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ABSTRACT

An implementation technique f& functional languages that has reccived recent attention is graph
reduction, which offers opportunity for the exploitation of parallelism by multiple processors.
While scveral proposals for parallel graph reduction machines have been made, differing terminol-
ogy and approachcs make these proposals difficult to compare. This paper presents a systematic
approach to the study of parallel graph reduction machines, and proposcs an abstract architecture
for such a machine that is independent of the base language and communication network chosen
for an actual implementation. The abstract architecture, in addition to scrving as a foundation for
the design of real machines, lends quite a bit of insight into the essence of parallel graph reduc-

tion.

Kceywords: Abstract Machines, Applicative Languages, Computer Architecture, Multiple Pro-
cessor Architectures, Paralle]l Processing, Reduction.
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1. Introduction

11. Background

An implementation technique for functional languages that has received recent attention is
reduction. In reduction machines, the program is represented as a directed graph of operators and
data, and is executed by the repeated application of idcntities, or reduction rules, that simplify por-
tions of the graph until the original graph is transformed into the final result. Reduction machines
can be divided into two broad categorics: string reduction machines, in which there is no sharing of
subgraphs, and graph reduction machines, in which there may be. The subgraph sharing in the
latter can confer sclf-optimization propertics upon its programs; the G-machine® and the SKIM

machine’ are uniprocessor machines that attempt to cxploit this property.

Both graph reduction and string reduction approaches offer opportunitics for parallcl evalua-
tion since scveral portions of the program graph may be reduced simultancously. Mago® has
described a parallel string reduction machine; Keller er. al#, Darlington and Reeve?, and Slecp and
Burton®, have cach made proposals for parallel graph reduction machines. The proposed graph
reduction machines use different redﬁction languages, diffcrent communication nctworks, and dif-
ferent mcchanisms for coordinating parallel execution, making it difficult to comparc the
machines to determine what aspects represent necessary features of all graph reduction machines

and what aspccts arc features of the individual machines.

12. Paraliel Graph Reduction Machines - A Systematic Approsch

Figure 1 depicts the hierarchy of issucs relating to the design of a parallel graph reduction
machine. At the innermost level is the reduction base language itself; that is, the sct of rules for
transforming a graph into a printable answecr, along with an algorithm for their systematic applica-
tion. Since the design of a scquential reduction machine such as the G-machine encounters these

issues alone, the issues at this level can be called the seguential-semantic issues.
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Figure 1. Hicrarchy of Issucs in the Design of a Parallel Graph Reduction Machine

’

One level out are the issucs related to the 'pMeﬁzatim' of the reduction process. Any
parallel reduction machine attempts to employ many individual processing clements (PEs) in the
concurrent reduction of a single graph. This introduces problems of where to place the graph in
rclation to the PEs, of what information must be communicated by the PEs, and of what work

must be done by each PE over and above the application of reduction rules. These can be called

parallel-semantic issucs.




Finally, at the outermost level, is the structure of the communications network that supports
the intra-PE information flow proscribed by the paraliel semantics; this level is called the topologi-
cal level. As will be scen, the issucs related to load balancing are most appropriately dealt with at

this level.

Past proposals for parallel graph reduction machines have made no attempt to discuss the
issues in each of the three layers separately. In particular, the boundary between the sequential-
semantic and parallclsemantic layers is usually blurred, obscuring the distinction between
language particulars and cssential parallel reduction mechanism. No author has yet given a com-
plete and detailed description of all issues embodied in the paraliclecmantic layer, yet it is pre-

cisely these issucs that are the essence of parallel graph reduction.

This paper attempts to concretely define and describe those aspects of a parallel graph
reduction machine that fall into the paralicl-semantic level of Figure 1 in a manner applicable to
all languages and network topologics. What emerges can be thought of as an abstract paraliel
graph reduction machine, which when imbued with a particular reduction language and cir-
cumscribed by a particular communication nctwork becomes a correct design for an actual
machine. While a language based on Turner's combinators’ will be used for illustrative purposes,
it will be shown that the paralicl-semantic layers of the existing proposals, to the extent that they
are described at all, fit the model developed here.- This in tura suggests that all parallel graph

reduction machines must function as described here at the parallcl-scmantic level, regardiess of

their scquential-scmantic and topological desiga.

2. The Sequentlal-Semantic Layer

In order to understand parallel reduction, it is first necessary to understand sequential reduc-
tion, and so a brief look will be taken at the sequential-semaatic layer before proceeding on to the

parallel-semantic layer. A subset of Turner's combinator Isnguage will be used to highlight the

important points.




In all graph reduction machines, the program is expressed in a constant applicative f orm
(CAF) language, in which there are no variables, only constants. These constants appear in a
graph structure, and the reduction rules guide the machine in successively replacing substructures
with simpler ones until all that remains is a single printable result. The program graph, then, isa
collection of nodes, where each node contains one or more ficlds containing pointers to atomic
constants or to other nodes. When a subgraph is to be reduced, a pointer to the root node of the
subgraph is passed to a reduction algorithm procedure. This procedure examines the subgraph and
applics the appropriate reduction rules, possibly causing the reduction of other subgraphs or the
creation of ncw nodes. When reduction is éomplete, the reduction procedure returns the value.
that results, and replaces the original contents of the root node of the subgraph reduced with the

result of reduction. The three important characteristics of the reduction algorithm are:

(1) It is a procedure that takes one argument: a pointer to the root node of the subgraph to be

reduced.

(2) It returns onc value: the result of reducing that subgraph. The result may be an atom or a

more complex value.

(3) It has the side-ef f ect of modifying the graph. The most important side-effect is that the root

node of the subgraph reduced is replaced with the result of reduction.

Because the root node of a subgraph plays such an important role in that subgraph's reduc-
tion (its address is passed to the reduction procedure; its contents are replaced by the result),
*reducing node N” is considered synonymous with “reducing the subgraph of which node N is the

root”.

To get a feel for what kind of operations are involved in the reduction of a node, a language
based on a subsct of Turner’s combinator language will be presented. While Turner’s combinator
code is perhaps the least readable of all CAF languages, its semantics are quite simple and eclegant,
allowing the cssential features of all CAF languages to be highlighted without getting too bogged

down in Ianguage details.




