
MIT/LCS/TR-30 4

S I ~ULATION TOOLS FOR DIGITAL LSI DESIGN

Christopher Jay Te rm an

Thi s r esearch was s upported by the Defe ns e Advanced Re s e arch Proj e c t s
Agency of the Depa rtme nt of De f e nse and was monito r ed b y t he Offi c e of
Nav al Re s e arch unde r Cont ract No s. N0 0014-75-C-0661 & NOQ014-83 -K- 0125 .

. . d .; i

This blank page was inserted to presenie pagination.

Simulation Tools for Digital I.SI Design

by

Christopher Jay Terman

© Massachusetts Institute of Technology 1983

September 1983

This research was supported by the Defense Advanced Research Projects Agency of the Department of
Defeaie aDd wa ~by the Office of Naval Re&eardi &mdel" COotract No. NOCI014-7S-C-066l.

. ND0914-IJ-K-lll5.-----

Cambridge

Massachusetts Institute of Technology
Laboratory for Computer Science

Massachusetts 02139

. 2 .

Si_mulation Tools for Digital I.SI Design

by

Christopher Jay Tennan

Submitted to the Department of Electrical Engineering and Computer Science

on August 30, 1983 ·in partial fulfillment of the requirements for

the degree of ·Doctor of Philosophy

Abstract

This thesis proposes a timing simulator (RSIM) based on a uniquely simple transistor model. RSIM
allows a designer to determine both the functional and approximate timing characteristics of a MOS
network with more accuracy than gate-level simulation, and using larger circuits than are
accommodated by circuit analysis programs. In RSIM, transistors are modeled as resistors; the logic
states of a transistor's terminal nodes determine its effective resistance. Using this model, a MOS
network is simulated as a network of resistors where each node's value is determined by the resistance
of its connections to various inputs. Transition times are detennined from the RC time constant
calculated for the node by examining the surrounding network; (R from the transistors, C from the
interconnect and gate capacitance). The network's behavior as inputs are given values is calculated by
an efficient event-driven algorithm.

Two changes to the underlying model are also investigated:

(1) further simplifying the transistor model to an on/off switch (which can be
thought of as a degenerate resistor). Several approaches to switch-level
simulation are developed, one particularly well-suited for implementation using
parallel hardware.

(2) modeling the behavior of a network of switches by a system of logic equations.
Various compilation strategies are evaluated for producing code that implements
the system of equations.

Name and Title of Thesis Supervisor:

Stephen A. Ward,
Associate Professor of Computer Science an4 Engineering

Key Words and Phrases:

circuit simulation, IOgic simulation, timing analysis, CAD tools

- 3 -

ACKNOWLEDGMENTS

Thanks everybody:

Steve Ward Ron Rivest

Bert Halstead Clark Baker
and the rest of RTS, past and present

Dave Gross
Jeff Fox

Debbie Cohn

Doug Williams

Gerry Sussman

Mark Johnson

Bob Y odlowski

The good advice, kind words, insight, and support provided over the years by these fine folks, and
others, have made this thesis possible.

This research was supported by the Advanced Research Projects Agency of the Department of
Defense and was monitored by the Office of Naval Research (Contract Nos. N00014-75-C-0661 and
NOOOl 4-83-K-0125).

- 4 -

TABLE OF CONTENTS

1. Introduction
1.1 Overview of the thesis
1.2 Outline of the remaining chapters

2. A Linear Network Model for MOS Simulation
2.1 RSIM's transistor model
2.2 RSIM's node model
2.3 RSIM's network model
2.4 Calibrating and using the RSIM model
2.5 Summary

3. Justification of the Linear Network Model
3.1 Electrical models for mosfets and gates
3.2 Node voltages
3.3 Propagation delay: overview
3.4 Propagation delay: logic gates
3.5 Propagation delay: source-followers and pass transistors
3.6 Implications for the RSIM model

4. Simulation Using a Linear Network Model
4.1 The RSIM simulation algorithm
4.2 Speeding up the simulation
4.3 Escape mechanisms
4.4 An evaluation of RSIM

5. Simulation Using a Switch Network Model
5.1 Representing node values
5.2 Developing the switch model
5.3 The global switch model
5.4 The local switch model ·

6. Simulation Using a Pre-compiled Network Model
6.1 Reducing switch paths to logic equations
6.2 Compiling logic equations for simulation

7. Conclusions

Appendix 1. Proof of Lemma 5.3
Appendix 2. RSIM Calibration Tables for a 51' nMOS Process
Appendix 3. Approximation for Resistor Divider and Series Resistor

References

5
6

10

12
13
16
21
28
33

35
35
39
43
44
54
58

61
61
76
80
82

85
85
92
94

106

119

120
127

136

141
146
150

155

- 5 -

CHAPTER ONE

INTRODUCTION

Simulation plays an important role in the design of integrated circuits. Using simulation, a

designer can determine both the functionality and the performance of a design before the expensive

and time-consuming step of manufacture. The ability to discover errors early in the design cycle is

especially important for MOS circuits, where recent advances in manufacturing technology permit the

designer to build a single circuit that is an order of magnitude larger than ever before possible. This

thesis presents three new algorithms designed specifically for the simulation of large digital MOS

circuits.

Today's MOS circuits offer special challenges to a simulation program, challenges that are not met

very well by current simulators. New integrated circuits can incorporate hundreds of thousands of

transistors; the sheer number of transistors dictates that a simulation algorithm use simple,

computationally efficient transistor models. In addition, designers take advantage of the symmetry of

the MOS transistor to build circuit configurations with behavior beyond the ken of traditional logic

simulators. The new simulators introduced here are designed to meet these challenges.

- 6 -

1.1. Overview of the thesis

To use a simulator, the designer enters a design into the computer. typically in the form of a list

of circuit components where each component connects to one or more nodes. A node serves as a wire,

transmitting the output of one circuit component to other components connected to the same node.

The designer then specifics the voltages or logic levels of particular nodes, and calls upon the simulator

to predict the voltages or logic levels of other nodes in the circuit. The simulator bases its predictions

on models describing the operation of the components; a· simulator is characterized by the types of

component models it employs. Two of the more popular approaches are:

• component models based on the actual physics of the component; for example. a
transistor model that relates current flow through the transistor to the terminal
voltages, device topology, and manufacturing parameters of the actual device.

• component models based on a description of the logic operation performed by the
component, e.g., NANO and NOR_ gates.

The first type of model is found in circuit analysis programs such as ASTAP [Weeks73] or SPICE

[Nagel75] which try to predict the actual behavior of each component with a high degree of accuracy.

Current circuit analysis programs do the job well, perhaps too well; at no small cost, they provide a

wealth of detail, at sub-nanosecond resolution, about the voltage of each node and the amount of

current through each device. (For example, a properly calibrated circuit analysis program is able to

predict, within a few per cent, the amount of current that flows through an actual transistor.) This

level of detail would swamp the designer if collected for the entire circuit while simulating, say, a

microprocessor. Fortunately, the designer is spared this fate, since the computational cost of circuit

analysis restricts its applicability to circuits with no more than a few hundred devices.

One solution to the problem of simulator performance is to adopt a simpler component model,

such as the gate-level model introduced above. This approach works well when dealing with

implementation technologies that adhere to gate·level semantics (e.g., bipolar gate arrays). However,

MOS circuits contain bidirectional switching elements that cannot be modeled by the simple

composition of Boolean gates. Since many of the circuit techniques that make MOS attractive for LSI

and VLSI applications take advantage of this non·gate·like behavior, it is important to model such

circuits accurately.

This thesis explores the possibility of providing the ~ntial information (functionality and

comparative timing) for large digital circuits by using models that bridge the gap between the gate­

level and detailed models discussed above. The goals to be met by these new models are summarized

- 7 -

in the following list:

(i) The underlying model must be computationally tractable for large circuits. The
empirical nature of the verification provided by simulation suggests that it must
be applied extensively if the results are to be useful; timely simulation
encourages this.

(ii) Transistor-level simulation is necessary to accurately model the circuit structures
found in MOS designs. This allows the designer to simulate what was designed -
an advantage, since requiring separate specification of a design for simulation
purposes only introduces another opportunity for error.

(iii) The results must be correct. or at least conservative; a misleading simulation that
results in unfounded confidence in a design is probably worse than no simulation
at all. Here, we must trade off the conflicting desires of accuracy and efficiency.

Two models are examined in detail by the thesis:

• a linear model in which a transistor is modeled by a resistance in series with a
voltage-controlled switch. The state of the switch is controlled by the voltage of
transistor's gate node.

• a switch model, similar to the linear model, except that resistance values are limited
to one of two quantities: 0 for for n- and p-channel devices, and 1 for depletion
devices.

MOS circuits are easily transformed to use either model, as illustrated by the following figure,

c
30.2~ 4.4/6.4 I

-oc

A-1
4.4~

(a) original circuit (b) linear model (c) switch model

Figure 1.1. Two approaches to modeling a simple MOS circuit

The linear model forms the basis for the RSIM simulator. In RSIM, networks of transistors and electrical

nodes form an R-C network (R for the transistors, C for the interconnect and gate capacitance); the

network's behavior under different inputs is calculated by a selective-trace (event-driven) algorithm.

The comparatively fast "pseudo circuit analysis" that is possible with the linear model allows the

designer to determine both the functional and approximate timing characteristics of a network. RSIM

goes a long way towards meeting the three goals outlined above. The algorithm employed to estimate

the behavior of a linear network is much faster than a typical circuit analysis program. Resistors are

- 8 -

inherently bidirectional; the network analysis makes no a priori assumptions about the direction of

current flow through each resistor. Finally, the results are at least qualitatively correct and. in peral,

conservative - in some cases more conservative than designers themselves might like. With the

appropriate choice of model parameters, the results can even be quantitatively useful

lbe switch model is a simplification of the linear model that is useful when only a circuit's

functionality is of interest (i.e .• no information on performance is wanted). Like a traditional gate-level

simulator, a switch-level simulator bases its predictions on an abstraction of the actual cin:uit, but the

switch model is able to handle the bidirectional nature of MOS transistors much more succesmdJy than

a gate-level model. The switch model is incorporated by ESIM, a simulator that has seen extensive use

in the last few years.

Certainly a major goal of RSIM and ESIM is to provide a fast, useful simulation of MOS circuits,

but the story does not end there. Another motivation for new simulation algorithms is the changing

nature of the design community. In order to cope with the increasing complexity of integrated circuit

design, new design methodologies have developed (e.g., [Mead80}) that impose constraints on the way

circuits are constructed. One can no longer afford to hand-craft each transistor, so rules of thumb are

created to aid in the choice of transistor sizes. Oever circuit configurations are avoided in finror of

circuits composed under the guidance of composition rules (e.g., [Bell81D that rule out arbiaary circuits

and the obscure electrical behavior they imply. t

These new design methodologies have opened up the field of LSI design to a new breed of

"Mead and Conway" designer, i.e., a designer who is a sophisticated architect. but who is not a

specialist in LSI technology. An important aspect of the simulators described in this thesis is that their

underlying models are easily understood by this new breed of designer. The abstractions embodied by

the simulators are faithful enought to the actual electrical behavior of a circuit that the achievement of

a successful simulation run indicates freedom from a large class of potential failure modes. If a

simulation does point out an error. it does so in a manner that leads even the novice designer to a

good understanding of the circuit as actually designed and the ways in which it might differ ftom the

intended design.

However, the simulators are based on models of actual behavior. As with any model.

tState-of-the-art designs intentionally exploit the "obscure" behavior of certain circuits (e.g., sense amplifiers). often
to considerable commercial advantage. RSIM and its relatives arc not as useful for this type of design as mnYClllioD-­
al circuit analysis programs. But the professionals engaged in such well-focused designs are ~ the audiemz Id­
. dr~ by Mead and Conway (and RSIM).

- 9 .

discrepancies are likely to exist between the model predictions and the actual behavior of a circuit

The tools described here attempt to be conservative, le., to give pessimistic predictions. but this cannot

be guaranteed. Thus. it is important that the designer become acquainted with the inner workings of

the models and their shortcomings. 111e tools perform a ca1culation one could do by hand (only faster

and with greater accuracy and consistency) - they should not be treated as black boxes. 'lbe models

presented here are simple enough to enable any designer to gain the necessary understanding.

A final motivation for new simulation technology is the desire to improve simulator pcrfonnance.

It seems that digital computers ought to be well suited for the simulation of digital logic.

Unfortunately, current simulation schemes involve several layers of interpretation (e.g., command

interpretation, access to the network data base, model evaluation), and their performance suffers as a

result Happily, much of this overhead can be eliminated through the application of traditional

compilation techniques. This is the theme of the final section of the thesis, and the motivation for the

development of CSIM, a combination compiler/~imulator. CSIM compiles a network into a simulation

subroutine; the subroutine contains code to compute the new value of each node from its old value

and the values of other nodes in the network.. The compilation is particularly easy when the node is

the output of a logic gate, and the work presented here extends the compilation technique to any node

in a MOS circuit. Simulating the network. entails executing the subroutine repeatedly until no nodes

change value. If the circuit is very active, le., if many nodes change value each time the network is

simulated, the simulation subroutine computes new node values many times faster than the

corresponding event-driven simulation. There has been much interest recently in special purpose

hardware for simulation [Pfister82, Zycad83]. It may be that such developments are premature, and

that substantially better simulation performance can still be obtained from general-purpose computers.

The relationship among RSIM, FSIM, and CSIM is illustrated in the table below.

RSIM ESIM CSIM
node values logic-level logic-level logic· level

(from voltages)
model level transistor transistor node equations
components resistors & switches & equations

capacitors · capacitors (from switches)
scheduling event-driven even~·driven compile-time
relative speed 1 .5 - 3 .1 - 100

No one simulator has a speed advantage. for reasons explained in subsequent chapters. It is noi

unusual to use all three simulators during the course of a design, since each brings out a different

- 10 -

aspect of a circuit's behavior. ESIM is often used during the early stages of a design when the designer

is fleshing out the logic. RSIM is used to detennine which portions of the design are in need of a.

careful perfonnance analysis; usually the perfonnance of most of the circuit can be debugged with the

level of detail provided by RSIM. Finally, CSIM is useful for long simulation runs intended to veefy the

functionality of the design through extensive diagnostics.

This thesis presents the new models and their accompanying simulators in detail, exploring the

ramifications of each model and discussing the accuracy and usefulness of their predictions. The next

section gives a brief outline of the remaining chapters.

1.2. Outline of the remainin& chapters

The thesis has three main parts. The first part focuses on the linear model and the RSIM

simulator.

Chapter 2

Chapter 3

Chapter 4

description of the switch/resistor transistor model incorporated by
RSIM; outline of the method for calculating a node's value using the
linear transistor model; propagation of changes through the network;
choosing model parameters; analysis of sample circuits using linear
model.

justification of the linear model by analysis of true behavior of MOS
logic gates; comparison of actual voltages and propagation delays
with RSIM's predictions; proposal for modifications to the model
based on insight gained during analysis; analysis of sample circuits
using updated model.

details of converting the linear model into a workable simulation
algorithm; optimizations for improving simulator performance;
mechanisms for controlling the voltage and transition time predictions
for specific nodes; review of the successes and failures of the linear
model.

The second part (Chapter 5) presents the switch-level model. The chapter begins with a

discussion of the representation of node values and explains why many extant simulators adopt a

representation that leads to unnecessary difficulties. Next, two switch-level algorithms are presented.

The first is a straightforward adaptation of the RSIM algorithm, replacing its resistance computations

with simpler ones that reflect the resistance value constraints of the switch model. The second

algorithm is based on an entirely different approach; each computation handles a single transistor and

uses only local information (the type of the transistor and the states of its terminal nodes). The

computation is easy to understand and appeals to our intuition about the way transistors really

operate. The simulation proceeds by repeatedly computing new node values for the source ~nd drain

• 11 •

nodes of individual transistors, ·choosing the transistors in any convenient order. The simulation is

complete when no further changes in the network state are possible. The termination of this

relaxation algorithm is proved. and the final network state is shown to be independent of the order in

which the individual computations are performed. The second algorithm is well suited for

implementation on the new parallel architectures just now becoming available; the approach discu~

here is a first cut at designing simulation algorithms tailored for use on parallel engines.

The third pan (Chapter 6) investigates the possibility of using various compilation schemes to

improve the performance of the switch-level simulator. A technique is proposed for constructing a set

of equations for each node in the network. These equations relate the new value of a node to its

current value and the values of other nodes in the network. The network can be simulated by

evaluating each node's equations in tum; several ways of ordering the nodes for evaluation are

discussed. The section concludes with several examples of simulation routines that were compiled

directly from the network data base. When executed, these routines result in a simulation several

orders of magnitude faster than otherwise possible.

The thesis concludes with a discussion of other work in the area of simulation and its relationship

to the ideas presented here.

- 12 -

CHAPTER lWO

A Linear Network Model for MOS Simulation

The electrical model described in this chapter can be used as the basis for a logic-level simulation

of a network of MOS transistors. Other models are of course possible, ranging in accuracy and detail

from circuit analysis to high-level functional simulation. While the chosen model does not encompass

many of the operational details of real MOS networks (most notably, detailed transistor modeling) it is

adequate to efficiently determine the basic functionality and the approximate timing characteristics of

a network. Short circuits, charge sharing, nodes with multiple drivers, bidirectional "pass" transistors,

and so on are modeled correctly.

The first section describes the switch/resistor transistor model incorporated by RSIM. Using this

model, a MOS network is simulated as a resistor network where each node's value is detennined by the

resistance of its connections to various inputs. The second section outlines the method for calculating

the value of each node. This is followed by an explanation of the use of component models to predict

the propagation of new input values through a network. The fourth section discusses techniques for

choosing model parameters and compares RSIM's predictions with those of a circuit analysis program.

The chapter concludes with a summary of the model's ingredients.

- 13 -

2.1. RSIM's transistor model

The transistor model in RSIM can be quite simple since it is only used to predict the final logic

state of a node and the length of time each state transition takes. As an example of how the model

works. consider a simple inverter: one can think of the effective resistance of its component devices at

any moment as

Reff :pu/lup
= ids :pu/lup

VtJs:pullup
Reff :pu/ldown

= ids :pulldown

Vds :pulldown
(2.1)

The following figure shows the actual effective resistance of an inverter's pullup and pulldown as a

function of the inverter's output voltage (assuming no load current).

I . ,,;:,.. ...
.__ ___ --0

I 'o;:puudowo
pulldown

v ds:pulldown

Figure 2.1. Effective device resistances in an inverter

Although the effective resistances of the transistors change as their tenninal voltages vary, it might be

possible to use "average channel resistances" to characterize the transistors' behavior.

The other salient feature of a transistor's operation is its switch-like behavior. ·With certain

voltages on a transistor's tenninal nodes, it makes no connection at all between its source and drain

terminals - the transistor is "off'. As the relative tenninal voltages change, the transistor turns "on",

conducting current between its source and drain terminals. As illustrated in the previous figure. the

transistor is more "on" at some times than others. but the distinction among the different "on" states

can be ignored for simplicity.

There are three basic types of transistor switches found in MOS circuits:

- 14 -

drain drain drain

~" o-i~ ~"~~ SM• o-i~
source source source

ON when gate = 1 ON when pte = 0 always ON

OFF when gate = 0 OFF when pte = 1

(a) n-channel switch (b) p-channel switch (c) depletion switch

Figure 2.2. Three lypes of MOS transistor switches

The difference between n-channel and p-channel switches is the logic level which turns on the switch.

The depletion switch is always on; it is usually connected to voo in a way that provides a source of

current to keep its output node charged high. More precise distinctions between the switch types, and

the need for a depletion device (and why an ordinary switch does not suffice) are discussed in Chapter

3.

One can build on the observations made above to construct a linear transistor model for RSIM:

drain

r
gate <>- - -

source source

(a) n-channel transistor

{

open

closed

unknown

(b) RSIM model

vsate = 0

vpte = 1
v gate = unknown

Figure 2.3. RSIM model for n-channel transistor

It is easy to tabulate the son of connection that exists between the source and drain terminals as a

function of the gate voltage:

Rtff switch closed

Rds = ex> switch open

lReff ,OOJ switch unknown

(Ygate =1)
(vgore =0)

(ligate =X)

(2.2)

Note that uncertainty about the state of the switch leads naturally to an interval describing the

resistance of the source-drain connection. In fact, all the network calculations use interval arithmetic,

- 15 -

and the bounds of the resulting intervals are used when converting voltages to logic states, etc.; no

other mechanisms are needed to deal successfully with X states in the network. Models for other

types of transistors differ in the way the position of the switch is determined from vgate:

drain drain

r { open vgate = 1
gate <>- - - closed vgate = 0

unknown vgate = X

Reff

source source

(a) p-channel' transistor model (b) depletion transistor model

Figure 2.4. RSIM models for ~channel and depletion transistors

The effective resistance Reff is determined separately for each transistor and depends on

width. length dimensions of the active transistor area. Various non-linear effects
make Reff a more complicated function of the transistor geometry
than just length/width.

type Most MOS circuits contain more than one type of transistor. The
different types are distinguished by different values for their
threshold voltage. Since the current conducted by a transistor is a
function of its threshold voltage and hence its type, the modeling
resistance also depends on the transistor type.

context Accuracy in choosing the effective resistance can be improved by
distinguishing several contexts in which a transistor may appear: for
example, an enhancement transistor can be used as a pulldown or
source-follower in addition to its default pass gate configuration.
Surprisingly few contexts need to be recognized to encompass a large
portion of digital MOS designs.

The determination of Reff is made once for each transistor and does not depend on any dynamic

properties of the circuit to be simulated. During simulation the only device information RSIM uses

about a transistor is its effective resistance.

Actually RSIM uses not one, but three effective resistances for each transistor. To understand

why, recall that RSIM tries to predict the transition time and final voltage for a node, as shown in the

following figure.

- 16 -

vnode

.__ _ __.. ___ __,...._ _______ ~! final volta&e
'()I

transition time time

Figure 2.5. Reff is used to predict transition time and final voltage

One would like to calibrate the model to give accurate predictions for both quantities. but that is

impossible with a single set of resistances. To solve this problem, RSIM uses three resistances for each

transistor:

Rsratic when calculating the final voltage.

Rdynlow when calculating the transition time for high-to-low transitions.

Rtiynhigh when calculating the transition time for low-to-high transitions.

Two "dynamic" resistances are used so that the asymmetric behavior of pass devices can be accurately

predicted. Computations involving Reff are triplicated, one for each of the three actual resistances, so

subsequent calculations can use the appropriate value.

2.2. RSIM's node model

Voltages in this model are quantized into one of three values; this corresponds to our intuition

for digital logic and greatly simplifies the simulation calculations. If all node voltages are normalized

to fall in the range [O, 1], then the possible quantized values are

0 logic low - voltages in the range [O, V/ow);

1 logic high - voltages in the range [vhigh. I];

X intermediate voltages, [v10w. Vhigh]. or unknown voltages, [O, 1) - to be
conservative X is always interpreted as representing the larger interval;

where V/ow and Vhigh are the predetermined logic thresholds.

How is the value of a node determined? Using the transistor model described in the previous

section, the original network is transformed into a network of resistors (formerly transistors) and

capacitors (formerly nodes). If a node is not connected to any input, it is said to be charged with a

- 17 -

logic state dctennined by the state of the last driven node it was connected to. If two or more charged

nodes in different logic states arc connected then charge sharing occurs. In this case. all the connected .

nodes reach the same logic state: this state is detcnnincd by the relative capacitances and initial logic

states of the nodes in the stage. For example. if a large (high capacitance) node such as a data bus

were connected by a pass transistor to a small node such as the input to a register cell. then the small

node would "share" the charge of the large node as its final value regardless of the charge it had

initially. Even nodes that ultimately have a connection to an input participate in charge sharing; the

extent of their participation is governed by the relative sizes of the charge-sharing time constant and

the time constant associated with the input connection.

Electrically connected nodes form natural groupings, called stages, bordered by input nodes

(usually VDD and GND). If nodes in a stage are allowed to share charge, all will reach the same

voltage, Vshare, given by

Vshare :min =
l: Ci

1 nodes

~ Ci
all nodes

Vshare :max =
l: C/ + l: Ci

1 nodes X nodes

~ C/
all nodu

(2.3)

where the sums are over nodes in the current stage. Since nodes at logic state X contribute an

undetermined amount of charge to the result, Vshare is an interval whose bounds represent the worst

case assumptions about the actual values of X nodes. These bounds are compared with the logic

thresholds when calculating the charge-sharing value:

Charge-sharing value = I ! Vshare :max S V/ow

V share :min ~ Vhigh

otherwise

(2.4)

This calculation is not strictly accurate when the stage contains transistors with gates of X. Such

transistors might not make any connection at all; invalidating the various sums in equation 2.3. An

alternative charge-sharing calculation that addresses this problem is discu~d in Section 4.1.1.

When one accounts for the resistance between nodes, it is difficult to calculate transition times

for any nodes that change value because of charge sharing. RSIM simply schedules any charge-sharing

transitions so they happen immediately. A more reasonable time constant might be (~R;)C<tr where
i

the first term is the sum of alt the resistances in the stage and

- 18 -

~ c; Charge-sharing value = 1
0 and X nodes

~ c·
1 and "T nodes

1 Charge-sharing value= 0 (2.5)

0 otherwise

is the amount of capacitance in the stage that needs to be charged/discharged to reach the charge­

sharing value. This time constant is surely an upper bound on the time of any transition in the stage.

Note that transitions to X still happen immediately, a conservative assumption.

If a stage is connected to one or more inputs, the inputs determine the final voltage of each node

in the stage. The effect of inputs on a particular node is characterized by the Thevenin equivalent for

the stage (including the inputs at the boundary), regarding the given node as the output:

Rdrive

Figure 2.6. Equivalent circuit for a network node

Vrhev a voltage interval [V -· V +]in the range [O, 1) specifying the possible voltages
the output node may have. This value is calculated using each transistor•s
Rsratic resistance.

Rdnve a resistance interval (R -· R +1 in the range (0, 00). Three versions of this
value are calculated; Rdrive :low, using Rt1ynlow for each transistor; Rdrive :higJi,
using RtJ.vnhigh: and Rdrive:x (see section 4.1.2). The appropriate version is
chosen depending on the final voltage predicted by Vrhev.

Vrhev and Rdrive are generally intervals, since the effective transistor resistances from which they are

derived might themselves lie in an interval. Chapter 4 describes how V,hev. C1oad. and Rt1me are

estimated for nodes in actual networks.

It is sometimes useful to categorize a node according to its equivalent Rdrive. i.e.. how it affects

neighboring nodes to which it becomes connected by conducting transistors:

input (Rdrive = 0). Node is a designated input node (e.g., VDD or GND}. The value of
input nodes can only be changed by explicit simulator commands; the assumption is
that inputs supply enough current to be unaffected by connections (possibly shorts to
other inputs) made by transistors.

- 19 -

driven (Rdrive < 00). Node is part of a voltage divider between two inputs. i.e .• it is
connected by transistors to other driven or input nodes. Driven nodes can affect the
value of charged nodes without being affected themselves, but may be forced to an X
state if shorted to a driven or input node that has a different logic level.

charged (Rdrive = 00). Node is connected, if at all, only to other charged nodes.
Until reconnected to some other part of the network, charged nodes maintain their
current logic state indefinitely (charge storage with no decay).

If Rdrive is infinite, equation 2.4 predicts the correct final value for the node and no further work is

needed. If Rdrii•e < 00, and the node is not an input. the final state of a driven node is calculated from

the Vihev interval [V -· V +]:

Final~. = I r V + S V/ow

V - > Vhigh

otherwise

As an example, consider several different states of a NOR gate:

...__-----o A nor B

~B

(a) NOR gate (b) A= B = 0 (c)A = 1, B = 0

(2.6)

[Rl,00)

(d) A= 1, B = X

Figure 2.7. Equivalent circuits for a NOR gate with different inputs

1

VrheY =
R1 + Ri

[RillR3
R 1 + (R 2 11 R 3) '

figure2.1(b)

figure2.1(c)

jigure2.1(d)

(2.7)

If the final value of a node differs from its charge-sharing value, then the appropriate event is

scheduled ReffCeJJ seconds in the future, where

I Rarive:high

Reff = Ranve:low

Rdrive:x

final value = 1

final value = 0

final value = X

(2.8)

- 20 -

~ Ci
0 and X nodes

final value = 1

Ce.ff= ~ Ci
1 and X nodes

final value = 0 (2.9) .

~ Ci
0 and 1 nodes

final value = X

where the sums are computed for nodes in the current stage. Note that transitions to X are not

immediate. but have a time constant related to the fastest transition the node can make. This means

that a momentary short-circuit. such as that shown in the following figure, does not necessarily cause a

node to become X; what happens depends on the relative sizes of the various time constants.

0 - 1 o------- J large aapacilance

Figure 2.8. A momentary short-circuit does not necessarily cause an X value

If the delay through the inverter is small compared to the time constant of the output node, no X

transition will be processed for the output node (one is scheduled, but is aborted when the pullup

turns off).

To better understand the interaction between the charge-sharing and final-value calculation~

consider the following example:

A B
R2

Figure 2.9. Sample circuit for charge-sharing and final-value calculation

Assuming that CB is initially charged low and that charge sharing happens immediately (an

assumption RSIM makes). there are several different scenarios:

CA <<CB node A goes low immediately because of charge sharing with B. Then,

- 21 -

both nodes arc driven high by the pullup - node A at time
R i(C.A +CJi). and node Bat time (R 1+R2)(C.A +CB).

C .A >>CB node B goes high immediately because of charge sharing with A; the
pullup has nothing to contribute.

C .A :::: CB both A and B go to X immediately and are then pulled up with the same
time constants as for C.A <<CB.

If R 2 is reasonably smaUer than R i, then the assumption that charge sharing happens quickly is valid.

and these scenarios are satisfactory. As R 2 approaches R l in value, the time constants associated with

charge sharing approach those of the pullup, and the assumption of immediate charge sharing is a

relatively poor one. t Augmenting the charge sharing calculation as described in equation 2.5 would

improve the prediction in this case.

In summary, calculating a node's value involves two separate computations, each of which can

generate a new event:

(1) a charge-sharing event describing an immediate change in the node's state caused
by the redistribution of charge among the capacitors for nodes in the current
stage. This type of event is generated when two stages are merged (le., a
transistor turned on).

(2) a final-value event describing what the final, driven state of the node will be.
This type of event is generated when Rdrive < oo.

Chapter 4 describes the way these two events are reconciled with each other and with pending events

to produce a final set of transitions for a node.

2.3. · RSIM's network model

The networks:I: simulated by RSIM are made up of two basic components:

(i) electrical nodes which serve as wires. Each node has a capacitance that is the
sum of two contributions: (1) capacitance between other layers and the
conducting layers that make up the node; and (2) capacitance from the gate
junctions fonned by the node.

(ii) three-tenninal transistors (mosfcts) which act as switches. Each transistor
conditionally connects two nodes (caUed the source and drain of the transistor)
depending on the voltage of the third node (called the gate of the transistor}.

