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Abstract 

Integrated circuit technology has been advancing at a phenomenal rate over the 
last several years, and promises to continue to do so. If circuit design is to keep pace 
with fabrication technology, radically new approaches to computer-aided design will 
be necessary. One appealing approach is general purpose parallel processing. This 
thesis explores the issues involved in developing a framework for circuit simulation 
which exploits the locality exhibited by circuit operation to achieve a high degree of 
parallelism. This framework maps the topology of the circuit onto the multiprocessor, 
assigning the simulation of individual partitions to separate processors. A new form of 
synchronization is developed, based upon a history maintenance and roll back strategy. 
The circuit simulator PRSIM was designed and implemented to determine the efficacy 
of this approach. The results of several preliminary experiments are reported, along 
with an analysis of the behavior of PRSIM. 
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Chapter I 

Introduction 

An important component of any design process is a mechanism for incrementally 

checking the validity of design decisions and the interactions among those decisions. 

There must be a feedback path from the partially completed design back to the de­

signer, allowing the designer to find and correct mistakes before fabrication. In modern 

digital circuit design, this feedback path is often provided by computer-aided simula­

tion. However, in recent years integrated circuit technology has been advancing very 

rapidly. It is now possible to build chips containing more than 500,000 transistors. 

The current generation of simulation tools is already stretched to the limit, and will 

soon prove incapable of meeting this increase in demand. If circuit design is to keep 

pace with technology, radically new approaches to simulation will be necessary. One 

promising approach is to depart from the von Neumann style of computation and take 

advantage of recent advances in the field of parallel processing to build fast, scalable 

simulation tools. 

1.1. Overview 

In digital circuit design, the feedback path from a partially completed design back 
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to the designer is typically provided by computer-aided simulation. Historically, there 

have been two general approaches to circuit simulation: analytical and functional. Ana­

lytical simulators, such as SPICE, use detailed, non-linear models of circuit components 

drawn from fundamental physical principles, and solve the resulting set of ordinary 

differential equations using sparse matrix methods [12]. Because of this level of detail, 

analytical simulators tend to be computationally expensive, and so are limited in prac­

tice to the simulation of relatively small circuits (a few tens or hundreds of transistors). 

More recently, a number of algorithms have been developed to substantially improve the 

performance of circuit analysis programs. These include table lookup methods, such 

as those used in MOTIS [5], and iterated relaxation methods, such as those employed 

by SPLICE [18] and RELAX [13]. Although these newer techniques offer more than an 

order of magnitude performance improvement over the sparse matrix approach, they 

still cannot economically simulate one entire chip. 

At the opposite end of the spectrum from circuit analysis are functional simula­

tors, such as LAMP [4] and MOSSIM [3], which combine very simple models of circuit 

components, e.g., gates or switches, with efficient event based simulation algorithms. 

This class of simulation tool is very useful for determining logical correctness, but offers 

no timing information. In the past few years, a third approach has emerged which tries 

to find a middle ground between analytical and functional simulation. Examples of 

this approach include the timing analyzers CRYSTAL [14] and TV [9], and the circuit 

simulator RSIM [19]. Each of these tools uses simple linear models of the electrical char­

acteristics of the components to predict the timing behavior of a circuit. These tools 

permit one to obtain timing information on circuits of tens of thousands of devices, at 

the expense of some accuracy. Unfortunately, they are also reaching the limits of their 

capacities. 

There are several approaches to solving the problem of capacity limitations. The 

first, and most obvious, solution is to vectorize the old algorithms to run on faster 

machines, such as the Cray and the CDC Cyber. The second approach is to develop 

- 14 -



new, faster algorithms, such as the relaxation based schemes mentioned earlier. An­

other approach which has gained favor in certain circles is the development of special 

purpose hardware which is capable of running one specific algorithm very fast. Exam­

ples of this approach are the simulation pipeline of Abramovici [1], and the Yorktown 

Simulation Engine, developed by IBM [15]. Unfortunately, these solutions tend to be 

very expensive and applicable to only a very limited class of problems. 

General purpose parallel processing offers several advantages over these other ap­

proaches. 

• Scalability - Simulation algorithms can be developed which are indepen­

dent of the number of processors in the system. As the size of the circuit 

grows, the number of processors, and hence the performance of the sim­

ulation, can grow. 

• Flexibility - The machine architecture is not tuned for one particular 

algorithm. Therefore, the same physical hardware can be pressed into 

service for a wide range of applications, extending the utility of the ma­

chine. 

• Portability - The parallel algorithms developed need not be constrained 

to a particular machine architecture. Therefore, the same algorithms can 

be run on a wide variety of parallel systems, extending the utility of the 

algorithms. 

This thesis explores the issues involved in developing a framework for circuit simu­

lation which can utilize the advantages offered by general purpose parallel computation. 

The approach is based upon the observation that the locality of digital circuit opera­

tion, and the resulting independence of separate subcircuits, leads very naturally to a 

high degree of parallelism. The framework developed in this thesis attempts to reflect 

the inherent parallelism of the circuit in the structure of the simulator. 

1.2. Chapter Outline 

Chapter 2 presents a novel approach to digital circuit simulation. This chapter 
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begins by exploring the techniques for mapping the circuit under simulation onto the 

topology of a general purpose multiprocessor. The synchronization problems imposed 

by the resulting precedence constraints are then examined, and a unique solution based 

upon history maintenance and roll back is proposed. The problem of partitioning a 

circuit in a fashion conducive to this form of simulation is then addressed. Finally, 

related work in the field of parallel simulation is reviewed. 

Chapter 3 presents the implementation of the simulator Parallel RSIM, or PRSIM. 

This chapter begins with background information on the RSIM simulation algorithm and 

the Concert multiprocessor on which PRSIM is built. The overall structure of PRSIM 

is presented, with particular concentration on interprocessor communication and the 

history maintenance and roll back synchronization mechanisms. 

Chapter 4 presents experimental results obtained from PRSIM. A series of exper­

iments were designed and run to determine the overall performance of PRSIM, and to 

develop a solid understanding of the various overhead costs in PRSIM. The results from 

these experiments are analyzed, and some conclusions are drawn. 

Chapter 5 concludes the thesis with a summary of the work reported and sugges­

tions for future research. 
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Chapter II 

Parallel Simulation 

Digital circuit operation exhibits a high degree of locality. At the device level, 

there is locality in the operation of individual transistors. Each transistor operates in 

isolation, using only the information available at its terminal nodes. At a somewhat 

higher level, there is locality in the operation of combinational logic gates. The output 

behavior of a gate is strictly a function of its input values. At a still higher level, 

there is locality in the operation of functional modules. The instruction decode unit 

of a microprocessor has no knowledge of what is transpiring in the ALU. It merely 

performs some function upon its inputs to produce a set of outputs. 

The locality property of circuit operation is reflected in the structure of many 

simulation algorithms. So called event based simulators exhibit a similar degree of 

locality. A switch level simulator determines the value of a node by examining the state 

of neighboring switches. This locality property of the simulation algorithm implies the 

simulation of constituent subcircuits is independent. The simulations of two logic gates 

separated in space are independent over short periods of time. 
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This independence property has several interesting implications for the design of 

parallel simulation tools. First, it promises to be unaffected by scale. The potential 

parallelism increases linearly with the size of the circuit to be simulated. Second, it 

implies homogeneity of processing. Each processor can run the same simulation code 

on its own piece of the circuit. Third, the circuit database can be distributed across the 

multiprocessor. This eliminates the potential bottleneck presented by a shared network 

database, and allows the simulator to take advantage of the natural structure of the 

circuit. 

In this chapter a framework for circuit simulation is presented which takes ad­

vantage of the independence inherent in circuit operation to achieve a high degree of 

parallelism. The general strategy is to map the circuit onto the target multiprocessor 

such that the parallelism of the simulation reflects the parallelism of the circuit. The 

framework uses a simple message passing approach to communication. Interprocessor 

synchronization is based upon a novel history maintenance and roll back mechanism. 

2.1. A Framework for Parallel Simulation 

There are several desirable properties our framework should have. First, the re­

sulting simulator must be scalable. As the number of devices in the circuits that we 

wish to simulate increases, the performance of the simulator must also increase. There­

fore, the framework should be capable of scaling to an arbitrary number of processors. 

Second, the framework should be relatively independent of the simulation algorithm. 

We would like to be able to apply the same strategy to a wide range of tools, from low 

level MOS timing analyzers to high level architectural simulators. Third, to permit 

our scheme to run on a variety of general purpose parallel machines, we must make no 

special demands of the underlying processor architecture. In particular, to be capable 

of running on both tightly and loosely coupled multiprocessors, a simulator should im­

pose as few restrictions as possible on the nature of the interprocessor communication 

mechanism. We would like to avoid relying upon shared memory and imposing limits 

on message latencies. 
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The strategy we shall follow is to map the circuit to be simulated onto the topology 

of the target multiprocessor. For simulation on an n processor system, the circuit to be 

simulated is first broken into n subcircuits, or partitions. Each partition is composed 

of one or more atomic units, e.g., gates or subnets. An atomic unit is the collection 

of local network information necessary for the simulation algorithm to determine the 

value of a circuit node. Each processor is then assigned the task of simulating one 

partition of the circuit. Figure 2.1 demonstrates graphically the decomposition of a 

network of atomic units into two partitions. 

Partition A Partition B 

Figure 2.1. Partitioning a Network 

The straight lines crossing the partition boundaries represent communication links 

between logically adjacent atomic units which have been placed in different partitions. 

In actual circuit operation, separate components communicate via the signals carried by 

electrical connections they have in common. Similarly, in simulation adjacent atomic 

units communicate only via the values of shared nodes. Therefore, the information 

which must be passed along the communication links consists of node values only. There 

is no need to share a common network database or pass non-local network information 

between partitions. 

Communications issues tend to dominate the design of large digital circuits. Suc­

cessful designs must constrain communication between submodules to meet routing 

and bandwidth requirements imposed by the technology. These constraints are similar 
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to those imposed by some multiprocessor architectures. Such constraints are often the 

source of performance limitations in parallel processing. Because the communication 

structure of the simulation in our framework is closely related to that of the actual 

circuit, our framework can easily utilize the natural modularity and optimizations in a 

circuit design to reduce interpartition, and hence interprocessor, communication. 

In order to further reduce communication and to guarantee a consistent view of 

the state of the network across all processors, we shall enforce the restriction that 

the value of every node is determined by exactly one partition. Therefore, the links 

shown in Figure 2.1 will be unidirectional; a node may be either an input or an output 

of a partition, but never both. If more than one partition were allowed to drive a 

particular node, each partition would require information about the state of the other 

drivers to determine the correct value of the node. By eliminating the possibility of 

multiple drivers we eliminate the need for this non-local information and the extra 

communication required to arbitrate such an agreement. 

This is not as serious a restriction as it first appears. In an MOS circuit, it 

implies all nodes connected through sources or drains of transistors, such as pullup and 

pulldown chains and pass transistor logic, must reside in the same partition. Since such 

structures are the components of higher level logic gates, it makes sense to keep them 

close together. The only difficulty arises from long busses with many drivers. This case 

results in a "bit slice" style of partitioning, where all of the drivers for one bit of the 

bus reside in the same partition, but different bits may reside in separate partitions. 

Since there tends to be relatively little communication from one bit to another, this 

restriction actually obeys the natural decomposition of digital circuits. 

2.2. Synchronization 

2.2.1 Precedence Constraints 

A node shared between two partitions represents a precedence constraint. Enforc­

ing this precedence constraint requires additional communication and can introduce 
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delay in a poorly balanced simulation. Consider the circuit in Figure 2.2. Let T(A) be 

the current simulated time of partition A, and T(B) be the current simulated time of 

partition B. For B to compute the value of node Y at ti it must determine the value 

of node X at ti. If at the point where B requests the value of node X, T(A) <ti (i.e. 

A is running slower than B), the request must be blocked until T(A) 2 ti, potentially 

suspending the simulation of B. This interruption results from the need to synchronize 

the simulations of partitions A and B. 

1-------------1 1----------------1 

'R 
y 

Partition A Partition B 
1 _____________ 1 1 ________________ 1 

Figure 2.2. Data Dependence Between Two Partitions 

The circular precedence constraint introduced by feedback between two (or more) 

partitions can result in a forced synchronization of the simulations. In Figure 2.3 

feedback has been introduced into the previous example by connecting node Y of 

partition B to node T of A. Each gate is assumed to have a delay of r seconds. If A 

has computed the value of X at T(A) = t0 , B is free to compute the value of Y at 

t 0 + r. However, for A to proceed to compute the value of X at t0 + 2r, it must wait 

until T(B) 2 t 0 + r, that is until B has finished computing Y at t 0 + r. The feedback 

has forced the two partitions into lock step, with each partition dependent upon a value 

computed during the previous time step of the other. 

2.2.2 Input Buffering 

These synchronization problems arise from the coupling between partitions intro­

duced by shared nodes. With this in mind, the following observation can be made: 

If all partition inputs remained constant, there would be no precedence constraints to 
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1----------------1 

Partition A Partition B 
1 _____________ 1 1 ________________ 1 

Figure 2.3. Data Dependence With Feedback 

enforce. Each partition could be simulated independently of the others. This principle 

can be used to decouple partitions by introducing a level of buffering between each par­

tition, as shown in Figure 2.4. Each partition maintains a buffer for each input node. 

Simulation is then allowed to proceed based upon the assumption that the currently 

buffered value of each input will remain valid indefinitely. 

