
MIT /LCS/TR-327

DEBUGGING DISTRIBUTED COMPUTATIONS

IN A NESTED ATOMIC ACTION SYSTEM

Sheng Yang Chiu

This blank page was inserted to presenie pagination.

Debugging Distributed Computations

in a

Nested Atomic Action System

by

Sheng Yang Chiu

December. 1984

©Massachusetts Institute of Technology 1984

This research was supported in part by the Defense Advanced Research Projects
Agency of the Department of Defense and was monitored by the Office of Naval
Research under Contract No. N00014-75-C-0661/N00014-83-K-Ol 25.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

Debugging Distributed Computations
in a.

Nested Atomic Action System

by

Sheng Yang Chiu

Submitted to the
Department of Electrical Engineering and Computer Science

on December 24, 1984 in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Abstract

Concurrent and distributed programs are hard to debug. In this thesis, we
argue that structuring activities as nested atomic actions can make debugging such
programs much like debugging traditional sequential programs. To support the
argument, we present a method for debugging computations in the Argus language
and system. Our method is applicable to other action systems since it depends only
on the atomicity properties of actions.

To debug a computation in our method, the user inspects a serial execution
that is equivalent to the original computation. The debugging process involves two
phases. In the first phase, the user examines pre· and post· states of actions to
isolate the action that exposes the bug. In the second phase, the debugging system
re-executes code to reproduce the details of the culprit action. The user can repeat
this re-execution and can use standard "break-and-examine" tools on it to isolate the
bug.

Our debugging system supports the method by saving a partial history when an
action runs. This history consists mainly of recovery versions of objects. The system
also timestamps the termination of actions so it can determine from the saved
versions the values of objects in an action's pre- and post- states. The debugging
system itself uses pre-states to repeat actions. Our work presents the first detailed
design that uses recovery versions and timestamps for debugging.

Thesis supervisor: Barbara H. Liskov
Title: Professor of Computer Science and Engineering

Keywords: debugging, nested atomic actions, distributed programs,
recovery versions, timestamps.

2

Acknowledgments

I thank my thesis advisor, Barbara Lisk.av, for the countless hours she spent teaching
me how to do research and to write. I am grateful for her kindness and her example.

I thank my readers, Dave Reed, Bert Halstead, and Bill Weihl, for pointing out and
then helping to smooth the rough edges in the draft I submitted for my defense. Bill's
copious comments were much appreciated.

I thank Maurice Herlihy, Gary Leavens, Bob Scheifler, and Paul Johnson for serving
as willing sounding boards for some of my ideas.

I thank Juliet Sutherland, Jim Restivo, Brian Oki, Kathy Yelick, Jennifer Lundelius,
and Sharon Perl for listening when I need to talk.

I thank my parents for their constant understanding and love.

I thank my daughter, Christine, for the joy that she is to me.

Finally, I thank my wife, Marti, for her constant understanding, companionship, and
love, and for shouldering more than her share of family responsibilities at the
expense of her own thesis research and writing.

3

Table of Contents

Chapter One: Introduction

1.1 Overview of Thesis
1.1.1 Implementing the Method ·

1.2 Related Work
1.2.1 Concurrency Control
1.2.2 Debugging Systems

1.3 Plan of Thesis

Chapter Two: Argus

2.1 Overview
2.2 Atomic Objects
2.3 Atomic Subset of Argus
2.4 Discussion

Chapter Three: The Method

3.1 The Model
3.2 Action Trees
3.3 Finding the Culprit Action

3.3.1 Example
3.4 Retracing an Action
3.5 Discussion

Chapter Four: Support for Isolating the Culprit Action

4.1 Design Principles
4.2 Terminology
4.3 Termination Numbers
4.4 A Strawman Scheme for Action Views of Atomic Objects
4.5 An Optimized Scheme for Action Views of Atomic Objects

4.5.1 Saving Versions of Atomic Objects
4.5.2 Using the Saved Versions

4.5.2.1 Pre-Action Values
4.5.2.2 Post-Action Values

4.5.3 Practical Considerations
4.6 Implementing and Using the Universal Tree
4. 7 Arguments, Results, Input, and Output
4.8 Summary of Information Kept About an Action
4.9 Effects of Crashes

4

7

9
11
13
13
14
17

19

19
23
25
28

29

29
31
33
35
39
40

43

44
45
46
51
53
53
57
60
67
68
72
74
76
77

4.1 o Reclaiming Storage Space 80
4.11 Summary and Discussion 82

Chapter ·fiv.e: Retracing an Action · 85

5.1 Overview 85
5.2 Action Creation and Termination 87
5.3 Creating Objects 89
5.4 Accessing Objects 90

5.4.1 Atomic Objects 90
5.4.2 Non-Atomic Objects 93

5.5 Summary and Discussion 94

Chapter Six: Debugging Programs That Use User-Defined Atomic 98
Objects

6.1 Abstract Values 99
6.2 User-Defined Atomic Objects 100
6.3 Recording History 104

6.3.1 State Changes of Mutex Objects 104
6.3.2 Results of Lock Tests at Built-in Atomic Objects 105
6.3.3 Created Mutex Objects 108

6.4 Pre- and Post- Action Views 108
6.4.1 Rep with a Single Mutex Object 108
6.4.2 Rep with Multiple Mutex Objects 111

6.5 Retracing 116
6.5.1 Current Values 117

6.6 Effects of Crashes 118
6.7 Reclaiming Storage Space 120
6.8 Summary and Discussion 122

Chapter Seven: Debugging User-Defined Atomic Types 124

7.1 Atomicity Bugs 125
7.1.1 Recovery Bugs 126
7.1.2 Invalidation Bugs 131

7.2 Resilience Bug 132
7.2.1 The Role of Mutex 133
7.2.2 Isolating a Resilience Bug 134

7.3 Summary and Discussion 139

Chapter Eight: Conclusions 141

8.1 Summary 141
8.2 Further Work 143

References 147

5

Table of Figures

Figure 2·1: A Stylized Picture of a Built-in Atomic Object 24
Figure 2·2: Conditions for Lock Acquisition and Inheritance 25
Figure 2-3: Use and Management of Versions 26
Figure 3·1: Participants of a Debugging Session 30

· Figure 3-2: An Action Tree 32
Figure 3-3: Algorithm for "Top-down" Isolation of the Culprit Action 34
Figure 3-4: Algorithm for "Bottom-up" Isolation of the Culprit Action 36
Figure 3·5: Action Tree of an Example Computation 37
Figure 4· 1: Rules for Saving Versions of Atomic Objects 58
Figure 4-2: An Example of the History Saved at a Pre-Post Log 59
Figure 4-3: Action Tree to Illustrate Pre-Values of Aborted Actions 63
Figure 4-4: Example Illustrating Pre Rule 4 66
Figure 4·5: Rules for Calculating Pre-A and Post-A 69
Figure 4·6: Example Motivating the Need to Remember Crash Counts 78
Figure 6·1: Implementation of the Semiqueue Type 101
Figure 6-2: Example 1 106
Figure 6-3: Pre-post and "Lock-test" Logs of Example 1 107
Figure 6-4: Implementation of the Amap Type 112
Figure 6-5: Pre-post Logs of an Amap Object 115
Figure 6-6: Example Illustrating the Current Value in a Retrace 119
Figure 7·1: Pre-Post Logs Showing Relationship between Versions 127
Figure 7-2: Implementation of the Semiqueue Type 135

6

Chapter One

Introduction

The asynchrony of interactions among concurrent activities and the

non-determinism of node and network failures make a concurrent and distributed

computation hard to understand and to repeat. Concurrent and distributed

programs, therefore, are hard to debug.

The main conclusion of this thesis is that structuring activities as nested atomic

actions makes debugging concurrent and distributed programs easier. To support

this conclusion, we present a method for debugging computations in the Argus

language and system [Liskov & Scheifler 83, Liskov 84]. Using the method, a person

debugs a concurrent and distributed computation much like he or she would debug

executions of traditional sequential programs. The method and implementation

approach presented in this thesis are applicable to other action 1 systems, even

though details may differ.

Actions (sometimes called transactions in the literature) [Davies 73, Eswaren et

al. 76, Lomet 77, Reed 78, Gray 81, Lampson 81, Moss 81] are activities that are

characterized by the folfowing two properties: serializability and recoverability.

Actions are serializable in that if a group of them should run concurrently, their

effects on the system state will be as if they had run one after another in some serial

order. (The system state may be distributed among multiple nodes in a network.) An

action is recoverable in that if it should for some reason fail to complete successfully,

all of its effects on the system state will be undone and will not be visible to other

actions. An atomic action, therefore, groups together operations on the system state

into a unit that is indivisible to other actions, in spite of concurrency and in spite of

node and network failures.

1 For succinctness, we sometimes drop the adjective "atomic".

7

In a nested action system [Davies 73, Reed 78, Moss 81], an action may itself

contain other actions, some of which may run sequentially, some concurrently. The

hierarchy of actions that are nested within some particular action can be arbitrarily

deep. We will often use terminology that pertains to a tree data structure to describe

relationships among actions in this hierarchy, e.g., child, parent, sibling.

We call actions that are nested within other actions subactions; we call those

that are not nested within other actions topactions. Subactions have the following

properties:

1. A subaction is serializable with respect to other sibling subactions.

2. A subaction is recoverable.

3. When a subaction aborts, its parent is not aborted.

4. When a subaction commits, it commits only to its parent action: its
effects will be visible to its _parent and to other sibling subactions but
will not be visible to the world that is outside of its parent unless and
until .its parent also commits.

5. The effects of a committed subaction are undone if its parent aborts.

Subactions, therefore, provide controlled concurrency within an action, and act as

fine-grained firewalls for failures.

If all activities are actions, understanding the effects of the concurrent

execution of a group of activities becomes no harder than understanding some serial

execution of the activities. The interleaving of asynchronous interactions among

concurrent activities can be safely ignored. In addition, the effects of failures are

also easier to understand. Failures due to node crashes and network outages are

converted to action aborts. This cuts down on the number of states that failures can

leave the system and also reduces the complexity of user code for dealing with

failures.

Our debugging method makes use of the atomicity properties of actions. A

user examines an equivalent serial execution when debugging a computation of

8

concurrent activities. An equivalent serial execution is a serial execution of the

activities that has the same effects on the system state as the original computation.

The debugging system provides an equivalent serial execution by re-executing code

using the limited amount of history it has saved when the computation ran. The

amount of information that the debugging system saves to support the reproducibility

of an equivalent serial execution is fairly small: the information consists mainly of

data that the Argus run-time system creates to support the recoverability of actions.

1.1 Overview of Thesis

In this thesis, we propose a method for debugging atomic actions. The method

uses action trees, together with a serialization order, to summarize a computation to

the user. A computation is a group of topactions; an action's tree is the hierarchy of

subactions that are contained within the action; a serialization order is the ordering

of sibling subactions and topactions in some equivalent serial execution.

In the method, a node in an action tree is viewed as a map from a pre- state to a

post- state. (A state is a map from object identifiers to object values.) The value of an

object in the pre·state of an action A is the net effect at the object of all modifications

made by actions serialized before A and all modifications made by ancestors before

A ran. The value of an object in the post-state of A is the pre-A value of the object

updated by the modifications of A, if any. A person who is debugging an action will

be interested primarily in objects that are accessible from the action's environment,

i.e., variables that are global to the action, as well as the arguments and input to the

action and the results and output from the action.

In the method, a user follows the progress of an action by doing a serial walk of

the action's tree. In a serial walk, committed subactions of a node are visited in

serialization order. Where appropriate, the user can choose to ignore the details of

any subaction in the tree.

Debugging a faulty action in our method involves three phases. In Phase Zero,

9

some subset of an action's history is collected as the action runs. The history that is

collected is used for supporting the next two phases of the method, and is the subject

of the next subsection of this· overview. -Phase -Zero history iS saved for an· actions

that run in a program of interest. Older saved history, however, is discarded as space

is needed. Phase Zero does not require any user intervention.

Phase One is the first of the two interactive phases in the method. In Phase

One, the user uses the computation's action trees, the serialization order of siblings,

and other saved history to narrow a bug to as "small" an action in a tree as possible:

this is the youngest action that maps a "correct" pre-state to an .. incorrect"

post-state. (Action A is younger than action B if A is contained within 8.) The user,

not the deb_ugging system, decides whether an action's pre- or post- state is correct.

The debugging system helps by displaying the value of an object in an action's pre­

or post- state on request from the user.

Sometimes the bug becomes obvious once the user narrows it to an action; at

other times, it is not. If the bug is still not obvious after the fault has been narrowed to

an action, the user moves on to Phase Two. In this phase, the faulty action's code is

re-executed, using the data collected during the original computation to recreate the

action's history. A single thread of control is used when an action is retraced;

concurrent siblings are retraced in their serialization order. The user uses the usual

break-and-examine tools of sequential debugging (e.g., breakpointing and

single-stepping) on the single thread of control in the re-execution to isolate the bug.

Our debugging method has the following characteristics:

1. The method helps a user in debugging a computation only after the
computation has already run. The generation of a computation with
particular characteristics, perhaps through the use of appropriate test
data and run-time control of the timing of interactions among
concurrent activities, is beyond the scope of this thesis.

2. The method helps a user debug only functional bugs. A computation,
when viewed as a map from a pre-state to a post-state, manifests a
functional bug if its pre-state is transformed into a post-state that is not

10

expected. The method is not designed for isolating bugs that have to
do with performance, e.g., starvation.

3. The computations that the method helps a user in· debugging are those
produced from executing Argus programs in a run-time system that is
implemented correctly. A study of· how the Argus system itself may be
debugged is interesting in its own right, but is beyond the scope of this
thesis.

We will not present a user interface for our debugging system. Instead, we

simply assume that there is a reasonable way for a person to use the system.

1.1.1 Implementing the Method

In Argus, actions are guaranteed to be atomic only if they share atomic objects.

Atomic objects are objects that provide synchronization and recovery for actions that

access them. Atomic objects that are built into Argus use two-phase locking

[Eswaren et al. 76] for concurrency control and back-up versions for recovery [Gray

et al. 81]. Locks are automatically acquired and versions automatically created when

actions invoke operations on atomic objects. The run-time system dispenses of an

action's locks and versions appropriately when the action terminates. The rules for

lock and recovery management in Argus are given by Moss [Moss 82]. We will

describe these rules in detail in the next chapter.

An atomic object in Argus can also be user-defined. A programmer

implements new atomic abstract data types in Argus by judiciously combining

non-atomic and atomic objects. Non-atomic objects are objects that do not provide

the synchronization and recovery that are found in atomic objects.

We introduce timestamps and multiple versions into Argus so the debugging

system can provide values of atomic objects in an action's pre- and post- state, and

can retrace action histories. We stress that the versions and timestamps are used by

the debugging system only and are not used by the Argus run-time system or by

Argus programs.

11

As it turns out, the recovery versions that are created for built-in atomic objects

to ensure action recovery on aborts are mainly what the debugging system needs.·

The timestamps are generated with Lamport clocks [Lamport 78) and are assigned to

actions when the actions terminate .. Since Argus releases locks only when an action

terminates, these timestamps order the lock points of actions and give a valid

serialization order [Eswaran et al. 76, Bernstein & Goodman 81). We show how these

timestamps, together with versions, can be used to give the pre- and post· values of

atomic objects for topactions as well as subactions, regardless of whether the

actions committed or aborted.

We also show how versions and timestamps can be used to retrace an action's

history in serial-walk order. In the retrace, the appropriate portion of the program is

re-executed. Even though the same objects are referenced in the re-execution,
11old 11 recovery versions are used so that a retrace of an action reads the same values

as the original computation. A retrace accesses only saved history in an object and,-·

therefore, does not disrupt other actions. Recovery versions and timestamps have

been used in concurrency control; our work is the first detailed design that uses them

for debugging nested actions.

A programming system that supports actions should permit users to define

their own atomic types. The usual arguments forwarded in support of abstract data

types apply here [Liskov & Zilles 74]. Increased concurrency is also an oft-cited

reason. However, there is as yet no consensus on how implementations of

user-defined atomic types should be supported. Weihl [Weihl 84), Schwarz and

Spector [Schwarz & Spector 84), Allchin and McKendry [Allchin & McKendry 83), and

Herlihy [Herlihy 84] have proposed mechanisms that differ from Argus's [Weihl &

Liskov 82). Ease of debugging, both of actions that use the objects and of

implementations of the types, is one of the factors that should be considered when

evaluating a mechanism. This thesis contributes in a modest way by studying the

"debuggability" of Argus's user-defined atomic objects. In Argus, non-serializable

interleaving of activities are allowed at objects within the internal representation

12

(rep) of a user-defined atomic object, as long as the interleaving does not cause the

behavior of the user-defined atomic object as a whole to be non-serializable. The

mechanism provided by Argus constrains the user to synchronize actions through

the use of built-in atomic objects in the rep. Recovery also depends on the proper

use of built-in atomic objects. We show how to derive pre· and post- action values of

user-defined atomic objects that are correctly implemented, and how to retrace

operations at these user-defined atomic objects using the history saved for pre- and

post- action values. We also demonstrate the use of this same history to isolate bugs

in the implementation of a user-defined atomic type.

1.2 Related Work

Work related to that of this thesis can be categorized under two major areas:

concurrency control in the database field, and debugging systems.

1.2.1 Concurrency Control

[Bayer et al. 80) and [Stearns & Rosenkrantz 81] are generally cited as the first

works to use recovery versions (called before values) for increasing the concurrency

of locking schemes. Whereas Bayer et al. [Bayer et al. 80) and Stearns and

Rosenkrantz [Stearns & Rosenkrantz 81] used a single recovery version in each

object to reduce read-write conflicts, DuBourdieu [DuBourdleu 82] and Chan et al.

[Chan et al. 82] used all the recovery versions created at an object to ensure that

read-only actions never delay or abort update actions, and vice versa. (Update

actions are actions that modify at least one object.) Update actions use standard

two-phase locking to synchronize among themselves. Read-only actions, on the

other hand, do not use locking to ensure consistent views of the database. Instead,

when a read-only action begins execution it takes note of the set of update actions

that committed before it. When a read-only action accesses an object, it reads the

latest version written by an action recorded in its list of committed update actions.

Bernstein and Goodman [Bernstein & Goodman &1] modified the scheme In

13

[DuBourdieu 82] and [Chan et al. 82] to use Lamport clocks to timestamp the

termination of update actions. A read-only action can now be given an arbitrary

timestamp that is equal to or less than the current value of its local Lamport clock, to

read a consistent view of the system state. It would read, at each object, the version

created by the action that has the largest timestamp less than its own.

Timestamps and multiple versions were used earlier by Reed [Reed 78] for

concurrency control without locks.

The support of pre- and post· action values of objects in our work is an

adaptation of [DuBourdieu 82], [Chan et al. 82], anu [Bernstein & Goodman 83] to

debugging. Translated into their framework, the actions of Argus would be update

actions, regardless of whether they actually modify the system state; debugging

requests for pre- and post· action values would be read-only actions. However. our

work differs in three important respects. First and most important, the versions and

timestamps .that we maintain are for debugging, not concurrency control. Second,

whereas their work assumes a system of single-level actions, ours take into account

nesting of actions. Third, we are interested in not only the views of committed

actions, as is the case for DuBourdieu et al., but also views of actions that aborted.

This is because we may sometimes want to find out why an action aborted.

1.2.2 Debugging Systems

Schiffenbauer [Schiffenbauer 81] described a system that supports debugging

a concurrent and distributed computation in "real-time", i.e., while the computation

runs. The system does not record any history of the computation and, therefore,

cannot guarantee that the computation can be repeated. The person who is

debugging has exactly one pass through the computation to catch a bug, should it

surface. Also, inherent in such "real-time" systems is the problem of ensuring that

debugging activities, e.g., breakpointing, do not interfere with the sequencing and

timing of the computation's events so that an improbable computation results, l.e.1 a

computation that is so unli~ely to occur in the absence of the debugging system as to

14

make the debugging session effectively useless. Ensuring this non-interference

constitutes a major part of Schiffenbauer's work. Schiffenbauer proposes a solution

for a system, where processes communicate only through messages, that uses virtual

time and requires all messages to be directed through a central node. In the scheme,

suspending a process P requires all processes that are resident in the same node as

P to be suspended, as well. The need to direct all messages through a central node

and to suspend all processes in a node when one of them is suspended makes

Schiffenbauer's system somewhat impractical.

Our debugging system is more akin to systems that monitor computations.

Such systems fall into two classes: those that do not support reproducibility of

computations and those that do. Systems in the first category are designed mainly

for performance evaluation and general understanding of a program's dynamic

characteristics. Those in the second category are mainly for debugging the

functional behavior of computations. Our work quite obviously belongs to the

second category.

We begin with a review of some systems in the first category. Some examples

of such systems are reported by Model [Model 79] 1 McDaniel [McDaniel 77]. and

Gertner [Gertner 80). The system in [Model 79) works for uniprocess artificial

intelligence representation systems. Predefined probes continuously log

occurrences of "basic operations" on "fundamental system structures." The log

processing system then reports high·level information about the monitored

computation interactively.

METRIC [McDaniel 77] is an extremely flexible monitoring system for a

distributed environment. A user determines the information to be logged through

calls on special routines. The user may ask that this information be filtered through

user-defined processes before it is eventually logged. Because of flexibility of

content in the log, which may be distributed, METRIC leaves it up to the user to write

programs to process and analyze the log.

15

The system in [Gertner 80] is also a monitoring system for distributed

programs. Processes are assumed to communicate only through messages. Events

that are l0gged consist of inter-process messages as wetras process state changes

that are registered with pseudo-messages. Each logged message carries three

timestamps: the time the sender queued the message, the time the receiver received

the message, and the time the receiver completed processing the message. The

system supports a command language that allows the user to ask for various

interesting time intervals that are associated with a user-defined (sub)computation.

The user defines a (sub)computation with a finite state machine.

The class of monitoring systems that collect information to support the

debugging .of a computation's functional behavior is exemplified by EXDAMS [Balzer

69] and the system proposed by Smith [Smith 81]. EXDAMS is designed for

uniprocess programs. The source code has to be run through a pre-processor for

the automatic insertion of debugging statements before compilation. Execution of

the compiled code will generate an audit trail of its execution sequence into a

"history tape." This tape is used as a database, together with the source code and

symbol table, for a sophisticated interactive query system that works by simulating

the execution sequence. Some of the query system's capabilities include forward

and backward execution and "flowback" analysis in which the user can request a

display of how information flowed through the program to produce a specified value ••

The system in [Smith 81] is designed for multiprocess but not distributed

programs. As in [Gertner 80], processes communicate via messages. In [Smith 81],

interprocess communication and system calls translate into events that are placed on

a FIFO event queue for execution by the run-time system (called the kernel). The

kernel executes events on the list one at a time. Execution of an event may cause

some other event to be appended to the list. The execution of a process may be

transcribed for later replay. This consists of logging all events that were executed on

behalf of the process. The system reported in [Smith 81] may also be used for

real-time control of a process. This is dpne by controlling the execution of the event

16

queue. Processes may be suspended by delaying the events that represent their

system calls. Messages to processes may likewise be delayed or altered through

event manipulation.

Our debugging system is more like that in [Smith 81] than EXDAMS in that it

saves just enough information so it can create an equivalent serial execution of an

action through re-executing code. Our system does not save a complete audit trail.

In addition, unlike most works in debugging concurrent and/or distributed

computations, our system allows activities to communicate through shared data. In

fact, even though message-passing is also taken into account, our work is much

more oriented toward shared data as the means of communication among activities.

1.3 Plan of Thesis

Chapter Two introduces Argus. The chapter gives an overview of the structure

of programs and computations in Argus, but does not describe details of the

language constructs. The chapter explains the implementation of synchronization

and recovery in the atomic types that are built into Argus.

Chapter Three presents the essential ideas of the proposed debugging

method. The rest of the thesis concentrates on modifications that need to be

incorporated into Argus to support the method.

Chapter Four is the heart of this thesis. It demonstrates how versions,

timestamps, and other history can be put together to provide pre- and post· action

values of built-in atomic objects.

Chapter Five shows how an equivalent serial execution of an action can be

created from the history that is collected for pre- and post- action values. The

proposed retracing technique does not interfere with the use of the system's objects

by other actions.

17

Chapter Six extends the method to include user-defined atomic objects. In

particular, it provides details for determining the pre- and post- action values of these

objects and for retracing operations at these objects. Chapter Six assumes that

user-defined atomic types are correctly implemented.

Chapter Seven is about debugging implementations of user-defined atomic

types. It discusses the isolation of bugs in the implementation of atomicity. History

that is already collected to provide pre- and post· action values is sufficient for

determining and isolating these atomicity bugs.

Chapter Eight sums up the contributions of this thesis and suggests further

work.

18

Chapter Two

Argus

The Argus language and system [Liskov & Scheifler 83, Liskov 84) provides the

context within which we study how to debug distributed computations that are

structured as trees of nested atomic actions. In this chapter, we introduce Argus.

We concentrate on the model of computation (Section 2.1) and the implementation of

synchronization and recovery (Section 2.2), rather than on details of the language

constructs.

