
MIT/LCS/TR•339

GENERIC SOFTWARE FOil BMUUTING
•. -

MULTIPROCESSOR ARCIJI.'J.'BCTUU$

Richard Mark Soley

Generic Software for En1ulating

Multiprocessor Architectures

by

mchard Mark Soley

May, 1985

Copyright© 1985, Richard Mark Soley.
The author hereby grants to the Massachusetts Institute of Technology

permission to reproduce and distribute copies of this document in whole or in part.

Cambridge

This research was supported in part by the Advanced Research
Projects Agency under contract N00014-75-0661 and in part by various

grants from the International Business Machines Corporation.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Laboratory for Computer Science

Massachusetts

- 2 -

Generic Software for Emulating Multiprocessor Architectures

by Richard Mark Soley

Arvind, Associate Professor of Computer Science and Engineering, Thesis Supervisor

Abstract

The expense of designing, prototyping, and testing a new computer architecture (particularly

non-traditional supercomputer architectures, such as the dataflow machine) is enormous. The

relative innexibility of hardware to experimental changes increases the need to fully test a new

architectural idea.

A software architecture for prototyping and testing single- and multiprocessor computer

architectures is outlined. An overall design is discussed, noting the need for such a system,

how it would be used to model and test various architectures, and possible implementation

paths.

Various extensions and uses of such a generic prototyping system are also discussed, including

extensions for modelling shared-resource systems, centrally synchronized systems, and

distributed timing simulation systems. In addition, two uses of the system arc presented, in

particular the Tagged Token Dataflow Architecture, noting various methods in which such a

machine may be simulated under a generic emulation package.

Keywords: computer architecture, emulation, simulation, dataflow

- 3 -

A clrnowledgments

First and foremost, I must thank Professor Arvind, my thesis superviser, for his
continued support and ideas for this project and thesis.

Many thanks go also to the other members of the Functional Languagues and
Architectures group, past and present, who provided a stimulating environment in which to
work and contributed greatly to the finished product this paper presents. Thanks particularly
to Gregory Papadopoulos, Robert Iannucci, Paul Fuqua, and Poh Chuan Lim.

A million thanks to my (now much larger) family: Joseph, David, Tim, Jack, Zoltim,
Maria Eugenia, Bernardo, and Clarita Ines.

Most important, I thank my wife and friend, Isabel Therese Szabo, for helping with
the ideas and execution of this thesis, and for her infinite support and love.

to
Barbara Lee &

Micheline Miriam Monique Veronique

- 4 -

CONTENTS

1. Introduction: Goals of a General Emulation Facility .. 7

1.1 The Multiprocessor Problem ... 7
1.2 The Multiprocessor Solution ... 8
1.3 Why En1ulation? .. 10
1.4 A General Emulation Facility .. 12
1.5 A Real M.E.F. Implementation ... 16

2. Structure of a J\llultiprocessor Emulation Facility .. 19

2.1 The M.E.F.'s Abstmct Model of a Target Architecture 22
2.2 M. E. F. Software Design Decisions .. 28
2.3 Progra1n Outline .. 40

3. Using an M.E.F. as an Interpreter .. 44

3.1 An Educational Experiment: The von Neumann Machine Interpreter .. 44
3.2 A Multiprocessor Experiment: The Tagged Token Datallow Emulator . 46
3.3 TTDA Implementation under the MIT MEF .. 49
3.4 Levels of Interpretation .. 52

4. Using an M.ll.F. as an En1ulator .. 56

4.1 Interpretation, Simulation, and Emulation .. 56
4.2 Scheduling as an Approach to Emulation .. 58

5. Using an M.E.F. as a .'iimulator .. 61

5.1 A Globally Synchronized Architecture ... 62
5.2 Distributed Simulation Approach to Synchronization 67

- 5 -

6. ('onclusions: Future Directions .. 71

6.1 Other Uses of an M.E.F .. 71
6.2 Message Passing Computational Models .. 71
6.3 Protocol Testers ... 72
6.4 Education ... 73
6.5 Other Distributed System Uses ... 74
6.6 Human Networks and Other Systems ... 74
6.7 Conclusion ... 75
6.8 Impact on Future Machine Design ... 75

References ... 76

Appendix. Reference Manual: The MIT Multiprocessor Emulation Facility 80

1. Emulation Experiment Description .. 80
2. Communication and Metering Functions .. 83
3. Use of the Control Panel .. 84
4. Functional Interfoces to the Control Panel ... 87
5. Exa1nple ... 88

- 6 -

FIGURES

1. Architecture Design Path with Emulation ... 11
2. Target(Application) versus Physical(M.E.Ji:) Architectures .. 14
3. Switch Specifications ... 18
4. General Abstract Structure to be Emulated by an M.E.f: ; 20
5. Operational View of all M. E f: Emulation Experiment ... 27
6. Logical Structure of the NIIT MEF ... 29
7. Multiple Processor Dynamic Structure of the MIT MEF ... 39
8. A ,)itnple VOil Neu1nanll l'rocessor .. 45
9. Structure of the Tagged-Token Dataflow Machine .. 48

JO. Three Different Approaches To TTDA Simulation .. 55
11. Types of System Interpretation/Emulation/Simulation .. 57
12. Schedulillg Stages of a Balanced Pipeline .. 59
13. General Emulation Scheme for a Clocked Architecture .. 63
14. Emulation of a Physically Separated Two-Domain System .. 65
15. Validation of a Test Protocol Implementation .. 73
16. The ME'F Control Panel ... 85

- 7 -

Chapter 1

J ntroduction:

G'oal.s of a General Emulation Facility

1.1 The Multiprocessor Problem

The world is full of large, complex systems made up entirely of very small, simple

components. Many of the interesting problems faced by scientists, engineers, and managers

today are some of these large-scale computation-intensive problems, composed of highly

interacting cellular parts. Unfo1tunatcly, the dimensions of these problems are generally such

that no computer in existence today can begin to supply the needed computational power.

This docs not eliminate the need for solutions to such problems, however. In a 1983

report, 1 the National Science Foundation noted a wide array of applications, both algorithmic

and inherently heuristic (i.e., either NP-complete or with unknown solutions) which cannot be

solved in a reasonable time using the fastest computational engines available today. Their

summary included:

• Simulation of large-scale biological systems on the cellular molecular level.

• Simulation of chemical reactions and other materials and electrical
research at the quantum mechanical level, where classical (and
simpler) physical methods fail.

• Simulation of enormous fluid problems (i.e., global atmospheric modeling)
in order to forecast fluid movement. Immediate applications would
include accurate weather forecasting.

• Modeling of large-scale astrophysical events, such as supernovae and star
births.

- 8 -

• Modeling of global economic systems.

• Simulation engines for large collections of logic-level or transistor-level
electronic circuits of VLSI propo1tions.

The list can include applications which have much less algorithmic solutions, such as:

• Control of large and complex robotic systems .

• Diagnosis of machine and system malfunctions, and suggestions for
corrective action.

• Diagnosis and treatment plans for human diseases .

• Knowledge-based expert artificial intelligence programs for more
widely-based areas, including real-time machine understanding of
connected human speech.

Each of these applications demands far more computational power and speed than the

fastest and largest computers available today. The amazing speeds of today's supercomputers,

such as the Cray- lS (cycle time: 12 nanoseconds, maximum sustained computation speed

approximately 80 mcgaflops)2 or the Cyber 205 (cycle time: 20 nanoseconds, about 50

megaflops)3 pale in comparison to the combinatorial explosion of problem size promised by

the problems above. In addition, the prohibitive cost of the supercomputers of today also

limits their usefulness. Clearly some departure from the architectures of today is called for, as

linear scaling of current computational power will not handle the problems of today, and even

less those of tomorrow.

1.2 The Multiprocessor Solution

Since the early days of computer technology, the possibility of interconnection of

multiple computers in order to form a larger, faster unit has been considered. Many

architectural experiments, such as Illinois' llliac IV system4 and Carnigie Mellon's C.mmp5

attempted to address this possibility without resorting to a great departure from the basic

computer system architecture envisioned in 1946 by John von Neumann and his colleagues.6

- 9 -

Since the inception of the von Neumann now-of-control design computer, single-processor

design has pervaded all commercial, and most experimental, computational structures. Even

multiprocessor designs have suffered the ill effects of the van Neumann boltleneck, the

problem of limited access between processor (or processors) and rnemory.7' S, 9 Some modern

supercomputers attempt to overcome this problem by means of extensive pipelining within a

single processor: JO though this avoids any problem of memory contention among multiple

processors, it introduces either the need to re-code applications in a specially tuned

pipelined/vectorized language, or to use high-powered program compilation techniques. 11

This "brute force" approach to multiprocessing, including contended memory, poorly

or too closely synchronized processors, and a reliance on programmer-specified parallelism

has not even approached the need for a scalable multiprocessor. In a scalable system,

doubling the number of processors in the system should double the system's performance; no

machine to date has yet come close to this clearly useful goal.

What we need, then, are protocols for connecting multiple processors into a scalable

system, and methods of programming which limit hardware idle time and minimize the need

for programmer specification of parallelism. Research into' exactly these issues is well under

way; possible architectures range from the datanow systems of Dennis12 and Arvind13 to

Intel's Ada-based iAPX-432 14 to the Connection Machine15 to Xerox' Enterprise16

distributed computing environment, to M.I.T.'s Apiary system. 17 However, this increasing

body of literature almost never reaches any consensus, except in one area; construction of an

experimental supercomputer, they all agree, is costly.

Amassing the hardware and software necessary for implementing an entire

multiprocessor machine can be expensive and time consuming, particularly for a one-shot

statistics gathering evaluation of a proposed architecture. Projects generally spend well over

one million dollars to get going, 1 and often need to completely overhaul their designs halfway

through the work of implementation.

An anonymous corollary to Murphy's law goes: "You will only be able to do it properly

if you have to do it more than once." Given the prohibitive construction costs for

supercomputers, the need to redesign midstream, and the difficulty of performing mathematic

analyses on proposed arcitectures before construction, we need an easy-to-use, high

performance, low cost, and highly accessible tool for constructing, running, and testing

- 10 -

simulations (or emulations) of proposed architectures before a researcher commits to specific

hardware or silicon (VLSI chips).

The remainder of this thesis outlines the goals, implementation, and uses of the

Multiprocessor Emulation Facility, or M.E.F., under construction at the M.l.T. Laboratory for

Computer Science. 18 The author designed the software for the M.E.F.; specific design

decisions from that work will be described here.

1.3 Wiry Emulation?

Upon recognition of the complexities involved in attempting construction of a new

computer architecture, the step usually taken is simulation of the architecture. In order to

garner the important aspects of the target architecture, carefully written (and well timed) code

is constructed to simulate the running new machine. The effects (under simulation) of

different values for parameters such as interconnection protocols, buffer sizes, and the like are

studied in order to ascertain the best structure for the machine to be built.

The approaches to system prototyping that will be discussed in this thesis are called

interpretation, emulation, and simulation.

• l nterpretation, the most general of the three, specifies that the prototype
mirrors the real architecture at some specified level, such as instruction
set or high-level language semantics .

• Simulation specifies the general scheme of executing some functional
definition of a prototype (fimctional simulation) while gathering timing
statistics expected while running the real machine (timing simulation).

• Emulations mimic the actions of a system functionally without any explicit
gathering of timing in formation. Instead, the timing of the modeled
architecture is implied by the scheduling of the functional units
themselves.

Lacking the overhead of timing anJ synchronization to support timing, the emulation

route shows the greatest promise of getting simulated result5 in the smallest amount of time;

in addition, it is easy to map the architecture of a multiprocessor system onto a multiprocessor

emulation system. The new path along which architecture prototypers would follow is

-11 -

outlined in figure l; instead of a simple path of design, simulation, and finally

implementation, we add a new path, emulation. which can proceed in parallel with any

simulation effort or in lieu of a simulation effort, depending on time constraints.

Initial Design

Simulation - - - ->

/
/

Implementation

/

Emulation

/

/

Ngure 1: Architecture Design Pat/i with Emulation

- 12 -

1.4 A General Emulation Facility

The point of the Multiprocessor Emulation Facility 18 (M.E.F.) is to allow

multiprocessor architecture proposals that arc still in the initial states of design to be evaluated

cheaply and quickly, by emulation and simulation.

The basic abstraction of the M.E.F. must include a basic configurable multiprocessor

structure, with general purpose processors at each node of a group of interconnection

networks. Each target element of the proposed architecture is logically represented by

software, with all functional aspects represented. The user of the M. E.F. will write a

functional description of each different type of target element in his or her multiprocessor

system, which will be used lo detail the logical structure of the general machine.

We stress the phrase target processing element, or T.E., in order to differentiate

between T.E.'s (the- computation elements of a proposed architecture to be emulated) and

physical processors, or P.P.'s, which denote the processing elements of the multiprocessor

system (M.E.F.) performing the emulation.

Software tools to provide usage of this abstract structure with minimal overhead must

also be included, with primitives for the functional description of T.E. execution and

interconnection. This includes all of the structure necessary to allow the M.E.F. user to ignore

the physical interconnection structure of the M.E.F., and instead concentrate on the

interconnection structure intended by his or her own research. Thus, a researcher using the

M.E.F. could simulate widely variant coupling strategies, from a loosely-coupled

packet-switched network to a tightly-coupled central memory multiprocessor, simply by using

the interconnection primitives which interface directly with one of the available

interconnection networks of the facility.

Another important goal of an M.E.F. is ease of use, via local- or wide-area networks.

This goal establishes the intent of using an M. E. F. in a "batch mode" as a processor of various

multiprocessor architecture proposals.

Reconfigurability and partitionability, or the ability to execute multiprocessor

emulations using varying physical structures, are also necessary. Since we might wish to

process several emulation experiments concurrently, or at least to continue experimentation

while some of the facility is down for repair or regular maintenance, it is of prime importance

for an M.E.F. to be insensitive to particular P.P. or interconnection availability. Thus, the

- 13 -

construclcd M. E.F. should be capable of executing with any number of available P.P.'s using

any number of available interconneclion networks of the same or different hardware and

protocol type. This ability also aids in a form of "fault tolerance," wherein experimentation

can continue through a loss of some or all of the facility's equipment.

An M. E.F. design must itself be a multiprocessor in order to force systems architects

to think in a distributed, multiprocessing way when he or she begins work on a new

architecture. Without the multiprocessing frame of mind, time can be wasted in fruitless

research into dead ends. Anecdotes about major systems that worked in simulation on single

processors and Lhen failed while running in a multiprocessor environment are many. A good

example is a Multics experimental system which executed without flaw on a (single processor)

development machine, but failed quickly while running on a (multiprocessor) user machine.19

We therefore add confusion to the differentiation of a multiprocessor system under

simulation or emulation, and the M.E.F. muhiprocessor architecture itself. When we speak of

* simulating or emulating a particular architecture using an M.E.F. as the construction tool,

there is a constant confusion between the (1) architecture being tested and the architecture of

the particular M. E. F. implementation and (2) the elements of the architecture being tested and

the elements of the real M. E. F. host system. Throughout this thesis we will use the terms

"target machine" (or architecture) and "M.E.F." (or "host" or "physical" machine) to

differentiate between the emulated and real multiprocessors, and "target element" and

"physical processor" to differentiate between the computational elements of the two. Figure

2 displays this differentiation. Note that the phrase "target clement" does not apply only to

the purely computational elements of a target architecture, but to all elements (including

perhaps memory, network nodes, etc.).

* Or, as the prototype MIT M.E.F. has been called, a "Multiprocessor Sandbox" or
"Multiprocessor Playground."

-14 -

Target Architecture (Target Machine)

Target Elements

(T.E. 's)

Physical Processors

(P.P. 's)

Physical Architecture (Physical Machine)

figure 2: Target(Application) versus Physical(M.E.F.) Architectures

- 15 -

In order to gain more emulation speed without astronomical prices, and to force

systems architect5 to begin thinking of computers in a distributed, multiprocessing way, an

emulation facility should be designed to execute on many parallel general purpose processors,

linked via a variety or communications media. To enable the construction of a parallel

processor such as the M.E.F., there arc several abilities required of the physical processing

nodes which make up the computational power of the system. Since the M.E.F. must be able

to implement multiple general purpose architectures, it must itself be implemented on

relatively general purpose hardware. In addition, ease of programming (particularly rapid

prototyping) in a well-integrated environment and support for multiple interprocessor

communications architectures simultaneously are important, since they allow fast

development of emulation experiments as well as room for experimentation with various

communications media and protocols.

All the node power in the world· in an M.E.F. would be useless without some

interconnection scheme; a multiprocessor facility must have some linking mechanism.

Specific needs for a sufficiently general purpose facility to support many different

experiments are outlined in this section.