1-------------1 1----------------1 

Partition A Partition B 
1 _____________ 1 j ________________ I 

Figure 2.4. Input Buffering Between Partitions 

When a partition changes the value of an output node, it informs all other par­

titions for which that node is an input. This is the basic form of interpartition com­

munication. Changes in shared node values propagate from the driving partition to 

the receiving partitions. The information passed for a node change consists of a triple 

composed of the name of the node that changed, the new value of that node, and the 

simulated time the change took place. The receiving partitions use this information to 

update their input buffers, and, if necessary, correct their simulations. 

2.2.3 Roll Back Synchronization 

To maintain a consistent state of the network across the multiprocessor, some form 
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of synchronization is necessary. In the previous example, it is possible for partition B 

to get sufficiently far ahead of A that its assumption of constant inputs will result in 

incorrect simulation. Some form of correction is necessary. To this end, we employ 

a checkpointing and roll back strategy derived from the state restoration approach to 

fault tolerance in distributed systems [16] [17]. As the simulation progresses, a partition 

periodically stops what it is doing and takes a checkpoint of the current state of the 

simulation. This action is analogous to entering a recovery block in [16]. The checkpoint 

contains a record of all of the pieces of state in the partition: the value of every node, 

all pending events, and any state information kept by the simulation algorithm (e.g., 

the current simulated time). From this checkpoint, the simulation of the partition can 

be completely restored to the current state at any future time, effectively rolling the 

simulation back to the time the checkpoint was taken. The set of saved checkpoints 

forms a complete history of the simulation path from the last resynchronization up to 

the current time. 

When a partition receives an input change, one of two possible actions will occur. 

If the simulated time of the input change is greater than the current time, a new event 

representing the change is scheduled and simulation proceeds normally. However, if 

the simulated time of the input change is less than the current time, the simulation 

is "rolled back" to a point preceding the input change. This roll back operation is 

accomplished by looking back through the checkpoint history to find the most recent 

checkpoint taken prior to the scheduled time of the input change. The simulation state 

is then restored from that checkpoint, a new event is scheduled for the input change, 

and simulation is resumed from the new simulated time. 

Figure 2.5 shows a partial history of the simulation of two partitions, A and B. 

The time line represents the progression of simulated time. The "X" marks represent 

the times at which checkpoints were taken. The broken vertical line indicates a node 

change directed from one partition to another. The current time of each partition is 

shown by the corresponding marker. 
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The snapshot shows the point when partition B notifies A that the value of a shared 

node changed at t2. Upon receipt of the input change message, the simulation of A is 

suspended and the checkpoint history is searched for the most recent checkpoint prior 

to t2. The state of A is then restored to time ti from the appropriate checkpoint. An 

event is scheduled for t2 to record the change of the input node. The old simulation path 

beyond ti is now invalid, so all checkpoints taken after ti are thrown away. Partition 

A is now completely restored to ti and simulation may continue. Figure 2.6 shows 

a snapshot of the simulation immediately following the completion of the roll back 

operation. 

Partition A 

Partition B 

Simulated 

Time 

)( 

to 

~ 1' 
T(A) : 

y 
T(B) 

Figure 2.6. Simulation After Roll Back of Partition A 

2.2.4 Consistency Across Roll Back 

> 

To maintain consistency across roll back, additional communication is required. 

Figure 2. 7 shows the interactions among three partitions. At t 3 partition C notifies B 
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that a shared node has changed value. Since T(B) > t 3 , B is forced to roll back to the 

most recent checkpoint prior to t3 , which is at t0 . The node change from C to B does 

not directly effect A. However, since B will embark upon a new simulation path from 

to, the input change B sent to A at t2 will be invalid. To ensure the consistency of A, a 

roll back notification message is introduced. Upon rolling back, B sends A a roll back 

notification message informing it that any input changes from B more recent than t0 

must be invalidated. This does not necessarily force A to roll back. If T(A) < t 2 , the 

time of the earliest input change from B more recent than t 0 , A need only flush the 

input change at t2. If T(A) > t2, A would be forced to roll back to a point prior to t2. 

Partition A 

Partition B 

Partition C 

Simulated 
Time 

y 
T(A) 

y 
T(B) 

y 
T(C) 

to ts 

Figure 2.7. Roll Back Notification 

The roll back notification procedure can be optimized if each partition maintains 

a history of output changes to implement a change retraction mechanism. At each 

time step, a partition checks the output history for the current simulated time. If, in 

a previous simulation path, an output change occurred which did not take place in the 

current path, a retraction is sent to all dependent partitions, and the output change is 

removed from the history. If the change did occur in the current path, no new change 

messages are necessary. Consider Figure 2.7. Since the change which forced B to roll 

back occurred at t3, B will follow the same simulation path from t0 to t3, making the 

same node change at t 2 • Therefore, B need not resend this change to A. A will not be 
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forced to roll back even if T(A) > t 2 • 

We must still address the problem of convergence in the presence of feedback. With 

the scheme outlined so far, it is possible for two partitions with a circular dependence 

to synchronize, with each partition repeatedly forcing the other to roll back. Figure 2.8 

demonstrates this problem. When B notifies A of the change at t 2 , A will be forced to 

roll back to to. If B progresses beyond t3 before A reaches t 3 , B will be forced to roll 

back to ti. Once again, when Breaches t 2 , A will be forced back to t0 , and the cycle 

repeats forever. 

Partition A 

9 
T(A) 

Partition B 

9 
Simulated 

T(B) 

Time 
to ti t2 ts t4 

Figure 2.8. Convergence Problem in the Presence of Feedback 

If B had taken a checkpoint at t such that t 2 < t < t 3 , it would not have forced 

A to roll back, and the cycle would have been avoided. However, if the changes occur 

simultaneously (t 2 = t 3 ), we are again faced with the infinite cycle. To solve this 

problem, we first make the following assertion about the nature of the simulation 

algorithm: the elapsed simulated time between an input change and any resulting new 

events is non-zero. This assertion can be made true by proper partitioning of the 

network. This restriction allows the simulation of a single time step to be sub-divided 

into two distinct phases: 

1. the processing of all internally generated events queued for the current 

simulated time, including the propagation of output changes to other 

partitions; 

2. the processing of all externally generated input changes queued for the 
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current simulated time. 

This in turn permits us to take a checkpoint between the two phases of the simulation, 

after any output changes have been made and before any input changes have been 

processed. Returning to the example of Figure 2.8, if B were to take a checkpoint at 

t2, it could be rolled back safely without causing a further roll back in A, even in the 

limit of t 2 = t 3 • Forward progress is assured if we can guarantee there will always be 

a checkpoint in the right place. 

The convergence problem is related to the "domino effect" observed in distributed 

systems, where one failure can cause many interdependent processes to repeatedly 

roll back until they reach their initial state [16][17]. In the context of simulation we 

have shown that this problem arises from synchronization of precedence constraints 

imposed by the partitioning. Under these circumstances, the best that can be done, 

short of dynamically repartitioning to ease the constraints, is to guarantee convergence. 

This is done by subdividing the simulation of a single time step into two phases, and 

checkpointing between the phases. 

2.2.5 Checkpointing 

The checkpointing strategy must meet the following constraints: the checkpoint 

must contain all of the state necessary to completely restore the simulation; there must 

always be at least one consistent state to fall back to; and it must be possible to make 

forward progress in the event of unexpected synchronization. In addition to these 

constraints, there are some less important but still desirable properties a checkpoint 

strategy should have. For example, to prevent rolling back further than necessary, the 

simulation should be checkpointed frequently. In the limit, a checkpoint at every time 

step would eliminate redundant work. We would also like the checkpointing process to 

be as inexpensive in both space and time as possible. There is a tradeoff between the 

cost we are willing to pay when forced to roll back and the cost we are willing to pay 

for checkpointing overhead. 

We expect the communication between partitions in a statically well-partitioned 
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circuit to be clustered in time, e.g., around clock edges. This implies the probability 

of receiving a node change is greatest immediately following a change, and decreases 

as the time since the last change increases. The probability of roll back should follow 

a similar pattern. Therefore, to reduce the amount of redundant simulation caused 

by rolling back, we would like to have a high density of checkpoints in the vicinity of 

communication clusters. If the dynamic balance of the partitioning is less than ideal, 

some of the partitions will simulate faster than others. In this case, the amount of 

redundant work forced upon the faster partitions by roll back is less critical, as they 

will still catch up to and overtake the slower partitions. Therefore, if the time since 

the last roll back is large, we can afford to reduce the density of checkpoints. 

These observations have lead to a strategy of varying the frequency of checkpoint­

ing with time. Following each resynchronization and each roll back, a checkpoint is 

taken at every time step for the first several steps, thus ensuring forward progress as 

well as providing a high density of checkpoints. As the simulation progresses, the num­

ber of time steps between checkpoints is increased up to some maximum period. The 

longer the simulation runs without rolling back, the lower the checkpoint density, and 

hence the overhead, becomes. We have arbitrarily chosen to use an exponential decay 

function for the frequency until we have a better model of the probability distributions 

of interpartition communication. 

2.3. Partitioning 

The overall performance of the simulator is determined by two factors: proces­

sor utilization, and communication costs. Both of these factors are influenced by the 

manner in which the network is partitioned. To maximize processor utilization, the 

simulation load must be evenly distributed among the processors. This implies par­

titioning the circuit into pieces of roughly equal size and complexity. To minimize 

communication costs, the number of links between partitions should be minimized. 

There are a number of classical graph partitioning algorithms which address both of 

these criteria [10][11]. 
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For example, consider the data path block diagram shown in Figure 2.9. A static 

analysis of this circuit shows most of the communication paths are horizontal, from 

left to right. Only in the carry chain of the ALU and in the shifter will there be any 

communication from bit to bit. A static min-cut algorithm would partition this circuit 

into horizontal slices, following the fl.ow of information along each bit. One would 

expect this partitioning to result in an even load balance, with little interprocessor 

communication. 

--" __,,_ 

• • 
• • • • 

Input Register Output Outpu t 
Mux ALU Shift 

Data Array Register Data 
• • 
• • 
• • _,. ~ 

Figure 2.9. Data Path Floor Plan 

Unfortunately, there are dynamic components to both processor utilization and 

communication with which static partitioning algorithms are unable to cope. For ex­

ample, consider a 16-bit counter to be split into 4 partitions. A static min-cut algorithm 

would divide this circuit into four 4-bit slices, in the same manner as the data path 

above. Each partition would be exactly the same size, have only one input (the carry 

in) and one output (the carry out). At first glance, this would seem to be a fine parti­

tioning. The dynamic behavior, however, will be quite poor. Both the simulation load 

and the communication decrease exponentially from the low order partition to the high 

order one, with the low order partition doing eight times the work of the high order 

one. A more effective partitioning would have placed bit 0 of the counter (the low order 

bit) in the first partition; bits 1 and 2 in the second partition; bits 3-6 in the third; and 

bits 7-15 in the last. The dynamic load would then be much more evenly distributed. 

Clearly, a partitioning strategy based only upon the static structure of the circuit 

will not fare well under a wide range of applications. Some knowledge of the dynamic 
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behavior of the simulation is necessary. One approach would be to begin with a static 

partitioning, but dynamically repartition the network during the simulation by shuffling 

atomic units between processors to optimize the load balance and communication. This 

topic is beyond the scope of this thesis, and deserves future investigation. 

2.4. Summary 

In this chapter we have presented a framework for simulation which takes advan­

tage of the parallelism inherent in digital circuit operation. We proposed a scheme in 

which the circuit to be simulated is partitioned onto the topology of the multiproces­

sor, with each processor responsible for the simulation of one partition. We discussed 

the problems of synchronization introduced by this approach, and developed a solu­

tion based upon a history maintenance and roll back mechanism. This solution was 

demonstrated to be sufficient to guarantee convergence in the presence of feedback. Fi­

nally, we discussed the importance of good partitioning, and showed that static graph 

partitioning algorithms may not be adequate. 

We began this chapter by setting out three goals for a parallel simulation frame­

work. Let us now see how close our proposed framework comes to those goals. 

• The framework is scalable to a large number of processors. As the size of 

the circuit grows, we can increase the number of partitions, keeping the 

average size of the partitions constant. The factors which will probably 

limit the scalability will be the interprocessor communication mechanism 

(e.g., bandwidth, congestion), and the effectiveness of the partitioning 

algorithm. 

• The framework does impose some constraints upon the nature of the sim­

ulation algorithm. We require an event based simulator which exhibits a 

high degree of locality. A wide range of simulation tools will fit this de­

scription, but we exclude most low level circuit analysis programs, such 

as SPICE. 

• The framework has few requirements of the underlying multiprocessor 
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architecture. The small amount of communication required makes it 

suitable for both tightly and loosely coupled systems. The overall per­

formance should degrade gracefully with increasing message latencies. 

2.5. Related Work 

The problems of parallel simulation have received a great deal of attention re­

cently. A number of the resulting research efforts have influenced the work reported in 

this thesis. Among the most influential have been the work on the MSPLICE parallel 

simulator and the Virtual Time model for distributed processing. 

2.5.1 MSPLICE 

MSPLICE is a multiprocessor implementation of a relaxation based circuit simulator 

[6]. The algorithm employed is known as Iterated Timing Analysis, and is based upon 

Newton-Raphson iteration to approximate the solution of the node equations which 

describe the circuit. It makes use of event driven, selective trace techniques similar to 

those employed by SPLICE to minimize the amount of computation required per time 

step of simulation [18]. 

The Iterated Timing Analysis method is extended for implementation on a mul­

tiprocessor by a "data partitioning" technique. The circuit to be simulated is divided 

into sub-circuits, with each sub-circuit represented by a separate nodal admittance ma­

trix. Each sub-circuit is then allocated to a processor. Each processor, operating on the 

same time step, applies the ITA algorithm to each of its sub-circuits until convergence 

is reached. When every sub-circuit on every processor has converged, the simulation 

advances to the next time step. Synchronization is achieved through a global variable 

which represents the count of outstanding sub-circuit events for the current time step. 

