
MIT/LCS/TR-325

USING UNTYPED LAMBDA CALCULUS

TO COMPU TE WITH ATOMS

Paul G. Weiss

This blank page was inserted to presenie pagination.

Using lT ntyped Lanilida Calculus
To Compute·Wit.h Atom&-

Paul G~ Weitil
B.S., Massachusetts Institute of Technology

(1981)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS OF THE

DEGREE OF

MASTER OF SCIENCE
IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1984

© Massachusetts Institute of Technology 1984

' (

Signature of Author __ ·_~___,'---""~ ~~-· ~'frt::'"""'~"". "....-11!_, -;,.__ ___,, ___ _

Department of Electrical Engineering and Computer Science

Cenmedby ________ c_'~---~---/_ .. _ .. _. __ __,,_<"h-______________ ~_eb_ru_ary ___ 28_,_1_98-4

~ Albert R. Meyer
Thesis Supervisor

Accepted by ______________________ _

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

1

Keywords: Lambda calculus, typeless, untyped, atoms, completeness

Abstract: Axioms and verification rules are given for typeless A-calculus
with a conditional test for equality between atoms. A semantic
completeness theorem is proved and a deterministic evaluator is
proposed.

1. lnt.rodud.ion

The >.-ralrulu::; of Church (treat cd throu1dily in [BA URO]) is a syst<~m for d<•noting

fund.ions. For example, the idl'nt.ity function is repn~sc?nt.cd in this system as >.:r..x,

and the function which adds t to its argument is represented as >.x.x + 1. A more

complicated example is the ''double application" functional, whose arguments are

themselves functions, and which acts by composing a function with itself. This is

represented in the >.-calculus as >.f.>.x.f(f x).

For many years a model for the >.-calculus could not be found, due to set theoretical

difficulties. Finally, Scott was able to construct a structure which was generally agreed

to be a model, using complete lattices [SCOTT76]. Many attempts were then made to

give a cJean characterization of what a model of the >.-calculus was, these are detailed

in (BAR80] and in (MEYER82).

These systems all have the property that any term can be interpreted as a function.

This is necessary, since a model_ of the untyped >.-calculus must make sense out of the

application of any term to any other term. In fact any term can also be interpreted

as a functional, that is, a function which maps functions to functions, and so on up

through the type hierarchy. But this is not the behavior we want when we are using

>.-calculus to compute with integers.

The problem is that there is nothing to distinguish the integers from the other

terms. Suppose we use a >.-calculus with constants for the integers and successor,

suitably axiomatized. Then in any model, while it is true that the values of integers

will behave correctly with respect to the value of successor' it is also true that the value

of 3 applied to the value of 4 will be some value, and there is nothing in the language

or the model that tells us that this is any different than successor applied to 3. This is

not what we want. We want constants such as 3 to denote a.tomic valuea in all models.

These are values that cannot be applied to anything without yielding an error. The

constants that are used to denote atomic values will be called numerala.

One method for computing with atomic values in the >.-calculus is to add type

information to the terms, to tell what kind of datum each subterm represents. This

is approach taken in the typed >.-calculus. 'In order for one term to be applied to a

2

----------~ -----------------

SC'<'OJHJ, tht• t.yp<> of the• first trrm must. he f'u11ct ion al, Wit.h til<' ar~tlln<'nt type matd1i11p;

the type or the second krrn. Terms rcpn·sC'nt.ing atomic valuc•s do not ha\·t· functional

t.ype, and tll<·reforc cannot hC' applied t.o anything. Typt>d >..-calculus is dealt with

thoroughly in an appendix to (BA RHO].

1n· this treatment, we use a different approach t.o type errors. \Ve will allow

arbitrary applications in the language, however, certain terms will lead to run-time type
-

errors when-evaluated. Our >..-calculus will be untyped, and we will provide semantics

so that the terms which lead to run-time type errors are precisely those terms which

semantically denote an error value. We are motivated throughout by the language

LISP, which has a >..-calculus like syntax, but expresses computation on objects which

do not necessarily denote functions (atoms and lists). See [WAND84] for a discussion

of LISP.

Since we are using untyped >.-calculus, we will be able to draw on the results of

[MEYER82], to provide a model. A system with error values for run-time type errors

was also considered in [MILNER78], with a complete partial order semantics.

In order to do useful computation with numerals, we will find that a condi­

tional statement is needed. This will take the form: "if <terml>=<term2> then
•

<term3> else <term4> ." Without this construct, the expressive power is greatly

reduced. However, there are many choices to be made in the behavior of this construct.

Do we evaluate <terml> and <term2> sequentially, or in parallel? What happens

if the evaluation of <terml > or <term2> leads to a run-time type error? Also,

what notion of equality between terms do we use? The most strict notion is identity._

Another notion is provable equality (under soni.~. suitable axio~s and proof rules). We

will try to make choices that will result in a recursive evaluator and simple axioms for

the proof system, while still giving us enough expressive power for programming.

The language considered is an untyped >.-calculus, with a conditional statement

and error terms. The proof system is that of the classical X-calculus enriched with

axioms to handle these new constructs, and to handle the properties of numerals.

The class of models for this language is a special case of combinaf.ory models

[MEYER82]. A completeness theorem for the language is derived from the completeness

3

tlwor<'m for th<' classical >.-cakulus[MEYERS2].

2. Synt.a.x

We will define an untyped >..-calculus for computing wit.h atoms. Our language

will be an extension of the classical >..-calculus of Church. Since we have occasion to

ref er to the classical >..-calculus, we define it here.

Definition: Let Var be an infinite set of variables. Let C be a set of constants. We

define the set of terms A(C) by the fallowing grammar, where t denotes an element of

A(C), x denotes an element of Var, and c denotes an element of C:

We omit parentheses in the usual fashion. In particular, uvw abbreviates (uv)w, and

>..xy.u abbreviates),.:i; AJl.U.

We now extend the language to express computations with atoms. An atom is a

semantic object, which cannot be applied to anything else without yielding an error.

An example of an atom might be the number 3 or 17, if we are talking about integers,

or perhaps the list nil if we are talking about lists. In order to represent atoms in our

language we introduce atomic conatanta. These are a special type of constant whose

meaning can only be an atom.

These are the base syntactic sets:

Let Var be a set of variables. Typical elements are x, 11, z.

Let Con be a set of constants. Typical elements are ci, c2, •••

Let ACon be another set of constants {the atomic constants). Typical elements

The three sets Var, Con, and ACon, must be pairwise disjoint.

Out of these basic sets we build the "A-terms with atoms," called AT (for Atomic

Terms).

Definition: Let cond and • be new symbols. Then given ACon and Con we define the

set AT(ACon, Con) as as A(Con UACon U{cond, • }). When there is no confusion,

we will write simply AT.

\\'<' <h,linc an <'quational r.a.l<·ulus over AT hy SJ><'cil'yin~ axiom:; and rule's ol' proof.

l)pfinit.ion: (Suhstit.ution) Fre<· and bound variahl<•s a.re ddin<'<l induct.h;<~ly, in the

usual way. The expression [t1/x]u, wht're u,v EAT, x E Var <lcnotci:; the result or

substituting v for all free occurn~nces or x in u, with the usual proviso about renaming

bound variables t.o avoid capture, i.e. before we substitute u for x in u, we change all

the bound variables in u to be different from the free variables in v and then we replace

every free occurrence of x with v.

Definition: Two terms u and v are o:-equivalent, if v results from u by renaming

the bound variables in some subtcrm of u (avoiding capture). Following Barendregt

[BAR80], we consider two terms that are a-equivalent equal on a syntactic level, that

is, terms are considered modulo o:-equivalence. For example, >.x.yx and >.i.yz are the

aame term.