The first requirement for a useful facility interprocessor communications interface is

that it be multi-master. A network that supports only a single master {such as a simple

single-master bus structure) is useless in a facility that needs to support several simultaneous

computations with free exchange of information initiated by any processor. Overhead to

support a single-master structure, with bus master interrupts from processor wishing to

initiate transrers, would probably render an M.E.F. unusable.

In addition, an M.E.F. shouili have a multi-path interface, to support multiple

simultaneous communications between processors. WithL1ut this ability, processors that are

relatively matched in performance could contend too much for the communications medium,

causing a thrashing effect not unlike paging performance degradation on an overloaded

timesharing computer.

Of course, an M.E.F. connection medium should be very high speed, with a

communications bandwidth on the order of the available processor bandwidth. A mismatch

in this regard could make the von Neumann bottleneck return in its usual form -

communications overhead between (in this case) processing elements. Such an imposing

- 16 -

bottleneck could make it difficult to diagnose bottlenecks in the prototype architecture under

Pvaluation on a facility.

We also would like to have some flexibility in network configuration to suppott an

M.E.F. Flexibility in connection topology not only supports fault tolerance (via

compartmentalization of a facility), but also supports the above-mentioned goal of a

reconfigurable overall computation structure, in which an M.E.F. could be broken up into

simultaneously functioning separate parls working on different problems.

The last wish on our communications wish-list is traceability, i.e., the need to support

diagnosis of failed communications nodes or media during execution of an M.E.F. Support in

this area could also acid to the understanding of an emulation via statistics of network traffic

and usage during execution of a real experiment.

1.5 A Real M.E.f: Implementation

An M.E.F. atcempting to meet the above goals is in use and under further construction

at the M.I.T. Laboratory for Computer Science. We will refer to this implementation of "an
* M.E.F." as the "MIT MEF," or just "MEF." In addition to support software (which is

described in the balance of this thesis), the M.E.F. is composed of the following elements:

A mix of Texas Instruments' Explorer and Symbolics' 3600 family Lisp machine

symbolic processors were used in the prototype M.E.F. implementation. These processors

were chosen for their general purpose high-perfonnance architectures, designed for

multiprogramming symbolic processing (i.e., they arc fully tagged architectures with

automated garbage collection). These machines also include productivity tools such as

bit-mapped graphic output and mouse-based graphic input, high-level networking support.

In addition, the open (non-proprietary) architecture and availability of microprogramming for

the Texas Instruments machine offered more support for the hardware work necessary to

interconnect the P.P.'s of the prototype M.E.F. in a high-bandwidth manner.

* In order, of course, to follow the universe's standard policy of confusion and tendency
tmvard randomness.

-17 -

The first available local interconnection network, for both machines, was ten

megabit/second nominal standard Ethernet, using the M. l.T. Chaos network protocols. This

simple bus-topology network is still in use in the prototype, but severely limits

communications between the P.P.'s or the system.

At this writing, a high-bandwidth circuit switch based on the Bolt; Baranek, &

Newman Butterny machine is nearing completion. The development of this hyper-cube

topology switch included an implementation of a general network channel adapter (NuCA)

for the Texas Instruments Explorer20, in order that this processor could utilize the circuit

switch and ruture interconnection strategies.

Planning is also well under way for a high-speed packet-switched network to replace

this circuit switched network. The proposed packet switch will also utilize a hyper-cube

topology, though with bidirectional communication along each link. Development of the

packet switch is proceeding using custom and semi-custom VLSI design techniques. Current

target specifications for both the circuit and packet switches, and a comparison with the

available Ethernet technology, are noted in figure 3, below.

- 18 -

Ethernet Specifications
Raw Link Bandwidth .. 1.25 Mbytes/sec
Switch Node Connections .. 1 x 1
Useful portion of bandwidth ... 10%

Maximum total aggregate bandwidth
10% (1 processor x 1 connection x 1.25)125 Mbytes/second

= 1 Mbit/second

Circuit Switch Specifications
Raw Link Bandwidth ... 3 Mbytes/sec
Switch Node Connections .. 4 x 4
Useful portion of bm1dwidth ... 20%

Maximum total aggregate bandwidth
20% (64 processors x 3 connections x 3) 115 Mbytcs/sccond

= 920 Mbits/second

Packet Switch Specifications
Raw Link Bandwidth ... 4 Mbytes/sec
Switch Node Connections .. 8 x 8
Useful portion of bandwidth ... 80%

Maximum total aggregate bandwidth
80% (64 processors x 7 connections x 4) 1,433 Mbytes/second

= 11.5 Gbits/sccond

Useful Portion of Bandwidth

* Maximwn Si11111/ta11cously Co111municating l'roccssors

*Maximum Active Commu11icalio11 Unks per Processor

*Raw Per--Unk Bandwidth

= !1Iaxi111wn Total Aggregate Bandwidth

Figure 3: Switch Specifications

- 19 -

Chapter 2

Structure of a Multiprocessor Emulation Facility

For experimental prototyping of a proposed multiprocessor machine architecture, an

M. E.F. software must provide a basic system abstraction, composed of lower-level

abstractions closely coupled to the designs of systems architects, but far enough from actual

design decisions to support many different multiprocessor designs. A good general abstract

structure may be found in figure 4.

T.E.

T.E.

Communications

Network

- 20 -

T.E.

Control Panel

T.E.

T.E.

Figure 4: Genera/Abstract Structure to he Emulated by all M.E.F.

- 21 -

The basic abstraction of a multiprocessor which the M.E.F. enforces ·is a single

amorphous packet-switched communications medium surrounded by independently

functioning, asynchronous processing elements (T.E. 's) with no shared state between the

T.E.'s. This seems to be the most general case for a multiprocessor configuration. An M.E.F.,

in addition to this overall system abstraction, supports lower-level objects which correspond to

the parts of a multiprocessor system. These include the amorphous interconnection network

supplied by the M EF and the simulated topology enforced on it; more important, however, is

the abstraction of a T.E. This is the basic unit of work in a multiprocessor emulation, a

state-containing procedural definition of a single unit of a parallel processor. [n so~ware

terminology, this T. E. abstraction is an abstract datatype akin to a flavor object in the Zetalisp

language,21 or a cluster in CLU.22 These procedural definitions, taken with an

interconnection network and a communication protocol over that network, comprise a

complete definition of a multiprocessor computer architecture.

In support of these basic abstractions are a set of primitive functions, including

• A method of simulating the functionality of the target elements to be

modeled in the user's design.

• A method of recording, updating, and sensing local state inside each target

element.

• Some way of transferring state between two target elements, along the lines

of a packet-switched (or message-passing) or circuit-switched network,
or via local physical processing clement channels .

• A method of recording, statistics while programs are executed on an

emulated architecture.

• A simple control interface for staiting up, stopping, and examining the

running and stopped states of the target machine.

• Tools for developing and debugging the emulation experiment code itself .

• Tools for setting M.E.F. (physical processor) hardware and software

characteristics and parameters (e.g., network topology, error recovery
schema, etc.).

- 22 -

2.1 The M.E.F. 's Abstract Model of a Target Architecture

Jn order to emulate a proposed machine architecture. the emulation facility requires a

general model of such a system. With such a model, it can mirror the overall structure of a

system symbolically. The emulation facility's machine model consists of several atomic

objects. which arc outlined in this chapter.

2.1.1 Processors and Processor State

The "hearts" of any multiprocessor system are, of course, the processors themselves.

The M.E.F. supports an abstraction, called a target element, which maps to a real

multiprocessor's single processors. The representation of an instance of this abstraction is a

body of code that. mirrors the functionality of the proposed "black box," depending on

communication primitives proved by the M.E.F. The implemented M.E.F. system, as it

resides in the Lisp Machine environment, expects target element definitions to be expressed in

groups of Lisp statements (called "forms" or "S-expressions" by Lisp programmers). These

"processors" may hold local state, much as a CLU cluster de,finition has local state. 22

In order to correctly imitate real machinery, the M.E.F. must supply a related

abstraction to the processor, called processor state. This abstraction allows the M.E.F. user to

model registers, real memory, and all other hardware state via the natural programming

language analog, the variable. The M.E.F. enforces inter-processor separation of variables, so

that the experimenting user may use global state within all processors of the same type

without any naming conflicts. In other words, two processors may each have a register

abstraction with the same name (for instance, RO) without any accidental (or intentional)

overlap.

In practice, we have found that most writers of T. E. implementations include in their

T. E. model "state variables" that are not really part of the state of the processor being

modeled (i.e., do not represent a latched value in the final hardware of the T.E.), but are

included only to simplify coding of an implementation. These include temporaries used in

computation of a T.E.'s final state, or any other artifact of the functional simulation of the

T. E. hardware. These "false state variables" are represented in the same way as other state

variables by a M.E.F. system.

- 23 -

Debugging tools provide a good example of these "false state variables." For

example, programmer-invisible machine registers, or other "spy" devices for tracing the

execution of the emulated machine, fall into this category.

2.1.2 Communications

The basic communication abstraction provided by the M.E.F. is quite simple; at the

lowest level, it provides two interfaces. The first, "receive," simply guarantees to pick up and

return an message bound for the current T.E. No guarantee as to ordering of messages is

made or implied: this simple function only guarantees to wait for any available input and

return any one of the pending inputs. (There are non-blocking interfaces to check for

pending input a.:; well).

The more interesting primitive is "send." Given an outgoing message and a

destination T. E. identifier, the send function must forward the message to the proper

destination over the fastest available path (since there are generally multiple paths available),

choosing the path based on mesage length and destination. In addition, this primitive also

guarantees that by the time it re tu ms to its caller, no further interaction with !vi. E.F. primitives

is necessary to forward the particular message with which send was called. In other words, this

primitive must provide for any queueing, backout and retry, or other paradigms for sending

messages over multiple-access channels, and must not block the calling process except when

absolutely necessary (i.e., if some pending output queue is full).

ln addition to this simple abstraction, the M.E.F. provides a methodology for

metering network delays and forwarding node usage, based on a static or dynamic simulated

network map, which allows run-time calculation of the list of T.E.'s through which a message

must pass to travel from some T.E. i to some other T. E. j.

- 24 -

2.1.3 Resource Management

One of the most important services provided by the M.E.F. is as an "abstraction wall"

between the architectural experimenter and the actual M.E.F. implementation structure. This

"wall" implies automatic management of hardware and software resources within the facility

without the intervention of the experimenter. For example, though a user knows that a

certain target implementation contains certain state and related functionality, he or she does

not need to be aware of:

0 How the M.E.F. represents the processor's state.

0 On which physical processing element of the M.E.F. configuration the

target element is executing (unless the user wishes to enforce some
locality constraints for efficiency's sake).

0 How inter-processor messages are actually routed between processors, and

on which of the (possibly numerous) interconnection networks the
messages arc traveling.

The above-listed services are walled off from the architecture designer, as they are

artifacts of the M.E.F. structure itself, not the architecture under emulation. This frees the

experimenter from low-level emulation details, as well as creating a "clean" development

environment in which the low-level details arc kept from creeping into the high-level design.

For example, details of how communications packets are routed between physical processors

on an M.E.F. should have no bearing on the design of an experimental processor using the

M.E.F. as a tool.

2.1.4 Metering

An M.E.F. is useless if it does not allow some sort of metering functionality to the

emulation experimenter. Therefore, in addition to the T.E. execution and state models, an

M.E.F. must support metering. An M.E.F. system should implement two types of meters,

which are used in two separate ways:

- 25 -

• System-wide meters provide a way to monitor some activity as it occurs on

every T. E. in the system. For example. if we are interpreting some
machine's instruction set, we might want to meter how many emulated
instructions were executed during an entire emulation experiment.

• Per-TE. meters arc much like T.E. state variables, in that they record

activity within a single T.E. only. These are useful, for instance, for
measuring memory faults on a per-emulated-processor basis.

Either of these metering abstractions is necessary to allow the user to store, interpret, and

display the vital statistics of an experiment. For instance, it might be important for the

designer to know exactly how much of his or her inter-processor buffering is being used, both

dynamically (during emulation experimentation) and. more quantitatively, statically at the

end of an experiment. The user should be able to clear, update, and check on the values of

meters both at run time and post-experimentation time. and display them dynamically in a

run-time console graph or statically via his or her own methods.

2.1.5 Control Panel

The last, and most user visible portion, of the M.E.F. abstraction is the MEF Control

Panel. In fact, this provides the only user interface between the M.E.F. proper and the

architectural designer, as well as between the user of the emulated machine and the running

emulation experiment. Hosted on any available physical processor that is capable of

* communicating with every other P.P. of an M.E.F. system, the Control Panel provides means

of configuring and partitioning the available M.E.F. physical processors into an M.E.F.

system. loading and initiating the selected target architecture (emulation experiment) on those

P.P.'s, and monitoring and debugging the rnnning experiment.

* Under the MIT MEF system, the Control Panel is hosted on a Lisp Machine, just as any
other part of the MEF system.

-26-

Besides acting as a "bootstrap processor.·· or "virtual r.t panel." for the M.EF .• the

Control Panel takes the pl:.lce of the bootstrap pnx111or b dae:.,_ (or emu1a1et1J maddM.
including primitives for lnitiatifll and booting tile T~E.'s of• ~ as well as injecting

a starting message from "outside" of tile ennalamd e•111a.
Figure 5, below, gives a user's operadoeal W. ofdte lb'Qdure of an M.E.F .• in terms

of what the user must implement and how it in.,._ with tile......_

Resource Management

& Bootstrap Control

[M.F.F. Supplied]

- 27 -

Control Panel

Routing Network

Global Statitisties Management [M.E.F. supplied]

Processor

State

Variables

Single

T.E. Processor

Structure Functional

[User supplied] Specification

Processor

Meters

• • •

• • •

Lisp
Values

Lisp
Functions

Figure 5: Operational View of an M. E.F. Emulation Experiment

- 28 -

2.2 M. E. Jt: Software Design Decisions

The abstract M.E.F. structure discussed above docs not necessarily translate directly to

a real multiprocessor architecture. This section discusses a particular implementation of an

M.E.F. to which we alluded previously. The MIT MEF, developed at the M.l.T. Laboratory

for Computer Science, was implemented under the Lisp Machine environment,21 connected

via a collection of packet-switched data networks. The Symbolics 3600 Lisp machine was

used for development, while Texas Instruments Explorers were used for most of the facility's

processing. The software systems available on these two machines are both based on the work

of the M.l.T. Artilicial Intelligence Lisp Machine Project21 and arc thus comparable; the

structure and design decisions of the MIT MEF are portable across both as well.

2.2.1 Logical Structure

The MIT MEF, as it is implemented on general purpose Lisp Machines, is written in

Lisp Machine Lisp and structured in a hierarchical fashion, outlined in figure 6. On top of the
'

resident Lisp Machine system software are two basic portions of the MEF, the static section

and the dynamic section. One may think of these as the definitional and runtime support parts

of a modern computer language, since in essence an M.E.F. implements a functional

description language for computer architectures. Above this, a MEF system user constructs

his or her functional model of an architecture, on top of which end users (architecture

explorers) conduct experimentation. Above the MEF system, as in any computer system, we

find two levels of "users;" the application (or system5) programmer, and the end-user of the

application program executing on the system.

- 29 -

User of !'.'mu lated Machine

Applicationj(Jr /:'111ulated (Target) Machine

T:'mulation Fxperiment

(Programs to Fmu/ate the Target Architecture)

MEF MEF

Static Support Dynanfrc Support

Usp System Software

Figure 6: Logical Structure of the MIT MEF

This level of the model is straightforward; however, many design choices necessary to

implement the M.E.F. abstract model in the MIT MEF were not so obvious.

2.2.2 The Target Element State Abstraction

Jn particular, the target element (T.E.) abstract model-a procedural box with an

output stream, an input stream, and some non-shared state-presented many choices for

implementation under the Lisp Machine environment. First we must note the requirements

of such an implementation.

First and foremost, the implementation of the T.E. abstraction must not require any

knowledge on the part of the emulation experimenter of whether his or her T.E. definitions

arc to be executed on the same machine, or on multiple machines. In particular, an

implementation under a global-state machine (such as global variables in the Lisp Machine

sense) must provide a namespace "wall" between T. E.'s. As an example, multiple processes

- 30 -

under the Lisp Machine operating system share global variable names (or static variables);

thus, implementation on a Lisp Machine using global variables for T.E. state storage would be

an incorrect implementation, since T.E.'s executing on the same machine would overlap state,

while T.E.'s executing on different physical machines would not.

In addition, the architectural experimenter should not need to know how many T.E.'s

are executing on any given physical processor, or in particular which of his or her T.E. models

is executing on which processor. This means that the M.E.F. system must automatically

choose connection paths, as well as decide any issues of code copying between physical

processors participating in an emulation.