The approach to parallelism followed by MSPLICE is quite close to that of our pro­

posed framework. Both schemes seek to exploit the parallelism inherent in the circuit 

through a data partitioning strategy: the circuit to be simulated is distributed across 

the multiprocessor, with each processor running the same algorithm on different data. 
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There are several important differences, though. The MSPLICE algorithm is necessarily 

synchronous, with all of the processors simulating the same time step. This has two 

important implications. First, the time required to simulate a particular time step is 

determined by the slowest partition. Second, additional communication is required to 

manipulate the global synchronization counter. Because of the nature of the relaxation 

method, MSPLICE does not have the same locality properties as our framework. The 

information necessary to compute the node values of a given sub-circuit is not necessar­

ily local to a single processor. For each iteration, each processor must fetch the current 

values of all of the fanin nodes for each sub-circuit, and propagate events to all of the 

fanout nodes. The communication requirements of MSPLICE imply a dependence upon 

shared memory and a tightly coupled multiprocessor architecture, which we have tried 

to avoid. 

2.5.2 Virtual Time 

Virtual Time is a model for the organization of distributed systems which is based 

upon a lookahead and rollback mechanism for synchronization. In this model, processes 

coordinate their actions through an imaginary Global Virtual Clock. Messages trans­

mitted from one process to another contain the virtual time the message is sent and 

the virtual time the message is to be received. If the local virtual time of the receiver 

is greater than the virtual time of an incoming message, the receiving process is rolled 

back to an earlier state [8]. 

The basic strategy of Virtual Time is quite close to that followed by our simulation 

framework presented earlier. Both propose the use of state restoration as a mechanism 

for the synchronization of parallel processes. The principal difference is that Virtual 

Time is proposed as a general model for all forms of distributed processing. We are 

only using the roll back synchronization in a very limited, very well characterized 

domain. This has several implications. First, we take advantage of knowledge about 

the context to strictly limit the amount of state information we must keep. The Virtual 

Time model requires saving the entire state of the process, including the stack and all 
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non-local variables, at every checkpoint. Second, we have organized the problem such 

that the amount of interprocessor communication is quite small. This in turn leads 

to relatively infrequent roll backs. Third, we are able to make assumptions about the 

distribution of the communication to reduce the frequency of checkpointing. It is not 

clear how frequently the state must be saved in the Virtual Time system. Fourth, by 

subdividing the simulation time step and carefully choosing the checkpoint strategy, 

we are able to guarantee the convergence of the simulation. The general convergence 

properties of Virtual Time are less well characterized. By taking advantage of the 

structure of the simulation algorithm, the history maintenance and roll back approach 

to synchronization becomes much more tractable. 
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Chapter III 

Implementation 

It is all very well to theorize about parallel processing, but the best way to assess 

the efficacy of a new idea is to try it. A simulator based upon the parallel framework 

presented in Chapter Two was designed and built with the following goals: 

• to determine whether the roll back approach to interprocessor synchro­

nization can be made cost effective in the context of circuit simulation; 

• to produce a fast, scalable circuit simulator capable of simulating the 

next generation of VLSI circuits efficiently. 

This chapter discusses the details of the implementation of that simulator. 

3.1. Foundations 

Parallel RSIM, or PRSIM, is a distributed circuit simulator which employs the his­

tory and roll back mechanisms discussed in Chapter Two. As the name implies, PRSIM 

is based upon the RSIM algorithm of [19]. It is implemented on the Concert multipro­

cessor, developed at MIT [2][7]. 
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3.1.1 The RSIM Circuit Simulator 

RSIM is an event-driven, logic level simulator that incorporates a simple linear 

model of MOS transistors. In RSIM, MOS transistors are modeled as voltage controlled 

switches in series with fixed resistances, while transistor gates and interconnect are 

modeled as fixed capacitances. Standard RC network techniques are used to predict 

not only the final logic state of each node, but also their transition times. This relatively 

simple and efficient model provides the designer with information about the relative 

timing of signal changes in addition to the functional behavior of the circuit without 

paying the enormous computational costs of a full time domain analysis. 

The electrical network in RSIM consists of nodes and transistors. Any MOS circuit 

can be naturally decomposed into subnets if one ignores gate connections; the resulting 

subnets each contain one or more nodes which are electrically connected through the 

sources or drains of transistors. The nodes connected to gates of devices in a subnet 

are the inputs of the subnet, and the nodes which are inputs of other subnets are the 

outputs of the subnet. Note that a node can be both an input and output of a single 

subnet. 

Subnets are the atomic units of the simulation calculation; in general RSIM will 

recalculate the value of each node of a subnet if any input to the subnet changes. If, as 

a result of the recalculation, an output node changes value, an event is scheduled for 

the simulated time when the output is calculated to reach its new value. Processing an 

event entails recomputing node values for subnets that have the changing node as an 

input. 

Internally, RSIM maintains a single event list where all unprocessed events are kept 

in order of their scheduled time. When a node changes value, all other nodes which are 

affected by that change are examined. For each affected node that changes value, the 

simulated time of the change is computed and an event is added to the event list in the 

appropriate place. The next event to be processed is then taken from the beginning 

of the list, and the cycle repeats itself. A simulation step is considered complete when 
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the event list is empty, i.e. when no more changes are pending. 

3.1.2 The Concert Multiprocessor 

Concert is a multiprocessor test bed designed to facilitate experimentation with 

parallel programs and programming languages. It is organized as a ring of clusters, 

with 4 to 8 Motorola MC68000 processors in each cluster, as shown in Figure 3.1. 

The processors in each cluster communicate via shared memory across a common bus, 

although each processor has a private, high speed path to a block of local memory. 

The clusters communicate via globally accessible memory across the RingBus. Each 

processor therefore sees a three level hierarchy of memory: 

1. high speed memory accessible over the processor's private "back door" 

path (this memory is still accessible to other processors in the cluster via 

the shared bus) ; 

2. slower, non-local cluster memory accessible over the shared cluster bus; 

3. global memory, accessible only through the RingBus. 

All three levels of the hierarchy are mapped into the address space of each processor. 

Therefore, the memory hierarchy can be treated transparently by the user program if 

it is convenient to do so. Note that non-global cluster memory is not accessible from 

the RingBus [2][7]. 

Over time, a large set of subroutine libraries have been developed for the Concert 

system. One such library, the Level 0 Message Passing library, implements a reliable 

message delivery system on top of the Concert shared memory system. For each proces­

sor there exists a message queue in global memory. To send a message, the LO system 

copies the message body into global memory if it is not already there, and places a 

pointer to the top of the message body into the receiving processor's queue. To receive 

messages, the queue is polled on clock interrupts. Messages on the queue are removed 

and returned to the user program by a user-supplied interrupt handler. The LO package 

also provides a set of functions for sending and receiving messages. 
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Figure 3.1. The Concert Multiprocessor 

The original RSIM program used floating point arithmetic for the Thevenin and 

RC calculations. Concert has no floating point hardware, so it was felt that rather than 

emulate the floating point arithmetic in software, it would be more efficient to use scaled 

fixed point arithmetic. A 32-bit integer can represent a range of roughly 9 decimal 

orders of magnitude, more than sufficient for the ranges of resistance, capacitance, and 

time found in contemporary MOS simulation. The actual ranges of the units used by 

PRSIM follow: 
O.Hl :SR ::; lOOMO 

10-6 pF :SC :S lOOOpF 

O.lnS :St :S lOOmS 

To represent the products and quotients of these units without loss of precision, a 

scaled arithmetic package using 64-bit intermediate results was written. The routine 

RCMul (R, C) computes the 64-bit product of a resistance and a capacitance, and then 

divides by a constant scale factor to produce a 32-bit time quantity. The routine 

MulDiv(A, B, C) multiplies any two 32-bit integers, and divides the 64-bit product by 

a third 32-bit integer to yield a 32-hit result. This is useful for the Thevenin resistance 

calculation. Finally, the routine CvtCond(R) converts a resistance to a conductance 

(and vice versa) by dividing its argument into a 64-bit constant to yield a scaled 32-bit 
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result. 

3.2. The Organization of PRSIM 

The PRSIM system consists of two phases: a prepass phase and a simulation phase. 

The prepass phase is responsible for partitioning the network to be simulated and 

for compiling the result into an efficient machine readable format. The simulation 

phase itself can be further broken down into a coordinating program and a simulation 

program. In an n node multiprocessor, 1 processor is dedicated to the user interface and 

coordination functions, while the remaining n - 1 processors do the actual simulation 

work. This organization is illustrated in Figure 3.2. 

Figure 3.2. Structure of PRSIM 

3.2.1 The Prepass Phase 

The operation of PRSIM begins with the circuit to be simulated expressed in the 

lisp-like description language NET [20]. t In the NET description the user may also spec­

ify the desired partitioning of the circuit. From this high level description, the PRESIM 

t At present, PRSIM has no automatic partitioning system. When such a mechanism is available, 

PRSIM will also be able to simulate a circuit extracted from a mask level description. 

- 39-



program, running on a conventional computer, first partitions the circuit into n - 1 

pieces based upon the user's specification and the constraints imposed by the parallel 

framework and the RSIM algorithm. Next, the dependencies between the partitions are 

determined and the mapping tables used by each partition and by the coordinator are 

constructed. Each output node of each partition is given a list of partitions for which 

that node is an input. Finally, n binary files are produced, one for each partition and 

one for the coordinator. 

3.2.2 The Coordinator 

The coordinator attends to the administrative functions of the simulation. These 

tasks include: 

• loading the network files for each of the partitions from the host com­

puter; 

• running the user interface to the simulator, including getting and setting 

node values; 

• starting, stopping, and resynchronizing the simulation. 

The coordinator handles all input and output with the host computer. Upon ini­

tialization it searches out the active processors in the system and reads the coordinator 

file generated by PRESIM from the host to obtain the number of partitions to be simu­

lated. For each circuit partition it assigns a processor from the active pool and passes 

it the name of the appropriate network database file. Each slave processor is then re­

sponsible for reading the appropriate file by sending read requests to the host through 

the coordinator. 

PRSIM supports two different user interface languages: a simple line-at-a-time 

command interpreter for simple operations, and a lisp-like language for more elaborate 

control structures [20]. Through either of these interfaces the user may get and set 

node values, examine the network structure, and start or stop the simulation. 

Each node in the circuit is identified by a globally unique identifier, or node ID, 

which is assigned during the prepass phase. The coordinator maintains a table of node 
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entry data structures, one for each node in the circuit. This table can be referenced 

in two different ways: indexed by global node ID, for mapping IDs into names for the 

user; and hashed on the ASCII name of a node, for mapping the user specified ASCII 

names into global node IDs. In addition to this two-way mapping, the node entry 

structure also identifies the partition responsible for driving the node and contains a 

list of partitions for which this node is an input. This information is used to permit 

the user to examine and set node values. 

When the user requests the value of a particular node, the ASCII name provided by 

the user is first mapped into the corresponding node ID by the hash table. A message 

requesting the value of the node is sent to the partition responsible for computing 

that value. The partition then looks up the value of the node and sends back a reply 

message. When the user wishes to set the value of a node, the coordinator sends the 

driving partition a message containing the ID of the node, the new value for the node, 

and the simulated time of the change. No reply is necessary. 

To start a simulation step, the coordinator first establishes user supplied input 

conditions by sending input change messages as necessary to the slave processors. When 

all of the input changes have been established, the coordinator starts the simulation by 

sending a STEP message containing the desired termination time to each slave processor. 

When each processor reaches the specified stop time, it sends a SETTLED message back 

to the coordinator and waits. Since a processor may be forced to roll back after it has 

reached the stop time, roll back notifications are sent to the coordinator as well. With 

this information, the coordinator keeps track of the state of the simulation of each 

partition. When it has determined that all of the slave processors have safely reached 

the stop time, the coordinator sends a RESYNC message to each slave to inform it that 

its old history is no longer needed and may be reclaimed. 

In the current implementation the simulation is resynchronized only at the termi­

nation of each test vector. Since there is some overhead costs associated with starting 

and stopping the simulation, the longer the simulation is allowed to run asynchronously, 
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i.e., the longer the test vector, the less significant the overhead cost will be. However, 

since checkpoint histories are only reclaimed at resynchronization time, the amount of 

storage devouted to checkpointing becomes the factor which limits the length of the test 

vectors. In future implementations, a mechanism for pruning old checkpoints together 

with automatic resynchronization initiated by the coordinator could be used to extend 

the length of the vectors. 

3.2.3 The Simulation Slave 

The simulation slave program is composed of three components: the simulation 

loop; the interprocessor communication mechanism; and the history and roll back syn­

chronization mechanism. The simulation control loop is shown Figure 3.3. CurTime 

is the current simulated time of the partition, and StopTime is the termination time 

specified by the coordinator. 

while CurTime S StopTime 
{ /*process events queued for CurTime */ 

for each event scheduled for CurTime 
process event; 

} 

send queued output changes; 
if time to checkpoint 

checkpoint() ; 
/* end of phase one */ 
/*process inputs queued for CurTime */ 
for each event scheduled for CurTime 

process input; 
/* end of phase two */ 
CurTime = CurTime + 1; 

Figure 3.3. Simulation Control Loop 

The processing of events proceeds as follows. For each event scheduled for CurTime, 

the event is removed from the list, the specified node change is made, and the effects 

are propagated through the partition. If the node specified in the event is an output, 

the event is added to the output change list. When all events scheduled for CurTime 
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have been processed, one input change message is constructed for each partition which 

is dependent upon one or more of the outputs in the list. Each message contains the 

value of CurTime and the ID and new value of each node in the list which is an input 

to the receiving partition. Once the input change messages have been sent, the output 

change list is cleared, completing the first phase of the simulation. At this point, if 

a sufficient period of time has elapsed since the last checkpoint, a new checkpoint 1s 

taken (see Section 3.4 for more detail). 

