COMPUTER DESIGN FOR ASYNCHRONOUSLY REPRODUCIBLE MULTIPROCESSING
by
EARL CORNELIUS VAN HORN, JR.

S.B., Massachusetts ;gstitute of Technology
1961

S.M., Massachusetts Institute 'of-'rechnologr
1963

SUBMITTED IN PARTIAL FULFILIMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSCPHY
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September, 1966

Signature of Author

Certified by

COMPUTER DESIGN FOR ASYNCHRONOUSLY REPRODUCIBLE MULTIPROCESSING

by
EARL CORNELIUS VAN HORN, JR.

Submitted to the Department of Electrical Engineering on August 22,
1966, in partisl fulfillment of the requirements for the degree of
Doctor of Philosophy.

ABSTRACT

A concept 1s presented for designing either a computing system, or a
programming language system, so that the following problem is avolded:
during & multiprocess computation in which several processes communicate,
and in which the relative timing of the performance of the processes is
arbitrary, the output produced by the computation might not be a function
of only the initial computetion state, i.e., of only the inputs and initial
program of the computation. The design concept for avoiding this problem
is explained by defining an apparently new class of sbstract machines
called machines for coordinsted multiprocessing, or MCM's. Processes are
coordinated in an MCM by means of & count matrix, which may be modified
by actions of processes, and which determines the processes enabled to
proceed at any instant. Remarks are made to suggest that a computing
facility which behaves like an MCM can be both constructed and programmed
at reasonable cost. It is proved that every MCM has the properties of
output functionality and output assuredness. Output functionality means
that each symbol in every output stream is a function only of the initisl
computation state. Output sssuredness means that for each output stream
the maximum number of symbols produced in the stream, or the fact that
the number of such symbols has no upper bound, is & function only of

the initial computation state.

Thesis Supervisor: Jack B. Dennis
Title: Associate Professor of Electrical Engineering

i1

Preface

The Thesis discusses three broad topics: (1) a problem encountered
in some contemporary computing systems, (2) a concept for designing a
computing system in order to solve this problem, and (3) a proof that
the concept presented does indeed solve the problem.

The problem concerns multiprocessing. Multiprocessing occurs
whenever a computing system is programmed by & single user in s manner
that allows more than one sequence of actions to be performed for him
simultaneously. Suppose information is transmitted among such sequences
of actions, and suppose the relative timing of the performance of these
sequences is not under user control. The problem to which the Thesis
is addressed is that in these circumstances the ocutput produced for a
user by the performance of such sequences might not be & function of only
the inputs and initial program thet are specified by the user. A more
precise statement of the problem and a discussion of the problem's origin
and significance are the subjects of Chapter I.

A concept for designing a computing system in order to avoid the
problem Just mentioned has been discovered. An attempt has been made
to capture the essence of this design concept by deseribing, in
Chapter II, a class of abstract machines called machines for coordinated
multiprocessing, or MCM's for short. A preview of the structure of an
MCM is given near the beginning of Chapter 1I.

Chapter III discusses the feasibility of constructing and
programming a computing system whose internal structure can be placed

into correspondence with the structure of an approprietely chosen MCM.

iii

In Chapters IV and V it is proved that the problem mentioned sbove does
not arise in an MCM. Conclusions and suggestions for future research
are presented in Chapter VI.

The Thesis might be of interest to three groups: (1) those
concerned with designing the hardware and supervisory software of
computing systems, (2) those concerned with designing programming
language systems, i.e., programming languages and compilers for these
languages, and (3) those concerned with the theory of automata. The
primary orientation of the Thesis is toward the design of the hardware
and supervisory software of a computing system. The Thesis is also
relevant, however, to the design of programming language systems, in
two respects. First, the programming of a computing system constructed
along the lines to be discussed, although shown in the Thesis to be
feaslble, presents an interesting challenge both to programmers, and to
the designers of programming language systems. Second, by employing
the design concept to be discussed, it is possible to develop for any
computer a progremming language system having the property that if a user
interacts with the computer only by means of the language system, the
user will never encounter the problem mentioned sbove. Finally, the
Thesis 1s relevent to automata theory, because it appears that the class
of machines called M(M's has not been studied before.

Although the Thesis as a whole is oriented toward the area of
computer engineering practice, the topies and methods of Chapters 11, 1Iv,
and V are characteristic of the area of automata theory. The techniques
of automata theory havé been employed in the Thesis for three reasons.

First, the essence of the design concept that has been discovered is

iv

captured m&re effectively in a description of en abstract machine than
in a description of a hypothetical computing system; in a description
of the latter kind the essence of the design concept would tend to be
obscured by irrelevant detail. Second, by expreesing the design concept
in terms of the structure of an abstract machine, the nature of an
apparently new phencmenon is made readily availsble for study and
comparison with other concepts in the theory of automata. Third, the
mathematical language and techniques used in sutomata theory allow the
presentation of highly rigorous proofs of facts that, although
intuitively satisfying, have turned out to be slippery to verify by
meens of logic.

For the reasons just mentioned, the Thesis may be said to stend
both in the\aree of computer engineering practice, and in the area
of sutometa theory. As with any interdisciplinary work, the technical
jargon of ome aree might not be readily understood by those working :Ln
the other area. An effort has been made, therefore, to explain
technical terms not common to both fields, and to avoid locutions
likely to be misleading.

The doctoral research program which led to the present Thesis
began with an inquiry into the possibility of analyzing quantitatively
the problems of storage allocation in camputing systems. This inguiry
led to a search for ways of characterizing the structursl aspects of
computing systems, particularly multiprogrammed compﬁting systems. The
present research t&p:lc, in turn, resulted from aﬁ effort to describe the
properties of those events which constitute the execution of a single

program within a multiprogrammed system.

I should like to acknowledge gratefully the support of M.I.T.'s
Project MAC*, the activities of which stimulated my search toward the
present research topic. The presentation of ideas in the Thesis has
been substantially improved &s a result of comments and suggestions by
Professors R. McNaughton, R. Y. Kain, and F. J. CorbatS. I am grateful
to my advisor, Professor Jack B. Dennis, not only for his assistance on
technical metters, but also for his unswerving confidence in my
abilities. Finelly, to my wife,-vSandra, I extend special thenks for

the typing of the msnuseript, and for her -encouragement and devotion.

Earl Van Horn

»*
Work reported herein was supported in pert by Project MAC, an M.I.T.
research progrem sponsored by the Advanced Research Projects Agency,

Depertment of Defense, under Office of Naval Research Contract Number
Nonr-4102(01).

vi

"We cut up and organize the spread and flow of events as
we do, largely because, through our mother tongue, we are
parties to an agreement to do so, not because nature itself

is segmented in exactly thet way for all to see.'

Benjamin Lee Whorf

vii

Contents

Abstract

Preface

Introductory Quotation
List of Figures

Chapter I. Contemporary Multiprocessing
Introduection
Single-Process Programs
Multiprocess Programs
The Computation State
Computing Facllities
Arbitrarily-Timed Cooperative Multiprocessing
‘Output Functionality
Lurking Bugs
Iarking Bug Effects
Contemporary Procedure Steps for Multiprocessing
An Example of & Imrking Bug

Chapter II. A Machine for Coordinated Multiprocessing
Introduction
Preview
Cells
Transactions
Get Transactions
Put Transactions
Procedure Steps
Reading and Writing
Outputting
The Scheduler
The Count Matrix
The Enable Set
Nomenclature for Cells

viii

i1
111
vii
xii

Glo-l\us\om\n\nwppp

23
23
ok

29
32
34
35
36

38
39
41
b2

The Choice Collection for Gets and Puts
Send, Done, and Bye Transactions

The Choice Collection

Scheduling Strategies

Specifying A Well-Defined MCM
Coordination of Processes

Tebulation of MCM Properties

Chapter IITI. A Facility That Behaves Like an MCM

Purpose

Method

Dynamic Allocation
Overview of VM

A Viewpoint toward Secondary Storage References

Introduction to Segments

Segments

Clerks

Input Devices

Output Devices

Control Matrix Elements

A Sketch of VM's Operation
Coordination Procedure Steps

An Example -- Matrix Manipulation Again

Introduction to the Correspondence between VM
and an MCM

The Cluster Corresponding to a Segment

The Cluster Corresponding to a Clerk
Performance Correspondences

The Cluster Corresponding to an Input Device
The Cluster Corresponding to an Output Device
The Cluster Corresponding to an Unused Neme

The Correspondence between Control and Count Matrices

Coordination Correspondences
The Timing Correspondence

k3

b7
b
18
Ly
56

61

SeeRR

68

71
71
73
73
76

79
83

BREELIBIES

Creation and Deletion Correspondences 104

Epilogue for the Correspondence between VM and M 10k
The Problem of Choosing Names 105
Naming Conventlons Suggested to Facilitate 106
Creetion and Deletion
Creation and Deletion Procedure Steps 111
Another Example -- Macro Expansion 11k
Control Matrix Implementation 125
Chapter IV. The Output Functionality of an MCM v 136
Introduction 136
Specialization to a Single Arbitrary MCM 136
The Run as a Formal Description of & Camputation 137
The History Array of & Run 140
Statement of the Functionality Theorem 145
The Augnented Array 146
Introduction to the Proof 148
The Inductive Formulation 149
The Initiasl Step 150
Beginning the Inductive Step 150
Facts and Nomenclature about Augmented Arrays 153
Boundaries 156
The Count Matrix at the Conclusion of & Prefix Run 156
Resuming the Proof 161
The First Stage 163
The Second Stage 179
The Third Stage 180
Chapter V. The Output Assuredness of an MCM 193
Introduction 193
Specialization to & Single Arbitrary MCM 193
Types of Computations 194
The Traces of an Initial Computation State 195
The Limit Vector of & Trace 197

Statement of the Assuredness Theorem 197

The Formulation 108
The Construction 199
The Contradiction 206
Chepter VI. Conclusions and Suggestions for Future Research 216
Introduetion 216
Asynchronous Reproducibility 216
The Conditional Nature of Asynchronous Reproducibility 217
Repeatable Input Streams 218
State Input Streams 219
The Hang-Up Phenomenon 220
Ownership 222
Questions of Necessity 22k
Toward a Science of Computer Design 226
Appendix A. The Non-Redundasncy of Bye Transactions 228
Appendix B. Well-Defined MCM's , 231
Appendix C. Summary of Notation - e33
References 235
Biographical Note 237

xi

1.1.
1l.2.
1.3.
2.1.
2.2.
2.3.

2.h.
2.5.
2.6.

2.7
3.1.
3.2.

3.3.

3.4,
3.5.

3.6.
3.7.

3080

List of Figures

Exsmple of output-nonfunctional multiprocessing
Inrking bug destroying output functionallty
Flow-chart of a contemporary multiproeess program
An MCM having three cells

Additional properties of the MM hﬁt;,ng'thrée cells

Pypical count matrix configuration of the MCM
baving three cells

Locus of read capabilities for a cell 1 in an
example of process coordination

Tocus of counts for a cell 1 in a variation of
the example of Figure 2.k

Iocus of counts for a cell 1 1in a variation of
the example of Figure 2.4

The enabling rules

A typical control matrix

A typical set of existing control matrix elements

Part of the control matrix upon entry into an
example program

The cluster corresponding to a segment

Correspondence between & full control matrix
and a count matrix

The performance in M of the transaction that
corresponds to a read action in VM

Permission rules for several actions of a
clerk in M

Segment numbers and the control segment address
of a segment n in a two-clerk camputation

xii

X 8 & B

&

51

55

59
T
™
81

103

128

3.9.

L.1.
k.2,
b.3.
bk
h.s.
L.6.
h.7.
L.8.

k.9.

k.10.

k.11.

""-120
k.13.

L.1k.

h'ls.
k‘ls'

h.17.
4.18.

k.19.

5010

List structure linking clerks having read capebility
for a segment

Three typical history arrays

The environment of the inductive step

A boundary

An edge boundary

A set of positions in an sugmented array

A boundary and the set of positions to its left
Four runs

Principel boundaries used in the proof of the
second case of the inductive step

The ten possibilities in the proof of the first stage
of the second case of the inductive step

Asymmetry in the environment of the inductive step

Boundaries used in the demonstration that there are
no i-requiring elements in b4

Possible locations of A:b

Boundaries used in_the demonstration for possibilities
(1) and (3) that A’q is executed

The three possibilities in the proof of the third
stage of the second case of the inductive step

Possible loceations of A: s

Principal boundaries used in the proof of the third
stage of the second case of the inductive step

The regions A ,/(, end D

Boundaries used in the demonstratlion that there are
no a-requiring elements in)

Six runs

The boundaries E R Lt, and L%

xiii

2
152
157
157
159
159

165

169
172

176
177

182

185

B R

189

5.2.
5.3.
5.4,
5.5.
5.6.

A.l.

Position of the desired Eb boundary

Flow-chart of an algorithm for finding Rb
o

The element A
Xy

Ea b
The and E- boundaries redrswn
The EP boundary

Events of interest in the demonstration of the
non-redundancy of bye transactions

xiv

203

204

209
212

230

Chapter 1

Contemporary Multiprocessing

Introduction

This Chepter presents an explanation of selected problems and
issues associated with contemporary multiprocessing. The explanation
is orgenized to achieve two specific goals: (1) the establishment of a
certain outlook, or viewpoint, toward the phenomenon of multiprocessing,
in order to provide & base for the discussions in subsequent Chapters,
and (2) the statement of the particular difficulties whose solutions are
sought in subsequent Chapters. Thus Chapter I serves as an introduction
for the Thesis as a whole.

The Chapter begins by introducing, through the use of exemples,
the notion of a single-process program. Next the notion of & multiprocess
program is defined as a generalization of the notion of a single-process
program, and multiprocessing is explained to be a phenomenon that involves
the execution of a multiprocess program. Next some additional concepts
are defined, and finally several problems and issues associated with

contemporary multiprocessing are discussed in depth.

Single-Process Programs

A program is a recipe for transforming an initial set of values

into & final set of values; for example, the following program tells

how to find the largest value present in the list of numbers,
Xys Xy ey X

l. Make i be 1.

2., Make J be 1.

3. If i = n then the answer is xj.

k., Subtract x; from x, .. end remember the result.

5. If the result is positive them add 1 to J.

6. Add 1 to 1.

7. Go to step 3.
This program is composed of seven procedure steps, and the set of values
to which the program refers is the set of quantities nemed 1, J, n,
and Xpy Xpy seey Xpo

One can imagine execution of the above program by a clerk, which
passes from one procedure step to the next, obeying the directions
encountered at each step. Between procedure steps & clerk might remember
information within itself; for exemple, between steps (4) and (5) of the
above program the clerk retains the result of the subtraction performed
at step (4). In general, & procedure step might direct a clerk to
modify either the clerk's own information, or the value set, or both.

The sequence of actions that & clerk performs in executing a

*
program is called & process [1l, 26]. The above program is called a

single-process program, because it directs the activity of exactly

one clerk.

*
Numbers in square brackets refer to items in the 1list of references,
which follows the Appendices.

The simplest kind of digital camputer, having one arithmetic unit
" and one memory unit, executes single-process progrems. The arithmetic
unit of such a camputer can act as a clerk; then the state word* of the
arithmetic unit is clerk information, and each word in the memory unit

is value set information.

Multiprocess Programs
A multiprocese progrem is a set of procedure steps that directs

the activities of two or more clerks. Since each processing unit, such
as an arithmetic unit or i/o channel, of a computing system can act as a
clerk, then any progrem permitting the simultaneous operation of
processing units is an exemple of a multiprocess program.

One reagson for specifying a computational activity in the form
of a multiprocess program is that such a progrem can indicate an absence
of sequencing constreints among portions of an activity by explicitly
pemitting several clerks to sct similtaneously. Such permissions for
simultaneity are desirable because they allow a system to perfom &
computationel activity more repidly than if the activity had to be
performed sequentially.

Two examples of systems for multiprocessing, i.e., systems that
can execute multiprocess progrems, are the IBM 7090 [17], and the
DEC PIP-1 {23]. In the 7090, the data channels and the arithmetic unit

*

A typical arithmetic unit state word includes progream counter,
instruction register, and accumulator information. Additional remarks
on state words are given by Conway [3].

can execute separate processes simulteneously: the procedure steps
executed in the data channel processes are drawn fram a set of "channel
comands”. In the PIP-1, the single-channel sequence break hardware
switches the arithmetic unit between a maein process snd an interrupt
process.

The term "multiprocessing” is often used to describe systems
baving more than one processing unit. Nevertheless, when "multiprocessing”
is used in this contemporary sense, it is the author’'s suspicion that
many of the problems actually being discussed might be more effectively
studied as problems of multiprocess progremming rather then as problems
of the simulteaneocus use of physically distinet processing units. For
this reason, the term "multiprocessing” is used throughout the Thesis
to refer to a programmer's specification of potential multiple activity,
and not to refer to a particular method for carrying ocut such a
specification. For example, suppose & multiprocess program is written
to direct the activities of two clerks. If two processing units are
available, they might execute the progrem together, each unit playing
the role of one of the program's clerks. On the other hand, if only
one processing unit is aveilable, it might play the role of now one
clerk and then the other, alternating back and forth between the two
clerks according to same erbitrary scheduling strategy. Multiprocessing

occurs in both of these situations, because in both cases a multiprocess

program is being executed.

The Computation State

An execution of either & single-process program or a multiprocess
program is called a computation. At an instant during & computaetion,

the computation state is denoted by the information contained in the

clerks and value set of the program being executed. For example, during
the execution of the single-process program mentioned at the beginning
of this Chapter, the‘computation state at some instant is denoted both
by the informstion conteined within the executing clerk, and also by
the information held in the value set, i.e., held in the quantities
i, j, n, and X5 Xpy voey Xpo A system performing a computation
exhibits a succession of computation states: each transition from one
computation state to the next is caused by one or more processing units,
each playing the role of one of the program's clerks.

In practice, four kinds of information are encoded into a
computation's initial state: (1) the procedure steps of a program,
(2) the initial velues of the program's internal quantities, (3) the
information initially held in the program's clerks, and (%) the input-
symbols to be read during the program's execution. In other words, the
initial computation state holds, of the information controlling a
computation's performance, just that portion which & user can specify
either explicitly, or implicitly through the use of programs and data

prepared by others.

Computing Facilities

Many discussions to be presented in the Thesis concern the manner

in which a computing system might execute an individuel program. A fact

that might complicate these discussions is the fact that some computiné
systems can be simultaneously in the midst of executing two or more
programs; such systems are said to be multiprogremmed [10]. The notion
of a computing facility is introduced so that the manner in which an
individual program is executed can be easily discussed without regard
to whether the executing system is multiprogrammed.

A camputing facllity is a perhaps time-verying collection of
hardware that executes at most one single~process or multiprocess
program &t a time. Every computing system provides at least one
facility, but a computing system that is multiprogrammed can provide
several facilities simulteneously. For example, a& typical configuration
of the CTSS system [14] provides 24 facilities. A user gains access
to one of these facllities when he identifies himself to the system by
"logging in".

In providing a facility, a computing system provides (1) input
units by meens of which a user can specify an initia}) computation state,
(2) processing and storage units that cen perform a computation beginning
from such an initial computation state, and (3) output units that can
produce for a user during such a computation one or more output streams,
i.e., sequences of output symbols. Aﬁ example of the production of
three output streams is the writing of symbols on & typewriter, a
printer, and a card punch unit.

An improved understanding of the way in which a camputing system
provides a facility can be achieved by studying some of the details of
the way in which a computing system executes a program. A program refers

to, or directs the activities of, a set of objeets: each objeet to

6

which & progrem refers is either & clerk, & value set gquentity, an input
device, or an output device. During the execution of a progrem, it is
appropriate for the role of each object referred to by the program to
be played by & specific and distinct physical unit. Nevertheless,

there need not exist such a fixed correspondence. between program objects
and physical units. In particular, the role of a program object might
be played by a succession of physical units, and during occasional
intervals the role of an object might not be played by any unit.

To provide & physical unit as part of & facility is to provide &
physical unit to play the role of one of the objects referred to by the
program the facility is executing. As was mentioned, sech physical unit
of a facility might be provided either continuously or intermittently.
Thus, when e computing system provides one or more facilities, the
system allocetes its availeble physical unite among the cbjects that
are referred to by the progrems the facilities are executing. In
general, this allocation is time-varying, i.e., dynemiec; dynamic
allocation results in several distinct corresponéences between physical
units and program objects as time progresses.

An example of dynemic allogation is found in the previously mentioned
PIP-1 system. When the single facility provided by the PIP-1 executes a
program that uses the single-channel sequence breek feature, the PIP-1's
memory unit is permanently allocated to hold the progrea's value set,
but the PIP-1l's arithmetic unit is dynamicelly allocated by the sequence
break hardware to carry out alternately the activities of the program's
main clerk and interrupt ‘clerk. Other exemples of dynamic allocation are

found in the CTSS system. Here the central processing unit and the main

memory unit are allocated dynemically among the clerks and the value set
quantities, respectively, that are referred to ln the programs of

several facilities.

Arbitrarily-Timed Cooperative Multiprocessing

Clerks executing a multiprocess program are said to cooperate [11]
whenever information is trensmitted among them; such transmissions take
place either through the internal memories of the clerks, or through
the program's value.set. Cooperative multiprocessing is assumed
throughout the present study: a facllity might allow inter-clerk
cooperation, and a multiprocess program might direct such cooperation.

A multiprocess program is executed in an arbitrarily-timed manner
just when there is at least one camputation state for which the set of
the program's clerks accomplishing the transition to the next computation
state is at least partially determined by influences other than the
current computation state. If a program's execution is arbitrarily-
timed, then knowledge of the current cdnputat_ion state generally does
not imply knowledge of the next computetlon state, because the next
computation state can depend on the set of the program's clerks that
happen to accomplish the next computation state transitionm.

An arbitrarily-timed facility ‘:I.s one that might execute & multiprocess
program is an arbitrarily-timed menner. A faclility might be arbitrarily-
timed because of slight variations in the speeds of autonomous processing
units, because of replacement of one system component by another of

different speed, because of variations in the duration of 1/0 activity,

or, perhaps most significantly, because of the scheduling strategy of
a multiprogrammed system. Arbitrarily-timed facilities are assumed

throughout the present study.

Output Functionality

A facility is output-functional just when esch symbol produced
in every output stream is a function only of the initial computatlon state.

An alternate description of an output-functional facility gives
two intermediste definitions. A facility is SS, i, j)-g_u_t_:p}_l;t_—definite
just when S is an initial computation state and each S-initiated
computation produeing a J-th symbol in output stream 1 produces
the same Jj-th symbol in output stream i. A facility if S-output-
definite just when it is (S, 1, j)-output-definite for each output
stream, i, and each positive integer, Jj. Finally, a facility is output
functional just when it is S-output-definite for each initial
computation state, S.

Many contemporary facilities are S-output-definite only if S
belongs to some proper subset of the initial computation states; such
facilities require a user desiring output functionality to begin each of
his computations from one of the S-output-definite initial computation
states,

The present study describes methods for meking the S-output-definite
subset of & facility's initial computation states equal to the set of all
the facility's initial computation states, so that computations will

produce deterministic outputs regardless of programming mistakes or

improper input data. In Chapter II an abstract machine for coordinsted
multiprocessing is described, and a proof is given in Chapter IV that a
facility which behaves like such a machine is an output-functional
facility.

The following two examples show that, in the absence of inter-
clerk coordination constraints such as will be proposed, cooperative
multiprocessing performed by an arbitrarily-timed facility is
nondeterministic in a way that can permit the symbol at some position
in an output stream to depend on factors other than the initial
computation state. 1In the first example, two clerks are ready to write
different symbols into the same output stream. If the clerks' order of
execution is arbitrary, then either symbol cen appear as the next
symbol in the output stream.

The second exemple is depicted in Figure l.l. Suppose a clerk
computes each of a stream of output symbols using only a result that a
second clerk computes and stores as & shared quantity. If the first
clerk stops for an arbitrary time while the second clerk continues
execution, then an arbitrary number of symbols might be omitted fram
the output stream. On the other hand, if the second stops and the
first continues, then some particular symbol might eppear in the output
stream an arbitrary number of times.

No one ever questions the output functionality of facilities that
execute only single-process programs, because single-process computing
is inherently deterministic. Unfortunately, the term "computer" has
been associated for so many years with single-process computing that

users sometimes expect any apparatus bearing the stamp "computer" to

clerk 2

] shared quantity

._%_
clerk 1 l I I l
output
stream
output
device

Figure 1.1. Example of output-nonfunctional multiprocessing.

1l

exhiblt a functional relationship between initilal state and output
streams. Thus the term "multiprocess computer" has a deterministic

connotation, which 1s often misleading.

Iurking Bugs

As mentioned previously, many contemporary facilities for

multiprocessing appear output-nonfunctional to their users. This lack

of output functionality has not substantially hindered the development
of computing applications, because programmers have been able to
recognize the effects of arbitrary execution timing, and have been able
to isolate these effects fram the output streams of computations. For
instance, a programmer might have introduced into the example of
Figure 1.1 an interlock quantity to be tested by each clerk before the
clerk proceeded with the reading or writing of the shared data quantity.
The seeking of deterministic outputs through the skillful
programming of an output-nonfunctional facility is undesirable because
the detection and the diasgnosis of progremming mistakes, i.e., bugs,
are much more difficult in an output-nonfunctional facility than in an
output-functional facility. The issues are best understood by considering
again the example of Figure 1.1 in which two clerks cooperate using
shared data and interlock quantities. As shown in Figure 1.2, suppose &
bug in the procedure steps being executed by & third clerk causes the
third clerk to change the value of the data quantity shared by clerks
one and two. During some computations from a given initisl state, this
change does not affect the ocutput stream, because at the instent of the

change, clerk one has already read the shared data quantity's current

12

shared data

clérk 3
exgcﬁting S

7. -glerk 1

procedure

steps A

Pigure 1;2.

Iurking bug destroying cutput functional

value and clerk two has not yet set the next value. During other
camputations from the same initiasl state, the change does affect the
output streem, because at the instent of the change, the current value
of the shared data quantity has not yet been read by clerk one. The
bug in the procedure steps being executed by clerk three is & lurking
bug -- a bug whose effects are noticed during only some of the
computations begun from e given initisl computation state.

The detection of lurking bugs is easiest when the programmer can
completely specify timing environments for his computations; then he
can construct test cases by specifying timing environments as well as
input streams. However, the number of test cases required to debug a
program in such a circumstance is roughly the product of the number of
input stream test cases needed if the system prevented lurking bugs
multiplied by the number of timing environments desired to be tested.
Thus the detection of bugs in a facility allowing lurking bugs is at
best much more costly than in a facility having similar characteristics
but preventing lurking bugs.

The diagnosis of lurking bugs can be equally as onerous as their
detection. As mentioned by Corbatd et al. in a different context [5], a
lurking bug appears to the programmer to be indistinguishable from
transient hardware failure. Breakpoints, dynamic dumps, traces, and
other diagnostic tools &ll require the re-running of a computation at
Jeast once and possibly several times to isolate a bug into progressively
smaller sections of a program. Unless the programmer can reproduce the
timing enviromment of the computation in which a bug was detected, the
programmer must choose between two altermatives: he can insert his

diagnostic tools into the progrem and continue to run computations until
1k

Providence shows the bug to him again, or he can try to diagnose using
the program listing, the camputation's output, and a dump of the final
computation state. Both of these alternatives are costly as well

as discouraging.

Iurking Bug Effects

The example of Figure 1.2 shows how & lurking bug's effect can be
the destruction of output functionality. Such & lurking bug effect, i.e.,
the production of srbitrary output from identicslly-initiated computatioms, -
is called a non-functionality effect.

Another lurking bug effect, ca].’led & noncgletionv'eﬁfrect, is the
arbitrary curtailment of the production of cutput from identieally -
initisted computations. An individusl lurking bug might cause either a
nonfunctioﬁality effect, or a noncampletion effect, or both.

The following example describes a lurking bug causing a noncampletion
effect. Suppose a bug in the procedure steps being executed by & clerk
causes the clerk to change the procedure code being executed by & second
clerk. During some computations from a givem initial state, the second
clerk has already executed the changed code, and 30 the change does not
affect the second clerk's periodic execution of an output procedure
step. During other camputations from the same initial state, the second
clerk executes the changed code, and thereupon begins executing & loop
of procedure steps that excludes the output step the: clerk would -
otherwise have periodically executed. The bug in the procedure steps
being executed by the first clerk is a Jurking bug that causes a

noncompletion effect.

15

Facilities for multiprocessing that behave like the abstiract machine
to be described in Chapter II are proved in Chapter IV to prevent
nonfunctionality effects. - In Chapter V, such facilities are also proved

to prevent noncampletion effects.

Contemporary Procedure Steps for Multiprocessing
To allow comparison between contenpo;.;qry' fecilities for multiprocessing

and the facilities to be discussed in subsequent Chapters, several types
of procedure steps used in contemporary multiprocess programs are now
described. In the next Section, procedure steps of some of these types
are used in an exemplary progrem, into which a typing error could
introduce & lurking bug.
The first type of procedure step is fork [1, 3, 10]. Execution of
the step
fork
creates a clerk that will start execution at the label e, and causes
the clerk that executed the fork to pess to the next procedure step.
The creation of a clerk meens that there is an additiomal clerk
participating in the computation; an immediately recruited processing
unit might play the role of the new clerk, or & new entry might be placed
in a list, called a ready list [10, 26], of clerks whose roles ought to
be played.
Execution of the step
quits

[10] deletes the executing clerk. The deletion of a clerk means that

16

there is one less clerk participating in the computation; the processing
unit that had played the role of a clerk being deleted might either

Join a pool of available processing units, or begin playing the role of
the highest priority clerk on a ready list.

One of several schemes for programming the cooperation of
simulteneously existing clerks is the scheme reported om by Dijkstra [11]
involving semaphore quantities. Execution of the step
Y s
adds one to a semaphore quentity, s, using an uninterruptible increment-
memory instruction. Execution of the step
B 55
causes the executing clerk to act as if it executed the following program:

1. If s 1is greater than zero then go to step 3.

2. Cease activity until s becomes greaster than zero.

3. Subtract 1 from s without interruption.

If several clerks are at step (2) for s when s becomes greater than
zero, then just one of these clerks, which is selected according to a
priority discipline, proceeds to step (3).

Procedure steps of the types V and P are useful for directing the
cooperation between a clerk producing date and a clerk receiving data,
such as the clerks of Figure l.1l. In this application the semaphore
quantity indicates the number of data values ready for consumption in &
variable length buffer.

X and g procedure steps can also be used to restrict a critical

section of a program's procedure steps to execution by one clerk at &

17

time. Bach critical section is preceded by & P and followed by a ¥,
both referring to the section's unique semaphore quantity, which will
only take the values 1 and O.

Dijkstra has shown that critical section control can be achieved
without using & procedure step whose execution requires uninterruptible
read-alter-write action [12, 20]. The construction is so complicated,
however, that it is mainly of theoreticel interest.

Similar to the actions performed by P and Y when used for critical
section control are the actions of Jockout in the D825 system [13],
Jock and uynlock discussed by Dennis end Van Horn [10}, and gbtaip end
release described by Anderson [1l]. Each procedure step of thesé types
acts on a binary semaphore quantity that is essociated with a data
quantity specified by the procedure step.

As describéd by Conway [3], execution of the step

doip o
subtracts 1 from ¢ without interruption. If the result is negative
or zero, the clerk proceeds to the next step; otherwise the clerk is
deleted. The initial velue of the quantity c 4is the number of clerks
that must execute the join in order for one of them to proceed to the
kstep following the Jjoin.

Dennis and Van Horn [10] describe a join similar to Conway's join,
but which specifies a label to which a clerk should transfer rather

than quit.

