
The Design and Implementation
of an Online Di rectory Assistance System

Kimberle Koile

December 1983

©Massachusetts Institute of Technology 1983

This research was supported by the Advanced Research Projects Agency of the

Department of Defense and was monitored by the Office of Naval Research under

contract number N00014-75-C-0661.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

The Design and Implementation
of an Online Directory Assistance System

by

Kimberle Koile

Submitted to the
Department of Electrical Engineering and Computer Science

on December 20, 1983 in partial fulfillment of the requirements
for the Degree of Master of Science

Abstract

This thesis describes the design and implementation of an online directory
assistance system called DIRSYS that was modeled after the white pages of a paper
telephone book and a full-screen display editor such as Emacs. As the user begins
typing a name, the "pages" of this electronic telephone book appear on the screen,
and the entry that most closely matches what the user has typed so far is highlighted.
The system provides a tutorial for novice users and an online help facility for novices
as well as experienced users. The system also provides a facility for keeping the
information in the database up-to-date. A preliminary evaluation of DIRSYS indicates
that the system can be used easily by both inexperienced and experienced computer
users and that, except for its slow performance, DIRSYS is usable and robust.

Keywords: directory assistance, name server, user interface.

Acknowledgments

I would like to thank my thesis advisor, Prof. Jerry Saltzer, for his advice and

encouragement throughout this research and his diligence in reading the drafts of

my thesis. I also would like to thank Prof. Tom Malone for reading a draft of my thesis

and making valuable comments about it.

I would like to thank Sam Hsu for his invaluable help in designing and implementing

this system and in clarifying the ideas in this thesis. I also would like to thank

Deborah Estrin and Karen Sollins for their helpful suggestions. Thanks go to Sam,

Deborah, and Karen for helping make my stay at M.l.T. an enjoyable one.

In addition, I would like to thank the other members of the Computer Systems and

Communications Group and the Computer Systems Research Group for their

comments and suggestions about my work. In particular, Larry Allen and Michael

Greenwald have helped me learn about UNIX and VAXes. Also, thanks go to David

Feldmeier for help with the Altos.

I also would like to thank those people, too numerous to list, who provided me with

the needed directory information, as well as those who helped critique the system.

Special thanks go to my parents, Carmon and Earl, for their continued confidence

and support. Thanks also go to my father for his valuable editing comments.

Finally, special thanks go to my husband, John, for his never-ending patience and

support. I also am grateful to him for making many helpful editing suggestions and

doing the graphs for this thesis.

Table of Contents

Chapter One: Introduction

1 .1 System Goals
1 .2 Related Work
1 .3 Thesis Organization

Chapter Two: Operational and Design Issues

2.1 Operational Issues
2.2 Design Issues

Chapter Three: The System

3.1 The Interface
3.1.1 Design Principles
3.1.2 What the Interface Looks Like
3.1.3 Features that Illustrate Design Principles

3.2 The Database
3.2.1 Database and Index Structures
3.2.2 Searching the Database

3.3 The Update File
3.3.1 Update File Structure
3.3.2 Adding Updates to the Database

Chapter Four: Preliminary Evaluation

4. 1 User Interface
4.2 Database Access Method

Chapter Five: Conclusions and Future Work

5.1 Conclusions
5.2 Future Work

5.2.1 Work on the Current System
5.2.2 Extensions to the Current System

Appendix A: Glossary of Terms

Appendix B: Performance Graphs

Bibliography

4

6

7
8

18

19

19
23

27

27
27
31
49
52
52
53
56
56
57

63

63
70

74

74
75
75
78

86

90

101

Table of Figures

Figure 1 -1 : Key Arrangement on a Dvorak Keyboard 9
Figure 3-1 : Herald Screen 32
Figure 3-2: Sample Search Screen 33
Figure 3-3: Sample Search Screen in Expanded Format 36
Figure 3-4: Sample Tutorial Screen 38
Figure 3-5: Sample First Level Help Window 39
Figure 3-6: Sample Second Level Help Window 40
Figure 3-7: Sample Update Request Window 42
Figure 3-8: Sample Update Request Window Showing Proposed Chan£eS 43
Figure 3-9: Sample Update Survey Window 45
Figure 3-10: Sample Update Survey Window in Expanded Format 47
Figure 3-11: Sample Update Edit Window 48
Figure 3-12: Sample Database and Indexes 55
Figure 3-13: Sample Update Record 57
Figure 3-14: Sample Update File and Database Before Daemon Runs 61
Figure 3-15: New Update File and Database After Daemon Runs 62
Figure 4-1: Disk Accesses vs. Record Block Size, Buffer Size 128 72
Figure 4-2: Central Processor Time vs. Record Block Size, Buffer Size 73

128
Figure 5-1: Sample Search Screen for Mouse Interface 82
Figure B-1 : Disk Accesses vs. Record Block Size, Buffer Size 128 91
Figure B-2: Disk Accesses vs. Record Block Size, Buffer Size 256 92
Figure B-3: Disk Accesses vs. Record Block Size, Buffer Size 512 93
Figure B-4: Disk Accesses vs. Record Block Size, Buffer Size 1024 94
Figure B-5: Disk Accesses vs. Record Block Size, Buffer Size 2048 95
Figure B-6: Central Processor Time vs. Record Block Size, Buffer Size 96

128
Figure B- 7: Central Processor Time vs. Record Block Size, Buffer Size 97

256
Figure B-8: Central Processor Time vs. Record Block Size, Buffer Size 98

512
Figure B-9: Central Processor Time vs. Record Block Size, Buffer Size 99

1024
Figure B-10: Central Processor Time vs. Record Block Size, Buffer Size 100

2048

5

Chapter One

Introduction

DIRSYS1 is an online directory assistance system. It was developed for users with

widely varying computer skills and is based upon the familiar concepts of a paper

phone book and a full-screen display editor such as Emacs [51]. EntrieB from the

directory are displayed on the screen in a compact format, one line per entry, and the

current entry of interest is highlighted, e.g., by displaying the line in reverse video.

The user may direct the system to emphasize another entry by issuing commands,

similar to Emacs' cursor motion commands, or by typing a name. The search

mechanism is incremental. That is, after each character typed by the user, DIRSYS

updates its highlight and the terminal screen, if necessary, such that the highlight

rests on the entry whose name string most closely matches what the user has typed

so far. A help facility is provided to guide the novice user and to remind the

experienced user which commands are available. A tutorial is also availabl13 for users

who want step-by-step instruction on how to use DIRSYS. The def a ult search screen

allows approximately a full screen's worth of entries to be displayed, each entry

occupying one line of the terminal screen. All information concerning a particular

entry cannot be seen using this compact format. The user may request DIRSYS to

display fewer entries on the screen and show each entry in detail. A command is

available to switch between these two display formats. All commands retain their

semantics regardless of the display format.

DIRSYS also provides a facility for keeping the information in the directory database

up-to-date. A user may submit update requests, which contain proposed

modifications to that user's database entry. The manager validates or invalidates

1
The name is derived from DI Rectory SYS tern.

6

these requests, e.g., via letters to the users, and marks the valid update requests.

DIRSYS then rebuilds the database to include the valid updates.

1.1 System Goals

DIRSYS was designed and implemented in order to make the task of looking up M.l.T.

phone book information easier than with the current methods. 2 The primary goal for

DIRSYS was to develop a system that could serve multiple classes of users

-- inexperienced, experienced, and users in between who have mastered the system

once but are not experienced at using it. Thus, the system needed to bH easy to learn

so that people unfamiliar with use of computers or use of the system could engage

the system and "look someone up" in the electronic phone book. The system also

needed to be easy to use once learned so that experienced computer users and

experienced DIRSYS users could look up information easily and quickly. The

challenge in designing DIRSYS was to combine the simplicity and verbosity needed

for ease of learning with the flexibility and conciseness needed for ease of use.

In addition, it was desired (1) that the retrieval of information from the database be

fast -- at least fast enough to keep up with the demands of the users, (2) that the

database access method, i.e., the database structure and database search

mechanism, be simple, and {3) that the access time tor each database search, i.e.,

the time to search the database and retrieve the desired record, fall within a narrow

range of values in order for the system response times to be relatively constant.

Another goal was to have a relatively simple update mechanism that would allow

changes to be made to the directory database easily and quickly without degrading

system pert ormance.

2currently, the telecommunications operators use microfiche and other individuals use paper phone
books or online directory systems that contain information for users of certain computer systems.

7

1.2 Related Work

The following survey of online directory assistance systems is not an exhaustive

survey, but rather a representative one. The systems outlined here range from small

systems to very large systems, and most of them function only as directory assistance

systems. One of the systems described here provides other services as well.

Systems such as Xerox's Clearinghouse [40] and Grapevine [5] are designed to aid

computers in locating objects in a distributed multinetwork environment. Since they

do not provide the kind of directory assistance service for individuals that DIRSYS

provides, they are not included in this survey.

French PTT Directory System

For the past several years, the French phone company (PTT) has been developing an

online directory assistance system that is available to subscribers via terminals

placed in their homes and offices and in post offices and selected public places [20].

This electronic telephone directory contains information found in the "white" and

"yellow" pages of a printed telephone book. Users can search the directory for

information by name, profession, or phone number, and can look up billing and

telephone company information.

To search for information associated with a personal name or business name, the

user types in a location name, where location may be a township, an urban precinct

or district, a county, or a rural crossroads site, and the personal or business name.

He3 may also enter an address or the name of a profession, e.g., banking. The

system uses this additional information to identify the desired entry when more than

one matching entry is found. To search the "yellow" pages, the user inputs a

location name and a qualifier that describes the information he is seeking, e.g.,

restaurant. If a matching entry is not found for the specified location, the program

3unfortunately, English does not have a personal pronoun that is accepted to mean both he and she.
Since forms such as "s/he" are not considered to be grammatically correct, "he" is used in this
document to mean "he or she".

8

will search the information associated with neighboring areas. Finally, to search for

an entry associated with a given telephone number, the user types in the eight digit

national telephone number.

Directory assistance operators perform two functions within this system. They assist

customers who are unable to locate a desired entry using the electronic directory

system, and they update information contained in the directory database.

The online directory system is currently operating throughout the western part of

France, with terminals available to any subscriber who wants one. In addition, plans

are underway to introduce the system throughout the rest of the country.

New England Bell Directory System

The New England Bell Telephone Company's online directory assistance system was

designed to be easily and quickly used by trained operators.4 It is used to service

requests for information contained in the "white pages" of phone books,5 and

employs a special keyboard, called a Dvorak keyboard, on which keys are located

according to frequency of use, with the most frequently used keys in the middle row.

This keyboard is used for quick input of query information. (See Figure 1-1.)

P Y F G C R L

A E I 0 U D H T N S

Q J K X B M W V Z

Figure 1-1: Key Arrangement on a Dvorak Keyboard

4consequently, the system has no on line help facility.

5Ttiere currently is no interactive system for looking up "yellow pages" requests.

9

To search for a phone book entry, an operator types in a two or three letter locality

abbreviation, e.g., ARL for Arlington, a partition abbreviation, e.g., W for West

Suburban Boston, three or four letters of a last name, one letter of a first name, and

then hits a residential, business, or government key to indicate which type of phone

book entry is being sought. The operators move the cursor between different input

fields by using a <TAB> key. The entries that contain the typed characters in the

appropriate fields are displayed in the format that is used in the paper phone books:

one line per entry, last name followed by first and middle names or initials, street

address, city abbreviation, and phone number. The system also provides facilities for

locating entries containing similar, but differently spelled last names and names that

phonetically match the query name.6 The area code operators, reached by dialing

617-555-1212, typically service approximately 200,000 calls a day; the Boston area

operators, reached by dialing 411, typically service approximately 260,000 calls a

day.

The database for the 617 area code contains approximately 2.5 million entries and is

partitioned into four sections; the database for the Boston area contains

approximately 1.5 million entries and is partitioned into 16 sections.7 Updates to the

directory database are initiated by the customer, who calls a service representative to

request a change. Once received, the updates are entered into an update file that is

separate from the database. The database is rebuilt every night to include new

update information.8 Thus, updates are visible as soon as they are received without

changing the database that is in use.

6These additional search facilities are used rarely by the directory assistance operators.

7 Pat Martin, New England Bell Telephone Company, personal communication.

8The vendor in charge of maintaining the system delivers a magnetic tape containing the new
database each morning.

10

CSNET Mame Server

CSNET9 is a computer communications network linking groups in the United States

doing computer science research, such as university computer sciHnce departments.

It provides, or will provide, electronic mail, file transfer, and remott3 login services to

computers that are directly connected to CSNET and electronic mail services for

computers not directly connected to CSNET. The CSNET Name Server, which

providHs a directory assistance service for CSNET users, was designed to be easy to

use and to facilitate the sending of electronic mail by helping users locate addresses

of mail recipients. In later stages, it will also help the user establish nicknames and

aliases for mail recipients and forward electronic mail [27, 48].

The Narne Server database currently contains about 2000 entries and is maintained,

along with the programs for accessing it, on a central computer. 10 In addition, a

Name Server program for registering users and answering questions about existing

CSNET sites resides on computers at local sites. If the local computer is directly

connected to CSNET, users invoke the directory service by connecting to the central

computer and typing "ns". There are two levels of help available. The first level

contains a list of commands and their functions, and the second level contains a

more detailed explanation of a specified command.

To search the directory, a user types "whois" followed by a string of characters and

optional keywords. For example, a user might type "whois James [Texas

professor]", and the program would search the database for a record containing the

string ",James" and either of the keywords "Texas" or "professor". The program

searches all fields in the directory records for a matching string. Records would be

9The name is derived from Computer Science NETwork.

10rhe computer has been moved recently from the University of Wisconsin at Madison to Bolt
Beranek and Newman Inc., located in Cambridge, MA.

11

located that contain "James" as a first name, last name, login name11 , or street

name, for example. The keywords are important for distinguishing between the

records containing the same string. Typing an "*" in a string tells the program to

match any character or characters in that position in the string. In this way the

program can locate entries in the database when users do not know exactly how to

spell the name for which they are searching. If there are fewer than nine entries

matching what the user has typed, all information in them matching entries is

displayed. Otherwise, only names and electronic mail addresses are displayed.

There is also an option that allows users to specify this "short" format in place of the

longer one.

If the local computer is not directly connected to CSNET, users may interact with the

local Name Server program to formulate the "whois" queries. The program then

sends the queries via electronic mail to the central Name Server computer, which

performs the search and returns the matching information to the user via electronic

mail.

Users are responsible for entering and updating their entries in the central directory

database. The local Name Server program allows users to REGISTER, RETRIEVE,

EDIT, INSTALL and UNREGISTER their directory information. The program formats

an update message and sends it to the central Name Server computer. The new

information is added to the directory database by an update program that runs every

15 minutes. Users may provide the Name Server program a password to be used

when modifying or deleting their directory entry. Having a password for the entry

allows a user to edit that entry when connected to the central !\lame Server, thus

saving him from having to always interact with the local Name Server program.

11 The term "login name" is often synonymous with "login ID", "computer account'', or "electronic
mail address".

12

NICNAME

NICNAME is a directory service for users of Af~PANET12 , a computer

communications network that links institutions throughout the United States, Norway,

and England. NICNAME is maintained by the f\Jetwork Information Center (NIC) and

is invoked by connecting to the NIC computer and typing "whois" followed a string of

characters [21). If the string only contains an "* ", an explanation about how to

search for a name is displayed. Any other string of characters is interpreted as either

a personal name or a handle, the unique identifier assi9ned to each entry in the

directory database.13 Typing " ... " after a string of characters tells the program to find

entries containing names or handles that begin with the typed characters, i.e., tells

the program to use a prefix match rather than an exact match. Typing1 "." in front of

a string of characters tells the program to search for matching names only; typing "I"

in front of a string of characters tells the program to search for matching handles

only; typing nothing before the string of characters tells the program to search for

matching names and matching handles.

If only one matching entry is found, all of the information contained in the entry is

displayed and usually occupies several lines on the screen. If several matching

entries are found, only the names, handles, electronic mail addresses, and phone

numbers in the entries are displayed, with the information for each entry occupying

one line on the screen. If more than five matching entries are found, the first five are

displayed on the screen, followed by the message, "There are x more entries. Show

them? [Confirm]", where x is an integer. Hitting a carriage return or enter key

causes the remaining matching entries to be displayed. To view more information for

an entry that was displayed in the one line per entry format, the user repeats the

search, typing enough of the name or handle to uniquely identify the desired entry.

12The name is derived from Advanced Research Projects Agency NETwork.

13The handle often consists of the initials of the personal name in the entry or the initials and an
integer when the initials are not unique.

13

The connection to the NICNAME program is closed as soon as display of the

matching entries or a message indicating the lack of matching entries is completed.

The NICNAME directory database contains about 10,000 entries. Individuals are

responsible for entering and updating their own entries. To add, delete, or modify an

entry, an individual sends a message containing the desired update via electronic

mail to NIC@SRl-NIC. One of several individuals in charge of maintaining the

NICNAME database enters the new information into the database using an update

program that then rebuilds only the part of the database that was affected by the

update.

PHONE

PHONE is a directory system that was designed for use within IBM. By typing

"PHONE" followed by a string of characters, users can "look up" information about

IBM employees who work at any of approximately 100 sites across the United States.

An explanation about how to use the system is available by typing "PHONE ?".