The operation of the second phase of the simulation is similar. For each input 

change there is a data structure which contains the ID of the input node, the new 

value, and the simulated time of the change. These structures are kept in the doubly 

linked InputList sorted by simulated time. The Nextlnput pointer identifies the 

next input change to be processed. For each input change scheduled for CurTime the 

specified node change is made and the effects propagated through the network. After 

each change is processed, the Nextlnput pointer is advanced. The InputList remains 

intact. 

By subdividing the simulation of a single time step into the two phases shown, and 

by checkpointing at the end of the first phase, any roll back will restore the simulation to 

the beginning of the second phase. Since the elapsed time between an input change and 

any resulting event is non-zero, the simulation will converge in the manner described 

in Chapter Two, although it may require several roll back operations. 

3.3. Communication 

There are two classes of interprocessor communication in the PRSIM system: ad­

ministrative communication with the coordinator for such purposes as loading the 

partition data base and answering queries from the user; and interpartition communi­

cation required for sharing circuit nodes across multiple partitions. Both of these forms 

of communication make use of a low level message management system which itself is 

built upon the reliable message delivery protocol of the Concert Level 0 system. 

Figure 3.4 shows the structure of a PRSIM message. The whole message consists 
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Figure 3.4. PRSIM Message Structure 

of two components: a Level 0 header, which is used by the Concert Level 0 software, 

and the PRSIM message itself. The PRSIM message is further composed of a message 

header and a body. This header contains two links for the doubly linked active message 

list; a request ID for matching replies to synchronous requests; an opcode field which 

identifies the type of message; a size field which determines the length of the message; 

and finally the message body, which contains the data. Message bodies are a multiple 

of 16 bytes in length, up to a maximum of 1024 bytes. The body size of a message 

is determined when the buffer for the message is first allocated. When a message has 

finished its task, its buffer is returned to a free list managed by the sending processor, 

from which it may be reallocated later. To avoid searching one free list for a buffer 

of a certain length, there are 64 separate free lists, one for each possible message size. 

Messages of the same size are returned to the same free list. A complete list of PRSIM 

messages appears in Appendix A. 

To send a message, a processor obtains a buffer of the appropriate size from the free 

list, allocating a new one if necessary, and fills in the body. Next, the busy flag in the 

Level 0 header is set and the message is added to the active list. Finally, the message 
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is placed in the receiving processor's Level 0 queue, and the sending processor returns 

to whatever it was doing. At the receiving end, during clock interrupts and when the 

processor is idle, an interrupt handler polls the Level 0 queue for that processor. If 

there are any new messages, they are removed from the Level 0 queue and added to 

an internal message queue, which the program itself polls at convenient intervals. This 

internal message queue serves to isolate the "user level" program (coordinator or slave) 

from the "interrupt level" message handling, and allows the program to synchronize 

message processing with its own internal operation. To process a message, the user 

program removes it from the internal queue and dispatches on the Opcode field to the 

appropriate handler routine. When the handler is finished, it clears the busy flag in 

the message and returns. The sending program periodically searches through its list of 

active messages, reclaiming those that are no longer in use. 

On top of the non-blocking message passing mechanism described above, a simple 

synchronous request/reply scheme was implemented. This feature is used primarily 

for debugging purposes and to answer queries from the user. For example, the slave 

processors use this mechanism to obtain the ASCII name of a node from the coordinator 

when printing debugging information. The RequestID field of the message is used to 

match incoming replies with outstanding requests. All other messages are left in the 

queue unprocessed until all pending requests have received replies. 

3.4. History Mechanism 

Chapter Two discussed the requirements the history maintenance mechanism must 

meet. These are summarized below. 

• The checkpoint must contain all of the information necessary to com­

pletely and atomically transform one consistent simulation state to an­

other. There must be no period in which inconsistent results may be 

given. 

• It must be possible to make forward progress under all possible circum­

stances. This does not imply we must make forward progress after every 
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roll back, but eventually the simulation must converge. 

In addition to meeting the above constraints, we would like the history mechanism to 

be efficient in both time and memory, as these costs represent part of the overhead 

associated with parallel execution. 

3.4.1 Simulation State Information 

We can take advantage of the nature of the simulation algorithm to minimize the 

amount of state information that must be checkpointed. As shown in Chapter Two, 

this information includes the internal state of the circuit, the state of externally applied 

inputs, and the state of the algorithm itself. The state of the circuit consists of the 

logic state of each node in the network. The history of externally driven node values 

comes for free by maintaining the input list throughout the simulation. The state of 

the simulation algorithm consists of the contents of the event lists and the current 

simulated time. Since checkpointing and roll back occur only at specified places in the 

slave program, no other process state (i.e., the stack) need be saved. 

All of the state information is kept in a data structure known as the checkpoint 

structure. The list of extant checkpoint structures is kept sorted by simulated time. 

The data structure contains a time stamp to identify the simulated time the checkpoint 

was taken, an array of pointers to the saved event lists, and an array of node values. 

The procedure for filling the checkpoint structure is described below. 

1. Allocate a new checkpoint data structure. Mark it with the current 

simulated time and add it to the end of the checkpoint list. 

2. Make a copy of each event in the event wheel and add it to the appropriate 

list in the checkpoint structure's event array. 

3. Visit each node in the network, recording its value in the node array of 

the checkpoint structure. 

For each node in the network, the checkpoint procedure must record its state ( 0, 

1, or X) and whether the user has declared it to be an input. Therefore, three bits 
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of information are needed to completely specify the state of a node. For the sake of 

simplicity and performance, two nodes are packed into each byte of the node array 

(it would be more storage efficient but slower to store 5 nodes per 16-bit word). The 

procedure to checkpoint the state of the network is shown in Figure 3.5. 

/* Array is the node array of the checkpoint structure */ 
CkptNetwork(A.rray) 

char *Array; 
{ int Index := O; 

} 

for each node in the network, n 
{ /* Even nodes are put in low order nibble */ 

if Index is even 

} 

{ A.rray[Index] := NodeValue(n); 
if n is an input 

A.rray[Index] := A.rray[Index] ORed with Ox04; 
} 

/* Odd nodes are put in high order nibble */ 
else 

{ A.rray[Index] := A.rray[Index] ORed with 
NodeValue(n) shifted left by 4 bits; 

if n is an input 
Array[Index] A.rray[Index] ORed with Ox40; 

Index++; 
} 

Figure 3.5. Checkpointing the Network State 

3.4.2 Checkpoint Strategy 

In Chapter 2 we discussed a strategy to vary the frequency of checkpointing to 

achieve both a high density of checkpoints in the vicinity of communication clusters, 

and a low average overhead when the simulation is well balanced. To this end, we 

define a checkpoint cycle to be the set of checkpoints between any pair of occurrences 

of resynchronization or roll back. 

Figure 3.6 demonstrates the strategy chosen. The checkpoint cycle begins at time 

t0 . The checkpoints are indicated by Xs. If this cycle was initiated by a resynchroniza-
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Figure 3.6. Checkpoint Distribution 

tion, a checkpoint is taken at t 0 to guarantee the simulation can be rolled back to its 

initial state. If the cycle was initiated by a roll back to t 0 , the checkpoint at t 0 is still 

valid, so no new checkpoint is taken. In either case, the state is then checkpointed at 

each succeeding time step for the next three steps, ensuring forward progress will be 

made. At time t 1 the period increases to two steps, at t 2 the period increases to four 

steps, and so on. The period increases in this fashion to a maximum period of 1024 

time steps. Both the time constant and the final value of the exponential were chosen 

empirically. 

3.5. Roll Back Mechanism 

The queue of incoming messages is examined at the end of the first phase of the 

simulation loop. If there are any input change messages pending, they are removed from 

the queue and processed. For each entry in each message, an input change structure 

is inserted into the input list at a place specified by the simulated time contained in 

the message. Let t 0 be the simulated time specified in the earliest pending message. If 

CurTime:S: to, no further action is taken. If CurTime> to, the processor must stop the 

simulation and roll back. To roll back, the processor walks back through the checkpoint 

list to find the latest checkpoint taken at a time tc ::::; t 0 • Each node of the partition 

is visited and its value restored from the node array of the checkpoint structure. All 

events currently on the event lists are thrown away, and the event lists in the checkpoint 

structure are copied into their places. The Nextinput pointer is moved back through 

the input change list to point to the next change at time ti 2:'.: tc. A roll back notification 

message is sent to the coordinator and to all other partitions dependent upon this one. 

Finally, all checkpoints taken after tc are reclaimed for later use (added to a free list). 

Details of the roll back operation are shown in Figure 3.7. The RestoreNetwork routine 
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/* Roll the simulation back to a time before t and restore 
* the state from event checkpoint and node history lists 
*/ 

RollBack(t) 
int t; 
{ struct checkpoint *ctmp; 

} 

/* find closest checkpoint to roll back time t */ 
ctmp := last element of CkptList; 
while time of ctmp > t 

ctmp := previous element of CkptList; 
CurTime := time of ctmp; 

/* walk the network restoring node values */ 
RestoreNetwork(ctmp); 

/* restore event array and overflow list */ 
RestoreEvents(ctmp); 

/* back up next input pointer */ 
while scheduled time of Next!nput ~ CurTime 

Next!nput := previous element of InputList; 

/* Roll back notification to anyone who cares */ 
for each partition in dependent list 

send roll back notification; 

/* garbage collect old checkpoints */ 
for each checkpoint in CkptList > CurTime 

{ remove from CkptList; 
place on FreeCkptList; 

} 

Figure 3. 7. Roll Back Procedure 

is similar to the CkptNetwork routine discussed earlier. 

When processor Pi receives notification that processor Pj rolled back to time to, 

Pi must clean up its act to reflect the new knowledge about the state of Pj. If Pi has 

no record of input changes from Pj which are dated more recently than to, nothing 

need be done. If Pi has changes from Pj more recent than t 0 , those changes are spliced 

out of the input list. If Pi has not processed any of those changes (i.e. the earliest 

change is scheduled for a time > CurTimei), no further action is taken. If, however, 

Pi has already processed at least one of the changes, the results of those changes must 

be undone. Pi must therefore roll back to a time preceding the earliest of the invalid 
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changes. Note that Pi need not be rolled all the way back to t 0 , but only far enough 

to undo the effects of false changes from Pj. Any new changes from Pj will explicitly 

force Pi to roll back. This response is shown in more detail in Figure 3.8. The history 

and roll back mechanisms are presented in Appendix B. 

/* Respond to Roll Back Notification from processor Pat time t *\ 
HandleNotify(P, t) 

{ int earliest; 
struct Input *in; 

} 

3.6. Summary 

/* walk backward from end of InputList to remove inputs from P */ 
in := last element of InputList; 
while scheduled time of in > t do 

{ if in came from processor P 

} 

{ earliest := scheduled time of in; 
remove in from InputList; 

} 

in := previous element of InputList; 

/* Roll back to earliest, if necessary */ 
if (CurTime > earliest) 

RollBack(earliest); 

Figure 3.8. Response to Roll Back Notification 

PRSIM is a logic level simulator based upon the RSIM algorithm which takes ad­

vantage of the locality of circuit operation to achieve parallelism. Interprocessor syn­

chronization is accomplished through the history maintenance and roll back technique 

presented in Chapter Two. PRSIM makes few demands upon the underlying parallel 

architecture. It requires a reliable, order preserving message delivery substrate for 

communication. There is no need for shared memory, or special hardware for float­

ing point arithmetic or memory management. The current implementation of PRSIM 

has no automatic partitioning mechanism. The designer must specify the partitioning 

before simulation. 
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The kernel of the original RSIM program (excluding user interface) consists of 

approximately 1430 lines of C code. The simulation slave portion of PRSIM, including 

message handling, contains approximately 2800 lines of C code, or roughly double the 

original size. Of the 2800 lines, approximately 450 lines are dedicated to the history 

maintenance and roll back features, while message handling, file I/O, and debugging 

account for the rest. There are about 800 lines of code dedicated to the coordinator's 

administrative functions (excluding user interface), split roughly evenly between file 

I/ 0 and message management. 
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Chapter IV 

Results 

A preliminary set of experiments were designed and run to determine the perfor­

mance of the PRSIM implementation. The first set of experiments were designed to 

measure the overall performance of PRSIM, with special emphasis on the scaling behav­

ior. To completely understand the results of these experiments, extensive performance 

monitoring facilities were added, and a second set of experiments run. This chapter 

presents and discusses the results from those two sets of experiments. 

4.1. Overall Performance 

4.1.1 Experimental Procedure 

To determine the scaling behavior of PRSIM, a set of identical simulations were 

run with a varying number of processors. The set of simulations is composed of one 

test circuit and a large number of randomly generated test vectors. The experiments 

consisted of simulating all of the vectors on each of a number of partitionings of the 

test circuit. 

The number of essential events for a given circuit and set of test vectors is defined 
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to be the number of events processed in a uniprocessor simulation. This set of events is 

the standard by which multiprocessor simulations are judged. Therefore, the number 

of essential events processed per second of run time is a measure of the useful (non­

redundant) work performed. This is the metric by which the overall performance of 

the parallel simulator is measured. To obtain these values, it is necessary to count 

the number of events processed in the one partition experiment, and the amount of 

time elapsed during the simulation of each vector in each experiment. Elapsed time is 

measured in units of clock ticks, where one clock tick ~ 16.2mSec. 