The reduction rules for a subset of Turner’s language is shown in Figure 2. In that figure,
lowercase Ictters refer to any arbitrary graph, the notation <z> means “the result of reducing x*,
and the left arrow indicates both what is returned and what replaces the node being reduced”. Fig-
ure 3 shows in detail the reduction procedure to apply those rules. Here are some examples of

reduction using this procedure; it will be helpful to refer to Figure 3 when reading these examples.

Examplc 1: E =1 +.
Step 1 Jet T = Reduce(fn(E)) =1
An stom is already reduced, by definition.
Step 2: lot Q = Reduce(op(E)) = +
Step 3: Writeop(EQ)
The graph is left as I +_
Step 4: veturs @
and the atom + is returned.

To compute <f x>, ,
use the following rules to compute <<f >x>:

I x> - <x>
<Kx>-+-Kzx
<Kxy>-+<x>
<tx> - +x

<tHx > - <x>I<y>
<Sf>-8f
<8fg>-8f¢
<Sfgx>-<fx(gx)>

otherwise, - ERROR

Figure 2. A Small Reduction Language Based on Turner’s Combinators

If the result of reduction is an atom a, by conveation the nods roduced is replaced by 1 6. Such a aode is called an in-
direction aode by Turner.



The Reduction Procedure:
Given a pointer to a graph, E, reduce
the graph and recturn the result.

procedure Redece(E) {
Start:

Jat T = Reduce{In(E));
¥ T is an atom them {
T =1them{ I"The e I x> <a>%
let 0 = Reduce(op(E));
Write-op(E,Q0):
retura O; }
sl T =K thm ITherule Xx>-+-Ksx Y
Write-fa(E.T);
retara E;
el if T = +then /*The rule <+x> -+ +x Y
Write-fa(E,T);
retern E;
ol if T =8 thm FPThemule <8f> -85 %
Write-fn(E,T;
voturs E;
olse { 1* The "erroe rule® %
Write-fo(E,I);
Write-op(E,ERROR);
returs ERROR:} }
dlse if fn(T) is an stom them {
if fo(7) =K thes { I*Therale <K x y> - <a> %

ol if {n(7) = + them { /1*The rule <+x y> - <g>4<Y> Y
Jot 0 = Reduce(op(T)) + Reduce(op(E)):
Write-fo(E,I);
Write-op(E,Q);
returs O; }

olse if fa(T) =8 them I"Therale <8f g>-8f g%
Write-fa(E,T);
return E; }

else if fa(fn(T)) is an atom them

if tn(fn(7)) =8 them { PTherie<8f gx>-<F s (ga>Y
lat F = op(In(T));
tG=
In X =op(E);
Write-fa(E,Create(F X))
Writc-op(E,Create(G X));
gote Start; }

}/* End of procedurc Reduce

Other Procedwes Calisd by Reduce
fo(E) Returns the function ficld of the aode pointed to by E.
op(E) Returns the operand field of the node poiated to by £.
Write{n(E,X) | Writes X ia the fenction field of the aads painted to by Z.
Write-op(E X) | Writes X ia the operand fickd of the sode pointed to by E.
Create(X ,Y) Crestes & new node, initialincs its fencsion Seid to X
and its operand fickd to Y, and retusus » pulster to .

Figure 3. A Reduction Procedure for the Language in Figure 2.




Example 2: E=( 4) 3.
Step L lot T = Reduce(fn(E)) = +
This reduction was illustrated ia Exampie 1
Step 2: Write-op(E,T)
‘The graph is left as +3_
Step 3: return B
and +3 is returned.

Example 3: E=(A H3)((+4)95)
Step 1: lst T = Reduce(fo(E)) = +3
This reduction was iltwstrated ia Example 2.
Step 2: st G = Reduce{op(T)) + Reduce(op(E)) =3 +9 =12
op(T) =3 (an stom), and op(T) = (+ 4) S, which reduces to 9.
Step 3 Write-fn(8.1)
Step 4: Write-op(E,0)
The graph is left as I 23
Step S: return £
snd the atom 12 is returned.

Example 4: E =((S +) (+3)) 4
Step 1: lot T = Roduce(fa(E)) = (8 +) (+3)
This reduction is similar to Example 2.
Step 2: lot F = op(fn(?)) = +
fa(r) =$ +, %0 op(fa{l)) = +.
Step % let G =op(T) = (+9)
Step 4: It X ~ op(E) =4
Step 5: Write-fu(E,Create(F X))
E' fn is now the new graph +4
Step 6: Writc-op(E,Create(G X))
E's op is now the new graph (+3) 4
Hence, E is aow the graph (+4) (+3) 4)
Step 7: gote Start
‘The whole reduction procedere is startod agaia on the sew version of B.
This will cventually get reduced to 11 .

These four cxamples are typical of the types of reduction rules encountered in most reduc-
tion languages. In Example 1 the node is unchanged; in Example 2 some descendents of the node
are reduced and the results stored back intothcnode;iaﬂxﬁkaducendenu are reduced, a
computation performed on the results, and the result of the computation returned and stored back
into the graph; in Example 4 neﬁ nodes are created, the graph rearranged, and the reduction rules
reapplied to the result. It should be noted that in Example 4 the node is is considered reduced not
at Step 7 but only when a retura statcment is finally executed; the writing of a node does not
necessarily take place only st the conclusion of its reduction. It should also be noted that in Step
2 of Example 3 the two rcductions required could be performed simultancously in a parallel

machine; in general parallelism is obtained by “forking” demand across strict operators in this way.
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While there are many CAF languages other than Turner’s, the reduction procedures to
implement those languages will be quite similar to the procedure in Figure 3. A careful examina-
tion of Figure 3 and the examples presented will reveal that there arc only five kinds of opera-

tions performed on the graph during the reduction of a node N:

(1) Reading the ficlds of node N.

(2) Writing the ficlds of node N.

(3) Creating new nodes.

(4) Calling for the reduction of descendent nodes of node N.

(5) Recading the ficlds of those descendent nodes that have been reduced.