The online phone book information at each site is organized into directories, with one

directory for each IBM site, and users may specify in which of these dimctories they

would like to search. Users also may specify that their private nickname files be

searched. If a directory or nickname file is not specified, the directory for the local

site is searched. Users may search for personal names, phone numbers, or

computer login names. Typing "*" anywhere in the search string tells the program to

match any character or characters in that position in the string. A blank is used to

separate last name, first name, and middle name information in the search string. If a

comma is typed after one of the parts of the name, the program searches for entries

containing the string in the appropriate field exactly as typed. Otherwise, the

pro~1ram searches for entries containing a string in the appropriate field that begins

with the typed characters. In other words, a comma is used to designate an exact

match scheme instead of a prefix match scheme.

14

Entries matching the user's search string are displayed by screentuls in a one line

per entry format when possible. To display the next screenful of entries, the user

issues a MORE command.14

Each IBM site is responsible for maintaining information about its employees. When

the information at a site is updated, an individual at the site sends a new copy of the

information file to the IBM site at Yorktown Heights, New York, where it is changed to

the PHONE directory database format and then sent out to all the IBM sites. Thus,

each site providing the PHONE service has a copy of the entire directory database,

which contains approximately 27,000 entries.15

INQUIR

INQUIR is a directory service for M.l.T. computer users. It runs on several of the

M.l.T. computers and provides information about individuals who have accounts on

those computers. The directory service is invoked by typing "whois" followed by a

string of characters. Entries in the directory database that contain a last name or a

login name matching the typed string are displayed on the terminal screen, with each

entry occupying several lines of the screen. The connection to the directory

database is closed as soon as the display of matching entries or a statement

indicating that there are no matching entries is completed. Thus, there is no need to

exit the directory system.

Individuals with accounts on the computers that maintain an INQUIR directory

database are responsible for entering and updating their own directory entries. To

facilitate this process, access to the directory database is unrestricted. The

commands for entering directory information are easy to use. An individual types

"INQUIR" followed by a carriage return, then types one of several available

14
How the command is issued is operating system dependent.

15Peter Capek, IBM Yorktown Heights, personal communication.

15

commands followed by a login name. The available commands are: NEW for creating

a new entry, MODIFY for changing an entry, SHOW for displaying an entry, and EXIT

for exiting the program. After typing NEW or MODIFY, one may enter such

information as name, nickname, project, home address and phone, work address and

phone, and birthday. Typing a question mark at any time causes a list of current

options to be displayed.

In one version of INQUIR, the directory database contains entries only for individuals

who have accounts on the machine providing the directory service. One such

INQUIR database contains approximately 500 entries. Updates submitted to this

INQUIR system are immediately added to the directory database and, thus, are

immediately visible. In a second version of INQUIR, the directory database contains

entries for individuals who have accounts on any of several machines. Each machine

provides the INQUIR directory service and has a copy of the directory database,

which contains approximately 2000 entries. Updates submitted to any of the

machines running this version of INQUIR are mailed to the other machines running

this version in order that all the databases contain the same information. Update

programs on each machine then create new copies of the database. Thus, updates

submitted to this INQUIR system are not immediately visible.

Bell Laboratories Experimental System

An experimental directory assistance system at Bell Laboratories in Holmdel, New

Jersey, was designed to give feedback about the number of records in the database

that match what the user has typed so far. The scheme used to match records is a

phonetic matching scheme similar to the Soundex 16 al9orithm. The user enters

information such as personal name, department, building address, or phone number,

and after each character typed, the system reports by means of a superimposed

coding scheme the maximum number of database entries that match what has been

160del, Margaret K. and Russell, Robert C. U.S. Patents 1261167 (1918), 1435663 (1922). Cited by
[26].

16

typed so far [45]. The user can tell the system to "print" the entries on the screen by

typing "p", output them to a file by typing "o", or count the actual number of

matching records by typing "c". The system "remembers" the previous query so

that queries can be combined by means of "AND" and "OR" operations. The

database contains about 27,000 entries and currently is updated manually by editing

the database file. The system is not widely used because it is not easily accessed:

users must locate a terminal, log into one of the Bell computers, and start up the

directory system. In addition, the database often contains out-of-date informa.tion. 17

Comparison to DIRSYS

DIRSYS, like many of the surveyed directory systems, was designed to be used by

individuals with widely varying computer skills and levels of experience in using the

directory system. Unlike most of the surveyed systems, however, DIRSYS provides a

tutorial and a detailed level of help in addition to the brief description of the available

commands that most of the other systems provide. 18 Moreover, DIRSYS allows the

user to get help without interrupting the immediate task. It must be noted, however,

that if only a search command is available as in, for example, NICNAME, a more

detailed level of help may not be needed.

In addition, since DIRSYS is modeled after a paper phone book, a screenful of

information is comparable to a "page" in the electronic phone book. The surveyed

systems do not necessarily display pages from the electronic phone book. Instead,

they display a set of entries that match a typed string. In response to "whois lee", for

example, the CSNET Name Server will display all entries that contain the string "lee"

in any field, not just the last name field.

With DIRSYS, as well as the French, the New England Bell, the experimental Bell, and

17 John Beyer, Bell Laboratories, personal communication.

18The CSNET Name Server is the exception among the surveyed systems; it also has two levels of
help.

17

PHONE directory systems, a central authority is in charge of gathering and updating

the information in the directory. In addition, DIRSYS provides users with a command

for submitting an update request, and the update requests are sent to a manager

before being incorporated into the database. The CSNET Name Server and INQUIR

allow users to add, modify, and celete their directory entries without the intervention

of a manager.

Finally, DIRSYS contains directory information for members of the M.l.T. community

and is maintained on a central computer. All of the surveyed systems, except

INQUIR, cross institutional or regional boundaries in terms of the information that

they contain. They may not be maintained on computers in different locations,

however. The CSNET Name Server and NICNAME, for example, contain information

for individuals and institutions throughout the United States and are maintained on

central machines. In contrast, PHONE contains information for individuals

associated with one company, IBM, but the system is maintained at many sites.

1.3 Thesis Organization

Chapter 1 has presented an overview of this research and a survey of related work.

Chapter 2 raises questions upon which this research was focused; the subsequent

chapters seek to answer those questions. Chapter 3 describes the system, and

chapter 4 presents a preliminary evaluation of it. Chapter 5 presents conclusions and

examines questions that are topics for future research. Appendix A contains

definitions of terms used in this thesis, and Appendix B contains performance graphs

(which are discussed in Chapter 4).

18

Chapter Two

Operational and Design Issues

There are many issues to be resolved when building an online directory assistance

system. Some of the issues, termed operational issues, were resolved on the basis of

w~iat seemed practical and organizationally efficient. These issues include acquiring

directory information, identifying how to maintain and update the information, and

idHntifying the users of the system. Other issues, termed design issues, became the

focus of this research and include questions about the design of the interface, the

database, and the update mechanism.

2.1 Operational Issues

Acquiring Directory Information

Who should be listed in the directory? The answer to this question is an

organizational decision. In a business setting, the question of who should be

included in a company-wide directory may not be difficult; the group of employees in

a company is usually clearly defined. At M.l.T., however, there is a "soft" boundary

between those who are associated with the Institute and those who are not. There

are numerous and varied affiliations held with M.l.T. For example, individuals who

are not members of the M.l.T. student body, faculty, or staff may be allowed guest

accounts on M.l.T. computers. Some former members of the student body, faculty,

and staff may maintain ties with the M.l.T. community after leaving the Institute, e.g.,

computer accounts or consulting with colleagues.

In making a decision about membership in the online directory assistance system, it

was assumed that students and staff members listed in the M.l.T. paper phone books

would be listed in the electronic phone book as well. Since the registrar's office

19

maintains records of student enrollment and the personnel office maintains them for

faculty and staff appointments, and both offices provide information for the printed

phone books, it was appropriate that these offices be a source of information for the

electronic phone book.

Additional information, specifically electronic mail address information, was obtained

from various M.l.T. computers. The electronic mail addresses were then added to the

appropriate records of phone book information that had been obtained from the

registrar's and personnel offices. If a person had electronic mail addresses on

several M.l.T. computers, all the addresses were included in the directory and listed

when a user viewed that record using DIRSYS. Thus, each entry in the electronic

phone book contains the information available in the M.l.T. phone book 19 and

electronic mail address information. When DIRSYS ceases to be a research tool, a

method will be needed for asking people which information they would like listed in

the online directory. For the time being, at the beginning of the fall term people are

given the choice of not being included in this experimental online directory system by

filling in a form that is distributed by the registrar's and personnel offices. Currently

there is no proposed scheme for asking people which, if any, electronic mail address

they would like listed in the online directory. The verification of electronic mail

address information is organization dependent and can be done for the M.l.T.

community if the registrar's and personnel offices ask for such information at the

same time that they collect other phone book information.

Maintaining and Updating Directory Information

It was assumed that the system would be maintained on a computer dedicated to

running the system in order to avoid complications and delays on a large

time-sharing system that provides other services. In addition, having the entire

19This information includes M.l.T. address and phone number, home address and phone number,
dorm phone number for students, department, and title (for faculty and staff members) or graduating
year {for students).

20

system reside on one computer avoids problems associated with distributed

databases. (Maintaining the system on more than one computer is discussed in

Section 5.2.)

The system was designed on the assumption that it would be maintained by a

manager, who would update the directory database according to policy issues

formulated by a central authority and who would be responsible for maintaining the

reliability of the information in the directory database. Putting a manager into the

update scheme also might discourage unauthorized modification of the database

since the commands that actually change the database would be available only to the

manager.20

Requests to update information in the directory database could be sent to the

DIRSYS manager by (1) the registrar's and personnel offices, (2) by the

telecommunications operators {when someone informs the operators over the phone

of new information), and (3) by persons who wish to send the new information

directly to the manager.

The manager could assume that update information received from the registrar's or

personnel offices was "official" and could be added immediately to the database. At

present, there is no proposed way to verify the reliability and acceptability of the

update information given to the telecommunication operators or sent directly to the

manager. It is presumed that the DIRSYS manager would be able to devise validation

procedures that would be effective. The presence of an authentication server

perhaps would eliminate the need for validation by the manager when an individual

sent an update request using DIRSYS from a machine on which the login name could

be determined.

2001RSYS is only as secure as the operating system on which it runs. No security features were
introduced.

21

In addition to the updates that would be received on a daily basis,21 academic

institutions such as M.l.T. will have a large amount of new information to be added to

the directory database, as well as a large amount of old information to remove, on a

yearly schedule, e.g., in September. Eventually, the exchange of this information

between the registrar's and personnel offices and the directory system manager

could be automatic. It may be assumed at this stage that a new database would be

built in the same way that the first one was built, i.e., based on current directory

information obtained from the registrar's and personnel offices collected, say, at the

beginning of the fall semester in September. An alternate method would be to merge

the new information into the old database.

DIRSYS Users

Several classes of DIRSYS users were identified. The DIRSYS manager would not

necessarily be an experienced computer user, but would be an experienced, routine

DIRSYS user after initial training. The M.l.T. telecommunications operators would

use the system routinely to provide directory assistance service for people who called

in requests for information. They would not necessarily be experienced computer

users, but would be experienced DIRSYS users after initial training. There would be

two classes of infrequent users: those who are members of the M.l.T. community and

those who are not. The infrequent user would be an inexperienced DIRSYS user, but

could be either an experienced or inexperienced computer user.

DIRSYS users could access the system using typewriter-like keyboards and terminals

connected directly to the DIRSYS machine and distributed throughout the M.l.T.

community. Alternately, they could access the system from other terminals by means

of a network connection to the DIRSYS machine. (An interface that employs a mouse

is described in Section 5.2.}

21 The number of daily updates probably would be small.

22

2.2 Design Issues

The Interface

Questions with respect to the interface, i.e., how the user interacts with the system,

are as follows: Should the interface be incremental, i.e., should the screen be

updated after each character that the user types? Or should it be non-incremental,

i.e., does the user type a complete name and then hit an <ENTER> key to tell the

system to start searching for that name? Should the user interact witl1 the system by

typing commands or by selecting commands from a menu? Perhaps learning aids

could be designed to guide inexperienced users without encumbering experienced

ones. Also, perhaps the system could uniquely identify the record of information for

which the user was searching, How, then, might the system deal with nicknames and

aliases, middle names and initials, as well as misspelled names? Should the system

allow users to search on fields other than full name, i.e., could someone type a

department name and then be shown a list of all people in that department? How

might the same interface be used to send update information to the DIRSYS

manager? Finally, how might the system enforce the M.l.T. privacy policy, which

currently states that the phone book is not to be made publicly available, especially

for commercial purposes? In other words, how could the system make

reconstruction of the phone book difficult for someone outside M.l.T.?

In exploring answers to these questions, it was discovered that one interface design

could not meet all the requirements. It was decided to experiment with an

incremental interface to discover ways it might be used easily. The user could type

only as much of a name as was required to find the desired entry. Ideally, the user

would be able to see the desired entry on the screen after typing only a few

characters. The incremental interface also had the potential of closely modeling the

way people scan paper phone books. In addition, it was decided to experiment with

designing an interface that employed simple typed commands rather than menus of

commands. It was hoped that novices could learn to use the system as quickly as

with menus and that the system, once learned, would be easier and faster to use than

23

a system with menus. With the incremental interface, perhaps the user could deal

more quickly and efficiently with nicknames than the system could and, moreover,

the identification of a unique phone book entry could be left up to the user. The

incremental interface, however, could not deal effectively with misspellings and

searching on fields other than :iame (where the last name is included) since its

design would be organized around searching for information using alphabetized

names. Thus, a second interface would be needed. The incremental interface could

be used to send update information to the manager. People in the registrar's and

personnel offices, the telecommunication operators, and people wanting to change

their own directory information could use the same interface for submitting update

information. Finally, the incremental interface would not address privacy issues well

enough for it to be used by people outside the M.1.T. community because there would

be no way to limit the amount of information that appears on the screen. A separate

interface, then, would have to be implemented for use outside M.l.T. (The

incremental interface is described in detail in Section 3.1. Additions to this interface

and an interface for use outside M.l.T. are discussed in Section 5.2.)

The Database

Questions about the database design included: What is a simple database structure

that will allow fast system response? What kind and how many levels of indexing are

needed?

It was decided to set up the database as a sequential file of records with three levels

of indexing. This organization would facilitate the random accessing needed when a

user types a name and the sequential accessing needed for displaying consecutive

records of information on the screen. The main index was to take advantage of the

fact that the database was to be ordered alphabetically by last name by having

names, or parts of names, from the database as its index entries. (The organization

of the database and its indexes is desicribed in detail in Section 3.2.)

24

Update Mechanism

Finally, questions about the scheme for keeping the database up-to-date needed to

be addressed. How could the database be updated without changinQ! the database

that DIRSYS was using, i.e., so that the system could remain reliable? How could the

database be updated simply without degrading system performancH? How often

should updates be incorporated into the database?

It was decided that in order not to "disturb" the database that DIRSYS was using, the

updates should be kept in a file separate from the database and that they should be

added to a copy of the database. In this way, a copy of the old database also could

be kept intact in case something went wrong with the update process. Since the

update program would need to copy the database, it seemed expedient that it copy

the database and update it at the same time. Thus, the database and indexes would

be completely rebuilt when updates were added to the database. In addition,

rebuilding the database would be much simpler than having the daemon only rebuild

parts of the database, and the daemon could use the same build procedure that was

used to build the database and indexes the first time.

It seemed appropriate to rebuild the database at night rather than during the day

when the number of users might be large, thus reducing the possibility of degrading

the system response time. The rebuild process could be automatic. An update

program could check to see if the database needed to be rebuilt, and if so, rebuild it.

The manager could switch DIRSYS to the new database the next morning after

having inspected the new database to make sure that it had been rebuilt properly.

It is generally expected that once a paper phone book is printed, changes will not

appear until the next issue. New directory information may not be available in print

for as long as a year. With an online directory, however, there is no printing of a

phone book involved; changing a file on a computer is required. Thus it may be

feasible to update the directory database frequently. Updates made more often than

once a day would not be necessary, however, since a maximum wait of 24 hours

25

r•llJLl4!!@QllJilJllJ!IJ!Mll!llll! Qlll._,.,J ...• 1$.••• fllllll.IJ!~·~
,,:.1·, • .

before new tnformation · WOUid "9 wllJfbtt •U.td .~,.a "''"'' ,a ttllG••be .,_,
eapeclatf!/-. •ura••• · lllldllift..,.._;.,,,n 11iflif-.0:·•111e:JWQGJd•

. -, -;· \

la dtaQJaaad in . .,...,.. .• ..._ U)

Chapter Three

The System

DIRSYS, implemented in the CLU programming language [30] on a DEC-SYSTEM 20

and a VAX 11 /750,22 has three parts: the interface, the database, and the update file.

This chapter describes each of these parts.

3.1 The Interface

In this section, principles that were followed in designing the interface are presented,

followed by a description of the interface from the user's point of view. The section

ends with a description from the designer's point of view of the interface features that

illustrate the design principles.

3.1.1 Design Principles

As mentioned earlier, the primary goal for DIRSYS was to design a system that could

be used by inexperienced, experienced, and occasional users. Therefore, the

DIRSYS interface, which is the part of the system through which users interact with

DIRSYS, needed to be designed to reflect the needs of all classes of users. It needed

to be easy to learn to use and easy to use once it had been learned.