The scaling behavior is most easily expressed in terms of the effective speedup 

factor obtained from a given number of processors. The speedup factor for N processors 

is defined to be: 

Speedup= t(N) 
t{l) 

where t(N) is the time taken to run a given experiment on N processors. The extra 

simulation incurred as a result of roll back can be expressed in terms of the simulation 

efficiency, which is defined to be: 

No. of events(l) 
T/s = 

No. of events(N) 

where No. of Events(N) is the number of events processed in an N partition experi­

ment. 

The test circuit is a 64-bit adder, using a dynamic logic CMOS technology. The 

adder uses a look ahead carry mechanism for groups of four bits, as shown in Figure 4.1. 

The dynamic logic is clocked by a two phase clock, supplied externally. The carry out 

signal from each group is rippled into the next most significant group of the adder. 

Because the dynamic logic in the carry look ahead block is highly connected, the adder 

will be partitioned along the four bit group boundaries. The only communication 

between the partitions consists of the carry chain. The adder contains a total of 2688 

transistors and 1540 nodes. There are 1328 N-type transistors, 1360 P-type transistors. 

Each 4-bit slice contains 168 transistors, and 96 nodes. 
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Figure 4.1. 4-Bit Slice of Adder Circuit 

Experiments were run with the test circuit partitioned into 1, 2, 3, 4, and 6 

partitions. The organization of each partition is shown in Figure 4.2. The marks 

across the top indicate groups of four bits. In each experiment, all of the partitions are 

of equal length except the six partition case, where the first two partitions contain 8 

bits each, while the rest contain 12 bits. Random test vectors of varying length were 

used. The lengths ranged from 2 to 24 clock cycles, with four sets of vectors in each 

length. 

4.1.2 Results 

A summary of the raw performance data is shown in Table 4.3. The complete 

results are presented in Appendix C. Table 4.3 shows the average performance of PRSIM 

in essential events per second as a function of both the length of the test vector and 

the number of processors. There are a number of discrepancies from what might be 

considered ideal behavior. The first is the decline in raw performance of the one 
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Figure 4.2. Adder Partitioning 

partition experiment as the length of the test vector increases. This is attributed 

to the cost of reclaiming the checkpoint data structures upon resynchronization. Since 

each checkpoint contains an arbitrary number of events, it necessary to walk the length 

of the checkpoint list when reclaiming, incurring a cost proportional to the length of 

the list. 

Number of Processors 

Length 1 2 3 4 6 

2 46.45 81.09 107.62 134.50 151.52 
4 44.55 80.60 108.10 129.36 166.41 
6 42.95 76.25 98.99 136.56 170.93 
8 41.39 76.87 100.72 126.25 155.75 
12 40.62 78.32 105.45 126.42 159.19 
16 38.86 75.65 96.08 126.49 152.97 
24 37.66 74.94 94.24 NA 145.48 

Table 4.3. Raw Performance Results in Events/Second 

N ,, 8 Speedup 

1 1.000 1.00 
2 0.991 1.86 
3 0.967 2.43 
4 0.937 3.11 
6 0.951 3.77 

Table 4.4. Simulation Efficiency and Speedup Factor 

Table 4.4 shows the average simulation efficiency and the speedup factor as a 
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function of the number of processors. Table 4.4 demonstrates that the simulation 

efficiency is relatively unaffected by the number of partitions. This indicates a both high 

degree of decoupling between the partitions, with a corresponding low occurance of roll 

back, and a even balance in simulation load, which is consistent with the partitioning 

chosen. 

4 

3 
Speedup 

Factor 
2 

1 

1 2 3 4 5 6 
Number of Partitions 

Figure 4.5. Speedup Factor Versus Number of Partitions 

The speedup factor results are somewhat more interesting. Figure 4.5 presents a 

plot of the speedup as a function of the number of partitions. With six processors, 

a performance improvement of only 3. 77 is achieved. The performance increases less 

than linearly with the number of processors. Clearly, the small decrease in simulation 

efficiency is not the dominant factor. To understand this phenomenon, more detailed 

information is required. 

4.2. Profiling Results 

To understand the performance behavior of PRSIM, it is necessary to build a de­

tailed model of the costs associated with the various functions. In particular, we need 

to know the following information: 

1. Impact of the partitioning - How well balanced is the simulation load? 

How much interprocessor communication is there? 
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2. Synchronization costs - How much time is spent maintaining the check­

point lists? How expensive is the roll back operation? 

3. Communication costs - How expensive is message handling? How much 

of that cost is associated with the low level implementation? 

To obtain this information, a statistical profiling scheme similar to that of Version 7 

UNIXt was implemented for the simulation slave program. 

4.2.1 Experimental Procedure 

The profiling scheme collects the number of calls to every subroutine in each sim­

ulation slave and total amount of time spent in each subroutine. This information is 

sufficient to determine the percentage of the total time that is spent in each subroutine, 

and the average length of time spent per subroutine call. 

When the program starts up, a table to contain the subroutine call information is 

built. Each line of the table contains a pointer to the entry point of one subroutine, and 

the count of the number of times that routine has been called. Each subroutine contains 

a pointer to the corresponding table entry. The compiler automatically inserts code 

at the beginning of every subroutine to manipulate the count table. When the routine 

is first called, it is linked into the table. On each succeeding call, the corresponding 

counter in the table is incremented. When the program exits, the table is written into 

a file to be interpreted later. 

A statistical averaging technique is used to determine the amount of time spent 

in each subroutine of the program. A table of program counter ranges is maintained 

in which each entry represents the number of times the sampled program counter lay 

within a given 8 byte range. At every clock interrupt (once every 16mSec.), the program 

counter is sampled, the value shifted right 3 bits, and used as an index into the array. 

The indexed table entry is then incremented. When the program exits, the table is 

written into a file to be interpreted later. By taking a sufficiently large number of 

t UNIX is a trademark of Bell Laboratories. 
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samples, we can obtain a fairly accurate profile of the amount of time spent in each 

subroutine. 

Profiling data was gathered for the six partition experiment described above. Five 

sets of test vectors, each of length 16, were run. To provide a sufficiently large sample, 

each vector was simulated ten times. Therefore, the sample consists of 800 simulated 

clock cycles of 200nSec. each, or 160µSec. of simulated time. Each vector generates 

roughly 18,000 essential events, for a total of approximately 850,000 events in the 

sample. 

Profiling is enabled by the coordinator immediately before the input vectors are 

established, and disabled immediately after each resynchronization. Therefore, the 

profiling data does not include time spent in the user interface. 

4.2.2 Results 

The complete results of the profiling experiment appear in Appendix D. Table 4.6 

summarizes the percentage of idle time recorded by each processor (time spent in the 

routine step). The idle time is the sum of the time elapsed between reaching the 

specified stop time and the subsequent resynchronization or roll back. The high idle 

times of partitions #1 and #2 are the result of the relative partition sizes: partitions 

#1 and #2 contain 8 bits each, while the rest contain 12 bits. The decrease in the idle 

times from partition #3 to #6 follows the communication through the carry chain: the 

further down the chain, the longer it takes to settle. 

The speedup results reported earlier can now be explained. The expected speedup 

for N processors can be expressed as: 

Speedup= NYJsY/p 

where Y/p is the processor utilization factor. For the six partition experiment, we obtain 

an expected speedup of 4.03. The non-linearity of the curve can be explained by Y/p 

decreasing as the number of partitions is increased. 
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Partition % Idle 

1 50.04 
2 50.27 
3 28.99 
4 21.67 
5 16.13 
6 3.80 

Total 29.14 

Table 4.6. Idle Time per Partition 

Table 4.7 shows a break down of where the active (non-idle) time was spent by 

each partition. The figures are percentages of the total active time of each partition. 

The data is divided into three categories of activity as follows: 

Simulation: the time spent in the RSIM simulation algorithm itself. This is subdi­

vided as follows: 

Arithmetic: the time spent in the scaled fixed point arithmetic routines. 

Other: all other aspects of the RSIM algorithm. 

History: the time which may be attributed to the roll back synchronization scheme. 

This is subdivided as follows: 

Checkpoint: the time spent creating and maintaining the state checkpoints. 

Roll Back: the time spent restoring the state upon roll back. 

Communication: the time associated with interprocessor communication. This is 

subdivided as follows: 

System Level: the time spent polling and manipulating the interrupt level 

message queues. 

User Level: the time spent constructing and handling messages at the user 

level. 

Table 4. 7 shows the amount of time spent in overhead is relatively small; nearly 

90% of the active time is spent in the simulation algorithm, most of that in the fixed 

point routines. The overhead time is dominated by the communication, and not by the 

history mechanism. Only in partition# 2, which had a relatively high incidence of roll 
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Partition Number 

Function 1 2 3 4 5 6 Total 

Simulation 
Arithmetic 60.43 58.17 63.63 64.18 64.05 65.08 63.07 
Other 25.94 25.07 25.16 25.19 25.71 25.17 25.35 
Total 86.37 83.24 88.79 89.37 89.76 90.25 88.42 

History 
Checkpoint 2.93 5.68 2.47 2.64 2.54 2.70 3.01 
Roll Back 0.00 0.30 0.00 0.05 0.05 0.07 0.07 
Total 2.93 5.98 2.47 2.69 2.59 2.77 3.08 

Communication 
System Level 3.56 3.57 2.54 2.31 2.22 1.98 2.57 
User Level 7.14 7.21 6.20 5.63 5.43 5.00 5.93 
Total 10.70 10.78 8.74 7.94 7.65 6.98 8.50 

Table 4. '1. Breakdown of Time Spent by Function 

back, is the checkpointing overhead non-negligable. 

4.3. Discussion 

There are two important conclusions that can be reached from the results reported 

in this chapter. First, the circuit partitioning has a significant impact on the scaling 

performance of the simulator. The dominant effect, at least in the small test case 

reported here, is not the overhead associated with communication or synchronization, 

but is the dynamic load balance. Even though the test circuit was statically well 

partitioned, the dynamic behavior resulted in only about 70% processor utilization 

with six partitions. Decreasing processor utilization resulted in "diminishing returns" 

in the speedup factor, as shown in Figure 4.5. 

The second conclusion is that the results reported are inconclusive. Because the 

active time was so completely dominated by the simulation load, it is difficult to build 

any detailed models of the overhead costs associated with the history and roll back 

mechanisms. The test circuit was too small and too regular to exhibit much interesting 

behavior. Somewhat better results could perhaps have been achieved by running much 

longer test vectors. Unfortunately, the current implementation of PRSIM is severely 

memory bound. If automatic resynchronization were employed to limit the storage 
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Chapter V 

Conclusion 

5.1. Summary 

Integrated circuit technology has been advancing at a phenomenal rate over the 

last several years, and promises to continue to do so for the foreseeable future. If 

circuit design is to keep pace with fabrication technology, radically new approaches 

to computer-aided design will be necessary. This thesis has explored the problems 

of capacity limitation in existing simulation tools, and has sought to develop a new 

approach to building fast, scalable circuit simulators. 

We began by examining the locality inherent in digital circuit operation. Digital 

circuit elements operate on local information, producing local results. It was observed 

that there exists a class of simulation algorithms which exhibit a similar locality prop­

erty. Therefore, we set out to develop a framework for circuit simulation which could 

take advantage of this locality to achieve a high degree of parallelism. The scheme we 

developed involved mapping the circuit to be simulated onto the topology of the target 

multiprocessor to take advantage of the natural structure of the circuit. We explored 
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the problems associated with the precedence constraints imposed by the partitioning. 

We discovered that many of these problems could be avoided by inserting buffers be­

tween the partitions, effectively decoupling them. This lead to the development of a 

synchronization mechanism based upon history maintenance and roll back. By peri­

odically saving the state of the simulation, each partition can be allowed to simulate 

asynchronously with respect to the others, rolling back the simulation if necessary to 

correct for input changes. This solution was demonstrated to be sufficient to guar­

antee convergence in the presence of feedback. We then discussed the importance of 

the strategy used to partition the circuit, and argued that static graph partitioning 

techniques may not be adequate. Finally, we quickly reviewed some related research, 

with emphasis on the relationship to the work report in this thesis. 

To determine the merit of the ideas presented in Chapter Two, a circuit simu­

lator, PRSIM, was designed and built. Chapter Three discussed the details of that 

implementation. The chapter began with an overview of the RSIM simulator and the 

Concert multiprocessor on which PRSIM is based. RSIM was chosen as the vehicle for 

this implementation because it is an event driven simulator which exhibits the locality 

properties discussed in Chapter Two. PRSIM is organized into three components: the 

prepass phase, which is responsible for partitioning the circuit; the coordinator, which 

is responsible for attending to the administrative functions, such as file I/ 0 and in­

terfacing to the user; and the simulation slave, which performs the actual work of the 

RSIM algorithm. We discussed the organization of the simulation control loop, which 

is decomposed into two phases: an event processing phase, and an input processing 

phase. This two phase organization, together with the variable checkpointing strategy, 

is sufficient to guarantee convergence according to the argument presented in Chapter 

Two. All interprocessor communication is implemented by a simple, non-blocking mes­

sage passing mechanism, built on top of the Concert Level 0 message passing protocol. 

Some optimizations were made in light of the fact that Concert is a tightly coupled 

multiprocessor system, but the essential mechanism does not rely upon shared memory. 
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Finally, the history maintenance and roll back algorithms were presented in detail. 

A preliminary set of experiments were run to determine the scaling behavior of 

PRSIM. The experiments were organized into two sets. The first set was designed 

to measure the overall performance of PRSIM, while the second set was designed to 

obtain detailed information about the internal behavior of PRSIM. From the first set, we 

learned that the performance increased by nearly a factor of 2 in going from one to two 

partitions, but that beyond two there was a "diminishing returns" phenomena. From 

the profiling experiments of the second set, we discovered the cause of this behavior 

was the processor utilization decreased as the circuit was partitioned into finer and 

finer pieces. The profiling experiments also revealed that less than 12% of the active 

processing time was spent in overhead associated with parallel execution. Although 

this result was somewhat encouraging, it made it nearly impossible to develop models 

of the overhead costs and scaling behavior. The conclusion derived from these results 

is that the partitioning strategy is very important, and requires further research. 