18

An Example of a Lurking Bug
To exemplify the use of some of the types of procedure steps

described in the previous section, as well as to allow the illustration
of a lurking bug, the following program is presented, which tells how
to campute the expression

(aB)™"((cD)(4B))
vhere A, B, C, and Dare n by n matrices, and AB is assumed non-
singular. The language in which the program is written is similar to
the Algol language [2]. The joip appearing at the label "last” is a
Conway-type joln. A flow-chart representation of the program is given
in Figure 1.3.
begin array T, U, Y, Z[1:n, L:n};

iakeger ©» o5

c = 23

s :=0;

fork perpro;

matrix multiply (A) times:(B) into:(T);

Y s

matrix inverse of (T) into:(U);

goto last;
parpro: matrix multiply (C) times:(D) into:(Y);

B s

matrix multiply (Y) times:(T) into:(Z);
]ast:. Jdoin c;

matrix multiply (U) times:(2) into:(answer);

19

2 —>cC

0 — s
\
fork
AxB—>T CxD—Y
Y Y
\zfs E=’s
Y
i >y Yx T —>2
doin ¢

U x 2 —> answver

Figure 1.3. Flow-chart of a contemporary multiprocess program.

A clerk enters the program by pessing to the symbol begin. The
following activity ensues when exactly one clerk enters the program.
First the entering clerk causes a new clerk to start execution at the
label "parpro”. Then the entering clerk, after computing the product AB,
executes a g telling the parpro clerk that AB has been formed. Next
the entering clerk inverts AB. The parpro clerk, after computing CD,*
delays at a P until AB is available. Then the parpro clerk computes
(AB)(CD). Finally, the two clerks join, and the last to arrive computes
the final answer.

Consider the effect of a typographical error on this program:
suppose that

B 55
had been inadvertently typed as
B cs
If the execution timing were such that the entering clerk proceeded all

the way to the Jjoin before the parpro clerk reached the g, then a correct

result would be obtained; otherwlse an unreproducible incorrect result

*Applying the Algol rule of procedure body replacement to the above
program, the simulteneous execution by both clerks of the procedure
"matrix multiply" occurs as if each clerk executed a separate copy of

the procedure. The need for separate copies of the procedure in an
implementation can be avoided, however, through the use of pure procedure
programning techniques [l4], in which programs, instead of directing their
own modification, direct the modification of data quantities private to
each executing clerk [10].

21

could be expected. In particular, if the program were tested using a
facility in which as many actions as possible were performed in one
process before any actions were performed in enother, then the effects
of the typographical error would be hidden during debugging, but might

be discovered on an application in which simultaneous processing occurred.

22

Chapter II

A Machine for Coordinated Multiprocessing

Introduction

This Chepter delineates a class of machines called machines for
coordinated multiprocessing, or MCM's for short. An MCM is abstract,
in the seme sense that a Turing machine [8) or a finite automaton [24]
is abstract. In principle, it is possible to construct an MCM; indeed,
the structure and functioning of an MCM are best understood by imegining
the existence of an actually constructed physical device. Nevertheless,
it is desirable to keep in mind that an MCM is abstract, because an
application of an MCM need not involve the MCM's straightforward
construction as a physical device.

Although an extended discussion of MCM applications is postponed
until Chapter III, it is useful to see examples of how an MCM can be
applied in ways‘that do not constitute its 'straightforward construction.
One example is the simulation of an MCM on a digital computer through
the use of interpretive software. Another example is the use of an MM
as & model for analyzing, from an individual user's point of view, the
behavior of a computing system's hardware and supervisory software. This
last example can be expressed in another way: Jjust as a CTSS [14]
facility appears to & user like & virtual machine very similar to an
IBM 7094, so also might some facility bebave as if it were an actually

constructed MCM.

23

In Chapter III, techniques and examples are presented to suggest
that a facility which behaves like an MCM can be useful, and can be both
constructed and programmed at reasonable cost. In Chapters IV and V,
it is proved that nonfunctionality lurking bug effects and noncampletion
lurking bug effects, respectively, do not occur in an MCM. That is, it
is proved in these two Chapters that identically initiated MCM
computations never produce arbitrary output, and that the production
of output from identically initiated MCM computations never is arbitrarily
cut short. The questions treated in Chapters III, IV, and V concern
the sufficiency of an MCM for achieving various goals; questions

concerning the necessity of an MCM remain open.

Preview

One of the purposes underlying the formulation of the MCM concept
has been to bridge the gap, or provide a way station as it were, between
the simplicity of automata theory and the complexity of contemporary
computing systems. Specifically, the structure of an MCM is complex
campared to the structure of a Turing machine or a finite automaton, but
is clean and symmetrical compared to the structure of a contemporary
computing system.

During the presentation of the details of MCM structure and operation,
the reader may find it helpful to have in mind a broad framework upon
which to sort out the details a&s they arrive. The following paragraphs
establish this framework by mentioning the components of an MCM, and by

indicating how these components work together to perform computations.

2k

An MCM consists of a collection of cells, a scheduler, and a count
matrix; Figure 2.1 shows an MCM with three cells. A cell might act
like a main memory register of a contemporary camputing system, or a
cell might act like a processing unit of such a system. That is, a
cell might store information passively, or a cell might actively perform a
process. In performing & process, a cell performs a sequence of basic
actions called transactions; in performing an individual trensaction, a
cell might read from or write into another cell, or might change an
element of the count matrix.

The computation state of an MCM is denoted by the information

contained in the MCM's cells and count matrix. During the performance
of & computation, an MCM takes on & succession of computation states:
each transition from one computation state to the next is accomplished
by the simultaneous performance of single transactions by one or more
cells.

The cells that are to accamplish each computation state transition
are selected by the scheduler. The scheduler's selection of such cells
is affected by the immediately preceding camputation state, and perhaps
also by the unpredictable influences that make a facility for multi-
processing be arbitrarily-timed.

As was mentioned, a cell performing a transaction might change the
count matrix. The count matrix, in turn, affects the scheduler's
selecting of the cells that are to perform transactions. This loop of

cause and effect -- from cells to count matrix to scheduler to cells --

25

namel word
name2 word
name3 word

cell

cell

cell

scheduler

count matrix

Figure 2.1. An MCM having three cells.

is the mechanism by which the activities of the cells are coordinated
in order to prevent nonfunctionality and noncampletion lurking bug effects.
The author does not know of & contemporary facllity for
multiprocessing that behaves like an MCM in every respect. Nevertheless,
there seems to be a certain similarity between MCM's and contemporary
facilities, no doubt because the MCM concept grew out of an effort to
model such facilities. Specifically, the cells of an MCM function in a
way that is in meny respects similar to the behavior of the processing
units and main memory registers of a contemporery facility. Moreover,
the scheduler of an MCM functions in a way that is somewhat similar both
to the behavior of a supervisory computation that schedules processing
units among progrems to be executed, and to the behavior of electronic
bardware that disciplines a queue of processing units awaiting access
to a main memory unit. The count matrix of an HG(, however, does not

appear to be similar to any feature of a contemporary facility.

Cells

A cell is unususl in that it can model either an active device like a
processing unit, or a passive device like a memory register. A cell
that models an active device is called & clerk cell, and & cell that
models a passive device is called a value cell. A clerk cell performs a
process that 1s a sequence of transactions, and a value cell stores
information passively. As shown in Figure 2.1, the state of a cell is
denoted by a word, and each cell is designated by a unique name. .

It was mentioned that no contemporary facility is known that behaves

like an MCM in every respect. Nevertheless, in order to understand the

27

properties of the cells that occur in MCM's, it will be useful to
observe how a collection of such cells might model the processing units
and main memory registers of, say, an IBM 7090. Such a collection
might contain 32,768 + 9 cells: one value cell to hold each memory
word, one clerk cell to hold each datae channel state word, and one clerk
cell to hold the central processing unit state word. These cells might
be named: O, 1, ..., 32767, A, B, ..., H, CPU.

The state of an MCM's collection of cells can be described by means
of a table in which the name of each cell is associated with the word
held by the cell. Since each neme is unique, such a table defines &

single-valued function, called a content function, that takes the name

of a cell into the word held by the cell; for example, if c¢(-) is the
content function denoting some state of the 7090 cells described above,
then the memory word at location 5 is c(5), and the state word of
channel B is ¢(B). If c(-) is a content function and x is & name,
then the word c(x) is called the content of cell x. As an MCM passes
from one computation state to the next, its collection of cells takes
on & succession of states, each distinct state being described by a
different content function.

An interesting property of an MCM is that the designation of & cell
as either a clerk cell or a value cell cen be a function of time. In
this respect, the cells of the 7090 model mentioned above are not typical
‘of MCM cells in general. Although each cell of the 7090 model is for
all time either a clerk cell or & value cell, the general case is that a

cell might alternate between clerk and value status as time progresses.

28

This alternation of cells between clerk and value status is similar
to the alternation of modules between active and non-active roles in
an abstract iterative computer described by Holland [16].

The clerk or value status of & cell is determined at any instant
solely from the count matrix, in a menner to be described later. A
clerk cell is changed into a value cell, or a value cell is changed into

a clerk cell, by making an appropriate change in the count matrix.

Transactions

It was mentioned that the process each clerk cell performs 1ls a
sequence of basic actions called transactions. A clerk cell's performance
of an individual transaction generally involves an interaction between
the clerk cell and its environment. For example, suppose the CPU cell
of the 7090 model mentioned above executes a store-sccumulator
instruction that does not specify indirect addressing. This execution
is a sequence of two transactions: the first transaction reads from a
value cell the encoded store-accumulator instruction, and the second
transaction writes into perhaps some other value cell the accumulator
information held in the CPU cell. These two transactions are of the
types get and put, respectively. Gets, puts, and transactions of three
other types are explained later in detail.

Each computation state transition is accomplished by the simultaneous
performance of single transactions by one or more clerk cells. After the
scheduler has selected the clerk cells that are to carry out a
computation state transition, the scheduler simultaneously transmits a

single go pulse to each clerk cell that has been selected. Upon receipt

29

of a go pulse a clerk cell performs, not a series of transactions, but
exactly one transaction; specifically, a clerk cell performs exactly
one transaction vhen and only when it receives a go pulse. The
scheduler's operation, which will be described later, is such that
only clerk cells receive go pulses.

When a clerk cell receives a go pulse, the trensaction the cell
performs is determined both by the cell's identity, and by the cell's
content. For exsmple, during the previously mentioned store-accumulator
execution, the first transaction performed by the CPU cell is determined
both by the fact that the cell is the CPU cell rather then, say, the B
cell, and by the fact that the content of the cell has cycle information
saying that an instruction fetch activity is to take place next.

As shown in Figure 2.2 for the MCM of Figure 2.1, a cell's
identity determines & transaction teble, within which the cell's content
determines & transaction. Specificelly, in a cell's treansaction table
each possible content of the cell is assoclated with the type and
parameters of a tramnsaction; that is, if a cell might hold any one
of n words, then there are exactly n word-transaction pairs in the
cell's transaction tsble. At any instant, the transaction associated in
this way with a cell's content is the transaction the cell would perform:
if it were to receive a go pulse at that instent. In other words, if
the content of a cell 1s a certain word, and one wishes to know the
transaction the cell would perform upon receipt of a go pulse, one need
‘only look up the word in the cell's transaction table in order to obtain

the type and parameters of the desired transaction.

30

S

transaction
table

routes for
go pulses

<

transaction
table

<

transaction
table

g

Pigure 2.2. Additional properties of the MCM having three cells.

31

Every cell has a transaction table, because, in general, every cell
is potentially a clerk cell. A cell's transaction table is permanently
associated with the cell; in other words, a cell's transaction table does
not vary with time. 1In the 7090 model, the transaction table of the
CPU cell describes the wired-in properties of the 7090 central processing
unit -- in the same way that the state transition table of a sequential

machine describes certain wired-in properties of the mechine.

Get Transactions

The first transaction of the previously ﬁentioned store-accumulator
execution is of the type get. A typical get transaction is described
in & transaction table as follows.

get of 1 replace f(-) (2.1)

The two parameters of a get are its operand neme, such as i in (2.1),

end its replacement function, such as £(¢) in (2.1). In performing

the transaction described by (2.1), a clerk cell reads the content of
cell i, evaluates the function f(+) with this content as argument,
and causes itself to hold the result of this evaeluation. For example,
suppose c(+) denotes the state of a collection of cells at some instant,
and suppose (2.1) is the transaction that corresponds to c¢(x) in clerk
cell x's trensaction table. If at this instant clerk cell x
receives a go pulse, then clerk cell x will be caused to hold the
word f(c(i)).

The performance of a get by clerk cell x changes the content of
clerk cell x from some word, A, to some word, B. Let us review the

way in which the word B is determined. First, the name x determines a

32

transaction table. Second, the word A determines in this table a
particular transaction -- in this case a get whose parameters are,
say i and £(°). Third, the content of cell i is used as the
argument of f(-) to determine the word B.

As noted above, the first transaction of the previously mentioned
store-accumulator execution is a get. This get is determined by the
word W that is held in the CPU cell just before the get's performance.
The get's operand name is W's instruction location counter information,
and the content of the cell nemed by this operand neme is the encoded
store-accumulator instruction. If the get's replacement function is
evaluated with the encoded instruction as argument, the function yields
for placement in the CPU cell a word X consisting of (1) instruction
register information denoting the encoded instruction's operation part,
(2) storage register information denoting the encoded instruction's
address part, (3) cycle informetion saying that an instruction execution
activity is to take place next, (4) instruction location counter
information denoting a name numerically one greater than the name denoted
by W's instruction location counter information, and (5) other
information, such as accumulator and index register information,
identical to the corresponding information of W. In other words, the
replacement function of the get associated with W tells how the word X,
which replaces W, depends on the encoded instruction.

The sbove exeample illustrates that in practice the state of a
processing unit is usually the state of a collection of several
information-storing elements, such as flip-flops or ferrite cores.

When a processing unit performs a get, not every information-storing

33

element need change state. In fact, the replacement function of some
particular get may be such that the states of certaln elements never
change during the get's performance, regardléss of the word read as
operand. Thus the performance of a get may involve a change in only
"part of" the word held in a processing unit. For present purposes,
it will be convenient to think of the performance of a get as always
changing the "entire" word held in a processing unit, and recognize
that a get's performance might actually change the state of only some
of a unit's information storing elements. In fact, for understanding
the formal properties of an MCM, one may think of a word, not as a
string of digits denoting states of separate elements, but as one
symbol selected from some alphebet; with the latter point of view it is

meaningless to speak of replacing "part of" a word.

Put Transactions

The second transaction of the previously mentioned store-accumulator
execution is of the type put. A typical put transaction is described
in a transaction teble as follows.
put of i with v replace w (2.2)
The three parameters of a put are its operand name, such as i in (2.2),

its operand word, such as v in (2.2), and 1ts replascement word, such

as w in (2.2). In performing the transaction described by (2.2), a
clerk cell causes itself to hold the word w, and causes cell 1 to
hold the word wv; if the clerk cell and cell 1 are the same cell, then
the clerk cell causes itself to hold w, and v is ignored. For

example, suppose c(+) denotes the state of a collection of cells at some

3k

instant, and suppose (2.2) is the transaction that corresponds to ¢(x)
in clerk cell x's trensaction table. If at this instant clerk cell x
receives a go pulse, then clerk cell x will be caused to hold the
word w, and, if 1 is not equal to x, cell 1 will be caused to
hold the word v.

As noted above, the second transaction of the previously mentioned
store-accumlator execution is a put. This put is determined by the
word X that is held in the CPU cell Jjust before the put's perfomance.'
The put's operend name is X's storage register information. The put's
operand word, which 1s the word ﬁo be placed in the cell nemed by the
operand name, is X's accumulator information. The put's replacement
word, which is the word to be placed in the CPU cell, is 8 word

consisting of (1) cycle information saying that an instruction fetch
activity is to take place next, and.(2) other information identical to

the corresponding information of X.

Procedure Steps
A program may be stored within a subset of an MCM's cells. When an

MCM holds & program in this wey, each procedure step of the program is
encoded into one or more words, and each word is held by a distinct cell.
For example, the previously mentioned 7090 model might hold & program
that has as one of its procedure steps the previously mentioned store-
accumulator Instruction; this instruction is a procedure step that is
encoded into exactly one word.

The execution of & procedure step begins with the performence of a

get whose operand neme is the name of a cell holding an encoded procedure

35

step word. A procedure step execution might consist only of the
performance of such a get, or a procedure step execution might consist
of the performance of such a get followed by the sequential performance
of one or more transactions, each of which might be either (1) & get
whose operand name is the name of a cell holding an encoded procedure
step word, or (2) & transaction, of any of the five types, whose
performance is requested by the procedure step itself. For example, &
program for the 7090 model might contain procedure steps such as!

(1) a trensfer-on-minus instruction, whose execution is the performance
of a single get, (2) a store-accumulator instruction with indirect
addressing, whose execution is the performance of & sequence of two or
three gets followed by a put, and (3) a convert-by-replacement-from-
the-MQ instruction, whose execution 1s the performance of & sequence of

some number of gets from 1 through 256.

Reading and Writing

When one says that some cell reads another cell, the notion of
"reading”" is fairly clear from contemporary usage. Nevertheless, it is
desirable to have & more precise notion of what it means to read & cell.
In the MCM design as introduced thus far, the notion of reading is
applicable in two contexts. The first application is intuitive: a
clerk cell performing a get reads from the cell named by the get's
operand name. The second application is more subtle: a clerk cell
performing either a get or a put reads from itself, because the clerk
cell'’s content just before the performing of the get or put determines

the particular get or put to be performed. Based on these examples, &

36

definition of the notion of reading may be given: a clerk cell x that
is performing a transaction reads from e cell 1 Just wvhemn x senses
the content of i in order to help determine x's performance of
the transaction.

Similar remarks may be made concerning the notion of "writing".
In the MCM design as introduced thus far, the notion of writing is
applicable in two contexts. The first application is intuitive: a
clerk cell performing & put writes into the cell nemed by the put's
operand name. The second application is more subtle: a clerk cell
performing either & get or & put writes into itself. Based on these
examples, a definition of the notion of writing may be given: a clerk
cell x writes into a cell i Jjust when x causes & new word to be
held by i, where the new word might or might not be the same as the

*
word previously held by 1i.

Outputting
An explanation can now be given of the method by which an MM

produces output symbols. Some of an MCM's cells are output cells; the
designation of a cell as an output cell does not vary with time, and is
in addition to the time-varying designation of the cell as either a clerk
cell or a value cell. There is & one-to-one correspondence between the

output cells of an MCM and the output streams that are produced when the

*x

The concepts of reading and writing described here are no doubt the
same as the concepts analyzed by Maurer in his discussion of the "input
regions” and "output regions" of computer instructions [21].

37

MCM performs a computation. Whenever a word is written into an output
cell, the word is not only caused to be held by the cell, but also is
produced as the next symbol in the cell's output streenm.

The Scheduler
At eny instant when no transactions are being performed, the
computation state of an MCM is denoted by the information contained in

the MCM's cells and count matrix. When an MCM performs & computetion,
the MCM takes on a succession of computation states: each transition
from one computation state to the next is accomplished by the
simultaneous performance of single transactions by one or more

clerk cells.

The set of clerk cells that accomplish a computation state
transition is selected by the scheduler on the basis of the immediately
preceding computation state, the transaction tébles , énd perhaps on
the basis of unpredictable influences. In making such a selection, the
scheduler behaves as if it carried out in sequence the following three
activities: (1) the determination of an emasble set, vhich is a set of
names of enabled clerk cells, (2) the determination of a choice
collection, which is a collection of subsets of the enable set, and (3) the
selection of a member of the choice collection. The selected member
of the choice collection is a set of names of cells; it is to these cells
that the scheduler transmits simultaneous go pulses in order to initiate a
computation state transition. The scheduler's activities are described

later in more detail.

38

The performance of a camputation proceeds as follows. At an
instant when no transactions are being performed, i.e., when some
computation state preveils, the scheduler selects a set of clerk cell
names in the manner outlined above and transmits one go pulse
simltaneously to each of the cells named in the gset. After the
transactions triggered by these go pulses are finished, a new
computation state prevails. At a subsequent instant, the activity is
repeated, 1i.e., the scheduler again selects and sends pnlses to clerk
cells, which then accomplish a transition to still another computation
state. The succession of camputation states produced in this way begins
from an initisl computstion state specified by a user. |

The Count Matrix
In determining an enable set, the scheduler refers to the count

matrix. If an MCM contains n cells, then the MCM's count matrix is
an n by n matrix. Each element of a count matrix is an integer,
called a count, that can be positive or negative.

The information contained at same instant in an MCM's count matrix
allows statements to be made such as, "cell x has rehd capebility for
cell 1", and "cell x has write capability for cell i". Cell x
has read cafability for cell i Just when the count at row x and
column i of the count matrix is greater than zero. Cell x has
write capability for cell i Jjust when cell x 1is the only cell that
has read capebility for cell i. The capabllities of the cells of the
MCM shown in Figure 2.3 are the following: name2 has read capability
for neme3, name2 has write capability for both itself and namel,

39

Toureu

2oursu
Courett

namel 0 0 -2
name2 3 1 1
name3 -1 0 1
Figure 2.3. Typical count matrix configuration of the MCM

having three cells.

end name3 hes read capability for itself. The significance of the
fact that a cell has a read capability for another cell is explained

in the following Section.

The Enable Set

At any instant between computation state transitions, the
scheduler's enable set is just the set of names of those cells that are
ensbled clerk cells. In order to decide whether a particular cell is
an enabled clerk cell, the scheduler first examines the cell's content
and transaction table in order to discover the transaction the cell
would perform if it were to receive a go pulse; then the scheduler makes

its decision for the examined cell by applying the enabling rule for

the discovered transaction. The enabling rules for gets and puts are
deseribed below. The enabling rules for transactions of the other three
types will be described as these types are introduced.

The enabling rule for a get is the following: a cell that would
perform a get upon receipt of a go pulse is an enabled clerk cell Just
when the cell has both write capability for itself, and read capebllity
Por the cell named by the get's operand nsme. In the example of
Figure 2.3, suppose the name2 cell would perform &8 get of name3
upon receipt of a go pulse; then the name?2 cell is an enabled
clerk cell.

The enebling rule for a put is the following: a cell that would
perform & put upon receipt of a go pulse is an enabled clerk cell Just
when the cell has both write capability for itself, and write capabllity

for the cell named by the put's operand name. In the example of

41

Figure 2.3, suppose the name2 cell would perform a put of namel
upon receipt of & go pulse; then the name? cell is an enabled
clerk cell.

For gets and puts, the notions of reading and writing correspond
in a simple way to the notions of read capability end write capability,
respectively; this correspondence 1s seen in the following restatement
of the above enebling rules. A cell that would perform either & get
or & put upon receipt of a go pulse is an enabled clerk cell Just when
the cell has read capability for each cell it would read, and has write

capability for each cell it would write.

Nomenclature for Cells

A cell is a clerk cell just when it has write capability for
itself; otherwise the cell is a value cell. In other words, whether a
cell is a clerk cell or a value cell is based, not on the cell's
construction, but on information conteined in the count metrix. In
general, any cell can be a clerk cell; all it takes to meke a value
cell into a clerk cell or a clerk cell into a value cell is the
performance of appropriate transactions, of types to be described later,
that modify the count matrix.

Although "being a clerk" is not really a property of a cell itself,
it is sometimes convenient to cell a cell a "clerk cell”. Specifically,
it has been convenient, and will continue to be convenient, to call a
cell a "clerk cell" whenever it is known or assumed that the cell has

write capability for itself.

k2

A cell can be a clerk cell and not be an enabled clerk cell; such a
cell is called a disabled clerk cell. For example, a cell that would
perform a get upon receipt of a go pulse is & disabled clerk cell just
when the cell has write capebility for itself and does not have read

capability for the cell named by the get's operand name.

The Choice Collection for Gets and Puts

In the event that each member of an enable set is the name of a
cell that would perform either a get or a put upon receipt of a go pulse,
then the choice collection determined from this enable set is Just the
collection of the non-empty subsets* of the enable set.

At an instant between computation state tramsitions, the scheduler
selects one set belonging to the cholce collectiom derived from the
current computation state. As mentioned previously, the selected
member of the choice collection :l.s a set of names of cells; it is to.
these cells that the scheduler transmits simmltaneous go pulses in order
to initiate a computation state transition. The method by which the
scheduler selects a member of the choice collection will be described

later.

¥me subsets of the set {a, b-ﬁ are the sets { S (the empty set),
{a.; , {b} , and {a, bl

k3

Send, Done, and Bye Transactions

During a computation, the count matrix is set initially by the
specification of an initial computation state, end thereafter is changed

only by performance of transactions of the types send, done, and bye.

A typical send transaction is described in a transaction table

as follows.
send of i to e replace W (2.3)

The three parameters of a send are its operand name, such as i in (2.3),
its sendee name, such as e in (2.3), and its replacement word, such
as w in (2.3). In performing the transaction described by (2.3), a
clerk cell both causes itself to hold w, and adds 1 to the count
at row e and column i of the count matrix. For example, let K
be the count at row e and column i of the count matrix just before
the performence of (2.3); then the performance of (2.3) has one of three
effects: (1) if XK is O, the performance gives cell e read capability
for cell 1, (2) if K is less than O, the performance reduces the
number of sends of i +to e that might be performed to give cell e
read capsbility for cell i, or (3) if K is greater than O, the
performance increases the number of dones of i, described below, that
cell e might perform to relinquish its read capability for cell i.

The enabling rule for & send is similar to the enabling rule for a
get: a cell that would perform & send upon receipt of a go pulse is an
enabled clerk cell just when the cell has both write capability for
itself, and read capability for the cell named by the send's operand
name. To perform a send, a cell need not have any capability for the

cell named by the send's sendee neme.

L

A typicel done transaction is described in a transaction table

as follows.

done of i replace w (2.4)
The two parameters of a done are its operand nesme, such as i in (e.h),
and its replacement word, such as w in (2.4). In performing the
transaction described by (2.h), a clerk cell named x both causes
itself to hold w, and subtracts 1 from the count at row x and
column i of the count matrix. For example, let K be the count at
rov x and column i of the count matrix Just before clerk cell x's
performance of (2.4); then the performance of (2.4) has one of three
effects: (l) if X is 1, the performance takes away cell x's read
capabllity for cell i, (2) if K is less than 1, the performance
increases the number of sends of i to x that might be performed to
give cell x the read capability for cell i, or (3) if K is greater
than 1, the performance reduces the number of dones of 1 that cell x
might perform to relinquish its read capability for cell 1.

The enabling rule for a done is the following: & cell that would
perform a done upon receipt of a go pulse is an enabled clerk cell just
when the cell has write capability for itself. To perform a done, &
cell need not have any capability for the cell named by the done's
operand name.

A typicel bye transaction is described in a transaction table
as follows.

bye to e replace w (2.5)
The two paremeters of a bye are its sendee name, such as e in (2.5),

and its replacement word, such as w in (2.5). In performing the

45

transaction deseribed by (2.5), a clerk cell named x causes itself to
hold w, subtracts 1 from the count 2t row x &nd column x of the
count metrix, and adds 1 to the count at row e and column x of
the count matrix; if e 1is egual to x, no alteration is made to the
count matrix.

The enabling rule for a bye 1s similar to the enabling rule for &
done: & cell that would perform & bye upon receipt of a go pulse is
an ensbled clerk cell Just when the cell has write capability for
itself. To perform a bye, a cell need not have &ny capebility for the
cell nemed by the bye's sendee mame.

The effect of clerk cell x's performance of (2.5) would seem
to be equivalent to the effect of clerk cell x's performence of
the sequence

done of x replace W, (2.6)
send of x to e replace w (2.7)

where vy is & word to which (2.7) corresponds in cell x's transaction
table. Although this equivelence holds in many situations, nevertheless
transactions of the type bye are not redundant. In particular, if bye
transactions were omitted from the MCM design, then it would not be
possible for the capabllity to write Into a cell to be held at one
instant by the cell itself, and to be held at a later instant by some
other cell. The non-redundancy of bye transactions is explained more
fully in Appendix A.

An exasmple showing how send and done transactions can be used to
coordinate processes will be given later in this Chapter. A discussion

of the use of bye transactions is postponed until Chapter III.

L6

The Choice Collection

The rule by which the choice collection is determined from an enable
set has been given for the case in which each member of the enable set
is the name of a cell that would perform either a get or a put upon
| receipt of a go pulse. The complete rule for the determination of the
choice collection is the following: the choice collection that is
determined from an enable set is just the collection of the non-empty
subsets of the enable set, but excluding those subsets that contain the
names of two or more cells that, upon receipt of a go pulse, would alter
the same element of the count matrix.

The enabling rules and the rule for determining a choice collection
guarantee that simultaneously performed trensactions do not conflict;
that is, during & computation state transition, the following three
statements are true: (l) each cell is written by no more than one
clerk cell, (2) each cell that is both reed and written is written by
the same clerk cell that read the cell, and (3) each element of the

count matrix is altered by no more then one clerk cell. '

Scheduling Strategies

The scheduler makes selections from the choice collections derived
from successive computation states in such a way that the scheduler's
strategy is reasonable. In order to understand the notion of a -
reasona;nle scheduling strategy, one must observe that once a clerk cell

becomes enabled, it remains ensbled at least until it receives a go

bt

pulse. This statement is true because a clerk cell can only become
disabled as the result of its own performence of a send or bye
transaction.

The scheduler's strategy is reasonable if and only if each enabled
clerk cell always receives a go pulse a finite time after the clerk cell
becomes ensbled. The fact that the scheduler's strategy is reasonable
is used in the proof, given in Chapter V, that an MCM prevents
noncompletion lurking bug effects.

Subject to the restriction that the scheduler's strategy must be
reasonable, the scheduler's selections from successive choice collections
may be made according to any rules whatsoever, and in accordance with
any causes or influences whatsoever. That is, any strategy at all for
making selections from choice collections is an acceptable strategy
for making such selections, provided the strategy is reasonable in the
above sense. For example, an acceptable scheduling strategy may involve
remembering information about the scheduler's previous selections, or
about the previous activity of the MCM. Furthermore, the selections of
an acceptable scheduling strategy may be affected by unpredictable
influences, such as the influences that make a facility for multiprocessing

be arbitrerily-timed.

Specifying a Well-Defined MCM

The description of the structure and functioning of an MCM is now
complete. Within the framework that has been described, many different
MCM's may be specified, differing, for example, in the number of cells,

or in the transactions that cells can perform. In general, an MCM is

48

specified by giving (1) a set of cell names, (2) a set of output cell
names that is a subset of the set of cell names, (3) & transaction
table for each cell, and (4) a set of computation states that are the
states which may serve as initial computation states.

For present purposes it is desirable that an MCM be well-defined:
an MCM is well-defined if and only if during no computation performed
by the MCM is an evaluation of a transaction table or a replacement
function ever attempted with an undefined argument. That is, in a
well-defined MCM, the transaction tables and replacement functions
provide information sufficient to guide the MCM's activity in every
possible circumstance. Every MCM discussed in the Thesis is assumed
to be well-defined. Appendix B gives both & more precise definition
of a well-defined MCM, and & condition sufficient for an MCM to be

well-defined.