We must stress that an M. E.F. should support any number of different kinds of T.E.'s,

and any number of each kind of T.E. For example, we may wish to model a shared memory

processor as N memory units and M processing units: this would entail the description of two

different kinds of T.E.'s. One description would describe the activities of a memory units

while the second would functionally describe a processing unit. Then, an M.E.F. would be

directed to execute a model composed ofN of the first and M of the second.

The real issue is that care must be taken in implementation of an M. E.F. to preserve

the abstraction of the T.E. model. The T.E. state model chosen for the MIT MEF system

allows the user to think of the state of a T.E. as global (static) variables which are local to each

T.E. As was noted above, this model would not serve the purposes of an M.E.F. ifT.E. state

were actually implemented in this way, but we felt that this abstraction was the simplest

possible model.

Below we discuss various possible implementation schemes for T.E. state under the

Lisp Machine environment, addressing such issues as code copying, complexity of the model

from the user's viewpoint, and performance. All of these schemes assume that the M.E.F.
'

user is required to list the names of all of the "T. E. state variables" (or registers) used, so that

the M.E.F. can know what variable names a given T.E. model must be "closed over."

- 31-

2.2.3 T.E. Abstraction via Flavors

Readers familiar with the Lisp Machine architecture at this point invariably suggest

the use of flavors to implement T.E. slate. Flavors21 are a powerful object-oriented

programming concept, combining multiple inheritance and dynamically linked functionality

in a message-passing syntax. They implement a user-definable language type structure in

which types define function and state templates, much like the CLU language clusters,22

except that the functions allowed to operate on a given type may be dynamically altered, and

new functions added.

From the T. E. state model point of view, flavors are the perfect implementation

vehicle. They suppo1i a template view of programming that well fits the philosophy of a

group of shared functions (e.g., a T.E. functional definition) operating on multiple similar

aggregates of state· (e.g., T. E. registers). Unfortuantely, the dynamic feature of the Lisp

Machine flavor implementation introduces great function call overhead. Since the functions

that operate on a given flavor can he added to, deleted from, or otherwise altered at any time,

calling a function to act on a particular instantiation of a flavor (an instance) requires a

hash-table lookup. Since all of the functions defined to operate on instances of a flavor are

not known at compile time, and since Lisp variables are not typed at compile time, calls on an

instance cannot be compiled down to a machine function call. Thus flavors were ruled out as

an implementation mechanism for the T.E. abstraction.

2.2.4 T.E. Abstraction via G'lobal Variables

Another possibility was to use Lisp global (static) variables. Unfortunately, although

this would be a straightforward implementation scheme and would suppo1i very good

performance, due to the reasons outlined in the beginning of this section (overlap of variable

references between executing T.E. definitions) this scheme could not support more than one

T.E. per physical processor. Since we need an M.E.F. to potentially support any number of

T.E.'s per physical processor, this idea was quickly scrapped.

- 32 -

2.2.5 T.E. Abstraction via Dyntunic Variables

There is, however, an extension of the Lisp Machine global variable concept. Under

the Lisp Machine operating system, global variables may be '"bound" to different values

during execution of a particular Lisp Machine process. Thus, T. E. functional models each

could be executed inside its own process, with the values of its registers bound, and thus

separated from the registers of other T. E.'s executing on the same physical processor.

Unfortunately this scheme introduces an enormous performance penalty. It requires

that the Lisp Machine process scheduler must insure that bound variables for a blocked

process must be unbound when another process is awakened for execution; in addition, of

course, the bound variables of the awakened process must be made current at process-switch

time. This scheme was attempted as the T.E. abstraction implementation for the MIT MEF,

with remarkably poor results due to this process switching overhead (particularly with more

than three T.E.'s executing on a physical processor).

2.2.6 T.E. Abstraction via Packages

Another promising feature of the Lisp Machine that was considered was the package

model. This feature allows separation of variable namespaces at function definition or load

times, to provide some small amount of name separation under an operating system that is

basically supports a monolithic namespace and address space. We think of this scheme as a

"poor man's segmentation," as it solves some of the problems of naming that were addressed

by the Multics segmentation scheme.23 It must be noted that Lisp Machine packages are

completely unrelated to Ada packages,24 which are closer in spirit to the flavor concept.

Using the Lisp Machine package feature, each T. E. would be loaded into it5 own

separate namespace, and would simply address its registers as global variables inside that

namespace. Unfortunately, even T.E.'s of the same type would be unable to share code (T.E.

function definitions), since each T.E. would need its code to address different namespaces.

The paging and virtual memory waste accompanying such unnecessary code copying ruled

out this concept for the MIT MEF T.E. implementation.

- 33 -

2.2. 7 T. E. Abstraction via Arrays Referenced (Indexed) Off a Dynamic Variable

Finally, a hybrid scheme was chosen thal used some of the concepts of flavors with a

dynamically bound global variable. The MIT MEF uses a single bound global variable which

points to an array (stale block) which contains lhe current values of all T.E. registers for the

currently-executing T.E. At process-switch time, this single variable is unbound and bound to

the new context, a minor introduction of overhead. Accesses to T.E. registers are altered (via

macro expansion) to offsets into the current state block at compile time. This can be done

because users are required to list all of the registers to be used by each T.E. model. Run-time

access to T.E. register values is then accomplished by adding an offset (established at

compile-time) to a global variable-Le., a one-memory-reference overhead.

This memory reference overhead is the only disadvantage of such a scheme.

Unfortunately, however, since T.E.'s are presumed to make constant access to their state, this

overhead can be tremendous, as it introduces a 100% overhead in state memory reference.

Fortunately, this overhead can be alleviated by a caching scheme, in which the current state

block pointer is saved (at process-switch time, or at the time of the first T.E. register access) in

the CPU. This scheme will be utilized with the Texas Instruments Lisp Machines with the

introduction of a small amount of microcode to support the caching of special virtual memory

pointers on the processor board of the machine. This method of "T.E. procedure switching"

is the analog of the standard operating systems approach to multiprogramming process

switching.

2.2.8 The T.E. Execution Abstraction

Besides modeling the state of executing T.E.'s, we must somehow model the actual

execution of T. E.'s based on users' functional descriptions. As we have alluded above, these

functional descriptions must be written in Lisp Machine Lisp for the MIT MEF; execution of

the descriptions, at first glance, simply entails the execution of interpreted or compiled Lisp

forms using references to T. E. state as was discussed above.

- 34 -

However, there is a choice for implementation of these T.E. execution "threads," or

"processes." The most obvious choice, in the case of the Lisp Machine, is to use the Lisp

Machine scheduler and process abstraction, since it directly implements the T.E. execution

abstraction, running threads of Lisp code on separate stacks, blocking on input/output

operations, etc. Therefore, by dcl~1ult the MIT M EF system calls the Lisp Machine system

software to create and run processes as the implementation of the T.E. abstraction. This

allows the emulation experiment writer to model T.E.'s in a fully general way, as individual

machines that do 1/0 and computation in no pre-determined order.

Unfortunately, there is an overhead associated with process switching under the Lisp

Machine system, which rises linearly with the number of processes (and thus emulated T.E.'s).

This is caused by the need to flush and re-fill stack buffers and possible paging overhead to

reinstate a previously blocked process.

The MIT MEF allows users interested in maximum performance to use a slightly less

general model to attain some speedup by avoiding process switching. In this model, T.E.'s are

required to be functional blocks that take a single message as input, do some computation,

output zero or more messages, and then return to the caller. this allows the MEF system to do

its own "T.E. scheduling" by directly calling the Lisp implementation of a T.E. in the same

process as the MEF system, rescheduling another (or even the same) T.E. on return of the

model.

Although this system is not completely general, it does fill the needs of many

emulation experiments that can be modelled easily in this more restrictive manner. We must

note, however, that this method of T.E. implementation carries another disadvantage: the

J\ti.E.F. system will block forever until a T.E. abstraction returns, since there is no "block and

reschedule" facility within MEF. Thus, errors in T.E. implementation have the capacity to

halt execution of an entire emulation unless T. E. definitions are not allowed to call potentially

blocking routines.

- 35 -

2.2.9 T.E. atul System Metering

The implementation of the metering abstraction under the MIT MEF system is

two-fold, to support the two different types of meters. Per-T.E. meters are implemented

under the MIT M EF system in much the same way as T. E. state registers, that is, as an array

of meter values stored with the state array. System-wide meters, however, present a range of

implementation choices.

The most obvious choice would be to simply centrally record the values of all

system-wide meters on one of the physical processors taking part in an emulation run.

However, this increases interconnection network overhead for no particular reason, since the

values do not need to be centrally collected until the user actually asks for the value of a

system meter.

Therefore, the MIT MEF implementation collects the values of system-wide meters in

a distributed manner, incrementing local copies of each meter on each physical processor in

the M.E.F. When the user (via the system control panel) asks for the value of a particular

meter, a meter read request is sent to each physical processor taking part in the current M.E.F.

experiment; the results are then tabulated centrally and presented to the user.

2.2.10 Communications Software

This brings to light the issue of interconnection schemes for an M. E.F. The abstract

definition of an M.E.F. notes only that the details of packet communication between T.E.'s

should be totally transparent. This means that:

• From the T.E. procedure's point of view, the network send primitive must
return "immediately;" i.e., no frnther work on the part of the T.E.
may be required in order to get the message to the destination T. E.
This implies that the implementation of the send primitive must
automatically queue messages, backoff and retry, acknowledge if
necessary, or perform any other network management functions
necessary to transmit messages.

•

•

•

- 36 -

The actual interconnection network(s) should be accessed in a uniform
way, through a uniform send primitive (i.e., there should not be a
send-via-Ethernet function as well as a send-via-Hypercube function,
just one generic send function) .

lnter-T.E. messaging between T.E.'s executing on the same physical
processor should be accessed via the same send primitive as network
messaging, as the experiment writer is not aware of the actual physical
processing configuration of an emulation .

Network input must be via a single receive function, regardless of the
physical and/or logical locations of the sending T.E.

The MIT MEF actually implements simultaneous access, via a single queueing send

primitive function, to four inter-T.E. communications media. The first is for T.E.'s residing

on the same physical processor, which communicate through a queueing mechanism much

like Unix pipes.25 All communications requests, in both directions, are handled by the local

distributed portion of the M.E.F. software system, called outposts. An outline of this

procedure is presented later in this chapter.

The other three network interfaces connect to three different high-speed

inter-processor media, including a ten-megabit per second ring-topology Ethernet (executing

Chaos26 protocols); a three-megabyte per second circuit switched hypercube-topology

network based on the Bolt, Beranek, & Newman Butterfly switch:27 and a four-megabyte per

second packet switched hypercube-topology network developed at M.I.T. in cooperation with

* the International Business Machines Corporation.

Regardless of the communications path followed by the transmission of a single MEF

inter-T.E. message, the MEF sending and receiving functions provide a packet-switched

abstraction to all communicating T. E.'s. Thus, though a message might follow e.m of four

different types of routing based on the distance between the physical machines ~\; i q-~orting

two communicating T. E.'s, and the size of the message being sent, the same functions are used

without retry to complete that communication.

* The last two of these networks are under development at this time.

- 37 -

2.2.11 Main Control Panel

Tying the entire MIT MEF system together is a Control Panel program that also

executes under the Lisp Machine operating system, either on one of the physical Lisp

Machine processors participating in an active emulation experiment, or on another

(dedicated) processor. This "Control Panel" implements a bootstrap processor that oversees

the activities of the current M.E.F. configuration of physical processors. Users issue this

program commands such as:

• CONFIGUHE: Set up a certain group of physical processors as an M.E.F.

This command begins a small overseer program on each P.P.
participating in the emulation, and establishes all necessary network
connections between each physical processor.

• START-EMULATION: Given an emulation name, loads and begins the

emulation named, instating T. E.'s described by that emulation on the
participating physical processors and establishing the logical
connectivity between the T.E.'s as desqibed by the emulation
experiment.

• SET-TRACING: Enable a system-wide tracing facility to direct tracing

information (specified by T.E. function descriptions) to the screens of
each participating physical processor, or to the Control Panel.

• STATUS: Get the status of a running (or idle) T.E. on any physical

processor.

• DEBUG-TE: Temporarily halt a T.E.'s running Lisp code and allow the

experimenter to walk through that T.E.'s active state, checking and/or
altering variable values and restarting computation at any point.

• SHUTDOWN: Shutdown the current emulation experiment, much like a

bootstrap processor shutting down a mainframe machine. Halts all
T.E.'s and returns their storage to the Lisp heap.

.. 31 ..

Figure 7 shows the overall mukiplo pllJ*81 ..-a.- arebkecture of.an emuladoa

running under the MIT MEF system. In dlit•• ••kt ~..,...
processors. one of which is • bostina die a..1 The naaning .~
experiment is comprised of eigtd. taraet eleanllltlL

- 39 -

Physical Processor 2 Physical Processor I

T.E
Main Control Panel

(Bootstrap, Shutdown, etc.)

T.E
T.E

Communications

Core

T.E

T.E T.E
T.E

Physical Processor 3 Physical Processor4

Figure 7: Multiple Processor Dynamic Structure of the !HIT MEF

- 40 -

2.3 Program Outline

The MIT MEF soflware consists of three major parts, including {l) the Control Panel,

(2) interfaces to the M.E.F. for use by emulation experiment implementations, and (3) the

M.E.F. outposts, or overseers, executing on each P.P. of the M.E.F. This last portion is the

most interesting, as it represents the distributed "operating system" portion of the M.E.F.

software, executing configuration and control commands emanating from the Control Panel

* and the user.

One particularly interesting detail of the operation of the MEF outposts is the

paradigm for interconnection. The Lisp Machine architecture presents the Ethernet

interconnection medium to the application programmer as a bidirectional stream connected to

a listening process (another stream) on the foreign physical host. Therefore, for

interconnection between outposts on the Ethernet medium, each outpost needs a stream

connecting to each other outpost.

It would seem that the simplest method to gain this array of interconnections would

be to simply have each outpost initiate a connection to each other outpost; however, the

bidirectional nature of the resulting streams would make such a scheme quite wasteful.

Therefore, each outpost uses its own outpost identification number (which ranges from zero

to one less than the number of outposts, or P.P.'s) as a so1t of "quicksort comb," passively

waiting for connection requests from lower-numbered outposts, and actively initiating

connection requests to all high-numbered outposts.

Besides simplifying the connection process, this scheme also insures that no outpost

will issue a connection request to a physical processor that is not yet executing the outpost

code, since the outposts arc initiated on the P.P.'s in ascending outpost-number order.

Outpost operations are roughly outlined in the program below.

* Specifications for use of the MEF Control Panel and emulation experiment interfaces to
the MIT MEF system arc presented in the appendix of this thesis.

- 41 -

1• Local M.E.F. Controller (OUTPOST), to be executed on each
P.P. of an M.E.F. configuration. This routine manages
the T.E. models executing on its local processor, while
managing communication to and from these T.E. 's as well
as M.E.F. control messages from the M.E.F. Control Panel . . ,

procedure MEF_Outpost (Command_Stream) begin

I* First, read local P.P. number (as allocated by
the Control Panel) and the total number of P.P.'s. 0 /

LocaLPP := Read_Byte (Command_Stream):
Total_PPs : = Read_Byte (Command __ Stream):

1• Now set up communications with all other P.P. 's.
We use a "triangular matrix" technique: each Outpost
simultaneously passively waits for contacts from each
lower-numbered P.P., while initiating contact with
each higher-numbered P.P. See above for details. •/

cobegin

end;

for Listen_PP from 0 below Local_PP
Routing_Table (Listen_PP) :=

Await_Contact (Listen_PP):

for Talk_TE from Local_PP + 1 below Total_PPs
Routing_Table (Listen_PP) :=

Initiate_Contact (Listan_PP):

- 42 -

1• Communications are now set up. We can expect
commands to arrive from the Control Panel, as
well as requests for communications from local
and foreign T.E. models. •/

do forever
Input_Stream := Await_Input (Command_Stream,

Routing_Table,
TE_ Table);

if Input_Stream = Command_Stream begin

end:

1• Input is from the Control Panel. •/

case Read_Byte (Command_Stream)
if 'M' then Forward_Message (Command_Stream):
if 'E' then Experiment :=

Setup_Emulation (Command_Stream);
if 'K' then Shutdown_ TE (Command __ Stream);
if 'S' then Shutdown ();
if 'C' the Create_TE (Experiment,

Command_Stream);

1• Other local notification and control
functions are performed here as well. •/

end case;

1• Input is from a foreign or local T.E. model. •/
else Forward_Message (Input_Stream);

1• Schedule any TE's that having pending input. This
will cause the procedural definition of an TE with
pending input to be invoked in the environment of
that particular TE. •/

Experimant.Scheduling_Paradigm (Experiment);

end do forever:
and MEF_Outpost:

- 43 -

I* Forward a massage to a local or non-local T.E. */
procedure Forward_Message (From_Stream) begin

Destination_TE := Read_Byte (From_Stream}:
Messago_Length := Read_Word (From_Stream}:
Message := Read_String (From_Stream, Message_Length}:
TE_Descriptor := Lookup_TE (Destination_TE};

I* If local message, place in local T.E. 's incoming
message queue. Else forward to proper P.P. */

if Destination_TE element_of Local_TE_List
then Queue (Message,

TE_Descriptor.Incoming_Messages}:
else Send (Message_Length, Message, Destination_TE,

Routing_T~ble (TE_Descriptor.PP}}i
end Forward_Messaga;

I* Create and initialize a Target Element. */

procedure Create_TE (Experiment, Control_Stream} begin

TE_Type := Lookup_Experiment_TE (Experiment,
Read_String (Control_Stream};

TE := Create_TE (TE_Type, Experiment};
Add_TE_to_Running_Profile (TE, Experiment}:

I* Call the user-specified initialization procedure. •/
In_TE_Environment (TE_Type.Init {}};

end C1·eate_ TE:

- 44 -

Chapter 3

Using an M.E.F. as an Interpreter

3.1 An Educational Experiment: The von Neumann Machille Interpreter

A multiprocessor emulation facility is fundamentally a tool for multiprocessor

prototyping. In this and the the following chapter, we present possible uses of an MEF to

show the need for such a tool, and the use of such a tool. These particular prototypical uses of

an MEF were actually written and executed on the MIT MEF; 18 some results of those

interpretation & emulation experiments will also be presented.

