
MIT / LCS / TR-329

QUALITATIVE MATHEMATICAL REASONING

Elisha Sacks

"

This blank page was inserted to presenie pagination.

Qualitative Mathematical Reasoning
by

Elisha Sacks

November 1984

©Massachusetts Institute of Technology 1984

This investigation was supported (in part) by National Institutes of Health Grant
No. 5 R24 RR01320 from the Division of Research Resources, by-Grant No. 1 ROl
HL33041 from the National Heart, Lung, and Blood Institute, and by Grant No. 1
POl LM 03374 from the National Library of Medicine.

Laboratory for Computer Science Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Qualitative Mathematical Reasoning

Abstract

by
Elisha Sacks

Qualitative analysis is the study of abstract causal reasoning. It explores the
mechanisms whereby humans analyze complex systems abstractly, while ignoring
unimportant and unknown low-level details. Previous research has focused on qual­
itative simulation techniques, analogous to numerical simulation, that use local
information about a system to predict its short-term behavior. This thesis presents
a new, calculus based, type of qualitative analysis, called qualitative mathematical
reasoning. It derives functional descriptions of systems and uses them to predict
global behavior.

qualitative mathematical reasoning analyzes a system in two stages; first, it de­
rive a mathematical description of each important parameter, then it determines the
qualitative behavior of these descriptions. The first stage utilizes the theory of dif­
ferential equations, and the second, real analysis. The current version of QMR solves
most of the examples from other qualitative analysis papers. More importantly, it
provides a clean precise foundation for future systems.

Thesis Advisor: Peter Szolovits
Title: Associate Professor of Computer Science

1

Table of Contents

1 Introduction 4

2 Qualitative Mathematics 'I
2.1 Symbolic Arithmetic 7
2.2 Data Structures 8
2.3 Algorithms 10

2.3.1 Instantiation Algorithms . 10
2.3.2 Combination Algorithms . 11
2.3.3 Description Algorithms 17

2.4 Periodic Functions .. 19
2.5 Summary of QM 25

3 Qualitative Reasoning 26
3.1 The QMR Algorithm 26
3.2 QMR Examples 26

3.2.1 The Falling Ball 26
3.2.2 Heat Flow 30
3.2.3 Oscillation 32
3.2.4 Damped Oscillation 34

4 Comparison with Related Work 36
4.1 Overview of QP 36

4.1.1 Data Structures 36
4.1.2 Algorithms . . . 38
4.1.3 Current Systems 39

4.2 Problems with QP 40
4.3 Advantages of QM 42

5 Summary and Future Work 43

References 44

A Instantiation Functions 4'1

B Description Queries 48

2

List of Figures

2.1 Arithmetic in QM 8
2.2 A Sample ANALYZE run . 14
2.3 Sample Description Queries 19
2.4 A Mathematical Description . . 20
2.5 A Periodic Function 20
2.6 Restriction of a Par-fun-int 22

3.1 Two Sample Nodes . 27
3.2 The Ball's Flight .. 28
3.3. The Ball Network . . 28
3.4 The Heat Flow Network 30
3.5 The Spring Network ... 32
3.6 The Damped Spring Network 34

4.1 Value Space for Water 37

List of Tables

2.1 The Function Interval g

2.2 The ball's fun-ints . g
2.3 Linear Substitution .. 12
2.4 Linear Composition 12
2.5 The ANALYZE algorithm 13
2.6 Functional Composition . 15
2.7 The FIND-DIR algorithm 16
2.8 Parameterized fun-ints . 21

3.1 Node Types 27
3.2 Parameterized /un-inm . 32

3

----- ~-- --~------

1. Introduction

Qualitative analysis is the study of abstract causal reasoning. It explores the
mechanisms whereby humans analyze causal systems abstractly, while ignoring
unimportant and unknown low-level details. This skill plays a major role in in­
telligent behavior, ranging from common sense reasoning about everyday events to
expert understanding of complex machines. It enables children to conclude that
hot stoves burn fingers, and doctors to diagnose diseases. This thesis presents a
new, calculus based, type of qualitative analysis, called qualitative mathematical
reasoning. It argues that QMR provides a clean precise foundation for both expert
and common sense causal reasoning programs.

Qualitative analysis divides naturally into two stages, representing problems in
a precise formalism and solving them. A network model describes a wide class of
problems flexibly and concisely; interesting parameters are represented by functions
of time and dependencies between parameters by functional equations. Hence,
many researchers translate problems into this model by hand and concentrate on
the second stage, deducing a network's behavior from an abstract description of its
initial state and of the dependencies between its components. I, too, adopt this
model and concentrate on qualitative analysis of given networks.

A typical common sense problem, "Wh;..t happens to a ball when it is thrown
straight up?", demonstrates qualitative reasoning in the network model. Although
the exact relation between height, velocity and acceleration may be unknown, qual­
itative analysis can inf er that the ball will reach a peak height and fall back to
earth. One representation that allows that inference has the following components
and initial states

1. h(t}-the ball's height at time t with h(O) = 0,

2. v(t)-its velocity with v(O) > 0 and

3. g(t)-its acceleration with g(O) < 0.

Dependencies between components can be stated as

1. v is h's derivative

2. g is v's derivative

3. g is constant.

The qualitative reasoning used to analyze h might be

4

Initially, h increases by dependency 1 since v is positive, also v de­
creases at a constant rate by dependencies 2 and 3 since g is negative.
When v reaches zero, h attains a maximum. From then on, v becomes
more and more negative, so h decreases until it reaches zero again.

or something along those lines. It would utilize theorems about derivatives such as
"a function with a positive derivative increases" and continuity theorems such as "if
f is continuous and /(0) is positive then f will remain positive in a neighborhood
of O." The main topics of my thesis are an algorithmic approach to qualitative
reasoning and the programs that implement this approach.

As the ball example illustrates, qualitative reasoning presupposes a well-behaved
network in which all functions are piecewise differentiable. This assumption­
corresponding to the intuition that physical phenomena vary smoothly, with the
possible exception of a few irregularities-allows the calculus of piecewise continuous
functions on ~· to be used for network analysis. For example, the aforementioned
ball's height function fits the quadratic model

92 {vo>O h(t) = v0t + 2t with g < 0
(1.1)

where g is the gravitational constant and Vo the ball's initial height. Given this
representation, its behavior can be determined by inspecting the derivative's sign.
Qualitative reasoning consists, no doubt, of many different special-purpose methods,
some known to most people and others invented by individuals for their own use.
However, I contend that qualitative reasoning programs should follow the strategy
that has been used successfully by experts. They should utilize calculus methods
whenever feasible and only fall back on other, more general, techniques as a last
resort. This strategy forms the basis for my work and distinguishes my program
from other qualitative reasoners. It unifies the solutions to more and less precisely
specified problems in a single formalism, one that permits specialized mathematical
reasoning about the former alongside general reasoning about the latter.

This thesis describes QMR, a qualitative reasoning program that uses calculus
and other mathematical techniques to analyze networks. QMR derives closed-form
arithmetic expressions for each function in a network and analyzes the solutions.
Chapter 2 describes QM, a system that analyzes piecewise continuous functions
from ~ to ~·, such as equation 1.1. Chapter 3 presents QR, a simple qualitative
reasoner that finds closed-form solutions to networks and uses QM to derive their
behavior. The two steps are discussed in reverse order since QM is well developed
and fully implemented, whereas the network analysis algorithm is rudimentary.
Nevertheless, as several examples show, QR can solve many interesting problems.
Chapter 4 reviews related work and compares it with QMR; it argues that QM's

5

calculus based paradigm is more promising than the naive approach taken by other
qualitative reasoners. Chapter 5 summarizes QMR 's strengths and shortcomings and
outlines plans for future work; the main thrust will be to produce a powerful useful
qualitative reasoner by extending and generalizing the existing QM foundation.

6

2. Qualitative Mathematics

This chapter describes QM, a qualitative ma.thematics system that represents,
manipulates, and describes piecewise continuous functions. QM deserves to be called
qualitative because it understands pafameterized functions, such as Equation 1.1,
in addition to purely numerical ones. However, as will be discussed in section 4.3, it
does not claim to be a general qualitative reasoner-just the mathematical model for
one. The .first three sections of this chapter discuss QM's symbolic arithmetic, data.
structures, and algorithms. They limit themselves t~ functions that have .finitely
many turning points and discontinuities, whereas the fourth section introduces an
extension to QM that eases this restriction.

2.1 Symbolic Arithmetic

Parameterized functions and expressions mix numbers and unknown symbols,
so QM implements generic arithmetic operations1 similar to those in other symbolic
algebra systems. In 3.ddition, QM associates qualitative information with expressions
in the form of constraints. Each constraint limits an expression to an interval-finite
or infinite, open, half open, or closed. Constraint information from sub-expressions
propagates upwards unless overridden at a higher level, e.g.