(The term "descendent node of node N” here denotes a node that is reached through the trac-
ing of a chain of pointers of bounded length rooted at node N) It is particularly important to note
that the only node an instance of the reduction procedure writes is the node it is reducing. Stated
another way, a node can only be altered by the instance of the reduction procedure that reduces
it. This implies that once a node is reduced, it is never written again; nodes become constants after

they are reduced.

The five kinds of operations listcd above are the only ways in which the reduction procedure
is permitted to interact with the program graph. Any other computation performed by the reduc-
tion procedure is limited to manipulation of its internal state. Such manipulation would include
arithmetic opcrations on data obtained from the graph, comparisons in order to sclect a reduction
rule, etc. Limiting the reduction procedure’s access to the graph to the five operations above is
not an arbitrary restriction but an observation that refiects the nature of graph reduction in gen-
cral. This universal property of the scquential-semantic layer will be the guiding force in the

devclopment of the paralicl-semantic layer.



3. The Parallel-Semantic Layer

3.1. Machine Organization

In a parallel reduction machine, there arec many processing clements (PEs) all trying to
reduce onec graph. The first question to be resolved, then, is where the graph is to lie in relation to
the PEs. An obvious approach is to place the graph in a memory that is shared among the PEs so
that cach PE has cqual access to all nodes of the graph. While this approach is conceptually
attractive, it introduces severe problcm; related to maintaining' atomicity of operations performed
upon the memory. Furthermore, it is clear that contention for the shared memory will swamp the

benefits obtained from paraliclism for cven a modest number of PEs.

To climinate the contention issue, each PE is given a certain amount of its own local graph
memory, to which only it has access. This in turn requires that the program graph be distributed
among the graph memories of the PEs, and s0 nodes of the graph must be able to point to other
nodes that reside both in the local PE and in other PEs. A poiater to a node, therefore, must be a
tuple of the form (PE address), where PE is the PE on which the node pointed to resides, and
address is the address in that PE local memory. Another way of viewing this scheme is as one
large contiguous address space that is divided up among the PEs. A node residing in the memory
of onc PE can ref er to a node residing in a different PE, but a node can be read or written only

by that node’s PE; ie, by the PE in whose local memory that aode resides.

Of course, there must be some sort of commanication neswork between the PEs if they are to
work in concert. In designing the paralicl-semantic layer the oaly sssumption made about the
communications nctwork is that a PE may send aa arbitrary message to another PE; all other
details of the network arc properly dealt with in the topological layer. While the communication
‘nctworkisinwmesemalhuedrmmee,thededp.tthe!opologicﬂhyermbechaento

reduce any contention problems to a suitable level; the same cannot be said for a shared memory.

Distributing the nodes among the local memories of the PEs provides a natural way to divide

the work of reducing the graph: the work of reducing any particular node - applying reduction
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rules, ctc. - is assigned to that node’s PE. Node (2 45), therefore, will always be reduced by PE
number 2, node (7 12) by PE number 7. This assignment of work is only natural, for the reduction
of a node N is guaranteed to require reading and writing the fields of node N, and only node N
PE has the privilege of accessing node N. One cffect of this sssignment is that the distribution of
nodes among the PE's memories is equivalent to distributing work among the PE’s processors; if all
nodes of a graph were placed in one PE's memory, only that PE' processor could take part in the

reduction of that graph.

3.2. Inter-PE Commaunication Esseatials

With the basic structurc of the machine in hand, it is now necessary to make it function. In
the previous section, the five kinds of operations performed on a graph during reduction were
enumerated. It is the task of the paralicl-scmantic layer to insure that a method for accomplishing

cach of these operations exists in the paraliel machine.

Impimenting the first two operations, reading and writing the node being reduced, are casy,
since the node being reduced always resides in the graph memory of the PE performing the reduc-

tion. These opcrations are simple acccsses to local memory.

The third and fourth kinds of operations, creating ncw nodes and calling for the reduction of
existing nodcs, requirc the assistance of other PEs; the former bmmc necw nodes will sometimes
have to be created on other PEs to distribute the workload, and the latter because reduction of
existing nodes is constrained to take place on each individual modes PE. In a scquential machine,
the reduction procedure would accomplish these operations through procedurc calis: a call to the
"create” procedure creates a new node and returns s point;:r, a call to the “reduce” procedure
reduces a node and returns the result. In a sequential machine, of course, the latter is a recursive
call. The reduction procedure in the parallel machine siso can accomplish these operations
through procedure calls, but in this case these procedures might require execution on a different

PE. What is needed is a remote procedure call facility.
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To implement remote procedure calls, we turn to the communications network. A remote
procedure call in the parallel reduction machine is accomplished by a pair of messages: a request
message, sent from caller to callec, communicating the arguments of the procedure, and an ack-
nowledgemen: message, sent from callee to caller, communicating the results. Any side-cffects
caused by the remote procedure are restricted to the local memory of the callee. A request mes-

sage takes the form:

Ireqest-id ] type-REQ l argumem.r]

while an acknowledgement looks like:

[ regest-id l type-ACK ] re.ndr:J

The type ficlds of the messages indicate in effect what procedure is being called, and the requesr-id
field, copied by the called PE from request to acknowledgement, allows the acknowledgement mes-
sage to be routed to the calling PE and identified there. Figure 4 lists the messages used in paral-

lel reduction.

The first two messages in Figure 4 arc used in the creation of new nodes. Suppose PE #1
wants to create a node and have it reside in the memory of PE #2. From a semantic point of
view, PE #1 would like to call a procedure like Create(initial-contents), where initial-contents are
the initial values for the fields of the new node, and have a pointer to the new node returned as a
result. Note that PE #1 expects not only a returned result, but also the side effect of the creation
of a necw node. Using the remote procedure call mechanism, PE #1 prepares a CREATE-REQ
message and sends it to PE #2. PE #1 then waits until it reccives a CREATE-ACK message whose
request-id field matches the request-id it crecated for the carlier request. When that message is

received, PE #1 cxamines the resulss ficld to obtain a pointer to the new node.

.
From PE #2°s point of view, PE #2 reccives a CREATE-REQ message. It responds by allo-

cating space for a node in its local memory, initializing the new node according to the initial-

contents ficld of the message, and sending back a CREATE-ACK message containing a pointer to
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Creation Request

| request-id I CREATE-REQ [ initial-contents ]
Requests the creation of a new node initiatized to initial-contents.