In Argus, programs may generate computations that are not atomic, in that if

the computations were to run concurrently the net effect on the system state will not

be equivalent to any serial execution of the computations involved. Most programs

written in Argus, however, are expected to be structured to produce atomic

computations. In this thesis, we focus on the debugging of this "atomic" subset of

Argus programs. Programs in this subset conform to properties that constrain how

objects are used to convey information from one action to another. We discuss these

properties in Section 2.3.

2.1 Overview

Argus is an integrated programming language and system that is designed to

make the implementation of concurrent and distributed programs easier. Argus is

derived from the object-oriented, sequential programming language CLU [Liskov et

al. 81).

The underlying hardware base that Argus assumes is comprised of nodes

connected (only) via a communications network. A node consists of one or more

processors, one or more levels of memory, and any number of devices. A node can

19

communicate with any other node when the network is functioning properly. Argus

makes no other assumptions about the speed or connectivity of the network. The

system that supports Argus, however, is assumed to exhibit only fail-stop [Schlichting

& Schneider 83] failures. For example, when there is something wrong with a node,

the node crashes; when a disk fails, it becomes inaccessible; when the network

malfunctions, messages are lost - Argus is never given a duplicate message or a

bad message that looks like a good one.

Argus is designed for applications that concern the manipulation and

preservation of long-lived, on-line data. Airline reservation systems and banking

systems are examples of such applications.

An application implemented in Argus will consist of one or more

communicating guardians. A guardian is a virtual node that provides a service or

controls access to one or more resources, e.g., databases or devices. It consists of

an address ~pace, entirely contained in a single physical node, in which data objects

and processes reside. Data objects, as well as guardians, belong to abstract data

types with defined sets of states and operations. A guardian's operations are called

handlers. When a handler is called, a process is created at the called guardian to run

the handler's code. The process runs as an action.

Actions in the same guardian communicate with each other through the

guardian's data objects. The data objects that provide the synchronization and

recovery for actions are called atomic objects. Atomic objects in Argus may either be

built-in or user-defined. (We describe built-in atomic objects in Section 2.2 and

user-defined atomic objects in Chapter Six.) Since synchronization and recovery are

likely to be expensive to implement, some objects in Argus do not implement them.

These objects are called non-atomic objects.

Actions in Argus are guaranteed to be atomic only if they share atomic objects.

However, it is possible for actions to share non-atomic objects and still be atomic if

some conditions are satisfi.ed. We list these conditions in Section 2.3.

20

An action calls a handler of another guardian, in much the same way it would

invoke an operation of a data object in its own address space. Handler calls are

implemented as remote procedure calls. Arguments and results are passed by vafue

in messages to and from the target guardian; it is impossible to pass a reference to a

local data object to another guardian. This rule ensures that a guardian retains

control of its own objects. The method supported by Argus for the transmission of

abstract data objects is described in [Herlihy & Liskov 82]. It requires the user to

provide two procedures with an object's type. The first procedure, called encode,

translates the type's objects (with their current values) into objects that the Argus

system knows how to transmit, e.g., arrays of integers. The second procedure, called

decode, does the inverse translation at the receiving end. The objects created by

decode are initialized to the values that were transmitted.

When an action C makes a handler call, Argus creates a subaction, referred to

as the call action, to make the call on C's behalf. The handler action that runs the

handler activation is itself a subaction of the call action (and a grandchild of C).

Should there be problems with the handler call, the system can simply abort the call

action, without aborting C, and be assured that the handler action will have no effect

on the system state, even if it commits. This use of nested actions guarantees that

remote procedure calls have at-most-once semantics [Liskov 82] in spite of network

or node failures.

An action in a guardian may spawn possibly concurrent in-line subactions, i.e.,

subactions that run in the same guardian as the parent, for increased concurrency

and failure control. It may also create nested topactions. A nested topaction is not a

subaction of its· parent; once created, a nested topaction is just like any other

topaction with respect to its parent. Nested topactions are mearit to execute

benevolent side effects, i.e., changes that do not affect the abstract state of a

subsystem. For example, in a naming system a name look-up may cause information

to be copied from one location to another to speed up subsequent look-ups of that

name. Copying the data within a nested topaction ensures that the changes remain

in effect even if the parent action aborts.

21

When a parent action creates an in-line subaction, a nested topaction, or a

handler action, the parent is suspended until the created child terminates. A parent

and child action never run concurrently. This Simplifies interactions between

ancestors and descendants.

A guardian may also contain processes that are not actions. These processes

run in the background code of the guardian and serve mainly to initiate

(non-nested) topactions. For example, a guardian that functions as a command

interpreter may use a non-action process to interact with the user and to initiate the

topactions that run the commands. Debugging non-action activities is beyond the

scope of this thesis. Furthermore, we assume that these activities do not interfere

with the act.ions that we are debugging.

Guardians are resilient to node crashes in that the Argus system will

automatically reinstate a guardian after its node crashes and recovers. Data objects

that are part of the guardian's stable state will be recovered with the guardian. If

atomic, a stable object will be recovered to the value that was last written by a

committed topaction; otherwise, it is given the value it had when the guardian was

first created2•

In Argus, node failures are reflected as aborts of actions. All active actions in a

node at the time of a crash will be aborted. The effects of all committed subactions

that ran in the node but whose topaction ancestors are still active at the time of the

crash will also be undone; the topaction ancestors of these committed subactions will

themselves eventually abort.

We note that all actions in Argus, including those that abort, see consistent

views because of the locking rules and an orphan detection mechanism [Liskov 84].

(An orphan is any active action whose results are no longer wanted (see also

[Nelson 81]).)

2except for a special kind of non-atomic objects called mutexes. We will describe mutexes in
Chapters 6 and 7.

22

In conclusion, Argus provides an abstract machine where the effects of

concurrency and hardware failures on distributed data are much more easily

understood and managed than in the physical network of nodes. This is due to the

support of activities as actions and the· resilience of guardians and atomic data

objects to crashes.

2.2 Atomic Objec~s

All immutable types in Argus are obviously atomic: since objects of these types

are immutable, there is no need to synchronize accesses and there are no changes

to undo when an action aborts. Examples of immutable types and immutable type

generators include integer, sequence and struct.

There are only three kinds of mutable atomic types in Argus, namely

atomic_record, atomic_array and atomic_variant. These types use two-phase

locking for synchronization and versions for recovery.

A built-in mutable atomic object may be pictured conceptually as shown in

Figure 2· 1. (The picture is meant to suggest the information that is kept and used.

We are not implying that the implementation of built-in atomic objects is, or should

be, done this particular way.) The data structure labeled lockholders in the figure

contains the lock-holding actions and the kind of locks they have on the object.

Locks are distinguished as either read (R) or write (W) locks. Before an action uses

an object, it must first acquire a proper lock on the object. For unrelated actions, i.e.,

actions that are not contained within the same topaction, the usual locking rules

apply: multiple readers are allowed, but readers exclude writers and a writer

excludes readers and other writers. The locking rules are generalized to include

nested actions in Figure 2·2 [Moss 82]. Note that locks are acquired automatically by

the operations called by an action and are held until the completion of the action.

This use of two-phase locking avoids the problem of cascading aborts [Randell 75,

Gray 78]: if a tock on an object were released early, and the action later aborted, any

23

built-in atomic object

lockholders current version version stack

{ ... <A, R><B, W> ... }

Figure 2·1: A Stylized Picture of a Built-in Atomic Object

action that had observed the new state of that object would also have to be aborted.

This rule has the additional implication that for two unrelated actions, A and B, A can

see the effects of B at an object only if B terminated before A. We will be making use

of this implication in our selection of a serialization order for actions later in the

thesis.

The current version holds the current value of the object. An action is allowed

to access this current value only after it has acquired the proper lock on the object,

per the locking rules given in Figure 2-2. The version stack component of the built-in

atomic object is for recovery purposes. The current version and version stack are

used and managed as explained in Figure 2-3. Note that when a copy of the current

version is made for safekeeping in the recovery stack, we only copy down to

contained atomic objects. Contained atomic objects need not be copied because

they support their own recovery. Also, note that a version is removed from the

24

For an action.A.to acquire a read lock on object-0:
All holders of write locks on 0 must be ancestors of A.

For an action A to acquire a write lock on object 0:
All holders of read and write locks on 0 must be ancestors of A.

When an action A that has a lock on 0 commits:
If A is a subaction, then A's parent inherits A's lock on 0.
Otherwise, A's lock on 0 is released.

When an action A that has a lock on 0 aborts:
A's lock is released .

. Figure 2·2: Conditions for Lock Acquisition and Inheritance

version stack just as soon as it is not needed, i.e., when the computation has

progressed far enough that it cannot revert to a state where the object has to be

recovered to the value saved in the version.

In addition to serializability and recoverability, an atomic object that is in the

stable state of a guardian is also resilient to crashes: it is recovered after a crash and

is restored to the value that it held after the committed topaction that last modified it.

Argus uses stable storage to support object resilience. When a topaction commits,

the current values of all atomic objects on which the topaction holds write locks are

written into stable storage with a two-phase commit protocol [Gray 78].

2.3 Atomic Subset of Argus

In this section, we characterize the subset of Argus programs that generate

atomic computations. Our debugging method is meant to debug programs from this

"atomic" subset. (We expect this atomic subset to constitute the majority of

implemented Argus programs.)

25

When an action-A reads object 0: .
A reads the current version of O.

When an action A modifies object O:
If A acquired a write lock on 0 for the first time because of this write, push a
copy of O's current version onto the top of the version stack. The copy
pushed onto the version stack is called A's backup version. A's modification
of 0 is then made to the current version.

When an action A that has a write lock on 0 commits:
If A is a topaction or if A's parent already has a write lock on 0, discard A's
backup version, which should be at the top of the version stack. (A's parent
must already have its own backup version if it holds a write lock.) Otherwise,
A's backup version becomes A's parent's backup version.

When an action A that has a write lock on 0 aborts:
Pop A's backup version from the top of the version stack into the current
version. This will revert the current value of 0 to that in the popped backup
version.

When an action A that has a read lock on 0 terminates, i.e., commits or aborts:
Do nothing to the current version and version stack.

Figure 2·3: Use and Management of Versions

The characteristics of the atomic subset of Argus are as follows:

1. Objects shared by actions.

Actions must share only atomic objects, with three exceptions. First, a shared atomic

object may contain non-atomic objects in its rep if the atomic object is user-defined.

Second, an ancestor may share a local non-atomic object with its descendants as

long as the descendants do not modify the non-atomic object. A parent, for example,

can write information into a local non-atomic object that its children subsequently

read. A subaction is not allowed to modify an ancestor's local non-atomic objects

26

because such modifications are not recoverable should the subaction abort. Third, a

guardian state may contain non-atomic objects as long as the objects are not

modified by any of the handlers or the guardian's background code. However,

without loss of generality, we will assume that all objects referenced by guardian

variables are atomic.

2. Variables.

Variables do not provide the synchronization and recovery that are found in atomic

objects. The above rule on sharing non-atomic objects, therefore, applies to variable

assignment. In particular, a guardian's handlers and background code must not

modify their guardian's variables and an action must not modify variables that are

global to it.

3. Nested topactions.

Information that is passed from an ancestor to a nested topaction through

non-atomic objects must not be derived from atomic objects in the guardian state.

Otherwise, the nested topaction might not be serializable with the topaction of its

parent. For example, a nested topaction T might modify an atomic object in the

guardian state before its parent accesses the object, thus requiring T to be serialized

before its parent's topaction. If T also reads information from a non-atomic object

that reveals its parent's modification of some other atomic object in the guardian

state, T then becomes non-serializable with its parent's topaction.

4. Aborted actions

No information derived from atomic objects may be returned to the caller when a

handler activation aborts. Otherwise. serializability may be violated. For example,

consider the following sequence of events:

27

1. Topaction A makes a handler call H
2. H reads an atomic object X
3. H aborts returning the value of X to A
4. Topaction T modifies atomic object X
5. T modifies atomic object Y
6. Tcommits
7. A reads Y

A and T will not be serializable since A saw the value of X before T's modification and

the value of Y after T's modification.

2.4 Discussion

A guardian constitutes a logical node that has complete control over the data

objects in its address space; objects (including variables) in one guardian can never

be referenced directly from the handlers of other guardians. A handler activation,

therefore, can be debugged without referring to its caller's local environment. Our

debugging method takes advantage of this independence of a handler activation.

28

Chapter Three

The Method

There are two interactive phases in our method for debugging a computation.

(Recall that a computation is a group of topactlons.) In both phases, an action is

regarded as a map from a pre· state to a post· state. The value of an object in the

pre-state of an action A is the value that results from all modifications by actions

serialized before A and all modifications by ancestors of A before A ran. The value of

an object in the post-state of A is the value that results from updating the pre-A value

with A's modifications, if any. A person who is debugging an action will be interested

primarily in objects that are accessible from variables that are global to the action, as

well as, the action's arguments, input, results and output.

An action has a fault if it maps a correct pre-state to an incorrect post-state. A

bug, as used in this thesis, is a coding error in a program. Bugs are revealed by

faults in actions. In our debugging system, the user, not the system, decides whether

a pre- or post- state is correct and whether a piece of code is erroneous.

This chapter makes explicit our model of the debugging process (Section 3.1),

gives a more precise definition of an action tree (Section 3.2), and explains the two

phases of our debugging method in detail (Sections 3.3 and 3.4). We discuss only

what the user sees of the method. Support for the method is covered in the rest of

the thesis.

3.1 The Model

In our model, there are a number of entities involved in the debugging of a

computation (see Figure 3· 1). The user is the person who provides the intelligence

required in debugging - the person who knows the expected behavior of

29

Key:

D = physical node

Q =guardian

hatched area in guardian
represents its nub

~
debugger 0_.__..-

',/

user

Figure 3· 1 : Participants of a Debugging Session

computations and who decides when a computation is misbehaving. The debugging

system helps the user debug a program by providing, on request, information about

computations.

The user's interface to the debugging system is a guardian called the

debugger, which serves as the command interpreter with which the user interacts via

a terminal. In addition to the debugger, the debugging system consists of nubs.

There is one nub for each guardian in the program; the nub runs as a system process

and accesses data and code of its guardian on behalf of the debugging system.

30

An action to be debugged could be either one that was generated by the user

from the debugger, or one that was started from elsewhere but over which the user,

through the debugger, has taken control. In either case, the action must have either

terminated or been stopped by the user through the debugging system.

3.2 Action Trees

We define action trees in this section. In both phases of our debugging

method, the user uses a computation's action trees and the serialization order of

siblings as a guide to the internal working of the computation.

The action tree of an action A consists of the hierarchy of subactions that

originated from A. The root of the tree is labelled by A's action identifier (aid}; the

interior nodes are labelled by the aids of A's descendant subactions. Each node of

the tree contains information about the state of its action, i.e., whether it is active,

committed, or aborted. Furthermore, if a node's action is a handler action, as

opposed to an in-line subaction or topaction, the node will contain the name of the

action's handler, as well as the identifier of the action's guardian.

We use the standard terms, ancestor, sibling and descendant, to refer to the

relationships among actions in the tree. In this thesis, an action is its own ancestor

and descendant. We will use proper ancestor (proper descendant) for those

ancestors (descendants) that are not the action itself.

Figure 3-2 shows an example action tree. We use a circle to represent a

committed action; a circle with an X over it for an action that aborted; and a box for

an action that is still active. In addition, we double border the circle or box if the

action is a topaction. In the figure, for example, A.2.1 aborted, A is active, and the

rest of the actions committed. Furthermore, A.1 is a topaction; A, A.1.1, A.2.1, and

A.2.2 are handler actions and the rest are in-line actions.

Much of the information about an action tree is encoded in action identifiers

(aids} already maintained by Argus. Aids have the following properties:

31

A.1.1
h1@g1

A.2.1
h2@g2

Figure 3-2: An Action Tree

1. An aid is globally unique.

A.2.2
h3@g3

2. An aid contains the identifier of the guardian where the action resides.

3. An aid contains the aids of all ancestors of its action.

4. We can tell from an aid whether or not it belongs to a topaction.

The other information needed for an action tree is maintained by the debugging

system itself, and will be discussed in the next chapter.

Walking an action tree so that siblings are visited in their serialization order

abstracts away internal concurrency and allows the user to follow and understand

the working of an action in a sequential manner. Our debugging method exploits this

"serial" walk quite heavily when narrowing a bug to a subaction, and when

recreating a subaction's complete history.

32

3.3 Finding the Culprit Action

The objective of the first phase (called Phase One) is for the user to narrow the

source of a fault in an action to as young a subaction in the action's tree as possible.

(An action A is younger than another action B if A is a proper descendant of B.) We

call this subaction the culprit action.

Assuming that the fault was manifested in action A, i.e., A noticed an

inconsistency or did something unexpected because of an inconsistency, the first

thing that the user has to do is determine whether the problem is within A. The user,

through knowledge that is outside of the debugging system, decides which objects in

A's pre-state might have been involved with the fault. He or she then examines the

values of these objects as they were in the pre-state of A. If these pre-A values are

correct, i.e., they do not explain why A misbehaved, then A's behavior must have

violated its specification - the fault lies within A. Otherwise, the fault is either within

some action serialized before A or with some input to A.

Once the fault is determined to be within a particular action A, the user next

attempts to narrow the problem to one of A's children. He or she examines the child

actions, looking for the first (in serialization order) of these to have an incorrect

pre-state or to map a correct pre-state to an incorrect post-state. If the user is not

able to find a child that has an incorrect pre-state or that implements an incorrect

map, A then would be the youngest subaction to which the user can attribute the

fault. If an action that has an incorrect pre-state is found, A must have erred in giving

this pre-state to the child, assuming of course that it is not an inappropriate input that

made the pre-state incorrect. If a child is found to map a correct pre-state to an

incorrect post-state, the user has successfully narrowed the fault to that child. He or

she then focuses on this child and tries to pin the fault to a grandchild, and so on.

Details of the algorithm are provided in Figure 3-3. The algorithm is heavily

dependent on the user:

1. to examine the "right" objects in the pre- and post· states of each of

33

Figure 3-3: Algorithm for "Top-down" Isolation of the Culprit Action

1. Let A be the action that has been determined to be faulty.

2. Get the action tree of A. Assume that A has children A.1, A.2, ... , A.n
and that A.i is serialized bet ore A.j for i < j.

3. For i : = 1 to n do

a. Decide which objects in the pre-state of A.i might shed
light on the noticed misbehavior.

b. Examine the pre-A.i values of these selected objects. If
the pre-A.i values are inconsistent with what was
expected, then the fault is either with A or with some
input provided to A.i - return A or the erroneous input,
identified with A.i's aid, as the result of this algorithm.

c. If the pre-A.i values suggest a correct pre-A.I state,
choose and examine some appropriate subset of the
post-A.i state. As with the pre-state, the objects chosen
from the post-state should have something to do with the
fault being isolated.

d. Decide whether A.i is correct in mapping the examined
subset of pre·A.i state to the examined subset of post-A.I
state, as far as the fault is concerned. If A.i is found to
implement an incorrect map, repeat the algorithm on A.I.

4. If none of A's children is found to be faulty, then A is the youngest
action to which the user can attribute the fault.

the children actions. (The "right" objects are those that are somehow

involved with the fault currently being isolated.)

2. to decide whether an action is given a correct pre-state, as suggested

by the examined objects, and

3. if an action's pre-state is correct, to decide whether the map from

pre-state to post-state is consistent with behavior that is expected of

34

the ·action. As with the pre-state, the post-state is inferred from the

objects that the user samples.

What our debugging system provides are the action's tree, the serialization order of

siblings in the tree, the recreation of an action's environment, and values of objects

in the pre- and post- states of actions.

The "top-down" algorithm described above is used when the user has

ascertained that the fault is within an action and he or she would like to pin it down to

the youngest descendant possible. When an action, for instance 8, exposes an error

that is not due to it - this implies that the action 8 was given an incorrect pre-state -

the "bottom-up" algorithm, given in Figure 3-4, would be more applicable. In the

"bottom-up" algorithm, the user searches "upward" from the noticing action 8 for

the youngest ancestor that was given a correct pre-state. Because this correct

pre-state led to the fault noticed in 8, the ancestor must be the youngest within which

the noticed fault can be explained. However, this ancestor, call it A8 , is not

necessarily the youngest action to which the fault can be attributed. The fault could

perhaps be due to some descendant of A8 that is serialized before 8. The user has to

apply the "top-down" algorithm on A8 to find this culprit subaction.

It is possible that there is no ancestor of 8 to which the fault can be pinned.

The problem then must be with the most recently committed topaction that was

serialized before 8 and that had a correct pre-state. Figure 3-4 gives details of a

strategy for finding this faulty topaction.

3.3.1 Example

This subsection sketches the Phase One debugging of a computation in a

simple mail system. Let us assume that Jim suspects that there is something wrong

with the mail system: he asked for his mail and was told that there was none when he

knows {through a source other than the mail system) that John has sent him a piece

of mail.

35

Figure 3-4: Algorithm for "Bottom-up" Isolation of the-Culprit Action

Preamble: If an incorrect input is isolated, the user has found the "bug". In this
algorithm, we assume that when a pre-state is incorrect, it is not because of an
incorrect input.

1. Let B be the action whose pre-state is incorrect, i.e., holds some
unexpected values.

2. Check to see whether the pre-state of B's parent is correct. The user
does this by examining the pre-action values of judiciously selected
objects.

3. If B's parent has a correct pre-state, then the noticed fault must be
caused by either B's parent or one of B's siblings serialized before
B. Use the "top-down" algorithm (Figure 3·3) on B's parent to find the
culprit subaction.

4. If B's parent was given an incorrect pre-state, check the next older
ancestor, and so on, until one that has a correct pre-state is found.
This ancestor is the youngest that encompasses the noticed fault.
Apply the "top-down" algorithm on this faulty ancestor to find the
culprit subaction.

5. It is possible that the fault is not with the topaction of which B is a part.
The user, when out of ancestors to test, should switch to testing
committed topactions that are serialized before B. But how are
candidate topactions to be found? One strategy would be for the user
to examine "interesting" objects and, from history saved there for
support of pre- and post- action views {to be explained in the next
chapter), deduce the topactions that both modified the objects and are
serialized before B. "Interesting" objects are those that are in the state
of the program's guardians and that might have something to do with
the fault at hand. The topaction that caused the fault should be among
the topactions that modified these interesting objects. So, go through
these topactions in reverse serialization order, sampling pre- and post­
action states, to find one that violated expected behavior and thus
contributed to the fault noticed by B. Once such a topaction is found,
apply the "top-down" algorithm to it.

36

To debug the program, Jim (or more probably, the person who is maintaining

the mail system) might begin with the action that represents his call on the mail

system. The first thing that Jim has to do is find the action's aid. We assume that

there is some facility, perhaps like the ·process status queries available in most

operating systems, that would help him do this. On finding the action's aid, Jim then

uses it to get the action's tree, depicted in Figure 3-5, and a serialization order from

the debugging system to guide him through the debugging process. Assuming that

A.1 is serialized bet ore A.2, the tree shows that Jim read his mail by calling the

read_mail handler of the mailer guardian. Read_mail in turn called the where_is

handler of the mailbox locator guardian, and then the read handler of the MIT post

office guardian.

A

A.1

where..is@ mailbox locator

read..mail@ mailer

A.2

read@ MIT Post Office

Figure 3·5: Action Tree of an Example Computation

We assume that read_mail works as follows. When provided with a user name,

it first calls the where_is handler of the mailbox locator to find the <post office, box

number> that is the user's mailbox. It then calls the read handl~r of the post office

guardian where the user's mailbox is located to get the user's mail. The retrieved

mail is then returned as response.

37

Following the "top-down" algorithm of Phase One, Jim takes the following

steps to isolate the culprit action:

1. Check to make sure that the argument provided read_mail was indeed

"Jim". Otherwise, the pre-state to the action was incorrect - the

action was provided with a wrong name and had nothing to do with the

perceived problem.

2. Check to make sure that "Jim" was the user name that was passed

along as argument to the mailbox locator. Otherwise, the bug lies with

the read_mail handler of the mailer-it forwarded to the mailbox

locator a user name that was not what was given it.

3. Check the pre-A.1 values of appropriate objects in the state of the

mailbox locator to make sure that the result returned by the where_is

handler was correct. (A.1 is the aid of the where_is handler activation.)

Otherwise, the bug is in the where_is handler of the mailbox locator.

4. Check to make sure that the results of the where_is handler call

correspond to the post office guardian that was contacted by

read_mail and the argument that was sent in the call to the post office

guardian. If the results do not correspond, the bug is in the read_mail

handler of the mailer - it either contacted the wrong post office

guardian or gave the correct post office guardian the wrong box

number to search for mail.

5. Check to make sure that no mail was returned by the read handler to

read_mail. Otherwise the problem is with read_mail - it lost the mail

that it received from the MIT post office.

6. Finally, find in the pre-A.2 state of the MIT Post Office the object that

represented Jim's P.O. Box. (A.2 is the aid of the read handler

activation.) Check to make sure that the pre-A.2 state of this object is

38

indeed empty of mail. If not empty, the bug is in the read handler of the

post office guardian. If empty, the culprit action is not the read_mail

handler call or any of its subactions.