(2.1)

The inequality predicates-illustrated in figure 2.1- use this method to compare
expressions; if ei 's lower bound is greater than e2's upper bound then ei > e2, if
ei 's upper bound is less than or equal to e2 's lower bound then ei ~ e2, and so on.
This definition guarantees that whenever a predicate pr returns the result

the pr relation actually does hold between e1 and e2• However, a predicate sometimes
fails, due to limitations in its bounding algorithm, even when the mathematical
relation it represents holds. Such cases have never yet uisen in practice, but if they
do the comparison algorithm can be augmented with more sophisticated techniques.

1The current version of QM U8e8 MACSYMA for algebraic simplification, while previous ones used my
own simplifier.

7

;;; Sample constraints on a and b
(assert+ 'a); 0 <a< oo
(add-constraint 'b 1 T 2 NIL); 1 < b ~ 2
;;; Implications of these constraints
(>'a 0) ==> T
(< 'b 2) ==>NIL
(<= 'b 2) ==> T
(lb (+ 'a 'b)) => 1 ; lower bound
(lb (• 'a 'b)) => 0
(<= 'x (+ 'x (expt 'c 2))) => T ; z ~ z + c2

Figure 2.1: Arithmetic in QM

2.2 Data Structures

QM represents a function-from [lb, ub] ~ R to R*-by a collection of interval
descriptors, each corresponding to a closed sub-interval of its domain. The function
is continuous, and strictly monotone or constant on the interiors of these interval,
whereas the end points mark extrema, discontinuities or domain boundaries. For
example, z2 decreases on [-oo, 0) and increases on (0, oo]; the points -oo and oo
are domain boundaries, and zero, a minimum. Any function on [lb, ub] that has a
finite number of discontinuities and turning points, p1,p,, ... ,p1c, can be described
by a finite number of descriptors,

[lb, P1], [pi, p,), ... , [Pk-11 P1c], [p1c, ub] (2.2)

hereafter called /un-ints. The set of fun-ints that describes a function is called a
functional descriptor or FD.

Each fun-int contains the information that high school students use to sketch
functions. It includes the function's direction, inflection points, end-point values,
convexity, and so on, with NIL denoting unknown or undefined values. For example,
the inverse does not exist on constant intervals, and may have no closed form, even
on monotone intervals. Table 2.1 contains a complete list of a fun-int's attributes
and table 2.2, the actual values for Equation 1.1. The singularities entry records
derivative singularities as four-tuples

{point type left-derivative right-derivative)

where type is either zero, undefined, or infinite. Convexity entries record convexity
as a list of triples (lb sign ub} in which sign is the second derivative's sign on the
interval {lb ub), one of -1, O, or 1. All other entries are self explanatory.

8

Item
direction
fun . mverse
derivative
singularities
der2
convexity
lb
lb-val
lb-r-lim

ub
ub-val
ub-1-lim

direction
lb

ub
fun
lb-val

lb-r-lim

uh-val

ub-1-lim

inverse
derivative
singularities
der2
convexity

Meaning
up, down, or constant
the functional form J(t)
,-l(t)
J'(t)
a list of derivative singularities
f"(t)
a record of the second derivative's sign
the interval's lower bound
!(lb)
Wt: J(t)
the interval's upper bound
J(ub)
limf(t)
tTub

Table 2.1: The Function Interval

Interval 1 Interval 2
up down
0 _!Q.

g

_!!ll, -~
g g

.\t i1ot + 1t2 .\t i10t + ~t2

0 v' _.::A,
2g

0 v' _.::A,

v'
2g

_.::A, 0 2g
v2

0 -!12.
2,

.\t J2gt+v~ -vo .\t _ Ji,t+vg +wo
g g

.\t i10 +gt .\t t10 +gt
Nll.. Nll..
.\t g .\t g
((0 -1 - ~)) ((-~ -1 - ~))

The fun-ints describing the ball's height: h(t) == Vot + it2 with { ; 0
; 0°

Table 2.2: The ball's fun-ints

9

2.3 Algorithms

QM implements three classes of algorithms: instantiation, combination and anal­
ysis. Instantiation algorithms create functional descriptions, FD 's, for a large family
of primitive functions from a few basic FD's by linear substitution and scaling. For
example, i-log starts with the basic FD for logy, substitutes y = bx+ c, multiplies
by a and adds kin order to instantiate alog(bx + c) + k. Combination algorithms
apply functional operators, such as composition and addition, to FD's. Finally,
description algorithms derive the qualitative functional behavior of FD's; they an­
swer questions about directionality, extrema, asymptotes, and more. The following
sections explain these three classes of algorithms in detail.

2.3.1 Instantiation Algorithms

All instantiation algorithms have the canonical form:

1. Find the qualitative regions in which each argument might lie.

2. Create an FD for each choice in 1 by appropriate substitutions, shifts, and
scalings.

The first step performs a preliminary case analysis to determine the result's form
and the second derives the exact effect of the parameters on this form. For example,
the i-quadratic function-which instantiates ax2 + bx + c-chooses a quadratic or a
linear form in step 1 depending on whether a is nonzero or zero. In step 2, it applies
appropriate transformations to the chosen form in order to determine its direction,
convexity, and other attributes from the given parameter values; for instance, if
a > 0 the function decreases, reaches a minimum, and increases but if a < 0 it
increases, reaches a maximum, and decreases. Each instantiation function has its
own first step determined by the particulars of its functional forms; the exponential
bz, for example, must test for b < O, b = O, b = 1, and so on.

Instantiation functions use three transformations in step 2 to produce a wide
range of FD's (listed in Appendix A) from a few basic ones; these are linear substi­
tution, linear composition, and restriction. Linear substitution produces a fun-int
for /(ax+ b) from that of f(x) by mapping each fun-int (lb, ub] onto

{ [~,':] a>o
(~",~) a<O

(2.3)

and scaling the derivatives, singularities and convexities appropriately. The new
derivative values are af' (ax+ b) and a 2 !" (ax+ b) by the chain rule; singularities are
scaled and multiplied by a, but convexity regions are just scaled since multiplying

10

by a 2 leaves their values unchanged. The case a = 0 yields a constant function,
y = f(b). Linear composition produces a fun-int for a· f(x) + b from that of f(x)
without changing the existing lb and ub values. The new direction is the same as the
old when a> 0 and the opposite when a< 0. The function is scaled by a and shifted
by b, the derivatives and singularities are scaled by a, and the inverse is transformed
appropriately. Once again, a= 0 yields a simple special case, f(x) = b. Finally, the
restriction operator derives an FD for f(x) restricted to a subinterval of its original
domain, [lb1, ub1], from the original FD, F0 • H lb1 is greater than Fo's old lower
bound, the lb value of F0's first fun-int is replaced with lb1 and the lb-val and lb-r­
lim values by f(lb1); analogously, if ub1 is less than the old upper bound then the
ub, ub-val, and ub-l-lim of F0's last fun-int are replaced by ubi, f(ub1), and f(ub1)
respectively. This procedure is valid since, by construction of F0 , f is continuous
on (lbi-, ub1). .

Tables 2.3 and 2.4 demonstrate linear substitution and composition. A compar­
ison of the tables shows the fundamental difference between the two operations­
substitution scales the function's domain and composition, its range. Restriction,
in tum, limits both range and domain but does not alter the function's behavior at
all. All three instantiation functions share an important characteristic; they perform
perfectly when certain qualitative information is available-a's sign for substitution
and composition, whether lb1 > lb and ub1 < ub for restriction. H ambiguity exists,
for instance a :5 O, they create an FD for every possible case and record the appro­
priate assumption in each one. The next section describes combining algorithms
that are more powerful and general than instantiation ones. However, unlike in­
stantiation function, they do not always produce complete FD's due to limitations
in their methods.

2.3.2 Combination Algorithms

Combination functions implement the functional operators: composition, addi­
tion and multiplication. They accept arbitrary FD's as input but have been used
mainly on the primitive functions of Appendix A, so far. In particular, the ANALYZE
program, appearing in Table 2.5, creates an FD for any expression composed of el­
ementary mathematical functions. It casts the input, g(x), into the form a· f (x) + b,
analyzes f, and scales the result. First, ANALYZE tries to match f with a pattern
from its library and use the corresponding instantiation function to create an FD.
For example, 2x2 + bx matches2 the pattem

(2.4)

2 A simple SNOBOL type pattern matcher is used.

11

x2 a>O a=O a<O
direction up up constant down
fun x2 (ax+ b)2 b2 (ax+ b)2

inverse Vi yZ-b NIL
y'i-b

a a

derivative 2x 2a(ax + b) 0 2a(ax + b)

der2 2 2a2 .o 2a2

lb 0 _! -oo 1-1>
a Cl

lb-val 0 0 NIL 1
lb-r-lim 0 0 b2 1
ub 1 1-b 00 _!

a a
uh-val 1 1 NIL 0
ub-1-lim 1 1 b2 0
singularities NIL NIL NIL NIL
convexity ((0 11)) ((-~ 1 1~")) ((-oo 0 oo)) ((1~" 1 - ~))

Linear substitution f(ax + b) with f(x) = x2 on [O, 1).