The simplest multiprocessor configuration in use today is the von Neumann style

uniprocessor, composed of one central processing unit, and one "memory bank." Although this

is a uniprocessor in today's sense, it is actually composed of two fully parallel processing units,

activating each other via synchronous or asynchronous messages over some type of computer

bus. Although the parallel portions of this configuration (we will call them simply the CPU

and the MEMORY) often lock, waiting for the completion of an operation in the other

processor, there is generally no possibility of deadlock, and there can be some overlap of

operation if the datapaths of the CPU allow work to be done while a bus read or write cycle is

active.

Therefore we present a von Neumann style uniprocessor, viewed at the bus level, as

the world's simplest multiprocessor architecture. Figure 8 shows a view of the the processing

elements and their trivial connectivity.

- 45 -

CPU MEMORY

I _I
I --.

Processor/Memory Bus

Figure 8: A Simple von Neumann Processor

As can be seen in this simple figure, we view the asynchronous communications

network of the Emulation Facility as a single, synchronous connection (i.e., a bus) between

the two parallel processors. We say synchronous because all messages between these two

processors are queued by the communications medium; there is no "interrupt level" activity.

For example, a "memory write cycle looks something like this:

CPU
WRITE
ADDRESS

(message direction)

t-

MEMORY

DATA

For testing purposes, we might alter this simple "protocol" by inserting an acknowledgment

by the memory:

CPU (message direction) MEMORY
WRITE

t- WRITE ACK
ADDRESS

t- DATA

This kind of modification is trivial to make within the framework of an Emulation Facility;

the CPU processor simply waits for an acknowledgment after transmitting a write request (i.e.,

reads from the MEF an incoming message from MEMORY), and the MEMORY processor

- 46 -

needs to generate an acknowledgment after receiving a write request (i.e., it must write to the

M EF a message directed at the CPU).

From the standpoint of a systems archilcct (in this example, perhaps a bus/backplane

designer) Lhc nexibility to quickly and simply change an interconnection strategy and

processor interface without touching a soldering iron is unparalleled. Validation of a

parallel-processing design can be performed in a manner much more like the exercise of

modern programming: a tight edit/compile/debug prototyping loop, followed by thorough

specification and implementation after the underlying structure is well understoocl.28

We began this chapter by discussing a supposed "von Neumann, single-processor"

machine, and ended the last section with a multiprocessor view. We must stress that a

Multiprocessor Emulation Facility is a general tool for architectural design with all types of

parallelism, such as pipeline stages, distributed concurrent database systems, or multiple

processing elements. The power in the idea is the inherent ability to emulate any complex

system.

3.2 A Multiprocessor Experiment: The Tagged Tol<en Dataflow Emulator

The preceding example use of the emulation facility is indeed instructive, but it does

not exercise the full abilities of the M.E.F., nor does it represent a particularly new or

experimental design. The experiment discussed below fulfills both of these ends.

3.2. l The Dataflow t~f ode/ of Computation

Though the basic novel ideas (in comparison to the von Neumann machine structure) of the

dataflow model are rather old in computer science terms,29 only lately have several different

variations on the old theme shown great promise. 18· 12 In the datanow computer model,

asynchrony and functionality form the key to a highly parallel computational model in which

programs can be run in a parallel fashion without programmer specification of parallelism.7

The major problems plaguing datanow computation models today are the same twin

problems that have always plagued computer science and engineering, namely (1) where do

we put things, and (2) how do we get them from here to there. These resource management

questions apply to program and data storage allocation, processor structure for maintaining

- 47 -

comput~1tion state, communications bandwidth compression, processor time-sharing, and so

on. Basically, dataflow models engender more than their share of the problem of how and

where to apply computation storage and computational power, and how to communicate such

data among structurally and geographically separated machines. 30. 3l

Unfortunately, these huge problems never keep people from designing real hardware

to realize particular variants of the dataflow model, or even to use expensive (in monetary,

temporal, and human terms) silicon design technology in a quest for a parallel dataflow

architecture. Several clataflow architectures have been shelved after great expenditures,32· 33

even though specialized simulation techniques were used before committing to hardware.

Obviously, a more flexible tool for datatlow machine experimentation is needed to

avoid the financial and human expense; an M.E.F. exactly fits that need. In fact, the work

reported in this paper was originally prompted by a need to quickly and flexibly emulate a

variant of the Tagged-Token Dataflow Architecture, a machine realization of the Irvine/MIT

U-Jnterpreter abstract machine model.18

3.2.2 The Tagged-Token Dataflow Machine

The Tagged-Token Dataflow Machine is an architectural realization of an abstract

machine model developed at the University of California at Irvine, named the U-rnterpreter.8

This architecture utilizes an extremely low computational granularity, on the order of single

instructions on standard processors (i.e., addition and subtraction), to realize the maximum

parallelism in general programs without programmer specification of parallelism. In addition,

the memory model of this architecture inherently tolerates long memory latencies, as well as

multiple access to data memories without unduly constraining parallel execution. Both of

these capabilities are thought to be unattainable within the von Neumann machine

framework. 18• 34

- 48 -

3.2.3 Emulation of the Tagged-Token Machine

The basic system architecture of the TTDA machine matches quite closely the abstract

M.E.F. model. An N-dimensional hypercube network topology is used to interconnect any

number of processing clcmcnL<;, each of which is a rather general-purpose pipelined CPU and

memory management unit. Figure 9 outlines the overall structure of the "n'DA.

N-dimcnsional hypercube
with N = 3 (8 P.E.'s)

Figure 9: Structure of the Tagged-Token Data.flow Machine

- 49 -

3.3 TTDA Implementation under the MIT MEF

The lTDA machine was actually implemented under the MIT MEF system at the

MIT Lahoratory for Computer Science, as the first major emulation experiment available.

Functional models of all levels of the TTDA were emulated, as well a<; interconnection

protocols as specified by an agreed specification.35· 18 Early emulation runs with this model

pointed out a severe lack of deep understanding in the area of decentralized processor cycle

and memory space resource allocation and deallocation. As a first curative step, an extra

processing clement was added to the architectural definition (and thus the emulation

experiment) to support centralized resource control; to allocate or deallocate any system

resources, each T. E. had to make a request of the resource management T. E. Obviously, this

became the main system bottleneck; at this writing, more experimentation is in progress to

solve the problem.

This solution is a good example of a "quick fix" to an architecture used to circumvent

unknowns in the problem and concentrate on the parts of the architecture that need

immediate attention. In the case of the TTDA machine, the first question to be answered by a

M.E.F. was the validity of the processing approach; therefore, the resource management

problem was bypassed for future study without slowing down work on the processing units of

the architecture. An overall sketch of the implementation functions for the TIDA looks like

this:

- 50 -

procedure 7TDA Processing Unit:

loop begin
Incoming_Token := Read_Message ():

case Incoming_Token.D_Type

if 0 then begin /* D=O, an ALU token.
Try to match with token in wait_match.
If single input operation, or match found,
call ALU to dispatch on operation type. */

Match? := Wait_Match_Control (Incoming_Token):
if Match? begin

Alu_Operation :=Fetch (Incoming_Token.Address):
Outgoing_Tokens := Alu_Control (Alu_Operation):
for each Outgoing_Token in Outgoing_Tokens do

Write_Message (Outgoing_Token.Destination_PE,
Outgoing_Token):

end:
end begin:

if 1 then begin /* D=l, an I-structure token.
Dispatch on I-structure request type, satisfy
read/write request and return answer to
requesting P.E. */

Outgoing_Token := I_Structure_Control (Incoming_Token):
Write_Message (Outgoing_Token.Destination_PE,

Outgoing_Tokan);
end begin:

if 2 then begin /* 0=2, a PE-control token.
Perform local housekeeping function. */

Outgoing_Token := Pe_Control (Incoming_Token):
Write_Message (Outgoing_Token.Destination_PE,

Outgoing_Token):
end begin;

end case;
end loop;

end procedure:

- 51 -

procedure 7TDA Resource Management Unit:

loop begin
Incoming_Token := Read_Message ();
case Incoming_Token.D_Type

if 0 then begin /* D=O, a system-manager token. Dispatch
on request type, reading system state
to find free resources for request. */

Outgoing_Tokens := System_Manager (Incoming_Token);
for each Outgoing_Token in Outgoing_Tokens

Write_Message (Outgoing_Token.Destination_Pe,
Outgoing_Token);

end begin;

if 2 then begin /* D=2, a PE-control token.
Perform local housekeeping function. */

Outgoing_Token := Pe_Control (Incoming_Token);
Write_Message (Outgoing_Token.Destination_PE,

Outgoing_Token);
end begin;

end case;
end loop;

end procedure;

At emulation start-up time, some number of 7TDA Processing Units are initialized along with

a single 7TDA Resource Management Unit to control all system resources.

Some results that show the magnitude of emulation experimentation that can proceed

on a particular M.E.F., the MIT MEF, are documented below. It must be noted that the MIT

M EF, at this writing, is still using low-speed (ten megabits/second) bus communications (i.e.,

Ethernet with Chaos protocols).

- 52 -

Lines of Lisp coda to implement the TTDA machine: 12420

Raw computation speed (dataflow operations/second): 600
Wait/match section buffer size (tokens/PE): 1024
Program memory size (words/PE): 16384
Maximum operations computed (at this writing): 800000

This first major emulation quickly pointed out the power of an emulation facility,

particularly the ease of alteration of a model experiment. This writer's favorite example of

this ability centers on an anecdote: early in the project, the TTDA emulation did not support

64-bit IEEE standard floating point computation, although the TTDA definition demanded

such functionality. A new programmer was put to the task of adding this ability, with only a

day's familiarity of the source code (though he already understood basic dataflow concepts).

He was able to add (and debug) the ALU functional code for 64-bit floating point in one day

of work. It is precisely this reconfigurability and flexibility that one wants from an M.E.F.

3.4 Levels of Interpretation

For the implementation of the TTDA Datatlow machine under the prototype MIT

MEF the author chose a level of emulation modelling each P.E. of the TTDA machine as a

single T.E. in the M. E.F. domain. Therefore, each dataflow T.E. was modelled as a single

sequential process emulating the TTDA instruction set and cornmucating with other

processing elements of the emulated machines.

Obviously, this is not the only level of abstraction at which such a machine may be

modelled. For example, the author could have chosen an approach in which the entire

multiprocessor was modelled as a single sequential thread, with no communication necessary

between elements. The implementation of such a machine simulation might have looked

something like this:

- 53 -

procedure TTDA_Machine begin
Token := Head (Tokens_Awaiting_Processing):
Tokens_Awaiting_Processing :=

Tail (Tokens_Awaiting_Processing):
PE := Token.Destination_PE:

I* Here simulate the operation of processing element
number PE, leaving any output tokens on the queue
Tokens_Awaiting_Processing. */

end procedure;

This program has no interesting properties from a multiprocessing point of view. Although it

will exhibit the behavior of a TTDA machine as viewed by a user, it simulates none of the

internal interfaces of the clements of the dataflow architecture, and is therefore not

particularly useful ·for prototypical implementations. However, the simple single-thread

approach to machine simulation is an acceptable input to an emulation facility.

Instead of going further away from the parallelism inherant in the dataflow design,

however, we can move toward it by modelling the internal pipelining of each processing

element of the TTDA. A pipelined hardware implementation of a TTDA processing element

would include, for example:

• An incoming token queue manager.

• A Waiting/Matching associative token storage unit.

• An instruction fetch/ ALU processing unit.

• A storage management unit.

• A PE controller (system interface) unit.

• An outgoing token queue manager.

Each of these components may be moclcllcd as an indepenclant process, participating

states in the pipelined microarchitecture of a TTDA processing element. Each of these T.E.'s

would actually represent only a small part of the overall machine being emulated.

·ift!J¥J!l~M,!-lJ&JUIW·.¥lll'~-¥!J!Ml:M"t,;;tW1..,;et .. ,JHtt1A!!Jl•,_Ml8•Wtl! ... tlklIIXJi•UJJ! .. (.JfJJ!!i•tUtJMl)IJ!L¥.lll!li'fftl!l,~NlRif1®'*A'""··~
' . -- . "~=· ·~,. . .

-S4-

Again, this model may be used to prototype a lTDA machine under a M.F..F.

architecture. Although it would require nn COIMMl8.._ (and probably proce8ling)

overhead, it is closer to the true design of a TfDA mlCldaet and thtldft perhaps mom

useful for some studitS of datat1ow compusadolL Apre 1f) outlines the three levels of

interpretation noted above, with fnl11C notes on die advan&aaes and disadvantaatS of eadl

approach.

[

Tagged-Token

Datajlow

Machine

,,a

l-Stmcture

- 55 -

Taking Advantage of Parallel Design

Communications Network

P.E. P.E. P.E • •

Taking Advantage of Pipelined Design

Wait/Match

PE Control

Fetch/ALU

Figure 10: Three Different Approaches To TTDA Simulation

]

- 56 -

Chapter4

Using a11 M.E.F. as an Emulator

rn the preceding chapters, we used the term "emulation" quite loosely to represent

any use of an M.E.F. to interpret an architectural definition outlined by a machine designer.

In this and following chapters, we will narrow this definition to a particular method of

functional and time simulations of systems.

4.1 Interpretation, Simulation, and Emulation

As was noted in the last chapter, a system may be in,terpreted at any level. In the case

of the Tagged-Token Data flow Architecture, this means that we may (1) interpret the machine

code for each target element; or, at a higher level, we may (2) interpret the machine as a whole

by executing high-level dataflow languages such as Id; 8 or, at a lower level, we may (3)

interpret the intra-machine flow of control and data between the pipeline stages of a dataflow

processing element. However, this choice does not affect the scheduling of the simulated

activities of a system (i.e., the T.E.'s) during simulation; thus, it does not force such a

simulation to divulge timing information about a machine model executing under an M.E.F.

environment.

In this and the succeeding chapter, we will discuss two different general methods for

garnering timing information from emulation experiments along with the simple functional

execution of the machine model. We divide the term "simulation"into three concepts:

• Interpretation, as outlined above, specifics only that a functional

specification of a machine is executed. No implicit timing information
collection is suggested.

• Simulation, as will be outlined in the following chapter, specifies a system

interpretation that explicitly keeps timing information about the

- 57 -

functional units of a simulated machine (T.E.'s) while the simulation is
taking place.

• Emulation, the topic of this chapter, specifics a system interpretation that
keeps no explicit timing information, but gathers such information
implicitly through use the of explicit scheduling ofT.E. activity.

Figure 11 outlines the hierarchy of simulation methods as this thesis views it

Emulation

* Implicit capture of timing infimnation

* Simple, easily debuggable model

In tcrprctation

Simulation

* Explicit capture of timing information

Capture maximum parallelism of simulation *

Figure 11: Types of System Interpretation/Emulation/Simulation

The definition of emulation that we use in this chapter is best observed in such

systems as the Yorktown Simulation Engine (YSE).36 This system, though it provided

architectural designers with exact timing analyses of their logic circuit, had no explicit

overhead involved in maintaining timing information during simulation. Instead, the YSE

- 58 -

relied on timing constraints "programmed into" the circuit entered for simulation. Such

combinatorial logic circuilc:; consisted of multiple stages of logic: a single stage would be

simulated before the next stage was begun. Thus, timing and inter-element dependence

information was implied by the structure of the circuit as it was described to the machine.