If the fault is not in the read_mail handler call or any of its subactions, it may be

in the action that corresponds to John's sending of mail to Jim. Jim should debug

this action next, and so on.

3.4 Retracing an Action

The user moves into the second phase (called Phase Two) if details about the

internal working of a faulty action are needed to pin-point the bug in the code. In

Phase Two, our debugging system re-executes code to retrace the history of an

action. Data that is saved for Phase One is used to simulate the original conditions.

For example, when an action reads an atomic object in a retrace, it reads its

pre-action value of the object from the original execution.

Our debugging system uses a single thread of control when re-executing an

action. This single thread of control will retrace a serial execution that is equivalent

to the action's original execution. Terminated siblings are retraced in their

serialization order and before any sibling that might still be active, i.e., those that are

stopped but not terminated. Active siblings, on the other hand, are retraced in some

arbitrary order; the order does not matter because an active sibling cannot possibly

have already seen the effects of another active sibling, assuming of course that

user-defined atomic objects are implemented correctly. To isolate the bug, the user

uses the usual break-and-examine tools on the retrace's single thread of control; the

user breakpoints and single-steps the retrace and examines current views of objects

at the points where a retrace is stopped. Phase Two debugging, therefore, is very

much like sequential debugging.

We stress that our debugging system will create an execution that is equivalent

to the action's original execution in a retrace. A handler activation, for example, will

39

not return results or. call subactions that it did not return or call in the original

computation. For an action--that is still-active; our debugging system will not retrace

(noticeably} past the point where the action is stopped in the original computation.

We also emphasize that retracing does not interfere with the use of objects by other

actions. It does not, for example, modify the state of the system nor does it require

that we lock objects from use while the user retraces an action.3

All terminal output that results from a retrace is directed to the user's

controlling terminal. This helps the person who is debugging to have a better feel for

the progress of the retrace. Input, needed in a retrace, is taken from history, ~when

an action reads from the terminal it will be given exactly the same input it originally

received. When an action reads an input value from history, the input is also sent to

the user's terminal to keep the user updated on the progress of the retrace.

When retracing an action, the user has the option of skipping the re-execution

of topactior:ts nested within the action, and the re-execution of subactions and

handler calls that the action makes, without affecting the rest of the retrace. The

user may want to skip a nested topaction, subaction, or handler call if he or she feels

that the skipped action would shed no light on the bug that is being tracked. If a

handler call is retraced, our debugging system will re-execute not only the handler

action but also the encode of the arguments at the sending guardian and the

corresponding decode at the receiving guardian. This enables the user to debug the

encode and decode operations of a type.

3.5 Discussion

Handler activation bias.

As pointed out in the previous chapter, a handler activation does not have any

31t the action that the user is debugging is not terminated, it may have active locks on objects. Other
actions may then be prevented from accessing these objects. This is not the same as locking objects
specifically to permit retracing the action.

40

stack variables that need to be set up before it can run; its environment consists

solely of its·guardian1s variables. The environment of·an in-Une·action, on-the other ·

hand, consists not only of the guardian's variables but also the local variables of its

local ancestors. In our debugging system, we choose not to save environments.

Retracing, then, will always have to begin with a handler action. Also, when the local

environment of an in-line subaction or a nested topaction is needed in Phase One,

the user has to recreate it by retracing from the youngest ancestor that is a handler

action.4 Note that our debugging system can avoid saving local. environments

precisely because the intermediate states of an action can be recreated faithfully.

Our debugging system is biased toward handler activations because it is much

simpler and cheaper than the alternative of saving local environments, and also

because we expect the structure of computations in Argus to consist mainly of

handler calls.

Display operations.

We assume that all built-in and user-defined types have a display operation that

presents the abstract states of the type's objects in some relatively understandable

form. A display operation, therefore, serves as an abstraction function [Guttag et al.

78] and shields the users of a type from having to know details about the type's

implementation. Our debugging system uses a type's display operation to present to

the user pre- and post- action values of the type's objects, as well as values in the

intermediate states of a retrace. Display operations, therefore, must not modify any

object. In addition, display results must be transmissible because the user is

connected to a command interpreter guardian {the debugger) that is separate from

the program's guardians. (An object is transmissible if its type provides encode and

decode operations.)

Our debugging system assumes that display operations are implemented

correctly. Debugging display operations is a task that more properly belongs to

4we will briefly discuss the debugging of topactions in a guardian's background code in Chapter 5.

41

sequential debugging of an abstract data type's implementation and, therefore, is

beyond the scope of.this tllesis. .

Pre-action values.

Our debugging system gives pre-action values of objects that an action did not

access, in addition to pre-action values of objects that the action accessed. The

former pre-values are those that the action would have read if it had accessed the

objects, given the action's place in the serialization order. These pre-values are

sometimes useful for debugging.

Aborted actions.

Aborted actions may be of interest to the person who is debugging. He or she,

for example, may want to know why calls to a particular handler abort as often as

they do. Our debugging system treats aborted actions much like committed ones.

The user can ask for the values of atomic objects in the pre-state of an aborted

action 1 and he or she can retrace an aborted action, as well.

Our debugging system also provides the values of atomic objects at the point

just before an action aborted. These "pseudo-post" values may help the user

deduce how far an aborted action got and why it aborted, without retracing the

action.

42

Chapter Four

Support for Isolating the Culprit Action

In this chapter, we present the implementation of the support for Phase One.

In this phase, the user depends on the debugging system for the action trees,

serialization order, and information about pre· and post· action states that are

needed to isolate the culprit action of a faulty computation. Pre-action values of

objects are also used by the debugging system to support the retrace of an action

(see Chapter Five).

All references to relationships between actions in this chapter are made with

respect to a special system-wide universal tree. The root of this tree is a (fictitious)

action U that never terminates. All topactions in the system, including nested

topactions, are children of U in the universal tree, and therefore are siblings of each

other. Subactions make up the other interior nodes of the universal tree. A

subaction has the same parent in the universal tree as it does in an action tree. Note

that in contrast to the universal tree, a nested topaction is placed as a child of its

calling action in an action tree. This mirrors the calling structure of a computation

and is what the user needs to figure out the context of a nested topaction. The

universal tree, on the other hand, gives a truer picture of the serialization of actions

and is easier to use for deducing action views of the system state.

We begin in Section 4.1 with a discussion of the main design principles by

which the implementation of our debugging system Is guided.

In Section 4.3, we give a method for computing a serialization order. The

method uses an ordering of the termination of actions that is derived from Lamport

clocks [Lamport 78]. We note that the serialization order is also used to support the

retracing of actions and to deduce pre- and post- action values of atomic objects.

43

In Sections 4.4 and 4.5, we discuss pre· and post- action values of built-in

atomic objects. (Action views of user-defined atomic objects· are· discussed ·in·

Chapter Six.) We introduce versions into Argus and show how they can contribute,

in cooperation with the serialization order and the universal tree, to compute action

views of built-in atomic objects.

In Section 4.6, we discuss the implementation and use of the universal tree.

Action trees, needed by the user, are also derived from this universal tree.

Arguments, results, input, and output are the other objects that are of interest

to the person who is debugging. In Section 4.7, we describe how these are saved

and provided to the user.

Finally, we discuss two practical issues. All the sections we have mentioned

thus far ignore crashes and assume that saved history is never discarded. In Section

4.9, we study the effects of crashes on the results of these sections. In Section 4.10,

we discuss how saved history can be reclaimed with minimal impact on the user's

ability to debug actions.

4.1 Design Principles

There are two main principles by which our design choices are governed.

1. Debugging-related activities should add as little as possible to a computation's
run-time.

The idea is to do just enough work and nothing more while a program

executes. In particular, as much as possible of the debugging-related activities

should be deferred until debugging time or when there are spare processor cycles.

The run-time of a computation should not be unnecessarily penalized just because of

an anticipation, which may well turn out to be false, that it will need to be debugged.

For example, we will not make copies of object versions that are either unnecessary

or that could be constructed at debugging time.

44

Our aim is to have data collection for debugging purposes be transparent

enough to make it feasible to monitor an activities in the system all the time. So,

when a bug surfaces, the user will have the information to track it; there will be no

opportunities that are lost just because "debugging was not turned on".

2. Normal cases should be favored.

Wherever possible, we will favor cases that occur frequently over those that are

less frequent. For example, we expect that commits will be more frequent than

aborts, and reads will be more frequent than writes. Therefore, we save versions of

atomic objects 011 writes and aborts instead of reads and commits.

4.2 Terminology

We collect together in this section some terms and notations that will be used

in the rest of this chapter and thesis. All of them have to do with how actions are

related in the universal tree.

Definition:

We say that an action A committed up to an ancestor P if all ancestors of
A (including A) that are proper descendants of P committed.

Definition:

We say that an action A committed relative to an action B if A committed
up to the least common ancestor of A and B.

Definition:

We say that A and B are ancestor-related if either A is an ancestor of B or
B is an ancestor of A.

45

Notation:

We.use LCA(A,B) to denote the action thatis the.least common.ancestor .
of A and 8, where A and 8 are not ancestor-related. Note that if A and B
are not descendants of the same topaction, then their LCA is U, the root
of the universal tree.

Notation:

For two actions, A and 8 1 that are not ancestor-related, we use GA/B)
(read "greatest ancestor of A that is not an ancestor of B"} to denote the
child of LCA(A,B} that is A's ancestor.

4.3 Termination Numbers

Termination numbers are unique timestamps that totally order the termination

of all actions in our system. We generate these numbers with counters that are

maintained as Lamport clocks [Lamport 78). In this section, we explain how

termination numbers are assigned to actions and how they are used to give a

serialization· order. We assume that crashes do not happen; the modifications for

node crashes are discussed in Section 4.9.

Using Lamport's algorithm, we maintain and assign termination numbers as

follows:

1. Each guardian has a termination counter. A termination counter is
composed of two halves: the high order half and the low order half. A
termination number is obtained from a termination counter by prefixing
the digits contained in the low order half with those of the high order
half. So, if the high order half has N digits and the low order half M
digits, the resulting termination number will have N + M digits, with the
value in the counter's high order half occupying the more significant
places.

2. When a guardian is created, its termination counter's high order half is
assigned an arbitrary value. Zero, for instance, is a perfectly good
number to use. The counter's low order half, however, is given the
guardian's identifier as value.5 The value in the low order half will

5auardian identifiers are unique in Argus.

46

never be changed. It is used to ensure that termination numbers are
globally unique, even among non-communicating guardians.

3. When an action terminates, it is given the termination number derived
from its guardian's counter. The high order half of the counter is then
incremented. The "read-and-increment" of the counter's high order
half is executed indivisibly.

A topaction is given its termination number at the start of phase one
(the preparing phase) of the two-phase commit protocol.

4. Every message sent from a guardian carries the termination number
contained in the guardian's counter.

5. A guardian on receiving a message will check the termination number
in its local counter against that carried in the message; if the local
value is smaller, the guardian will advance the high order half of its
counter to the value that is one greater than that in the high order half
of the message's termination number.

From now on, we shall use the notation A# to refer to the termination number of an

action A.

Termination numbers have been shown to produce a valid serialization order

for a non-nested action system that uses two-phase locking [Bernstein & Goodman

81, Bernstein & Goodman 83]. In this section, we extend the result to nested actions.

We argue that for two committed actions A and B that are either topactions or sibling

subactions, if A must be serialized before 8 1 then A#< 8#.

Theorem 1:
For two committed topactions A and B, if A is serialized before 8, then A# < B #.

Proof:

There are three possible reasons why A is serialized before B:

1. A and B are serial because of program flow

2. A and B accessed some common atomic object X in conflicting modes,
either directly or via descendants, with A using X before B

3. There is a chain of topactions T 1, ... , T n such that A is serialized before
T 1, T 1 before T 2, ... , T n before B.

47

We prove the theorem for each of these cases.

Case 1: There are two subcases that are predicated on whether A and B ran in the
same guardian.

(a) If A and B ran in the same guardian:

1. A must have terminated before 8, since A ran serially before 8.

2. Termination numbers given by a guardian are monotonically

increasing.

A# <9#.

(b) If _A and B did not run in the same guardian:

1. B must be a nested topaction, since the program flow that
created A also created B in a different guardian.

2. A must have terminated before the first handler call in the chain
of handler calls that eventually created 8.

3. The termination number of B's guardian must be greater than
A# when B is created, since call messages carry termination
numbers.

A# <B#.

Case 2: There are two subcases that are predicated on whether A and B used X
directly.

(a) If A and B used X directly:

1. A and B must have run in the. same guardian, since they directly
accessed the same data object.

2. A must have terminated before 8, since B could not have accessed X
until A released its lock and locks are released only when an action
terminates.

3. The termination numbers given by a guardian are monotonically
increasing.

A# (8#.

48

(b) If A and B used X indirectly via descendants Ad and Bd that committed up to
A and B respectively (note that one of these descendants could be A or B
itself):

1. A was assigned a termination number at the beginning of the preparing
phase.

2. A# was sent to all participant guardians in prepare messages.

3. A's lock on X was released only after receipt of the prepare message
with A#.

4. Therefore, A# < Bd #, since Bd could have secured a lock on X only
after A released its lock.

5. Also, Bd # < B #, since termination numbers are sent in reply
messages and a parent does not commit before a child.

A#<B#

Case3:

By cases 1 and 2 above, A# < T 1 # < ... < T n # < 8 #.

A# (8#.

I

Theorem 2:
For two committed subactions, A and B, that are siblings, if A is serialized before 8,
then A#< 8#.

Proof:

The proofs for Cases 1 (a), 2(a) and 3 carry over directly from Theorem 1. There is no
Case 1 (b) in this theorem because A and B must have run in the same guardian since
they are siblings. So, we just have to prove Case 2(b) to prove this theorem. (This is
the case where A and B used X in conflicting modes via descendants Ad and Bd that
committed up to A and B respectively.) The proof for Case 2(b) in this theorem differs
from that in Theorem 1 because a subaction does not go through the two phase
commit protocol when it commits.

49

Case 2(b):

I

1. A must have terminated before Bd' since Bd could not have accessed X until A
released its lock and locks are released only when an action terminates.

2. If Bd is not B, Bd must have terminated before B, since an action terminates
after all descendants that commit up to it.

3. Therefore, A must have terminated before B.

4. A and B must run in the same guardian, since they are siblings.

5. The termination numbers given by a guardian are monotonically increasing.

A#(B#

Notice that just because A is serialized before B does not imply that the

termination numbers of B's descendants are greater than A#. (A and 8 might have

run concurrently.) To extend the serialization order to actions A and B that are not

siblings but that commit up to their LCA, it does not work to simply compare their

termination numbers. Instead, we have to compare the termination numbers of their

ancestors that are siblings.

Therefore, we have the following definition of serialization order:

Definition:

For two actions M and R that are not ancestor-related and that commit
up to their LCA, M is serialized bet ore R if the termination number of
GAM(R), i.e., the child of LCA(M,R) that is M's ancestor, is less than
GAR(M)#.

Recall that if M and R are not descendants of the same topaction, their LCA is

the root of the universal tree. Using the definition, we have to compare the

termination numbers of their topactions to find the serialization order of Mand R In

this case. We also note that the serialization order is defined only for actions that

commit up to their LCA.

50

4.4 A Strawman Scheme for Action Views of Atomic Objects

In this section· and the next, we discuss two schemes: for saving and using·

versions to compute the pre- and post- action values of built-in atomic objects. In

both of these schemes, we aim to be.able to compute pre- and post· values of all

actions, including those that abort, at all built-in atomic objects, I.e.,

1. objects that an action read or modified, either directly or through a
descendant that committed up to it, as well as

2. objects that an action did not use at all.

The pre-value that our schemes compute for an object that an action did not

use must be consistent with values that the action saw at other objects. In other

words, the pre-value must be one that the action could have seen if it had read the

object. These pre-values are sometimes useful for debugging, e.g., the user may

want to know the value of an object that an action was supposed to read but did not.

More importantly, our method for computing pre- and post- action values of

user-defined atomic objects (to be presented in Chapter Six) depends on the

availability of these pre-values.

In this section, we present a straightforward but inefficient scheme for

supporting pre- and post- action values of built-in atomic objects. We improve on

this simple scheme in the next section.

The information saving aspect of the simple scheme is as follows:

1. Whenever an action A acquires a write lock, save a pointer to a copy of
the current version as the pre-A value. (This rule does not apply when
a write lock is inherited from a descendant.6>

2. Whenever an action A acquires a read lock, save a pointer to a copy of
the current version as the pre-A value. (Again, this rule does not apply
when the lock is inherited from a descendant.)

6
Note the distinction between "acquires" and "inherits". An action acquires a write lock when it

modifies an object without possessing a write lock prior to the modification. An action inherits a lock on
an object when a descendant that possesses the lock commits up to it.

51

3. Whenever an action A terminates, i.e., commits or aborts, save a
pointer to a copy of the current version for all objects at which A has a
read or write lock, regardless of whether the lock was directly acquired
or inherited. Label this saved version as "post-A".

Using the information collected by the algorithm to deduce pre- and post­

action values for objects that an action used is straightforward. If an action has a

recorded pre-value, then that is its pre-value. However, an action, say A, that did not

use the object directly will not have a recorded pre-value. Then, the pre·A value is

given by the first recorded pre-value that belongs to a descendant that committed up

to A. The post-value of A is A's recorded post-value if A committed; if A aborted, its

post-value is its pre-value. Notice that in the case where A aborted, A's recorded

post-value is really the pseudo-post value of A, i.e., the value that held just before A

aborted. Since the pseudo-post value may hold modifications by A, it is not A's

post-value. Pseudo-post values are useful as a hint of where an action reached

before it aborted.

To deduce pre- and post- values for objects that an action, say A, did not

access, we will need to use the serialization order; the post-value of the latest writer

serialized before A is typically A's pre-value. We defer discussion of the details to the

next section.

The simple scheme of this section is inefficient. It does more copying and

saves more information than is needed. The following are examples of some of the

unnecessary work:

1. Instead of saving a fresh copy of the current version when a write lock
is acquired, the version created by the run-time system for recovery
could have been used.

2. A write lock acquired by a subaction may be propagated through many
ancestors, thus causing many post values to be saved. However, only
one post value is needed if the ancestors did not write the object.

3. Suppose some topaction B modifies an atomic object X that is then
immediately read by another topaction A. Then the pre-value for A is
equal to the post-value for B; it is not necessary to save both post-8
and pre-A.

52

4. The pre-value of an action that read but did not modify an object need
not always be saved. We can sometimes use the serialization order to
compute this pre-value.

Below, we present an optimized scheme that uses recovery versions and

avoids saving duplicate information. Post-values for actions are stored only when

necessary, i.e., just before the next time the atomic object is modified. Pre-values for

read-only actions are usually not saved at all; usually, we use the post-value of the

latest writer serialized before the reading action.

4.5 An Optimized Scheme for Action Views of Atomic Objects

This section begins by enumerating and justifying the versions of atomic

objects that we save for the optimized scheme. Next, it presents the algorithm that

uses the versions to calculate pre- and post- action values. Finally, it explains how

the algorithm can search versions quickly for the appropriate pre· or post- value.

4.5.1 Saving Versions of Atomic Objects

We present a set of rules that determine the versions of a built-in atomic object

to save. In the rules, the versions are saved in a special data structure, called a

pre-post log in the internal representation of the object.

When a built-in atomic object is created in Argus, the system creates a special

nested topaction that writes the initial value into the object and then commits

immediately. We initialize the pre-post log when the object is created so that we can

distinguish actions that ran before the creation from actions that ran after the

creation.

Saving Rule 0:
When a built-in atomic object is created

• save a pointer to a copy of the initial value

•tag the newly inserted entry in the pre-post log as "Pre-T" where T
is the nested topaction that writes the initial value.

53

We label the initial version in the log as "Pre-T" and not "Post-T" because we save

pre-action values.in our scheme and .not post-action .versions. ~·Pre-T", therefore •.

would fit more easily into our rules for using the saved versions. Confusing the initial

version in the log as a "Pre-T" (when it is actually T's post-value) will not cause

problems because T is not an action that the user will ever want to debug.

Saving Rule 1:
When an action A acquires a write lock,

• save a pointer to the recovery version created for A,

• label the newly inserted entry in the pre-post log as "Pre-A".

Note that the above rule applies only to the direct acquisition of locks and not to the

case where locks are inherited. Also, we avoid copying by using recovery versions.

Of course, now when an action aborts, the current version of the object has to be

reset to a copy of the recovery version, since the recovery version itself is being used

as saved history and must not be modified. But aborts are expected to be infrequent,

so the need to copy should be rare.

We also need to tag the "pre-A" version created in Saving Rule 1 by the aid of

A's last child to terminate before the write, if any. Otherwise, we will not be able to

tell whether a child read A's modification. For example, if Saving Rule 1 is left as is,

the pre-post log of X that is created by the following two sequences of events will be

identical.

Sequence 1: A modifies X
A calls A.1

A.1 reads X
A.1 commits

A commits

Sequence 2: A calls A.1
A.1 reads X
A.1 commits

A modifiesX
A commits

54

The debugging system, therefore, will not be able to determine the value A.1 read

given just the history that is saved .. So, we have the following amendment to. Saving.

Rule1.

Amendment to Saving Rule 1:
Tag the saved "Pre-A" entry with the aid of A's last child to terminate before
the write, if any.

We will use "Pre-A, C" to denote a "Pre-A" entry that was created at a time

when C was the last terminated child of A.

In contrast to pre-values, we will save post-values only when needed. In

particular, we will not save the post-value when an action A commits, since the

post-value continues to be available as the current version. Post-values need to be

saved only when this current version is later modified. This modification can happen

in two ways: when an ancestor 8 aborts or when an action C writes into the object

after A.

Saving Rule 2:
When a write lock is discarded because an action 8 aborts,

• save a pointer to the current version,

•tag the entry in the log as "Post·B".

Again, we note that a copy does not have to be made. Instead, we use the version

about to be discarded. Also, Saving Rule 2 saves "Post-8" regardless of whether B

has a descendant that needs the saved version for a post-value. This is because the

saved "Post-8" value is the value that holds just before B aborts and is useful to the

user when debugging B, for a sense of where 8 reached before it aborted.

In the case of an action C that writes into an atomic object after A, we need not

save a post-A value explicitly if C is not an ancestor of A. This is because a pre-C

value will be saved by Saving Rule 1 and this value is post-A, as well. However, if C is

an ancestor, C does not acquire a write lock, but merely uses the lock it inherits when

A committed up to it. Therefore, we must save a post-value for A at this point.

55

Saving Rule 3:
When an action C modifies an atomic object, if the following conditions
are true

1. C has a write lock before this write

2. C has child actions before this write, and

3. the most recent entry in the log is not tagged "After-T"

then,

• make a copy of the current version and save a pointer to the copy,

•tag the entry as "After-T".

We also use "After" versions to provide for pre-values of actions that read but did not

modify an atomic object. As discussed before, a read-only action R typically reads

the modification of the most recent action that is serialized before it. This value is the

pre-value stored in the pre-post log of the action with the least termination number

that is greater than R #, or the current version if there is no such pre-value.

However, there Is a problem in the case of a parent that acquires a write lock, calls a

read-only child, and then modifies the object after that child commits. The pre-value

of the child includes modifications made by the parent before the child is called, but

not those made after the call. Therefore, we must record this intermediate value of

the parent just before the parent modifies the object after the child commits. In fact,

we save the intermediate value even if the child aborts; this is because we support

pre-values for aborted actions as well. "After" versions provide these intermediate

values.

At first glance, Saving Rule 3 seems expensive because of the number of

copies that might have to be made. However, on closer examination, we find that a

copy is made only if

1. an action modifies an atomic object, calls a child action, and then later
modifies the same object again, or

2. a descendant that commits up to action A modifies an atomic object
and then A modifies the same object.

56

These conditions are rather unlikely, especially since we expect most modifications

in Argus to be made by Jeaf .actions, i.e., actions that do not have .subactions.

We summarize our rules for saving versions in Figure 4-1 for easier reference.

We give an example of the history that is saved in the pre-post log of an atomic array

of integers in Figure 4·2.

Note that we do not save information about reads explicitly. So, we cannot tell

whether or not an action actually read an atomic object. In the case where an action

read an atomic object X, our optimized scheme will present the value that the action

actually saw at X. In the case where an action did not read X, our optimized scheme

will present the value that the action might have seen at X: the value displayed will be

consistent with values that the action actually saw at other atomic objects.

In the rest of the chapter, we say that a log entry belongs to an action A if the

entry is either "Pre-A" 1 "Post-A" 1 or "After-C" 1 where C is a child of A.

4.5.2 Using the Saved Versions

This subsection presents a set of rules for deducing pre- and post· action

values, given the information we save in the pre-post logs. The rules are dependent

on the meaning of serialization order and action nesting. For example, we depend on

the following facts:

1. The pre-value of an action B is the post value of the sibling action A
that immediately precedes it in the serialization order, assuming that
no ancestor of A modifies the object between the calls to A and B.

2. The pre-value of an action A equals the pre-value of the first
descendant D that committed up to A, if D accesses the object before
A.

3. The post-value of A equals the post-value of the last descendant D'
that committed up to A, if A does not modify the object after D'
terminates.