Table 2.3: Linear Substitution

x2 a>O a=O a<O
direction up up constant down
fun z2 ax2 +b b az2 +b
inverse Vi v¥ NIL v¥
derivative 2x 2az 0 2az
der2 2 2a 0 2a
lb 0 0 0 0
lb-val 0 b b b
lb-r-lim 0 b b b
ub 1 1 1 1
uh-val 1 a+b b a+b
ub-1-lim 1 a+b b a+b
singularities NIL NIL NIL NIL
convexity ((0 11)) ((0 11)) ((0 0 0)) ((0 -11))

Linear composition of a· f(x) + b with f(x) = z 2 on [O, 1]

Table 2.4: Linear Composition

12

Table 2.5: The ANALYZE algorithm

1. Represent the input, g(x) as a· f(x) + b.

2. If the function f matches some primitive function instantiate it and stop.

3. Decompose f into a sum, product, or composition of components
Ii with i = 1, ... , j.

4. Analyze each /i.

5. Apply the appropriate combination algorithm to the /,.

6. Multiply the result from step 5 by a and add b.

so the associated i-q11.adratic function can create its FD. If no pattern matches f,
it is decomposed into a sum, product, exponentiation, or functional composition of
two or more functions, they are recursively analyzed, and the results are combined
by a combination function. Figure 2.2 demonstrates ANALYZE on the function
(a - x2)- t; familiarity with MACSYMA 's internal syntax is presupposed, so I include
translations for the .uninitiated.

The composition program produces an FD for f o g from those of f and g by
mapping each fun-int 9i onto a set of fun-ints that describes fog on (lb,, ubi) and
concatenating the results. If g increases then fog has the same directional behavior
on (lbi, ubi) as f on (lb-r-lifnj, 11.b-l-lifnj); if g decreases, the direction is reversed;
and if g stays constant, fog does the same. In each case, one fog fun-int of known
direction is created for each f fun-int; also, their jun, derivative, derB and inverse
entries follow from the definition of composition. Each singularity of g's transfers
to f o g and each f singularity d maps to the same type of FD at g-1 (d); in both
cases left and right values switch when g decreases. Special care must be taken
when a g singularity B coincides with an f singularity g(s) but this case too can
be resolved directly or, if worst comes to worst, by falling back on the derivative's
definition and taking limits. Table 2.6 demonstrates composition of v'X and a - :.r:2

into Va - x2, the algorithm used by ANALYZE in figure 2.2.
The functional addition algorithm creates an FD for f +g from those of J and g.

It divides their domain into intervals on which neither function changes direction,
creates one or more fun-ints for each interval, and concatenates the results. As in
composition, the /11.n, derivative and dere entries follow directly from the definition
of functional addition. The end-point values and limits generally can be determined
by adding the respective J and g results, but the entries must be calculated from

13 .

Create an FD for v1 1
with a> 0 on the interval [-ya, ya].

a- x2

(assert+ 'a)
(setq f (analyze 'f

1

(- (expt 'a 1/2))
(expt 'a 1/2)
(expt (- 'a (expt

Analyzing 2
SQRT(A - X)

1

Matching 2
SQRT(A - X)

Match failed.

;name
;lower bound
;upper bound
•x 2)) -1/2)))

Decomposing the exponential:
2

2 -1/2
(!- x)

Analyzing A - X

2
Matching X ; note step 1.
Instantiating (I-QUADRATIC

NIL ;name

;expression

((MTIMES) -1 ((MEXPT) A 1/2)) ;lower bound
((MEXPT) A 1/2) ;upper bound
1 O O)) ;a=1i b=O, c=O in u·2+bx+c.

2
Analysis of (A - X)

2
succeeded.

-1/2
Composing (A - X) with I

Analysis succeeded. (of top level)

Figure 2.2: A Sample ANALYZE run

14

a- x2 Ja-x2 a- x2 Ja-x2

direction up up down down
lb -.;a -..ra 0 0
ub 0 0 .;a .;a
fun a-x2 va-:z:2 a-z2 Ja-x2

mverse Ja-x Ja-x2 Ja-x Ja-x2

derivative
x x

-2x
Ja-x2

-2x
Ja-x2

der2 -2 -a(a - x2)-3/2 -2 -a(a - x2)-3/2

lb-val 0 0 a .;a
lb-r-lim 0 0 a .;a
uh-val a .;a 0 0
ub-1-lim a .;a 0 0
singularities NIL NIL NIL NIL
convexity ((-..[a -1 0)) ((-..[a -10)) ((0 -1 ..[a)) ((0 -1 Va))

This table shows the fun-ints of a - :z:2 and the corresponding ones of Ja - x2 with
a > 0. The fun-int for ../i appears below.

direction
lb
ub
fun
inverse

derivative

der2

lb-val
lb-r-lim

up
0
00

../i
x2

1

2../i
1

- 4xy'i
0
0
NIL uh-val

ub-1-lim 00

singularities NIL
convexity ((0 -1 oo))

Table 2.6: Functional Composition

15

Table 2.7: The FIND-DIR algorithm

1. If both functions have the same direction, return it; if one is constant return
the other's direction.

2. If (! + g)' is positive, zero or negative on the interval, return up, constant or
down respectively.

3. If ub - lb< e, lb is very small, or ub is very big, assume that no more turning
points exist.

4. If a turning point p can be found, recursively analyze (lb, p) and (p, ub) and
combine the results. Otherwise, find the midpoint m and combine the results
from (lb, m) and (m, ub).

their definitions when the sums are undefined. For example,

lim e0
s + bx with {

4

6 > 0° s--+ao < (2.5)

can not be calculatc:d by adding the two limits since they equal oo and -oo, so the
new limit must be taken directly. However, the expression's limit at -oo does equal
the sum of the two sub-limits, 0 + oo = oo. Singularities can only occur at points
appearing in the f or g singularities since the linearity of differentiation guarantees
that (f + g)' exists wherever f' and g' do. A singularities entry must be created
for each singularity of f or g by adding the appropriate left and right values-read
from their singularities or derived from their derivative; once again, the limits must
be found directly when the sums do not exist.

The directional behavior of f+g can not be determined by any general algorithm,
so several special purpose techniques must be used. Table 2. 7 outlines the direction
finding algorithm, FIND-DIR. First, it checks whether f and g go in the same
direction or whether (f + g)' is non-positive or non·negative on the interval. In
either of these cases FIND-DIR determines the sum's direction directly. Otherwise,
the derivative must change sign at some point, p. FIND-DIR attempts to find p and
analyze the two subintervals (lb, p) and (p, ub) recursively. If this fails-zeros of
symbolic expressions don't always exist in closed form and sometimes can't even
be estimated by the current algorithms-the interval is split in half and each piece
recursively analyzed. This algorithm would not terminate if infinitely many turning
points exist, so it assumes the heuristic that "very small" intervals have no turning
points; similarly, it assumes that a largest and smallest turning point exist.

Functional multiplication parallels addition in many ways. Once again, the fun,
derivative, der2, lb and ub follow from the definition of multiplication. End point

16 .

values and limits can be calculated by multiplying the appropriate component values
and falling back on definitions when these products fail, e.g. 0 · oo. The equality

(Jg)'= f'g +Jg' (2.6)

guarantees that (lg)' exists everywhere, except possibly for end points and singu­
larities of/ and g fun-ints. These derivatives are evaluated by the above rule, or by
definition when it fails. The product's direction must be determined by FIND-DIR,
as explained previously.

In summary, this section has explained the combining algorithms used by QM

to implement composition, addition and multiplication on FD's. Other operators
can be constructed directly from these basic ones. Functional subtraction consists
of linear composition followed by addition; and functional division, of composition
with ~ followed by multiplication; that is

I - g =I+ (-g) and ~=I· (~ o g) (2.7)

respectively. Other operators can be implemented by relying more heavily on the
fun expression. Differentiation, for example, need not examine the fun-int except for
end-point information; it can differentiate the fun and call ANALYZE on the result.
However, one might argue that such methods should not be classified as qualitative
reasoning since they use purely syntactic knowledge. Section 4.3 will return to this
issue and argue that all methods which produce results deserve recognition.