Several principles guided the interface design and are discussed below. Features of

the DIRSYS interface that illustrate each of these principles will be pointed out in the

interface description and in the section following the description.

22The DEC-SYSTEM 20 runs the TOPS-20 operaing system; the VAX 11 /750 runs the UNIX operating
system.

27

1. User's Model: Users often perform best when they have a clear
conceptual model of the system that they are using [7, 16, 28, 28]. The
model enables the users to understand what the program is doing and to
anticipate the effect of their actions. It also enables them to develop
their own strategies for using the system. In order for the user's model to
be intuitive and easy to learn, it has been suggested that the system, and
specifically the interface, be based on concepts that are familiar to the
user [38].

2. Minimal Command Set: Users may be overburdened by systems that
contain more features than are needed for completing a particular task.
They may be tempted to learn all features even though some of them are
not needed for the task. In addition, redundant forms of the same
operation may cause users to be confused and have difficulty
remembering the choice of ways to perform an action [28]. There is
evidence from decision theory that suggests that user performance is
improved when the number of alternatives with which a user is
confronted has been minimized [13, 33]. In addition, there is
experimental evidence to support the assertion that users perform best
with the smallest possible command set that permits completion of a
given task (2]. In light of this assertion, extraneous features, i.e., those
unrelated to the task, and redundant features, i.e., duplicate forms of
commands, should be avoided. It should be noted that these assertions
probably would not be substantiated for a system designed only for
experienced computer users.

3. Simple Command Structure: Evidence suggests that for commands to
be easy to learn and easy to remember they should have a simple
structure and their names should be based on English (or German,
French, etc.) phrases composed of familiar descriptive words
[7, 17, 28, 38]. For systems that employ typewriter-like keyboards,

command abbreviations aid in rapid, correct input of commands (28]. If
the abbreviation scheme is consistent and simple, it often contributes to
better user performance by reducing the effort in memorizing commands
and in reducing the number of errors in entering abbreviated commands
[23]. Experimental data suggests that the most easily remembered

abbreviation scheme is first letter abbreviation.23 First letters are also
fast and easy to type. To use this scheme, however, the command set
must not be large or command names may become obscure in an
attempt to keep first letter abbreviations unique.

23Freedman, J. L., and Landaur, T. K. Retrieval of Long-Term Memory: Tip-of-the-Tongue
Phenomenon. Psychological Science, August, 1966. Cited by [28].

28

4. Consistent Command Interpretation: Evidence suggests that to
decrease users' confusion, commands should not have different
meanings in different contexts [17, 28, 38]. Instead, they should
consistently perform the same actions. Some systems, for example, may
interpret the letter Q as quit in one context and as text in another. To
avoid user confusion and decrease the number of user errors due to not
knowing which command meanings are associated with the current
context, systems should not interpret commands differently in different
contexts.

5. Help Facility: The command for getting help should be simple and
concise. The user should be able to get help from the system at any
point in the user session without interrupting the immediate task, and the
assistance provided should be specific to the user's current context
[43, 44, 49]. Users differ in the amount of help that they need or want. A
novice may want a detailed description of a certain command, while an
occasional user may want a sentence or two, and an experienced user
may want only a brief explanation. Thus, the system should provide
different levels of help.

6. Feedback: Users should receive feedback from the system so that they
know what the system is doing. Feedback includes echoing of typed
characters, indication of a selected object, acknowledgment of receipt of
a command, and explanatory messages [14, 38]. The explanatory
messages should be displayed in a conspicuous place on the screen, but
should not interfere with the user's text. They should be concise, polite,
understandable, and informative [28, 43, 44, 47, 49]. Examples of
explanatory messages include notifying the user that the system is still
working on a request (if a particular command execution is slow) and
notifying the user when he has made an error (since continued
commands may be invalidated by the previous error). If the message is
the result of a user error, it should appear immediately after an error so
that the user does not have to mentally reconstruct what he did [14, 38].
The error message should not on'y indicate that there was an error, but
also should explain the error and indicate what the user may do next.
Error messages should be phrased positively and should avoid
implication that the user is at fault [28, 47].

In addition, the user should be able to give the system maintainer
feedback. Comments about difficulties are useful in improving and
maintaining the system.

29

7. Error Handling: The system should be resilient against a variety of user
errors. Thus, it should be virtually impossible for the system to terminate
abnormally, i.e., the system should be robust [7, 25, 55J. If a system error
should occur, a message explaining the error should be sent to the
system maintainer. A message should be sent to the user informing him
that a system error has occurred, but not detailing the error. The
underlying aspects of the computer should be invisible to the user, and
the user should not be distracted by information intended for the
maintainer [44].

30

3.1.2 What the Interface Looks Like

In this section, the interface is described from the user's point of view. Its features

are illustrated by describing how the user interacts with the system.

Starting DIRSYS

When DIRSYS starts up, the first screen, the herald, shown in Figure ~3-1, contains a

brief description of what the system does, how to start using it, and a list of the

commands needed by the first-time user, along with the functions of those

commands. It also gives an address to which users may send comments.24

After the herald has been displayed, the user has two options: he may begin

searching for a name, or he may get additional instruction on how to use DIRSYS by

starting a tutorial. (Searching for a name is discussed in the next subsection; the

tutorial is discussed in the subsection entitled "Getting Help."}

Looking Up a Name

Once the herald has been displayed, issuing the exit screen command, CTRL-E25,

causes the herald to be replaced by a screen that is divided into four rectangular

areas, called windows: the label window, the directory data window, the status

window, and the echo area. This screen is called the search screen and is shown in

Figure 3-2.

The top line of the screen is the label window. It contains information about the

window that is located just below it. For example, in the screen that appears

immediately after the herald, the label window contains headings for the columns of

information that appear in the directory data window.

24Currently, the address is an e!ectronic mail address. A better alternative would be to have a
command in DIRSYS for sending comments directly to the manager, since users may not have access to
an electronic mail system.

25The notations "CTRL-E" and "tE" represent hitting the key labeled "E" while holding down the key
labeled "CTRL".

31

D I R S Y S MIT Directory Assistance System

DIRSYS is an electronic MIT phone book. A brief explanation of how to use it
is given below. If you have never used DIRSYS before or want to review how to
use it, you may want to start the tutorial, by typing tT. (This notation means
hit the key labeled "T" while holding down the key labeled "CTRL".)

•• To start DIRSYS, hit ~E. ••
Then to start searching for a name, begin typing the name in the form:

Other useful
?

1'Q
1'N
1' p

1'F
1'8

1'K
1'S

Last name, First name, Middle name

commands:
HELP (lists available commands and their functions).
Quit the program.
go to Next line.
go to Previous line.
go Forward one screen.
go Backward one screen.
Delete one character from what you have typed.
Kill the search and start over.
display more information about entries (Switch format).

You may send comments via electronic mail to DIRSYS at MIT-XX.

Figure 3-1: Herald Screen

The bottom line of the screen is the echo area, and the characters that the user types

appear there. It contains the following prompt at the beginning of the line:

"Name {last, first, middle): ".

The two lines above the echo area form the status window. The top line of the status

window is used to send messages to the user. For example, immediately after the

herald disappears, DIRSYS sends the user a message saying that it is getting the first

screen of entries and to please wait. The bottom line of the status window contains a

list of available commands.

The directory data window, or data window, takes up the largest area of the screen.

It is located in the center of the screen between the label and status windows and

contains the "pages" of the electronic phone book. Each line on a page gives

information associated with a person who is listed in the directory. This line of

32

Name ••••••••••••••••••••.•• Hm Phone ••••• MIT ext .•.• Dept ••••••••••••••••• Status

ALLEN, LARRY, W ••••••• It •• 646-3080 3-6020 LAB FOR COMPUTER SCI
baldwin, robert, w 494-8490 3-6020 elec eng & comp sci
berlin, stephen, t 3-1448 1 ab for computer sci
bridgham, david, a 255-6683
comfort, sarah 3-6002 lab for computer sci
cooper, geoffrey, h 3-6006 elec eng & comp sci
corbato, fernando 3-6001 elec eng & comp sci
estrin, deborah 497-9491 3-6005 elec eng & comp sci
feldmeier, david, c 255-9540 elec eng & comp sci
gifford, david k 3-6039 alee eng & comp sci
gramlich, wayne, c 494-1076 3-6042 elec eng & comp sci
greenwald, michael, b 497-0472 3-6042 lab for computer sci
hartcrneck, ralf 494-9833 3-6020 alee eng & comp
hopkins, grace 3-6042 elec eng & comp
hornig, charles 3-7788 elec eng & comp

COMMANDS: ?, ~T. tR, tN, tP, tf, tB, tS, , tW, tK, tQ, ESC-M
Name (last,first,middle):

Figure 3-2: Sample Search Screen

sci
sci
sci

.. STAF
g
staf
1985
staf
g
fac
g
1984
fac
g
staf
1984
1984
1983

information is called an entry. The one line per entry format allows the user to scan

the pages quickly, since it allows many entries to be displayed per screen.

The user's attention is focused on one entry by highlighting that entry. DIRSYS

highlights an entry by displaying the information in reverse video if the terminal has

this capability and in uppercase letters, leaving other entries in lowercase. It also fills

spaces between fields of information with periods.

To focus the user's attention in the center region of the screen, the highlight only

travels between an upper and a lower margin in the data window.26 Should the entry

to be highlighted be above the upper margin, the data window will scroll backward,

placing the highlighted entry at the lower margin. Similarly, when the highlighted

entry appears below the bottom margin, the data window scrolls forward, placing the

hi~Jhlighted entry at the top margin. In this way, the highlighted entry always has at

26These margins are not visible on the screen.

33

least a margin's worth of entries above or below it for context. Consideration was

given to keeping the highlight in the center of the screen, i.e., setting the margins

equal to one-half of the data window height. In this scheme, the background text

rather than Hie highlight would move when the highlighted entry changed. Thus, the

entry of interest would always be in the center of the screen. It was found that the

user had a difficult time focusing on the highlighted entry with the bacl<ground

constantly changing. As a compromise between letting the highlight appear

anywhere on the screen, i.e., having no margins, and keeping the highlight in the

center of the screen, i.e., having margins of one-half the data window height, the

margins currently are set at one-fifth of the data window height.

DIRSYS provides the user with two ways for looking up a name. The user can type

the name into the echo area, letting DIRSYS display t11e appropriate page, or he can

use commands to scroll forward or backward throunh consecutive pages of the

directory database.

As the user types characters into or deletes characters from the echo area, DIRSYS

checks to see if the first matching entry is already on the screen. If it is, then the

highlight is moved to that entry. If it is not, DIRSYS sends the message, "Searching

for x, please wait...", where xis what the user has typed into the echo area. When

the new page is displayed, the matching entry is highlighted and appears at the top

margin. The process is repeated as the user continues to type or delete

characters. 27

When the last character is deleted from the echo area, the highlight does not move.28

In a earlier version of the interface, the highlight returned to the beginning of the

database when the echo area was empty. In this way, deleting characters from the

echo area always had the same effect, that of searching for the closest matching

27
As an optimization, DIRSYS may take several characters at a time before redisplaying the screen.

28
The last character may be deleted with , CTRL-W, or CTRL-K.

34

entry. The user could also get a sense of starting over. It was found, however, that

when the user searches for several different names, the redisplay between searches

is distracting. Fledisplaying the first page of the directory database also seemed

unnatural since one seldom goes back to the first page of a paper phone book when

looking up several names.

If there is no entry in the directory database that matches what has been typed in the

echo area, DIRSYS will inform the user and highlight the closest matching entry. In

this way, the user can verify that no matching entry exists and perhaps will see an

alternate entry. For example, if the user types the name "Bob Smith" and does not

find it listed in the directory, he might notice an entry for "Robert Smith" and decide

that that one is the desired entry.29

Instead of typing the name into the echo area, the user can issue commands to move

the highlight forward or backward through the directory. Commands are available for

moving the highlight to the previous entry, the next entry, the previous page, or the

next page. Whm1 one of these commands is given, the echo area does not change to

match the newly highlighted entry; it contains only the characters that the user has

typed, if any, because it was judged that having the program change the contents of

the echo area in order to match the highlighted entry would be disconcerting to the

user.30 Subsequent typing into the echo area will cause the highlight to be positioned

as if it had not been moved manually. Thus, typing into the echo area takes

precedence over manually moving the highlight. An alternative would be to indicate

to the user which characters in the echo area match the currently highlighted entry

by displaying the matching characters in the entry of interest in high intensity

highlighting and the rest of the entry in low intensity highlighting.

Should the user want to see more information than is displayed in the one line per

29More sophisticated matching schemes could find nicknames. This idHa is discussed further in
Section 5.2.

30This idea needs to be tested.

35

EXPANDED DISPLAY

Name: corbato, fernando, j (corbato@mit-xx)
Status: professor, elec eng & comp sci
Work addr: ne43-5xx: x3-6001
Home addr: home; 527-6204

Name: ESTRIN, DEBORAH. L (estrin©mit-xx)
Status: GRADUATE, ELEC ENG & COMP SCI
Work Addr: NE43-508; x3-6005
Home Addr: CAMBRIDGE, MA; 253-6006

Name: feldmeier, david, c
Status: 1984, elec eng
Work addr: ne43-504
Home addr: home; 255-9540

Name: gifford, david, k
Status: assistant professor, elec eng & comp sci
Work addr: ne43-507; x3-6039
Home addr: home; 123-4567

(tS switches format)

COMMANDS: ?, ~T. tR, tN, ~P. tF, tB, tS, , tW, tK, tQ, ESC-M
Name (last, first, middle):

Figure 3-3: Sample Search Screen in Expanded Format

entry format, or compressed format, a command (CTRL-S) can be given to switch the

entries in the directory data window into expanded format, shown in Figure 3-3. The

system commands and the windows are the same as when entries are in compressed

format. The label window indicates that the entries are in expanded format and

reminds the user how to switch formats. The echo area functions in the same way as

with compressed format. The top line of the status window still contains messages to

the user, and the bottom line of the window still contains a list of available

commands. In expanded format, the directory data window contains fewer records

of information on the screen at one time, since each entry takes up more space.

Highlighting an entry in expanded format means displaying it in capital letters, with

each line of the entry in reverse video if the terminal has this capability. The same

command, CTRL-S, returns the directory data window to compressed format. In this

way, the user has to remember only one switch format command.

36

Getting Help

The user can ask for help by typing CTRL-T or"?". The CTRL-T command starts a

tutorial which explains in detail how to use DIRSYS. It was designed to help the

novice understand what the commands do and how to use them. It must be asked for

explicitly with a command so that the user can get the detailed instruction only if he

wants it. The experienced computer user or experienced DIRSYS user probably

would not need to read it.

The screen that appears when starting the tutorial contains the label window, the

status window, and the tutorial window. (See Figure 3-4.) The echo area is now

blank since the user cannot add characters to it while in the tutorial. The label

window gives the name of the currently displayed tutorial section and reminds the

user to type CTRL-E to exit the tutorial. The top line of the status window tells the

user that he is in the tutorial and gives the names of the previous and next tutorial

sections. The bottom line of the status window lists the commands that can be

issued while in the tutorial.

The tutorial window replaces the directory data window and contains the text of the

tutorial. The text is organized into seven sections: What is DIRSYS?, Getting Started,

Looking Up a Name, Expanded Format, Getting Help, and Requesting an Update.

The section titles are listed at the beginning of the tutorial. The user moves through

the text by using CTRL-F to move forward a pa~1e and CTRL-8 to move backward a

page.

The help facility that is available using the "?" command was designed to aid both

inexperienced and experienced users and provides help only when and where

required. It has two levels, the first of which reminds the user of the available

commands and command functions. The second level gives a more detailed

explanation of a specified command. Thus, the help facility serves as a learning tool

for first-time users and as a reminder for experienced, but infrequent users.

37

TUTORIAL: Getting Help

GETTING HELP

(~E exits tutorial)

The help facility, available by typing "?", has two levels. The first level
reminds you of the available commands and their functions. The second level
gives a more detailed explanation of a specified command.

The first level help window disappears when you type any letter or one of the
commands listed in the help window. The window that was on the screen before
you typed "?" will be restored. If a letter was typed, it will be added to
the screen in the appropriate place. If a command was typed, it will be
executed in the restored window.

Once the first level help window is on the screen, you may request more help
on a command by typing another "?" followed by that command. A second
level help window will appear that contains a detailed explanation of the
command that you typed. You may return to the first level by typing CTRL-E.

TUTORIAL SECTIONS: Prev -- looking Up a Name: Next -- Requesting an Update
COMMANDS: ~F (next page), ~B (prev page), ~E (exit), ~R (redisplay), ~Q (quit)

Figure 3-4: Sample Tutorial Screen

The help window that appears after typing a "?" is best thought of as a pop-up

window in that it appears when the user issues the help command and disappears

when the user begins typing again. It covers up the label window and the top part of

the directory data window. 31 The echo area and status window remain on the screen.

The content of the help window differs slightly depending on which window was on

the screen before the help window appeared. Each help window contains a list of

currently available commands and their functions and brief instructions about how to

get more help on any of the commands listed. Any other options available to the user

are also listed. If the user types a"?" from the directory data window, for example, a

brief explanation of how to start, or continue, searching for a name also appears in

the help window. (See Figure 3-5.)