Likewise, an M.E.F. views emulation as a simulation activity for which it need keep no

* timing information. Instead, an exact schedule of events necessary for the emulation of a

system are specified with the definition of an emulation experiment, along with the functional

definition of the target clements of the emulation. This simulation schedule can be as simple

as a round-robin operating system-like process scheduler, or as complex as a full

load-balancing priority scheduler. A complete M.E.F. implementation will allow any

user-specified schedule for T.E.'s executing on a single physical processor, along with a

method of specifying which T.E.'s will execute on each P.P. **

4.2 Scheduling as a11 Approach to Emulation

In fact, a simple round-robin scheduling scheme is exactly the right model for the

emulation of certain systems. For example, emulation of a balanced pipeline, in which each

pipeline stage takes the same amount of real time (or at least a set amount of real time) to

execute is a perfect target architecture for emulation-style modeling. Figure 12 outlines an

execution schedule for a three-processor system, each processor of which is composed of a

balanced three-stage pipeline. Representing each stage of the system as a T.E., a trivial

scheduler for each triplet of T.E.'s running on a P.P. would simply execute the functional

description of each stage one after the other, and then repeat. The time that the real system

would have taken to execute the pipeline four times, for instance, is easily calculated as four

times the runtime of the pipeline: the time taken to emulate the pipeline is irrelevant.

* Note, however, that several methodologies for maintaining simulated timing information
automatically will be advanced in the following chapter.
** Note that by this definition, at the current time the MIT MEF is not a complete M.E.F.

implementation.

- 59 -

Stage 1 I Stage 1 I
Processor I Stage 2 • • •

Stage 3

Stage 1 I Stage 1 I
Stage 2 • •

Processor 2

Stage 3

Stage 1

• Stage 2 • •
Processor 3

Stage 3

TimeO Time1 Time 2 Time 3 Time 4

Figure 12: Scheduling Stages of a Balanced Pipeline

The main disadvantage of this model of interpretation is the inherent mismatch

between the M.E.F. implementation model and any shared-resource (e.g., shared memory)

multiprocessor model. However, there are quite attractive reasons for using system emulation

as a simulation methodology. Emulation under the M.E.F. environment is a good

"impedance match" between the architecture of an M.E.F. and the general emulation

architecture. The M.E.F. is composed of general-purpose multiprogramming processors

connected via some selection of high-speed networks; a real pipelined multiprocessor is also a

set of multiprogramming (although space-division instead of time-division) processors

communicating via some (hopefully) high-speed network. Therefore we should be able to

-(JO-

keep the overhead of emulation rather low. allowing emulation of relatively oomplex

machines executing latp problems. This is eldy • is ~ to make a
multiprocessor arch~re sua:essrut: one must ·bltlfl ·die- and oonvince enouab
applications programmers that the overhead of __,.Ria "'*application on the machine is
worth the time necessary to rewrite their $pplicatkm fbr die aew envimnment

- 61-

Chapters

Using an M.E.1': as a Simulator

The uses of a facility such as that outlined in this thesis continue far beyond the two

interpretation experiments presented in previous chapters. As even the von Neumann

machine experiment showed, modeling of various quite different levels of parallelism can be

accomplished, including architectures that do not seem to map directly to the abstract

architecture of the facility itself.

The abstract structure outlined in this paper was chosen as the most general of

multiprocessor configurations, sort of the Turing machine of the multiprocessor world. The

skeptic will immediately note that it does not, however, directly support such multiprocessor

design ideas as synchronous processors (like the Connection Machine, or Illiac IV)15· 4 or a

shared memory model (e.g., C.mmp). 5 However, this model is abstract enough to allow

prototypical implementation of even these diverse models of parallel computation; generally,

another virtual processing element is added to the emulation experiment definition to model

this shared resource (e.g., clock or memory) of the system. This is actually quite close to the

real hardware implementation of such a system, in which a central clock for synchronous

operation or a central shared memory will actually be a separate subsystem of the architecture.

Jn addition, interconnection schemes other than packet-switching networks can be simulated

on top of our packet switch by using the packets as individual items in a continuous stream

communication scheme, and so on.

- 62 -

5.1 A Global1y Synchronized Architecture

As an example of an extension, we present a particular method of simulating a

globally clocked architecture on top of an M.E.F. Other methods are possible, of course, but

the most obvious relics on excessive constraints on message passing between logical

processors. To alleviate the expense of this method, we present an design which corresponds

quite neatly to a globally clocked architecture on an intuitive level.

We first refer the reader back to figure 4, in which the general simulation or emulation

experiment schema is displayed. Below, in figure 13, is a modified copy of the schema, with a

new processing element, named clock, added.

- 63 -

T.E. T.E.

Control Panel

T.E. Communications

Network G r-
.......... ,\
\ \ /

(\
............ ,/
I

Clock
T.E. ~

\
I-"'\ r- - _,I

T.E. ,,
Figure 13: General Emulation Scheme for a Clocked Architecture

- 64 -

In figure 13, each T.E. corresponds to a processing clement in an emulation

experiment's definition, a'i usual. However, one special-purpose processing element, the

clock, is added for global synchronization of processing. The clock T.E. has a simple

functional definition:

do forever beg1n

end

for each TE in {all normal T.E. 's} do
send (pe, "Clock Pulse"):

{Wait for each T.E. to acknowledge the pulse.}

Each normal T.E. in the emulation must then be sure to wait for a "Clock Pulse" message

before beginning any single synchronized computation, and then send an acknowledgment to

the Clock T.E. when the computation is complete. As long as this protocol is adhered to, all

activity in the emulation experiment will occur in a globally synchronized manner.

In a similar manner, any prototypical architecture with central resource needs, such as

a global clock, may be emulated on an M.E.F. For instance, a central (shared) memory system

may be emulated by adding a single special T.E. (perhaps named memory) which emulates a

memory subsystem by receiving read/write requests and processing them in a synchronized

manner, much as the memory processing element in chapter 3.

Not to belabor the point, this scheme of virtual expansion of the basic M.E.F.

architecture can be 0.ccomplished for arbitrarily centralized or synchronized systems. For

instance, figure 14 is a good emulated realization of a physically separated

telecommunications system, with multiple independent processing elements on each end (for

instance, for some complex image processing task), with each of the processor groups under

the control of a central synchronization clock.

Local Image Processor

P.K

P.E.

P.F..

Local
Clock

- 65 -

Foreign Image Processor

Rea! Image Transmission System

.... M.F.F Protypical Realization

P.E.

P.E.

P.E.

Foreign
Clock

Figure 14: Emulation of a Physically Separated Two-Domai11 System

Emulation of systems such as that cursorily outlined in figure 14, with two physically

separate but cooperating multiprocessor systems operating in two independent clock domains,

can help reveal (and thus solve) major skewing problems. For instance, the simple global

clocking emulation protocol mentioned above for a single time domain system certainly

- 66 -

applies to each of the processor groupings (each clock synchronizes the actions of its local

processing clements). However, it docs not solve the usual problems of multi-domain clock

skew that can be introduced by simulation speed differences between the two processor

groupings.

For example, suppose that the Local grouping of figure 14, because of the nature of its

task or its particular implementation as an emulation experiment, acted far faster than the

emulated computation speed of the Foreign grouping. An M.E.F. could quickly become

totally overrun by queued messages pending for processing elements in the Foreign grouping;

this is essentially the cognate of clock skew in real multi-clocked hardware realizations.

As in the real hardware case, however, this can be solved; the solution that is simplest

for implementation in an M.E.F. environment suggests hardware implementations for system

clock skew. Basically, a new protocol is added between the local and foreign clock T.E. 's of

the emulation to cause each clock to temporarily stop pulsing whenever the other clock is

skewed by more than some arbitrary number of pulses, waiting for the foreign activity to

"catch up." Our simple clock T.E. definition from above would be changed to:

integer local_pulse_number, foreign_pulse_number

when {Foreign Clock Pulse Received}
Foreign_Pulse_Number = {Clock Pulse Number Received}

Local_Pulse_Number = 1

do forever begin

end

for each TE in {all normal T.E.'s} do
Send (pa, "Clock Pulse"};

{Wait for each T.E. to acknowledge the pulse.}

send (foreign_clock_pe, Local_Pulse_Number}

Local_Pulse_Number = Local_Pulse_Number + 1

wait until
Local_Pulse_Number - Foreign_Pulse_Number < Max_Skew

- 67 ~

The case with which our earlier clocking example can be changed in the light of a new

situation, and the close mapping of that change to hardware realizations of solutions of like

problems, is the exact purpose of an M.E.F.

5.2 Distributed Simulation Approach to Synchro11ization

The last section presented a simple paradigm for modeling globally clocked

architectures. Though the presented system is easy to understand and implement, it obviously

wastes much of the parallelism available in an M.E.F. Since some of the tasks performed by

simulated processes (T.E.'s) will be completed faster than others, some T.E.'s will remain idle,

waiting for clock pulses, which could in turn cause part of the M.E.F. substrate (physical

* processors) to idle.

Another solution to the problem of simulation of system-wide clocking is available,

which can be used to potentially speed up simulations of architectures in an M.E.F. setting.

There is of course a trade-off, namely the amount of communications overhead. This scheme

is used in distributed simulation systems to increase simulation throughput (not simulated

throughput, but the throughput of the simulation iteselD by distributing the clocking of the

simulated system.

Basically, the scheme as outlined by Bryant37· 38 consists of a per-TE. current view of

the global clock value, kept up-to-date by the local T.E. with no central control. fn addition,

a per-T.E. queue of simulation activities that the T.E. is not yet prepared to simulate is kept.

Each data message transmitted from one T. E. to another carries either a stimulus (event to be

simulated), or a timestamp, which records the earliest time that that message could have been

transmitted in the real system which is being simulated. When a T.E. acts upon an incoming

message, it

1. Calculates the output stimulus message to be issued, and

* Again we must be careful to separate the simulated machine from the real globally
clocked machine, the latter of which must idle some of its hardware if it is
implemented using standard clocking architectures.

- 68 -

2. Calculates a new clock value for itself, which may also issued to T.E.'s
downstream.

The new clock value within a T. E. is the earliest time that the global clock could have

counted to within that T.E.: in other words, it is the earliest possible simulation tirne for any

unreceived messages to be simulated Thus, it provides the time against which already-received

messages must be compared to decide if they are "safe" to simulate. An event is "safe" to

simulate if it is the next event that would have occurred in the real system.

Note that this methodology docs not provide a way to simulate events of a real system

out-of-order: that cannot be done in the general case in which T.E.'s arc non-functional (i.e.,

have local state). It does, however, provide a method of sequencing events in the T. E.'s in a

way that preserves time ordering but requires no system-wide communications or shared

resources (besides the communications network itself). Nevertheless, the method avoids

deadlocking.38 A definition of a TE. which follows Lhc basic schema of Bryant follows:

1• Definition of the initial source (bootstrap) T.E. •/
procedure Source 7'.E. begin

1• Send out the initial messages. •/
for each Message in Initial_Stimulus_Messages do

Send_Message (Message_Type=Event_Stimulus, Message):

I* Notify all TE's immediately downstream we're done. •/
for each TE in Downstream_TEs do

Send_Message (TE, Message_Type=Increment_Clock,
Source_TE=Local_TE,
New_Time=INFINITY):

end procedure;

- 69 -

I* Standard simulation element definition . •/
procedure 7'.E. Definition:
static integer Clock initial 0,

integer Old_Clock initial -1,
integer Upstream_Clocks (Number_of_Upstream_TEs)

initial 0,

list Pending_Events initial NIL;

while Clock < INFINITY begin

1• Process all messages representing simulation
events which are now safe to simulate. •/

while Pending_Events not equal NIL do begin
Event := Pop_List (Pending_Events);
Clock := Simulate_and_Send_Output_Messages (Event);

end;

1• If the simulation of pending events moved the clock,
send messages to all downstream TE's to notify. •/

if Clock > Old_Clock then begin

end;

for each TE in Oownstream_TEs do
Send_Message (TE, Message_Type=Increment_Clock,

Source_TE=Local_TE,
New_Tima=Clock+Delay(TE));

Old_Clock := Clock

1• Process any incoming messages from upstream TE's. •/
for each Message in Receive_Messages () do begin

if Message.Message_Type = Event_Stimulus then
Add_to_List (Message, Pending_Events);

else begin

end
end;

end while;

Upstream_Clocks(Message.Source_TE)
:= Message.New_Time;

Clock := Max (Clock,
Minimum_of_Array (Upstream_Clocks))

end procedure;

- 70 -

The added clock delay apparent in the clock incrementation code for a regular

(non-source) T.E. above is a symptom of a problem with this methodology for distributed

simulation. Given the existence of cycles in the interconnection of T.E.'s (which would

represent feedback loops and the like in real systems), the local clock values in any two T.E.'s

of a cycle cannot differ be more than the sum of the event delays around the cycle, which

might unnecessarily reduce asynchrony and thus parallelism of the simulation. In addition,

given the possibility of zero-time simulation events, it might be possible that a cycle of T.E.'s

might get "stuck" at a particular clock value if a pending event of zero simulation time was

triggered in the cycle. A 1.ero-tirne simulation event would trigger no update of the local

clock, and therefore might not allow further event simulation in the local T.E. nor in other

T. E.'s in the cycle. Thus, an artificial delay may be introduced for any inter-TE. connection

arc which "breaks" this possible zero-length cycle. In other words, the artificial delay factors

are introduced so that the minmum delay around any given cycle in the network of simulated

T. E.'s is greater than zero, preventing deadlock.

This scheme, though it allows much more parallelism in the simulation of a timed

architecture, does have the disadvantage of adding communication overhead which can

become cumbersome, especially as the time skew between local T.E. values of the global clock

becomes large. However, the scheme has the useful feature of provable deadlock avoidance,

given the assumptions that (1) processes only output messages at firing time, and then remain

silent until the next set of inputs are available; and (2) unbounded output buffering is

available. Given these assumptions, ii has been shown38· 39 that such a simulation system can

only deadlock when all processes are waiting for input, which cannot happen. In addition,

there is a variant of this scheme, named Time Acce!eration,37, which requires static analysis of

the interconnections of T. E.'s in a system to be simulated and guarantees far more asynchrony

in the simulation of a system model.

- 71-

Chapter6

Conclusions:

Future Directiolls

6.1 Other Uses of an M.E.F.

The ease with which emulation expe1iments can be altered and re-executed on an

M.E.F. hints at another, related, capability. Because of its malleability, an M.E.F. can be used

to emulate any process or system that can be modeled as a group of communicating processes.

The scope of such systems is huge; we present here some examples, with some discussion of

implementation designs under an M.E.F. scheme.

6.2 Message Passing Computational iVl.odels

A common theme in much multiprocessor research today, particularly in the artificial

intelligence community, is representation of computation by message-passing "agents," each

executing on separate processing clements and communicating via some interconnection

network. A good example of this approach is the Actor II language and Apiary archicture of

Hewitt. 17 This model of computation is an excellent analog of the M.E. F. general model, as it

represents computation as a set of communicating sequential processors. A.I. applications

written as message passing activities with no shared state fit exactly the M.E.F. general

abstraction.

- 72 -

6.3 Protocol Testers

Besides the obvious multiprocessor scheme noted, Chapter 3 hinted at another good

use for an M.E.F. rn that chapter, we discussed a trivial computer architecture, viewing the

M.E.F. communications substrate as a interconnection bus. We introduced a simple protocol

for CPU/memory communication based on that substrate, and noted how expansion of such a

protocol could proceed.

In fact, an M. E.F. docs not limit us to such a simple interconnection scheme or

protocol, as could be clearly seen in the hypercube network topology presented for dataflow

experimentation in Chapter 3. In fact, arbitrary interconnection schemes transmitting via

arbitrary protocols can be emulated under an M.E.F. environment, to allow objective

measurement of performance, simplicity, and leanness of a protocol design. It has been noted

that techniques for protocol specification and validation, though under development, are

currently quite primitive;40 we believe that an M.E.F. can help alleviate this problem.

We envision use of an M.E.F. to emulate bus protocols, network protocols, and even

internet protocols, viewing processing nodes as communication hosts, bridges, gateways, or

even other networks in internet experimentation. In the simple host to host case, an M.E.F.

can be used to test, validate, and evaluate protocol implementations at any network interface

layer.

Figure 15 shows a test configuration for validation of interconnection protocols. The

processing clement labeled "validation processor" watches a stream of commands and requests

passing between the processing elements implementing a protocol under test. This validation

processor architecture can be can be used as part of a standards specification, with competing

implementations executing as the processor under test, thus forming a fast, reliable

checkpoint for standards validation without high implementation expenses for vendors

attempting to provide protocols.