Coordination of Processes

Throughout the Chapter, MCM behavior has been explained in terms of
the actions taken to accomplish an individual computation state
transition. In order to achieve additional Insight into the way in
which an MCM coordinates processes, let us now examine MCM behavior
from a different point of view: let us focus attention on Jjust a few
clerk cells, and observe, over the course of several computation state
transitions, how these clerk cells might interact with each other as they
perform their individual processes, i.e., as they perform their

individual sequences of transactions.

k9

The specific example to be considered concerns three clerk
cells x, y, and 2z that communicate using a cell i. At time tl
let clerk cell x have write capability for cell 1, and let kl(', *)
describe the state of the count'matrix, i.e., let kl(x, i) be the
count at row x and column i of the count matrix. ILet
kl(x, i) =1
kl(y, i) =0

kl(z, i) =0

As MCM operation proceeds subsequent to time tl’ clerk cell x
might write a word w into cell i, and then, as shown in Figure 2.k,
might make w available to clerk cell y by performing a send of i
to y. At the time t,_, Just after this performance, the count matrix

2
kz(',) would be such that

k2(x, i) =1
kz(y, 1) =1
k2(z, i) =0

Then clerk cells x and y, but not clerk cell 2z, might read from
cell 1 any number of times, but no clerk cell would be allowed to
perform & write into cell 1i.

Next, clerk cell y, in the midst of its use of the word w made

availlable to it by clerk cell x, might make the word w available to

clerk cell 2z by performing a send of i to z. At the time t3 Just
after this performance, the count matrix k3(',) would be such that
k3(x, i) =1
ky(y, 1) =1
k3(z, i) =1

50

£(t)

2 —t— -0
Q
g y —1 -0
—
bt |
[4]
(3]
x .
| | | | | |
! | l 1 l | ¢
tl t2 t3 tll- ts t6
time

Figure 2.h4.

Locus of read capabilities for a cell 1 in an example of
process coordination. The multiple-valued function £(e)
defined by solid lines is such that £(t) = x if and only if
the count in row x and column i of the count matrix
equals 1 at time t. An arrow from x to y at

time t denotes the performance by cell x of a send

of 1 to y at time t. A dark circle for x at time ¢
denotes the performence by cell x of a done of 1

at time t. »

51

Then all three clerk cells might read from cell 1 any number of times,
but none would be allowed to write into cell i.

Next, clerk cell y might perform a done of i, thus indicating
it has no more actions to take with respect to the current content, w,
of cell i. At the time th Just after this performance, the count
matrix kh(',) would be such that

kl‘.(x, i) =1
kll-(y’ i) =0
kh(z, i) =1

Iater, clerk cell x, to allow the next content of cell i to be
written by clerk cell y, might perform & send of i to y, followed
by a done of 1i. At the time t5 Just after the performence of the

done, the count matrix ks(' , *) would be such that

ks(x, i) =0
ks(y’ i) =1
ks(z, i) =1

Next clerk cell z might perform & done of i, thus indicating it
has no more actions to take with respect to the current content, w, of
cell i. At the time t6 Just after this performance, the count

matrix k6(' , *) would be such that

ks(x, i) =0
k6(Y) i) =1
k6(z, i) =0

Then clerk cell y, having write capability for cell i, would be able
to write a new content into cell i, and would be able to make this new

content available to other clerk cells. Notice that if clerk cell y

52

had tried to write a new content into cell i before time t6, then
clerk cell y would have been disabled until t6’ and so would not have
performed the write of cell i wuntil after t6.

The behavior of the clerk cells in the example given in the
preceding paragraphs is typical of the manner in which clerk cells
communicate during an MCM computation. Additional occurrences of
interest can be seen in variations of this example. Specifically, to
observe an occurrence of & negative count matrix element, refer to
Figure 2.5, and recaell in the example the instant t2, Just after clerk
cell y was first given read capability for cell i. If after t2
clerk cell 2z had proceeded much more rapidly than clerk cell Yy, and
did not attempt to read w, then before time t3 clerk cell z would
have performed a done of i, and the resulting configuration of the

count matrix ka(-, «) prior to t3 would have been such that

ka(x, i) =1
k (v, 1) =1
ka(z, i) = -1

This veriation of the example shows that the possibility of counts being
less than zero allows & clerk cell to anticipate, in effect, its lack of
need for a read capability before being given the capability.

To see an occurrence of a count greater than one, refer to
Figure 2.6, and recall in the example the instant t3, Jjust after clerk
cell 2z was given read capability for cell 1. If after t3 clerk
cell x had proceeded much more rapidly than clerk cell y, then before

time th clerk cell x would have performed a send of i to Yy

53

£(t), &(t)

z —— o -
Q
a
ey —&
=
A N
X
| I | | | | N
I I | I I |
tl t2 t3 tu t5 t6
time
Figure 2.5. Iocus of counts for a cell 1 1in a variation of the

example of Figure 2.4. The multiple-valued function £(°),
defined by solid lines, and the arrows and dark circles are
as described for Figure 2.4. The function g(-), defined
by a dashed line, is such that g(t) = x if and only if the
count at row x and column 1 of the count matrix

equals -1 at time t.

54

£(t), h(t)

z —— —9
A
[)]
v+
|
g A A
x @
| | | |
| | | l v
tl t2 t3 tll- ‘l'.5 t6
time
Figure 2.6. Locus of counts for a cell i in a variation of the

example of Figure 2.4. The multiple-valued function f£(-),
defined by single solid lines, and the arrows and dark
circles are as described for Figure 2.4. The function h(-),
defined by a double solid line, is such that h(t) = x if
and only if the count at row x é&nd column i of the
count matrix equals 2 at time t.

25

followed by a done of i, and the resulting configurstion of the count

matrix kb(',) prior to t, would have been such that

kb(x, i) =0
k'b(y’ i) =2
kb(z, i) =1

This variation of the example shows that the possibility of counts
being greater than one allows a clerk cell to anticipate, in effect, a

slower clerk cell's need for a read capability.

Tabulation of MCM Properties
Glven here is & sumary concerning three aspects of the MCM design:

(1) the properties of the transactions, (2) the enabling rules, and

(3) certain items of nomenclature. The summary is intended both to
help the reader coaslesce in his mind the diverse facts about MCM's, and
to provide the reader with a tabulation of these facts for convenient
reference during the reading of the Chapters to follow.

Suppose an MCM, whose set of names is N, holds a computation state
given by the ordered pair <<%('), (-, 'i>>, where c(-) is a content
function describing the state of the MCM's collection of cells, and
where k(-, <) describes the state of the MCM's count matrix, i.e., where
k(x, i) is the count at row x and column i of the count matrix. Now
suppose a computation state transition occurs in which only cell x
receives a go pulse. Let the computation state prevailing after the

transition be given in a similar way by the pair <<E'(-), k'(-, -i>>.

56

If during the transition cell x performed
get of 41 replace £(-)
then
c'(x) = £(c(1))
c'(a) = c(a)
k'(a, b) = k(a, b)

afx

8, b belonging to N

e

e

If during the transition cell x performed

put of 1 with v replace w

then
e'(1) = v 3 1#x
ce'(x) =w
c'(a) = c(a) safi, aéfx

k'(a, b) = k(a, b) a, b belonging to ¥

.o

If during the tramsition cell x performed
gend of i1 to e replace w
then
e'(x) = w
c'(a) = c(a)
k'(e, 1) = x(e, 1) + 1

a¥x

Gor > 4 Lo 2>

e

k'(a, b) = k(a, b)

“e

*

The ordered n-tuple <al, B,y eeey an> is equal to the ordered m-tuple
<b1, b2, veey bm> if and only if n = m, and a, = bl’ and &, = b2,

end ..., and a = bn' Thus, for example, {a, b} = {b, ai alweys,
but e, b = <b, a7 only if a = b, |

If during the transition cell x performed

done of i replace W

then
e'(x) =w
c'(a) = c(a) ;8 fx
k'(x, 1) = k(x, 1) - 1
k'(a, b) = k(a, b) ; <a, b> ;é<x, 1>

If during the transition cell x performed

bye to e replace w

then
e'(x) =w
c'(a) = c(a) s afx
k'(e, x) = k(e, x) +1 s e¥x
k'(x, x) = k(x, x) - 1 s e#x
k'(x, x) = k(x, x) ;e=x
k'(a, b) = k(a, b) ; <a, b> # <e, x> end

<a, b> # <{x x>

Just before the transition described above, cell x is an enabled
clerk cell. The capabilities that a cell x must have in order to be
an ensbled clerk cell depend on the transaction that cell x would
perform upon receipt of a go pulse. This dependence is given by five
enabling rules, which are tabulated in Figure 2.7.

If an MCM holds the computation state 4:() , k(-, ')> , then cell x
has read capability for cell i Jjust vhen k(x, i) > 0. A cell x
has write capability for cell 1 Just when cell x is the only cell

to have read cepability for cell 1.

58

Gapé.bilities
Transaction cell x cell 'x must have
would perform upon | in order to 'be:’ an
receipt of a go pulse eﬁabled clerk cell
Read Write
get of i replace £(-) i x
send of i to e replace Ww i b 4
put of i with v replace w x, 1
done of 1 replace w | b 4
bye to e replace Ww X

Figure 2.7. The enabling rules.

59

A cell that has write capability for itself is called a clerk cell.

A cell that is not & clerk cell is called a value cell. A clerk cell

that 1s not an enabled clerk cell is called a disabled clerk cell. Some

cells are permanently designated to be output cells.

In the transactions listed in Figure 2.7,

i

e

v

w

i1s called an operand name
is called a sendee name
is called an operand word

is called a replacement word

£(+) is called a replacement function

Chapter III

A Facility That Behaves Like an MCM

Purpose
This Chapter discusses the feasibility of constructing and

progremming a computing facility that behaves toward a user as if it
were an actually constructed MCM. The techniques and examples
presented in the Chapter suggest that such & facility can be useful,
and can be both constructed and programmed at & cost having the same
order of magnitude as the cost of constructing snd programming a
contemporary facility for multiprocessing. The Chapter does not
provide complete specifications for a facility that behaves like an
MCM, but instead treats only some major issues concerning such a
facility. One of the Chapter's goals is to indicate that further study
of MCM applications of this type would be justified.

A facility of the type discussed in this Chapter is an example of
but one kind of MCM application. There are other ways of designing
facilities that behave like MCM's, and moreover, there are also MCM
applications that do not involve the design of facilities. An example
of the latter kind of application is & compiler whose generated code
coordinates processing units according to the rules by which the clerk
cells of an MCM are coordinated. A user who requests execution only of
programs translated by such a compiler will never observe &
nonfunctionality or noncompletion lurking bug effect, even if the

executing facility does not itself prevent these effects.

61

The foregoing example, which will not be discussed further,
indicates the variety of MCM applications that might be discussed. The
particular application that will be discussed in this Chapter has been
chosen both to illustrate the basic mechanism by which an MCM
coordinates processes, and to show exemplary solutions for some of the
problems that can erise in MCM applications gehefally. Thus the
Chapter not only describes a particular application, but concomitantly
provides an inventory of techn:lqués that wouid be ﬁseful for developing

other applications.

Method

The Chapter discusses & specific exemplary facility whose ext;ernal
characteristics are those of an M(M. This exemplary facility,
called EF for short, does not exist, but might serve as a guide for the
construction of an actual facility. The facility EF is realized by &
combination of hardware and supervisory software, in the same way that
each of the few dozen facilities of a typical CTSS system [14]
15 realized. |

In order to highlight the differences between EF and contemporary
facilities, and in order to avoid discussing details that are easily
filled in by applying contemporary techniques, the Chaéter describes EF
primriiy from the user's or programmer's point of view. In
particular, the characteristics which EF presents to a user are described
as those of a virtual, or apparent, machine, called VM for short. That

is, EF behaves toward the user as if it were an actual comstruction

62

of VM, in the same way that each of the few dozen facilities of the
CTSS system behaves toward a user as if 1t were an sctual construction
of & machine very similar to an IBM T09%.

One of the tasks of the Chapter is to verify that EF behaves like
an appropriately chosen MCM. This task will be ‘accomplished by showing
that VM behaves like an MCM. Since by definition EF behsves like VM,
the demonstration that VM behaves like an MOM verifies thet EF behaves -
1ike an MM, and therefore verifies, by way of the proofs given in '
Chapters IV and V, that both nonfunctionality and noncoupleétion
lurking bug effects do not occur in EF.

In the verification that EF behaves like en MOM, -the mechine VM~
serves as & tutoriel intermediary. The correspondence between EF and -
an MCM is not completely triv’i’al,y and 1t tdrms cut to be much easier
to understand the relationship be'bween VM and en MOM then'it 18 to -
understand directly the relationship between EF and an MCM.

A description of VM is not sufficient to show that EF ‘is feasible. -
For thils purpose several addi«!:‘iona'l'top’iea"éréf dlscusseds (1) the
menner in which EF might be programmed using & ‘language simiiar to the
Algol langusge [2], (2) the properties of ‘the tompiler used to
translate programs written in this langusge, (3) the cherscter of EP's -~ -
physical units, and (k) the supervisory progrems ‘thet EMs processing -

units occasionally execute in order to perform sctfvities hot explicitly -~

"sired into" EF's hardwere. The discussions of these topics suggest
methods for dealing with some of the major issues that concern EP's. . ..
design and use. It 1is hoped thet the remaining problsms of EF's design
and use can be solved by applying contemporary techniques. =

63

Dynamic Allocation

The relationship between the facility EF and EF's virtual
machine VM may be better understood if one keeps in mind thet dynamic
allocaetion of physicel units among objects 'of program reference is
assumed to occur in EF. One of the reasons for describing the
properties of EF in terms of an abstraction such as VM rather than in
terms of EF's physical units is to esvold a discussion of the camplex,
but fairly well understood, methods for implementing dynamic allocation;
such a discussion would tend to obscure the primasry points being made
in the Chapter. It will be seen, however, that for EF to be feasible
using contemporary technology, dynamic allocation is a practical
necessity. |

As mentioned in Chapter I, dynemic allocation implies that as
time progresses there might occur in EF several distinct correspondences
between physical units and the parts of VWM. In other words, the role
of any particular part of VM might be played by a succession of
physical units, end during occasional intervals the role of a VM part
might not be played by any unit. On account of dynmamic allocation
activity, it cannot be said that the role of & particular VM pert is
alweys played by a certain physical unit; it can only be said that when
the role of & particular VM part is played, it is always played by one

of a class of physical units.

Overview of VM

The parts of VM may be thought of as objects of program reference,
because a program for EF might refer directly to these parts. On the

6k

other hand, the parts of VM are not the only objects to which a
program written for EF might refer: a program for EF might refer to
objects whose relationship to the parts of VM is established by the way
in which the program is compiled or interpreted. An analogous
situation prevails in the CTSS system: a program for a CTSS facility
either might ve, say, a FAP [18] program that refers directly to the
words in the facility's TO94~like virtual machine or might be, say, &
LISP [22] progrem that refers to objects called S-expressions, which
are related in a non-trivisl way to the words in the facility's
virtual machine.

The parts of VM are of five kinds: segments, clerks, input

devices, output devices, and control metrix elements. Clerks, input

devices, and output devices were discussed in Chapter I. A segment

is en ordered set of quantities, each quantity being & value set quantity
of the type discussed in Chepter I. Control matrix elements are unique
to the present development, and so have no counterpart in Chapter I.

Each of these five kinds of VM parts will be described later in detail.

A Viewpoint toward Secondary Storage References

In order to see the general nature of both EF and VM, it is
desirable to draw a sharper anslogy between EF and a CTSS facility [6].
The user of & CTSS facility sees a virtual mechine similar to & 7094,
i.e., a machine heving 32,768 virtual memory registers and having a
virtusl CPU with accumulator, index registers, etc. It is not often
recognized in this context, however, that the user of a CTSS facility

actually sees a much larger virtual storage system than just 32,768 main

65

memory registers: supervisory programs provide the user's camputation
with access to secondery storage units, such as dise and drum units.

A user's secondary storege information is organized into ordered
sets of words, easch set of words being called a file. From the point
of view of the user, each file is identified, not by a physical
location, but by & BCD name that consists of twelve alphanumeric
characters. A user program refers to a file using the file's BCD name,
together with one or more integers indicating the words of interest
in the file.

References to files in CTSS are accomplished when the physical CPU
executes 8 supervisory progrem. This program causes the CPU to perform
activities such as associating the name of the file being referenced
with the file's physical location, and such as keeping the file "open",
an activity which involves, for example, remembering the file's name
80 that subsegquent references can be msede using & small integer tag
as an abbreviation of the file's name.

A user's computetion makes a reference to secondary storage by
executing a particular instruction that "calls the supervisor". The
system is designed so that a user's computation cannot change the
supervisory program; therefore, as far as the user is concerned, the
function performed by the supervisory progrem might as well be "wired
into" the hardwere of the physical CPU. For that matter, the user
would be equally satisfied if the CPU responded to a secondary storage
reference by executing & microprogrem stored in the (PU itself. What
actually happens is that such a "microprogrem" is in fact executed;

the "microprogram” is stored in a memory unit separate from the CPU,

66

and is written in terms of a set of instructions almost identical to
the set of instructions in terms of which a user progrem may
be written.

The functions which the supervisory "microprogram” can cause to
be performed for a user are extremely camplex; nevertheless these
functions are & property of the user's virtual machine. Thus, for
example, the virtual machine of a CISS facility has the ability to
access & large body of information that is referred to by inveriant BCD
nemes. Because the supervisory "microprogrem” cen remember information
between calls, not every reference to & file need involve the use of
the file's full BCD name.

The files that CTSS stores on behalf of & user are just as much a
part of the virtual machine of the user's facility as are the virtual
core memory and CPU. The instructions that refer to files are
instructions that invoke execution of the supervisory "microprogram”.
Those of these instructions that, when executed, read and write
information from end into files are actually instructions that move
informetion between files and virtuasl core memory, and are thus similar
in function to the "move" instructions found in many contemporary
computers. The fact that files are not accessible in any way other
then by execution of "move" instructions is not a good reason for
excluding files from a CTSS virtual machine, for otherwise, in deciding
generally whether samething should or should not be a part of a virtual
machine, where would one draw the line between "accessibility" and

"non-accessibility"?

67

Introduction to Segments
Just as files having BCD names are part of the virtual machine of a

CPSS facility, so also are nemed files of information part of the
virtual machine VM of the facility EF. To follow contemporary

usage [4, 9], these files of information will, in VM, be called
segments. Since in CTSS a file and a virtual core memory are both
ordered sets of words, it is natural to merge the concept of a file
and virtual core memory into a single concept, nemely, that of a segment;
this is exactly the course that has been followed in the design of the
Multics system [4], and will be the course followed here with respect
to EF. In other words, in VM there are not both files and & virtual
core memory, but only segments; each segment 1s accessed using a full
instruction set similar to the set of instructions used to access a
virtual core memory.

Just as in a CTSS facility, and even more as in a Multics
facility, EF uses & supervisory "microprogram” to help make references
to segments be effective. One of the functions performed by processing
units executing this supervisory vrogram is the dynemic allocation of
parts of segments among storage units, such as core memory, drum, and
disc units. Not only does the supervisory program aid in the
implementation of segments, but it also aids in the implementation of
other VM parts; various properties of the supervisory program will be

explained later as the need arises.

68

Segments
The first VM part to be explained is the segment [4, 9]. As

mentioned above, a segment is similar in function both to a CISS file
and to a virtual core memory. A segment is an ordered set of words,
each word being what & programmer of a contemporary facility might

call a "memory word". That is, each word denotes information, usually a
few dozen bits in amount, that might be held in & core memory reglster.
The number of words in a segment is called the length of the segment.

Each segment of VM is designated by a distinet name, which is a
string of BCD characters. Each word in & segment is, in turn, designated
by a distinct address, which is a binary integer between zero and the
length of the segment minus one, inclusive. With respect to VM as a
whole, therefore, each word is designated by a concatenation of segment
neme and address; this concatenation constitutes the word name of
the word.

When a processing unit makes & reference to a segment, say to read
some word in the segment, EF might allow the reference to proceed, or
might take some action, such as typing an error message, to indicate
that the reference is invalid. Let us examine this latter occurrence
more closely. When a reference is made to a word, the name of the word
is employed, either directly or indirectly. When a facility responds
to a reference by saying that the reference is invalid, it is saying,
"Phere is nothing associated with this name,” or to use a more
contemporary locution, "The object having this neme does not exist."
When a word does not exist, then either the segment that would contain

the word does not exist, or else the word is not an existing word of the

69

segment, i.e., the word's address, which is never negative, is greater
than or equal to the segment's length.

Segments may be brought into and out of existence, i.e., created
and deleted, respectively. Likewise, segments may be lengthened and
shortened; such lengthening and such shortening are slso activities of
creation and deletion, respectively. Creation and deletion activities
in VM will be described later in detail.

In understanding what a segment is, it is useful to observe that
segmentation is just a way of naming words. That is, words are not
intrinsically grouped into segments, but belong to segments only
because we choose to structure their nemes in a certain way. The
advantage of giving words numerically consecutive nemes is that some
of the most powerful date processing techniques, such as additive table
look-up, involve computing with nemes, or with parts of names.

Although segmentation is just a naming technique, it is reasonable
to refer to a segment as something distinct from its individual words.
For example, by performing en appropriate procedure step, a computation
might tell EF, "Segment ABC will not be read or written for a while,
so you mey allocate its words to secondary storage if you like." In
the light of the above interpretation of segmentation as & naming
technique, the foregoing message to EF can be interpreted as, "You may
allocate to secondary storage any word whose segment neme is ABC."
Such a message is thus seen to have significance even if segment ABC
exists but happens to be of zero length when the message is given: the
significance of the message in these circumstances is that if ABC

should ever be lengthened, the resulting words may be allocated to

T0

secondary storage. Notice that if the foregoing message i1s given at a
time when segment ABC does not exist, as opposed to when it exists and
is of zero length, then EF might indicate that the message is invalid

by saying in effect, "I know of no such segment.”

Clerks

The second VM part to be explained is the clerk. A clerk is that
kind of VM part whose role is played by a processing unit; as was
mentioned in Chapter I, a clerk is an obJect that passes from one
procedure step of & program to the next, obeying the directions
encountered at eech step. The sequence of actions that a clerk performs
is called a process. A multiprocess program is a program that directs
the activities of several clerks. A program for EF may be either a
single-process program or & multiprocess program.

An unusual feature of VM is that each clerk is designated by a
distinct name. The name of a clerk, like the name of a segment, is &
string of BCD characters.

Clerks can be created and deleted, Jjust like segments can be
created and deleted. Exsmples of procedure steps whose executions
in a contemporary facility would create and delete clerks are procedure
stepe of the types fork and guit, respectively; these procedure step

types were described near the end of Chapter I.

Input Devices
The third kind of VM part to be explained is the input device. An

input device is that kind of VM part whose role is played by an input

71

unit, such as a card reader unit, or typewriter keyboard unit. As an
object of program reference, an Input device is similar to vhat is
called in a FORTRAN [19] program a "symbolic" input device. That is, a
program refers consistently to, say, "card reader device nmumber 4" in
spite of the fact that the role of this device might be played on
different occaslons by distinct physicel units.

For each computation, there is associated with every input device
an input stresm, i.e., a sequence of input symbols. For example, &
computation's input stream from e card reader device is the information
punched in those cards, or portions of cards, that are read during the
computation. In the case of a typewriter keyboerd device, a camputation's
input stream from the device is the sequence of characters that are
typed on the keyboard and that are read during the computation.

During a computation, a reference is mede to an input device for
one or more of three distinct purposes: (1) to read from the device's
input stream, (2) to either sense or change the state of the physical
unit playing the role of the device, e.g., to ask, Hopper empty?" or
to say, "Lock keyboard," end (3) to refer to the device as & whole, as
for example to say, "I am not going to use this device for e while, and
so this device's physicel unit may be allocated to play the role of
some other device."

Just like a clerk, each input device is designated by a distinct
name, which is a string of BCD characters. Also Just like a clerk, an
input device can be created or deleted by the execution of an appropriate

procedure step.

T2

OQutput Devices

The fourth kind of VM part to be explained is the output device.
An output device is that kind of VM part whose role is played by an
output unit, such as a printer unit. Like an input device, an output
device is referred to during a computation without regard to the
jdentity of the physical unit playing the role of the device.

For each computation, there is associated with every output device

an output stream, i.e., a sequence of output symbols. For example, &

computation's output stream from a printer device is the sequence of
characters produced by the printer during the computation. As with an
input device, a reference to an output device during & computation is
made for one or more of three distinet purposes: (1) to write into
the device's output stream, (2) to sense or changé the state of the
physical unit playing the role of the device, and (3) to refer to the
device as a whole.

Like input devices, output devices are designated by distinct BCD
names, and may be created and deleted by the execution of appropriaste

procedure steps.

Control Matrix Elements

The fifth kind of VM part to be explained is the control matrix

element. The control matrix elements of VM form, not surprisingly,

VM's control matrix, whose function in VM is similar to that of the

count matrix in an MCM. As shown in Figure 3.1, each row or column

coordinate of VM's control matrix is a BCD name that might be the

73

Tauweu
Zewsu
Cawru
Housy

namel

name?2

name3

Figure 3.1. A typical control metrix. The names namel through namek
are BCD names, each of which might be the name of a segment,
clerk, input device, or cutput device.

BCD names

Figure 3.2. A typical set of existing control matrix elements. Dashed
lines enclose a full control matrix. Hetched regions are a
typical set of existing control matrix elements.

name of & segment, clerk, input device, or ocutput device. Just like
an element of the count matrix of an MCM, each element of VM's control
matrix is en integer that might be positive or negative.

Unlike the count matrix of an MCM, the control matrix of VM does
not necessarily have the usual rectangular shape of a matrix.
Furthermore, the shape of VM's coﬁtrol matrix may vary during a
computation. In order to understand the properties of W's control
matrix, let us imegine a full control matrix having & fixed, square
shape and consisting of Just one row and one column to correspond to
esch BCD name that might be the name of & segment, clerk, input device,
or output device. Each element of the full control mabrix might or
might not exist as an element of VM's control matrix. Thus, as shown
in Figure 3.2, VM's control matrix might have jegged edges, isolated
sets of elements, and "holes".

If a control matrix element exists, and has the value n, then
the element of the full control at the same position also has the
value n. On the other hand, if a control matrix element does not
exist, then the element of the full control matrix at the same position
has a value that is given by a convention. This convention 1s
esteblished to facilitate the creation and deletion of VM parts, and
will be explsined later in the Chapter.

Control matrix elements are not created and deleted by clerks
executing procedure steps that order their creation and deletdion, but
instead, control metrix elements are created and deleted automatically,
perbaps by & processing unit obeying EF's supervisory program. Whenever a

clerk makes a control matrix element have a value that -does not conform

75

to the convention for non-existing elements, then the control matrix
element is created if it does not already exist, and is given the new
value. Furthermore, whenever & clerk makes a control matrix element
have & value that does conform to the convention for non-existing
elements, then the control matrix element can be deleted. Thus the
clerks of VM behave as if the full control matrix existed. For the
sake of econamy, only those full control matrix elements. that do not
conform to the convention for non-existing elements need be physically

realized at any instant in the control matrix of VM.

A Sketch of VM's Operetion

A sketch of the basic way in which VM operates when it performs a
computation can now be presented. This sketch is accurate, but ﬁot
complete; the details omitted will be £illed in throughout the rest of
the Chapter.

When VM performs a ¢ tation, each clerk of VM performs a process
that is a sequence of actions. At any instant, a clerk does or does
not have permission to proceed with its next action, depending on
whether or not it hes at that instant all of the capabilities necessary
to perform the action.

In performing an action, a clerk always writes into itself. A
clerk x has capability to write into itself just when the integer in
row x and column x of the full control matrix is greater than zero
and the other elements in column x of the full control matrix are less
then or equal to zero. Unless mentioned otherwise, it mey be assumed

that any clerk has write capability for itself.

76

A clerk x has capability to read eny word in a segment n Jjust
when the integer at position <:x, ﬁ:> of the full control matrix, i.e.,
in row x and column n of the full control matrix, is greater than
zero. A clerk has capability to write any word in a segment just when
it is the only clerk that has capability to read a word in the segment.

The action of a clerk might change a control matrix element. Let e
be a clerk name, and let n be a segment name. A clerk x has
capability to add 1 to the integer at position <<§, n:> of the full
control matrix just when clerk x has capability to read any word of
segment n, i.e., just when the integer at position.<:x, n:> of the
full control matrix is greater than O. On the other hand, a clerk x
always has capebility to subtract 1 from the integer at position
&x, n> of the full control matrix.

The above mechanism for changing the control matrix allows
capabilities to read and write segments to be passed from one clerk to
another, and to be relinquished by clerks when no longer needed; this
mechenism is similar to that by which processes are coordinated

in an MCM.

Coordination Procedure Steps

Before an explanation is given of how VM behaves like an MCM, an
example will be presented to show how EF might be programmed using an
Algol-like language. In preparation for this example, procedure steps
of the types send and done are now introduced.

Before defining procedure steps of the type gggg, two examples of

the use of this type of step will be given. First, suppose a programmer

7

wishes to direct & clerk to add 1 to the integer at position <:e, g)}
of the full control matrix. Then the programmer may write
send 'n', 'e';

====

For 2 second example, suppose again that a programmer wishes to
direct a clerk to add 1 to the integer at position e, n:> of the
full control matrix, and suppose that the values of the quantities a
and b are the names n and e, respectively. 'Then the programmer
may write
send &, b;
In general, if the expressions << and /8 eveluate to the

names n and e, respectively, then the execution of

sendod;, B
adds 1 to the integer at position <:é, n:> of the full control
matrix. According to the rule given in the preceding Section, a
clerk x has permission to add 1 to the integer at position <:§, %:>
of the full control matrix just when the integer at position<<:%, q>>
of the full control matrix is greater than O.

The single quotation marks used in the first example above are the
first operators to be introduced for use in expressions whose values

are names. Quotation marks inhibit eveluation of the expression they

enclose; that is, the value of the expression

1 1

ol
is the expression o< itself. Additional operators for use in

expressions whose values are names will be introduced later.

78

If the expression cX evaluates to the name n, then the
‘execution of
dope o<;
by clerk x subtracts 1 from the integer at position <x, n>
of the full control matrix. According to the rule given in the preceding
Section, & clerk x &lways has permission to subtract 1 from any

integer in row x of the full control matrix.

An Example -- Matrix Manipulation Again

The procedure steps Just introduced will now be used in a program
that directs the same computetional activity as was directed by the -
program given at the end of Chapter I. This computational activity
is the computing of

(48)"Y((cD)(48))
where A, B, C, and D are n by n matrices and AB is non-singular.
Like the program of Chapter I, the program given here is written in a
language similar to the Algol langusge, and uses four temporary storage
matrices: T, U, ¥, and 2. The program also. uses the procedures 'matrix
multiply"” and "matrix inverse of". Each of the matrices A, B, C, D, T,
U, Y, and Z is stored in a distinct segment having the ecorresponding name.

The coding that would correspond to the fork appearing in the
program of Chapter I is omitted, because the notion of fork in EF bas
not yet been discussed. Instead, the program is given in two compound
stetements: one directing the activity of a clerk named "alpha", and

the other directing the activity of a clerk named "beta". The clerks

79

may enter their respective compound statements simultaneously, or in
arbitrary order.

Just before the entry into a compound statement by the first clerk
to enter its compound statement, the control matrix is assumed to have
the configuratidn depicted partially in Figure 3.3. It may be assumed
that unless Figure 3.3 indicates otherwise, each element in columns A
through beta of the full control matrix is O. Thus, for example,
Figure 3.3 indicates that clerk beta hes write capability for
segment Y. Figure 3.3 does not show the entire control maetrix:
clerks alpha and beta &re assumed to have read capability for the
segments into which the procedure steps of the program are encoded, and
each clerk is essumed to have write capablility for one or more temporary
storage segments.

The compound statement entered by clerk alpha is the following.

begln gend 'C', 'beta';

send 'D', 'beta’;

matrix multiply (A) times:(B) into:(T);
send 'T', 'beta';

matrix inverse of (T) into:(U);

matrix multiply (U) times:(2) into:(answer);
dope '2';

end

="

jesl
p=t o
e]
j=3 ot
o]
A B c D T U Y Z
alpha 1 1 1 1 1 1 0] 0 1 0
beta 0 0 0 0] 0 0 1 1 0 1
Figure 3.3. Part of the control matrix upon entry into

an exsmple program.

