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Abstract 

PADL is a hardware description language for specifying the behavior and structure of packet 

communication systems. In such systems, hardware units called modules communicate by sending and 

receiving packets. The behavior of such a system can be specified by providing the algorithm it executes and 

the data structures it manipulates. On the other hand, the structure of a system is specified by giving the 

components or of the system and their interconnection. These components can be further specified 

structurally or behaviorally. The language constructs of PADL fall into two categories - those for behavior 

specification and those for structure specification. All these constructs which include the usual control 

constructs like conditionals and iterations, constructs for the packet oriented inter-module communication 

operations including a non-deterministic input operation, and facilities for data structuring. defining and 

invoking procedures, as well as for specifying, using and connecting modules, are described in this 

preliminary reference language manual. 

Keywords: Hardware description language, packet communication systems. 
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PADL - A Packet Architecture Description Language 

1. INTRODUCTION 

PADL (Packet Architecture Description Language) is a hardware description language for specifying 

the behavior and structure of packet communication systems. In a packet communication system, hardware is 

organized into modules which operate concurrently and communicate only by sending information packets to 

each other. This organization principle is particularly appropriate for modular, highly concurrent, hardware 

systems. The application of this principle has been illustrated in the design of a memory system [2] and in the 

design of highly parallel data-driven processor architectures (3). PADL is intended for use as a hardware 

specification tool in the construction of practical hardware systems based on these designs. 

In PADL a module can be specified from either a behavioral or a structural point of view. Behaviorally, 

a module receives input packets, processes them and generates output packets. The behavior of a module is 

specified by giving the algorithm it executes. and the data structures it manipulates. Structurally, a module is 

constructed as an interconnection of components. The structure of a module is specified by listing its 

components and the data paths between them. By providing for structural description, PADL explicitly 

recognizes structural composition and decomposition as important techniques in hardware design, and allows 

its user to develop hierarchical descriptions based on these techniques directly. 

The language constructs in PADL fall naturally into two categories, for describing module structure and 

module behavior. The interconnection of discrete components at many different levels of detail in hardware 

design can be conveniently described using the structure description facilities provided in PADL For 

behavior description, PADL contains the usual repertoire of control constructs, such· as conditionals and 

iterations. data structuring facilities, procedure definition facilities, and intermodule packet communication 

facilities. In addition PADL also contains a simple construct for specifying nondeterministic operation and a 

rich set of primitives for bit strings. Noticeably absent from PADL are constructs for specifying concurrent 

operations within a module. Activities in different modules, however, may proceed concurrently and are 

synchronized by exchanging information packets. Thus the only mechanism for introducing concurrency in a 

PADL description is to decompose a module into an interconnection of concurrently operating submodules, 

while preserving its input/output behavior. 
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A hardware designer uses PADL to define procedures, complex data types, and new module types. 

He/she develops a library of definitions which he/she may then extend by either refining or building upon 

these definitions. This library is organized into a number of textual units each of which may contain one or 

more of these definitions. A definition may also refer to definitions in other textual units. Each such 

reference must be accompanied by enough typing information to allow complete type checking within each 

individual textual unit This reference manual explains the language constructs provided in PADL for 

defining procedures, data types and modules. The organization of a designer's library of definitions, and the 

mechanisms for associating external references in a textual unit with other textual units in such a library are 

left unspecified. 

1.1 Acknowledgements 

PADL builds upon the work of several language development projects at the M.l.T. Laboratory for 

Computer Science and at the M.I.T. Lincoln Laboratory. Its structure description facilities are closely related 

to those provided in HISDL (6] and its behavior description facilities are based on those provided in ADL (5), 

HEX [4], and VAL [l]. Its data type facilities are based on those provided in CLU (7, 8]. 

We acknowledge the contribution of Professor Jack Dennis whose support, comments and criticisms 

have been useful during the design of the language and the preparation of this manual. The mechanism for 

handling values in PADL is borrowed from VAL, developed by him and Bill Ackerman. The latter has been 

particularly helpful in the preparation of this manual and his help is deeply appreciated. Some sections of this 

manual are adaptations of his work on VAL. The preparation of this manual has also been influenced by the 

feedback from the first users of PADL: they are Tam-Anh Chu, Guang-Rong Gao and Cindy Gilbert. Jim 

Holderle through his work on the PADL parser, has been very helpful in preparation of this manual by 

pointing out the bugs in the drafts of this manual. Others who have provided helpful comments and 

criticisms are Ken Todd and Tom Wanuga. 

1.2 References 

[l] W. B. Ackerman, and J. B. Dennis, VAL - A Value-oriented Algorithmic Language preliminary 
reference manual, Technical Report MIT/LCS/TR-218, Laboratory for Computer Science, M.I.T., 
Cambridge, Massachusetts, June 1979. 

[2] J. B. Dennis, "Packet communication architecture," Proceedings of the 1975 Sagamore Computer 
Conference on Parallel Processing, IEEE (August 1975), 224-229. 
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· [3] J. B. Dennis, and D. P. Misunas, "A preliminary architecture for a basic data-flow processor," 
Proceedings of the Second Annual Symposium on Computer Architecture, IEEE (January 1975), 126-132. 

[4] J.B. Dennis, HEX - Hardware EXperimental description notation, Course Notes for 6.823, Department 
of Electrical Engineering and Computer Science, M.I.T., Cambridge, Massachusetts, Spring 1981. 

[5] C. K. C. Leung, "ADL - An Architecture Description Language for packet communication systems," 
Computation Structures Group Memo 185, Lab. for Computer Science, M.l.T. October, 1979. An 
abbreviated version of this paper is published in Proceedings of the 1979 International Symposium on 
CH D L and their Applications, IEEE (October 1979), 6-13. 

[6] W. Y-P. Lim, "HISDL - A structure description language," Communications of the ACM 25, 11 
(November 1982), 823-830. 

(7] Liskov, B.H., et al., "Abstraction mechanisms in CLU," Communications of the ACM 20, 8 (August 
1977), 564-576. 

[8] Liskov, B.H., et al., CLU reference manual, Technical Report MIT/LCS/TR-225, Laboratory for 
Computer Science, M.I.T., Cambridge, Massachusetts, October 1979.' 
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2. OVERVIEW OF THE PADL LANGUAGE 

In PADL, a packet communication system is described as a network of modules. F.ach module can 

either be a behavior or structure module. It is a behavior module if it is described by a specification of how it 

processes data and transmits/receives packets. A structure module, on the other hand, is described as a 

network of modules. Structure modules facilitate the description of systems using structure composition and 

decomposition techniques. The complete specification of a system comprises a PADL description, which is a 

collection of function definitions and type definitions. A type definition specifies either a new data type or a 

new module type. A definition for the latter is termed a module type definition. A module type specifies the 

behavior or structure of a class of hardware modules, lists the input and output ports for modules of the class, 

and gives the data type of packets passing through each port The system being described is itself a module 

type. The types of all modules that used as components in the specifications of the system must be defined. 

For the communication between modules, the type of communication used is packet transmission and is 

restricted to be single source multiple destinations. 

A port of a module type is typed by the type of the data that can be communicated through it 

Furthermore a port can either be an input or output port A class of modules can be specified by 

parameterizing the module type definition. When a parameterized module type is instantiated, modules 

belonging to a subset of that class are selected by providing the appropriate parameters. All module types are 

global in the sense that they can.be instantiated as components in structure module type definitions provided 

that recursive use of the same module type is well formed. 

The structure of a structure module is specified as a list of components and a specification of how the 

components are connected. F.ach component is a named instantiation of a module type. A connection 

between components is specified by relating ports. Such a relationship can bC specified in two ways -

explicitly by specifying the list of the ports that are connected together or implicitly by specifying the ports of 

other components that are connected to a given component Conditionals and iterative constructs are 

provided for facilitating the recursive and iterative specification of structure module types; the latter being 

particularly useful in specifying highly regular structures. PADL specifications used for connections are 

termed connection specifications. 
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In the hierarchy of modules of a system, behavior modules are the lowest level modules. The behavior 

of a module is defined by specifying the operations that are performed with the packets received by the 

module. Such operations are termed actions and include operations for receiving and sending packets, as well 

as for manipulating state variables. Packets are received from and sent through ports using the from and send 

constructs. A packet can be received, nondeterminately, from any one of a group of ports using the 

from_either construct A packet received using this construct is tagged with the name of the receiving port 

The tagcase action is provided for selecting expressions based on the port name of the tagged packet 

PADL is a strongly typed language and the data types of all the packets and data used must either be 

primitive PADL data types or user defined data types. The primitive PADL data types are integers, bit strings 

(i.e. one dimensional arrays of bits}, arrays, records and tagged union types (i.e. data tagged by their types). 

These can be used to define new data types. Each primitive data type has a predefined set of operations all of 

which return values. Constructs are provided for constructing complicated expressions. Such constructs 

include the conditional construct, the let construct for associating values with names, and the ta1case 

construct for selecting one of a number of expressions based on the tag of a tagged union value. For 

manipulating array values. the forall construct is provided All these constructs yield values when evaluated. 

An expression constructed from these constructs can produce a series of values at each evaluation. However 

the number of values in the series is fixed for the expression. The number of values yielded is termed the 

arity of the expression. 

Frequently used expressions can be parameterized and defined as functions. A function definition is 

composed of the function name, a list of formal parameters and their types. a list of the types of the returned 

values, and the expression defining the function. Functions. like expressions, have no side effects and can be 

used where values are expected. 

Functions. expressions. actions. and connection specifications cannot be arbitrarily distributed iii a 

description. As previously stated, functions and expressions can only be used in places where values are 

expected. Actions can only be used inside module type definitions of behavior modules while connection 

specifications can only be used in structure module type definitions. Furthermore a module cannot directly 

access the state variables of another module. Any influence a module has on another can only occur through 

the explicit transmission of packets between the two modules. 
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2.1 Notation 

In the BNF presentation of the syntax, pairs of large curly braces { ... } indicate zero or more 

repetitions of the material within. Pairs of large square brackets [ ... ] indicate that the material within may 

appear at most once. 
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3. FORMAT OF PADL SPECIFICATIONS 

The ASCII character set is used in PADL. The only "control" characters used are the tab and newline 

characters. The elements in a PADL specification (i.e. the program elements) are operation and punctuation 

symbols, integer numbers (i.e. a sequence of digits without a decimal point), bit strings, names, subscripted 

names, and reserved words. 

The following are the operation and punctuation symbols: 

+ • I & II 
< > <= >= -- -= = 

·- -> % .-
( ) { } 

# @ 

Bit strings are sequences of bits. A bit string constant can be expr~d as a binary, octal or hexadecimal 

string. A binary string must be preceded by the single quote character while the # character must precede an 

octal string. In the case of a hexadecimal string, the string must be preceded by the @character. 

A name is a sequence of letters, digits, or underscores, beginning with a letter. It may be of any 

reasonable length and may be used as a module name, a module type name, a function name, a port name, a 

state variable name, a data type name, a value name, a record field name, or a ooeof tag name. These uses all 

have their own mechanisms for interpretation, and hence a name may be used without conflict for several of 

these purposes. For example, a record field name occurs only in a record type specification or record 

operation, and hence will never be confused with a value name. 

There are three forms of subscripted names in PADL. For values and state variables, subscripted names 

correspond to array names with the subscripts being the array index values. The other two forms of 

subscripted names are used for ports and components. Ute array names, subscript values can be used for 

these. The list of subscript values come after the name and are delimited by the pair of square brackets [ and] 

for array names, the pair of angle brackets < and > for port names, and the pair of curly braces { and } for 

component names. Each subscript value occurring in the list of subscript values is separated from each other 

by commas. Examples of subscripted names are A[15), B<O,S>, C{l, 2, 3}. 
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There is a set of reserved words that have special meanings in PADL. These words cannot be used as 

names or identifiers. In this manual these words are printed in boldface. 

The reserved words are: 

abs and array at 

begin bitstr construct cycle 

do else else if end 

endall cndcycle end for endfun 

end if cndlet endmod codstruct 

endtag eval exp external 

false for fora II from 

from.... either function if in 

inlet integer is let 

make max min mod 

module nil null oneof 

or otherwise outlet plus 

record repeat returns rotl 

rotr send shift shift 

structure submodule ta& tag case 

then times to true 

type until var where 

while 

Upper and lower case letters used in reserved words are not distinguished. However the letters of a 

name identifier must have consistent capitalization. 