Creation Acknowledgement
| requess-id | CREATE-ACK | new-pointer |
Informs the sender of a CREATE-REQ memsage that the ncw nodc s poioted to by sew-pointer.

Reduction Request

| request-id | REDUCE-REQ | pointer |
Requests that the subgraph pointed to by pointer be reduced.

Reduction Acknowledgement
| request-id | REDUCEB-ACK | resuis |
Informs the scader of a REDUCR-REQ message that the result of reduction is resuls.

Increment Reference Count Request
| requess-id | INCRE¥-RRQ | poiner |
Requests the reference count of the node poiated to by pointer be iacremented.

Increment Reference Count Ackmowledgement
| requessid | INCREF-ACK |
Mmmmanmmmwumgmmumw

Decrement Reference Cosnt Request
[ request-id | DECREF-REQ [ poinser |
Requests the refereace count of the node painted to by peinter be decrementod.

All messages carry a request identification in the ficld regmestid. The request identification is
created by the issuer of a request and copied from request message to acknowledgement message
by the recciver of a request.

Figure 4. Inter-Procecssor Mcssages




the node. The pointer, of course, will be of the form (2 eddress). The request-id ficld of the
rcquest message contains the name of the seader, PE #1, 50 that PE #2 knows to whom to address
the acknowledgement. PE #2 copies the cntire request-id field from request message to ack-
nowledgement. Thus with the aid of the first two messages in Figure 4, the third kind of operation
required by reduction algorithms is accomodated.

The next two messages in the Figure implement the fourth kind of operation, the calling for
of the reduction of another node. Here, the procedure call simulated is Reduce(pointer), where
pointer is a pointer to the node to be reduced, which returns the result of reduction as well as hav-
ing the side cffect of altering the node reduced. The implementation of this procedure through
message passing is analogous to the implcmentation of the “create” procedure: a REDUCE-REQ
message carrics & pointer to the node to be reduced to that node’s PE, and that PE responds by

reducing the node and sending back a REDUCE-ACK message that contains a copy of the result.

The subject of what exactly is returned in 8 REDUCB-ACK message requires some thought.
If the result of a reduction is an atom, then the atom itself can simply be returned. If the result
of reduction is a subgraph, however, it is not obvious what must be returned. Merely returning a
pointer to the subgraph is not alﬁayn sufficient, for the caller will gcnera'lly nced to access some
of the nodes in this subgraph (ic, the fifth kind of operation as listed in Scction 2), which it can-
not do if the subgraph remains on another PE. On the other hand, the entire subgraph should not
be returned, not only becatise this is far more information thaa is necded, but also because the
entire subgraph is not ncce,unly available to the PE preparing the acknowledgement, as it may

be distributed across many machines.

The simplest policy is to return a copy of the root node of the subgraph to be returned; that
is, to return a copy of the node reduced. The PE receiving the acknowlcdgement then takes the
node from the acknowledgement and places it in its owa local memory, and may then treat the
ncw node in local memory as though it were the node on the foricgn machine. In doing this

operation, two copies of the same node are created, raising the question of consistency. There is
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no nced to worry about consistency, however, for the node copicd is 8 node that has already been
reduced. As pointed out in Section 2, a node that has been reduced can never be altered sgain ~ it
is cffectively a constant until it is garbage collected. Thus, creating a copy of a reduced node is

safe, since it amounts to creating a copy of a constant.

Before moving on, it is worthwhile to consider an example. Figure Sa shows the program +
(* 3 4) 8 distributed across three PEs. The root node is at address 0 on PE #1, the two-node
expression (® 3 4) is at addresses 0 and 1 on PE #3, and the remaining node is at address 0 on PE

#2. The reduction of the program begins with the following message sent to PE #1:

| requessid | REDUCE-REQ | (10) |

PE #1 starts to apply the reduction procedure showa in Figure 3 to the node, whose first step is let
T = Reduce(fn(£)). fo(E) is the node (2 0), so PE #1 sends the following mcssage to PE #2:

| requestid | REDUCE-REQ | (20) |

PE #2 responds by applying the reduction procedure to node (2 0), and finds that since the func-
tion is the atom +, the node should be returned unaltered. So PE #2 sends a copy of node (2 0)

back to PE #1 like so:

| request-id | REDUCR-ACK | (ATOM +) (30)] |

When PE #1 receives this message, it creates a node in its own memory and puts the copy of (2 0)
there. At this point, the PEs’ memories appear as in Figure Sb (the function pointer of node (1 0)
has not been changed from (2 0) to (1 1), as might be expected, but the pointer to (1 1) is kept in
the temporary variable T of the reduction procedure executing on PE #1). The reduction pro-
cedure on PE #1 now resumes, and sees that the statement if fn(T) = + is satisfied, and proceeds to
call for the reductions of the operands of nodes (1 0) and (1 1). Node (1 0)'s opcrand u an atom, but
node (1 1)’s operand is the graph at (3 0), which is reduced by sending a reduction request to PE

#3. PE #3 rcsponds with a reduction acknowledgement containing the atom 12, and PE #l1
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Figure 5. Steps in Paralic] Reduction
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reduces node (1 0) to I 20, sending a reduction acknowlcdgemeat containing the atom 20. Figure

Sc shows the final appearcnce of the PEs’ memorics.