2.3.3 Description Algorithms

Description algorithms derive the functional behavior of FD's by straightforward
mathematical means; this includes

• directionality,

• convexity,

• extrema,

• discontinuities,

• limits,

• singularities,

• asymptotes,

17

and more. They fall into two conceptual classes, point algorithms describing behav­
ior at a point and interval algorithms describing intervals. Thus, "Is J continuous
at a?" would be answered by a point algorithm and "Is J bounded on [c, d]?"
would be answered by an interval one. However, there are no clear implementation
differences between the two classes, so the rest of this section will not distinguish
between them.

Most information needed by description algorithms can be derived directly from
the FD's fun-ints, e.g. convexity in the convexity entry and directionality in the di­
rection entry, but some, such as asymptotes, requires deeper analysis. For example,
the functions EVAL and EVAL-INV calculate the value and inverse of a function /,
represented by the FD F0 • The first one calculates /(a) by finding the fun-inti in
which a falls and returning

{

lb-va4 if a = lbi
f(a) = ub-va~ if a= ubi

/i (a) otherwise
(2.8)

where /1 is the fun-int's fun form. The second calculates /-1(a) by finding each
fun-int i such that

1. a = lb-va4,

2. a= ub-va4, or

3. lb-r-lif'ni < a < ub-l-lit11s

and returning lbi, ubi, or /,- 1(a) respectively. In both cases, the intermediate value
theorem guarantees correct results on the fun-ints' interiors, but the end points
must be treated specially. The other description algorithms work similarly, using
straightforward analytic techniques to derive functional behavior from FD's. Fig­
ure 2.3 demonstrates a few description queries; appendix B contains a complete list.

Higher level descriptions can be constructed out of the basic queries as desired.
For the moment, I have written two English based programs; one of my projects
for the future is implementing graphic descriptions, such as qualitative sketches.
The first program, MDESCRIBE, summarizes an FD's mathematical behavior; it lists
directionality, discontinuities, convexity, singularities and turning points. Figure 2.4
demonstrates MDESCRIBE's description of the FD ,/o1_~2 from Table 2.6. The second,
QDESCRIBE, summarizes the joint qualitative behavior of an FD set. The description
divides time into intervals according to the FD's directions; each time one FD
changes direction a new interval begins. The boundary points between intervals,
corresponding to extrema or discontinuities, are described in detail. QDESCRIBE
accepts a list of significant values (which defaults to 0) as an optional argument;

18

;;; Point descriptions of lxl
;;; Is Ix! continuous at O?
(send i-absl :continuousp 0) => T

;;; Is !xi differentiable at O?
(send i-absl :differentiablep 0) => NU.

;;; Interval descriptions of~
;;; Is it bounded on (0, oo)?
(send i-hypl :s-boundedp :lbl 0) => NU.
;;; on (1, oo)?
(send i-hypl :s-boundedp :lbl 1) => T
;;; What are its asymptotes?
(send i-hypl :s-asymptotes) => [x = O, y = O]

Figure 2.3: Sample Description Queries

every point at which any FD takes on a significant value is mentioned. The next
chapter illustrates QDESCRIBE on several networks.

2.4 Periodic Functions

QM, as described so far, limits itself to functions that have finitely many turning
points and discontinuities. This section extends the model to periodic functions by
parameterizing the corresponding fun-ints; for example, cos :r: can be represented by
two fun-ints, one for [2mr, (2n + 1)71'] and the other for [(2n + 1)71', 2(n + 1)71'], with
n taking on each of the values ... - 1, O, 1 ..• in tum. In fact, any function that fits
this model, such as floor(x) and ceiling(x), can be represented-not just periodic
ones. QM records a parameterized function as a par-fun-int, a finite list of fun-ints
along with lower and upper bounds for the parameter-hereafter n. For example,
table 2.8 contains the fun-ints for a square wave with linear rise time r and period
w; the function's first period, corresponding ton= 0, appears in figure 2.5.

The instantiation functions of section 2.3.1 extend to par-fun-ints; linear substi­
tution and composition are simply applied to each parameterized fun-int in tum,
.but restriction requires additional effort. Figure 2.6 contains the algorithm for
restricting to lb' the lower bound of a par-fun-int,· par-int, made up of fun-ints:
int1 , int2 ••• , intp, in which n varies between n-min and n-max; the upper bound
algorithm is analogous. The expression explc denotes the result of substituting k for
n in exp.

19

Description of the function F defined between -SQRT(A) and SQRT(A)
The function is undefined at - SQRT(A)
The right limit is INFINITY
The function decreases monotonically between -SQRT(A) and 0
The derivative is undefined at - SQRT(A)
The right derivative is -INFINITY

1
The function's value at 0 is ------­

SQRT(A)
The point is a local minimum.
The function increases monotonically between 0 and SQRT(A)
The derivative is undefined at SQRT(A)
The left derivative is INFINITY
The function is undefined at SQRT(A)
The left limit is INFINITY

Mathematical description of
1

produced from the FD in Figure 2.2.
,,/a-x2

'II

l

-l

Figure 2.4: A Mathematical Description

w+2r
I

2(w+r
I

Figure 2.5: A Periodic Function

20

Interval 1 Interval 2 Interval 3 Interval 4
direction up constant down constant
lb 2n(w + r) 2n(w+r)+r (2n+ l){w + r) (2n+l)(w+r)+r
ub 2n(w+r)+r {2n + l){w + r) {2n+ l){w+r) +r 2{n + l)(w + r)
lb-val -l l l -l
lb-r-lim -l l l -l
uh-val l l -l -l
ub-1-lim l l -l -l
fun ~{:z: - lb) - l l l - ~(:z: - lb) -l

inverse (z+l)r +lb
2l NIL (l-:r)r +lb

2l NIL

derivative .al 0 _,al 0 r r
der2 0 0 0 0

singularities
((lb 0 ~)) ((lb~ 0)) ((lb 0 - ~)) ((lb - ~ 0))

((ub ~ 0)) ((ub 0 - ~)) ((ub - ~ 0)) ((ub 0 ~))
convexity ((lb 0 ub)) ((lb 0 ub)) ((lb 0 ub)) ((lb 0 ub))

Table 2.8: Parameterized fun-ints

The composition, addition and multiplication algorithms have not been imple­
mented on par-fun-ints, nor have many description algorithms. However, MDE­
SCRIBE extends to par-fun-ints by summarizing the parameterized behavior of their
fun-ints. QDESCRIBE describes the first period of a par-fun-int in detail and summa­
rizes all other periods. If the function is periodic or damped periodic, the summary
states that fact along with the damping ratio (if relevant) and limit at infinity; oth­
erwise, it calls MDESCRIBE to provide a mathematical description. A par-fun-int is
considered periodic if each of its fun-ints satisfies:

1. the ub, singularities and convexity entries are a fixed distance, independent of
n, from the lb, and

2. the fun satisfies /unf :z:)A: = /un(:z:)k+1, /un(:z:)k > /un(:z:)A:+1 or
/un(:z:)A: < fun(x)k+ independently of k and :z:.

The first condition guarantees that the interval's shape is the same for all values
of n, and the second, that the function's values are scaled uniformly on successive
periods. Periodic functions are further classified as cyclic, decreasing or increasing,
according to the predicate, from step 2, that they satisfy. This section concludes
with mathematical and qualitative descriptions of the square wave par-fun-int from
table 2.8, performed by MDESCRIBE and QDESCRIBE. In order to improve legibility,
I have typeset the former in a regular font.

21 .

1. Find the least k for which lb';:::: lb(inti)k.

2. Find the least i for which lb' < ub(inti)k.

3. Restrict the lower bound of intf to lb'.

4. Adjust n to vary between k + 1 and n-max.

5. Return the intervals: intf, ... , int; and par-int.

Restrict a par-fun-int's lower bound to lb'.

Figure 2.6: Restriction of a Par-fun-int

22

Mathematical Description of the Square Wave

A unique description exists.
Description of the function IMP defined between 0 and oo
Constraints: 0 < r, 0 < l, 0 < w
The function's value at 0 is -l.
The point is a right minimum.
The function is described parametrically for n = 0 to oo.

The function increases monotonically on the intervals 2n(w + r) to 2n(w + r) + r
The function's value at 2n(w + r) is -l
The derivative is undefined at 2n(w + r)
The left derivative is 0 and the right is 2;'

The derivative is undefined at 2n(w + r) + r
The left derivative is 2,." and the right is 0
The function is linear between 2n(w + r) and 2n(w + r) + r

The function is constant on the intervals 2n(w + r) + r to (2n + l){w + r)
The function's value at 2n(w + r) + r is l
The derivative is undefined at (2n + l){w + r)
The left derivative is 0 and the right is _ J!!