The characters separating identifiers, names, reserved words, integer numbers and bit string constants 

are the space, tab, and newline characters. They may not appear between the individual characters 

representing one of these program elements. This restriction also applies to those operation symbols that have 

more than one character. For example in the "not equal .. operation symbol - =, the ""' and = characters 

cannot be separated by the space, tab, or newline character. In the case of the operation and punctuation 

symbols which are not alphanumeric characters, the separating characters are not required to separate them 

from alphanumeric strings. 
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A comment is delimited by the percent sign character at the bq~inning and t11e end of line character at 

the end. It is is equivalent to a space, and hence may be placed anywhere except within a program clement. 

Examples of names and constants: 

ABC3_Q 

34 

'0111100 

#074 

@3C 

% A name 

% An integer constant 

% A binary string 

% An octal string 

% A hexadecimal string 
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4. DATA VALUES AND DATA TYPES 

The entire collection of values that may be presented to or produced by PADL modules is the value 

domain of PADL. The value domain is subdivided into distinct disjoint subdomains that are the data types of 

PADL. There are basic types which include the familiar scalar values of computation; structured types in the 

form of arrays and records as defined by the language user in terms of simpler data types; and discriminated 

union types. 

4.1 Data Type Specifications 

A data type specification in PADL is a syntactic construct that specifies a data type. 

Syntax: 

<data type spec> : : = <basic data type spec> 

I <compound data type spec> 

I <data type name> 

<basic data type spec> : : = null I integer I bitstr ( [<subscript range> ) ) 

<compound data type spec> : : = array [ <data type spec> <subscript range> ) 

I record [ <field spec> { ; <field spec> } ) 

I oneof [ <tag spec) {; (tag spec>} ] (where <tag def> {. <tag def>} ] 

<subscript range> : : = <expression> : <expression> 

<field spec> : : == <field name> { , <field name> } : <data type spec> 

<tag spec> : : = (tag name> { , <tag name> } ( : <data type spec> ] 

<field name> : : = <name> 

<tag name> : : = <name> 

<tag def> : : = <tag name> { , <tag name> } = <tag value> 

<data type name> : : = <name> 

<tag value> : : = '(bit string> I #<octal string> I @<hexadecimal string> I <integer number> 

<bit string> : : = <binary char> { <binary char> } 

<octal string> : : = <octal char> { <octal char> } 

<hexadecimal string> : : == <hex char> { <hex char> } 

<binary char> : : = ? J <binary digit> 

<octal char> : : = ? I <octal digit> 

<hex char> : : = ? I <hexadecimal digit> 
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For the basic data types null and integer, the specification is simply the name of the type. The data type 

bitstr (i.e. a bit string represented as an one-dimensional array of bits) is specified by giving its name and the 

optional bounds specification of the index range used to enumerate the bit positions of the bit string. The 

bounds must be computable at compile time. By convention the leftmost bit is the most significant bit while 

the rightmost bit is the least significant All bit string operators are defined with respect to this convention. 

Its length is the difference between the bounds plus one. When the bounds are specified, they are separated 

by a colon. If the bounds are identical the bit string has unit length; if they are absent, they are both assumed 

to be 1. The bound before the colon is the number assigned to the the most significant bit (MSB) while the 

bound coming after the colon is the number assigned to the least significant bit (LSB). The bounds only 

affect the bit numbering convention they do not change the convention and internal representation used for 

bit strings. As an array, bitstr is special in the sense that automatic length adjustment takes place in some of 

its operators. 

Examples 

bitstr % A single bit 

bitstr[ O : 7] % A bit string of length 8 with bit 0 as the MSB 

bitstr[ 3 : 0] % A bit string of length 4 with bit 3 as the MSB 

For a compound data type, the specification consists of a type constructor giving the name of the 

compound type followed by the necessary additional information. 

The array type constructor gives the type of the elements of the array and the array bounds with the 

lower bound coming before and the upper bound coming after the colon in the bounds specification. AD 

array bounds have to be computable at compile time,, though ~ey do not have to be manifest constants. 

Unlike bit strings, alt array bounds must be specified such that the lower bound is before the colon and the 

upper bound after it 

Examples: 

array [ integer 1 : 100 ) 

array [ array [ integer 0 : 15 ] O 1023 ] 

% A one dimensional array 

% A two dimensional array 

The record type constructor gives the field names and the type associated with each field The field 

names used within any record specification must be distinct Where several field names are listed with one 

type, the fields are all of that type. 
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Examples: 

record [ I , J : integer : FLAG : bitstr ] 

record [ I : record [ X : array [ bitstr 1 O ] Y integer ] 

TE MP : integer ] 

A name may be used as a field name and as any other name (but not a reserved word) without conflict, 

since it is interpreted as a field name only in the record constructor and in record operations. The same field 

name may be used in several record types without conflict 

The oneof (union) type constructor gives the tags and the type associated with each tag. The tag names 

must be distinct. Where several tag names are listed with one type, the tags all indicate that type. If the colon 

and following type specification are omitted, the null type is assumed. In a oneof type specification, the 

numerical or bit encodings of the tags may optionally be specified using tr.e where clause. See 7.3 to see how 

these encodings are used. 

Examples: 

oneof [ ONE, TWO, FOUR ] where ONE = '001, TWO = '010, FOUR = '100 

oneof [ F I X : integer ; B I N : bitstr ] 

oneof [ TH IS : array [ integer O : 9 ] 

THAT, THE_OTHER : record [ C inteaer ; D : bitstr ]] 

As in the case of field names, a tag name may coincide with any other name without conflict, and the same tag 

name may be used in several union types without conflict 

Any type name used as a type specification must be defined by a type definition (see Section 4.S). 

4.2 Value Domains 

Each data type is a domain of values. Each domain is further characterized by the set of operations that 

may be used to create and transform values of the type. The operations for each data type of PADL are 

defined in Chapter S. 
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4.3 Basic Types 

The Null Type 

elements: oil 

The null type occurs in a distinguished union (oneof) type where in one or more alternatives no data 

value is required. 

The Bitstr Type 

elements: All bit strings up to some maximum length which is implementation 

dependent. The bit string ' of length 1 with bounds [1:1] is also 

denoted by true. The bit string 'O of length 1 with bounds [1:1] is 

also denoted by false. All bit strings are stored in binary fonnat 

The Integer Type 

elements: The integers between some limits which are implementation 

dependent. 

4.4 Compound Types 

For each data type defined by some PADL type specification T, an amzy type may be defined by the 

type specification arrayff lower-bound : upper-bound). The given upper bound must be greater than or equal 

to the given lower bound. If they are equal, the array has exacdy one element. · 

elements: A proper array value in array[T lower-bound : upper-bound] consists 

of a sequence of elements of type T. The number of elements in the 

sequence is upper-bound - lower-bound + 1. 

Record Types 

If T 1, ... , T k are PADL type specifications and N1, ... , Nk are distinct names. then 

record [ N 1 : T 1 ; • • . ; N k : T k ] specifies a record type. 

elements: Each proper value of the record type is a set of k pairs 
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{(N1, V 1). ... , (Nk, Vk)} where each Vi is an elementofT i· 

Union Types 

Each element of a union type is an element of one of several constituent types, accompanied by a t.ag 

which indicates the constituent type from which the element was taken. If T 1, ... , T k are type specificalions, 

and N 1, ... , N k are distinct names, then oneof [ N 1 : T 1 : • • • : N k : T k ] specifies. a union 

type. 

elements: Each proper element of the union type is a pair (Ni, Vi) where 

1 < i < k and Vi is an element of Ti. 

4.5 Data Type Definitions 

Syntax: 

<data type def) : : = type <data type name> = <data type spec> 

<data type name> : : = <name> 

A function definition may contain a number of data type definitions which specify user-named data 

types used in the function. Each data type definition specifies that a data type name denotes the dala lJpe 

represented by the given data type specification. The data type specification part of a data type defiailion 

may only contain data type names which have already been defined in other definitions. Recursion and 

mutual recursion are not permitted in data type definitions. Such data type definitions may be used to 

construct data types composed of array or record structures of unlimited depth. 

A name may be used as a data type name and as any other kind of name without conflict, since it is 

in~rpreted as a data type name only in well defined contexts i.e. whenever a data type specific.aOm is 

permitted. 
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5. OPERA TIO NS 

In this section we specify the sets of operations applicable to each data type of PADL. In the examples 

of notation, M and N stand for bit strings, I, J, K and L for integers, A and B for arrays, R for records, U for 

union (oncot) values, T for arbitrary types, and V for values of arbitrary type. 

5.1 Bit String Operations 

A rich set of operations is available in PADL for bit strings. For these operators, the least significant bit 

is the rightmost bit while the leftmost bit is the most significant 

operation notation functionality 

and M&N hiWI:. hiWr - hiWr 
A 

or MIN hiWJ:, lillill - l2iWl: 
not -M hiWr - l2i.WI: 
equal M==N l2iWI. hi.tS1c - l2iWl 
not equal M-=N .J2iW[. hlim - l2iWl: 
concatenate MllN l2iWI. hi.WI: - llimtt 
shift left shifl(M, J) .12iWJ:, ~ - hiWl: 
shift right shifr(M, J) l2itm. int=: - l2i1m 
rotate left rotl(M, J) J2iWr, in.tmI - l2iWl: 
rotate right rotr(M, J) 1litsU. int=: - l2iWl: 

and M&N 

The shorter argument is left-extended with O's to match the length of the longer argument The two bit 

strings are then ANDed bitwise to obtain a bit string of the same length as the longer argument. 

or MIN 

The shorter argument is left-extended with O's to match the length of the longer argument. The two bit 

strings are then ORed bitwise to obtain a bit string of the same length as the longer argument. 

not ... M 

The argument is bitwise complemented to obtain a bit string of the same length. 



-16-

equal M = = N 

The shorter argument is left-extended with O's to match the length of the longer argument. The two bit 

strings are then compared. The result is true if the two bit strings match at every bit position, false otherwise. 

not equal M -= N 

The shorter argument is left-extended with O's to match the length of the longer argument. The two bit 

strings are then compared. The result is false if the two bit strings match at every bit position, true otherwise. 

concatenate M II N 

Let the lengths of M and N be m and n, respectively. M II N returns a bit string whose length is m + n, 

formed by concatenating Mand N. The substring ofM II N consisting of its rightmost n bits is identical to N 

while the substring of M II N consisting of its leftmost m bits is identical to M. 

shift left shifl(M, J} 

The bits of the string M are shifted to the left by J positions. The leftmost J bits of M are truncated. The 

rightmost J bit positions of M are filled with zeroes. 

shift right shifr(M, J} 

The bits of the string M are shifted to the right by J positions. The rightmost J bits of M are truncated. 

The leftmost J bit positions ofM are filled with zeroes. 

rotate left rotl(M, J} 

The bits of the string Mare rotated to the left by J positions. 

rotate right rotr(M, J} 

The bits of the string M are rotated to the right by J positions. 

The operations on bit strings also include selection of substrings. For convenience an abbreviated 

notation is included for selecting substrings oflength 1. 

operation 

select substring oflength 1 

select substring 

notation 

M[J] 

M(J:K] 

functionality 

J2iW[. .iDlml: -+ hiWt 

J2iW[. inteaet ~ -+ l2iWt 
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The integer division operation computes the integer quotient of its arguments while the integer modulus 

operation returns the integer remainder of the division of its arguments. In either case, the second argument 

is the divisor. 

5.3 Array Operations 

The operations for the array data type array[ T lower-bound : upper-bound ] include element selection 

and subarray selection of a given array. Recall that an array value consists of a range defined by a low index 

LO (i.e. the lower bound), a high index HI (i.e. the higher bound), and a sequence of HI-LO+ 1 elements of 

the given type. 

operation 

select element 

select subarray 

Select element A(J] 

notation 

A[J] 

A[J:K] 

functionality 

fil:l:il{T), ~ - T 

film[f), iJllmr, ~ - mmff) 

This operation yields the element of the array A at index J. J must be within the range of the array, i.e. 

HI> J>LO. 

Select suba"ay A[J:K) 

This operation yields the array whose elements are those of the array A at indices J through K. J and K 

must be expressions with integer values within the range of the array, i.e. HI ~ J > K ~ LO. 