5.2. Directions for Future Research 

The results reported in this thesis suggest several avenues for future research. One 

of the most serious problems encountered was the bound on the length of the simulation 

which resulted from the memory requirements of checkpointing. This suggests the need 

for automatic resynchronization: reclaiming old state once it can be guaranteed that no 

partition can be forced to roll back beyond a certain point. This will require additional 

communication to coordinate the checkpointing, but is probably cost effective in the 

long run. 

The checkpointing strategy that was implemented was based upon empirical results 

with arbitrarily chosen parameters. One direction for future work is to develop formal 

statistical models for the communication behavior of digital circuits. These models 

could then be used to optimize the checkpointing strategy for a particular circuit, either 

statically at partition time, or dynamically based upon the communication patterns 

observed. 
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Perhaps the most important issue raised is the problem of effective network parti­

tioning. It would be interesting to explore the limits of static partitioning algorithms. 

Ultimately, however, it will probably be necessary to turn to some form of dynamic 

partitioning. Two quantities determine the performance of a given partitioning: the 

amount of useful simulation work accomplished by each partition, and the amount of 

communication among the partitions. A dynamic partitioning strategy should try to 

balance the first quantity, while minimizing the second. We can view the level of activity 

in a partition as a "temperature". As the activity (simulation work and communica­

tion) increases, the temperature rises. The goal of dynamic partitioning is to achieve a 

low, uniform temperature across the multiprocessor. Periodically, the temperature of 

each partition should be sampled, and atomic units from hotter partitions moved into 

adjacent, cooler partitions, following the temperature gradient. If the fluctuations in 

temperature have a very short time constant (on the order of a single clock cycle), it 

may only be necessary to repartition once or twice near the beginning of a simulation. 

The framework that we have described does not rely upon the memory architecture 

of any particular multiprocessor. It is intriguing to consider the possibility of a simula­

tion spread among a loosely coupled collection of machines. For example, it should be 

possible to build a simulator which locates idle machines on a local area network, and 

dispatches pieces of the simulation load to them. To determine the viability of this idea, 

we need a better understanding of the sensitivity of our approach to message latency. 

A series of experiments can be performed with the current PRSIM implementation in 

which the message delivery latency is varied by the sending processor. 

A great deal of the active run time of PRSIM was spent in the fixed point arithmetic 

package. Although not directly related to the field of parallel simulation, this problem 

suggested the construction of an assigned delay simulator. The prepass phase of such a 

simulator would construct a table of transition delays for each node in the circuit using 

the RSIM (or any other) model. Having thus precomputed the delays for every node in 

the circuit, at run time the simulator need only perform a table look up to schedule an 
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event. 

5.3. Conclusion 

We have presented an approach to parallel simulation which is based upon the 

inherent parallelism of circuit operation. The initial implementation of PRSIM demon­

strates that history maintenance and roll back is a viable solution to interprocessor 

synchronization in this context. Much work remains to be done, however, to determine 

whether this approach can indeed be scaled to an arbitrary number of processors. 
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Appendix A 

PRSIM Messages 

The following is a list of the message types used by PRSIM. The entry for each mes­

sage contains the name of the message, the purpose of the message, and the information 

contained in the body. The messages are divided into three groups: coordination of 

the simulation; file I/ 0 with the host computer; and support for the user interface. 

The following group of messages support the coordination of the simulation activity. 

LOAD-NETWORK 

The LOAD-NETWORK message is sent from the coordinator to each simulation 

slave upon initialization. This message contains the number of partitions in 

the simulation, the partition ID for the receiving processor, the table to map 

partition numbers to processor numbers, and the name of the partition file 

on the host computer. 

LOAD-NETWORK REPLY 

The LOAD-NETWORK REPLY message is sent by each slave to the coordinator 

upon the completion of the network initialization. The body is empty. 
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SE TN ODE 

The SETNODE message is sent to a slave to inform it of external node changes. 

The body contains the simulated time the change took place, and a list of 

(node ID, new value) pairs. 

STEP 

The STEP message is sent from the coordinator to all slave processors to 

initiate a simulation step. The body contains the simulated time the step is 

to terminate. 

SETTLED 

The SETTLED message is sent from a slave to the coordinator to notify it that 

the slave has reached the specified termination time. The body contains the 

partition number of the sender. 

ROLLBACK 

The ROLLBACK message is sent from a slave to the coordinator and all depen­

dent partitions to notify them that the slave has rolled back its simulation. 

The body of this message contains partition number of the sender, and the 

simulated time the partition rolled back to. 

RESYNC 

The RESYNC message is sent from the coordinator to all slave processors 

to inform them the simulation has settled. The slave processors use this 

information to reclaim the storage in the checkpoint and input lists. The 

body of this message is empty. 

The following group of messages implements remote file access. 

FOP EN 

The FOPEN message is a request from a slave to the coordinator to open the 

named file on the host computer. Only one open file is allowed at any one 
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time. The body contains the host file name and the access mode (e.g., read 

or write). 

FOPEN REPLY 

The FOPEN REPLY message informs the slave the requested file is open and 

ready for use. The body contains a single integer reflecting the result of the 

open operation: a 0 indicates a successful open, a -1 indicates an error. 

FREAD 

The FREAD message is a request from a slave to the coordinator to read a 

block of data from the open file. The body contains the number of items 

to be read, and the size of each item. A maximum of 1024 bytes may be 

requested. 

FREAD REPLY 

The FREAD REPLY message contains the data requested by a FREAD message. 

The body contains the number of items read and the data read. 

FWRITE 

The FWRITE message is a request from a slave to the coordinator to write a 

block of data to the open file. The body contains the number of items to be 

written, the size of each item, and the data to be written. 

FWRITE REPLY 

The FWRITE REPLY message reports the result of a FWRITE message. The 

body contains an integer error value which is 0 if the write was successful, 

-1 if the write failed. 

FCLOSE 

The FCLOSE message is a request from a slave to the coordinator to close the 

opened file. No reply is necessary. 
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The following group of messages support the user interface. 

PRINTF 

The PRINTF message is sent by a slave processor to the coordinator to print an 

arbitrary string on the user's console. The body contains the null terminated 

ASCII string to be printed. The coordinator prefixes the partition ID of the 

slave to the string before printing. 

GETNODE 

The GETNODE message is a request by the coordinator to obtain the current 

value of a given node from a slave. The body contains the global ID of the 

node. 

GETNODE REPLY 

The GETNODE REPLY message is the reply from a slave to the coordinator to 

a GETNODE request. The body contains the value of the requested node. 

NODE-INFO 

The NODE-INFO message is a request by the coordinator to obtain connectiv­

ity information about a node within the network. This message is originally 

sent to the slave responsible for driving the node. This slave prints its rel­

evant information for the user (via PRINTF messages), and then forwards 

the NODE-INFO message to any adjacent partitions. Each adjacent partition 

sends its information directly back to the coordinator in the form of PRINTF 

messages, and then replies to the forwarding slave. When all adjacent parti­

tions have replied, the forwarding slave replies to the coordinator. The body 

of the NODE-INFO message contains the global ID of the requested node and 

the type of information requested. 

NODE-INFO REPLY 

The NODE-INFO REPLY message is sent by a slave partition to the processor 
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which requested NODE-INFO, after all of the information has been printed. 

The body contains the partition ID. 

TRACE-NODE 

The TRACE-NODE message is sent by the coordinator to enable activity trac­

ing for a particular node. The body contains the global ID of the node to 

be traced. The receiving partition sets a flag in the specified node to enable 

tracing. Whenever a traced node changes value, a notice is printed on the 

user's console. 

UNTRACE-NODE 

The UNTRACE-NODE message is sent by the coordinator to cancel activity 

tracing for a particular node. The body contains the global ID of the node. 

GETNAME 

The GETNAME message is sent by a slave processor to the coordinator to 

request the ASCII name of a given node. The body contains the global ID of 

the node. This message is used when printing node information on the user's 

console. 

GETNAME REPLY 

The GETNAME REPLY message is the coordinator's reply to the GETNAME 

message. The body contains a null terminated ASCII string representing the 

name of the requested node. 

DEBUG-LEVEL 

The DEBUG-LEVEL message is sent from the coordinator to all slave processors 

to set the debug level. The value in the body determines the type and quantity 

of debugging information to display. There is no reply. 

- 73 -



ENABLE-PROFILE 

The ENABLE-PROFILE message is sent from the coordinator to all slave pro­

cessors to enable the performance monitoring software. The body is empty, 

and there is no reply. 

DISABLE-PROFILE 

The DISABLE-PROFILE message is sent from the coordinator to all slave pro­

cessors to disable the performance monitoring software. The body is empty, 

and there is no reply. 
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Appendix B 

History Implementation 

/* This file contains the implementation of the history 
* maintenance and roll back mechanisms of PRSIM. 

* 
* A few globally defined structures are reproduced below. 
*/ 

/* Useful data structures */ 

struct Event { 
evptr flink,blink; 
nptr enode; 
long ntime; 
char eval; 
char type; 

}; 

struct Checkpt 

}; 

{ ckptr flink, blink; 
long ctime; 
int ev_index; 
struct Event *event[TSIZE]; 
struct Event *overflow; 
char *svect; 

/* the structure of an event */ 
/* doubly-linked event list */ 
/* node this event is all about */ 
/* time, in DELTAs, of this event */ 
/* new value */ 
/* type of event */ 

/* the structure of a checkpoint */ 
/* double linked list checkpoint list */ 
/* time checkpoint was taken */ 
/* index into event array */ 
/* copy of event array */ 
/* copy of overflow event list */ 
/* pointer to node state table */ 

struct Input { 
iptr next; 

/* linked list of inputs */ 
/* next element of list */ 
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nptr inode; 
}; 

/* pointer to this input node */ 

/* For convenience, pointers are abbreviated as follows */ 
typedef struct Event *iptr; /* event pointer */ 
typedef struct Evckpt *ckptr; /* checkpoint pointer */ 
typedef struct Input *iptr; /* input pointer */ 

/* Routine to checkpoint the state of the simulation 
* Note that the checkpointed event array & overflow list are stored more 
* compactly than the originals. 
*/ 

checkpoint() 
{ register ckptr ctmp; 

register evptr etmp, ev, ev_base; 
register inti, j; 
char *ptr; 

/* get a ckpt structure from free list, allocating more if neccessary */ 
if ((ctmp = ck_free) == NULL) 

{ ctmp = (ckptr)al_bytes(lO * sizeof(struct Evckpt)); 
ptr = (char *)al_bytes(numslO); 

} 

for (i = 10; --i > O; ctmp++) 
{ ctmp->flink = ck_free; 

ck_free = ctmp; 
ctmp->svect = ptr; 
ptr += nums; 

} 

ctmp->svect = ptr; 

else ck_free = ctmp->flink; 

/* add new ckpt struct to list of checkpoints */ 
ctmp->flink = &ck_list; 
ctmp->blink = ck_list.blink; 
ck_list.blink->flink = ctmp; 
ck_list.blink = ctmp; 

/* copy event array into ckpt struct 
for (i = O; i < TSIZE; i++) 

{ ev_base = &ev_array[i]; 
ev = ev _base; 
ctmp->event[i] = NULL; 
if (ev->flink == ev) 

continue; 

*/ 
/* loop over lists in array */ 

/* if it's empty, do nothing */ 

while ((ev = ev->flink) != ev_base) /* loop over each event in list */ 

/* allocate event struct */ 
{ if ((etmp = evfree) == NULL) 
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} 

{ etmp = (evptr)al_bytes(10 * sizeof(struct Event)); 
for (j = 10; --j > O; etmp++) 

{ etmp->flink = evfree; 
evfree = etmp; 

} 

} 
else evfree = etmp->flink; 

/* copy contents of old (ev) to new event */ 
etmp->enode = ev->enode; 
etmp->ntime = ev->ntime; 
etmp->eval = ev->eval; 
etmp->type = ev->type; 

/* add new event to checkpoint event array */ 
if (ctmp->event[i] == NULL) 

} 

etmp->flink = etmp->blink = ctmp->event[i] = etmp; 
else 

{ etmp->flink = ctmp->event[i]; 
etmp->blink = ctmp->event[i]->blink; 
ctmp->event[i]->blink->flink = etmp; 
ctmp->event[i]->blink = etmp; 

} 

/* copy overflow array into ckpt struct */ 
ev = toverflow; 
ctmp->overflow = NULL; 
if (ev->flink != ev) 

while ((ev = ev->flink) != &overflow) 
/* allocate event structure */ 

{ if ((etmp = evfree) == NULL) 
{ etmp = (evptr)al_bytes(10 * sizeof(struct Event)); 

for (j = 10; --j > O; etmp++) 
{ etmp->flink = evfree; 

evfree = etmp; 
} 

} 
else evfree = etmp->flink; 

/* copy contents of old (ev) to new event */ 
etmp->enode = ev->enode; 
etmp->ntime = ev->ntime; 
etmp->eval = ev->eval; 
etmp->type = ev->type; 

/* add new event to checkpoint event array */ 
if (ctmp->overflow == NULL) 

etmp->flink = etmp->blink = ctmp->overflow = etmp; 
else 

{ etmp->flink = ctmp->overflow; 
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} 
} 

etmp->blink = ctmp->over:flow->blink; 
ctmp->overflow->blink->:flink = etmp; 
ctmp->over:flow->blink = etmp; 