' ,.
The function decreases monotonically on the intervals {2n + 1) (w + r) to
2(n + l)(w + r)
The function's value at (2n + l)(w + r) is l
The derivative is undefined at (2n + l)(w + r) + r
The left derivative is - 2;' and the right is 0
The function is linear between (2n + l)(w + r) and (2n + l)(w + r) + r

The function is constant on the intervals (2n + l)(w + r) + r to 2{n + l)(w + r)
The function's value at (2n + l)(w + r) is -l
The derivative is undefined at 2(n + 1) (w + r)
The left derivative is 0 and the right is 2;'

The function has no limit at infinity.

23

------ -~-----

Qualitative Description of the Square Wave

There is a unique qualitative description of IMP.

Time point 1 : 0
IMP's value is - L

Between points 1 and 2:
IMP increases and is linear. R
IMP goes through the significant value 0 at -

2
Time point 2: R
It is significant because IMP reaches a maximum
IMP's value is L

Between points 2 and 3:
IMP is constant.

Time point 3: W + R
IMP's value is L

Between points 3 and 4:

IMP decreases and is linear. 2 W + 3 R
IMP goes through the significant value 0 at

Time point 4: W + 2 R
It is significant because IMP reaches a minimum
IMP's value is - L

Between points 4 and 6:
IMP is constant.

Time point 6: 2 CW + R)
IMP's value ia - L

2

IMP repeats the qualitative behavior from [0 • 2 CW + R)]
on [2 N CW + R) 2 CN + 1) CW + R) for n=1 to infinity

It is periodic.

24 .

2.5 Summary of QM

This chapter has described QM, a qualitative mathematics system for piecewise
continuous real-valued function of one variable. QM represents a function as a col­
lection of fun-ints on which it is monotone and continuous. Instantiation algorithms
produce FD's for a wide class of elementary functions by applying linear substitu­
tion, scaling and shifting to a few basic FD's. Combination algorithms, as shown in
table 2.5, implement functional operators on FD's and allow any expression made
up of elementary function to be analyzed by decomposition. Finally, description
algorithms use straightforward analytic techniques to derive qualitative and quan­
titative functional behavior from FD's. The next chapter will demonstrate QM's
role in qualitative reasoning.

25

3. Qualitative Reasoning

As explained in chapter 1, QMR analyzes dependency networks in two stages.
First, QR derives explicit closed-form expressions that characterize the network's be­
havior, then QM analyzes these expressions to produce FD's. This chapter describes
the first component, QR; the second was explained in the previous chapter.

3.1 The QMR Algorithm

A network consists of edges and nodes, representing functions and functional
operators. Each node has a single out-edge and zero or more in-edges. The out­
edge functionally equals the result of applying the node's operator to its in-edges.
For example, node 1 in Figure 3.1 has no inputs and outputs the fixed function/
while node 2 has two inputs and outputs their sum. Table 3.1 lists all existing node
types along with the relations between their in and out nodes.

QR translates a network into a set of simultaneous differential equations, each
expressing the relation between the in and out links of a single node. It solves the
equations, using the given initial values, and calls ANALYZE (table 2.5) to parse the
solutions and create FD's. This rudimentary algorithm fails on networks that lack
closed-form solutions; in fact, it only solves linear equations with constant coeffi­
cients and other simple cases1• Nevertheless, as the next section shows, QR solves
many interesting problems. Most of these examples appear in other qualitative
reasoning papera, so section 4.3 returns to them when it compares QMR with other
systems.

3.2 QMR Examples

3.2.1 The Falling Ball

This example contains QR's solution to a problem from Kuipers' work [13,16}. A
ball is thrown straight up from height 0 with velocity v0 at time O; it is pulled down
by constant negative gravitional acceleration, g. QR derives closed form solutions
for its velocity, v, and height, h, from the network in figure 3.3. ANALYZE produces
FD's, and QDESCRIBE describes the results. Figure 3.2 depicts the solution pictori­
ally by graphing the ball's height over time with arrows indicating its velocity. This

1It calls MACSYMA but could just as well use an alternate differential equation solver.

26 .

f f +g

1 f(t) = logt 2 +

f g

Figure 3.1: Two Sample Nodes

Type In Links Out Links
fixed none the given function

derivative f (t) f'(t)

integral f(t) lot f(s)ds
n

sum f1(t),J2(t) · · · ,Jn(t) L kdi (t) with ki given constants
i=l

n

product !1(t),f2(t) ... ,f,.,(t) k rr fi (t) with k a given constant
i=l

composition f,g Jog

Table 3.1: Node Types

27

height

v2
_.::.Jl.

2g

0

•

-~
g

T

-~
g

time

Figure 3.2: The Ball's Flight

simple model predicts that the ball will fall indefinitely since it ignores the effect
of distance from the center of the earth on gravitation, or indeed the presence the
earth's surface.

h

Figure 3.3: The Ball Network

28

(solve-net ball) ;solve the ball network
2

G X + 2 VO X
[[H(X) = ------------- V(X) = G X + VO, A(X) = G]]

2
;;; parsing the solutions
Instantiating (I-QUADRATIC NIL 0 INFINITY G (* 2 VO) 0) H(x)
Instantiating (I-LINEAR NIL 0 INFINITY G VO) ;V(x)

(qdescribe ball) ; describe the solutions
There is a unique qualitative description of H, V.

Time point 1: 0
H's value is O
V's value is VO

Between points 1 and 2:
H increases and decelerates.
V decreases and is linear.

VO
Time point 2: - -­

G
It is sigif icant because B reaches a maximum

2
VO

H's value is -
2 G

V's value is 0

Between points 2 and 3:
H decreases and accelerates.
V decreases and is linear. 2 VO
H goes through the aignif icant value 0 at -

V's value is - VO

Time point 3: INFINITY
H approaches -INFINITY
V approaches -INFINITY

29 .

G

nf

nf =di -d0

d, do

d, = do=
k;(t1 - tmp) k0 (tmp- ta)

tmp

tmp =Jn/

Figure 3.4: The Heat Flow Network

3.2.2 Heat Flow

This example demonstrates QMR's analysis of a heat flow network-shown in
figure 3.4-equivalent to the one discussed by Kuipers [15]. A container is heated
from temperature tc by a flame whose temperature is ti; air temperature is te1 and
ta < tc < t / · The inflow of heat, ~, is directly proportional to the temperature
gradient between the 6.ame and the container. Similarly, the outflow, d0 , is directly
proportional to the gradient between the_ container and the outside air. Finally, the
temperature inside the container, tmp(t), equals the integral of the net heat flow.
QMR finds the closed-form solution

()
_ -(ko+k;)t () • h _ Jc.t / + kota

tmp t - e tc - teql + teql wit teql - kt + ko (3.1)

and produces three possible FD's, depending on whether te is greater than, equal
to, or less than the equilibrium temperature, teql· The qualitative descriptions of
the three possible FD's appear below.

30

There are 3 possible descriptions of TMP.

;;; Note that tO is greater than the equilibrium value.
Time point 1 : 0
H's value is TC

Between points 1 and 2:
H decreases and decelerates.

Time point 2: INFINITY
KI TF + KO TA

H approaches ------------­
KO + KI

;;; Note that to is equal to the equilibrium value.
Time point 1 : 0

KI TF + KO TA

H's value is ------------­
KO + KI

Between points 1 and 2:
H is constant.

Time point 2: INFINITY
KI TF + KO TA

H approaches ------------­
KO + KI

;;; Note that tO is smaller than the equilibrium value.
Time point 1 : 0
H's value is TC

Between points 1 and 2:
H increases and decelerates.

Time point 2: INFINITY
KI TF + KO TA

H approaches
KO + KI

31

l
y = -k ·a

field
direction
fun

inverse
der-fun

der2-fun
lb
lb-val
lb-r-lim
ub
ub-val
ub-r-lim
der-map

der2-map

y a v a a
v=-y at a=-v at

Figure 3.5: The Spring Network

fun-int 1
down

t Yo cos V7k
v'k [21rn + arccos ;

0
]

-~sin* .
_¥!!,cos 4:-

A: vA:

211'nvlk"
Yo
Yo
(2n + l)?rv'k
-Yo
-Yo
NIL

((2Vk?rn -1 (2n+ l)v'k11')

((2n + })v'k?r 1 (2n + l)Vk?r))

fun-int 2
up

t
Yo cos V'I
v'k [21r(n + 1) - arccos ;

0
]

~~sin*
_¥!!,cos 4:-

A: vA:

(2n + l)wvlk"
-yo
-yo
2(n + l)wv'k
Yo
Yo
NIL

(((2n + l)Vk?r 1 (2n + l)v'kw)

((2n + l)v'kw -1 2(n + l)vlk"w))

Table 3.2: Parameterized fun-ints

3.2.3 Oscillation

This example, taken from Kuipers [13], demonstrates QMR's analysis of periodic
functions, using par-fun-ints. A frictionless spring is extended to length 110, relative
to its natural length, and released with velocity 0. Acceleration and length obey the
equation y(t) = -ka(t) with k > 0. The complete functional network appears in
figure 3.5. QMR represents the solution, y(t) = y0 cos*' by the two parameterized
fun-ints, shown in table 3.2; the parameter n varies from 0 to infinity. QDESCRIBE
only describes the first period since the function fulfills the conditions stated in
section 2.4. There are no singularities; inB.ection points and upper bounds are a
fixed distance from lower bounds; and values are cyclic.