81

The compound statement entered by clerk beta 1is the following.
begin matrix multiply (C) times:(D) into:(Y);
done 'C';
done 'D';
matrix multiply (Y) times:(T) into:(2);
dome 'T's
send 'Z', 'alpha';
ead
A clerk enters its compound statement by passing to the symbol
begin. The following activity ensues when exactly two clerks,
nemed alpha and beta, enter their respective compound statements.
Clerk beta might have‘tkoait to be given read cepability for C and D.
Then alpha end beta might compute T and ¥ simultaneously .
Nexf beta might have to wait to be given read capebility for T.
Then alpha and beta might compute U and Z simultaneously. ZFinally,
alpha might have to wait to be given read capsbility for Z in order to
compute the final answer. After both clerks exit from their respective

compound statements, the control matrix will be the same as it was

before the clerks entered the compound statements.

*

As during the execution of the program of Chapter I, the simultaneous
execution by both clerks of the procedure "matrix multiply" occurs as
if each clerk executed a separate copy of the procedure.

82

Introduction to the Correspondence between VM and an MCM
The purpose of the next several Sections is to show that VM

behaves like an M(M. This will be accamplished by establishing &
correspondence between the parts of VM and the components of a certain
MCM. In order to establish this correspondence, additional details
concerning VM's operation will be introduced as necessary. The
correspondence itself, together with the description of MCM operations
given in Chapter II, will serve to define VM precisely.

The particular MCM to which VM will be shown to correspond is
designated by the letter M. The machine M, like any MCM, is described
by four quantities: (1) a set of cell names, (2) a set of output cell
names that is a subset of the set of cell names, (3) a transaction |
table for each cell, and (4) a set of initial camputation states. The
machine M is an asbstraction employed to show, via the proofs of
Chapters IV and V, that EF has certain properties, namely, that EF
prevents nonfunctionality and noncompletion lurking bugs.

Consider the set D of the BCD names by which the segments, clerks,
input devices, and output devices of VM can be designated. The
set Y contains all the names that might designate such VM perts; at
any instant only a few of the names belonging to D might designate
parts that actually exist. The names belonging to V are not partitioned
according to the kind of VM part that they designate; on the contrary
each name belonging to U can, on separate occasions, be the name of a

segment, clerk, input device, or output device.

83

Corresponding to each name in V there is a cluster of cells in M.
Every cell of M belongs to exactly one cluster. If n 1s & name
belonging to 2), then the cells in the cluster corresponding to n
have the names

nej
n.o
n.g
n.
n.xg
n.0
nel

n.2

The symbols u, &, 0, nx, and o stand for "mode”, "output", "state",
"primary pointer"”, and "state pointer”, respectively. The
numerals O, 1, 2, ... are addresses.

The number of cells in a cluster is finite, and is the same for all
clusters. The number of cells in M is the number of cells in a cluster
times the number of names in U . Notice that the number of cells in M
is fixed, even though the structure of VM changes from time to time as
the result of creation and deletion activity.

As was mentioned, each name in ¥ , at any instant, is either used
as the name of an existing segment, clerk, input device, or output
device, or is not used as the name of any existing object. The usage

of the cells in & cluster depends on which of these five conditions

84

prevails for the name to which the cluster corresponds. The usage
of the cells in a cluster will now be explained for each of these

five conditions.

The Cluster Corresponding to a Segment

If n 1is the name of a segment of length, say, 3, then the cluster
corresponding to n is shown in Figure 3.4. Cell n.u always holds a
word that denotes the "mode" of the cluster n. In Figure 3.4 the
cell n.p holds the symbol s, denoting "segment". When cluster n
is a segment cluster, cells n.a, n.o, n.xx, end n.xg &are not used,
and s0 hold a word that is the symbol #, denoting "empty" or "undefined".

To each address with which a word is associated in a segment there
corresponds in the segment's cluster & cell having the address and
holding the associated word. For example, in Figure 3.4 the word
having address 1 in segment n 1is the word x, and in cluster n
the cell named n.i holds the word x. Moreover, to each address,
between O and the length of a segment minus 1 inclusive, with
vhich no word is associated in a segment there corresponds in the
segment's cluster a cell having the address and holding the word #.

For example, in Figure 3.4 there is no word associated with address 3
in segment n, and in cluster n the cell named n.3 holds the

word #. It is assumed that d is not e word that can belong to a segment.

The Cluster Corresponding to a Clerk

If n is the name of & clerk, then every cell of the cluster

corresponding to n holds the word ¢, except cells n.p and n.o.

85

n.3
2 v < n.2

addresses words n.xx

segment n in VM

cell words in
names cells

M's cluster corresponding to segment n

Figure 3.4. The cluster corresponding to & segment.

Cell n.p holds the word c, denoting "clerk", and cell n.c holds

the word that is the state word of clerk n in VM.

Performance Correspondences
Before the configuration of a cluéter corresponding to an input

device, output device, or unused name is described, an explenation will
be given concerning the correspondence between the actions performed
by clerks in VM and the transactions performed by cierk cells in M.
When clerk x performs an action in VM, the corresponding activity
in M is the performance of one or more transactions by clerk cell x.0.
For example, when clerk x reads the word at address 6 1in segment i,
clerk cell x.o performs a get of 1.6.

The way in which the execution of a procedure step in WM
corresponds to the performance of a sequence of transactions in M
may be understood by meens of the following example. Suppose that in VM
the procedure step

Add one to segment i, address 6

is encoded into the word at address 1% in segnent‘ xp, in a code
appropriate for clerk x. The execution of this procedure step by
clerk x corresponds in M to the performance by cierk cell x.0

of the following sequence of transactions.

get of xp.lh replace fl(') (3.1)
get of 1.6 replace £,(*) (3.2)
put of i.6 with v replace W (3.3)

If the content of cell xp.l4 Jjust before clerk cell x.¢ performs (3.1)

is cl(xp.lh), then fl(O) is such that fl(cl(xp.lh)) is a word to

87

which (3.2) corresponds in clerk cell x.o's transaction table.
Similarly, if the content of cell 1.6 Jjust before clerk cell x.¢
performs (3.2) is c,(1.6), then fe(') 1s such that £,(c,(i.6)) is =
word to which (3.3) corresponds in clerk cell x.g's trenssction table.
In (3.3), the word v equals c2(1.6) + 1, and the word w is & word
to which some transaction 69 corresponds in clerk cell x.o's
transaction table. This transaction 69, vhich might be, for example, &
get of xp.l5, is such that when clerk cell x.o performs é;ﬁ clerk
cell x.0 will read the next encoded procedure step word.

From the above example is may be seen how the step-by-step
execution of procedure steps by a clerk in VM corresponds to the
performance of a sequence of transactions by & clerk cell in M. This
correspondence is achieved by an appropriate specification of the
transaction tables of M. Thus the transaction tables of M are a
description of the sets of executable procedure steps, or "instruction

sets", of the clerks of VM.

The Cluster Corresponding to an Input Device

As was mentioned previously, a reference to an input device is
made for one or more of three purposes: (1) to read from the device's
input stream, (2) to sense or change the state of the device, and (3) to
refer to the device as a whole. A reference to an input device as a
whole occurs in a communication between clerks, or in a commuﬁication
between a clerk and a processing unit that is executing a supervisory
program. Such & communication might say, for exemple, "Obtain your

next input from device n," or "Device n is no longer needed." A

reference to an input device as a vwhole always spesks about the device

88

and its properties, and never actually manipulates the device. A
reference to a device as a whole may occur regardless of whether the
device exists, and regardless of its actual properties. Since such
references are not necessarily related to the properties of input
devices, then the occurrence of such references tells us nothing about
the properties of input devices, and so the possibility of such
references may be ignored in establishing a correspondence between
input devices and clusters of cells. Thus, in establishing &
correspondence between &n input device and a cluster of cells, only
two types of reference need be accounted for: (1) reading from the
device's input stream, and (2) sensing or changing the state, or
configuration, of the device. These same considerations apply as well
to the establishing of a correspondence between an output device and a
cluster of cells.

The design of an MCM is such that the content of a cell, once set
initially, can be changed only by a clerk cell writing into the cell,
and not by external influences. Any external influences that affect
the performance of a computation must affect the computation through
information encoded into the initial computation state. Thus an input
device's entire input stream, consisting of symbols on, say, punched
cards, must be encoded into the initial computation state. This
encoding is accomplished as follows.

Let n be the name of an input device. The first symbol in the
input stream of n 1is held in cell n.0, the second symbol 1s held in
cell n.2, the third symbol is held in cell n.4, ete. (The usage of

the cells having odd addresses will be explained later.) Any

89

even-addressed cells in cluster n that are not needed to hold input
stream symbols for device n hold the word ¢. Since there is alvays a
practical limit on the number of symbols in an input stream, then the
finite number of cells in & cluster can be chosen so that there is no
chance for the number of symbols in an input stream to exceed the
number of available cells. Since M is an abstraction that does not
have to be actually comstructed, then the nmumber of cells in a cluster
can be arbitrarily large. A number of cells in a cluster equal to
(20%°)

10
should be sufficient to assure that any input streem found in practice
can be encoded into the cells of a cluster.

For the input device n, the cell n.p holds the word i, denoting
"input device". Also, the cell n.a is not used and so holds the
word ¢. Finally, the cell n.xx holds a non-negative even integer
giving the address of the cell that holds the next symbol to be read
from the input stream during a computation.

The way in which the reeding of a symbol from the input stream of
an input device by a clerk of VM corresponds to the performence of a
sequence of transactions by a clerk cell of M may be understood by
means of the following example. When clerk x of VM reads from the
input stream of input device n, the corresponding sequence of
transactions performed in M by clerk cell x.o is the following. First,
clerk cell x.o performs a get of n.x to discover the address,
say U4, of the cell to be read. Then clerk cell x.¢ performs‘a put
of n.tx to place into cell n.xx an address that is always two

greater than the previous address held in that cell, and that is in this

90

cese the address 6. Then clerk cell x.c performs a get of n.b

to obtain, in this case, the third symbol in the input stream of input
device n. The fact that a sequence of transactions of the foregoing
kind is always performed to correspond to the reading of an input
stream is a property of M's transaction tables.

The state or configuration of an input device is distinct from the
input stream of the device. In general, the state of an input device
might be affected either by the action of clerks in VN, or by external
influences. For example, & clerk can issue an order to lock &
typevriter keyboerd, or an operator can make & cerd reader "ready’ by
placing & deck of cards into a hopper. The giving of an order by &
clerk of VM to change the stete of input device n corresponds in M
to the writing of a word into the cell n.g. The words written into
cell n.c express in coded form the perticuler orders appropriate to
the device n.

When & clerk senses the state of an input device, the clerk is,
in effect, resding & symbol from an input stream, because the state of
the input device may, in general, be affected by influences external to
VM. This state input stream of an input device is distinct from the
previously discussed primary input stream of an input device. The
successive symbols in a state input stream demote the successive device
states tha'q are sensed during & computation. Specifically, the i-th
symbol in the state input stream of an input device is a symbol denoting
the information sensed on the i-th occasion that the state of the input

device is sensed, by any clerk, during a computation.

91

The state input stream of an input device is encoded into odd-
addressed cells in the same way that the primary input stream of the
device is encoded into even-addressed cells. For input device n,
the first symbol in the state input stream is held in cell n.l, the
second symbol is held in cell n.3, the third symbol is held in cell n.5,
etec. Any odd-addressed cells in cluster n that are not needed to
hold input symbols in the state input stream for device n hold the
word ¢. The cell n.gxo. holds a non-negative odd integer giving the
address of the cell that holds the next symbol to be read from the
state input stream during a computation. A transaction sequence that
reads from the state input stream of an input device is analogous to a
transaction sequence that reads the primary input stream of an input
device.

The treatment of a state input stream on & par with a primary
input stream is unusuasl. The similarities between these two kinds of
input streams are seldom emphasized, because in practice there is an
important distinction between them: & user can completely specify a
primary input streem, but usually cannot completely specify a state
input stream. For present purposes, however, this distinction is not
important; the successive input device states semsed during a computation
must be considered an input stream to VM, because these states are, in
general, affected by influences external to VM. The fact that we have
had to consider a symbol sequence not completely specifiable by & user
to be an input stream is a fact that will be discussed further in

Chapter VI.

The description of a cluster corresponding to an input device is
now complete. Let us review the roles of the cells in a cluster
corresponding to an input device n. The primary input stream is held
in the even-addressed cells, starting with cell n.O. The state input
stream is held in the odd-addressed cells, starting with cell n.l.
Even- or odd-addressed cells that are not used hold the word é. The
cells ne.gx and n.xo hold the addresses of the next cells in cluster
to be resd from the primary and state input streams, respectively.

The cell n.o holds a word that is an encoding of the most recent
order for change of state issued by a clerk to device n. The
cell n.o is not used, and so holds the word ¢. The cell n.n holds

the word 1, denoting "input device".

The Cluster Corresponding to an Output Device

The symbols that the clerks of VM place in the output stream of
output device n are, in M, written into cell n.o, which is
designated in M as an output cell. An order given by one of the clerks
of VM to change the state of output device n without affecting the
output stream corresponds in M to the writing of & word into the
cell n.o.

Since a clerk of VM can sense the state of an output device, and
since this state might be affected by external influences, therefore
an output device has a state input stream similar to that of an input
device. Just as for en input device, the symbols in the state input
stream of the output device n are held in the cells n.l, n.3, etc.,

with any unneeded odd-numbered cells holding the word ¢. The

93

cell n.xo holds the address of the next cell in cluster n to be
read from the state input stream during a computation. A transaction
sequence that reads from the state inpﬁt stream of an output device is
anslogous to a transaction sequence that reads from either input
stream of an input device.

For the output device n, the even-addressed cells, and the
cell n.xx &are not used, and so hold the word $. The cell n.p

holds the word o, denoting "output device".

The Cluster Corresponding to an Unused Name

If the name n is not used in VM, then every cell in cluster n

holds the word #.

The Correspondence between Control and Count Matrices

At some instant during a VM computation, let kf(',) denote VM's
full control matrix; that is, let kf(x, n) be the integer at
position <x, n > of the full control metrix. Similarly, let k (<,)
denote the corresponding count matrix of M. Recall that the value of
an element of kf(', -) is either the value of the corresponding element
of VM's actual control matrix, or is dictated by a convention, to be
described later, that gives the value of a non-existent comtrol
matrix element.

Figure 3.5 shows the count metrix corresponding toa 2 by 2
full control matrix. In general, the correspondence between kf(', .)

and km(-,) is given as follows. Let km(x.a, n.b) be an arbitrary

9k

B E Tuilemtmu‘trix
-

/'/k!(s) E W

name) {: X3 2 B

-
‘
¢

- gk o e =
X R Loovase . i - g &
: EXEEE SR e R

rows for

namel cluster

namel.o

WA:" 10 5 8]

Figure 3.5. Correspondence between & full control matrix
and a count matrix.

%5 -

element of km(', *). Then
km(x.a, n.b) = kf(x, n)
km(x.a, n.b) =0 s;afo

The above correspondence implies & constraint on the initial
configuration of M's count matrix: some elements of the count matrix
are alweys zero, and other elements are always equal. This constraint
amounts to a restriction on the set of M's allowable initial
computation states.

In order to preserve the correspondence between control and count
matrices throughout the performance of corresponding computations by
VM and M, a restriction must also be placed on M's transaction tables.
A restriction sufficient for this purpose will be given in the next
» Section, following an explanation of the transaction sequences that
are performed to correspond to the execution of send and done

procedure steps.

Coordination Correspondences

The final action in the execution of
'n’, te’; (3.4)

[112]
2

€
is to add 1 to the integer at position <e, n> of the full control
matrix. The performance of this action by clerk x of VM corresponds

in M to the performance of the following sequence of transactions

by clerk cell Xx.0.

send of n.. to e.c replace W, (3.5)
send of n.a to e.c replace W, (3.6)
send of n.c to e.c replace Wy (3.7)
send of n.m to e.g replace v, (3.8)

In (3.5), w, 1is & word to which (3.6) corresponds in cell x.o's
trensaction table. Likewise in (3.6), w, is a vord to which (3.7)
corresponds in the same transaction table. In (3.8), m is the
maximum address of a cell in a cluster, and p 1s the number of cells
in & cluster. One might say that in correspondence to the execution
of (3.4), the whole cluster n is sent to cell e.o.

Likewise, the final action performed by a clerk x executing

done 'n';

====

is to subtract 1 from the integer at position <<;, g:> of the full
control matrix. The performance of this ection corresponds in M to the
performance of a sequence of dones by clerk cell x.og, one done for
each cell in cluster u.

The above correspondences for gggg's and gggg's suggest the
following restriction on M's transaction tebles. For each cell Xx, &
send, done, or bye transaction may appear in cell x's transaction
table only as part of a trensaction sequence, such as (3.5)-(3.8),
which when performed by cell x would make jdentical alterations to
count matrix elements in one row and several columns, the row

corresponding to & cell whose nsme ends in ".o", and the columns

a

corresponding Jjust to the cells in one cluster. In conjunction with
the timing correspondence discussed in the next Section, this
restriction is sufficlent to meintain during a computation a correspondence

between VM's control matrix and M's count matrix.

The Timing Correspondence
The cbject of this Section is to describe how the strategy of M's

scheduler can be established so k_aa to maintain & correspondence
between the behavior of VM and the behavior of M. As was mentioned
in Chapter II, the strategy of M's schgdulgz;,is the scheme by which
the scheduler mekes selections from successivg choice cq]lections.
It may be recalled thet a choice collection :l.s derived from a
computation state by applying both the enabling gules and a rule to
prevent clerk cells from altering the same count matrix element
simultaneously. From out of the choice collection derived. from a
given camputation state, the scheduler selects, in accordance with
1ts strategy, one set of names to be the set of the names of the cells
that will accomplish the next computétion state transi;ion.

It is assumed that each clerk in VM proceeds autoncmaus]y, and
that the actions of several clerks may overlap in time in en arbitrary
way. The autonomous behavior of clerks in VM mey be contrasted with
the synchronous behavior of cierk ceils :l.n M; in s cqng\ltation |
performed by M, all transactions of one computation -sta_.te _trgnsition
are completed befozje the next computation ~si;a.te trensition is begun;
The main task in explaining the strategy of M's schedﬁler is to
establish a method by which the autonanqus clerk behavior of VM may be

modeled by the synchronous clerk cell behavior of M.
98.

The modeling of VM's behavior in terms of M's behavior is
achieved by lettihg the performence of transacﬁions in M occur both
instantaneously, and immediately upon receipt of a go pulse. It is
legitimate to talk about instantaneous transaction performances in M,
since M is an sbstraction that does not have to be actually constructed.
An alternative to letting the performance of a transaction be
instantaneous is to let the performance of a itransaction have a
duration much smeller than any duretion of interest in VM.

The process that a clerk in VM performs may be divided into a
" sequence of actions, each of which has non-zero, finite duration, and
each of which involves the sensing and/or changing of the state of another
VM part. For example, the reading by a clerk x of the word at
address 7 1in seguent n is such an action. As shown in Figure 3.6,
this action has a certain duration for the word being read Qnd a certein
duration for clerk x. During the iﬁterval when the word at address 7
in segment n 1is in use for this action, no other clerk reads or writes
the word. Likewise, during the interval when clerk x is in use for this
action, no other clerk reads or writes the state word of clerk x.

In the example of Figure 3.6, the transaction that corresponds in M
to the read action in VM is a transaction performed by clerk cell x.o,
and is a get of n.7. For convenience, let us imagine that corresponding
computations occur in VM and M siml&nem]y. Then in the example of
Figure 3.6, the transaction corresponding in M to the read action in VM
is performed in M at an instant during the interval when in VM both

clerk x and the word being read are in use for the read actibn.

A hashed interval is the

interval during which the VM

part is in use for the reading
™ | by clerk x of the word at
part address 7T in segment n.

vord at l m/ /

Mdress T IS,

segment n |

|
clesk x \—— S

>
< At)1 time
MM
cell
cell n.7 I
clerk cell x.o
| -
time

Instant of the performance of the transaction
corresponding to the above read action.

Figure 3.6. 'The performance in M of the transaction that corresponds
to a read action in VM.

100

The action-transaction correspondence in the example of Figure 3.6
is in one respect not typical of action-transaction correspondences
in general, because in this example the performance of the read action
in VM corresponds to the performance of Jjust one transaction in M.

In general, the performance of an action by & clerk in VM corresponds
to the performance of one or more transactions by a clerk cell in M.
For example, to an action that reads from an input stream in VM there
corresponds in M the performance of three transactiomns, two of which
manipulate an address pointer. For another example, to an action that
adds one to a control matrix element of VM there corresponds in M the
performance of a number of send transactions equal to the number of
cells in a cluster.

For some action performed by & clerk in VM, consider the intervel
At during which all parts of VM that participate in the action are
in use for the performance of the action. The transaction or
transactions, always finite in number, that correspond to this action
are performed in M during the interval At. This timing correspondence
holds for every action performed in VM. The scheduler of M makes
selections from choice collections, and schedules the transmission of
go pulses, so that this timing correspondence is maintained.

The rules by which clerks of VM obtain permission to proceed are
constructed to correspond to the rules for the formation of choice
collections in M in such a way that it is possible for M's scheduler
to maintain the above timing correspondence. A sketch indicating
the general nature of VM's permission rules was given previously. A

complete list of the rules for the actions discussed so far is given

101

in Figure 3.7. Additional permission rules will be given as new

actions are introduced. Notice that each permission rule can be

[+

inferred from the correspondence between VM and M. For example
clerk, having write capability for itself, must have, not read
capability, but write capebility, for an input device in order to read
from the input stream of the device. This 1s because the reading of
an input stream corresponds in M to the performsnce of three
transactions, one of which is & put that increments the pointer
indicating the next symbol to be read.

A cepabllity possessed by a clerk of VM can be teken away from
the clerk only by an action performed by the clerk itself, specifically,
by the clerk's decrementing of a control matrix integer. Thus,
whenever a clerk has permission to perform an action, it continues
to have that permission until the action is performed. It is assumed
thet once a clerk of VM has permission to perform an action, it does
perform that action after a finite time. This assumption means that
the strategy by which M's scheduler maintains the timing correspondence
between VM and M is & strategy that is reasonable, in the sense
described in Chapter II.

The timing correspondence between VM and M implies that there is
not a simple correspondence between the state of VM at some instant
and the computation state of M at the same instant. For exsmple, M
can have & definite computation state at an instant when in VM actions
are still being completed. This lack of & simple correspondence between
machine states seems to be a consequence of the modeling of autonomous

clerk behavior by synchronous clerk cell behavior.

102

Clerk x hss read capebility for pert n Just when the
integer at position {x, n> of the full control matrix is
greater than zero. Clerk x has write capebility for
part n Just when clerk x has sole read capebility for

part n.

Action clerk x
will perfong

Capabilities clerk x must
have to perform the action.

read from a wvord in segment n
write into a word in segment n

read from the primary input
stream of input device n

read from the state input
stream of Input device n

command & change of state of
input device n

write into the output stream of
output device n

read from the state input stream
of output device n .

command a change of state of
output device n

add one to the integer at
position <e, n> of the
full control matrix

subtract one fram the integer at
position <x, n)> of the
full control matrix

Read Write

n . b &

Figure 3.7. Permission rules for several actioms of a clerk in VM.

103

Creation and Deletion Correspondences

The creation of a VM part n corresponds in M to the performance
of & sequence of puts that change cluster n from the cluster of an
unused name into the cluster of the VM part being created. Likewise,
the deletion of a VM part n corresponds in M to the performance of a
sequence of puts that chenge cluster n ffom the cluster of the VM
part being deleted into the cluster of an unused name.

The creation of a VM part corresponds in M to at leest one
writing of a non-¢ word into a cell that previously held the word g.
Likewise, the deletion of a VM part corresponds in M to at least one
writing of the word ¢ into a cell that previously held a non-¢ word.
Therefore, in order to have permission to perform an action that creates
or deletes a VM part n, a clerk x of VM must have write capability

for part n, as well as, of course, write capaebility for itself.

Epilogue for the Correspondence between VM and M

The transaction sequence correspondences for certain creation-
deletion procedure steps to be introduced later have yet to be described.
Except for the discussion of these correspondences, the éxplanation
of the correspondence between VM and M 1s now complete. The machine M
is constructed to correspond internally to VM. Therefore the externsl.
behavior of VM, i.e., the relationship between the initial state and
output streams of VM, 1s identical to the external behavior of M. Thus
after the transaction sequence correspondences mentioned above have
been discussed, it will have been shown that there is an MCM which VM
behaves like, and so the proofs of Chapters IV and V will verify that

nonfunctionality and noncompletion lurking bugs do not occur in VM.

10k

Attention now turns sgain to the way in which EF might be
programmed using an Algol-like languaege. The specific concern of the
next three Sections is the explanetion of some procedure steps whose

executions create and delete VM parts.

The Problem of Choosing Names

Although the previously mentioned permission rule for creation and
deletion sctions 1is sufficient to assure a correspondence.between VM
and M, it remains to be shown that it is easy to write useful WM
programs that direct creation and deletion activity. The major problem
in writing such programs concerns the choice of names to be given to
VM parts being created.

From the correspondence between VM and M, the following statement
about VM may be inferred: the neme of a VM part being created is
never chosen arbitrarily, in accordance with influences external to VM,
at the instant of the part's creation. To understand why this
statement is true, consider the transactions that correspond in M to a
creation action performed by a clerk x 1in VM. These transactions are
puts into some particular cluster, say cluster n. In M, the name n
is determined by the word held in clerk cell x.o0 Just before the
creation action begins in VM. Therefore, in VM, the neme n is
determined from the corresponding state word of clerk x, i.e., from
the state word of clerk x Jjust before the creation action. Thus the
name n 1is the only name that may be given to the VM part being cresated,
because the choice of any other name would fail to preserve the

correspondence between VM and M. Thus the selection of the name n

105

must not be made arbitrarily, but muét be "programmed": the name n
can either be specified explicitly in the program being executed, or
be computed as part of the computational activity being performed.

When choosing a name for a VM part to be created, or when
programming such & choice, a computation's planner, either a programmer
or a compiler, must avoid two potential difficulties. First, the name
of the part to be created might inadvertently be chosen so that the
clerk executing the creation procedure step will never receive write
capability for the name and hence never have permission to create the
part. Second, the name of the part to be created might inadvertently
be chosen to be the same &s the name of a VM part that already exists
and that will not be deleted before the part being created is required.
It is desirable to have at hand a method for choosing nsmes, or for
programming the choice of names, so that these two difficulties can
be systematically evoided. Such & method is described in the

next Section.

Naming Conventions Suggested to Facilitate Creation and Deletion

This Section describes four programming and design conventions,
the adoption of which will allow the two problems mentioned above to be
circumvented in & practical meanner. The conventions are interrelated,
and accomplish their intended purpose only if all four are adopted.

It may be noted, however, that adherence to neither any nor all of
these conventions is required in order to maintain a correspondence

between VM and an MCM; the conventions have been formulated merely to

106

facilitate the programming of creation and deletion activity. The
second of the four conventions is the previously promised convention
that gives values for non-existing control metrix elements.

The first convention is the following: the name of each created VM
part should contain as a largest explicitly delimited prefix the name
of the creating clerk. For example, if clerk x were to create
another clerk, the new clerk might be named

Xy
and if clerk x:y were to create & segment, the segment might be nemed
xiy:m

This convention allows the generation of arbitrarlly long names.
References using such long neames cen be made practical using the
ettachment scheme discussed by Dennis [9]. In-this scheme & clerk has
available to it a number of attachment tags. After a correspondence

' has been established between a tag and some portion of a name, |
subsequent references can be stated more compactly using the teg eand
the remainder of the name. During the performence of a computation,
tag correspondences can be changed, saved, and restored in e manner
similar to the manipulation of quantities in index registers. An
example of an applicetion of the attachment comecept is the use in CTSS
of & small integer tag to refer to a file that has been "opened" [6].
Two more examples of applications of the attachment concept are found
in the Multics system: a segment number is a teg abbreviating a
segnent's tree neme, and a base register pumber is a tag abbreviating a

segment number [15]. Notice that a programmer working in an Algol-like

language need not be aware that the attachment concept is being employed
in the execution of a compiled program.

The second convention gives values for non-existing control matrix
elements. At some instant during a VM computation, let kf(°, *) be
the full control matrix, and let ka(-,) be the actual control matrix.
As mentioned previously, for each <<;, n:> such that ka(x, n)
exists, then

kf(x, n) = ka(x, n)
The convention to be deseribed now gives kf(x, n) for each <<§, n:>
such that ka(x, n) does not exist. The explanation of this convention
requires consideration of two separate cases.

The first case in defining kf(x, n) where ka(x, n) does not exist
is the case in which n contains a colon. Let y be the longest
explicitly delimited prefix in n. Then n = yim, where m does not
contain a colon. If x =y, then

1

ko(y, yim)
and otherwise

kf(x, y:m) = 0
Thus a VM name, considered as a potential clerk name, has write
capability for eny name having its own name as largest explicitly
delimited prefix, unless VM's actual control matrix indicates otherwise.

The second case in defining kf(x, n) where ka(x, n) does not exist

is the case in which n does not contain a colon. Here it is assumed

that there is some master name, say p, such that if x = p then

kf(p} n) = 1

108

and otherwise

kf(x, n) =0
Thus the master name, which might be the name of a clerk not expected
to be deleted, has write capebility for any name that does not contain a
colon, provided VM's actual control matrix does not indicate otherwise.

For stating the third and fourth conventions, let n be any
name in VM, and let x Dbe the name in VM that is given as follows:
if n contains a colon, then x is the largest explicitly delimited
prefix of n, otherwise, x 1is the master name.

The third naming convention is the following. Let n and x
be as mentioned above, and let y be the name of a clerk such that
Yy # x. When clerk y is programmed to delete a VM part having the
name n, clerk y should be programmed to do the following two things
just after the deletion: (1) add one to the integer at position <:x, g;>
of the full control matrix, and (2) meke the integer at position <:y, g:>
of the full control matrix less than or equal to zero. A seguence of
actions performed according to this third convention is sufficient to
restore write capability for name n to the name x, provided that the
fourth convention is adhered to.

The fourth convention is the following. Let n and x be as
mentioned above. Whenever x 1is the name of a clerk, and clerk x 1is
programmed to give write capability for n to some other clerk, then
clerk x should be programmed to make the integer at position.<<§, n:>
of the full control matrix be exactly equal to zero. Furthermore,

clerk x should be programmed to perform no more subtractions from

109

this integer until clerk x itself has performed an action requiring
read capabllity for name n.

The effects of these four conventions are best explained using an
example. Suppose clerk x has not yet performed any action involving
the name xim, where m does not contain a colon, and suppose column x:im
of the control matrix does not exist initially. Suppose clerk x now
creates the segment xim. Clerk x has permission to perform this
creation action because clerk x is guaranteed to have write capability
for the name x:m. Since clerk x hss always had write capability for
the name x:m, then it is certain that no other clerk has previously
created a VM part having the name x:m. Notice that elements of
column xim of the control matrix either may be created at the time
clerk x creates segment x:m, or may be created as they are needed.

Once segment x:m exists, capebilities for it may be passed among
clerks. When segment xi:m is deleted, write capability for name xim
willr be passed back to clerk x, which may then create mnother VM part
having the name xim.

The four conventions imply that & clerk x which has write
capebility for itself always has permission to create a VM part with
the name x:m, where m does not contain & colon, provided that the
name x:m 1is currently unused. In order to guarantee that the name n
of a part being created by a clerk x 1s currently unused, the plauner
of a computation need 6n]y arrange that the smallest explicitly delimited
suffix in the name n 1s distinct from the suffixes of this sort in
the nemes of the currently existing VM parts that were created, not

by any clerk, but by clerk x itself. A clerk may be programmed to

110

achieve this distinctness in a name's suffix through the use of a
counter, or by any other means appropriate to the calculation

being performed.

