performance objectives. In

other words, the behavior of the scheduler should not be defined by the language but

by the application. In fact, there is no reason why the scheduler should be "fair" if a

particular set of performance objectives does not require some execution path to be

exercised at all. The default behavior of the scheduler may be decreed as part of the

specification of a real-time language, and for that purpose, the adoption of just about

any scheduling strategy, e.g., round-robin is defensible. The important point is for ·a

real-time language not to unnecessarily usurp the scheduling function but to provide

the programmer (or more importantly, software automation tools) with sufficient handle

for improving system performance.

For example, if the indeterministic rendezvous in our version of the monitor con­

struct is restricted by the language to select a user process by random, then it will not

be possible tQ make the best use of available processing power by applying clever

scheduling ·algorithms.

We have already discussed the language mechanisms for incorporating perfor-.

mance objectives of hard real-time systems into programs. It is an interesting problem

to design an appropriate protocol between the system scheduler and user processes

for soft real-time applications. For example, we might permit the programmer the option

of fine tuning the system scheduler in terms of a policy function which selects an exe­

cution path when an indeterministic construct is encountered. The selection may be

made according to the current values of a set of scheduling parameters which are

modifiable by the policy function at appropriate moments in real time. The definition of

the policy function is of course dependent on the target performance objectives. This

is a potentially rich research topic but is, however, outside the scope of this thesis.

.75.

Chapter 3

Design via a Graph-Based Model

3.1 Graph· Based Model of Computation for the Hard Real-Time Environment

In adopting a process-based computation model for studying resource scheduling

problems, there is an implicit assumption that ~he computational requirements of an ap­

plication have been somehow translated into a set of processes with the appropriate

scheduling attributes. Owing to a semantic gap, this translation can be a serious

source of inefficiencies durinQ system design and substantially complicates software
_,11.

maintenance later on. As such, a process-based model is less than desirable for

defining computational requirements in the hard real-time environment. However, the

process abstraction has been . the basis of the computation model for the majority of

software designs, and prudence requires us to present concrete evidence in order to

justify an alternative. t

To this end, we shall examine three general strategies for decomposing the com·

putational requirements of a. design problem into a set of concurrent processes. It will

be demonstrated that in the presence of stringent timing constraints, efficient decompo-

sition of the required computation into processes is inherently implementation depen·

dent, and that a set of processes resulting from a highly efficient decomposition Is like-

ly to be unstructured and difficult for human programmers to maintain. The design ex·

ample will also illustrate the concept of latency scheduling for meeting asynchronous

timing constraints (i.e., computation performed in response to sporadic external events),

sometimes by exploiting the periodic computation required for satisfying periodic timing

f Whereas English-like languages have been used to describe system requirements, a
process-based model is almost invariably used for software design and resource alloca·
tion. From a practical point of view, learning a new language for software design is
usually a major undertaking that most people are justifiably reluctant to pursue.

-----------· ~·--

·16·

constraints. We shall then introduce a graph-based computation model which is more

amenable to representing design requirements in the hard real-time environment. The

latency scheduling technique will be formalized in terms of the new model and the

computational problems of latency scheduling will be investigated.

. r

3.2 Decomposition of Design Requirements: an Example

In this section, we are going to examine the systems issues that are involved In

decomposing the computation of a hard real-time system into processes by examining

the relative merits of three different decomposition strategies. In a narrow sense, it can

be shown formally that there is no unique best decomposition since the most efficient

implementation depends on system parameters such as interprocess communication

costs. This observation is hardly surprising and is only one of the concerns arising

from the semantic gap between the hard real-time environment and a process-based

language. The broader purpose of this discussion is to bring focus on the important

but less readily quantifiable systems issues, e.g., maintainability, implementation in­

dependence which we have identified in the first chapter.

3.2.1 Statement of Design Requirements

Figure 3.1 is the block diagram of an automatic control system which is the-design

problem to be considered. Thi~ control system has three inputs ·x, y, z and a single

output u. There are five function blocks: f x• fy, f z• f 8 and f K' The function block fs

has two outputs one of which is fed back via fK to itself so that u is a function of x',

y', z' and its 'own previous value. The other output is to the external environment and

has the same value. For brevity, we use the same name, u to denote the two outputs.

The computation times of the five functions are assumed to be bounded and their max­

imum values are respectively cx, cy. cz. c8 and cK.

.77.

rx z'

rs u

~(
,,

fy
v

" f

Figure 3.1
Ex.ample control system function block diagram

The design objectives of this system can be stated in terms of the computation re-

quired by two periodic and one asynchronous timing constraints as follows. The input

x is to be $ampled at the regular rate of 1/px cycles per second. (Sampling rates are

determined by the dynamics of the physical process under control.) The output u must

be recomputed by executing the function fs with the new value of x' and recent values

of y', z' and v (to be determined by their individual update rates). The internal state v

must then be updated by executing fK with the new value of u. !he input y is to be

sampled at a rate of 1 /py cycles per second and the variables u and v must be like­

wise recomputed. The input z is a boolean signal, i.e., z E {0,1}, and can change state

asynchronously. When a sfate transition occurs, the new value of z must be detected

and a new z' computed by executing 'z· The output signal u must also be recomput­

ed by f 8 within dz time units. The input z is assumed to change state very infrequently

compared with Px and Py·

A physical interpretation of this block diagram is to regard fx and fy as the

·18·

preprocessors of signals from two sensors measuring the physical quantities x and y

one of which changes much more slowly than the other, hence the different sampling

rates. The signal z can be regarded as the output from a toggle switch and u is the

control signal to an actuator. The signal u is also used to compute an internal state to

be used in subsequent calculations, e.g., fK may be a state estimator in a compensa,;

tor. fs is used to determine the output from the inputs x and y and the internal state.

The variable z' may be a parameter which selects a different mapping for f 8 depending

on the operating regime selected by a human operator via the toggle switch z.

3.2.2 Implementation Environment

The example system will be implemented by a set of concurrent processes running

on one or more processors with common access to a shared memory. For concrete­

ness, each process will be programmed in an Algol-type language augmented by the

rendezvous and monitor constructs of the previous chapter for concurrency control. A

library of programs will supply· the code for the functions 'x· fy, f8, f K• f z· The signals

x', y', v, z' will be stored as global variables in the shared memory. The input signals x,

y, z are read from the external environment by fx, fy, fz respectively.

It should be noted that a shared memory is not essential to a process-based

model since each global variable may be implemented by the private variable of a mon­

itor whose sole function is to serialize access to the global variable, and in general, the

implementation environment is inconsequential to the validity of our observations about

process-based models. The crucial assumption is that the basic object to be scheduled

is the process.

All functions have a nominal (constant) execution time of 10 ms (milliseconds).

The nominal sampling periods of x and y are respectively, 80 and 160 ms, and u must

be recomputed within 80 ms after z has changed state. A timer is accessible to all pro-

.79.

cessors and initiates periodic interrupts as required by the periodic processes. When

an interrupt occurs, one or more processes are made ready to run, but are not neces·

sarily allocated processor time immediately so that the scheduler will not be unduly res-

tricted. Hence, a sporadic process does not have a priori ·priority over periodic

processes. For ease of reading, we give a summary description of the pertinent

language features.

3.2.3 Summary of Example Process-Based Real-Time Language

A process is declared by:

process <process_name>
activated by <signaLname> I timer
attribute <attribute_name> = <attribute_value>
<code body>
end <p.rocess_name>

A process may be either periodic or sporadic and may have a period and/ or dead-

line attribute. Periodic processes are activated by timer interrupts and a sporadic pro-

cess is activated when a signal variable changes value in response to external inter-

rupts. The period of a sporadic process is the minimum time between two successive

activations. (In practice, · external interrupts may be queued to maintain a specified

minimum period and an overload condition may be declared if the queue overflows. For

this example, we need not worry about the period attribute of a sporadic process since

the external signal z, e.g., a toggle switch is assumed to change very infrequently com-

pared with the periodic signals.) The deadline attribute will be defined as default in

which case the system will set it to the smallest feasible value. . .
A process may communicate (synchronize) with another proce8$ by executing:

rendezvous <process-name>

A process in a rendezvous is suspended until the target process also executes the

corresponding rendezvous statement. To enforce mutual exclusion, a process may In·

·80·

voke a monitor by executing:

rendezvous <monitor _name>

A monitor is declared by:

monitor <monitor _name>
<code body>
end <monitor _name>

A rendezvous with a monitor is completed by executing the body of the monitor. In

general, monitors embody critical sections and may be implemented in various ways;

e.g., by a process which is activated by any process attempting to rendezvous with it,

or by expansion of macros augmented with appropriate scheduling mechanisms.

For accounting simplicity, the computation time of a process will be the sum of

each function call to fx, fy. f8 , fK, fz plus the cost of executing rendezvous state­

ments. Initially, we shall ignore the overhead incurred by the operating system kernel

and the communication network and let c8ys (nominal cost of a rendezvous) be zero.

The effects· of these overheads will be considered when they are significant in deter-

mining the relative merits of decomposition strategies. \

In the following, we shall describe three decomposition strategies which represent

extreme approaches spanning the design space. The results of applying different stra·

tegies to the design problem will then be compared.

3.2.4 Decomposition by Timing Constraints

In this strategy, a process is created to perform the computation required by each

and every specified timing constraint. A process is usually made up of a sequence of

function calls representing the operations (signal processing steps) on the data path

between input and output devices, but a proc~ may also be created to update a vari-

able which holds some internal state information of ttle physical plant under control.

---- - ------- -----.-T-- - ----------

·81·

Since a function may be called in more than one process, some of the arguments may

not be variables local to the process. To preserve data integrity, a monitor is created to

enforce mutual exclusion on the execution of every function called by two or more

processes. The scheduling attributes of a process are set according to the associated

timing constraint in the obvious way. The following program implements a solution to

the design problem. · i

-82·

/*COMMENT
This program uses a process for each timing constraint. The name of each
process is denoted in capital letters by the names of the functions called
by the process. The processes XSK, YSK are for meeting the two periodic
timing constraints. The asynchronous timing constraint is met by the
sporadic process ZS which is invoked when a change in the sensor input
(read into the variable z) is detected. · .,

process XSK · r

activated by timer;
attribute period= 80, deadline= 80;

x : = sensor _xQ;
x' : = f x(x); .
rendezvous S;
rendezvous K;
end XSK

process YSK
activated by timer;
attribute period = 160, deadline = 160;

y : = sensor_yQ;
y' : = fy(y);
rendezvous S;
rendezvous K;
end YSK

process ZS
activated by z;
attribute deadline= 80, period= default ·

z : = sensor _zQ;
z' : = tz(z);
rendezvous S;
end ZS

monitor S

u : = t8 (x',y',z',v);
end S

monitor K

v : = fK(x' ,y' ,z' ,v);
end K

·83·

The nominal timing constraints have been specified so that the above program will

work on a single processor with any process scheduling discipline which does not idle

the processor when there is one or more ready processes. The timing diagram {com·

manly known as a Gantt chart} in figure 3.2 shows an example execution sequence of

the function calls.

40 8 1 0

Figure 3.2
Gantt chart for decomposition by timing constraint

This is perhaps the most straightforward way to decompose the computation and

the resulting design is very easy to understand. Insofar as maintainability can be

quantified, this decomposition strategy should yield a highly maintainable design solu-

tion. However, the gain in maintainability may be offset by a loss in efficiency owing to

the unnecessary duplication of some computation in two or more processes with com-

patible timing constraints. In the above program, the functions f 5 and f K are executed

in both XSK and YSK while in fact, it suffices to execute these functions only once

after both x' and y' have been updated. With this saving, it is possible to sample x and

y at the tighter specifications of 60 and 120 ms respectively. The Gantt chart in figure

3.3 shows the required execution sequence.

0x Y S K f1oX S K

Figure 3.3
Gantt chart for example of eliminating redundant function calls

·84·

It should be emphasized that it is not always possible or desirable to eliminate the

unnecessary duplication of computation. In particular, the saving noted above will not

be as easy to achieve if Px and Py are relatively prime and in general, decomposition

by timing constraints is conducive to designs which are stable against changes in

parameter values. However, the loss in efficiency may be significant since it incurs not

only extra processor time but also communication costs for enforcing mutual exclusion.o

This efficiency issue may be alleviated by a variety of decomposition strategies which

may be viewed as tradeoffs between two diametrically opposite approaches.