31 The fraction of the data window that is covered up depends on the screen size and the amount of
text in the help window. In some cases, the help window completely hides the data window.

38

AVAILABLE COMMANDS -- type one of the following:

tE Exit current screen
tR Redisplay current screen

(Any of the following commands may be executed from this help window. The
data window will reappear, and the command will be executed there.)

tT start the Tutorial
tN move to Next line
tP move to Previous line
tF move Forward a screen
tB move Backward a screen

Switch to expanded format tS

tW

Delete a character (use the key)
delete a Word backwards

tK
tQ
<ESC>-M

Kill search and start over
Quit the program
request that your entry in the directory be Modified

or to get more help on a command, type another "?", then that conmand
or to search the directory, start typing a name

COMMANDS: tE,tR,tT,tN,tP,tF,tB,tS,<DEL),tW,tK,tQ,<ESC-M>,7 followed by command
Name (last, first, middle):

Figure 3-5: Sample First Level Help Window

The user may execute one of the commands or options listed in the help window

without explicitly exiting the help window first. As soon as the user types a command

or character (except "?"), the help window disappears, the previous window

reappears, and the command is executed in the restored window or the character is

added to the screen in the appropriate location. If, for example, the user types a"?"

from the directory data window and then types a character once the help window

appears, the directory data window will reappear, and the character will appear in the

echo area.

If the user requests more help on a command, by typing "?" followed by the

command, then a second level help window appears, replacing the first one. (See

Figure 3-6.) The echo area is now blank since the user cannot add characters to it

while in the second level of help. The new help window contains a detailed

explanation of how to issue the specified command and what that command does. It

39

DETAILED EXPLANATION OF tN (tE exits this help}

tN, issued by hitting the "N" key while holding down the "CTRL" key, caJses
the highlight to be moved down one line. (The next screen will be displayed
if the highlight is near the bottom of the screen.)

Current Options:
(1) type tE to exit and return to the first level of help,
(2) type tR to redisplay this screen
(3) type tQ to quit DIRSYS

comfort, sarah
cooper, geoffrey, h
corbato, fernando
estrin, deborah
gifford, dav id k
graml ich, wayne, c
greenwal d, michael, b
harteneck, ra l f
hopkins, grace

COMMANDS: tE, tR, tQ

497-9491

494-1076
497-0472
494-9833

3-6002
3-6006
3-6001
3-6005
3-6039
3-6042
3-6042
3-6020
3-6042

lab for computer sci
elec eng & comp sci
elec eng & comp sci
elec eng & comp sci
elec eng & comp sci
elec eng & comp sci
lab for computer sci
elec eng & comp sci
elec eng & comp sci

Figure 3-6: Sample Second Level Help Window

staf
g
fac
g
fac
g
staf
1984
1984

also lists the user's current options. Should the user type only a "?" from the first

help window, the prompt, "Command character:", will appear in the echo area.

When the user then types a command, it is displayed after the command prompt.

Consideration was given to providing more options at the second help level,

including allowing the user to ask for help on another command from the second

help level and allowing the user to exit the second level help window without having

to return to the first help level. With the latter option, the user would be able to

execute a command from the second level help window in the same manner as from

the first level help window. The user could type CTRL-N from the second help level,

for example, and the directory data window would reappear with the highlight moved

to the next entry. Since these options might seem confusing and unnecessarily

complicated to a user unfamiliar with DIRSYS, they were not provided.32 The user

can quit DIRSYS from the second levE~I help window, however.

32Those familiar with DIRSYS might like the extra options, but probably would not use the second
level of help very often.

40

Requesting an Update

The user can request that his entry in the directory database be modified.33 (How the

updates are added to the database is discussed in Section 3.2.) Typing ESC-M

causes a screen to appear that contains the label window, the status window, and the

update request window. (See Figure 3-7.) The echo area is now blank because

typed characters will appear in the update request window rather than in the echo

area. The label window indicates that a modification request is being submitted and

reminds the user how to submit the request and exit the window. The top line of the

status window still contains messages to the user, and the bottom line of the status

window lists the commands that can be issued while the update window is on the

screen.

The update request window replaces the directory data window and contains a brief

explanation of how to request an update and a "form" that contains the user's

directory information. The user is instructed to erase the information that is no

longer valid and replace it with the new information. The form can be edited by using

CTRL-N or a carriage return34 to move to the next line, CTRL-P to move to the

previous line, to delete a character, CTRL-W to delete a word, and CTRL-K to

"kill" a line of information. He is then instructed to type CTRL-U to submit the update

request and CTRL-E to exit the update request window. The user also is informed

that he may exit the window without submitting a request by typing only CTRL-E.

Finally, he is warned that the update requests are reviewed by the DIRSYS manager

and that usual policy forbids changes to any record other than his own.

When an update request for a record has been submitted, the proposed changes for

33one of the duties of the DIRSYS manager is to insure that a person can modify only his own record
of information. The presence of an authentication server perhaps would relieve the manager of this duty
in the case of an individual sendinn an update request using DIRSYS from a machine on which the login
name could be determined.

34carriage return was added since it is natural for people who are used to typing on typewriters or
typewriter-like keyboards to hit a carriage return to move to the next line.

41

MODIFICATION REQUEST (tU submits request, ~E exits}

To request that the following record of information be modified, erase old
information and type in new information. Then type tU to submit the request
and tE to exit the screen. You may exit the screen without submitting the
update request (by typing only tE). (Use to delete a character, tW to
delete a word, tK to kill a line, tN or <RETURN> to go to next line, tP to go
to previous line.) Update requests are reviewed by the DIRSYS manager.
Usual policy forbids changes to any record other than your own.

NAME (last, first, middle}:
HOME STREET ADDRESS:
HOME CITY, STATE, ZIP:
HOME PHONE:
WORK STREET ADDRESS:
WORK CITY, STATE, ZIP:
WORK PHONE:
DEPARTMENT:
TITLE OR GRADUATING YEAR:
ELECTRONIC MAIL ADDRESS:

Smith, Larry, D
1234 West End Dr.
Arlington, MA 02174
648-9000
MIT
Cambridge, MA 02139

alee eng & comp sci
assistant professor

COMMANDS: ~N. ~P. tE, ~u. . ~K. tW, ~o. ~R. ~T. or 7 for help

Figure 3-7: Sample Update Request Window

that record are visible the next time the record is displayed in an update request

window. (See Figure 3-8.) In this way, a person will know what update information he

has already submitted. The proposed new information is not shown in the directory

data window until it has been validated by the manager. When it has been validated

but not incorporated into the database yet, it will appear in place of the old

information whenever the record is displayed because DIRSYS searches the update

file for valid information before displaying a new page of directory entries.35

Consideration was given to allowing the user to submit addition and deletion

requests as well as modification requests. Since individuals who are in the paper

phone book do not decide whether or not they are included in that phone book, it

was decided that DIRSYS should not allow users to decide whether or not they

351t is hoped that the number of update requests will be small so that this search will not increase
system response time.

42

MODIFICATION REQUEST (tU submits request, tE oxits)

To request that the following record of information be modified, erase old
information and type in new information. Then type tU to submit the request
and tE to exit the screen. You may exit the screen without submitting the
update request (by typing only tE). (Use to delete a character, tW to
delete a word, tK to kill a line, tN or <RETURN> to go to next line, tP to go
to previous line.) Update requests are reviewed by the DIRSYS manager.
Usual policy forbids changes to any record other than your own.
Changes already submitted are in [].

NAME (last, first, middle):
HOME STREET ADDRESS:
HOME CITY, STATE, ZIP:
HOME PHONE:
WORK STREET ADDRESS:
WORK CITY, STATE, ZIP:
WORK PHONE:
DEPARTMENT:
TITLE OR GRADUATING YEAR:
ELECTRONIC MAIL ADDRESS:

Smith, Larry, D
1234 West End Dr.
Arlington, MA 02174
648-9000
MIT
Cambridge, MA 02139

elec eng & comp sci
assistant professor

[NE43-500, MIT]

[3-6000]

COMMANDS: tN, tP, tE, tU, , tK, tW, tQ, tR, tT, or ? for help

Figure 3-8: Sample Update Request Window Showing Proposed Changes

should be included in the electronic phone book. The policy covering who is added

to or deleted from the paper and electronic phone books is decided by the registrar's

and personnel offices. Perhaps addition and deletion request commands could be

available for the DIRSYS manager to use.

Surveying and Marking Updates36

The commands for processing update requests, i.e., surveying and marking them,

are part of a separate program that is available only to the DIRSYS manager. They

cannot be invoked from DIRSYS. The interface to the program, however, is very

similar to the DIRSYS interface. Most of the DIRSYS commands are used in this

program and retain their semantics. In addition, other commands are available for

36update commands for the manager are not implemented yet.

43

processing the update requests. A tutorial and help facility that are identical to those

in DIRSYS are available, except that they also contain information on the manager's

additional commands.

When an update request is made, DIRSYS sends the manager a message notifying

him that a new request exists. The manager will then use the update program to view

the new requests by surveying the update requests and will attempt to determine

whether or not the request contains valid information, e.g., via letters or phone calls

to the person whose record is listed in the request. When he has determined whether

or not a request is valid, the manager will edit the request if necessary, mark the

update request as valid, invalid, or waiting, and the update incorporation program, or

update daemon, that runs at night will remove the update request from the list, log

the information that the request contains, and either add the update to the database

or not (depending on whether the request is valid or invalid}.

The screen that appears when the survey requests command is given, shown in

Figure 3-9, contains the label window, the status window, the echo area, and the

update survey window. The label window contains column headings for the

information given in the update survey window. The top line of the status window is

used to send messages to the manager, and the bottom line of the status window lists

the commands that can be issued while the update survey window is on the screen.

The echo area is used for incrementally searching the list of update requests and

functions in the same way that it does in DIRSYS.

The update survey window, located in the same position on the screen as the

directory data window in DIRSYS, lists information for each update that has been

requested and that has not been incorporated into the database yet. The information

associated with an update request occupies one line of the screen, i.e., is in

compressed format, and contains four items: the name in the record to be updated,

whether the manager has seen the update request, the update status, or status, of

the request, i.e., whether it is valid, invalid, or waiting for verification, and the date

44

Name •••••••••••••••••••••••• Seen ••••••... Status ••••••• Date Marked

ADAMS, MARY, w ' wa1t1ng
baker, robert, m waiting
cl ark, michael, d waiting

baker, robert, m 6-10-83 waiting
wilson, nancy 6-10-83 waiting

anderson, rebecca 6-12-83 invalid 6-14-83
bern, stephen, t 6-10-83 invalid 6-15-83

graham, karen, s 6-10-83 valid 6-15-83
davis, james, a 6-10-83 valid 6-15-83
jackson, david, t 6-10-83 valid 6-15-83

COMMANDS: ?.~N.~P.~F.~B.,tK,tW,tS,tR,tQ,tT,ES-S,ES-U,ES-V,ES-1,ES-W, ES-E
Name (last.first.middle):

Figure 3-9: Sample Update Survey Window

that the status was marked, if it is marked. The requests are displayed in the

following order: those marked unseen are listed first, followed by those marked

waiting, then by those marked invalid, and finally by those marked valid. All the

unseen requests should be marked waiting, but if there are some unseen requests

that are marked invalid or valid, the waiting requests are listed first, followed by the

invalid requests, then by the valid ones. Within each of the four groups ·· unseen,

waiting, invalid, or valid·· requests are ordered alphabetically.

The manager can scan the requests in several ways. He can move the highlight

manually as in the DIRSYS directory data window using the CTRL-N (next line),

CTRL-P {previous line), CTRL-F (next page), or CTRL-8 (previous page) commands.

He can move around within the current group37 by typing a name into the echo area.

The update requests are searched incrementally for the matching name, and the

highlight is moved to the line containing that name. He can move to the next or

37 The current group is the group that contains the highlight.

45

previous group with ESC-N or ESC-P, respectively. Upon jumping to a new group,

the contents of the echo area are used to locate and highlight the matching entry in

that group. In this way, the mana9er can locate all requests for one person.38 A

blank echo area causes the first request in the group to be highlighted.

The manager marks a request as seen by typing ESC-S or unseen by typing ESC-U.

The requests are marked unseen by default. The manager would leave a request

marked unseen or mark a previously seen record as unseen if he wanted to be

reminded of it. The update daemon would send a message notifyin1J him of the

unseen request, and when the requests were surveyed again, the request would be

easy to locate since it would appear near the beginning of the list.

The manager also can mark an update request valid by typing ESC-V, invalid by

typing ESC-1, or waiting for verification by typing ESC-W. The requests are marked

waiting by default; therefore, the manager would only mark a request waiting if it had

previously been marked valid or invalid. The status is immediately visible on the

screen, and the requests are reordered to reflect the new status.

Should the manager want to view an update request in more detail, he issues the

switch format command, CTRL-S, which functions in the same way that it does when

issued from the directory data window in DIRSYS. The update requests are then

displayed in expanded format. 39 (See Figure 3-10.)

In expanded format, the label window indicates that the update survey window is in

expanded format and reminds the manager how to return to the compressed format

(with CTRL-S). The echo area functions in the same way as with compressed format.

The top line of the status window again is used to send messages to the user, and the

bottom line of the status window a~1ain contains a list of available commands. The

38one person may have several update rPquests, each of which may have a different status.

39Depending on the screen size, some terminals may display only one request per screen.

46

UPDATE SURVEY WINDOW: Expanded Display (tS switches format)

Name: Smith, Larry, D.
Title & Dept: assistant professor; architecture
Work Addr & Phone: MIT; 3-6000
Home Addr & Phone: 1234 West End Dr., Arlington, MA: 648-9000
Electronic Mail Addr:

NEW: WORK ADDR & PHONE: NE43-500, MIT; 3-6000
Electronic Mail Addr: LOS at MIT-XX

submitted: 6-06-83
marked: seen
marked: valid

by: Smith, Larry, D
by: Davis, Alice
by: Davis, Alice

Comments: telephoned at 3-6000 on 6-15-83; ok

on: 6-10-83
on: 6-15-83

COMMANDS: ?,tN,tP,tf,tB,tS,,tK,t·W,tR,tQ,tT,ES-S,ES-U,ES-V,ES-1,ES-W,ES-E
Name (last, first, middle):

Figure 3-10: Sample Update Survey Window in Expanded Format

expanded request contains: the current database record, the new information, the

date that the request was submitted and by whom, whether the request has been

seen, and if so, the date that it was seen and by whom, the status of the request, the

date that the status was marked and by whom, and comments about the request,

such as when and how the request was verified.

The manager can scan the requests in expanded format using the echo area or using

CTRL-N, CTRL-P, CTRL-F, and CTRL-B as in compressed format. If only one entry

can be displayed per screen, CTRL-N and CTRL-P will function in the same way as

CTRL-F and CTRL-8, respectively. Also as in compressed format, the ESC-N and

ESC-P commands are available for moving between groups.

Finally, the manager can edit a request if necessary. Typing ESC-E causes the

update survey window to be replaced with an update edit window, which contains the

highlighted update request in expanded format. (See Figure 3-11.) The label and

47

UPDATE EDIT WINDOW (tE exits this window)

Move between lines with CTRL-N, CTRL-P: edit with . CTRL-W, CTRL-K.

Name(last,first,rniddle):
Title & Dept:
Work Addr & Phone:

Srni th, Larry, D
assistant professor; architecture
MIT; 3-6000

Home Addr & Phone: 1234 West End Dr., Ar1 ington, MA; 648-9000
Electronic Mail Addr:

NEW: WORK ADDR & PHONE: NE43-500, MIT; 3-6000
Electronic Mail Addr: LOS at MIT-XX

submitted: 6-06-83
marked: seen
marked: valid

by: Smith, Larry, D
by: Davis, Alice
by: Davis, Alice

Comments: telephoned at 3-6000 on 6-15-83; ok

on: 6-10-83
on: 6-15-83

COMMANDS: 7,tE,tN,tP,,tW,tK,tR,tQ,tT,ES-S,ES-U,ES-V,ES-I,ES-W

Figure 3-11 : Sample Update Edit Window

status windows remain on the screen and have the same functions as when the

update survey window is on the screen. The echo area is now blank. As in the

DIRSYS update request window, the typed characters will go into the window rather

than into the echo area. The update edit window contains a brief explanation of the

editing commands, which are the same as those that are used when a request is

submitted using DIRSYS. CTRL-N or a carriage return and CTRL-P move the

highlight to next and previous lines, respectively, deletes a character, CTRL-W

deletes a word, CTRL-K "kills" a line of information, and CTRL-E exits the update edit

window. The marking commands are also available in the update edit window.

48

3.1.3 Features that Illustrate Design Principles

This section describes, from the designer's point of view, features of the DIRSYS

interface that illustrate the design principles that were presented in Section 3.1.1.

1. User's Model: The interface was designed to simulate the scanning of
a paper phone book -- a process familiar to most DIRSYS users. Like a
paper phone book, the electronic phone book is organized as "pages" of
information, with information for each person occupying one line on a
page. Users can scan up or down a page and forward or back throu~1h
the pages as with a paper phone book. Thus, users should be able to
form a clear conceptual model of the directory system, and this model
should aid them in learning to use the system.