Creation and Deletion Procedure Steps

Four types of procedure steps will now be introduced. The
execution of any one of these procedure steps either creates or
aeletes a VM part. These procedure steps make use of the naming
conventions Just discussed, end are formulated for convenient use in
the programming example to be glven in the next Section. . In the
following d_efinitions of these procedure steps, let x be the name of
the executing clerk.

The first type of procedure step is

Seate segpent o<;
The expression o{ must evaluste into & nsme that does not contein a
colon, say the name m. Execution of this procedure step creates &
segment named x:m. The segment :Ls initially of zero length; the
subsequent writing of words into the segment will ceause its length to
be :_t.ncreased as required.

The second type of vrocedure step is

fork o, 8, e; |
The expression < musf. evaluate into a name that does not contain a
colon, say the name m. The expression ,8 must evaluate into the name
of a segment, say the name s. -The string e must be a label. Execution
of this procedure step creates a clerk fnamed x:m. The state word of

clerk x:m is made identical to that of clerk x, with two exceptions:

111

(1) clerk =x:m is set of find its first procedure step at the label e,

and (2) segment s is made the private segment, sometimes called the

stack segment [h], of clerk x¢m. The private segment of a clerk
is a segment into which the clerk may store temporary results; a clerk
normally retains write capability for its private segment. Following
thé creation of the clerk x:m, the clerk x, as part of the execution
of the gggg procedure step, acts as if it executed the following

sequence of procedure steps.

send 'xim', 'xim';
done 'x:m';

send 's', 'xim';
done 's';

Here r 1is the name of the segment that contains the encoded gg;g
procedure step which clerk x is executing. The execution of the

£g£§ procedure step might be sufficient to cause the clerk xim to
begin execution at the label e, even as clerk x simultaneously
continues execution by passing to the procedure step following the gggg.

The third type of procedure step is

The expression o< must evaluate into a name, say the name n. If n
contains a colon, then let the name p be the largest explicitly
delimited prefix in n, and otherwise, let p be the master name.

If n ¥ x, then execution of the procedure step deletes the VM part n.

Following this deletion, and as part of the execution of the delet

procedure step, the clerk x acts as if it executed the following
sequence of procedure steps.

send

If n = x, then the execution of the gg;g;g procedure step is equivalent
to the execution of the procedure step gg;g, described below.

The fourth type of procedure step is

quits
If x contains & colon, let the name p be the largest explicitly
delimited prefix in x, and otherwise, let p be the master name.
In eddition, let r be the name of the segment containing the encoded
guit procedure step. The execution of the guit procedure step consists
of the following actions: (1) the subtracting of 1 from the
integer at position <:x, r:> of the full control matrix, (2) the
adding of 1 to the integer at position <:p, §>> of the full control
matrix, (3) the subtracting of 1 from the integer at position <:k, ;:}
of the full control metrix, and (4) the deleting of clerk x.

The permission rule for the execution of any of the four types of
procedure steps defined above is the following. To execute one of the
steps, & clerk must have three capabilities: (1) write capability for
itself, (2) read capability for the segment containing the encoded
procedure step, and (3) write capability for the name of the VM part
being created or deleted. In addition, the execution of a fork requires
read capability for the segment that is to become the private -segment

of the creeted clerk.

113

The general nature of the transaction sequences in M that correspond
to creation and deletion actions in VM was mentioned in a. previous
Section. Descriptions of the exact transaction sequence correspondences
for the four types of procedure steps introduced above are amitted,
because, except as discussed below, these correspondences may be
easily deduced from the correspondences between WM. parts and clusters
of cells, and from the previously memtioned transaction sequence
correspondences for procedure steps of the types m and m.

The one non-trivial aspect of the trensaction sequence
correspondences for the procedure steps Just introduced is the fact
that the trensaction sequence corresponding to = gquit must end with a
bye transaction. Let x be the name of the clerk executing a quit,
and let p be as it was defined in the sbove definition of a guit.
Then the transaction sequence that corresponds to clerk x's .
execution of guit concludes with

bye to p.c replace ¢
In the event thaf execution of the guit causes clerk. x to give up
write cepability for itself, then, as shown in Appendix A, & sequence
of sends and dones cannot be substituted for this bye transaction. This
is the only circumstance in which the use of a bye transaction is

required in order to maintain the correspondence between VM and M.

Another Example -- Mecro Expension
To illustrate how EF might be programmed to perform & reasonsbly

complex data processing tesk, a program, written in en Algol-like

language, will now be presented that directs the expansion of nested

11k

macro calls [18] in a source program character string. It is apsumed
that all macros have been previously defined, but that the expansion
of one macro may reveal caJ.ls on other maecros, and so on, to arbitrery
depth. The nature of the computation is such that et any instant the
number of clerks in existence is roughly equal to the depth of the
macro nest being processed at that instant.

Strategy. The strategy of - the program is to feed the source string
to a first clerk, which expands one layer of macro calls and generates &
first intermediate string. If the first clerk detects additional
macro calls as it is generating its intermediate string, it creates,
and feeds its intermediate string to, a second clerk, which might for a
similar reason create, and feed its intermedimte string to, & third
clerk, and s0 on.

Each of the strings, source and intermediate, is stored in a series
' of segments, each segment containing a pilece of a string of perhaps
severel hundred characters. When the n-th clerk is able to generate
an entire segment in which no further macro calls exist, it outputs
this segment instead of sending it on to the: (ntl)-st clerk. In
this circumstance, if there already exist clerks of ordinelity higher
than n, the n-th clerk genmerates an "end message", which causes the
higher-order clerks to eventually generate their output and then quit.
Meanwhile, the permission rule mechanism automaticelly prevents
outputting by the n-th clerk until the higher order clerks have

finished their outputting. L

115

lenguage Conventions. Some language conventions to be used in

the program will now be explained. Ilater the program itself will be
stated and discussed in detail.

First, the operators that appear in name expressions will be
introduced. As has been mentioned, single quotation marks inhibit
evaluation of the string they enclose. For example, the vaelue of
the name expression

'xsab'
is the string
xiab

Any arithmetic expression whose value is a non-negative integer
is a name expression whose value is the string of decimal numerals
giving the arithmetic value of the expression. For example, the value

of the name expression

16 + 8
is the string of two numerals
ol
The character "|" appearing in a name expression, and not belonging

to a quoted string, is a concatenation operator. For example, the value
of the name expression

(16 + 8)

"sam'

is the string
sam2l

For another example, the value of the name expression
*sam: ' |'(16 + 8)°'

is the string

sam: (16 + 8)
116

In the evaluation of a name expression, after any arithmetic
expressions have been evaluated, and after any quotation marks and
concatenation operators have been applied, the result might be a
string beginning with a colon. If the result of arithmetic, guotation,
and concatenation evaluation is a string beginning with a colon, then
the name of the executing clerk is placed to the left of the string.*
For example, if x is the name of the executing clerk, the string

tab
becomes the name
xiab

After a string is examined for a leading colon, and modified if
such a colon is found, the string is searched from left to right for
occurrences of the sub-string ":*". Whenever such a sub-string is
found, the longest string that lies immediately to the left of the
sub-string and that does not contain a colon is deleted, along with
the sub-string ":*" itself. For example, the string

xssami¥*ia
becomes the name

xeia

*

This usage of colon, and the following usage of ":*" were inspired by
the notation that has been suggested by Deley and Neumann [7] for
referring to hierarchically structured files.

117

If an initial or final colon remeins after this operation, the colon is
deleted. For example, the two strings

xs¥zabic and X$ys¥
become, respectively, the names

absc and x

A more complicated example of & name expression, whose evaluation

invokes almost all of the above rules, is the expression

*s#:cam'|(2 + 2)
If x:y 1s the name of the executing clerk, then this expression
evaluaetes to the name

X3 sam4

The explanation of name expression operators is now complete, and

some other conventions will now be discussed. Veriasbles in arithmetic
expressions refer to words in the executiﬁg clerk's private segment.
For exsmple, execution of the procedure step

alphe := alpha + 1
adds 1 to the quantity alpha in the executing clerk's private
segment. Two different clerks executing this statement will modify
two distinet, possibly unequal, quantities. For another example,
if xi!y is the name of the executing clerk, and if the quantity alpha
in clerk =x:y's private segment is equal to 5, then the value of
the name expression

‘ssam'|(alpha + 3)
is the name

xsy:sam8

Two different clerks eveluating this name expression might generate
two different names.

References to words in other segments besides the executing
clerk's private segment have the form |

<.
where X is a name expression, and f? is a veriable. The meaning of
such a reference 1s best explained using an example. The quantity
referred to by

'a'.alpha
is the word iﬁ segnent a at the address that is the same as the
address of the word alpha in the executing clerk's private segment.
Thus, if the quantity alpha in the executing clerk's privete segment
is the word at address 7 in thet segment, then execution of the
procedure step

'a'.alpha := 'a'.alpha + 1
adds 1 to the word at address 7T in segment a.

Variables declared agreed are asslgned to the same address in the
private segment of every clerk; this convention makes it easy for a
clerk initielizing the activities of a new clerk to store quantities
into what will become the private segment of the new clerk.

Two final conventions are the following. First, for legibility,

the Algol operator ":=" 1is replaced by

"=", Second, for compactness,

the procedure step

give <, B;

119

where o(and 5 are nesme expressions, is defined to be equivalent to
the sequence of procedure steps

send <, @

dome «;

The Program. The coding of the macro expansion progrem can now be
presented. On a first reading, it is suggested that the reader read
into the program as far as he cen easily, then skip to the explanation
that follows the program, and then refer back to the program as he
reads the explanation.

Assumed to be declared outside the program are the procedures
"read input into", "write output from", "end of input segment”,
"initialize analyze", "analyze", "add end message to", and "remove
end message from". All of these procedures and the program itself
are assumed to be encoded into the words of one segment. A single
clerk, whose neme is not the master name, is assumed to enter the
program at the label "expand". At the time of this clerk's entry, the
control matrix is assumed to have two rows and five columns: the row
for the entering clerk is a row of five 1l's, and the row for the
master name is a row of five O's. The five columns correspond to
(1) the entering clerk itself, (2) the entering clerk's private
segment, (3) the procedure segment, (4) a segment nemed "inputseg"
containing the computation's entire input string, end (5) a segment
named "outputseg" into which the computation's entire output string

is to be assembled.

120

expand:

read:

sceans

first:
second:

input:

output:

out = 1;
create segment 'priv';
'ipriv'.in = out;

fork 'scanner', ':priv', scan;

give 'outputseg', ':scanner';

read input into (':piece'|out) from:(inputseg);

give 'tpiece'|out, ':scanner';

out = out + 1;

goto read;

out = 1;

next clerk started = false;

initialize analyze;

out;

goto switch[analyze (':*:piece’

______ in;

add end message to (':piece'|out);

give ':piece'|out, ':scanner’';

remove end message from (‘:piece'lout);

121

in) generate:(':piece'|out)];

putout: write output from (':piece’|out) into:({outputseg);
goto second;
more: g next clerk started ggg‘__n gggg agein;
sreste seament 'priv';
‘spriv'.in = out;
fork 'scanner', ':priv', scan;
give 'outputseg', ':scanner’;
next clerk started = 55%25
again: give ':piece'|out, ':scanner';
| out = out + 1;
gggg first;
done: g.;-—-:next clerk started % 5929 doneout;
next clerk started = _g}gg;
add end message to ':piece'lout);
give ':piece',out, 'sscanner’;
doneout: delete ':piece'Iout;
give ':*:piece'lin, Towts
give 'outputseg', ':¥#';
delete 's*:priv';
guit;
end: add end message to (':piece'|out);
give ':piece',out, ':scanner';
g.g;ggg_ ':piece'lout;

end

Explanation. A detailed explanation of the execution of the
program will now be given. The input string is divided into segmented
pieces by a clerk whose name is, say, "compiler". The pleces, which
are named

compiler:piecel
campiler:piece2

are given to the first created clerk, which is named
compiler:scanner
The private segment of this first scanner clerk is named
compller:priv
The integer-velued procedure
analyze (A) generate:(B)
absorbs input pieces through the parameter A, perfbrms one layer of '
‘macro expension, and emits segmented output pleces through the
parameter B. These output pieces for the first scanner clerk
are named
compiler:scanner:plecel
compiler:scanner:piece?

The analyzer procedure, like each of the procedures called during
the program's execution, is assumed to not @irect its own modification,
but is assumed to store temporary quantities in the calling clerk's
privete segment. In eddition, the analyzer procedure is assumed to
store private-to-clerk owm quantities [2] in the calling dlérk's private
segment; thus with respect to each clerk, the analyzer procedure

"remembers" its status between calls. These gwn quantities are

123

initialized for each clerk when the clerk calls the procedure
"initialize analyze'.

A clerk returning from the analyzer is switched to the label "input"”
just when another input piece is needed.. The previous input piece is
deleted, and 1 is added to an input count "in" so that the analyzer
wil). read the next piece of its input string.

A clerk returning from the analyzer is switched to the label
"output" just when the analyzer has filled an output piece segment with a
string in which there are no additionael macro calls. If a clerk of
next higher order exists, an end message is sent to this clerk. After
any such end message has been returned, the current clerk writes the
data of the current output piece into the computation's output segment,
but reteins the segment of this output piece to collect further output.

A clerk returning from the analyzer is switched to the label "more"
Just when an output piece contains additional mascro calls. The output
viece is given to the clerk of next highest order, which is created
if necessary. Then 1 is added to an output count "out", and a new
output piece segment is created before another call is made to
the analyzer.

A clerk returning from the analyzer is switched to the label “done"
Just when the analyzer has detected that its input piece contains an
end message, and before any other processing of the input piece is
performed, but only after the analyzer has first switched the clerk to
either "output” or "more" in order to complete the processing of &
perhaps partially filled output piece segment. At the label "done",

an end message is sent to and returned from a higher order clerk, if a

12k

higher order clerk exists. Then both the input piece, containing the
original end message, and the capesbility to write into the computation's
output segment are returned to the clerk of next lowest order, and
the current clerk quits.

There are no other labels to which a clerk returning from the
analyzer can be switched. When the "compiler" clerk detects the end
of the computation's input segment, the "compiler" clerk sends an end
message to the first scanner clerk, but does not exit from the program
until the first scammer clerk returns this message. When the "compiler"
clerk exits from the program, the full control matrix is the same as

it wes when the "compiler" clerk entered the program.

Control Matrix Implementation

This Section suggests how EF's physical units and supervisory
programs might be designed in order to implement the most novel
feature of VM, namely, the control matrix. To speed the communication
of ideas, a suggested design for control matrix implementation will be
developed within the genersel framework of the Multics system [h].
Specifically, the Section will discuss how the current design Tfor the
Multics system might be modified so as to provide to a user both a
control matrix, and the permission rule mechanism associated with the
control matrix. These remarks concerning a modification to Multics
are made only for illustrative purposes; no claim is made that this
modification would be an appropriate change in the existing plans

for Multics.

125

First the notion of a process in Multics will be related to the
notions of process and clerk that have been used in the Thesis. Since
every Multics process 1s a sequence of actions, the notion of a process
in Multics is compatible with the notion of process that has been used
in the Thesis. In the Multics literature, however, one often finds
statements such as, "Process x does such-and-such.” Althwgh it
is possible to give & reasonsble interpretation to an assertion that a
sequence of actions does something, nevertheless the viewpoint that has
been adopted in the Thesis is that of attributing ean action in a
process to an entity, called a clerk, that performs the ection, and
not to the process itself. Thus statements in the Multics literature
like, "Process x does such-and-such" will become here, "Clerk x
does such-and-such.” Notice that there is a‘ one-to-one correspondence
between processes and clerks.

To simplify the discussion, it will be assumed that & user employs
in & computation Jjust a fixed number of clerks, a fixed number of
segments, and a control matrix; it will also be assumed that each
clerk always has write capabllity for itself, but not resd capsbility
for any other clerk. In other words, input devices, output devices,
creation~deletion activity, and inter-clerk state word accessing will
be assumed to not be employed in & user's computation. The present
discussion may, however, be extended in a straightforward manner to
take into account these omitted topics.

Working under the above assumptions, let us review some of the
features of Multies in .order to define & viewpoint toward the systenm.

Associated with each clerk x is a descriptor segment [15], each

126

descriptor of which contains _a;c_c_e;_é_g control information and gllocation
information for a specific segment used by clerk x. Aithough clerk x
makes its first reference to & segment n using what would in VM be
called the neme of segment n, subsequent references to‘ segment n
occur indirectly through segment n's descriptor in x's descriptor
segment. The address of segment n's descriptor in x's descriptor
segment is called x's segment number for n. After x first refers
to n, x may make subsequent referemces to n usihg x's seguent
pumber for n. Thus x's segmnent' number for n constitutes an
attachment tag [9] abbrevieting segnent n's name. Further
abbreviation of segment references through attachment is allowed through
the use of the base registers.

Control Segments. In order to implement the control matrix of a
multiprocess computation running within Multics, let there exist for
each clerk of the computation, in addition to a descriptor seguent, &
control segment. Part of the function of a clerk's control segment
is to realize the clerk's row in the computation's control matrix.

Each entry in a clerk's control segment corresponds to a segment.

As indicated in Figure 3.8, the entries for a segment n 1in the
control segments of a computation all occur at the same address. This
situation is in contrast to the situation that prevails in a
computation's descriptor segments. The entries, i.e., descriptors, for a
segment n in the descriptor segments of & cdnputation may occur at
different addresses. That is, each segment of a computation hes only
one control segment address, but each segment of a computation might have
meny distinct segment numbers, one number for each clerk of

the computation.
27

I 1 segment
segment . Y. number
number control “Ib

segaent

hdi‘ress
descriptor control control descrintJ
segment segment seguent segment

Figure 3.8. Segment numbers and the control segment address of a
segunent n in a two-clerk computation.

control segments

\ . descriptor segment

of clerk x

Figure 3.9. List structure linking clerks haviag read capability
for a segment. Notation is that used in the text.

128

A control segment address is assigned to a segment n Dby the
computer system just when n is first accessed by any one of a
computation's clerks. At that time also, a segment number is assigned
to n; but for the accessing clerk only. A subsequent first access
to n by a second clerk will cause the assignment of perhaps a
different segment number £o n for the second -clerk, but in order to
update the control segment of the second clerk, the original control
segment address assignment must be discovered and used.

In Multics a clerk becomes attached through its descriptor segment
to any segment that it accesses. No modification to this rule is
being proposed. Since it will be necessary for a clerk, often in
obedience to a supervisory "microprogram”, to meke access to its own
control segment, and to the control and descriptor segments of other
clerks, therefore control and descriptor segments will possess, after
first access, segment numbers with respect to each accessing clerk.

In addition, control and descriptor segments will be assigned not
only segment numbers, but also control segment addresses. The
assignment of control segment addresses to control and descriptor
segments is subject only to the convention that if 1 is the control
segment address of the control segment of & clerk x, then i+l must
be the control segment address of the descriptor segment of clerk x.

The Structure after First Accesses. The main requirement of a

design for control metrix implementation is that operations on the
matrix be efficient, in terms of both time and storage, after first
accesses have been made. First accesses to segments trigger the

incremental construction of the control matrix date structure about to

129

be described. It is assumed that contemporary data processing
techniques, such as hash-addressing and list structures, can be applied
to carry out this incremental construction in a satisfactory way. To
shovw that a control matrix implementation 1s indeed feasible, it will
be assumed now, and throughout the rest of the Section, that all first
accesses have occurred. The form of the resulting control matrix data
structure will now be described.

If segaent n has control segeent address i, then the entry at
address 1 in clerk x's control segment holds three items: (1) the
integer X at position <x, n> of the computation's comtrol matrix,

(2) clerk x's segment number for n, and (3) e double pointer. If
segment n is a control or descriptor segment, then items (1) and (3)
have no significance. ILet us assume that segment n is not # control
or descriptor segment. If K is less than or equal to zero, then the
double pointer field is empty, 1.3_;, contains some conventional bit
pattern denoting "empty", and othervise, the double pointer field is
pert of & bi-directional circular list tying together the control
segunents of all clerks that have read capability for segment n. In
this list, e portion of which is diagrammed in Figure 3.9, the pointers
at address i in clerk x's control segment give the control segment
addresses, call them a and b, of the two control segménts adjacent
to x's control segment on the list. To gain access to the next
double pointer in the direction of, say, the address a, clerk x
Tirst accesses its own control segment at eddress a to obtaln its own

segeent number for the control segment pointed to. In that control

130

seguent at address 1 1is found the double pointer that is next on the
list in the "a" direction.

Since the entries in the double pointer field of a control segment
are control segment sddresses, their designation of specific control
segments is independent of their residency in any particular control
segment. Thus, ordinary technigues of 1ist manipulation may be used
to splice a control segment in or out of a list.

If a user could program in a general way the manipulation of
control segment addresses or control metrix elements, then he might
experience nonfunctionality and noncompletion larking bug effeects,
because the values of control segment addresses and control matrix
elements can depend on the unpredictable influences that affect the
progress of clerks with respect to each other.* Therefore:control
| seguent addresses end control matrix elements must be utilized -
"behind the user's back” -- in the same sense that the state of memory
allocation in Maltics is hidden from the user. The suggested method
for hiding control segment addresses and control matrix elements from
the user is to employ these quantities only within descriptor and
control segments, and to restrict user access to control segments in
the same way that user access to descriptor segsents is restricted

in Multics.

*It is useful to understand that the programmed menipulation of segment
numbers does not give rise to lurking bugs, because segment

numbers are assigned to segments on the basis of -the progress of each
individual clerk, Just as index registers are essigned to data quantities.

131

Descriptor Segment Modifications. The suggested modification to

Multics calls for each descriptor in a descriptor segment to contain

not two but three major items: access control information, allocation
information, and the control segment address of the segment the descriptor
describes. Also, additional access control information is required

in each descriptor in the form of four additional bits: a reasd ensble

bit, a write ensble bit, a read blocked bit, and a write blocked bit.

Suppose that 1 1is the control segment eddress of a segment n,
end that J is clerk x's segment number for n. From the discussion
so far, one can conclude that the i-th entry in x's control segment
contains Jj, and that the J-th entry in x's descriptor segment
contains i. After & clerk y has first made access to the control
and descriptor segments of clerk x, then clerk y can, and presumably
neaerly always does, meke subsequent access to these segments using
its own segment numbers for these segments. Therefore, from the point
of view of a clerk such as clerk y, there exists a bi-directional
link between the entries for segment n in clerk x's control and
descriptor segments. Two such bi-directional links are shown in
Figure 3.8.

The Permission Rule Mechanism. An explanation will now be given

of the implementation of four types of actions: (1) reading from an
ordinary segment, i.e., from & segment that is neither & control
segment nor a descriptor segment, (2) writing into an ordinary segment,
(3) adding 1 to & control matrix element, end (4) subtracting 1

from a control metrix element.

132

A clerk reads from an ordinary segment in the following way.
If the Multics read permit bit [15] is on, and the read enable bit
is also on, then the reading proceeds normelly. If the read enable
bit is off, then the read blocked bit is turned on, and the clerk goes
into the blocked status [26].

A clerk writes into an ordinary segment in the following way. If
the Multics write permit bit is on, and the write enable bit is also
on, then the writing proceeds normelly. If the write enseble bit is
off, then the write blocked bit is turned on, and the clerk goes into
the blocked status.

A clerk x adds 1 to the integer at position e, ﬂ:> of the
control metrix by acting as if it executed the following program.

1. If the reed enable bit in x's descriptor of n 1is off,

turn on the read blocked bit in the same descriptor, and go

into the blocked status; otherwise proceed to step (2).

2. Determine the control segment address of n by referring
to x's descriptor of n.

3. Add 1 to the control matrix integer for n in e's control
segment. If the result is +1, perform the following steps.

a) Splice e's control segment into the read capability list
for n.

b) Turn on the read enable bit in e's descriptor of n.

¢) If the read blocked bit is on in the same descriptor,
turn it off and take e out of the blocked status.

133

A clerk x subtracts 1 from the integer at position <x, n>
of the control matrix by acting as if it executed the following program.

1. Determine the control segment address of n by referring to
x's descriptor of n.

2. OSubtract 1 from the control metrix integer for n in x's
control segment. If the result is O, perform the following
steps.

a) Turn off the read enable and write enable bits in x's
descriptor of n.

b) Splice x's control segment out of the read capebility
list for n.

c) Examine the double pointer field for n' in x's comntrol
segnent. If the field is not empty, end if its twe
eddresses are equal, say to some address a, then perform
the following steps. \

i) Rxamine x's control segment at & to obtain x's
segaent number for the control segnent of some clerk p.
Examine x's control segesent at' a®*l o obtein x's
semt nunber for the demiptor nmt o:l' Po

ii) Examine p's control segment at the control segment
address of n to determime p's segment mmber for n.

1ii) Turn on the write enable bit in p's deseriptor of n.

iv) If the write blocked bit is on in the same descriptor,
turn it off, and take p out of the blockgd'status.

It is clear that the incrementing» and decrementing of centrol
matrix elements can be implemented either by hardware, or by a

supervisory program.
The Associative Memory. Bach processing unit in the GE 645

computing system, on vhich Multics is currently being implemented, contains
an associative memory in which information obtained during recent

accesses to a clerk's descriptor segment, and to page tables, is
remembered [15]. The problem of detecting invelid entries in this

associative memory suffers only a smell augmentation because of the

134

modification that has been ocutlined here. The sugmentation to this
Problem 1s small because & read or write capability possessed by a
clerk cen only be denied to the clerk by an action performed by the
clerk itself, specifically, by the clerk's decrementing of a control
matrix integer.

Conclusion. Meny issues concerning the modification of Multics
to realize a control matrix have not been discussed. Nevertheless,
it is clear that the implementation of a control metrix in Multics is
very likely to be feasible, and that this implementation would be worth
exploring further in the event that the goals to be achieved by such an
implementation should prove desirable.

Similer remarks mey be made concerning the Chapter's overall
topic, the facility EF. It is clear that the comstruction and use of a
facility that behaves like an MCM are both very likely to be feasible,
and that a further exploration of the problems involved would be

Justified in the event that the goals to be achieved were deemed desirable.

135

Chapter IV

The Output Functionality of an MCM

Introduction

This Chapter presents a proof of the fact that nonfunctionality
lurking bug effects do not occur in an MCM, or in other words, that every
MCM is output-functional. According to the definition given in Chapter I,
an MCM is output-functional just when each output symbol produced in
every output stream of the MCM is a function only of the MCM's initial
computation state. It may be recalled from the description in
Chapter II that an MCM produces an output symbol just when a clerk cell
writes into one of the MCM's designated output cells.

In pursuit of the proof of output functiomality, a set-theoretic
entity called & run is introduced as a formal description of a
computation. Then the notion of a history arrey is introduced to
describe certain properties of a run. Using runs and history arrays, a

theorem, called the functionality theorem, is stated and proved; the

truth of the functionality theorem implies that every MCM is output-

functional.

Specialization to & Single Arbitrary MCM

The remarks to be made in this Chapter concern one specific, but
arbitrary, MCM. This MCM, which will be designated by the letter M,
is described by four quantities: (1) a set N of cell names, (2) a set Q

of output cell names that is a subset of N, (3) a transaction table J(1)

136

for each 1 belonging to N, and (h) a set I of initial computation
states. It is assumed that this machine M is well-defined, in the
sense described near the end of Chapter II. Since M is arbitrary, the
remarks to be made about M, including the functionality theorem, are

true for any well-defined MCM.

The Run as a Formal Description of a Computation

A computatlion is an instance of the behavior of the machine M; in
other words, a computation is that activity which ensues when M is
started up from an initial computation state. The problem of describing a
computation performed by M may be compared with the problem of
describing an instance of the behavior of, say, a finite automaton [2k].
Since the identity of each successive state of a finite automaton is
determined by the immediately preceding state, then an instance of the
behavior of a finite automaton is determined solely by the automaton's
initial state, and therefore is described completely by this initial state.
A computation performed by M is determined, in geﬁeral, not only
by M's initie)l computation state, but also by the successive selections
that M's scheduler makes in response to perhaps unpredictable influences.
A suitable description of a computation performed by M must therefore
both give the initial computation state, and also identify the clerk
cells that participate in each computation state transition. One kind
of description that meets these specifications is the run. A run is an
ordered pair such as

Gon>

where S is an initial computation state, and T is a transition sequence,

137

in which each '1‘1 is a set containing the names of the clerk cells that
accomplish the 1i-th computation state trensition of the denoted
computation. Thus, for example, a run with T equal to
<T1, Tys eves Tﬁ>

is & run that describes a computation in which mn cmﬁutation state
transitions occur. The number of elements in & run's transition
sequence is called the length of the run; the length of the run <S, ‘1‘>,
above, is therefore m.

Not every set-theoretic enﬁity having the fom of & run describes a
computation that M might perform. Specificelly, if <s, T> 1s & run,
then S must belong to I, the set of initial computation atétes, of M, and -

each element T, of the sequence T must be a member of the choice

i
collection that is derived from the computeation stete immediately

. preceding the 1-th camputation state transition. It may be recalled
from Chapter II that the choice collection derived from e computation
state is a co].iection of sets of cell names; it is from this collection
that the scheduler selects one set to be the set of the names .of the
cells that will accamplish the next camputation state trensition.

The foregoing restrictions on the initisl cmputatio_n state and
trensition sequence of & run may be expressed concisely by saying that
every run must be possible. A run is possible just when it describes a
computation that M might perform. In order that the notion of a possible
run might be thoroughly understood, an alternate, more formal definition
of a possible run will now be developed.

To aid in the defining of a possible run, let two functions, e(-)

and n(*, *), be defined in the following way. Suppose M holds some

138

arbitrary computation state S, not necessarily belonging to I. Let e(S)
denote the choice collection derived from S, and if A 1s a set of
nemes of cells, let n(S, A) denote the computation state that preveils

after each of the cells named in A has performed its next transaction.
A run, <s1, T>, 1s possible if and only if"

Sl e I
>
and
T, € e(s,) ; 1 €8T
where
Si4q = n(Si, Ti) ; 1 € O

It is convenient to define the predicate p(-, -) so that p(S, T) is
true just when <S, ‘1‘> is a posgible run. Henceforth, every run
discussed is assumed to be possible.

A useful concept is that of a prefix run. A rum, P =A<U, V>,
15 & prefix of the run, R = 8, '.1'>, if and only 1f S = U and V is

*
The proposition A € B is true if and only if A belongs to B. For
example, a & a, by . The set-theoretic and logical notation being

introduced in footnotes is summarized in Appendix:C. - -

**EL'ne set OF is the domain of the function F, l.e., the set of arguments
for which F is defined. A sequence, such as T above, may be thought of
as a functlon that takes an integer i into the i-th -element of the
sequence. Thus, for example, the domain of the sequence

<T1, Ta, seey Tm> is the set {l, 2y ooy M}'-

139

an initial subsequence of T. For example, the prefix runs of

<s, <X '1‘2>>

<s O
<5 <T1>>
PPN

where <> is the empty sequence. Clearly, if R is & possible rum,

are

then every prefix of R is also a possible run.

The History Array of a Run

Let us recall from Chapter Il the notion of writing into a cell.
A clerk cell x writes into a cell i Jjust when x causes a new
word to be held by 1, where the new word might or might not be the
same as the word previously held by i. The only circumstances in
which a write into a cell occurs during a computation are the following
two circumstances: A clerk cell performing a put writes into the cell
named by the put's operand name, and & clerk cell performing any
transection writes into itself. The notion of writing is vital for
understanding the notion of a history array; the latter notion is
now introduced.