Some nodes (e.g., VDD and GND) are designated as inputs that supply the current needed to change the

tThis illustrates the asymmetry between the timing of transitions due to charge sharing and those due to the final
value cilculation. Le., R2 affecL~ only the final value transition. lhis anomaly could be exploited to produce rather
birarre predictions, e.g., a node changes faster if it is connected to a cipacitor than if it is connected to an input! As
a practicil matter. circuit performance seldom depends on the timing or charge-sharing transitions, and these
anomalies are not significant.
:f:Nctworks can be entered as schematics fferman82] or extracted from layout information [Baker80]. The latter ap­
proach provides fairly accurate estimates of the cipacitance of each node.

---~-- -------

- 22.

voltage of a node by charging/discharging the node's capacitor. As the voltage of a node changes,

switches controlled by the node open or close, making connections that cause the voltages of other

nodes to change. It is RSIM's job to predict the dynamic behavior of a network of nodes and switches.

estimating the voltage of each node, the state of each switch, and the charge/discharge rate when a

node changes value. From the designer's point of view, this translates into knowledge about the logic

level of each node and the transition time associated with each change of logic level.

It is easy to build switch configurations that compute simple logic functions of node values. For

example:

ct]
not A

(a) constant 1 (b) nMOS inverter (c) cMOS inverter

Figure 2.10. Examples of switch configurations that perform logic operations

The output node in figure 2.lO(a) is connected to a depletion switch configured as a current source; its

value is always a logic high. Such circuits are called pullups because their output nodes are always

"pulled-up" to logic high. In figure 2.lO(b) a "pulldown" switch has been added, controlled by node

A. The pulJdown is sized so that, when it is on, it conducts more current than the pullup supplies.

When A is 1, the output node is "pulled-down" to 0. Of course, when A is 0, the pulldown is off and

the pullup ensures that the output is 1; the net result is an inverter circuit Figure 2.IO(c) is an

inverter constructed from one p-channel and one n-channel device. Typically, the manufacturing

process can provide either p-channel devices or. depletion devices, but not both, in the same circuit

More complicated logic circuits are constructed using series and parallel switch configurations.

- 23 -

drain drain

Ao4

source source

(a) connection if (A or B) (b) connection if(A and B)

Figure 2.11. logic functions associated with series and parallel configurations

If the two-switch circuits shown above replace the pulldown in figure 2.2(b), the result is a two-input

NOR or NAND gate.

In all the circuits presented so far, the inputs are electrically isolated from the outputs, le., if the

output signal is corrupted somehow - by a short circuit, for example - the input signals are

unaffected. The isolation provided by the gate connection leads to a natural decomposition of the

network into stages made up of nodes and transistors. Nodes belong to different stages only if they

are guaranteed to be electrically isolated. For example, in the foUowing circuit, nodes A, B, C, and D

are all isolated· from one another. Node E is not isolated from D, so it is in the same stage as D.

inputs outputs

-¥~
A~~B

B~e-+D stage 3
C-+ -+E

Figure 2.12. Simple circuit that has three stages

Note that VDD and GND (and, in fact, any input) are not treated as nodes in the ordinary sense when

checking to see if two nodes belong to the same stage. For example, node B is not considered to

connect to node C by a path involving GND and two of the pulldown transistors. Given a particular

node, a tree walk of the network is performed to find all other nodes in the stage. The tree walk first

- 24 -

locates all "on" switches which have a source/drain connection to the original node. Nodes connected

to the drain/source of those switches arc part of the same stage as the original node. The tree walk

continues until it locates all nodes that can be reached from the original node by a path of "on"

switches; this set of connected nodes and the "on" transistors that form the connections make up a

single stage. Note that the decomposition of the network into stages is a dynamic process. le., one

that depends on the node values of the network. t For example, the following circuit can be

decomposed into 2, 3 or 4 stages depending on the value of nodes A and B.

c

E

D

Figure 2.13. Circuit with multiple decompositions

Node Fis always in a separate stage. If A=O and B::::O, then C, D, and E all form a single stage; if

A= 1 and B = 0, then D is isolated from C and E; and so on.

When RSIM simulates a network, it does its anaJysis stage by stage. Since the values of nodes in

a stage are closely related (the nodes are shorted together), it makes sense to calculate all the values at

the same time. By the same reasoning, all the transistors and nodes that influence the value of a

particular node are in the same stage as that node. Stages are the analogs of gates in a gate-level

simulator. In a gate network, each node's value is determined by a single gate, and the output of a

gate is electrically isolated from the inputs; the gate is the ideal unit of analysis. In MOS networks with

bidirectional devices, the traditional gate model is not adequate; hence the motivation for stages.

tThis differs from the notion of "transistor group" introduced by [Bryant81]. A transistor group oontains all nodes
that might beoome connected, t e.. a stage with all switches considered to be oonducting. Transistor groups cm be
quite large - for example, in circuits with barrel shifters that potentially short together all bits in a data path -
whereas stages are usually quite small

- 25 -

A simulation step starts when the designer changes the value of an input (By definition, any

node given a value by the designer is treated as an input node by the simulator.) The value of the

input influences other pieces of the network in two ways:

input

(a) (b)

Figure 2.14. Two ways in which an input affects a network

The simulator first recalculates the values of nodes in stages connected to the input by the

source/drain connections of conducting switches (figure 2.14(a)). Then, for each switch controlled by

the input, stages on each side of the switch are analyzed (figure 2.14(b)). If the switch becomes

conducting because of the new input value, the pieces of the network on either side form one large

stage. If the switch just turned off, it partitions what was previously one large stage into two smaller

stages.

If a node changes value as a result of analyzing a stage, RSIM calculates the transition time by

estimating the length of time required to charge/discharge the node's. capacitance. The name of the

node, its new value, and the estimated time when the transition to the new value occurs are all

remembered as an event. The simulator maintains a list of pending events, keeping the list sorted by

time, with the earliest event first

When processing new input values causes a node to change value, a new event is generated and

saved on the event list After all inputs have been processed, the simulator processes events, starting

with the first element of the event list For each event, the specified node is assigned its new value.

Then, any stages affected by this change (as shown in figure 2.14(b)) are analyzed, pos.o;ibly generating

new events, which are then added to the event list The simulator continues processing events until

the event list is empty. 'The network is said to have "settled" at this point, and the new input values

have been completely propagated through the network.

- 26 -

Note that if no nodes change value when a stage is analyzed, no new events are generated.

Portions of the network that remain quiescent arc not analyzed, since the simulator only analyzes .

stages affected by inputs or by nodes on the event list By limiting simulation effort to the changing

portions of the network, the event list mechanism enables the simulator to handle large circuits.· The

amount of computation required for a simulation step is proportional to the amount of circuit activity,

not the size of the circuit

To get a better feeling for the way a change propagates through a network, consider the

following simulation of the XOR circuit presented in figure 2.13. Nodes A and B are inputs; values for

the other nodes are determined by the simulator.

A _j
I

B

c
I I

D~
I I I I

E

F
___ ___,,

events: 1 2 3 4 s 6

_J
I

7

I
I
8

Figure 2.15. Waveforms for simulation example

A

B

c

D

E

L_ F
I

9 10

Event # 1. Node A is set to 1 by the user. The simulator recalculates all stages
affected by A, in this case, the stage containing nodes C, D, and E
(which fonn one stage because C and Dare 1).

All three nodes are pulled down by the switch controlled by A, so events #2, #3, and #4 are

scheduled to set C, D, and E to 0. Note that the simulator calculates a different transition time for

each node. C changes most quickly since it is connected directly to the pulldown. D is the slowest

since it discharges through the two pass devices connecting it to the pulldown.

Event #2. C changes from 1 to 0, causing the stages containing D and E to be
analyzed.

At the time event # 2 is processed, nodes D and E are still 1, although they both have events pending

for transitions to 0. When node C goes low, it partitions what was once one large stage into two stages

- one containing only D, the other containing both C and E. Analysis of the stage containing D

shows that D is no longer pulled down, invalidating the upcoming transition. The simulator has

. 27.

several choices:

(1) Notice that Dis currently 1, so just remove the pending event for D. This results
in D never changing value. This is not a bad prediction if D is scheduled to
change substantially after C.

(2) Schedule another event (# 5) for node D. which changes its value back to 1; set
the event time so that # 5 happens after # 4. This choice is best if C and D are
both scheduled to become 0 in close succession.

(3) Remove D's pending event as in (1). but report a glitch (an aborted transition} to
the user fThompson74]; a sort of compromise between (1) and (2). Some
simulators only report glitches if the aborted event has been pending "long
enough" [Nahm80].

(4) Schedule another event as in (2) that changes D's value back to 1; also change
the pending event to be a transition to X, or, alternatively, remove the pending
event and schedule a~ immediate transition to X.

As one can see, scheduling a new event is a thorny issue when it involves a node that already has

events pending. Since D's value does not really matter (it does not control any switches itself'), the

first alternative seems the most reasonable. Given the simplicity of the RSIM model, it probably does

not pay to overly complicate the scheduling of events. The transition-time estimates are not accurate

enough to allow subtle distinctions to be made based on the relative transition times of nodes; RSIM

avoids choices (2), (3). and (4) since they involve such distinctions. Note that a similar problem arises

for node E. It has an event pending for a transition to the correct value (Eis still going low}, but the

event could be rescheduled to reflect a faster transition time since the pullup on node D no longer

impedes the transition. Chapter 4 details the exact choices made by RSIM under various circumstances.

Returning to the example:

Event # 3. Node E is changed to 0, causing -the stage containing node F to be
analyzed. Fis calculated to change value, so event #6 is scheduled.

Events #4,5. Discussed in the preceding paragraph.

Event #6. Fis set to 1. F does not affect any other stages, so no events are added
to the event list

At this point, the event list is empty, and the network has settled. If the user now changes node B to

1, a somewhat simpler sequence of events ensues:

Event # 7. Node B is set to 1 by the user, causing the simulator to analyze the
stage containing D. Dis predicted to go low, resulting in the scheduling
of event #8.

Event #8. D is set to 0, separating C and E into different stages which are then
analyzed. C shows no change, but Eis scheduled to go high (event #9)
now that it is disconnected from C's puJldown.

- ---~---------------

- 28 -

Event #9. E changes to 1, and as a consequence F is predicted to change to 0
(event # 10). Note that the low-to-high transition time can be very
different than the high-to-low transition time: RSIM takes into account
the relative sizes of the pullup and pulldown.

Event # 10. Finally, F is set to 0.

Once again the event list is empty, and the network has settled.

2.4. Calibrating and using the RSIM model

From a practical viewpoint, the success of RSIM depends to a large degree on the choice of the

modeling resistance for each transistor. The principal goal of the calibration process is to choose

resistances that lead to accurate predictions. Actually, thete are two separate sets of resistances to be

chosen: static and dynamic. Static resistances, used to estimate node voltages, are comparatively easy

to choose. When a circuit does not depend on device ratios for correct operation - e.g., a pulled-up

node or a CMOS gate - the values chosen for static resistances do not affect the voltage computation,

since the nodes connect.to only one polarity of input When a circuit makes a connection to inputs of

different polarities - e.g., a nMOS gate with a logic-low output - the intervening nodes become part

of a voltage divider, and the transistor resistances must be chosen to predict the divider's output

voltage. Since only the ratio of the pullup and pulldown devices is constrained, there is considerable

freedom in choosing the actual resistance values. Of course, inauspiciously chosen values can run

afoul of range and round-~ff problems in the computation, but such problems are easily avoided.

A more interesting problem is the choice of appropriate dynamic resistance values. One

approach involves performing a series of experiments designed to measure the resistance of each type

of transistor in various circuit contexts:

initially OV
/

JpfJ

(a) pullup

- 29 -

~~,,~ ~~ov
lpfl lpfl

(b) depletion source-follower (c) n·channel source-follower

(d) n-channel pulldown (e) n-channel pulldown w/ threshold drop

Fipre 2.16. Simple experiments for measuring channel resistances

Ideally, the experiments should be perfonned using actual circuits; when this is impractical, a well­

calibrated circuit analysis program can be used to gather the needed measurements. Each of the

experiments entails measuring the length of time required for the output to rise or fall from its starting

voltage to the switching threshold. (Section 3.4.1 describes the reason for using single threshold, and

the method for choosing it) If the load capacitance is known, an appropriate channel resistance can be

calculated, essentially inverting the computation perfonned by RSIM. Appendix 2 presents the

transistor resistances derived in this manner for a typical Sp. nMOS process.

Unfortunately, while the experiments outlined above lead to usable predictions of circuit

perfonnance, the predictions are not as accurate as one might like. The problem with the experiments

is that the resistance measurements are made in a rather artificial context Factors important in

detennining the behavior of a transistor in a particular circuit (e.g., shape of the input wavefonn,

Miller capacitances, etc.) are not measured by the proposed experiments. Since the simple RSIM model

does not account for these factors, they are missing completely from the calculations, leading to

inaccurate predictions. There are two alternatives:

(1) Modify the RSIM model to include effects deemed important when making
perfonnance predictions. It is difficult to start down this road and su"ll keep the
model simple; carried to its logical conclusion, this course of action leads to a
circuit analysis program - the very thing RSIM tries to avoid. There are,
however, alternatives that fall short of abandoning the simple model; these are
discussed at the end of Chapter 3.

- 30 -

(2) Conduct more sophisticated experiments using circuit configurations found in
actual designs. ·

An example of the second approach is the following experiment:

_J 1-- _/ }-
pair delay

Figure 2.17. Deriving resistances by measuring inverter pair delay

The delay through a pair of inverters involves both a rising transition (measuring the pullup resistance)

and a falling transition (measuring the pulldown resistance). The initial inverter provides an

appropriately shaped input wavefonn: the last inverter provides a realistic output load. The meamred

pair delay is arbitrarily spJit into a rising delay and a falling delay (say, % and 1A respectively), so that

the pullup and pulldown resistances can be calculated. This leads to good predictions for the chains of

inverting logic so common in MOS designs. Similar experiments can be designed to measure other

resistances. The danger in this approach is that. because of the ad hoc nature of the experiments. the

resistances might be inappropriate for new circuit configurations. However, with a prudent choice of

circuits during calibration and design, this danger can be minimized.

The following examples are analyzed using the simple calibration given in Appendix 2. The

results give a feel for the performance of the "pure" resistance model. and also set the stage for the

model improvements suggested in Chapter 3. The calculation of node voltages is straightforward and

is not mentioned in the discussion below, which focuses on the calculation of transition times. The

first example is a path through a PLA:

- 31 -

clock signal input. buffer poly line AND plane OR plane
~ ~

c D E
0-1 I 1015 5110 10/5 5110

.... 1:1 }~ _J_ 5120
case 2: 0 10/5 J.2p J Jp

A
J.2p

Figure 2.18. Sample circuit showing path through PLA

Transistor sizes are given in microns as width/length. When the clock signal goes high, the input

signal (buffered by the inverter on the left) propagates through the input buffer and the two PLA

planes. The following figure shows the equivalent resistor/capacitor network; resistances are given in

KO and capacitances in pf.

74.4

B

16 J .05

3

c

4.4 J .2

30.2

D

30.2

E

Figure 2.19. Equivalent RC network for PLA circuit (shows dynamic resistances)

Note that the pullup for node C is recognized as a depletion source-follower without considering the

actual voltage on its gate. Since depletion devices are always on, the ~verter which leads from node B

to the gate of the pullup is ignored by RSIM, and the timing for node C is always controlled by node B.

Also note that the resistance chosen for the pulldown for node B reflects the threshold drop of node

A.

When calculating RtJyn1ow, RSIM simply calculates the net resistance to ground. ignoring the

effects of any pullups. For example, a falling transition for node B takes (16)(.05) = 0.8ns. This

approach is not only simpler, but is conservative. (Adding the pullup resistance actually decreases the

fall time from the Thevenin point of view). Using this approach, the table shows the results of

propagating two different data values through the PLA. The time of each node's transition is shown

in nanoseconds, as predicted by RSIM and SPICF.

. 32 •

A B c D E

transition .j, •t .j, t .j,

Case 1 RSIM 0.3 4.0 4.9 14.0 14.9

SPICE 0.8 3.5 6.8 15.5 20.7

transition t .j, t .j, t

Case 2 RSIM 1.6 2.4 3.0 4.3 10.3

SPICE 0.6 1.9 3.3 6.4 12.1

The discrepancies between the RSIM and SPICE predictions (·28% in case I. · 14% in case 2) can be

traced to the fact that the current RSIM model does not account for the shape of the input waveform

when analyzing a stage. t lbis is particularly noticeable in case 1 for the transition of node E. lbe

long rise time of node D slows the falling transition of E to a considerable extent; a fact blithely

ignored by RSIM.

The second example is a section of the OM2 data path [Mead80] consisting of the logic to drive a

register select line, a register cell, and a bus line. The path to be analyzed starts with the clock going

high, driving the select line high, finally causing the register cell to discharge the pre-charged bus line.

A

B
5/lQ I

select line

/
c

pre-charged bus
D /

register cell

Figure 2.20. Register select and bus drive circuitry from OM2 data path

tExamining the times in this example. one might be tempted to multiply the effective resistances by a constant factor
in an effort to improve the accuracy of the predictions. But not all predictions underestimate the true transition time,
and. as will be seen in Olapter 3, there are other improvements that ClD be made that address the root of the prob­
lem.

- 33 -

74.4
A

2.9

2.9 I
.41

Figure 2.21. Equivalent RC network for OM2 data path example

The comparative analysis is given below; RSIM comes to within 9% of the SPICE prediction.

A B c D

transition ... t t ...
RSIM 2.4 10.6 13.3 35.9

SPICE 2.6 9.1 19.6 39.6

2.5. Summary

Tue RSIM model can be summarized as follows:

• Transistors are modeled as switches with series resistors. Three resistances are
chosen for each transistor and used to predict node voltages and transition times.
Resistance values are determined by experiments, either with actual circuits or
using a circuit analysis program.

• Using the transistor model, a network of transistors and nodes is simulated as a
network of resistors (from . transistors) and capacitors (from nodes). A node's
value is determined by voltages calculated in two ways: (1) from charge sharing
with electrical neighbors, and (2) from the Thevenin equivalent circuit for pieces
of network connecting the. node to the inputs. When a node changes value, the
timing for the transition is given by an RC time constant calculated using the
resistances and capacitances of the surrounding network.

• Tue network is viewed as an assemblage of small stages, each simple enough that
its operation can be predicted in a straightforward manner. Information
propagates through the network as a series of events (changes in a node's value);
each event leads to an analysis of affected stages using the models described
above. Tue isolation between stages of digital circuits allows each stage to be
analyzed separately; the relative independence of one stage from another is one
reason why the very rough approximations of RSIM are so serviceable.

Several factors important for making accurate performance predictions are missing from both the RSIM

model and the simple calibration experiments proposed in section 2.4. Chapter 3 suggests some

modifications to the model that correct the more important oversights. Many implementation details

- 34 -

unspecified in this chapter arc discussed in Chapter 4. Chapter 4 also catalogs the successes and

failures of the RSI\1 model, as finally implemented.

- 35 -

CHAPTER THREE

Justification of the Linear Network Model

This chapter undertakes a perfonnance analysis of logic gates and other digital circuits with the

goal of establishing a physical justification for the RSIM model. By comparing the resulting equations

with those proposed by RSIM, one can judge the accuracy with which the RSIM model predicts circuit

behavior. As an added. benefit, insight into actual circuit operation helps to motivate model

modifications that improve the accuracy of the predictions.

The first section lays the groundwork for the analysis, presenting the first-order equations that

describe the operation of MOS transistors. The second section describes the node voltages found in

common digital logic circuits and compares the results to RSIM's predictions. The next two sections

analyze the propagation delay of logic gates and other network components. Finally, several

modifications to the RSIM model are proposed, and the resulting predictions are compared to those of

the original model.'

3.1. Electrical models for mosfcts and gates

The active component in a MOS circuit is the mosfet, a type of transistor. The mosfet has three

terminals: the source and drain (two symmetric connections), and the gate. By convention, the source

and drain arc chosen such that Vtfs, the voltage of the drain with respect to the source, positive. Vgs.

the voltage of the gate with respect to the source, can be either positive or negative. Depending on

- 36 -

the relative voltages of the three terminals. the mosfet conducts varying amounts of current between

the source and drain terminals. The amount of current conducted depends on the region in which the

mosfet operates. There are three possible regions:

0 Vgs - Vth < 0 (off)

ids = IC (2 2 Vgs - Vrh) 0 < Vgs - Vth < Vds (saturaled) (3.1)

Vds
IC(Vgs - Vth - T)vds Vgs - Vth > VtJs (linear)

where Vrh is the threshold voltage of the mosfet and

IC = w I' Co = w (25 microamps)
I I volt2

(3.2)

is a constant that depends on the width w and length I of the particular mosfet under consideration.

The numeric estimate is for a typical DMOS process. These equations ignore second order effects on

itJs.

In an nMOS process. there are two types of mosfets, distinguished by the setting of their

thresholds:

type of device threshold (VDD = 1)

n-channel v1e :::: 0.14

depletion v td :::: -0.6

As we saw in Chapter 2, the simplest form of logic gate that uses these devices consists of:

a single depletion pullup with its gate and source attached to the output node and its
drain attached to VDD, and

one or more pultdown paths connecting the output node to ground, each path
containing one or more n-channel devices.

- 37 -

Figure 3.1. nMOS logic gates

The depletion pullup is configured so that Vgs:pu = O; since the threshold of a depletion device is

negative, Vgs:pu - Vrd > 0, and the pullup is never off. Each n-channel pulldown is configured to be

on when its gate voltage exceeds v1e and off otherwise. If all the n-channel devices in a particular

pulldown chain are conducting, the output load capacitance is discharged through the pulldown path

and the output voltage is lowered (vout = Vo/ = logic low); otherwise the pullup pulls the output high

(Vout = Voh = logic high).

Equation 3.1 can be specialized for a depletion pullup, using the fact that vgs :pu is always zero:

ipu =
I I

(1-Vout)
ICpu(.Vrd -

2
Xl-Vout)

(3.3)

where Vout is the voltage of the gate/source node of the pullup. Since the drain of the pullup is

connected to VDD, VtJs :pu = 1 - Vout. To avoid confusion, the equations will be written in tenns of

I Vrd I since Vtd is negative. The current conducted by the n-channel pulldown in an invener is given

by:

0 Vin - Vre < 0

ipd = ICpd (2 -
2
- Vin - Vre) 0 <Vin -Vte < Vout (3.4)

Vout
IC pd(Vin - Vte - -2-)Vout Vin - Vte > Vout

where v;n is the voltage of the gate node of the pulldown. Note that the source of the pulldown is

connected to ground (v;n = Vgs :pd} and the drain is connected to the inverter's output (V0 ur = Vds:pd).

- 38 -

For proper operation of the inverter, the sizes of the pullup and pulldown are chosen so that ip<t > ipu

when the pulldown is on.

To understand the behavior of an inverter in more detail, it is useful to plot ids of the

component devices as a function of the inverter's output voltage:

linear sat
~,~

I
I

;

vin=l

t increasing vin

sat linear
~'~

1-lv1dl 1 1-vte 1 VOIJt

(a) depletion pullup (b) enhancement puUdown

Figure 3.2. mosfet I- V characteristics

The ias of a depletion pullup depends only on v0ur and thus a single curve suffices to show their

relationship. For the n-channel pulldown, there is a family of curves for ids corresponding to different

values of v;n.

The intersection of the ids curves for the pullup and pulldown shows the inverter's output

voltage, given a particular input voltage:

VO\lt

(b) vOllt = vol when vin = 1

Figure 3.3. v out is detennined by ~u and ~

In fact, one can plot the DC voltage transfer curve for an inverter. which shows the inverter's output

voltage as a function of its input voltage.

- 39 -

VO\Jl

pulldown =off pullup =linear

II pulldown =sat pullup=linear

@
Ill puUdown =sat pullup=sat

IV pulldown =linear pullup=sat

1

Figure 3.4. Voltage transfer curve for an inverter

The four regions (I - IV) of the curve correspond to various combinations of the pullup's and

pulldown's operating regions. Note that the relationship between v;,, and Vout shown in figures 3.3

and 3.4 applies when the voltages are allowed to stabilize; in a circuit with changing voltages, the

relationship between the v;n and vou1 is considerably more complicated, as will be seen in section 3.4.

The next few sections use the equations presented here to develop equations for the quantities

predicted by RSIM - node voltages and transition times - so that the RSIM model can be evaluated

and perhaps improved.

3.2. Node voltages

When Vtn < Vte, the n-channel pulldown conducts no current: the depletion load continues to

conduct as long as Vout < 1. Therefore, the logic high output voltage of an inverter is given by the

equation:

Voh = 1 (3.5)

When v;,, > Vte, the n-channel pulldown is on and the output node reaches an equilibrium voltage v01,

which is detennined by (1) the relative sizes of the pullup and pulldown and (2) the gate voltage on

the pulldown. v01 is that voltage where the current of the pulldown (at this point in its linear region)

is balanced by the current of the pullup (in saturation):

(3.6)

- 40 -

If one assumes that v;n = 1 (as is the case when Voh of the previous stage is 1) and that

Vo/ << 1 - Vte• then

(3.7)

where R = "pd = 1
P" wl'pd is the ratio of the sizes of the pullup and pulldown. R is chosen so as

ICpu Wpu pd

to guarantee that the low output of a gate turns off the pulldowns of gates connected to the output,

le., so that v01 is less than v1e by a comfortable margin; typically R is chosen to be about 4 if v;n = 1.

Now consider the RSIM model for an inverter:

(a) vin at logic low (b) vin at logic high

Fi&ure 3.5. RSIM inverter model

When v;n is low, the pulldown is off and the inverter is modeled with a single resistor. In this

configuration, RSIM predicts

Voh:RSJM=l (3.8)

agreeing with equation 3.5, independent of the value chosen for Rpu • When v;n is high, the inverter is

modeled by a voltage divider. RSIM predicts

Rpd Vo/:RSIM = _ ___, ____ _
Rpd + Rpu

(3.9)

One should choose Rpu and Rptt so that Vo/:RSIM is the same as v01. as given by equation 3.7. Thus

the RSIM model can accurately predict the output voltages of logic gates; in fact, there are two

unknowns and only one equation to satisfy, so there is some freedom in choosing the static resistance

values.

- 41 -

There arc circuits for which RSIM docs not properly predict node voltages. For example. in the

following circuit, the voltage of node B only reaches 1 - v1e:

(a) sample circuit (b) equivalent resistor networks

Figure 3.6. Sample circuit illustrating voltage drop across pass transistor

N-channel devices configured the same way as the horizontal transistor in figure 3.6(a) are called

"pass" transistors, and are used to implement dynamic latches, various types of steering logic, and so

on. Figure 3.6(b) shows the equivalent resistor networks for the circuit According to this model, the

voltage for node B should reach VDD when node A is low. In the actual circuit, however, the pa~

transistor cuts off when B reaches I - v1e since. at that point, Vgs:pass = Vte· In general, the source

voltage of a p~ transistor never rises above a threshold-drop below its gate voltage. Thus the RSIM

model incorrectly predicts the voltage of node B.

In fact, the network· analysis performed by RSIM does recognize that node B never reaches VDD.

As shown by several examples in Chapter 2. the resistance for a pulldown with a gate that has a

threshold voltage drop is not chosen in the same way as the resistance for a normal pulldown. In

other words, the value of RS in figure 3.6(b) reflects the knowledge that node B has a threshold drop.

This knowledge could also be used to adjust the prediction of B's voltage, but this is not currently part

of the calculation.

There are many other circuit configurations that are beyond the ability of RSIM to analyze,

although most such circuits could not, in all fairness, be called digital. One imponant exception. which

RSIM does not handle, but which occurs in performance-critical digital circuits, is called bootstrapping.

- 42 -

small booL~trap node

I~
0-1<>--~

isolation ~sistor Y ,,_...._ _ __.,B...__--o

/
coupling r.apacitor

J large r.apacitance

Figure 3.7. Bootstrap circuits lead to voltages greater than VDD

Node A is small compared to node B, to which it is capacitively coupled. The coupling capacitor need

not be explicit; often enough coupling is provided by the gate/source overlap capacitance of the

transistor controlled by A. Node A is driven high through a pass transistor, and in tum enables the n­

channel pullup that is controlled by A and connected to node B. Since the capacitance of A is small

compared to that of B, A reaches a significant voltage before the voltage of node B begins to change;

the difference is usually around 3 volts in common bootstrap configurations. As the voltage of node B

increases, the coupling capacitor maintains this initial voltage difference between nodes A and B, and

so the voltage of A increases correspondingly. t It is not unusual for node A to reach 8 volts or more.

This, of course, increases the voltage on the gate of the pullup, which in tum increases the current

flowing into node B. The net result is that node B reaches its final value much more quickly than one

might expect Just as important. the voltage of B rises all the way to vno instead of stopping two

threshold drops below, as a simple analysis might predict

Both the faster transition time and higher-than-expected voltage for node B are completely

mi~ed by RSIM. Since such circuits are often used in time-critical portions of the network, it would be

nice for RSIM to make correct predictions in this case. Unfortunately, there is no simple change to the

simple RSIM model that achieves the desired result However, by systematically replacing bootstrap

circuits with more conventional circuits sized to give the same perfonnance, RSIM can produce the

correct results. This technique is discussed in the section on escape mechanisms in Chapter 4.

In summary, RSIM

tThe pass device through which node A is driven isolates A from the driving circuitry. After the voltage of node A
reaches 1- Vte. the pass device cuts olT, and stays ofT no matter large the voltage on node A beoomcs. This is be­
cause Vg :pass - Vrt will be less than the voltage on either the source or the drain.

- 43 -

(i) predicts the output voltage of logic gates with acceptable accuracy.

(ii) does not predict threshold drops introduced by pass transistors, but docs perfonn
a static analysis of the network to recognize transistors whose gates are subject to
a threshold drop, and adjust the modeling resistance accordingly.

(iii) does not handle bootstrap and other more exotic circuits. However, a pattern
matching/replacement technique is available for substituting equivalent circuits
that simulate correctly.

3.3. Propagation delay: overview

When choosing a single number to characterize the timing behavior of a circuit. one often settles

for detennining the propagation delay: a measure of the length of time required for a change in an

input value to be reflected in the output value. In digital circuitry, a significant change is one where

the signal changes from logic low to logic high or vice versa. For a particular transition it is common

to define "change" in relation to a threshold: the signal is said to change when it crosses the threshold

Consider the following single input. single output circuit:

CIRCUIT

Figure 3.8. Test setup for measuring propagation delay

The propagation delay is defined as

Ip = lourput - t;nput (3.10)

where

loutput is the time when the output voltage crosses the output threshold voltage;

t;nput is the time when the input voltage crosses the input threshold voltage.

This definition works well for a transition between 0 and 1; however, delays associated with a

transition to the X state are still not well defined since it is unclear whether the signals in question

cross the threshold or not. Aside from this technical difficulty, the notion of propagation delay

involving X's is rather muddy since X is not a "real" logic value, but more of an error state. The

simulation algorithm must assign some delay to such a transition. and RSIM conservatively chooses the

fastest possible transition of which the node is capable (sec equations 2.8 and 2.9).