3.2.5 Decomposition by Minimizing lnterproc~ss Communication

Whereas the previous approach assigns the computation required by one timing

constraint to one process, the objective of this decomposition strategy is to minimize

interprocess communication by clustering as many timing constraints as possible into

each process. This is done by partitioning the computation required by the timing con·

straints into sets such that (i) only compatible timing constraints are assigned to the

same set (Two periodic timing constraints are compatible iff they have the same period

or one period divides the other), and (ii) two compatible timing constraints are assigned

to the same set if some of the operations (function calls) required by them are the

same. The computation in each set is assigned to a periodic process whose period at·

tribute is set to the highest common factor of the periods in the set. Each asynchro-

nous timing constraint is assigned to a sporadic process as before. (In fact, we may

want to satisfy an asynchronous timing constraint by means of an "equivalent" periodic

process and do away with sporadic processes altogether.) Under this decomposition

strategy, the design solution now requires two instead of three processes.

/* COMMENT
The process XYSK replaces the two processes XSK, YSK in the previous
solution. Since YSK needs to be executed only every 160 ms, a boolean

-85-

procedure skip_ Y is used every 80 ms to determine iffy need to be
executed. (This procedure may be implemented by using the real-time clock
or simply by toggling a static boolean variable.) The sporadic process
ZS associated with the signal z and the monitor S are the same as before . . ,

process XYSK

activated by· timer;
attribute period= 80, deadline= 80;

x : = sensor _xO;
x' : = fx(x);

- = ;I)

if skip_ Y() ==FALSE then { y : = sensor_y(); y' : = fy(y); }
rendezvous S;
v : = fK(u);

end XYSK

In this solution, ·,5 and fK are executed only once every 80 ms instead of three

times every 160 ms. With this improvement, we can in fact sample x and y at respec-

tively 60 and 120 ms and guarantee to meet a 60 ms deadline for responding to a

change in the signal z. These tighter parameters are impossible to meet with the previ-

ous decomposition strategy. Figure 3.4a shows an execution sequence of this program.

·86·

8 1 0
x y s K. ~

160 200time

Figure 3.4a
Example Gantt chart for decomposition by minimizing communication

0 4b sn do 100 200 time

Figure 3.4b
Example Gantt chart for two-stage pipeline implementation

(Y takes 40 msec and executes in two stages)

Figure3.4
Example of decomposition by minimizing communication and pipelining

In general, this decomposition strategy improves efficieny in two respects. First, it

may eliminate substantial redundant computation among compatible timing constraints.

Second, since there are fewer processes and the processes tend to be independent

{they have fewer common operations), less interprocess communication is required for

concurrency· control. Whereas in principle this approach can be pushed to the ex-

treme by clustering all the required computation into a single process, it defeats the

whole purpose of a process as a structural unit for software design. Efficiency im~

provement gained in this way must be paid for by an increase in design complexity

which in turn makes maintenance more difficult.

Because· the nominal parameters of our design example are rather lax, process

XYSK is only slightly more complicated than the two processes it combines. Neverthe-

less, some scheduling decisions must now be programmed inside a process (calling

skip_ Y so as to execute fy only in alternate cycles). Jn general, the control logic which

implements these internal scheduling decisions is likely to be sensitive to system

parameters and can be quite ad hoc when resource allocation is highly optimized. For

example, if the function fy is replaced by a new version which requires 40 ms instead

-87-

of 1 O ms computation time (field trials suggest that the value y' must be computed with

double precision!), then the above program for XYSK will not work. For in the worst

case, there is only 80 ms to execute both XYSK which now requires a maximum of 70

ms, and ZS which requires 20 ms. However, if the computation in fy is split into two
; I

stages of 20 ms each, then we can compute one stage of fy in each 80 ms and there­
:o

by meet all the timing constraints. The modified program for the process XYSK Is 1:::

shown below. An example execution sequence is shown in figure 3.4b .

. ,<

. I

·''iii.-· ,

.: i

/

·88·

/*COMMENT
This is a modification of the previously shown version of a periodic
process for meeting the two timing constraints for x and y.
The computation y': = fy(Y) is performed in stages by two assignments:
(1) temp:= fy1(y) to be executed in the first half of a 160 ms cycle
(2) y': = fy2(temp) to be executed in the second _half of the cycle .,

process XYSK

activated by timer;
attribute period= 80, deadline= 80;

x : = sensor _xQ;
x' : = fx(x);

if skip_ YO= FALSE then { y : = sensor _y(); temp : = fy1 (y); }
else y : = fy2(temp); ·

rendezvous S;
v : = fK(u);

end XYSK

. ;

By implementing f y as a two-stage pipeline, two successive samples of x are pro­

cessed in 160 ms while the same sample of y is processed in both halves of a 160 ms

cycle. We would like to draw attention to the fact that it is impossible for any process

scheduler to automatically simulate this "pipelining" technique with the previous ver-

sion of XYSK since at most one sample of x can be processed in each activation of

XYSK and a process can have only one thread of control at a time!

As might be expected, the optimized design is more difficult to understand since

there is no logical necessity for explicitly splitting a function into stages. Modifications

are harder to make since a local change in parameter value may bring about substan-. . -

tial reorganization in the control logic elsewhere, e.g., if f z requir~s 35 instead of 10

ms to execute while all other parameters retain their nominal values, then it is stiH

necessary to pipeline fy into two stages of 5 ms each. In general, optimization meas-

ures which minimize interprocess communication can easily create maintenance night·

·89·

mares for human programmers. However, when interprocess communication costs are

high and if "spaghetti control logic" is tolerable, then this decomposition strategy may

be preferable.

3.2.6 Decomposition by Maximizing Concurrent Processes

The objective of this decomposition strategy is to partition the required computa-
. : ll.

tion into as many processes as possible so as to maximize parallelism. The decompo-

sition procedure is best explained in terms of the data flow graph of the given problem

such as the function block diagram of figure 3.1. Specifically, a periodic process is

created for each node in the data flow graph. We stress the distinction between a
, I q

node which represents an operation on some data flow path and the function which is
., 'I

called to process the data passing through the node. Thus it is possible for two or

more processes to call the same function in which case a monitor is needed to enforce

mutual exclusion. In general, a node may be involved in the computation required by

one or mor~ periodic timing constraints, and the process assigned to the node is given

a period attribute equal to the highest common factor of the periods of the relevant
!}

timing constraints. Each asynchronous timing constraint is assigned a sporadic process

which contains the appropriate function calls .. (Again, there is the possibility of satisfy·

ing all the asynchronous. timing constraints by means of "equivalent" periodic

processes, in. which case no process will need to call more than one function.)

When a periodic process is activated, it must synchronize with an appropriate set

of processes which precede it, call the function to perform the operation associated

with it, and then synchronize with the set of processes which it precedes. Intuitively,

the predecessors of a process P at time t correspond to the operations before P re·

quired by some timing constraint whose period ~ivides t. (The definition of a predeces·

sor relation will be made clear in our graph-based COIT!putation model later.) Under this

-90-

decomposition strategy, the design solution now has five processes. The following pro-

gram shows the four periodic processes. The sporadic process for z and the monitor S

are the same as before.

/*COMMENT
This program uses a process for each node in the data flow graph of the
design problem (figure 3.1). The period attribute of a process is set to
the highest common factor of the periods of the periodic timing constraints
that require the execution of the corresponding operation.

•1

process X
activated by timer;
attribute period= 80, deadline= 80;

x : = sensor _xO;
x' : = fx(x);
rendezvous S;
end X

process Y
activated by timer;
attribute period~ 160, deadline= 160;

y : = sensor_yQ;
Y' ·- f . . - Y•
rendezvous S;.
end Y

process XYS
activated by timer;
attribute period:;: 80, deadline= 80;

rendezvous X;
if skip_ YO= FALSE then rendezvous Y;
rendezvous S
end XYS

process K
activated by timer;
attribute period= 80, deadline= 80;

rendezvous s~
v : = fK(u);
end K

l f '·

·91·

Since the nominal parameters have been set so that computation time predom-

inates the costs for communication and concurrency control (e.g., the nominal cost of

a rendezvous, csys is 0), a wider range of timing constraints can be enforced when

each process is run on a separate processor. The timing diagram of Figure 3.5 shows

an example execution sequence with five processors such that the input signals x and

y are sampled at respestively 30 and 60 ms, and the deadline for responding to a

change in z can be as tight as 30 ms .

. ;·.
p~r

1 x
2 y y·

Figure 3.S
Example Gantt chart for decomposition by maximizing concurrent processes

By assigning a separate process to each function block, this decomposition stra·

tegy maximizes the computation that can be performed in parallel. ·Redundant computa·

tion is reduced since timing constraints that require the same operation to be per.

formed in compatible time intervals are recognized in the construction of the synchronl·

zation code for each periodic process. If as many processors are available as there are

processes and computation time indeed dominates csys• then this· decomposition stra­

tegy will generally tolerate a wider range of timing constraints than the others. Like the

previous strategy, however, there is also a price to be paid in the increased complexity

of the design solution.

-92·

3.2.7 Comparison of Decomposition Strategies

The semantic gap between a process-based computation model and the hard· real·

time environment is best illustrated by a comparison of the three decomposition stra·

tegies presented above. If feasibility is the only concern, then decomposition by timing

constraints would be the least preferable. In general, a feasible solution will depend on

the tradeoff between computation and communication costs. When interprocess com·

munication costs are relatively low, decomposition by maximizing concurrent processes

is more likely to succeed, e.g., the tightest timing constraints for the design example

are achieved by this approach. This will not be the case when interprocess communi·

cation costs become significant. 'I..··

As an illustration, let each rendezvous statement add an overhead of 10 ms (which

is the nominal computation 'time of a function call) to the computation time of either

participating process. Specifically, csys = 10 ms if the participating processes reside on

separate processors and csys = 5 ms if they are on the same processor. If the five

processes resulting from the last decomposition strategy are run on separate proces-

sors, it is easy to check that Px and Py cannot be simultaneously shorter than 60, 120

ms respectively while at these sampling rates, dz cannot exceed 50 ms. On the other

hand, if we use two processors to implement the decomposition by minimizing com·

munication strategy, then Px' Py can be held to 50 and 100 ms respectively without ad·

versely affecting dz. More surprisingly, we need only one processor to achieve the

same periodic sampling rates if a longer dz (70 ms) can be tolerated. Specifically, the

the computation required by all the timing constraints can be clustered into a single

periodic process as follows.

1• COMMENT
The process XYZSK replaces the two processes XYSK, ZS in a previous
solution. Since ZS needs to be execu~ed only when z changes value,
a boolean procedure skip_Z is used to determine if fz need to be

.93.

executed. (This procedure may be implemented by comparing the new
reading from the sensor for z with its previous value which is kept in
a static variable.) .,

process XYZSK

activated by timer;
attribute period = 50, deadline= 50;

x : = sensor _xQ;
x' : = fx(x);

if skip_ Y() =FALSE then { y : = sensor_y(); y' : = fy(y); }

if skip_Z() =FALSE then { z : = sensor_zQ; z' : = fz(z); }

u : = fg(x',y',z',v);

v : = fK(u);
end XYSK

't'dl

.;,

,:.i

The technique employed above is an example of latency scheduling which will be

formalized and studied later. In general, it works by (more or less) periodically perform·

ing the computation required · by asynchronous timing constraints while taking advan-

tage of the computation that is already required by the periodic timing constraints. For

now, it suffices to note that the strategy of minimizing interprocess communication may

be pushed to the extreme by clustering all the computation in a single periodic pro·

cess. When interprocess communication overhead is predominant, there may be only

one process in a feasible decomposition whereas many processes may be needed in

the case where it is crucial to maximize concurrent processes. In between the two ex·

tremes lie a wide range of alternatives.

Aside from efficiency, an important criterion for comparing decomposition strategies

is the maintainability of the resultant design. Intuition suggests that decomposition by

timing constraints should rank highest among the three. But unfortunately, there is

currently no concehsus on how maintainability should be defined and hence, the validi·

-94-

ty of our evaluation is necessarily a matter of judgement. However, we believe that a

reasonable measure of maintainability is the stability of a design against changes in the

problem specification. Specifically, let us consider the minimum adjustments that must

be made when (a) a period or deadline assumes a different value; (b) a new timing

constraint is added or an old one is deleted. . , , .