Let R be a run, describing, of course, & computation that might be
performed by the machine M. If M has n cells, then there are
exactly n rows in the history array H of ‘the run R; that is, to each
cell there corresponds & row in H, and vice-versa. If 1 is a cell

name, then the number of elements in row 1 of H is one greater than

1ko

the number of writes into cell 1 that occur during the computation
denoted by R. Specifically, the elements of the array H are defined

as follows: Hi is the word written into cell i by the J-th

J
write into cell i during the computation denoted by R, and H,. is

i0
the word held initislly in cell i, that is, before any writes into
cell i have occurred. Thus row 1 of H is a "history" of the words
that are caused to be held by cell i, either by writing, or by M's
being placed in an initial computation state.

Before explaining further the notion of a history array, it is
convenient to introduce a more concise way of talking about runs:
events that occur during the computation denoted by & run will be said
to occur "during the run", even though the latter locution is not,
strictly speaking, correct.

Returning to the explanation of history arrays, let us examine,
with the aid of Figure 4.1, the appearance of a few typical history
arrays. If no computation state transitions occur during a run, i.e.,
if the run is of length zero, then as shown in Figure 4.1(a), the
history array of the run consists of just one column. If exactly one
transaction occurs during a run, and if this transaction is & put of i
that is performed by & cell x wvhere x is not equal to i, then as
shown in Figure h.l(b), exactly two rows of the run's history array
contain two elements each, and any remaining rows of the array contain
one element each. As shown in Figure 4.1(c), the history array of a run
of substantial length would most likely have a Jagged right edge, since
the maximum column subscript in any row is equalAto the number of writes

that have occurred into the cell to which the row corresponds.

SN

names

(a) For a run of length zero.

| o
L

0 1

names

(v) For & run during which exactly one transaction is performed,

namely, a put of 1 performed by a cell x where x is
not equal to 1.

names
—t

]

O l LN]

(c) For a run of substantial length.

Figure 4.1. Three typical history arrays.

142

One can think of the array H as a set of ordered pairs of the
form [25]

<<1 P Hi.1>

Using this convention for the history arreys G end H; the statement
G H
means, considering an array to be a function whose domein is & set of
ordered peirs, that
Pe<=Pn
6, = H,, 3 <, e Pe
In other words, H 1s defined everywhere that G is defined, and each
element of G is equal to the corresponding element of H.

A useful property of history arrays is that if G and H are the
history arrays of the runs P and R, respectively, end if P is a prefix
of R, then

¢ Nl :{
That this inclusion is true may be verified in three steps. First, P
and R both have the same initial computation state; therefore the
zeroth columns of G and H are equal. Second, if the J-th write into

cell i actually occurs in P, i.e., if G, is defined, then since P

J
is a prefix of R, the J-th write into cell i must occur in R, i.e.,

H 13 must be defined. Therefore H is defined everywhere that G 1s

*The proposition A ¢ B is true if and only if A is included in B, i.e.,
if end_only if A is e subset of B. For example, (o] < f{a, b},
fa, b =< fa, b} , and {} <= [a, b} , where {} 1s the empty set.

143

defined. Third, since the events in P up to and including the Jj-th
write into cell i are identical to the events in R up to and including
the Jj-th write into cell i, then the Jj-th word written into cell i
Therefore, G

must be the same in both P and R, and so Gi must equal H

J 13°
and H are equal everywhere that G is defined. The truth of the
inclusion is thus verified.

Let us define the proposition #Hi j t0 be true if and only if the

history array element Hi is defined, i.e., if and only if

&, J> e Pu.

The relation of similarity, _z_, for two history arrays G and H is

J

defined as follows.
¢ =X
%
if and only if
(1)(3)(#(;13 A #Hij——a- G, = Hij) (4.1)
In other words, two history arrays are similar if and only if they are
equal at every position where both are defined.
It is convenient to define the function h(-, -) so that h(S, T) is
the history array of the run <S, T>. In other words, if H is the
history array of <S, ’I‘>, then

H = h(s, T)

*The proposition (x)A, vhere A is usually & function of x, is true
and only if A is true for every x. The proposition A A B is true
and only if both A and B are true. The proposition A —> B is true
and only if A implies B, i.e., if and only if either A is false, or
both A and B are true.

) o

1hh

Statement of the Functionality Theorem

The functionality theorem is stated as follows: for the machine M,
any two possible runs that have the same initial computation state have
similar history arrsys. In symbols, the functionality theorem is

(SHT)(V)[p(s, T) A p(s, V)—=>-n(s, T) =n(s, V)] (k.2)
It must be emphasized again that since the machine M is arbitrary, the
functionality theorem, when proved, will hold for any MCM.

What 1s the relationship between the functionality theorem and the
notion of output functionality? Output functionality holds Jjust when
each word written into every output cell is & function only of the
initial computation state. The functionelity theorem seys that esch
word written, not just into every output cell, but into every cell, is a
function only of the initial computation state. That is, the
functionality theorem asserts complete functionality, not just output
functionality. It is clear that the functlonality theorem implies
output functionality. One wey of understanding the functionality
theorem is to observe that If every cell were an output cell then the
theorem would not just imply, but be equivalent to output functionality.

It was mentioned at the beginning of Chapter II that questions
concerning the necessity of the MCM design remain open. A particularly
intriguing open question is, "Is complete functionality necessary for
output functionality?" A proper answer to this question requires &
broader framework than that being developed here, and is beyond the
scope of the Thesis. Speculations concerning how this question might

be answered are indulged in in Chapter VI. It may be noted that

145

complete functionality is a worthwhile design goal in its own right,

because complete functionality materially facilitates the debugging

of programs.
The remainder of the Chepter is devoted to a proof of the

functionality theorem, (k.2).

The Augmented Array

The proof of (h.a) will be given as an inductive proof of a

proposition that implies (4.2), namely

(s)(T)(V)[e(s, T) A p(S, V)= a(s, T) = e(s, V)] (k.3)
The function a(-, -) 1s defined so that if <8, T> s a run, then
a(S, T) is the augmented array of the run <S, !I>. Just as for
history arrays, two augmented arrays asre simlilar if and only if they
are equal at every i)osition where both are defined.

The augmented array of a run has the same form as the history
array of the run; that is, if an array is considered as a function
defined on ordered pairs, then a run's augmented array and history
array both have the same domain. The asugmented array of a run contains
all the information contained in the history array of the run, plus

additional information. Specifically, if <S, T> is a run and

H = n(s, T)

A=a(s, T)

Ay = < A yij> G, 5 e Pranajfo
Ay = <Hio, g!, ; <1, o> e Pu

then

e

o

146

where Xx

13 end y, 3 are expleined below, and where the symbol ¢; ‘vhich - -
1s assumed to not be the name of & cell of M, means "empty" or o
"meaningless". '

In the above definition, position <x:|_"j » ¥y J> of A "writes"
position 1, J > of A. That is, the quantity x,y is thé name of
the cell that performs the Jj-th write into cell i1 during the
run <S, T>, and the quantity ¥y, 3 is the number of writes that have

occurred into the cell x,, during the rwn S, T > up to the instant’

J

just before the cell x,, performs the Jj-th write into cell i.

1J
In other words, 1f A, = <a, b, c)>, and J # O, then one might say
that during <S, T 5, A, "writes" A, ;5 What actuslly happens 1is that
the j-th write into cell 1 is a write of the word & into cell %,
and this write is performed by cell b at an instant when exactly ‘¢
writes have occurred into cell b. Thus concerhing eaéh write that
occurs during <S, T>, the array A not only tells the word wiitten,
but also tells both the name of the cell that did the writing, and
the ordinality of the writing cell's content. -
Just as for a history array, let the proposition #Ai 3 be true
if end only if the augmented array element A, 3 1s' defined. Then the
definition of similarity, (4.1), epplies to’ augmented arrays 8s well:
as to history arrays. If <S, .T> and <S, 'V> are runs, then clearly
a(s, T) = a(s, V) — n(8, T) ==n(s, V)
and 80 (4.3) implies the functionality theorem, (4.2).
1z 5, V> 1s a pretix of S, T, then
a(s, V)< e(s, T)

This statement is true because for each <i, ,j> such that (a(s, V)) 13 is

147

defined, the three components of (a(s, v))ij and the three components

of (a(s, T))ij depend only on the events in <<é, Y:> and <:%, @:),
respectively, up to and including the Jj-th write into cell i; since

<<§, V:> is a prefix of <:%, é>>, then these events in <:%, Y:> are

identical to these events in <:%, ?>>.

Introduction to the Proof

The proof of (4.3) will be an inductive proof that uses as the
variable of induction the length of successively longer prefixes of
the run <:é, €>}. The initial step of the induction is to show
that a(S, T) is similar to the augmented array of <:?, i>>'s prefix
of length O. The inductive step is to show that if a(S, T) is similar
to the augmented array of <<é, §:>'s prefix of length n, then a(S, T)
is similar to the augmented array of <<§, Y>>'s prefix of length n + 1.
After both the initial step, and the simplest case of the two cases
in the inductive step have been proved, a digression will be made to
introduce several auxiliary concepts that will be useful in proving the
second case of the inductive step. Following the digression, the proof
of the second.case of the inductive step will be given. Since this
proof of the second case is complex, the proof of the second case will
be divided, for convenience, into three stages. ‘In turn, the first
stage will be divided into five tasks, and the third stage will be

divided into three tasks.

148

The Inductive Formulation

In order to define the inductive proof of (l&.3) precisely, the
function u(', -) is now introduced so that if V is a transition

*
sequence and n is a non-negative integer, then

u(v, 0) = >
u(V, n) = <V1’ Vo wees vn> ;0 € Ov
u(V, n) =V ;némandn>0

Let the predicate x(-) be defined so that x(n) is true if and only if
a(s, T) £ a(s, u(v, n))
For example, if n € JJV, then x(n) is true if and only if the
augmented array of <S, T> is similar to the augmented array of
<S, V>'s prefix of length n.
By the induction principle, (4.3) is equivalent to
()@@ {p(s, B A pls, V) —> (1)
x(0) A () > 0= (x(a) > x(w+1))]}
Proposition (4.4) is easily transformed into
(s)(1)(V)[e(s, T) A (s, V)—>— x(0)] (k.5)
A (S)(T)(V)(a)[(p(s, T) A p(S, V) A n >0 A x(n)) -~ n(at1)]
The initial step and the inductive step in the inductive proof of (4.3)
will be established by proving the first and second conjuncts,

respectively, of (4.5).

*
The proposition A ¢ B is true If and only if A does not belong to B.

149

The Initial Step
The truth of the first conjunct of (k.5) follows from the fact that

the runs <8, T and <5, V> have a comon initisl computation
state S. To verify this first conjunct, observe that during
<S, u(v, 0)> no writes are performed into any cell, and so the
augmented arrey a(s, u(V, 0)) consists of just the O-th column.
If c(-) is the content function denoting the state of M's cells
when M has the computation state S, and if N is the set of M's cell
nemes, then .
[e(s, w(V, 0))1,, = <c(1), ¢, ¢> ; 1€NX
But it 1s also true that ’

[a(s, B, = <0, 6, 6 ;1eN
‘.I!nerefore, the srrays (S, T) and a(s, (v, 0)) are equal everywhere
that elements are defined in both, and so we have ‘

a(s, T) = a(s, u(v, 0))
which is x(0). Thus, in the inductive proof of (4.3), the initial step

has been proved.

Beginning the Inductive Step

In presenting the inductive step in the proof of (4.3), i.e., in
presenting the proof of the second conjunct of (h.5), the following

150

notation will be used.
- r=S5, u(y, n) >

R' = <s, u(v, n+1)>

R' =<5, 1>

A = a(s, u(v, n))

A' = a(s, w(Vv, n+l))

At = a(s, T)
Thus in the inductive step we are given

p(S,) A p(s, V)V An>0 A aZat (4.6)
and we must prove

-V (4.7)
The enviromment of the inductive step is dlagrammed in Figure 4.2.

According to the definition of similarity, (4.1), the job of

the inductive step is to show that

(L)L, A #AL—-)- Ay, = A;:J) (k.8)
The truth of (4.8) will be established by showing that Ai 5= A;: 3
for an arbitrary arrey position, <i, 3, at which both A' end A
are defined.

The simpler of the two cases to be considered is the case in which

position <i, J> is defined in A. Since R is a prefix of R', we have

A, ., = Al

iJ iJ
By similarity, we have

o
Aij —Aij
and so
o+
' =
Ai;] Ai:j

151

13

ij

Al

N

Figure k.2. The environment of the inductive step.

152

1J

The second case to be considered is the case in which position
<1, :D 18 not defined in A; this is the cese that is depicted in -

Figure 4.2. Here the Jj-th write into cell 1 occurs in the transition

from R to R'; one might say that A!, 1s & "new" element of ‘A'.* Just —~ "7*

1)
as for the first case in the proof of the inductive Btep, the proof

of A, = AIJ relies on the knowledge that R is & prefix of R', and
that A== A", In sddition, specific MCM properties, such es the:
enabling rules, are utilized.

The proof of the second case is camplex. An adequate presentation
of this proof requires the use of several auxiliary concepts.‘The
number and intricacy of these concepts mske it undesireble to '
introduce each at its first use during the proof. Therefore, &
digression is mede in the next three Sections to fmtroduce these '
concepts all at once; following this digression the proof of the -

functionality theorem is resumed and completed.

Facts and Nomenclature sbout Augmented Arrays

Let A be the augmented array of & run-R. Reécall that
if #Aij, i.e., if Aij is defined, then
Aij = <a, b, c>
Here if j = O then & is the initial content of cell ‘i, and b=, *
= P . 3 A - Mieites" A . TE oo
and ¢ = g. If j > O then a equals Hij’ and Abc writes Ai,j It

will be convenient to use the notation

1Py =@
oPig =P
3y =

153

This notation, .although unconventional, will prove much less cumbersame
than, say,,(Aid)l, (Aid)2’ and (Aid)3.

- The quantity A, 3 is the j-th-wxitben coptent of cell 1. The
zZeroth-written content of cell 1 1s the initial content of cell 1.
The qpantiw 2Aid is the name of the cell that is the Jj-th-writer
of cell i. It is meaningless to speek of the O-th-writer of cell 1.
The quantity 3A1;';: is the write ordinality of the j-th-writer of
cell i. It is meaningless to speak of the write ordinality of
the Q-th~writer of cell 1.

Every.time cell 1 performs a transaction, cell i writes into
itself. Therefore, if

oty g1 =1 |
i.e., 1f the (J + 1)-st~writer of cell i 4is cell 1 itself, then

during the ryn R cell . 1 is known to receive a go pulse at an instant
when cell 1 has been written into J times. Then

e, "
and position <1, ,j> of A is said to be an gxecuted position of A,

and Ai:) is said to be an gxecuted element of A.
If A, j is an.executed element of A, then there is a transaction

assoclated in a natural way with the element namely, the transaction

corresponding in cell i's transaction table to the word If

1A1.-1’
and only if this transaction is such that cell 1 requires positive
count for a cell x in order to be enabled to perform the transaction,

then A:!. 3 is said to be an x-requiring element of A. Notice that a

statement that A

13 is x-requiring implies that A, , is executed.

i)

154

It Ai,j is executed, then Ai,j is i-requiring. Thus, if A:L,J is
x~-requiring, then Ai.j is i-requiring. Furthermore, if A:l 3 is

x-requiring, and x is not equal to 1, then the transaction associated
withAiJ is either a get of x, & put of x, or & send of X.
An x-requiring element A, 4 may be either x-resding, x-writing,

or both, or neitber. An x~-requiring element A’_J is x-reading or

x-writing if and only if the tramnsaction associated with A,, reads

13

or writes, respectively, cell x. Notice that a statement that Ai 3

is x-reading or x-writing implies that A:l. 3 is x-requiring, which in

turn implies that Aj. 3 is executed.

IfAijisx-readingand x 1s not equal to 1, then the

transaction associated with A, 3 is a get of x. If A'id

and x 1is not equal to i, then the trensaction associated with Aij’

is x-writing

is a put of x. If AiJ is either i-resding or i-writing, then the

transaction associated with A:I. 3 might be any of the five types. If Aid

18 both x-reading and x-writing, then x is equal to 4, and the

transaction associated with A1 3 might be any of the five types. Finally,

J

the transaction assoclated with Ai 3

If end only 42 Ay = (¥, X, ¥, then A 1s i-writing, and A
Similarly, if and only if during the run described

if the x-requiring element Ai is neither x-reading nor x-writing, then

is a send of x.

is said to write Ai,j'
by A, a cell x reads a cell i after exactly y and J writes
have occurred into the cells x and 1, respectively, then A&y is

said to read Ai 3

155

Boundaries
To isolate in an augmented array those elements bhaving properties
of interest, use will be made of boundaries, which are described by
boundary vectors. As shown in Figure 4.3, a boundary is an imaginary
line drawn between the elements of an arrey so that each row of the
array 1s crossed exactly once. A boundary vector B describes a
boundary in an array A by glving the number of elements to the left

of the boundary in each row of A. Thus if Bl = j, then A,, 18 the

13
element Just to the right of the B boundary in row 1 of A.

Associated with each augmented array is exactly one edge boundary,
vhich is described by a boundary vector called the edge vector of the
array. As shown in Figure 4.4, the edge vector E of an array A is
defined for each cell 1 in the following way.

E, = maximm J such that #AU

That is, the elements of E point to the right-most elements of A, and
the E boundary falls just to the left of these elements. Thus, if A
is the augmented array of some run, R, then for éach cell 1, 1A1Ei is
the content of cell i &t the conclusion of the computation denoted
by R. An important property of the edge vector E of an augmented
array A is that every executed position in A lies to the left of

the E boundary.

The Count Matrix at the Conclusion of a Prefix Run

Let A be the augmented array of a run R. It has been shown how
one can extract information from A on a small scale; that is, it has

been shown how one can identify elements of A that are x-requiring,

156

157

x-writing, etc. Methods will now be developed for extracting
information from A on & large scale; that is, methods will now be
developed for summarizing information from whole sections of A.
As sﬁown in Figure 4.5, let < be a set of positions in A. Let
us define
N (x, 1, X)

to be the number of generalized sends of i 1o x in the region o<{of

the array A. An element Ap is a generelized send of i to x if

q

end only if qu is executed, and the execution of qu adds 1 to the
count at position x, :l> of the count matrix. In other words, qu

is a generalized send of i to x if and only if qu 1s executed and
either (1) the transaction associsted with qu is a send of 1 to x,
or (2) the transaction associated with qu is a bye to x, and x # p,
and 1 = p. Alternative (2) can be explained in another way: if the
transaction assoclated with the executed element qu is a bye to x,
and 1f x 74 p, then qu is a generalized send of p to x. Notice
that every generalized send of 1 to x is i-requiring.

Let us also define

D, (x, 1,X)

to be the number of generalized dones of i1 by x in the region =38

of the array A. An element Ap q is & generalized done of 1 by x

if and only if A
and only if A,

from the count st position <x, 1> of the count matrix; it is a

is executed, and the execution of qu subtracts 1

property of the MCM design that Ap q can be a generalized done of 1
by x only if x = p. In other words, qu 1s & generalized done of 1

by x if and only if x = p, and qu is executed, and either (1) the

158

Figure 4.5. A set of positions in an augmented array.

boundary described
by B

Figure L4.6. A boundary and the set of positions to its left.

159

transaction associated with qu is a done of i, or (2) the tramsaction
associated with A isabyeto e, ande#x =p, end 1 = x = p.
Alternative (2) can be explained in another way: 1f the transaction
associated with the executed element qu is a bye to e, and if e 7‘ P,
then qu is both a generalized send of p to e, and & generalized done
of p by p. This situation, in which the transaction associated with
the executed element qu is @ bye to e, and e 7‘ P, is the only situation
in which an element qu is both a generalized send and a generalized done.

As shown in Figure 4.6, let B be a boundary vector describing a
boundary in A, end let ﬂ be the set of positions lying to the left
of the B boundary. Recall that A is the augmented array of & run R,
and let k(-, -) describe the state of the count matrix in the initial
computation state of R. Iet us define

KR(x’ i, ﬁ)
so that

Kp(x, 1, B) = k(x, 1) + Ny(x, 1, 8) - Dy(x, 1, 8) (4.9)
The significance of the quantity KR(x, i, ,8) is the following. Suppose
there 1s some run P that is a prefix of R and that has an augmented
array whose edge vector is B. Then KR(x, i, /8) gives the count at
position <x, i> of the count matrix at the conclusion of the run P.

An understending o‘i’ the above remark about KR(x, i, 18) is vitally
important for an adequate comprehension of the proof of the functionality
theorem. Let us therefore review that import of (4.9). Consider an
instant between two successive camputation state transitions in the
computation denoted by the run R. ILet machine M's behavior up to this

instant be described by a run P that is a prefix of R. If

160

the edge vector of the augmented array of P is B, and if, as in Figure 4.6,
the B boundery is drawn in the array A, then to every transaction
performed during P there corresponds a unique executed element to the

left of the B boundary, i.e., in the region./?. Some of these elements

in ﬁ? might be generalized sends of i to x, some might be

generalized dones of i by x, some might be both, and some might

be neither. Consider the count at position <<¥, ;:> of the count

matrix; equation (4.9) says that what this count is at the conclusion

of P equels what this count was at the start of P, plus the number of
generalized sends of 1 to x performed during P, minus the number

of generalized dones of i by x performed during P.

Resuming the Proof

The digression introducing suxiliary concepts is now complete.
Let us continue with the proof of the functionality theorem. Recall
that the inductive step's second case, depicted in Figure L.2, is
being discussed. This case is the second case in the establishing
of (4.8), i.e., the case in which position <1, j> is not defined
in A. The quantities R, R', R+, A, A', Af, i, and j as used now
are the same quantities that were used when the proof was begun. These
quantities will remain bound in this way for the remainder of the proof.
For the remainder of the proof, also, let us define x, y, z, and w

so that A;y is the element of A' that writes Aij’ and so that A:w is the

161

element of A+ that writes AI 5

proof is divided into three stages:

(1) & proof that { x, y> = <z, w>,

(2) a proof that if the transaction associated with A:'cy is a

For convenience, the remainder of the

put, send, done, or bye, then A:;.;j = AIJ, and
(3) & proof that if the transaction associated with A;w is a
get, then A:{,j = A;j.
Before the first stage of the proof 1s begun, several quantities
will be introduced that will be useful in all three stages. The first
quentity is the array Ao. The array A° has the form of an augmented
array, although there may not exist a run whose augmented array is AO.
The array A° is defined everywhere that either A or A+ is defined, and
novhere else. If #A;q then A;q equals either qu, or A;q, or both;
since A = A+, then there is no ambiguity in saying that A;q is equal
to both qu and A; q.* A convenient way of understanding the construction
of Ao is to consider that an array such as A is a set of ordered pairs
of the form
Ko sy
and observe that A° is the set-theoretic union** of A and A+.
let E, E', E+, and E° be the edge vectors of the arrays A, A', A+,
and A°. let R be the prefix run of R+ whose performance immediately

precedes the writing of AI 5 Let A" be the augmented arrey of R , and

*
The usefulness of working with the array Ao was pointed out by
Prof. J. B. Dennis.

*¥
The union of {a, b} and {a, c} is {a, b, c} .

162

let E be the edge vector of A . Figure 4.7 shows the relationship of
the run R~ to the run R', and the relationship of the run R to the
run R'.

Figure 4.8 shows the E and E boundaries drawn in A°. During the
computation state transition of R' that immediately follows the
performance of R, A!. is written. Therefore #A

iJ i,J-1

50 the E boundary falls just to the left of A‘i’ 510
2

shows that the E boundary aslso falls just to the left of AZ §-1°
2

d —#A d
and —h, 5, en

Similar reasoning

As shown in Figure 4.8, let o< be the set of positions in A° to
the left of both the E and E boundaries. ILet ,8 be the set of positions
to the right of the E boundary and to the left of the E boundary.
Let X be the set of positions to the left of the E boundary and to

the right of the E boundary.

The First Stage

The object of the first stage of the proof of the second case of
the inductive step is to show that A;)q and A:w are one and the same
element. For convenience, the reasoning is divided into (1) en
enumeration of possibilities, and (2) five explicitly indiceted tasks.

Enumeration of Possibilities. During the computation state

transition of R' that immediately follows the performence of R, A;q is

executed. Therefore #Axy and—l#Ax, 1 and so, as shown in Figure L4.9,

A;Y lies just to the right of the E boundary. Similar reasoning shows

that A> lies just to the right of the E boundary.

¥*
The proposition —A is true if and only if A is not true.

163

] }] |] {
| | | | |] |] >

\—”\/’\/L\ e

.t +
Azw writes Ai 5

- +
(a) Run R~ is a prefix of run R.

RI
| | | | l] | |
S B — a— . E— >
\/\/\’/ time
R A:'cy writes Ai 5°

(v) Run R is a prefix of run R°,

Figure 4.7. Four runs. Hack marks denote camputation state transitioms,
assumed here to be instantasneous.

Figure 4.8. Principal boundaries used in the proof of the
second case of the inductive step.

165

gl’_T'
a
4

&

W

(1) (2) (3| *

L
L

(1) (5) (6)

4
o
E]
4
4

j ZW
(7) o (8) R (9) H
(120) :'xy & zZw

Figure 4.9. The ten possibilities in the proof of the first stage
of the second case of the inductive step.

166

|l
N
<

Figure 4.9 shows that element A:y might lie either to the left
of the E boundary, or just to the right of the E boundary, or at least
one position awey from and to the right of the E boundary. For each
of these three possibilities, exactly the same three possibilitlies exist
for A:w with respect to the E boundary, making a total of nine
possibilities. For one of these possibilities, namely, that in which
Ay, end AD lie just to the right of the E and E boundaries,
respectively, A:y and A:w might or might not be one and the same element.
For the other eight possibilities, it is clear that A:‘)w and A:w cannot
be one and the same element. Thus there are ten possibilities in all,
vhich are depicted in Figure 4.9. The job of the first stage of the
second case of the inductive step is to disprove the first nine of
these possibilities.

Task One. The first task is to disprove possibilities (2), (5),
and (8) of Figure 4.9. Let us restrict our attention to these three
possibilities, and recall that A:w is executed. It is not known,
however, that A - is executed, and an argument esteblishing this fact
will now be presented. This argument will be glven in much greater
detail than will be usual in the rest of the proof, in order to allow
the reader to became accustomed to the notation being used, and in order
to help the reader's intuition develop along sound lines.

Since for possibilities (2), (5), and (8), A:w lies to the left
of the E boundary, therefore Azw lies to the left of the E boundary.
Since one element of A lies to the right of the E boundary, then at

least one element of A must lie .to the right of A_. Therefore, #A .
b4 2z, Wl

+ + +
Since A, 1is executed, then #Az, w1 20d 2Az, Wb = 2+ By the inductive
~ + +
hypothesis we have A —=—A , and therefore Az, - Az, ey Therefore
2Az, L %, and sovAzw is executed.

Digression. In order that the reader's intuition will not be led
astray by the simplicity of the foregoing argument, a digression will
now be made to alert the reader to some of the subtlties of the problem
of proving the inductive step. Consider possibility (1) of Figure L4.9.
It will be shown later that for possibility (1) A;q is executed. It
would seem that this fact could be established by relf/:i.ng on an
apparent symmetry between possibilities (1) and (5). Suppose one
tried to establish this fact, that A;q is executed, by an argument
similar to the argument which established for possibility (5) that A,
is executed. The new argument would be constructed from the old one
by interchanging x and y with 2z and w, respectively, by
interchanging R*, A", and E with R, A, and E, respectively, and by
interchanging R, A", and E' with R', A', and E', respectively. The
new argument would be valid up to the point at which it invokes the
"inductive hypothesis"” that A’% A'. The proposition A"== A' is not
implied by the inductive hypothesis, (4.6). In fact, since A &= A+,
therefore A" =2 A' is implied by the fact that A == A', which is the
inductive conclusion, (4.7). Thus one would have wandered into the
time-honored pitfall of invoking that which one was trying to prove.

The notion given to us by untutored intuition of a symmetry
between possibilities (1) and (5) has proved false. Indeed, there is
an inherent asymmetry in the environment of the inductive step, as

shown in Figure 4.10. Thus armed with a better understanding of the

168

Figure 4.10. Asymmetry in the environment of the inductive step.
Solid lines represent known relationships; dashed
lines represent relationships to be proved.

169

problem, let us resume the reasoning of the first stage. Recall that
we have just established for possibilities (2), (5), and (8) of
Figure 4.9 that Azw is executed.’ The presentation will continue to
be more detailed than will be ususl.

+ +
Resumption of Tagsk One. When Azw writes A:L 5 a certain

transaction, call it 6, is performed. By the Inductive hypothesis
+ +
A=A sy we have A = A . Therefore when A _ is executed, the same
ZW ZW ZW
transaction 9 is performed. Since the execution of A:w writes cell i,

then the execution of A _ vrites cell i. Since —-:#Ai 5 then A

+

writes A, for some v < j. Thus 2Aiv = 2 and 3Aiv = w. Since #Aij’

+ +
Therefore A, =1z

+ ~ ,+ _
then #Aiv. By A== A" we have A, = Ay oAy

+ + + +
and 3Aiv = w. Therefore Azw writes Aiv' But by construction Azw
writes A;' Y and we know v < j. This contradiction has been obtained

from the assumption that either possibility (2), or (5), or (8) of
Figure 4.9 prevails. Therefore possibilities (2), (5), and (8) have
been eliminated.

Task Two. The second task is to establish a result that does not,
by itself, eliminate any of the possibilities of Figure 4.9, but that
is rather just a useful intermediate result. This result is that there
are no i-requiring elements of A° whose positions belong to X ;3 recall
that the region ¢ hes been defined es indicated in Figure 4.8. The
result will be shown by assuming the contrary and deriving & contradiction.
Any i-requiring element in X must be executed in run R. IlLet A;q be
an arbitrary i-requiring element such that qu 1s one of the first

i-requiring elements in X to be executed in R. That is, of perhaps

170

several i-requlring elements in X ‘that are executed simultaneously

in R before any others, A va

Let R® be the prefix run of R whose performance immediately

is an arbitrary one.

precedes the execution of AP q; let AP be the history array of Rp, and
let E® be the edge vector of A¥. Figure k.11 shows the E° boundary
drawn in Ao. Notice that since Rp is a prefix of R, the Ep boundary
lies everyvwhere on or to the left of the E boundary.

As shown in Figure 4.11, let © be the set of positions 1n A° to
the left of both the E° and E boundaries. Let 0 be the set of
positions to the right of the o boundary and to the left of the E
boundary. Let T be the set of positions to the left of the EX
boundary and to the right of the E boundary. Since A:q is i-requiring,
then at the conclusion of Rp, cell p has read capability for cell i,
and so according to (h.9),*

K(p, 1, PUT) >0 (4.10)

Digression. In (4.10), as throughout the remainder of the proof
of the functionality theorem, the subscripts of K, N, and D are
omitted. No ambiguity arises from the omission of the array subscript
on N end D, because this subscript may always be taken to be A°. %o
ambiguity arises from the omission of the run subscript on K, because
the initial count matrix is the same for all runs being discussed.

Resumption of Task Two. Since qu is one of the first i-requiring

elements in X to be executed in R, and since any i-requiring element

*
The set A U B is the union of A and B.

171

(0 'Pq

Figure 4.11. Boundaries used in the demonstration that there
are no i-requiring elements in X .