In addition, the interface shares certain features with full-screen display
editors such as Emacs [51). Emacs uses, for example, a status line and
an echo area, a similar command structure, similar cursor movement and
editing commands, and an incremental search. Thus, experienced
computer users who are familiar with full-screen editors should be able
to form a clear model of the system by drawing on their knowledge of
those editors.

2. Minimal Command Set: The DIRSYS command set is small, but it
contains all the commands necessary for using the system. In addition,
the commands are not redundant. The user, for example, does not have
to choose between different but equivalent ways to get help, quit the
program, or redisplay the current screen. In several instances, however,
the result of executing several commands may be the same as executing
one alternate command. Using the command several times could
have the same effect as using the CTRL-W command; several CTRL-W
commands could have the same effect as one CTRL-K command. In
these cases, the CTRL-W and CTRL-K commands were included for
convenience and did not seem to increase the command set to an
unmanageable size. (This assertion, however, needs to be tested.)

3. Simple Command Structure: The DIRSYS command structure is
simple. Each command name is derived from an English phrase that
describes the command function and is abbreviated using the first letter
of the phrase (except the help command, which is issued by typing "?").
For example, the Next Line command is abbreviated with an "N". Hence,
commands are easy to remember and easy to type. A command is
issued by holding down the <CTRL> key while at the same time typing the
command abbreviation. To exit the current screen, for example, the user
types CTRL-E, and to start the tutorial, the user types CTRL-T. The

49

<CTRL> key is used in order to distinguish commands from text. In this
way, commands still can be abbreviated by single letters, and alphabetic
characters can be consistently interpreted as text. The only commands
that do not require using the <CTRL> key are the help command ("?")
and the request modification command, ESC-M, which is issued by
hitting the <ESC> key then typing the letter M. The "?" is used for help
be·cause it is short, suggestive, and easy to remember. The <ESC> key is
used instead of the <CTRL> key because typing CTRL-M is equivalent on
many terminals to hitting the carriage return or enter key. It was judged
undesirable to start the modification process with a carriage return
because inexperienced users sometimes hit a carriage return after typing
a name, and having the system display an update request window as that
point would be disconcerting.

4. Consistent Command Interpretation: Commands in DIRSYS do not
have different meanings in different contexts; they always perform the
same actions. The CTRL-R command, for example, always redisplays
the current screen, and the CTRL-Q command always quits the program,
while "?" always causes a help window to appear. Similarly, alphabetic
characters typed without using the <CTRL> or <ESC> keys always are
interpreted as text. If commands are not available in all contexts, they
have the same function in the contexts in which they are available. The
CTRL-W command, for example, is not available in the herald, in the
tutorial, or in the second level help window. Where it is available,
however, it always has the same function, that of deleting a word.

5. Help Facility: The user can get help at any time by typing "?" or
CTRL-T. Both commands allow the user to get help easily without
interrupting the immediate task. The help window that appears by typing
"?" contains information specific to the user's current context; it
contains a list of currently available commands. Similarly, the tutorial,
started by typing CTRL-T, begins at the section most relevant to the
user's current context. If the user types CTRL-T from the update
window, for example, the tutorial starts with the section describing how
to request an update. Finally, different levels of help are provided. Users
who want a detailed description of the system can read the tutorial, while
those who want only a very brief explanation of the commands can use
the first level of the help facility. Those who want more explanation, but
not as much as in the tutorial, can use the second level of the help
facility. The second help level, easily reached by typing a second "?"
and one of the commands listed in the first help window, gives a detailed
explanation of a specific command.

50

6. Feedback: The system provides several types of feedback to the user.
Characters that t11e user types are displayed in the echo arBa, and
matching entries are highlighted by displaying them in reverse video, in
uppercase letters, and with periods between the fields of information.
The system provides the user with prompts, such as the one displayed in
the echo area and the one displayed after the user has typed a "?" to
display a second level of help. In addition, DIRSYS sends messages to
the user via the status window. The messages are concise, polite,
understandable, and informative. They are displayed in a conspicuous
place {on the top line of the status window) and do not interfere with the
other windows on the screen. They always appear in the same place in
order to take advantage of the user's tendency to associate different
meanings with different areas on the screen [4, 14]. Messages are sent
to indicate which command DIRSYS is working on if the command is not
immediately executed. When the CTRL-F command is issued, for
example, a message is displayed which says, "Getting ne)(t screen,
please wait. .. ". {This sort of message is not necessary with the CTRL-N
command because the highlight is moved immediately to the next line.)
When the matching entry is not on the screen, DIF~SYS sends the
message, "Searching for x, please wait. .. ", where x is what the user has
typed. Should the user type an unavailable command, DIRSYS responds
by ringing the terminal's bell and sending a message saying that xis not
available, where x is the command that was typed, and suggesting that
the user type "?" for help. This message remains on the top line of the
status window until the user types something or for four seconds,
whichever comes first. The bottom line of the status window contains a
list of available commands.

The user also can provide feedback to the system manager by sending
messages to an address that is listed in the herald, in the tutorial, and in
the message that is displayed when the user stops the program.40

7. Error Handling: When the system was designed, a wide variety of user
errors were anticipated. Consequently, it is very difficult to cause
DIRSYS to terminate abnormally. If an error occurs that causes the
system to fail, the error is written to a file, and a message is sent to the
maintainers. The user is not given details about the problem, but is told,
"Sorry, DIRSYS isn't working correctly. The maintainers have been
notified, and the problem should be fixed soon. Thank you for using
DIRSYS." The system is then stopped. Thus, the unde:rlying aspects of
the system remain hidden from the user.

40currently, the address is an electronic mailing address.

51

3.2 The Database

This section is divided into two parts. The first one describes the structure of the

database and the indexes. The second one describes how the database is searched

using the indexes.

3.2.1 Database and Index Structures

As mentioned earlier, it was desired that the database access method, i.e., the

database structure and database search mechanism41 , be simple and fast enough to

keep up with user requests. Moreover, it was desirable that the database access

time, i.e., the time to search the database and retrieve the desired record, be

relatively constant for all types o'f user requests. To meet this latter requirement, the

access method needed to facilitate both sequential and random accessing of

records, since the records are accessed sequentially when a next or previous screen

command is given, and a record is accessed randomly when the user types a name.

Then after a single record is accessed randomly, successive records are accessed

sequentially in order to fill the screen.

An indexed sequential access method meets the above requirements [52]. It consists

of a sequential file of records, ordered alphabetically by name, and several levels of

indexes (in this case, three).

The first level of indexes, called the alphabetic pointers, logically divides the

database into alphabetic groups, groups of records that contain last names

beginning with the same letter. Thus, there are 26 entries, one for each letter of the

alphabet.

The second level of ind13xes, called the name index, logically partitions the alphabetic

groups into equally sized groups of records, called record blocks. (The optimal block

size is determined through performance testing and is discussed in the next chapter.)

41 The search mechanism is the algorithm for accessing records in the database.

52

The beginning record in each block is used to form a name index entry by pairing its

record number with a substring of the name that it contains. The substring, which

must be unique, is formed by taking beginning characters from the name, which is

written as "last name, first name.middle name". A substring may be any length; it

need contain only enough characters to make it unique. Testing showed that for the

database being used, the substrings would usually be about four characters long.

The third level of indexes, called the record pointers, contains an entry for every

record in the database.42 It maps record numbers into physical addresses in the

database. The records are of variable len!~th; therefore, a method for determining the

location of each record was needed.

The next section discusses how these indexes are used to locate a record in the

database.

3.2.2 Searching the Database

A record in the database is accessed by locating the appropriate alphabetic pointer

-- the one associated with the beginning letter of the sought after last name -- and

following the pointer to the name index. The name index is traversed sequentially

from that starting point until an index value, i.e., a name substring, is found that is

greater than or equal to the search name. The record associated with that index

entry is located in the database by usin~~ the record number in that entry and the

record pointers. The database then is searched sequentially from that starting point

until the desired record is located. The number of records that have to be searched

is always less than or equal to the number of records in a record block.

An example will illustrate this indexing sct1eme. Assume that the database and index

are as pictured in Figure 3-12 and that the user has typed "Babb" into the echo area.

The entry in the alphabetic pointers corresponding to "B" is located and is used as

42There are approximately 18,000 records in the database.

53

an offset into the name index. In Figure 3-12, the name index entry at this offset

contains the string "Baa" and the number 102. Successive name index strings are

compared with the typed string until an index string is found that is weater than or

equal to the typed string. To be "equal" means that the typed string is identical to

the index string or that it begins with the same characters that are in the index string.

An example in the next paragraph further explains this case. In this example, the

search of the name index ends at the entry containing the index string "Babe" and

the number 112. The typed string is now guaranteed to be between record number

107 and record number 112 since "Babb" is alphabetically between "Baba" and

"Babe". Record number 107 is chosen as the beginning point for a forward search

of the database. The first matching record will be positioned at the top margin of the

screen as discussmJ in the Section 3.1 .2.

If the typed string is equal to an index string, i.e., is identical to an index string or

begins with the same characters that make up the index string, the method for

determining where to start searching in the database is a little different. If the user

had typed "Babee", for example, the search of the index again would have ended on

the index entry containing the string "Babe" and the number 112. This time, the

record could be between either 107 and 112 or between 112 or 117. It would be

betwEien 107 and 112, for example, if record 112 contained the name "Babel". It

would be between 112 and 117, for example, if record 112 contained the name,

"Babea". Therefore, the typed string must be compared to the full name in the

database that is associated with the index string. If the typed string is greater than the

full name, record 107 is chosen as the beginning point for a search of the database;

otherwise, record 112 is chosen.

54

alphabetic pointers

A

B

c
D

z

...

name index

Aa ,
Aba 5
Abe 10

. ..

'---- Baa 102
Baba 107
Babe 112
Bae 117

...

Ca 180
Ce 185

...

Za 15004

...

1

2

5

10

102

107

180

185

record pointers

. ..

...

...

...

Figure 3· 12:Sample Database and Indexes

55

database

Aaler, David

Abas, A.

Abels, Robin

. ..

Baab, Jane

...

Babae,G.

...

Caab,Ken

Ceace, Ann

...

3.3 The Update File

As discussed earlier, users may submit update requests to the DIRSYS manager.

The manager then validates or invalidates the requests. The update daemon, or

daemon, is the program that runs at night to add the information in the requests to

the database. This section, divided into two parts, describes what happens to the

update requests from the time the user submits the requests until the requests are

added to the database. The first part of the section describes the update file

structure. The second part of the section describes the addition of the update

requests to the database.

3.3.1 Update File Structure

The update file is separate from the database. In this way, nothing is ever written into

the database that DIRSYS is using. Each update request that is submitted becomes a

record in the update file. The update record contains: the record number, the

current database record, the new information, the name of the person submitting the

update request43
, the date that the request was submitted, a flag indicating whether

the request has been marked seen or unseen, the date that the request was marked

seen or unseen and the name of the person who did the marking, a flag indicating the

status of the request, i.e., valid, invalid, or waiting, the date when the status was

marked and the name of the person who did the marking. (See Figure 3-13.} When a

request is added to the update file, it is automatically marked as unseen and waiting

for verification. When the manager views the request in the update survey window or

update edit window {discussed in Section 3.1 }, he can mark the requests as seen or

unseen and valid, invalid, or waiting for verification.

431t is assumed that an authentication server can get this information.

56

100 record number

Adams , Janet
current database record ...

wk addr: NE43-500 new information

Adams, Janet name of person submitting request

10-10-83 date submitted

seen valid marked

10-10-83 10-10-83 date marked

A. Davis A. Davis name of person who marked request

telephoned 10-11-83

ok
comments

Figure 3-13: Sample Update Record

3.3.2 Adding Updates to the Database

The update daemon, which runs at night, removes the invalid requests from the

update file, rebuilds the database and indexes, incorporating the valid update

requests, and builds a new update file with the requests marked waiting. It also logs

the changes that it has made and sends the manager a message detailing the

transactions, if any, that took place.

The actual daemon procedure is as follows. If there are any unseen requests, the

daemon notifies the manager via electronic mail. It then treats unseen requests as

waiting requests. In fact, most of the unseen requests will be marked waiting; an

57

unseen request that is marked valid or invalid will be the exception.44 The daemon

then removes the invalid requests from the update file, copies them into the 1:09, and

alphabetizes the remaining requests. Should a request contain new information for

the name field, then that request is alphabetized using the new name instead of the

old one. In this way, the new records will be in the correct alphabetical ordm in the

new database. {An example presented later in this section explains this case further.)

The daemon then checks for conflicting update requests, i.e., requests that contain

different information for the same field of a database record.45 It marks any

conflicting update requests waiting, logs the conflict, and notifies the manager. The

daemon also checks for update requests that could be combined into one 1'equest.

For example, it consolidates update requests that contain new information for

different fields of a database record.

The daemon now is ready to rebuild the database and indexes. It reads a record from

the database and searches the update file for a valid update request that contains a

record that should precede the record that was just read. 46 If such a request is

found, the new information in the request is combined with the database record

contained in the update request, and this new record is copied into the new

database.47

Next, the daemon checks to see if the record that was just read from the database

should be copied into the new database by searching the update file for valid

441f an unseen request is marked valid or invalid, the manager either forgot to mark it seen after the
validation process or left it marked unseen in order to be reminded of it, but forgot to mark it waiting. In
either case, the daemon waits for the requests to be correctly marked before acting on them.

45The record numbers kept in the update requests facilitate locating requests for the same database
record.

46
The requests were alphabetized to facilitate this process.

47
Before copying new information into the database record contained in the update record, the

daemon makes sure that that database record is identical to the corresponding record in the current
database.

58

requests that contain that record number. If no matching record numbers are found,

then the database record apparently still contains up-to-date information and is

copied into the new database. If a valid request does contain a matching record

number, then the database record is not copied into the new database because it will

be replaced by a new record. If the request containing the matching record number

is marked waiting, then the record number in the update request is modified if

necessary, and the database record is copied into the update request and into the

new database.48 The waiting update request then is copied into a new update file.

The daemon keeps a table that maps old record numbers into new record numbers

so that records that were identified in the old database by record number can be

located in the new database. This table is used to modify record numbers in waiting

update requests and new update requests that are submitted while the update

procedure is in progress.

The daemon continues until the above procedure has been carried out for the last

record in the database. Then it repeats the process once more to take care of any

new records that should appear after the last record in the database. Finally, it sends

a message to the manager saying that the new database and indexes have been built.

The next morning, the manager reviews the messages from the daemon, tests the

new database to make sure DIRSYS can use it, and switches DIRSYS to the new

database. The update list associated with the old database is checked to see if any

update requests were added while the database was being rebuilt. If so, the new

update requests are added to the newly created update list, after modifying the

record numbers contained in them to reflect any changes in the order of the records

in the new database.49 DIRSYS is then told to use the new update file. Again, care

48
1f both valid and waiting requests exist for the same record number, then the new database record

containing the modifications in the valid update request is copied into the waiting update request.

49
Records may be in a different order in the new database if records have been added or deleted or if

names in any of the records have been spelled differently.

59

must be taken to check for new update requests before switching over to the new

update file.

A sample update file and the pertinent part of the database before the daemon has

run are shown in Figure 3-14. The following example illustrates how a new database

and update file would be built. The new update file and pertinent part of the database

after the daemon has run are shown in Figure 3-15.

The update requests shown in Figure 3-14 have been alphabetized. Note that the

third update request involves changing the spelling of a name in such a way that the

record should appear in a new alphabetical location in the database. The request,

therefore, was alphabetized using the new name, "Adems, John", instead of the old

one, "Adams, John".

The daemon starts the update procedure by reading a record from the database

-- record 100, "Adams, Janet". It does not find a record in the update file that should

precede that record, but does find a valid request to modify that record. The

"Adams, Janet" record, therefore, is not copied into the new database since a new

record for "Adams, Janet" will be copied into the new database in the next step. The

daemon next reads record 101, "Adams, John", and locates a valid update request

containing a record that should precede "Adams, John" in the database. This

update request contains the "Adams, Janet" record. The new "Adams, Janet"

record, formed by combining the new information with the database record

contained in the request, is copied into the new database. The daemon does not

copy the "Adams, John" record into the new database because there is a valid

request to modify that record. The daemon reads the next record in the database

-- record 102, "Adelson, David". There is no request that contains a record that

should precede "Adelson, David" since the change in spelling from "Adams" to

"Adems" causes the new "Adems, John" record to succeed the "Adelson, David"

record. The daemon then locates a request to modify the "Adelson, David" record,

but it is marked waiting, so the daemon copies the current record into the new

60

database, changes the record number in the waiting request from 102 to 101 to

reflect the new record order, and copies the waiting request into the new update file.

The daemon then reads record 103, "Ades, Katherine", locates the update request

for a record that should precede that record, adds that record -- the "Adems, John"

record -- to the database, then adds the record for "Ades, Katherine". The process

continues until the daemon has read all the records in the database and all the

requests in the update file and has copied the appropriate records into the new

database while at the same time rebuilding the indexes.

Database {part): Update File:

#100

Adams, Janet Adams, Janet
#100 wk addr: xxx wk addr: NE43-500 ...

Adams, John
seen I valid

...
#101 ...

#102
Adelson, David

Adelson, David ...
#102

...
wk phone: xxx ...

wk phone: 253-9008

seen l waiting

Ades, Katherine ...
#103 ... #101

Adams, John ...
name: Adems, John

seen I valid
...