Here are the axiom schemes:

(,8) (>.x.u)v = [v/:z:]u

(E) UV=•,

(Cl) cond aavw = v,

(C2) cond a1 a2uw = w,

(C3) condu1u2uw = •,

(C4) condu1u2vw = •,

And here are the rules:

(trans & sym)

(cong)

for u E AConU{•}.

for a E ACon.

if a1, a2 E ACon, a1 and a2 different.

if either u1 or u2 is •.

if either u1 or u2 is of the form >.:z:.u'.

u =ti

u = v1

v = v1

u=u'

(UV) ::: f ~I v1)

u =ti
>.x.u = >-.x.v

This proof systems requires a bit of discussion. The rules are just the usual rules

talc en from the classical >.-calculus. Since we are committing to axiom sch-eme (,8), it

follows that the language has a call-by-name parameter passing mechanism (as does

5

rla ... sical X-<·akulus). This is to h<' <·ont.ra:-;t<'d with t.he usual Ll~P C'\':tluator, which

cvalua.h~s t.hc argum<'nt.s t.o a fonC"tion first (call-hy-valuc). Tlw two st.rat<'gics difT<'r on

a term such as (X:ry.x)m.•, whcr<' u is a t.c-rm whost• <'\·aluntion doesn't. terminate. In thC'

call-by-value evaluator, the t!Valuat.ion of t.hc whol<' term doesn't. krminat.e, sin<·e t.ll<'

evaluator never gets dorw· <'Valuating th<.' arguments. But in a call-by-name evaluator,

the term v is nr.ver evaluated, and the result. of cvalua.t.ing the term will be t.he result.

of evaluating u.

This leaves axiom schemes (E) and (Cl) through (C4), which arc connected with

the behavior of type errors, and of cond. So what behavior do we want? This

depends on our intended use of the language AT. In this treatment., we view AT as a

programming language for writing programs "about" atoms. That is, when a program

is given to the evaluator, there are three interesting things that might happen:

(i) The evaluation of the program might terminate, resulting in a numeral.

(ii) The evaluation of the program might lead to a run-time type error.

(iii) The evaluation of the program might not terminate.

This is not to say that a term such as Axy.x is not interesting, rather, that its

utility lies in its ability to be included in programs that will produce numerals. If

we take this view, then the job of the evaluator is: "given a term, if it is equal to

a numeral, find that numeral." In particular, if a term is not equal to a numeral,

we don't care ·what the evaluator does, however, it would be nice if the evaluator

terminates on as many terms as possible. More on this, when we discuss (C4) below.

In the rest of this section, we will have need to discuss the properties of the intended

evaluator. Later we will formally define an evaluator with these properties. (We are

faced here with an expositional difficulty. I am reminded of a remark I heard at a

philosophy seminar about Kant's Critique of Pure Reason [KANT29], namely, that he

had many interesting things to say, and he said them all first. We might have defined

the evaluator before the proof system, and equality in terms of the evaluator, and then

defined a proof system which captures it. In fact, neither idea, that of the proof system

nor the evaluator is really prior to the other. We want the axiom schemes_to allow for

a reasonable evaluator, i.e. one that is effective, and on the other hand, we want axiom

schemes that make it relatively easy to reason about equality.)

8

!\ow to the rt'st of tlic axioms.

The purpose of havin~ * in tlw lan~uagc, is so we can have a notation for run-time

typ<' errors. Our hop<' is to define an <'Valuator and a not.ion of run-time typt~ error,

so that. a term not cont.aining • will be provably equal to * if and only if it causes

a run-type type error when evaluated. There arc two kinds of type errors t.hat. can

occur, and they correspond to those axioms schemes, that viewed as reductions have

the effect of producing an •. These are (E), (C3), and (C4). (We could have introduced

two symbols *t and *:!in order to distinguish between them, at the cost of complicating

the axioms a little bit).

First let us see what (E) says. Actually, it is two axioms schemes combined. The

first says that av = * if a is a numeral. This is one way a type error is created.

It corresponds to an attempt by the evaluator to apply a numeral to a term. The

second part, i.e. •u = * for any term u, corresponds to "leftmost" evaluation, and is

needed to insure that type-errors propagate correctly. This is best illustrated by the

two following examples.

Consider the term auv, where a is a numeral. Recall that this is an abbreviation

for (au)v. This is the sort of term that will cause a run-type type error, since the first

operation of the evaluator will be to try to apply a to u. Therefore our proof system

should prove this term equal to*· By·the first part of rule (E), we know that it is equal

to *"· We need the second part to show that it is equal to *·

Now consider the term (>.xy.x)a(bu), where a and bare atoms. This illustrates that

a term might not cause a run-time type error even though it has a subterm which is

equal to*· The reason is that our evaluator will use (,8) to turn this into (>.y.a)(bu), and

then use (,8) again to turn it into a, which is the value of the term. The evaluator never

"sees" that we are applying a numeral to a term, so there is no run-time type error.

Note that in a call-by-value evaluator, since the arguments would have b~en evaluated

first, the evaluator would indeed have encountered the type error. This illustrates our

choice of the term "run-time type error" since this term would have a static type error

in a language such a5 typed >.-calculus.

Now for the axioms about cond. The first two, (Cl) and (C2), are relatively

7

unront roversial. Th<'y correspond to our 'intuition that cond u 111:,i1'1 t':! is a not.at ion for

"if u1 = u:! then VJ else t':!·"

Axiom scheme (C-t) dt•als with the second kind of typ<' error in the language. The

first type error can be thought of as "trying tu use an atom, wh<?re a function was

expected." The type error corresponding to (C4) is, in a sense the opposite. Act.ually,

our intuition in the preceding paragraph is a bit. wrong. The problem is that it is not

clear that our pr_9of system can tell for sure when two arbitrary terms are not equal.

Indeed, this relation for the classical >.-calculus is Il1f-completc. So the intuition for

cond expressed above is a bit ambitious. Here is a second try: cond t.'1 u2v1 v2 means "if

u 1 and u!! are equal to the same numeral then v1, if they are equal to different numerals

then v2."

But what about when one or both of them are not. equal to numerals? The behavior

we intend is that if the evaluator can determine that this situation exists, then a type

error occurs. This brings up the question of when the evaluator can be sure that a

term is not equal to a numeral. The answer we propose is when it is a >.-abstraction,

i.e. of the form >.x.u. The purpose of (C4) is to produce such type errors. Why

can't >.-abstractions be equal to numerals? It is not due to semantic problems that we

disallow it. Instead we disallow it for two reasons: first, it is not clear that we could get

a well behaved reduction system (one with the Church-Rosser property, as defined in

chapter 4), if we did allow it; second, it would go against our intuition of what is meant

by a numeral. That is, a numeral is something that should not be applied to a term,

while >.-abstractions can be applied to terms by means of (.8). Once we have made this

decision, we can structure our evaluator, so that if it tries to evaluate a >.-abstraction

at top level, it stops, since it knows that the term cannot be equal to a numeral. This

allows evaluation to terminate on more terms than otherwise.

Finally, the purpose of (C3) is to make sure that if the evaluator encounters a

type error while evaluating one of the two· terms to be compared, then the result of

the whole thing is a type error. It is analogous to the •u = * part of (E) above.