I72

of A lying in 1C'is executed in R before qu is executed, therefore
there are no i-requiring elements in 1?1 Since every generalized send

of i to p is i-requiring, therefore

N(p, i, ¥) =0
and so

Np, 1, p) =N, 1, P UT)
Clearly

Mo, 1, PUT)= N, 1, P)
and so

N(p, 1, ° Uad) > n, 1, pPUT) (4.11)
Since generalized dones of i by p occur only in row p of A°, and
since in row p of Ao the g boundary lies on or to the right of
the E boundary, then

Mp, 1, P UT) <nlp, 1, £ Y T) (k.12)
Combining (4.10), (4.11), and (4.12) with the definition of K, (4.9),
we have

K(p, 1, PUT) >0
This last proposition says that at the conelusion of R', cell p has
read capability for cell i.

As indicated in Figure 4.7, the run R 1s the prefix of R' that

just precedes the execution of A:w. By construction, the element A:w
writes A;j, and so at the conclusion of R, cell z has write
capability, i.e., sole read capability, for cell i. Therefore, by the
above result, z = p; thus A:w lies in row p of AP. Since A;q was
constructed to lie in A/, then in row p, the E boundary lies to the

right of the E boundary. Since A:W lies in row p and just to the

173

right of the E boundery, then A:w lies in & . Therefore only
possibilities (2), (5), and (8) of Figure 4.9 can prevail. But these
possibiljties have already been eliminsted. This contradiction shows
that there are no i-regquiring elements in kﬁ
Task Three. The third task is to disprove possibilities (4), (6),

(7), and (9) of Figure 4.9. Recall that the regions <X and f? have
been defined as indicated in Figure 4.8. At the conclusion of R,
cell x has write capability for cell i, and so

K(x, 1, KUY) >0
Since there are no i-requiring elements in d,

N(x, i, oK) = N(x, i, =X U Y)
Clearly

wx, 1, X UB) > nix, 1,24)
and so

N(x, i,°<Uﬁ) = N, i, X UX)
For possibilities (&), (6), (7), and (9), in row x of A° the E
boundary lies on or to the right of the E boundary. Therefore

Dx, 1, X UB) < nlx, 1, <X U {)
Thus

K(x, 1,°<Uﬁ) > o0
which says that at the conclusion of run R-, cell x has read
capability for cell 1.

At the conclusion of R, cell z has sole read capability for

cell i. Therefore x = z. But since x # z in possibilities (%), (6),
(7), and (9), therefore possibilities (4), (6), (7), and (9) have been
eliminated. Only possibilities (1) and (3) of Figure 4.9 remain to

be eliminsted.
Itk

Task Four. The next task is to show that in possibilities (1)
and (3) of Figure 4.9, A;q is executed. Since A;y lies to the left of

the E boundary, we have #A; Let A;b be the element of A™ that

»y+L°

writes Ax,y+l' The task is to show that e, b> = <x, y> .
Since A;b is executed, then A:b lies to the left of the E boundary.

As shown in Figure k.12, A:b might lie in either oX orﬁ. It will

now be shown that A:b does not lie in 0(by assuming the contrary and

deriving a contradiction. By construction, Aab

- - _) .
50 #Aa,b-l-l’ and 2Aa,b+l = a. The assumption that A, lies in L

is executed, and

implies #Aa Since A ._—’_J.A-, therefore both A; = g and
2 b

b+1’ 27%a,bt+l

A = A; Thus, since A;b is x-writing, then A, is x-writing.

ab b*
Since — #Ax

b
therefore Aab writes Axv for some v < y+l. Therefore

P i

2Axv = g and 3Axv

A=A then

b. We have #A;V, because v << y end #A;q. Since

2Axv a and 3Axv = b, Therefore Aa
v < y+1, then A, does not write Ax, py

Therefore A:b does not lie in <X.

b writes Axv' Since
But by construction A;b does
write Ax, y+1°

We now know that AC. 1lies in ,3 . By construction A, writes A_
ab a X

b ,y+L°
Therefore A:b is x-requiring, and so there is at least one x-requiring
element in 13 . Any x-requiring element in 5 must be executed in
run R. Let qu be an erbitrary x-requiring element such that A;q is
one of the first x-requiring elements in lg to be executed in R . It
will now be shown that p = x.

Let R® be the prefix run of R* immediately preceding the execution
of A;)q. Let AP be the augmented array of RF, end let EX be the edge
vector of A’. Figure L4.13 shows the EX boundary drawn in A°. Since RP

is a prefix of R_, the EF boundary lies everywhere on or to the left of

175

ab?

Figure 4.12. Possible locations of Azb'

176

Figure 4.13. Boundaries used in the demonstration for
possibilities (1) and (3)'that‘ajra;~.isfoxeeuted.

77

the E- boundary. As shown in Figure k.13, let F be the set of positions
to the left of both the E and EX boundaries. Let O be the set of
positions to the right of the E boundary and to the left of the Ep
boundary. Let ¥ be the set of positions to the left of the E boundary
and to the right of the E® boundary.
Since A;q is x-requiring, then at the conclusion of Rp, cell p

has read capability for cell x. Therefore

K(p,x,‘DU d)>o0
Since A;q is one of the first x-requiring elements in ﬁ? to be executed
in R-, and since any x-requiring element of Iy lying in @ is executed
in R™ before A;q is executed, therefore there are no x-requiring
elements in U . Thus

N(p, x, P) = Np, x, £ UT)
and so

N(p, x,'-/o UT)=np, x, P Ua)
Since in row p of A° the E® boundary lies on or to the right of the E
boundary, then

e, x, L UT)< Do, x, P UT)
Thus |

ke, x, PUT) >0
and so at the conclusion of R, cell p has read caepability for cell x.

It is known that at the conclusion of R, cell x has sole read

capability for itself, becasuse during the computation state transition
‘of R' that immediately follows the run R, cell x, in writing into

cell i, also writes into itself. Therefore p = x.

178

The element A; q Y88 chosen arbitrarily out of the set of x-requiring
elements in B that are executed first in R . Since p = x, therefore
all x-requiring elements in /7 executed first in R~ 1ie in row x of A°.
Since only one element of ,@ in row x can be executed first in R,
therefore the set of x-requiring elements in ﬂ that are executed first
in R* conteins only one element, namely A; . Suppose ¢ > y. Then A;b
writes A_ before A . is executed, and s0 A;

X, y+1l X b
element in ,3 that is executed before the first x-requlring element

is an x-requiring

in /9 , namely A;q, is executed. Therefore ¢ < y. Since A;q lies Jjust

to the right of the E boundary, then ¢ >y, for otherwise A;q would not
lie in ﬂ Therefore q = y, and AJ-QY is the first x-requiring element
in B to be executed in R . Thus for possibilities (1) snd (3) of
Figure 4.9 it has been shown that A;q is executed.

Task Five. The next tesk is to eliminate possibilities (1) and (3)
of Figure 4.9. Since A 1is i-writing, then by AZEL, A;w 1s
i-writing. Since -—.#A;_ 5 then A;y writes A;.v for same v < j. Since

AS= 47, then A, is written by A- But A is not executed. This

iv
contradiction eliminates possibilities (1) and (3) of Figure 4.9.
Possibilities (1) through (9) of Figure 4.9 have been eliminated.
: +
Therefore <x, y> = <z, w> , and so A:'cy writes Ai 3 and AW writes A;
This completes the first 'stage of the proof of the second case of the

j.

inductive step.

The Second Stage

The object of the second stage of the proof of the second case of

the inductive step is to show that if the transaction associated with

179

+
' 1 = .
Al is & put, send, done, or bye, then A, = Ay, Let O be tne

~ + +
transaction associated with A' . Since A=—A ', then A__ = A_ .
Xy xy Xy

+
Since A & A', then A Therefore A;cy = Axy’ and the transaction

= A' .
+ v i
associated with Axy is also . Consider two alternatives: (a) x # i,
and (b) x = 1.
If x 7‘ i, then 9 must be @ put of i. Let v be the operand

word of 9 Then the execution of A;;y writes the word v into Ai 3

Therefore

| S
ay, = <v % v
+

Likewise, the execution of A _ writes the word v into A+

Xy 13
+
Aij = <VJ X, y>
+

Therefore A!, = A, , for alternative (a).

iJ iJj
If x = 1, then 9 can be a put, send, done, or bye. Let w be

Therefore

the replacement word of 9. Then the execution of Aj'_’ 31 writes the
word w into A; 5 recall that since aul 3 then J > O. Therefore
ERUE! 1)
Likewise, the execution of A;’ 31 writes the word w into A;: 3
Therefore
AIJ = (o, 1, 31>
Therefore Aj 5= AI 3 for alternative (b). This completes the second

stage of the proof of the second case of the inductive step.

The Third Stage

The object of the third and final stage of the proof of the second

case of the inductive step is to show that if the transaction associated

+

with A;(y is a get, then Aij = Aij' Since the transaction 9 associated

180

with A;Cy is a get, then x = i and y = j-1. Thus we have for the third

+
1 1]
stage that Ai, 3-1 writes Aij and that Ai, 31

and A C< A', therefore the transaction & is associated with both

writes A;.-j' Since A gA-"

+
1)
Ai, 5-1 and Ai, 3-1° Let the operand name of 9 be a. Let b and c
1 1 + + .
be such that Ai, 3-1 reads Aab and Ai, 31 reads Aac' The major job of

the third stage is to show that b = ¢. For convenience, the third
stage is divided into (1) an enumeration of possibilities, and
(2) three explicitly indicated tasks.

Enumeration of Possibilities. Figure k.1l depicts three

possibilities: (1) b < ¢, (2) b >c, and (3) b = ¢c. Since R is the
prefix of R' that immediately precedes the reading of Az;b by Ai’ 5-17
then Agb lies just to the right of the E boundary. Similar reasoning
shows that AJ lies just to the right of the E boundary.

Possibility (1) will be disproved first. It will turn out that a
proof which eliminates possibility (2) can be constructed from the
proof which eliminates possibility (1) by an interchange of notation.
This symmetry between possibilities (1) and (2) is due, at least in
part, to the fact that whenever A = A+ would seem to be needed in
disproving either possibility (1) or possibility (2), A = A" may be
invoked instead. As indiqated in Figure 4.10, we know A =4y
because A2 A" and A" < AT. Thus the difficulty will not be
encountered here that was encountered when symmetry was sought between
possibilities (1) and (5) in the first stage of the proof of the second
case of the inductive step.

Task One. The first task is to disprove possibility (1) of

Figure 4.1k, For possibility (1), let r and s be such that A;S

181

A° |
l ab :]ac
:]1,3-1
(a) b L ¢
E E
A0
\-—s-
:Jac ab
:'1,5-1
(b) b >c
E E
A° l
:] ab éL ac
] 5, 5-1
(c)b=c

Pigure 4.1lk. The three possibilities in the proof of the third stage
of the second case of the inductive step.

182

writes A- . Since A__ is executed, A0 1lies to the left of the E
ac rs rs
boundsry. As shown in Figure 4.15, A__ might lie in either <orB.
It will now be shown that Ags does not lie ine<. This fact will
be shown by assuming the contrary and deriving a contradiction. By

construction Ars is executed, and so #Ar,s +1? and A r. The

o°r, 5+l
(o] . e B
assumption that A lies in o implies #Ar,s+1' Since A=A,

therefore 2Ar, s+l =

~ -
a-writing, then by A== A, Ars is a-writing. Since —'#Aa,b+l’

r. Therefore A is executed. Since A__ is
. rs s

then A writes A for some v < b+l. Therefore A = r and

rs av 2av

= 5. < - - o AT
3Aav s. Since v<{ b < c and #Aac , therefore #Aav and by A =4,
2Aav = r and 3Aav = s. Therefore Ars writes Aav' Since v < b < ¢,

then A;s does not write A;c. But by construction A;_S does write A;c.
Therefore A:S does not lie in <X.

As shown in Figure L4.16, Ags lies in /8 . Let R® be the prefix
of R~ immediately preceding the execution of A . Let A" be the
augmented array of R", and let E' be the edge vector of AY. Pigure 4.16
shows the EX boundary drawn in A°. Since R* is a prefix of R, the EF
boundary lies everywhere on or to the left of the E boundary.

As shown in Figure k.17, let A be the set of positions in 2° to
the left of both the E and E' boundaries. Let /4 be the set of positions
to the right of the E boundary and to the left of the Er boundary.

Let ™ be the set of positions to the left of the E boundary and to the
right of the }E!r boundary.

It will now be shown that there are no a-requiring elements inj) .
This fact will be shown by assuming the contrary and deriving a

contradiction. Any a-requiring element in-D must be executed in R.

183

rs?

rs?

L]
L]

\\jfi_ ac

i,3-1

Figure 4.15. Possible locations of A;s.

18k

L

rs

ab ac

i, J-1

Figure 4.16. Principal boundaries used in the proof of the third stage
of the second case of the inductive step.

185

A
m :

e

o
]

i,j-1

S~

Figure 4.17. The regions ;{ ,/{, and v

186

Let A;q be en arbitrary a-requiring element such that qu is one of the
first a-requiring elements :Ln\) to be executed in R. Let RP be the
prefix of R immediately preceding the execution of A . let AP ve the
augmented array of Rp, and let EX be the edge vector of AP, Pigure 4.18
shows the 2 boundary drawn in 2°. Since R’ is a prefix of R, the EP
boundary lies everywhere on or to the left of the E boundary.

Figure 4.19 shows the relationship emong the runs R', R, end R', and
the relationship among the runs Rp, R, and R'.

As shown in Figure 4.18, let /0 be the set of positions to the
left of both the Ep and E° boundaries. Let 0 be the set of positions
to the right of the E° boundary and to the left of the E° boundary.

Let T be the set of positions to the left of the E° boundary and to
the right of the E° boundary.

Since A is a-requiring, then at the conclusion of RF, cell p

rq
hes read capability for cell a. Therefore

K(p, e, P ut)>o
Since qu is one of the first a-requiring elements in) to be executed
in R, and since any a-requiring element of A lying in T is executed
in R before Ap q is executed, therefore there are no a-requiring
elements in ¢. Hence

Np, 8, p) =Np, 8, ut)

and

Me, 8, PUT)2 Np, 2, PUT)

a rs

=

/9

N
/<
/

Figure 4.18. Boundaries used in the demonstration that there
are no a-requiring elements in V.

188

, R

% i | ! I 1 1 | 1 i | I L)
time
I -
| R l
: ' + +
\‘*—-——-——~\\////——‘—“—“*—‘/ Ars writes Agc’ vwhich
i d by A .
M s read by A; 5
R
Rl

4
e

|
| 1 1

p A' 1is executed.
R pq

Figure 4.19. Six runs. Hack marks denote computation state
’ transitions, assumed here to be instantaneous.

189

Since in row p of A® the E¥ boundary lies on or to the right of the E'

boundary, then

dp, 8, PUC) < Dp, 8, P UT)

K(p, a,/D Uaog)>o
and so at the conclusion of Rr, cell p has reed capability for cell a.
Since Rr i1s the prefix of R that immedintely precedes the writing
of A_ by A__, then at the conclusion of R, cell r has sole read
capablility for cell a. Therefore p = r. Then A;q belongs to \) s
and A:s belongs to '3 . But, as may be seen in Figures 4.16 and k.17,
it is impossible for an element in U and an element in P to belong
to the same row. This contradiction shows that there are no a-requiring
elements in V.
In the first task, which is to eliminste possibility (1) of
Figure 4.1k, the following two results have been established: A:'a lies
in ﬁ , and there are no a-requiring elements in L. With the aid of
Figures 4.16 and k.17, a contradiction will now be obtained that
eliminates possibility (1).
At the conclusion of R, cell i has read capability for cell a.
s _
K(1, s, AUD) >0
Since there are no a-requiring elements in \) » then
N(i, e, A) =N(1, a, A UV)
and

N1, 8, AUA) =K1, e, AU)

190

Since in run R, Ars must write‘Aac before Ai, 3-1

as shown in Pigure 4,16, in row 1 of A° the E' boundary lies on or to

reads A;c s therefore,

the left of the E boundary. In row i of A°, the E boundary
coincides with the E boundary. Therefore in row i the E° boundary
lies on or to the left of the E boundary, and so
D1, 8, A UM) < (1, 8, A UY)
and ‘
K(1, a, A VL) > o

Thus at the.conclusion of Rr, cell i has read capability for cell a.

At the conclusion of Rr, cell r has sole read capability for
cell a. Therefore, r = i, and so in row r the E boundary coincides
with the E boundary. Therefore no element in row r can lie in ﬂ .
But A?s lies in ﬁ . This contradiction eliminates possibility (1) of
Figure b.1lk.

Tagk Two. The next task is to disprove possibility (2) of
Figure 4.14k. As mentloned before, an argument eliminating possibility (2)
can be constructed from the argument given above to eliminate
possibility (1). The new argument is comstructed by interchanging b
with ¢, by interchanging R, A, and E with R, A", and E', respectively,
end by interchanging R', A', and E' with R', A', and E', respectively.

Tesk Three. The third and final tesk is to show that A}, = A:J.
It has been established that only possibility (3) of Figure 4.1k
prevails, namely, that A:b and A: o &re one and the same element. It is
known that the transaction, 9 , assoclated with Ai, 31 is a get of s,
and that the same transaction, 6 , 1s associated with AI, 3-1° Thus we

1 1 t |]
have that when Ai, j-1 writes Ai § Ai, 31 reads Aab’ and we have that

191

+ + + + + '
when Ai, 31 writes A, 5 Ai, 341 reads A, . Clearly #Aab. Since A

+
must be written before it is read, then #Aab° Since A = A » then
+ +
= . At = At ., 1 = .
Aab Aab Since A <<= A', then Aab Aab Thus Aab Aab
Let the replacement function of @ be £(-). We have

ayy = AL, 1, 31>

AIJ = <f(lA;'b), 1, ,j-1>

Therefore AJ!_ 3 = AI 5 This completes the third stage of the proof of
the second case of the inductive step.

For the second case in the proof of (1+.8) » it has been shown that
A:'L 3 = AI 3 for any of the five types of transactions thaet night be
associated with A;cy’ The inductive step is thus complete, and the
functionality theorem has been proved.

Qu Eo Do

192

Chapter V

The Output Assuredness of an MCM

Introduction
This Chapter presents a proof of the fact that noncompletion
lurking bug effects do not occur in an MCM, or in other words, that

every MCM is output-assured. An MCM is outputFassured if and only if

for each initial computation state the output produced by a computation
begun from the initial computetion state is never arbitrarily cut short,
provided the user does not prematurely abort the computation.

In pursuit of the proof of ocutput assuredness, & set-theoretic
entity called a trace is introduced as a formal description of an MCM's
potential or future behesvior subsequent to a start-up from an initial
computation state. Then the notion of a limit vector is introduced to
describe certain properties of a trace. Using traces and limit vectors, a

theorem, celled the assuredness theorem, is stated and proved; the

truth of the assuredness theorem implies that every MCM is output-assured.

Specialization to a Single Arbitrary MCM

As in Chapter IV, the remarks to be made in this Chapter concern
one specific, but arbitrary, MCM. This MCM, which will be designated
by the letter M, is described by four quantities: (1) a set N of cell
names, (2) a set Q of output cell names that is a subset of N, (3) a
transaction table J(1) for each i belonging to N, and (4) a set I of

initial computation states. It is assumed that this machine M is

193

well-defined, in the sense described near the end of Chapter II. Since M
is arbitrary, the remarks to be made about M, including the assuredness

theorem, are true for any well-defined MCM.

Types of Computations
A computation is an instance of the behavior of the machine M. A

computation having a finite number 61' state transitions is either
terminating or aborted, depending on whether or not there are no
enabled clerk cells at the conclusion of the computation.

There is no such thing as a computation wiﬁh an infinite number
of state transitions; either & computation terminstes, or else there
comes & time when the user of the machine‘u, having seen enough, creates
an aborted computation by stopping M's activity. ‘

An abofted computation should not be thought of as & "black sheep”
indicating the failure of M to perform as hoped for. In some
applications of systems for multiprocessing, it is specifically desired
that a system's ectivity not terminate, i.e., that the system not
reach a state in which no further actions can teke place.

The set-theoretic entity called & run has been formulated as a
formal description of a computation; recall that the length of a run is
the number of elements in the run's transition sequence. Then the
above remarks indicate that every run of the machine M is a finite rum,
i.e., & run of finite length, and that every run of M is either

terminating or aborted.

194

The Traces of an Initisl Computetion State

Suppose a user starts up the machine M from some initial
computation state S, and let r(8) be the set of possible runs that can
proceed from S. While the user does not, in seneri_l, know which run
in r(S) he will get for his trouble, he does have some choice in the
matter -- he may choose one from among & set of progressively longer
runs presented sequentially to him by M. Specifical]y‘-,_ each transition
from one computation stete to the next marks tho presentation of a new
run to the user. If such & transition yields a computation state in
vhich at least one cell is an enabled clerk cell, then the user has
the option either of choosing the run obteined by stopping M at the
present time, or of weiting until after the next transition in hopes
that the run he would obtain by stopping M at that time would be more
to his liking. |

It is known that each run presented to a user is a possible run,
and that the strategy of M's acheduler is reascnable; exesept for these
facts, we have no knowledge at all of the mamner in which M selects
the runs it presents to a user. It is possible, therefore, to explain
the presentetion of any sequence of runs by seying that wvhen M is
started up from an initial computation state, M selects a set of
reasonably scheduled possible runs and thereafter presents these runs
to the user sequentially until the user chooses one by stopping MN's
operation. This model of M's activity will be used in subsequent
developments; no generality is lost in doing so, because—thi model can.
be used to explain any aectivity of M that we are allowing ourselves

t0 observe.

195

When a user starts up M from some initial computetion state S,
then the set of runs that M immediately selects for presentation to
the user is called a trace of S. In genersl, there are many traces
assoclated with S. On each occasion when M is started up from the
computation state S, M srbitrarily selects one of the traces of S to be
the set of runs that M will present sequentielly to the user during
the ensuing computation.

Every trace contains & run of length zero. If a trace contains &
run of length m, then it contains exactly one run of length m, and
contains all of the prefixes of that run. ﬁem member of & trace is &
finite run.

When M is started up from en initiel computation state, M's
operation might terminate, 1.e., M might reach a computation state in
which there are no enabled clerk cells. This situation prevails if
and only if at the time of M's start-up, M selects a trace containing a
terminating run. This trece is necessarily finite, 1.e. necessarily
contains a finite number of (finite) runs, because a terminating run
cannot be a prefix of some longer run.

On the other hand, when M is started up from an initial computation
state, M's operation might never terminate, i.e., M might never reach a
computation state in which there are no enabled clerk cells. This
situation prevails if and only if at the time of M's start-up M selects &
trace that does not contain a termineting run. Since the strategy of M's
scheduler is reasonable, then this trace cannot be finite, and must
therefore contain an infinite number of (finite) aborted runs. Thus

the situations which one might be tempted to formalize using runs of

196

infinite length are here being formalized using infinite traces, each

containing only finite runs.

The Limit Vector of & Trace

The 1limit vector L of a trace T is similar in structure to a
boundary vector. That is, to each cell of M there corresponds an
element of L, and vice-versa. If J is the maximum number of writes
occurring into cell i in the runs belonging to T, then

Li = J

If there is no upper bound on the number of writes occurring into

cell i in the runs belonging to T, then
L, =)
If M has chosen to behave according to a trace T whose limit vector

is L, then the fact that L, = i says that belonging to T there is a

J
run in which J writes occur into cell i. Since this run is of
finite length, then it must be presented to the user in finite time.
Therefore, if the user waits long enough, J writes will occur into
cell i. No matter how long the user waits, however, no more than

writes will occur into cell 1. On the other hand, if L = #, then the

user can observe ss many writes into cell i as he cares to wait for.

Statement of the Assuredness Theorem

Let the function t(+) be defined so that t(S) is the set of traces
according to which M might choose to behave when M is started up from
the initial computation state S. Also, let the function v(-) be

defined so that v(T) is the limit vector of the trace T. The

197

assuredness theorem is stated as follows: for each initial computation
state S, all traces belonging to t(S) have equal limit vectors. In
symbols, the assuredness theorem is
(s)T)(UXT € t(8) A U € t(s) — v(T) = v(V)) (5.1)
What is the relationship between the assuredness theorem and the
notion of ocutput assuredness? OQutput assuredness holds Jjust when for
each output cell x, one or the other of the following two statements
is true: (1) the maximum number of words that can be written into
cell x is & function only of the initiel computation state, or
(2) the fact that the number of such words has no upper bound is a
function only of the initisl computation state. The assuredness
theorem says that one of these two statements is true, not just for
each output cell x, but for each cell x. That is, the assuredness
theorem asserts complete assuredness, not Jjust output assuredness;
clearly the assuredness theorem implies output assuredness. It may
be noted that complete assuredness is a worthwhile design gosel in its
own right, because complete assuredness materially facilitates debugging.
The remainder of this Chapter is devoted to & proof of the

assuredness theorem, (5.1).

The Formulation

The assuredness theorem will be proved by deriving a contradiction
from the assumption that for the initisl computation state S, there
exists in t(S) two traces, T and U having limit vectors L and 1%

respectively, such that for some cell i,

t u
L # L, (5.2)

198

It will be further assumed that*
IpF 8 AQ@E=4vii>1)) (5.3)

Notice that for the only other possibility implied by (5.2), a
contradiction mey be derived by interchanging the roles of T and U in
the following argument.

The argument leading to & contradiction consists of two parts.
First, two particular runs, R® belonging to T and R° belonging to U,
will be constructed. Second, a contradiction concerning these two

runs will be derived.

The Construction

The concepts of augmented array and edge vector, introduced in
Chapter IV, will be used here. The following notation will prove
convenient: if ¢ 1s a lower case Roman letter, then the augmented
arrey of the run Ra is Aa, and the edge vector of Ax is 7.

Let o be the set of the names of the cells that are written into
at most & finite number of times in the runs of U. That 18,**

o= {n en:Lz,éd}

vhere N is the machine M's set of cell names. By assumption (5.3),

i € o.

*
The proposition A V B is true if and only if either A or B or both
are true.

x%
The set {a € A: B?' , where B 1s usually & function of &, is the
set of Just those elements of A for which B is true.

199

Let the predicate x(-) be defined so that x(R®) is true if and
only if R® belongs to T and R® exceeds one of the finite limits of L.
Specifically, x(R®) is true if and only 12

(R®e 1) N (de)e e 6 A E: > L:':) (5.4)
Assumption (5.3) implies that there is at least one run for which
x() is true.

For a run R® of length O, E§ = O for each cell c¢. Since for
each cell c, L:;l ,>, 0, therefore x(+) is false for the run belonging
to T and having length 0. As was mentioned above, assumption (5.3)
implies that there belongs to T at leest one run for which x(-) is

true. Therefore there belongs to T a run R® that is the longest run
for which x(+) is false. That is, R* is constructed to be the longest
run that belongs to T and that does not exceed any of the finite limits
of L.

In proving the functionality theorem in Chapter IV, the
proposition (4.3) was proved, which says that any two possible runs
which have the same initisl computation state have similar augmented
arrays. Since all runs belonging to either T or U are possible, and
since all these runs have the same initial computation state S,
therefore any two of these runs have similar augmented arrays. Thus it
is meaningful to let A° ve the union of the augmented arrays of all the

runs belonging to T and U.

*
The proposition (3 x)A, where A is usually & function of x, 1s true
if and only if there exists at least one x such that A is true.

Figure 5.1 shows the LY, L”, and E® boundaries drawn in A°. Notice
that slthough E® is the edge vector of the run Ra, the vectors Lt
and L are not necessarily the edge vectors of any runs.

Having constructed the run R , the next task is to comstruct a
run Rb that belongs to U and for which Aaé Ab. Since At Ab for
any Rb belonging to U, then Rb need only be constructed so that for
each cell n, E; é Ez. Figure 5.2 shows the position of the Eb
boundary for the desired Rb. It will now be shown that the execution
of the algorithm depicted in flow-chart form in Figure 5.3 always
yields a suitable Rb after a finite number of steps.

First it will be shown, by assuming the contrary and deriving a
contradiction, that during the execution of the algorithm of Figure 5.3,
the "error" exit is never followed. At an instant when the "error"
exit is followed, U is finite, Rb is the longest run in U, and Ez >Ez
for some cell n. Since every run in U is a prefix of Rb, then Eg = L;",
and since U is finite, then n € ¢. Since by construction of Ra,
x(R®) is false, then the negation of (5.4) for R® = R® is true. In
other words, it is true that

B ED V()N eo—>E <L) (5.5)
Recalling that by construction R® € T, and putting ¢ = n, where n
is that cell mentioned above for which Ei > Ez,

néo—>—E§éLu

n
From above, n &€ o, and so]':txa1 < L’;. But from asbove also, Eg = Llr’;

and B > EE, and so E >> L. This contradiction shows that during
the execution of the algorithm of Figure 5.3 the "error" exit is

never followed.

201

Ordinates at which /

one of the limit o A L
vectors equals

Figure 5.1. The boundaries EB, Lt, and L.

7

/

o E L L

Pigure 5.2. Position of the desired Eb boundsary.

203

m =0
Rb t= the run of length m in U
W := the set of the names of the cells

that are written igto one Or more
times during run

VY
done yes
< Is W empty?
no
\V
n := an arbitrary member of W
W oi= {x € Wix# ng
Y Y
yes
Is E° L E°?
n
no
Y
mt=m-+ 1
P error no
~ Is there a run of length m in U?

1 yes

Rb = the run of length m in U

figure 5.3. Flow-chart of an algorithm for finding Rb.

20k

Whenever execution of the test "Is Ei'SE;Ei?" gives a "no"
enswer, then a "yes" answer to this test is obtained after a finite
number of iterations arocund the lower loop. In order to show that this
statement is true, it must first be established that whenever Ei :>-E2
for some n, then there exists & run Rf that belongs to U and for
which E; 5; Ei. If LE = ¢, then Rf clearly exists, because then there
is no upper bound on the number of writes into cell n in the runs
of U. If Lg # #, then by definition of 0, n € 0. Using R € T
in (5.5), and as before putting ¢ = n and using n &€ ¢, then Ei_S; ﬁﬁ.
Then Rf exists for the case in which ﬁ; # d, because there exists
some run Rf that belongs to U and for which Eﬁ = ﬁ:.

Since the lower loop is entered when Ei > EE for some n, and
since there exists a run Rf that belongs to U and for which Ei < Eﬁ,
therefore R° is a prefix of this R® and the length of R upon entry into
the lower loop is less than the length of Rf. Since iterstions around
the lower loop increase the length of Rb, then the "yes" exit is sure to
be taken from the lower loop when Rb = Rf, or sooner. Since Rf is of
finite length, then the "yes" exit is sure to be teaken from the lower
loop after a finite number of iteratioms.

The "done" exit is taken from the upper loop after a finite number
of iterations, because the lower loop always takes a finite number of
iterations, and because the finite length of R® assures that W is
initially finite. Finally, upon exit at "done", R° is & run with the
desired properties, because for each n such that Ez > 0, the

(n)

execution of the algorithm has uncovered a run R'"‘, having edge

vector E(n), whose length 1s less than or equal to that of Rb and for

205

which f E(n) . Since for each such n, R(n) is a prefix of Rb,

(n) b b
then for each such n, E < E , and so for each such n, E: < E .
On the other hand, if n 1is such that E = 0, then clearly EX < E..
Thus an Rb has been constructed thet belongs to U and for which

A% = AP,

The Contradiction

The run R® is the longest run in T that does not exceed any of the
finite limits set by L'. Let R® be the run in T of length one greater
than the length of R°. Then there exists some cell k into which
exactly m writes occur in R®, where m = L‘; +1. Ts #A;:m, i.e.,
Al‘:m is defined, but—-n#A;n. Notice that cell k is not necessarily
the seme as the cel)l 1 mentioned in the css\ﬂption to be
contradicted, (5.2). Cell k is one of the first "trespassers" of L.,
whereas cell i is an arbitrary "trespesser" of L'.
Let {x,) be defined so that AS writes AL . As shown in Figure 5.k,

Xy
A:_y lies just to the right of the B bdundary, and BO y = E;-.

i

By construction, it is known that for the run R® belonging to T,
c d

Ax-y is executed. It will now be shown for each run R~ belonging to U,
—»#A: 1 in other words that L:‘: < y.- This fact will be shown by
, :

assuming the contrary and deriving & contrediction. ILet Rg be a run

a
belonging to U such that #Ax’ L
c v/ ,d

A% =2 2% ve have that AJW 1s executed. sincc-A;y is k-writing, then by

Since qur is executed, then by

e~ d d d u
fad v<£<L. :
A" = A" we have that A writes Akv for some v £ Lk Since by

construction m = L: + 1, then v < m. ‘Sinee‘.#A;n,,. then #A;v, and by

3]

xy

Figure 5.k4.