Figure 3-14: Sample Update File and Database Before Daemon Runs

61

Database (part): New Update File:

Adams, Janet
101

Adelson, David ...
#100 wk addr: NE43-500

...
... wk phone: 253-9008

Adelson, David seen l waiting
101 ...

wk phone: xxx
. ..

...

Adems, John

#102 ...

Ades, Katherine

#103 ...

Figure 3- 15: New Update File and Database After Daemon Runs

62

Chapter Four

Preliminary Evaluation

A preliminary evaluation of the interface and the database access method was made.

The evaluation included observing people use the system and taking timing

measurements on the database access method. The update daemon has not been

evaluated yet.

4.1 User Interface

The interface was evaluated informally by observing people use it, recording their

comments while using it, and asking them questions about it. Ten people were

observed, three of whom had had little or no computer experience. The other seven

were experienced computer users.

Starting DIRSYS

There were mixed reactions as to the usefulness of the herald screen. All the naive

computer users read it and said that they liked having an introductory screen that

told them how to get started and that listed useful commands. Three of the

experienced computer users read the herald; the remaining four preferred to start the

program immediately and to find out what commands did by trying them. One

experienced computer user suggested that it would be convenient to avoid the

herald screen if someone already knew how to use the system. One could type, for

example, "DIRSYS Smith, Jane", and the system would display the appropriate page

of the phone book with the closest matching record highlighted.50

50This option will be considered for the next version of the system.

63

Using the Commands

All users thought that the commands were easy to type. They seemed to have no

trouble with the <CTRL> or <ESC> keys, or with typing characters to search for a

name. The users were able to learn quickly how to use the commands. The naive

computer users thought the commands easy to remember because they are

mnemonic. Some of the experienced computer users found the commands difficult

to remember because the DIRSYS commands are similar to Emacs commands but

not identical. In Emacs, for example, users type CTRL-L to redisplay a screen, rather

than CTRL-R, and type CTRL-F to move forward a character instead of forward a

screen. They type CTRL-V to move forward a screen in Emacs.51 Thus, in the choice

of command abbreviation there is a tradeoff between the needs of naive computer

users, who often would like mnemonic commands, and the needs of experienced

computer users, who might prefer commands that are identical to commands in other

systems.

Only two users, both of whom are experienced computer users, used the CTRL-W

command. One other experienced computer user said that he thought the CTRL-W

command would be useful for an experienced DIRSYS user, but that first-time users

did not really need it since they could use the key or the CTRL-K command.

The users seemed to like having the CTRL-K command for clearing the echo area

because it was convenient, even though, as one user pointed out, it functioned in the

same way as repeatedly using the key.

Several users wanted more commands. One user suggested a command to specify a

department name as well as a personal name when searching for a record.

Consideration was given to including this feature in DIRSYS, but adding the option

was postponed in order to keep the input of search information simple. (Searching

51 Perhaps DIRSYS could read an initialization file from the user's computer directory as Emacs does
and provide a default initialization for users who do not start DIRSYS from a system on which they have
a directory. In this way, experienced users could rename the DIRSYS commands if they desired.

64

the directory using information besides personal names is discussed in Section 5.2.)

Two other users, both of whom are Emacs users, wanted a command that would

move the highlight to every fourth record. Such a command would be similar to the

Emacs CTRL-U command which causes the command that follows it to be repeated

four times.

Finally, the users were able to anticipate what a command would do in a different

context, and they did not seem to be bothered by not having all commands available

in all contexts.

Looking Up a Name

All the users expressed a liking for the search screen layout. They thought that the

label window was necessary both to demarcate the main window and to give useful

information such as column headings. They reported that the echo area located at

the bottom of the screen close to the keyboard was helpful for keeping track of what

they had typed.

The users expressed a liking for an area set aside for system messages (the top line

of the status window) and for having it located near the echo area where they could

pay attention to information in both areas at the same time. They regarded the

system messages as informative and especially liked having a list of available

commands displayed. They appreciated being told that the system was still working

on a command if the command was not executed immediately and being told when

they had typed an unavailable command. One user suggested that error messages

remain on the screen until something was typed. Most other users thought that error

messages should disappear from the screen after the messages had been read. The

current scheme is a compromise -- error messages disappear as soon as the user

types something or after four seconds, whichever comes first. The messages were

more easily noticed when they were reverse videoed and accompanied by a ringing

of the terminal bell. Most users liked the terminal bell because it let them know that

the system was sending them a message. Two users found the bell annoying. Some

65

studies suggest that systems should avoid using the terminal bell because the users

might be embarrassed, thinking that the bell called attention to their mistakes [47].

All users were able to look up entries within minutes of starting DIRSYS. They

indicated that they liked searching for a name by simply typing characters and liked

the idea of highlighting the matching record. The reverse video was seen as an

improvement over highlighting without it. They also liked being able to move the

highlight manually. One suggestion dealing with the highlight was to use the

uppercase letters for highlighting only if the terminal did not have reverse video

capabilities. In this way, the names would be capitalized as people are used to

seeing them, with both uppercase and lowercase letters.

When DIRSYS is retrieving the new screenful of records, there is a delay of about

three seconds.52 This delay may be due to the sequential design of the program or

to the program's spending an excessive amount of time reading and processing

records.53 Most users did not find the delay objectionable because the system sent

a message saying that it was searching for the desired record. It must be noted,

however, that the naive computer users did not know what kind of response time to

expect. In addition, the experienced computer users might have found the response

time more objectionable if they had not been accustomed to using interactive

systems on time-sharing machines.

The users found the delay objectionable, however, when DIRSYS displayed an

intermediate screen before it displayed the screen containing the desired record. If

the characters were not typed quickly, the system started searching for the record

that matched the first few characters that the user had typed (as an incremental

interface should). There was then a delay while the system retrieved and displayed

52The three second delay is for a terminal with 24 lines. The delay would be greater for a terminal
with a longer screen since more records would have to be retrieved to fill the screen.

53Further testing for the cause of this delay is outside the scope of this thesis since system response
time is good enough for a preliminary evaluation of the system.

66

the intermediate screen. The characters that the user had typed while DIRSYS was

retrieving and displaying the records could not be echoed until the new screen of

records had been displayed. People found this delay annoying because they could

not keep track of what characters had been typed. This problem became especially

bothersome when someone made a typing error and had to wait for the characters to

appear before the mistake could be corrected.

The display of an intermediate screen was especially annoying when the user moved

the highlight and then typed characters. For example, if the highlight were placed on

"Johnson, D", and the user then typed "Johnson, J", depending on how fast the

characters were typed, the system might only get "Johns" before it started di!:>playing

a new screen of entries. A previous page containing the first record matching

"Johns" would be displayed before the page containing the record matching

"Johnson, J". Most users found this display of a previous page followed by the

display of the correct page disconcerting. The same display behavior occurred when

deleting characters. If the highlight were on, "Johnson, D", and the user deleted

"D", and then typed "J", DIRSYS might display the screen containing the first record

matching "Johnson," before displaying the screen containing the record matching

"Johnson, J".

Most users liked the fact that deleting the last character from the echo area did not

cause the highlight to move. All of the naive computer users expected the highlight

to remain where it was. Most of the experienced computer users expected the

highlight to go back to the previously highlighted entry because of the way that the

Emacs incremental search facility works, but most also said that they would rather

have the highlight remain where it was. One thought it would go back to the

beginning of the database.

Because of the display delays, it is difficult to say whether or not the incremental

interface is a good interface for this director1 system. If the redisplay were faster or

could be interrupted as in Emacs so that the echoing of characters could be

67

immediate, then the intermediate screen display might not be annoying.54Alternately,

the system could wait until the user had finished typing characters before displaying

the appropriate page of the directory in order to decrease the flashing of the screen.

The interface then, however, would not appear to be incremental. All of the naive

computer users expressed a preference for a system that would search only when

they told it to. One said that he was not in control of the system, that the computer

was in control when it searched for the matching record as he typed characters.

(Perhaps if the system response time had been better then he might have felt more in

control.) The experienced computer users are more familiar with incremental

searching, since many full-screen editors use it, and most of them liked the idea of

using it to search the directory.

Getting Help

All three naive computer users read the tutorial and thought it was well worded. One

thought that it was too long. Another pointed out that he felt as if he had to

remember all the terms defined in the tutorial, e.g., "echo area", to be able to use the

system. This point is a good one; the tutorial could be rewritten without using

specific terms. None of the experienced computer users read the tutorial, but they all

thought that it was helpful to have it for those who wanted to read about the system

before experimenting with commands.

All users typed the help command ("?")at least twice, and, as expected, the novices

used the help facility more often than the experienced computer users. The users

thought that the help facility was useful, well worded, and easy to understand. They

were able to understand that a command typed from the first level help window would

be executed in the previous window. There were mixed reactions, however, to what

occurred after typing CTRL-T or ESC-M from the help window. When one of these

commands was typed, the directory data window was redisplayed before the tutorial

541n Emacs, when the user types a character or command, any screen display that is in progress is
interrupted while the user's input is processed.

68

or update request windows were displayed in an attempt to let the user know that he

would return to the directory data window after exiting the tutorial or update facility.

Some users thought that the redisplay of the directory data window caused

unnecessary delay and screen flashing. Others did not mind the redisplay, but were

not sure that it helped them figure out what window would be redisplayed when they

exited the tutorial or update request windows. An interface without redisplay of the

directory data window should be implemented so that users can compare the two

designs.

The users liked having two levels of help and did not seem to mind having to return to

the first help level before being able to execute commands in the window that was

present before entering the help facility. The users found the command prompt for

the second level help window that appears in the echo area helpful but thought that it

was difficult to notice unless it was reverse videoed. One user said that a more

detailed explanation level would be helpful. He had overlooked the explanation of

the second level help because the explanation was not in the same format as the

other commands; it was written as a statement near the bottom of the help window.55

Requesting an Update

Most of the users submitted an update request and thought that the update facility

was easy to use.56 They thought it convenient to be able to send changes directly to

the DIRSYS manager. They understood that they were submitting requests for

modification rather than modifying the directory database and understood that the

requests would be verified by the manager.

55The command will be explained differently in a new version of the interface.

56The information in the database is not up-lo-date so most users submitted new information for their
directory entries.

69

4.2 Database Access Method

Preliminary timings were taken to discover how record block size affects the

database access time and to determine an optimal record block size.57 A random

sample of 200 names was chosen from the database. Each name was located in the

database using the indexing scheme discussed in Section 3.2, and the following

quantities were counted: the number of disk accesses while searching the index, the

number of disk accesses while searching the database, the central processor time

while searching the index, and the central processor time while searching the

database.58 The disk accesses counted, however, might not have been actual

physical disk accesses because the counting process did not take into account the

possibility that the operating system might have had the desired information cached

in memory. The timed searches were repeated on two other files of sample names

that had been constructed by randomly reordering the names in the first sample file.

The timed quantities for the three files were then averaged.

The above procedure was carried out using indexes that had been constructed for

record block sizes ranging from 5 to 100 in increments of 5. The searches using the

20 indexes were then repeated for internal buffer sizes ranging from 128 to 2048

words.

It was predicted that 30 would be a suitable record block size based on statistics that

indicated that block sizes larger than 25 resulted in a significant decrease in the

average number of characters needed for unique index entries. A relatively small

index was judged to be desirable in order to minimize the number of disk accesses

required to search the index. In addition, calculations with disk access time and

average record size indicated that reading a maximum of 30 records before locating

the desired entry would keep the response time acceptable.

57 As mentioned in Section 3.2, the name index logically partitions the groups of records containing
last names with the same first letter into equally sized groups of records, called record blocks.

58DIRSYS is implemented on a DEC-SYSTEM 20 running the TOPS-20 and on a VAX 11 /750 running
UNIX. The timings were taken on the DEC-SYSTEM 20 because it had a higher resolution timer than the
VAX 11 /750.

70

Results of the timing process are shown in Figures 4-1 and 4-2 and in Appendix

B. The graphs of disk accesses versus record block size, one of which is shown in

Figure 4-1, seem to indicate that for record block sizes larger than about 20, the

number of disk accesses required to read the index is relatively constant at

approximately two per search. The increase in disk accesses below about 20 is due

to a large index. It takes more disk accesses to read the index, and with more index

entries, the probably of having an index entry that matches the search name

increases, in which case, a record is read from the database to determine whether

the desired record is before or after that particular record in the database.59 Most

disk accesses for record block sizes larger than about 20 are due to reading records

from the database, as expected. Also as expected, the larger the buffer size, the

fewer average number of disk accesses required to read the database since more

information is kept in memory. However, this decrease in disk accesses is only

beneficial when doing many searches in a row or when moving to the next or

previous page in the directory. If the user only wants to look up one name, reading in

a lot of extra information, and causing the user to wait, is unnecessary.

The graphs of central processor time versus record block size, one of which is shown

in Figure 4-2, indicate that the system spends very little time searching the index.

Most of its time is spent reading and processing the records of information. The

increase in central processor time below a record block size of about 20 is due to

having to search a large index. This search time probably could be decreased if the

index were not searched sequentially. As expected, the central processor time

seems to be independent of internal buffer size.

The results of the database timings indicate that for record block sizes above 20 the

index is small enough to be searched quickly. Additional testing is needed to

determine an optimal internal buffer size.

59The search algorithm is discussed in Section 3.2.

71

3000

Disk Accesses
+

+ total
+ +

0 while searching database +

2500 + c while + + searching index
+ c

+ + + c
c c

+ + c
+ + c

+
2000 + + c

+ + c c c . c c
Ul
Q) c VJ c
Ul
Q) c c u c u 1500 c <(c c x.
VJ

0

1000

0
0

500 0
0

0
0

0
0 0 0 0 0

0
0 0 0 0 0

0
0 20 40 60 BO 100

Record Block Size (# of records)

for 200 names

Figure 4-1 : Disk Accesses vs. Record Block Size, Buffer Size 128

72

50

Central Processor Time

+ total
0 while searching database +

+ c
c while searching index c

40 + + c c +
+ c -"' c

()
<I> + rJl c - + .
<I> c
E +
i= 30 c + c ... + 0 c C/)
fl) + Q) + c ()
0 c ...

+ +
0... c
(ij + c

+ c - 20 c c: + +
Q) +
0 c c

c

10

0

0
0 0

0 0 0 0 0 0 0
0

0 20 40 60 BO 100

Record Block Size (# of records)

for 200 names

Figure 4-2: Central Processor Time vs. Record Block Size, Buffer Size 128

73

Chapter Five

Conclusions and Future Work

5.1 Conclusions

This thesis has described the design and implementation of an online directory

assistance system called DIRSYS. The system, designed for use by members of the

M.l.T. community, has an incremental interface that combines features of a paper

phone book with those of a full-screen editor such as Emacs [51]. Each directory

entry is displayed in a compact one line per entry format, as are entries in a paper

phone book. Since more information is available for each entry than in a paper

phone book, a command is available for changing entries into a more expanded

format in which additional information is displayed.

Users may "browse" through this electronic phone book by issuing commands

similar to Emacs' cursor motion commands, or they may search for a specific name

by typing the name. After each letter that the user types, DIRSYS moves the

highlight, the means for emphasizing an entry, to the entry whose name string most

closely matches what the user has typed so far. This incremental search mechanism

is similar to that used in Emacs. The system provides a help facility with two levels:

the first level reminds users of which commands are available; the second level

describes the function of a specified command in detail. A tutorial is available for

users who want a very detailed description of the system.

Finally, DIRSYS provides a facility for keeping the information in the directory

database up-to-date. A user may submit update requests, which contain information

about modifications to his directory entry, to the DIRSYS manager. When the update

requests have been validated, the information contained in them is incorporated into

the directory database by an update daemon, a program that runs every night to

update the database.

74

A preliminary evaluation of DIRSYS indicates that the system can be used easily by

both inexperienced and experienced computer users. Details of the evaluation were

presented in Chapter 4. The learning aids guide the novice without encumbering the

experienced user. The commands are simple, easy to use, and consistently

interpreted. The system provides prompts and polite, informative messages to the

user. It also is robust in that it is very difficult to cause DIRSYS to fail to operate.

Finally, individuals who used DIRSYS seemed to enjoy using the system, even though

the system response was slow at times, and agreed that a directory system such as

DIRSYS would provide a convenient service for use both inside and outside the M.l.T.

community.

5.2 Future Work

This section is divided into two parts. The first describes work that could be done on

the current system; the second describes possible extensions to the current system.

5.2.1 Work on the Current System

Quantitative Evaluation

DIRSYS was designed to be easy to learn to use and easy to use once it had been

learned. The preliminary evaluation indicates that these goals were met; still a more

thorough quantitative evaluation is needed. Moreover, the evaluation should include

experienced DIRSYS users.

Ease of learning is often measured by determining the average time required for

people to learn to use a system. An alternative would be to measure the percentage

of people who could learn to use a system in a given period of time. In testing for

ease of learning, it is important to define what is meant by "to learn to use the

system". The phrase cou Id mean being able to do basic tasks, but not necessarily

quickly; it could mean being able to perform basic tasks quickly; it could mean being

able to do basic tasks quickly and some advanced tasks; it could mean being able to

75

perform both basic and advanced tasks quickly. It is also necessary to identify the

basic and advanced tasks. With DIRSYS, for example, submitting an update might be

considered an advanced task.