- 44 -

The next step is to choose the input and output thresholds, a choice that depends on the

particular circuit to be analyzed. lbere arc two important criteria for choosing thresholds:

(1) lbc delay should never be negative. lbc thresholds should be chosen so that the
input always crosses its threshold before the output docs. The simulation
algorithm quite naturally processes events in the scheduled order; allowing a
negative delay might require backing-up a previously processed event

(2) The output threshold for a circuit should be chosen without regard to its use,
allowing a single threshold to be chosen for all inputs and outputs. In that case,
only one delay computation is needed for each signal transition.

Though these criteria are not compatible in general, they can both be met for the digital circuits of

interest here.

To simplify the analysis below, will restrict the class of input waveforms considered. In his work

on waveform bounding, Wyatt [Wyatt83] observes that the transfer functions characterizing digital MOS

circuitry meet certain criteria which guarantee that

if two monotonic trial waveforms are chosen that bound the actual input waveform
(which also must be monotonic), then the response of the circuit to the trial waveforms
will bound the actual output waveform.

Thus one can choose computationally convenient input waveforms, e.g., simple voltage ramps, and

determine the bounds on the propagation delay by analyzing ramps that bound the true input

waveform.

3.4. Propagation delay: logic gates

In order to explore the timing behavior of MOS logic gates, this section analyzes the behavior of

an nMOS inverter with a simple voltage ramp on its input The analysis is based on the first-order

equations for the component devices, presented in the previous section. The derivation is easily

extended to more complex gates by adjusting the parameters of the inverter's pulldown to model the

net pulldown-path resistance of the currently active pulldowns in the complex gate (see section 3.4.4).

The derivation also applies to cMos logic gates; the analysis of the low-to-high transition caused by a

p-channel pullup is very similar to the high-to-low transition caused by an n-channel pulldown. For

simplicity, only nMOS gates are considered below.

For the purposes of the analysis, the inverter output is connected to a fixed capacitance that

models the load driven by the inverter.

- 45 -

Figure 3.9. Inverter circuit to be analyzed

At each moment, the output voltage and the current charging/discharging the load capacitance are

related by

. C dvout
l/OQd = food -­

dt
(3.11)

Unfortunately, this differential equation is hard to use as it stands because ifood is a function of both

v0u1 and t. However, if one can find a suitable approximation for i1ootJ that removes the dependency

on v0u1• then the change in output voltage over a given time period can be determined by integrating:

(3.12)

The time needed for v0u1 to change a specified amount is calculated by first performing the integration

and then solving the resulting equation for t. This suggests the following plan of attack:

(i) Find suitable approximations for ifood to remove the dependencies on v0u1•

(ii) Compute the output transition time using equation 3.12.

(iii) Subtract from (ii) the input transition time, giving the actual delay from input to
output. Rearrange the answer into an RC term (what RSIM predicts) and an
error term.

This discussion starts with a small digression on choosing the appropriate threshold voltage.

3.4.1. Oloosing the inpuUoutput threshold

To see if one can choose a single logic threshold and still guarantee that the predicted delay is

never negative, it is useful to consult the voltage transfer curve for an-inverter:

l·lvtdl

fvtdl/sqrt(R)

/

/
/

/

,,.
/

/
/

/

- 46 -

~ @ choose threshold here

l

II

III

IV

pulldown=off

pulldown =sat

pulldown =sat

pulldown =linear

Figure 3.10. Voltage transfer curve for inverter

pullup =linear

pullup =linear

pullup=sat

pullup=sat

The transfer curve shows the static behavior of the inverter; for any given input voltage, it tells what

the output voltage must be for the pullup and pulldown currents to balance. If the input changes

rapidly enough, the output voltage may lag behind. If the input is going from low to high, then the

transfer curve shows the minimum output voltage for a given input voltage; for a high-to-low input

transition, the transfer curve shows the maximum output voltage for a given input voltage.

Since it is desirable for the input and output thresholds to be the same, the input/output

threshold voltage Vthresh is chosen to be the point on the transfer curve where v;n = v0u1• t This means

that during a low-to-high input transition, if Vin < Vthresh, then 'lout > Vthresh, no matter how fast or

slow the transition. In other words, the propagation delay is never negative. A similar argument

applies for the other transition. To estimate Vthresh, first notice that at the region II- region III

boundary,

and Vout = 1 - I VttJ I (3.13)

If R = 4, then Vin = .44 and Vour = .4, and so Vrhresh is in region II (just barely). In this region the

pulldown is in saturation and the pullup is in the Jinear region:

ICpd 2 (l - Vout)2
-

2
-(v;n - Vie) = Kpu(lvrdl(l-vout) -

2
) (3.14)

tThe same choice of threshold has been made in several other simulators [Koppcl78. Nahm80].

---------- ------ --------

- 47 -

Setting v;n = Vout = Vthresh, and solving for V1hresh yields Vrhresh = .439 - close enough to the II - III

boundary that the distinction is not important.

3.4.2. Low-to·high output transition time, tplb'

To calculate fpfh, an approximation for itoad is needed. i1oad is just the difference between the

pullup current Cipu) and the pulldown current (ipd). so one strategy is to approximate the current

through each component individually. Recall that v1hresh is near the region II-region III boundary of

the invener's voltage transfer curve, and notice that the part of the transition involved in the

prediction (v0u1 rising from 0 to Vthresh) takes place almost entirely with the invener operating in

regions III and IV. This means that the pullup is in saturation, i.e.,

. "pu I 12 .
lpu = -2- Vfd = lmax (3.15)

Choosing a specific approximation for ipd is not as straightforward. However, a good starting point is

an approximation of the form shown in the following figure.

iload

.,

lCI 1off 1a 1otT

(a) approximation for ~d (b) resulting approximation for iload

Figure 3.11. Approximation of ipdfor tplh calculaJion

lo.ff is the time at which v;n = v1e. At this point in the development, there is not much one can say

about 1 a• the time at which the pulldown current first starts to decrease. Certainly ta = lo.ff is an

upper bound (resulting in a step function for ipd). Similarly, 1 a = 0 is a lower bound since that is the

time when the input voltage first changes. The choice of a specific value for 1 a will be discussed later.

With this approximation. the output transition time, lh, is given by

f,
t,.

C1oad(Vthresh) =
0

i1oad(l) dt (3.16)

where

. 48.

0

i/oad(l) = imax(I - la)
loff - I a

la < / < loff

lojf < / imax

Solving equation 3.16 for lh yields

I
1

RpuC/oad + l(loff + la)

= [2RpuCJoad(loJJ-la)fi +la lh < loff

Vthresh
where Rpu - --. Recalling that lpJh = lh - t;nput.

imax

lp/h I
1

Rpu Ctoad + l(loff + la) - l;nput

= [2RpuCtoad(loff-1a)]i +la - l;nput

(3.17) .

(3.18)

lpfh ~ loff - linput

(3.19)

lpih < loff - l;nput

The following figure plots lpth as a function of linput. Note that there is a relationship among the

values of t;nput, loff. and ta· For this plot, a linear relationship is assumed for the values. Their exact

relationship is detennined by the shape of the input waveform, a topic pursued below.

-- lutput

Figure 3.12. 'plh as a function of 'input

Several interesting observations can be made. When the input is a voltage step, loJJ, ta· and t;11put are

all zero, so lpfh:step = RpuC/O<Jd, le., a simple RC time constant - precisely the prediction made by

the RSIM model.

- 49 -

To sec what happens when· the input is not a step, notice that

(3.20)

since

(3.21)

when tpfh > lo.ff - t;nput· (This can be verified by comparing the derivatives of the two sides of the

inequality or by simply extending the linear portion of the lpfh curves - those portions above the

dotted line - in the plot above.) Equation 3.20 looks like the response for a step input delayed by an

amount that depends solely on parameters of the input wavefonn.

Figure 3.12 provides some insight into the choice of an appropriate value for t 11 • From the plot,

one can see that lp/h eventually goes to zero for some choices of t 11, but increases indefinitely for other

choices. By determining whether lp/h goes to zero in an actual circuit, it is possible to narrow the

range of choices for t 11 • If the input changes slowly enough, one expects the output voltage to follow

the voltage transfer curve very closely. (This is essentially the definition of the voltage transfer curve.)

Thus, when v;n = VthrtSh. it follows that Vout = Vrhresh since Vthresh is the balance point of the inverter.

This implies lpfh = 0 for sufficiently slow input transitions.

Examining the bottom term of equation 3.19, one can see that lp/h is zero for slow input

transitions only if la < linput·t In other words, if la > l;npur. the predicted propagation delay can

never be zero; the prediction will be longer than the true propagation delay. Thus, it is possible to

rewrite equation 3.20 using la = l;nput and still preserve the inequality.

(3.22)

This equation can be simplified still further with some assumptions about the input waveform .

•

- 50 -

1

~nput

Figure 3.13. Assumed input waveform for low-to-high output transition

If the input is a falling voltage ramp which starts at t = 0 and reaches zero at t = 6, then

/input = (1 - Vthresh)6 and lo.ff = (1 - Vte)6. Substitution into equation 3.22 yields

(3.23)

where the numerical estimate is computed for a typical 511 nMOS process. Thus RSIM potentially

underestimates lplh for a logic gate with a slow input transition (a large 6). As 6 decreases (a faster

input transition), the accuracy of RSIM's predictions increases. Note that Rpu is exactly the resistance

measured by the experiment proposed in figure 2.16(a).

3.4.3. High-to·low output transition time, tpht·

In the previous seetion, the equation for lp/h was developed by overestimating the current

through the pulldown, leading to an upper bound for the low-to-high propagation delay. The same

technique can be used to estimate lphl, the high-to-low transition time. In this case, however, one

wants to underestimate the pulldown current (and overestimate the pullup current) to find an upper

bound for lphl. t

For the portion of the high-to· low output transition which is of interest (Vout falling from 1 to

Vthresh), the pulJup is in its linear region. As· before, ipu can be approximated by the pullup's

saturation current; an overestimate, but one consistent with the goals of this section. Also as before,

estimating the pulldown current is difficult Consider the following diagram of various load lines for

tMost MOS circuits use multiple-phase clocking, with simple logic circuits between latches controlled by different
phase clocks. lbis means that circuit pcrfonnance is dctennined by the maximum propagation delay through the
simple logic: this is the only quantity estimated by RSIM. Other technologies (TfL, F.CL) support single-clock, syn­
chronous designs in which minimum propagation delays can be very important for correct circuit operation. This is
rare in MOS circuits, and such designs are not supported by RSIM.

- 51 -

the pulldown. The trajectory of a load line shows ipd as a function of time:

~d
fa.~t transition

/

imax

slow transition

vthresh 1

Figure 3.14. Load lines for the pulldownfor various input transitions

When the input transition is fast in comparison to the output transition, the pulldown turns on to its

maximum current capacity (the upper load line in figure 3.14). As Vout drops, the current in the

pulldown also decreases, and the trajectory follows the maximum current curve until it reaches Vthresh.

When the input transition is slow, the output voltage falls fast enough to keep the pulldown and

pullup currents balanced (the bottom load line in figure 3.14), so the trajectory for iptJ follows the ipu

curve.

In the proposed approximation, ipd rises linearly to a maximum current equal to the actual

current through the pulldown when Vin = l and Vout = Vthresh. This certainly underestimates the

actual pulldown current for a fast transition, and is roughly equal to the pulldown current for a slow

transition, except for the last part of the transition. Fortunately, in this portion of the transition (near

the threshold), a small change in the input voltage causes a large change in the output voltage, so only

a small amount of time is actually spent in the overestimated part of the transition. This

approximation leads to the following estimate for i1oo11:

> t

Figure 3.15. Estimate of iloadfor tphl calculation

- 52 -

where t1 is the time at which Vin = 1 and imax is the maximum pulldown current minus the pullup

current.

. Vthresh ICpu 2
lmax = «pd(l - Vie - -

2
-)vihresh - -

2
-1 Vtd I (3.24)

As before, ta will be chosen to ensure that the estimate is an upper bound to the actual propagation

delay.

The derivation of a fonnula for lp/h and the choice of ta is very similar to that of the previous

section, so only the conclusion is presented here:

(3.25)

1 - Vthresh where Rpd = ---­
imax

If the input is a rising voltage ramp that starts at t = 0 and reaches 1 at

t = 8, then

(3.26)

As before, RSIM potentially underestimates lphl for a logic gate with a slow input transition (a large 8).

As 8 decreases (a faster input transition), the accuracy of RSIM's predictions increases. Note that the

experiment proposed in figure 2.16(d) does not measure Rpd. Instead, the experiment measures the

average resistance associated with the fast input transition shown in figure 3.14, omitting the

contribution of the pullup. This resistance is less than Rpd, although is it not clear by how much. This

net result is a tendency to underestimate lphl by the original RSIM model, calibrated as in Appendix 2.

3.4.4. Why analyzing inverters is sufficient

The results of sections 3.4.2 and 3.4.3 were developed for the nMOS inverter. This section

extends the results to NANO and NOR gates as well. Equations are developed for the amount of

current flowing through the NOR and NANO pulldown configurations and then the results are

compared with the equations for a simple inverter.

- 53 -

(a) NOR pulldown configuration (b) NANO pulldown configuration

Figure 3.16. Cu"ents through NOR and NAND transistor configurations

The propagation delay of a NOR gate with a single active pulldown is exactly that of an inverter. If

both pulldowns are active simultaneously, inor = ii + i2, since the current through each pulldown can

be computed independently. Thus, when both pulldowns are on. and their gates are at the same

voltage (i.e., logic high), "the total current through the pulldowns is

Vout
(1e1 + ic2)(Vin - Vte - -

2
-)vour (linear)

inor = ICI + IC2 2

2
(Vin - Vre)

(3.27)
(saturated)

which is equivalent to the current through a single pulldown sized so that

ICsing/e pulldown = ICI + IC2 (3.28)

As one might expect, this is the formula for combining two conductances in parallel.

The analysis of a NANO gate is more complicated because the currents through the two

pulldowns are not independent The currents through the pulldowns are given by

ic1(v;n - Vm - Vre -
Vout """ Vm)()

2 Vout - Vm (linear)

i1 =
IC}

..,. Vm - V1e)2 (saturated) T(v;n

(3.29)

ii
Vm

(linear) = ici(Vin - Vte - T)vm (3.30)

- 54 -

where vm is the voltage of the node that is common to the two pultdowns. Two equations are needed

for the top putldown. because the pulldown may be in either its saturated or linear region, depending .

on the relative values of v;n and v0u1 • Only one equation is needed for the bottom pulldown, because

it is assumed that Vm is never large enough for the bottom pulldown to become saturated. In the

steady state i1 must equal ii. This gives a set of equations to solve for vm; substituting the solution

into equation 3.29 yields the net current through the putldown. The result is

"1"2 Vout
(V/n - Vre - -

2
-)vout

"l + «2
(linear)

inand = «1«2 u
2(1Cl + «2) (Vjn - Vte T (saturated)

This is the same amount of current as that for a single pulldown sized such that

"IIC2
ICsingle pulldown = --­

"I + "2

Again, as one might expect, this is the formula for combining two conductances in series.

(3.31)

(3.32)

The conclusion to be drawn from equations 3.28 and 3.32 is that the current flowing through a

parallel or a series configuration of pulldowns can be modeled as the current flowing through a single

pulldown of the appropriate size. This means that the formulas for the propagation delay through an

inverter are directly applicable to more complex logic gates.

3.5. Propagation delay: source-followers and pass transistors

The analysis which follows is not very rigorous; its purpose is to show that the RSIM models for

logic gates overestimate the propagation delay through a circuit containing pass transistors and

source-followers. Although better estimates would be desirable, the existing models are sufficient

given the relatively constrained use of these components in actual circuits.

A source-follower (so called because the voltage of the source node "follows" the voltage of the

gate node) is an n-channel device with its drain connected to VDD.

-------~-------- ~------

- 55 -

mput~l
~output

ton t1

(a) source-follower circuit (b) approximation for iload

Figure 3.17. Source-follower circuit configuration

In the circuit shown in figure 3.l 7(a), the output voltage of the source-follower cannot rise higher than

a threshold drop below the voltage of its input Thus, the maximum voltage for the output of a

source-follower is 1 - v1e: this is why a depletion pullup (which can drive its output to VDD) is

preferred in an ordinary logic gate.

Since a source-follower can only pull a node up, only the propagation delay associated with the

low-to-high output transition needs to be analyzed. (A rising output transition corresponds to a rising

input transition; unlike most logic circuits, a source-follower does not invert the sense of its input).

During a very slow input transition, the output voltage tracks the input voltage, and the propagation

delay is equal to the time needed for the input to rise from Vthresh to Vthresh + v1e. For a ramp input,

this implies lp/h = (v1e)8 = (0.14)8 where 8 is the time needed for the input to rise from 0 to VDD.

For a fast input transition - one where the input reaches 1 before the output reaches Vfhresh -

the current through the source-follower can be approximated as shown in figure 3.17(b). Ion is the

time at which Vin = v1e. and 11 is the time at which Vin = 1. imax is estimated by the average current

flowing through the source-follower during the transition:

· It.if Vthresh
lmax = -(1 - Vte - --)Vthresh

2 2
(3.33)

One can calculate lp/h using an approach similar to that of section 3.4.2; the result is

(3.34)

R Vthresh where ef = -. -. If the input is assumed to be a voltage ramp with transit time 8, the final
lmax

equation for lp/h is

I RsJC,oad + (0.35)8
lp/h = (0.14)8

- 56 -

(smal/8)
(/arge8) (3.35)

A source-follower is usua11y used to drive a large output load. so when 8 is smaJI, the RC term

dominates. 'This suggests that the two pieces of the equation can be reconciled as

lp/h = Rs1C1oad + (0.14)8 (3.36)

This equation is very similar to 3.23, which describes lp/h for an ordinary logic gate, so no special

handling is needed for a source-follower.

In the analysis of section 3.4 and the first part of this section, each examined device had

essentially two terminals, since one terminal of each device connected to VDD or GND. Moreover,

input signals were applied to the gate node of the device. The analysis now turns to circuits that

contain three-terminal components. le., pass transistors. A pass transistor is any transistor not

configured as a pulldo.wn, pullup, or source-follower; some examples of circuits containing pass

transistors are presented in section 3.2.

There are two basic configurations for a pass transistor: one with the gate node as input, and the

source and drain as outputs: the other with the source/drain as input, and the drain/source as output

(assuming that the gate is at logic hight). As the following table shows, when the gate of a pass

transistor is the input, the pass transistor behaves like one of the components analyzed earlier.

input source or
pass device acts as analyzed in (gate) drain

falls rises pulldown turning off section 3.4.2
falls falls enhancement pullup turning off
rises falls pulldown turning on section 3.4.3
rises rises source-follower beginning of this section

The second pass transistor configuration presents a new analysis problem. Assume that the drain

connection is the input (which remains constant) and that the source node undergoes a transition. If

the drain undergoes a step transition from high to low at time 0, and the source follows, [Horowitz83]

suggests the best estimate for the voltage of the source is

I
Vsource(l) = 1 - tanh(R C)

pass load

t Although the analysis focuses on n-channcl pass transistors, it can be extended to p-channcl pass transistors in a
straightforward manner.

------- ----------~- -

(3.37)

- 57 -

This equation can rearranged to give the propagation delay:

(3.38)

Similarly, Horowitz suggests the best estimate for the voltage at the source. given a rising Step at the

drain, is

I
Vsource(l) = 1 - ------

1 +I
R~Cioot1

(3.39)

which gives

R Vthrtsh
lpfh = pass C1oot1-

1
--- = (0.79)R~ C1oot1

- Vthresh
(3.40)

In both cases, the RC time constant of the RSIM model overestimates the propagation delay of a step

input For a slow input transition, the source voltage tracks the drain voltage, resulting in essentially

zero propagation delay. (In this respect. the delay through a pass transistor is similar to the delay

through a logic gate.) Although no direct evidence is provided here, the circumstantial evidence

indicates that the predictions for propagation delay through a logic gate are upper bounds for the

propagation delay through a pass transistor, regardless of the speed of the input transition.

Pass transistors are often used in series within a switching-logic implementation of multiplexors,

etc.

1 1 1 1
_L A _L B _L c _L D

input R2 R3

JCl JC2 . C3

J JC4
Figure 3.18. Pass transistors connected in series

Horowitz extends his estimates for the voltage of a particular node e to a chain of pass transistors by

replacing the RC tenns in equations 3.38 and 3,40 with

(3.41)

where Rke is the resistance of the path common to node e and node k. Thus, his estimate for the

----- - --------~ ---------------

- 58 -

delay associated with a falling transition on node 0 of figure 3.18 is

If all the resistances are equal, and all the capacitances are equal, lphl = 6.3RC. The RSIM estimate

for the same transition is

(3.43)

which overestimates the delay by a considerable margin. For a long chain of pass transistors, the RSIM

estimate is very pessimistic; fortunately, performance constraints limit designers to chains of length

four or less. Nevertheless, performance prediction for a circuit containing pass transistors is clearly an

area where RSIM can be improved. t

3.6. Implications for the RSIM model

The analysis of the propagation delay of logic gates indicated that an RC time constant is a very

good estimate for the delay of a gate when the input waveform is a voltage step. The analysis

concludes that a simple RC time constant underestimates the actual propagation delay if the input

waveform is assumed to be a voltage ramp with a rise/fall time of B. More accurate estimates for the

propagation delays are

where

tpJh S Rpu Clood + Atn :fall

lphl < Rpt1C1ood + Am:M

llin :fall = ~ (Vthresh - Vte)B ::: (0.15)6

ll;n :rise = ~ (1 - Vthresh)B ::: (0.28)6

(3.44)

(3.45)

are offsets that depend only on parameters of the input waveform. Section 3.5 shows that these

equations are satisfactory upper bounds on the propagation delay through other (non-gate) circuit

configurations.

tit is straightforward modification of RSIM to make it use equations 3.38 and 3.40 instead of the lumped RC formu­
la. However. these equations only apply to circuitc; containing a single driver: until the theory is extended to include
multiple-driver configurations, it seems safest to use the conservative lumped RC approximation.

- 59 -

The computation of the propagation delay would be easier if it involved only the 'T of the output

node. A rearrangement of the time accounting accomplishes this:

(1) Report the time of the output transition as happening at 'T time units after the
input transition.

(2) Schedule the event associated with the output transition for 'T + A time units
after the input transition where A = (0.28)(total rise time) for rising transitions,
and A = (0.l5)(total fall time) for falling transitions.

In other words. the effects of the input rise/fall time are factored in when the input transition is

scheduled, so the A terms in equation 3.44 can be omitted when computing subsequent ·r's. This

rearrangement is illustrated in the following figure.

IN IN

~RC+ Ain !E- ~Ami RC !E-

our L our L
(a) according to equation 3.44 (b) proposed rearrangement

Figure 3.19. Rearrangement of time accounting for transitions

The total rise and fall times of a transition are related to the RC time constant of the transition. When

the input is modeled as a ramp, the total rise/fall time is (2.3)'T since " is measured using VtJuwh = 0.44.

As a result, the transitions of a given node can be handled in the following way:

(1) Compute the RC time constant ('r) for the node.

(2) Report the time of the transition as 'T time units in the future.

(3) Schedule the associated event at
(l.6)'T time units in the future for a rising transition, or
(l.3)'T time units in the future for a falling transition.

Note that 1.6 = 1 + (2.3)(0.28) and 1.3 = 1 + (2.3)(0.15). This scenario assumes that all

consequences of a rising transition involve a falling transition, and vice versa. This is not always the

case for a source-follower or a pass transistor, but the error involved (the difference between 1.6 and

1.3) is not large enough to be significant. The old scheme (accounting for the input transition time

during each delay computation) can be used if desired.

Now that the model incorporates some information about the input waveform, it is interesting to

review the examples presented in section 2.4. First the PLA calculations:

- 60 -

RSIM SPICE RSIM
node transition .,. predicts predicts schedules

transition transition event

A .j, 0.3 0.3 0.8 0.4
B t 3.7 4.1 3.5 6.3

Case 1 c .j, 0.9 7.2 6.8 7.5
D t 9.1 16.6 15.5 22.1
E .j, 0.9 23.0 20.7 -
A t 1.6 1.6 0.6 2.6
B .j, 0.8 3.4 1.9 3.6

Case 2 c t 0.6 4.2 3.3 4.6
D .j, 1.3 S.9 6.4 6.3
E t 6.0 12.3 12.1 -

As one can see, RSIM's estimates are now better, and they overestimate transition times with reasonable

consistency. (One expects overestimates because of the inequality in equation 3.44). The estimate for

Case 1 is 11 % greater than the SPICE prediction; for Case 2, 2% greater. The story is similar for the

OM2 data path example:

RSIM SPICE RSIM
node transition .,. predicts predicts schedules

transition transition event

A .j, 2.4 2.4 2.6 3.1
B t 8.2 11.3 9.1 16.2
c t 2.7 18.9 19.6 23.2
D .j, 22.6 45.8 39.6 -

RSIM's prediction is 15% greater than that of SPICE. Note that the event for node B is scheduled using

the rule for a rising transition - formulated assuming that any consequent transitions will be falling -

even though node C is also undergoing a rising transition. This accounts for much of the overestimate

byRSIM.

In conclusion, this chapter shows justification for the linear transistor model, especially if all

waveforms can be modeled as steps. Of course, transitions are not· steps in actual circuit operation;

this fact motivated changes to the linear model, still allowing it to provide acceptable predictions of

circuit behavior.

- 61 -

CHAPI'ER FOUR

Simulation Using a Linear Network Model

This chapter focuses on various RSIM implementation issues. The first section presents a detailed

description of the simulation algorithm, with step-by-step accounts of the charge-sharing and final­

value computations. Several techniques for speeding up the computations are described in the second

section. The third section outlines some mechanisms available to the user for forcing the value and

timing predictions for given nodes. The chapter concludes with an evaluation of the ·strengths and

weaknesses of RSIM.

4.1. The RSIM simulation algorithm

RSIM uses the following simple recipe for simulating a circuit:

(i) Accept new input values from the user. Perform the new-value computation
(figure 4.2) for each new input value; this propagates the new value to nodes
connected to the input by the source/drain connection of a transistor switch (see
figure 2.14(a)). In addition, schedule the appropriate event so that any
transistors affected by the new input value wilt be processed.

(ii) Process events from the event list, stopping (1) when the event list is empty, (2)
when a node the user is tracing changes value, or (3) when the specified amount
of simulated time has elapsed.

(iii) Loop back to (i) to accept new inputs.

The main loop of the simulator (step (ii) above) is described in the following figure. The node

- 62 -

associated with each event is assigned its new value, and all stages affected by the new value are

located and processed. (An affected stage is one that contains a source/drain node - called a seed

node - of a transistor which has the event node as their gate.) The processing of a stage has two

steps: first a charge-sharing computation for the stage, then a calculation of the final value of each

node in the stage. Before each of the two steps. the COMPUTE flag of each seed node is set to indicate

that the stage containing the seed node needs processing. A stage is processed only if its seed node

has the COMPUTE flag set; as pan of the processing. COMPUTE flags for nodes in the current stage are

reset This mechanism ensures that a stage is processed only once, even if it contains more than one

seed node.

while event list not empty {

}

n : = node associated with first event on event list
remove first event from event list
set n's value to the value specified by the event

I* do charge-sharing computation for each affected stage [see section 4.1.l} *I
for each transistor with n as gate node, set COMPUTE flag for source
for each transistor t with n as gate node

if t has just turned on and COMPUTE still set for source node
do charge-sharing computation for source

I* do new-value computation for each affected stage [see figure 4.2] *I
for each transistor with n as gate node, set COMPUTE flag for source and drain
for each transistor with n as gate node {

}

if COMPUTE still set for source, do new-value computation for stage containing source
if COMPUTE still set for drain, do new-value computation for stage containing drain

Figure 4.1. Main loop of RSIM algorithm

Note that the charge-sharing computation deals only with the source stage of each transistor, but the

final-value computation deals with both the source and drain stages. This is because the charge­

sharing calculation only deals with transistors known to be on; therefore, the source and drain belong

to the same stage, and a stage computation involving the source automatically involves the drain.

The procedure for calculating the final value for each node in a stage is outlined in the following

figure.

- 63 -

initialize connection list to have starting node as only clement
set pointer to beginning of connection list
if starting node is an input, input_ found : = true, else input_ found : = false

I* find all nodes in cu"ent stage •I
while pointer not at end of connection list {

n : = node currently pointed at

}

for each "on" transistor with source connected to n {
if drain is an input, input_ found : = true
else if drain not on connection list, add drain to end of list

}
advance pointer to next list element

I* compute new.final value for each node in stage *I
if no inputs found. all done (charge-sharing has computed the correct value)
else for each node on connection list {

}

if node is an input, do nothing (its value is set by user)
compute final value for node [section 4.1.2)
reset VISITED flag (set by final-value computation) for each node on connection list
reset node's COMPUTE flag

Fi1:11re 4.2. Subroutine to compute new final value for every node in stage

The details of the charge-sharing and final-value computations are presented in the next two

subsections, followed by a description of event management in RSIM.

4.1.1. Otarge-sharing computation

When a transistor turns on, its source and drain nodes become part of the same stage. A5

explained in section 2.2, if the voltages of all the nodes in a stage are not already identical, they

become so through charge sharing. In order to calculate the charge-sharing value for each node, RSIM

computes three summary capacitances from the capacitances of each node in the stage:

C high total capacitance of nodes with current state of logic high. .

C1ow total capacitance of nodes with current state of logic low.

Cx total capacitance of nodes with current state ofX.

The summary capacitances are used to compute the charge-sharing value for the stage, as specified by

equations 2.3 and 2.4:

0 Chigh + Cx < Vfow
C1ow + Chigh + Cx

charge-sharing value = I chigh > Vhigh
Ctow + Chigh + Cx

(4.1)

x otherwise

- 64.

An event is scheduled for each node, specifying an immediate transition to the charge-sharing value.

(See section 4.1.3 to find out what happens to new events.)

'lbe charge-sharing computation is outlined in the following figure. 'The procedure performs a

tree walk of a stage starting with a node passed as an argument from the new-value procedure. Since

the nodes in the stage do not require processing in a particular order. the procedure is implemented

without recursion.

initialize list to have starting node as only element
set pointer to beginning of list
reset capacitance accumulators

/* visit all nodes in stage. compute summary capacitances *I
while pointer not at end of list {

}

n : = node currently pointed at
add capacitance of n to appropriate accumulator
for each "on" transistor t with source connected to n {

if drain is an input or static(t) > maxres. do nothing
else if drain not on list, add drain to end of list

}
advance pointer to next list element

I* make each node in stage have charge-sharing value*/
compute charge-sharing value using equation 4.1
for each node on list {

reset node's COMPUTE flag
schedule immediate transition to charge sharing value

}

Figure 4.3. Non~recursive routine for charge-sharing computation

If the resistance of a transistor is large enough, its source and drain nodes might not share charge - at

least not very quickly. The user can specify a maximum resistance parameter (maxres) that controls

the scope of the charge-sharing calculation; the traversal of nodes in a stage stops at transistors with a

resistance greater than maxres. The COMPUfE flag indicates to the main RSIM loop which stages have

been processed by the charge-sharing calculation: the main loop uses the flag to ensure that the

charge-sharing calculation is performed only once for each stage.