/* fill out rest o:f checkpoint 
ctmp->ctime = cur_delta; 
ctmp->ev_index = ev_index; 
checkpt...nodes(ctmp); 
last_ck = cur_delta; 

struct */ 
/* time stamp o:f checkpoint */ 

/* place in event array */ 
/* go get node values, too */ 

/* remember that we checkpointed */ 
} 

/* Routine to checkpoint the state of the nodes. 
* Walks the network, copying each node value & the state of the 
* INPUT :flag into ctmp svect array, two nodes per byte. 
* Argument is a pointer to the checkpoint structure. 
*/ 

checkpt...nodes(ctmp) 
register ckptr ctmp; 
{ register nptr n; 

} 

register int i, vindex = O; 
register char nib = 0, curbyte; 
:for (i = 0, vindex = O; i < HASHSIZE; i++) 

:for (n = hash[i]; n; n = n->hnext) 
{ i:f (nib == 0) /* even nodes in low nibble */ 

} 

{ nib++; 
curbyte = n->npot; 
i:f (n->n:flags & INPUT) curbyte I= Ox04; 

} 

else /* odd nodes in high nibble */ 
{ nib = O; 

} 

curbyte I= (n - >npot < < 4) ; 
i:f (n->nflags & INPUT) curbyte I= Ox40; 
ctmp->svect[vindex] = curbyte; 
vindex++; 

if (nib) ctmp->svect[vindex] = curbyte; 

I* Routine to restore the state of the nodes :from a checkpoint. 
* Walks the network, copying each node value & the state o:f the 
* INPUT :flag :from ctmp svect array. 
* Argument is a pointer to the checkpoint structure. 
*/ 

restore...nodes(ctmp) 
register ckptr ctmp; 
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} 

{ register nptr n; 
register int i. vindex = O; 
register char nib = o. curbyte; 
for (i = O. vindex = O; i < HASHSIZE; i++) 

for (n = hash[i]; n; n = n->hnext) 
{ curbyte = ctmp->svect[vindex]; 

} 

if (nib) 
{ nib = O; 

} 

else 

n->ev1 = n->ev2 = NULL; 
n->npot = ( (curbyte >> 4) le Ox03); 
if (curbyte le Ox40) n->nflags I= INPUT; 
else n->nflags le= INPUT; 
vindex++; 

{ nib++; 

} 

n->ev1 = n->ev2 = NULL; 
n->npot = (curbyte le Ox03); 
if (curbyte le Ox04) n->nflags I= INPUT; 
else n->nflags le= INPUT; 

/* Roll the simulation back to a time before t and restore the state 
* from event checkpoint and node history lists 
*/ 

rolLback(t) 
register long t; 
{ register ckptr ctmp; 

register inti, j; 
register evptr ev, etmp, ev_base; 
ckptr nctmp; 
int nevents = O; 
int oevents = O; 

/* find closest checkpoint to the roll-back time */ 
ctmp = ck_list.blink; 
while (ctmp->ctime > t) 

if (ctmp->blink == leck_list) 
{error("; rolLback: can't go back to %d",t); 

return O; 
} 

else ctmp = ctmp->blink; 

/* tell everyone who cares that we're rollin' back */ 
rollback-notify(ctmp->ctime); 

/* walk the network restoring node values */ 
restore-nodes (ctmp); 
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/* restore event array & overflow list, simulated time */ 
for (i = O; i < TSIZE; i++) 

/* free up old current events */ 
{ ev_base = &ev_array[i]; 

} 

if ( ev _base- >f link ! = ev _base) 
{ ev_base->blink->flink = evfree; 

evfree = ev_base->flink; 
ev_base->flink = ev_base->blink = ev_base; 

} 

/* make a copy of this event list, if there is one */ 
if (ctmp->event[i] !=NULL) 

{ ev = ctmp->event[i]; 

} 

do 
/* allocate event struct */ 
{ if ((etmp = evfree) == NULL) 

{ etmp = (evptr)al_bytes(10 * sizeof(struct Event)); 
for (j = O; --j > O; etmp++) 

{ etmp->flink = evfree; 
evfree = etmp; 

} 
} 

else evfree = etmp->flink; 
/* Copy event data into new event */ 

etmp->enode = ev->enode; 
etmp->ntime = ev->ntime; 
etmp->eval = ev->eval; 
et mp- >type = ev- >type; 
etmp->flink = ev_base; 
etmp->blink = ev_base->blink; 
ev_base->blink->flink = etmp; 
ev_base->blink = etmp; 

/* link nodes to events */ 

} 

if (ev->type == 0) 
etmp->enode->ev1 = etmp; 

else if (ev->type == 1) 
etmp->enode->ev2 = etmp; 

while ((ev = ev->flink) != ctmp->event[i]); 

/* restore pointer into event array */ 
ev_index = ctmp->ev_index; 

/* free up current overflow events */ 
if (overflow.flink != &overflow) 

{ overflow.blink->flink = evfree; 
evfree = overflow.flink; 
overflow.flink = overflow.blink = &overflow; 

} 
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/* make a copy of this event list, if there is one */ 
if (ctmp->overflow != NULL) 

{ ev = ctmp->overflow; 

} 

do 
/* allocate event struct */ 
{ if ((etmp = evfree) == NULL) 

{ etmp = (evptr)al_bytes(10 * sizeof(struct Event)); 
for (j = O; --j > O; etmp++) 

{ etmp->flink = evfree; 
evfree = etmp; 

} 
} 

else evfree = etmp->flink; 
/* Copy event data into new event */ 

etmp->enode = ev->enode; 
etmp->ntime = ev- >ntime; 
etmp->eval = ev->eval; 
etmp->type = ev->type; 
etmp->flink = &overflow; 
etmp->blink = overflow.blink; 
overflow.blink->flink = etmp; 
overflow.blink = etmp; 

/* link nodes to events */ 

} 

if (ev->type == 0) 
etmp->enode->ev1 = etmp; 

else if (ev->type == 1) 
etmp->enode->ev2 = etmp; 

while ((ev = ev->flink) != ctmp->overflow); 

/* restore current simulated time, and remember there's a 
* good checkpoint here 
*/ 
cur_delta = ctmp->ctime; 
last_ck = cur_delta; 

/* back up input list */ 
while ((cur_input->ntime >= cur_delta) &IE (cur_input != &inlist)) 

cur_input = cur_input->blink; 

/* garbage collect old checkpoints */ 
if (ctmp->flink == &ck_list) 

return; 
nctmp = ctmp->flink; 
ctmp->flink = tck_list; 
ck_list. blink->flink = ck_free; 
ck_list.blink = ctmp; 
ctmp = nctmp; 
while (ctmp != ck_free) 

/* nothing to collect */ 
/* remember next struct in list */ 

/* make last struct point to end */ 
/* old end points to free list */ 

/* and end point to it */ 

/* now collect events inside */ 
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} 

{ for (i = O; i < TSIZE; i++) 

} 

{ if ((ev = ctmp->event[i]) ==NULL) continue; 
ev->blink->flink = evfree; 
evfree = ev; 
ctmp->event[i] = NULL; 

} 

if ((ev = ctmp->overflow) != NULL) 
{ ev->blink->flink = evfree; 

evfree = ev; 
ctmp->overflow = NULL; 

} 

ctmp = ctmp->flink; 

ck_free = nctmp; 

/* Clean up and dispose of ancient history properly 
* We walk the checkpoint list, reclaiming all events inside, and 
*then reclaim the checkpoint list itself. 
*We then move all input changes en masse to the free list. 
* Finally, we take a new checkpoint, just for fun. 
*/ 

cleanup...hist () 
{ register ckptr ctmp, nctmp; 

register evptr etmp, ev; 
register int i; 

/* free up all checkpoint structures 
* for each checkpoint, we must first free up all event 
* structures 
*/ 

ctmp = ck_list.flink; 
while (ctmp != ~ck_list) 

{ for (i = O; i < TSIZE; i++) 
{ if ((etmp = ctmp->event[i]) -- NULL) continue; 

ev = etmp; 
etmp->blink->flink = evfree; 
evfree = etmp; 
ctmp->event[i] =NULL; 

} 

if ( (etmp = ctmp->overflow) ! = NULL) 
{ 

} 

ev = etmp; 
etmp->blink->flink = evfree; 
evfree = etmp; 
ctmp->overflow = NULL; 

nctmp = ctmp->flink; 

- 82 -



} 

} 
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Appendix C 

Raw Performance Data 

The following table contains the raw performance data from the experiments de­

scribed in Section 4.2. The first column contains the name of the test vector, the 

first component of the name indicates the vector length. The second column contains 

the number of effective events generated for that vector. The remaining five columns 

contain the number of clock ticks (16.2mSec/tick) per vector for each experiment. 

- 85 -



Vector #Events 1 2 3 4 6 

2A 1729 2242 14Bl 950 715 627 
2B 1B07 2323 1345 1110 B44 BB5 
2C 1661 2105 1112 B56 717 571 
2D 2022 2662 1443 1132 967 B45 
4A 367B 4979 2B45 2114 1733 1339 
4B 4000 5395 3093 232B 1B75 1506 
4C 3977 5233 2939 1941 1B24 1347 
4D 4045 5541 2B20 23BO 1B49 1477 
6A 6714 9425 5356 4279 3036 23BO 
6B 4510 6345 3640 26B5 1997 1661 
6C 7196 9761 5464 4162 30B7 2300 
6D 6573 9347 5160 4054 2B54 2397 
BA B414 11714 6291 4793 3764 320B 
BB B535 12339 64Bl 5052 4011 3000 
BC B140 11706 6232 52BO 4335 3369 
BD 7B17 11652 671B 4524 3593 312B 
lOA NA 16925 9194 7241 5037 403B 
lOB NA 161B2 B435 6913 4B79 4361 
lOC NA 12343 6574 51B4 41B5 3360 
lOD NA 132B7 7371 4927 4776 3701 
12A 139Bl 20453 1016B 7936 6907 5464 
12B 14123 202B5 10551 77B4 63B3 5692 
12C 10636 1592B B934 615B 54B4 3471 
12D 1143B 1732B B6B4 6623 50BO 4560 
14A NA 21592 12090 9356 7199 5327 
14B NA 1B34B 9464 7023 5369 4795 
14C NA 22572 12239 B193 6B64 5116 
14D NA 21195 11074 B692 6579 5321 
16A 16190 24972 1272B 9705 7610 6079 
16B 17070 26500 13336 11395 B459 67BB 
16C 20539 31B72 17563 132BO 96B3 7BB1 
16D 14779 22609 lllBl B734 6B23 6122 
24A 25009 39719 21046 16509 NA 9736 
24B 21501 34636 17622 13602 NA 10070 
24C 2964B 46341 22430 17959 NA 11B02 
24D 24793 399B3 195B3 16136 NA 99B6 

Simulation Time per Vector 
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Appendix D 

Profiling Data 

The following tables contain the raw profiling data for the six partition experiment. 

The first six tables contain the data for each separate partition, while the last table 

contains the aggregate sum. The data in each column are as follows: 

1. The name of the subroutine. 

2. The total time spent in each subroutine, measured in units of clock ticks 

(16.2mSec per tick). 

3. The total number of calls to each subroutine. 

4. The average time spent in each call. This is the quotient of the total 

time (expressed in mSec.) divided by the number of calls. 

5. The percentage of the total time that was spent in each subroutine. 

6. The percentage of the active simulation time spent in each subroutine. 

The active simulation time is the total time minus the idle time (time 

spent in step). 

Subroutines with a "O" number of calls are library routines which were not recom-
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Subroutine Time No. Calls mSec/Call % Total % Active 
step 172405 51 54763.941 50.04 0.00 
qldiv 66391 6566045 0.164 19.27 38.56 
c_thev 19665 659956 0.483 5.71 11.42 
cvtcond 14475 4892172 0.048 4.20 8.41 
Handler 10073 5011287 0.033 2.92 5.85 
lqmul 9923 3144616 0.051 2.88 5.76 
muldiv 7601 2925075 0.042 2.21 4.42 
sim_step 6376 51 2025.318 1.85 3.70 
msg_poll 6080 0 0.000 1.76 3.53 
new_val 4918 199081 0.400 1.43 2.86 
main 4781 0 0.000 1.39 2.78 
check pt _nodes 3991 3226 20.042 1.16 2.32 
lmul 3823 0 0.000 1.11 2.22 
enque 3143 335994 0.152 0.91 1.83 
make_clist 2674 199081 0.218 0.78 1.55 
set in 2225 16004 2.252 0.65 1.29 
check_inputs 1330 376813 0.057 0.39 0.77 
uldiv 1158 0 0.000 0.34 0.67 
checkpoint 1042 3226 5.233 0.30 0.61 
cshare_make_clist 630 25976 0.393 0.18 0.37 
rcmul 591 219541 0.044 0.17 0.34 
charge_share 503 25976 0.314 0.15 0.29 
cleanupJiist 442 51 140.400 0.13 0.26 
lrem 84 0 0.000 0.02 0.05 
check_overflow 73 30776 0.038 0.02 0.04 
find 60 16004 0.061 0.02 0.03 
msgJiandler 58 16208 0.058 0.02 0.03 
node_change 9 1599 0.091 0.00 0.01 
sbrk 9 0 0.000 0.00 0.01 
msg_free 8 399 0.325 0.00 0.00 
msg_cons 6 1650 0.059 0.00 0.00 
LO Send 6 0 0.000 0.00 0.00 
msg_send 4 1650 0.039 0.00 0.00 
malloc 3 0 0.000 0.00 0.00 
msg..a.lloc 2 1650 0.020 0.00 0.00 