If the decomposition is along timing constraints, then (a) will simply require 'a

scheduling attribute to be updated and (b) will require the creation of a new process

or the deletion of an old one. Both adjustments are straightforward and involve only

one process. If the decomposition has been to minimize interprocess communication,~

then both (a) and (b) may require updating a scheduling attribute and/or modifying :the

control logic in one i:>rocess; (b) may also require creating or deleting a process. The

adjustments involve only one process but may now require the maintainer to modify

some "spaghetti control logic". If the decomposition has been to maximize concurrent

processes, then both (a) and (b) may require substantial modifications to the schedul.

ing attributes and control logic of a number of processes.

Although decomposition by timing constraints seems to require the least adjust·

ment in response to specification changes, it should be said that maintainability and

efficiency are not entirely separate issues. If a change in the specifications -causes

some deadline to be missed. after the straightforward design adjustments have .been

made, then either faster hardware must be bought or a different decomposition strategy

must be pursued. This type of major overhaul is less likely with a more efficient decom­

position strategy.

3.2.8 Implications of The Semantic Gap on Software Automation

In order to automate the design and maintenance of software to run in the hard

real-time environment, we need a computation model with which to express the compu-

.95.

tational requirements of a system. Ideally, appropriate software tools can then be built

to translate an instance of the model all the way to executable code. In the traditional

approach, a process-based model is almost invariably chosen. Unfortunately, metho­

dologies which use a process-based model to define design requirements are neces•

sarily limited in their usefulness inasmuch as the first precise problem represeAtation-

that an automation tool can work on is a set of processes.

As the above discussion suggests, the semantic gap between a process-based ~-

model and the hard real-time environment has serious implications with regard to the

systems issues raised in an earlier chapter. To wit: (1) The maintainability/efficiency di-

chotomy has been amply demonstrated. (2) System integrability suffers since a process

is essentially an abstraction of the traditional van Neumann computer architecture and

may be difficult to map directly into other types of machine architecture, e.g., VLSI sys-

tolic arrays. A uniform way is lacking for determining the feasibility of a set of

processes to be implemented on a combination of current computers and other types

of computing resources. (3) Implementation independence is limited by the natural bias

for implementing processes on the traditional architecture because of the obvious

efficiency advantages.

We contend that these are sufficiently strong reasons for finding an alternative

model of computation which is semantically closer to the hard real-time environment It

ought to be admitted, however, that the validity of our contention is necessarily a

matter of judgement in the absence of more discriminating metrics.

·96·

3.3 Definition of a Graph-Based Computation Model

The purpose of the computation model underlying a design methodology for hard

real-time systems is to provide an abstract representation of a design problem with

sufficient precision to allow the specification of stringent performance requirements so

that automation tools can be built for resource allocation and feasibility analysis. As

such, the model should be as close as possible to the problem representation familiar

to control system designers. To this end, we adopt a graph based model which is in-

tended to capture the data flow and computational requirements that control engineers

often describe via a block diagram.
. .

Our model is a tuple {G,n where G is a communication graph describing the data

dependency among the operations (functional elements) of the system, and T is a set

of timing constraints. Specifically, G = {V,E,Wy) is a digraph {which may contain cy­

cles) where V and E are respectively the set of nodes and edges, and Wv is a function

which assigns a non-negative. integer weight to each node in V. The nodes denote

functional elements which take their inputs from the incoming edges and produce out·

puts on the outgoing edges. Edges denote data paths connecting functional elements

and two nodes may be connected by more than one edge. The weight of a node is the

computation time of the corresponding functional element. Edges may be labelled by

the names of the variables whose values are transmitted along the corresponding

edges. To simplify drawing, some edges in a communication graph may not have an

originating or destination node in which case the omitted node is understood to denote

the· external environment.

T is the union of two finite sets of timing constraints: T P (periodic timing con­

straints) and Ta (asynchronous timing constraints). Each timing constraint is a tuple.

{C,p,d) where p, d are respectively the period and deadline which are non-negative in·

tegers and C (the timing constraint graph) is an acyclic graph compatible with the

.97.

communication graph G. We say that the graph C is compatible_ with the graph G if

there is a mapping h such that: (1) If v is a node in C, then h{v) EV; and (2) If e is

an edge from a node u to another node v in C, then h(e) is an edge from h(u) to h(v)

in E. A timing constraint graph C is meant to define the precedence relation of the

computational events that must occur to satisfy a timing constraint. A node in the tim•.

ing constraint graph C denotes an operation (an execution of the corresponding fullC·'

tional element in the communication graph). An edge in the graph C denotes the

transmission of some output value from one functional element to another. We do not

rule out multiple instances of the same node or edge of the graph G in the graph C so

as to allow for limited iteration. The computation time wi of the ith timing constraint r1

is the sum of the w~ights of the nodes in the timing constraint graph C. If the timing

constraint is periodic, i.e., {C,p,d) E T P' then it is activated every p time units, starting

from time= O. If it is asynchronous, i.e., (C,p,d) E T
8

, then it can be activated at any

time t for any non-negative integer t with the provision that two successive activations

must be at least p time units apart.

A timing constraint graph C is said to be executed in a time interval I if a subset

of the (multi)set of operations that have been executed in I forms a partial order such

that: (1) There is a bijective mapping between the operations in the partial order· and

C. (2) Under this mapping, the partial order is consistent with c: (3) In the case the

operations are distributed, an execution of C must also include the transmissions of

data that are denoted by the edges of C. More precisely, if the graph C contains an

edge from the node u to· the node v, then an execution of C must include the

transmission of the last output of u to v before the output of v can be computed.

When a timing constraint is activated at time t, the corresponding timing constraint

graph must be executed once in [t, t+d].

Intuitively, the set T defines all the computation that the system is required to per-

·98·

form in real time. The purpose of the compatibility condition is to make explicit any

communication that may be required for synchronization purposes. {Another way to in"

terprete compatibility is that one operation need to precede another only if the output

of the former is an input to the latter.) We also allow the same operation to appear

more than once In a timing constraint graph so as not to rule out bounded iteration. ·, .

{As an option, a timing constraint C may also have an non-negatrive integer

release time attribute, r in which case there must be an execution of C In [t + r,t-1: d]

whenever the timing constraint is activated at time t. In general, the addition of< a

release time attribute will not affect the complexity of the related scheduling problems

and we shall assume that r = O to simplify our discussion.)

Asynchronous timing constraints are usually activated by the occurrence of an

external event or when some predicate on the state variables of the physical process

under control is satisfied. In either case, we assume that mechanisms exist for an ac·

tivation condition to be automatically detected, e.g., interrupt detection hardware.

However, if ·an activation must be detected by explicitly evaluating a predicate, then the

computation involved must be included in the graph and the timing constraint activated

whenever the variables in the predicate change value. (For scheduling purposes, we

must assume that in the worst case, the predicate is satisfied every time it is evaluat­

ed.) Alternatively, the designer may specify a periodic timing constraint to evaluate the

predicate and to perform the required computation at a chosen rate.

In addition to the critical time parameters, there are other scheduling constraints

that must also be observed· in performing real-time computation so that data integrity is

preserved. As a motivation for these data integrity constraints, we shall first illustrate

the use of the graph-based model by defining the computation requirements of the pre­

vious example design problem in figure 3.6

.99.

Communication graph G z

z'

f s

v

fK

i' u

y'

z' u

v

C3 v u

rz rs u

y'

Figure 3.6

u

I r '. ~

type1 =periodic
periOd =80
deadli~e1 =80

type~= periodic
peri =160
dead· e2=80

typ~.= asynchronous
dea me3=80
period3 =default

Specification of Design Example in Graph-based Model

''\>.·
'.;Ir·.

·100·

Notice that the graphs for both periodic and asynchronous timing contraints con-

tain the edge (labelled z') from the operation f z to the operation fs but only the asyn­

chronous timing constraint requires the operation f z· Suppose that the two operations

fz and fs are implemented on separate processors and that the Input z changes value

when the last value of z' is being transmitted to f 8 as part of the execution of a

periodic timing constraint. In response to the asynchronous timing constraint for the

signal z, the function fz· is executed and a new value of z' is also transmitted to t8 . An

anomaly may occur if the new value of z' arrives at f S before the old one does since in
'

this case, the output of fs will be based on the old value of z after the function fs is
. I'

executed for a second time and will remain so until the next execution of the periodic

timing constraint. In . order to eliminate this kind of anomaly, we require real-time com­

putation to be pipeline-ordered.

(1) Two executions of the same functional element in G are pipeline-ordered if they

have distinct start-times and that the execution which has an earlier start-time must

also have an earlier finish-time than the other.

(2) Two data transmissions along an edge connecting the functional element u to the

functional element v in G are pipeline-ordered if they are sent at distinct instants at

the site of u and that the earlier transmission must also be received earlier- at the

iste of v.

When all executions of operations and data transmissions are pipeline-ordered, it

can be easily shown by induction that if the output of each operation is given an up­

ward counting version num&r, then the input used in the execution of every operation

must show only increasing version numbers. (We do not require the version number of

an input used in an execution to be exactly one bigger than that used in the previous

execution.)

The graph-based model is an attempt to abstract the computational events in real·

-101-

time feedback control problems, e.g., avionics systems, industrial processes. While we

do not claim universality for our model, we note that the usual state space formulation

familiar to control engineers can be naturally translated into our model. From a compu·

tational point of view, the graph-based model is also capable of simulating a restricted

version of the well known data flow model of computation. In fact, any data flow- sche ..

ma which has only bounded iteration constructs (with fixed limits) can be simulated by

a single asynchronous timing constraint with appropriate time parameters. (While simple

conditionals can be readily incorporated into our model, unbounded iteration is funda~

mentally inconsistent with real-time computation.)

·102·

3.3.1 Scheduling Problems with the Graph-Based Computation Model

The graph-based computation model provides us with a language which does not

suffer from the semantic-gap problems confronting process-based models in defining

the computation requirements of hard real-time systems. An obvious strategy for auto·

mation is to design algorithms ·to decompose the computation defined by an instance

of the graph-based model into an appropriate set of processes which can be run oit

the available processor(s). However, there are two limitations to the generality of this

approach. First, when there are multiple processors, a wide variety of mechanisms may

be used for interprocessor communication, e.g., shared bus, Banyan switch, multiport

memory. The optimality of a decomposition algorithm necessarily depends on the pecu·r

liarities of the interconnection devices so that the applicability of any one decomposi.;i

tion algorithm is limited. Second, some of the operations performed by a real-time sys-1

tern may be best implemented by special hardware, e.g., systolic arrays for signal pro­

cessing. Thus an optimal dec~mposition algorithm must also be able to make efficient

use of special devices which may be awkward to model in terms of the process

abstraction.

The first limitation can be eased by finding a uniform characterization of communi­

cation resources for the hard real-time environment and will be dealt with in the next

chapter. It suffices to mention. here that the decomposition problem is in general com,

putationally intractable (NP-hard). The second limitation is a more fundamental

difficulty with the process abstraction. In practice, the decomposition of the computa·

tioli required by a real-time system may also be subject to artificial constraints which

stipulate that certain operations must be executed on the same processor. In any case,

a decomposition algorithm must be able to decide if the computation assigned to a.

processor can indeed be scheduled. In this chapter, we shall examine the single pro·

cessor scheduling problem for the graph-based computation model, and in particular,

-103·

the technique of latency scheduling.

3.3.2 Design Constraints on the Run-Time Scheduler

Given a problem instance in terms of the graph-based model (G, T), our objective

is to design a run-time scheduler which will execute the operations in G in an ap-

propriate sequence so that the timing constraints in T are satisfied. In addition, the

run-time scheduler must also guarantee that the data integrity constraints are observed.

The following theorem guarantees that the computation performed on a single proces-

sor implementation will be pipeline-ordered by introducing two implementation assump-

tions.

Theorem 3.1

If the following two implementation assumptions are satisfied, then the computation

performed on a single processor will be pipeline-ordered.

(1) The outputs of a functional element u are stored in unique variables which are up-

dated as the last action . in an execution of u. The inputs of a functional element v

are parameters which are passed by value to v when v is executed.

(2) The run-time scheduler will permit only one execution of an operation to be in pro-

gress at any time (i.e., an operation is not permitted to preempt itself), but· we do

not preclude the preeemptiqn of an operation by a different one.