- 73 -

Test Protocol

Request >
< Acknowledge

Message Type >
< Ready

•
•

Validation

Processor

Protocol Protocol

Test Processor k"-------'L-------'3>1 Test Processor
A B

Figure 15: Validation of a Test Protocol Implementation

6.4 Education

An M. E.F. is also a perfect instructional tool for use by students of computer

architecture. It provides a cheap, fast tool for construction and test of architectures by

students of computer science. For example, students can be given example computer

architectures as projects to implement under an M. E.F., thus gaining true understanding of

architectural features such as addressing, microarchitecturcs, and so forth. Parts of such

architectures can be supplied as separate T.E.'s in an crn11Iation, supplying basic functionaility

- 74 -

that instructors do not wish to see in students' work. For example, a student can implement

the instruction fetch and effective address decode portion of an architecture to learn a

complex addressing scheme, while the instructor supplies a basic CPU function and a memory

processor that accepts only absolute addresses, such as the one described in Chapter 3.

In addition, validation techniques similar to those mentioned in the section above can

be used to administer testing and grading of student projects, by watching and evaluating the

nmtime behavior of architectural implementations. Since descriptions of machine

architectures can be given and debugged quickly and easily in an M.E.F. environment,

students can gain hands-on experience of the basic building blocks of computer science.

6.5 Other Distributed System Uses

Many other computer architectures. particularly distributed ones, can be emulated,

and thus evaluated, in an M.E.F. environment. These include distributed database systems,

fault tolerant systems, communications networks (such as telephone systems), and so on. The

list is endless. Each can be described in terms of processes communicating via fixed or

alterable communications paths; this meta-architecture maps directly to the M.E.F. abstract

model of processing elements communicating via the M.E.F. substrate.

6.6 Human Networks and Other Systems

In fact, there is no reason that the uses of an M.E.F. must be limited to high

technology applications. Many real-life situations in other sciences can be modelled in terms

of communicating processes. For instance, the asynchronous nature of an M.E.F. lends itself

to studies of stochastic processes and other statistical studies.

Outside of the realm of the "hard sciences," an M.E.F. can still be useful in such

studies as economic systems, geopolitical forecasting, and any other application requiring

large and granular modelling. The ability to alter emulations with little or no overhead

especially makes such a use of an M. E. F. desirable.

- 75 -

6. 7 Co11clusion

The thesis of this work is that an advanced tool for the emulation of computer

architectures (particularly multiprocessor architectures) is an extremely helpful component of

an effort in computer architectural design. Our examples of emulation experiments actually

designed for and executed on the MIT MEF clearly outline the successful application of fast

protyping methods and flexible debugging and testing features to the design and

implementation of complex systems.

This work has already led to the completion of a small, slow emulation facility; we

hope that it will also lead to larger facilities with more computational horsepower, enhanced

functionality, and more simple interfaces for architectural experimenters. Certainly the

extremely complex design demands in the realm of superfast multiprocessor computers call

for more wide-reaching tools for testing new ideas in a timely manner, and we believe that the

M.E.F. idea is the foundation of such a set of tools.

6.8 Impact 011 Future N/achille Desig11

The September, 1984 issue of Spectrum magazine included a feature series entitled, In

Pursuit of the One-Month Chip, which outlined the methods and hopes for the future in the

area of very fast prototyping of integrated circuits (VLSI) to implement various processor

architectures and other electronic designs.41 However, it completely shrugged off the entire

higher-level design problem, stating merely that "a well-understood design must be used." In

fact, the tools to accomplish such a higher-level design do not exist at the level of complexity

needed to complement the other circuit and chip design tools presented in the article.

The M.E.F. described in this thesis performs exactly those functions. providing a

"multiprocessor sandbox" in which ideas can be quickly invented, attempted, and either

discarded or completed in very little time. Though more work, particularly in the area of

user-controlled dynamic network load scheduling and other resource allocation issues, is

needed to complete the ideas of M. E. F. structure, the structure outlined in this thesis provides

a strong basis for a useful and viable alternative and addition to the architectural design

schemes of the present. The impact on future computer design projects is potentially great, as

the full capabilities of prototypical emulations are realized.

- 76 -

1. M. Bardon, et. al., A National Computing Environment/or Academic Research,
National Science Foundation, July, 1983.

References

2. R. M. Russell, The Cray-I Computer System, Comm. of the ACM, Vol. 21, No. 1,
January 1978.

3. M. J. Kascic, Vector Processing on the Cyber 200, Control Data Corporation, 1979.

4. W. J. Bouknight, S. A. Denenberg, D. E. Mcintyre, J.M. Randall, A. H. Sameh, D.
L. Slotnick, The I Iliac IV System, Proc. of the IEEE, Vol. 60, No. 4, April
1972.

5. H. H. Mashburn, The C.mrnp/Hydra Project: An Architectural Overview, in
Computer Structures: Principles and Examples, D. P. Siewiorek, C. G. Bell, A.
Newell (Eds.), McGraw-Hill, New York, 1982.

6. AW. Burks, H. H. Goldsine, J. von Neumann, Preliminary discussion of the
logical desigJJ_Qf an electronic computing instrument, from Collected Works of
John van Neumann, Volume 5, A. H. Taub (Ed.), MacMillan, New York, 1963.

7. T. Agerwala and Arvind, Data Flow Systems. Computer, February 1982.

8. Arvind, K. P. Gostelow, and W. E. Plouffe, An Asynchronous Programming
Language and Computing Machine, Dept. of Information and Computer
Science Report TR ll4a, University of California, Irvine, December 1978.

9. G. M. Amdahl, Validity of the single processor approach to achieving large scale
computing capabilities, Proc. 1967 AF'/.PS Spring Joint Computer Conj,
March 1967.

10. J. E. Thornton, Design of a Computer, The Control Data 6600, Scott, Foresman
and Co., Glenview. Ill., 1970.

- 77 -

11. D. J. Kuck, R.H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe, Dependence
Graphs and Compiler Optimizations. Proc. 3th ACM Symp. Principles
Programming Languages, January 1981.

12. J. B. Dennis, Data Flow Supercomputers. Computer, November 1980.

13. Arvind, Y. Kathail. and K. Pingali, A Data Flow Architecture with Tagged Tokens,
Laboratory for Computer Science, Technical Memo 174, MIT, Cambridge,
MA, September 1980.

14. J. Rattner, W.W. Latten, Ada determines architecture of 32-bit microprocessor,
Electronics, February 24, 1981.

15. W. D. Hillis, The Connection Machine (Computer Architecture for the New Wave),
M.l.T. Artificial Intelligence Lab Memo 646, September 1981.

16. T. W. Malone, R. E. Fikes, M. T. Howard, Enterprise: A Market-I ike Task
Scheduler for Distributed Computing Environments, Working Paper, Xerox
PARC, October 1983.

17. C. E. Hewitt, The Apiary Network Architecture for Knowledgeable Systems,
Conference Record of the 1980 Lisp Conference, Stanford, 1980.

18. Arvind, M. L. Dertouzos. and R. A. Iannucci, A Multiprocessor Emulation
Facility, TR-302, Laboratory for Computer Science, MIT, Cambridge, MA,
October 1983.

19. Charles A. Hornig, private communication on the subject of failure of a Honeywell
Multics development system in a multiprocessing environment for the first
time.

20. Gregory M. Papadopoulos, A Nu Bus Channel Adapter, Tanglewood Design Note
13, M.l.T. Laboratory for Computer Science, May 1985.

21. D. Weinreb, and D. Moon, Lisp Machine Manual, M.I.T. Artificial Intelligence
Laboratory, July 1981.

22. Barbara Liskov, Alan Snyder, Russel Atkinson, and Crai Schaffert, Abstraction
Mechanisms in CLU, Communications of the ACM, Volume 20, Number 8,
August 1977.

- 78 -

23. A. Bensoussan, C.T. Clingen, and R.C. Daley, The Multics Virtual Memory;
Concepts and Design, Comm. of the ACM, Vol. 15, No. 5, May 1972.

24. Reference Manual for the Ada Programming Language, Proposed Standard
Document, United States Department of Defense, July 1980.

25. K. Thompson & D. M. Ritchie, The UNIX Time-sharing System,
Communications of the ACM, Vol. 17, July 1974.

26. Symbolics, Inc., PROT· Networks and Protocols~ Vol. 7 of Release 5.0
documentation set, March 1984.

27. Rettberg, R., C. Wyman. D. Hunt, M. Hoffman, P. Carvey, B. Hyde, W. Clark,
and M. Kraley, Development of a Voice Funnel System: Design Report, Tech.
Report 4098, Bolt 13eranek and Newman, Inc., August, 1979.

28. G. L. Steele, The Definition and Implementation of a Computer Programming
Language Based on Constraints, M.l.T. Dept. of EE & CS Ph.D. Thesis,
August 1980.

29. J.E. Rodriguez, A Graph !vlodelfor Parallel Computations, MAC-TR-64,
Laboratory for Computer Science, MIT, Cambridge,' MA, September 1969.

30. David E. Culler, Resource Management for the Tagged-Token Dataflow
Architecture, S. M. Thesis, MIT Dept. of EE & CS, Cambridge, MA,
December 1984.

31. A. J. Catto, & J. R. Curd, Resource Management in Dataflow, Proc. 1981 ACM
Conj Functional Programming Lang. and Computer Arch., October 18-22,
1981.

32. Donald W. Oxley, Motivation for a Combined Data Flow - Control Flow
Processor, Proc. SPIE 25th Annual Symp., 1981.

33. D. Comte, N. Hifdi, & J.C. Syre, The Data Driven LAU Multiprocessor System:
Result'> & Perspectives, Information Processing 80, S. H. Lavington (Ed.),
North-Holland, 1980.

34. Arv ind & Robert A. Iannucci, A Critique of Multiprocessing von Neumann Style,
Proc. of the 101

h Int'!. Symp. on Computer Architecture, June, 1983.

- 79 -

35. Arvind & Robert A. Iannucci, Instruction Set Deflnitionfora Tagged-Token Data
Flow Machine. Computation Structure Group Memo 212-3, MIT Laboratory
for Computer Science, February 1983.

36. G. F. Pfister, The Yorktown Simulation Engine: Introduction, Proc. 19th Design
Automation Conference, Las Vegas, 1982.

37. Randal E. 11ryant, Simulation on a Distributed System, Computation Structures
Group Memo 182, MIT Laboratory for Computer Science, July 1979.

38. Randal E. Bryant, Simulation of Packet Communication Architecture Computer
System::.~ M.l.T. Lab. for Computer Science Technical Report 188, November
1977.

39. K. Mani Chandy, and Jayadev Misra, Distributed Simulation: A Case Study in
Design_and Verification of Distributed Programs, IEEE Trans. Software Eng.,
Vol. SE-5, No. 5, September 1979.

40. Louis Pousin & Hubert Zimmerman, A Tutorial on Protocols. Proc. IEEE,
Volume 66, Number 11, November 1978.

41. F. Guterl, In Pursuit of the One-Month Chip, IEEE Spectrum Magazine, Volume
21, Number 9, September 1984, New York, New York.

- 80 -

Appendix

Reference Manual:
Tile MIT Multiprocessor Emulation Facility

This appendix is a reference manual for the M.E.F. implemented by the author at the
M. l.T. Laboratory for Computer Science, in the Functional Languages and Architectures
group, as part of the MIT MEF project. In the discussions below, we assume familiarity with
the Lisp Machine operating system and the Lisp Machine dialect of Lisp. The abstraction and
implementation of the MIT MEF are discussed elsewhere in this document

1. Emulation Experiment Description

In order to emulate a particular computer architecture, the MIT MEF must have some
static experiment definitions as well as some dynamic run-time communications support. The
Emulation Experiment Description describes the top level block structure of an architecture to
be emulated. The following functions are defined:

(define-emulation-experiment experiment-name &rest keywords)
This function gives the M EF all of the basic information about emulation experiment
experiment-name. The following alternating keyword/value pairs may be used:

:interactive <T /NIL> - Specifies whether this experiment is
to be interactively executed, or via remote batch facility. The number of processors in
an experiment may only be left for actual execution time if this keyword is set to T.

:long-name <name> - Specifics a "pretty name" for this
experiment, for use in output labelling.

:number-of processors <number/ :read> Specifies the number of logical
(target) processing elemenL<; (T.E.'s) that should be emulated by the MEF for this
experiment. The value ":read" specifies that this number should be prompted for at
emulation execution time.

:configuration <con.fig> - Specifies a configuration map for

- 81-

this emulation experiment. The configuration map notes how many T.E.'s of each
T. E. type in the current experiment should be executed, and to what logical
"destination addresses" they should respond. The format of <config> is a list, each
clement of which is a two-element list. The first clement of this sublist should be
either a logical destination number, or a list of (from to), where from and to arc
expressions denoting a range of logical destination numbers. These expressions may
he arithmetic expressions on the variable ":N ", which will be "bound" to the total
number of T. E.'s that arc being executed.

For example, a configuration map such as 'X(O CPU) {I MEMORY))" specifies that
there will be two T.E.'s total; at logical address 0 is a T.E. of type CPU, while at logical
address I there will be a T.E. of type MEMORY. A more advanced map is used by
the Tagged-Token Dataflow emulation; it uses

((0 (- :n 2)) normal-process) ((- :n 1) manager-process))

which means, allocate :N - 2 "normal-process"T.E.'s at addresses 0 through :N - 2,
and allocate a single "manager-process"T.E. at address :N-1.

:message-handler <function> Specifies that control panel user
messages (defined below) should be handled by the function <function>.

:shutdown-handler <function> Specifies that the function
<function> should he called when the current emulation is completed, and the user
has requested that the M EF shutdown operations. This hook can be used to collect
statistics, etc., when an experiment is completed.

: left-graph (<label> <scale> {<nbars>})
:right-graph (<label> <scale> {<nbars>}) Requests that the left (right) bar
graph display area of the MEF control panel be reserved, with the label <label>, a
bottom-to-top scale of <scale>, and a number of bars to be displayed equal to <nbars>.
The default number of bars if not specified is equal to the number ofT.E.'s emulated.

:routing-paradigm <type> - Notes that this emulation will follow
the given T.E. to T.E. routing paradigm. The MEF will simulate a particular
message-passing paradigm only to the extent of recording how many messages are
forwarded by each node of a simulated network. The <type> specification can be
:NONE, meaning that routing will not be simulated: :STATIC, meaning that the
routing table given by the :routing-map option should be used, or :DYNAMIC, which
notes that the routing information is not stable, and should be recomputed from the

- 82 -

:routing-map function at each message-pass.

:routing-map <map> - Specifics the map of T.E. to T.E.
routing to be simulated by this emulation experiment. The <map> may be a complete
route specification, such as:

((1 2) (1 2 3) (2 3 1) (2 3) (3 1) (3 l 2))

which specifics the routes from every T.E. to every other T.E. (for example, to get
from T.E. number two to T.E. number one, the route is T.E. 2 -> T.E. 3 -> T.E. 1);
or it may be a function. This function takes three arguments (sending-T.E.,
destination-TE., total number of T.E.'s in this experiment) and should return a list
noting the T. E. 's through which the message should travel.

:pe-implementation <type> - Specifies in which manner T.E.'s
should be executed. The :NORMAL option notes that T.E.'s should be represented as
Lisp Machine processes. The faster, but less general, :FUNCTIONAL option requests
that T.E.'s be implemented merely as calls to functions, which return after processing
an incoming message (thereby bypassing process-switching overhead). The fastest
scheme, :ONE-PER-PROCESSOR, request<; that T.E.'s be represented as direct calls
to functional definitions within the M EF overseer process, with state represented as
Lisp global variables. This last option, though it causes emulated machine execution
to proceed more quickly, requires that no more than one T.E. may be executed on any
physical processor.

(define-processor-variables variable-set-name &rest variables)
Defines a new set of T. E. state variables (registers) for use by T. E. functional
definitions. The variable-set-name may be spedfied in following define-processor
forms to note what registers arc used by such T.E. definitions; in the Lisp code for
those T.E.'s, the register names noted in the accompanying define-processor-variables
form may be used freely as Lisp global variables. The syntax of the variables portion
of this form are variable names or lists of the form (variable-name initialization).

(define-processor processor-type emulation-name variable-set start-function status-function
relative-load-(ac/or &rest pe-meters)
Defines a 1;cv-' T.E. type for the emulation-name emulation experiment, named
processor-Ty for which a functional definition will be specified. The T.E. registers to
be used by t. '>definition are declared to be the set variable-set. The function called to
initiate this t\ pc of T.E. is start-function: this function will be called with the logical
address of the T.E. being started and the total number of T.E.'s in the running
emulation. The status-function is called by the M EF to obtain the current status of a
running T.E.; it is called in the scope of that T.E.'s registers, and must return a string
noting the status of the T.E. The relative-load-factor should be a number between

- 83 -

zero and one noting the relative CPU load for this type of T.E.; this information is
used to do per-physical-processor load balancing. The pe-meters named will be noted
as per-T.E. meters for each T.E. of this type.