Equation 4.1 leads to incorrect results when the surrounding network contains X transistors

(transistors with gates of X). A portion of the network that can be reached only through X transistors

might not be connected to the original node at all, and so should not make an active contribution to

the node's charge-sharing value. An alternative (suggested by Dave Gross) is the use of capacitance

- 65 -

intervals to accumulate the contribution of X connections. In this scheme, the capacitance

accumulators have interval values, e.g., Chigh = [C1iigh·min. Chigh·max]. The minimum value is the

total capacitance of nodes guaranteed to be connected to the current node: the maximum value also

includes the capacitance of nodes only reachable by X transistors. A separate charge-sharing

computation occurs for each node in the stage, as outlined in the following figure.

if node is input, C high = Cfow = C x = [0,0]
else {

}

local_Chigh := loca1_C1ow := local_Cx := [O.O]
add node's capacitance to max and min of accumulator for node's value
set VISITED flag for current node
for each "on" transistor, t, with source connected to current node {

if drain does not have VISITED flag set {

}
}

recursively determine parameters for drain node
if value of gate node for t is not X {

}

local_ C high .min : = local_ Chtgh .min + Cmgh .min
local_Oow·min: = local_C/ow·min + Clow.min
local_ C x .min : = local_ C x .min + C x .min

local_ C high .max : = local_ C high .max + Chtgh .max
local_C/ow·max := local_C10w.max + Ctow·max
local_Cx.max := local_Cx.max + Cx.max

set C high = local_ C high, and so on

Figure 4.4. Subroutine to compute capacitance intervals

The results determine the maximum and minimum node voltage, which determine the charge-sharing

value for the node:

charge-sharing value =

0

1

x

Chigh·max + Cx.max
~~~-=--~~~~~--..,.~~ < ~ow 
Oow.min + Chigh·min + Cx.min 

. chigh·min > . Vhigh 
C1ow·max + Chtgh·max + Cx.max 

(4.2) 

otherwise 

Capacitances for nodes connected by X transistors contribute to the final value only in a negative 

sense. le., they may cause a node to go to X, but never contribute to a value of 0 or 1. Leaving the 

VISITED flag set as each new node is discovered ensures that each node is visited only once. After 

completing the charge-sharing computation for a node, its COMPUTE flag is reset; the VISITED flags for 



- 66 -

all nodes in the stage are also reset. in preparation for the next node's computation. 

One disadvantage of the interval approach is that a separate calculation is perfonned for each · 

node in the stage, whereas the original scheme required only one calculation per stage. In addition, 

the interval cakulation must be pcrfonned by a recursive tree walk to ensure the correct handling of X 

transistors. Fonunately, this computation can be merged with the tree walk described in the following 

section, so the incremental cost is fairly small. 

4.1.2. Final·value computation 

The final, driven value of a node is detennined by the resistance of paths from the node to 

various inputs. As we saw in chapter 2, a convenient way to characterize these paths is to calculate the 

Thevenin equivalent for the portion of the network that can be reached from the node of interest 

F.quation 2.6 relates the final value of a node to V111ev, the Thevenin equivalent voltage. The time 

constant for a transition in the value of a node is also determined by the surrounding network; the 

necessary parameters can be computed during the Thevenin calculation. 

For computational convenience, RSIM actually computes RH and RL, the resistances of a resistor 

divider that represents the effect of the surrounding network. 

Figure 4.5. characteristic resisror divider for a node 

RH and RL might be resistance intervals (RH = [RH1, RHh] and RL = [RL1. RLhD if there are X 

values in the surrounding network. The Thevenin equivalent voltage is easily calculated from the 

characteristic divider: 

(4.3) 

For example, the lowest possible voltage is calculated using the least resistance to GND (specified by 

RL1) and the greatest resistance to VDD (specified by RHh). Couching the computation in tenns of 

-------------------------------



. 67. 

the characteristic resistance is ·advantageous for several reasons. Resistances to VDD and GND 

represent, in a natural way, the connections made by MOS logic. as shown in chapter 3. With the aid 

of some simple rules, it is easy to incrementally analyze any MOS network in terms of its component 

resistances. Because resistances are directly related to the implementation, they can represent certain 

circuit configurations - e.g., shon circuits (RH = RL = 0) - that cannot be simply characterized 

using the Thevenin equivalent The remainder of the section describes a tree walk algorithm to 

compute the parameters needed for determining a node's value and for scheduling the appropriate 

transition. 

The computation of RH and R L proceeds by tracing paths to the inputs that are reachable from 

the node of interest, and then calculating the resistance of each path, starting at the input and working 

back toward the original node. Two rules are helpful for calculating path resistance. The first rule 

specifies the apparent path resistances when a divider exists on the other side of a resistor: 

(a) initial network (b) approximation 

Figure 4.6. Reduction rule for resistor divider with series resistor 

The parameters for the apparent resistances (A and Bin figure 4.6(b)) cannot be determined exactly, 

an approximation is therefore necessary. Appendix 3 explains why this is so, and derives the following 

formulas for the approximation: 

(4.4) 

The second rule is much simpler: it indicates how to merge the resistances of two separate paths to 

obtain the net resistance for both paths: 



- 68 -

[A II P, B II Q) 

[C II R. D II SJ 

(a) dividers for two parallel paths (b) resulting divider 

Figure 4.7. Reduction rule for combining two parallel paths 

To compute the Thevenin equivalent for a particular node. one starts by locating all conducting 

transistors connected to that node and then recursively analyzing the network on the other side of 

each of the transistors. Each node is marked as its analysis begins: recursive calls ignore portions of 

the network involving marked nodes. This keeps the analysis expanding outward, eventually 

terminating at a dead-end (no paths leading to unmarked nodes) or an input These particular circuits 

are easy to analyze, as shown in the following figure. 

RH= oo 

RL = oo RL = oo 

(a) low input (GND) (b) high input (VDD) (c) dead-end 

Figure 4.8. Characteristic dividers for input nodes and dead-ends 

The resistance of paths leading from a particular node are combined using the two reduction rules 

above. Using the first rule, the results of a recursive call (shown as P and Q in figure 4.6) are 

combined with the resistance of the conducting transistor leading to that piece of the network (shown 

as R}, to yield the net resistance of the path. This resistance is combined with the resistances from 

other recursive calls using the second reduction rule. When all paths have been accounted for, the 

analysis for the node is complete. The resulting divider is the desired answer, or, is used as part of the 

analysis of some other node if the analysis was performed because of a recursive call. The process is 

diagramed in the following figure. 



- 69 -

(a) initial network (b) after recursive analysis of subnets 

(c) after applying first reduction rule (d) after applying second reduction rule 

Figure 4.9. Network analysis by repeated rule application 

The complete analysis procedure is outlined in the next figure. The results are stored in eight 

global variables: 

RH resistance interval for net resistance of all paths to VDD. Path resistance 
computed using static resistance of each transistor. 

RL resistance interval for net resistance of all paths to GND. Path resistance 
computed using static resistance of each transistor. 

R vdd net resistance to VDD, computed using the· dynamic-high resistance of each 
transistor. Simple series/parallel calculation; paths containing X transistors 
are ignored. 

Rgnd net resistance to GND, computed using the dynamic-low resistance of each 
transistor. Simple series/parallel cakulation; paths containing X transistors 
are ignored. 

Rx net resistance to all inputs, computed using the dynamic-high resistance to 
high inputs, and dynamic-low resistance to low inputs. Simple series/parallel 
calculation; includes paths containing X transistors. 

Chigh total capacitance of nodes with current state of logic high. 

Ctow total capacitance of nodes with current st.ate of logic low. 

C x total capacitance of nodes with current state of X. 

If the interval charge-sharing calculation is merged with this calculation, the upper limit of the 

capacitance intervals in the charge-sharing calculation can be used in place of the three capacitance 

accumulators just defined. The procedure also uses four stack·allocated local variables to accumulate 

-------- ------- ----------------------------



- 70 -

the first four quantities listed above, during the calculation for each node. 

if node is logic low input { 
return with RH = Rvdd = 00 and RL = Rgnd = Rx = 0 

} else if node is logic high input { 
return with RH = Rvdd = Rx = 0 and RL = Rgnd = 00 

} else { 
1oca1_Rvdd : = local_Rgnd : = local_ Rx : = local_RH : = local_RL : = 00 
add node capacitance to appropriate accumulator 
set VISITED flag for current node 
for each "on" transistor, t, with source connected to current node { 

if drain does not have VISITED flag set { 
recursively determine parameters for drain node 
combine static(t) with RH and RL using first reduction rule 
combine result with local_RH and local_RL using second reduction rule 
if value of gate node for t ! = X { 

local_Rvdd : = local_Rvdd II (dynhigh(t) + Rvdd) 

} 
1oca1_Rgnd : = 1ocal_Rgnd II (dynlow(t} + Rgnd) 

local_Rx : = local_Rx II (min(dynhigh(t),dynlow(t)) + Rx) 
} 

} 
set Rvdd = local_Rvdd. RH = local_RH, and so on 

} 

Figure 4.10. Subroutine to compute parameters of resistor divider 

Marking each node as it is visited (by setting its VISITED flag) avoids cycles and keeps the tree walk 

expanding outward from the starting node. If the network does contain cycles, the subroutine only 

approximates the true resistance to VDD and GND. For example, consider the following logic gate 

where the output (the pulled-up node) is the node of interest: 

Rl Rl Rl 

R2 RS R2 RS 

R3 R6 R3 R3 R6 

(a) circuit containing cycles (b) circuit as analyzed (c) circuit as analyzed if marks removed 

Figure 4.11. Analysis of circuit containing cycles 

Since the marks are not removed when the analysis of a path is completed, RSIM treats the cycle as if 

the circuit were configured as shown in the circuit in figure 4.ll(b). This approximation results in an 

overestimate of the actual resistances. If a node's mark were removed as the procedure exited. all 

------- ---- ~--- - ---------------



- 71 -

paths through the network would be explored (as shown in figure 4.ll(c)); in this case, the resistance 

would be underestimated, leading to optimistic performance predictions. 

Cycles arc relatively rare in nMOS designs: when they occur, the extra path is often redundant, 

le., the circuit is designed to work correctly if any path in the cycJe became the sole connection. This 

means the approximation used by RSIM is usually not out of line with the designer's intentions. This 

statement holds for cMOS as well, with one notable exception - the cMOS pass gate: 

Abar 
J_ 

I 
A 

Figure~.12. A cMOS pass gate 

In this circuit configuration, one device is sized to carry most of the load, and the other exists simply to 

ensure no threshold drop across the gate. In analyzing such a circuit, RSIM arbitrarily chooses the 

transistor that makes the connection; the other transistor's contribution is ignored. This is satisfactory 

if the transistor with the smaller resistance is chosen, but such is not always the case. To correct the 

problem, the transistor list for each node can be arranged in order of increasing resistance; this ensures 

paths of least resistance are examined and marked first Note that this solution only works when the 

paths in a cycle have a length of one transistor (as in the pass gate above). If the paths are longer, 

there is no guarantee that the path of least total resistance will happeti to start with the transistor that 

has the least resistance. 

After the various parameters are calculated, the final value of a node can be calculated using 

equations 2.6 and 4.1: 

fi11al ~/ue = / 1 vh < V/ow or (oldvalue=Oand RH1=00) 

Vi > Vhigh or (old value= 1 and RL1 = 00) 

otherwise 

(4.5) 

The extra clause for "O" and "1" values prevents a node from being unnecessarily forced to X when it 

has no connection to inputs of the opposite logic state. The appropriate event is scheduled Reff Ce.ff 

seconds in the future, where 

------- --------~---------------



- 72 -

I Rgnd final value = 0 

Reff = Rvdd final value = 1 

Rx final value = X 

(4.6) 

Chigh + Cx final value = 0 

Ce.ff = C1ow + Cx final value = 1 (4.7) 

C1ow + Chigh final value = X 

The disposition of this event depends on the nature of any pending events and the node's current 

value: see section 4.1.3 for the details of event management 

The user has some control over the final-value computation. The time constant for event 

scheduling can be forced to 1, implementing a unit-delay simulation. This is useful when a node value 

is to be calculated using transistor resistances, but transition timing is not important. Another option is 

flagging those events corresponding to transitions to X, where the X value is specifically caused by a 

ratio error (rather than other X's in the network). Such transitions are characterized by RHh < oo 

and RLh < oo: if an X exists in the surrounding network, one or both of these parameters is infinite. 

When a flagged event is processed. the transition is reported to the user as a ratio error. Because the 

error report is delayed until the flagged event is processed, short-lived ratio errors (those caused by 

small differences in propagation delays) are ignored, and the error reports reflect only significant ratio 

errors. Of course, in some designs, even long-lived ratio errors might not affect correct circuit 

operation, so the reporting is optional. 

When RH1 = RL1 = oo, the node is not connected to any inputs, and the charge-sharing 

computation described in the previous section correctly computes the node's final value. Ordinarily, 

the final-value calculation does not schedule any events in this case, but the user can optionally 

request the scheduling of a charge-decay event A charge-decay event sets the node value to X after a 

specified interval whkh the user can set At first glance, it might seem odd to schedule all decay 

events using the same interval; a more suitable estimate might be based on factors such as the node's 

capacitance, the number of transistors connected to the node, and so on. However, precise predictions 

are not necessarily the most useful here. The actual decay time for MOS circuits is in the millisecond 

range. Since it is unlikely that a simulation spans that long a period of simulated time, a precise 

accounting of the decay time never results in a decay! A more useful approach is based on the 

observation that a designer usually intends for all dynamic nodes to be refreshed every few clock 

cycles. When the decay time is set to an interval slightly larger than the intended refresh rate, the 



- 73 -

unrefreshed nodes decay quickly, and the user receives a suitable error report. Thus, even a short 

simulation run catches a decay problem. This type of debugging experiment can be much more 

effective than a precise estimate in pinpointing a problem. 

4.1.3. Event Management 

Up to two events can be pending for a node: 

(1) a charge-sharing (CS) event CS events are always immediate events, i.e., they 
are scheduled for the current simulated time. 

(2) a final-value (FV) event, scheduled for sometime in the future. 

Thus, up to two transitions are possible for a given node. F.ach event corresponds to a real transition. 

i.e., the new value of a CS event always differs from the current value of the node, and the new value 

of a FV event differs from that of the CS event (or the current node value if there is no pending CS 

event). Since only two transitions can be pending at any moment, newly calculated events must be 

merged with the pending events. Section 2.3 hinted at the issues involved; in general, RSIM makes its 

choices based on the principle that the most recently calculated event best reflects the current network 

configuration. Since no information is available that explains why any pending events were created, 

there is little (if any) reason to save a previously-calculated event in preference to the newer one. 

The following figure describes the simple merging rules used by RSIM: 

if merging new CS event { 

} 

abort pending CS and FV events 
if new charge-sharing value is different from current node value 

schedule new CS event 

if merging new FV event { 

} 

if new value differs from CS value (or, if no CS event pending, current node value) 
schedule new FV event 

Figure 4.13. Merging a new event with pending events 

A new CS event aborts a pending FV event because a new final-value computation always occurs after 

the charge-sharing computations are complete. Although this approach is simple, it occasionally leads 

to pessimistic predictions. For example, if one input of a two-input NOR gate turns on substantially 

before the other, the propagation delay is actually determined by the time of the first input's 

transition. With the merging scheme outlined above, the two events scheduled at the time the second 

input turns on cause other events to be aborted - those scheduled because of the first input's 



- 74 -

transition. This occurs even if one of the aborted events is scheduled for an earlier time than the 

second event. In other words, with the merging scheme above, the propagation delay of a NOR gate 

might be incorrectly measured from the later input There is no simple fix to the merging rules above 

that solves this problem. The correct solution requires knowledge of both the new CS event and the 

new FV event, so that pending events can be saved if they are compatible with both newer events. If 

the charge-sharing and final-value calculations arc merged, as suggested at the end of section 4.1.1, it 

should be straightforward to implement the correct merging scheme. 

There are several alternatives for dealing with aborted events. The simplest approach is to 

handle the event as if it were never scheduled. le., do nothing. This is the approach RSTM adopt..4'. 

Another approach is motivated by the physical significance of an aborted event. Since the signal 

changes between the transition start time (the time when the charge-sharing or final-value computation 

was performed) and the transition end time (the scheduled time of the event), the action of aborting 

the event corresponds to a stop in mid-transition. Aborted transitions are termed glitches 

ffhompson74); these malformed signals sometimes have significant impact on the operation of a circuit 

and should be reported to the user. ·This report can be in the form of a forced transition to X, or just 

a simple error message. Interestingly, a user who has the option to receive glitch reports almost always 

disables that feature [Ulrich73]. The reason given is that the duration of an aborted transition is 

usually short enough so that the actual signal does not change significantly; hence no glitch actually 

occurs.t 

Scheduling an event entails inserting it into the event list, placed according to its scheduled time. 

An event list implemented as a simple list would impose a noticeable scheduling overhead. RSIM 

adopts several techniques for reducing this overhead. It quantizes simulated time, and rounds off each 

event time to the nearest time quanta; in the current implementation, the time quanta is 0.1 

nanosecond. The event list is implemented in two pieces: 

(1) an event a"ay. F.ach array element is a doubly-linked list of events for a 
particular time quanta. 

(2) an overflow list, a doubly-linked list of events, sorted by event time. 

This organization is similar to that found in many conventional gate-level simulators [Vaucher75, 

tSome researchers propose showing transitions between logic states as 0-X·l or l·X-0. where the initial transition to 
X happens immediately. Thus aborted events leave the node value at X until some sub$cquent event re-establishes a 
legitimate logic state. This suggestion doubles the number of events in a simulation: a cost which might outweigh the 
adYantages. 



- 75 -

Ulrich76]. The event lists are doubly-linked to allow quick removal of an aborted event from the list 

The data structures are diagramed in the following figure. 

event array 

:::~1 . t 
+N-2 
+N·l 

current time ~ 0 
+1 
+2 

.... 

... I" 

... 

>event~ ... 

__,,, ... event~ ... 

+J1--.--1J >event 

t 
offset. in quanta, from current time 

overflow list 
... --~)event~cvent~ ... 

Figure 4.14. The event list is implemented with an event array and overflow list 

The event array is managed as a circular buffer in which the N array elements hold events for the next 

N time quanta. An array index indicates which array element corresponds to the current simulated 

time. If a new event is scheduled for a time M quanta in the future, where M <N, the event is added 

to the end of the event list stored in array element (index + M) mod N; no sorting or searching is 

required. If M > N, the event is inserted into the overflow list according to its scheduled time. The 

array size is chosen so that most events are scheduled directly into the array. With a time quanta of 

0.1 nanoseconds. a 128- or 256-element array captures most events in modem MOS designs. Note that 

events are added to the end of an event list This ensures that events are processed in first-in, first-out 

order, le., in the order created. Thus, cause-and-effect relationships are preserved. 

To find the next event to process, the event array is searched starting at the current index, until 

an event is found. Each increment of the index corresponds to advancing simulated time by one time 

quanta. If the array is empty, simulated time is advanced to equal the scheduled time of the first 

event on the overflow list; this event becomes the next one to processed. When an event is located 

for processing, the overflow list is examined to find events whose scheduled times are less than N time 

quanta away from the new simulated time. Such events are moved from the overflow list to the 

appropriate list in the event array. This preserves the first-in, first-out event ordering mentioned 

above. 



- 76 -

4.2. Speeding up the simulation · 

No simulator is fast enough. Increased simulator performance is always in demand, either to 

achieve faster turnaround during the design process, or to allow more complete testing during 

verification. This section discusses several techniques for improving the performance of the algorithms 

presented in the previous section. 

It is not surprising to learn that, during event processing, most of the time is spent in the final­

value calculation. t To compute the final value for a given node, the final-value computation must visit 

all the nodes in the current stage. Thus, if there are n nodes in the stage, processing the entire stage 

takes O(n 2) time. Since the remainder of the processing is proportional to the size of the stage, the 

real bottleneck is the final-value computation. Performance can be improved by 

(1) introducing a cache for final-value computations, with the intent of eliminating 
the recalculation of parameters for subnetworks. 

(2) reducing the number of nodes in the stage. 

(3) reducing the cost of each calculation, for example, by substituting integer 
arithmetic for floating-point This alternative will not be discussed further, 
except to note that a 32-bit integer has over 9 orders of magnitude of dynamic 
range, sufficient for representing MOS resistances. 

Clearly, the first improvement is most significant when n is large. The third improvement is important 

when n is small and the dominant cost is the actual arithmetic. The second improvement works on 

making (3) more important than (1). The improvements are discussed in tum below. 

As it is currently formulated, the final-value procedure performs many redundant computations. 

Consider the circuit diagram for a 5-node stage shown in (a) below, and one of its subcircuits. shown 

in (b) below. 

tThe discussion in this section is limited to that ponion of the simulator which propagates new values through the 
network.. RSIM has an interpreted USP-like command language which the designer uses to prepare new input 
values and process the results of a simulation step. Depending on the sophistication of the simulation environment 
built by the ur.cr, a substantial ponion of the total time can be spent in the command language interpreter. Of 
course, there is room for improvement here too, but that i.'i outside the scope of this thesis. 



- 77 -

_j_ _j_ _j_ _j_ 

(a) 5-node stage 

RJ D R4 E 

~ 
J J 

(b) example subcircuit 

Figure 4.15. Stage colllaining 5 nodes and 4 transistors 

When one traces the computations perfonned by the final-value procedure (see figure 4.10), it 

becomes apparent that the parameters for a specific subcircuit are calculated several times. The 

computations for nodes A, B, and C all need the same infonnation about the subcircuit in figure 

4.15(b); there is no reason to compute the infonnation more than once. 

The amount of redundant computation can be reduced by caching the result from each call to 

the final-value procedure. t Before each call, the cache is searched to see if the subcircuit was analyzed 

previously; if so, the reSults are taken from the cache and not recomputed. If the cache has constant 

access time, the cost of the final-value analysis for a stage is reduced to O(n ), a significant saving 

when n is large. In RSIM, the cache does not need to accommodate arbitrary amounts of information; 

associating two cache entries with each transistor (one for the source, one for the drain) is sufficient 

The source cache retains the network parameters for the subnetwork connected to the drain node 

(including the transistor); and the drain cache is similar. When the analysis of a subnetwork is 

completed, the result is placed in the appropriate cache. 

source cache drain cache source cached filled 

(a) circuit showing caches (b) circuit after analysis of subnet #2 

Figure 4.16. Transistor cache scheme 

In the figure above, once. subnet # 2 has been analyzed and the result saved in the source cache, 

subsequent analyses involving the same transistor and subnet use the cached result The following 

tThis caching technique is known in the LISP community as memoization. 



- 78 • 

figure shows the cache status after calculation of the final value for node D of figure 4.15(a). 

A _L B _L C _L D _L E 

Figure 4.17. Cache status after final-value calculation for node D 

Subsequent analysis of node C, for example, requires only a single recursive call (rather than four as 

before). 

There are several reasons why the transistor cache might not be the ideal solution. The amount 

of infonnation in each cache entry - 8 parameters - is quite large compared to the transistor data 

base. This suggests that cache entries should be dynamically allocated when needed, and returned 

when the computation is complete. The combined costs of storage management and cache access 

might exceed the cost savings realized on stages of modest size. These objections can be addressed by 

associating cache entries with nodes instead, or using the cache only when the stage exceeds a 

specified size. 

However the cache is organized, its introduction has a substantial impact on the amount of 

computation required for the final-value analysis of a stage. Another improvement mentioned at the 

beginning of the section is reducing the number of nodes in a Stage. The key element of this is the 

notion of useless nodes, Le., nodes that do not connect to any transistor gates and hence whose values 

are irrelevant Such nodes commonly occur in a pulldown path containing more than one transistor, 

such as the node marked by an asterisk in figure 4.18(a). 

(a) nMOS logic gate (b) J)ulldown after removing useless node 

Figure 4.18. Removing useless nodes from a stage 

Section 3.4.4 mentions that a pulldown with more than one transistor is electrically equivalent to a 



. 79. 

single-transistor pulldown of the· appropriate size. This suggests that such a pulldown can be replaced 

by a circuit like the one shown in figure 4.18(b ). All the nodes in the pulldown except the output and 

GND are eliminated, and all the pulldown transistors are replaced by a single transistor. The gate value 

of the single transistor is the logical conjunction of the values of the gates of the original pulldown 

chain. In fact. RSIM uses a compact representation for the generalized MOS gate: 

A 

B 

null first pulldown 

static R2+R3 

dynlow R2 + R3 

c 
null 

second pulldown 
static R4 

dynlow R4 

D 

null 
third pulldown 

static R5 

dynlow RS 

null 

static Rl 

dynhigb Rl }-
Figure 4.19. Efficient inlemal representation of an nMOS logic gate 

All transistors and nodes that make up the gate are eliminated, and the resulting gate structure is 

associated with the output node. The output can still connect to other transistors that are not 

recognized as part of a logic gate; only those transistors that implement a MOS logic gate are 

compressed. The resistance parameters of a gate structure are computed very efficiently by RSIM -

many times more quickly than the analysis of the equivalent network. 

The compression of gate circuits into the compact internal representation also results in a 

considerable space saving. Somewhere between 40% and 80% of the transistors in most circuits are 

eliminated when the gate structures arc built This resulting simulation runs roughly twice as fast as 

the uncompressed network. This optimization is probably the single largest contributor to the ability 



- 80 -

of RSIM to deal with very large MOS circuits. 

4.3. Escape mechanisms 

Previous sections of this chapter introduced mechanisms that allow the user to adjust the 

operation of the simulator as a whole. There are occasions, however, when a large-scale adjustment is 

inappropriate, and only the predictions for a single node need correction. This section discusses -

several "escape" mechanisms provided by RSIM for adjusting the predictions for small groups of nodes 

and transistors. 

The modifications discussed here are ad hoc in nature; their motivation arises from purely 

practical considerations. The mechanisms are not intended to allow wholesale changes in the 

simulation computation, but are provided so the designer can correct particularly egregious or far· 

reaching errors in the simulation of specific circuits. Since the mechanisms treat the symptoms and not 

the disease, their effectiveness is limited to local improvements. 

The are four user-adjustable parameters for each node: 

vww the logic low threshold for the node (specified in normalized voltage units). 

VHIGH the logic high threshold for the node (specified in normalized voltage units). 

TPLH the low-to-high transition time for the node (specified in time quanta). 

TPHL the high-to-low transition time for the node (specified in time quanta). 

By adjusting the logic thresholds with vww and VHIGH, the user can prevent predictions of X values 

for circuits with non-standard pullup/pulldown ratios. This can be useful in a circuit where a node's 

voltage swing is reduced for performance or other reasons (for exampl~. in input buffers or bit-lines of 

dynamic memory circuits). 

The transition time parameters force the timing of all the node's transitions. These parameters 

allow adjustment of the timing of critical nodes to agree with predictions of circuit analysis programs. 

Oocks, for example, often are generated by special circuitry designed to drive the a capacitive load. 

Intricate timing chains involving bootstrapping, et.c. increase the speed of clock distribution circuitry to 

acceptable levels. Most of these circuit techniques are beyond RSIM's ability to predict accurately; 

incorrect predictions for critical signals can throw off the whole simulation. Using the transition time 

parameters, the designer can force the rise and fall times of critical signals to their proper values, 

improving the quality of the remainder of the simulation. 

It is obvious how transition time parameters affect the scheduling of events, but what about the 

-------- -----~--- -



- 81 -

timing of a node connected directly to a forced node by a source/drain connection? A workable 

scenario treats a node with forced timings as an input, setting its dynamic resistance . 

(RvdtJ, Rgnd. and Rx) and capacitance parameters to zero. (Note that the value calculation, which uses 

static resistances, is unaffected.) The transition time for a node connected to a forced node is the sum 

of the given transition time for the forced node and the RC time constant of the path from the forced 

node. 

1 

A _L B 

forced timings 

(a) original circuit with forced node 

0 

0 

rise time = tplh A + R3 C 

~ / fall time = tphlA + R3 C 

(b) equivalent network for node B 

Figure 4.20. How forced timings qffect neighboring nodes 

If a node is connected to more than one forced node, the smallest forced time constant is used. 

Neighbors of forced nodes always change value after the forced node - a reasonable prediction. 

A much more powerful mechanism for forcing the desired prediction is modification of the 

circuit itself, replacing troublesome configurations with others that simulate correctly. Piecemeal 

modification of a large circuit can quickly lead to a loss of confidence in the simulation results, 

especially if the replacements are performed in a haphaz.ard manner. On the other hand, the 

systematic identification and replacement of specific subcircuits., drawing from a library of approved 

replacements, offers the opportunity to improve simulation accuracy for common subcircuits. 

The pattern matching/replacement program MATCH, written by John Iler [Iler83), provides an 

efficient way to systematically modify pieces of large circuits. The circuit to be modified is identified 

by a pattern specifying a prototype subcircuit Each node in the prototype is given a type which 

controls what nodes it matches in the actual circuit: 

(1) matched only by a circuit node with exactly the same connections specified in the 
pattern. 

(2) matched by a circuit node with at least the connections specified in the pattern, 
but the circuit node may also have other connections. 

(3) matched by a node with the same name. 

--------- --~-



- 82 -

The pattern indicates which prototype nodes attach to each transistor in the prototype, and can further 

constrain the match by giving an explicit size or resistance for each prototype transistor. The 

replacement can modify parameters of existing circuit components, and add or delete components. 

For example. the following figure shows a pattern and replacement for the bootstrap circuit discussed 

in section 3.2. 

type (3) nodes 

/~ 

A~L/L / / 
type (2) node type (1) node B 

~ 
type (2) node 

(a) pattern (b) replacement 

Figure 4.21. Pauern/replacement for bootstrap circuit 

MATCH is regularly used in at least one industrial environment to improve the predictions of 

RSIM. Iler suggests other uses for the program: gathering of circuit statistics, identifying common 

circuit errors, and implementing circuit changes (ECO's) without requiring the regeneration of the 

entire netlist. MATCH has proved to be a handy tool. 

4.4. An evaluation of RSIM 

RSIM has simulated a large number of designs, both in university and industrial environments. 

Industrial designers are attracted to RSIM because of its ability to correctly predict the functionality of 

most MOS circuits without designer intervention - a unique capability in a logic simulator efficient 

enough to accommodate large designs. RSIM's timing estimates are helpful in locating gre>§ timing 

errors in industrial designs, but the conservative nature of the estimates make them unsatisfactory for 

fine tuning critical circuitry. In short, RSIM allows the verification of large industrial designs, at a level 

of detail not obtainable with other simulators. 

Timing estimates appear to be more important for academic users who, more often than not, 

have not paid as much attention to the perfonnance of each individual circuit component RSIM makes 

a good breadboard for locating perfonnance bottlenecks and experimenting with potential solutions. 



- 83 -

Since transition timings automatically reflect output loadings and device sizes, the naive user's 

attention is focused on critical portions of the design. RSIM is a good companion for the novice 

designer because of its ability to qualitatively model much of the behavior of MOS circuitry. 

RSIM advances the state of the art of simulation in several ways. The linear mode] embodied by 

RSIM is a systematization of a common rule-of-thumb for estimating circuit performance. The 

simulator was originalJy developed simply to automate the calculation of RC time constants, and to 

reap the benefits of applying the same timing criteria uniformly to the entire circuit The analysis of 

propagation delay in Chapter 3 justifies the use of the linear model as a simple approximation and 

extends the rule-of-thumb to include the affects of the input waveform timings on gate propagation 

delay. RSIM breaks new ground by combining logic-level simulation with the ability to automatically 

estimate transition times directly from the electrical properties of the circuit components. While the 

results are less accurate than circuit analysis, the designer is compensated by an increase in 

computation speed by several orders of magnitude. RSIM represents a first cut at a stylized form of 

circuit analysis which attempts to model the significant effects at far less cost than traditional analysis 

techniques. The proven utility of RSIM augurs well for funher developments in the area between logic 

simulation and circuit analysis. 

The introduction of intervals to characterize the operation of circuit components controlled by 

X-valued signals is a novel technique for merging electrical analysis with the logical concept of 

unknown signal values. The use of intervals allows one to easily compute the electrical consequences 

of unknown node values, resulting in predictions more satisfactory than those obtainable from 

conventional logic simulators or circuit analysis programs. 

There is, of course, plenty of room for improvement in RSIM! For example, interconnect is not 

modeled at all. As a circuit's physical size decreases, the transmission delay introduced by the 

interconnect is as large as the propagation delay of the gates. Certain layout techniques, such as a 

long run of polysilicon, are inherently slow and might become the fatal flaw in an otherwise carefully 

tuned design. [Penfield81J offers some computationally reasonable models for predicting transmission 

delays; these models are well-suited for incorporation into RSIM. His analysis, along with that of 

[Horowitz83], offers some insight into the correct modeling of pass gates and distributed capacitances. 

(The lumped approximation used by RSIM can be very pessimistic.) Along the same lines, the 

development of better time constants for charge-sharing events would improve the modeling of circuits 

containing both large and small capacitances. 



-. , --;:: -~":- -,·- .~----

- 84 -

Another class of problems is introduced by the one-pass nature of the computations. In order to 

limit the amount of computation needed for each prediction, the algorithms are constrained to mate. 

only one pass over the surrounding network. While most MOS circuits are trees, and hence amenable 

to a one-pass analysis, circuits that contain cycles are not handled correctly. The proposed solution -

choosing a single path through the cycle to represent the cycle's resistance - is definitely ad hoc; 

performing the correct series/parallel analysis would be preferable. 

There is also a need to consider the effects of deviations in device performance from that 

predicted by first-order theory. Some effects (channel length modulation, body effect, short channel 

effects) might best be handled during the calibration process. Other effects (Miller capacitance) may 

lead to further modifications in the model or calculation of device parameters in order to ensure 

conservative predictions. Finally, there is the possibility that work on waveform bounding [Wyatt83], 

which seeks to obtain closed-form equations for the waveform of each node of a circuit, can provide a 

replacement for the linear model presented here. 



- 85 -

CHAPTER FIVE 

Simulation Using a Switch Network Model 

If a designer is only interested in the logical properties of a circuit, i.e., those properties 

independent of perfonnance issues, it is possible to simplify the linear model of the previous chapter 

even further by modeling each transistor as an on/off switch whose state is detennined by the type of 

transistor and the state of its gate node. This chapter discusses the switch model from two points of 

view: first, as a special case of the linear model, and then as a self-contained model. But first. a small 

digression on the representation of node values is in order. 

5.1. Representing node values 

The success or failure of a logic-level simulator often hinges on the choice of the set of possible 

node values. If the set is too small. the actual node value may not be precisely described by any one 

of the available values and the simulator must choose an approximation. Usually the approximation 

involves some variant of the X (unknown) value which may carry logical implications beyond what the 

network itself imposes - such a choice is termed either "conservative" or "pessimistic" depending on 

one's point of view. If the set is large, it becomes diflkult to establish whether the simulator's 

calculations are correct in all cases. Relying on the accumulated evidence of many simulation runs 

when arguing correctness lacks the rigor that leads to total confidence in the algorithm. This section 

develops criteria for evaluating a set of node values. 



- 86 -

There arc three major influences on the choice of the node-value set: 

(1) the need to report node values to the user; 

(2) the need to dctennine the state of each network component from the values of 
its tcnninal nodes; and 

(3) the need to represent intennediate values during an incremental simulation 
caJculation. 

If only the first two influences are considered. a three-value set - 0, 1, and Xt - will suffice for 

logic-level simulation. Users and component models cannot reasonably expect more infonnation than 

provided by this set. since most logic-level algorithms cannot support more detailed deductions from 

arbitrary MOS networks with any degree of accuracy. It is the third influence that leads to all the 

complication. 

Almost all logic simulators analyze a network piece by piece, modifying their estimates for node 

values as the effect of each piece of the network is determined. Until the new-value computation is 

completed, the intermediate node values serve as accumulators that store all the information the 

simulator has about the effects of network pieces already examined. Thus, distinct values are needed 

for all qualitatively different intermediate states; e.g., a node currently at logic high might have that 

value because examination of the network to date revealed that it was (i) storing charge, (ii) connected 

to a depletion pullup, or (iii) being precharged by an enhancement device. The simulator must 

distinguish among these possibilities, since the final value of node may be different in each case if, for 

example, further network processing discovers a pulldown for the node. The exact number of values 
. 

needed depends on the details of the simulation computation; most simulators fall into one of the two 

categories discussed below. As will be seen, the two categories are distinguished by their approach to 

X values. 

tit might be useful to distinguish X', an unknown. but legitimate logic value (e..g., the output of a pair of cross­
coupled inveners) from other typt.-s of X values. X' values are well behaved in logic operations, for example. B + 
..,8 = 1 if the value of B is X', but equals X if the value of B is X. Such distinctions might be important during ini­
tializ.ation. [Stevens83) describes a simulator that uses this distinction to improve its predictions for certain simple log­
ic circuits. 



- 87 -

5.1.1. Cross-product falue sets 

One intuitively appealing approach to choosing a set of node values is to ·think of each value as · 

having several distinct attributes chosen from independent categories. Thus. for example, one might 