Proof: follows directly from the definition of pipeline-orderedness.

We shall be primarily interested in exploiting the class of run-time scheduler$ that . .
can be simulated by a round-robin scheduler which makes schedul.ing decisions by re-

peating a precomputed (possibly very long) schedule. If all the timing constraints are

periodic, then this class of schedulers is as powerful as any run-time scheduler. The

techniques developed for the process-based models can be used to help solve the

-104-

scheduling problem. For dealing with asynchronous constraints, some advantages of

our approach are: (1) It opens up the possibility of exploiting the computation that is

already required to satisfy the periodic timing constraints. (2) The on-line computation

required to make a scheduling decision at run time may be shifted off-line. (3) It is re­

latively easy to trace back a segment of the immediate history of a computation .at any

point during run time, a significant help for debugging systems which must cope with

asynchronous events.

Given a round-robin scheduler, the scheduling problem of interest is to decide

whether there is a finite schedule which the scheduler can repeat to meet all the asyn­

chronous timing constraints. To study this problem, we now formalize the concept of

latency scheduling (first introduced in [WARD 78].)

-105-

3.4 Latency Scheduling

We shall first introduce some terminology.

An execution trace of a processor is a mapping F from the non-negative integers

to the set of nodes (functional elements} in a communication graph G plus a null sym-

bol fl' such that F(i} = u if the scheduler executes u the time interval [i,i + 1) and F(i)

= fl' if the processor idles in that interval. (The null symbol fl' may be subscripted with

an integer to indicate the length of the idle interval.) . ;:,.';

An execution trace can be represented by a semi-infinite string of f symbols and

node labels with the interpretation that the scheduler performs the first operation. v.,in
. .

[O, cv] where cv is the computation time of v, and then sequence through the rest· of

the operations in the string. For any pair of non-negative integers s and t, the function

F induces a natural mapping which assigns to every time interval [s,t], the finite string

of operations which are completely executed in that interval, i.e., (with a slight abuse

of notation) the first operati~n of F([s,t]) starts no earlier than time= s and the· last

operation completes no later than time = t. Using our favorite design example (with ail

functions having a nominal .computation time of 10 ms), the run-time scheduler which

repeats the string:

"fx fy fz fs fK"

will generate an execution trace F where F([0,20]) = "fx fy" and F([15,25]) = w, the null

string.

For brevity, a timing constraint (C,p,d) will be denoted simply by C whenever there

is no confusion. An execution trace F is said to contain an execution of the timing

constraint C in the time interval [s,t] iff the sequence of operations in F([s,t]) contains

a subsequence S such that (1} There is an isomorphic mapping between S and the

nodes of the timing constraint graph C; and (2) The linear order of S is consistent with

the precedence relation defined by the acyclic graph C. The execution of the timing

·106·

constraint C starts at the start-time of the first operation in the. subsequence S and

finishes at the time when the last operation in S completes execution.

An execution trace F is said to have a latency of I time units with respect to the

timing constraint C iff for every non-negative integer s, F([s,s+ I]) ·contains an execution

of C.

We remark that the above definition implies that if an execution trace a = .. ,8y

(where 8 is a finite suffix of a) has a latency of I with respect to the timing constraint

C, then y is also an execution trace with a latency of I with respect to C.

A static schedule L (a finite string of operation symbols) is said to have a latency I with

respect to the timing constraint C iff the execution trace F which a round-robin

scheduler generates by repeating Lad infinitum has a latency of I with respect to C.

If a static schedule L has a latency I with respect to an asynchronous timing con·

straint C such that I < d (the deadline of C), then a round-robin scheduler which re-

peats L ad infinitum obviously satisfies C. A static schedule L is said to be feasible

with respective to a set of asynchronous timing constraints Ta if for every CET a• L has

a latency <d, the deadline of C. For our design example, the static schedule:

has a latency of 80 ms with respect to the asynchronous constraint which requires the

functions fz and fg to be executed within 80 ms of an activation. This is in fact a

feasible schedule which meets all the nominal timing constraints of the design problem.

We shall use the terms latency and deadline interchangeably as long as it cau~ no . .
confusion.

Since external events may not occur at integer points on the time axis, the physi·

cal response time guaranteed by our definition of latency may be late by a fraction of

our chosen time unit. However, we can allow latency to be measured on the real line

-107-

by making the following observation: If an integer latency d must be satisfied for any

interval on the real line, a static schedule is feasible if and only if it has a latency of

d-1 when measurements are taken at integer points only. We shall be concerned with

discrete-time time systems only.

-108-

3.4.1 Upper Bound on the Length of a Static Schedule

Given a finite set of n asynchronous timing constraints { Ci }, i = 1, ... ,n, our prob­

lem is to determine if there is a feasible static schedule and how hard it is to compute

it. Notice that there are two potential reasons why a static schedule may not exist: (1)

The deadline specifications are too tight to be met. (2) Any feasible schedule might be

necessarily infinite in length, i.e., any execution trace which has latencies <the dead·

lines of the respective timing constraints must be aperiodic. (Consider the proposition

that there is a set of asynchronous timing constraints involving 10 operations labelled

from O to 9 such that the only . feasible schedule is represented by the fractional ex pan-
. .

sion of w .) We shall first give an upper bound on the length of a static schedule if one

exists and show that (2) is impossible. t ·

The basic idea of our proof is to demonstrate that any feasible execution trace

(one that meets all the latency requirements) can always be simulated by a program

with a finite number of states. . Without loss of generality, we shall assume that all

operation symbols in an execution trace have unit computation time. (We can always

replace every node v in a communication graph G by a chain of cv uniquely labelled

nodes where cv is the computation time of v.) The simulation is done by moving timers

around the timing constraint graphs each of which is augmented by a new node and

extra edges as follows. For the ith timing constraint Ci, we add a node called sink and

we add an edge to sink from every node in Ci which does not have any successor.

Each sink node also has an alarm which increments with time and is reset to a new

value whenever an execution of the timing constraint Ci completes. (When there is no

T Teixeira [TEXI 78). has also proved that (2) is impossible for a computation model.
pertinent to the monitoring of bandwidth-limited analog signals which propagate
through an acyclic network of function elements.

·109·

confusion, Ci will be used to denote the corresponding augmented. graph.)

Intuitively, a timer records the "age" of an execution of the timing constraint c1

that is in progress. Specifically, a timer of value t on the output edge of a node v indi~

cates that there is an execution of v and all its predecessors starting exactly t time un­

its ago. During the simulation of a feasible execution trace, a bounded number of ti"

mers may exist on an edge, but no two timers on the same edge will have the same

value. The alarm records the time that has elapsed since the start-time of the latest

completed execution of Ci. Given an execution trace, the simulation proceeds rby

sequentially scanning the string of operation symbols and follows the simulation pro­

cedure below. Each round of the simulation starts at step (2) and ends when the next

operation symbol in t~e execution trace is to be scanned at step (2) or (6). An example

of the simulation procedure is shown in figure 3.7.

-110-

Simulation Procedure

(1) Initialize the alarms to 0. The graph is initially clear of timers.

Apply the following procedure to every augemented graph c1•

(2) Scan the next symbol v in the execution trace. Increment all the timers on the

graph and the alarm by one. If v is 'I'· then go to (2). (The current round of. the

simulation ends.) Else go to (3).

(3) Let S be the set of nodes with label v such that each node in S either has no input

edge or has at least one timer on each of its input edge(s). For every node x in S

which does not have any input edge, remove x from S and create a new timer (ini-

tialized to 1) to be added to every output edge of x after S becomes empty.

(4) If S is empty, update 1he appropriate output edges and go to (6). Else go to (5).

(5) For every node x in S, repeat the following until at least one of the input edge(s) of

x becomes empty and then remove x from S: Let the maximum value of the timers

on the i.nput edge(s) of x be t; remove all the timer(s) with value t from the input

edge(s) of x and create a timer with value t to be added to every output edge of

the node after S becomes empty. When S is empty, update the appropriate output

edges and go to (6).

(6) If the sink has an empty_ input edge, then go to (2). (The current round of the simu-

lation ends.) Else go to (7).

(7) Repeat the following until at least one input edge of the sink becomes empty: Let

the maximum value of the timers on the input edge of the sink be t; remove every

I
timer with value t from the input edge(s) of the sink and reset the alarm to t.

-111 ·

sink

Augmented timing constraint graph

at time= 1

sink

: . .-,. l

at time= 2
I j f. ,_J

sink

at time= 4

sink

at time= S

sink

at time= 6

sink

at time= 7

sink

Figure 3.7
Simulation of the execution trace "AABCDEE"

-112-

The simulation procedure is designed to ensure that an execution trace satisfies

all the latency constraints if and only if none of the alarms exceeds the corresponding

deadline at the end of every round during a simulation. The distribution of timers and

their values on the edges of the augmented graphs together With the values of the

alarms at the end of a round of simulation constitutes a state of the simulation. The

upper bound of a static schedule is obtained by considering the number of states any

feasible simulation can ·be in. In what foltows, the simulation clock always starts at

time O and is incremented at the end of each round. Without confusion, the letter F

will be used to denote the execution trace under consideration.

Lemma 3.2

At the end of every round of a simulation, the timer(s) on the output edge(s) of

every node are strictly greater than the timer(s) on the input edge(s) of the same node. -

Proof

Suppose that the lemma holds after k symbols of an execution trace have been

scanned. If the next symbol v is 'P• or if all the nodes with label v have either no input

edge or at least one empty input edge, then all the timers are incremented by the same

amount and the lemma holds. If a node with label v has no input edge, then step (3) is

performed and a new timer .(i!'litialized to 1) is added to each ·of its output edges.

Since all the timers already on the graph have been incremented at step (2), the new

timers created at step (3) must be strictly smaller than the ones already on the graph.

So the lemma holds. If a node with label v has at least one timer on every input .edge,

then step (5) is performed and the new timer(s) added to the output edge(s) of v are

initialized to the maximum, t of the timer values on the input edge(s). But all the timers

with value t are removed from the input edge(s) in the same step, and so the new

timer(s) on the output edge(s) must be strictly greater than the remaining ones on the

-113-

input edge(s). Hence the lemma holds at the end of processing the k + 1th symbol·

Since the lemma is trivially true for k = O when the graph does not have any timer, It

must hold at every step of the simulation. QED

Corollary 1

During a simulation, the values of new timers added to an output edge must be

strictly smaller than the ones already on the edge and hence no two timers on the

same edge of an augmented graph can have the same value at the end of every simu-
.. -..

lation round.

Proof .

New timers created at step (3) are initialized to a value strictly smaller than the

timer(s) already on the edge. Timers created at step (5) are to be added to an output

edge but are initialized to the value of a timer on an input edge. By the lemma, they

must be strictly smaller than the ones already on the (output) edge. QED

Corollary 2
.(

At the end of every round of a simulation, the value of the alarm is at least as big

as any of the timers on the corresponding graph.

Proof

Since the alarm has been initialized to 0, its value must be at least as big as any

timer on the graph before it is reset for the first time. Step (7) of the simulation pro-

cedure always resets the alarm to the maximum of the timer value(s) that are on the In-

put edge(s) of the sink. The result follows from the acyclicity of the augmented timing

constraint graphs. QED

·114·

Lemma 3.3

If F([O,t]) contains an execution of a node and all its predecessors, then at least

one timer will be added to the output edge(s) of the node before the end of the simu-

lation round which ends at time t.

Proof

If the node has no predecessor, then a timer will be added to its output edge(s)

the first time it is executed. Suppose the node has predecessors and that the lemma

holds for all of its predecessors. Let r be the smallest integer such that F([O,r]) con-.!

tains an execution of the node and all its pred~essors. Then F([O,r-1]) must contain.

an execution of all the predecessors of the node and by the induction hypothesis, at

least one timer must have been added to every input edge of the node before the end

of the simulation round which ends at time r-1. If any of these timers is removed, theB

a new timer will be added to the output edge(s) of the node. If none of them has been

removed before time r-1, a timer will be added to the output edge of the node by step

(5) in the simulation round which ends at time r, thus completing the induction stepJ

QED

Lemma 3.4

.. ...