(define-meter meter-name emulation-name)
Defines a system-wide meter named meter-name acccssablc to (and shared by) all
T.E.'s in emulation experiment emulation-name.

(defmcf function-name experiment-name argument-list &body body)
Defines a function function-name as part of the functional definition of one of the T. E.
types of experiment-name. The argument-list and body arguments are the Lisp
function definition.

2. Communication and Metering Functions

In addition to the above purely static (definitional) support functions, the MEF
system includes many Lisp functions to interface to run-time communications and metering
facilities. These may be broken down into two classes: functions used by T.E. functional
definitions, and functions to interface to the MEF Control Panel. We begin by listing the
MEF functions available to T.E. function definitions.

(write-message destination-processor array &optional start end)
Sends a message to the logical T.E. numbered destination processor. The message to
be sent should be in array, an art-8b or art-string Lisp array. Start and end, if given,
should be an inclusive starting index of the message in array and an exclusive ending
index in array, in the standard Lisp Machine Lisp style. Note that the receiving T.E.
may be any logical T.E. in the current emulation, regardless of on which physical
processor such T. E. is executing or what interconnection schemes are necessary to
transmit the message. The sender also need not wait for message transmission
completion or retransmit request<>, as all transmission details are handled by the MEF.
It must be noted that the receiving T.E. does not get any information from the MEF as
to which T.E. sent the message; if such information is necessary, the transmitting T.E.
should include its logical address in the message.

(read-message-byte)
Reads the next available incoming byte from any logical T.E. transmitting to the
current T.E. This is useful to dispatch on packet types, etc. This function will block
on pending input if there is no input available.

(read-message array &optional start end)
Read any available incoming message that the MEF has directed from another logical
T. E. to the current T.E. The message will be read into array, which must be an art-Sb
or art-string array. 1 f start and end are given, the incoming message will be read into
array starting at the inclusive index start and ending at the exclusive index end

- 84 -

Otherwise, any incoming message will be used to fill the entire array. This function
will hang until the enough incoming bytes are received to fill the specified portion of
array.

(increment-meter meter-name)
Increments (by one) the system-wide or local-TE. meter meter-name. Meter-name
must have been declared previously by define-emulation-experiment or
define-processor.

(decrement-meter meter-name)
Decrements (by one) the system-wide or local-TE. meter meter-name. Meter-name
must have been declared previously by define-emulation-experiment or
define-processor.

(clear-meter meter-name)
Clears (sets to zero)
must have been
define-processor.

3. Use of the Control Panel

the system-wide or local-T.E. meter meter-name. Meter-name
declared previously by define-emulation-experiment or

In order to provide a "bootstrap processor" environment for configuring, starting up,
and shutting clown emulated architectures, the MEF includes a Control Panel system,
available to Lisp Machine users by selecting the MEF window (via <Select> - Period or the
System Menu). The frame that will be displayed looks like figure 16.

CHERRY
FLAME
OAK

ORFEO

- 85 -

-------Physical Processors Menu

User-Defined Dynamic Bar Graphs

76 16 28

Tokens Waiting (scale 100) I Structure Reads Deferred (scale 30)

Outpost O: Selected emulation experiment OF.
Outpost 1: Selected emulation experiment OF.
Outpost 1: Target element 0 (NORMAL-PROCESS) initiated.
Outpost 1: Target element l (MANAGER-PROCESS) initiated.
Processor 1: Boot program running.
Processor 1: Linking complete.

MEF Controller: Start-Emulation OF :Number-Of-Processors 2
MEF Controller: Boot-OF (1)
MEF Controller: Link OAK:>ID>invoke.df
MEF Controller: Run FACTORIAL

User Command Input Windo

MEF & Target Element Output

Figure 16: The MEF Control Panel

Clicking on the physical processor names in the menu on the left side allows the user
to list the real Lisp processes' and emulated T.E. processes' status on foreign physical
processors, or to terminate such processes. In addition, the following commands may be
typed lo the Control Panel's input window to use the MEF system:

Clear-Configuration
Clears any cached information about the physical configuration of the MEF system

- 86 -

(i.e., which physical processors the MEF system is currently using).

Configure Emulation {:Number-Of-Processors Integer}
Con !igures the physical description of a M EF system, allowing the user to specify the
physical Lisp Machine processors that are to take part in the current emulation
facility. This is the main interface for the support of the M EF's reconfigurability and
partitionability. If the system hm; not yet been configured, this command will first ask
for the source of a list of processors. Three answers arc possible:

E (Enter List) - The names of physical processors to
take part in this use of the M EF arc taken from the keyword, one at a time. This list
should be terminated by pressing the <End> key.

R (Read from File) - The names of physical processors to
take part in this use of the MEF arc taken from a file; the M EF will prompt for the
pathname of the file. The file should contain physical machine names, one on a line.
Lines beginning with semicolons are ignored, and may be used for comments.

F (Find Automatically) - All physical processors at the local
development site that arc capable of running M EF are automatically found and used
as part of the current emulation facility configuration. This process takes a few
minutes.

After the physical processors to be used in the current configuration have been
specified, connections to each machine are made and a MEF system process is created
on each participating machine. If an emulation name was specified in the command,
the Start· Emulation command is executed with that name.

Ocbug·Proccssor Address
The logical T.E. executing with destination address Address is halted and forced into
the Lisp debugger, with display routed automatically to the MEF Control Panel,
allowing the user to inspect and modify the internals of the T.E. as well ac;; restart or
terminate its function.

Mo re· Processing {On/ :Off]
Turns more processing in the (central) MEF output window of the Control Panel on
or off, to allow leisurely inspection of it<; output or to ignore it.

Outpost-Login User-Id Host-Name
Prompts for a password (which is not echoed), and causes all foreign processors
participating in the current emulation to log in to Host-Name with the login identifier
User-Id, so that foreign machines may freely use file systems other than their own.

- 87 -

Set-Bar-Gra11h {'On/ :Off]
Turns the Control Panel bar graph displays on or off, to allow faster operation of the
MEF.

Set-Tracing{Off/ :Local/ :Central}
Reroutes all tracing messages sent by logical T.E.'s. If :Off is selected, no tracing
messages arc displayed anywhere; :Central specifics that all messages should appear in
the output window of the Control Panel, and : Local requests that tracing messages
appear on the screens of originating physical processors.

Shutdown :Complete
Shuts down the current emulation experiment, terminating all communications and
T. E. implementations. If :Complete is specified, all foreign M EF processes are also
destroyed and inter-machine communciations dropped.

Start-Emulation Emulation : Number-Of Processors Integer
Begins the emulation experiment named Emulation, which must have been defined
previously via dcfinc·emulation-cxpcrimcnt. If the :Number-Of Processors option is
used, then the number of T.E.'s specified will be used; otherwise, if the emulation
does not specify a number of T.E.'s to be used in this emulation, the user is requested
to supply a number.

Status [Pe-Number/ :All}
Sends status messages to the T.E. at logical address Pe-Number, or to all T.E.'s if :All
is specified. The MEF system actually handles this request by calling the
user-supplied status function in the context of running T.E.'s.

4. Functional Interfaces to the Control Panel

The following Lisp functions may be used by T. E. implementation functions to
interact with the MEF Control Panel functions:

(write-error-message format-control-string &rest format-arguments)
Write a logical processor error message to the MEF controller for display. The
message, generated by the format arguments given, is displayed in the output window
of the Control Panel prefixed by the sender's T.E. logical address.

(write-display-message format-control-string &rest format-arguments)
Write a logical processor message, not denoting any error, to the MEF controller for
display. The message, generated by the format arguments given, is displayed in the
output window of the Control Panel prefixed by the sender's T.E. logical address.

(write-user-message array &optional start end)
Write a "user message" to the emulation experiment-defined message handler

- 88 -

residing in the controller. When this message is received by the Control Panel, the
"user message" handler (defined by the :message-handler option to
define-emulation-experiment) is invoked with the message as an argument. An
additional argument, a stream on which to do output, also is handed to the message
handler when it is invoked.

(send-tracing-message format-control-string &rest format-arguments)
Print a tracing message on the current tracing output stream, which is set via the
Set-Tracing Control Panel command.

(send-graph-message graph-display-select bar-number height)
Sends a message to the Control Panel updating one of the bar graph displays.
Graph-display-select may be zero or one, signifying the left and right bar graph
displays. Har-number selects the bar to update, while height specifies the relative
height to which to set the bar. If the bar graph displays arc disabled (via the
Set-Bar-Graph Control Panel command), the bar graphs are not updated (and no
communications overhead is incurre~).

(inject-message destination-processor array &optional start end)
Send a message to a logical processor, pretending to be from another logical processor.
This function may be used by the booL.;;trap functions of an emulation experiment to
start up an emulated machine.

(read-meter emulation-meter-name)
Reads the current value of the system-wide meter emulation-meter-name and returns it
as a Lisp integer.

(average-meter emulation-meter-name)
Reads the current value of the system-wide meter emulation-meter-name and averages
it over the number of logical T.E.'s executing in the current emulation experiment.

(read-processor-meter processor-meter-name)
Reads the current value of the per-T.E. meter processor-meter-name for each logical
T.E., and returns an array of values returns as well as the number of T.E.'s that
supplied values for that meter.

5. Example

The following pages contain an example of an emulation experiment, named
SIMPLE since it defines a trivial two-T.E. van-Neumann architecture comprised of a CPU
and a memory box.

- 89 -

-•-Mode: Lisp; Package: (SIMPLE GLOBAL 1000.); Base: 10. -•-

Definition of the SIMPLE emulation experiment, which emulates
a standard van Neumann architecture consisting of a CPU and a
MEMORY, connected via a "bus" simulated by the MEF.

Definitional interfaces to the MEF.
This form specifies the name of the experiment and its configuration.

(MEF:define-emulation-experiment
"SIMPLE" :interactive 't

:long-name "Simple CPU//Memory Machine"
:number-of-processors 2
:configuration '((O cpu) (1 memory))
:left-graph '("Memory Accesses//Instruction" 30. 1)
:right-graph '("Stack Depth" 100. 1))

; ; ; Where the stack begins in memory. Stack grows upward.
(defconstant stack-base 2048.)

; ; ; The CPU part of the system has all of the standard parts.
; ; ; Note that we "cache the stack on the processor board;" i.e., the stack
; ; ; is separate from the memory.
(MEF:define-processor-variables cpu

(pc 0) Program counter.
(cc 0) ; Condition code.
{fp stack-base) ; Frame pointer.
(sp stack-base) ; Stack pointer.
(registers (make-array 8. :type art-q :initial-value 0)))

; ; ; The MEMORY part of the system simply contains a small 32-bit wide memory.
(MEF:define-processor-variables memory

(memory (make-array 4096. :type art-q :initial-value 0)))

; ; ; Notify the MEF of these two new kinds of processor.
(MEF:define-processor cpu simple cpu start-cpu cpu-status 1.0)
(MEF:define-processor memory simple memory start-memory memory-status 1.0)

Definition of the INSTRUCTION abstraction; an instruction to the CPU
; ; ; stored in the MEMORY's memory. An INSTRUCTION is composed of
; ; ; 6 bits of opcode and two addresses, each composed of
; ; ; 3 bits of address code, and 10 bits of address.
(defmacro instruction-opcode (word) '(%1ogldb {byte 6. 26.) ,word))
(defmacro instruction-adcodel (word) '(%logldb (byte 3. 23.) ,word))
{defmacro instruction-addrl (word) '(%logldb (byte 10. 13.) ,word))
(defmacro instruction-adcode2 (word) '(%logldb {byte 3. 10.) ,word))
{defmacro instruction-addr2 (word) '{%logldb (byte 10. 0.) ,word))

(defmacro make-instruction (opcode adcodel addrl adcode2 addr2)
'(%logdpb ,opcode (byte 6. 26.)

(%1 ogdpb , adcodel (byte 3. 23.)
(%1ogdpb ,addrl (byte 10. 13.)

{%logdpb ,adcode2 (byte 3. 10.) ,addr2)))))

; ; ; These are the defined address
(defconstant register-adcode 0) ;
(defconstant memory-adcode 1)
{defconstant stack-adcode 2)
(defconstant immediate-adcode 3);
(defconstant fp-adcode 4)
(defconstant arg-adcode 5)

codes, or simple addressing modes.
Address is register number.
Address is straight into memory.
Address is stack offset.
Address is immediate.
Address is frame offset.
Address is argument number.

; ; ; Functions for defining and storing CPU ALU functions.
(defvar alu-functions (make-array 64. :type art-q :initial-value nil))

(defmacro define-alu-function (name number arglist &body body)
'(progn 'compile

(setf (aref alu-functions ,number) ',name)
(defun (:property ,name alu-function) ,arglist . ,body)
(defprop ,name ,number alu-function-number)))

- 90 -

; ;; Definition of the stack frame. All numbers are positive offsets frame ptr (FP).
(defconstant old-fp 0) (defconstant old-sp 1) (defconstant old-cc 2)
(defconstant old-pc 3) (defconstant frame-size 4)

; ; ; Constant PE numbers.
(defconstant cpu-pe 0) (defconstant memory-pa 1)

; ;; Condition codes
(defconstant cc-clear 0)
(defconstant cc-zero 3)

(defconstant cc-overflow 1) (defconstant cc-negative 2)
(defconstant cc-positive 4)

; ;; Memory requests.
(defconstant memory-read-request #/R)
(defconstant memory-write-request #/W)
(defconstant memory-load-request #/L)

Standard message buffers for inter-processor interaction. These
; ; ; message buffers by convention are two words (eight bytes) long.
;; ; Protocols are stored in the top byte, two byte fields in the
;; ; low bytes of the first word, and word fields in the second word.
(defmacro message-type (message-buffer) '(aref ,message-buffer 3))

{defmacro put-two-byte-field (number message-buffer)
(once-only (number)

'(progn (setf (aref ,message-buffer 0) (ldb (byte 8 0) ,number))
(setf (aref ,message-buffer 1) (ldb (byte 8 8) ,number)))))

(defmacro get-two-byte-field (message-buffer)
'(dpb (aref ,message-buffer 1) (byte 8 8) (aref ,message-buffer 0)))

; ; ; The command interface for the controller screen while the emulation is running.
; ; ; Array to assemble SIMPLE code into.
(defresource assembly-array () :constructor (make-array 2~6. :type art-q)

:initial-copies 1)

; ; ; The
(defvar
(defvar

message buffer (see above) for the command interface.
inject-message-buffer (make-array 8 :type art-Bb :initial-value 0))
inject-message-word (make-array 2 :type art-q

:displaced-to inject-message-buffer))

; ;; Command to link/load a file of SIMPLE code.
(define-command assemble simple "Assemble and load a Function in SIMPLE code."

((:arguments (file :pathname "File to assemble and load." :noise-string "file")))
(using-resource (array assembly-array)

(let ((end (assemble file array 0))
(bytes (make-array 1024. :type art-Sb :displaced-to array)))

(setf (message-type inject-message-buffer) memory-load-request)
(put-two-byte-field O inject-message-buffer)
(setf (aref inject-message-word 1) end)
(MEF:inject-message memory-pe inject-message-buffer)
(MEF:inject-message memory-pe bytes 0 (* end 4)))))

Command to run the machine from a given PC with a set of arguments.
(define-command run simple "Run the SIMPLE emulation."

((:arguments (arguments :integer "Arguments to the loaded function."
:noise-string "arguments" :times (0 *)))

(:control-arguments (start :pc :integer "Initiate program counter."
:noise-string "starts at" :default 0)))

(format t "-&Starting at PC -D, with -0 argument-:P.-%" start (length arguments))
(setf (aref inject-message-buffer 0) (length arguments))
(MEF:inject-message cpu-pe inject-message-buffer O 1)
(loop for number in (reverse arguments) doing

(setf (aref inject-message-word 0) number)
(MEF:inject-message cpu-pe inject-message-buffer 0 4))

(setf (aref inject-message-buffer 0) start)
(MEF:inject-message cpu-pe inject-message-buffer O 1))

-91-

;; ; Definition of the SIMPLE CPU processor.

;; ; The CPU's message buffer (see above).
(defvar cpu-message-buffer (make-array 8 :type art-Sb :initial-value 0))
(defvar cpu-message-word

(make-array 2 :type art-q :displaced-to cpu-message-buffer))

;: ; Total number of instructions/memory accesses
;; ; executed since last RUN command.
(defvar total-instructions 0)
(defvar memory-accesses 0)

;: : This is the toplevel of the CPU. It reads incoming messages,
: ; : which at this level are assumed to be simply arguments and starting PC's.
(defun start-cpu (ignore ignore)

(loop doing
(•catch 'abort-cpu

(setf sp stack-base fp stack-base cc 0 pc 0)
(loop doing

;: Clear instruction count and access count.
(setq total-instructions 1 memory-accesses 0)
;; Read in any arguments, push them on the stack.
(loop repeat (MEF:read-message-byte) doing

(MEF:read-message cpu-message-buffer 0 4)
(stack-push (aref cpu-message-word 0)))

: ; Read in the starting address, push phony stack frame.
(initiate-call (MEF:read-message-byte))
; ; Run.
(*catch 'toplevel (run-cpu))
; ; Pick up return value and display it.
(MEF:send-graph-message O 0 0)
(MEF:send-graph-message 1 0 0)
(MEF:write-display-message "The answer is -D."