Note that these axioms require parallel evaluation of the terms to be compared in

a cond. That is, if we have cond u 1u 2v1v2, and the evaluation of u1 does not terminate,

if the evaluation of u2 leads to a type error, then we want the whole term to be *· The

8

s:1111C' is true if W«' rt·vcrs<' t.lw rol<•s of" u 1 and 11:!. Tlrns, W«' <·an not. <·valual«' l•ithcr u1 or

U:? h<•for<' the ot.lwr. If \\'<' simplify our evalual or to do s<•qm•nl ial evaluation of u 1 and

U:!, th<'n the axioms might I><' slightly modiliNI: Wl' must. css<•nt.ially provid<• an axiom

for each possihl<' outcome of the result of evaluating u 1• For a sequential evaluator,

{C3) and (C4) would be replaced by the following:

(C3') cond • uvw = •
(C4') cond().x.u)u1v1v2 = *
(C3") conda• uv = * if a is a numeral

(C4") conda(>·.x.u}v1v2 = * if a is a numeral

So let us summarize what cond u1u2v1v2 means: "Evaluate tti and U:! in parallel. If

they evaluate to equal numerals, then v1". If they evaluate to unequal numerals then 112. ·

If either one of them evaluates to a)..:.abstractions, then this is a run-time type error. If

the evaluation of either one of them causes a run-time type error then we preserve that

run-time type error." Notice that we leave unspecified what happens if the evaluation

of both u1 and u2 result in terms that are neither numerals nor >-.-abstractions, and do

not cause type errors. Different models will do different things in this case.

Definition: Let TAX be all instances of all the above axiom schemes except (/3). Let

T be a set of equations between terms, and let u and v be terms. Let T t- u = v be

the proof relation in classical A-calculus, i.e. u = v follows from T using just (/3) and

the rules. Then we say T proves u = v if TUT AX t- u = ti. A set of equations T,

between terms of AT is a theory if the set TU TAx is a classical >-.-theory (i.e. contains

all instances of (/3) and is closed under application of the rules). A set of equations T

between terms of AT is inconsistent if for eve.ry equation u = v, TUT AX t- u = v

(which is to say that TU TAx is inconsistent in classical ~-calculus). Otherwise, T is

consistent.

Note that a necessary condition for T to be consistent, is that for aU a11 a2 E

ACon, when a1 and a:.i are different symbols, we do not have that T proves a1 = a2.

For if so, then if u = t1 is an arbitrary equation, we can show that T proves u = ti.

First, by {C2) we have T proves conda1a2uv = v. Next by repeated applications of

{ cong} we can show that

But. hy (Cl) we have T proves conda 1a 1uv = u, hence by repcal<'d applications of

(trans & sym) the result. follows.

3. Semantics

We now define what a model for this language is, along with a denotational

semantics (STOY77]. The model is a combinatory model as in (~lEYER82], with

extra structure added to take care of the behavior of atoms. Combinatory models are

models of classical A-calculus. Our scmant.ics is also taken from the usual semantics

of A-calculus. This approach is somewhat similar to defining a group as a first order

structure satisfying some nonlogical axioms. Completeness of these axioms with respect

to groups then follows from completeness of first order logic. In our case, the classical

A-calculus and combinatory models are in the same relation to each other as logic

would be to a first-order definable structure. The axiom schemes (E), (Cl), (C2), (C3),

and (C4) correspond to the group axioms.

First we recall the definition of combinatory model from (MEYER82]. These serve

as models for the classical A-calculus.

Definition: A combinatory model[) is a tuple (D, ·, E} where · is a binary operation on

D, and there exists K, S E D such that

(CM.1) For all d1 1 d2 ED, (K · d1) · d2 =di.

(CM.2) For aU d1, d2, dJ ED, ((S ·di}· d2) · dJ = (d1 · dJ) · (d2 · da)

(CM.3} For all d1 1 d2 ED, (E ·di)· d2 =di· d2.

(CM.4} If for all d E D, di · d = d2 · d then E ·di = E • d2.

Given a combinatory model [) = (D, ·, E), let 1. be an interpretation of constants,

i.e. a map from C to D. Let Env =Var D. For p E Env, x E Var, and d ED let

p{d/x} E Env be tha.t function such that

p{d/x}(x) = d, and

p{d/x}(y) = p(y), for y :;': x.

10

Tlw fun<"t.ion E:,, : A(C) -+ Env -+ /) is UH• s<•manti<" !"unction for >.-terms in a

comhinatory model from [MEYEH82]. As a not.at.ional convcniem·e wc write (~1,,fi11Ilp

as simply fiuDp, when no confusion results.

Definition: The denotational semantics for >.-terms.

(DS.l) llrflp = t.(c), for c EC.

(DS.2) llxilp = p(x), for x E Var.

(DS.3) lluvilp = (ftuilp)(ftvilp).

(DS.4) ll>-x.uilp = l6, where 6 ED is such that. for aJI d ED, 6d = lluilp{d/x}. (By

definition of E in a combinatory model, £6 is independent of the choice of such

a 6. Furthermore, it shown in [MEYER82] that such a 6 must exist if [) is a

combinat.ory model.)

To serve as models for AT we allow only certain types of combinatory models and

certain types of constant mappings, L:

Definition: An atomic combinatory model (acm) A is a tuple: (D, ·, E, DA, • 0
, 1)1 where

•
0

11 ED and:

(ACM.I) (D, ·, E) is a combinatory model.

(ACM.2) DA C D is a set whose elements are called atoms.

(ACM.3) For all d ED, all a EDA U{ • 0
}, a· d = *o.

(ACM.4) For all a EDA, all d1,d2 ED, 1aad1d2 =di.

(ACM.5) For all a1,a2 EDA, a1 ;i a2, all di,d2 ED, 1a1a2d1d2 = d2.

(ACM.6) For all di, d2, da ED, 1 • 0 d1d2d3=1d1 • 0 d2d = •0
•

(ACM.7) For all d1,d2,d3,d4 ED, 1(Ed1)d2d3d4=1d1(Ed2)d3d4 = • 0
•

The subset DA of D will serve as values for the atomic constants, that is, they are the

atoms of D. An acm is simply a combinatory model that satisfies the axiom schemes

(E) and (Cl) through (C4), if • 0 = ll•IlP and 1 = llcondilp, for all p. That this happens

is guaranteed by our choice of constant mapping functions L:

Definition: Let A= (D, ·, E, DA,*,,, 1) be an acm. A function

':Con LJACon LJ{cond, •}-+ D

11

is call<'d an in lnpretation if

(I.I) i(c ond) = "Y.

(1.2) t.(*) = • 11
•

(1.3) t(a) E D'', for every a E ACon.

(1.4) i{a 1) -:rf 1.(a2) if a1 and a2 arc different.

Definition: Let D be a combinatory model and t : C - D, a constant mapping. Let

u, u E A(C). Recall that l=D,1 u = v if for all p E Env, lluDp = lluDp. If T is a

set of equations between terms of A(C), we write I= [),1 T if I= ,0,1 t for all t E T. If

T is a set of equations between terms of A(C), write T I= u = v if for all D and i.,

whenever l=.o,i T then l=.o,i u = v. If Tis a set of equations betwe<'n terms of AT,

and u, v E AT then we say T aemantically impliea u = v if TU TAx I= u = v.

Definition: Let D be a combinatory model, and t: C - D a constant mapping. The~

define

Th(D, i) = {u = v: u, v E A(C), ffuDp = ffvBp, for all p}.

The two theorems below are from Meyer [MEYER82).

Theorem: (Soundness Theorem for A(C)) If T I- u = v then T I= u = v. (From

which it follows that for any combinatory model D and any constant mapping

function i, Th(D, i) is a >.-theory.)

Theorem: (Completeness Theorem for A(C)) For any >.-theory T, there is a com­

binatory model D and a constant mapping function 1., such that T = Th(D, t).

(From which it follows that for any set of equations T, if T I= u = v then T 1-

u = v.)