Ease of use can be measured by determining the speed with which a person can use

a system, e.g., by finding the average time required to complete a task or the

percentage of a task completed within a given time period. Alternatively, one could

measure ease of use by counting the number of errors that a person makes while

using the system. There is evidence to suggest that the fewer the number of errors,

the easier the system is to use [28]. With DIRSYS, however, it would be difficult to

determine when users made errors, especially since users often may experiment with

commands. In testing for ease of use it is important to distinguish between

inexperienced and experienced computer users, because knowledge of computers is

being tested as well as knowledge of the system. Collecting statistics about user

sessions, e.g., keeping track of everything a user types, would also help determine

which commands people find most useful. Unfortunately, only statistics tor

experienced computer users can be collected now since inexperienced computer

users currently do not have easy access to the system.

In addition to measuring ease of learning and ease of use, it would be interesting to

measure user attitudes toward DIRSYS. There is an abundance of literature on

attitude measurement [11, 22, 29, 41, 54]. One method that has been successfully

used for evaluating attitudes toward computer systems is the semantic differential

technique [15, 18, 31, 50]. This technique measures people's reactions to various

concepts in terms of ratings on bipolar, seven-step scales defined at their extremes

by contrasting adjectives. A typical semantic differential looks like:

easy: - - - - : - - - - : - - - - : - - - - : - - - - : - - - - : - - - - : difficult.

The seven positions on the scale correspond to (from left to right) extremely easy,

quite easy, slightly easy, equally easy and difficult, slightly difficult, quite difficult, and

extremely difficult. The subject is asked to evaluate a concept, e.g., using DIRSYS,

76

by placing a check mark on one of the positions on the scale. The collected data can

then be analyzed mathematically by assigning values of 1 to 7 or 3 to -3 to the scale.

In addition, the database access method needs to be evaluated further. It would be

useful to find out how the operating system on which DIRSYS runs affects system

performance. The operating system's paging scheme may prevent requests for new

information from being actual physical disk accesses because the operating system

may have the desired information cached in memory. It would also be interesting to

see how much of a performance difference alternate database organizations would

make.

Finally, the update procedure has not been tested yet. The update daemon takes

about three hours to rebuild the database and indexes on a dedicated VAX 11 /750

running the UNIX operating system. Statistics need to be taken to determine how the

rebuild procedure affects response time if DIRSYS is being used at the same time

that the database is being rebuilt. It also would be useful to know how often update

requests were received in order to determine whether or not updating the database

once every 24 hours is appropriate. It would be interesting to compare the current

update procedure with one that did not rebuild the entire database. One possible

design would be to organize the database as several files and rebuild only the files

that were affected by the updates. This scheme would be more efficient than

rebuilding the entire database if the percentage of files that have to be rebuilt is

small. Having the database organized as multiple files, however, might introduce

delays in reading and displaying the records for the incremental interface.

Improved Performance

The performance of DIRSYS needs to be improved by eliminating the delay when the

system retrieves and displays records. The cause of the delay needs to be identified

by determining exactly where in the program the time is being spent. As noted in

Chapter 4, the delay may be due to the sequential design of the program or to the

program's spending an excessive amount of time reading and processing records.

77

One solution might be to allow display to be interrupted when another command or

character is waiting to be processed. Another possible cause of delay may be that

DIRSYS relies on screen handling routines in the implementation language library

rather than updating the screen itself .60 Thus, further investigation of system

performance is needed.

Improved Methods for Building and Maintaining the Database

In order for DIRSYS to be a usable service, a convenient way to set up the database

is needed. Currently it is difficult to transform the information from the registrar's and

personnel offices into a directory database. The process involves reading and

merging the information from magnetic tapes, editing it to remove format

inconsistencies, merging it with electronic mail address information, and converting

it into a more compact format. An automatic way of getting the directory information

in a convenient format is needed. Ideally, the registrar's and personnel offices would

keep directory information in similar formats, including electronic mail address

information, and would send it over a data line that connected those offices to the

directory system. The directory system then could update its directory database with

the new information. With this plan, it also would be possible to send copies of the

validated update requests for DIRSYS to the registrar's and personnel offices in

order for their records to be kept up-to-date as well.

5.2.2 Extensions to the Current System

Running DIRSYS on Multiple Machines

DIRSYS is designed to run on a single dedicated computer to which users connect in

order to run the system. Alternately, DIRSYS could run on more than one computer.

The availability of the service would be increased with such a plan since if something

went wrong with one machine, the other machine(s) could continue to operate the

60rnRSYS is implemented in CLU [30].

78

system. In addition, the system load could be distributed. When a user types

"DIRSYS" to start the system, a program on the user's machine could find the

DIRSYS machine with the least number of users, set up a connection to that

machine, and start DIRSYS on it. By distributing the load, one machine could do the

updating of the database while the other machine(s) continued to provide the

directory service. The machine doing the updating would be assigned fewer users

than the others in order to keep system response fast on that machine. If one

machine were to be taken offline to update the database, then a different update

scheme could be employed since not writing directly into the database would no

longer be a requirement. (In the current scheme, as discussed in Chapter 2, in order

not to "disturb" the database that DIRSYS is using, a new database is built by

copying the old database and merging update information into it.)

Finally, if DIRSYS were running on more than one machine, the update requests

would have to be propagated to the update files kept on each machine. In addition,

the update program would have to make sure that there were no inconsistencies in

the update files when it began to rebuild the database. Care also would need to be

taken when copying the new database and new update file to the machines. Any

update requests that had been submitted while the database was being updated

would need to be added to the new update file. 61

The above scheme assumes that all the processing, e.g., screen handling and

database searching, is done on the dedicated machines. An alternate plan is to

distribute the processing involved in running DIRSYS between central machines and

user sites. For example, copies of the database could be kept on several central

machines, and the screen handling and input processing routines could be kept on

personal computers connected to the machines via a network.62 The centralized

61 The record numbers in the new update requests might have modified, as discussed in Section
3.3.2.

62This plan assumes that the network would have a high enough bandwidth to handle the data
transfer.

79

machines would not need to be dedicated to running only DIRSYS since all

processing would be done elsewhere. Expanding the system to be able to serve

more users would not require adding another centralized machine, only another copy

of the database. The system could be accessed from personal computers distributed

throughout the M.l.T. community. In addition, users could obtain a copy of the

DIRSYS program and run the system on their own machines.

More Sophisticated Matching Schemes

There are several sophisticated name matching schemes that could be added to the

system in order to facilitate locating a desired record. These alternate matching

schemes become especially important if the desired record is not found using the

incremental search. These features could be provided as separate commands or as

one command that automatically searches using all of the alternate matching

schemes. The alternate matching schemes could include the following. The system

could match first names and nicknames by searching a table of common nicknames.

It could search for records containing names that matched the typed first, middle,

and last names and initials in any order. For example, the record for someone who

goes by "Ann Smith" might be listed in the directory database under the name

"Karen Ann Smith". In this case, if DIRSYS were to search the database looking for

"Ann" as the middle name instead of the first name, the desired record would be

located. The system could provide a phonetic search facility that would locate

records containing names that "sound like" the typed name. Names could be

encoded in such a way that similar sounding names have the same code. One such

encoding method is the Soundex method, developed by Margaret K. Odel and Robert

C. Russell.63

One possible way in which the alternate matching schemes could be used is the

following. If after typing a name, a matching record is not found by means of

63us. Patents 1261167 (1918), 1435663 (1922). Cited by (26].

80

incremental search, the user could issue a PHONETIC SEARCH command which

would cause records to be displayed containing names that phonetically match the

typed name. The information would be displayed in compressed format as with the

incremental search screen, and all commands available with the incremental search

screen would be available with the phonetic search screen. The phonetic: search

facility could be "turned off" automatically when a new search is started or by issuing

a specific command. Thus, adding alternate matching schemes to DIRSYS would

not necessarily require drastic changes in the interface design.

Other matching schemes that could be added include matching records using fields

of information besides personal name. If someone is looking for the directory entry

for John Smith who is in the Department of Psychology, for example, bein~1 able to

input the department information as well as the personal name might shorten the list

of matching entries. A simple way to input the department information would be

neecjed. In one such scheme, a list of numerical department abbreviations could be

displayed on a section of the screen, and the user could type the department number

instead of the department name. This scheme shortens typing time and gets rid of

the need for sophisticated methods of interpreting user input. The user could type

the department number, then start typing a name. There would be no confusion

about what part of the user's input was department information since personal names

do not contain numbers. Indexing the database by department as well as by personal

names might facilitate locating and displaying matching records quickly.

A Mouse Interface

Many current systems have interfaces that employ a mouse, a small mechanical

device which, when moved around on a flat surface such as a desk top, moves a

pointer on a terminal screen. A mouse often has one or more buttons on its top or

side for selecting options, e.g., tor issuing commands. One such interface has been

designed for DIRSYS and is summarized briefly here [24].

With this DIRSYS interface, the pointer on the screen that moves when the mouse is

81

Name Hm Phone MIT ext Dept ..•............•. Status

a 11 en, larry, w 646-3080 3-6020 lab for computer sci .. staf
baldwin, robert, w 494-8490 3-6020 alee eng & comp sci g
berlin, stephen, t 3-1448 1 ab for computer sci staf
bridgham, david, a 225-6683 1985
comfort, sarah 3-6002 lab for computer sci staf

HELP SWITCH-FORMAT KILL-SEARCH QUIT EXIT-SCREEN
TUTORIAL REDISPLAY MODIFY-ENTRY ALTERNATE-MATCH-SCHEMES

gifford, david k 3-6039 elec eng & comp sci fac
gramlich, wayne, c 494-1076 3-6042 elec eng & comp sci g
greenwald, michael, b 497-0472 3-6042 lab for computer s c; staf
harteneck, ralf 494-9833 3-6020 elec eng & comp sci 1984
hopkins, grace 3-6042 elec eng & comp sci 1984
hornig, charles 3-7788 alee eng & comp sci 1983

A 8 C D E F G H I J K L M N 0 P Q R S T U V W X Y Z

Name (last,first,middle):

Figure 5-1: Sample Search Screen for Mouse Interface

moved is the highlight. To highlight an entry on the screen, the mouse is moved until

the highlight rests on that entry. To display the next or previous page of entries, the

mouse is moved so that the highlight reaches the bottom or top, respectively, of the

directory data window. "Clicking" one of the buttons on the mouse causes a pop-up

window to appear wherever the highlight is located. The pop-up window contains a

list of available commands. (See Figure 5-1). To issue one of the commands, the

highlight is moved to the desired command and a button on the mouse is clicked.

Only the command name would be highlighted, not the entire line containing the

command. Depending on how many buttons the mouse has, frequently used

commands, such as EXIT SCREEN and SWITCH FORMAT, could be executed by

clicking different buttons on the mouse. To begin an incremental search, the user

could either type the name into the echo area or move the highlight to a position on a

bar graph representing the distribution of alphabetic groups in the database. The bar

graph could be displayed, for example, on the right-hand-side or at the bottom of the

screen, as shown in Figure 5-1. The graph would be labeled as a dictionary is

82

labeled, with letters proportionally spaced out along the graph to indicate where the

last names beginning with those letters are located in the directory. In order to locate

the record for John Smith, for example, the user could place the mouse pointer half

way between the "S" and the "T" on the graph and click the mouse button. A little

trial and error might be needed to find the exact location of the Smith mcords.

An Interface for Outside M.l.T.

A non-incremental interface for use outside the M.l.T. community can be designed in

such a way as to enforce the Institutes' privacy policy. (As mentioned in Chapter 2,

the privacy policy states that the phone book is not to be made publicly available,

especially for commercial purposes.) The incremental DIRSYS interface can be

modified to restrict the number of directory entries that users outside the M.l.T.

community may view. One method tor achieving this restriction would be for DIRSYS

to display entries only if the non-M.l.T. user has completed typing the name and hit

an <ENTER> key and only if the number of matching entries is less than a certain

number. That number would be the maximum number of records that someone

outside the M.l.T. community would be allowed to view and would be set by

individuals at M.l.T. who determine the privacy policy. If there are more matching

records than can be displayed, the system could ask the user to input more

information, or it could ask the user a specific question about information that would

distinguish the records. It might ask, tor example, it the person whose name the user

had typed is a student or a member of the faculty or staff, or it might list the

department names contained in the matching entries and ask the user with which

department the person is associated.

Implementing an interface tor use outside M.l.T. would require a reliable means of

distinguishing M.l.T. users from non-M.l.T. users. There are currently several ways to

make this distinction, each of which exhibits a tradeoft between security and

convenience. The system could keep a list of authorized M.l.T. users and require

those users to input a personal password when starting DIRSYS. Alternately, the

83

system could operate on the assumption that anyone who has access to an M.l.T.

computer is an authorized M.l.T. user.64 This second scheme would be more

convenient for the users, but would not allow as much control over who used the

M.l.T. interface to the system.

A Mailer Interface

Another interface that could be added to DIRSYS is an interface for a mailer. This

interface would simplify the sending of electronic mail by allowing someone to send a

message addressed using only a personal name and the name of the Institute. One

could send a message, for example, addressed to "Jane Anderson at MIT", and the

mailer would look up Jane Anderson in the directo1-y database, find her electronic

mail address, and forward the messane to that address. In order to provide this mail

forwarding service, the mailer must be able to identify a unique recipient name before

sending mail. If a user were to send mail to a person at M.1.T. using a name that did

not match exactly a name in the M.l.T. database, the system could behave in one of

several ways. It could refuse to st:md the mail and instead send the user a message

which would include information about the closest possible match (or matches) and

a request to use the exact name listed in the entry (or one of the entries) to resend

the mail. If the name could be inexactly matched with one of the entries in the

database, e.g., using a nickname, the system could send the mail to the associated

electronic mail address and send the user a message giving the person's name as

listed in the database entry, requesting that future mail be sent using that name. A

person not listed in the database would still be able to receive mail, but the sender

would have to know the recipient's electronic mail address rather than relying on the

forwarding service to respond to the person's name.

64 An M.l.T. computer can be identified by its network address.

84

Yellow Pages

A useful addition to the directory assistance service would be a "yellow pages"

section for Institute information. To provide a good "yellow pages" service requires

more than looking for an entry that matches exactly what the user has typed. A

sophisticated indexing scheme is needed that would enable information to be located

when asked for by a name different from the one given in the directory. For example,

the system should be able to locate an entry for the Health Center even though in the

directory listing it is called the Medical Department. Also needed is a way for users to

"browse" through the information since they may not know what information they are

lookino for, but might recognize it if they saw it.

Except for its slow performance, DIRSYS is usable and robust. The only other effort

needed to put the system into service is to improve the method for building and

maintaining the database. While the present design and implementation are

complete, the features suggested here may be valuable additions for improvement.

85

Appendix A

Glossary of Terms

The following is a glossary of terms that are used in this thesis.

Access method: The database structure, i.e., the physical storage structure, and

the search mechanism, i.e., the algorithm for accessing records in the database.

Access time: The time to search a database and retrieve the desired record.

Alphabetic groups: Groups of database records that contain last names beginning

with the same letter.

Alphabetic pointers: The first of DIRSYS' three levels indexes. The alphabetic

pointers logically divide the database into alphabetic groups.

Directory data window: In DIRSYS, the window in the center of the screen,

between the label and status windows, that contains directory information in

compressed or expanded format. It is also called the data window.

DIRSYS: The name of the directory system. (The name is derived from DIRectory

SYStem.)

DIRSYS manager: The person in charge of maintaining OIRSYS, including

validating and marking update requests.

Echo area: In DIRSYS, this is the bottom-most window and the last line on the

physical screen. When the user types characters, they are shown in this window.

Help window: In DIRSYS, the temporary window that appears when the user types

"?". The first level help window contains an explanation of the available commands;

86

the second level help window contains a detailed explanation of a E.pecified

command.

Herald: The first screen displayed when DIRSYS is started. It contains. a brief

description of what the system does and how to start using it and a list of commands

needed by the first-time user, along with the functions of those commands. It also

gives an address to which users may send comments.

Highlight: The means by which DIRSYS emphasizes an entry on the screen. A

highlighted entry is displayed in reverse video if the terminal has that capability and in

uppercase letters with periods between the fields of information.

Incremental searc.h: When a system begins searching for a matchin1~ string after

each character typed by the user.

Indexed sequential access met.hod: A database access method that consists of a

sequential file of ordered records and an ordered index, or several levels of ordered

indexes, for accessing those records.

Label window: In DIRSYS, this is the top-most line on the physical screen. It is

shown in reverse video if the terminal has that capability and generally contains

information about the window directly below it.

Mark an update: The operation clone by the DIRSYS manager to indicate whether

an update request is seen or unseen and valid, invalid, or waiting for verification.

Name index: The second of DIRSYS' three levels of indexes. It logically partitions

the alphabetic groups in the database into equally sized groups of records, called

record blocks. The beginning record in each block is used to form a name index

entry by pairing its record number with a substring of the name that it contains.

Non-incremental search: When a system begins searching for a matching string

after the user has typed the complete string.

87

Pop-up window: A window that appears when the user issues a command, e.g., a

help command, and disappears when the user begins typing again.

Record blocks: Equally sized groups of database records.

Record pointers: The third of DIRSYS' three levels of indexes. The record pointers

contain an entry for every record in the database and map record numbers into

physical addresses.