During the simulation round ending at time t, if a timer of value d is added to the

output edge(s) of a node by step (3) or (5) of the simulation procedure, then F([t-d,t))

contains an execution of the node and all its predecessors. If the last timer added to

the output edge has value x, then t-x is the start-time of the latest execution of the

node and its predecessors up to time t, i.e., t-x is the largest integer such that

F([t-x,t]) contains an execution of the node and all its predecessors. If no new timer.

is added to the output edge(s) of a node in this round, then the start-time of the latest

execution of the node and all its predecessor has not changed since the last round,

-115·

i.e., either (i) F([O,t]} does not contain an execution of the node .and all its predeces­

sors; or (ii) if d is the smallest integer such that F([t-1-d,t-1] contains an execution of

the node and its predecessors, then d + 1 is the smallest integer such that

F([t-(d + 1),t]) contains an execution of the node and its predeces8ors.

Proof

If the node has no predecessor, then a timer with value 1 is added to its output

edge(s) by step (3) of the simulation procedure if and only if the node is executed in

[t-1,t]. Thus the lemma holds for all nodes which do not have any predecessor. ·

Suppose the node has predecessors and the lemma is true for all the predeces-

sors of the node. If a timer with value d is added to its output edge(s), then every in­

put edge of the node· must have at least one timer with value ~d before the new timer

is created by step (5). Any one of these timers must have been added to the

corresponding output edge of an immediate predecessor of the node at an earlier

round which ends, say, at time r. If this timer was initialized to a value y, then by the

induction hypothesis, F([r-y,r]) must contain an execution of this immediate predeces-

sor and all its predecessors. In the interval [r,t], this timer increases i.ts value from y to

d, i.e., t-r = d-y and so F([r-y,r]) = F([t-(d-y)-y,r]) · = F([t-d,r]). In other words, every

immediate predecessor of the node and all their predecessors must have been execut·

ed in [t-d,r] for some r < t. Therefore F([t-d,t]) must contain an execution of the node

and all its predecessors which starts at time s-y, i.e., at t-d.

When the last timer is added to the output edge of the node, an output ed_ge of . .
one of its immediate predecessors must have become empty. If thjs timer has value x,

then the smallest timer on the corresponding output edge of this immediate predeces·

sor must have value x-1 at the end of the simulation round which ends at t-1. By the

first corollary of lemma 3.2, this timer must be the last one added to the output edge

· 116·

of the immediate predecessor and hence by the induction hypothesis, x is the smallest

integer such that F([t-1-x,t-1]) has an execution of this immediate predecessor and its

predecessors. Hence, x is the smallest integer such that F([t-x,t]) contains an execu-

tion of the node and its predecessors.

If no new timer is created to be added to the output edge(s) of the node, then

there are two cases. In the first case, there has never been an execution of the node

and its predecessors in [O,t] and so the start-time of the latest execution of the node

and its predecessors must not have changed since the last round. In the second case;

F([O,t]) contains an execution of the node and it predecessors, but at least one of the

immediate predecessor(s) of the node must have an empty output edge at the end of

the round ending at time t-1. By lemma 3.3, at least one timer must have been added

to the this edge before the simulation round which ends at time t. Consider the last ti•

mer removed from the output edge. of this immediate predecessor. Let this timer be re·

moved from th.e input edge of the node during the simulation round ending at time r

and let its value be x. By the induction hypothesis, the latest execution of this immedi•

ate predecessor and its predecessors must have started at time r-x. Hence, the latest

execution of the node and its predecessors must have started at time < r-x. Since a

timer with value x is added to the output edge{s) of the node at time r, there is an ex-

ecution of the node and all its predecessors which starts at time r-x. Therefore, the

start-time of the latest execution of the node and its predecessors has not changed

since the last simulation round. QED

Corollary

At the end of the simulation round which ends at time t, (i) if F([O,t]) does not

contain an execution of the augmented graph Ci' then the alarm on Ci will have value

t; (ii) if F([O,t]) contains an execution of the augment~ graph Ci, then the alarm on c1

-117-

will have as its value, say d, the time that has elapsed since the start-time of the latest

execution of Ci, i.e., d is the largest integer such that F([t-d,t]) contains an execution

of Ci.

Proof

If F([O,t]) contains an execution of the timing constraint graph Ci, then by lemma
. . .. :I~

3.3, at least one timer will be added to each one of the input edges of the sink in [O,t].

Hence if F([O,t]) does not contain an execution of the timing constraint graph Ci, then

at least one of the input edge(s) of the sink will be empty in [O,t] so that step (7) of

the simulation procedure is never performed in [O,t] and the alarm which is initialized to

O is incremented after every simulation round and therefore has value t at time t.

If F([O,t]) contains an execution of the timing constraint graph Ci, there are two

cases. In the first case, every input edge of the sink has at least one timer and step

(7) of the simulation procedure is performed. At the end of step (7), at least one of

the input edges of the sink inust be empty. Let d be the value of the last timer re.

moved from one of these empty edges. Since timers with larger values are removed

first, all except for the last . timer removed from an output edge of an immediate prede­

cessor of the sink an edge which is empty after step (7) must have value > d. By the

above lemma, there must be an execution of every immediate predecessor of the sink

and its predecessors starting at time > t-d. Hence there is an execution of the timing

constraint graph Ci in [t-d,t]. Since timers are removed in the same order they are ad·

ded to an edge, the latest execution of the immediate predecessor of the sink whose

output edge has been emptied by step (7) must have started at time t-d. Hence the

latest execution of the timing constraint Ci cannot have started after t-d. Hence t-d is

the latest start-time of an execution of the timing constraint Ci. Since the alarm is up­

dated to d, the corollary holds. QED

-118-

Theorem 3.5

An execution trace has latency di with respect to the timing constraint Ci if and

only if the value of its alarm never exceeds di at the end of every round of its simula•

tion.

Proof

Consider any interval I which ends at time t and has length di, i.e., I = [t-d,t]. At

the end of the simulation round which end at t, let the value of the alarm be equal to
. :<~

x. By the corollary of lemma 3.4, there must be an execution of the timing constraint Ci
'

in [t-x,t]. If x <di, then there must be an execution of the timing constraint Ci In I.

Hence if the alarm never exceeds di, the execution trace must have latency di with

respect to the timing ·constraint c1•

If the execution trace has latency di with respect to the timing constraint Ci, then

there is an execution of Ci in any interval of length ~ d1. Hence at any time t ;;::: di,

there must be an execution of the timing constraint Ci in [t-d1,t]. Let the start-time of

the latest execution of the timing constraint Ci in this interval be at t-d where d <d1.

By the corollary of lemma 3.4, the alarm of the augmented graph Ci must have value

equal to d at the end of the round which ends at tiine t. In the interval [O,di], the max·_

imum value of the alarm is di. Hence the value of the alarm at any time cannot

exceed di. QED

If a feasible execution trace exists, then by theorem 3.5, the value of the alarm in

the ith augm~nted graph Cj is bounded from above by di. By the second coroll~ry of

lemma 3.2, the value of any timer on the augmented graph Ci must be smaller than

that of the alarm and hence the value of the timers on any edge in Ci cannot exceed

d1 1. By the first corollary of lemma 3.2, all the timers on the same edge must have

unique values. Hence there are at most d11 timers on any edge. Let us define the

-119·

state of an edge in the ith augmented graph Ci be the finite set of timers on it and

define the state of Ci to be the value of its alarm together with the set of states of its

edges. The state of a simulation at the end of a simulation round is the set of states

of the augmented graphs.

- l ~ ·~ ~: • :.

Theorem 3.6

If an execution trace exists which meets the latency requirements of a set of n

asynchronous timing constraints { Ci }, i = 1, ... ,n, then there must be a (finite) feasible
- - f ' : : . • I•-. \ ~ l I

static schedule for the set of asynchronous timing constraints.

Proof

If an execution trace exists, then there are only a finite number of states which

the ith augmented graph Ci can be in at the end of every simulation round. Hence the

simulation of the execution trace can be in only a finite number of states. Thus after a

finite number of operation symbols in the execution trace have been scanned, the

simulation must reenter a previous state. Let 8 x1 .. ; xk "'(be the feasible execution

trace so that the state of the simulation program before the symbol x1 is scanned is

the same as that immediately after the simulation program scans the symbol xk. Let P
• be the string x1 ... xk. The simulation of the execution trace a fJ produces a se-

quence of states. By theorem 3.5, the alarm of the augmented graph Ci cannot exceed

di in any of these states, and Theorem 3.5 in turn implies that the execution trace a /J •

• is a feasible one and hence /J is a feasible . execution trace. Thus fJ must be a feasible

static schedule. QED

We can now give an upper bound on the length of a feasible static schedule

which has latency di with respect to the ith timing constraint Ci. Let Ei be the number

of edges in the augmented graph Ci. The maximum number of states that an edge

can be in is 2 • • di and the alarm can have value from O to di. Hence the number of

·'·"···-·

·120·

states the augmented graph Ci can be in is Ei(di+ 1)(2 •• di). The maximum number

of states a simulation can be in is:

Ili Ei(di + 1)(2 •• di).

If a communication graph has V ·nodes and E edges and if each node and edge of

the communication graph appears only once in each augmented graph Ci, then 91 i&

bounded by E+ V. If there are n timing constraints and dmax is the maximum of_ the·

deadlines, then the maximum number of states is:

(d + 1)n(E + V)n (2 •• nd)· max . max ; . . : ~ ·.1

which is an upper bound on. the length of a feasible static schedule where · every

operation need to be executed at most once in each timing constraint. - ...

-r:-·-- - ' I~ ,~

·121·

3.4.2 Computing Static Schedules for Asynchronous Timing Constraints

In the last section, we have obtained an upper bound on the length of a feasible

static schedule. Thus the existence of a feasible static schedule can always be decided

in finite time. When the computation load is heavy, however, the ·length of any feasible

static schedule can indeed get very long. For example, given any integer n, consider

the following latency scheduling problem:

The communication· graph consists of n + 1 unconnected nodes each with unit

computation time, and there are n + 1 asynchronous timing constraints. Except for the

n + 1th constraint, the ith timing constraint consists of executing the ith node with

deadline di = 2• *i + 1. The n + 1th constraint consists of executing the n + 1th node with

deadline dn + 1 = 2··~ + 1. ,,

It is easy to check that the only static feasible schedule must execute the ith node

exactly once every 2**i time units. The processor utilization factor is given by

112+1/4+ ... +1/(2**n)+1/(2**n) = 1. The length of this schedule is 2••n which

grows exponentially with the size of the problem (where integers are given as binary

numbers).

In general, it is impractical to find a feasible schedule by generating candidate

schedules in increasing length and testing for feasibility until all schedules of length S

the upper bound have been .exhausted, especially if the timing constraints require

heavy processor utilization. However, it may not be necessary to generate a complete

schedule in order to decide whether a feasible static schedule exists (witness the ex­

ample above): Unfortunately: the computation required for answering the decision ·prob·

lem alone is likely to be prohibitive in the worst case, as evidenced by the fact that

two rather restricted versions of the latency scheduling decision problem ar~ NP-hard.

We now state a known NP-complete problem by Galil and Megiddo which we shall

reduce to another restricted version of the latency scheduling problem. First, we need

-123-

x to the node y and another edge from y to the node z in the communication graph iff

there is an ordered triple (x y z). Each ordered triple (x y z) specifies an asynchronous

timing constraint graph in the natural way, i.e., an instance of x precedes y which pre­

cedes z. Each of these asynchronous timing constraints has a deadline and minimum

period equal to 2n-1. Also, . an asynchronous timing constraint consisting of a single

operation is created for each node in the communication graph. Each of these n

single-operation timing constraints has a deadline and minimum period equal to n.

If a consistent cyclic ordering exists, it is easy to check that it can be used as a

feasible static schedule. Conversely, assume that a feasible static schedule exists. The

latency constraints imposed by the single-operation precedence graphs require that

there must be exactly one instance of every operation in any interval of length n in the

execution trace. Thus the execution trace must be generated by the periodic execution

of some permutation of the n operations. Hence if a feasible static schedule exists,

there must be one which is a. permutation of the n operations. We claim that the circu·

lar placement defined by this permutation is a consistent cyclic ordering. To see this,

take any ordered triple (x y z) and consider an interval of length 2n-1 starting immedi­

ately after an instance of x. The next instance of x starts exactly n-1 time units later.