That our proof system is complete now follows directly from Meyer's results, just

as in group theory we know that the axioms for groups are complete for the class

of group by virtue of the fact that first order logic is complete. The axioms TAX

correspond to the axioms for groups.

12

Thc!orcm :J. I: (Soundness Th<•orcm for AT) If' T proves u = 1' tlH'n T s<•mant.ic-.ally

implies u = v. (From which it follows t.hat for any acm A and any int.(•rprctation

1., Th(A, t) is a theory.)

Theorem 3.2: (Complctcnt•ss Tlworcm for AT) For any consistent theory T, there

is an acm A and an interpret.at.ion i, such that T = Th(A, i). (From which it

follows that for any set of equations T, if T semantically implies u = v then T

proves u = v.)

4. Reduction

In the two preceding sections, we have presented a proof system and a notion of

model, and shown that the proof system is complete for that notion of model. We now

turn to reduction, which comes closer to the computational aspect of terms.

What are the terms to be used for? We want to use the terms to write programs.

In this section, we explore an interpreter for those programs. All that the interpreter

cares about a term, is whether it is provably equal to a numeral. If so, its job is to find

that numeral.

With this is mind we introduce a notion of reduction. First, we define the notion

of a context.

Definition: A context is a term of AT with a "hole" in its parse tree. Formally, let 0

be a new symbol. Then, a context, C[] is a term of

A(ACon LJ Con LJ{ cond, •, 9}) .

If u is a term of AT, and C[] a context, then C[u] denotes the result of replacing

without renaming bound variables, every occurrence of the symbol 9 in C[] with u.

For example, if C[J = >.x.9, then C[:z:] = >.:z:.:z:. This is in contrast to substitution:

(:z:/0}>.x.0 = >.x'.x, where x1 is a fresh variable different from x.

Definition: A notion of reduction R is a binary relation between terms of AT. Given

R, define the relation -+R as

13

{(C'[u), C[r]} : C[) is a cont.ext an<l ~u, u) E /1}.

The relation is writt<'n in infix not.at.ion. If u -+11 t• we say u reduces in one .'ltep to v.

The relation -+j1 is the rdlt!Xivc, transitive closure of -+u. If u -+it" then we say that

u reduces tot', or v is a redut:Lion of u.

Lemma 4.J: Let C[] be a context. If u -+u v then C[u) -+11 C[vJ. Also if u -+jl v

then C(u) -+u C[vJ.

Proof: If u -+u v then there exists (u', v') ER and a context C'[], such that u = C'[u')

and v = C'[v'J. But then C[u) = C(C'[u'J) and C[v) = C[C'[v'}]. But then as C(C'[)]

is also a context and ~y definition of -+>11, we have C[u) -+>Jl C[v}. The other statement

follows by induction: on the number of steps it takes to reach v from u. I

- When u is reduced to v we can think of this as a computation step. If the notion

of reduction is reasonable, then we are never lead down any "blind alleys," that is, if a

term is reduced in two different ways to yield two different terms, then it is possible to

reduce each of these terms to the same term. This is the definition of the Church-Rosser

property, as defined in Barendregt [BARBO).

Definition: A notion of reduction R is Church-Rosser if whenever a term u reduces

to both v1 and v2, then there exists a term u' that is a reduction of both v1 and 112.

We will choose our notion of reduction so that it captures the proof system

presented above (in a way that will be made precise) for a given set of equations T,

and is Church Rosser. A set of equations T is called simple if they are of the form:

(i) c1c2 = c3, where Ci E ACon U Con and CJ </ ACon, or

(ii) c1 * = •, where c1 E Con.

We also require that for every equation c1c2 = c3 in T, the equation c1• =•is also

in T. If c1c2 =ca E T, we say that c1 is an active constant, since then the reduction

system has rules for applying it to arguments. A set of equations of this form, can be

thought of as specifying the behavior of builtin functions on the numerals illld on each

other. Requirement (ii) says that builtin functions cannot ignore type errors, i.e. if we

14

•

g<'I a type error wt1ilc c•\'aluat ing t.hc• a.rgum<•nt. to a builtiu function, thc•n the whole

term is equal to •.

Definition: Our notion of reduction R is

where

R~ = {(u, v) : u = v is an instance of axiom scheme P} ,

similarly for all the other axiom schemes and

Rr = {(u, v): u = v ET}.

We will abbreviate -+u11 as -+p and similarly for the other notions of reduction.

We are working toward the following result:

Theorem 4.2: (Church-Rosser Theorem for R) The notion of reduction R defined

above is Church-Rosser.

The following definition and two results are takeJt from Barendregt [BAR80].

Theorem 4.3: The notion of reduction Rp is Church-Rosser.

Definition: Let R1 and R2 be two notions of reduction. We say R1 commutes with R2

if whenever there exist terms u, vi, and v2 such that u -+il
1

v1 and u -+jl2 v2, then

there is a tenµ u' such that v1 -+ jl
2

u' and v2 -+ .R
1

u'.

Lemma 4.4: (Lemma of Hindley-Rosen): If R1 and R2 are two Church-Rosser notions

of reduction, and R1 commutes with R2 1 then the notion of reduction R1 U R2 is

Church-Rosser.

The Lemma of Hindley-Rosen can be generalized to work for any number of notions

of reduction:

Lemma 4.5: If R commutes with Ri for 1 < i < n, then R commutes with Ui'::1 Ri·

15

'
Proof: We abbreviate Ui' 1 U; by U lli· V•/c must show that if tJ U-n•dnces to 111

and u (U R;)-reduc<~s to V:,?, then there exists u' which is an fl-reduction of 11:.! and a

(U ll;)-rcdud.ion of v1. The proof i." by induction on the number of steps it takes to

reduce u to 112.

The base case is when it takes 0 steps, i.e. v2 = u. Then the desired u' is just vi:

by assumption it is an R-reduction of V:.?, and since it is equal to v1 it is certainly a

(U Ri)-reduction of v1•

Suppose now that the lemma is true when u reduces to V:.! in k steps, we prove it

for k + 1. Then we must have a term v~ that is a (U Ri-)-reduction of u in k steps,

and without loss of generality we can assume that v~ R1-reduces in one step to v2

(otherwise interchange the names of the ~). Then by induction there is a term tl'

that is an R-reduction of v~ and is a (U ~)-reduction of v1. But then as R commutes

with R1i there is a term u' which is an R-reduction of v2 and an R1-reduction of u".

But since u" is a (U Ri)-reduction of VJ and u' is an R1-reduction of u", we have that

u' is a (U Ri)-reduction of VJ, so it is the desired u'. I

Lemma 4.6: Let R1, ... , Rn be a sequence of Church-Rosser notions of reduction,

where ~ commutes with R; for 1 < i < j < n. Then the notion of reduction

RJ U · · · U Rn is Church-Rosser.

Proof: Induction on n. For n = 2 this is the Lemma of Hindley-Rosen. Suppose the

lemma is true for n < k. Consider now n = k. Then by the induction hypothesis,

R1 U · · · U RA:-l is Church-Rosser. However by the previous lemma R1: commutes with

R1 U .. · U RA:-1· Hence by Hindley-Rosen, (R1 U .. · U Rk_i) U Rk is Church-Rosser,

which completes the proof of the lemma. I

Definition: A reduction relation has the diamond property, if whenever u reduces in

one step to both v1 and v2, there is a term u' which is reducible in at most one step

from both VJ and v2.

The next Lemma is from Barendregt [BAR80}.

Lemma 4.7: HR has the diamond property then R is Church-Rosser.