5.4 Record Operations 

The operations for a record type specified as T = record[ N 1 : T 1 ; ••• ; N k : T le ] where N 1 ... N k are 

the field names, and T 1 ••• T k are the corresponding types, are the following. 

operation 

create 

select1, 1 < i S k 

notation 

record( N 1 : V 1 ; ... ; N k : V k ] 

R. Ni 

functionality 



-19 -

Create record[ N 1 : V 1 ; ... : N k : V k ] 

This builds a record value { (N 1• V 1 ), ... , (N k, V k) } . All of the field names associated with the type 

of the record being constructed must appear in the list This operation is useful for initializing records. 

Select R. N 

This returns the value of the named field, that is, V 1 if N = N 1. 

5.5 Operations for union types 

The basic operations for a union type specified as T = oneof [ N 1 : T 1 : ... ; N k : T k ] are a create 

operation and a test of a tag. The tagcase control structure explained in Section 7.3 is the mechanism for 

accessing constituent values from a value of union type. In the following, N 1 •.. N k are the tag names, and 

T 1 ... T k are the corresponding constituent types. 

operation 

create1, 1 < i S k 

tag test1, 1 < i S k 

notation 

make T [ Ni : V ] 

is N1 (U) 

functionality 

The operations make T [ N : V ] and is N (U) are type-correct only if N is a tag name of the type T and 

V is of that constituent type. The result of make T [ N 1 : V ] is the pair (Ni : V) for any element V of T 1. 

The result of is Ni (U) is true if U = (Ni, anything), otherwise it is false. 

5.6 Type Conversion Operators 

Conversion operators are provided for converting between integers and bit strings. 

operation 

bit string to integer 

integer to bit string 

bit string to integer integer(M) 

notation 

integer(M) 

bitstr(J, K) 

functionality 

hitm ... iD.teBI 
integet ~ ... hllm 

The bit string M is considered as the binary representation of a non-negative integer and converted 
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·accordingly. If the length of the bit string M exceeds that used for implementing integers, Mis left truncated 

before the conversion is performed. Hence if integers are implemented as bit strings of length K and M is of 

length L, then the leftmost K-L bits of Mare dropped and the resulting truncated bit string of length Lis 

converted to an integer. 

integer to bit string bitstr(J, K) 

J is the argument to be converted into a bit string K bits long, and must be a non-negative integer. The 

binary representation of J is left-extended with O's or left-truncated as necessary to form a bit string of length 

K. 

5.7 Type Correctness of Operations 

In PADL the type of value produced by each expression can be determined by the translator from the 

properties of the operations as specified in this section. An operation in a PADL description is type correct if 

and only if the types of its argument expressions are the same as the argument types specified for the 

operation. Note that for each operator the types of the results are determined when the types of the 

arguments are known. 
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6. CONSTANTS, VALUE NAMES, AND EXPRESSIONS 

An expression is the basic syntactic unit denoting a tuple of values of some types. The arity of an 

expression is the size of the tuple of values it denotes. Two expressions are said to confonn if they have the 

same arity and the corresponding values are of the same type. The design of the PADL language is such that 

the arity and types of an expression, and hence the confonnity of two expressions, may be detennined by 

inspection of the program. The simplest type of expression of arity one is a constant, a value name, or an 

operation applied to other expressions of arity one. The simplest type of expression of higher arity is a series 

of expressions of arity one separated by commas. 

6.1 Constants 

A constant is a syntactic unit of arity one whose value and type are manifest from its form. 

Syntax: 

<constant> : : = nil I true I false I <integer number> I <bit string constant> 

<bit string constant> : : = '<bit string> I #<octal string> I @<hexadecimal string) 

<bit string> : : = <binary char> { <binary char> } 

<octal string> : : = <octal char> { <octal char> } 

<hexadecimal string> : : = <hex char> { <hex char> } 

<binary char> : : = ? I <binary digit> 

<octal char> : : = <binary char> I <octal digit> 

<hex char> : : = <octal char> I <hexadecimal digit> 

The only constant of the null type is the reserved word nU. 

The reserved words true and false denote the bit strings 'O and '1 respectively. 

The only constants of the integer type are non-negative integers. 

A binary bit string constant is a bit string preceded by a single quote, e.g., '001100. A bit string constant 

may also contain the special "don't-care" symbol "?",e.g. '00??11. A bit string constant containing one or 

more don't-care symbols denotes the set of bit strings which matches it at all positions not marked by "?". 

Such a bit string constant may only be used for identifying an arm in a tagcase construct 
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A bit string constant can be denoted as an octal string, which consists of octal digits preceded by the 

"#"character, or a hexadecimal string consisting of hexadecimal digits preceded by the"@" character. The 

letters in the hexadecimal string can be upper or lower case. For example, #1777 and @JFF (or@Jft) both 

denote the binary string '001111111111. The "don't-care" symbol "?" can also be used. Hence #0?67 is 

equivalent to '000???110111 while @O?A is equivalent to '0000????1001. 

There are no array, record, or union constants, but various constructing operators may be used with 

constant arguments to denote "constant" arrays, records, or union elements. 

Examples: 

record [ A : 6 ; B true ] 

make T [ A : 6 ] 

6.2 Value names 

(record constant) 
(constant of union type T) 

A value name is a name which denotes either a value received or sent through a module port, or a single 

computed value of a given type. Every value name is introduced either in the header of a module type 

definition (if the value name is a formal parameter or a port of the module being defined), in state variable 

declarations, in the header of a function definition (if the value name is a formal argument of the function 

being defined) or in a program construct such as a let block or a forall block. In every case, each value name 

has a scope and a type. The scope of a value name is the region of program text in which a reference to the 

value name denotes its value. The scope and type of any value name may be determined by inspection of the 

program construct that introduces it 

The scope of a value name introduced as a parameter or module port is the entire module type 

definition, less any inner scopes that re-introduce the same value name. The type of such a value name is 

given by a type declaration in the module header (see Section 10.2). 

Example: 

type M = module {inlet INPUT : integer: outlet OUTPUT bitstr} 

<rest of module definition> 
endmod 
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State variable declarations may be given only in module type definitions in which module behavior is 

specified. Syntactically they are placed immediately after a module header and have the same scope as the 

port names introduced in that header. 

Example: 

var V integer (state variable declaration, see Section 10.2.1) 

The scope of a value name introduced as a formal argument of a function is the entire function 

definition, less any inner scopes that re-introduce the same value name. The type of such a value name is 

given by a type declaration in the function header. Its value is the value of the corresponding argument for 

the relevant invocation of the function. In the following example, an appearance of value name X in the 

expression denotes the value of the argument with which F was invoked. Its type is integer. 

Example: 

function F ( X : integer returns bitstr ) 

<expression> 

endfun 

The scope of a value name introduced in a program construct such as a let or forall block is some region 

of the construct that depends on the nature of the construct. less any inner scopes that re-introduce the same 

value name. The manner in which the type and value of the value name are established depends on the form 

of the construct 

Example: 

let 

X : integer :ii 3 : 

<another declaration or definition> 

<another declaration or definition> 

<another declaration or definition> 

in <expression> 

end let 

The scope ofX is the entire block, including the expression after in, less any inner scopes that re-introduce X. 

Its type is integer; its value is 3. The let construct is described in Section 7.2. If this block had appeared 

within the scope of X introduced by some outer construct. that outer scope, with its value and type, would 

disappear within this let block. 
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6.3 Expressions 

Expressions are built out of smaller expressions by means of operation symbols. 

Syntax: 

<expression> : : = <levell exp> I <expression> , <levell exp> (the arities are added) 

In the next eight lines, the operator may only be used if all operands are of arity one. 

Syntax: 

<levell exp> : : = <level2 exp> I <levell exp> I <level2 exp> (bit string "or") 

<leve12 exp> : : = <leve13 exp> I <level2 exp> & <leve13 exp> (bit string "and") 

<leve13 exp> : : = <level4 exp> I - <level4 exp> (bit string "not") 

<level4 exp> : : = <levels exp> I <level4 exp> <relational op> <leve~S exp> 

<levels exp> : : = <level6 exp> J <levels exp> II <level6 exp> (bit string concatenate) 

<level6 exp> : : = <level7 exp> I <level6 exp> <adding op> <level7 exp> 

<level7 exp> : : = <level8 exp> I <level7 exp> <multiplying op> <Ieve18 exp> 

<level8 exp> : : = <primary> I <unary op> <primary> 

<relational op> : : = < I < = I > I > = I = = I -= 
<adding op> : : = + I -
<multiplying op> : : = • I I 
<unary op> : : ,. + I -

<primary> : : = <constant> I <value name> (these have arity one) 

I (<expression>) (same arity as expression in parentheses) 

I <function invocation> (arity is the number of values returned) 

I <array ref> I <array generator> (these have arity one) 

I <record ret> I <record generator> (these have arity one) 

I <oneoftest> I <oneof generator> (these have arity one) 

I <prefix operation> (this has arity one) 

I <conditional exp> 

I <Ietin exp> 

I <tagcase exp> 

I <forall exp> 

(the following four constructs 

are discussed Chapter 7) 
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<value name> : : = <name> 

In a function invocation, the arity of the expression in parentheses must be equal to the number of arguments 

required by the function. For an array reference, the arity of the expression used in the subscripts must be 

equal to the dimension of the array. 

Syntax: 

<function invocation> : : = <function name> (<expression>) 

<function name> : : = <name> 

<array ref> : : = <primary> [<subscripts>] 

<record ref> : : = <primary> • <field name> 

<subscripts> : : = <expression> 

In the next 8 forms, all expressions must have arity one and the resultant expressions always have arity one. 

Syntax: 

<array generator> : : =<primary> [<subscript range list>] 

<subscript range list> : : = <subscript range> { , <subscript range> } 

<subscript range> : : = <expression> : <expression> 

<record generator> : : = record [<field name> : <expression> { ; <field name> : <expression> } ) 

<field name> : : = <name> 

<oneof test> : : = is <tag name> (<expression>) 

<oneof generator> : : = make <data type spec> [(tag name> : <expr~on>] 

<tag name> : : = <name> 

The arities of the argument expressions for a pre.fix operation are as shown, and the result arity is always one. 



- 26-

Syntax: 

<prefix operation> : : = abs (<expression>) 

exp (<expression>) 

I mod (<expression>) 

I shifl (<expression>) 

I shifr (<expression>) 

I rotl (<expression>) 

I rotr (<expression>) 

I bitstr (<expression>) 

I integer (<expression>) 

(arity = 1) 

(arity = 2) 

(arity = 2) 

(arity = 2) 

(arity = 2) 

(arity = 2) 

(arity = 2) 

(arity = 2) 

(arity = 1) 

Note that operators obey the customary precedence rules: unary plus and minus have highest priority; 

multiplicative operators(•, /)are next; additive operators(+, -) are next; "II" is next; relational operators 

(<, < =, >. > =, =, - =)are next;" ... " is next;"&" is next; and "I" has the lowest priority. 

Examples of expressions of arity one: 

A 

true 
'001100 

'001 II A 
- X + 3 • B 
3 • ( x + y ) 
func(3+X, Y) 
A [ 3 : Z ] 
A [ 4, J ] 

R • X • Y • ZZ 
array [ 10 2 ] 

record [ A : P ; B Q ] 
is A (U) 

make T [A : 3] 

if P then 4 else 5 endif 

rotr(M,3) 

bitstr( 15 , 4) 

(if "func" returns one value) 

(see Chapter 7) 
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6.4 Array Operations for Multi-dimensional Arrays 

Elements of multi-dimensional arrays are selected by giving the name and array indices for the element 

as an expression. Hence in: 

A[J][K][L] 

the selected element of the three-dimensional array A has array index values of J, K, and L for the first, 

second, and third dimensions. These array indices are represented by the expression (of arity three) within 

the square brackets. The above can be abbreviated to: 

A[J, K, L] 

6.5 Expressions of Higher Arity 

The program structures provided in PADL for conditional computation and iteration are expressions of 
' 

arbitrary arity, and are described in Chapter 7. Such expressions, or function invocations, may occur in 

program text in places that require a tuple of values of specified types: the argument list of an operation or 

function invocation, the body of a function definition, a list of array indices or elements in an array operation, 

or in building the program structures presented in Chapter 7. 

6.6 Function Invocations 

A function invocation consists of the name of the function followed by an argument list within 

parentheses. (The syntax is the same for internal and external functions.) The argument list is an expression, 

whose arity and types confonn to the arguments required by the function. This infonnation is given in the 

header of the function definition (see Section 10.1). The argument list is usually written as a series of 

expressions of arity one separated by commas, but it may be any expression. 