So in order to meet the specified latency of 2n-1, the operations x, y and z must occur

in that order in the next n time units which is the length of the permutation. Thus they

must occur in the correct order in the circular placement. QED

The above result has very harsh implications. First, it is noted that the NP·

hardness of the above problem is independent of whether different operations are al­

lowed to preempt each other. Most processors allow interrupts to be processed only

after the current instruction cycle has been finished. In general, there is a smallest

quantum of computation time between successive preemptions that a processor or the

operating system is prepared to tolerate. This is taken as the unit computation time

-128·

are independent. By the corollary of theorem 2.1, a sufficient condition for scheduling

these periodic processes is that I w/[di/2]) < 1. Thus condition (1) guarantees that a

feasible execution trace must exist. Since the period attributes are chosen ·so that the

maximum interval spanned by two consec1.1tive executions of a timing constraint never

exceeds di, the execution trace is a feasible one and by theorem 3.6, a feasible statie

schedule must exist. QED

Remark
. ~, ,.

"
In practice, it is not necessary to pipeline a function element with computation

time c into c unit-time stages. The length of each stage can be chosen to be the basic

quantum q of processor time used by the operating system kernel as long as all dead·
·. ' 'f

lines are integral multiples of q.

The first two conditions of theorem 3.10 indicate that if preemption is allowed, the

latency scheduling problem is essentially trivial as long as maximum processor utiliza·

tion does n·ot exceed 50% and that all of the timing constraints have sufficient slack.

(Specifically, the slack should be at least as large as the computation time). On the

other hand, Theorem 3.8 and 3.9 indicate that this problem is likely to be computation~)

ally intractable if the processor must be kept very busy in order to meet all the timing

constraints. Between these two extremes, there is a wide system load gap where

efficient algorithms may exist A general strategy for attacking the problem is to re·

place every specified deadline by a (hopefully not too much) shorter one such that

there is a convenient relationship among all the modified deadlines that makes the de·

cision problem easier to solve. In particular, it may be possible to derive tighter upper

bounds on the system load below which there Is an efficient algorithm for solving In·

stances of the decision problem which have the modified deadlines only. Then by con-

sidering the maximum deviation between any set of deadlines with the corresponding

-134·

be gained by using the latency scheduling technique to reduce the redundant compu·

tation of the asynchronous timing constraints which is already required by the periodic

timing constraints.

Given a set of timing constraints in. the graph-based model, we can in general

proceed as follows. (The heuristics described below are all greedy.)

(1) Convert heuristically all the asynchronous timing constraints into "equivalent"

periodic timing constraints with periods compatible with those of the periodic timing

constraints. A greedy algorithm is to select the smallest period among the periodic

timing constraints which is closest to but smaller than the deadline of the asynchro·

nous timing constraint

(2) Merge all the periodic timing constraints with the same deadline and period into a

single periodic constraint and eliminate all the redundant computation by taking the

union of their graphs. If two periodic timing constraints c1 and c2 have the same

period but . different deadlines with d1 < d2, then a greedy algorithm is to eliminate

the operations in c2 that are also in c1. Specifically, if the timing constraints c1

and c2 are consistent with each other and they both contain the operation vi, then

eliminate vi from c2 and make all the predecessors of vi in c2 also the predeces·

sors of the corresponding instance of vi in c1. Likewise, make all the successors

of the operation vi in the timing constraint c2 to be the successors of the

corresponding instance of vi in the timing constraint c1 . This technique may also

be applied to timing constraints with different periods and deadlines and is espe·

cially useful if the peri6ds are compatible. Specifically, if the timing constraints c1

and c2 have compatible periods with p1 < d2 < p2, then eliminate all the opera·

tions from c2 that are also in c1 and make the predecessors/successors of these

operations in c2 to be the predecessors/successors of the corresponding instances

of the operations in c1 that must be executed in the period right before the dead·

-137-

error margin for synchronizing the operation of physically distributed subsystems.

In the following, we shall first give an example to exaggerate the potential hazards

of a distributed system where processors communicate with one another by transmitting

information strictly in pre-computed time slots. In contrast, we shall give a formulation

of the processor allocation problem for the hard real-time environment that is condu·
,,·:-:

cive to more robust implementation. A broadcast data bus will be used to illustrate our

modelling approach and an efficient hardware implementation of a communication

scheduler for the broadcast data bus will be described. The general processor alloca-

tion problem is, however, computationally intractable even if efficient algorithms are

available for scheduling the computation allocated to each processor.

4.2 The Processor Allocation Problem in the Hard Real·Time Environment

Given a set of timing constraints expressed as an instance of our graph-based

computation model and an interconnection of computing devices, the processor alloca­

tion problem is to partition tlie required computation and allocate it to the computing.

devices so that all the timing constraints can be met. Before this problem can be for·

mu lated properly, the delay introduced by the communication subsystem must first be

characterized with respect to the generated traffic so that the designer can verify that

no deadline is being missed because of communication delays. Traditionally, a queue·

ing model is usually used to analyze the expected values of point-to-point delays. The

constraints resulting from these delays are expressed as algebraic inequalities which

must be satisfied by a candidate partition of the required computation. However, this

type of stochastic analysis is inadequate for the hard real-time environment since the

traffic generated by a partition of the required computation may be very bursty.

Nevertheless, the majority of the published formulations of the processor allocation

problem for real-time systems, e.g., [CHU et al 80), (MA et al 82) have chosen to either

--- --------------- ------

-140·

begin
accept ST ARLFIRING(RESUL T:out boolean) do

RESULT : = FIRE..UPO;
end ST ARLFIRING;

end MOTOR_IGNITION;

There are two tasks: AUXILIARY _SWITCH and MOTQR_IGNITION which are to be

run on processors A and B respectively. The task AUXILIARY _SWITCH turns on the
·I

auxiliary switch and rendezvous · with the MOTOR_IGNITION task which then starts
,·

firing up the motor. If the engine is successfully started, the MOTOR_IGNITION task will

return TRUE to confirm a successful firing. Otherwise, the FIRE_UP function will abort

after 50 milliseconds and the MOTOR_IGNITION task will return FALSE to the

AUXILIARY _SWITCH task which will then turn off the switch. Meanwhile, the

AUXILIARY _SWITCH task executes a timed entry call and selects one of two alternative

courses of action. If the rendezvous with the MOTOR-IGNITION task is unsuccessful

after 100 milliseconds, the AUXILIARY_SWITCH task will turn the switch off. Otherwise,

it will wait for the result of the firing from the MOTQR_IGNITION task.

This program will work if the MOTOR-IGNITION task can always confirm a success-

ful firing by completing a rendezvous with the AUXILIARY _SWITCH task within 100 mil-

liseconds after it has received the signal to start firing up. Now suppose that the

broadcast data bus is time multiplexed so that each processor can broadcast data to

other processors in fixed time slots accordingly to a predetermined schedule. Ordinarily,

processor B will be able to access the bus and transmit a message to processor A be·

fore the AUXILIARY _SWITCH task on processor A times out. Once in a long whUe,

however, the timing circuit in a processor may get out of synchronization with the arbi·

tration circuit of the bust and in particular, processor B may miss its turn to access

the bus at the time it is supposed to send a message to processor A to confirm that

the motor is being fired up. If processor B does not get another turn to transmit until

T For example, this may be caused by an unusually long metastable state in a syn-

-144·

executing the required transmission operations in appropriate time slots. As the exam·

pie in the previous section shows, the success of this approach may depend heavily on

the assumption that the processors. and the communication network can be kept in

tight synchronization. To alleviate the impact of this assumption,· the processor alloca­

tion problem can be constrained to explicitly provide some slack for the execution of

each transmission operation. This can be done by specifying a release time and dead­

line for each instance of a transmission operation in all the timing constraints ·so that

the- communication network can schedule the required transmission operations dynamh

cally as long as every instance of a transmission operation is executed after its

specified re/ease time and before its deadline. Specifically, let the transmission opera•

tion H connect a n~e u to another node v in a timing constraint graph C. Assign a

release time, r and a deadline, d to H so that whenever C is activated at time t, then

the operation u and all its predecessors must be executed in the interval [t,t + r], H

must be executed in the interval [t+ r,t+d], and v and its successors must be executed

in the interval [t + d,t + dk]. . Given m processors, the processor allocation problem is

now to partition the communication graph Into m subgraphs and to find an appropriate

set of release-time and deadline attributes for the transmission operations such that the

set of timing constraints augmented by the transmission operations can be scheduled.

(This formulation imposes indivldual release times and deadlines on some of the opera·

tions in a timing constraint graph. However, the complexity of the single processor

scheduling problem is not affected by these additional parameters and in particular, the

kernelized monitor scheduler can again be used simply by initializing the request:times

of the scheduling blocks to the specified release-times Instead of at the beginning of a ·

period.)

An important benefit of the above approach is that the traffic load generated by a

partition of the computation can also be expressed as a set of periodic and/or asyn·

-148·

be executed first. To achieve this, the current bus access priority of the ith processor

is set inversely proportional to the time remaining before the nearest transmission

operation, Hij is due. The processor with the highest priority will then be granted ac­

cess to the bus for the next time slot. Thi$ is of course the earliest deadline algorithm

for single processor scheduling which has been shown to be optimal. To verify.that a

set of timing constraints can be met, we can simply run a simulation of the bus re­

quests for a time interval at least ~ long as the. LCM of the periods; of the timing con-
i ~

straints. (All the asynchronous timing constraints are assumed to have been replaced

by "equivalent" periodic constraints when they :are scheduled on individual proces·

sors.)

The adoption of a dynamic scheduling algorithm such as the earliest deadline al·

gorithm renders a multiprocessor system more robust. For example, if a processor .. is

slightly behind and misses a turn to contend for the bus, a less urgent transmissiqn

operation may. be executed instead, but the processor with the highest priority will ~

able to tran8mit in the next time slot and thus the more urgent transmission operation

will not be delayed for an unduly long time. • 't i ir:

To enforce the sharing policy, there must be a mechanism which permits only th~

processor with the highest priority to gain access to the bus. This can be achieved by

a central arbiter which monitors the current priorities of all the contending processors •.

Since the number of priorities needed to encode the values of deadlines at run time is

likely to be high, either the priorities must be transmitted to the arbiter serially or else

the number of bus control lines required may be unacceptably high. Fortunately, o~ly ,a

reasonable amount of hardware is necessary to implement the earliest deadline algo-

rithm as shown below.

·152·

trol lines achieve a steady state throughout the system. This minimum clock cycle is a

function of the propagation delay -r (i.e., the time it takes a electrical signal to travel,

from one extreme to another extreme of the physical bus). In particular, if the bus has

been idle for some time, then the first clock cycle will be established by the first pro~

cessor to assert its priority on the control lines. However, the new state of the control

lines may not be observable by another processor at the other extreme of the bus until

-r time units later. The signals from the latter processor will take another -r time units to

reach the first processor which must therefore wait for at least 2-r time units before f: ·

making the first decision to withdraw or not. To allow for a margin for error, we may re­

quire each processor to wait for 6 + 2-r time units before making a decision. For n lines,

the maximum time for bus conflict resolution is therefore n(B + 2-r) time units. It should

be noted that since the processors are synchronized at the first clock cycle of each ·

contention phase, drifting of the local clocks of individual processors will not accumu·

late. with time. However, all local clocks must not be allowed to drift more than 6 time

units within the entire bus conflict resolution phase.

If extra reliability is required, we can simulate, by means of a pair of clock lines a

"global clock" which is jointly maintained by all the contending processors. Ordinarily,

the two clock lines are in opposite logic states (i.e., either 1 O or 01). At the beginning

of a contention phase, the processor which establishes the first clock cycle by assert·

ing its priority on the control lines also attempts to complement the clock lines. The

clock lines will therefore momentarily stay in the 11 state. The transition to the 11 ·

state is a signal for all bus contenders to change the state of the control lines. All pro-

cessors signal ready by attempting to complement the clock lines which will remain in

the 11 state as long as one processor is not yet ready. Synchronization is completed.

when all the contending processors have complemented the clock lines which will then

-153-

be in a different 1 O or 01 state.