The rules also use the fact that information is pushed on a pre-post log in the order

57

Figure 4· 1: Rules for Saving Versions of ·Atomic Objects ·

We add a new data structure, called a pre-post log, into the internal representation of
each built-in atomic object. In the following rules, all history that is saved about an
atomic object's state changes is kept in its pre-post log.

Saving Rule 0:
When a built-in atomic object is created

• save a pointer to a copy of the initial value

•tag the newly inserted entry in the pre-post log as 11 Pre-T" where Tis the
nested topaction that writes the initial value.

Saving Rule 1:
When an action A acquires a write lock

•save a pointer to the recovery version created for A.

• label the newly inserted entry in the pre-post log as "Pre· A",

•tag this "pre-A" entry with the aid of A's last child to terminate before this
write, if any.

Saving Rule 2:
When a write lock is discarded because an action B aborts,

• save a pointer to the current version,

• tag the entry in the log as "Post-8 11
•

Saving Rule 3:
When an action C modifies an atomic object, if the following conditions are true

1. C has a write lock before this write

2. Chas child actions before this write, and

3. the most recent entry in the log is not tagged 11 After-T"

then,

• make a copy of the current version and save a pointer to the copy,

•tag the entry as 11 After-T".

58

The seauence of events

P calls E
Ecommits

P appends 1 to the array, which is initially empty
P calls F

F calls F.1
F .1 appends 2 to the array
F.1 commits

Fcommits
P appends 3 to the array
P calls G

G commits
P aborts

E

The array's pre-post log after the sequence of events

"Pre-T"

"Pre-P, E"

"Pre-F.1"

"After-F"

"Post-P'

__..,, ,,
__..,, ,,,.
__..,, ,
~ ,
__..,, ,,

[]

[]
[1]

[1, 2]

[1, 2, 3]

Note: T is the nested topaction that created the atomic array

P's action tree
p

Figure 4-2: An Example of the History Saved at a Pre-Post Log

59

G

that the object is used, so the order of versions in a pre-post log is consistent with the

serialization order of the versions' actions.

4.5.2.1 Pre-Action Values

Suppose we want the pre-A value of an atomic object X. Then, there are the

following cases to consider:

1. A modified X, either directly or through a descendant that committed
up to it.

2. A did not modify X but there is an action B that modified X and is
serialized before A.

3. A and actions that are serialized before A did not modify X but there is
an action B such that B modified X and GA8(A)# < GAA(B)#. (In case
(2) above, A and B both committed up to their LCA. In this case, B
committed up to LCA(B,A) but A did not.)

4. No action modified X before A was called.

Below, we explain how to compute pre-A for each of these cases.

(1) If A modified X, either directly or indirectly, then its pre-state is stored via Saving

Rule 1 as

So,

1. "Pre-A" if A modified X before any of the descendants that committed
up to it,

2. or "Pre-D" otherwise, where Dis-the first descendant that modified X
and committed up to A.

Pre Rule 1:
If an entry tagged "Pre-A" exists in the pre-post log,

pre-A = version in the "Pre-A .. entry.

Pre Rule 2:
Else if "Pre-D" exists where Dis a descendant that committed up to A,

pre-A = version in the first such "Pre-D" entry in the log.

60

(2) This is the case where A did not modify X but some action B that is serialized

before A did. Note that in this case B and A both committed up to their LCA. Also, B

and A can be descendants of different topactions. (In this situation, their LCA is the

root of the universal tree.)

There are two subcases to consider: either

(a) A read (or could have read) the modification by the action B' that is
the latest among the actions serialized before A to modify X, or

(b) A read (or could have read) the modification that was made by some
ancestor of A after B' committed.

Subcase (a):

Since B' modified X directly, there must be a "Pre·B"' (by Saving Rule 1) or an

"After-T" entry, where Tis a child of B' {by Saving Rule 3). The value that was read

by A, therefore, is given by the entry after the latest "Pre·" or "After-" entry in the log

that belongs to an action serialized before A.

Subcase (b):

This subcase applies only if an ancestor modified X after GA8 ,(A) committed but

before A ran. If the subcase applies, there will be one of the following kinds of entries

in the log after all the entries that belong to 8 1
:

1. a "Pre-" entry of an ancestor of A that is not tagged with a child's aid

2. a "Pre-P, C" entry, where Pis an ancestor of A and C is P's child such
that C itself is not an ancestor of A and C # < GA A (C) #.

3. an "After-T" entry, where Tis a child of an ancestor of A such that T
itself is not an ancestor of A and T # < GA A (T) # .

The entry after the latest such "Pre-" or "After·" is the value that A read.

We present subcases (a) and (b) as one algorithm in the following Pre Rule 3.

61

Pre Rule 3:
Else if there is an action B such that

1. B modified X,

2. A and Bare not ancestor-related,

3. A and B committed up to their LCA, and

4. GA8(A)# < GAA(B)#

find the latest entry E in the log that either

1. belongs to such a B, or

2. is a "Pre-" entry of an ancestor of A that is not tagged with a child's aid,
or

3. a "Pre-P, C" entry, where Pis an ancestor of A and C is P's child such
that C itself is not an ancestor of A and C # < GA A (C) #, or

4. an "After-T" entry, where T is a child of an ancestor of A such that T
itself is not an ancestor of A and T # < GA A (T) #.

pre-A = version after E in the log, or the current version if Eis the last entry in
the log.

Pre Rule 3 does not apply if A did not commit up to Q, the youngest ancestor

that modified X either directly or via a descendant, because an aborted descendant's

pre-value is not necessarily tied to that of an ancestor's. For example, consider the

following scenario:

Topaction Q calls a child action A
A reads an atomic object X
A aborts

Topaction M modifies X
Mcommits
a modifies x

When Q modifies X, a "Pre-0, A" is inserted into the log by Saving Rule 1. If we use

Pre Rule 3 without requiring that. A commits up to Q, we will choose the "Pre-0"

version as the pre-A value. This is wrong because "Pre-0" reflects M's modification,

whereas A read X before M modified it. This leads us to the next case.

62

(3} This case is illustrated in Figure 4-3. In this case, A did not modify X, either

directly or indirectly1. Furthermore, P (the youngest. aborted ancestor of.A) has no

descendant that is serialized before A and that modified X. There is, however, an

action 8 that modified X such that GA8(A} # < GA A (8} #.

GA8CAl /

,
eO

I

I
I

I ,

LCA(B, P)

'\

' ' ' ~ P (aborted)
\

' \
\

\

bA

Figure 4-3: Action Tree to Illustrate Pre-Values of Aborted Actions

There are three subcases to consider:

(a} A read (or could have read} the post-value of such a 8.

(b) A read (or could have read) a modification that was made by some
ancestor of A.

(c) X was not created before A ran.

63

Subcase (a):

Suppose A read (or could have read) the post.value of B'. How does one find this B'? .

For A to have seen the effects of B', A must have gotten a lock on the object

after B' modified the object. Therefore, B' must be "at least" an action Bi that

modified X such that GA8_(A)# <A#, since termination numbers flow in messages
I

that allow the lock to be propagated from B' to A. Furthermore, A# < P # because a

child commits before its parent and termination numbers are sent in reply messages.

So, GA8_(A)# < P#.
I

In addition, B' must be "at most" the latest such Bi' i.e., it cannot be a Bi+ 1
where GAB_(A)# < P# <GAB. (A)#. We show this by contradiction. Assume that

I I+ 1
A read post-B. 1. Then GAB (A) must terminate before A could have gotten a read

I+ i+1
lock on X. This implies that GAB (A)# <A# < P #. We have our contradiction.

. i+ 1

Note that just because GAB.CA)#< P# does not necessarily mean that P
. I

actually saw some effects of GA8 _(A), either directly or through other actions.
I

Nevertheless, it is always consistent to include GAB. (A)'s effects in pre·P if
I

GAB.CA)#< P#. As a result, we choose the latest such Bi as B', the action whose
I

post-value is used as pre-A.

Subcase (b):

This is like subcase (b) of (2) above. It applies to the case when an ancestor modified

X after GA8 ,(A) committed but before A ran.

Subcase (c):

If there is no Bi such that GAB. (A)# < P #, then X could not have been created
I

before A ran. Therefore, it is an error to ask for the pre-A of X.

We translate subcases (a) and (b) into an algorithm that uses entries in the

pre-post log in Pre Rule 4. (We leave subcase (c) to the next Pre Rule.) Pre Rule 4 is

much like Pre Rule 3, differing only in the definition of 8.

64

Pre Rule 4:
Else if A has an aborted ancestor, let P be the youngest aborted ancestor of
A. If there is an action B such that .

1. B modified X,

2. P and Bare not ancestor-related,

3. 8 committed up to LCA(B,P), and

4. GA8(P)# < P#

find the latest entry E in the log that either

1. belongs to such a 8, or

2. is a "Pre-" entry of an ancestor of A that is not tagged with a child's aid,
or

3. a "Pre-0, C" entry, where Q is an ancestor of A and C is O's child such
that C itself is not an ancestor of A and C # < GA A (C) # , or

4. an "After-T" entry, where Tis a child of an ancestor of A such that T
itself is not an ancestor of A and T # < GA A (T) #.

pre-A = version after E in the log, or the current version if Eis the last
entry in the log.

Example:

Consider the computation of Figure 4-4.

If G1 # <P# <G2# and object X's pre-post log is <"Pre-G1", "Pre-G2.1">,
indicating that G1 and then G2.1 modified X, then

pre-A = version in the "Pre-G2.1" entry.

If G1 # < G2# < P# and the pre-post log is <"Pre-G1 ", "Pre-G2.1 ", "Pre-N">,
indicating that N modified X after G1 and G2.1 but before Pis called, then

pre-A = the current version, which holds the result of N's modification.

However, if the pre-post log is <"Pre-G1 ", "Pre-G2.1 ", "Pre-N, P">, indicating
that N's modification was made after P ran, then

pre-A = version in "Pre-N, P".

65

M

G1

I

I
r

N

~ P (aborted)
I
I
I
I

QA

Figure 4-4: Example Illustrating Pre Rule 4

(4) Finally, we are left with the case where no action modified X before A was called.

Recall that we create an initial "Pre-T" entry in the pre-post log for the nested

topaction T that writes the initial value, by Saving Rule O. Since A ran before T, X

must not have been created yet when A ran. It is therefore an error to ask for the

pre-A value of such an X. So, we have the following final Pre Rule.

Pre Rule 5:
Else,

pre-A = error.

In the rest of the thesis, we say that (the effect of) Bis visible to A, where A and

Bare not ancestor-related, if B could have affected the pre-state of A. This is stated

more formally in the following definition.

66

Definition:

Bis visible lo an action-A that is not ancestor-related to it if·

1. A and B committed up to their LCA and
GA8(A)# < GAA(B)#, or

2. A did not commit up to LCA(A,B) but B committed up to
LCA(A,B) and GA8 (A) # < P #. where P is the youngest
aborted ancestor of A.

4.5.2.2 Post-Action Values

Now suppose we want the post-A value ofX. If A modified X, either directly or

indirectly, then there are the following ways that its post-value can be recorded in the

log:

1. An ancestor is the first action to modify X after A ran. Then an "After-T" entry
holding the post-A value will be saved by Saving Rule 3, where T is either an
ancestor of A or is a child of an ancestor of A such that GAA(n # < T #.

2. An action Bis the first action to modify X after A ran, where A and Bare not
ancestor-related and GA A (B) # < GA8 (A) #. Then, by Saving Rule 1, a "Pre-B"
entry holding the post-A value is stored.

3. An ancestor (maybe A itself) aborts before any other action has a chance to
modify X after A ran. Then Saving Rule 2 saves a "Post" version for this
ancestor.

4. X is not modified after A, and A and its ancestors did not abort. Therefore, the
"Pre-A" entry is the last entry in the log and post-A continues to be in the
current version.

If A aborted, we use the "Post-A" entry as its "post-value". This pseudo-post value

will include the changes that A made. We choose to return this value because it is

more useful to the user when debugging A. If there is no "Post-A" in the log, the

post-A value is the first entry after pre-A that does not belong to either A or a

descendant of A1 or the current version if there is no such entry. So,

Post Rule:
If there is no "Pre-A" or "Pre-D" entry, where D is a descendant that
committed up to A, then A did not modify X1 either directly or indirectly. So,

67

post-A = pre-A, as computed by the Pre Rules.

else if there is a "Post-A" entry, then

post-A = the version in the "Post-A" entry

else searching forward from the "Pre-A" entry or a "Pre-D" entry, where Dis a
descendant that committed up to A,

post-A = version in the first entry that does not belong to either A or a
descendant of A. If there is no such entry then post-A is given by the
current version.

Example:

Using the action tree of Figure 4-4, if the pre-post log is
<"Pre-G1 ", "Pre-G2.1 ">then

post-M = the current version, by the Post Rule

The Pre and Post Rules are repeated in Figure 4-5 for easier reference.

4.5.3 Practical Considerations

In this subsection, we discuss two optimizations: one concerns the saving of

initial entries in pre-post logs and the other concerns the searching of a pre-post log

for an action's pre- or post- value.

Instead of saving a "Pre-T" version when an atomic object is created, where T

is the nested topaction that writes the initial value, we propose to save an "lnit T #"

entry, where T # is the termination number of T. The "lnit T #" will still be used as a

"Pre-" entry, but it wilt not point to any saved version. We do not need a version in

"lnit T #" because "lnit T #"will never be referenced by the Pre and Post Rules for

a version. Instead, the Rules use it to determine whether an action ran before or after

the creation of the object. If the action ran before the object's creation, it is an error

to ask for the view of the action . at the object; if the action ran after the object's

creation, the pre- or post- action value is given by a version in an entry after "lnit

T#".

68

Figure 4-5: Rules for Calculating Pre-A and Post-A .

Pre Rule 1:
If an entry tagged "Pre-A" exists in the pre-post log,

pre-A = version in the "Pre-A" entry.

Pre Rule 2:
Else if "Pre-D" exists where Dis a descendant that committed up to A,

pre-A = version in the first such "Pre-D" entry in the log.

Pre Rule 3:
Else if there is an action B such that

1. B modified X,

2. A and B are not ancestor-related,

3. A and B committed up to their LCA, and

4. GA8 (A)# < GAA(B)#

find the latest entry E in the log that either

1. belongs to such a B, or

2. is a "Pre-" entry of an ancestor of A that is not tagged with a child's aid,
or

3. a "Pre-P, C" entry, where Pis an ancestor of A and C is P's child such
that C itself is not an ancestor of A and C # < GA A (C) #, or

4. an "After-T" entry, where Tis a child of an ancestor of A such that T
itself is not an ancestor of A and T # < GA A (T) # .

pre-A = version after E in the log, or the current version if E is the last entry in
the log.

«continued on next page»

69

Figure 4-5: continued

Pre Rule 4:
Else if A has an aborted ancestor, let P be the youngest aborted ancestor of
A. If there is an action B such that

1. B modified X,

2. P and Bare not ancestor-related,

3. B committed up to LCA(B,P), and

4. GA8(P)# < P#

find the latest entry E in the log that either

Pre Rule 5:
Else,

Post Rule:

1. belongs to such a B, or

2. is a "Pre-" entry of an ancestor of A that is not tagged with a child's aid,
or

3. a "Pre-0, C" entry, where Q is an ancestor of A and C is Q's child such
that C itself is not an ancestor of A and C# < GAA(C)#, or

4. an "After-T" entry, where Tis a child of an ancestor of A such that T
itself is not an ancestor of A and T # < GA A (T) #.

pre-A = version after E in the log, or the current version if E is the last
entry in the log.

pre-A = error.

If there is no "Pre-A" or "Pre-0" entry, where O is a descendant that
committed up to A, then A did not modify X, either directly or indirectly. So,

post-A = pre-A, as computed by the Pre Rules.

else if there is a "Post-A" entry, then

post-A = the version in the "Post-A" entry

else searching forward from the "Pre-A" entry or a "Pre-0" entry, where 0 is a
descendant that committed up to A,

post-A = version in the first entry that does not belong to either A or a
descendant of A. If there is no such entry then post-A is given by the
current version.

70

With an "lnit T # ", the debugging system will not have to remember T's

termination number elsewhere. Furthermore, the Pre and Post Rules can use an "lnlt

T #" more expeditiously than a "Pre-T". As we shall see in Sections 4.9 and 4.10,

tagging the creation entry "lnit T #" also fits in nicely with the way we propose to

cope with crashes and storage reclamation.

We now present an efficient method that the debugging system can use to

search a pre-post log for an action's pre· or post· value. In particular, the method

quickly identifies that (small) part of the log where the value will most likely be. Like

all algorithms for speeding up searches, the method is useful only if pre-post logs

tend to be long.

We introduce a new type of entry, called a top-marker, into the pre-post log.

When a topaction commits, we append a top-marker entry to the logs of all objects at

which the topaction holds a write lock. The top-marker entry will contain the

topaction's termination number. (Recall that the termination number of a committing

topaction is sent from the coordinator to the participants during the preparing (i.e.,

first) phase of the two-phase commit protocol.) In addition, we singly-link all

top-markers in a pre-post log; a top-marker will point to the next one in the log.

Using top-markers, this is how we isolate the sub-log within which the pre· and

post· values of an action A, with topaction T, will most likely be found.

Chase the chain of top-markers, comparing the termination numbers in them

against that of T until we find the last top-marker that has a termination number less

than T #. If A committed up to its topaction ancestor, its pre· and post· values will be

ahead of the identified marker in the log. Assuming that only a small number of

descendants of the same topaction modify any one object, we do not have to search

forward very far for A's pre- and PQSt· action values.

If A did not commit up to its topaction ancestor, its pre· and post· values may

be given by entries that are before the identified marker M. So, the debugging system

71

will have to search either forward or backward from M to find the pre- and post·

values for_ such an A.

4.6 Implementing and Using the Universal Tree

All information about an action is saved in a record, called an a-record, in the

volatile memory of the action's guardian. There is one a-record per action. The

termination number of an action, for example, is stored in the action's a-record. For

simplicity, we do not try to situate a-records optimally, nor replicate any of the

information in them. Keeping information that is collected about an action with the

action's guardian, rather than filing it in some remote repository, is consistent with

the design principle of deferring debugging activities until debugging time.

When using the versions in a pre-post log to deduce pre- and post· action

values, the debugging system has to be able to get information about the universal

tree. In particular, it has to know

[1] whether A and B are ancestor-related,

[2] whether A# < B #, for actions A and B that are not ancestor-related, and

[3] whether action A committed up to ancestor P, and if not, who is A's
youngest aborted ancestor.

[1] is provided by information contained in action identifiers (aids). Recall that we

can determine the aids of all of an action's ancestors, and their guardians, from

examining the action's aid. We can also tell whether an aid's action is a topaction.

[2] is determined by sending a query message to the guardians of A and B.

[3] can be decided by querying for the termination status of all descendants of P that

are proper ancestors of A. (The status of an action is in the action's a-record.) This

brute-force approach, however, may generate an unacceptable load on net traffic.

The rest of the section presents an alternative scheme for deciding [3]. This scheme

requires just one query in the typical case.

72

We keep a list of aborted descendants, called an aborts-list, in each handler

action -and topaction's a-record. · The aborts-list of an-action H does not necessarily

contain all the aborted descendants of H. However, it contains at least all of H's

(local) in-line subactlons that abort. Call subactions of H that are forcibly aborted

(because of communication problems or because an ancestor was aborted by

another action) and therefore may have aborted descendants in other guardians that

H does not know about are flagged in the aborts-list. The list of all aborted

descendants of H, therefore, is the closure of H's aborts-list and the aborts-lists of

forcibly aborted handler calls.

Aborts-lists are maintained as follows:

1. When a handler action or topaction first runs, its aborts-list is empty.

2. When an in-line subactlon S aborts, S's aid is inserted into the
aborts-list of the handler action or topaction of which it is an in-line
subaction.

3. When a call action C is forcibly aborted, C's aid is inserted into the
aborts-list of the handler action or topaction of which C is an in-line
subaction. C's aid is flagged as potentially having· aborted
descendants elsewhere.

4. When a handler action H terminates, its aborts-list is forwarded to its
caller. H's aid is included in the sent aborts-list, if H's termination is an
abort. The aborts-list when received is merged into the aborts-list of
the handler action or topaction of which the calf action is an in-line
subaction.

To decide whether A committed up to P, we query for the aborts-list of the

handler action or topaction of which Pis an in-line subaction. A committed up to P iff

the aborts-list does not contain any ancestor of A that is a proper descendant of

P. So, in the typical case where A commits up to P, only one query is needed. If A did

not commit up to P, we may still be able to tell the youngest aborted ancestor of A

from P's aborts-list: if the youngest ancestor of A in the aborts·li$t is not a call action

that is flagged as possibly having aborted descendants elsewhere, it is the youngest

aborted ancestor of A.

73

4. 7 Arguments, Results, Input, and Output

In addition to objects in an action's-environment, the pre- and post· states also

consist of arguments and results, and terminal input and output. Recall that we allow

the user to begin debugging with any handler action. As such, the debugging system

must save arguments/results and input/output of all handler calls.

We save pointers to the decoded atomic argument objects that were originally

used by a handler action, and the received encoded message, as well. When the

value of a non-atomic argument is requested in the course of debugging, the

debugging system will decode a copy from the saved message. (As an optimization,

arguments once decoded can be saved so that subsequent requests for the

arguments can be satisfied without a repeat decoding of the message.)

Note that we do not save pointers to the original decoded non-atomic

arguments. A non-atomic argument may be (non-recoverably) modified during the

course of the handler's execution; if all we saved was a pointer to the original

decoded non-atomic argument, we would lose the argument's pre-handler action

value. We could make copies of the non-atomic arguments and save these. But this

would increase the computation's run-time unnecessarily, violating one of our design

principles. We also note that the encoded message has to be saved anyway because

our debugging system allows the user to retrace a handler action from its very

beginning, i.e., the decoding of arguments. (See the next chapter for details.)

We save pointers to the original atomic argument objects and pointers to

copies of the original non-atomic argument objects in the call action's a-record of the

sending guardian, as well. This is to help in debugging the encode and decode

procedures of the arguments' types. Comparing an argument at the call action with

the corresponding argument at the handler action, the user can decide immediately

whether the encode/decode of the argument had been done right.

Results are saved in a similar fashion to arguments and for the same reasons.

74

Pointers to the atomic result objects that were originally used in the handler and call

actions are saved in their respective actions'. -a-records. Copies ot non-atomic results .

are saved at the handler action but not at the call action. At the call action, the

encoded result message is saved instead; non-atomic results are decoded from this

saved message as needed. We note that saving results with the call action also helps

in retracing; the user can skip the retrace of a handler call, when the target guardian

is not available, without disrupting the rest of the retrace. (Of course, some retracing

has to be done by the system to decode the non-atomic results from the saved

message.)

Terminal input and output are restricted to strings in Argus. Strings are

immutable .and therefore atomic. We can simply save pointers to them. The

sequence of terminal input to a handler activation or a topaction is saved in the

action's a-record. These input values include those read by the action's in-line

subactions. To be able to decide which subsequence was really read by a particular

subaction (and its descendants), as is needed when presenting the pre-state of a

subaction and when retracing, we tag each saved input with the aid of the action that

read it. The sequence of terminal output that Is associated with a handler activation

or topaction is managed in precisely the same way as the sequence of input.

We could have saved input and output with the subactions that actually read

and wrote it, and not with _the handler action or topaction. But then constructing the

sequence of input/output that is associated with a handler activation or a topaction

becomes complicated; we will have to know how the input/output of the action's

subactions interleave. Furthermore, because. of the handler activation bias of our

method, it is much more likely that users would query for the pre-state of a handler

activation than an in-line subactlon.

75

4.8 Summary of Information Kept About an Action

This section summarizes the information, other-than the versions in the atomic·

objects, that is kept for deciding pre- and post- action values. All the information to

be described is kept in a-records of actions.

Information used by the Pre and Post Rules is as follows:

1. aid of the action

2. status of the action, i.e., whether the action committed, aborted, or is
still active

3. the action's termination number, if the action is terminated

4. if the action is a handler action or topaction

a. the aborts-list, i.e., the list of known aborted
descendants

b. ordered list of input read by the action and its in-line
subactions

c. ordered list of output written by the action and its in-line
subactions. Each entry in the input and output lists· is
tagged with the identifier of the subaction that read or
wrote it.

5. if the action is a handler action

a. name of handler

b. pointers to the atomic argument objects that were
originally decoded from the call message

c. saved argument message, from which non-atomic
arguments are decoded as needed

d. pointers to the original atomic result objects returned by
the handler action

e. pointers to copies of non-atomic results

6. if the action is a calf action

a. pointers to the original atomic argument objects sent in
the handler calf

76

b. pointers to copies of non-atomic arguments

c. pointers to the atomic result objects -that were originaUy -
decoded from the result message

d. saved result message, from which non-atomic results
are decoded as needed

e. aid of the remote child

It is not too hard to come up with reasonable algorithms for collecting all the

information required to build an action tree for the user, given the information we

save in a-records. We omit the details here.

Of course, within a guardian, a-records should be grouped together to allow

easier search. One way is to group a-records by their topaction ancestors and then

to hash the groupings.