32 .

··--· ·------------~-------- -------

There is a unique qualitative description of Y.

Time point 1: 0
Y's value is YO

Between points 1 and 2:
Y decreases. Y.PI SQRT(K}
It accelerates between 0 and -----------

2
%PI SQRT(K}

It decelerates between ----------- and Y.PI SQRT(K}
2

Y.PI SQRT(K}
is an inflection point

2 Y.PI SQRT(K}
Y goes through the significant value 0 at -----------
-------------------------- 2
Time point 2: YJ>I SQRT(K}
It is significant because Y reaches a minimum.
Y's value is - YO

Between points 2 and 3:
Y increases. 3 Y.PI SQRT(K}
It accelerates between Y.PI SQRT(K} and -------------

2
3 Y.PI SQRT(K}

It decelerates between ------------- and 2 Y.PI SQRT(K}
2

3 %PI SQRT(K}
is an inflection point

2

Y goes through the significant value 0 at

Time point 3: 2 %PI SQRT(K}
Y's value is YO

3 Y.PI SQRT(K}

2

-------------------------------------·------~
Y repeats the qualitative behavior from [0 , 2 Y.pi SQRT(IC}]

on [2 SQRT(K} N PI -, 2 SQRT(K} (N + 1) PI] for n= 1 to infinity.
It is periodic.

33

l l

'Y = 'Y a 1J a a
-(k1v + k2a) 1J = -y a=-· 1J at at

Figure 3.6: The Damped Spring Network

3.2.4 Damped Oscillation

This section describes a spring that is affected by friction; it includes the previous
example as a special case. Once again, a spring is extended to length yo, relative to
its natural length, and released with velocity 0. It obeys the equation

(3.2)

where k1 is the frictional coefficient. The functional network appears in figure 3.6;
its solution is the damped cosine wave,

(3.3)

described below. Once again, QDESCRIBE summarizes the periodic behavior qual­
itatively, rather than resort to a tedious mathematical description. In order to
improve legibility, I have typeset the description in a regular font and substituted
the symbols A and f3 for their definitions.

There is a unique qualitative description of Y.
Time point 1: 0
Y's value is Yo
Between points 1 and 2:
Y decreases.
It accelerates between 0 and f3 [arctan k1A + arctan(2k2 - k1)A]
It decelerates between f3 [arctan k1A + arctan(2k2 - k1)A] and wP
f3 [arctan kiA + arctan(2k2 - k1)A] is an inflection point
Y goes through the significant value 0
Time point 2: 1f{3
It is significant because Y reaches a minimum.
Y's value is -y0e-"'~1A
Between points 2 and 3:
Y increases.

34

It decelerates between 7r{3 and f3 [arctan k1fi + arctan(4k2 - k1)ti]
It accelerates between f3 [arctan k1fi + arctan(4k2 - ki)ti] and 27f{3
f3 [arctan k1fi + arctan(4k2 - k1)ti] is an inflection point
Y goes through the significant value 0
Time point 3: 27f{3
Y's value is y0e- 27rkiA

Y repeats the qualitative behavior from [O, 27r{3]
on [2n7f,8, 2(n + l)7r,8] for n = 1 to oo.

Its magnitude decreases by a factor of e- 27rkiA on each interval.
The limit at oo is 0.

35

4. Comparison with Related Work

This chapter reviews and evaluates current research efforts in qualitative reason­
ing; in particular, it focuses on the qualitative physics, or QP, paradigm. Section 4.1
presents the QP philosophy and describes a generic QP system. It also cites several
existing systems and explains how they fit into the generic theory; QP derives its
data structures primarily from Forbus [11], but its algorithms are synthesized from
several sources. Section 4.2 elaborates the argument {implicit in chapter 1) that
QP systems must acquire a richer model of functions, while section 4.3 illustrates
QMR 's ability to fill that lacuna.

4.1 Overview of QP

Physics models interdependent, quantifiable, real-world phenomena by func­
tional dependencies involving their quantified forms. For example, Newton's second
law, J =ma, relates force, mass, and acceleration for any given object. A sys~em's
behavior can often be determined by finding a closed form solution to the equation
which it obeys and examining the functional form of that solution. Even if a closed
form is unobtainable, numerical analysis or simulation techniques yield approximate
solutions, which generally suffice. Thus, the power and precision of mathematics is
harnessed by modem day physics.

Qualitative Physics attempts to generalize the methods of Mathematical Physics
and apply them to partially specified systems in which certain parameters are un­
known or unimportant. This would allow common sense informal reasoning-as
performed by human experts-to be mechanized. Common sense reasoning is a
powerful tool in many domains, so it would seem that a system with that capability
could acquire previously unreached levels of expertise. It could model problems
as constraint networks similar to the functional networks of Mathematical Physics
(and of QMR), but drawn at a higher level of abstraction, one sufficient to express
the relevant issues and suppress the trivia. These networks would degrade grace­
fully when faced with partial knowledge, producing less specific models rather than
failing. The remainder of this section outlines QP's data structures and algorithms
and illustrates their capabilities.

4.1.1 Data Structures

A QP system consists of quantities and conatraints, representing properties and

36

--------- --- ----~--~-----------

-oo
~

abs-0

I
freezing

solid I liquid

boiling

I gaaeous oo ..
Figure 4.1: Value Space for Water

laws respectively. Quantities are time dependent functions which map into value
spaces rather than real {or complex) numbers. A value space describes a sub­
interval of~ abstractly by breaking it into a finite number of open regions separated
by boundary points. For example, a pot of water has quantity temp(t) which
represents its temperature at time t and lies in the value space depicted in Figure 4.1
with boundaries: abs-0, freezing and boiling, and regions: solid, liquid and gaaeoua.
Quantities are best viewed as real valued functions whose exact values have been
abstracted into qualitative values, regions or boundary points.

Derivatives of quantities with respect to time are first class quantities in their
own right; in fact, any higher order derivative can be described by recursive appli­
cation of this rule. All current programs assume that quantities are smooth within
qualitative regions. As in standard calculus, a quantity increases, remains con­
stant, or decreases depending on whether its qualitative derivative is positive, zero,
or negative. Hence, these three values appear in every derivative's value space.

Constraints state functional equations that must hold between quantities, for
example, p(t)v(t) = k · temp(t) constrains the pressure, temperature, and volume
of the gas in a sealed container. Ordinary differential equations are obtained in
a similar manner by relating quantities to their derivatives. Frictionless constant
gravitation, for example, can be expressed as

v'(t) = a(t), a(t) < O, a'(t) == 0 (4.1)

with a representing acceleration and v, velocity. These algebraic constraints involve
sums, products, equalities, and inequalities. A second type, functional constraints,
state direct or inverse monotone (not necessarily linear) dependencies between quan­
tities, such as 11 = M+(x), and provide a higher level of abstraction than algebraic
ones.

The constraints on a quantity may vary when it moves from one qualitative
region to another. For example, the relation between water's temperature and
volume is different for each of the three regions in its value space. Quantities
which obey different constraints in different regions model real world systems whose
behavior depends on the operating range of their parameters. In summary, QP
models physical systems with quantities and constraints; the next section describes
the algorithms which it uses to analyze these models.

37

4.1.2 Algorithms

QP derives a system's behavior from its constraints and initial values by deter­
mining the successive qualitative states which it enters. Each state consists of the
qualitative values and derivatives of the system's quantities. Thus, the water pot
system could have

• temp(t1) E liquid and increasing

• temp(t2) =boiling and constant

as consecutive states. Analysis proceeds by repeated execution of the steps:

1. Propagate initial values and

2. Derive the next transition and its initial values.

The first step utilizes arithmetic rules such as

if { a~O { a+b>O
b ~ 0 then ab ~ 0- (4.2)

and analytic theorems such as

• The quantity a increases, remains constant and decreases when a' is positive,
zero and negative respectively.