18

Ddi nit.ion: LC't U l><' a not ion of rNI uct.ion. If (11. ·1•) E H then the t.nm u is called a

redcx and the term v i:; c:a.)lt~d it.s rcdurl. Wh<·n W<! refer t.o a redcx r of a term u, we

arc rcf<'rring to a particular oC"curnmcc of a. r<'dex r a.-; a subterm of u.

Let us consider now

ll1·: LJ llc.·1 LJ R<·2 LJ Rc:1 LJ Rc:-t LJ R1·.

This notion of reduction has the foJJowing reduction properties:

1. A reduct is either a constant, or a subterm of the redex.

2. If u is a redex of C(u), with reduct v, and C[u) is a redcx with reduct w, then:

2.1. If w does not contain u, then C[v] is also rcdcx whose reduct is w.

2.2. If w does contain u, i.e. w = C'[u], then C[v) is a redex whose reduct is

C'[v].

This is enough to show that the above notion of reduction has the diamond

property, i.e.:

Lemma 4.8: RE U Rct U Rc2 U Rc3 U Re~ U Rr is Church-Rosser.

Proof: We show that it has the diamond property. Suppose a term u has two redexes,

rt and r2. Then there are two cases to consider:

1. The redexes rt and r2 are disjoint. In this case the redexes can be reduced in

either order, yielding the same term.

2. One red ex occurs inside another. Without loss of generality, assume that r2

occurs inside r1. Then there are two subcases:

2.1. The reduct of r1 does not contain r2. Then by the above reduction

properties, if we first reduce r2 and then reduce the resulting term, we

get the same term as if we simply reduced rt.

2.2. The reduct of r1 contains r2. Then r1 is C(r2], and the reduct of r1 is

C'[r2]. Suppose the reduct of r2 is r. Then if we first reduce r1 we get

C'[r2]. If we first reduce r2 we get C(r). But we can reduce C'(r2) to get

C'[r) and by the above reduction propeties, we can reduce C[~] to C'[r].

Since this notion of reduction has the diamond property it is Church-Rosser. I

17

At. t.his point W<' know that. /(1 is Church-Hosiu•r, and the rest of tlw notions of

n~<lurt.ion, taken lotz:cther, arc Church-Bosser. \\'r will show that all the notions of

rcdud.ion, taken tog<>tht>r, arc Churrh-Rosscr, using th<' lemma of llindly-Hos<'n. So

we must establish t.hat R1i commu~<!S with the rest of th<' reduction notions. By L<·mma

4.5, it suffices t.o show that R11 commut.cs with all the other notions of reduction.

Just as we used the diamond property to show that a notion- of reduction 1s

Church-Rosser, we define a property of two notions of reduction that will insure that

they commute. The definition and the following lemma are taken from Ilarendregt

(BAR80].

Definition: Two notions of reduction, R1 and R2, have the croas diamond property, if

whenever there are terms u, v1, and v2, such that u R1-reduces in one step to "I and

R2-reduces in one step to v2, then there is a term u' that is R1-reducible from v2 in at

most one step, and is R2-reducible from v1 {in any number of steps).

Lemma 4.9: If two notions of reduction have the cross diamond property then they

commute.

Now we can show that Rp commutes with all the other notions of reduction by

showing that Rp and each of the other notions enjoy the cross diamond property.

Unfortunately t to show this is rather tedious, it being a case by case analysis of how

red exes can overlap. Therefore, we will show one case, the rest are similar.

Lemma 4.10: Rp and Rh: commute.

Proof: We show that they have the cross diamond property. There are two cases.

1. A .8-redex occurs inside an E-redex. Then the E-redex is of the form uC[(Xx.v)w],

where u E ACon U{ • }. If we do the E-reduction first we get •. If we do the

.8-reduction first, we get uC[([v/x]u)], which is an E-redex with reduct •.

2. An E-redex occurs inside a .8-redex. Then there are two subcases:

2.1. The .8-redex is of the form (Xx.w)C[uvJ, where u E AConU{•}. Then

if we first do the E-reduction we get (X:z:.w)C[•], and we can then do

a .8-reduction to get [C[•]/x)w. On the other hand if we first do the .8-

18

rt?dudion, WC' gd. [C[m•)/x]w, and W<' <"an tlH'n do a series of E-rcductions,

one for CVl?ry free x in w, t.o ultima.trly yield (C[•]/x]w.

2.2. The P-rcdex is of the form (>.x.C[ut•])w, wht•rc u E ACon U{ * }. Then

if we E-rcduce first. we 11:ct (>-.x.C[•])w, and we can then· #-reduce to

get. [w/x)(C[•]), which i~ C'[•J, where C'[] is the result of renaming the

bound variables in C[] and substituting w for free occurrences of x. On

the other hand if we,J9-rcduce first we get [w/x}(C[uv]). Now this is equal

to C'[uv'J, where v' is the result of substituting w for all occurrence of x

in v that are free in C(uvJ. But as uv' is an E-redex, we may reduce it

to get C'[•], as before.

This shows that Ri.; and RtJ have the cross diamond property, and therefore commute.

I

Theorem 4.2 now follows from Lemma 4.3, Lemma 4.8, Lemma 4.4, and Lemma

4.10 (and the other omitted cases).

Theorem 4.11: If Tis a simple set of equations, then TI- u = v if and only if there

is a term w that is reducible from both u and v.

Proof: Suppose w is reducible from both u and v. Since all the notions of reductions

are instance of axiom schemes or equations in T, by rules (cong) and (e), if u reduces

to u' in one step then T I- u = u', hence by rule (trans & sym) if u reduces to w

then TI- u = w. Then if w is reducible from both u and v then TI- u =wand

TI- v =wand then by rule (trans & sym), TI- u = v.

Conversely, suppose T I- u = v. We use induction on the length of proof. If the

length is 0, then u =vis either an instance of an axiom scheme, or an equation in T.

In either case u reduces to v in one step, so the desired term w is just v. Otherwise,

u = v follows via a rule, from equations that have shorter proofs. We consider one

rule at a time.

(trans &. sym) Then T I- r = u and TI- r = v for some term r. By induction,

then, there are terms w1 reducible from r and u and w2 reducible from r·and v. But

since w1 and w2 are both reducible from r, by the Church-Rosser property there is a

19

t.erm w reducible from both w1 and W:,?. Bui this tt-rm is ih<>n n•ducihl<· from hot.h u

and v.

(e) Then u is of th<> form ~x.u' and v is of the form ~x.v', where T I- u' = tl. By

induction, then, there is a term w1
, which is reducible from both u' and v'. But then

the term w = X.x.w' is rcducihlc from both u and v, by Lemma 4.1, using context

X.x.e.

(cong) Then u is of the form u1u:? and vis of the form VtV:?, where TI- u1 =Vt and

T I- u2 = v2. Then there exists terms 'Wt and w2 such that Wi is reducible from both

Ui and Vi· Then from Lemma 4.1, using context u1 e, we get that UJ w2 is reducible

from UtU2. Again using Lemma 4.1, with context 0w:?, we get that WtW:? is reducible

from u1w:z. Hence w1w2 is reducible from u1u2. Similarly, we can show that WtW:z is

reducible from v1 v2 1 so w = w1 w2 is the desired term. I ·

5. Evaluation

If, as remarked above, we view reduction of a term as a computational step, the

results.of the preceding chapter tell us how to build a naive evaluator for our language.

Namely, start with a term and try all possible reduction sequences. If we arrive at a

term that can no longer be reduced, then stop. The Church-Rosser theorem guarantees

that this term will be unique.

However, this evaluator is a bit unsatisfying. First of all, since we must remember

the state of several reduction sequences at once, its· demands on memory are great.