Profiling Data for Partition # 1 
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Subroutine Time No. Calls mSec/Call % Total % Active 
step 174648 51 55476.424 50.27 0.00 
qldiv 63293 6276652 0.163 18.22 36.63 
c_thev 18164 632654 0.465 5.23 10.51 
cvtcond 13401 4669912 0.046 3.86 7.76 
Handler 10086 5135188 0.032 2.90 5.84 
lqmul 9543 3004391 0.051 2.75 5.52 
checkpLnodes 7787 6346 19.879 2.24 4.51 
muldiv 6949 2785478 0.040 2.00 4.02 
sim_step 6332 316 324.615 1.82 3.66 
msg_poll 6124 0 0.000 1.76 3.54 
lmul 5614 0 0.000 1.62 3.25 
new_val 4819 221392 0.353 1.39 2.79 
main 4626 0 0.000 1.33 2.68 
enque 3201 351800 0.147 0.92 1.85 
make_clist 2694 221392 0.197 0.78 1.56 
set in 2363 17603 2.175 0.68 1.37 
checkpoint 2019 6346 5.154 0.58 1.17 
checkJ.nputs 1395 398133 0.057 0.40 0.81 
uldiv 1064 0 0.000 0.31 0.62 
cleanup_hist 877 51 278.576 0.25 0.51 
cshare_make_clist 599 2505 3.874 0.17 0.35 
rcmul 531 218913 0.039 0.15 0.31 
charge_share 479 25050 0.310 0.14 0.28 
restore_nodes 392 265 23.964 0.11 0.23 
rolLback 100 265 6.113 0.03 0.06 
lrem 98 0 0.000 0.03 0.06 
check_overflow 75 34899 0.035 0.02 0.04 
find 59 17603 0.054 0.02 0.03 
msg_handler 49 17794 0.045 0.01 0.03 
sbrk 36 0 0.000 0.01 0.02 
msg..a.lloc 6 902 0.108 0.00 0.00 
msg_free 6 198 0.491 0.00 0.00 
malloc 5 0 0.000 0.00 0.00 
node_change 3 576 0.084 0.00 0.00 
msg_cons 2 902 0.036 0.00 0.00 
LO Send 2 0 0.000 0.00 0.00 
msg_send 1 902 0.018 0.00 0.00 
settled 1 61 0.266 0.00 0.00 

Profiling Data for Partition # 2 
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Subroutine Time No. Calls mSec/Call % Total % Active 
qldiv 96095 9587394 0.162 29.18 41.10 
step 95473 51 30326.718 28.99 0.00 
c_thev 27643 959099 0.467 8.39 11.82 
cvtcond 20807 7148518 0.047 6.32 8.90 
lqmul 14565 4595117 0.051 4.42 6.23 
muldiv 10689 4273260 0.041 3.25 4.57 
Handler 9720 4938794 0.032 2.95 4.16 
sim__step 8030 51 2550.706 2.44 3.43 
new_val 6748 296440 0.369 2.05 2.89 
msg_poll 5871 0 0.000 1.78 2.51 
set in 4763 22980 3.358 1.45 2.04 
checkpt..nodes 4677 3406 22.245 1.42 2.00 
enque 4564 498914 0.148 1.39 1.95 
main 4360 0 0.000 1.32 1.86 
lmul 4180 0 0.000 1.27 1.79 
make_clist 3662 296440 0.200 1.11 1.57 
uldiv 1613 0 0.000 0.49 0.69 
check_inputs 1422 426232 0.054 0.43 0.61 
checkpoint 1100 3406 5.232 0.33 0.47 
cshare...make_clist 970 39123 0.402 0.29 0.41 
rcmul 813 321857 0.041 0.25 0.35 
charge__share 683 39123 0.283 0.21 0.29 
cleanupJiist 472 51 149.929 0.14 0.20 
lrem 104 0 0.000 0.03 0.04 
check_overflow 100 35256 0.046 0.03 0.04 
find 86 22980 0.061 0.03 0.04 
msgJiandler 61 23140 0.043 0.02 0.03 
sbrk 13 0 0.000 0.00 0.01 
node_change 6 641 0.152 0.00 0.00 
msg_free 3 159 0.306 0.00 0.00 
malloc 3 0 0.000 0.00 0.00 
msg_cons 2 692 0.047 0.00 0.00 
msg_alloc 2 692 0.047 0.00 0.00 
settled 2 51 0.635 0.00 0.00 
msg__send 0 692 0.000 0.00 0.00 

Profiling Data for Partition # 3 
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Subroutine Time No. Calls mSec/Call % Total % Active 
qldiv 105704 10520809 0.163 32.59 41.61 
step 70274 51 22322.329 21.67 0.00 
c_thev 30744 1052866 0.473 9.48 12.10 
cvtcond 22494 7842552 0.046 6.94 8.86 
lqmul 16116 5041376 0.052 4.97 6.34 
muldiv 11559 4693488 0.040 3.56 4.55 
Handler 9736 4948014 0.032 3.00 3.83 
sim...step 8473 103 1332.647 2.61 3.34 
new_val 7236 310824 0.377 2.23 2.85 
msg_poll 5804 0 0.000 1.79 2.28 
check pt __nodes 5354 3887 22.314 1.65 2.11 
enque 5021 532620 0.153 1.55 1.98 
setin 4585 23045 3.223 1.41 1.80 
lmul 4560 0 0.000 1.41 1.80 
main 4493 0 0.000 1.39 1.77 
make_clist 3866 310824 0.201 1.19 1.52 
uldiv 1761 0 0.000 0.54 0.69 
check_inputs 1501 444225 0.055 0.46 0.59 
checkpoint 1341 3887 5.589 0.41 0.53 
cshare--1Ilake_clist 1035 42618 0.393 0.32 0.41 
rcmul 850 347888 0.040 0.26 0.33 
charge...share 712 42618 0.271 0.22 0.28 
cleanupJiist 536 51 170.259 0.17 0.21 
lrem 106 0 0.000 0.03 0.04 
restore__nodes 93 52 28.973 0.03 0.04 
check_overflow 92 36748 0.041 0.03 0.04 
msg-1iandler 84 23210 0.059 0.03 0.03 
find 77 23045 0.054 0.02 0.03 
sbrk 25 0 0.000 0.01 0.01 
rolLback 19 52 5.919 0.01 0.01 
node_change 12 1341 0.145 0.00 0.00 
msg_alloc 8 1444 0.090 0.00 0.00 
msg_free 8 335 0.387 0.00 0.00 
msg...send 7 1444 0.079 0.00 0.00 
LOS end 6 0 0.000 0.00 0.00 
msg_cons 2 1444 0.022 0.00 0.00 
aLbytes 2 167 0.194 0.00 0.00 
rollback__notify 1 52 0.312 0.00 0.00 
malloc 1 51 0.318 0.00 0.00 
settled 0 51 0.000 0.00 0.00 
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Subroutine Time No. Calls mSec/Call % Total % Active 
qldiv 112574 11195769 0.163 34.85 41.55 
step 52083 51 16544.012 16.13 0.00 
c_thev 32214 1114184 0.468 9.97 11.89 
cvtcond 24011 8383728 0.046 7.43 8.86 
lqmul 16919 5354395 0.051 5.24 6.25 
muldiv 12327 4989152 0.040 3.82 4.55 
Handler 9915 4954787 0.032 3.07 3.66 
sim...step 8676 113 1243.816 2.69 3.20 
new_val 7603 323078 0.381 2.35 2.81 
msg_poll 5914 0 0.000 1.83 2.18 
checkpt..nodes 5521 4029 22.199 1.71 2.04 
enque 5213 562673 0.150 1.61 1.92 
lmul 4811 0 0.000 1.49 1.78 
set in 4772 23745 3.256 1.48 1.76 
main 4361 0 0.000 1.35 1.61 
make_clist 4195 323078 0.210 1.30 1.55 
uldiv 1820 0 0.000 0.56 0.67 
check.inputs 4557 455497 0.162 1.41 1.68 
checkpoint 1365 4029 5.488 0.42 0.50 
cshare...make_clist 1171 44897 0.423 0.36 0.43 
rcmul 967 365243 0.043 0.30 0.36 
charge...share 848 44897 0.306 0.26 0.31 
cleanupJiist 545 51 173.118 0.17 0.20 
find 120 23745 0.082 0.04 0.04 
restore..nodes 108 62 28.219 0.03 0.04 
msgJiandler 101 23908 0.068 0.03 0.04 
lrem 94 0 0.000 0.03 0.03 
check_overflow 79 38553 0.033 0.02 0.03 
rolLback 31 62 8.100 0.01 0.01 
sbrk 28 0 0.000 0.01 0.01 
node_change 14 1281 0.177 0.00 0.01 
msg...send 7 1394 0.081 0.00 0.00 
LOSend 7 0 0.000 0.00 0.00 
msg_alloc 6 1394 0.070 0.00 0.00 
msg_free 5 341 0.238 0.00 0.00 
msg_cons 3 1394 0.035 0.00 0.00 
malloc 2 0 0.000 0.00 0.00 
rollback..notify 1 62 0.261 0.00 0.00 
aLbytes 0 175 0.000 0.00 0.00 
settled 0 51 0.000 0.00 0.00 
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Subroutine Time No. Calls mSec/Call % Total % Active 
qldiv 125032 12343811 0.164 40.25 41.84 
c_thev 37045 1224108 0.490 11.92 12.40 
cvtcond 27094 9248812 0.047 8.72 9.07 
lqmul 19018 5918752 0.052 6.12 6.36 
muldiv 14468 5515133 0.042 4.66 4.84 
step 11799 51 3747.918 3.80 0.00 
Handler 10000 4811223 0.034 3.22 3.35 
sim...step 9626 151 1032.723 3.10 3.22 
new_val 8625 348289 0.401 2.78 2.89 
checkpt_nodes 6478 4680 22.424 2.09 2.17 
msg_poll 5816 0 0.000 1.87 1.95 
enque 5771 610069 0.153 1.86 1.93 
lmul 5560 0 0.000 1.79 1.86 
setin 4942 23685 3.380 1.59 1.65 
make_clist 4741 348289 0.221 1.53 1.59 
main 4628 0 0.000 1.49 1.55 
uldiv 2089 0 0.000 0.67 0.70 
check.inputs 1721 476487 0.059 0.55 0.58 
checkpoint 1570 4680 5.435 0.51 0.53 
cshare..make_clist 1346 49596 0.440 0.43 0.45 
rcmul 1092 403619 0.044 0.35 0.37 
charge...share 893 49596 0.292 0.29 0.30 
cleanup...hist 662 51 210.282 0.21 0.22 
restore-nodes 188 100 30.456 0.06 0.06 
lrem 112 0 0.000 0.04 0.04 
msg...handler 103 23851 0.070 0.03 0.03 
find 92 23685 0.063 0.03 0.03 
check_overflow 75 40820 0.030 0.02 0.03 
rolLback 34 100 5.508 0.01 0.01 
sbrk 30 0 0.000 0.01 0.01 
malloc 2 0 0.000 0.00 0.00 
aLbytes 1 197 0.082 0.00 0.00 
msg_cons 1 151 0.107 0.00 0.00 
msg_a.lloc 1 151 0.107 0.00 0.00 
msg...send 0 151 0.000 0.00 0.00 
rollback_notify 0 100 0.000 0.00 0.00 
settled 0 51 0.000 0.00 0.00 
msg_free 0 30 0.000 0.00 0.00 
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- 94 -



Subroutine Time No. Calls mSec/Call % Total % Active 
step 576682 306 30530.224 29.14 0.00 
qldiv 569089 56490480 0.163 28.75 40.57 
c_thev 165475 5642867 0.475 8.36 11.80 
cvtcond 122282 42185694 0.047 6.18 8.72 
lqmul 86084 27058647 0.052 4.35 6.14 
muldiv 63593 25181586 0.041 3.21 4.53 
Handler 59530 29799293 0.032 3.01 4.24 
sim...step 47513 785 980.523 2.40 3.39 
new_val 39949 1699104 0.381 2.02 2.85 
msg_poll 35609 0 0.000 1.80 2.54 
checkpt_nodes 33808 25574 21.416 1.71 2.41 
lmul 28548 0 0.000 1.44 2.04 
main 27249 0 0.000 1.38 1.94 
enque 26913 2892070 0.151 1.36 1.92 
setin 23650 127062 3.015 1.19 1.69 
make_clist 21832 1699104 0.208 1.10 1.56 
check_inputs 11926 2577387 0.075 0.60 0.85 
uldiv 9505 0 0.000 0.48 0.68 
checkpoint 8437 25574 5.344 0.43 0.60 
cshareJilake_clis t 5751 204715 0.455 0.29 0.41 
rcmul 4844 1877061 0.042 0.24 0.35 
charge...share 4118 227260 0.294 0.21 0.29 
cleanup-hist 3534 306 187.094 0.18 0.25 
restore_nodes 781 479 26.414 0.04 0.06 
lrem 598 0 0.000 0.03 0.04 
check_overflow 494 217052 0.037 0.02 0.04 
find 494 127062 0.063 0.02 0.04 
msg-handler 456 128111 0.058 0.02 0.03 
rolLback 184 479 6.223 0.01 0.01 
sbrk 141 0 0.000 0.01 0.01 
node-change 44 5438 0.131 0.00 0.00 
msg_free 30 1462 0.332 0.00 0.00 
msg_alloc 25 6233 0.065 0.00 0.00 
LOSend 21 0 0.000 0.00 0.00 
msg...send 19 6233 0.049 0.00 0.00 
msg_cons 16 6233 0.042 0.00 0.00 
malloc 16 51 5.082 0.00 0.00 
aLbytes 3 539 0.090 0.00 0.00 
rollback_notify 2 214 0.151 0.00 0.00 
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