• if a = b + c, b is increasing and c is constant then a is increasing.

to derive all qualitative values and derivatives from the initial values. For example,
if " and v' obey the constraint

v(t) = av'(t) + b with { : : g, (4.3)

and v0 > 0 then v' will initially be negative by the arithmetic inequality. Thus, u
decreases by the first analytic constraint and so v' increases towards zero by the
second. Ambiguities occur when purely- qualitative information does not imply a
single qualitative result, for instance f - g may be positive or negative when / and
g are positive. They must either be resolved by quantitative information-in our
case, information which determines that f > g or f < g-or treated as mutually
exclusive alternatives.

The second step uses continuity theorems such as

if /(0) > 0 then f will remain positive in a neighborhood of zero

and intuitions such as

if f approaches a point then it will reach that point

38

to deduce which quantities, if any, will leave their current qualitative regions first
and what their new qualitative values will be .. For example, if the quantity g starts
out positive and g' obeys the constraint g'(t) = at with a negative then g will
reach zero after some open time interval. At this point, a transition occurs and
the system enters a new qualitative state, possibly involving new constraints. The
propagation/transition cycle begins anew with initial value g = 0 and decreasing.
Once again, ambiguities may arise due to lack of quantitative detail. A quantity
may either leave a region or approach its boundary asymptotically; similarly, either
of two quantities which approach boundaries might cross first or both might cross
simultaneously. The result in each case depends on the magnitude of derivatives,
not just their signs.

The analysis algorithm, described above, parallels a numerical simulation at a
qualitative level of abstraction. Hence, it suffers from simulation's major weakness;
it produces a trace of a system's incremental behavior but lacks global perspec­
tive. Periodic behavior causes the analysis program to run on forever, repeating
a chain of states over and over and ambiguous behavior forces it to branch and
produce multiple descriptions (some of which may never terminate if they branch
or loop themselves). For these reasons, QP produces a history, a graph whose nodes
represent states and links, possible transitions. Periodicity shows up as cycles and
ambiguity as multiple out-links. In summary, analysis derives a history for a system
by determining all possible states reachable from its initial state.

4.1.3 Current Systems

Several QP systems have been proposed, built, and demonstrated over the past
few years. All define quantities, constraints, and propagation similarly though no
two have the same transition rules or algorithms. De Kleer's QUAL1 {2] derives the
small signal behavior of circuits; hence, it need not analyze transitions from state
to state or consider devices with multiple operating regions. It works by applying
qualitative constraint propagation (the first step of QP's analysis algorithm) to a
network model. This model includes qualitative versions of resistors, capacitors and
inductors, along with Kirchoff's laws.

De Kleer and Brown's ENVISION {4-7] extends QUAL to a general system dy­
namics model in which nodes process "material" and pipes transfer material from
node to node. Behavior is categorized in terms of "flow" and "pressure" which
generalize current and voltage; generalized versions of Kirchoff's laws also apply.
Unlike QUAL, it performs a complete qualitative analysis and produces a history.

1 QUAL evolved from De Kleer's NEWTON [lJ, a prototypical qualitative reasoner that analyzed
frictionless motion of point mMSeS along two dimensional trades.

39

.• ·

ENVISION also allows devices to have multiple operating regions, each governed by
its own constraints. Williams's Temporal Qualitative Analysis [22,23) extends QUAL

in a manner similar to ENVISION and also describes a feedback analysis algorithm.
It restricts itself to circuit theory but could be extended to the general system dy­
namic model. Williams provides a clean precise semantics for all of his algorithms
and clearly states the continuity and differentiability assumptions that others often
neglect. De Kleer and Bobrow [3) extend ENVISION to reason about higher order
derivatives rather than just quantities and their first derivatives. This gives deriva­
tives the first class status ascribed to them in QP and allows inflection and other
higher order effects to be expressed.

Forbus's Qualitative Process Theory2 [11,12) and Kuipers's ENV [13-15) define
quantities, regions and constraints in the same way as the generic QP theory. For­
bus stresses construction of networks for given problem domains and attempts to
formulate a theory thereof. In contrast, Kuipers focuses on generalizing the theory
of differential equations to qualitative networks3 but places little emphasis on their
construction. Finally, De Kleer and Brown {8] and Doyle [9) review the QP theory
and compare current QP systems.

4.2 Problems with QP

QP's qualitative simulation paradigm offers insight into naive reasoning tech­
niques but fails to model expert behavior. Indeed, it largely ignores three widely
accepted features of expertise

1. large bodies of compiled knowledge,

2. hierarchical abstractions and

3. domain specific representations and algorithms.

First, experts summarize important recurrent systems as cliches, concise descrip­
tions of their behavior and appearance. Future problems that match cliches need
not be analyzed since the expert remembers how they behave. Second, even totally
new systems often decompose into a few interconnected sub-systems. The expert
ignores the sub-systems' inner workings and treats them as black boxes which imple­
ment specified functions. He analyzes the entire system in terms of the interactions
between its components, reducing complexity by abstraction. The. sub-systems, in
tum, may be matched against cliches or decomposed further, leading to a hierarchy

2Forbua, like De Kleer, bued his work on a prototype, FROB [10], that determined the ways in which
a point mass could bounce on a polygonal surface.

3See his examples in [16-21).

40

of abstractions. For example, an idealized amplifier transforms its input f(t) into
kf(t) with k > 1 so two amplifiers in series transform f(t) into k2 f(t). Ignoring
the amplifiers' electronic components and concentrating on their external behav­
ior allows this simple analysis. Finally, special purpose methods for representing
and solving domain specific problems form a crucial component of expertise. They
provide quick accurate solutions to many problems and should be used when ap­
plicable. The premier example is mathematical modeling of physical systems; any
system that reduces to a simple set of differential equations can be analyzed easily
and precisely using elementary calculus.

QP systems certainly match problems against stored cliche networks and decom­
pose them into simpler sub-systems. QUAL, for instance, uses a hierarchical set of
patterns to aggregate circuit elements into larger and larger components. However,
in order to treat sub-systems abstractly, QP must replace each one by a high-level
constraint that relates its inputs and outputs, but ignores internal structure. These
constraints can be included in user supplied cliches, but I see no easy way for QP to
derive them from histories. It can not learn new cliches or perform multi-level de­
compositions unless it develops abstraction facilities capable of deducing constraints
from histories, a research project in its own right.

A third-and, in my eyes, more fundamental-limitation is that QP's data struc­
tures do not contain the information needed for precise mathematical analysis. They
do not allow constraints to contain explicit time dependencies and so preclude closed
form descriptions such as

f(t) = t2 or g(t) =at with a> 0. (4.4)

Even if such dependencies were permitted, QP's analysis algorithm could not de­
termine that

f(t) > g(t) fort> a (4.5)

since its model of functions does not include relative growth rates. Similarly, asymp­
totic behavior lies outside QP's ken; it assumes, simplemindedly, that quantities
eventually reach the boundaries that they approach. This heuristic predicts quali­
tatively incorrect behavior since it confuses bounds with limits. For example, the
hyperbolic function, !, decreases and is greater than -10 for z > 0-yet it never
passes O, let alone approaches -10. Even in cases where QP's heuristic yields qual­
itatively correct results, such as the heat .flow problem of section 3.2.2, it fails to
predict how close to its limit a quantity will be at any given time. All in all, QP
can not incorporate qualitative mathematical information into the existing con­
straint/ simulation formalism without a detailed model of continuous functions. De
Kleer and Brown [7] point out that many expert systems fail when given simplified
versions of problems which they have already solved. QP suffers from the dual

41

----~~---

of this weakness; it can not produce better solutions from more precise problem
specifications.

4.3 Advantages of QM

QM's functional model removes the limitations that prevent QP from becom­
ing an expert network analyst, without sacrificing its ftexibility and generality, by
stressing the aspects of expertise that it ignores: compiled knowledge, hierarchical
abstraction and domain specific methods. QM encodes recurrent functions as FD's,
and families of functions as instantiation algorithms, such as i-exponential for the
exponential model, aeb:r + c, of decay and growth. ANALYZE' divides a network into
sub-systems, connected by functional composition, addition or multiplication links,
creates an FD for each sub-system, and uses composition algorithms to derive an
overall FD. Sub-systems can be analyzed by recursive decomposition or by instan­
tiation algorithms; unlike QP, this algorithm is fully hierarchical, since it uses a
uniform representation, the FD, for all inputs and outputs. Finally, the FD model
can record a wide range of infonnation: numerical functions such as log z, param~
eterized ones such as sin ax, and purely qualitative ones such as "an increasing
function". This allows QM to apply numerical techniques to the first type, symbolic
ones to the second, and general functional ones to the third. QM takes advantage of
powerful calculus methods whenever possible, but uses QP-style ones when all else
fails.