characterize a node's logic state and the "strength" of the value separately. The logic state is u~ually 

one of 0, 1, or X; sometimes a high-impedance state, Z, is included to represent the output of tri-state 

logic gates [Flake80, Holt81]. The strength indicates what sort of network connection exists between 

the source of the value and the current node: 

input. Node is a designated input (e.g., VDD or GND). The value of an input node can 
only be changed by explicit simulator commands - the assumption is that inputs 
supply enough current to be unaffected by connections (possibly shorts to other 
inputs) made by transistor switches. 

driven. Node is connected by closed switches to inputs or other driven nodes. Driven 
nodes can affect the value of weak or charged nodes without being affected 
themselves, but may be forced to an X state if shorted to an input or driven node that 
has a different logic level. 

weak. Node is connected. to an input node by a depletion-mode transistor. Weak 
nodes can affect charged nodes without being affected themselves, but are forced to a 
driven state when connected to another driven or input node. A weak node returns 
to the appropriate weak state when completely disconnected from driven or input 
nodes (i.e., a weak node can never enter the charged state). 

charged. Node is connected, if at all, only to other charged nodes. Until reconnected 
to some other part of the network, charged nodes maintain their current logic state 
indefinitely (charge storage with no decay). This is the default state of all non-weak 
nodes. 

Other strengths can be included to model the effects of differently sized transistors, node capacitors, 

etc. 

The plethora of 9-, 12-, and 16-state logic simulators (see [Newton80]) use values chosen from 

the set formed by the cross product of the various value attributes. For example, a 9-state simulator 

might use 

logic state 

0 1 x 

driven DL DH DX 

strength weak WL WH wx 

charged CL CH ex 



- 88 -

Note that in this formulation, X is treated as son of a third logic value on a par with 0 and I; 

presumably X's are generated by the simulator to model invalid combinations of O's and l's. The 

implication is that one can determine if a value should be X without any consideration of strengths. 

(Remember that the main motivation of forming the cross product is that the various attributes are 

independent). This can lead to pessimistic predictions, as is shown in an example below. 

It is useful to order the possible signal values according to their relative strengths. Intuitively. 

value A is stronger than value B, written A > B, if value A predominates when both signals are shorted 

together. Of course there are situations where neither value emerges unscathed - for example, when 

two signals of the same strength but opposite logic states are shorted - in which case neither signal is 

said to be stronger than the other. The notion of strength can be formalized using a lattice of node 

values, for example: 

DX .,,,,. .......... 
DH DL 

.......... .,,,,. 
wx .,,,,. .......... 

WH WL 
.......... .,,,,. 

ex .,,,,. .......... 
CH CT.. 

.......... .,,,,. 
A 

Figure 5.1. Lattice of node values for a 9-state simulator 

The node value ~ is used to represent the null signal, i.e., no signal at all. 

Referring to the lattice, given two values A and B, A > B if A is not equal to B and there is an 

upward path through the lattice that starts at B and reaches A. For example 

DX is greater than all other signals, 

DH is greater than WL, but 

WL is not greater than WH. 

The least upper bound (l.u.b.) of two values A and B, written A U B, is defined to be the value C 

such that 

(i) C >A 

(ii) C > B 

(iii) for every value D, if D ~ A and D > B, then D > C. 

---------- -~----- ~----------- -------



- 89 -

Examining the lattice above, it is easy to sec that the 1.u.b. always exists for any two node values. 

Note that if A > B, A U B = A: the 1.u.b. captures our intuition about what should happen when two 

signals of different strengths arc shorted together. With the appropriate placement of X values in the 

lattice, the l.u.b. can be used to predict the outcome when any two signals are shorted. 

The interpretation of X values captured by the lattice above is quite appropriate for describing 

the logic state of nodes involved in a short circuit: 

i -i 
DX=DHUDL 

Figure 5.2. A short circuit leading to an X value 

Assuming the two transistors are the same size, the middle node's value is the result of merging two 

equal strength signal values. According to our lattice, this merger yields an X value. Short circuits are 

the mechanism by which X's are introduced into a network previously containing only O's and 1 's. 

However, the situation is not as straightforward when one considers connections formed by 

transistors with a gate signal of X. The resulting values cannot be computed directly using the U 

operation on the source and drain signals, and once that hurdle has been surmounted, there is some 

difficulty in choosing whieh value to use from the cross-product value set Consider the following 

analysis of a node with stored charge and connection to two transistors. 

(a) (b) (c) 

Figure 5.3. Incremental analysis of a simple network 

Before any connections to the node have been discovered (figure 5.3(a)). the node maintains the 

charge of its last driven value. say, logic low; the simulator would assign the node a value of CL. 

After the first transistor is discovered (figure 5.3(b)), the facts change: 



- 90 -

(i) Because of the X on the gate of the transistor. one cannot be certain what type 
of connection exists between the node in question and the DH on the other side 
of the transistor. Thus. the new logic state of the node should be X. 

(ii) The strength of the new value is uncertain, but clearly "weak" or "charged" 
would be inappropriate since they understate the strength in the case where the 
unknown gate value was actually a 1. 

Since a weak or charged value could be overridden by an enhancement pultdown discovered later on, 

mistakenly leading to DL value, the simulator has no choice but to select a driven value. The 

conclusion: DX is the only state available that handles all eventualities in a conservative fashion. Of 

course, with knowledge of what the rest of the network contains. the simulator could make a more 

intelligent choice, but this is beyond the ken of an incremental algorithm. 

By the time a connection to a depletion pullup is discovered (figure 5.3(c)). the die has been cast: 

the previously chosen DX value overrides any contribution by the pullup (DX U anything = DX). 

While this answer is not wrong, it is more conservative than required; at this point the logic state of 

the node should be 1. The pullup guarantees a logic 1 with the unknown connection to DH, only 

leaving doubts about the strength of the value (somewhere between weak and driven). 

Proponents of cross-product value sets might point out that the analysis would have generated a 

different answer if the transistors had been discovered in a different order. The somewhat 

embarrassing ability to produce two different answers for the same network, both correct, is caused by 

the fact that the merge operation is not associative when connections are made through transistors 

with X gates. In fact, most incremental simulators that use cross-product value sets perform the 

incremental analysis .in an order that sields a reasonable answer on the example above. Unfortunately, 

it is usually possible . to confound them with more complex circuits containing X's; while such circuits 

are not commonplace, they often crop up during network initialization when all nodes start off at X. t 

In conclusion, it is possible to build effective simulators using cross-product value sets; however, 

they can make conservative predictions on circuits that contain X's. In practice, this leads to difficulty 

in initializing some circuits and to occasional over-propagation of X values. 

t[Bryant81] suggests using an incremental calculation only for subnetworks of nodes connected by non-X transistors. 
Once these values have been computed, a separate compuiation merges subnets connected by X transistors. Since 
this computation has global knowledge of the network, it can avoid the problems mentioned here. 



. 91. 

5.1.2. Interval value sets 

The difficulties with the cross-product value set arise because of its separation of the notion of 

strength and logic state. Once a node value is set to an X value at some strength, it cannot return to a 

normal logic state unless overpowered by a stronger signal; if a node is set to the strongest X value, it 

stays at that value for the rest of the computation. As in the example above, this leads to conservative 

predictions when the strongest X value is chosen because of the lack of suitable alternatives. 

Specifically the difficulty came about because the simulator had to pick the highest strength to be on 

the safe side: there was no value available that would indicate that the logic low signal which 

contributed to the intermediate X value was of very low strength and hence might be overridden by 

later network components. 

This suggests a different approach to constructing the set of possible nodes values, one based on 

intervals. First one starts with a set of node values with a range of strengths and 0/1 logic states, for 

example, the six non·X states used above: {DH, DL, WH, WL, CH, CL}. Then additional values are 

introduced by forming intervals from two of the basic values; if there are six basic values, then there 

arc (~ = 15 such intervals. leading to a total of 21 node values altogether. 

Intervals represent a range of possible values for a node. The size of the range is related to the 

strength of its end points. If we arrange the six basic values in a spectrum ranging from the strongest 

1 (DH) to the strongest 0 (DL), the possible node values can be shown graphically: 

DH o 

logic high WH 0 

CH 0 

- - -
CL 0 

logic low WL 0 

DL 0 

Figure 5.4. The 21 node values of the interval value set 

Intervals that do not cross the center line correspond to a valid logic state: intervals above the line 

represent logic high values. and those below the line, logic low. Intervals that cross the center line 

represent X values. (The X values of the previous section correspond to intervals with equal strength 

end points: DX = [DL.DHJ. WX = [WL.WH]. and CX = [CL.CH].) 'Thus, X values result from 

ambiguity about which of the base values best represents the true node value. As will be seen below, 



- 92 -

this is more satisfactory than thinking of X as a third, independent logic state. 

When the simulator merges two node values. it chooses the smallest interval that covers all the 

possible node states. However, unlike the cross-product value set, the interval set can represent X 

values without loosing track of the strengths of the signals that lead to the X values. Consider L"ic 

problems raised by figure 5.3(b ). Using an interval value set. the resulting node value is naturally 

represented by [CL.DH), an interval that corresponds to an X logic state. When the pullup is 

discovered (figure 5.3(c)), the simulator can narrow this interval to [WH,DH] since the pullup 

overpowers the weaker CL value. This corresponds to a logic high signal - a sensible answer. 

An algebra for calculating the result of merging two interval node values is developed in 

[Flake83]; a different approach is adopted in section 5.4.1 where a detailed description of the merge 

operation can be found. With an interval value set, the merge operation is commutative and 

associative, and the network can be processed in any order without affecting the final node values. 

The extra 12 values introduced by the interval value set are needed to carry sufficient infonnation 

about how the current value was determined, to ensure that the final answer is independent of the 

processing order. 

The examples above suggest the following conjecture about the correct size of a node value set 

Assuming that one has s different signal strengths and two logic levels (0 and 1), then 2s + <f> values 

are needed to ensure that the signal algebra is well-formed. In simulators with too few states. some 

states take on multiple meanings; for example, the DX value in the cross-product value set is used to 

describe nodes that fall into 5 separate values in the interval value set: 

[DL,DH] [WL,DH] [CL.DH] [WH,DL] [CH,DL] 

This lack of expressive power on the part of cross-product value sets is what leads to pessimistic 

predictions for node values in certain networks. 

5.2. Developing the switch model 

Switch models of MOS circuits.are of interest since a switch is the simplest component.that meets 

the criteria outlined in Chapter 1: switches are inherently bidirectional and the logic operations they 

implement can be computed with acceptable efficiency in large networks. 

Randy Bryant [Bryant79], one of the first to apply switch-level simulation to MOS transistor 

networks, viewed the network as divided into equivalence classes. Two nodes arc equivalent if they 

arc connected by a path of closed switches. Nodes in the same equivalence class as voo arc assigned a 

-----~ - -------



. 93 • 

logic high state: those equivalent to GND, a logic low state. A pullup (a depletion-mode transistor 

which is always on in the switch model) gives the node to which it is attached a special property: if an . 

equivalence class of nodes does not contain either vno or GND, but docs contain a pulled-up node, all 

the nodes in the class are assigned a logic high state. Finally, if an equivalence class contains neither 

an input nor a pu1led·up node, it is "storing charge" and maintains whatever logic state it had last 

The simulator based on this switch model iteratively calculates the equivalence classes for all the 

nodes in the network until two successive calculations return the same result (Le., no nodes change 

state). Unfortunately this pure switch model has some deficiencies: 

(i) Switches in indetenninate states (those with "gate" nodes of X) make the 
equivalence calculation somewhat more difficult. The desired computation is 
inefficient since it involves a combinatorial search: all combinations of on/off 
assignments to switches in the X state need to be investigated to determine 
whether a switch's state makes a difference. If the network is unaffected by a 
switch's state, the switch can be ignored; otherwise all affected nodes are 
assigned the X state. 

(ii) The equivalence calculation is much more time consuming than necessary since it 
deals with the whole circuit rather than focusing only on the parts which change. 

(iii) In certain circuits transistor "size" is important, and the notion of size cannot be 
expressed in the pure switch model. A pullup is a trivial example: viewed as a 
switch it was always on, but more "weakly" than the "strong" switches in the 
pulldown. The size of transistors also determines the "strength" of various driver 
circuits; for example, it is common for the write amplifier of a static memory to 
force a value into a memory cell by simply overpowering the weaker gate in the 
cell itself. 

The remainder of this chapter investigates different approaches to solving the first two proble~s 

outlined above. The third problem is addressed with some success by RSIM which· uses size 

information not only to calculate node values but to provide timing information as well. t 

The following sections present two different formulations of the switch model: 

• a model where each node value is computed via a "global" examination of the 
network. If the network has no explicit feedback. each node value is computed 
exactly once, but this calculation is more expensive than the one below. 

• a model based on "local" interactions where the simulator examines the source and 
drain nodes of each transistor and updates the state of one or both nodes. The 
examination/update process continues until there are no further updates to be 
made, Le., the network has "relaxed" into its final state. Under this scheme each 
calculation is trivial but a node value might be computed more than once even 

tRryant [Bryant81] proposes C.'l.tending the switch model to include a hierarchy of switdl sizes. a generalization of the 
ad hoc solution for pullups. His thesis develops an algebra. in the spirit of Boolean algebra. for dealing fonnally with 
such networks. 



- 94 -

when there is no explicit feedback in the circuit 

ESIM (the author's switch-level simulator) is a hybrid of these two fonnulations. ESIM implements a 

global node-value calculation using a node-value representation close to the one used by the local 

simulator. This results in a calculation very similar to that implemented by RSIM, except that abstract 

"logical" resistances (Reff = 0, 1, and 00) are substituted for the "real" resistances used in RSIM. 

Since this type of simulation algorithm is discussed at length in Chapter 4, it will not be pursued here. 

Instead, the remainder of this chapter focuses on the new fonnulations introduced above. 

The local fonnulation is attractive because it appeals to our intuition about how transistors really 

work. The high degree of potential parallelism in the update calculation makes it a very attractive 

algorithm for many of the new parallel architectures now under development; the combination of 

parallel hardware and intrinsically parallel algorithms may be the key to overcoming the capacity 

limitations of current simulation techniques. 

5.3. The global switch model 

The global simulator calculates a node's value by computing the effect of each input on the node 

of interest The simulation is global in that each node value is based directly on the values of the 

inputs to which it is connected. Thus, the values of non-input nodes do not enter into the 

computation. This means that 0, 1, and X will suffice as final node values; a node state need only 

capture the logic state of the node .and no strength infonnation is necessary. 

5.3.1. Node values in the global switch model 

Each transistor switch in the network is assigned a state detennined from the transistor's type 

and the current value of its gate node. This state models the switch-like qualities of the source-drain 

connection without trying to capture any more detailed infonnation about the connection - a 

simplification of the linear model presented in earlier chapters. 

The state of a transistor switch summarizes the type of connection that exists between its source 

and drain nodes. For MOS circuits, the possible switch states are: 

open no connection, the state of a non-conducting n-channel (gate = 0) or p­
channel (gate = 1) transistor. 

closed source and drain shorted, the state of a conducting n-channel (gate = 1) 
or p-channel (gate = 0) transistor. 

unknown uncertain connection between source and drain, the state of an n- or p-



- 95 -

channel transistor whose gate is X. 

weak the state of a depletion transistor. Depletion devices are always assigned 
this state. regardless of the state of their gate nodes. 

The relationship between a switch's state. its types. and its gate value is summarized in the following 

figure. 

drain logic(gate) n-channel p-channel depletion 

t { 1 closed open weak 

.... <>- - -l 0 open closed weak 

x unknown unknown weak 

source 

Figure 5.5. Switch state as fl function of transistor type and gate voltage 

In the global simulator, the value of a node is detennined by the inputs to which it is connected 

and the states of the intervening switches. During the calculation of a node's value, the simulator uses 

the interval node-value set presented in figure 5.4. When the calculation is complete, the resulting 

interval is used to detennine the final logic state of the node, using the following table. 

final logic state = 0 
CL 
[CL,WL] 
[CL,DL} 
WL 
(WL,DL] 
DL 

final logic state = I 
DH 
[DH,WH] 
[DH.CH) 
WH 
[WH,CH) 
CH 

final logic state = X 
[DH.CL] 
(DH,WL) 
[DH,DL] 
[WH.CL] 
(WH,WL] 
(WH,DL] 
[CH.CL} 
[CH,WL} 
[CH,DL] 

Table 5.1. Relationship between final logic state and computed interval value 

The calculation of a node's value begins by discovering all the inputs which can be reached from the 

node by paths of closed, weak, and unknown switches. If no inputs can be reached, the final logic 

state of the node is detcnnined by a charge sharing calculation described in the next section. If one or 

more inputs can be reached, their contribution to the node's value is detcnnined by an incremental 

calculation which starts at the inputs and works its way back toward the node. 

The value of a logic low input is DL; the value of a logic high input is DH. As the calculation 

works back toward the node of interest, it computes an effective value that indicates the effects of 

intervening switches on the original input value. The effect of a switch on a value it transmits is 



- % -

specified by the swilch function: 

input _L 

""" ~ 
""" value = switch(a1. input value) 

Figure 5.6. Effeclive value of an inpul after passing through a switch 

The effect of a switch on a value is a function of the value and the switch's state: 

value switch state 
open closed weak unknown 

DH A DH WH [DH.>.] 
[DH,WH) A [DH,WH) WH [DH,).] 
[DH.CH) ). [DH.CH] [WH,CH] [DH,A] 
[DH.CL] ). [DH.CL] (WH,CL] [DH.CL] 
[DH,WL] A [DH,WL] (WH,WL) [OH,WL) 
[DH,DL) 'A [DH,DL] [WH,WL] [DH.DL] 
WH 'A WH WH (WH,'A] 
[WH,CH] 'A (WH,CH] [WH.CH] (WH,'A] 
[WH,CL] 'A [WH,CL] [WH,CL] (WH,CL] 
[WH.WL] 'A [WH,WL] [WH,WL] (WH,WL) 
[WH,DL] 'A [WH,DL] [WH,WL] [WH,DL) 
CH 'A CH CH [CH,>.) 
[CH.CL) 'A [CH.CL] [CH.CL) [CH.CL] 

_ ...... 
[CH,WL] 'A [CH.WL] [CH,WL) [CH,WL] 
[CH,DL] 'A [CH,DL] [CH,WL] [CH,DL] 
CL 'A CL CL [>..CL] 
[CL,WL] 'A [CL,WL] [CL.WL) [>.,WL] 
[CL,DL] 'A [CL,DL] [CL,WL] ('A,DL] 
WL. ). WL WL ['A,WL] 
[WL.DL] 'A [WL,DL] WL ['A.DL] 
DL ). DL WL [A,DL) 

Table 5.2. switcl(a, value) as afanction of a and value 

A new value, A, is introduced to describe the value transmitted by an open (non-conducting) switch, 

le.. no value at all. The value A is weaker than CH or CL, and corresponds to a logic state of X. 

When two paths merge, their effective value is determined using the U operation introduced in 

section 5.1.1. 



- 97 -

_L 

~ ... ~ 
value8 a

2 

,..;, ... , .. a1 ... ) ~ 

switdl( a 2.value8) 

switch(a1.valueA) U 
--<> 

switch( a 2.value8) 

(a) two values to merge (b) values including effect of switches (c) merged value 

Figure 5.7. Merging the values for two paths which join 

The U operation is defined using the lattice shown in the following figure. 

[DH.DL] 

/ '\ 
DH DL 

I I 
[DH.WL] [WH,DL] 

/"- /'-
[DH. WH] [WH,WL] [WL,DL] 

/ '\/ '\/ '\ 
[DH.CL] WH WL [CH,DL] 

l~I l__..../I 
[DH.CH] [WH.CL] [CH,WL] [CL,DL] 

/"- /"- /"- /" 
(DH.A'\ /H.c~ /H,CL~ /L,WLZ /.DLJ 

[WH,A] CH CL JA.WL] 

·~I 1.........----
rc1-1.A1 [A.CL] "' / A 

Figure s~s. Lattice for interval-node value set 

Following the procedure outlined in figure 5.7, the contributions of all inputs connected to the node of 

interest can be reduced to a single interval. This interval is merged (using U) with the contribution 

from the node's current logic state 

I CL 
contribution of cu"ent logic state = CH 

[CH.CL] 

if cu"ent logic state = 0 
if cu"ent logic state = 1 
if cu"ent logic state = X 

to give the final interval characterizing the node's new logic state. 

As an example of how the new-value calculation works, consider the following circuit: 

(5.1) 



- 98 -

x 
_L 

output 

/ 

Figure 5.9. Example circuit 

Assume that the current logic state of the output is 0. The new-value calculation for this circuit is 

shown in the following figure. 

_L 

DH 
weak 
_J_ 

DL 
closed 

(a) 

_L 

CL 

WH~ 
_J--uDtno~ CL 

DL 

(b) 

_J_ 

DL~CL 
unknown 

(c) 

Figure 5.10. New-value calculation for circuit in figure 5.9 

The final interval for the output node is CL U (A,DL] = [CL,DL] which corresponds to a logic low 

state. This makes sense; the previous state of the output node was logic low, so the uncertain 

connection to the inverter does not affect its logic state, just the strength with which its driven. Note 

that it is important to merge the values of paths that join before continuing with the calculation since 

switch(a, a U /1) '* switch(a, a) U switch(a, /1) (5.2) 

when using this particular value set and switch function. For example, if the WH and DL values had 

been merged after transmission by the switch in the unknown state, the final interval for the output 

node would have been (DH,WL), which corresponds to an X logic state. The calculation described 

here performs all possible merges before transmitting the result through the appropriate switch. 



- 99 -

5.3.2. The global simulation algorithm 

This section outlines the basic steps for propagating new infonnation about the inputs to the rest . 

of the network, recalculating node values (where necessary) using the global value calculation in the 

previous section. 

When a node changes value, it can affect the network in one of two ways: 

(i) directly, through source/drain connections of conducting transistors. 

(ii) indirectly, by affecting the state of transistor switches controlled by the changing 
node. This is tum can cause the source and drain nodes of those switches to 
change value. 

The global simulator accounts for these two effects using to different mechanisms. Directly affected 

nodes are handled implicitly by the new-value computation which recomputes new values for all 

directly affected nodes whenever a node changes value. This is a reasonable organiz.ation: if A directly 

affects B, then B directly affects A; it makes sense to compute both values at the same time since they 

are closely related. Direct effects are not handled implicitly, however, when the user changes the 

value of an input node. In this case, the simulator invokes the new-value computation on the input, 

not to recompute the input's value (which is set by the user), but to recompute the values of all 

directly atf ected nodes. 

The indirect effects of a value change are managed by an event list that identifies all transistor 

switches that have changed state. Actually, the event list keeps track of the nodes that have changed, 

but this is equivalent since the net~ork data base maintains a list of transistors controlled by each 

node. The simulator operates by removing the first node from the event list, and then perfonning a 

new-value computation for the sources and drains of all transistors controlled by that node. The new­

value computation accounts for all the direct effects of the new transistor state and adds events to the 

event list if indirect effects are present 'Ibis process c-0ntinues until the event list is empty, at which 

point the network has "settled" and the simulator waits for further input 

-------~ - - ---~---



- 100 -

while event list not empty { 

} 

n : = node associated with first event on event 1ist 
remove first event from event list 
for each transistor with n as gate node { 

set COMPUTE flag for source and drain 
} 
for each transistor with n as gate node { 

} 

if COMPUTE still set for source, compute new va1ue for source [fig. 5.14} 
if COMPUTE still set for drain, compute new va1ue for drain 

Figure 5.11. Main loop of global simulation algorithm 

Finding nodes affected by an event is straightforward; recomputation of va1ues is needed for the 

sources and drains of all transistors with the changing node as gate. For example, if the node marked 

(*) in the following figure changes, nodes B and C need recomputation. 

Figure 5.12. Event for node (*) involves nodes B and C 

Of course, node D also needs to be recomputed, as will be discovered during the processing of B and 

C (see below). 

To recompute the value of a given node, the simulator first makes a connection list containing all 

nodes connected to the first node by a path of conducting transistors. The idea is to start with a node 

known to be affected by an event, and then find that node's electrical neighbors, and so on, ha1ting 

whenever an input is reached. In the example above, if the (*) node's value is 1, the connection list 

for node B contains nodes B, C, and D. If the (*) node's value is 0, the connection list for node B 

contains only node B. Node A is not included in the list in either case because it is not connected to 

node B by a path of conducting transistors. In the code below, which computes the connection list for 

a given node, the terms "source" and "drain" are used to distinguish one termina1 node of a transistor 

from the other, and do not imply anything about the termina1s' relative potentia1. 



- 101 -

initialize list to have starting node as only clement 
set pointer to beginning of list 
INPUT FOUND : = false 
reset capacitance accumulators 
while pointer not at end of list { 

} 

n : = node currently pointed at 
add capacitance of n to appropriate accumulator 
for each "on" transistor with source connected ton { 

if drain is an input, INPUT_FOUND: = true 
else if drain not on list, add drain to end of list 

} 
advance pointer to next list element 

Figure S.13. Non-recursive routine to build connection list 

In addition to the connection list, the routine sets INPUT_FOUND to true if the tree walk discovered at 

least one input, and maintains three capacitance accumulators. one for each logic state. The 

connection list drives the new-value computation: 

inake connection list starting with given node [fig. 5.13) 
if no inputs found, do charge sharing 
else for each node on connection list { 

} 

compute interval value for node [fig 5.15) 
determine new logic state using Table 5.1 
if different from old logic state { 

} 

update logic state to new value 
enqueue new event 

reset COMPUTE flag for each node on connection list 

Figure S.14. Subroutine to compute new value for node 

If no inputs are found while building the connection list (INPlTf_FOUND is false), the group of nodes is 

completely isolated from any inputs and a charge sharing computation determines the nodes' new 

values. Assuming that all the node capacitors are shorted together, the resulting voltage is 

voltage of shorted capacitors = ~capacitors at logic high 

~all capacitors 
(5.3) 

Capacitors with a logic state of X are assumed to be charged high when computing the maximum 

possible voltage, and charged low when computing the minimum voltage: 

0 chigh + Cx < 0.2 
Crotal 

charge sharing value = 1 lhigh > 0.8 (5.4) 
Ctoral 

x otherwise 



- 102 -

where C101a/ is the sum of the capacitance accumulators, Ch;gh is the accumulator corresponding to 

logic high, and Cx is the accumulator corresponding to logic X. 

If one or more inputs arc found (INPUT_ FOUND is true), the value of each node is determined in 

accordance with the procedure described in the previous section. The interval value is calculated for 

each node in tum and the node's new logic state is computed using Table 5.1. New events are added 

to the end of the event list whenever a node changes value. If a changing node is already on the 

event list. nothing happens (the node is not moved to the end of the list). 

For efficiency, each affected node's value is only computed once while processing a given event 

The connection list ensures that all affected nodes arc recomputed; the COMPUTE flag ensures that 

once a node has appeared on some connection list. it will not be resubmitted for processing during the 

current event 

The computation of a node's value is easily described by a recursive procedure which analyzes 

the surrounding network: 

if node is logic low input { 
return DL 

} else if node is logic high input { 
return DH 

} else { 

} 

LOCAL JV : = value specified by equation 5.1 
set VISITED flag for current node 
for each "on" transistor, t, with source connected to current node { 

if drain does not have VISITED flag set { 

} 
} 

recursively determine interval value for drain node 
LOCALJV : = LOCAL_IV U switcli...ar. drain's interval value) 

reset VISITED flag for current node 
return LOCAL_IV 

Figure 5.15. Subroutine to compute interval value for node 

The variable LOCAL_ IV is a stack-allocated local variable of the subroutine. Returning to the example 

in figure 5.12, assuming that the (*) node's value is 1, and that the old values for B, C, and D are 

B = 1, C =0, and D =0, the following calls arc made when computing the new value for node C: 



- 103 -

compute_params(C) 
LOCAL_IV =CL 
compute_params(D) 

lOCAL_IV = CL 
compute_params(VDD) 

return DH 
LOCAL_ IV = CL U WH = WH 
compute_params(GND) 

return DL 
LOCALJV = WH U DL = DL 
return DL 

lOCAL_IV = CL U [A,DL) = [CL,DL] 
compute_params(B) 

LOCAL_IV =CH 
return CH 

LOCAL_ IV= (CL,DL) U CH= [CH,DL] 
return [CH,DL] 

Figure 5.16. Trace of interval value computation for example in figure 5.12 

Marking each visited node (by setting its VISITED flag) avoids cycles: this keeps the tree walk 

expanding outward from the starting node. The VISITED flags are reset as the routine backs out of the 

tree walk, so all possible paths through the network arc eventually analyzed 

(a) original circuit 

~ 

~ 

(b) circuit as seen by tree walk 

Figure 5.17. The tree walk traces out all possible paths 

If the network contains cycles, the tree walk might lead to more computation than a series/parallel 

analysis: this is a problem for circuits containing many potential cycles (such as barrel shifters), 

especially during initialization when many of the paths are conducting because control nodes are X. 

To speed up the calculation, a node's VISITED flag can be left set, restricting the search to a single path 

through a cyclic network. This technique produces correct results only if paths leading away from a 



- 104 -

node are explored in order of increasing resistance. Le., one must ensure that the first time a node is 

reached, it is by the path of least resistance. Of course. the flags must be reset once the entire 

computation is complete; fortunately, the connection list provides a handy way of finding all the nodes 

that are visited without resorting to yet another tree walk. Another alternative for speeding up the 

calculation is the caching technique described in section 4.2. 

5.3.3. Interesting properties of the global algorithm 

The event list serves to focus the attention of the global simulator; new values are computed 

only for nodes which appear on the event list or which are electrically connected to event-list nodes. 

Portions of the network that are quiescent are not examined by the simulator. Algorithms that have 

this property are said to be selective-trace or event-driven algorithms and generally run much faster 

than algorithms which are not event driven (Szygenda75]. t 

An interesting implication of selective trace is that special care must be taken to ensure that 

"constant" nodes, such as the output of an inverter with its input tied to GND, are processed at least 

once (otherwise they will have the wrong values). One technique is to treat VDD and GND as ordinary 

inputs when first starting a simulation run - son of a power-up sequence as VDD and GND change 

from X to 1 and 0 respectively. Computing both the direct and indirect consequences of changes in 

VDD and GND might involve a tremendous amount of computation since the whole circuit is affected; 

often only computing the indirect consequences is a sufficient and less costly alternative. 

Although there is no explicit mention of time in the global simulator, the first-in, first-out (Firo) 

processing of events imposes some ordering on the changes of node vaJues. This ordering is similar to, 

but not the same as, the unit-detay ordering used by many gate-level simulators. In an event-driven 

unit-delay algorithm, the output of each gate that had an input change is recomputed using the current 

values of the input nodes. The new output values are saved and imposed on the network only after 

processing all gates. The net effect is that eaeh computation cycle (representing a unit of time) 

propagates information through one level of gate, i.e., each gate has unit delay; Because changes in 

node values arc imposed all at once, values change simultaneously, which can lead to problems in 

tExccptions to this rule are some hardware-based simulation algorithms. such as programs run on the Yorktown 
Simulation Engine [Pfister82}. The builders of the YSE point out that simulations might well run slower because the 
extra communication and branching needed to implement selective trace would compromise the parallelism and pipe­
lining used to great advantage in the YSE. However, if sufficiently large portions of the circuits could be ignored, 
the overhead of selective trace could be worth the investment (see Chapter 6). 



- 105 -

circuits containing feedback paths. 

The global simulator implements a pseudo unit-delay algorithm. New events are added to the · 

" end of the event list. so the oldest changes arc processed before any consequences of those changes 

arc processed. 1bus, FIFO event management leads to the same sequence of gate evaluation~ as a 

unit-delay algorithm. However, because the global algorithm changes values in the network 

incrementally rather than all at once, it is possible to firtd circuits that behave differently under the two 

simulators: 

0-+1 0-+1 

(a) unit delay (b) pseudo unit-delay 

Figure 5.18. Circuit that distinguishes unit-delay from pseudo unit-delay 

A 0-1 transition on the input causes a unit-delay algorithm to loop forever. The global algorithm 

predicts o_nly one transition - the output of whichever gate it processes first Neither answer is 

completely correct; the actual circuit enters a meta-stable state on a 0-1 input transition, eventually 

settling to a particular configuration determined by subtle differences in the gains of the two gates. It 

will not remain in the meta-stable state forever, so an infinite oscillation is a poor prediction. On the 

other hand, the final configuration chosen by the global simulator depends on the order of some list in 

the network data base. The predicted outcome is the same each time, not necessarily the best 

prediction. t The global simulator does not offer a general solution to the oscillation problem; both 

simulators will oscillate on the following circuit 

t[Rryant81} suggests that the oscillation can be detected and the offending node values replaced by X, but the tcc:h­
nique for determining the number of oscillations to allow yields answers so large for ciraiits of any substantial size 
that this is not a very practical alternative. 



- 106 -

0-+l 

Figure 5.19. Circuit which causes both simulators to oscillate 

Along the same lines, the global simulator predicts that the output of the circuit below will 

oscillate when the input changes from 1 to 0. 

----------0 0-+ 1-+0-+ ... 

"' node which is both an input and output 

Figure 5.20. Circuit with a node that is both an input and output 

The actual output quickly rises to the balance point of the pullup/pulldown combination. In a logic­

level simulation, this corresponds to finding a solution to the equation a = -ia which has the solution 

a = X (a reasonable logic-level representation for the balance point). This example is drawn from a 

larger class of circuits where a node is both an input and output of the circuit. Since the new-value 

computation uses current transistor states (determined by current node values) to predict the new 

values, it is impossible to predict the value of a node that depends on its own value. This limitation 

has not proven to be a problem in practical circuits. 

5.4. The local switch model 

It is interesting to speculate about replacing the tree walk performed by the global simulator with 

a strictly local computation. After all, the models of transistor behavior presented in Chapter 3 show 

that a transistor is controlled by the voltages of its three terminal nodes, le., each transistor operates 

independently, basing its behavior on only local information available at its terminals. The simulation 

model described in this section works in much the same way. The basic operation involves updating 

the terminal node values of a transistor switch using only information about their previous values and 

the state of the switch. 



- 107 -

Relaxation-based algorithms leave one a little nervous. Will the relaxation terminate? Docs the 

final answer depend on the order in which the individual computations are performed? These 

questions arc answered below, after a description of the algorithm itself. 

5.4.1. Node values in the local switch model 

The set of node values and the computation developed for the globaJ simulator must be adapted 

for use by the local simulator. The necessity for an adaptation is explained at the end of section 5.4.2. 

(The discussion is postponed until after the locaJ simulation aJgorithm has been presented, when it will 

be easier to explain why the global simulator's techniques do not work in the local simulator's context) 

In the locaJ simulator, a node value is a pair 

<high.low> 

that separately lists what type of connection exists to each of the two possible input signals. The high 

component summarizes what is known about paths to VDD, and the low component describes paths to 

GND. Ignoring for the moment switches with gates of X, four types of connections can be 

distinguished for each component: 

oo no paths to inputs, no charge storage. 

S charge storage. 

I there is a path to the appropriate input, but it passes through one or more 
depletion switches. 

0 there is a path of conducting n-channel (gate = 1) and p-channel (gate = 0) 
switches to the given input 

A switch with a gate of X may or may not make a connection; the resulting path is characterized by an 

interval describing the range of alternatives. <i> = 6 intervals are needed to describe all possible 

combinations of paths. 

The value of voo is <O,oo> and of GND is (00,0>; some other examples are shown in the 

following figure. 



-- ------ ---

- 108 -

(a) <l, O> (b) <[O,l], S> (c) <S. S> 

Figure 5.21. Examples of node values in the local simulator 

This organization provides for many more values than actually needed by the simulator: many of the 

values make distinctions that are not important in determining a node's logic state. For example, <1,0> 

and <S,O> both represent values corresponding to pulled-down nodes - it does not matter what the 

high component contributes if it is weaker than the low component. The advantage of this notation is 

the ease of computing what a given signal looks like from the other side of a transistor switch: 

1 
_J_ 

<l.O>~? 
(a) <l. O> 

x 
_J_ 

<l.O>~? 
(b) <(l,00], (0,00J> 

_J_ 

(1,0>~? 
(c) <l,D 

0 
_J_ 

<l,O>~? 
(d) (00,00) 

Figure 5.22. <I,O> value as seen across various transistor switches 

This will prove very useful in describing the update operation below. 

Using the technology developed in section 5.1.l, a lattice can be constructed that indicates the 

relative ordering of the various component values: 



- 109 -

0 

I 
[OJ] 

/ .......... 
1 [O,S) 

'-......./'-..... 
[l.SJ (0, oo I 

/'-...../ 
s (l,00) 

'-......./ 
(S,oo] 

I 
00 

Figure 5.23. Lattice for the ten possible component values 

The U operation can be used to calculate the result of considering two paths in parallel: 

(5.5) 

Each component is merged separately according to the lattice given above. Similarly, two values can 

be ordered by comparing their components: 

(5.6) 

A logic state can be associated with a value <h,D using the following table: 

b 
0 (0,1) [O.S) (0,00) 1 (1.S] [l,00] s [S,OO] 00 