A function invocation is itself an expression whose arity and types are the number and types of the 

values returned by the function. Information on the number and types of the returned values also appears in 

the function's header. An invocation that returns one value may appear in expressions with complete 

generality, such as an argument to arithmetic, array, and record operations. An invocation that returns several 

values may only be used where expressions of higher arity are pennitted. 
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In the following examples, SINGLE, DOUBLE, and TRIPLE each take 3 arguments and return 1, 2, 

or 3 values, respectively: 

K = 3 + Z * SINGLE (X + 1, 3, SINGLE (X + 2, 4, W)) ; 

In the following example, if P is false, F and G are defined to be OOUBLE (X, Y, Z), while H is 

defined to be W: 

F , G , H = if P then TR I PL E ( X , Y , Z ) else DOUBLE ( X , Y , Z ) , W endif 

Since the argument list for any function may be any expression, it may be a multiple-result function 

in vocation or other program structure. 

3 + SINGLE (TRIPLE (X, Y, Z)) 

3 + SINGLE (P, DOUBLE (X, Y, Z)) 

4 +SINGLE (if P then 4, 5 else DOUBLE (P, Q, R) endif, X) 

The last example invokes SINGLE with three arguments, of which the first two are either 4 and 5 or the two 

values returned by OOUBLE. The third argument to SINGLE is always X. 

If an actual parameter in a function invocation is a bit string of length m, the formal parameter is 

declared to be a bit string type oflength n, and m is not equal to n, then the actual parameter is left-extended 

with O's or left truncated to form a bit string argument of length n for the function invocation. 
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7. STRUCTURED EXPRESSIONS 

The program structures described in this section are specific fonns of expressions. If their arity is one, 

they may appear in arithmetic operations. 

Example: 

if P then X else Y endif + 3 

This expression has value X + 3 or Y + 3, depending on P. 

7.1 The IF Construct 

The conditional expression selects one of several expressions, depending on which conditions are 

satisfied. 

Syntax: 

<conditional exp> : : = if <condition> then <expression> 

{ elseif <condition> then <expresmon> } 

else <expression> 

end if 

<condition> : : = <expresmon> 

The conditions following if and elseif are test expressions. Their arity must be one and their type bitstr of 

length 1. The expressions following then and else are the arms. They must confonn to each other, and the 

entire construct confonns to the arms. 

The entire construct is an expression whose tuple of values is that of the first arm whose test expremon 

is true, or the final arm if all test expressions are false. 

The if construct introduces no value names. All value name scopes pass into an if construct If the 

scope of a value name includes an if construct, it includes all of the expressions of that construct, so that value 

name may be used anywhere inside the conditional construct 
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7.2 The LET Construct 

The purpose of this construct is to introduce one or more value names, define their values, and evaluate 

an expression within their scope (that is, making use of their defined values). 

Syntax: 

<letin exp> : : = let <decldef part> 

in <expression> 

end let 

<decldef part> : : = <decldef> { ; <decldef> } [ ; ] 

<decldef> : : = <decD 

I <def) 

I <decl> { , <decl> } = <expression> 

<def) : : = <name> { , <name> } = <expression> 

<decl> : : = <name> { , <name> } : <data type spec> 

Every value name introduced in a let block must be declared exactly once and defined exactly once in 

that block. The declaration may be part of the definition, or it may be by itself preceding the definition. 

fa.amples: 

X integer 

x :a 3 : 

Y integer = 4 + Q 

% Declaration 
% Definition 
% Declaration as part of definition 

Each value name must be defined before it is used (on the right hand side of another definition). 

Declarations and definitions may be mixed in any order as long as these requirements are met 

Several value names may be declared at once: 

X , Y , Z : integer : 

This declares all 3 names to be integer. 

Several value names may be defined at once. The number and types of the names must confonn to the 

arity and types of the expression on the right hand side. 
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X, Y, Z = 1, 2, 3 ; 

P, Q, R = TRIPLE(X, Y, Z) 

Several value names may be declared and defined at once. In this case, each of a group of value name 

names preceding a type specification are declared to be of that type. 

X : integer, Y , Z : bitstr = 3 , true, false ; 

This declares X to be integer, and both Y and Z to be bit strings oflength 1. 

The declarations, definitions, and combined declarations and definitions are separated by semicolons. 

The scope of each value name introduced in a let block is the entire block less any inner constructs that 

re-introduce the same value name. However, a value name must not be used in the definitions preceding its 

own definition. 

All scopes for value names not introduced in a given let block pass into that block. Hence, if the scope 

of a value name (introduced by an outer construct) includes a let block and that value name is not 

re-introduced, it may be referred to freely within the block. 

Example: 

let X , T : integer 

T = P + 37 
X = T + 24 

in X • T 

en diet 

In this example, the value of Pis imported from the outer context The scopes ofT and X are both the entire 

block. A reference to X in the definition ofT would be illegal because it is within the scope ofX but does not 

follow the definition ofX. The arity of this construct is one, and its type is integer, because x•T has arity one 

and type integer. 

Since a value name may not be used until after it has been defined, and must be defined only once in a 

block, it may not appear in its own definition. Hence definitions such as 

I = I + 1 ; 

are never legal in let blocks. 
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In a definition, if the value name is declared to be a bit string of length m and its defining value 

evaluates to a bit string oflength n, the defining value is left-extended with O's or left-truncated, as necessary, 

to form a bit string oflength m for use in the definition. 

Example 

let M: bitstr[0:3]: N: bitstr[0:15] = 8F6 

in 

integer( M), rotr( N, 4) 

endlet 

The above let construct returns two values - the integer value 6 (i.e. the value of the truncated bit string@6) 

and the bit string (its length = 16) of value @600F 

The expression following the reserved word in is in the scope of all of the introduced value names. and 

hence can make use of their definitions. The entire let construct conforms to this expression. 

7.3 The TAGCASE Expression 

This selects one of a number of expressions, depending on the tag of a oneof value, and extracts the 

constituent value. 

Syntax: 

<tagcase exp> : : = tagcase [<value name>=] <expression> [;] 

<tag list> : <expression> [ ; ] 

{ <tag list> : <expression> [ ; ] } 

( otherwise : <expression> ( ; ] ] 

endtag 

<tag list> : : = tag <tag> { , <tag) } 

<tag> : : = <tag value> I <name> 

<tag value> : : = <bit string constant> I <integer number> 

The entire construct is an expression whose values are those of the expression in the arm whose tag name or 

tag value matches that of the value of the test expression. If no match is found, the arm following the resa wed 

word otherwise is used. All arms must conform to each other, and the entire construct conforms to the arms. 
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The expression following the reserved word tagcasc must be of arity one and of a oncof type. The tag 

names appearing in the arms of the construct must be tags (i.e. tag names or tag values) of that oncof type. If 

they comprise all the tags of that type, the otherwise arm is not used; if not, the otherwise arm is required. 

If a value name and " = " appear after the reserved word tagcase, that name is introduced for each ann 

of the construct except the otherwise arm. Its scope in each case is the expression in that arm, and its type is 

the constituent type indicated by the tag name for that arm. If an arm is evaluated (meaning that the tag of 

the test expression matches the tag name of the arm), the value name is defined to be the constituent value 

from the test expression. If the value name and "=" do not appear, the constituent value is not made 

available inside the arms. 

Example: 

Let X be of type 

oneof [ A : integer ; B array[integer 1 

If X has tag A and constituent value 3, 

tagcase P = X ; 

tagA:P+4 

tag B : P(5] 

otherwise : 6 

end tag 

1 O ] C ·' integer D bitstr ] 

has value 7. The first arm is taken, and P (whose type is integer in that arm) is defined to be 3, the constituent 

value of X. If X has tag B and constituent value some array whose fifth element is 2, the value of the above 

construct is 2. In that case, Pis defined to be the array. If X has tag C or D, the construct has value 5. In that 

case the constituent value is not made available, since the value name's scopes do not include the otherwise 

arm. (This is because the otherwise arm can encompass different constituent types, so the type of the value 

name could not be determined.) 

More than one tag name may share the same arm if they indicate the same type. In this case, the tag 

names are all listed, separated by commas, after the reserved word taa. 
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. Example: 

Let X be of type 

oneof [ A : integer B bitstr C integer ] 

Then the following is penni~ible: 

tagcase P = X ; 

tag A, C : <expression1> 

mg B : <expression2> 
endtag 

% P is an integer here 

% P is a bit here 

All scopes of value names other than the one ~ppearing ·after the reserved word tagcase pa~ into the 

construct An outer scope for a value name with the same name as the one appearing after the reserved word 

mgcase does not pass into the taacase construct 

For the tags, bit or numerical encodings instead of the tag names can be used. Let A be of type 

oneof [ ONE, TWO, FOUR : integer ] where ONE = '001, TWO = 'O 10, 

FOUR II '100 

Hence the following tagcase construct can be used. 

tagcase V = A 

end tag 

tag '??O : <expression1> 
otherwise : <express ion2> 

% Even valued tags 

% Odd valued tags 

The above tagcase construct uses bit string constants as tags for specifying the expressions for even (i.e. tag 

names TWO, FOUR) and odd valued bit strings (i.e. tag name ONE). It can be rewritten as: 

tagcase V • A 

endtag 

tag TWO, FOUR : <expression1> 
tag ONE : <expression2> 

Since at most one arm of the taacase construct can be entered at any one time, tag values used as tags in a 

tagcase construct must be distinct if they are in different arms of the constrocl Hence when bit string 

constants as are used tags, they must not overlapped. For example the tagS 'O?O and '?'lO cannot appear on 

different arms of the tagcase constnx:t. 
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7.4 The FORALL Construct 

This generates one or more sets of values, of uniform type within each set, and either returns them as 

arrays or returns the result of some operation (such as addition) on them. The former case is indicated by the 

reserved word construct, the latter by the word eval followed by the name of the operator. 

This construct introduces one or more index value names of type integer and a number of optional 

temporary value names, the latter in the the same manner as in a let block. 

Synlax: 

<forall exp> : : = forall <value name> in [<expression>) { , <value name> in [<expression>] } 

[ <decldef part> ] 

<forall body part> 

{ <forall body part> } 

endall 

<forall body part> : : = construct <expression> I eval <forall op> <expression> 

<forall op> : : = plus I times I min I max I or I and 

The index names are those appearing before the reserved word in. The temporary names are those 

appearing in the declarations and definitions. Index and temporary names must all be different Their scopes 

are the entire construct less any inner blocks that re-introduce the same value name. The types of the indices 

are integer. The types of the temporary names are specified in their declarations. As in a let expression. a 

temporary name may not appear in definitions preceding its own. 

Each expression appearing in square brackets after the reserved word in is of arity two with both 

components of type integer. The two components are the low and high limits, inclusive and appearing in that 

order, for the index. For each number within those limits, the index is defined to be that number. the 

definitions of the temporary names are made, and all the parts are evaluated. When more than one index is 

given, this is done for each point in the "Cartesian product" of the ranges. that is, for every combination of 

index values. 
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In a construct part, the expression is evaluated for each index value, and for each component of the 

expression, an array is formed having the same limits as the limits given for the index and elements equal to 

the values obtained. If more than one index is given, a multidimensional array is formed, that is, an array of 

arrays, with the first index referring to the outermost array. The following expression, 

forall J in [ 1 , 4 ] 

X : bitstr[ O : 1] = bitstr( J-1 , 2} ; 

construct J , X , J mod 3 ; 

endall 

creates 3 arrays, all with index range 1 to 4. The first is an integer array with element having values 1, 2, 3, 

and 4. The second is an array of bit strings each oflength 2 and the array contains '00, '01, '10, and '11. The 

last is an integer array with elements 1, 2, 0, and 1. This forall block is an expression of arity three whose 

values are these three arrays. 

The following forall expression, 

forall J in [ A , B ] , K in ( C , D ] 

construct <express ion> 

end all 

is equivalent to 

forall J in ( A , B ] 

construct 

endall 

forall K in ( C, D ] 

construct <express ion> 

endall 

and constructs a two-dimensional array, that is, an array whose limits are [A, B] and whose elements are 

arrays whose limits are [ C, D ]. 