Secondly, it will be slow, since it is doing breadth-6.rst search of a tree, without using

any heuristics to narrow down to the goal. And lastly, it gives us no insight into what

a run-time type error is, since it might do several £-reductions, and ultimately arrive

at a term which is not *·

All that we require of an evaluator is that if a term is provably equal to a numeral

from T (by Church-Rosser theorem, it must therefore reduce to that numeral) then

the evaluator will find that numeral. We don't care what the evaluator does with a

term that is not equal to a numeral, just so long as it doesn't return a numeral. That

is all that we require. However, there are certain things that we desire. One is that

20

the• rvaluator t'~rminatc on as many terms as possiblt~. S<•«ond is a notion uf type t•rror

that. coincidt•s with the use of * in the axioms (of course, t.his is the chicken and egg

phrnomenon).

As was remarked in Chapter 2, the parallel nature of cond will complicate things,

since the evaluator cannot simply evaluate one arm of the cond before the otlu~r. In

fact, if we were using the sequential axioms, (C3'), (C4'), (C3"), and (C4"), then the

evaluator which always reduces the leftmost. rP.dex would be normalizing, i.e. if a term

u was equal to a term v which had no redcxes, then this evaluator would reduce u to

v.

Unfortunately, life is not so simple, and we cannot get away with such a simple

evaluator. Due to the parallel nature of cond, we are forced to consider a parallel

evaluator, that is, an evaluator which at every step reduces a set of disjoint redexes

(since the redexes are disjoint, the order in which they are reduced does not matter,

indeed, they may reduced at the same time, which is why the evaluator is called

parallel). Parallel evaluators were considered by [LEVY80].

Definition: A term of the form cond t.1.1 u2u3u4 is called a cond-expression.

We now describe the evaluator EVAL: AT-+ AT. If u is a term of AT, EVAL(u)

is a term which is reducible from u. If EVAL(u) = u then the evaluator is said to halt

on u. The evaluator is repeatedly applied until a term is reached where it halts. This

process is called EVAL-uation.

Definition: The evaluator EVAL:

1. If u is a redex, then EVAL(u) is its reduct.

2. If u is a cond-expression cond u1u2v1v2 then

EVAL(u) = condEVAL(t1.1)J~VAL(u2)v1v2.

3. If u is X:z:.v then EVAL(u) = >.:z:.EVAL(v).

4. If u is u1u2 1 where u1 E VarUCon then EVAL(u) = u1EVAL(u2).

5. If u = (u1u2)u2 then EVAL(u) = EVAL{u1u2)u3.

6. Otherwise EV AL{ u) = u.

21

In English, gvAL works as follows: il looks for tlw leftmost r<'d<'x or cond­

exprcssion; if it is a rcdcx, it reduces it, if it is a cond-cxpression, it calls itself recursively

on th<' t.wo "arms" of the cond-<•xprC>ssiGn.

Normalization Claim: EVAL is a normalizing evaluator. That is, if u = v is

provable from T and v has no rcdcxes (is in normal form), then the EVAL-uation of

u yields v, and if EVAL{u) = u then u is in normal form.

It is hoped that this can be shown using some notion of standard reduction, in the same

way that the Standa.rdization Theorem is proved for classical A-calculus [BAR80]. At

present, there was not time to prove this claim.

Even though EVAL is normalizing, it is still not the evaluator we want for AT.

Recall that all we required of an evaluator is that if a term was equal to a numeral, it

found that numeral. Since numerals are normal forms, and EVAL is normalizing, it

accomplishes that goal. But it will not terminate on lots of term which we can be sure

are not numerals, for example

has no normal form, so the EVAL-uation of u will never stop, yet since u is a)..

abstraction, it can never be a numeral. To fix this problem, we modify EVAL so that

it never looks inside a A-abstraction.

Definition: In a A-abstraction Ax.u the term u .is said to be the acope of the A.

Definition: The evaluator EVAL' is defined as follows:

1. If u is a redex, then EVAL'(u) is its reduct.

2. If u is a cond-expression cond u 1 u2v1 v2 then

3. If u is u1u2 1 where u1 is an active constant then EVAL'(u) = u1EVAL'(u2).

4. If u = (u1u2)u2 then EVAL'(u) = EVAL'(u1u2)u3.

5. Otherwise EVAL'(u) = u.

22

The diff<·rc•ncc hctwt'('Jl EVAL and EVAL' is that EVAL' <luc•:s not n•ducc inside

A-abstractions and it only cvaluatc!s arguments of live canst.ants, since otherwise it

knows that it has no rult!s for reducing thf' application. Although EVAL' is now no

longer normalizing (since it halts on A.x.(A.y.y)x) it still has all that. we required of an

evaluator:

Theorem 5.1: If u =vis provable from T and u is a numeral, then the EVAL1-uation

of u yields v.

Proof: We know by the Normalization Claim that the EVAL-uation of u yields v.

Now if clause 3. is used in the EVAL-uation, then on the next pass it must be used

again, since no new rcdexes or cond-expressions will be created outside the >.. So a

numeral cannot result. Similarly, clause 4. will never be used when 'UJ is not a live

constant, since that would result in clause 4. being used again on the next pass, as

nothing new will be created to trigger clauses 1., 2., or 3. Hence the EVAL-uation of

u is also an EVAL'-uation and hence the EVAL'-uation u yields v. I

We now can explain what a run-time type error is, in terms of the evaluator EVAL'.

We say that EVAL' encounters a run-time type error on term u, if in the EVAL'·uation

of u, rule 1. is applied to an {E)-redex or to a {C4)-redex.

Theorem 5.2: Let u be a term which does not contain *· Then EVAL' encounters a

run-time type error on term u, if and only if u = * is provable from T.

Proof: Certainly if u = * then by Church-Rosser it is possible to reduce u to *·
However, since (E) and {C4) are the only reduction rules which create an •, one of

these must be used. Also, by the same reasoning as Theorem 5.1, the evaluation of u

will result in *· Hence, one of the above redexes must be contracted.

For the converse, it suffices to show that if EVAL'(u) results in a type error then u = *·
We argue by cases, on what clause is used to handle EVAL'(u).

1. If a type-error results then the redex is either an (E)-redex or a (C4) redex. Then

the reduct is • so u = *·
2. Then u = cond u1u2v1v2 and either EVAL'(u1) or EVAL'(u2} results in a type

error. By induction, then either u1 or· u2 is equal to *· Hence u = •, by (C3).

23

3. Then u = u 1u:.! and EVAL'(u:.!) results in a type error. Then by induction

u2 = *· So by the restrictions on T, u1• =*ET, sou=*·

·1. Then u = (u1u2)u:1 and EVAI./(u1u:.!) re~mlts in a type error. By induction,

then, u1u:.! = * so by axiom scheme (E), u = *·

5. This cannot cause a type error.

6. Expressive Power

In this chapter, we study the expressive power of a particular language of the type

we have been discussing. In particular, we fix the constants and the set of equations

T, and ask what functions we can represent. Let the language J .. AM be the language

defined in chapter 2, with the following choice of constants:

ACon = {n: n = 0, 1, 2 ... }.

Con={~}.

Let the language LAMo be the language LAM, without cond.

For both LAM and LAMo, the set of equations T will be

{.5.ut.t.n = n + 1 : n = O, 1, 2, ... }.

Definition: Let f be an n-ary partial function over the natural numbers. We say that

f is numeral repreaented by a term u, if

· whenever /(i1, ... , in)= i then TI- u!.J.: · ·!n. = i,

and

whenever f (ii, ... , in) is undefined then T tf' uii.· · ·fu = i 1 for any i.

Definition: The Church numeral~ is defined as follows:

Q = >..J>..x.x

n = '>..f '>..x.j(n)x, for n > 0.