Status window: In DIRSYS, this window is located directly above the echo area and

consists of two lines, both of which are shown in reverse video if the terminal has that

capability. The upper line is usecj for sending messages to the user; the lower line is

used for listing available commands.

Survey updates: The operation available to the DIRSYS manager for viewing the

update requests that have been submitted.

Tutorial window: In DIRSYS, the window that replaces the directory data window

when CTRL-T is typed. It contains the text of the tutorial.

Update daemon: The program that runs at night to add information in the update

requests to the DIRSYS database.

Update edit window: The window that is used by the manager to edit and mark an

update request.

Update request window: In DIRSYS, the window that replaces the data directory

window when ESC-M is typed and contains a directory entry to be modified. An

update request is submitted by typing CTRL-U.

Update request: A message that a user sends to the DIRSYS manager requesting

that his entry in the DIRSYS database be modified.

88

Update atatua: The status of an update .._-. Le., whether It 18 valid, Invalid, or

waiting for vertflcation.

Updaw au,rvey window: The window that la uaed b/ tMmanager to view and nwk

update request.a In ~1111d or expallded

Appendix B

Performance Graphs

The following graphs, discussed in Section 4.2, are the results of preliminary timings

that were taken to discover how record block size affects the database access time

and to determine an optimal block size. A random sample of 200 names was chosen

from the database. Each name was located in the database using the indexing

scheme discussed in Section 3.2, and the following quantities were counted for

several internal buffer sizes: the number of disk accesses while searching the index,

U1e number of disk accesses while searching the database, the central processor

time while searcl1ing the index, and the central processor time while searching the

database. (The disk accesses counted, however, might not have been actual

physical disk accesses because the counting process did not take into account the

possibility that the operating system might have had the desired information cached

in memory.)

The graphs indicate that for record block sizes above 20 the index is small enough to

be searched quickly. Additional testing is needed to determine an optimal internal

buffer size. (See Section 4.2 for a more detailed discussion of the timings.)

90

3000

Disk Accesses
+

+ total
+ +

0 while searching database +

2500 + +
+ D while searching indei1

+ D
+ + + D

D D

+ +
D

+ + 0
+

2000 + + D + + 0
0 0 .

rn
0

0
Q)
fl) c fl) D
Q)
u 0 0 u 0
<(1500 D
x. c c
Cf)

0

1000

0

0
500

0
0

0
0

0
0

0
0 0 0 0 0 0 0 0 0 0

0
0 20 40 60 80 100

Record Block Size (# of records)

• for 200 names

Figure B-1 : Disk Accesses vs. Record Block Size, Buffer Size 128

91

3000

Disk Accesses

+ total

o while searching database

2500 c while searching index

2000

. +
(I)
Q)
(I)
en +
Q) + + + u
u + + <(1500 + +

.::L. + + +
en + +
0 + + + + + + c

c c c c
c c

c c c
1000 c c

c c
n :::: c c c c

0

500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

0
0 20 40 60 80 100

Record Block Size (# of records)

for 200 names

Figure B-2: Disk Accesses vs. Record Block Size, Buffer Size 256

92

3000

Disk Accesses

+ tot a 1

o while searching database

2500 c while searching index

2000

.
C/)
Q)
Cl)
Cl)
Q)
0
0

1500 +
~
~
C/)

i5

+
+

+ + + + + + + +
1000

c + + + +
+ + + + +

c
c c c c

c c c c c c c c c
c c c c c 500 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

0
0 20 40 60 80 100

Record Block Size (# of records)

for 200 names

Figure B-3: Disk Accesses vs. Record Block Size, Buffer Size 512

93

3000

Disk. Accesses

+ total

o while searching database

2500 c while searching index

2000

• Ul
Q)
rn en
Q)
u
u 1500 ~ +

.:,{
Ul

C5

c + + 1000
... ... •

+ + + +
+ + +

+ + + + + + +

c
c

500 c c
0 0 c c c c c c c

0 0 IP e a If IP e l!l • 0 0 0 0
0 0 0 0

0
0 20 40 60 80 100

Record Block Size (# of recorc;ls)

for 200 names

Figure B-4: Disk Accesses vs. Record Block Size, Buffer Size 1024

94

3000

Disk Accesses

+ total

o while searching database

2500 c while searching index

2000

.
(/)
Q)
(/)
(I)
Q)
(.)
u 1500 <(+

.::t:.
(/)

0

c + + 1000

•
+ + +

+ + + + + + + + + + + +
Cl +

Cl

500 c
0 0 0 0 " fl a e e 0 l!I 0

8 0 8 II c Cl a c e ! fl

0
0 20 40 60 80 100

Record Block Size (# of records)

for 200 names

Figure B-5: Disk Accesses vs. Record Block Size, Buffer Size 2048

95

50

Central Processor Time

+ total
0 while searching database +

+ c
c while searching index c

40 + +
c c ~ - +

rtJ D
0
Q) + rn c - + • c Q)

E +
i= 30 c + c + 0 c fl)
t? + Q) + c () c 0

+ + a.. c
a; + c

+ c b
c 20 + + c
Q) +
0 c c

c

10

0

0
0

0 0 0 0 0 0 0 0 0 0
0

0 zo 40 60 80 100

Record Block Size (# of records)

for 200 names

Figure B-6: Central Processor Time vs. Record Block Size, Buffer Size 128

96

50

Central Processor Time

+ total
0 while searching database + +

searching
c c c while index +

40 c

+
c

(i) +
0 c +
Q) c
~ + c

• + a.> c + + E
30

c c
i= +

+ c c 0 en + Cl)
+ c a.>

0 c
0 + + c a. c
-a + + +
!: 20 + c
c c
Q) c () c

10

0

0 0
0 0 0 0 0 0 0 0 0 0

0
0 20 40 60 80 100

Record Block Size (# of records)

for 200 names

Figure B· 7: Central Processor Time vs. Record Block Size, Buffer Size 256

97

50

Central Processor Time

+ total
0 while searching database + + c c while searching index c

40 +
c +

c
en
u + + Q) c
"' + c - c

•
Q) +
E

30 c +
i= + c + c

+ 0 c c I/)

"' +
Q) c +
u c
0 + c + a.. +
n; c

+ + c - 20 + c c::
Q)

0 c
c

10

0

0 0
0 0 0 0 0 0 0 0 0 0 0 0

0
0 20 40 60 80 100

Record Block Size (# of records)

• for 200 names

Figure 8-8: Central Processor Time vs. Record Block Size, Buffer Size 512

98

50

Central Processor Time

+ total
0 while searching database
c while searching index

40 +
+ c +

en + + c c
0 c c
Cl> + UJ c -. +
Cl> + + c
E c c
i= 30 + +

c + c
0 c Ul +
Ul c Cl>
0 + +
0 + c c a.. c
ca + +
.... +
c 20 + c c
Cl>
0 c c

10

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
0 20 40 60 80 100

Record Block Size (# of records)

• for 200 names

Figure B-9: Central Processor Time vs. Record Block Size, Buffer Size 1024

99

50

Central Processor Time

+ total
0 while searching database
c while searching i ndu +

40 +
c c

Ci) + + + 0 c c Q) c
.!!!., +

c
•

Q) + + E +
30 + c c f= c

.... + c
0 +
(I)

c c
(I) + Q)
0 + c
0 + + c

Cl. + c
(ij + + c
.... + - 20 c c:: c Q) c
() c

10

0

0
0

0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
0 20 40 60 80 100

Record Block Size (# of records)

for 200 names

Figure B-10: Central Processor Time vs. Record Block Size, Buffer Size 2048

100

Bibliography

[1] Al-Awar, J., Chapanis, A., and Ford, W.R.
Tutorials for the First-Time Computer User.
IEEE Transactions on Professional Communication PC-24:30-3i', March,

1981.

[2] Baker, J.D. and Goldstein, I.
Batch vs. Sequential Displays: Effects on Human Problem Solving.
Human Factors 8:225-235, 1966.

[3] Benbasat, I., Dexter, A. S., and Masulis, P. S.
An Experimental Study of the Human/Computer Interface.
Communications of the ACM 24(11 }:752-762, November, 1981.

[4] Bennett, John L.
The User Interface in Interactive Systems.
In Cuadra, C. A., editor, Annual Review of Information Science and

Technology, pages 159-196. ASIS, Washington, D.C., 1972.

[5] Birrell, A. D., Levin R., Needham, R. M., and Schroeder, M. D.
Grapevine: An Exercise in Distributed Computing.
Communications of the ACM 25(4):260-274, April, 1982.

[6] Black, John B., and Moran, Thomas P.
Learning and Remembering Command Names.
In Proceedings of the Human Factors in Computer Systems Conference,

pages 8-11. ACM, March, 1982.

[7] Black, John B. and Sebrechts, Marc M.
Facilitating Human-Computer Communication.
Applied Psycholinguistics 2(2):149-177, 1981.

[8] Borman, Lorraine and Karr, Rosemary.
Evaluating the Friendliness of a Timesharing System.
SIGSOC Bulletin :8-11, July, 1980.

[9] Butler, T. W.
Computer Response Time and User Performance.
In Proceedings of the Human Factors in Computing Systems Conference,

pages 58-62. ACM, December, 1983.

101

[10] Davies, Donald W. and Yates, David M.
Human Factors in Display Terminal Procedures.
In Proceedings of the Fourth International Conference on Computer

Communication, pages 777-783. International Council for Computer
Communication, September, 1978.

[11] Edwards, Allen L.
Techniques of Attitude Scale Construction.
Appleton-Century-Crofts, New York, 1957.

[12] Edwards, Allen L.
A Technique for the Construction of Attitude Scales.
In Summers, Gene F., editor, Attitude Measurement, pages 214-221. Ftand

McNally, Chicago, Ill., 1970.

[13] Edwards, Ward.
The Theory of Decision Making.
Psychological Bulletin 51 (4):380-417, 1954.

[14] Engel, Stephen E. and Granda, Richard E.
Guidelines for Man/Display Interfaces.
Technical Report 00.2720, IBM, April, 1975.

[15] Frierson, Elanor and Atherton, Pauline.
Survey of Attitudes Towards SUPARS.
In Proceedings of the American Society for Information Science, pages 65-69.

ASIS, Greenwood, Westport, Conn., 1971.

[16] Gaines, Brian R.
The Technology of Interaction -- Dialogue Programming Rules.
International Journal of Man-Machine Studies (14):133-150, 1981.

[17] Gebhardt, Freidrich and Stellmacher, lmant.
Design Criteria for Documentation Retrieval Languages.
Journal of the American Society for Information Science 29:191-199, 1978.

[18] Good, Michael.
An Ease of Use Evaluation of an Integrated Editor and Formatter.
Technical Report TR-266, M.l.T. Laboratory for Computer Science,

November, 1981 .
Revised version of M.l.T. Master's Thesis

[19] Granda, Richard E.
Man/Machine Design Guidelines for the Use of Screen Display Terminals.
In Proceedings of the Human Factors Society's 24th Annual Meeting, pages

90-92. Human Factors Society, October, 1980.

102

[20] Harivel, J.
Use of a Dedicated Machine Within the Electronic Directory Project.
In Parslow, R.D., editor, Information Technology for the Eighties, pages

529-545. British Computer Society, Heyden, London, UK, July, 1981.

[21] Harrenstien, Ken and White, Vic.
NICNAME/WHO/$.
RFC 812, Network Information Center, SRI International, March, 1982.

[22] Heise, David R.
The Semantic Differential and Attitude Research.
In Summers, Gene F., editor, Attitude Measurement, pages 235-253. Rand

McNally, Chicago, Ill., 1970.

[23] Hodge, M. H. and Pennington, F. M.
Some Studies of Word Abbreviation Behavior.
Journal of Experimental Psychology 98(2):350-361, 1973.

[24] Hsu, F. S.
Design of a Human Interface for an Online Directory Assistance System.
Bachelor's thesis, M.l.T. Dept. of Elec. Eng. and Comp. Sci., May, 1983.

[25] James, E.B.
The User Interface: How May We Compute.
In Coombs, M. J. and Alty, J. L., editors, Computing Skills and the User

Interface, pages 337-371. Academic Press, New York, 1981.

[26] Knuth, Donald E.
The Art of Computer Programming. Volume 3: Sorting and Searching.
Addison-Wesley, Reading, Mass., 1973.

[27] Landweber, L., Litzkow, L., Neuhengen, D., and Solomon, M.
Arcllitecture of the CSNET Name Server.
In Proceedings of the Symposium on Data Communications, pages 146-153.

ACM SIGCOMM, March, 1983.

[28] Ledgard, Henry, Singer, Andrew, and Whiteside, John.
Directions in Human Factors for Interactive Systems.
Springer-Verlag, New York, 1981.

[29] Likert, Rensis.
A Technique ffor the Measurement of Attitudes.
Archives of Psychology 22:1-55, 1932.

103

[30] Liskov, Barbara, et al.
CLU Reference Manual.
Technical Report TR-225, M.l.T. Laboratory for Computer Science, October,

1979.

[31] Lucas, R. W.
A Study of Patients' Attitudes To Computer Interrogation.
International Journal of Man-Machine Studies 9:69-86, 1977.

[32] Maguire, Martin.
An Evaluation of Published Recommendations on the Design of Man­

Computer Dialogues.
International Journal of Man-Machine Studies 16:237-261, 1982.

[33] Mann, J.
Decision Making.
The Free Press, New York, 1977.

[34] Miller, L. A. and Thomas, J. C.
Behavioral Issues in the Use of Interactive Systems.
International Journal of Man-Machine Studies 9(5):509-536, 1977.

[35] Miller, Robert B.
Response Time in Man-Computer Conversational Transactions.
In Proceedings of the 1968 Joint Computer Conference, pages 267-277.

AFIPS, 1968.

[36] Miller, Robert B.
Human Ease of Use Criteria and Their Tradeoffs.
Technical Report 00.2185, IBM, April, 1971.

[37] Moran, Thomas P., editor.
"Special Issue: The Psychology of Human-Computer Interaction.
ACM Computing Surveys 13{1), March, 1981.

[38] Newman, William M. and Sproull, Robert F.
Principles of Interactive Computer Graphics.
McGraw-Hill, New York, 1979.

[39] Norman, Donald A.
Design Principles for Human-Computer Interfaces.
In Proceedings of the Human Factors in Computing Systems Conference,

pages 1-10. ACM, December, 1983.

104

[40) Oppen, Derek C. and Dalal, Yogen K.
The Clearinghouse: A Decentralized Agent for Locating Named Objects in a

Distributed Environment.
ACM Transactions on Office Information Systems 1 (3):230-253, July, 1983.

[41) Osgood, Charles E., Suci, George J., and Tannenbaum, Percy H.
The Measurement of Meaning.
University of Illinois Press, Urbana, 111., 1957.

[42) Osgood, Charles E., Suci, George J., and Tannenbaum, Percy H.
Attitude Measurement.
In Summers, Gene F., editor, Attitude Measurement, pages 227-2~~4. Rand

McNally, Chicago, Ill., 1970.

[43) Rayner, David.
Designing User Interfaces for Friendliness.
In Beech, David, editor, Command Language Directions. Proceecfings of the

IFIP TC 2. 7 Working Conference on Command Languages, pages
233-242. IFIP, North-Holland, New York, September, 1980.

[44) Relles, Nathan and Price, Lynne A.
A User Interface for Online Assistance.
In Proceedings of the Fifth International Conference on Software Engineering,

pages 400-408. IEEE, March, 1981.

[45) Roberts, Charles S.
Partial-Match Retrieval via the Method of Superimposed Codes.
Proceedings of the IEEE 67(12):1624-1642, December, 1979.

[46) Rouse, William B.
Systems Engineering Models of Human-Machine Interaction.
North Holland, New York, 1980.

[47) Shneiderman, Ben.
Software Psychology.
Winthrop, Cambridge, Mass., 1980.

[48) Solomon, M., Landweber, L., and Neuhengen, D.
The CSNET Name Server.
Computer Networks 6(3):161-172, July, 1982.

[49) Sondheimer, Norman K. and Relles, Nathan.
Human Factors and User Assistance in Interactive Computing.
IEEE Transactions on Systems, Man, and Cybernetics SMC-12(2):102-107,

March/ April, 1982.

105

[50] Spiliotopoulos, V. and Shackel, B.
Towards a Computer Interview Acceptable to the Naive User.
International Journal of Man-Machine Studies 14:77-90, January, 1981.

[51] Stallman, Richard M.
EMACS Manual for TWENEX Users.
Al Memo 555, M.l.T. Artificial Intelligence Laboratory, October, 1981.

[52] Teorey, Toby, J. and Fry, James P.
Design of Database Structures.
Prentice-Hall, Englewood Cliffs, NJ, 1982.

[53] Thurstone, L. L.
Attitudes Can Be Measured.
In Summers, Gene F., editor, Attitude Measurement, pages 127-141. Rand

McNally, Chicago, 1970.

[54] Thurstone, L. L. and Chave, E. J.
The Measurement of Attitude.
University of Chicago Press, Chicago, Ill., 1929.

[55] Wasserman, Anthony I.
User Software Engineering and the Design of Interactive Systems.
In Proceedings of the Fifth International Conference on Software Engineering,

pages 387-393. IEEE, March, 1981.

[56] Williams, C. W.
System Response Time: A Study of Users' Tolerance.
Technical Report 17-272, IBM, July, 1973.

106