In an eval part, the operation must be one of plus, times, min, max, or, or and. The arity of the 

expression must be one, and its type must be appropriate for the operation: integer for plus. times, min, or 

max, bitstr for or or and. The expression is evaluated for each index value, and the operation is perfonned on 

the collection of values that are produced. If multiple indices are used, the operation is performed on the 

entire collection of values produced for all combinations of index values. For example the expression, 



forall J in [ 1 , N ] 

cval plus J * J 

cndall 

N 
returns 2: 

j=l 

·2 J • 
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The result of an entire forall block is an expression constructed by concatenating the results of all of the 

pans. I knee the expression, 

forall J in [ 1 , 10 ] 

X : bitstr = hitstr( J mod 2, 1) 

cYal plus J * J 

construct J , X 

cndall 

is an expression of arity 3 and types integer, array[intcgcr l : 10], and array[bitstr l : 10]. 

The scopes of any value names other than the index and temporary names, introduced in outer 

constructs, pass into the forall block. 
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8. ACTIONS 

Actions in PADL are like imperative statements in programming languages. Actions specify events that 

take place in a hardware module, changing the values (state information) held in one or more state variables 

in the module, receiving an input packet from an input port, or sending an output packet at an output port. 

In some of these actions, values are produced. Actions can only appear inside a behavior module type 

definition. 

8.1 Elementary Actions 

The elementary actions in PADL are updating state variables, receiving input packets, and transmitting 

output packets. In these actions an expression of some type is evaluated and its value is then a~iated with a 

typed identifier. State variables are unlike value names in that only state variables can be updated and have to 

be explicitly declared. As in let definitions and function invocations, only implicit conversions between bit 

strings of different lengths is supported in PADL. Let an expression evaluate to a bit string of length m and 

let the target identifier (state variables in assignments, local identifiers in let definitions, output ports in 

output actions, actual parameters in function invocations) be declared to be a bit string type with length n. If 

m is not equal to n, the result of the expression evaluation is left-extended with O's (if m < n) or left truncated 

(ifm > n) to form a bit string oflength n before the action continues. 

Syntax: 

<elementary action> : : = <state variable assignment> 

I <input action> I <output action> 

State variable assignment 

Syntax: 

<state variable assignment> : : = <state var> { , <state var> } : = <actval> 

<actval> : : = <expression> I <input actions> 

<state var> : : = <name> I <state var array ref> I <state var record ref> 

<state var array ref> : : = <state var> [<subscript range list> ) 

<subscript range list> : : = <subscript range> { , <subscript range> } 

<subscript range> : : = <expression> : <expression> 

<state var record ref> : : = <state var> • <field name> 
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<field name> : : = <name> 

In a state variable assignment, one or more state variables are assigned values from an expression. The 

state variables may be basic or structured 'data types. Each state variable assignment must fall within the 

lexical scope in a module type definition in which the state variable has been declared. 

Input action 

Syntax: 

<input action> : : = from <port id list> I <tagged from> 

<tagged from> : : = tagcase [ <value name> = ] <from-either list> [ ; ] 

<tag list> : <expression> [ ; ) 

{<tag list>: <expression> [;)} 

[ otherwise : <expression> [ ; ) ) 

endtag 

<from-either list> : : = from_either <port id>, <port id list> 

<tag list> : : = tag <port id list> 

<port id list> : : = <port id> { • (port id> } 

<port id> : : = <name> { < <subscripts> > } 
<subscripts> : : = <expression> 

A from operation returns a value from each input port listed. The returned value is of the type 

associated with the named input port in the enclosing module header. The from operation is completed only 

when values are received from all the ports listed. A from_either operation returns a value received from one 

of the named input ports, tagged by the name of the input port from which this value is received. Thus the 

value returned by the operation 

from_either port!, ... , portn 

belongs to the data type 

oneof (port! : data-type-1, ... , portn : data-type-n] 

where data·typ~i is the data type associated with porti in the enclosing module header definition. 
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If a value name and " = " come before the reserved word tagcase, that name can be used in each arm of 

the construct in a manner similar to the tagcase construct described in Section 7.3. The port i~s) given in the 

tag list is used for selecting an arm of the construct The type of the value name must be the same as the 

packet type of the port from which the value is received. 

Example: 

IND IR , OUTDIR : bitstr, X: bitstr[O 8] = 
tagcase Y = from_either INO, INl 

tag IN O ' O , Y [ O ] , Y : 

tag INl: '1, Y[O], Y: 

end tag 

In the above example, assume that the input ports INO and INl have been previously declared to be of type 

bitstr. The arity of the expression in each arm is 3. The value of INDIR is 'O if the packet is from port INO 

and '1 if it is from port INl. X and OUTDIR have the values of the packet received and bit 0 of the packet, 

respectively. 

The froOLeither operation is the only source of nondeterminacy in a PADL behavior description. 

Output action 

Syntax: 

<output action> : : = send <expression> at <port id list> 

A send action transmits a list of packets, at the named output ports. The values of the packets are denoted by 

expression. A send action is completed only after each pack.et sent is received at the receiving input port(s). 

The correspondence between output and input actions in intermodule communication is explained in Section 

8.3. 

8.2 Compound Actions 

Syntax: 

<compound action> : : = <elementary action> 

I <action block> 

I <conditional action> 

I <tagcase action> 
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I <iteration> 

I <definition block> 

action-block 

Syntax: 

<action block> : : = begin <compound action> { ; <compound action> } end 

An action block consists of a sequence of actions delimited by the reserved words begin and end. 

conditional· action 

Syntax: 

<conditional action> : : = if <condition> then <compound action> 

{ elseif <condition> then <compound action> } 

[ else <compound action> ) 

endif 

<condition> : : = <expression> 

The condition expression must be of arity one and type bitstr of length 1. If this expression evaluates to 

true, the then branch is entered and executed. If this expression evaluates to false and at least one elseif or 

else branch is present, the first elseif or else branch is entered and executed. 

tagcase-action 

Syntax: 

<tagcase action> : : = tagcase (<value name> = ) <expression> ( ; ] 

<tag list> : <compound action> ( ; ) 

{ <tag list> : <compound action> ( ; ] } 

( otherwise : <compound action> ( ; ) ] 

endtag 

<tag list> : : = tag <tag) { , <tag) } 
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<tag> : : = <tag value> I <name> 

<tag value> : : = <bit string constant> I <integer number> 

The tagcase-action construct has the same syntax and the same flow of control in its evaluation as the 

tagcase-expression construct explained in Section 7.3, except that each arm consists of actions instead of 

expressions. 

iteration 

Syntax: 

<iteration> : : = while <condition> do <compound action> 

I repeat <compound action> until <condition> 

In executing a while construct, the sequence of actions specified in compound-action is executed once 

every time the specified condition is satisfied (i.e., evaluates to true). Execution of the while construct 

terminates as soon as the condition evaluates to false. 

In executing a repeat construct, the sequence of actions specified in compound-action is executed first, 

and then reexecuted once every time the specified condition is not satisfied. Execution of the repeat construct 

also terminates as soon as the condition evaluates to true. 

definition-block 

The purpose of this construct is to introduce one or more value names, define their values, and perform 

a group of actions within their scope (that is, making use of their defined values). Note that the values 

introduced can be those obtained through input operations. This is the only way of accessing values from 

input operations without involving a state variable. 

Syntax: 

<definition block> : : =let <actdecldefpart> 

in <compound action> 

end let 
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<actdecldef part> : : = <actdecldct> { ; <actdecldet> } ( ; ) 

<actdecldet> : : = <decD 

I <def> 

I <decl> { , <decD } = <actvaD 

Scope rules for identifiers introduced in definition-blocks are identical to those for identifiers introduced 

in let expressions (Section 7.2). 

8.3 Intermodule Packet Communication 

Modules in PADL communicate by sending packets to each other. Packets are transmitted between 

modules over channels. A channel connects an output port of the sending module to an input port of the 

receiving module. Channel connections between submodules are specified in structure module type 

definitions. The semantics of input and output actions of PADL is described below. 

A module receives a packet from a channel by performing an input action on the input port connected 

to that channel. A packet is transmitted on a channel by perfonning an output action on the output port 

connected to that channel. Coordination between input and output actions performed on the ports connected 

to a channel are defined in terms of channel state transitions. A channel can be in one of two states: empty 

(its initial state), or full. An output action on an output port connected to a channel may proceed only if the 

channel is empty. An empty channel becomes full aft.er an output action is perfonned on the output port 

connected to it An input action on an input port connected to a channel may proceed only if the channel is 

full. A full channel becomes empty after an input action is performed on the input port connected to it 

In the case where an output port is connected to more than one input port, there is a channel connecting 

the output port to each input port All these channels are initially empty. An output action at the source port 

will cause all the channels to become full. A subsequent output action at that port can only proceed when all 

the channels that are connected to the port become empty. That is, a subsequent output action can proceed 

only when all the receiver ports have received the packet. This is done through an input action which causes 

the connected channel to become empty. 
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In performing a nondeterminate input action specified by a fronLcithcr construct, an input action is 

performed on one of t11e input ports with a full channel, changing the state of the corresponding channel from 

full to empty. 
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9. STRUCTURE SPECIFICA llONS 

In PADL, a hierarchy of modules can be constructed by connecting modules (used as submodules) to 

form higher level modules (composite modules). These submodules are connected together by relating their 

ports, that is, channels are associated with each pair of source-destination ports connected together. 

9.1 Submodule Declarations 

All submodules used in a structure specification must be declared. The syntax for a submodule 

declaration is: 

Syntax: 

<submod decl> : : = submodule <submod decl list> 

<submod decl list> : : = <submod decl> { ; <submod decl> } [ ; ] , 

<submod decl> : : = <submod decl id list> : <mod type name> [ (<parameter list>)] 

<submod dee! id list> : : = <submod de.cl id> { , <submod de.cl id> } 

<submod de.cl id> : : = <name> [ { <subscript range list> } ] 

<subscript range list> : : = <subscript range> { , <subscript range> } 

<subscript range> : : = <expression> : <expression> 

<mod type name> : : = <name> 

<parameter list> : : = <expression> 

Each submodule is a named inst.ance of a module type (see Section 102). A submodule name may have 

integer subscripts and submodules of these kind are declared by giving the name and the subscript ranges. In 

the declarations of submodules, the corresponding module types must be provided. The submodule 

identifiers are separated from the module types by colons. Submodules of the same module type can be 

declared as a list of submodule identifiers, separated by commas, with the module type name separated from 

the last member of the list by a colon. If the parameterized module types are used, the appropriate parameter 

values must be given in the submodule declaration. 

Example: 

submodule X : ALU 

submodule ADD16 : ADDER{16) 

submodule XY_ARRAY{0:15, 0:16} : XY_CELL 

submodule AO, Al : ARBITER; SUB_NETWORK{O:t} ROUTING_NETWORK{N/2) 



-46-

9.2 The Specification of Connections 

The body of text specifying connections are composed of either basic connection specifications or control 

connection specifications. Basic connection specifications are used for specifying connections by naming the 

ports to be logically connected together. Control connection specifications are used for specifying the 

replication of a group of connections over some subscript range or the conditional selection of connections 

based on some specified condition. 

9.2.1 Basic Connection Specifications 

Connections between modules can be specified in two ways - by explicitly specifying the ports that are 

connected together, or by specifying the ports that are connected to a given module. A connection 

specification of the first type is termed an explicit connection while a specification of the second type is termed 

an implicit connection since one of the pair of connected ports is implied. Two or more ports can be 

connected together but only one of the ports can be the sender of packets, i.e. it must be of port type outlet if 

the port belongs to a submodule, otherwise it must be of type inlet. The ports connected together must be of 

the same packet type. 

Explicit Connection 

Syntax: 

<explicit conn> : : =<conn port id> -> <conn port id> { , <conn port id> } 

<conn port id> : : = [ <submodule id> . ] <port id> 

<submodule id> : : = <name> [ { <subscripts> } ] 

<subscripts> : : = <expression> 

If submodule id is absent. then the port belongs to the containing module. The port on the left hand side of 

" -> " is the sender of packets while those on the right hand side are the receivers. 

Examples: 

BUFFERl.OUTPUT -> ADDER.OPERAND1 
ADDER.SUM -> OUTPORT 
FIFO.DO<O> -> MULTIPLEXOR.DI<O>, MASTER.DIRECTION 
ROUTER{O,O}.OP<O> -> ROUTER{0,1}.IP<O> 

The first example above specifies a connection between the port OU'IPUT of the submodule BUFFER! with 

the port OPERANDI of ADDER. In the second example, the SUM port of ADDER is connected to the port 
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OUTPORT of the containing structure, i.e. that one that has adder as one of its submodule. A single-source 

two-destination connection is shown in the third example. Here the ports DO and DI, respectively, of the 

submodules FIFO and MULTIPLEXOR are both parameterized. The zeroth parameter port DO<O> of 

FIFO is the source while the zeroth parameter port DI<O> of MULTIPLEXOR and the port DIRECTION of 

MASTER are the destinations. The fourth example is more complicated as it shows a connection between 

two parameterized submodules - ROUTER{O, 0} and ROUTER{O, l} - both of which have parameterized 

ports - OP<O> and IP<O>, respectively. 