We also define what it means for a term to Church-repreaent a partial function: simply

replace i. by ! in the above definition.

Theorem 6.1: The Church-representable partial functions are exactly "the partial

recursive functions.

24

Proof: Ser Bar<~ndrrgt !BAH.80].

'Ne show that we can translate between n and !!: using terms, and therefore:

Theorem 6.2: The numeral representable partial functions are exactly the partial

recursive functions.

This follows after a few lemmas.

Lemma 6.3: ((BAR80]) There is a term ~ such that for all n, 5-utt ~ = n + 1.

Proof: An immediate corollary of Theorem 6.1. In fact the term

>.y >.f >.x.f(yfx),

will serve as~ as is easily shown by induction. I

Lemma 6.4: ([BAR80]) There is a term Y (Curry's Paradoxical Combinator) such that

for all u, Yu= u(Yu).

Proof: Y = >./(>.x./(x:r))(>.:r./(:r:r)), since

Yu= (>.:r.u(:r:r))(>.x.u(:r:r)) = u((>.:r.u(:r:r))(>.:r.u(:rx))) = u(Yu). I

Lemma 6.5: There is a term ~ such that for all m > n > 0,

T t-- !Ie.dmn = m-1.

Proof: We can write a recursive definition for fud as follows:

.Er.rui :ry = cond x(~ y)y(ewl x(~ JI)) .

In "programming" terms, we check if :r is the successor of y, if it is we return y, if not

we increment y and try again. The program must halt if :r > y. Writing the above

equation another way, we get

fud = (>.f >.x >.y.cond x(~y)y(f:r(~y))):ewl.

Then by the previous lemma, the term

fud = Y(>.f >.x >.y.cond :r(SYcc y)y(f x(fi_ucc y)))

25

will h<'hav<' a • ., d('sired, a.'i c-an be• clwcked hy induction. I

Lemma 6.6: There arc LAM terms u and v such that. for all n

T J- 1.t·n = n and T J- 11n = n.
~ --

Proor: The term u is simply >..x.xfuic:~ 0, since then

The term u is more complicated. Again, we write a recursive definition:

ux = cond x0{2)(5-~(u(Ew!x))),

or equivalently,

u = (>..f >..x.cond xO(Q)(Succ(u(filllx))))u ,

so again we see that

u = Y(>..f >..x.cond :z:O({l)(.5.ut.t(u(E.mdx))))

will work, as can be verified by induction. I

Proof of Theorem 6.2: Let f be an n-ary partial recursive function. Then by

Theorem 6.1 there is a term h which Church-represents /. Let u and v be as in the

preceding lemma. The the following term will represent/:

By switching the roles of u and v we can show that every representable function is

Church-representable. I

So using LAM, we can represent all the numeric functions that we can hope the

represent. We explore now, what the situation is if cond is not allowed, that is, what

functions are representable by terms of LAMo.

Definition: Let 71'r be the function of n arguments whose value is the ith argument,

i.e.

26

l•'or a.II natural numhNs n, let a,, be th<' function of one argument that adds n to its

argument, and let k,, be the function of one argument. who value in n, i.e.

a,,(x) = x + n

ku(x} = n.

Let w be the unary function that is undefined everywhern.

Lemma 6.7: The functions w o 11"£', k111 o11"}1
, and am o 11"i are representable by LAMo

terms, for all natural numbers m, n, and i with 1 < i < n.

Proof: First .note that if an n-ary function f is represented by a term F, and a unary

function g is represented by a term G, then the n-ary function g o f is represented

by A:z:.G{F:z:). Hence it suffices to show that the functions 1r£, w, kn, and an arc all

representable. But 11"i is represented by A:Z:1 • • ·:Z:n.:Z:i, kn is represented by).:z:.n, an is

represented by A:Z:.~(n):z:, and w is represented by ((A:z:.:z::z:)(A:z:.:z::z:)).

We will show that these simple functions are all the functions that can be rep­

resented by terms of LAMo. To do this we must analyze the nature of reductions.

Let R' be the notion of reduction R above, restricted to terms of LAMo, i.e., R' =
R~UREURr.

Lemma 6.8: Let R~r = Rp URE· If there are term u: and v of LAMo such that

u: -+jl' v,_then there exists a term w, such that u: -~T w and w -+r v, in other

words, we may postpose T-reduction to the very last.

Proof: We will show that T-reduction can he "moved past" the other two types of

reduction, i.e., if

then there is a term w 4 such that

and similarly for RB· In other words if a T-reduction occurs before either a ,8-reduction

(or an E-reduction), then we can replace those two reductions by a ,8-reduction {E­

reduction respectively) followed by a T-reduction. To see this, note that a T-reduct

is a single constant, therefore cannot contain a ,8-redex or an E-redex. Therefore any

27

11-rcdcxcs or E-rcdex<'s in the n•duced trrm must he disjoint with the original T-rcdcx,

so the red uciions could have bc<'n carri<'d out in reverse order. I

Definition: Let c1,c:.!, ... be new constants of ACon. A term which includes th('se

constants is said to he a generalized term. If u is a generalized term and f is any total

unary function on the natural numbers then we write f(u) to mean the term of LAM0

which results from u by replacing each constant Ci by f (i). If f(u') = u for some f
then we say that u1 generalizes u.

Lemma 6.9: Let f be a total unary function on natural numbers.

(i) If (u, v) E R...,r then (f(u), f(v)) E R...,r.

(ii) If u -+-.r v then f(u) -+-.r f(v).

(iii) If u -~T v then f(u) -+~r.f(v):

Proof: It suffices to show (i). For then, if u -+-.r v then there is a context C[] such

that u = C[uo], v = C[vo], and (u.0 1 vo) E R-.r. But then by (i), (f(u.o), f(vo)) E R-.r

and since f(u) = f(C)[f(uo)] and f(v) = f(C)[f(vo)] we have that f(u) -+-.T J(v),

showing (ii). To show (iii), we proceed by induction using (ii).

To show (i), we proceed by cases. If (u,v) ERE, then u is of the form cu.a where

c E ACon U{ * }, and v = *· Then f(u) is of the form c' f(uo), where c1 is either c or a

new constant Ci, and f(v) = *· But as Ci E ACon, we again have (f(u),f(v)) ERE·

If (u, v) E Rp, then u = (Ax.u.o)vo, v = [vo/x]uo. But then f(u) = (Ax.f(uo))f(vo) and

f(v) = [f(vo)/x]f(uo). Hence, (f(u), f(v)) E Rp. I

Lemma 6.10: Suppose u and v are LAMo terms, f is a total unary function on

natural numbers and J(u') = u. Then:

(i) If (u, v) E R-.T then there exists a term v1 such that f(v') = u and (u', v1
) E R-.T·

(ii) If u -+-.T v then there exists a term v' such that f(v') = u and u1 -+-.T v1
•

(iii) If u -~T v then there exists a term v1 such that f(v') = u and u1 -+~T v'.

Proof: Again, by a similar argument it suffices to prove (i). We show (i) by cases.

If (u, v) E RE then v = * and u is of the form cuo, where c E ACon U{ * }. Then u1

must be of the form c'uti, where J(ub) = uo and c1 is either c or some newi:onstant Ci·

Let v' = *· Since Ci E ACon, in either case we have (u', v') ER,.,., and f(v') = v.

28

If (u, v) E R1~, t.hcn u = (>..:r.u11)1111, and v = [vo/x]u11 . Then u' must be of the form

(>.x.u:1)v:1, where J(u:1) = uo and f(v:1) = vu. Let v' = [v:1/ xJu:1• Then (u1
, v') E R1~

and f(v') = v. I

Theorem 6.11: The functions w o 7ri', km o 7ri', and a111 o7ri', for all natural numbers m,

n, and i with 1 < i < n, are the only functions representable by LAMo terms.