The decision to withdraw from contention can then be made when the clock lines.-,

have settled down to a new (either 01 or 10) state. Since it takes ., time units for the·

11 state to propagate from one extreme of the bus to the other and another ., time un-

its for the new state to settle, synchronization can be achieved in 2-r time units. In a:

noisy environment, spurious signals may cause the clock lines to be in the transitory11

11 state for very brief moments. Noise immunity can be improved by requiring the cOlt-r.

tending processors to maintain the stable (01 and 10) states for 8 time units where 8is

some reasonable system parameter. The maximum time for bus conflict resolution Is the.:

same as before. If two contending . processors attempt to set the clock lines to opposite

logic states, a deadl~k in the transitory state 11 will occur. This situation is in theory·

impossible because one of the processors must have failed to observe on the clock·

lines a 11 state followed by one which is opposite to the state the processor Is sup.1-

posedly maintaining on the same clock lines. In any case, permanent deadlocks can be,

avoided by a time-out restriction on the 11 state. More robust mechanisms using mul-

tiple clock lines and better encoding schemes are also possible. ' .~...I

4.4 Complexity of the Processor Allocation Problem

Since the processor schequling problem is already NP-hard, it is unlikely that the .

processor allocation problem for the hard real-time environment will have an efficient .

solution. In fact, the problem of finding a feasible partition Is in itself a hard problem In•'

the sense that it is difficult ·even if the scheduling problem can be restricted to Simple

cases for which trivial solutions are available. As evidence, we shall show that the pro-

cessor allocation problem is NP-complete even for the case where only two processors

are available and the processor scheduling problem resulting from any partition is easy.

We shall make use of a restricted version of the MINIMUM CUT INTO BOUNDED

-154-

SETS problem which is known to be NP-complete, e.g., see [GAR & JOH 79]. An in­

stance of this graph problem is given by a positive integer K, an undirected graph of N'

vertices with two special vertices s and t. The decision problem is to determine wheth•

er there is a partition of the vertices of ttie graph into two disjoint subsets V 1, V 2 of

equal size (i.e., each set has N/2 vertices) such that sEV1 and tEV2and the number of.

edges which have an endpoint in both V 1 and V 2 is no larger than K,

This graph problem can be reduced to a restricted version of the processor alloca~1

tion problem as follows. The corresponding communication graph contains a node for.·

each vertex in the graph problem plus a special node v'. All nodes have unit computa."·~

tion time. Every node v in the communication graph is supposed to denote a- function,

which computes n different output variables where n is the number of edges connected

to the vertex v in the graph ·problem. The edge set of the processor allocation problem

contains n edges from node v to the special node v'.

The timing constraints are all periodic and have the same period equal to 1 + N/2.

For each nOde except v', we create a timing constraint which consists of a single in­

stance of the node. The deadlines of these timing constraints are set to N/2 except for

the nodes s and t for which the deadlines are set to 1. For each edge connecting ttte

vertices vi, vj in the graph problem, we create a timing constraint whose deadline is set

to 1 + N/2. Each of the timing constraint graphs has three nodes, vi, vj, v', and two

edges, one from each of vi, vj to v'. An edge from a node u to the node v' denotes

the transmission of a unique output variable from u to v'.

There are two proces8ors which are connected by a bus. If two nodes v1, v1 8P·

pear in a timing constraint and they are allocated to separate processors, then a

transmission operation must be performed over the bus to send the appropriate output

variable of one of the two nodes to the other processor so that the operation v' can

be executed. Otherwise, the output variable is transmitted via a shared variable on the

·158-

Chapter 5

Automation of Software Design

5.1 Design System for Hard Real-Time Software

The goal of our research is to provide a methodology and associated tools to au·

tomate the design and maintenance of hard real-time system software. In particular; our

work has been largely · motivated by the development of the experimental software

design system CONSORT (CONtrol Structure Optimized for Real Time) which has been

implementedt at MIT [WARD 78]. CONSORT has a graphics interface which allows a

user to compose the block diagram of a control system by connecting appropriate

inpuVoutput ports of_ function blocks that are instantiated from a library of software

modules. The user can specify latency (asynchronous) timing constraints on port-to·

port paths in the block diagram and the CONSORT compiler will attempt to generate

object code which meets all the specifications. If CONSORT is unable to guarantee that

all the timing constraints can be met, the user will be duly notified. As a "toy" experi-

ment, this design system has been successfully used to generate a software-

implemented controller which drives a pair of motors to balance an inverted pendulum.

The inverted pendulum is held by a gimballed holder on a cart which is free ta move

within the boundary of a square frame; the software controller is a microprocessor as-

sembly program which has been generated automatically from the block-diagram

representation of the control problem.

In this chapter, we shall review some implementation aspects of CONSORT and

T The design team of CONSORT was under the leadership of Professor Stephen Ward
and included John Pershing, Tom Teixeira and the author, with able assistance from
Chris Cesar who helped baby the inverted pendulum balancer and from Jay Wahid who
contributed his expertise in control engineering. A video tape of the "toy" experiment
(balancing an inverted pendulum with CONSORT) has also been made.

-162-

receives as input the intermediate state of an execution (e.g., in the form of state vari-

ables) from the previous stage. Since there are now no hidden shared varaibles, in· -

tegrity constraints will be maintained as long as only one execution of any stage is al··

lowed to be in progress at any time. Ideally, this pipelining of software should be done

automatically by the code generator in conjunction with the scheduler.

._,n

5.3.3 Detection and Queueing of Activation Conditions
: ~ ' . ~ ' J

One of the objectives of CONSORT is to demonstrate that external interrupts are

not essential to a model of real-time computation and we have taken care that the im-

plementation of CONSORT is faithful to its goal, e.g., keyboard 1/0 at the operator ter-

minal is treated just as another asynchronous timing constraint and scheduled accord·

ingly. If an external signal (e.g., from a sensor) changes value, then the timing con·

straints that require sampling the signal will be automatically activated. CONSORT as·

sumes that every external signal is continuously changing and an activation of an asyn-

chronous tii:riing constraint can occur as soon as the deadline of the previous activa-

tion expires. Hence, for analog signal processing, timing constraints are activated at

their specified maximum rate.

In general, a user may want to perform certain computation when some event Oc·

curs. The occurrence of ~n event may be recorded by the hardware or it may

correspond to the output of some boolean operation being evaluated to true. In the

former case, the conventional approach for activating the relevant timing constraint is

to notify the processor by setting a hardware interrupt flag. In our approach, the pro·

cessor need not respond to the interrupt immediately since the on-line scheduler will

schedule an execution of the computation activated by the event before the specified

deadline. The occurrence of an event, however •. must still be detected and held by the

-163-

hardware until the processor is free to attend to it.

A useful architectural concept that may be incorporated into computers for real-

time applications is to augment the interrupt circuitry with an associative memory chip

so that an external device may request an interrupt by writing its own address into an

empty location in the associative memory. The on-line scheduler can then determine

whether a particular event or group of events has occurred by simply querying the as­

sociative memory at an opportune moment later.t From a scheduling point of view,

processor interrupts that demand immediate attention are undesirable since they :ic:, •

severely curtail the freedom _of the on-line scheduler to allocate computation time

based on an analysis of the specified stringent timing constraints. They are also a

prime source of robustness problems in practice, e.g., if the hardware flag of a high

priority interrupt is stuck, then. all lower priority interrupts may be permanently blocked.

This is especially disastrous for the hard real-time environment where it is essential not

to permit any one device to m_onopolize the use of a resource.

In the graph-based model, a minimum period must be specified for every asynchro-

nous timing constraint so that two or more activations of the constraint cannot occur

arbitraily close to one another. In practice, it may not be possible to specify '1e

minimum period for an asynchronous timing constraint accurately. For example, while it

seems reasonable to specify a minimum period of 100 milliseconds for reading an input

character from a human typist (10 key strokes per second), an agile operator may make

two or more key strokes in 100 milliseconds every now and then. A solution to this

problem is to provide a hardware buffer to queue up the input (as is done in most

f For soft real-time systems, a simple FIFO memory is adequate for storing pending in­
terrupts. From an architectural point of view, the use of an interrupt buffer is also con­
sistent with the pipeline structure of high performance processors since saving the In·,
stantaneous state of a complex piplined execution unit in response to an interrupt Is
likely to be an engineering nightmare that is best postponed to more convenient mo­
ments at the choice of the computer architect.

----- -·-----------~-

-164-

UART chips). In general, a buffer of size n permits n activations of an asynchronous

constraint with period p to occur arbitrarily close together in an interval of length >np.

In the case where a user wants to perform certain computation whenever the out­

put of some boolean operation is evaluated to TRUE, either a periodic or asynchronous

timing constraint may be used. Specifically, a periodic timing constraint may be

specified to execute the relevant operations that affect the output of the boolean

operation and perform ·the required computation if the boolean output evaluates to

TRUE. As far as the scheduling problem is concerned, the value of the boolean output

is irrelevant since in the worst case, the required computation must be performed in

every period. Alternatively, the user may specify an asynchronous timing constraint

which is activated if ~he execution of the boolean operation yields TRUE. There is a se­

mantic ambiguity here since the boolean operation may never be executed at all if it

does not occur in any other timing constraint. The natural interpretation of such a tim-

ing constraint is that its graph must include all the operations that may affect the

boolean condition plus the required computation if the condition is TRUE, and this

asynchronous timing constraint is automatically activated as soon as the specified

minimum period expires. To determine whether the "activation condition" has occun¥Kt

(i.e., whether it is necessary to perform the rest of the computation), a flag may be set

whenever the boolean operatic~ evaluates to TRUE and reset after the required compu-

tation has been executed.

5.3.4 Dynamic Computation Requirements . .
In the formulation of the graph-based model, the computatio_n requirements of a

system have been assumed to be static, i.e., the same set of timing constraints are to

be satisfied throughout the operation of the system. While this is a fair assumption for

control applications with a static structure, there are many systems whose computation

-- --~---------------

-165·

requirements often vary with time. For example, the inverted pendulum balancer men­

tioned earlier may start from a rest position with the pendulum leaning at an angle

against a mechanical support. To bring the pendulum to the vertical position, a jerk

must be applied to push the cart carrying the pendulum toward the mechanical sup­

port. Thus two different sets of control laws are needed to bring the pendulum- to the

vertical and to keep the pendulum in balance after it has attained the vertical position.

For this purpose, CONSORT allows different timing constraints to be enacted by allow·

ing the user to define different phases for a real-time application.

A phase is a set of timing constraints which must be satisfied when the system is

operating in a certain region of its control space where· a unique set of control laws

must be implemented. There is an initial phase in which a system is started. A phase

transition is triggered when the output of some selected boolean operation evaluates to

TRUE. When this occurs, all remaining operations of activated timing constraints are

then completed and the on-line scheduler starts to satisfy a new set of timing con­

straints after executing an initialization procedure. During a phase transition, the inter­

nal states of all function blocks will normally carry over to the new phase unless they

are explicitly modified by the initialization procedure. Since the off-line scheduler can

compute a different static schedule for each phase, no new scheduling problem is in­

troduced. The inverted pendulum was successfully balanced starting from a rest posi­

tion by using CONSORT to implement two sets of control laws in two phases.

In a more general setting, there might be a need to enable and disable an indivi­

dual timing constraint at any time during the operation of a system, e.g., in an air

traffic control system, a timing constraint may be enabled to monitor an airplane which

has just come under the jurisdiction of the system or a timing constraint may be dis·

abled after the corresponding airplane has left. In such cases, a limit must be set on

the maximum number of timing constraints that the system can be guaranteed to satisfy

·168·

tors). The implications of the scheduling results on the design of real-time programming

languages are also discussed.

Chapter three starts with an examination of the semantic gap between process­

based models and the computational requirements of the hard real-time environment. It

is seen that the decomposition of the required computation into processes is likely to·

cause substantial maintenance problems when design parameters are modified unless i

an inefficient decomposition can be tolerated. We then introduce a graph-based model .

which is semantically closer to the hard real-time environment. The latency scheduling;

technique for meeting asynchronous timing constraints is formalized within the graph--:

based model. An upper bound on the length of feasible static schedule if one. exists is

derived. The problem of computing a static schedule is, however, NP-hard even for

very restricted cases but is efficiently solvable if the computational demand is

sufficiently light. A heuristic algorithm for scheduling both periodic and asynchronous .

timing constraints is also given.