(stack-pop))))))

:: ; Standard function for ascertaining the status of a CPU processor.
(defun cpu-status ()

(format nil "CPU. PC = -D, FP = -D, SP -D. CC = -D" pc fp sp cc))

;;: Push a stack frame and update the PC if necessary.
(defun initiate-call (&optional new-pc)

(memory-write (+ sp old-fp) fp)
(memory-write (+ sp old-sp) sp)
(memory-write (+ sp old-cc) cc)
(memory-write (+ sp old-pc) pc)
(setf fp sp sp (+ sp frame-size) cc 0)
(and new-pc (setf pc new-pc)))

;; : Fetch a single word from memory.
(defun memory-fetch (address)

(incf memory-accesses) .
(setf (message-type cpu-message-buffer) memory-read-request)
(put-two-byte-field address cpu-message-buffer)
(MEF:write-message memory-pe cpu-message-buffer 0 8)
(MEF:read-message cpu-message-buffer 0 4)
(aref cpu-message-word 0))

::: Write a single word to memory.
(defun memory-write (address value)

(incf memory-accesses)
(setf (message-type cpu-message-buffer) memory-write-request)
(put-two-byte-field address cpu-message-buffer)
(setf (aref cpu-message-word 1) value)
(MEF:write-message memory-pe cpu-message-buffer 0 8))

- 92 -

; ; ; Real instruction processor. Loops on instruction at PC doing execution.
(defun run-cpu (&aux instruction)

(loop doing
; ; Update memory accesses/instruction and stack size bars.
(MEF:send-graph-message

O O (fixr (• 10.0 (// (float memory-accesses) total-instructions))))
(MEF:send-graph-message 1 0 (- sp stack-base))

; ; Fetch instruction at PC.
(setq instruction (memory-fetch pc))
(incf total-instructions)
(incf pc) (decf memory-accesses)

;; Call the referenced function, bind results and branch if necessary.
; ; We should get back an "answer" and a ''disposition" which specifies
: ; the kind of instruction which got executed.
(multiple-value-bind (answer disposition)

(funcall (get (aref alu-functions (instruction-opcode instruction))
'alu-function)

(dereference (instruction-adcode1 instruction)
(instruction-addr1 instruction))

(dereference (instruction-adcode2 instruction)
(instruction-addr2 instruction)))

(selectq disposition
(:store (store-value answer

(instruction-adcode1 instruction)
(instruction-addr1 instruction)))

(:branch (if(= answer 1)
(setf pc (instruction-addr1 instruction))
(setf pc (instruction-addr2 instruction))))))))

; ; ; Dereference an address-code/address pair into a value.
(defun dereference (adcode addr)

(select adcode
(memory-adcode ; Memory reference.

(memory-fetch addr))
(register-adcode ; Register reference.
(aref registers addr))

(stack-adcode ; Stack reference.
(memory-fetch (+ sp (sign-extend addr))))

(immediate-adcode ; Immediate value.
(sign-extend addr))

(fp-adcode ; Stack reference offset from frame pointer.
(memory-fetch (+ fp (sign-extend addr))))

(arg-adcode ; Stack reference to an argument.
(memory-fetch (+ (- addr) fp -1)))

(T (ferror "Unknown address code -0." adcode))))

Store a value at a location specified by an address-code/address pair.
(defun store-value (value adcode addr)

(select adcode
(memory-adcode ; Memory reference.

(memory-write addr value))
(register-adcode ; Register reference.
(setf (aref registers addr) value))

(stack-adcode ; Stack reference.
(memory-write (+ sp (sign-extend addr)) value))

(immediate-adcode ; Illegal immediate value.
(ferror "You may not store into an immediate value."))

(fp-adcode ; Stack reference offset from frame pointer.
(memory-write (+ fp (sign-extend addr)) value))

(arg-adcode ; Stack reference to an argument.
(memory-write (+ (- addr) fp -1) value))

(T (ferror "Unknown address code -0." adcode))))

Sign extend a ten bit address to a 32-bit LispMachine fixnum.
(defun sign-extend (10hit-number)

(if (zerop (ldb (byte 1 9.) lObit-number)) 10bit-number
(%logdpb -1 (byte 22. 10.) lDbit-number)))

- 93 -

The ALU functions that are to be emulated.

LOAD and arithmetic functions.

(define-alu-function load 0 (ignore value) (values value :store))

(define-alu-function add 1 (value1 value2)
(arithmetic-processor (+ value1 value2)))

(define-alu-function mult 2 (value1 value2)
(arithmetic-processor (• value1 value2)))

(define-alu-function sub 3 (value1 value2)
(arithmetic-processor (- value1 value2)))

(define-alu-function div 4 (value1 value2)
(arithmetic-processor (fix (II (float valuel) value2))))

(defun arithmetic-processor (number)
(cond ((or (floatp number) (bigp number))

(setf cc cc-overflow) (setq number 0))
((minusp number) (setf cc cc-negative))
((zerop number) (setf cc cc-zero))
(T (setf cc cc-positive)))

(values number :store))

; ;; Stack operations.

(define-alu-function push 10. (value ignore) (stack-push value))

(define-alu-function pop 11. (ignore ignore) (values (stack-pop) :store))

(defun stack-push (value) (memory-write sp value) (incf sp0)

{defun stack-pop () (decf sp) (memory-fetch sp))

;; ; Branching functions based on input values.

{define-alu-function bneg 20. (value ignore) (if (< value 0) (values 2 :branch)))

(define-alu-function bpos 21. (value ignore) (if (>value 0) (values 2 :branch)))

(define-alu-function bzero 22. (value ignore) (if (zerop value) (values 2 :branch)))

; ; ; Branching function based on condition code.
{define-alu-function bee 23. (condition ignore)

(if (= condition cc) (values 2 :branch)))

;;; Call/Return and assorted.
(define-alu-function call 30. (ignore ignore) (initiate-call) (values 1 :branch))

(define-alu-function return 31. (value ignore)
(let ((new-fp (memory-fetch (+ fp old-fp)))

(new-sp (memory-fetch (+ fp old-sp)))
(new-cc (memory-fetch (+ fp old-cc)))
(new-pc (memory-fetch (+ fp old-pc))))

(memory-write fp value)
(setf fp new-fp sp (1+ new-sp) cc new-cc pc new-pc)
(if(= new-fp stack-base) (•throw 'toplevel nil))
nil))

Stop the machine (by aborting the CPU processor).
(define-alu-function stop 40. (ignore ignore) (*throw 'abort-cpu nil))

- 94 -

; ; ; A character buffer.
(defvar string (make-array 32. :type art-string :leader-list '(O)))

:;; Print out a character (or two).
(define-alu-function print 41. (charl char2)

(array-push-extend string char1)
(or (zerop char2) (array-push-extend string char2))
nil)

; ; ; Finish print, sending to the controller console.
(define-alu-function terpri 42. (ignore ignore)

(MEF:write-display-message string)
(setf (array-leader string 0) 0)
nil)

; ; ; Definition of the SIMPLE MEMORY processor.

; ; ; The memory processor's message buffer.
(defvar memory-message-buffer (make-array 8 :type art-8b :initial-value 0))
(defvar memory-message-word

(make-array 2 :type art-q :displaced-to memory-message-buffer))

;; ; The toplevel function for the memory processor. Read memory requests,
;; ; process, and return values if necessary.
(defun start-memory (ignore ignore)

(loop doing
(MEF:read-message memory-message-buffer O 8)
(select (message-type memory-message-buffer)

(memory-read-request (handle-read-request))
(memory-write-request (handle-write-request))
(memory-load-request (handle-load-request))
(T (ferror "Illegal memory request.")))))

Standard function for ascertaining the status of a memory processor.
(defun memory-status ()

(format nil "MEMORY. Word 0 = -D" (aref memory 0)))

; ; ; Handle a memory READ request.
(defun handle-read-request ()

(setf (aref memory-message-word 1)
(aref memory (get-two-byte-field memory-message-buffer)))

(MEF:write-message cpu-pe memory-message-buffer 4 8))

; ; ; Handle a memory WRITE request.
(defun handle-write-request (&aux address)

(setq address (get-two-byte-field memory-message-buffer))
(setf (aref memory address) (aref memory-message-word 1)))

;; ; Handle a memory bulk LOAD request.
(defun handle-load-request (&aux start length)

(setq start (get-two-byte-field memory-message-buffer)
length (aref memory-message-word 1))

(loop repeat length for offset from start doing
(MEF:read-message memory-message-buffer O 4)
(setf (aref memory offset) (aref memory-message-word 0))))

- 95 -

An assembler for SIMPLE code.

Read code from PATHNAME, output code into ARRAY (art-q).
Puts memory it uses after end of code.

(defun assemble (pathname array &optional (offset 0) &aux list tags)
(pkg-bind 'SIMPLE

(with-open-file (stream pathname :direction :in :characters 't)
(loop with token and index and arg and count = offset

as input = (send stream : 1 ine-in)
while (and input (not (zerop (string-length input)))) doing
(setq index (string-search-not-set '(#\space #\tab #\c-L) input))
(when (and index (neq (aref input index)#/;))

(multiple-value (token index)
(read-from-string input nil index

(string-search-char #/: input)))
(when (= (aref input index)#/:)

(push (list token count) tags)
(multiple-value (token index)

(read-from-string input nil (1+ index))))
(multiple-value (arg index) (read-argument input index))
(incf count)
(push (list token arg (read-argument input index)) list))))

(loop for (inst addrl addr2) in (nreverse list) and count from offset
finally (return (1+ count)) do
(setf (aref array count)

(%logdpb (instruction-name->number inst) (byte 6. 26.)
(%1ogdpb (clear-address addrl tags) (byte 13. 13.)

(clear-address addr2 tags)))))))

; ; ; Change an address that could not be computed at scan time into an address
; ; ; (i.e .. branch and call targets and the like).
(defun clear-address (address tags &aux lookup)

(cond ((null address) (dpb register-adcode (byte 3 10.) 0))
((numberp address) address)
((setq lookup (assq address tags))

(dpb memory-adcode (byte 3 10.) (second lookup)))
(T (ferror "Unknown address: -S." address))))

Find the opcode for a given instruction.
(defun instruction-name->number (name) (get name 'alu-function-number))

; ;; Tools for disassembling assembled portions of memory.
(defun unassemble (array &optional (from 0) to)

(or to (setq to (array-length array)))
(loop with word for index from from to to doing

(or (setq word (aref array index)) (return))
(format t "-&-:4D: -BA" index

(aref alu-functions (instruction-opcode word)))
(format-address (instruction-adcodel word) (instruction-addrl word))
(format t ". ")
(format-address (instruction-adcode2 word) (instruction-addr2 word))
(terpri)))

(defun format-address (adcode addr)
(select adcode

(memory-adcode (format t "-D" addr))
(register-adcode (format t "R-D" addr))
(stack-adcode (format t "SPl-D" (sign-extend addr)))
(immediate-adcode (format l "#-D" (sign-extend addr)))
(fp-adcode (format t "FPl-D" (sign-extend addr)))
(arg-adcode (format t "ARGl-D" addr))
(T (format t "UNKNOWN"))))

- 96 -

; ; ; Translate a symbolic address into an address-code/address pair.
(defun read-argument (string index &aux end)

(setq index (string-search-not-set '(#\tab #\space) string index))
(setq end (or (string-search-set '(#\tab #\space#/, #/;) string index)

(string-length string)))
(cond ((mem #'string-equal (substring string index end)

'(rO rl r2 r3 r4 r5 r6 r7))
; ; A REGISTER specification.
(values (dpb register-adcode (byte 3 10.)

(- (aref string (1+ index)) #/0))
(1+ end)))

((string-equal "#CC" string 0 index 3 (+ index 3))
; ; A CONDITION CODE specification.
(let ((word (substring string (1+ index) end)))

(values (dpb immediate-adcode (byte 3 10.)
(cond ((string-equal word "CC-NEGATIVE") cc-negative)

((string-equal word "CC-POSITIVE") cc-positive)

(1+ end))))

((string-equal word "CC-ZERO") cc-zero)
((string-equal word "CC-OVERFLOW") cc-overflow)
{T (ferror "Unrecognized condition: -S" word))))

((= (aref string index) #/")
; ; A CHARACTER specification.
(values (dpb immediate-adcode (byte 3 10.)

(aref string (1+ index))) (1+ end)))
((= (aref string index) #/#)
;; An IMMfDIATE specificiation.
(values (dpb immediate-adcode (byte 3 10.)

(read-from-string string nil (1+ index) end))
(1+ end)))

((string-equal "ARGI" string O index 4 (+index 4))
; ; An ARGUMENT specification.
(values (dpb arg-adcode (byte 3 10.)

(read-from-string string nil (+ index 4) end))
(1+ end)))

((string-equal "SPI" string 0 Index 3 (+ index 3))
; ; An STACK OF FSEf spec if i cation.
(values (dpb stack-adcode (byte 3 10.)

(read-from-string string nil (+ index 3) end))
(1+ end)))

((string-equal "FPI" string 0 index 3 (+index 3))
; ; An STACK OFFSET FROM FRAME POINTER specification.
(values (dpb fp-ridcode {byte 3 10.)

(T

(read-from-string string nil (+ index 3) end))
(1+ end)))

A SYMBOLIC ADDRESS (i.e., branch/call target).
(values (read-from-string string nil index end) (1+ end)))))

I Ip C 1 a SS j f j ed
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETiiil FORM

T. REPORT NUMISER r· GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG N~BER

MIT/LCS/TR-339
4. TITLE (_,d Subtitle) S. TYPE OF REPORT Iii PERIOD COVERED

Generic Software for Emulating Master's thesis
Multiprocessor Architectures May 1985

II. PERFORMING ORG. REPORT NUMBER

MIT/LCS/TR-339
7. AU THOR(•) I. CONTRACT OR GRANT NUMBER(•)

Richard Mark Soley DARPA/DOD
N00014-75-C-0661

II. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASIC
AREA Iii WORIC UNIT NUMBERS

MIT Laboratory for Computer S,cience
545 Technology Square
Cambrid_g_eJ_ MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA/DOD Ma_y 1985
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlinaton. VA 22209 ...9...6.
-n. MONITORING AGENCY NAME 6 ADDRESS(ll dlllerent lto111 Controlllnll Olllce) II. Sl!CU RITY CL.ASS. (ol thla report)

ONR/Department of the Navy Unclassified
Information Systems Program . rs •. DECL.ASSI l'"ICATIOWDOWNGRADING Arlington, VA 22217 SCHEDULE

IS. DISTRIBUTION STATEMENT (ol thla Report)

Approved for Public Release, distribution is unlimited

17. DISTRIBUTION STATEMENT (ol the ebatrect entered In Bloolr 20, II dlller_,t lram Report)

Unlimited

II. SUPPLEMENTARY NOTES

Ill. ICEY WORDS (Continue on reyerH aid• II naceH_,, .,d Identity by bloclr number)

Computer architecture, emulation, simulation, data flow

'M. AelTWT,...,._ __ ... tl•••••••I _. Ip,

The eipense of daipiag. prolOtypiftl. ancl eestm& a new ccsmp ldtr atdlitecture (particularly

DD

non-traditional supercomputer architectures, such m; the dataflow machine) is enormous. The

relative inflexibility of hardware to cxpcrin1ental changes increases the need to fully test a new
architectural idea.

l'OMI
I JAN 73 1473

·- ,.

EDITION 01' I lfOV II II OlllOLETE
S/N 0102·014•6601 I Unclassified

SECURITY CL.ASSll'"ICATION 01'" THIS PAGI! (ften Date •ntered)

- . . --·-·

architectures is outlined. An overall design is discussed, noting the need for such a system,

how it would be used to model and test various architectures, and possible implementation
paths.

Various extensions and uses of such a generic prototyping system are also discussed, including

extensions for modelling shared-resource systems, centrally synchronized systems, <md

distributed timing simulation systems. In addition, two uses of Lhe system are presented, in

particular the Tagged Token Dataflo~ ArcJ1i_t(!cture, noting various· methods in which such a

llllChine may be simulated under a generic emulation ~

IJocl a55j fj ea
Sl!CU .. ITY CLASSIFICATION 01" THIS PAGE(ften ~t• Bntered)