As stated in chapter 2, QM is not a complete qualitative reasoner-just the
mathematical model for one; it can describe, analyze and combine FD's, not derive
them from networks. For the moment, no truly qualitative QM based reasoner
exists. The only approximation thereof, QR, is purely algebraic and limited to
networks with closed-form solutions. However, regardless of this restriction, which
is discussed in chapter 5 in detail, almost all examples from current QP systems­
and many that exceed their capabilities-can be analyzed. QM augments Kuipers's
[13,16] description of a ball's Hight with precise values for heights, velocities and
accelerations. It does the same for his heat ftow example [13,18] and recognizea
the asymptote at infinity. QP can not determine that the first spring example will
oscillate without damping and the second, with damping. In fact, it does not even
realize that oscillation must occur, only that it might. Here too, QM produces a
qualitative description of the spring's behavior, augmented with precise symbolic
values for interesting quantities.

'See figure 2.5 on page 13.

42

5. Summary and Future Work

This thesis describes my qualitative mathematical reasoner, QMR, and com­
pares it with existing QP style reasoners. QMR consists of a well developed qualita­
tive mathematics system, QM, that manipulates piecewise continuous parameterized
functions, and a rudimentary qualitative reasoner, QR, that deduces the behavior of
functional networks. QM's mathematical sophistication allows expert style reason­
ing about systems of known functional form; also, its uniform representation, the
FD, facilitates hierarchical decomposition of compound systems. In contrast, the
QP paradigm attempts to build a sophisticated qualitative reasoner while relying on
an extremely simple uniform model of functions. Existing QP programs use qual­
itative simulation, also called perturbation analysis, as their reasoning algorithm.
This leads to combinatorial explosion in complex networks since components can
not be treated as compound quantities; the former have history descriptions and
the latter, constraints. Even were this limitation to be surmounted, QP's model of
functions would remain too weak for precise mathematical reasoning.

Though QR solves many interesting problems, including most examples from
current QP systems, quickly and precisely, its current capabilities are inadequate
for expert reasoning about realistic systems. Experts reason about large systems
whose closed-form solutions are nonexistent or unwieldy; in addition, the exact
functional relation between nodes may be unknown. As two QP examples reveal,
QR fails under those conditions. Kuipers [15,19] analyzes Starling's Equilibrium,
a physiological model containing functional constraints (explained in section 4.1.1)
along with algebraic ones; also, De Kleer and Brown [7] analyze a fiuid flow model
that has no closed-form solution. Extending QR to complex and partially specified
networks is a goal for future research. One possible approach would use approxima-

. tion techniques, such as power series expansions, when closed-form solutions fail. It
would apply theorems about differential equations to analyze partially specified sys­
tems; for example, a function satisfying y' = M0 (y) approaches zero monotonically.
In both cases, QM would serve as a function expert, creating and analyzing FD's for
the expressions derived by QR. These analysis methods would formalize and justify
the intuitions behind QP's algorithms by grounding them in mathematical theory.
A second goal is to prove QR's worth by solving significant real-world problems,
as opposed to contrived examples; this goal will also guide QR 's development by
setting a standard that it must meet.

43

(1)

[2]

[3]

[4]

[5]

[6]

[7]

[8]

References

Johan de Kleer.
Qualitative and Quantitative Knowledge in Classical Mechanics.
A.I. TR 352, M.l.T., 1979.

Johan de Kleer.
Causal and Teleological Reasoning in Circuit Recogintlon.
PhD thesis, M.l.T, september, 1979.

Johan de Kleer and Daniel G. Bobrow.
Qualitative Reasoning with Higher-Order Derivatives.
In Proceedings of the Ninth International Joint Conference on Artificial Intelligence.

IJ CAI, august, 1984.

Johan de Kleer and John Seely Brown.
Mental Models of Physical Mechanisms and their Acquisition.
In J.R. Anderson, editor, Cognitive Skills an their Acquisition. Erlbaum, 1981.

Johan de Kleer and John Seely Brown.
Foundations of Envisioning.
Technical Report, XEROX PARC, august, 1982.
revised version of 1982 AAAI article

Johan de Kleer and John Seely Brown.
Assumptions and Ambiguities in Mechanistic Mental Models.
Technical Report, XEROX PARC, march. 1982 ..

Johan de Kleer and John Seely Brown.
A Qualitative Physics Based on Confluences.
to appear in Artificial Intelligence

Johan de Kleer and John Seely Brown.
The Origin, Form and Logic of Qualitative Physical Laws.
In Proceedings of the Eigth International Joint Conference on Artificial Intelligence,

pages 1158-1169. JJCAI, august.1983.

44

--------- --r· - ---------

[9]

[IO]

[11)

[12]

(13]

[14]

[15]

[16]

Richard J. Doyle.
Representing ChangeforCommon·Sense Physical Reasoning.
Working Paper 243. M.I.T., january, 1983.

Kenneth D. Forbus.
A Study of Qualitative and Geometric Knowledge in Reasoning about Motion.
A.I. TR 615, M.I.T .• february, 1981.

Kenneth D. Forbus.
Qualitative Process Theory.
A.I. Memo 664. M.l.T., february, 1982.
A similar paper will appear in Artificial Intelligence

Kenneth D. Forbus.
Measurement Interpretation in Qualitative Process Theory.
In Proceedings of the Eigth International Joint Conference on Artificial Intelligence,

pages.315·320. IJCAI, august, 1983.

Benjamin Kuipers.
Commonsense Reasoning about Causality: Deriving Behavior from Structure.
TUWPICS 18, Tufts University, may, 1982.

Benjamin Kuipers.
Getting the Envisionment Right
In Proceedings of the Seventh International Joint Conference on Artificial

Intelligence, pages 209·2U. IJCAI, august, 1982.

Benjamin Kuipers.
Causal Reasoning in Medicine: Analysis of a Protocol.
TUWPICS 20, Tufts University, february, 1983.

Benjamin Kuipers.
Envisionment example #I: The Ball Envisionment.
Memo 9, Tufts University, october, 1983.
Draft

45

[17]

[18)

[19]

[20]

[21}

[22)

[23)

Benjamin Kuipers.
Envisionment example # 2: The Spring Envisionment.
Memo 10, Tufts University, october, 1983.
Draft

Benjamin Kuipers.
Envisionment example# 3: The Summary Heat Flow Envisionment.
Memo 11, Tufts University, october, 1983.
Draft

Benjamin Kuipers.
Envisionment example #4: The Starling Envisionment.
Memo 12. Tufts University, october, 1983.
Draft

Benjamin Kuipers.
Envisionment example # 5: The Simple Heat Flow Envisionment.
Memo 13, Tufts University, october, 1983.
Draft

Benjamin Kuipers.
Envisionment example #6: The Double Heat Flow Envisionment and Simplification.
Memo 14, Tufts University, october, 1983.
Draft

Brian C. Williams.
Qualitative Analysis of MOS Circuits.
Masters thesis, M.l.T, 1984.
also to appear in Artificial Intelligence

Brian C. Williams.
The Use of Continuity in a Qualitative Physics.
In Proceedings of the Ninth International Joint Conference on Artificial Intelligence.

IJCAI, august, 1984.

46

A. Instantiation Functions

These are the functions (of x) for which QM has instantiation functions.

1. ax3 + bx2 + ex + d

2. ax2 +bx+ e

3. ax +b

4. a

5. lax+ bl

6. (bx+ e)P

7. (ax+ b)edz

8. b" b ~ 0

10. log"(ex+ d)

ll. ax+ b
ex+d

12. sin(bx + c), cos(bx + c), tan(bx + c)

13. arcsin(bx + c), arccos(bx + e), arctan(bz + e)

14. sinh(bx + c), cosh(bz + e)

15. baseln[k1 sin ex+ k2 cos ex]

16. baseln sin(ez + d), baseln cos(ex+ d)

17. floor(bx + c), ceiling(bx + e)

18. The impulse function with low I, high h, and width w.

19. The impulse functions with linear/cubic rise time r, start t0 , width w, low
value 1, and high value h.

20. The triangle wave with period 2w, low value I, and peak h starting at to.

47 .

B. Description Queries

Description queries fall into two classes, point queries describe functional be­
havior at a point and interval queries describe behavior on an open, half open, or
closed interval.

Point Descriptions
1. evaluate

2. evaluate inverse

3. left and right limits

4. limit

5. defined?

6. bounded?

7. continuous?

8. direction from the left and right

9. left and right derivatives

10. differentiable?

11. convexity

Interval Descriptions
1. extrema

2. maxima and minima

3. discontinuities

4. singularities

5. smooth?

6. asymptotes

7. point descriptions 5-7, 10 and 11 extended to intervals.

48

-- -- ---------- --- -------- ----------------