Proof: Suppose an n-ary function g is represented by a LAM0 term G.

Case 1: g(O, ... , 0) is undefined. Then GO·· ·O does not reduce to a numeral. Suppose

g(ii, ... , in) = m for some (itt ... , in)· Then G!i· ··in reduces to m. Then by Lemma

6.8 there is a term w such that

G!1_ .. ·:fu -~T wand

w-rm.

But since the only T-reduction is of the form ~n. = n + 1, the term w must be

of the form ~(p)i for some natural numbers p and i, such that p + i = m. Define

functions Ji and h on natural numbers by f1(x) = x, h(x) = 0. Consider now the

term G' = Gci 1 • ··Ci.,· Then /1{G') = G!i_· ··in_. By Lemma 6.10 there is a term w'

such that G' -~T w1 and /1(w') = ~(P)i. Then w' is either ~(p)i or Su.tt_(P)ci. By

Lemma 6.9, h(G') --.r h(w'). But h(G') = GO·· ·0, and h(w') is either ~(p)i or

~(p)O., contradicting the fact that GO· · ·O does not reduce to a numeral. Hence g is

undefined at all argument, so is equal to w o 7rf for any i.

Case 2: g(O, ... , 0) = m. Then GO·· ·O reduces tom. As before, this means that there

is a term w such that

w -+rm,

which means that w is Su.t..c(P)i. Let G' = Gc1 · · ·Cn· Then h(G') = GO.·· ·O.. By

Lemma 6.10, there is a term w' such that h(w') = w and Gc1 · · ·Cn -+~T w1
• But w' is

then either ~(p)i or if i = 0, w' can be ~(P)c;, for some :j, where 1 < :j < n.

Now consider g(i1, ... ,in)· Let fa be defined by f:i(x) = i:ia for x = 1, ... ,n,

otherwise anything at all. Then fa(G') = G!.i.· · ·:fu. Then be Lemma 6.9-, we must

have G!i· · ·!n -+~r fa(w').

29

Ir I s l1i) . } f (') s 11•) . (. .) . II l l w =.,_m:.r i,t1en :1w =~qcr i,sogi1, ... ,i11 =i. cnccwc 1avcs10wn

that g is the function ki o 7r'J for any j.

Otherwise w 1 = s..u_c~(P)c;. But then f:i(w') = Sur~!'\i· Hence g(i1 1 ••• ,i,,) = ij+p,

so g is the function a1, o n'J. I

7. Conclusion

The result of all of the above is that we have 'achieved a harmonious match

between a proof system for equality, a denotational semantics and an evaluator. The

completeness theorem tells us that a match exists between syntax and semantics: our

proof system proves exactly those equations which are valid in all models. Also, the

axioms match the evaluator: the proof system proves equations u = v, where v is a

numeral iff the evaluator can drive u to v, also, a •-free term u is provably equal to

•, iff the evaluator encounters a run-time time error during the evaluation of u. Thus,

the intuituion of • as a notation for run-time type errors is justified.

One would like, at this point, to begin to make extensions to the language, while

trying to keep this match intact. There are several ways to extend. Of course, the

Normalization Claim needs to be proved, and beyond that, there is the question of how

to lift the restrictions on T (i.e. the simpleness restrictions) in such a way that leads

to a Church-Rpsser reduction system, and an evaluator which behaves properly with

respect to •. For instance we might want to allow equations of the form c1c2 ••• Cn = c

into T, to better model functions that take more than one argument.

Another extension is to examine systems where the atomic elements have some

structure. For example, in LISP, lists of atoms, such as (3 4 5) are terms which should

behave like numerals with respect to application. Another structure construct that

would be useful is Cartesian product. However, it is a result of Klop [BAR80] that the

usual axioms for surjective pairing:

left pair :z: y = :z;

right pair :z: y = y

pair (left :z:){right :z:) = :z:

30

arc not Church-Rosser, when combined with (I~). It is not complct.ely dear however,

whether or not it is possible t.o devise a Church-Rosser reduction system whose theory

of equality is the same as that of (8) plus the surjcctive pairing axioms.

Another direction is to look at systems that have some machinery to tell atoms

from non-atoms. The cond construct almost docs the trick, but not quite. Let u =

>..x.condxxyy; if we apply u to a numeral we will get back y, while if we apply u to

a >..-abstraction we will get *· If we apply it something that is neither a numeral nor

a >..-abstraction, the result will depend on how strong the T-axioms are, i.e. how few

applications are normal forms. Still, if we apply it to something whose evaluation

doesn't terminate then we get no information.

Another construct that we might consider is

case u111112 .

This construct comes up when we are considering models that are disjoint sums, i.e. if

we are given a domain A of atoms, we seek a domain D such that D =A+ (D -+ D).

The intended meaning of case u111112 is

111(a), if u = inl(a), for some a EA,

112(/), if u = inr(f), for some f E (D -+ D),

where inl and inr are the injections into D from A and (D -+ D), respectively.

However, we may also run into Church-Rosser difficulties here, since the desired axioms

for case:

case (inl x) f g = fx

case (inr x) f g = gx

casex(hoinl)(hoinr) = hx

are very similar to those for surjective pairing, if fact, they are the category theoretic

dual.

If in fact the surjective pairing axioms, and the case axioms cannot be captured

by a Church-Rosser reduction system in the untyped >..-calculus, work needs to be done

on how these axioms can be weakened to yield Church-Rosser systems that-still capture

the "intuition" of pairing and case.

31

Rcrcrenccs

[BAR80] Barendregt, H.P.
"The Lambda Calculus - Its Syntax and Semantics"
Studies in Logic 103, North-HoHand, 1981

(BCD] Barendregt, H.P., Coppo, M., and Dczani-Ciancaglini, M.
A filter lambda model and the completeness of type assignment
Journal of Symbolic Logic, to appear

(KANT29) Kant, I.
"Critique of Pure Reason"
MacMillan & Co., 1929

[LEVY80] Levy, J. J.
Optimal Reductions in the Lambda-Calculus
To H. B. Curry: Easay.'I on Combinatory Logic, Lambda Calculua
and Formaliam
J.P. Seldin, J.R. Hindley, ed., 159-191, Academic Press, 1980

[MEYER82) Meyer, A. R.
What is a model of the lambda calculus?
Information and Control, 52, 87-122,1982

(MILNER77) Milner, R.
Fully abstract models of typed A-calculi
Theoretical Computer Science, 4, 1-22, 1977

[MILNER78) Milner, R.
A theory of type polymorphism in programming
Journal of Computer and System Sciences, 17, 348-375, 1978

[PLOTKIN75] Plotkin, G.D.
Call-by-name, call-by-value, and the lambda calculus
Theoretical Computer Science, 1, 125-159, 1975

(PLOTKIN77] Plotkin, G.D.
LCF considered as a programming language
Theoretical Computer Science, 5, 223-255, 1977

[SCOTT76) Scott, D. S.
Data types as lattices
SIAM Journal on Computing, 5, 522-587, 1976

SCOTT81] Scott, D. S.
Lectures on a mathematical theory of computation
Oxford Univ. Computing Lab., Tech. Mono. PRG-19, 1981

32

[:-;TCJY77] Stoy, J. E.
"Denotational Semantics: The Scott-Strachey Approach t~1 Programming
Language Theory"
MIT l'rcss, Cambridge MA, 1977

[WAND8,1] Wand. M.
\Vhat is LISP?
American Mathematical Monthly, 91, 9, 1984

33