Finally, we note one further piece of information that goes into an a-record,

namely, crash counts of all guardians visited by descendants that committed up to

the action. As we shall see in the next section, crash counts help the debugging

system know when versions that are crucial to the inference of a pre- or post action

value have been lost because of a crash.

4.9 Effects of Crashes

The history that we collect for debugging is kept in volatile memory, and not the

more expensive stable storage. This is in line with our design principles of not

incurring unnecessary costs. As a result, when a guardian crashes and recovers, all

pre-post logs and a-records in the guardian will be lost. From that point until some

action writes into atomic object X in the guardian, we will not be able to deduce pre·

and post- values at X of actions that ran and read X after the crash because X's

pre-post log will be empty. We expect that writes are infrequent, when compared to

reads, so that our ability to debug actions at the guardian will be seriously impaired

for quite some time after a crash.

77

We propose the following solution. When a topaction that has a write lock on

an object prepares to commit at the object's guardian, we save the topaction's,

termination number in the prepared record that is written into stable storage. When

we recover an object after a crash, we create an 11 lnit T # 11 entry, where T # is the

termination number of the last topaction T that modified the object and that

committed, i.e., finished the second phase of the commit protocol. As with object

creation, this "lnit T # 11 is treated as a 11Pre-T 11 entry. The debugging system will use

it to give the action views for actions that run after the crash only. In particular, the

debugging system will not use an 11 lnit T # 11 entry to give action views for Tor any of

T's descendants.

For ~ctions that run after a crash to use 11 lnit T # 11 entries correctly, these

actions must have termination numbers that are greater than any of the "I nit T #"

entries that are created on recovery. So, when recovering from a crash, we set the

termination counter of the guardian to one greater than the greatest termination

number that is recovered. {Termination counters, like saved history, are volatile.).

B calls B.1
8.1 reads object X at guardian G1
8.1 commits

G1 crashes and then recovers
A calls A.1

A.1 writes X at G1
A.1 commits

A calls A.2
A.2 writes Y at guardian G2 A. 1
A.2commits

A commits
B aborts

A

A.2

Figure 4·6: Example Motivating the Need to Remember Crash Counts

78

B

B.1

However, there may be actions that ran before a crash that have termination

numbers greater than some-of the "tnit T#" entries.- We-have-to distinguish these - -

actions if we are to avoid giving the wrong action views for them. We give an

example of the kinds of problems that can· arise in Figure 4--6. In the example, the Pre

and Post Rules will give the pre-value of Bas the post-value of A at objects X and Y,

since B terminated after A and thus has a termination number that is greater than A's.

This is wrong, since B.1 read X before A modified it. The problem is that 8 lost the

read lock it inherited from 8.1 because of the crash. 8 ended up terminating after A

even though 8.1 read X before A modified It.

So, we remember crash counts of guardians visited by descendants that

committed up to an action, at the time the guardians were visited. A guardian's crash

count is a monotonically increasing number that is kept stably and increased by one

each time the guardian crashes and recovers. The orphan detection algorithm of

Argus [Liskov 84] already maintains and uses these crash counts. Therefore, it

requires little work on our part to incorporate them into our scheme.

We can use crash counts as follows. Suppose that we are looking for pre· or

post- A of an object Z at G. If the crash count that A has for G is less than the current

crash count of G, then a crash has occurred since A ran descendants in G. So1 we

must not use the Pre and Post Rules to give the action views of A at objects in G.

The above rule will prevent the debugging system from giving the wrong pre-8

value at X in our example of Figure 4--6, but it does not apply to pre-Bat Y. That is, the

above rule does not take care of the case when 8 does not have a crash count for G,

i.e., when B did not have descendants that visited G. We present a more general rule

below.

In the orphan detection algorithm of Argus, each guardian G keeps a map in its

stable storage that lists all guardians and their largest crash counts that are known to

G. A guardian's map is sent in all messages from a guardian. When a guardian

receives a map from another guardian, it merges the received map into its own map.

79

When merging the maps, if the two maps disagree about the crash count of a

guardian, the higher crash count is retained.

The general rule to incorporate crashes in the way we compute pre· and post.

action values is as follows:

If the crash counts in G's map for guardians that are visited by A (and
descendants that committed up to A) are greater than the crash counts ·
that these guardians had when A (or descendants) ran there, then we
cannot give the views of A and descendants that committed up to A at
any object in G.

This rule will prevent the debugging system from giving pre-8 values for

objects X and Yin our example of Figure 4·6 because when A calls A.2 at G2, the call

message carries with it the new crash count for G1.

4.10 Reclaiming Storage Space

In any practical system, saved history cannot be kept forever. In this section,

we present a scheme for reclaiming storage from saved history. The goal of the

scheme is to discard history in such a way that the debuggability of as few actions as

possible is affected. The proposed scheme is adapted from Reed's scheme for

pruning object histories [Reed 83).

In our scheme, the debugging system removes local a-records by the handler

action or topaction. That is, when a handler action or topaction A is chosen as the

victim, all a-records of local descendants are also removed with A's a-record.

Handler actions and topactions with earlier termination numbers are removed

before later ones. When a topaction or handler action terminated some system· or

user-defined time t before the current real time in the guardian, it (and all local

handler actions and topactions ttiat have termination numbers less than it) can be

garbage collected.

80

The scheme, therefore, requires some mechanism for timestamping the

termination numbers of topactions and handler actions with the real time of when the

numbers \vere created. In addition, the "lag" time t and the real-time clocks of the

guardians should be (approximately) synchronized so that the a-records of all of a

topaction or handler action's descendants, including those that are remote, become

eligible for garbage collection at approximately the same time.

When an action's a-record is removed, we can also remove the action's entries

in the pre-post logs since these entries are no longer usable by the Pre and Post

Rules. When all the entries of a topaction T (and descendants of T) are removed

from a pre-post log, we replace them with an "I nit T # ". In this way, the Pre and Post

Rules will continue to be able to give action views of actions that read the object after

T.

Entries in pre-post logs ca.n be removed in two ways: either lazily or

aggressively. In the lazy way, entries are removed when an object is accessed by an

action or swept by the garbage collector in Argus. In the aggresive mode, the

debugging system remembers in an action's a-record the objects that were modified

by the action. When the a-record is garbage collected, the debugging system

immediately prunes the pre· post logs of the objects that the action modified. We note

that the debugging system does not have to build the lists of modified objects itself.

The Argus run-time syste_m already maintains such a list for each active action; all

that the debugging system needs to do is save these lists.

Finally, we note that our proposed scheme does not require the Pre and Post

Rules to be changed. This is because a-records and history in pre-post logs are

truncated in much the same way that they would be truncated in crashes.

81

4.11 Summary and Discussion

In the chapter, we presented·

1. a method for computing a serialization order,

2. two schemes for supporting pre- and post- action values of built-In
atomic objects.

3. the implementation and use of the universal tree,

4. a way of saving arguments, results, input and output for debugging,

5. the effects of crashes on our debugging support, and ways to minimize
them, and

6. a method that is based on aging for rectalming space used by saved
history.

We did not discuss support for pre- and post- action values of user-defined atomic

objects. This discussion is deferred to Chapter Six.

In the rest of this section, we first compare and contrast the two schemes for

supporting pre- and post- action values of built-in atomic objects and then we

discuss pre- and post- action values of non-atomic objects and the effects of crashes

on our ability to debug aborted actions.

In both schemes for computing pre- and post· values of atomic objects, the

debugging system determines a pre- or post- action value simply by examining the

local pre-post log of the object, and making (usually) one or two queries to other

guardians. There is no searching through other objects' pre-post logs.

Both schemes give not only pre- and post- values of objects that were used by

a committed or aborted action but also pre-values of objects that the action did not

use. The latter pre-values are what the action might have seen if it had read the

objects. This information is sometimes useful in debugging. More importantly, this

information is crucial to our method for computing action views of user-defined

atomic objects, as will be discussed in Chapter Six.

82

The first scheme is straightforward but inefficient; it serves mainly to motivate

the optimized.second.scheme. The. first scheme explicitly sav.es the pre.· and post.

values for all actions that modify an object, whether directly or through descendants.

It also explicitly saves the read values for all actions that read an object. In all, It

saves more information than is necessary.

The optimized scheme, on the other hand, does not save duplicate information.

Post-values are stored only when necessary, i.e., just before the next time the object

is modified. Pre-values for read-only actions are usually not saved at all. Thus, under

what we expect to be normal circumstances, almost all of the versions that are saved

and used in the optimized scheme are recovery versions created by the action

system; the debugging system will not have to create very many copies of its own.

Nevertheless, the debugging system has to use storage space to keep recovery

versions around longer than they might otherwise be kept.

Notice that because we do not keep pre-values for read-only actions in the

optimized scheme, we can no longer distinguish an action that read an object X from

an action that did not use X at all. However, if this lost information is really important,

the user can deduce it by retracing the action. Admittedly, this imposes more work

and inconvenience on the user. However, the savings in stored history make it

worthwhile.

In the case of an action that is still active, we can tell whether or not the action

has accessed an object. If it has a lock, then it has accessed the object. So, its

pre-value and those of descendants that committed up to it are determined;

otherwise, the pre-values are not well-defined. For example, consider a topaction A

that is active and that does not have a (read or write) lock on an object X. At the time

we ask for the pre-A value of X, an action 8 may be the committed topaction to have

modified X last, so that pre-A of X will be the post-value of 8. However, there is no

guarantee that pre-A of X will stay the post-value of 8. If another topaction C were to

modify X after 8 and then commit while A is still active, pre-A would change to the

post-value of C.

83

Similarly, actions that are still active do not have well-defined post-values.

Terminated ·descendants that committed up to ·an active action also do·not· have··

well-defined post-values, if the active action does not have a lock on the object.

However, if the active action has a lock on the object, the post-value of a terminated

descendant is defined.

The discussion above regarding when pre· and post· values of a terminated

subaction are defined does not apply to aborted subactions (and their descendants).

An aborted subaction's pre· and post· action values become defined as soon as the

subaction terminates; Its action values never depend on what ancestors do after it Is

called.

The algorithms for deducing pre· and post· action values of atomic objects do

not apply to non-atomic objects since no history is saved in these objects. To get the

value of a non-atomic object as seen in the pre-state of an action A, the user has to

retrace from A's local handler action down to the call of A. (Support for retracing is

discussed in the next chapter.) To get the non-atomic object's post-A value, A has to

be retraced to completion.

Finally, we discuss a subtle effect of crashes on our ability to debug aborted

actions and their descendants. Recall that our debugging system will refuse to give

pre- and post· values of action A (and descendants that committed up to A) at objects

in guardian G if the crash counts that A has of guardians A visited are less than those

for the same guardians in G's map. This implies that we might not be able to debug

descendants of A if A was aborted by a crash. This is undesirable if A was the one

that caused its guardian to crash.

We propose the following solution: a guardian that crashes for reasons other

than a node failure should continue to be available for debugging, with saved history

intact; the crash count of the guardian remains the same while it stays "crashed."

Unfortunately, this solution exacts a relatively high price: while the guardian stays

"crashed", it is accessible only to the debugger and cannot be used by actions.

84

Chapter Five

Retracing an Action

In Phase Two, the debugging system recreates the execution of a previously

executed action on direction from the user. We refer to this activity as a retrace of

the action. A retrace has the following properties:

1. It is a serial execution that is equivalent, in the sense of serializability
theory [Eswaran et al. 76, Bernstein & Goodman 81], to the original
computation.

2. The user is able to examine intermediate states by stopping the
progress of a retrace with breakpoints.

3. A retrace does not interfere with the regular use of data objects and
guardians. In particular, it does not delay the progress of actions.

In this chapter, we discuss how retracing with all of the properties above can

be implemented using an action's tree and the history that is saved in built-in atomic

objects. We begin with an overview of the implementation in Section 5.1, and then

divide the details into three sections: one on action creation and termination, one on

object creation, and one on accessing objects. In this chapter, we concentrate on

actions that use only non-atomic and built-in atomic objects. We discuss retracing

actions that use user-defined atomic objects in the next chapter.

Since the saved history is kept in volatile memory, an action is retraceable only

if no crash has occurred since it ran.

5.1 Overview

A retrace is implemented by re-executing code and has to begin with a handler

action. This is because the debugging system does not save environments. The

local environments of an in-line subaction's ancestors, therefore, have to be

85

recreated if the in-line subaction is to be retraced. On the other hand, the

environment of a handler action consists solely of fts guardian's variables, which are.
never de-allocated provided the guardian does not terminate.

When the user retraces a handler action, the debugging system creates a

retrace process to run the handler whose name is in the handler action's a-record.

This retrace process is used to retrace the in-line subactions that are called from the

handler action, as well.

A retrace process maintains information about the state of its retrace. For

example, it keeps track of the aid of the action that it is currently retracing. (A

summary of the retracing state is given in Section 5.5.) Since a retrace's state is kept

with its own process, concurrent retraces will not interfere with each other.

The user has the option of skipping the retrace of subactions (in-line

subactions or handler calls) in a retrace. The user may want to skip a subaction if he

or she feels that the subaction has nothing to do with the bug that is being isolated.

When a handler call is skipped, no call message is sent. Instead, the result message

of the original call, which was saved in the call action's a-record, is decoded and

used as if the handler call had just returned it.

Terminal input during retrace of an action is taken from the input values that

are saved from the original computation. These input values are tagged with the aids

of the subactions that read them and are kept as an ordered list in the a-record of the

handler action or topaction of which the action being retraced is an in-line subaction.

As a result, when an action reads from the terminal it will be given exactly the same

input it originally received. To help the user follow the progress of a retrace, the

debugging system will send input values that are read to the user's terminal. For the

same reason, terminal output during retrace is directed to the user's terminal.

86

5.2 Action Creation and Termination

A retrace process can be actively retracing only one act_ion at a time. We cal& ·

this action the current action of the retrace process.

When a retrace process executes an enter statement, which gives rise to a

child action, it has to find the aid of the child. To do this, a retrace process keeps

track of its position in the action tree. In particular, it remembers the current action's

last child to terminate in the retrace, i.e., the last child to be retraced or skipped.

When a retrace process executes a coenter statement, which is Argus'

statement for spawning a group of concurrent child actions (called coarms), it

retraces the coarms one after another in their termination order. Active coarms, i.e.,

those that are stopped but not terminated, are retraced in some arbitrary order after

the terminated coarms in the group; the order does not matter because an active

coarm cannot possibly have seen the effects of another active coarm.

Since a retrace process remembers its current action's last child to terminate

in the retrace, it can deduce the aids that are associated with a group of coarms from

the current action's tree. However, coarms in Argus may run different code or be

given different "arguments" .7 So, how do we tell which aid to use with which coarm

when retracing? (Remember, we do not keep pointers to code or "arguments" in

a-records of coarms.) We assume that the system assigns aids in such a way that we

could tell the order of the aids' creation by simply comparing the aids. We also

assume that coarms are created in the same total order each time the same coenter

statement is executed. Based on these two assumptions,8 it is clear that we can

match aids to coarms when retracing. For example, if the system assigns aids in

71n Argus, a parent may provide values for some local variables in a coarm. This is very much like
argument passing. However, we do not allow the user to ask for these "arguments" in Phase One of the
debugging method. Instead, he or she has to retrace the coarm if values of these "arguments" are
desired.

8ooth of which are satisfied in the current implementation of Argus

87

increasing order, then the smallest aid among the group of coarm aids is the one

associated with the first coarm· generated. by ·the coenter· ·statement, the second·

smallest with the second coarm, and so forth.

When the retrace process executes a call action, it encodes and sends the

arguments off in a message that is tagged as a retrace but otherwise is like that of a

regular call message. The process then waits for the call's results. On getting the

results, it decodes them and proceeds with the rest of the retrace.

When a retrace process is created to retrace a handler action, it first decodes

the arguments either from the retrace call message if the handler action is called

from another retrace process, or from the original call message saved in the handler

action's a-record if the retrace is directly initiated by the user. When the retrace of a

handler action ends in the encoding of results, the retrace process sends the result

message to the call action's guardian if the retrace was initiated by a retrace call

message. Otherwise, the retrace process sends the result message to the user's

controlling terminal. A retrace process terminates when it complet~ the retrace of

its handler action.

When a retrace process completes the retrace of an in·line subaction S, it

updates the parent's last child to terminate to S and continues with the parent's

retrace.

Finally, we note that a retrace process has to be careful not to re-execute

noticeably past the point where its current action is stopped in the original

computation. Below, we give the conditions for determining when the retrace

process has come to the end of its current action. Note that the retrace of an action

may also end because needed history has been discarded and is no longer available.

The retrace of a terminated action is complete when one of the following

events occurs:

88

1. A child action is to be created but we have run out of children aids
from the original computation. . .

2. A built-in atomic object is to be created but there is no record that this
particular creation was ever made in the original computation.
(Retracing create calls is discussed in the next section.)

3. The result of an equality comparison between two non-atomic objects
is needed but there is no record of such a comparison in the action's
list of "equal results". (See Section 5.4.2.)

4. The action attempts an 110 and there is no record of that particular 110
in its handler action's a-record.

5. The action attempts to write into a built-in atomic object that it did not
write in the original computation.9

6. The action terminates.

The retrace of a stopped but unterminated action is complete when one of the

following events occurs:

1. Any one of the first four of the events listed above for ending the
retrace of a terminated action.

2. The action attempts to read from a built-in atomic object for which it
does not have a read lock.

3. The action attempts to write into a built-in atomic object for which it
does not have a write lock.

4. The action attempts to terminate.

5.3 Creating Objects

A call to the create operation of a built-in atomic type in a retrace must return

the same object as the one that was returned by the corresponding create call in the

original computation. This is because the history collected in an atomic object may

be needed to create a serial execution that is equivalent to the original computation.

As discussed in the previous section, we need the history to tell where an active

9 An action A wrote into an object in the original computation iff the object's pre-post log has either a
"pre-A" or "After· T" entry, where Tis a child of A. See Section 4.5 of Chapter Four for details.

89

action is currently stopped. In addition, a retrace process can skip the retrace of

subactions without adversely affecting the rest· of the-retraee only if the saved history·

in the original built-in atomic objects is available. We give details on how a retrace

process skips subactions in the next section.

A simple method to ensure that original objects are returned in retraced create

operations of built-in atomic types is as follows. We keep in an action's a-record a

log of pointers to built-in atomic objects that the action created in the original

computation, in the order they were created. In a retrace of the action, the retrace

process picks objects from this log when create calls of built-in atomic types are

executed. Objects are selected in FIFO order. A retrace process maintains an index

into the co~responding list of created atomic objects for each action that it has begun

to retrace but has not completed.

In contrast to atomic objects, new non-atomic objects must be created in a

retrace. Otherwise, the retrace of an action may modify the regular system state and

interfere with running actions. New non-atomic objects do not cause problems in the

retrace of actions, as we shall see in the next section.

5.4 Accessing Objects

When a retrace process reads an object in a retrace, it has to see the same

value as the one that was read by its current action in the original computation.

Similarly, when the user asks for the value of an object in a retrace, he or she must

receive the value that reflects the modifications of the serial execution up to the point

where the retrace is stopped. In this section,· we show how values of an object at

different points in a retrace can be determined.

5.4.1 Atomic Objects

In a retrace, accesses to atomic objects do not secure locks. This is because

we are reenacting history when retracing an action; the place of the action in the

serialization order is already defined.

90

Each retrace process has a map that gives the current retracing versions

(CRV) of atomic objects. The CRV is the retracing. counterpart to an object's current

version. It holds the current value of the object in the retrace. Only atomic objects

that have been accessed thus far in the- retrace are in the retrace process's CRV

map.

When a retrace process reads or modifies an atomic object, say X, it reads or

modifies the object in -X's CRV. If the retrace process does not have an CRV for X, it

creates one; the newly created CRV is initialized to the post-value of the current

action's latest child to commit in the retrace, or the pre-value of the current action if

no committed child has been retraced thus far. Since the retrace process already

keeps the aid of the latest child to be retraced (see Section 5.2), it can find the latest

child to commit in the retrace from the action tree. Obviously, we can optimize by

explicitly remembering the latest committed child to be retraced, if necessary.

When_ a handler call is made from the current action, it is possible that some of

the retrace process's CRVs will not be current anymore when the call returns. For

example, consider the retrace of the following sequence of events:

1. A modifies atomic object X
2. A makes handler call H
3. H modifies X, either directly or via a descendant
4. H returns
5. A readsX

A's retrace process will create an CRV for X when step 1 is retraced. Since each

handler action has its own retrace process, the process that retraces A will differ

from the one that retraces H. So, X's CRV in A's retrace process will not reflect H's

modification even after H is retraced. A's retrace process, therefore, will read the

wrong value in step 5.

Notice that a retrace process's CRVs can be invalidated only if a handler call

has descendants in the same guardian as the retrace process. However, we propose

91

a solution that does not take advantage of this information, mainly because the

solution is simple and it works for-skipping subactions, as well. -The:solution 1s-as - -

follows:

When a committed subaction is skipped or when the current action
makes a handler call that commits, the retrace process discards its CRV
map.

After the subaction or handler call, the retrace process re-builds the CRV map with

correct current values as atomic objects are accessed. Note that the retrace process

does not have to discard its CRV map after an aborted handler call or a skipped

aborted subaction: aborted handler calls and aborted in-line subactions cannot

affect the values in the retrace process's CRVs.

When the retrace process retraces an in-line aborted subaction, it has to use a

new (initially empty) CRV map. This is because the view of an aborted subaction is

not tied to that of its parent's: the CRVs in the old map may not be the values that the

aborted subaction saw. When the aborted subaction returns to the parent, the

retrace process must get rid of the CRV map that it used when retracing the

subaction. The retrace process can either re-use the CRV map it had just before

retracing the subaction, or begin afresh with an empty CRV map.

When a retrace is stopped because of a breakpoint and the user asks for an

atomic object's value in that intermediate state of the retrace, the debugging system

displays the object in the CRV if the atomic object has an CRV in the retrace process.

If there is no CRV for the atomic object, the debugging system displays the post-value

of the last committed child in the retrace, or the pre-value of the current action if no

committed child has been retraced thus far.

92

5.4.2 Non-Atomic Objects

Recan- that by our assumptions (Section· 2;3), an· action- that writes- into··a

non-atomic object must also be the one to have created it. So, when we come to a

write of a non-atomic object during a retrace, that non-atomic object must have been

created by the same action earlier in the retrace. It is alright for the retrace process

to go ahead and modify the non-atomic object - the regular system state cannot be

affected in any way. Also, since the assumptions ensure that actions continue to be

serializable. even when they share non-atomic objects, reading and writing directly

into the current {and only) versions of non-atomic objects in a retrace will give results

that match those of the original computation. In particular, non-terminated

concurrent siblings can be retraced in any arbitrary order without any problems.

(Our assumptions disallow concurrent siblings from communicating information to

each other through non-atomic objects; they may read but not write non-atomic

objects that are not in their local environments.)

In Argus, two objects are equal if they are the same object. Since new

non-atomic objects are created in a retrace, a problem with equality comparisons

may arise. Consider the following example.

1. Action P creates a non -atomic object X
2. P assigns X to variable V
3. P calls a subaction S
4. S inserts the object referred to by V into an atomic object Y
5. Scommits
6. P asks whether V's object equals the object in Y

In step 6 of the original computation, P will find that the object in V equals the object

in Y. However, in a retrace of P, step 6 will return a negative result if the user skips

the retrace of Sor if Sis a handler call. This is because P's retrace process is forced

to use the post·S value of Y in step 6; the non-atomic object saved in this post-S

value does not equal the one that is created by the retrace process in step 1.

One solution that the debugging system can take is to save the results of all

93

equality comparisons between non-atomic objects that are made by an action. These

resu~ts are saved as a list in -the action's a-record and are used· to reproduce- the

results of equality comparisons between non-atomic objects in a retrace. This list of

"equal results" is used in a retrace in precisely the same way that the list of pointers

to created atomic objects (Section 5.3) is used.

5.5 Summary and.Discussion

We first summarize this chapter with a list of history that is saved to support the

retrace of actions. We then discuss some properties of retracing. Finally, we end

with a discussion of how other kinds of actions and activities in Argus might be

debugged.

For the most part, history that is saved for Phase One of our debugging method

is what we use for supporting the retrace of an action. However, there are additional

information, data structures, and capabilities that are needed to make retracing work.

These are:

1. A list of pointers to built-in atomic objects that an action creates is saved in
the action's a-record.

2. The results of equality comparisons of non-atomic objects that are made by
an action is saved in a list (called "equal results") in the action's a-record.

3. The following information is maintained in a retrace pr.ocess's state:

a. whether the retrace process was initiated by the user or by a
retrace call message

b. aid of the action that is currently being retraced

c. aid of the current action's last child to be retraced (or skipped),

d. a map (called CRV map) of atomic objects to their current
values in the retrace, and

e. for each action that the retrace process has begun to retrace
but has not completed:

i. whether the action is active

94

ii. an index into the action's list of created atomic
objects, and

iii. an index into the action's list of "equal results".

4. The implementations of built-in atomic types must understand "retrace" mode
so as to use the saved history described above correctly.

We note that a retrace process does not use any of the data structures In an

atomic object that an action uses, other than to read from the pre-post log.