Chapter four demonstrates the practical hazards of implementing a distributed hard

real-time system with the assumption that the operations of all subsystems can be com-·

pletely synchronized. We then present a robust formulation of the processor allocation

problem which is to a certain degree resiliant to the indeterministic internal behavior of

the communication subsystem. The related scheduling problem for a broadcast bus is

solved as an example to illustrate our approach. The general processor allocation prob­

lem is shown to NP-complete even if the related single processor scheduling problems·

can be trivially solved. we· note, however, that the subproblems resulting from a pro·

cessor allocation can all be expressed in terms of the graph-based model that we have

introduced. Moreover, the graph-based model can be used to give a hierarchical formu­

lation of resource allocation problems in the hard real-time environment.

Chapter five reviews the CONSORT design system which allows a user to specify

·171-

6.3 Avenues for Further Research

There are two directions of research which need to be pursued to further the state

of the art in designing hard real-time systems. First, although a feasible run-time

scheduler exists if the demand on processor time is not too heavy (< 50%), better

heuristic algorithms are needed to solve the scheduling problems of the graph-based

model for both periodic and asynchronous timing constraints. While we have shown

that the processor allocation problem can be factored into a number of subproblems

which are all expressible in terms of the graph·based model, specific communication

networks need to be characterized for their capacity to meet stringent timing con­

straints and this immediately spawns a large number of interesting problems. .

The second direction of research is to experiment with various approaches for

supporting the iterative design cycle which an application engineer usually goes

through to arrive at a final design. More specifically, we have formulated the scheduling

problems so that either a feasible on·line scheduler is found or the user is told that a

feasible implemenation cannot be found. It would be much nicer if we can give the

user more feedback information about the tradeoffs that can be made to arrive at a

feasible solution. Obviously, there is a lot of work that needs to be done in this area.

Finally, we have not addressed the problems of system failure and recovery which

must be dealt with in any real-time system, e.g., how should we design hard real-time

software so that a system can resynchronize in due time after the hardware has been

interrupted by a brief power failure. This is a complex issue for which a suitable formal

framework is especially lacking in the case of the hard real-time environment. It would

be interesting to see if system reliability problems can be approached from the top by

using a computation model similar to the graph-based model in this thesis. However,

we have only a few tentative ideas about how system reliability can be assessed by

considering interruptions to software functions and relate their significance to hardware

-177-

(1) There is a bijective mapping between the functional elements in S and C; (2) Under

this mapping, the partial order S is consistent with the acyclic graph C; (3) In the case

where the functional elements are distributed, and if the graph C has an edge from a

node u to another node v, then an execution of C must include the transmission of the

latest output of the functional element u to the functional element v before the

corresponding instance of v is executed in the time interval I. Furthermore, we require

real-time computation to be pipeline-ordered in the sense that: (1) Two executions of

a functional element must have distinct start-times and that the execution which has an ~

earlier start-time must also finish earlier than the other. (2) Two data transmissions from

a functional element u to another funtional element v must be sent at distinct instants

at the site of u and the earlier transmission must also be received earlier at the site of

v.

A periodic/asynchronous timing constraint (C,p,d) may be mapped into a

periodic/sporadic process T' . = (c,p,d) where the body of T' consists of a straight-line

program which is any topological sort of the operations in the timing constraint graph

C. The computation time c of the process T' is then the computation time of C. In ord·

er to enforce pipeline ordering, we create a monitor for each functional elemeq.t that

occurs in two or more timing constraints. To improve efficiency, we can reduce the size

of critical sections by software pipelining, i.e., decomposing a functional element into a

chain of sub-functions each of which has the same computation time. (One of the vir·

tues of the graph-based model is that all the data dependencies are made explicit and

hence software pipelining is easier.) The scheduling results for the process-based

model can now be applied to the graph-based model by mapping each timing con­

straint into an equivalent process. However, this approach is inefficient since it does

not take advantage of operations that are common to two or more timing constraints.

The latency scheduling technique for meeting asynchronous timing constraints takes

[ADA MAN 80)

[ALFO 77)

[BARN 79]

[BLAZ 76]

[BRU et al 75]

[CESA 80]

[CHU et al 80)

[COHE 78]

[DERT 74)

[DEW & PRI 77)

[GAL & MEG n]

[GAR & JOH 79]

[GAR et al 81)

-180·

Bibliography

"Reference Manual for the Ada Programming Language", Proposed·
Standard Document, United States Department of Defense, Jut
1980.

M.W. Alford, "A Requirements Engineering Methodology for Real·
Time Processing Requirements", IEEE Transactions on Software En.:
gineering, vol. 3, no. 1, Jan 1977, pp. 60-69.

R. Barnes, "A Working Definition of the Proposed Extensions ·for
PL/1 Real-Time Applications", SIG PLAN Notices, vol. 14, no. 10;
Oct. 1979, pp. 77-99. . ' ~~·~; ~

J. Blazewicz, "Scheduling Dependent Tasks with Different Arrival
Times to Meet Deadlines", Modelling and Performance Evaluation of
Computer Systems, E. Gelenbe, ed., North-Holland Publishing Com·
pany, 1976, pp. 57-65.

P. Brucker, J. Lenstra and A.H.G. Kan, "Complexity of machine
seheduling problems", Report BW '43/75, Mathematisch Centrum,
Amsterdam, 1975.

C. Cesar, private communication.

W.W. Chu, L.J. Holloway, M.T. Lan and K. Efe, "Task Allocation in
Distributed Data Processing", IEEE Computer, Nov. 1960, pp. 57-69.

R.M. Cohen, "Formal Specifications of Real-Time Systems",
Proceedings of the 7th Texas Conference on Computing Systems,
Houston, Oct. 1978, pp. 1.1·1.8.

M. Dertouzos, "Control Robotics:· the procedural control of physical
processes", Proceedings of the IFIP Congress, 1974, pp. 807-813.

J.B. DeWolf and R.N. Principato, "A Methodoli:>gy for Requirements
Specification and Preliminary Design of Real-Time Systems", Report
C-4923, Charles Stark Draper Laboratory, Inc., Jul. 19n.

Z. Galil, N. Megiddo, "Cyclic Ordering is NP-complete", Theoretical
Computer Science, vol. 5, no. 2, Oct 1977, pp. 179-182 .

•
M. Garey and D. Johnson, Computers and lntr.actibility: a Gulde to
the Theory of NP-Completeness, W.H. Freeman, San Francisco, cat.
ifornia, 1979.

M. Garey, 0. Johnson, B. Simons and R Tarjan, "Scheduling Unit·
Time Tasks with Arbitrary Release Times and Deadlines", SIAM J.
Comput., vol. 10, no. 2, May 1981, pp. 256-269.

!'

-181·

[GARM 81] J.R. Garman, "The Bug Heard 'Round the World", Software En­
gineering Notes, vol. 6, no. 5, Oct. 1981, pp. 3-10.

[HAM & ZEL 76] M. Hamilton and S. Zeldin, "Higher Order Software · a Methodology
for Defining Software", IEEE Transactions on Software Engineering,
vol. 2, no. 1, Mar. 1976, pp. 9-32.

[HANS 78a] P.B. Hansen, "Distributed Processes: a Concurrent Programming
Concept", CACM, vol. 21, no. 11, Nov. 1978, pp. 934-941.

[HANS 78b] P.B. Hansen, "Multiprocessor Architectures for Concurrent Pro-
grams", SIGARCH News, vol. 7, ·no. 4, Dec. 1978, pp. 4-23.

f·
[HENI 80] K.L. Heninger, "Specifying Software Requirements for Complex Sys"c

terns: New Techniques and Their Application", IEEE Transactions
on Software Engineering, vol. SE-6, no. 1, Jan. 1980.

[HEN et al 75] J.L. Hennessy, R.B. Kieburtz, and D.R. Smith, "TOMAL: A Task·
Oriented Microprocessor Applications Language", IEEE Transactions
on Industrial Electronics and Constrol Instrumentation, vol. 22, no.
3, Aug. 1975, pp. 283-289.

[HOAR 74] C.A.R. Hoare, "Monitors: an Operating System Structuring Con-
cept", CACM, vol. 17, no. 10, Oct. 1974, pp. 549-557.

[HOAR 78] C.A.R. Hoare, "Communicating Sequential Processes", CACM, vol.
21, no. 8, Aug. 1978, pp. 666-en.

[ICH et al ·19) J.D. lchbiah, J.G.P. Barnes, J.C. Heliard, B. Krieg-Brueckner, 0.
Roubine and B.A. Wichmann, "Rationale for the Design of the ADA
Programming language", SIGPLAN Notices, vol. 14, no. 6, part B,
Jun. 1979.

[KER & LIN 70] B.W. Kernighan and S. Lin, "An Efficient Heuristic Procedure for
Partitioning Graphs", The Bell System Technical Journal, Feb. 1970,
pp. 291~~7.

[KNEI 81] W. Kneis et al., "Draft Standard, Industrial Real-Time FORTRAN,
Definition of Procedures for the Application of FORTRAN for the
Control of Industrial Processes", proposed by Technical Committee
1 of the International Purdue Workshop on Industrial Computer Sys­
tems and of the European Wor1<shop on Industrial Computer Sys­
tems (EWICS), ACM SIGPLAN Notices, vol. 16, no. 7, July 1981, pp.
45-60.

[KRUL 81] F.N. Krull, "Experience with ILIAD: a High-Level Process Control
Language", CACM vol. 24, no. 2, Feb. 1981, pp. 66-72.

[LAG et al 81) B.J. Lageweg, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan,
"Computer . Aided Complexity .Classification of Deterministic
Scheduling Problems", Report BW 138/81, Mathematisch Centrum,

·182·

Amsterdam, 1981.

[LEIN 78] D. Leinbaugh, "Guaranteed Response Times in a Hard-Real-Time
Environment", Proceedings of the 7th Texas Conference on Com­
puting Systems, Houston, Oct. 1978, pp. 3.24-3.36.

[LIU & LAY 73] C.L. Liu and J. ·Layland, "Scheduling algorithms for multiprogram·
ming in a hard-real-time environment", JACM, vol. 20, no. 1, Janu­
ary 1973.

[MA et al 82] P.-Y. R. Ma, E.Y.S. Lee and M. Tsuchiya, "A Task Allocation Model
for Distributed Computing Systems", IEEE Transactions on Comput­
ers, vol. C-31, no. 1, Jan 1982, pp. 41-47.

[MAO & YEH 80] T.W. Mao, R.T. Yeh, "Communication Port: A Language Concept for
Concurrent Programming", IEEE Transactions on Software Engineer­
ing, vol. 61 . no. 2, Mar. 1980, pp. 194-204.

[MART 78] T. Martin, "Realtime Programming Language PEARL · Concepts and
Characteristics", Proceedings of the 2nd Computer Software and
Applications Conference, Chicago, 1978, pp. 301-306.

[MOK 76] A.K. Mok, "Task Scheduling in the Control Robotics Environment",
TM-77 Sept. 1976, Laboratory for Computer Science, Mass. Inst. of
Tech.

[MOK & DER 78] A.K. Mok and M.L. Dertouzos "Multiprocessor Scheduling in a Hard
Real-time ·Environment", Proceedings of the Seventh Texas Confer­
ence on Computing Systems, Houston, Oct. 1978, pp. 5.1-5.12.

[MOK & WAR 79] A.K. Mok and S. Ward, "Distributed Broadcast Channel Access",
Computer Networks, vol. 3, no. 5, Nov. 1979, pp. 327-335.

[REG et al 78] H.K. Reghbati, F.F.L. Chow and V.C. Hamacher, "Some Implementa­
tion Results in Real-Time Operating Systems", Proceedings of the
1978 Canadian Computer Conference, May 1978, pp. 124-128.

[ROB et al 81] E.S. Roberts, A. Evans Jr., C.R. Morgan and E.M. Clark, "Task
Management in Ada · a Critical Evaluation for Real-Time Multipro­
cessor", Software Practice & Experience, vol. 11, no. 10, Oct. 1981,
pp. 1019· 1052.

[SHNE 79] 8. Shneiderman, "Human Factors Experiments in Designing lnterac·
tive Systems", IEEE Computer, vol. 12; no. 12, Dec. 1979, pp. 9-19.

[TEIX 78) T.J. Teixeira, "Real-time Control Structures for Block Diagram Sche·
mata", MIT Laboratory for Computer Science Technical Report TR·
204, Aug. 1978.

[WARD 78] S. Ward, "An Approach to Real-Time Computation", Proceedings of
the Seventh Texas Conference on Computing Systems, Houston,