In the example above, the result of reducing node (2 0) was the three node subgraph +(* 3

4), but it was sufficicat for PE #2 to rcturn only the root node to PE #1 in the reduction ack-

nowledgement, for the root node contained all information needed by PE #1. Consider now the

reduction of 8 f g x, where each of the three nodes are on differcnt PEs as shown in Figure 6a.
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Figure 6. First Steps in Reducing 8f gx

Reduction begins on PE #1, which scnds a reduction request to PE #2, which in turn sends a
reduction request to PE #3. PE #3, sceing that the funaction is the stom S, sends the following

acknowledgement to PE #2:




| request-id | REDUCE-ACK | {[(ATOM S) (] |

PE #2 copics this node into its own memory, and the memorics are now as shown in Figure 6b.
The reduction procedurc on PE #2 sces that the statement i fa(T) = 8 succceds, and so wants to
return the two-node result (S f) g. If only the root node of a graph is rcturned, PE #2 scnds this

message to PE #1:

| requestid | REDUCE-ACK | [2 D) ()] |

When PE #1 reccives this message, it will have two of the three nodes comprising the S expres-
sion, but to apply the reduction rule for 8 it needs all three, for it nceds the pointersto £, g, and x
(in fact, at this point it is missing the node that contains the 8f). In this case, PE #2 must actually
send two nodes back to PE #1, both of which will get copied into PE #1% local memory. This

would be accomplished by a message like this:

| request-id | REDUCE-ACK | {[(MSG 2) (g)] [(ATOM SYNP |

In this message, the pointer (MSG 2) points to the second node coatained in the message; when PE
#1 copics the contents of the message into its own graph memory, it will replace the (MSG 2)
pointer with a pointer to the actual node created for the second node in the message. Figure 6¢c
shows the state of the memorics after PE #1 finishes this copying.

When a graph is to be returned from reduction, then, the rule for determining which nodes
to include in the reduction acknowledgement is as follows. The root node of the graph to be
returned is always included. In addition, any nodes pointed to by the root node that were returned
from reductions requested during the reduction of the root mode are also included. The nodes in
this set are known to be reduced, making it safc to send them in a message, and are guaranteed to

be accessible to the PE creating the acknowledgement.
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33. The Need for Mauitl-Tasking

In the preceeding discussion, no mention was made of what a PE must do if it receives addi-
tional requests before dispensing with the onc in progress. When a PE processes a reduction
request, at scveral points it will send requests of its own and wait for the corresponding aci-
nowledgements. It is unacceptable for the PE to suspend all activity when waiting for ack-
nowledgements, because the requests it makes may cause other PEs to send additional requests
back. If the PE ignores those requests, it will never receive the lcknowlcdgen;cnu it is waiting
for, and a deadlock occurs. Because the processing of a reduction request may be suspended while
waiting for service from another machine, a PE must be capable of processing several reduction

requests at once.

A single PE, thercfore, can have several outstanding reduction processes, cach onc
corresponding to a node currently undergoing reduction. Associated with each reduction process
is 8 process descriptor (PD), which has enough information to sllow the process to be suspended
while waiting for acknowledgements and later resumed at the point of suspension. A process can
be in onc of two states: suspended or runnable. A suspended process is onc that has sent requests
but has not yet received all corresponding acknowledgements, and a runnable process is either one
that has just been created or one that has received all acknowledgements. A runnable process will
be sclected by the PE for execution, at which point the reducﬁon procedure will be resumed on
that process until cither one or more requests arc issued, causing the process to become suspended,
or until the algorithm finishes, causing a reduction acknowledgement to be sent. A suspended pro-
ccss becomes runnable again when it receives all acknowledgements for which it was waiting. Fig-

ure 7 illustrates the states a process can assume.

When a particular process’s instance of the reduction procedure wants to make a request, it
must do two things: it must send the appropriste request messages, and it must indicate in the pro-
cess descriptor that it is waiting for acknowledgements. The PE may then pick another runnable

process and work oa it for a while. When acknowledgement messages arc received, they must find
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Figure 7. State Diagram for a Process.

their way to the correct process descriptor and return the process to the runnable state. To organ-
ize the flow of information, each process is assigned a unique process number, and several request
slots are provided in cach process descriptor. Recall that messages always contain a request
indentifier. Whenever a process sends a request message, it includes a request identifier of the
form (PE process slot), where PE is the number assigned to the requesting PE, process is the pro-
cess number of the process making the request, and slot is the number of a request slot in that
process descriptor. After sending the request message, the process stores the atom WAITING in
request slot slor of the process descriptor; any process descriptor that has the atom WAITING in
one or more of its request slots is considered suspended. Any acknowledgement arriving at the PE
is stored in slot slos of process descriptor process, where slot and process are taken from the
request identifier of the acknowledgement (remember that the request identifiers in acknowledge-
ments are copics of the request identifiers contained in the correspondings requests). When a pro-
cess receives the last acknowledgement it is waiting for, that acknowledgement replaces the last
occurence of the atom WAITING in that process’s request slots, and the process is considered
runnable. When the reduction procedure is resumed on that process, it can find the results it

requested in the request slots, for that is where the acknowledgement messages are stored. Note
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that a process can make scveral requests at once by sending several request messages, cach with a
different value of slot in their request identifiers; this is how parallelism is achieved.

Another function of the process descriptor is to hold the request identifier of the reduction
request message that created that process, for that information is necessary when preparing tl;c
reduction acknowledgement when the reduction procedure terminates. Because of subgraph shar-
ing, it is possible for s second request to reduce a given node to arrive while the first request is
still being processed. It is not safe for a sccond process to be started on that node, because the
two processes will interfere with each other. Instead, only one process is allowed to reduce one
node, but a process is allowed to send any number of reduction acknowledgements when it com-
pletes. To keep track of this, the process descriptor will contain a list of notifiers, one for each
reduction request reccived for the node being reduced by that process. A notifier is merely the
request identifier from a reduction request message; when the process completes, one reduction
acknowledgement will be sent for every notifier in the notifier list, and the request-id ficlds of

these acknowledgements will be created from the information in the notifiers.

Support for multiple processes also requires additional information to be stored with cach
node. Each node must have, in addition to the data ficlds proscribed by the sequential-semantic
layer, a status ficld. A node can be in onc of three states: unreduced, reducing, and reduced.
When a node is created, cither through the processing of a CREATE-REQ message or through the
copying of nodes received in a REDUCE-ACK mcssage, the status ficld is sct to UNREDUCED.
When the first reduction request to reduce that node arrives, a process descriptor is created and
initialized, and the process descriptor number is stored in the status ficld of that node. Thus, the
presence of a process descriptor number in the status ficld of s node indicates that the node is in
the ‘reducing” statc. If additional requests to reduce that node arrive while the node is in the
“reducing” state, the status ficld of the node indicates which process descriptor should receive the
additional notifier. When the process finally finishes reducing the node, the status ficld of the node
is changed to REDUCED. Servicing any additional requests for the reduction of that node will
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simply entail reading the node and preparing the appropriate reduction acknowledgement. As was

noted carlier, once a node enters the REDUCED state it effectively becomes a constant.