Furthermore, it does not modify non-atomic objects in the regular system state.

Therefore, retracing cannot interfere with the regular system state and cannot delay

the progress of actions.

To retrace a nested topaction, the user has to retrace from the handler action

of which the topaction is an in-line action. This is because a nested topaction may

use objects in its parent's local environment; this environment has to be set up before

the nested topaction can be retraced. In addition, a retrace process will use a new

(initially empty) CRV map when retracing the topaction since a nested topaction's

view is not connected to that of its parent's. Retracing nested topactions, therefore,

is no different from retracing in-line aborted subactions.

When retracing an action A, the user may skip the retrace of any nested

topaction or subaction, without adversely affecting the retrace of the rest of A. This Is

because a nested topaction or subaction, by our assumptions, can communicate

information to A only through atomic objects. This information is available in A's

environment even if the nested topaction or subaction is not retraced.

In the previous chapter and in this chapter, we considered only actions that are

either handler activations, subactions of handler activations, or nested topactions.

We will now briefly discuss other. kinds of actions and activities in Argus and how

they might be debugged:

1. A guardian in Argus may have code that is not run as an action.
However, this b~ckground code serves mainly as a mechanism for

95

initiating (non-nested) topactions and tends to be simple, as a result.
Debugging background code, therefore, often requires no special aid.

If a non-nested topaction does not use any of its background code's
local environment, then the debugging system presented thus far can
be used to debug the topaction, as is. Otherwise, we will have to save
a checkpoint of the topaction's pre-state at the time the topaction is
called. This involves saving the parent's local environment and copies
of non-atomic objects referenced from the local environment. Atomic
objects need not be copied becliuse their values in the pre-state of the
topaction can be deduced.

2. To create a guardian, an action calls a creator of the guardian's type.
A subaction of the calling action is created to run the creator's code,
much like a handler call. When a guardian recovers from a crash, a
topaction is created to run the guardian's recover code and initialize
its volatile variables. If a creator or recover action aborts, the guardian
it is creating or recovering crashes.

Debugging creator and recover actions requires some extra machinery
but otherwise is much like debugging handler activations. For
instance, when retracing a creator or recover action, the debugging
system must not assign to the guardian's variables; otherwise, actions
that ·use the guardian will be affected. Instead, a different set of
temporary variables must be used for the retrace. Also, to ·allow the
user to debug creator and recover actions that abort, guardians that
crash should continue to be accessible for debugging. (We already
require this capability for debugging orphans in Chapter Four. In
general, guardians that crash for reasons other than node failures
should be available for debugging, with saved history intact.)

3. We have assumed that only atomic objects are shared among actions
that are not ancestor-related. If we were to relax this assumption and
allow non-atomic objects to be shared, we will have to save the result
of every read if actions are to be retraceable. Alternatively, if reads are
more frequent than writes, we can record writes instead of reads, and
use placeholders to tell us which value an action read.10 It is not clear
that there is any way around the expense of saving values on every
read or every write.

We note that saving on every read will work just as well for non-atomic
objects that are not deterministic: actions that use these
non-deterministic objects will continue to be retraceable. We also note

1 OThis is how we save state ct:ianges at mutex objects. See Chapter Six.

96

that shared non-atomic objects, in general, will not have well-defined
values in the pre-states of actions: consecutive reads by an action may
return different values. Consequently, Phase One of the method will
not be as effective if too many non-atomic objects are shared.

97

Chapter Six

Debugging Programs That Use
User-Defined Atomic Objects

In Argus, users can program their own atomic abstract data types if they want

types that are closer to an application's domain or that allow more concurrency than

built-in atomic types. Like regular abstract data types, the implementation of a

user-defined atomic type has to satisfy the type's sequential specifications, i.e., the

implement~tion has to be correct in the absence of concurrency and node crashes.

In addition, the implementation of an atomic type has to ensure that:

1. actions that access user-defined atomic objects continue to be
recoverable and serializable, ·and

2. user-defined atomic objects are restored after a crash to the states
they had at the end of the last committed topaction before the crash.

We refer to the two properties above as atomicity and resilience, respectively.

In this chapter, we consider the debugging of actions that use not only built-in

atomic objects but those of user-defined atomic types as well. We begin, in Section

6.1, with a discussion of .the difference between an object's concrete and abstract

values. This distinction is especially important in the case of user-defined atomic

objects in Argus because an "undo" of an aborted action's effect will often restore

the abstract value of a user-defined atomic object without also completely undoing

the action's modification of the object's concrete value.

In Section 6.2, we review the implementation of user-defined atomic types in

Argus. In Section 6.3, we give the history that must be saved to provide pre- and

post- action values of user-defined atomic objects and to allow the retrace of

operations at these objects. We discuss the use of this saved history in Sections 6.4

98

and 6.5. Finally, in Sections 6.6 and 6.7, we discuss how the effects of crashes and

storage reclamation can be minimized.

In this chapter, we consider only user-defined atomic types that are

implemented correctly. The debugging of the implementation of a user-defined

atomic type is covered in the next chapter.

6.1 Abstract Values

In this section, we discuss the concrete and abstract values of objects and how

the two values are related to each other. The dist:nction between the values are

crucial to the !)n_gerstanding of Argus's mechani$m for implementing user-defined

atomic types.

An implementation of an abstract data type will use an internal representation

(rep) to represent an object of the type [Guttag et al. 78]. A rep itself is an object.

For example, a set may be implemented with an array as its rep. The concrete value

of an object is the value of its rep. For example, the concrete value of a set object

discussed above is the value of the array that is its rep.

Each implementation of an abstract data type T has an abstraction function

that maps a concrete value of an object of type T into a value in the abstract domain.

These values in the abstract domain are called abstract values. We note that

different concrete values may map into the same abstract value. For example, a set

object 51 whose concrete value is the array [1. 2] may have an abstract value that is

the mathematical set {1, 2}. A set 52 whose concrete value is the array [2, 1] may

also map into the same mathematical set {1 1 2}. Thus, the abstract values of 51 and

52 may be equal even though their concrete values are not.

The meaning of equality among abstract values is dependent on the

specification of the type. We assume that the user knows the specification of the

type and can tell whether two values that are displayed are equal. Recall that we are

99

assuming that each implementation of a type has a display operation. This operation

functions as a (kind of) abstraction function. In this thesis, we assume that display

operations are implemented correctly. A person who is debugging should be abre to

deduce the abstract value of an object from the result of the display operation

without having to know the details of the implementation.

We have used and will continue to use the word "value" without qualification

to mean the abstract value of an object in this thesis.

6.2 User-Defined Atomic Objects

In this section, we discuss the mechanisms provided by Argus for

implementing atomicity in user-defined atomic types. Resilience will be discussed in

the next chapter.

We will be referring to semiqueues in examples throughout this chapter and

the next. A semiqueue is a bag or multi-set. It can be regarded as a kind of queue

where dequeuing is not restricted to FIFO order. A deq operation can return any item

in the semiqueue that was inserted by an action that committed relative to the

dequeuing action and that has not yet been dequeued. An implementation of the

semiqueue type is given in Figure 6-1. The implementation is taken from [Weihl &

Liskov 82].

A user-defined atomic object, e.g. a semiqueue, may have a non-atomic object

in its rep. Unless the non-atomic object is immutable or not modified at all by using

actions, an operation execution will need to exclude other concurrent operation

executions from accessing the non-atomic object while it uses the object. Argus

introduces a parameterized data type called mutex for exactly this kind of mutual

exclusion. A mutex object consists of an exclusive lock and a resource (an object of

the type specified in the mutex's parameter). If all operations are coded to seize the

mutex's tock before using the resource, a process will have exclusive use of the

resource while it has the lock. A lock is released at the end of the seize statement

100

Figure 6· 1 : Implementation of the Semiqueue Type

semiqueue = cluster is create, enq, deq

qitem = atomic_varlant[enqueued: int, dequeued: null}
buffer = array[qitem]
rep = mutex[buffer]

create = proc ()returns (cvt)
return(rep$create(buffer$new()))
end .:reate

enq = proc (q: cvt, i: Int)
·item: qitem : = qitem$make_dequeued(nll)
qitem$change_enqueued(item, i)
seize q do

buffer$addh(q. value, item)
end

end enq

deq = proc (q: cvt) returns (Int)
cleanup(q)
seize q do

while true do

% dequeued if action aborts
% enqueued if action commits

% add new item to buffer

for item: qitem in buffer$elements(q.value) do
% look at all items in the buffer

tagtest item
% for an item that can be dequeued by this action

wtag enqueued (i: int): qitem$change_dequeued(item,nil)
return(i)

end % tagtest
end %for

pause
end% while

end %seize
enddeq

101

cleanup = proc (q: rep)
enter topaction % start an independent action

seize q do
b: buffer:= q.value
for item: qitem In buffer$elements(b) do

tagtest item % to remove items in the dequeued state
tag dequeued: buffer$reml(b)
others: return
end % tagtest

end %for
en~ %seize

end % enter - commit cleanup action here
end cleanup

end semiqueue

that acquires it, or when a pause is executed. In the latter case, the executing action

will stop for some system-defined amount of time before attempting to re-acquire the

lock and continue execution. For example, in the definition of the semiqueue type, all

operations (enq, deq, and the internal routine cleanup) seize the rep's lock before

accessing the buffer in the rep. Thus, whoever has the lock is guaranteed exclusive

use of the buffer.

Mutexes can prevent unwanted interference between concurrent operation

executions. However, to synchronize actions, the programmer has to take advantage

of the atomicity properties of built-in atomic objects. Actions can be synchronized

through their use of some common built-in atomic object that is in the rep of the

user-defined atomic object. Furthermore, any change to the abstract state 11 of a

user-defined atomic object must include modifying a built-in atomic component in

such a way that should the modifying action abort, the automatic recovery of the

built-in atomic component is sufficient to undo the action's modification of the

object's abstract state. For example, in the enq of an item into a semiqueue object,

the atomic variant inserted into the (non-atomic) buffer of the representation will

11 An object's state is its value.

102

--- - --- ---------- --------- -------

revert to a "(dequeued: nil>" state if the enq'ing action aborts. Even though the

atomic variant continues to be in the buffer, it is treated as a "non-item" by the

semiqueue operations, so the abstract state of the semiqueue is effectively restored

to what it was before the enq operation. Note that no user code is run to undo an

aborted action's modification of a user-defined atomic object.

The deq operation of the semiqueue uses a tagtest statement to skip over

items in the buffer that are not candidates for dequeuing. A tagtest statement is like

a case statement except the arm of a tagtest additionally requires that a lock on the

atomic variant be secured in a specified mode. A tag arm specifies a read lock, a

wtag arm a write lock. If the appropriate lock cannot be secured, the condition for

the arm fails. An others arm, if provided, will be chosen if all others fail; without an

others arm, the tagtest statement will simply terminate if no arm succeeds. The

tagtest statement helps in the implementation of non-determinism in user-defined

atomic types.

Because of the requirements of action synchronization, we assume that all

user-defined atomic types will have a rep that is one of the following:

1. an atomic object (built-in or user-defined)

2. a mutex object, or

3. an immutable structure (struct or sequence) of mutex and/or atomic
objects.

In addition, we assume that an operation accesses non-atomic objects in a mutex

only when it has the mutex's lock.

It is obvious that the restriction on the structure of a user-defined atomic type's

rep can be checked statically. However, it is not as easy to verify that non-atomic

objects in a mutex are used only when the mutex's tock is held; we have to be careful

that there are no "hidden" pointers so that the non-atomic objects are accessible via

a different path. This task is beyond the scope of the thesis.

We have already .shown, in the previous two chapters, how our debugging

103

technique works with built-in atomic objects. User-defined atomic types with built~in

atomic reps do not present any new problems. Therefore, in the rest of this chapter,

we concern ourselves only with user-defined atomic objects that contain mutexes in

their reps. In particular, we work out details for the following:

1. pre- and post· action views of user-defined atomic objects that contain
mutexes, and

2. recreating the results of accesses at these mutex objects during
retracing.

We begin with a study of what part of a mutex's history to record.

6.3 Recording History

6.3.1 State Changes of Mutex Objects

History regarding changes of a mutex's state is kept in a special pre-post log in

the mutex object.

As with built-in atomic objects, we assume that when a mutex object is created,

the system runs a nested topaction that writes the initial value into the object and

then immediately commits. We also save an initial {"lnit") entry in a mutex's pre-post

log when the mutex is created to distinguish actions that ran before the creation from

those that ran after the creation.

Saving Rule 0:
When a mutex object is created:

•Save a pointer to a copy of the initial value.

•Tag the newly inserted entry in the pre-post log as "I nit T # ",
where T # is the termination number of the nested topaction T that
writes the initial value.

Accesses to a mutex object from one action may interleave with those from

other actions at that mutex object. As a result, we have to save a mutex object's state

either before every write or after every write if we are to reproduce the results of an

104

action's operations through retracing the action. In addition, we need to remember

the timing of reads in relation to writes.

Saving Rule 1: .
When an action A releases a mutex lock:

1. If the compiler can tell that the mutex's resource was not
modified in the seize, create a read placeholder in the mutex's
pre-post log. Label this nawly inserted entry with A's aid.

2. Otherwise, make a copy of the current version 12 and save a
pointer to the copy in the mutex's pre-post log. Label this newly
inserted post-mod entry with A's aid.

We choose to save mutex versions after an access instead of before because

the compiler is better able to tell whether the mutex resource has been modified

within a seize given the exit that is being taken.

In the algorithms for computing pre- and post- action values, to be described in

Section 6.4, we will treat an "lnit T #" entry like a post-mod entry. Note that an "lnit"

entry always belongs to a topaction and that a termination number and not an aid is

saved in the entry.

We will also treat read placeholders as post-mod entries; the mutex version

that is associated with a read placeholder is the version in the last real post-mod

entry before the placeholder in the log.

6.3.2 Results of Lock Tests at Built-in Atomic Objects

Much like accesses of a mutex object, tests of the status of a built-in atomic

object's lock by an action may interleave with changes to the lock status by other

actions. The results of the executions of tagtests and other lock testing operations,

therefore, must be saved if we are to retrace actions in serialization order. For

12we copy down to contained atomic and mutex objects. Contained atomic and mutex objects do not
have to be copied because they maintain their own history.

105

example, assume that the following sequence of operations were made at an initially

empty semiqueue object:

A calls enq with 1 as argument
A's enq returns

B calls enq with 2 as argument
B's enq returns

B commits at the semiqueue object
C calls deq

C's deq returns 2
A commits at the semiqueue object
C commits at the semiqueue object

Figure 6·2: Example 1

A, Band Care topactions. C's deq returned the element inserted by B, even

though the very first element it examined was that of A's. This is because the tagtest

statement that C executed on A's element failed to secure a write lock; A was still

active then. Now, if we were to retrace C after A, Band Call committed, C will deq

A's element instead of B's, if the original response to the tagtest on A's element was

not saved I Our retrace will not be equivalent to the original execution.

So, we add a "lock-test" list to the a-record of an action; responses to lock

tests made by the action during normal execution are saved in this log. This list is

much like two other lists that we already keep in an action's a-record, namely, the list

of pointers to created atomic objects (Section 5.3) and the list of "equal results"

(Section 5.4.2). Our debugging system uses a lock-test list in precisely the same way

it uses these other lists when retracing an action. We note that the history in a

lock-test list does not contribute in any way to the calculation of pre- and post- action

values.

Figure 6·3 gives the pre-post and lock-test list of C that result from the example

in Figure 6-2. Notice that the names of the actions that created the various objects

have been omitted from the "lnit" entries in Figure 6-3.

106

pre-post log of buffer (rep of the semiqueue object):

"I nit" ~ .,,. []

post-mod, A ~ .,,. [q1)

post-mod, B ~ , [q1, q2]

read, C

q1 and q2 are qitems (i.e. atomic variants) inserted by A and B
respectively, and they have their own history as shown below.

pre-post log of q 1 (qitem inserted by A):

I "In it"
pre-A : I -

-+--___ ..,.> <dequeued: nil>
~ <dequeued:nil>

I current • I -------> <enqueued: 1>

pre-post log of q2 (qitem inserted by B):

II I nit"

pre-B

pre-C

I current

C's lock-test list:

false

true

~ ,,,.
~ ,,,.

->

<dequeued: nil>

<dequeued: nil>

<enqueued:2>

-· -j---->- <dequeued: nil>

Figure 6-3: Pre-post and "Lock-test" Logs of Example 1

107

6.3.3 Created Mutex Objects

To retrace an action that accessed user·defined atomic objects, we must be

able to reproduce the results of the action's operations at mutex objects. A create

call of a mutex type, when retraced, must therefore return the object that was created

in the original computation. Otherwise, we will not have the crucial history that was

so painstakingly recorded in the pre-post log of the original objects.

Recall that we ·have already encountered in Section 5.3 the need to return

original built-in atomic objects when retracing create calls. The solution we

presented there keeps, in an action's a-record, a log of pointers to built-in atomic

objects that the action created. During retracing we maintain an index into the log

that gives the object to return when the next create of a built-in atomic type is

retraced. To have original mutex objects returned when create calls are retraced, we
simply include mutex objects in this log of created objects, and have the mutex type

manager access the log for the appropriate object when its create operation is called

in retrace mode.

6.4 Pre- and Post- Action Views

In this section and the next, we show how the history saved in the pre-post log

and lock-test list can be used to extend our debugging method to include actions that

use user-defined atomic objects. This section discusses the support for pre- and

post- action views of user-defined atomic objects; the next section covers retracing

operations at these objects.

6.4.1 Rep with a Single Mutex Object

We begin with user-defined atomic objects whose reps consist of a single

mutex object.

The mutex version that we choose to represent the concrete pre-value of an

action A at the mutex's user-defined atomic object must be one from which we can

108

deduce the net effect of all accesses visible to A, i.e., accesses made by actions that

are visible to A and accesses made by (proper) ancestors before A was called.

Definition:

The pre-A value of a mutex object is the latest post-mod version in the
mutex's pre-post log that is tagged with either

1. the aid of a action B that is not ancestor-related to A such
that GA8(A) # < GAA (B) #, or

2. the aid of a proper ancestor of A.

If there is no such post-mod version, then it is an error to ask for pre-A of
the mutex.

Note that the "lnit" version is considered a post-mod entry. So, if there is no

post-mod version that satisfies condition 1 in the definition above, then the mutex

object must not have been created before A ran.

In the example of Figures 6-2 and 6-3, A is serialized after B even though A

inserted an element into the semiqueue object before B. Using our definition, the

concrete pre-A value of X will be given by B's post-mod version in the pre-post log of

the rep. Notice that this version includes not only the atomic variant that represents

the element inserted by B but also the atomic variant that represents the element

inserted by A itself! However, the atomic variant that represents the element inserted

by A has value "(dequeued: nil>" in the concrete pre-A state. Since an element that

has value "<dequeued: nil)" is treated as a "non-item" by the semiqueue operations,

the element inserted by A will not be in the abstract pre-A value of X. The abstract

value of X in the pre-A state, therefore, will correctly contain the single element

inserted by B.

In general, the version of a mutex object chosen as a pre-action view of a

user-defined atomic object may contain modifications by actions (including

ancestors) that are not supposed to be visible in the view. Since we are assuming

that atomicity and display operations are implemented correctly in user-defined

109

atomic types, these modifications to the rep will not be visible in the abstract value

that is displayed as the pre-action view of the atomic object.

In addition to the accesses that must be reflected in the pre-action value, the

mutex version we choose to represent the post-value of an action A must also include

the modifications of A and descendants that committed up to A.

Def initlon:

The post-A value of a mutex object is the latest post-mod version in the
mutex's pre-post log that is tagged with either

1. ths aid of a action B that is not ancestor-related to A such
that GA8 {A) # < GAA (8) #, or

2. the aid of A, an ancestor of A, or a descendant that
committed up to A.

If there is no such post-mod version, then it is an error to ask for post-A
of the mutex.

Here too, it is possible for the chosen mutex version to contain modifications

by actions that are not visible in the post-state of interest. As in the case of

pre-states, these modifications will be abstracted away by the type's display

operation, assuming that both atomicity and the display operation are implemented

correctly in the type.

Referring again to the example given in Figures 6-2 and 6-3, B's post-mod

version will be the one chosen to give the post-A value of the rep. The abstract

post-value of A will correctly show a semiqueue with two elements, namely those

inserted by A and 8.

Note that we could use for a pre-action value of a mutex object the same

version as that of the post-value, and then depend on the implementation of atomicity

and the display operation to filter away the modifications that are not supposed to be

visible in the abstract pre-action value of the containing user-defined atomic

110

object.13 In fact, any post-mod version between the entries we chose for pre-A and

post-A will also work. However, we cannot choose a post-mod version, say V, that is

after the one we use for post-A because some atomic object that contributes to the

abstract pre-A value of the user-defined atomic object might have been removed

from V.

6.4.2 Rep with Multiple Mutex Objects

To date, there are very few examples of user-defined atomic types that are built

with multiple mutex objects in the rep. In all the known examples, the previous

subsection's choice of mutex versions when applied locally to each mutex object in

the rep, continues to give correct pre- and post- action values of the atomic objects.

For example, consider the implementation of an amap given in Figure 6-4.14 A map

binds names (uids) to objects and provides operations to store, remove, and lookup

bindings. An amap is an atomic map. It uses an intentions list {called intentions) and

a regular {non-atomic) map (called bindings) for the database of bindings; both of

these data structures are mutex objects in the implementation. Intentions holds the

recent activities performed on the amap, e.g. insertion of a new binding, and is the

data structure through which actions are synchronized. {The main purpose of

intentions is to reduce the amount of information that must be written to stable

storage to make an amap object resilient. The implementation of resilience has no

effect on pre- and post- action values of user-defined atomic objects.) To keep

intentions small, a nested topaction (generated from the rebuild procedure) is

triggered periodically to trim intentions and update bindings accordingly.

For example, suppose the following sequence of events occurs at an amap

object:

131n fact, we do use this observation when calculating the values of user-defined atomic objects in the
intermediate states of a retrace. See Section 6.5.

14The implementation is adapted with some modifications from [Weihl & Liskov 82).

111

Figure 6·4: Implementation of the Amap Type

amap = cluster [vtype: type] Is create, insert, delete. lookup

status = atomlc_varlant[present: vtype, absent: null]
table = map[vtype]
list = map[statua]

rep = struct[intentions: mutex[list], bindings: mutex[table]]

create = proc O returns(cvt)
return(rep${ intentions: mutex[list]$create(tist$create()),

bindings: mutex[table]$Create(table$create0)))
end create

insert = proc (m: cvt, u: uid, v: vtype)
seize m.intentions do

while true do
I: list:= m.intentions.value
If list$size(I) > 1000

then rebuild(m) end % trim list if too large
s: status : = list$1ookup(I, u)

except when not_found: list$insert(I, u, status$make_present(v))
return
end

tagtest s
wtag present, absent: status$change_present(s, v)

return
end % tagtest

pause % couldn't lock s; wait and try again
end %while

end % seize of Intentions
end insert

delete = proc (m: cvt, u: uid) signals (not_found)
seize m.intentions do

while true do
s: status : = find_status(m, u)
tagtest s

wtag present: status$change_absent(s. nil)
return ·

tag absent: signal not_found
end % tagtest

pause% coutdn 't locks; wait and try again
end %while

end % seize ol intentions
end delete

112

lookup = proc (m: cvt, u: uid) returns (vtype) signals (not_found)
seize m.intentions do

while true do
tagteet find_status(m, u) ·

tag present (v: vtype): return(v)
tag absent: signal not_found
end % tagtest

pause% couldn't lock status object; wait, and try again
end %while

end % seize of intentions
end lookup

find_status = proc (m: rep, u: uid) returns (status)
% m.intentions has been seized In caller
I: list:= m.intentions.value
If list$size{I) > 1000

then rebuild(m) end % trim list ii too large
return(lisl$1ookup~, u))

except when not_tound: end
s: status
seize m.bindings do

s: = status$make_present(table$1ookup(m.bindings.value, u))
end except when not_found: s: = status$make_absent(nll) end

list$insert(I, u, s)
return(s)
end find_status

rebuild = proc (m: rep)

endamap

% m.intentions has been seized in caller
I: list : = m.intentions.value
enter topactlon % start a new .. rebuild" action

seize m.bindings do
t: table : = m.bindings.value
for u: uid, s: status In list$pairs(I) do

tagtest s
wtag present (v: vtype):

list$delete(I, u)
table$alter(t, u, v)

wtag absent:
list$delete{l, u)
table$delete(t, u)

end % tagtest
except when unchanged, not_found: end

end %tor
end %seize

end % enter - rebuild action commits here
end rebuild

113

1. A inserts "x = 1" into the amap

2. A commits

3. B-calts the insert operation to insert •ly ·= 1" into the amap ·

a. B calls nested topaction C to trim the intentions list

b. C updates bindings to map x to 1 and accordingly
removes "x = 1" from intentions

c. Ccommits

d. B inserts "y = 1" into intentions

4. O inserts "z = 1" into the amap

5. Ocommlts

6. Bcommits

Notice that C removes the binding "x = 1" from intentions without directly locking

the mutex. Instead, C takes advantage of the fact that its caller B already has a lock

on intentions. The post-mod version that is created when B releases its lock,

therefore, will contain not only the modifications of B but also those of C, as well.