------- ------------------------------------------------------------------------------
0 x x x x 0 0 0 0 0 0 
(0,1] x x x x x x x 0 0 0 
(O,S] x x x x x x x x x 0 
(0,00] x x x x x x x x x x 
1 1 x x x x x x 0 0 0 
[l.S] 1 x x x x x x x x 0 
[l,00] 1 x x x x x x x x x 
s 1 1 x x 1 x x x x 0 
[S,00) 1 1 x x 1 x x x x x 
00 1 1 1 x 1 1 x 1 x x 

Table 5.3. Logic stale associated with <h.T> 

-------- ------



- 110 -

5.4.2. The local simulation algorithm 

The local simulator implements a relaxation-based calculation for propagating input values · 

through the network. The calculation has three major steps: 

Step 1. 

Step 2. 

Step 3. 

Detennine the state of each transistor switch from its type and the logic 
state of its gate node. If no switches are found that changed state since 
the last examination, the network is said to have "settled" and the 
simulator waits for more input 

Reset each non-input node value to its charged value, a value that 
corresponds to the node's last logic state but does not have sufficient 
strength to force the value of any neighboring nodes. 

Repeatedly pick a transistor and update the values of its source and drain 
nodes according to the fonnula given below, continuing until the 
relaxation is complete (no node changes value as the result of an update). 
Upon completion, return to Step 1. 

Each of these steps is described in more detail below. 

Figure 5.5 shows how a switch's state is detennined from its type and the logic state of its gate 

node. Once determined, the switch state remains stable through Steps 2 and 3 even if the gate 

changes value. This arrangement is necessary for the correct operation· of the simulator since a node's 

value might temporarily be incorrect during the relaxation computation while infonnation continues to 

propagate towards the node from various inputs. For exainple, the output of a NAND gate may 

momentarily appear to be pulled-up, because the near-by pullup affects the node's value before 

information can propagate from GND up the pulldown chain. Since there are no guarantees about the 

ordering of updates, a node's value is known to be correct only when the relaxation process. 

terminates. 

Step 2 makes sure that the relaxation starts off with a clean slate; when this step is complete, 

only input nodes have values that can cause the values of neighboring nodes to change. This ensures 

that values for non-input nodes are determined exclusively by the values of the input nodes. · I <oo.s> 
charged value = <S, oo> 

<S,S> 

cu"ent logic state = 0 
cu"ent logic state = 1 
cu"ent logic state = X 

(5.7) 

If a node is not connected to any input, the charged value is an accurate representation of its final 

value. The update calculation perfonns a rudimentary charge sharing computation; a charged node· 

can become connected to another charged node with the same logic state, and still maintain its value. 

Connection to a charged node with a different logic state results in both node values becoming ·<s.S>. 



- 111 -

Note that precharge/discharge circuits are simulated correctly. 

An update operation involves the source and drain nodes of a single transistor switch. lbe new · 

values of the source and drain are calculated from their old values and the state (u) of the switch: 

v:OUrce = V.rource U switch(a, Vdrt1in) 

Vdrain = Vdrain U swilch(a, V.rouree) 
(5.8) 

The function switcl(a, value) fonnalizes our intuition about the effect on a value as it passes through a 

switch in a given state (see figure 5.22). The new value of a tenninal node is the result of merging its 

old value with the old value of the other terminal node after it has passed through the switch. 

switch(u, <h, I>) = 

00 

<h. I> 
<h + [0,00), / + (0,00]> 
<h + (1,1), I + (1,1)> 

a= open 
a =closed 
a = unknown 
a= weak 

where "+" is the series operation described in the following table: 

+ [O,O] (0.1] (O,S] (0,00) (1.1] (l.SJ (l.00) (S,S] (S,00) (00,00) 
------... --~-------------------~---------------------------~-------------------------------------
(0,0) (0,0) 
(0.1) (0,1) (0,1) 
[O,S] (O,S] [O,S] (O,S] 
[0,00) (0,00) (0,00) [0,00) (O,CO) 
(1.1] (l,l) [l.l] (l,S] (1,00) (1,1) 
[l,S) [l,S] [l.S] [1.SJ [l,00) (l,S] [l.S) 
(1,00) [l,00) [l,00) [l,00) [l,00) [l,00] [l.00) [l,00) 
[S,S) (S,S) [S,SJ (S,S) [S,00) [S,S] [S.S] (S,00) [S.S] 
[S,00) (S,00] (S,00) (S,00) (S,oo] (S,oo) (S,00) {S,00) [S.oo] (S,OO) 
(00,00) (00,00) (00,00) (00,00) (00,00) [00,00) (00,00) (00,00) [00,00) [00,00) (00,00} 

Table S.4. Series operation for local simulator 

(5.9) 

In general, the local algorithm's predictions are more pessimistic than those of the global 

simulator. The following,Jigure illustrates the analysis perfonned. by the local simulator for the circuit 

shown in figure 5.9. (The global simulator's analysis is shown in figure S.10) 



DH 

DL 

- 112 -

_J_ _J_ 

<O,OO> x <O.oo> x 
_J_ _J_ 

l <oo.S> l <(l,00], (O,S]> 
_J_ _J_ 

(00,Q) (00,0) 

(a) original configuration (b) after network settles 

Figure 5.24. Local simulator analysis for circuit in figure 5.9 

As shown in figure 5.24(b ), the local simulator predicts the logic state of the output node to be X - a 

pessimistic answer. (The global simulator predicts a logic state of 0.) On the other hand, the local 

simulator cannot simply adopt the value set and computation of the global simulator. The reason why 

is illustrated by the following figure. 

...L ...L ...L 
x DH x DH x 

#l ...L #1 ...L #1. ...L 
1 CL 1 (CL,DL] 1 [WH.DL] 

...L ...L ...L 
DL DL 

(a) original configuration (b) update order: # 1, # 2, ... (c) update order: #1. #3, .•. 

Figure 5.25. Global simulator's computation using update operations 

The figure shows the final node values (le., the values after the network has settled, and further 

updates make no change to the network), assuming that the first few updates were perfonned in 

different orders. Figure 5.25(b) shows the final node values if switch # 1 is updated first, followed by 

switch #2. Figure 5.25(c) shows the final node values if switch #1 is updated first, followed by 

switch # 3. As one can see, the value of the output node differs in the two examples. 

If the local simulator's predictions of the final node values are to be independent of update 

order, it must be the case that 

switch(a, a U /J) = switch(a, a) U switch(a, /J) (5.10) 

In other words, it cannot matter if early estimates of a node's value (a) are transmitted to neighboring 

nodes before additional infonnation (/J) arrives. Unfortunately. equation 5.10 is in direct conflict with 

equation 5.2 which indicates that order makes a difference in the analysis of certain circuits (such as 



- 113 -

the one in figure 5.9) when using the global simulator's value set Thus, the local simulator cannot 

simply adopt the global simulator's value set 

5.4.3. Interesting properties of the local algorithm 

In order to answer the questions raised when first introducing the local algorithm, some 

definitions will be useful. Let S be the set of switch-state vectors 0'10'2 • · · a1 where t is the number 

of transistor switches in the network. Similarly, let V be the set of node-value vectors v1v2 • • • Vn 

where n is the number of nodes in the network. Then SXV is the set of possible network states. 

Definition. Let X and Y be network states. X > Y if Sx = Sy and Vx ~ Vy 
where comparison between vectors is done component by component 

The update operation changes one network state to another; one writes X - Y if a sequence of zero 

or more updates changes the network state X into the network state Y. X -m Y means that m or 

fewer updates will change X into Y. 

The update operation can potentially change two elements of the node-value vector; the switch­

state vector is never affected by an update. Not every update causes the network state to change. For 

example, if the update chooses an open switch, the resulting network state will be the same as the 

original state. In the presentation below, it is useful to distinguish those updates that result in a 

change in the network state from those that do not: 

Definition. Let X and Y be network states. X => Y if X -.I Y and X :t: Y. 

In fact, X => Y implies Y > X, a simple consequence of equation S.9 and the definition of U. A 

stable network state is one which does not change as the result of any update: 

Definition. Let X be a network state. X is stable if, for any network state Y, X ... Y 
implies X = Y. 

It follows directly from this definition that a state is stable if and only if no ~ operations are possible 

on the state. Once a stable state is reached, the relaxation process can safely be terminated since 

further updates will not change the network state. This suggests the following metric for measuring 

how far the relaxation process has to go: 

Definition. Let X be a network state. order(X) is defined to be the largest integer m 
such that there exist states Y 1 •••• , Y m where X => Y 1 => · · · => Y m. 



- 114 -

The tennination of the relaxation process is assured by the following theorem: 

Theorem 5.1. For any network state X, order(X) is finite. 

The proof is based on the observation that there are only finitely many network nodes and ~sible 

node values. This means for any given network state X, there are finitely many states Y such that 

Y > X. Since each => operation produces a state strictly greater than its predecessor, one can 

perfonn the => operation only finitely many times before all the possible states are exhausted. I 

For a given starting network state, Theorem 5.1 tells us that a stable state can be reached with 

only a finite number of => operations. In fact, one can prove that there exists a unique stable state 

for any network state, but first we must lay a little more groundwork. 

Lemma 5.2. Let W and X be network states. If order( W) = m and W => X, then 
order(X) < m. 

Suppose that order(X) > m, then there exists a sequence of => operations 

W => X ~ Y 1 ~ · · · => Yonler(X)- This implies order( W) ~ m + 1, a contradiction. I 

Lemma 5.3. (Church-Rosser property) Let W. X. and Y be network states. If 
W -1 X and W -1 Y, then there exists a network state Z such that X - Z and 
r-z. 

Appendix 1 presents a proof based on a case by case analysis of the possible choices for X and Y, 

demonstrating for each case a sequence of updates that lead to a common state Z. 

This sets the stage for proving the uniqueness of the stable state. For readers acquainted with 

the lambda calculus, the following theorem has a familiar ring. There are many similarities between 

the update operation and A-conversion; the discussion of normal forms and the Church-Rosser 

theorem found in [Curry74) inspired the concept of stable states and the existence and uniqueness 

theorems presented here. 

Theorem 5.4. Let W. X. and Y be network states. If W - X and W - Y, then 
there exists a network state Z such that X - Z and Y - Z. 

The proof proceeds by induction on the order of W. If order(W) = 0, then Wis stable and so 

W = X = Y = Z. Without loss of generality, if order(W) > 0, one can a~me X > W and 

Y > W since if this were not the case, the result follows trivially. If order(W) = 1, the result follows 

as a direct consequence of Lemma 53. To show for order(W) = n + l, first note that there exist 

states A and B such that W => A - X and W => B - Y. Then, by Lemma 5.3, there also exists a 



- HS -

state C such that A - C and B·- C. 

Figure 5.26. Relationship between states in proof for Theorem 5.4 

Using Lemma 5.2, note that the orders of A, B, and C are all less than n + 1. Thus, by the inductiqn. 

hypothesis, there exists a state D such that X - D and C - D. Similarly, there exists a state E such 

that Y - E · and C - E, also by the induction hypothesis. Finally, by a third appeal to the 

induction hypothesis, there exists a state Z such that D - Z and E -+ Z. I 

Taken together, Theorems 5.1 and 5.4 imply the following corollary: 

Corollary S.S. Let X be a network state. There exists a unique n~ork state Y such 
that Y is stable and X => • • • • Y. 

Thus, the relaxation process terminates for any starting network configuration, yielding the same stable 

state regardleu of the order chosen for performing the updates. 

One of the attractions of the local algorithm i$ the opportunity it affords for parallel processing. 

especially during the relaxation process. Allowing parallel updates intmduces the problem of mergina. . . . 
conflicting node values at the end of the updates. The simplest solution is to allow updates to happen 

simultaneously only if they operate on separate portions of the network state. With this restriction, 

each node is involved in at most one update operation, and the potential for conflict is avoided. If the 

number of available processors is a lot smaller than the number of nodes in the network, there is only 

a small probability of a processor lying idle, because there are an insufficient number of allowable 

updates. 

Parallel implementations that avoid conflicting updates are covered by the existence and 

uniqueneu results obtained above, since it is easy to convert the set of updates performed at any time 

step into an equivalent sequence of sequential updates. This approach has sufficient parallelism to 

keep many current parallel architectures quite busy. However, there are architectures on the drawing 



- 116 -

boards with very large numbers of processors; it is Interesting to speculate about algorithms that can 

usefully employ as many processors as. say, there arc transistors in the network. 

To explore the possibilities. imagine a multi-processor constructed of the following clements: 

c 
(a) transistor element (b) node element 

Figure 5.27. Simulator processing elements 

Both types of elements synchronize their operation to a four-phase global clock: 

Phase 1. The transistor element samples the values of its source and drain 
connections and calculates new values using internal infonnation about its 
type and current state. 

Phase 2. The newly updated values are driven on to the source and drain 
connections by the transistor elements. 

Phase 3. Each node element samples one of its three connections and computes 
the least upper bound of the sampled value and its stored state. The 
connections can be sampled in any convenient order; the only 
requirement is that a connection not be ignored indefinitely. 

Phase 4. The ·node elements drive their connections with the value computed 
during Phase 3. 

Note that the node element is particularly capricious; it ignores two of its three connections in any 

given cycle. This complicates the notion of an update since there is no guarantee that the two node 

elements attached to the source and drain connections of a transistor element will be listening when 

the results of an update are made available. It becomes especially confusing when one of the elements 

is listening and one is not, which results in "half' an update. Of course, one can conceive of 1~ 

bizarre node elements, but if it is possible to prove correct operations under the proposed conditions. a 

much wider class of parallel architectures will be appropriate for the local algorithm. 

The elements are wired together in a way that mirrors the topology of the network to be 

simulated; multiple node. elements are used to model network nodes with a large number of 

connections. 



- 117 -

VDD 

B 

A 

(a) circuit schematic (b) element interconnect 

Figure S.28. Example wiring diagram for simulator elements 

By providing one processor per transistor and node, this implementation exhibits all the parallelism 

one could reasonably expect Steps 1 and 2 of the local algorithm are accomplished in a single clock 

cycle. During Step 3, an update calculation for each transistor is performed every clock cycle. A 

wired-or'ed signal visiting all the node elements can detect when the relaxation process is complete; a 

similar signal connected to all transistor elements can indicate when the network has settled 

This scheme is not as fanciful as it seems - the Connection Machine project [Hillis81] now 

underway at the M.l.T. Artificial Intelligence Laboratory has an architecture well suited to an 

implementation similar to the one described above. Fully configured, its one million elements would 

be able to simulate sizeable circuits at very high speeds. However, the real purpose-in proposingthis. 

architecture is to provide a vehicle for analyzing the operation of the local algorithm in a parallel 

environment 

A key insight into the design of a parallel engine is that the value stored by each node element 

must be non-decreasing with time, le., if v;
1
, ... , v;, are the values of node element i at successive clock 

cycles, then v;
1 
< · · · :S v;,. The "ratcheting" of node values up the lattice, which was crucial in 

showing termination of the relaxation in a sequential implementation, must be preserved in the parallel 

implementation. With this in mind, consider adding a communications link between two node 

elements: 



- 118 -

VDD 

/ oommunication link 

B 

Figure 5.29. Simulation engine incorporating communication link 

Since the system must already accommodate the unpredictable behavior of node elements. the 

demands on the link are minimal; messages cannot be garbled and the network cannot become 

partitioned indefinitely. However, messages can be dropped or delivered in any order since these 

failures do not affect the monotonicity of a node's value. 

Two important questions remain to be answered about parallel implementations that allow 

conflicting updates: 

(1) Is there an analog for Lemma 5.3? 

(2) Does this parallel implementation give the same answer as the sequential 
implementation? 

The author's speculation is that both questions can be answered affirmatively. This belief is based on 

the observations that no information is lost that cannot be recalculated, and the operation of the 

switches and merging of results remains unchanged. Given that the order in which the propagation 

happens was shown to be irrelevant by Theorem 5.4, it seems unlikely that the slightly more baroque 

propagation mechanism of a parallel implementation would seriously change the picture. 

---------------------- ------------



• 119. 

CHAPTER SIX 

Simulation Using a Pre·compiled Network Model 

The simulation algorithms presented in previous chapters rely on examination of the surrounding 

network to determine the value of a -given node. The surrounding network is re-examined every time 

the node's value needs recalculation. This chapter investigates breaking this proc~ into two steps: a 

single complete network analysis which builds a set of four logic equations for each node, indicating 

the types of connections between the node and VDD or GND; and simulation. where the value of each 

node is determined by evaluating its equations built during the first step. Not only is the overhead of 

a tree walk avoided each time a node value is calculated. but evaluating logic equations is also a very 

fast operation for most computers. 

Each step is discussed in a separate section. The first section describes the derivation of logic 

equations for each network node - even those which are not directly outputs of MOS logic gates. The 

second section presents several approaches for building a logic simulator based on the evaluation of 

the node equations. 



- 120 -

6.1. Reducing switch paths to logic equations 

The switch-level algorithm in Chapter 5 detennines the value of a node from infonnation about 

the node's current connections to VDD and GND. The infonnation is regathered each time a new value 

is calculated for the node. In most cases, only a small number of potential paths exist from a node to 

VDD and GND. This suggests that it might be economical to dctennine ahead of time the conditions for 

which a path exists to, say, GND. For example. the output of a NOR gate with inputs A and B is pulled 

down if either A or B is non-0. ·The existence of a pulldown path can be deu~nnined by evaluating the 

expression "A OR B"; a search of the network is not required to discover which pulldowns are 

currently conducting. 

This section describes the derivation of a set of four Boolean equations for each node: 

DH,,t An expression indicating under what conditions a path of conducting n­
channel and/or p-channel devices exists from node A to voo. 

DL,,t An expression indicating under what conditions a path of conducting n· 
channel and/or p-channel devices exists from node A to GND. 

WH,,t same as DH,,t, except the path contains at least one depletion device. 

WL,,t same as DL,,t, except the path contains at least one depletion device. 

If an expression evaluates to true (1), the corresponding path exists; if the expression evaluates to false 

(0), no path exists. Since nodes can have X values, expressions involving node values can evaluate to 

X; in this case, the corresponding path may or may not exist The equations involve the ordinary 

Boolean operators AND ("·"), OR (" + "), and NOT ("-,"). These operations are easily extended to 

accommodate X values: 

AND 0 1 X 
0 0 0 0 
1 0 1 x 
x 0 x x 

OR 0 
0 0 
1 1 
x x 

1 x 
1 x 
1 1 
1 x 

The algorithm for constructing logic equations is similar to that for computing the Thevenin 

equivalent for a node (see section 4.1.2). The algorithm begins with an expanding tree walk, stopping 

when an input or dead-end is reached. During the tree walk, all switches are assumed to be on, since 

the tree walk is performed before any node values are calculated. (During simulation, the actual state 

of the switch is represented symbolically in the equation.) The algorithm continues by retracing the 

steps of the tree walk back toward the original node; during this process, the equations are built The 

equations for the terminal nodes are trivial; the following table is the analogue of figure 4.8: 



- 121 -

tenninal node DH DL WH WL 

VDD l 0 0 0 
GND 0 l 0 0 

dead-end 0 0 0 0 

Merging the equations for two (or more) paths which join at a given node occurs in several steps. 

DllA } _J_ DH'A } DLA DL'A 

WHA I WH'A 

WLA A WL' A 

DHg} _J_ DH'e } 043 DL'e 

WHB I WH' 
B 

B 
WLe WL' B 

(a) two paths to merae (b) after incorporating switches (c) final path equations 

Figure 6.1. Merging the equations for two paths which join 

The process begins by modifying the equations for each path to reflect the contribution of the switch 

in series with the path (figure 6.l(b)). The necessary fonnulas appear below. For example, DH' is the 

new equation derived by combining DH with gate, the value of the switch's gate node. 

I DH· gate n-channel switch , 
DH· -igate p-channel switch DH = 
0 depletion switch 

(6.1) 

I DL ·gate n-channel switch , 
DL = DL • -igate p-channel switch 

0 depletion switch 
(6.2) 

The equations for the "strong" paths (above) are straightforward; when the connection is made by 

regular switch, the path equation and the the switch's gate value are combined using AND. If the 

connection is made with a depletion device, the strong path is tel1i'linated. Equations for "weak" paths 

(below) are slightly more complicated ~nee a depletion switch changes a strong path into a weak one. 

These fonnulas also reflect the fact that a strong path overpowers a weak path, le., equations for weak 

paths are forced to 0 if a strong path is present The reason for this extra complication will be clear in 

an example below. 

-------- ------- --------- --~-~ ---------------



. 122. 

gate · WH · -iDL n·chan.nel switch 
I 

WH = -igate · WH · -iDL p-channel switch (6.3) 

DH + (WH · -iDL) depletion switch 

gate · WL · -iDH n·channel switch 
I 

WL = -igate · WL · -iDH p-charmel switch (6.4) 

DL + (WL · -iDH) depletion switch 

After the equations for each path are modified to include the series switches, they are combined (using 

OR) to derive the final equations for the node, as shown in figure 6.l(c). When the analysis for a node 

is complete, the four equations characterize all paths from the node to VDD and GND. 

~ 
DH~ 

WH~ 
---0 

WL~ 
DL~ 

~ 

(a) original network (b) network after analysis is ccmplete 

Fipre 6.2. The four equations characterize all paths from node 

In other words, for each node, the surrounding network (figure 6.2(a)) has been reduced to an 

equivalent, but much simple network (figure 6.2(b)). All the information about paths in the original 

network is now stored in the node equations, where it can be efficiently utilized. For example, to 

determine if a node is pulled-down, all one has to do is evaluate the DL equation - no examination 

of the network is necessary. 

The value of node can be determined from the values of the four equations and the node's 

previous value, by table lookup: 



- 123 -

DH/WH 
()() 01 ox 10 11 lX XO Xl xx 

----- ·---------------------------------------------------------------------------------------------
()() prev 1 prev+X 1 1 1 prev+X 1 prev+X 
01 0 x x 1 1 1 x x x 
ox prev • X x x 1 1 1 I x x x 
10 0 0 0 x x x I x x x 

DL/WL 11 0 0 0 x x x x x x 
lX 0 0 0 x x x x x x 
XO prev • X x x x x x x x x 
Xl 0 x x x x x x x x 
xx prev • X x x x x x x x x 

Table 6.1. Node value table for equation-based simulation 

There are a few special cases which can be summarized more concisely. t For most nodes in nMOS 

circuits, DH = WL = 0, Le., connections to VDD are made only through depletion pullups, and 

depletion devices are not used elsewhere in the circuit In this case, the value of a node is given by a 

single equation: 

node value := (WH + previous value)~ ....,DL · ·(when DH = WL = 0) (6.5) 

Equation 6.5 can be simplified further for a node that is directly pulled up (WH = 1), Le., a node 

which is the output of a logic gate: 

node value = -iDL (when DH = WL = 0 and WH = 1) (6.6) 

In most cases, therefore, calculating the value of a node requires evaluating only a single equation. 

Some examples will help illustrate the analysis. First. consider an inverter with a pass gate 

connected to its output 

DH =O 
DL=B·A 
WH = B· ..,A 
WL=O 

Figure 6.3. Logic equations for output of inverter with series pass gate 

tCurrent hardware simulation engines (Pfister82, Zycad83) implement all functions through table lookup, so they can 
implement the function tabled above m efficiently as, say, Boolean operations. This is.not true of most general· 
purpose machines: henc.e the motivation for finding simpler representations where possible. 

---------· -- ---



- 124 -

Using equation 6.5, the value of C is given by c' = (B · ...,A + C) · ...,(B · A). The value of this 

equation is tabled below for the various values of A and B. 

C' 

0 
A 1 

x 

0 

c 
c 
c 

B 
1 

1 
0 
x 

x 
C+X 
c·x 
x 

When B is 0, the pass gate is turned off. and C retains its old value. When B is 1, the pass gate is on, 

and C is the complement of A. Finally, when B is X. C is al5o X, except when the output of the 

inverter is the same as the previous value of C. In this case, the output retains its old value, which 

makes sense since there is nothing forcing it to change. This last statement is true only because 

WHc = B · ...,A; the ...,A tenn forces the pullup equation to 0 when the pulldown of the inverter is 

active. If the WH equation did not reflect the contribution of the pulldown, Le., if WHc = B, the 

value C would be unnecessarily forced to X when the value of B was X. 

The next example is the XOR gate presented in Chapter 2. 

c 

E 

D 

Figure 6.4. XOR logic gate 

The equations for each node appear in the following table. 



• 125 -

node DH DL WH WL 
c 0 A+D·C'B l 0 
D 0 B+C'D'A l 0 
E 0 C'B+D·A l 0 
F 0 E l 0 

These equations might seem incorrect at first - it is not at all obvious that F = A XOR B. However 

simplifying the the equations for C and D shows: 

C = -i(A + D · C · B) = -i(A + -i(B + C · A)· C · B) = -.A (6.7) 

and similarly, D = -.B. These results can be used to rewrite the equation for Fin terms of A and B: 

F = -.E = C · B + D · A = -.A · B + -,B · A = A XOR B (6.8) 

In actual use, the equations are not simplified. The above substitutions do verify, however, that the 

equations compute the correct value for F. 

Some circuit configurations have very simple connection paths during actual operation of the 

circuit, but the circuits can appear very complicated when no information is known about the values of 

various control lines. This is especially true of a circuit containing DMOS switching logic, such as a 

barrel shifter or tally circuit If no fuformation is available about the values of the control lines in a 

barrel shifter, it appears to short together all the incoming and outgoing data bits. The logic equations 

for a node in such a circuit can become very large - in some cases, large enough to be impractical. 

The analysis procedure monitors the size of the equations under construction. If they grow too large, . 

the procedure is aborted and the node is flagged. At simulation time, the value of a flagged node is 

determined using the normal switch-level simulation algorithm. t Flagging a small number of nodes 

eases the analysis of the remainder of the circuit (The number of flagged nodes has been less than 

1% of the total number of nodes in all the designs processed to date.) Using this technique, the speed· 

up in simulation afforded by the use of logic equations can be enjoyed by circuits even where 100% 

conversion to equations is not posst'ble. 

Keeping track of gate expressions for transistors crossed during the initial, expanding phase of 

the tree walk allows the equation-building algorithm to eliminate duplicate AND terms in the results. 

tReversion to ordinary switch-level simulation for especially complicated circuits is easily accomplished by general­
purpose computers, but can be next to impossible for special·purpose hardware. 



- 126 -

(a) original circuit (b) reduced circuit 

Figure 6.5. On-the-fly elimination of duplicate AND tenns 

This minor optimization can reduce equation size substantially in some circuits. Consider, for example, 

a tally circuit from [Mead80). 

T 
T 
T 

E c· A 

Figure 6.6. Tally circuit 

This tally circuit has three inputs: A, C, and E. A tally circuit counts the number of I-inputs; Z 0 = 1 

when no inputs are high, Z 1 = 1 when exactly one input is high, and so on. The equations produced 

for the outputs appear somewhat complicated, for example: 

DLz1 = B·(A+D-(C+F+E·F)+C-(D+E+F·E)) + A-(B+C+D-(C+E+F·E)) (6.9) 

WHz1 = B·(D·E+C·F+A·C·E) + A·D·(F+C·(E+B·E)) (6.10) 

These equations are hard to verify as they are, but they can be simplified by removing B, D, and F. 

(Again, the simulator does not simplify the equations, but this is the easiest method for us to use to 

verify the operation of the algorithm.) Using the identities B = ...,A, D = -,c, and F = ...,E, the 



- 127 -

equations reduce to: 

(6.11) 

(6.12) 

Substituting these fonnulas into equation 6.5 gives 

(6.13) 

As expected. Z/ is true if exactly one input is high. Of course, evaluating this last equation would be 

much faster than using the original equations, 6.9 and 6.10. Unfortunately, equation simplification is a 

very time consuming operation; the computational investment required to process all the equations for 

a large circuit would probably not be recovered by decreased simulation time. In addition, the 

equations for most .nodes are simple, and simplification beyond that suggested by equation 6.6 (a 

simplification which is easily recognized) does not result in much improvement. 

6.2. Compiling logic equations for simulation 

It is easy to build a simulator that uses the node equations developed in the previous section. 

The simplest approach [Denneau82) is to allocate two node-value arrays: one to hold the current 

values of each node, and ~e other to collect new node values as they are computed. Each node is 

assigned an index which can be used to access its current value in the first array, or to store its new 

value in the second array. A simulation subroutine for the network is built by generating code that 

calculates the value of each node, where the code for one node is followed by the code for the next. -

(Since new node values are kept separate from the current node values, the order in which nodes are 

processed by the compiler does not matter.) A single simulation step, which propagates new input 

values to other nodes in the network, is implemented as follows: 

(1) For each input node, set its current-value array entry to the designated input 
value. 

(2) Execute the simulation subroutine. This fills the new-value array. 

(3) Compare the current-value and new-value arrays. If their contents are identical, 
the network has settled and the simulation step is over. Otherwise copy the 
new-value array to the current-value array, and return to step (1). 

This simulation algorithm has several interesting properties. Each execution of the simulation 

subroutine corresponds to one step of a unit-delay simulator. Node values are updated all at once in 

--------------------- - --- -------------------



- 128 -

step (3); hence, the simulator implements a true unit-delay algorithm as described in section 5.3.3. 

Note that no special handling of input nodes is required when generating code - the new values 

calculated· for input nodes in step (2) are overridden by user-specified values in step (1). Note also 

that the calculations of the simulation subroutine are not event driven; the implications are discussed 

below. 

The value of a node is computed from its four node equations. using the code generated by one 

of the following alternatives: 

(1) If DH = WL = 0 and WH = 1, emit code that calculates the node value using 
equation 6.6. 

(2) If DL = WL = 0 and WH ~ 1, emit code that calculates the node value using 
equation 6.5. 

(3) Otherwise, emit code which evaluates each of the four node equations, and then 
concatenates the resulting values with the previous value of the node to create an 
index into Table 6.1. As an optimization, the code generator can check for other 
special cases (constant values for WH and WL) and generate accesses to smaller 
tables if appropriate. 

Code is generated for each equation using standard compilation techniques. ·The logic instructions of 

the target machine are used for expression evaluation. (Some provision must be made to incorporate 

X values in a way that still permits use of the native logic instructions; see the example at the end of 

this section.) Access to a node's current value requires only an indexed reference into the current-value 

array; storing generated values requires an indexed reference to the new·value array. 

There are some inefficiencies inherent in this approach. An extra execution of the simulation 

subroutine is performed during each simulation step - "extra" in the sense that the last execution 

produces the same result as the one before (that is how the simulator identifies it as the last 

execution). In addition, the value of each node is calculated during each call to the simulation 

subroutine, even if the inputs to the node's equations have not changed. 

This last objection can be addressed by making a more intelligent choice about the order in 

which node values are calculated, by identifying the nodes that affect node .A's value (le., nodes that 

appear in the equations for .A) and then generating code to compute the values of these nodes before 

generating code to compute the value of A [Case78, Denneau82).. In addition, references to a node's 

current value are directed to the new-value array if a new value for the node was computed earlier in 

the subroutine. For example, the circuit in the following figure has several cascaded logic gates. 



A 
B 

c 
D 

- 129 -

E G 

Figure 6.7. Cascaded logic gates 

Under the new organization, ~e compiler generates code for nodes A and B before generating code 

for node E, and so on. The resulting code propagates a new input value from A to H in a single 

execution. ('The earlier scheme would have required three calls to the simulation subroutine to achieve 

the same effect} 

To implement this scheme, the compiler assigns a numeric level to each node. The level of input 

nodes is defined to be O; the level of a non-input node a is 

level(a} = 1 + max(.level of nodes affecting a) (6.14) 

Referring to the example in figure 6.7, if nodes A through D are inputs, level(E) = 1 and 

level(H) = 3. Code is first generated for level 1 nodes, then level 2 nodes, and so on. When 

compiling an equation, if a node value is needed, the node's level determines where that value comes 

from. The value of a level 0 node is taken from the current-value array, and the value of a node with 

a level greater than 0 is taken from the new-value array. (New values are stored in the new-value 

array, as always.} 

The definition of a node's level in equation 6.14 runs into some difficulty if the circuit bas 

feedback. Consider, for example, the following circuit: 

J 

Figure 6.8. Circuit withfeedback 

In attempting to assign a level to node K, one discovers that the definition is circular, le., the level of 

node K is defined in terms of itself. The compiler solves this problem by arbitrarily splitting a node 

that is in the feedback loop into two nodes. One copy is treated as an input, and the other. as a 



- 130 -

normal network node. Both are assigned the same index so that the input value is updated each time 

the new-value array is copied to the current-value array. Thus, the circuit in figure 6.8 is compiled as 

if it had the following configuration: 

treated as input 
~ L value fed back during step (3) 

K~ .. / 
J~-1~~ 

Figure 6.9. Feedback circuit as it appears to the compiler 

For the purposes of compilation, the feedback loop is broken; the value is actually fed back during 

step (3) above when the new-value array is copied to the current-value array. This means that a 

circuit containing feedback might require more than a single execution of the simulation subroutine 

before the network _settles. As it turns out, most MOS circuits contain feedback loops since charge 

decay requires that storage nodes be refreshed. A clocked feedback loop offers special compilation 

opportunities, which are discussed below. 

Compiling nodes by level ensures that only a single execution of the simulation subroutine is 

needed to settle the network, assuming the network contains no feedback. The new organization 

introduces other differences from the original compilation strategy. Node values are not updated all at 

once in this scheme; the simulation subroutine implements a pseudo unit-delay simulation. Input 

nodes must be assigned a level of 0, which means nodes must be declared as inputs before the 

compilation process begins. This eliminates the possibility of interactive debugging, where one wants 

the capability to consider any node as an input Typically, the designeF uses the original compilation 

strategy when initially checking out the circuit, and then uses compilation-by-level when perfomting 

long verification runs. 

Most node-value references are satisfied using the new-value arraY in the compilation-by-level 

scheme. This suggests that is might be worthwhile to eliminate the storage overhead and copying ~e 

involved for managing two arrays by merging them into a single array. This is straightforward, 

provided a new technique is developed for detecting when the simulation step is complete. If the 

circuit has no feedback, only a single execution of the code is needed. When there is feedback, a 

single execution also suffices, if the current and new value of split nodes (e.g., Kand K' in figure 6.9) 

agree. Only when the old and new values are different is another execution required. This can be 

arranged by comparing the two values before the new value is stored into the array. If the 



-131-

comparison shows them to be unequal, a flag is set to indicate that another execution is needed. Note 

that the whole simulation subroutine is re-executed; this is simpler than trying to untangle interlocking 

feedback loops to determine the subset of the code that must be re-executed. 

With this improvement, the compilation-by-level scheme produces a simulation subroutine thAt: 

(i) uses a single node-value array. 

(ii) evaluates nodes in a reasonable order: the values of a node's inputs are 
calculated before the value of the node itself is calculated. 

(iii) deals with feedback by splitting some node in the feedback loop into an input 
node (assigned level 0) and a regular node. Both nodes are assigned the same 
index, so when the value of the regular node is recomputed it updates the value 
of the input node also. Before storing the value of a split node into the' node­
value array, it is compared with the current value; if the values are different a 
flag is set 

(iv) uses the flag described in step (iii) to indicate when another iteration is needed. 
If the flag is set during an execution of the code, another iteration is performed; 
otherwise, the subroutine is finished. . i . 

The following is an extended example which illustrates the result of a compile-by-level for a single bit 

in a DMOS counter. The circuit diagram for the counter bit is shown in the following figure. 

PHI2 
_J_ 

PHU 
_J_ c 

I 
E 

Figure 6.10. Circuit diagram for a one-bit counter 

--+ COlIT 

The target machine for this example is the DEC V AX-11. A node value is 2-bit quantity (logic low = 
0, logic high = 3, X = 1) stored in a byte location; the node-value array is implemented as an array 

of bytes. Logical ANDt and OR instructions produce the desired answers with this value encoding. 

However, using this encoding, the complement instruction does not correctly implement the NOT 

tThe VAX does not, in fact.. have an AND instruction. Instead, a "bit clear" (BIC in VAX parlance) is provided, 
which implements an AND-COMPLEMENT operation. This introduces a few circumkx:utions in the generated aide. 



-132-

operation, so NOT is perfonned by table lookup. The index of each node is indicated symbolically in 

the code below (the index of node A is written ''!iA"). 

; rlO =pointer to value arra1 ... 
; ntbl =table giving NOT of value 
; xtbl =table giving bit complement of value . 
; xntbl =table giving bit complement of NOT of value 

step: 
cl rl rO ; so regs c~n be used index registers 
cl rl rl 
movb 11,iterate.flag ; nonzero indicates no iteration needed 

1: mo vb _PHI2( rlO), ro 
bisb3 ntbl(rO),_OUT(rlO),rO ; rO = lph12 +out= l(phi2 •lout) 
mo vb _OUT(rtO),rl 
bicb3 xtbl(r1),_PHI2(r10),r1 
bisb2 _IN(r10),rt ; rl = (phi2 • oit~) ,+ in 
bisb3 xtbl(rl),rO,_IN(rlO) ; in = rO • rt 

movb _IN(rtO),rO 
movb ntbl(rO),_A(rlO) ; a= I in. 

movb _PHU( r10). rD 
bisb3 ntbl(rD),_A{rlO),rO ; rO = lph11 +a= l{ph11 •la) 
mo vb ._A(rlO),rl 
b1cb3 xntbl(r1),_PHI1(r10),r1 
bisb2 _B(r10),r1 ; rl = (ph11 • la)+ b 
bicb3 xtbl(rt),rO,_B(rlO) ; b = rO •rt 

movb _B(r10),r0 
mo vb ntbl(rO),_C{rlO) ; c =lb 

mo vb _C( r10), rO 
bicb3 xtbl{r0),_CIN(r10),r0 
mo vb ntbl(rO),_D(rlO) ; d = l(c•c1n) 

mo vb _C(r10),r0 
bicb3 xtbl(r0),_D(r10),r0 
mo vb ntbl(rO),_E{rlO) ;e=l(c•d) 

mo vb _D( r10), rO 
bicb3 xtbl(rO),_CIN(rlO),rO 
mo vb ntbl(r0),_f(r10) ; f = l(d•c1n) 

mo vb _D( rlO). rO 
mo vb ntbl{r0),_COUT(r10) ; cout = Id 

mo vb _E(rlO),rO 
bicb3 xtbl(r0),_F{r10),r0 
cmpb ntbl(r0),_0UT(r10) ; check t(e • f) against old value 
beql 2f 
movb ntbl{rO),_OUT(rtO) ; if different, save new value 
cl rb iterate_ nag ; and set iterate flag so we do it again 

2: 

bbcs 11,iterate_flag,lb ; check flag, iterate if set 
rsb 

The code is a relatively straightforward implementation of the equations for each node. Nodes PHll. 

PH/2, and CIN are designated as input nodes. Note that the feedback loop is broken by splitting 



- 133. 