34. Reference Count Garbage Collection

Because of the dynamic nature of reduction graphs, garbage collection is an important con-
cern in the design of a graph reduction machine. It is doubly important in the parallel graph
reduction machine because of the copying of nodes from one PE to another when reduction ack-
nowledgements arc sent. A useful propoerty of most reduction languages is that they can be
defined in such a way s0 as ncver to create cyclic graphs. Turner’s language, for example, can be
made to cither create cyclic graphs or not create cyclic graphs depending on the implementation
of the Y combinator. In general, the avoidance of cyclic graphs entails a small amount of addi-
tional work during reduction, but there is a potentially great savings in the time required for gar-
bage collection, for in the absence of cyclic graphs reference comnt garbage collection can be per-

formed.

The mechanism necessary for reference count garbage collection is casily added to the sys-
tem already described. Each node in graph memory is augmented with a reference count ficld,
which is initialized to one when a node is created. When a reduction process creates an additional
pointer to a node, it sends an Increment Reference Count Request (INCREF-REQ) message to
that node’s PE which contains a pointer to that node The PE receiving an INCREF-REQ message
responds by simply incrementing the reference count of that node. Similarly, when a node des-
troys a pointer to a node, it sends a Decrement Reference Count Request (DECREF-REQ) to the
node’s PE, which responds by decrementing the reference count of that node. If the reference
count of a nodec is decremented to zero, DECREF-REQs arc issucd to thc PEs of any nodes

pointed to by that node, and the node is returned to the free list.

Since INCREF-REQs and DECREF-REQs can be issued for a given node by several PEs at
once, precautions must be taken to make sure that these messages do not arrive out of order. If

the reference count of a node is one, for example, and an INCREF-REQ followed by a DECREF-
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REQ is issucd for that node, if the messages arrive out of order the reference count will drop to
zero before the INCREF-REQ message arrives, and the node will be garbage collected even
though a pointer still exists to it. To prevent this occurence, it is noted that any time a process
creates a ncw pointer to a node, it must already have a pointer to that node. Even if ‘tlie
INCREF-REQ mcssage ncver arrives, the node will not be garbage collected as long as that pro-
cess retains the original pointer it had to that node. Thus, the process issuing an INCREF-REQ
can guarantec the correctness of the node's reference count by suspending its activity until it is

sure the INCREF-REQ message has been received.

The obvious way to accomplish this synchronization is to have the issuer of an INCREF-REQ
enter the suspended state until it receives an Increment Reference Count Acknowledgement
(INCREF-ACK) message, which the receiver of an INCREF-REQ sends after incrementing the
reference count. In this way, the process cannot accidentslly issuc 8 DECREF-REQ for that node
until the INCREF-REQ has definitely been processed, and so the reference count will never be an
underestimate. There is no need to have a Decrement Reference Count Acknowledgement, for
there is no danger in overstating the reference count temporarily. The issuer of a DECREF-REQ

can proceed immediately after issuing the message.

35. Summary

The csscntial design of the parallicl-scmantic layer is complete, and is now summarized. The
overall appearence of the paralicl reduction machinc is as illustrated in Figure 8, with a number
of identical Processing Elements connected by s communications network. The communications
network is of arbitrary topology, but must support the reliable transmission of messages from onc

PE to another.

The flow of information within cach PE is depicted in Figure 9. There are two types of data
stored in the memory of s PE: nodes and process descriptors. Nodes, which are the objects
comprising the program graph, are stored in Graph Memory (GM), and contain, in addition to the

ficlds prescribed by the sequential semantic layer of the particular machine, a status ficld and a
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Figure 8. Organization of the parallel reduction machine.
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reference count ficld. Process Descriptors keep track of the tasks in progress within a PE; there is
one active process descriptor for every node in Graph Memory that is in the “reducing” state. The
process decriptor contains a list of notifiers, one for every REDUCE-ACK message that will be
sent upon the completion of that process, a sct of request slots used both to indicate the status of
the process and to hold acknowledgements after they are received, and enough state information

to resume the reduction procedure after it becomes suspended through the issuing of requests.

There arc logically three distinct computational entities within each PE. The Storage Mes-
sage Processor handles the processing of incoming CREATE-REQ, INCREF-REQ, and DECREF-
REQ messages. In processing these messages, the SMP requires access to the Graph Memory, and
can issuc CREATE-ACK, INCREF-ACK, and DECREF-REQ mecssages. The latter arise when
nodes are garbage collected, and since DECREF-REQ mecssages have no corresponding ack-

nowledgement, the SMP does not need to suspcnd its operations at any time.

The remaining messages, REDUCE-REQ, REDUCE-ACK, CREATE-ACK, and INCREF-ACK,
arc handled by the Computation Mcssage Processor. The latter three messages cause the writing
of request slots of process descriptors in the suspended state. The REDUCE-REQ message causcs
the status ficld of the node indicated in the message to be examined. If tiae status is "unreduced®,
an unuscd process descriptor is obtained and its number stored in the status ficld of the node to be
reduced. The state information in the new process descriptor is initialized so that it points to the
beginning of the reduction procedure with the node as argument. Finally, the notificr list of the
process descriptor is initialized with the request-id of the REDUCE-REQ message. This results in
a new runnable process. If the status ficld of the node in the REDUCE-REQ message was already
the number of a process descriptor, the request-id is added to the notifier list of that process
descriptor. If the status ficld of the node was “reduced”, the operations performed arc cxactly the
same as if the status field was “unreduced’, except that the state information in the new process
descriptor is initialized to begin at the end of the reduction procedure: at the beginning of the

section that sends the reduction acknowledgements and removes the PD.
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Processes move from the suspended state to the runnable state only upon the receipt of a
message, so the Computation Message Processor is capable of providing a .ltrcam of process
descriptor numbers of processes that have moved from the suspended state to the runnable state.
A PD number is added to this stream in two cases: if a REDUCE-ACK, CREATE-ACK, or
INCREF-ACK is received that overwrites the last occurence of the word WAITING in the request
slots, or if a REDUCE-REQ u received that creates a new process descriptor. The stream of runn-
able process numbers is passed to the Réduccr, which actually performs the reduction algorithm.
When the Reducer resumes a process, it works on that process cither until it issucs one or more
requests, whereupon the process enters the suspended state by virtue of the word WAITING in
onc or morc of its request slots, or until it completes, causing one REDUCE-ACK message to be

sent for every notifier in the notifier list, after which the PD is returned to the list of free PDs.