Assume that initially intentions is empty, and bindings contains [<x = O>,

<y = O>, <z = O>], i.e., a map with three bindings, namely "x = O", "y = O", and

"z = O". Also assume that A, B, C, and O are topactions. The order of their

terminations will serialize them in the order A, C, 0 1 B.

Figure 6-5 shows the pre-post logs of intentions and bindings that results. By

the previous subsection's definition of pre-values of mutex objects

• pre-0 of intentions is given by post-mod of A and equals [<x = q1>),
where pre-0 of q1 is "<present: 1)".

• pre-0 of bindings is given by post-mod of C and equals [<x = 1),
<y = O>, <z = O>]

so that the abstract pre-0 value of the amap correctly shows a state where x = 1,

y = O and z = o. Notice that our algorithm for pre-values picks up the effects of C on

bindings but not the effects of C on intentions when calculating the pre-0 value of the

amap. This is alright because C's modification on intentions has no effect on the

value of the amap, once C's modification on bindings is taken into account.

114

intentions

II I nit" ~ ,.

post-mod, A ~ ,,.

post-mod, B
_,.

post-mod, D ~
7"

[]

[<x = q1>]

[<y =q2>]

bindings

II I nit"

post-mod, C

[<y = q2>,<z = q3>]

.... ,

.... ,.
J

[<x = O>,<y = O>,<z = O>]

[<x = 1 >,<y = O>,<z = O>]

q1, q2, and q3 are status objects {i.e. atomic variants) and they have their own
history as shown below.

q1:

I "lnit" : I : <absent: nil>

<absent: nil> pre-A

I current I I > <present: 1 >

q2:

I "lnit" : I : <absent: nil>

<absent: nil> pre·B

I current I I > <present: 1 >

q3:

I "lnit" : I : <absent: nil>

<absent: nil> pre-D

I current I I > <present: 1 >

Figure 6-5: Pre-post Logs of an Amap Object

115

Our algorithm for post-values also gives the correct value for the amap in the

post-0 state, i.e. [<x = 1>, <y = O>, <z = 1>]:

• post-0 of intentions is given by post-mod of O and equals [<y = q2>,
<z = q3>}. where the post-0 value of q2 is "<absent: nil>" and the post·O
value of q3 is "<present: 1)"

• post-0 of bindings is given by the post-mod version of C and equals
[<x = 1), <y = O>, <z = O>].

6.5 Retracing

In this section, we discuss the use of the pre-post logs in retracing operations

at mutex objects.

Recall that each retrace process has an CRV map that gives the current

versions of built-in atomic objects in the retrace (Section 5.4.1). We include mutex

objects in this CRV map. When a retrace process reads or modifies a mutex's

resource, the version that it accesses is always the mutex's CRV in the process's

map.

A retrace process initializes a mutex's CRV (current retracing version) in its

map each time it executes a seize of the mutex. The version to which the CRV Is

initialized is that of the value that held when the seize was executed in the original

computation. Calling the action that is being retraced A, this value is the latest

post-mod version before A's nth entry in the mutex's pre-post log, where n is the

number of times the action has seized the mutex's lock so far in the retrace (the

seize that is currently being retraced is included in the count). If A has no nth entry

in the log, then the retrace process is done with the retrace of A.

A retrace process, therefore, has to keep tab of the number of times a

retracing-active action has called seize on a mutex object in the retrace. A

retracing-active action is one that the retrace process has started retracing but has

not completed. The retracing process does this by maintaining a seized map for

116

each of its retracing-active actions. An action's seized map maps a mutex object to

the number of times the action has seized the mutex in the retrace.

6.5.1 Current Values

When the user asks for the current value of a user-defined atomic object, say

X, in a retrace, what view should we present to the user? We assume that the retrace

is not stopped in the midst of an operation of the user-defined atomic object.

Otherwise, the rep of X might not be internally consistent, so the current abstract

value of X in the retrace will not be meaningful. In any case, If the user stops a
retrace in the middle of an operation of a user-defined atomic object, it is probably

because he or she wants to debug the implementation of the atomic object's type. It

will then be more appropriate to allow the user access to the pre-post logs of objects

in X's rep and the CRV and seized maps of the retrace process. We will discuss the

debugging of implementations of user-defined atomic types in the next chapter.

The current abstract value of a user-defined atomic object in a retrace must be

the value that reflects the modifications of the serial execution up to the point where

the retrace is stopped. We compute this value as follows. If the retrace process Is

stopped in action S, the version we choose to represent the current retracing value of

a mutex object is that of the post-S value. This version may refer to some built-In

atomic objects for which an CRV exists in the retrace process's CRV map and others

for which it does not. If the CRVexists, we use its value as part of the retracing value

of the mutex object. If the CRV does not exist, we use the pre-action value of the

atomic object, instead. (Current values of built-in atomic objects in a retrace are

discussed in Section 5.4 of Chapter Five.)

For example, suppose the following sequence of operations is executed at an

initially empty semiqueue object X:

Aenqs 1
Aenqs2

. 117

Figure 6-6 shows a snapshot of the history and relevant CRVs in X for a retrace

that is stopped just before A's second enq. To calculate the current value of X in the

retrace, we use A's second post-mod version since it is the-post~A·vatue of the rep~

This version refers to both q1 and q2. An CRV exists for q1, so we use it. An CRV

does not exist for q2, so we use the pre-A value here. Thus the current concrete

value of X In the retrace is

[current retracing value of q1, pre-A value of q2}
= [<enqueued: 1>, <dequeued: nit>}

Therefore, the current abstract value of the semiqueue in the retrace has 1 as its sole

element. (Recall that elements that have value. "dequeued: nll" are non-items In a

semiqueue.)

If the retrace is stopped after A's second enq, the concrete state of the

semiqueue now becomes

[<enqueued: 1>, <enqueued: 2>].

This is because the current retracing value of q2 has changed in keeping with the

retrace's progress. The value of the semiqueue that is displayed, therefore, will show

both of A's insertions.

Notice that the CRV of a mutex object does not play a role in the computation

of the current abstract value of a user-defined atomic object: we always use the

post-A version of the mutex object, regardless of where the retrace is stopped in A.

6.6 Effects of Crashes

In a crash, all versions in a pre-post log will be lost. To help the calculation of

pre- and post- values of mutex objects for actions that run immediately after a crash,

we can use a scheme analogous to that used for built-in atomic objects (Section 4.9).

Recall that a topaction's termination number is saved in its prepared record on

stable storage, if the action has a prepared record. When the system recovers a

mutex object after a crash, we require that an "lnit T #" be created in the mutex's

118

buffer (rep of the semiqueue object):

pre-post loo

II I nit"
.... ,,, []

post-mod, A(1)
....

? [q1]

post-mod, A(2)
~ ~ ,. [q1' q2)

q1 and q2 are qitems (i.e. atomic variants).

q1: gre-pgst lgg

1 "lnit" : I : <dequeued: nil>

<dequeued: nil> pre-A

I current • I > <enqueued:1>

I CRV • I > <enqueued:1>

q2: i;;ir~M2QSt IQg

I "lnit" : I : <dequeued: nil>

<dequeued: nil> pre-A

I current • I > <enqueued:2>

Figure 6-6: Example Illustrating the Current Value in a Retrace

119

pre-post log, where the mutex value that is recovered from stable storage is the one

that was written on behalf of topaction T. (We will discuss the use of mutexes for

resilience in the next chapter.) The "lnit T #" will point to a copy of the recovered

value.

This "lnit" entry will be treated exactly like the object creation's "lnit" to give

pre-values of actions that run after the crash. (See Section 4.9 for details of how

termination numbers and crash counts can be used to distinguish actions that run

after the crash from those that run before the crash.)

6. 7 Reclaiming Storage Space

In section 4.10, we presented our scheme for reclaiming storage from saved

history. In the scheme, the saved history of handler actions and topactions with

earlier termination numbers are removed before the saved history of handler actions

and topactions with later termination numbers. Also, a-records of a topaction or

handler action and its local descendants are removed together.

We propose to reclaim entries from a mutex's pre-post log as follows. When

A's a-record is discarded, for each mutex object M that was modified by A, we

remove as many entries from M's pre-post log as possible without violating either one

of the following two conditions: 15

1. An entry must be removed before another that comes after it in the log.

2. Only entries that are tagged with aids of actions whose a-records have
been discarded can be removed.

The first condition is necessary because our rules for deducing action views

assume that there is no gap in the log. The second condition prevents the retrace

process from initializing a mutex's CRV with the wrong value when a seize is

retraced. Recall that the retrace process matches the nth seize by an action with the

15niis removal of entries can be done either lazily or aggressively, See Section 4.10.

120

action's nth entry in the log to determine the value of the mutex at the seize. If any of

an action's entries is missing, the action's nth entry in the log '.Nill not correspond to

the actio~'s nth seize. We also note that only actions whose a-records are still

available can be retraced.

For an example, consider the following pre-post log of a mutex object:

post-mod, A(1)

post-mod, B

post-mod, A(2)

post-mod, C

Suppose that A, B and C are topactions and that A# < B # < C #. If A's a-record is

removed, only A's first post-mod entry can be reclaimed because B is still

retraceable. When B's a-record is removed, "post-mod, B" and "post-mod, A(2)"

can now be .removed.

Our scheme for reclaiming pre-post entries has a minor problem. When the

last post-mod of an action T is removed, we will not be able to determine the

pre-values of actions that are serialized after T and that are dependent on T's

post-mod entry. For instance, in the example above, we will not be able to deduce

the pre-values of actions that are serialized after B but before C, once "post-mod, B"

and "post-mod, A(2)" are removed. (Note that we can use "post-mod, C" as the

pre-C value, even though it is not the version that our definition would choose. This

is because modifications by C are not visible in the abstract pre-C value of the

containing user-defined atomic object, assuming that atomicity and the display

function a.re implemented correctly.)

We propose the following amendment. When the last entry that belongs to a

descendant of a topaction Tis removed, we replace the entry, say E, with an "lnit

T # ". The "I nit T #" will refer to the same version as E. An "lnit T #" can only be

121

removed if another "lnit" entry can be created to replace it, i.e., if enough entries can

be removed, together with the "I nit T # ", so that an "lnit" can be created for another

topaction. Note thatif an '1nit" entry cannot be removed, then no entry beyond the
"lnit" can be removed.

In the example above, an "lnit A#" will be created when "post-mod, B" and

"post-mod, A(2)" are removed. This entry will serve to give the pre-values of actions

serialized between B and C.

6.8 Summary and Discussion

In this chapter, we considered how the debugging method can continue to

work when we allow actions to share user-defined atomic objects, in addition to

those that are built-in atomic. We began by arguing that If user-defined atomic types

are to synchronize concurrent accesses properly, they must have reps In which all

mutable objects are either built-in atomic or mutexes. This observation allows us to

concentrate on state changes at mutex objects.

Because a mutex object synchronizes only processes and not actions, we

found that we have to save a post-mod version when a mutex lock is released if the

resource is modified in the seize. The compiler can sometimes tell when a mutex's

resource is not modified within a seize; in this case we simply save a "placeholder"

in the pre-post log, and not a copy of the resource. Otherwise, we assume the worst

and save a post-mod version.

We showed how the recorded post-mod versions can be used to present the

pre- and post- action values of a user-defined atomic object. This presupposes that

each type has a correctly implemented display operation that serves as its

abstraction function. The next chapter wm further exploit these recorded versions to

help the user debug the implementations of user-defined atomic types.

We also showed how the post-mod versions can be used to retrace seizes and

122

to present the current retracing values of user-defined atomic objects. Finally, we

discussed methods for minimizing the impact of crashes and storage reclamation on

our ability to provide pre- and post- action values of user-defined atomic objects, and

to retrace operations at these objects.

We stress that the chapter's algorithms for pre- and post· action values and

retracing apply not only to committed actions but aborted ones, as well. We also

note that the ability to calculate the pre-A value of a built-in atomic object that was

not read or modified by action A is used quite heavily to present A's views of

user-defined atomic objects.

123

Chapter Seven

Debugging User-Defined Atomic Types

There is a bug in the implementation of a user-defined atomic type T if the map

pre-A value of X
op1 , ' , opn
----~> post-A value of X

contradicts behavior that is expected of X, where X is an object of type T and

op1 ... opn is the sequence of operations called by action A on X. Note that the map Is

considered incorrect not only if the post-A value of X is unexpected but also if the

results returned by any of the opi are unexpected, given pre-A of X and A's

operations before opi' The user may have to retrace A to know the operations that A

called on X and the results returned by each of the operations.

An incorrect pre-A of X to post-A of X map can be caused by either a sequential

or atomicity bug in the implementation of X's type. An implementation has a

sequential bug if it fails to satisfy its specification even when there is neither

concurrency nor node crashes.16 Being able to retrace A and to breakpoint and

examine the retracing structures of the object will help the user to isolate sequential

bugs.

There is an atomicity bug if actions that use X become non-serializable. In

Section 7.1, we discuss what the user has to do to isolate an atomicity bug in the

implementation of a user-defined atomic type, given an incorrect map. History that Is

already saved for supporting pre· and post· action views is used.

In Section 7.2, we explain the support that the debugging system can provide

to help the user test for and isolate resilience bugs in the implementation of a

16Notice that a bug in the type's display operation (i.e., abstraction function) is a sequential bug.

124

user-defined atomic type. A resilience bug occurs when what was stored in stable

storage is not equivalent to the most recent value that was written into X by a

committed topaction. A resilience bug is revealed only if there is a crash and

subsequent recovery of X's guardian; a resilience bug is not manifested as an

incorrect pre-A of X to post-A of X map. As with atomicity bugs, the user isolates a

resilience bug using versions saved in the pre-post logs of mutex objects.

7.1 Atomicity Bugs

In this section, we continue to assume that display functions are implemented

correctly. This assumption allows the user to believe the abstract pre- and post·

values that are displayed and to concentrate instead on sequential bugs that concern

incorrect use of the rep and on atomicity bugs. We discuss isolation of atomicity

bugs in this section.

An incorrect pre-A of X to post-A of X map does not necessarily imply that the

problem is within A, i.e, with the code that A ran. In fact, the culprit action that

caused the map to be . incorrect can be some other action B that accessed X

concurrently with A. Below, we explain how the culprit action and the kind of

atomicity bug it exposes can be determined.

We have argued that all mutable objects in a properly implemented

user-defined atomic type should be either atomic objects or mutexes (Section 6.2).

Atomicity bugs, therefore, are always attributable to incorrect modifications of

mutexes in the rep, assuming of course that all atomic objects in the rep are

implemented correctly.

The user has to examine only a specific region in a mutex's pre-post log to

determine whether an incorrect map is due to an atomicity bug. From the definitions

of pre-A and post-A of a mutex object given in the previous chapter

1. the entry chosen for pre-A must be before or equal to the entry chosen
for post-A in the m~tex's pre-post log, and

125

2. the entry that holds the version that was read by A's first access, if any,
must be before or equal to the entry chosen for post-A.

These three entries can be related in two representative ways, as given in Figure 7-1.

For example, part (a) of the figure will ·result if an action C that is serialized before A

accessed the mutex after A. Part (b), on the other hand, corresponds to the case

where all actions D such that GA0 (A) # < GAA (D) # either did not access the mutex

or accessed it bet ore all of A's accesses.

For an action B to contribute to an incorrect pre-A of X to post-A of X map, B

must run concurrently with A and have modifications at a mutex object that interleave

with A's accesses. More specifically, if B does not have a modification in Region 1 or

2 (see Figure 7·1) of any mutex object in X, then B cannot cause the pre-A of X to

post-A of X map to be incorrect. In other words, if no action other than A (and

descendants that committed up to A) modified mutexes of X in the mutexes'

respective Regions 1 and 2, then an incorrect pre-A of X to post-A of X map must be

due to either a sequential bug in A's code or an atomicity bug in the code of A's

concurrent descendants.

There are two kinds of bugs that the user should look for if there are accesses

by actions other than A and its descendants in Region 1 or 2. These are recovery

and invalidation bugs.

7 .1.1 Recovery Bugs

A recovery bug might have contributed to the noticed incorrect pre-A of X to

post-A of X map if there is a non-recoverabre modification in Region 1 or 2 of a
pre-post log in X. A modification by an action B is non-recoverable if the abstract

pre-B value of X just before B modifies the mutex object does not equal the abstract

pre-B value of X just after the modification.

The abstract pre-B value of X just before a modification of a mutex object M in

X (written pre-B(before modification) of X) is given by a rep whose value is

composed as follows:

126

pre-post log 1 pre-post log 2

version read by
A's first access

•
REGION 1 ..

•

version chosen version chosen
for Pre-A for Pre-A

•
•
•

• version read by
• REGION 2 A's first access

• •
•
•

version chosen . version chosen
for Post-A for Post-A

(a) (b)

Figure 7·1: Pre-Post Logs Showing Relationship between Versions

127

1. the value of M is given by the version just before the modification,

2. the values of all other mutex and atomic objects in the rep are given by
their pra-B values. .

The abstract pre-B value of X · just after the modification {written

pre-B(after modification) of X) is given by a rep whose value is the same as that of

pre-B(before modification), except the version just after the modification is used as

the value of M instead of the version just before the modification.

For example, consider B's insertion of the element 1 into a semiqueue 17 object

X that is initially empty. The concrete value of pre-B(before B's enq) is the empty

array. The concrete value of pre-B(after B's enq), however, is the singleton array

[Pre-B value of the qitem inserted by BJ

= [<dequeued: nil>].

Since qitems that have value "(dequeued: nil>" are non-items in the abstract values

of semiqueues, the abstract pre-B{after B's enq) value of X therefore is also the

empty queue. Thus, B's enq is recoverable.

We now explain how non-recoverable modifications in Regions 1 and 2 of a

pre-post log can contribute to an incorrect pre-A of X to post-A of X map.

[1] The effects of a non-recoverable modification in Region 1 are visible in the

abstract pre-A value of X. These effects may cause the abstract pre-A value to

contradict the values read by by A {or descendants that committed up to A) before

the modification andthus, contribute to the noticed inconsistency in the pre-A of X to

post-A of X map.

For example, consider a semiqueue that is implemented (incorrectly) with

integers as qitems. Call this incorrect implementation NA_semiqueue. The enq

operation of NA_semiqueue inserts qitems into the array that is the object's rep; the

display operation returns an abstract semiqueue that contains the abstract values of

17 The semiqueue type was introduced in the previous chapter.

128

the qitems in the rep. Thus, all modifications of the mutex object that is the rep of a

NA_semiqueue object are non-recoverable. (Other details about NA_semiqueue can

be ignored for our purposes.)

Now, suppose that the following sequence of operations is made at an initially

empty NA_semiqueue object X:

A enqs 1
Benqs2
Bcommits
A commits

The pre-post log of X's rep that results is as follows:

version read by
A's first access

version chosen
for both ~
pre-A and post-A

"I nit"

post-mod, A

PoSt·mod, B

REGION 1

Assuming that A and B are topactions, their termination order will serialize

them in the order B, A. The pre-A (and post-A, as well) value of X's rep is given by the

post-mod version of B. So,

rep of pre-A of X = [1, 2], and

rep of post-A of X = [1, 2]

Notice that the element A enqueued is included prematurely in pre-A of X precisely

because A's modification is not recoverable. Therefore, the pre-A of X to post-A of X

map will wrongly show that A "lost" its enq of 1. The bug that caused the noticed

incorrect map in this case is in the code that A ran.

[2] A non-recoverable modification in Region 2 by an action that is not A or a

descendant that committed up to A can make the pre-A of X to post-A of X map

incorrect in two ways:

1. the modification is not reflected in the abstract pre-A value of X but is
reflected in the abstract post-A value of X. In this case, the modification
will be wrongly attributed to A,

129

2. the modification affects subsequent accesses by A (and descendants
that committed up to A).

Take for example, the following sequence of operations at an initially empty

NA_semiqueue object X:

A enqs 1
Benqs2
B aborts
Aenqs3
A commits

The pre-post log of X's rep that results from the operations is given below:

version chosen
II I nit" for pre-A ~

post-mod, A(1)

post-mod, B REGION 2
version chosen

post-mod, A(2) for post·A ~

The pre- and post- access versions that record B's ill-fated insertion of 2 are

between the versions chosen for pre-A and post-A in the pre-post log of X's rep.

Since B's modification of the mutex object is not recoverable,

rep of pre-A of X = []

rep of post-A of X = (1, 2, 3]

so that A is shown wrongly as having enqueued 1, 2, and 3 into X.

Notice that even though A has two mooifications in Region 2 that are not

recoverable, they do not contribute at all to the incorrect pre-A of X to post-A of X

map. This is true in general: non-recoverable modifications by A (and descendants

that commit up to A) in Region 2 do not by themselves explain an incorrect pre-A of X

to post-A of X map.

Finally, we note that the user need not retrace any action when checking for

recovery bugs in Regions 1 and 2.

130

7.1.2 Invalidation Bugs

There is an invalidation bug if a modification by an action B that is visible to A

contradicts the results of a prior access by A or a descendant that commits up to A. A

modification contradicts a read access if the value that is read would have been

different if the modification had happened before the read. A modification

contradicts a write access if the resulting state of the object would differ if the order

of the modification and the write access is reversed.

Note that there cannot be an invalidation bug in Region 2 that could have

caused an incorrect pre-A of X to post-A of X map since, by our choice of mutex

version for pre-A, the region cannot contain modifications by actions whose effects

are visible to A. So, invalidation bugs, if any, are manifested only in Region 1.

For example, consider the following scenario that involves two topactions A

andB:

1. A asks for the binding of z at an amap 18 object X and was told that z
has no binding.

2. B calls insert at X to bind z to 1.

If the amap implementation allows B to complete its insert of the binding "z = 1 " at X

before A terminates, it is possible for B to go on to modify some built-in atomic object

Y and then commit, and for A to read B's modification at Y. As a result, A and B

become non-serializable with respect to each other. The implementation was wrong

to allow B to contradict A's view of X before A terminated.

To decide whether a modification by B contradicts the results of any prior

access by A and descendants that commit up to A, the user has to know which parts

of X's value were actually seen by the operations that made these prior accesses,

and which parts of X's value were superfluous to the operations. In general, the user

has to retrace A and its descendants to figure this out.

18An amap is a user-defined atomic map; it was discussed in the previous chapter.

131

The user, however, can determine the change to the abstract value of X that is

caused by B's modification without needing to retrace B. This change is given by the

"difference" between the abstract post-B vafue of X just after.the modificcttiori and ·

the abstract post-B value of X just before the modification. The abstract post·B

values of X just before and just after a modification of a contained mutex object are

defined in a way that is similar to the abstract pre·B values of X before and after a

modification.

The abstract post-B value of X before/after a modification of a contained
mutex object M is given by a rep whose value is constructed as follows:

1. the value of M is given by the version just before/after the
modification,

2. the values of all other mutex and atomic objects in the rep are
given by their post-B values.

For example, If B enqs 1 and then 2 into an initially empty semiqueue object X, then

rep of post-B(before B's second enq) = [<enqueued: 1>]

rep of post-B(after B's second enq) = [<enqueued: 1), <enqueued: 2>]

So, B's second enq caused X's contents to change from a single element 1 to two

elements, 1 and 2.

7.2 Resilience Bug

There is a resilience bug if the value of an atomic object that is recovered from

stable storage after a crash is not equal to the object's most recent top-level

committed value. Unlike atomicity and sequential bugs, the user has to anticipate

and check for a resilience bug before it manifests itself. Otherwise, he or she will not

have the benefit of the history in the pre-post logs to track the bug down; saved

history, being in volatile memory, will be lost by the time the user realizes that the

state recovered from stable storage is not that at the end of the last committed

topaction.

132

We first describe how mutex objects are used to make user-defined atomic

objects resilient. We then present a scheme that takes advantage of the versions

saved in pre-post logs to test for and isolate resilience bugs.

7.2.1 The Role of Mutex

In addition to process synchronization, mutex objects also serve to help make

user-defined atomic objects resilient to crashes. A programmer can ask explicitly

that the resource of a mutex object be written into stable storage by executing the

mutex's changed operation. When so notified, the system will write the value of the

mutex's resource to stable storage sometime between the call of changed and the

commit of the topaction ancestor of the action that invoked changed. After a crash,

a mutex object that is reachable from a stable variable will be reinstated and restored

to the value that was last written to stable storage on behalf of a topaction that

prepared (i.e., completed the first phase of the commit protocol) at the guardian.

Note that it does not matter whether or not the action that prepared did in fact

commit.

The system synchronizes with user processes before writing a mutex's

resource to stable storage. It does this by acquiring the mutex's lock before copying

the resource. This ensures that the resource will be In an internally consistent state

when written into stable storage. The system writes changed mutex objects to

stable storage one at a time; one mutex's lock is released before another is acquired.

When writing a mutex's resource to stable storage, the system copies down to

contained atomic and mutex objects. This is just like the copy that is done when

versions are created for a mutex's pre-post log, only in the case of pre-post logs, the

copies are kept in volatile memory.