Implicit Connection 

Syntax: 

<implicit conn> : : = <submodule id> ( <port list> ) 

<port list> : : = <conn port id> { , <conn port id> } 

The number of ports in port list must be the same as the number of ports defined for the module type of the 

submodule. Each port in port list is paired off with the corresponding port defined for the module type in the 

order of their occurrence in the header of the module type definition. 

Example: 

ADDER(INPORT1, INPORT2, OUTPORT) 

In the above example, assume that ADDER has two input and one output ports. The first two ports of 

ADDER are input ports that receive the operand packets for the addition operation. The sum is produced as 

a packet at its output port The implicit connection given states that the ports INPORTl and INPORT2 of 

the module that has ADDER as a submodule, are connected to the input ports of ADDER. OlITPORT, the 

output port of the containing module is connected to output port of ADDER. The implicit connection 

specification is equivalent to the explicit connection: 

INPORT1 -> ADDER.OPERAND1; 
INPORT2 -> ADDER.OPERAND2; 
ADDER.SUM -> OUTPORT; 

The following example shows an implicit connection specification for parameterized modules. The cell 

at the I-th and J-th position of the array XY__A.RRAY are connected to its four neighbors - left, top, right 

and bottom. 
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Example: 

XY_ARRAY{I, J}( XY_ARRAY{I,J-1}, XY_ARRAY{I-1,J}, 
XY_ARRAY{I,J+l}, XY_ARRAY{I+l,J} ) 

9.2.2 Control Connection Specification 

There are two types of control connection specifications in PADL - the conditional connection and the 

iterative connection. The first is used for specifying connections that are to be made according to some 

condition. The other is used for specifying a regular connection of submodules like an "array" of 

submodules. 

Conditional Connection 

Example: 

if flag > 0 then INPORT -> MODULE. RIGHT 

else INPORT -> MODULE. LEFT 

endif 

In the above example, if flag is positive, then INPORT is connected to the port RIGHT of MODULR 

Otherwise it is connected to the port LEFf of MODULR 

Syntax: 

<conditional conn> : : = if <condition> then <conn group> 

{ elseif <condition> then <conn group> } 

[ else <conn group>] 

end if 

<condition> : : = <expression> 

<conn group> : : = <conn spec> { ; <conn spec> } [ ; ] 

<conn spec> : : = <basic conn spec> I <control conn spec> 

<basic conn spec> : : = <explicit conn> I <implicit conn> 

<control conn spec> : : = <conditional conn> I <iterative conn> 

The condition expression after the if and elseif must be of arity one and of type bitstr of length one. The 

value of the condition must either be true or false. If the condition evaluates to true, then the specification in 

the then branch is used. When the condition evaluates to false the specification in the first elseif with a true 
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condition or an else branch is used. if the elseif or else branch is provided. The conditional connection 

becomes a null connection if the condition is false and no elseif or else branches are provided. Since a 

connection specification can contain conditional connections, such connections can be arbitrarily nested. 

The following example illustrates a cascade connection of 16 submodules - CELL{O} to CELL{lS}. 

The first port of each module is an input port while the second is an output port. Except for the first (i.e. 

CELL{O}) and last (i.e. CELL{lS}) submodule, the output of the submodule is connected to the input of the 

succeeding submodule while its own input is connected to the output of the preceding submodule. For 

CELL{O} the input port IP of the containing structure is connected to its own input port while the output 

port of CELL{ 15} is connected to the output port OP of the containing structure. 

Example: 

if N==O then CELL{O}( IP, CELL{ l}. INP) 
elseif N==15 then CELL{l5}(CELL{14}.0UTP, OP) 
e~e CELL{N}(CELL{N-1}.0UTP, CELL{N+1}.INP) 
endif 

Iterative Connection 

Syntax: 

<iterative conn> : : = for <control variable> : = <limitl> to <limit2> 

<conn group> 

endfor 

where control variable is a variable of type integer, limit/ and limit2 are expressions of arity one that evaluate 

to integers. The limits are evaluated on entry to the for construct. 

Example: 

for I : = 1 to 6 

CELL{I}(CELL{I-1}.DO, CELL{I+l}.DI) 
endfor 

The iterative specification given above describes the connection between a chain of 8 submodules such that 

each submodule, except the first (i.e. CELL{O}) and the 1ast (i.e. CELL{7}), is connected to the module 

before and after it. 
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9.3 Connection Body 

A connection body is a collection of connection specifications for defining the connections of a module. 

The reserved word structure must immediately precede the connection body while the reserved word 

endstruct must immediately follow it 

Syntax: 

<connection body> : : = structure 

<conn group> 

endstruct 

A complete structure specification for a chain of cells, connected in the fashion illustrated by the example 

above, has to define what the connections for the cells at the ends of the chain are. The following example 

shows such a specification. The input port of the first cell, CELL{O}, is connected to the outside world via 

port INPUT. Similarly the output port of the last cell, CELL{7}, sends packet out to the outside world via 

port OUTPUT. 

Example: 

structure 

for I :=Oto7 

if I==O then CELL{ I}{ INPUT, CELL{I+l} .DI) 

elseif 1=7 then CELL{I}(CELL{I-1}.DO, OUTPUT) 

else CELL{I}(CELL{I-1}.DO, CELL{I+l}.DI) 

endif 

endfor 

endstruct 
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10. DESCRIPTIONS 

A PADL description is a complete specification of a system, containing a collection of definitions -

data type, function, behavior module type definitions, structure module type definitions and external module 

type declarations. 

Syntax: 

<description> : : = <definition> { <definition> } 

<definition> : : = <data type def> 

I <external function def> 

I <behavior module type def> 

I <structure module type def> 

I <external module type decD 

Since data type definitions are discussed in Section 4.5, only function definitions and module (both behavior 

and structure) type definitions are described here. 

10.l Function Definitions 

A function definition may occur inside another function definition or a module type definition. 

Functions defined in this way are termed internal functions. An external function is one which is not defined 

inside a module type or another function definition. Each PADL function is defined by a function definition, 

which is a piece of text consisting of: 

(1) The reserved word function. 

(2) The "header" containing the function name, information specifying the arity and types of its 

arguments, and the types of the returned values. 

(3) The type definitions used in the function definition. If this is an external function. the 

declarations of other external functions used appear here also. 

(4) The definitions of the internal functions subsidiary to this one. Function definitions may 

thus be nested arbitrarily. 

(5) The expression giving the values to be returned by the function. This is the "body" of the 

function definition. 

(6) The reserved word endfun. 
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Syntax: 

<external function def) : : = function <function header> 

[ <type external def part> ) 

{ <internal function def) } 

<expression> 

endfun 

<internal function def) : : = function <function header> 

[ <data type def part> ) 

{<internal function def>} 

<expression> 

endfun 

.. ., ..... _-,-

<type external def part> : : =<type external def) { ; <type external def)} (;) 

<type external def) : : = <data type def) I <external function decD 

<data type def part> : : = <data type def) { ; <data type def) } ( ; ) 

<data type def) : : = type <data type name> = <data type spec> 

<external function decD : : = external <function header> 

<function header> : : = <function name> ( <decD { ; <decD } 

returns <data type spec> { , <data type spec> } ) 

<function name> : : = <name> 

Example: 

function sum_of _squares ( X, Y integer returns integer) 
x•x + v•v 

endfun 

Function definitions may not contain actions. 

Only external functions are accessible to other external function definitions. 

Optional type definitions may appear after the header to give names to types. These user-defined 

names may be used anywhere in the function definition, including its own header. The type definitions (and 

external declarations) are separated from each other by semicolons. 
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Example: 

function comp l ex_mu 1t i ply ( X, Y : comp 1 ex returns complex) 

type complex = record [ re, im : integer ] 

record [ re X. re • Y. re - X. im • Y. im 

im X. im • Y. re + X. re • Y. im ] 

end fun 

10.1.1 The header and value transmission 

The list of fonnal arguments and their type specifications appear in the header between the left 

parenthesis and the reserved word returns. These declarations are separated from each other by semicolons. 

Each declaration may contain several value names, which are separated from each other by commas. 

The scope of the fonnal arguments is the body of the function (the expression), less any inner constructs 

which re-introduce the same value name. Their types are as given in the header declarations, and their values 

are the values of the arguments given at function invocation. The types of the returned values are given in the 

list of type specifications, separated by commas, appearing after the reserved word returns. This list of types 

must confonn to the body. In every invocation of a function, the number and types of the arguments and 

returned values must match those of the definition. 

The meaning of a function invocation is as follows. If the function Fis defined by 

function F ( a1 : t 1 ; ••• : aN : tN returns s1 : ••• ; sK ) 

BODY EXP 
endfun 

then, assuming the definition is correct and confonns to its invocation, the invocation 

F(ARGEXP) 

is equivalent to 

let a1 

10.1.2 The EXTERNAL declaration 

tN : = ARGEXP in BODYEXP endlet 

All functions used in an external function definition that are not defined within the definition must be 

declared in an external declaration. This declaration consists of the reserved word external followed by a 

copy of the function's header, which is used by the translator for type checking. 
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Example: 

function Fl ( x integer returns integer ) 

external F2 ( Q integer returns integer ) 

external F3 ( Q integer returns integer ) 

F2(X)+F3(X) 
endfun 

This body of text defines the external function Fl. Since it uses the functions F2 and F3, which are not 

defined here, they must appear in external declarations. (They must be defined in Olher external function 

definitions or accessed in a subroutine library.) The external declarations contain the headers for F2 and F3, 

just as they might appear in the definitions of those two functions. The formal arguments appearing in the 

headers ("Q" in the preceding example) have no significance: they are included only for syntactic consistency. 

The intention is that the headers be copied verbatim from the external function definitions of F2 and F3 into 

the external function definition of Fl. 

All external declarations must appear following the header of the outermost function definition, even if 

the functions being declared are used only by internal functions. The external declarations may precede, 

follow, or be mixed with the type definitions of the outermost function definition. 

10.1.3 Inheritance of data, type definitions, and external declarations 

A function has access only to the data presented to it in its invocation. No data values are imported 

from any enclosing function definition. Type definitions made in one function definition are inherited by all 

functions subsidiary to it A redefinition in an internal function of a type name already defined in an outer 

context is not permitted. 

All external declarations made in the outermost function definition are inherited by all internal 

functions. 

10.1.4 Scope of function definitions 

The scope of an external function definition consists of the whole PADL description except the external 

function definition, itself. That is, any external function may be invoked from anywhere except within its 

own function definition. The scope of an internal function consists solely of the immediately enclosing 

function definition. Note that this precludes any recursion or mutual recursion. 
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The scope rules for functions and type definitions are illustrated by the following example: 

function F ( <header> ) 
external FF { <header> ) ; 
type T = <data type spec> 

function G ( <header> ) 
type U = <data type spec> 

function M ( <header> ) 
function N ( <header> ) 

<BODYN> 
endfun 

<BODYM> 
% End of function N 

end fun 

<BODYG> 
endfun 

function H ( <header> ) 
function P ( <header> 

<BODYp> 
endfun 

<BODYH> 
endfun 

<BODYr> 
endfun 

the body of 

F 

G 

M 

N 

H 

p 

% End of function M 

% End of function G 

) 

% End of function p 

% End of function H 

% end of function F 

may invoke functions 

FF (external), G, H (internal) 

FF (external), M (internal) 

FF (external), N (internal) · 

FF (external) 

FF (external), P (internal) 

FF (external) 
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the body and header of may use defined types 

F T 

G T,U 

M T,U 

N T,U 

H T 

p T 

The external function definitions comprising a description may be translated separately. The manner in 

which their names are used to access them in libraries and the manner in which they are linked into a 

complete description is dependent on the implementation. No recursive invocations among external or 

internal functions are permitted. 