As Figure 9 illustrates, while the Storage Message Processor, the Computation Mcssage Pro-
cessor, and the Reducer are functionally independent, théy share two data structures, Graph
Memory and Process Descriptor Memory. Contention problems are avoided, however, because
their use of these structures is disjoint. The Storage Message Processor, for example, is the only
unit that uses the free node list or the reference count ficlds of the nodes. The data fields of
nodes are only used by the reducer after the SMP creates them. The status ficlds of the nodes are
used only by the Computation Message Proccssor. Similar divisions of usage occur between the

Computation Message Processor’s and the Reducer’s use of process descriptors.

4. Optional Features

In the previous section, the minimum function of the parallel-semantic layer was described.

There arc many extensions to this basic system possible that will improve the performance.

4.1. Program Loading and /O

While the capability for initial loading of program graphs is hardly an optional fcature, it is

of less importance than the actual exccution of program graphs. Happily, providing this feature




requires no additional mechanism in the paralicl-scmantic layer.

Generally, the overall machine structure as shown in Figure 8 will also include a special
Front-End Processor attached to the communication network, which can be addressed as if it were
a rcgular PE. Tlm special unit is in charge of all interaction with the user, including I/O and the
loading of programs. The Front-End Procmori loads a program into the machine by issuing
CREATE-REQ messages, and begins its execution by issuing a REDUCE-REQ message. When it
reccives 3 REDUCE-ACK message, that message will contain the result to be printed for the user.
The way in which /O is handled is up to the base language, but it will usually be in the form of
strcams, whose operators interact with the Front-End Processor through REDUCE-

REQ/REDUCE-ACK message pairs.

42. Time Sharing

Any parallel reduction machine built upon the principles set forth here is capable of per-
forming time sharing, for each PE alrcady has the facility for working on several tasks at once.
To achicve the simultancous exccution of two unrelated programs, the Front-End Processor simply
loads both programs onto the PEs and sends 3 REDUCE-REQ for each of the two root nodes. The
two graphs will cach get a more or less cqual share of the PEs combined time, for the PEs have no

way of knowing that the various nodes being reduced are part of unrclated graphs.

It is also relatively easy to provide this time sharing qnen.with a crude priority mechanism.
A priority ficld is added-to the process descriptor and to the REDUCE-REQ message. When a PE
receives 8 REDUCE-REQ message, it compares the priority ficld of the request with the priority
ficld of the process descriptor that will process the request, and stores the greater back into the
process descriptor. Whenever a process issucs a REDUCE-REQ, it will take the priority ficld of
the request from the priority ficld of the process’s process descriptor. Thus, the priority is pro-

pagated to the descendant nodes of the original node reduced.

The priority comes into play when the PE chooses a runnable process for execution by the

Reducer. When the PE selects a process from the stream of runnable processes, it always sclects
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the runnable process with the highest priority, thus assuring that higher priority processes are ser-

viced first.

43. Reduced Idle Time Through Eager Evaluation

| Up to now, the parallel reduction machine has been completely dcmnnd driven; a REDUCE-
REQ is never issued for a node until some reductlon process deﬁmtely nceds the result. Some
rescarchers have suggested that additional paraliclism can be extracted from a program by reduc-
ing some nodes before they are necded, so that if their values are cventually necded they will have
alrcady been computed. This scheme can make use of any idle time that might otherwise exist in-
8 systcm with a large number of PEs, but it is important that valuable time is not wasted reducing

nodes whose values will acver be needed.

The priority mechanism described in the previous section provides an clegant way of control-
ling cager cvaluation. By assigning a higher priority to the REDUCE-REQ issued for the root
node of the graph than for the REDUCE-REQs issucd for other nodes of the graph, each PE will
always work on nodes definitely needed for the computation of the final re§u1t if it has a choice.
An additional problem introduced by cager evaluation is that nodes requiring garbage collection
can have reduction processes active on them. The garbage collection mechanism must therefore

collect processes as well as nodes.

4A. Increased Throughput Through Muitiple Reducers

Unlike many proposed parallel machines, the paraliel reduction machine described here does
not make use of shared memory at all. One consequence is that cach PE must multi-task: a PE
can have several runnabic proccsses cxisting at once. The throughtput of a PE can be improved if
the PE in Figure 9 is augmented to include scveral Reducers. These Reducers will have to share
Graph Mcmory and Process Descriptor Mcmory, but to the degree that the Reducers can inter-
lcave memory cycles there will be more processes disposed of in any time interval. This system

rcpresents a very general type of multiprocessor where shared memory is used up to the point
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where additional processors sharing the memory is no longer benificial, after which groups of

processor/memory units are interconnected with a communications network.

4.5. Load Balancing

It was pointed out in Scction 3 that because a node is always reduced by the PE in whose
memory it resides, a policy for allocating new nodes to PEs is equivalent to a policy for distribut-
ing the workload. The distribution of workload is mainly an issue in the topological layer, for it is
only the communications network that can "scc” all the PEs and thercby have an indication of

which PEs are lightly loaded and which arc heavily loaded. '

Load balancing is accomodated by changing the CREATE-REQ mecssage so that is not
directed at any particular PE. The communications network, upon obtaining a CREATE-REQ
message, can route it to the PE that is the lcast loaded. Since the CREATE-ACK message contains
a complete pointer, including PE number, no special support is required from the issucr of the
CREATE-REQ message.

In general, two different types of CREATE-REQ messages will have to be provided: one for
nodes that are to be allocated on a PE 1o be determined by the load balancer, and one for nodes
where the PE is specified by the PE sending the request. An instance where the latter is required
is when a PE must allocate a node in its own memory to copy a node reccived in 8 REDUCE-ACK

5. Comparison With Existing Proposals

In the introduction it was stated that the parallcl-scmantic layer as described here is casen-
tially the same as the parallcl-semantic layers of other parallel graph reduction machines that
have been proposed, except that here it presented more systematically and thoroughly. The other

proposals will now be compared to the system here.