node OUT. an arbitrary choice. The resulting simulation is several orders of magnitude more efficient 

than a standard switch-level simulation. For example, the value of B is calculated in six instructions; 

the value of C in only two. The code is also relatively compact compared to the usual network data 

base. 

Although com~iling by level greatly reduces the amount of wasted computation, there are still 

occasions when the values of nodes are unnecessarily calculated. Some input transitions have little 

effect on node values; e.g., when PHii or PH/2 in the orie-bit counter above change from 1 to 0. 

This suggests that the performance of the simulator can be improved by generating multiple simulation 

routines, where each routine corresponds to a fixed value for one or more inputs. This is particularly 

advantageous when the inputs selected for special processing have a major impact on the circuit to be 

simulated. For example, in a circuit using two clocks, three separate simulation routines can be 

generated: one generated assuming both clocks are low (called, say, a.oc.Koo), and the other two 

generated assuming one of the clocks was high (CLOC.KlO and CLOCKOl). A four-phase clock cycle is 

simulated by executing the simulation subroutines in the correct order: 

jsb 
jsb 
jsb 
jsb 

clocklO 
clockOO 
clock01 
clockOO 

; PHI1 high 
; both clocks low 
; PHI2 high 
; both clocks low 

To generate a input-specific simulation routine, the user specifies which nodes are inputs, and for each 

input 

(1) gives the input's logic value, and 

(2) indicates whether the input is stable or has just changed to the specified value. 

The compiler applies several optimizations during code generationt: constant folding based on 

knowledge of input node values, and compile-time selective trace that ignores nodes whose values 

remain unchanged. (The stable/changing specification is used by the selective trace optimization.) The 

selective trace is especially effective in reducing the amount of generated code. 

In the examples below, PHii and PH/2 are specified as changing inputs, and C/N an 

unchanging input The first example - the code generated for the one·bit counter with both clocks 

low - illustrates just how effective the optimizations can be: 

tThe optimiutions are inspired by those found in traditional optimizing oompilers [Harrison77, WulnS]. Because of 
the branch-free nature of the code and the per\.asive influence of clock signals. many of the optimizations are much 
more effective in this domain than in traditional compilation problems. 

------- -----



clockOO: 
clrb _PHI1(r10) 
clrb _PHI2(r10) 
rsb 

- 134 -

; code for ph11 = 0, phi2 = 0, cin = 1 
; ph11 = 0 
; ph12 = 0 

The values of PHI/ and PH/2 are set by the code since they are specified as changing inputs. (The 

value an unchanging input is assumed to be set by the user, or by code executed earlier.) Nodo B is 

determined to be unaffected by the change in PHI/, as are nodes IN and PH/2. In fact, the compile­

time selective trace does not find any nodes that change value, except for the changing inputs. 

The next code sequence, corresponding to PHI/ going high, is somewhat longer, since that is the 

transition when the circuit performs most of its work. 

clocklO: : code for ph11=1. phi2 = 0, cin = 1 
cl rl rO : so reg can be used as index register 
movb 13,_PHI1(r10) ; ph11=1 
cl rb _PHI2(r10) ; ph12 = 0 
mo vb _A( r10) ,_B( r10) : b =a 
mo vb _B(r10),r0 
mo vb ntbl(r0),_C(r10) ; c =lb 
mo vb _C( r10), rO 
mo vb ntbl ( rO) ,_D( rtO) ; d = l(c•cin) =le 
mo vb _D(rtO),rO 
mo vb ntbl(rO),_COUT(rtO) : cout = Id 
mo vb .C( rtO), rO 
bicb3 xtbl(rO),_D(rlO),rO 
mo vb ntb 1 ( ro) ,._ E ( r10) ; e = l(C*d) 
movb. _D(rtO),rO 
mo vb ntbl(rO),_F(rtQ) :f= l(d*c::1n) =Id 
mo vb _E(r10),r0 
bicb3 xtbl{r0),_F(r10),r0 
mo vb ntbl( rO) ,_OUT( r10) : out= I (e • f) 
rsb 

A node that connects to the rest of the network through a single pass transistor (e.g., node Bin the 

counter) is treated specially by the compiler, because such nodes are so common in MOS networks. 

When the pass transistor is turned on by fixed-value input, the generated code is particularly efficient 

(a single move in the example above). 

The last code sequence, corresponding to PH/2 going high. is relatively short; the compile-time 

selective trace finds only a few nodes whose values needed to be computed. 

clockOt: 
clrl 
clrb 
mo vb 
mo vb 
movb 
movb 
rsb 

rO 
_PHI1(r10) 
13 ,_PHU( r10) 
_OUT(r10),_IN(r10) 
_IN( rlO), rO 
ntbl{r0),_A(r10) 

: code for ph11 = 0, phi2 = 1, c1n = 1 
; so reg can be used as index register 
; ph11 = 0 
; phi2 = 1 
: in = out 

; a= tin 

Simulation of a four-phase clock cycle using these three routines requires executing only 36 VAX 

instructions. The earlier compiled code sequence requires 39 instructions for a single simulation step, 



- 135 -

for a total of more than 150 executed instructions when simulating a full clock cycle. Input-specific 

subroutines result .in a considerable improvement 

Although the impact of compile-time selective trace makes it a worthwhile optimiz.ation. only so 

many input-specific routines can be generated. Assuming that all combinations of inputs are poss11>1e. 

the number of routines needed grows exponentially with the number of fixed inputs. Thus. while 

computations caused by the changing of a few inputs can be reduced to the bare minimum. many 

unnecessary computations are still performed. For example, in a 10-bit counter, the nodes comprising 

the higher data bits are recomputed during each clock cycle, even though those nodes actually cbange 

value far less frequently. Presumably, the appropriate checks could be inserted into the code, n:sulting 

in branches around sections of code that do not need to be executed. In the counter examp~ when 

the carry-in of a data bit is zero, the code for its level and all higher levels does not need tD be 

executed. However, a very sophisticated compiler would be needed to handle this situation. It is 

unclear what further gains will be possible in the search to reduce unnecessary computation. 

In summary, 'the compilation techniques discussed in this chapter are well-suited for producing 

code that implements a fast switch-level simulation of a stable design. The potential increase in 

simulation speed allows more exhaustive checkout than is possible with interactive (and slower) 

simulators. Compilation-based simulation is most appropriate for a circuit with a high degree or circuit 

activity; if each circuit component is active during each simulation step, there is very little unnecasary 

computation by the simulation subroutine. On the other hand, for a large circuit with little activity, an 

event-driven interactive simulator might actually outperfQrm a compiled simulation. Fortunately, not 

many designers strive for designs in this latter category. 

------ ·--~·--



• 136·· 

CHAPTER SEVEN' 

CONCLUSIONS 

The models and simulators presented in this thesis were developed to fill the need for simulation 

tools suitable for large MOS designs. At the outset of tJ1e project, there were surprisingly few 

alternatives; even today, much of the work in the area of simulation tools concentrates on refurbishing 

traditional gate-level simulators and circuit analysis programs. (The current state of these ··efforts is 
' outlined at the end of the chapter.) The work reported here takes a different approach, seeking to 

develop new algorithms, guided by the following goals: 

(1) The algorithms must be suitable for the logic-level simulation of large digital MOS 
circuits; "large" meaning circuits containing 10,000 to 50,000 transistors. 

(2) Important aspects of MOS behavior (bidirectionality, charge sharing/storage, 
pullup/pulldown ratios, et.c.) should be modeled in a useful way. 

(3) Performance estimates should be calculated directly from the actual parameters 
of the circuit components. Ideally, the calculations are based on the same rules 
of thumb used by designers when estimating circuit performance. 

The RSIM simulator meets all three goals, while maintaining a reasonable balance between simulator 

performance and accuracy of predictions. Rather than performing a detailed simulation of each 

transistor's operation, RSIM uses the linear model to directly predict the logic state of each node and to 

estimate transition times when nodes change state. The net effect is a trade of some prediction · 

accuracy for an increase in simulation speed. When the linear model is conservatively calibrated, its 

predictions can be used to identify problem circuits in need of more accurate analysis. Usually, a large 



- 137 -

percentage of a circuit passes the scrutiny of RSIM, and so the expense associated with detailed 

simulation of the whole circuit is avoided. In addition to serving as the basis for simulation, the linear 

model can be used in timing analysis and might serve to quickly generate initial waveforms for a 

relaxation-based circuit analysis program. 

RSIM has been in use in both university and industrial environments since the spring of 1982. 

During that time it has simulated several hundred designs. ranging in size from very small to 

approximately 40,000 transistors. Because RSIM is fast enough to simulate a whole circuit, it often 

uncovers circuit flaws that have fallen between the cracks during the simulation of smaller pieces of 

the design. The trend shows that RSIM is viewed as a companion to circuit analysis. using it for all 

logic-level verification and· preliminary timing analysis, and resorting to circuit analysis for those paths 

identified as critical by RSIM. 

The simulation algorithm is embedded in a USP-like command language [f erman82) that has 

been used to write quite elaborate programs to drive the simulation and process the results. Since 

programs to prepare simulation input are much less tedious to construct than the input itself, designers 

have been able to conduct more tests than they might otherwise do. For example, it is a simple matter 

to use a set of test vectors that drive a register-transfer-level simulation as input to an RSIM run. and 

compare the predictions of the two simulations, all under program control. 

With careful calibration, RSJM's predictions for combinational logic are within 30% of those of 

SPICE. For circuits relying on analog behavior (sense amplifiers, bootstrapped nodes, etc.) or chains of 

pass devices, the predictions are less accurate. To compensate, several "escape" mechanisms exist 

which allow the designer to specify the logic thresholds and transitio,i times for individual nodes so 

that the results of more detailed simulations can be incorporated into :RSIM. Usually this mechanism 

need be invoked for only a few critical nodes (e.g., clock: driver outputs). Another alternative is to 

identify subcircuits and replace them with logically equivalent circuits that can be simulated easily; a 

network preprocessor [ller83] that performs subcircuit matching and replacement is available and has 

been used to good effect With these enhancements. RSIM has proved to be a fairly reliable filter for 

detecting circuits in need of more careful analysis. 

For those stages of the design process that do not require performance information, a switch 

model might be more appropriate than a linear model. A switch-level simulation is particularly useful 

in the early stages ofa design when one is experimenting with the organization of the logic, and sizing 

each device would be distracting. The switch models presented in this thesis are straightforward, 

- - -------~------ ------- --------~~- -- -



- 138 -

especially in the treatment of X values and their effect on the network. The switch model as 

embodied in ESIM (which uses the global algorithm outlined in Chapter 5) is quite compatible with the . 

linear model used in RSIM. In fact, in the current implementation both models exist side by side and 

one can choose either model when propagating a set of changes through the network. 'Ibis flex-ibility 

is useful during initialization of a network, when performance information is not a major concern. 

Simulator performance is always an important issue, one that has been addressed throughout the 

thesis. Chapter 4 describes several techniques for speeding up the RSIM algorithm; using a compr~d 

representation of logic gates and caching subnetwork calculations decreases the execution time of RSIM 

by a factor of two or more. The local switch algorithm presented in Chapter 5 is ideal for 

implementation on parallel architectures. Like many relaxation algorithms, it can effectively utilize 

many processors, and so holds the promise of large performance improvements in simulation when 

parallel processors move out of the experimental stage. A different approach for improving the 

performance of switch-level simulation is described in Chapter 6, which proposes performing the 

network analysis once, before simulation, and using the results to compile a set of logic equations for 

each node. When evaluated in the proper order by a conventional computer, the resulting switch-level 

simulation is many times faster than simulation using traditional techniques. The node equations can 

also be used to develop instruction sequences for special-purpose simulation hardware - e.g., the 

Yorktown Simulation Engine, or the Zycad multi-processor - extending the benefits of high-speed 

gate evaluation to arbitrary MOS networks [Barzilai83). 

The remainder of this chapter discusses other work in the area of simulation related to the topics 

of concern in this thesis. These topics include: 

• algorithms for fast circuit analysis; circuit analysis using simplified models 
• mixed-mode simulation 
• logic-level simulation using pre-determined transition delays 
• models for estimating circuit performance 
• other switch-level simulation algorithms 

Each of these areas is discussed below. 

The most detailed and accurate network simulation is provided by circuit analysis programs, such 

as AST AP [Wecks73] or SPICE [Nage175). The capacity limitation of circuit analysis is a prime motivation 

for the development of simpler simulation models; recent improvements in circuit analysis algorithms 

are making inroads into the traditional performance problems of circuit analysis. Device models are 

the heart of a circuit analysis program. The models are usualJy analytic; they contain formulas that 

predict device performance from information about voltage histories, physical properties of materials, 



• 139. 

etc. In a circuit, the behavior of a particular device might be determined by· several electrical nodes 

which, in tum, are affected by other devices; le., a system of circuit equations is needed to describe 

the behavior of the circuit as a whole. To make finding a solution· computationally feasible, most 

circuit analysis programs proceed in two stepS: 

(1) The circuit is partitioned so that, at a particular time step, the change in voltage 
on each node is approximated as a linear function of the node voltages (and their 
derivatives). It is during this step that device models must be evaluated. 

(2) Solving the resulting set of equations numerically (see [SVBOD. 

These two steps can be quite time consuming. although for large circuits the second step becomes the 

dominant factor [Newton80). RSIM reduces both costs by using a very simple device model whose 

effects can be predicted without the need for expensive numerical techniques. 

The cost of model evaluation can be reduced by replacing the analytic device models with tables 

relating device current to terminal voltages [Chawla75, Fan77). These tables can be derived from a 

one-time evaluation of the original analytic models, or filled directly from device measurements. In 

these simulators, the current charging/ discharging of each node capacitor is determined from the 

present node voltages; thus, the change in node voltage for each time step can be calculated directly 

and the cost of solving a set of simultaneous equations is avoided. Another approach to reducing the 

cost associated with dealing with large matrices of equation coefficients uses a relaxation technique 

[Lelarasmee81, Newton83} to successively approximate the voltage waveform for each nc;>de in the 

circuit. The solution for each node is computed separately, using the estimates of other node voltages 

computed during earlier iterations. Again. this. avoids the cost of solving a large set of simultaneous 

equations. It is also possible to skip the recalculation of a node's waveform during a particular 

iteration if it can be determined that the estimates for the surrounding network have not changed 

substantially since the last iteration (i.e., selective-trace comes to circuit analysis). These techniques can 

speed up circuit analysis by an order of magnitude or more, but the programs are still limited to 

circuits with a few thousand components. 

Recent work on simulators has tried to combine the computational advantages of gate-level 

simulation with the precision afforded by circuit analysis; this has lead to a new family of mixed-mode 

simulators: [Chen78, Gardner79, Hil179, Agrawal80, Newton80]. The designer can specify gate-level or 

functional simulation for simple or previously-verified pieces of the circuit, reserving the expense of 

circuit analysis for critical sections of the design. There are two problems that remain to be solved in 

mixed-mode simulators: conversion between the different representations of node values used by the 



- 140 -

different levels, and the related problem of choosing which type of simulation should be used for each 

subcircuit The designer can introduce errors into the simulation by an unfortunate choice of level at a 

critical point in the circuit: special care must be exercised to avoid discontinuities and other pitfalls of 

the numerical solution techniques. Like circuit analysis, mixed-mode analysis still requires the touch of 

an expert lest it produce misleading results. 

Clearly, it is only a matter of time before mixed-mode simulation becomes true hierarchical 

simulation in which the results of detailed low-level simulation are automatically summarized for use in 

subsequent high-level simulations. A hierarchical system would also decide what level of simulation is 

appropriate for each subcircuit Viewed in this light, RSIM can be thought of as the first step toward 

automatic identification of critical subcircuits. With a foot in both worlds. RSIM provides an easy path 

for descending into circuit analysis or for abstracting toward higher-level logic functions. 

Another approach to timing simulation that retains the speed advantages of gate-level simulation 

is determining the transition delays for each node before simulation begins. Some gate-level 

simulators [Szygenda72, Case78] allow the user to assign node delays. This type of simulator can be 

extended to handle MOS networks, after a fashion [Sherwood81, McDermott82]. The result is a system 

that can quickly calculate estimates for signal delays in a network. Unfortunately, the delays are not 

calculated automatically (and hence are prone to error or wishful thinking on the part of the designer}, 

and are approximate at best for pass transistor circuits so common in MOS circuits. A more effective 

technique for pre-computing delays is the use of the results of actual measurements or circuit analysis 

runs [Pilling73, Nahm80]. The delays are measured/calculated for "standard" gate configurations, and 

the results used to estimate the performance for the actual configuration of each node in the network. 

[Nahm80] mentions several shortcomings of this approach. Circuits with multiple inputs are difficult to 

analyze since a particular input transition is chosen when performing the analysis: also, the effect of 

overlapping input transitions, the slope of the input waveform, and dynamic changes in the output 

load are not considered. (Interestingly, all these problems are solved in a straightforward way by RSIM, 

at no great loss in execution speed, as evidenced by the performance· figures quoted by Nahm.} 

(Okasaki83] suggests overcoming these problems by expanding the set of "standard" configurations to 

include most of those commonly found in MOS circuits (complex and/or gates, pass gates, etc.}. The 

price for the increase in accuracy is a corresponding increase in the complexity of the model for each 

gate: his simulator spends a fair amount of time determining which pre-computed delay should be 

used, given the current configuration of the network. In summary, the performance variations 



- 141 -

introduced by non-standard circuit configurations. and changes in the network due to changing node 

values seem to offset any advantages offered by pre-determined transition delays. 

Not much has been published about models that are suitable for quickly determining the 

transition times for particular network configurations. A switched linear Thevenin model is d~ribed 

in [Glasser80]; a simulator based in part on this model is described in [famura83]. Multiple resistances 

are used to describe each transistor; conceptually, the appropriate resistance is selected by a rotary 

switch controlled by the transistor's gate voltage. Each resistance is chosen to model the actual 

channel resistance in a particular region of device operation. The linear model presented in this thesis 

can be viewed as a simplification of Glasser's model, with only two possible switch positions selecting 

between resistances of RtJ! ·and oo. A simple version of the linear model also appears in 

[Ousterhout83} and [Jouppi83]; both indicate that the model improvements suggested in Chapter 3 are 

needed in order to improve prediction accuracy. [Horowitz83] presents a simple model that describes 

the performance of a network of pass gates; his model is discussed in section 3.S. 

One simulator with many of the same aspirations as the switch-level simulators described in 

Chapter 5 is MOSSIM, written by Randy Bryant [Bryant81]. MOSSIM uses a switch transistor model 

similar to that presented here, but its calculations are organized differently since (1) node values are 

represented using a cross-product value set and (2) the analysis is based on a static decomposition of 

the network. A major difference in the simulation calculation comes in the handling of X values and 

their effect on the surrounding network. Bryant handles such values in a separate stage of the 

computation, using global knowledge of the network configuration to resolve values of subnetworks 

connected by X transistors. (Other differences between the two approaches are discussed in Chapters 

2 and 5.) The extra complexity of his algorithms results in some degradation in simulator performance 

over that achieved by the simulators described here. 



- 142 -

APPENDIX ONE 

Proof of Lemma 5.3 

umma 5.3. Let W. X. and Y be network states. If W -1 X and W -1 Y, then 
there exists a network state Z such that X - Z and Y - Z. 

Recalling how the update operation works, it is not hard to believe that the Lemma is true. The value 

of a node indicates the resistance of paths from the node to voo and GND. An update exchanges path 

information across a switch, and the U operation ensures that information is never lost (the indicated 

resistance to an input can never increase). Intuitively, an update only adds information about possible 

paths to the network state, so no matter what switch is chosen for an update, one can also go back to 

other switches latter on. 

The proof is straightforward. demonstrating how a state Z can be constructed for each possible X 

and Y. The proof depends on some simple properties of the U operation and the switch function: 

AU A = A 
AUB =BUA 
a U switch(a, a) = a 
switch(a, switch(a, a)) = switch(a, a) 
switch(a, a U /J) = switch(a, a) U switch(a, /J) 

which can be verified directly from the definition of U and equation 5.9. 

(Al.l) 

If the two updates leading to states X and Y involve only one switch, X = Y and the Lemma is 

---------~--------------- -- --- ----- - ---- ----



- 143 -

trivially true. If two separate switches arc involved, there are three cases to consider which differ in 

the number of nodes affected. 

A-GJ-e R 

~CA 
c-Q-n 

B 

(a) Case 1 (b) Case 2 (c) Case 3 

Figure Al.1. Three cases in proof of Lemma 5.3 

For notational convenience, define the functions f and g to describe the effects of switch 1 and 2 

respectively: 

f (a):aswitch(a1, a) 

g(a):aswitch(a2, a) (Al.2) 

Each of the two updates is labeled by the switch it operates on; for example, S 1 refers to an update 

involving switch 1. A sequence of updates is written as S;Sj. which is taken to mean update S;, 

followed by update Sj. 

Case 1: no nodes in common. As the following diagram indicates, when the updates have no nodes in 

common, they result in the same state when applied in either order. 

Figure Al.2. State diagram when no nodes in common 



- 144. 

This is shown by considering the values for nodes A, B, C, and D after each update: 

sequence A B c D 

S.l AU flB) BU tlA) c D 

s.i~ AU 1\8) BU t\A) cu g(I>) DU g(Cl 

Si A B CU g(D) I> U g(C) 

~ AU t\R) BU tlA) CU g(D) DU g(C) 

The final states of the two sequences are the same, demonstrating the desired network state, Z. 

Case 2: one node in common. As the following diagram indicates, when the updates have one node in 

common, S1S2S1 is equivalent to S2S1S2. 

syw"2 
x y 

s2 I I s1 
p Q 

s~~ z 

Figure Al.3. State diagram when one node in common 

This is shown by considering the values for nodes A, B, and C after each update: 

sequence A B c 
~ AU tlB) BU tlA) c 
~~ AU tlB) BU fl.A) U &(C} C U g(B U f{A)) 

~S-1Si A U tlB) U ttB U f(A) U g(C)) B u fl.A) u AC> u tlA u fl.B)) C U g(B U tlA)) 

~ A BU g(C) cu &(8) 

SiS..l. A U tlB U g(C)) B U g(C) U f{A) CU g(B) 

s1si~ A U tl.B U g(C)) B U g(C) U f{A) U g(C U g(B)) C U g(B) U g(B U g(C) U f{A)) 

Using the identities in equation Al.l, the final values of A, B, and C for each sequence can be 

simplified to 

Afinal = A U f(B) U f(g(C)) 

Bfinal = B U g(C) U /(A) 

Cfinal = C U g(B) U gif(A)) 

The final states of the two sequences arc the same, demonstrating the desired network state, Z. 

(Al.3) 

Case 3: two nodes in common. As in Case I, when the updates have no nodes in common, they result 

in the same state when applied in either order. This is shown by considering the values for nodes A 



- 145 -

and B after each update: 

sequence A B 

~ AU 1{8) BU f{A) 

~s..i A U f{B) U g(B U f{A)) B U f{A) U ~A U f{B)) 

S.1. AU g(B) BU g(A) 

~~ A U f{B U g(A)) B U g(A) U f{A U g(B) 

Again. using the identities in equation Al.1. the final values of A and B for each sequence can be 

simplified to 

A.final = A U /(B) U g(B) 

B.finaJ = B U g(A.) U /(A) (Al.4) 

The final states of the two sequences are the same. demonstrating the desired network state. Z. I 



- 146 -

APPENDIX TWO 

RSIM Calibration Tables for a 5µ. nMOS Process 

RSIM's transistor model relies in part on three modeling resistances for each transistor in the 

network: 

Rsratic 

Rdyn/ow 

RtJynhtgh 

for calculating Vihev, 

for calculating the transition time for high-to-low transitions, and 

for calculating the transition time for low-to-high transitions. 

These resistances are chosen for each transistor on the basis of its geometry. type, and usage in the 

circuit. The static resistance is chosen to obtain a good prediction for the 0-output voltage of a logic 

gate. Actually this constrains only the ratio of the n-channel and pullup static resistances, so there is 

considerable freedom in choosing these values. 

The dynamic resistances for each transistor. type are specified in the following diagram. Because 

of their special nature, depletion devices configured as pullups. are treated separately from other 

depletion devices. 



. 147. 

transistor type Rdynlow Rdynhigh 

n·channcl Tables A2.l & A2.2 Table A2J 

depiction (sec text) Table A2.4 

pu11up - Table A2.5 

The tables appear at the end of this appendix. Rdynlow is not needed for a puUup, but might be 

needed for other configurations of depletion devices (e.g., if one appeared in a pu11down path). If 

desired, a very high Rdynlow can be specified for depletion devices to flag the use of a depletion device 

in a puUdown path. 

The tables below were prepared by analyzing the simple SPICE experiments proposed in section 

2.4. As mentioned in that section, more sophisticated experiments might be more appropriate for 

designers who wish to push RSIM to its limits. These tables are used by examples in the thesis; for 

actual simulation, some of the values should be derated (increasing the resistance) to ensure 

conservative estimates. 

The experiments were run using version 20.5 of SPICE with the following device models (a 

typical 5p. nMOS process): 

MODEL ENH NMOS (LEVEL=2 VTO=l.O PHI=0.66 GAMMA=0.4 CGS0=4.5E-10 PB=0.86 

JS=lE-18 CJ=7 .2E-5 CJSW=3.6E-10 TOX=lE-7 NSUB=1.0E15 XJ=lE-6 LD=O. 7E-6 

U0=690UCRIT=1E6 UEXP=O. 12 MJ=O. 5 MJSW=O. 27) 

MODEL DEP NMOS (LEVEL =2 VT0=-3. 3 PHI =O. 55 GAMMA=O .47 CGS0=4. 5E-10 PB=O. 85 

JS=lE-18 CJ=7 .2E-5 CJSW=3.6E·10 TOX=1E·7 NSUB=1.0E15 XJ=lE-6 LD=O. 7E·6 

U0=690 UCRIT=1E5 UEXP=0.12 MJ=0.5 MJSW=0.27) 

Rise time is measured as the length of time needed for an output to rise from 0 volts to 2.134 volts -

the balance point of a 4:1 invener built using this process. (Section 3.3.1 explains why the balance 

point is chosen as the threshold.) Fall time is the length of time needed for an output to fall from S 

volts to the threshold. 

Note that widths and lengths are shown in microns, and the table values are in units of Kil per 

square of channel; one must multiply the appropriate table entry by the number of squares of channel 

(lcngth+width) to get a transistor's resistance. For table entries marked "•", no value is available 

because of a SPICE bug. 



- 148 -

Renh 
Length 

5 10 20 30 40 so 100 
5 8.7 13.6 16.2 17.1 17.S 17.8 18.4 

10 8.8 13.7 16.2 17.1 17.6 17.8 18.5 
20 8.8 13.8 16.3 17.3 17.8 18.0 18.9 

Width 30 9.0 13.8 16.5 17.4 17.9 18.2 19.2 
40 9.6 14.0 16.6 17.6 18.1 18.S 19.6 
50 10.0 14.0 16.8 17.7 18.3 18.7 20.0 

100 10.0 15.0 17.0 18.7 19.3 19.8 21.9 

Table A2.1. Channel resistance(KOIDJ for n-channe/ pulldowns 

Renh-thresh 
Length 

5 10 20 30 40 50 100 
5 16.0 26.3 31.5 33.3 34.1 34.6 35.6 

IO 16.6 26.9 32.1 33.7 34.6 35.0 35.9 
20 17.6 28.0 32.9 34.4 35.1 35.S 35.S 

Width 30 18.6 28.8 33.S 34.8 35.4 35.8 36.4 
40 19.2 29.6 33.8 35.1 35.7 36.0 36.6 
50 20.0 30.0 34.3 35.3 35.9 36.2 36.8 

100 22.0 31.0 35.S 36.3 36.8 37.0 37.6 

Table A2.2. Channel resistance (KO/OJ for n-channe/ pulldowns with threshold drops 

Renh-sf 
Length 

5 IO 20 30 40 50 100 
5 12.6 22.8 28.8 31.2 32.5 33.S 36.7 

10 12.8 23.1 29.5 32.2 34.0 35.4 40.5 
20 12.8 23.6 30.8 34.3 26.9 39.0 48.1 

Width 30 13.2 24.3 32.1 36.S 39.8 42.7 55.7 
40 13.6 24.8 33.6 38.5 42.7 46.4 63.3 
50 14.0 25.S 35.0 40.7 45.6 SO.I 70.9 

100 14.0 28.0 41.S 51.3 f>0.3 68.6 -
Table A2.3. Channel resistance (KO/OJ for n-channel source-followers 



-149-

Rdep-sf 
Length 

5 10 20 30 40 so 100 
5 3.0 4.3 5.0 5.3 5.4 5.6 6.0 

10 3.0 4.3 5.1 5.4 5.1 5.9 6.6 
20 * 4.4 5.3 S.8 6.2 6.4 7.8 

Width 30 * 4.5 5.6 6.2 6.6 7.0 8.9 
40 * 4.8 5.8 6.5 7.1 7.6 10.l 
50 * 5.0 6.0 6.8 1.5 8.2 11.3 

100 * * 7.5 8.7 10.0 11.2 17.2 

Table A2.4. Channel resistance (Kn/DJ for depletion source-followers 

Rdep 
Length 

5 10 20 30 40 so 100 
5 8.8 15.l 18.6 19.9 20.4 20.8 21.6 

10 8.8 15.2 18.7 19.9 20.S 20.8 21.6 
20 * 15.2 18.8 20.0 20.6 21.0 21.7 

Width 30 * 15.3 18.9 20.1 20.7 21.0 21.8 
40 * 15.5 19.0 20.l 2-0.8 21.l 21.9 
50 * 15.5 19.0 20.3 20:9 21.3 22.0 

100 * * 19.5 20.7 21.5 21.8 22.5 

Table A2.5. Channel resistance (KnlD) for depletion pullups 



. 150 -

APPENDIX THREE 

Approximation for Resistor Divider and Series Resistor 

As part of the incremental computation for the Thevenin equivalent of a network, it is necessary 

to approximate a resistor divider and series resistance (figure A3.l(a)) by a simple resistor divider 

(figure A3.l(b)). 

(a) initial network (b) approximation 

Figure A3.1. Initial resistor network and desired approximation 

As usual, each resistance is potentially a resistance interval. An exact choice for the modeling 

resistance is impossible (as will be shown below) so the goal of this appendix is the choice a suitable 

approximation. 

Consider a resistor divider with pullup resistance P and pulldown resistance Q. 

-----~--------~~---- ------- - ------



- 151 -

Rthev 

(a) resistor divider (b) Thevenin equivalent 

Figure A3.2. Resistor divider and Thevenin equivalent 

The parameters of the Thevenin equivalent are 

Vrhev = ~ and Rthev = P 11 Q P+Q 
(A3.l) 

which can be rearranged as linear equations relating Rthev and V1hev: 

Rthev = P Vrhev and Rthev = Q (1 - Vrhev) (A3.2) 

If P and Qare intervals - P = [P1, Ph] and Q = [Qr. Qh] - then the Thevenin parameters also are 

intervals: 

and (A3.3) 

If one plots the Thevenin parameter values (Rihev vs. Vrhev ), as P and Q are varied independently 

over their respective intervals, equation A3.3 suggests the resulting area would be rectangular, but this 

is not the case, as is illustrated by the following figures . 

• 

1 vthev 

(a) P, Q constant 

l vthcv 

(b) P constant, Q varying 

vthev 1 

(c) P varying, Q constant 

Figure A3.3. Thevenin plots as P and Q are varied one at a time 

Equation A3.2 tells us that if, say, Q is held constant and P is varied, the plot is a straight line of slope 

----------------------- - --- -- ------



- 152 -

Q, which, if extended. would intersect the Rrhev axis at Vrhn = 1 (see figure A3.3(c)). When both P 

and Q are varied (see figure A3.4). the plot produces a diamond-shaped quadrilateral, and not a 

rectangle. 

vthev 

Figure A3.4. Thevenin plot as P and Q are varied simultaneously 

Although the limits of Rihev and Vihev are the ones shown in equation A3.3, certain combinations of 

Thevenin parameters pennitted by the equation are clearly ruled out by the diagram above. 

If a series resistance R is now added, the resulting Thevenin plot is shown in the following 

figure. 

vthev 

Figure A3.5. Thevenin plot when series resistance is added 

The result is not a plot of a resistor divider at all. In order to approximate the circuit by a divider, a 

decision is needed concerning which infonnation to preserve with the approximation. 

Since the approximation under development is used to calculate Vr11ev. it is important to preserve 



• 153 -

information about the maximum and minimum of the circuit's voltage. This constraint fixes the right 

and left vertices of the diamond. The top and bottom vertices are constrained by the choice of 

resistance information to preserve; since it is better to overestimate than to underestimate resistances, 

the minimum value of Rrhev is preserved. The resulting divider is shown graphically in the following 

figure. The voltage constraints arc shown as dashed vertical lines; the resistance constraint as the 

circled vertex. 

Figure A3.6. Thevenin plot showing approximating divider 

The values for A1 and B1 are determined by the second constraint and equation A3.2: 

and (A3,4) 

This fixes the two lines that form the bottom half of the diamond. Next, the values of Ah and Bh are 

chosen so that the left and right vertices of the diamond have the same Vr1in coordinates as in figure 

A3.5: 

and (A3.5) 

Solving equations A3.4 and A3.5 for the parameters of the approximating divider yields: 

(A3.6) 



- 154 -

Note that all resistances arc greater than the minimum resistance of the series rcsi:;tor (R1 ). A 

different choice of what resistance information to preserve (as was made in early versions of RSIM}, 

might cause Ai and B1 to be less than R1, leading to pessimistic voltage predictions for some n:-.10s 

circuits. 



[Agrawa180) 

[Baker80] 

[Barzilai83) 

[Bel181] 

[Bryant79] 

(Bryant81] 

[Case78] 

[Chawla75] 

(Chen78) 

[Curry74) 

[Denneau82] 

[Fan77] 

[Flake80) 

[Flake83) 

[Gardner79] 

- 155 -

REFERENCES 

V. Agrawal, et al, "A Mixed-mode Simulator," Proceedings of 17th Design 
Automation Conference, June 1980. 

C. Baker. Artwork Analysis Tools for VLSI Circuits, M.1.T. Laboratory for 
Computer Science TR-239, May 1980. 

Z. Barzilai, et al, "Simulating Pass Transistor Circuits using Logic Simulation 
Machines," Proceedings of 20th Design Automation Conference, June 1983. 

A. Bell, M. Stefik, and L. Conway, The Deliberate Engineering of Methodologies for 
Integrated System Design, Knowledge-Based VLSI Design Group, Xerox PARC, 
Memo KB-VLSl-81-3 (working paper), April 1981. 

R. Bryant, PhD thesis proposal M.I.T. Department of Electrical Engineering and 
Computer Science, December 1979. 

R. Bryant, Logic Simulation of MOS LSI, M.l.T. Laboratory for Computer 
Science TR-259, 1981. 

G. Case, "SALOGS-IV - A Program to Perfonn Logic Simulation and Fault 
Diagnosis," Proceedings of 15th Design Automation Conference, June 1978. 

B. Chawla, H. Gummel, and P. Kozak. "MOTIS - An MOS Timing Simulator", 
IEEE Transactions on Circuits & Systems, Vol. CAS-22, No. 13, December 1975. 

R. Chen and J. Coffman, "Multi-Sim, A Dynamic Multi-Level Simulator," 
Procec:dings of 15th Design Automation Conference, June 1978. 

H. Curry and R. Feys, Combinatory Logic, North-Holland Publishing Company, 
Amsterdam, 1974. 

M. Denneau. "The Yorktown Simulation Engine," Proceedings of 19th Design 
Automation Conference, June 1982. 

S. Fan, M. Y. Hseuh, A. Newton, and D. Pederson, "MOTIS-C: A New Circuit 
Simulator for MOS LSI Circuits," Proceedings IEEE International Symposium on 
Circuits and Systems, April 1977. 

P. Flake, P. Moorby, and G. Musgrave, "Logic Simulation of Bi-directional Tri­
state Gates." Proceedings of IEEE International Conference on Circuits and 
Computers, October 1980. 

P. Flake, P. Moorby, and G. Musgrave, "An Algebra for Logic Strength 
Manipulation," Proceedings of 20th Design Automation Conference, June 1983. 

R. Gardner and P. Weil, "Hierarchical Modeling and Simulation in VISTA," 
Proceedings of 16th Design Automation Conference, June 1979. 



- 156 -

[Glasser80] L. Glasser, The Analog Behavior of Digital Integrated Circuits, M.l.T. VLSI Memo 
No. 80-36, December 1980. 

[Harrison77] W. Harrison, "A New Strategy for Code Generation - the General Purpose· 
Optimizing Compiler." Proceedings of Fourth ACM Symposium on the Principles of 
Programming Languages, 1977. 

[Hil179) D. Hill and W. vanClccmput, "SABLE: A Tool for Generating Structural. Multi­
level Simulations," Proceedings of 16th Design Automation Conference, June 1979. 

[Hillis81] W. D. Hillis, The Connection Machine, M.I.T. Artificial Intelligence Laboratory 
Memo No. 646, September 1981. 

[Holt81] D. Holt and D. Hutchings, "A MOS/LSI Oriented Logic Simulator," Proceedings 
of 18th Design Automation Conference, June 1981. 

[Horowitz83] M. Horowitz, "Timing Models for MOS Pass Networks," Proceedings of the IEEE 
International Symposium on Circuits and Systems, 1983. 

[Iler83] J. Iler, A VLSI Circuit Recognizer for Enhancing Simulator Accuracy, MS Thesis, 
M.I.T. Department of Electrical Engineering and Computer Science, January 1983. 

[Jouppi83] N. Jouppi, "TV: An nMOS Timing Analyzer," Proceedings of the Third Caltech 
VLSI Conference, 1983. 

(Koppel78) A. Koppel, S. Shah, and P. Puri, "A High Performance Delay Calculation Software 
System for MOSFET Digital Logic Chips," Proceedings of 15th Design Automation 
Conference, June 1978. 

[Lelarasmee81] E. Lelarasmee, A. Ruehli, and A. Sangiovanni-Vincentelli, The Wavej'onn 
Relaxation Method for Time Domain Analysis of Large Scale Integrate Circuits, 
Memorandum No. UCB/ERL M81/75, Electronics Research Laboratory, 
University of California, Berkeley, June 1981. 

[McDermott82] R. McDermott, "Transmission Gate Modeling in an Existing Three-value 
Simulator," Proceedings of 19Jh Design Aulomalion Conference, June 1982. 

[Mead80J C. Mead and L. Conway, ln1roduc1ion to VLSI Sys/ems, Addison-Wesley, 
Massachusetts, 1980. 

[Nagel75] L. Nagel, SPICE2: A Computer Program to SimulaJe Semiconductor Circuits, ERL 
Memo No. ERL-M520, University of California. Berkeley, May 1975. 

[Nahm80) H. Nham and A. Bose, "A Multiple Delay Simulator for MOS LSI Circuits", 
Proceedings of 17th Design Automation Conference. June 1980. 

[Newton80] A. Newton, Timing. Logic and Mixed-mode Simulation for Large MOS Integrated 
Circuits, NATO Advanced Study Institute on Computer Design Aids for VLSI 
Circuits, Sogesta-Urbino, Italy, July/August 1980. 



- 157 -

[Ncwton83] A. Newton and A. Sangiovanni-VincentcJli, Relaxarion-based Electrical Simlllation. 
University of California, Berkeley, 1983. 

[Okasaki83] K. Okasaki. T. Moriya. and T. Yahara, "A Multiple Media Delay Simulator for 
MOS LSI Circuits," Proceedings of 20th Design Automation Conference. June 1983. 

[Ousterhout83] J. Ousterhout. "Crystal: A Timing Analyzer for nMOS VLSI Circuits." Proceedings 
of the Third Caltech VLSI Conference, 1983. 

[Penfield81] P. Penfield and J. Rubinstein, Signal Delay in RC Tree Networks. M.LT. VLSI 
Memo No. 81-40, January 1981. 

[Pfister82] G. Pfister, "The Yorktown Simulation Engine: Introduction," Proceedings of 19Lh 
Design Automation Conference, June 1982. 

[Pilling73] D. Pilling and H. Sun, "Computer-Aided Prediction of Delays in LSI Logic 
Systems," Proceedings of 10th Design Automation Workshop, June 1973. 

[SV80] A. Sangiovanni· Vincentelli, Circuit Simulation, NATO Advanced Study Insaitute on 
Computer Design Aids for VLSI Circuits, Sogesta·Urbino, Italy, July/ August 1980. 

(Sherwood81] W. Sherwood. "A MOS Modelling Technique for 4-State True-Value Hierarchical 
Logic Simulation," Proceedings of 18th Design Automation Conference, June 1981. 

[Stevens83] P. Stevens and G. Amout. "BIMOS, an MOS oriented multi-level logic simulator," 
Proceedings of 20th Design Automation Conference, June 1983. 

[Szygenda72] S. Szygenda, "TEGAS2 - Anatomy of a General Purpose Test Generation and 
Simulation System for Digital Logic," Proceedings of 9th ACM Design .Automation 
Workshop, June 1972. 

[Szygenda75) S. Szygenda and E. Thompson, "Digital Logic Simulation in a Time-Based. Table­
Driven Environment," IEEE Computer, Vol. 8, March 1975. 

rramura83] E. Tamura, K. Ogawa, and T. Nakano, "Path Delay Analysis for Hierarchical 
Building Block Layout System," Proceedings of 20th Design Automation Conference. 
June 1983. 

rrerman82] C. Terman, User's Guide to NET. PRESIM, and RNL. M.I.T. Laboratory for 
Computer Science, September 1982. 

rrhompson74] E. Thompson, et al. "Timing Analysis for Digital Fault Simulation Using 
Assignable Delays," Proceedings of I Ith Design Automation Conference, June 1974. 

[Ulrich73] E. Ulrich and T. Baker, "The Concurrent Simulation of Nearly Identical Digital 
Networks," Proceedings of 10th Design Automation Workshop, June 1973. 

[Ulrich76] E. Ulrich, "Non-integral Event Timing for Digital Logic Simulation," Procttdings 
of 13th Design Automation Conference, June 1976. 



[Vaucher75) 

[Weeks73] 

[Wulf75] 

[Wyatt83] 

[Zycad83} 

• 158. 

J. Vaucher and P. Duval, "A Comparison of Simulation Event List Algorithms," 
Communications of the ACM, April 1975. 

W. Weeks, et al, "Algorithms for ASTAP- A Network Analysis Program," IEEE 
Transaction on Circuit Theory, Vol. CT-20, November 1973. 

W. Wulf. et al, The Design of an Optimizing Compiler, American Elsevier, New 
York, 1975. 

J. Wyatt, et al, "Wavefonn Bounding for VLSI Timing," Proceedings IEEE 
International Conference on Computer Design, October 1983. 

LE-WOO Series Logic Evaluator Intennediate Fonn Specification,, Release 1.0, 
Zycad Corporation, Roseville, MN, 1983. 