For an example of the use of changed, let us study the semiqueue again. The

definition given in Figure 7-2 differs only in one respect from the definition we saw

earlier in Figure 6-1 of Chapter Six. In the enq operation, there is now a call to

rep$changed after an item is appended to a semiqueue's buffer. This is because

. 133

the new state of the (non-atomic) buffer must be written into stable storage before the

action that invoked enq commits past its topaction ancestor. Otherwise, a crash of

the guardian, after the topaction ancestor commits but before the buffer.is written·

into stable storage, will lose the inserted item.

7.2.2 Isolating a Resilience Bug

In this subsection we propose a scheme for testing and isolating resilience

bugs. We begin with an enumeration of the additional information that needs to be

saved and then we discuss the method for using the saved data.

We save additional information to help us determine the value of a mutex

object that will be recovered from stable storage if the guardian should crash

immediately after a topaction prepared. The information helps by relating the time a

prepared record is written into stable storage to the mutex versions that were then

already in stable storage. The additional information is as follows:

[1] We introduce a counter (called a resilience clock) into each guardian. Each time

the counter is read, it is automatically incremented after the read. The

read-and-increment is done indivisibly.

We call a value that is read from the counter a resilience time.

[2] We keep a new log (called a prepare-time log) in each guardian. The log maps

topactions to the resilience time at which their prepared records were written into

stable storage in the guardian. So, when a prepared record is written into stable

storage on behalf of topaction T, we read the resilience clock and append to the

prepare-time log the mapping of T to the value that was read.

The resilience time that is associated with a topaction in the prepare-time log is

called the topaction's prepared time.

[3] When the system seizes a lock to write a mutex object to stable storage:

134

Figure 7·2: Implementation of the Semiqueue Type

semiqueue = cluster is create, enq, deq

qitem = atomic_variant[enqueued: Int, dequeued: null]
buffer = array[qitem]
rep = mutex[buffer]

create = proc () returns (cvt)
return(rep$create(buffer$new()))
end create

enq = proc (q: cvt, i: int)
·item: qitem : = qitem$make_dequeued(nll)
qitem$change_enqueued(item, i)
seizeq do

buffer$addh(q.value, item)
end

rep$changed(q)

end enq

deq = proc (q: cvt) returns (int)
cleanup(q)
seizeq do

while true do

% dequeued if action aborts
% enqueued if action commits

% add new item to buffer

% notify system of modification
% to buffer

for item: qitem in buffer$elements(q.value) do
% look at all items in the buffer

tagtest item
% for an item that can be dequeued by this action

wtag enqueued (i: int): qitem$change_dequeued(item,nll}
return(i)

end % tagtest
end %for

pause
end% while

end %seize
enddeq

135

cleanup = proc (q: rep)
enter topactlon % start an independent action

seize q do
b: buffer:= q.value
for item: qitem in buffer$elements(b) do

tagtest item % to remove items in the dequeued state
tag dequeued: buffer$reml(b)
others: return
end % tagtest

end %for
end %seize

end % enter - commit cleanup action here
end cleanup

end semiqueue

1. we create a resilience placeholder in the mutex's pre-post log to point
to t~e same object as the latest post-mod version in the log.19 (Note
that this latest post-mod version has the same value as the current
version of the mutex.)

2. we label the placeholder with the aid of the topaction on whose behalf
this write to stable storage is being done.

With the saved data, we can deduce the value of a user-defined atomic object

X that would be recovered after a crash, without depending on the stable storage

subsystem.

The version of a mutex object M that is recovered if there is a crash

immediately after a topaction A prepares at the guardian can be computed as follows:

1. Let RP be the resilience placeholder that is the latest in the pre-post
log to be labelled with the aid of a topaction whose prepared time is
less than or equal to A's prepared time.

2. The version that is recovered is the version in RP.

This is because RP represents the last value that was written into stable storage on

19This placeholder is not to be confused with the read placeholders of the previous chapter.

136

behalf of a topaction that prepared at the guardian before the crash we are

simulating.

So, the rep of a user-defined atomic object X that is recovered if there is a

crash immediately after a committed topactlon A prepares at the guardian can be

constructed as follows:

1. For each mutex object in X, use the version as computed above.

2. For each built-in atomic object in X, use the post-A value of the object.

We call the abstract value of X derived from this rep the abstract stable post-A value.

There is a resilience bug in the implementation of a user-defined atomic type if

the abstract stable post-A value of X is not equal to the abstract post-A value of X, for

some committed topaction A and object X of the type. (The abstract post-A value of

Xis as defined in the previous chapter.)

But once the user has determined that there is a resilience bug, how does he or

she isolate it? We give three guidelines below.

[1] A resilience bug may in fact be due to recovery problems. For example, A

modifies a mutex object M and then calls changed. However, before the system

writes M into stable storage, another action B that is serialized after A modifies M. If

B's modification is not recoverable, then the abstract value of the user-defined

atomic object that is saved into stable storage will not have the same value as post-A.

So, if the stable post-A version in a pre-post log Is after the post-A version, the

user should verify that all of the modifications in between the two versions in the log

are recoverable.

[2] If A modifies a mutex object Mand does not call changed after the modification,

the modification must be "benevolent", i.e. have no effect on the abstract value of

the user-defined atomic object.

137

So, if the stable post-A version in a pre-post log is before the post-A version,

the user should verify that all modifications between the two versions in the log that

were made by A or a descendant that committed up to A or an action that is visible to

A have no effect on the abstract value of the user-defined atomic object. I.e., for

each modification by such an action 8, make sure that the abstract post-8 value of

the user-defined atomic object just before the modification is equal to the abstract

post-8 value just after the modification. ff there is a problem, then the bug is with the

code run by the action that made the unexpectedly non-"benevolent" modification.

[3] ff the stable post-A version in a pre-post log is before the post-A version, the

inequality between the abstract stable post-A and post-A values of the containing

user-defined atomic object might not be explained by either of the above two checks.

The inequality might in fact be due to a non-recoverable modification made in

between the stable post-A and post-A versions by an action that is not A or a

descendant that committed up to A.·

So, the user should check to make sure that all modifications in between the

stable post-A and post-A versions made by an action that is not A or a descendant

that committed up to A are recoverable.

Note how sensitive a resilience bug is to when a mutex value is written into

stable storage in the guidelines above. Therefore, the user should have control over

when a mutex value is written to stable storage if he or she is to test that resilience Is

implemented correctly. {Of course, the user must be constrained to the range

between an action's call of changed and when the action prepares at the guardian.)

The algorithm for reclaiming space in a pre-post log should treat a resilience

placeholder as a post-mod version of the placeholder's topaction. The algorithms for

computing pre- and post- action values, on the other hand, should ignore these

resilience placeholders and not treat them as post-mod versions.

Space in a guardian's prepare-time log can be reclaimed in much the same

138

way as space in a mutex's pre-post log, i.e., earlier entries must be removed before

later ones and no entry that belongs to a topaction T such that T # is younger than

the cut-off threshold (see Section 4.10) can be removed.

7.3 Summary and Discussion

In this chapter, we discussed how the user can use the versions saved in a

mutex's pre-post log to isolate an atomicity bug in the implementation of a

user-defined atomic type. We also discussed how modest additions to the history

saved in a mutex object can aid the user in finding resilience bugs. Since saved

history is kept in volatile memory, our scheme requires that a resilience bug be

anticipated and tracked before it shows itself (after a crash).

Actually, what the algorithms isolate is a particular incorrect access of a mutex

object, e.g., a non-recoverable modification. Often this is enough for the user to

pin-point the atomicity or resilience bug in the code. If not, the user will have to

retrace the operation that made the incorrect access. This requires retracing the

action that called the operation.

The debugging system has to allow the user access to the pre-post logs of

mutex objects and the data structures of a retrace process when he or she is

debugging the implementation of a user-defined atomic type. In particular, the user

needs to examine and reference versions in a pre-post log when tracking a recovery

bug. The user also may need to know which versions in a pre.post log are used by a

retraced operation when tracking an invalidation bug.

The user has to be able to use the display operation of a user-defined atomic

type to get a committed topaction's abstract stable post-value of an object X of the

type, and the abstract pre-A and post-A values of X just before and just after a

modification of a mutex object in X by an action A. The user should not have to

perform the abstraction function himself/herself.

139

Notice that the algorithms for tracking atomicity and resilience bugs require the

user to know whether one action is visible to another. The debugging system can·

help by answering such queries from the user.

Finally, we stress that where there are multiple mutexes in the rep of a

user-defined atomic object, the user looks for atomicity and resilience bugs by

examining the mutex objects one at a time; he or she does not relate the versions of

one pre-post log to those of another. This "local" isolation of bugs works for all

known examples of implementations of user-defined atomic types with multiple

mutexes in their reps. However, whether it does indeed work generally in Argus will

have to await further experience in building user-defined atomic types.

140

Chapter Eight

Conclusions

The atomic action abstraction is gaining popularity as a tool for dealing with

complexity introduced by concurrent processing of lo.ng-lived data in a distributed

system. With atomic actions it is easier to structure programs to constrain possible

interactions among anticipated activities and to limit the effects of partial failures.

In this thesis, we have argued that atomic actions are also beneficial for

debugging.' We showed that properties of atomic actions help a person who is

debugging inspect and repeat a concurrent and distributed computation much like

he or she would a sequential computation.

8.1 Summary

We presented a method for debugging nested atomic actions in this thesis.

The method is applicable to other action systems since it depends only. on the

atomicity properties of actions.

In our method, the user is able to repeat an action of interest. In this section,

we first describe how the debugging system supports this retrace of an action. The

history that is saved for retracing can also serve to help the user isolate the action

that exposes the bug. We describe this phase of our method in the latter part of this

section.

Our debugging system supports the retrace of actions by saving a limited

amount of history as an action runs. It uses this saved data to re-execute code and

create an equivalent serial execution, as needed. We stress that only one locus of

control is used in retracing an action's history; concurrent subactions are retraced In

141

serialization order. The user can use standard debugging tools, such as breakpoints

and single-stepping, on a retrace to isolate a bug.

The pre;. state of an action is well-defined, i.e., when an action reads an atomic

object twice it is guaranteed to see the same value if it does not modify the object in

between the reads. Therefore, an action's pre-state, together with the action's tree of

subactions and a serialization order of siblings in the tree, is sufficient to repeat an

action. In the following paragraphs, we describe the implementation of a serialization

order and of the pre- and post- action values of objects.

Our debugging system timestamps the termination of actions with Lamport

clocks [Lamport 78]. From this termination order, we derive a serialization order for

siblings and topactions.

We save multiple versions of built-in atomic objects and mutexes. We use the

serialization order and the nesting of actions to determine the version that represents

the value of an object in a pre- (or post·) state. Our scheme supports pre-values at an

object even for actions that did not use the object. This capability is critical to our

method for providing pre- and post- action values of user-defined atomic objects. In

addition, it is sometimes useful to be able to see what an action would have read if it

had accessed an object.

Usually, the versions saved in a built-in atomic object are recovery versions

that are created by the run-time system to prepare for action aborts. These are

available without cost to the debugging system. Recovery versions have been used

for concurrency control; our work, however, is the first to use them for debugging.

Versions in a mutex object are created after every modification of the mutex's

value. These versions help not only in retracing but also in detecting and isolatlng

atomicity and resilience bugs in the implementations of user-defined atomic types.

Our debugging system does not save environments. Instead, we depend on

142

the fact that a handler action's environment is always available, as long as its

guardian has not terminated. This is because a handler action's environment

consists only of guardian variables. Therefore, retracing must begin with a handler

action in our system.

With the availability of pre-states, it is not much more work for our debugging

system to also support post- states: the value of an object in the post-state of A is the

value in the pre-state of the action serialized immediately after A. With pre- and post·

states, the user can make an initial pass through the computation to narrow a bug to

a faulty handler action before retracing; there is often no need to retrace all of a

computation. An action is faulty if it maps a correct pre-state to an incorrect

post-state. It is up to the user to sample the right objects in an action's pre· and post·

states to decide correctness. Inasmuch as a guardian variable is also part of the

environment of in-line subactions, the user may even be able to narrow a fault to a

subaction within a handler action.

We note that aborted actions are of interest to the person who is debugging.

For example, he or she may want to know why calls of a particular handler seem to

abort with alarming frequency. Our debugging system supports pre· and post· states

for aborted actions, and retracing as well.

8.2 Further Work

In this section, we discuss briefly four areas for further work. These are

1. implementing our debugging method in Argus,

2. testing alternative mechanisms for building user-defined atomic types,

3. implementing our debugging method in other action systems, and

4. developing methods and systems for other debugging-related tasks.

143

Implementation.

The debugging system presented in this thesis needs to be implemented so we
can verify· the feasibitity of our design. There are two questions of particular interest: ·

1. Can our method be supported in Argus without penalizing the run-time

of a computation intolerably?

We feel that the answer to this question is yes if only built-in atomic

objects are used. This is because the history that needs to be saved

consists almost entirely of recovery versions, a universal action tree,

and termination numbers.

We are not as sure about the answer if user-defined atomic objects are

used. The versions that are saved at mutex objects are much more

costly: the debugging system has to make and save a version after

every modification.

2. In our system, old recorded history is discarded to make room for

newer versions and action records. Therefore, there is a time window

within which a computation must be debugged. Can this window be

kept reasonably wide for typical applications and primary storage

allocations?

If the answer to _this question is no, alternatives will have to be

explored. These include 1) use of secondary storage to widen the

window, and 2) selective archiving of recorded history for later

examination. Selective archiving may be triggered automatically when

signs of abnormality are recognized.

144

User-defined atomic types.

As noted aboved, it is expensive to support the debugging of programs that

use user-defined atomic objects in Argus. Work should be done to find out whether

any of the proposed alternatives to. Argus's mechanism for implementing

user-defined atomic types, e.g., those in [Weihl 84], [Schwarz & Spector 84], [Allchin

& McKendry 83], and [Herlihy 84), can support our debugging method more cost

effectively.

Generality of the method.

Our debugging method is also applicable to other action systems since it

depends only on properties of actions. However, it is not clear how easy it is to

implement the method in these other systems. We make some preliminary

observations below.

Our method· should translate into a system that uses time-domain concurrency

control such as Reed's [Reed 78, Reed 83] quite easily. Versions, timestamps, and a

method to derive action views of objects are already available in such systems.

Timestamps and recovery versions are also used in systems that use optimistic

concurrency control such as Kung & Robinson's [Kung & Robinson 81). Therefore,

we believe that our debugging method.can also be incorporated into such systems in

a straightforward manner. However, there are complications with aborted actions.

An aborted action can see inconsistent views in systems that use optimistic

concurrency control. As a result, values that are read will have to be saved explicitly

for aborted actions. In addition, we cannot predict pre-action values at objects that

an aborted action did not use.

The above two systems, namely Reed's and Kung and Robinson's, use

recovery versions, as does Argus. It will be interesting to see how pre- and post­

action values might be computed in systems that employ alternative recovery

techniques, e.g., System R [Gray et al. 81] and Herlihy's system for replicated data

[Herlihy 84], both of which use logs.

145

Other debugging-related tasks.

We note three aspects of debugging that are not covered in this thesis:

1. Our work has concentrated exclusively on debugging computations.

To debug a program, the user must be able to generate computations

with desired characteristics. It may be the case that the user should be

allowed to specify the ordering of concurrent siblings. Or, it may be

helpful to the user to be able to ask for a computation that is just like

another computation but differs In some ordering of descendant

subactions. What set of tools would be most useful to the user for

controlling a computation, and how these tools might be implemented,

needs to be studied. Similarly, the tools for controlling interactions of

activities within a user-defined atomic type also need further study.

2. In this thesis, we did not present a user interface to the debugging

system. The question of how objects should be displayed and named,

and how the user interacts with the debugging system needs to be

studied.

3. Our debugging method is not applicable to performance-related bugs.

This is because when the user debugs a computation, he or she is

really debugging a functionally equivalent serial execution. Such an

execution will not reveal that an action had to wait to get a lock from

another action, for example, nor that an action was aborted to break a

deadlock. Understanding and debugging the performance of

concurrent and distributed computations is an important and difficult

task that still awaits systematic study.

146

References

[Allchin & McKendry 83]
Allchin, J.E., and McKendry, M.S. "Synchronization and Recovery of Actions.'' in
Proceedings of the Second Annual ACM Symposium on Principles of Distributed
Computing, August 1983, pp. 31-44.

[Balzer69]
Balzer, R.M. "EXDAMS · EXtendable Debugging and Monitoring System,"
Proceedings of the AF/PS Spring Joint Computer Conference, Vol. 34, 1969, pp.
567-580.

[Bayer et al_. 80]
Bayer, A., Heller, H., and Reiser A. "Parallelism and Recovery in Database
Systems," ACM Transactions on Database Systems, Vol. 5, No. 2, June 1980, pp.
139-156.

[Bernstein & Goodman 81]
Bernstein, P.A. and Goodman, N. "Concurrency Control in Distributed Database
Systems," ACM Computing Surveys, Vol. 13, No. 2, June 1981, pp. 185·221.

[Bernstein & Goodman 83]
Bernstein, P.A. and Goodman, N. "Multiversion Concurrency Control • Theory
and Algorithms," ACM Transactions on Database Systems, Vol. 8, No. 4,
December 1983, pp. 485-483.

[Chan et al. 82]
Chan, A., Fox, S., Lin, W.T.K., Nori A., and Ries, D.R. "The Implementation of an
Integrated Concurrency Control and Recovery Scheme," in Proceedings of the
1982 ACM SIGMOD International Conference on Management of Data, June
1982, pp. 184-191.

[Davies 73]
Davies, C.T. Jr. "Recovery Semantics for a DB/DC System," in Proceedings of
the 1973 ACM National Conference, 1973, pp. 136-141.

[DuBourdieu 82]
DuBourdieu, D.J. "Implementation of Distributed Transactions," in Proceedings
of the Sixth Berkeley Workshop on Distributed Data Mananagement and
Computer Networks, February 1982, pp. 81-94.

147

[Eswaran et al. 76]
Eswaran, K.P., Gray, J.N., Lorie, A.A., Traiger, l.L. "The Notions of Consistency
and Predicate Locks.in a Database System,·~ Communications of the.ACM,. Vol.
19, No. 11, November 1976, pp. 624-633.

[Gertner 80]
Gertner, I. Performance Evaluation of Communicating Processes, Ph.D. Thesis,
Technical Report TR-76, Department of Computer Science, Univ. of Rochester,
May 1980.

[Gray78]
Gray, J.N. "Notes on Data Base Operating Systems," in Operating Systems: An
Advanced Course, Vol. 60, Lecture Notes in Computer Science, Springer-Verlag,
New York, 1978, pp. 393-481.

[Gray81]
Gray, J. "The Transaction Concept: Virtues and Limitations," in Proceedings of
the Seventh International Conference on Very Large Data Bases, September
1981, pp. 144-154.

[Gray et al. 81)
Gray, J.; McJones, P., 81asgen, M., Lindsay, 8., Lorie, R., Price, T., Putzolu, F.,
Traiger, I. "The Recovery Manager of the System R Database Manager," ACM
Computing Surveys, Vol. 13, No. 2, June 1981, pp. 223-242.

[Guttag et al. 78)
Guttag, J., Horowitz, E., and Musser, D. "Abstract Data Types and Software
Validation," Communications of the ACM, Vol. 21, No. 12, December 1978, pp.
1048-1064.

[Herlihy 84)
Herlihy, M.P. Replication Methods· for Abstract Data Types, Ph.D. Thesis,
Technical Report MIT /LCS/TR-319, Laboratory for Computer Science, MIT, May
1984.

[Herlihy & liskov 82)
Herlihy, M. and liskov, 8. "A Value Transmission Method for Abstract Data
Types," ACM Transactions on Programming Languages and Systems, Vol. 4 No.
4, October 1982, pp. 527-551.

148

[Kung & Robinson 81]
Kung, H.T. and Robinson J.T. "On Optimistic Methods for Concurrency Control"
ACM Transactions on. Database.Systems, .VoJ .. 6, No. 2, June 1981, pp. 213·226.

[Lamport 78]
Lamport, L. "Time, Clocks, and the Ordering of Events in a Distributed System,"
Communications of the ACM, Vol. 21, No. 7, July 1978, pp. 558-565.

[Lampson 81]
Lampson, B. "Atomic Transactions," in Distributed Systems: Architecture and
Implementation, Vol. 105, Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 1981, pp. 246-265.

(Liskov 82)
Liskov, B. "On Linguistic Support for Distributed Programs," IEEE Transactions
on Software Engineering, Vol. SE-6, No. 3, May 1982, pp. 203-210.

[Liskov84]
. Liskov, B. "Overview of the Argus Language and System," Programming

Methodology Group Memo 40, Laboratory for Computer Science, MIT, February
1984.

(Liskov et al. 81)
Liskov, B., Atkinson R., Bloom T., Moss, E., Schaffert J.C., Scheifler, R., Snyder,
A. CLU Reference Manual, Vol. 114, Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 1981.

(Liskov & Scheifler 83)
Liskov, B., and Scheifler, R. "Guardians and Actions: Linguistic Support for
Robust, Distributed Programs," ACM Transactions on Programming Languages
and Systems, Vol. 5, No. 3, July 1983, pp. 381-404.

[Liskov & Zilles 74)
Liskov, B., and Zilles, S.N. "Programming with Abstract Data Types," in
Proceedings of the ACM SIG PLAN Cont erence on Very High Level Languages,
SIGPLAN Notices, Vol. 9 No. 4, April 1974, pp. 50-59.

[Lometn)
Lomet, D.B. "Process Structuring, Synchronization, and Recovery Using Atomic
Actions," in Proceedings of an ACM Conference on Language Design for Reliable
Software, SIGPLAN Notices, Vol. 12, No. 3, March 1977, pp. 128-137.

149

[Mcdaniel 77]
Mcdaniel, G. "METRIC: a Kernel. Instrumentation System for Distributed
Environments," in Proceedings o/ .. the Sixth ACM Symposium on Operating
Systems Principles, November 1977, pp. 93-99.

[Model 79)
Model, M.L. Monitoring System Behavior in a Complex Computational
Environment, Stanford U. Ph.D. Thesis, Technical Report CSL-79·1, Xerox Palo
Alto Research Center, January 1979. (Also available as Stanford Univ. Computer
Science Dept. Report CS· 79· 701.)

[Moss81]
Moss, J.E.B. Nested Transactions: An Approach to Reliable Distributed
Computing, Ph.D. Thesis, Technical Report MIT /LCS/TR-260, Laboratory for
Computer Science, MIT, April 1981.

[Moss 81]
Moss, J.E.B. "Nested Transactions and Reliable Distributed Computing," in
Proceedings of the Second Symposium on Reliability in Distributed Software and
Database Systems, July 1982, pp. 33-39.

(Nelson 81]
Nelson, B.J. Remote Procedure Call, Ph.D. Thesis, Technical Report
CMU-CS-81-119, Department of Computer Science, Carnegie-Mellon Univ., May
1981.

[Randell 75)
Randell, B. "System Structure for Software Fault Tolerance," IEEE Transactions
on Software Engineering, Vol. SE-1, No. 2, June 1975, pp. 220-232.

[Reed 78]
Reed, D.P. Naming and Synchronization in a Decentralized Computer System,
Ph.D. Thesis, Technical Report MIT /LCS/TR-205, Laboratory for Computer
Science, MIT, September 1978.

[Reed 83)
Reed, D.P. Implementing Atomic Actions on Decentralized Data, ACM
Transactions on Computer Systems, Vol. 1, No. 1, February 1983, pp. 3-23.

[Schwarz & Spector 84]
Schwarz, P.M., and Spector, A.Z. "Synchronizing Shared Abstract Types," ACM
Transactions on Computer Systems, Vol. 2, No. 3, August 1984, pp. 223-250.

150

-- ------ ----------------

[Schiffenbauer 81]
Schiffenbauer, R.D. Interactive Debugging in A Distributed Computational
Environment, M.S. Thesis, Technical Report MIT /LCS/TR-264, Laboratory for
Computer Science, MIT, September 1981.

[Schlichting & Schneider 83)
Schlichting, R.D., and Schneider, F.B. "Fail-Stop Processors: An Approach to
Designing Fault-Tolerant Computing Systems," ACM Transactions on Computer
Systems, Vol. 1, No. 3, August 1983, pp. 222-238.

[Smith 81)
Smith, E.T. Debugging Techniques for Communicating, Loosely-Coupled
Processes, Ph.D. Thesis, Technical Report TR-100, Department of Computer
Science, Univ. of Rochester, December 1981.-

[Stearns & Rosenkrantz 81]
Stearns, R.E., and Rosenkrantz, D.J. "Distributed Database Concurrency
Controls Using Before-Values" in Proceedings of the 1981 ACM SIGMOD
International Conference on Management of Data, 1981, pp. 74-83.

[Weihl 84)
Weihl, W.E. Specification and lmplementatin of Atomic Data Types, Ph.D. Thesis.
Technical Report MIT /LCS/TR-314, Laboratory for Computer Science, MIT,
March 1984.

[Weihl & Liskov 82]
Weihl, W., and Liskov, B. "Implementation of Resilient, Atomic Data Types,"
Computation Structures Group Memo 223, Laboratory for Computer Science,
MIT, December 1982. To appear in ACM Transactions on Programming
Languages and Systems.

151