$.1. Keller, Lindstrom, and Patil

Perhaps the most detailed description of a parallel graph reduction machine is given by
Keller et. al®, and while their machine differs from the scheme here in minor ways, it fits the

abstract architecture quite well.

The FGL language that their machine uses reflects their machine’s load balancing policy: all
nodes belonging to a single user procedure are allocated on the same PE. A code block in their
system is a type of constant, and the Invoke operator cxccutes by using the information in a code
block to create a collection of nodes (all on one PE). Some of the nodes created by the Invoke will
include information computed at run time in addition to the compile time information taken from
the code block. This and many other issucs discussed in the Keller paper actually pertain to the

scquential-scmantic layer rather than the parallel-semantic Iayer.

Other aspects of their machine are quite familiar. Their machine’s “demand-list” and “result-
list" are similar to the process descriptors of the abstract machine. In Keller's machine, bowever,
notificrs arc associated with cach node, rather than with each process (task, in their terminology),
and are preassigned in most cases. This is possible because they oaly attempt to exploit subgraph
sharing within & uscr function definition, and so most notificrs are available at compile time.
There is rcally no advantage in precomputing the notificrs, and leaving space in each node for a
notificr is wasteful of space since only a fraction of the nodes at any time will be in the “reducing”
state. Including the Men in the nodes also forces their system to use "forward chninin;' to
handlc multiple global notificrs. While this technique has the advantage that the space for
notifiers is not of variable size, it increases the amount of communication necessary, for in addi-
tion to the actual notification messages, their system requires additional messages to sct up the for-
ward chaining. No real memory space is saved, for the same number of notificrs must be stored in

cither system.

Keller's paper gives no detailed discussion of what messages are passed in his system, so no

comparison of communication semantics is possible.




52. Darlington and Reeve

The ALICE multi-processor? is very interesting because at first glance it appears to be
greatly diffcrent from the machine described here. As in Keller's machine, nodes of the graph
contain notificrs in addition to the information contained in nodes of the abstract machine. ln
ALICE, however, the nodes are all put in a shared memory to which cach of the PEs has access.
Darlington recognizes that shared memory limits the number of PEs that can successfully be
employed in this way, so he proposes connecting groups of memory/PE units with a communica-

tion nctwork.

This, of course, is the scheme discussed in Section 44, wherein multiple Reducers are pro-
vided in cach PE. In Scction 44, the Reducers had to share common resources, including the
memory itself, the Computation Message Processor, and the Storage Message Processor. These
common services arc also described in Darlington’s paper; there, he visualizes the strcam of runn-

able processes and the free node list as “constantly circulating slotted communications rings®.

Darlington also points out that when PE groups are connected by a communication network,
the nctwork serves to “map the local memorics onto the global address space of the system”®. This,
of course, is reflected in the (PE address) form that pointers take in the system here. Darlington
gocs on to say that the communication network is used to share processable nodes and free space
among the building blocks. While the latter is certainly true — this is the load balancing function
described in Section 45 — the former contradicts his earlier statement, for the mapping of local
memories into the global address space precludes the migration of nodes from one memory unit to
another. Such migration is possible if forwarding addresses are left behind or if the communica-
tion network scrves to translate “virtual addresses” appearing in nodes to “physical addresses” con-
sisting of PE/address pairs, but the former entails communication overhead to perform the for-
warding, and the latter turns the communication network into a huge bottleneck through which all
memory references must pass. In particular, any benefit that might be obtained from grouping

related nodes into the same memory segment is lost.
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Abandoning the cxtremcly incfficient feature of allowing the migration of unreduced or par-
tially reduced nodes, then, brings ALICE on par with the abstract architectu?c presented here.
The main difference is that in Darlington’s paper, a shared memory system is the starting point
from which a hybrid shared memorylmciugc passing system is developed. Here, a message pass-
ing model is the starting point from which the hybrid is casily derived (in Section 44).
Darlington’s paper provides no details of what communication takes place in the hybrid version of

ALICE.

The last major difference between the ALICE machine and the abstract machine presented
here is that ALICE supports the accessing of nodes, for both reading and writing, that have not
been reduced. This is in opposition to the principles set forth in Section 2, and reflects the fact
that ALICE is capable of supporting base languages other tham strictly constant applicative form

languages. Whether this fact presents any special problems is a topic for future rescarch.

5$3. Sleep and Bartoa

Slcep and Burton give a very brief description of a parallel reduction machinc® that uses a
form of combinator code as a basc language. Most of their paper deals with the properties of
base languages and with the details of their communication network, and so there is little to com-
pare with the system here. What little they do discuss of the parallcl-semantic layer is quite fami-

liar; in particular, they describe the use of the status field of nodes.

6. Conclusions

Many parallel graph reduction machines have been proposed, but little has been done to
cstablish the operating principles common to ail such machines. The work here attempts to sys-
temize the design of parallel reduction machines by dividing the topic into three layers: the
scquential-semantic layer, the parallcl-semantic layer, and the topological layer. The paraliel-
scmantic layer, it turns out, embodies thc fundamental essence of parallel reduction in the

abstract; as such, the paralicl-semantic layers of all parallel reduction machines will be similar, if




not identical.

The parallcl-sematic layer has been described here to a sufficient level of detail that only the
language and communication network would neced to be designed to create a complete machine.
In particular, the aspects covered in the parallel-semantic layer include the overall structure of the
machine, the scmantics of the messages that travel the communications network, the data struc-
turcs maintained by the processing clement, and the algorithms nccessary to manage these data
structurcs. The correctness of the scheme presented here was demonstrated by an emulation pro-

gram written for a Symbolics 3600 Lisp Machine.

While other groups have proposed paralicl reduction machines, no proposal has described the
parallel-semantic layer of a machine to the degree of detail as with the abstract machine
presented here. To the degree that these other machines are described, their parallel-semantic
layers are conmsistent with the model here. But the architecture preseated here is more than a
hypothetical machine; by providing an abstract model for parallel graph reduction, it is hoped that
insight into the parallel reduction process itsclf can be gained. Such insight will undounbtedly

prove uscful in the design and construction of actual high-performance graph reduction machines.
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