10.2 Module Type Definitions 

There are two kinds of modules in PADL - behavior and structure modules. Behavior modules are 

modules that specify the actions on the packets at the input and output ports of the modules. On the other 

hand, a structure module only specifies the interconnection of its submodules and may not contain any 

actions. It can be used to describe a hierarchy of modules. 

A module type definition specifies the class of modules that have similar behavior or structure. 

Invocation of a module as a submodule of another module involves giving the local name and module type 

name of the former. Note that only structure module type definitions can invoke other modules as its 

submodules. 

The types of definitions that can occur inside a behavior module type definition are internal function 

definitions and data type definitions. 
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10.2.1 Behavior Module Type Definition$ 

A behavior module type definition is compo~d of: 

(1) A header consisting of the reserved word type, the module type name, an optional list of 

parameters, the reserved word module, and a list of ports for connection to the outside world. 

(2) The definitions of all internal functions used. The type definitions as well as the declarations 

of all external functions used in the module type definition may appear here also. The order 

in which these appear with respect to each other is not important as long as the definitions 

appear before they are used. 

(3) The declarations and initializations of all state variables used. 

(4) A repeatedly executed collection of actions (see Chapter 8) delimited by the reserved words 

cycle and endcycle. 

(5) The reserved word endmod to end the module type definition. 

The following is a behavior module type definition. A. module of this type sends out packets which are the 

sum of the packets received at its two input ports. 

Example: A behavior module type definition 

type ADDER = 
module (inlet OPERAND!, OPERAND2 : integer; outlet SUM integer) 

cycle 

let A 

B 

in 

integer = from OPERANDl; 

integer = from OPERAND2 

send A+B at SUM 

end let 

endcycle 

endmod 

Syntax: 

<behavior module type def> : : = type <mod type header> 

module (<port decl list>) 

[<type external def part>] (see function definition) 

{ <internal def> } 

[ <state var decl part> ] 

cycle 
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<compound action> { ; <compound action>} 

endcycle 

endmod 

<mod type header> : : =<mod type name> [ (<param decl list>)] = module (<port decl list>) 

<mod type name> : : = <name> 

<param decl list> : : = <decl> { : <decl> } 

<port decl list> : : = <port decl sublist> { ; <port decl sublist> } 

<port dccl sublist> : : = <port type> <port decl> { ; <port decl> } 

<port type> : : = inlet I outlet 

<port decl> : : = <port decl id list> : <data type spec> 

<port decl id list> : : = <port decl id> { , <port decl id> } 

<port decl id> : : = <name> [ < <subscript range list> > ] 

<internal def> : : = <internal function det> 

state variable declaration part 

Syntax: 

<state var decl part> : : = var <state var decl> {; <state var decD } 

<state var decl> : : = <decD [ : = <expression> ) 

<decD : : = <name> { , <name> } : <data type spec) 

Another example of a behavior module type definition: 

type LEFT_SHIFTER = 
module (inlet CNT : integer; DIN<0:7> bitstr; outlet DOUT<0:7> bitstr) 

cycle 

let N : integer = from CNT: 

DI<0:7> bitstr =from DIN; 

D0<0:7> : bitstr = shiO(DI,N) 

in 

send DO at OOUT 

endlet 

endcycle 

endmod 

The behavior module defined above accepts integer valued packets at the input port CNT. A bit string of 

length 8 is received as a packet value at the other input port DIN. A new bit string value, DO, is then 

generated by shifting the bit string from DIN by an amount which is the value of the packet received at CNT. 
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The shifted bit string is sent out as a packet at OOUT. 

10.2.2 Structure Module Type Definitions 

A structure module type definition is composed of: 

(1) A header consisting of the reserved word type, the module type name, an optional list of 

parameters, the reserved word module, and a list of ports for connection to the outside world. 

(2) A declaration of the submodules used. 

(3) The type definitions used in the module type definition. The declarations of all external 

functions used appear here also. 

(4) The definitions of the internal functions used. 

(5) A connection body, Le. a body of PADL statements specifying the interconnection of 

submodules (see Chapter 9). 

(6) The reserved word endmod to indicate the end of the module type definition. 

The above description defines a simple connection of two submodules, LEFf and RIGHT, both of type 

CELL. Each submodule has IP as its input port and OP as its output port IP of LEFf is connected to the 

input port IN of the module type PAIR. The output port of LEFf is connected to the input port of RIGHT 

which in turn has its output port connected to the output port OUT of PAIR. 

Example: 

type PAIR = module (inlet IN : integer; outlet OUT integer) 

submodule LEFT, RIGHT: CELL; 
structure 

IN -> LEFT. IP 
LEFT.OP-> RIGHT.IP 
RIGHT.OP-> OUT 
endstruct 

endmod 
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Other examples of module type definitions are given in Appendix I. 

Syntax: 

<structure module type def> : : = type <mod type header> 

module (<port decl list>) 

[<external module decl list> ] 

[ <submod decl>] 

[ <type external def part> ] 

{ <internal function def> } 

<connection body> 

endmod 

10.2.3 EXTERN AL Module Type Declarations 

(same as in function definition) 

(same as in function definition) 

Module types that are invoked in a structure module type definition must be preceded by external 

module type declarations. External module type declarations are used for type checking of the module 

parameters and packet types of the ports as well as for ensuring consistency in the use of the modules in 

connection specifications. An external module type declaration is made of the header (i.e. module type name, 

parameter and port declarations) of the module type definition with the keyword type replaced by the 

keyword external. Note that external module type declarations are used only with structure module type 

definitions since these are the only definitions that can invoked other modules. 

Syntax: 

<external module type decl list> : : = <external module type decD { ; <external module type dect> } 

<external module type decl> : : = external <mod type header> 

Thus for the module PAIR discussed above, the following external declaration must precede the 

module definition. 

Example: 

external CELL = module (inlet IP integer: outlet OP inteeer) 



-61-

Appendix I - EXAMPLES 

The following are examples of PADL descriptions. The first example (Example 1) illustrates an adder 

module that computes the sum of the packets arriving at its two inputs and sends the sum out as a packet at its 

output. A more complicated example (Example 2) illustrating a simple ALU module is given next The next 

three examples (Examples 3, 4 and 5) are behavioral descriptions of a 2X2 router at various levels of 

abstractions. Example 3 describes the router as a device that processes packets represented as a record. In 

Example 4, the packets are 9-bit entities. Example 5 illustrates the use of state variables. A structure module 

type definition for a network of NXN routers is given in the last example (Example 6). 

1.1. Example 1: An Adder Module 

The adder module specified below computes the sum of the packets of its two inputs (one packet from 

each input) and sends the sum out as a packet 

% 

% Behavior specification of an adder module 
% 

type ADDER = module (inlet OPERANDl, OPERAND2 intqer; outlet OUT integer) 

endmod 

cycle 

let A integer = from OPERAND1, 

B integer = from OPERAND2 

in 

send A + B at OUT 

end let 

eodcycle 

1.2. Example 2: A Simple ALU Module 

The ALU module specified below is a single input, single output module. An input (or operand) packet 

is composed of an opcode and the values of the two operands. The operations that can be selected are integer 

multiplication, division, addition, and subtraction. The result packet also contains an error field and a value 

field. If the value of the opcode field in the input packet does not correspond to any of the four opcodes 

provided, the error flag in the result packet is set to 1 and the value field in the result packet is set to 0. 

Otherwise the error flag is set to 0 and the result value is set to the value obtained from the operation. The 
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tagcase construct is used to select the operation based on the value of the operation field of the input packet. 

% 

% Behavior specification of a single input, single output ALU. 

% 

type ALU = module (inlet IN : OPERAND_PKT; outlet OUT : RESULT_PKT) 

endmod 

% The operand and result packets are declared as follows. 

type OPERAND_PKT = record [OPCODE : oneof [ IMUL T, IDIV, IADD, ISUB] 

where IMUL T = @09, ID IV = @OA, 

IADD = @OB, ISUB = IOC; 

OPERAND!, OPERAND2 : integer ] 

type RESULT_PKT = record [FLAG : bitstr; 

RESULT _VALUE : integer] 

cycle 

let ERROR_FLAG bitstr , RESULT : integer = 
let I CELL : OPERAND_PKT = from IN; 

A, B : integer = !CELL. OPERAND!, !CELL. OPERAND2; 

in 

tagcase ICELL. OPCODE 

tag 809 '0, A • B; 

tag IOA '0, A I B; 

tag @OB I 0 t ·A+ 8; 

tag @OC t 0' A - B; 

otherwise : t 1, O; 
endtag 

endlet 

in 

send record [FLAG : ERROR_FLAG; 

RESULT_VALUE : RESULT] at OUT 

endlet. 

end cycle 

% Set error flag 

1.3. Example 3: 2X2 Router Module Sending and Receiving Packets 

Assuming that VALUE is a defined data type, then a PACKET is defined to be a record composing of 

an ADDR (address) and V (value) fields. ADDR is of type bitstrf0:7] and V is of type VALUE. The 2X2 

router has two input ports, INO, INl and two output ports, OUTO, OUTl all of packet type, PACKET. The 
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router receives one packet at a time from one of its ports and reformats the packet before sending it out at an 

output port that is selected based on the value of the least significant bit of the ADDR field of the received 

packet. If that bit is '1 then the packet is sent out at the output port OUTl, otherwise it is sent out at OUTO. 

The address field of the packet is rotated by one before being sent out. The rotation is necessary for routing 

packets through a network of such routers. 

% Define a behavior module type. ROUTER, 

% with 2 input and 2 output ports. 
type ROUTER = 

module {inlet INO, INl : PACKET; outlet OUTO, OUTl : PACKET) 

type PACKET = record [ ADDR : bitstr[O: 7]; V : VALUE ] ; 

cycle 

endmod 

tagcase X = from_either IN O , IN 1 

tag INO, IN 1 : let T : PACKET = record [ ADDR : rotr{ X. ADDR, 1); 

v : x.v ] 

end tag 

end cycle 

in 
if X. ADDR then send T at OUTl 

else send T at OUTO endif 

endlet 

1.4. Example 4: 2X2 Router that Processes 9-Bit Entities as Packets 

This example treats 9-bit entities as packets. The router establishes a link between a pair of input and 

output ports based on the value of a bit of the first packet Each packet has a special bit to indicate if it is the 

last packet for the link. The link is destroyed after the last packet is sent through and the next packet coming 

in will be treated as the first packet of another transaction. A new link will be set up for that transaction. 
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type ROUTER = 
module {inlet IN O , IN 1 : bitstr[ O : 8] ; outlet OUT O , OUTl bitstr[ 0 : 8]) 

cycle 

let INDIR, OUTDIR: bitstr, X: bitstr [0:8]'" 

tagcase Y = from_either IN O , IN 1 

tag INO '0, Y[O], Y; 

tag IN1: '1, Y(O], Y; 

end tag 

in 

begin 

if OUTDIR then send rotr{X[0:7],1)llX[8] at OUTl 

else send rotr{X[0:7],1)llX[8] at OUTO endif; 

if -X[8] then 

repeat 

let X = 

T 

in 

if INDIR then from IN1 else from INO endif, 

bitstr[ 0 : 8] = rotr { X [ 0 : 7 ] , 1 )I I X [ 8] 

if OUTDIR then send T at OUT1 

else send T at OUTO endif 

endlet 

until X(8] 

endif; 

end 
en diet 

endcycle 

endmod 

In this example, INDIR, OUTDIR both of type bitstr, and X (of type bitstr[0:8]), are set to the values of 

one of two anns of a tagcase expression which is used with a from_cither action. This action receives a packet 

from one of the input ports. IND IR is 'O if the packet is from input INO and 'l if it is from INl. X[8] is the 

last packet indicator, i.e., when it is equal to 'l, the packet is the last packet of the transaction. The first packet 

is sent out before the last packet indicator is used to control the transmission of the remaining packets of the 

transaction. Subsequent packets of the transaction will be sent to the output port determined by the value of 

OUTDIR - if OUTDIR is 'l then OUTl is selected, and if it is 'O, OUTO is selected The value of OUTDIR 

is obtained from the first packet coming in after initialization or the next packet after the last packet of the last 

transaction. For routing through a network, the first 8 bits of every packet is rotated by one bit before being 

sent out. 
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1.6. Example 6: An NXN Routing Network 

The following is an example of a structure module type definition for a network of 2X2 routers 

connecting N input ports to N output ports, where N is some positive, nonzero power of 2. N is used in the 

PADL description as a parameter indicating the number of input or output ports in the network. The ports 

carry packets of type PACKET which is assumed to be defined somewhere else in a data type definition. 

There are log2 N columns of routers in the network with each column having N/2 routers. The network is 

specified recursively as a column of N/2 routers and two subnetworks of N/2 X N/2 routers as shown in 

Figure 1. A conditional is used to check for N = 2, if this is the case, then the network is just a 2X2 router. If 

N>2. then the appropriate connection between the column of N/2 routers and the two subnetworks are 

specified. Figure 2 shows the full interconnection of an 8 X 8 routing network. 

% 

% MODULE TYPE DEFINITION OF AN NXN ROUTING NETWORK, 
% N IS SOME POSITIVE, NONZERO POWER OF 2 
% 

external ROUTER = module (inlet INO, IN1 : PACKET; outlet OUTO, OUT1 PACKET) 
type ROUTING_NETWORK( N : integer) .. 

module (inlet IP<O: N-1> : PACKET; outlet OP<O: N-1> : PACKET) 
submodule ROUTER{O: (N/2)-1} : ROUTER; 

I 

SUB_NETWORK{O:l} : ROUTING_NETWORK(N/2) 
structure 

if N==2 then ROUTER{O}( IP<O>, IP<t>, OP<O>, OP<l>) 
else for I : = 0 to N/2-1 

endif 
endstruct 

endmod 

ROUTER{I}( IP<2*I>, IP<2*I+1>, SUB_NETWORK{O}.IP<I>, 
SUB_NETWORK{t}.IP<I> ) 

SUB_NETWORK{O}.OP<I> -> OP<I> 
SUB_NETWORK{t}.OP<I> -> OP<I+(N/2)> 
endfor 



IP(O] 0 

IP(1] 

IP[2) 0 

IP[3) 

IP(4] 0 

IP[5] 

IP(6] 0 

IP(7] 1 

0 

0 

1 

0 

0 
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Figure 2. Structure of an 8 by 8 Routin& Network 
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Appendix II • FORMAL SYNTAX 

In the following BNF syntax presentation, pairs of large curly braces { ... } indicate zero or more 

repetitions of the material within, whereas pairs of large square brackets [.~.]indicate at most one repetition 

of the material within. All reserved words are printed in boldface. A name is a sequence of alphanumeric or 

underscore characters beginning with a letter. 

<description> : : = <definition> { <definition> } 

<definition> : : = <module type def> 

I <external function def> I <data type def> 

<external module type decl> : : '"" external <mod type header> 

<module type def> : : = type <mod type header> 

module ( <port decl list> ) 
<module body> 

endmod 
<mod type header> : : = <mod type name> [ (<param decl list>)] = module (<port decl list>) 

<mod type name> : : = <name> 
<param decl list> : : = <decD { ; <decD } 

<port decl list> : : = <port decl sublist> { ; <port decl sublist> } 
<port decl sublist> : : = <port type> <port decD { ; <port decJ) } -

<port type> : : = inlet I outlet 

<port decl> : : = <port decl id list> : <data type spec> 
<port decl id list> : : = <port decl id> { , <port dec1 id> } 
<port decl id> : : = <name> [ < <subscript range list> > ] 
<module body> : : = <structure module body> I <behavior module body) 

<structure module body> : : .. [<external module decl list>] 
[ suhmodule <submod decl list>] 
[ <type external def part>) 
{ <internal function det> } 

<connection body> 

<external module type decl list> : : • <external module type decD { ; <external module type decD } 

<submod decl list> : : = <submod decD { ; <submod dec1) } _ 

<submod decD : : = <submod decl id list> : <mod type name> [ (<parameter list> ) ] 

<submod decl id list> : : = <submod decl id> { , <submod decl id> } 
<submod decl id> : : • <name> [ { <subscript raJl8C list> } ] 

<parameter list> : : • <expression> 

<behavior module body> : : = [<type external def part>] 
{ <internal function det> } 

-----------~ - --------------------------~-------
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[ <state var decl part> ) 

cycle 

<compound action> { ; <compound action> } 
end cycle 

<external function def> : : = function <function header> 
[<type external def part>) 
{ <internal function def> } 
<expression> 
end fun 

<function header> : : = <function name> ( <decD { ; <decD } returns <data type spec> { , <data type spec> } ) 

<type external def part> : : = <type external def> { ; <type external def> } ( ; ) 
<type external def> : : = <data type def> I <external function decD 
<external function decl> : : = external <function header> 

<internal function def> : : = function <function header> 
[ <data type def part> ) 
{ <internal function def> } 
<expression> 
endfun 

<data type def part> : : = <data type def> { ; <data type def> } [ ; ) 
<data type def> : : = type <data type name> = <data type spec) 

<data type name> : : = <name> 

<data type spec> : : = <basic data type spec> I <compound data type spec> I <data type name> 
<basic data type spec> : : = null I integer I bitstr ( [ <subscript range> ] ] 
<compound data type spec> : : = array [<data type spec> <subscript range>] 

f record [ <field spec> { ; <field spec> } ) 
I oneor [<tag spec> {; <tag spec>} ] [where <tag def> {, <tag def>}] 

<field spec> : : = <field name> { , <field name> } : <data type spec> 
<tag spec> : : = <tag name> { , <tag name> } ( : <data type spec>] 
<tag def> : : = <tag name> { , <tag name> } = (tag value> 

<connection body> : : = structure 
<conn group> 
endstruct 

<conn group> : : = <conn spec> { ; <conn spec> } ( ; ) 
<conn spec> : : = <basic conn spec> I <control conn spec) 
<basic conn spec> : : = <explicit conn> I <implicit conn> 



<explicit conn> : : =<conn port id>·> <port list> 
<implicit conn> : : = <submodule id> (<port list> ) 
<port list> : : = <conn port id> { • <conn port id> } 
<conn port id> : : =[<submodule id> . )<port id> 
<submodule id> : : = <name> [ { <subscripts> } ] 

• 71 • 

<control conn spec> : : = <conditional conn> I <iterative conn> 
<conditional conn> : : = if <condition> then <conn group> 

{ elseif <condition> then <conn group> } 
[else <conn group> ] · 

endif 
<iterative conn> : : = for <control variable> : = <limit!> to <Iimit2) 

<conn group> 
endf or 

<limit!> : : = <expression> 
<limit2> : : = <expression> 

<state var decl part> : : = var <state var decD { ; <state var decD } 
<state var decl> : : = <decD [ : = <expression>] 

<compound action> : : = <elementary action> 
I <action block> 
I <conditional action> ·· 

I <tagcase action> 
I <iteration> 
I <definition block> 

<elementary action> : : = <state variable assignment> 

I <input action> 
I <output action> 

<state variable assignment> : : = <state var> { , <state var> } : = <actvaI> 
<state var> : : = <name> I <state var array ret> I <state var record ret> 
<state var array ret> : : = <state var> [ <subscript range> { , <subscript range> } ] 
<state var record ret> : : = <state var> • <field name> 

<input action> : : = from <port id list> I (tagged from> 

<tagged from> : : = tagcase [<value name> = ] <from-either list> ( ; ) 
<tag list> : <expreuion> ( ; ) 
{ <tag list> : <expression> ( ; ) } 
[ otherwise : <expression> { ; ] ] 
endtag 

<from-either list> : : ,. from...either <port id> , <port id list> 
(tag list> : : = tag <port id list> 
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<output action> : : = send <expression> at <port id list> 
<action block> : : = begin <compound action> { ; <compound action>} end 
<conditional action> : : = if <condition> then <compound action> ( else <compound action> ] endif 
<tagcase action> : : = tagcase [<value name> = ] <expression> (;] 

<tag list> : <compound action> [ ; ] 
{ <tag list> : <compound action> ( ; ] } 
[ otherwise : <compound action> ( ; ] ] 
endtag 

<iteration> : : = while <condition> do <compound action> I repeat <compound action> until <condition> 

<definition block> : : = let <actdecldef part> 
in <compound action> 
endlet 

<actdecldef part> : : = <actdecldef> { ; <actdecldef> } [ ; ] 
<actdecldef> : : = <decl> 

I <def> 
I <decl> { , <decl> } = <actval> 

<actvaD : : = <expression> I <input action> 

<expression> : : = <levell exp> I <expression> , <levell exp> 
<levell exp> : : = <level2 exp> I <Ievell exp> I <level2 exp> 
<level2 exp> : : = <level3 exp> I <level2 exp> & <leve13 exp) 
<level3 exp> : : = <level4 exp> I ... <leve14 exp> 
<level4 exp> : : = <levels exp> I <level4 exp> <relational op> <levels exp> 
<level5 exp> : : = <level6 exp> I <level5 exp> II <leve16 exp> 
<leve16 exp> : : = <leve17 exp> I <level6 exp> <adding op> <tevel7 exp> 
<teve17 exp> : : = <teve18 exp> I <leve17 exp> <multiplying op> <level8 exp> 
<tevel8 exp> : : = <primary> I <unary op) <primary) 

<relational op> : : = < I < = I > I > = I = = I -= 
<adding op> : : = + I -
<multiplying op> : : = • I / 
<unary op> : : = + I -
<primary> : : =<constant> I <value name> 

I (<expression>} 
I <function invocation> 
I <array ref> I <array generator> 
I <record ref> I <record generator> 
I <oneof test> I <oneof generator> 
I <prefix operation> 

I <conditional exp> 



I <letin exp> 
I <tagcase exp> 
I <forall exp> 
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<constant> : : = nil I true I false I <integer number> I <bit string constant> 

<function invocation> : : = <function name> (<expression>) 
<array ref> : : = <primary> [<subscripts>] 
<array generator> : : = <primary> [<subscript range list>] 

<record ref> : : = <primary> • <field name> 
<record generator> : : = record [ <field name> : <expression> { ; <field name> : <expression> } ) 

<oneoftest> : : = is <tag name> (<expression>) 
<oneof generator> : : = make <data type spec> [ <tag name> : <expression>] 

<prefix operation> : : = <prefix operator> (<expression>) 
<prefix operator> : : = abs J exp I mod I shift I shifr I rotl I rotr I bitstr I integer 

<conditional exp> : : = if <condition> then <expression> 
{ elseif <condition> then <expremon> } 
else <expremon> 
endif 

<letin exp> : : = let <decldef part> 
in <expression> 
eodlet 

<tagcase exp> : : = tagcase (<value name> = ] <expression> ( ; ] 
<tag list> : <expression> ( ; ] 
{ <tag list> : <expression> ( ; ] } 
( otherwise : <expression> [ ; ] ] 

endtaa 

<tag list> : : • tag <tag) { , <tag) } 
<tag) : : = <tag value> f <tag name> 
<tag value> : : = <bit string constant> I <integer number> 

<forall exp> : : = forall <value name> in [ <expr~ion>) { • <value name> in [<expression>]} 
[ <decldef part>] 
<forall body part> 
{ <forall body part> } 
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5 

eDllall ' 5 

<rora11 body part) : : • cOllSOad <exprelsioo> I ma1 <f'orall op>~ 
<rorauop> ==·plus lt1mesl•Jmu l•I_. 
<bit strins constant> : : • '<bit stm1&> I #<ocaa1 striD1> f@<ltndrc._. tbi11> 
<bit strina> : : • <binary cha'> { (l)iaary cba'>} 
<octal string) : : • ~ ~ { <oaal dw)} 
<hexadecimal lfrint> : : • Giel char>{ <Im elm>} 
<binary char> : :• 1 I <biD11Y c111iO 

5 <octal char> : : • ? l<octat dWO 
<hex char> : : • 1 I <tae1adecirnll c1iaiO 

<condition> : : • <elJ)Rllioa) 

<decldef put) : : • <docldd> { ; <deckW> } [; ] 

<decldef> : : • <decl> I <clef> I <cled> {. <decJ>} =<apn11ioa> 
<def) : : • <name> { • (DMlt) } = <apNISlea) 

<decJ> : : • <nane> { • <a.ne> } : <data type tpee)' -5 
5 

<field name> :·: • <aae> 
<ftmction name> : :,• <name> 
<port id list> : : • <portid> { • (port id> l . 
<port id) : : • <.....-> [ < ,<Jllt1cdpta) ) l 5 5 

5 

<subscript,.,.. ... :':. <.-dpt-.>{. <tublcdptll!llll>} 
<aublcript l'IQlt) : : • <apt. rrlaa>: <...-...> 5 

<lublcripa) : : •·~I J'M) 

<ta& name> : : • (8*111) 

<value name> : : • ~ 