The element AO .
Xy

207

2% =2 2% ve nave that AC is written by AS . But AS writes AS , end
- Ay 18 written by A, - Xy A’

v < m. This contradiction shows that L: < y.

It will now be shown that L: = y. Since y = Ei, and, by construction

of R°, B < E}:, therefore y < Ez. But since R® € U, then Ez <1,

and so y << L;. From the preceding paragraph, L; <y, and so0 Lz =y.

The situation concerning the runs R® and R‘D is shown in Figure 5.5,
where for clarity the Ea and Eb boundaries are shaped differently than
in preceding Figures. In accordance with the construction of A;y
and A;m, Figure 5.5 shows A;y 1ying just to the right of the E°
boundery, and A}?m lying to the right of, and exactly one position away
from the B boundary. In accordance with the construetion of Rb,

Figure 5.5 shows the Eb boundary lying everywhere on or to the right of
the Ea boundary. Since L; =y = Ei, therefore in row x of A° the Eb
boundary coincides with the Ea boundary. Thus Ei = Ez =y = Lz.

Figure 5.5 shows that in row k of Ao the Eb boundary &lso coincides
with the E° boundary. This fact is true because m = L; + 1. That is,
L;i = m-1, and so Ez < m-1. Since E; = m-1, then Ei < El‘; Since
the Eb boundary lies everywhere on or to the right of the Ea boundary,
therefore E; = Ei. Thus Ei = Ei = m-1 = L‘;

It will now be shown that cell x 1is an enabled clerk cell at
the conclusion of Rb. As shown in Figure 5.5, let o< be the set of
positions in A° to the left of both the Ea and Eb boundaries. ILet ,5
be the set of positions in A° to the right of the E? boundary and to
the left of the Eb boundary.

let 9 be the transaction associated with Azy' By Aag Ab, 9

is also the transaction associated with Azy. Since x might equal Kk,

208

Figure 5.5. The E® and Eb boundaries redrawn.

209

then 9 might be any of the five transaction types. At the conclusion
of Ra, cell x is en enabled clerk cell that is enabled to perform 6.
In order to show that cell x is also an enabled clerk cell at the
conclusion of Rb, it must be shown that at the conclusion of Rb

cell x 1is enabled to perform e.

To show that et the conclusion of Rb, cell x 1is enabled to
perform Q , two points will be demonstrated: (1) if cell x has
read capability for an arbitrary cell r at the conclusion of Ra, then
cell x has read capability for cell r &t the conclusion of Rb, and
(2) if cell x has write capability for any arbitrary cell w at
the conclusion of Ra, then cell x has write capability for cell w
et the conclusion of Rb.

Digression. Just as in Chapter IV, the subscripts on K, N, and D
will be omitted here, for the seme reasons that justified their omission
in Chepter IV. Specificelly, the subscript of N and D may be taken here
to be A°, and the subscript of K does not matter here since all runs
being discussed have the same initial count matrix.

Resumption. The truth of point (1) mentioned above, concerning
read capability for a cell r, is easily demonstrated. Since cell x
hes read capability for cell r at the conclusion of Ra, then

K(x, r,eX) > 0
Clearly

Nx, r, < U 6) = NMx, r, o<)

210

Since the E° and Eb bounderies coincide in row x of Ao, then
D(x, r, X Uﬁ } = D(x, r, <)
Therefore
K(x, r,O(U’S) >0
and so cell x has read capability for cell r at the conclusion of Rb.
The truth of point (2) mentioned above, concerning write capability
for a cell w, is demonstrated by an argument similar to that used
seversl times in Chapter IV. First it will be shown that there are
no w-requiring elements in ﬂ , by assuming the contrary and deriving a
contradiction. Let AD be an erbitrary element of A° such that qu is
one of the first w-requiring elements in ﬁ to be executed in Rb. Let Rp
be the prefix run of Rb that Jjust precedes the execution of A;q in Rb.
Figure 5.6 shows the E® boundery drawn in A°.
Let P be the set of positions in A° to the left of both the E°
and E® boundaries. let O be the set of positions in A° to the right
of the E® boundary and to the left of the EP boundaery. Let T ve the
set of positions in A° to the left of the E° boundary end to the right
of the E°¥ boundary.
Since Azq is w-requiring, then
K(p, w, (0 Uo) >o
Since qu is one of the first w-requiring elements in /9 to be executed
in Rb, then there are no w-requiring elements in U . Thus
N(p, w,f)) = N(p, w, {D Uag)
and so

Ne, v, PUT) Z 8, v, PUT)

211

Figure 5.6. The EX boundary.

212

Since in row p of A® the E® boundary 1lies on or to the left of the E¥
boundsry, then
D(p, w,(aU’C')sb(-p, v, FUO‘)
Therefore
K(p, v, P UZ)>o
and cell p has read capability for cell w at the conclusion of 8%,

It is known that at the conclusion of Ra, cell- x has write
capability, i.e., sole read capability, for cell w. Therefore p = X,
and so A:q lies in ﬂ . But in row x of Ao, the E® boundary coincides
with the E° boundary, and so no element in row x of A° can lie
in ,3' This contradiction shows that there are no v-requiring
elements in 8.

Let z be an arbitrary cell name, such that z # x. With the eid
of Figure 5.5, it will now be shown that cell 2 doces not have read
capability for cell w at the conclusion of R°. At the canclusion
of run R®, cell x has write capebility for cell w, and so cell 3
does not have read capebility for cell w at the conclusion of)
Therefore

K(z, w, () L0
Since there are no w-requiring elements in ﬁ ’

8(z, w, £ Uﬁ) = Wz, w,o<)
Since in row z of A°, the Eb boundary lies everywhere on or to the
right of the - bmdary, then

Dz, w,O‘Uﬁ) = Xz, w,=X)

K(z, W:°< Uﬁ)éo

213

and cell 1z, an arbitrary cell not the same as cell x, does not have
read cepebility for cell w at the conclusion of R°.

The above result shows that no cell other than perhaps cell x
has read cepsbility for cell w at the conclusion of Rb. Thus if
cell x has read capebility for cell w at the conclusion of Rb, then
cell x has write capability for cell w at the conclusion of Rb. It
is known that at the conclusion of Ra, cell x has write capability
for cell w, and it has already been shown that if cell x had read
capability for some cell at the conelusion of Ra, then cell x has
read capability for the cell at the conclusion of Rb. Therefore,
cell x has read capabllity for cell w at the conclusion of Rb,
and so cell x has write capability for cell w at the conclusion of Rb.
The demonstration of point (2) is now complete.

It has been shown that cell x haes the same capabilities at the
conclusion of Rb as it does at the conclusion of R°. Since E: = E:,
and Aa—g' Ab, then cell x has the same content at the conclusion
of R® ae it does at the conclusion of Rb. Since cell x is an enabled
clerk cell at the conclusion of R° s therefore cell x is an enabled
clerk cell at the conclusion of Rb.

At the conclusion of Rb, E: =y = L;- Therefore position < x, rl-l>
is never written in any run belonging to U, and therefore position { x, y>
is never executed in any run belonging to U. Thus, after the run Rb

is presented to the user, the cell x, even though it is an ensabled

clerk cell, will never receive & go pulse no matter how long the user

21k

waits. This result means that the strategy of M's scheduler is not
reasonable, and contradicts the fact that the strategy of M's
scheduler is reasonsble.

This contradiction proves that assumption (5.2) is false. Since
the only other possibllity that (5.2) implies can be contradicted by
interchanging the roles of T and U in the preceding argument, then (5.2)
‘has been contradicted. Thus L: = I}; for each cell 1, and the
assuredness theorem- has been prove&.

Q. E. D.

215

Chapter VI

Conclusions and Suggestions for Future Research

Introduction

Previous Chapters have described same results of research on thg
subject of multiprocessing. The present Chapter discussés the possible
effects that this body of results might have in the field of computer
science and engineering. In discussing the effects of the' present
research, the Chapter pursues two related topics: effects the research
might have on applications, and avenues along which the research might

be continued.

Asynchronous Reproducibility
The Thesis has reported on a concept for designing a computing

facility to meet certain performance criteria. An attempt has been

made to capture the essence of this design concept by formulating a

class of abstract machines called machines for coordinated multiprocessing,

or MM's. The performance criteria that anl MCM has been shown to

satisfy are the criteris of ocutput functionality and output assuredness.
In showing that an MCM is both output-functional and output-assured,

it has actually been shown that an MM has the properties of complete

functionality and complete assuredness. Let us sum up these latter

properties using the term asynchronous reproducibility: to say that

the behavior of an MM is asynchronously reproducible is to say that

216

the MCM has both the property of complete functionality end the
property of complete assuredness.

The fact that an MCM's behavior is asynehroncusly reproducible
mesns that if one starts up an MCM on two different oecasions from the
same arbitrary initial computation stete, them for each cell, ome will
observe the same sequence of words written ;l.ntd,;-tl_u cell during both
computations, provided one does not prematwurely ahort either or both
of the camputations. The adjective “asynchronous” means "without
regard to the relative timing among them". Thus asynehronous
reproducibility means that the sequence of words written into each
cell is reproducible, but that the relative timing of the production.

of such sequences for several cells is not necessarily reproducible.

Asynchronous reproducibility does pot mesn that it s actually
possible to start up an MCM from the seme, arbitrery initial .éouyutation
state on two different occ,asiom.» .‘Aavynchrw_-‘mpnodneibiuty neans
only that if an MGM is started up from the same, arbitrary inii;ial
computation state en two different occasions, then the.same sequences.
of words will be written into its cells on both occasions, provided
the computations are not premsturely aborted.

Consider a facility in which & clerk is able to obtain from a
clock device the date and time of day. .It is possible:for the behavior
of such a facility to be asynchronously reproducible, even though any
given instance of its behavior cannot actually be reproduced. The

sequence of values read from the clock device constitutes an input

217

stream to the facility. In deciding whether the facility has
asynchronously reproducible behavior, we must ask ourselves, 'If the
clock input stream were reproduced, along with all other initial
conditions, would the facility's cell histories be reproduced?” If
and only if for all initial conditions, including clock input streams,
the answer to this question is "Yes", then the facility has

asynchronously reproducible behavior.

Repestable Input Streams

To prevent the occurrence of lurking bugs of the two types
mentioned in Chepter I, it is sufficient to construct a facility with
asynchronously reproducible behavior. In praectice, however, a user
of such a facility will not benefit from the facility's asynchronously
reproducible behavior unless he is able to repeat at will the initial
conditions of e computation. Thus, when a facility is constructed to
have asynchronously reproducible behavior, it is a practical necessity
that the facility also be constructed to allow a user to provide, say, a
previously prepared tape as a substitute for any input stream not
normaelly under the user's control. Such an input stream might be, for
example, the sequence of values read from a clock, or the sequence of
responses obtained from requests for access to a "common file" shared
by several users.

From the point of view of the designer of a facility, the
requirement that the facility have repeatable input streams means the
following: a clerk must not be allowed to read any quantity that in

the midst of a computation might be affected by external influences

218

and for which the designer is not willing to provide a mechanism
allowing & user to repeat at will the quantity's sequence of values.
For example, based on this requirement, a designer might choose to
not allow a clerk to sense the state of memory allocation, and might
choose to not allow a clerk to read & timer register that tells when
the clerk's current processing unit will start playing the role of
another clerk. For still another example, suppose the designer of a
facility does choose to allow a clerk to read the time of day, and
therefore also chooses to allow & user to switch the facility between
reading the time of day end reeding, say, a previously prepered tape.
Consider the designer's dilemma now in deciding whether to allow this
switching between the clock and the tape to be performed by a clerk as
well as by a user. The requirement of repeatable inputs immediately
r.ésolves the issue: to allow such switching by a clerk would be self-
defeating, becsuse, as & result of a progrem bug, and without the
user's knowledge, a clerk might start reading the time of day instead
of the prepared tape.

Clearly the requirement of repeatable inputs, like the requirement
of asynchronous reproducibility, is a strong design criterion in the
sense that it serves to eliminate from consideration many possible

system designs.

State Input Streams

In Chapter III it was mentioned that the state input stream of an
input or output device is usually not repeatable at the will of the

programmer. To allow a prepared tape to be substituted for a state

219

input stream, however, is likely to lead to difficulties. For
exsmple, a clerk may sense from & tape-simulated state input stream
that e device is "ready" when in fact the device is not. The device
might then be sent an Improper command, which could cause the reading
of primary input stream values different from the values intended by
the user. The problem of designing an input or output device so that
i1ts behavior can be repeated in synchronism with a computation is a

good subject for future research.

The Hang-Up Phenomenon
An interesting phenomenon that can occur in an MCM is the hang-up.

In the computation state S, a clerk cell x is hung up if and only if
the following two statements are true: (1) clerk cell x will never
become enabled in any computation that proceeds from the computation
state S, and (2) the truth of statement (1).can be established by
examining only the computation state S, and the types and operand
nemes of the transactions in the MCM's transaction tebles. Statement (2)
means, in psrticular, that the existence of a hang-up depends neither
on the potential ocecurrence of an endless loop, nor on any other fact
that can be disecovered only through what would be in effeet a simulation
of each computation that can proceed from the computation state S.

An example of a computation in which clerk cell x 1s hung up
is one in which clerk cell x requires read capability for a cell i
in order to be enabled, and in which no cell at a2ll has read capability

for cell 1.

220

It is also possible for two clerk cells to be mutually hung up.
For example, consider & camputation state in which a clerk cell x
requires read capability for a cell 1 in order to be ensbled, and
in which a clerk cell p requires read cepability for & cell k in
order to be enabled. Then clerk cells x and p are both hung up
in any such computation state in which clerk cell x has read
capability for cell k, end clerk cell p has read capebility for
cell 1i.

Clearly one can have more than two clerk cells mutually hung up on
each other, and it is not difficult to construct examples of complex
hung-up modes in which an arbitrary number of clerk cells are hung up
for a variety of reessons.

The assuredness theorem says that the effects of an MCM hang-up
are reproducible in the following sense. If during & computation from
an initisl computation state S, a user observes that clerk cell x
is hung up after exactly y writes have occurred into clerk cell x,
then during any subsequent computation from S, the user will observe
exactly y writes into cell x and no more, provided he waits
long enough.

It is possible that not only the effect but also the mode of an
MCM hang-up is reproducible; this possibility is a worthwhile subject
for future research.

It appears that a hang-up results from an inconsistency in the

specification of the computational activity, as for exsmple if one

221

tried to program the simultaneous execution of
a := g(b)
by one clerk, and
:= f(a)
by snother clerk. A contemporary facility might respond to this
ambiguity by meking an arbitrery choice as to which statement to execute
first. A facility that behaves like an MCM, however, would always
respond to this ambiguity by hanging up.
The hang-up mode in which no cell at all has read capability for
some cell can be avoided by using the concept of ownership discussed
in the next Section. The cetaloging of other hang-up modes and the

finding of methods to avoid these modes are topics for future research.

Ownership
It is possible for the cells of an MCM to perform enough dones of

some cell i so that no cell has read capability for cell 1i. After

such a total relinquishment of cell 1, no cell can ever again obtain

read cepsbility for cell i, because read capability for cell 1 can
only be obtained as & result of the action of a cell that already has
read capebility for cell 1.

The concept of ownership is a method of preventing total
relinquishment in & facility that behaves like an MCM. It is hoped
that the following explasnation of this concept will be of assistance
in the search for ways to prevent hang-up modes other than total

relinquishment.

222

When the ownershilp concept is employed in a facility, then for
each part n, such as a segment, clerk, input device, or output deviece,
there is in every computation state either exaetly one part, or
exactly one unused name, that is the owner of the part n.

Clerk x 1is the owner of, say, segment n if and only if a
special ownership bit at position <x, n> of the control matrix
is on. The fact that clerk x 1s the owner of segment n means the
following: an enormously large number, say

(20%%)

10 (7.1)
is considered to be added to the Integer at position <x, n> of the
control matrix, and the result is considered to be the number st
position <x, n> of the control matrix for the purpose of determining
capabilities. Thus the owner of a part always has read capability
for the part.

Ownership of the segment n may be conveyed from clerk x to
clerk e by clerk x's execution of the procedure step

gonvey 'n’, 'e's
Execution of this procedure step turns on the ownership bit at
position (e, n> of the control matrix, and turns off the ownership
bit at position <x, n> of the control matrix.

The use of ownership in a facility that behaves like an MM does
not imply & modification to the MCM design as presented in Chapter II.
The combination of ownership bit and integer in a control matrix element
is just & special way of encoding en extremely large count. Executions
of g_ggg's and done 's affect only the integer parts of control matrix

elements, because in practice it is impossible for enough gggg's and

223

gggg's to be performed to affect ownership. The traensfer of ownership
brought about by an execution of & convey procedure step corresponds
to the performsnce in an MCM of the (7.1) number of send transactions,

followed by the performance of the (7.l) number of done transactions.

Questions of Necessity

Questions that should prove very stimulating to future research
are questions of the form, "Is property A of the MCM design necessary
for satisfying performance criterion B?" For example, the question
raised in Chapter IV concerning whether complete functionality is
necessary for output functionality is a question of this type. The
key to the proper formulation of such questions of necessity is to
recognize that their proper formulation requires a framework broader
than that of the MCM design itself. That is, in order to state such
questions, one must have in mind & class of machines for multiprocessing
that includes the class of MCM's. Then with respect to this class of
machines, property A is necessary for criterion B if and only if the
sub-class of machines setisfying criterion B is included in the sub-
class of machines having property A.

let us consider what a reasonable class, u, of machines for
multiprocessing might be. The classs u ought to include the class
of MCM's. Also, p ought to include a class of machines that are models
of contemporary facilities for multiprocessing. One such class of
machines is the class of machines that are like MCM's, but that have no
count matrices, and that have schedulers which transmit go pulses

according to arbitrary schemes.

224

The class p consisting of just MCM's and contemporary multiprocessing
models 1s not very interesting. For example, recall from Chapter I
that contemporary facilities for multiprocessing are not, in gemeral,
output-functional. It was shown in Chepter IV, however, that MCM's
are output-functional. Therefore, with respect to the class p as
developed so far, the count matrix and enabling rules found in the MCM
design sre, in a trivial sense, necessary for output functionality.

To meke a non-trivial assertion of the necessity of some MCM
feature that is not found in any contemporary facility, one muet include
in p more machines than just MCM's and models of contemporary |
facilities. What might be the structure of these additional machines?
The computation state of such a machine might be given by a vector of
state variables. Some of these varisbles would be similar to words in
MCM cells, in that their histories would be of interest in the criterion
of asynchronous reproducibility. The rest of the veriables in the
computation state vector would be similar to elements in an MCM's
count matrix, in that their histories would not be of interest in the
criterion of asynchronous reproducibility. BEach active element of
such a machine might be memoryless, but might have "tentacles"
extending to some subset of the computation state variables. Upon
receipt of a go pulse, an active element would reed the variables at
the ends of its tentacles, and then give new values to some or all of

these variables, according to its "wired in" prOperties.* Go pulses

*
This scheme was suggested by R. Gemmill.

225

would be transmitted to active elements by & scheduler on the basis
of both current computetion state, and other influences.

If the class i 1s augmented by including in it, say, the class of
"tentacle" machines described above, then & search for the answers
to questions of necessity with respect to u would smount to a study
of the properties and performence of verious specislizations of the
"tentacle" structure. -A further exploration of such questions of

necessity is left for future research.

Toward a Science of Computer Design

As was mentioned previously in the Chapter, the eriteria of
asynchronous reproducibility and input repeatability place strong
requirements ‘on the design of a computing facility; that is, these
criteria serve in the design process to eliminate from consideration a
great many possible designs.

Computer design todsy is an art. Todey an engineer designing a
computer cannot help but be worried that the apparently arbitrary
decisions he mekes may prove wrong or inconsistent when his computer
is used in some application. Designers have too much choice; criteris
must be formulated which serve to determine &s many aspects of &
computer's design as possible. The development of such criteris helps
to turn computer design from an art into a science.

A sclence of computer design must be based on fundamental principles
of at least two kinds: (1) performence criteria, end (2) postulates
characterizing the technological and economic environment. An example

of a postulate might be, "The cost of high-speed, rendom access memory

226

will never be low enough to eliminate the need for & storage hierarchy."
Once a satisfactory set of criterla and postulates has been formulated,
then one may deduce, rather than design, the structure of a computer.

Of course, seversl sets of criteria and postulates might exist, each
appropriate for & different class of applications.

The present research has contributed toward the reduction of computer
design from an art into & science by displaying the performence criterion
‘of asynchronous reproducibility, and by showing that it is possible to
satisfy this criterion with a reasonably economical computer design.

The present research, however, is merely a beginning; the seeking of
criteria and postulates for a science of computer design is a most

fruitful subject for future research efforts.

227

Appendix A

The Non~Redundancy of Bye Transactions

In Chapter II's Section on send, done, end bye trensactions, it was
mentioned that bye transaétiona are not redﬁndant in the MCM design. This
assertion will now be explained in more spec:l.fic tems.

COnsider the class or events wh:l.ch ve shsll ca].'l. events of type A.

An event of type A is sald to have occurred just vwhen both or the ro].lowine
statements are true: (l) at one instant same ce].l x has write capability
for itself, and (2) at a later instant some gther cell has write capability
for cell x. »

If bye transactions are included in the MCM design, then an MCM can
be constructed in which an event of type A can occur. For example, suppose
that at some time tl every element in column x of an MCM's count matrix
is zero, except that the element at position <x, x> equals one. During

the interval between time t, and some later time ¢t_. 1let cell x

1 2
perform & bye to e for same e not equal to x, and let this performance
be the only performence of a transaction by any cell between the times t’l

and t2. At time ta, every element in column x of the count matrix is
zero, except that the element at position <e, x> equals one. The
circumstances of this example constitute an eveat of type A.

If bye transactions are excluded from the MCM design, then no MCM
can be constructed in which an event of type A can occur. This fact will
be proved by assuming it is false and deriving a contradiction. That is,

it is now assumed that there exists an MCM which does not perform bye

228

transactions, but in which an event of type A can occur. In order to
describe the event of type A which can occur in the assumed MCM,

let ¢ , and x be chosen so that at time t, the cell x has

r % 1
write capability for itself, and so that at the later time t2 some
other cell has write capebility for cell x.

As shown in Figure A.l, cell x performs at least one done of x

in the interval between t. and t’2' Let o denote the computation

1
state trensition during which the last such dome is performed. By the
enabling rule for dones, cell x has write capability ‘ror itself jJust
before the transition . Therefore, no sends of x are performed
during o, and so just after o, no cell, other than perhaps cell x
itself, has read capability for cell x.
Since at time t2, cell x does not have read capability for
itself, then by construction of a, we know that just after a cell x
does not have read capability for itself. Therefore, Just after o
no cell at all has reed capability for cell x. Thus, after o has
occurred no cell can ever again have read capability for cell x,
because every transaction that edds to an element in column x of the
count matrix requires read capability for cell x in order to be enabled.
The above result contradicts the fact that some cell has write
capability for cell x at the time ta. This contradiction means that
if bye transactions ere excluded from the MCM design, then no MCM can be
constructed in which an event of type A can occur. As was shown

previously, the inclusion of bye transactions in the MCM design does allow

events of type A to occur, and 8o bye transactions esre not redundant.

229

Cell x has Some cell other than

write cepability cell x has write
for itself. capability for cell x.

The computation state transitions that
occur between the times t, and ¢t_,
and during which cell x iierfoms 3

do;\? X. //
Y Y

__> \

The instant just before o

The transition ¢

The instant Just after o

Figure A.1. Events of interest in the demonstration of the
non-redundancy of bye transactions.

230

Appendix B

Well-Defined MCM's

The notion of & well-defined MCM was introduced near the end of
Chapter II. Presented here is both a more precise definition of &
well-defined MCM, and a condition sufficient for an MCM to be well-
deflned.

An MM is well-defined if and only if during each camputation
performed by the MCM, every computation state held by the MCM is
Proper for the MCM. An MCM holds a computetion state that is proper
for 1t if and omly if both of the following stetements are true for
each cell x: (1) to cell x's content there corresponds & transaction
in cell x's transaction table, and (2) if cell x is en enabled
clerk cell that would upon receipt of a go pulse, perform

get of 1 replace £(-)
then cell 1i's content belongs to the domain of £(-).

A condition will now be presented that is sufficient for an MCM
to be well-defined. For each cell x, consider the set, W(x), of words
cell x might hold. The set W(x) contains: (1) each word that
cell x holds in any initial computation state, (2) each word that is

the replacement word of any transaction listed in cell x's trensaction

*
The domain of a function is the set of arguments for which the function
is defined.

231

teble, (3) each word in the range of the replacement function of eny
- get listed in cell x's trensaction table, end (4) each word that is
the operand word of a put having operand name x and listed in eny
transaction table except cell x's tranuction table. Thus W(x) is
sure to contain every word that cell x will ever hold, but W(x)
may contain some words thnt cell x wﬂl never hold.

An MQ& is well-detined if, but not necessarily only if, both of
the following statements are true for each cell x: (1) cel1 x's _‘
transaction table lists a transaction to eorrespond to each distinct
word in W(x), and (2) W(x) is a subset of the domin of the rephcement
function of each get having operand name x and listed in any

transaction table.

*
The range of & function is the set of the function's possible
output values.

232

Appendix C

Summary of Notation

The set-theoretic and logical notation introduced in footnotes,
principally in Chapter IV, is summarized here. The number in
perentheses following the explanstion of a symbol gives the page on

which the symbol was first used.

The subsets of the set { a, b} are the sets: {g (the empty set),

{al, {v}, ena {a, v{. T(o. 3)

The proposition A & B is true if and only if A is included in B, i.e.,
i end only if A is & subset of B. For example, ja} <= {a, b} ,

{a, b < {a, b], end ﬂ < e, bf, vhere {1 1s the

empty set. (p. 143)

The proposition A € B is true 1If and only if A belongs to B. For
example, a € a, bg . (p. 139)

The proposition A ¢ B is true if and only if A does not belong
. to B. (p. 149)

The union of ga, bg and {a, cg is Sa, b, cg. (p. 162)
The set A U B 1s the union of A and B. (p. 171)

The ordered n-tuple <al, By ety an> is equal to the ordered m-tuple
<b1’ b2’ ceey bm> if end only if n = m, and 8, = bl’ o oY)
and ..., and & = b_. Thus, for example, {a, bz = {b, a} always

but a, b> =n<),na only if a = b.. (p. 56)

eand a. = b

233

The set ,,B/F is the domein of the function F, i.e., the set of arguments
for which F is defined. A sequence may be thought of as & function

that takes an integer i into the i-th element of the sequence. Thus,
for exsmple, the domain of the sequence <‘.].‘1, T2, coey Tm> is

the set {1, 2, eeey mg. (p. 139)

The proposition —A is true if and only if A is not true. (p. 163)

The proposition A A B is true if and only if both A and B are
true. (p. 1k4)

The proposition A V B is true if and only if either A or B or both
are true. (p. 199)

The proposition A—> B is true if and only if A implies B, i.e., if
and only if either A is false, or both A and B are true. (p. 1hk)

The proposition (x)A, where A is usually & function of x, is true
if and only if A is true for every x. (p. 1hk4)

The proposition (3 x)A, where A is usually a function of x, is true
if and only if there exists at least one x such that A 1s true.

(p. 200)

The set {a € A: BS, vhere B is usually a function of a, is the
set of just those elements of A for which B is true. (p. 199)

234

References

1. Anderson, J. P. Program structures for parallel processing.
Comm. ACM 8 (Dec. 1965), 786-788.

2. Bottenbruch, H. Structure and use of ALGOL 60. J. ACM 9
(Apr. 1962), 161-221.

3. Conway, M. E. A multiprocessor system design. AFIPS Conf. Proc.
24 (Nov. 1963), 139-146. Spartan Books, Beltimore.

L, Corbatg, F. J., and Vyssotsky, V. A. Introduction and overview of
the Multics system. AFIPS Conf. Proc. 27 (Nov. 1965), 185-196.

5. Corbatd, F. J., Merwin-Daggett, M., and Deley, R. C. An
experimental time-sharing system. AFIPS Conf. Proc. 21 (May 1962),
335-34k. National Press, Palo Alto, Calif.

6. Crisman, P. A. (Ed.) The Compatible Time-Sharing System A
Programmer's Guide. M.I.T. Press, Cambridge, Mass., 2d ed., 1965.

7. Deley, R. C., and Neumann, P. G. A general-purpose file system for
secondary storage. AFIPS Conf. Proc. 27 (Nov. 1965), 213-229.
Spartan Books, Baltimore.

8. Davis, M. Computability and Unsolvability. McGraw-Hill, New
York, 1958.

9. Dennis, J. B. Segmentation and the design of multiprogrammed
computer systems. J. ACM 12 (Oct. 1965), 589-602.

10. Dennis, J. B., and Van Horn, E. C. Programming semantics for
multiprogrammed computations. Comm. ACM 9 (Mar. 1966), 143-155.

11. Dijkstra, E. W. Cooperating Sequential Processes. Mathematical
Department, Technological University, Eindhoven, Netherlands,
Sept. 1965.

12. Dijkstra, E. W. Solution of a problem in concurrent programming
control. Comm. ACM 8 (Sept. 1965), 569.

13. D825 AOSP. Burroughs Corp., 1963.

235

1h.

15.

23.

ol,

250

Fano, R. M. The MAC system: the camputer utility approach.
IEEE Spectrum 2 (Jan. 1965), 56-6k.

Glaser, E. L., Couleur, J. F., and Oliver, G. A. System design
of a computer for time-sharing applications. AFIPS Conf. Proc. 27
(Nov. 1965), 197-202. Sperten Books, Baltimore.

Holland, J. A universel computer el‘pable of Qxecut.ing an arbitrery
number of sub-programs simultaneously. Proc. Eastern J'o:l.nt Computer
Conf., Dec. 1959, 108-1313. - Assoc, for Gmpwuuh., Iew w York.

IBM m Deta rocess_ng System Reference Manual. I.B.M. Gorp., 1962.
I 7 P m II Prog

I.B.M. com.’

Icggp 2% mmwﬂmﬂ I.B.M.

Knuth, D. E. Additional comments on & pgm :Ln concurrent
programming control. Comm. ACM 9 (Mey 1966), 321-322.

Maurer, W. D. A theory of computer instmctions. :de g_c_t_a _;3
(apr. 1966), 226-235. P

McCarthy, J., et al. @_}mm M.I.T. Press,
Cambridge, Msss., 1962.

Programmed Data Processor-1 Manual. Digital EQuipment Corpe,
Meynard, Mass., 1 .

Rebin, M. O., and Scott, D. Finite automats end their decision
problems. IBM J. Res. Dev. 3 (Apr. 1959), 1lhe125.

Suppes, P. Axiomatic Set Theory. Van Nostrand, Princéton, 1966.
Vyssotsky, V. A., Corbetd, F. J., and Grehem, R. M. Structure of

the Multics supervisor. AFIPS Conf. Proc. g{_ (Nov. 1965), 203-212.
Spertan Books, Baltimore. :

236

Biographical Note

Barl Cornelius Ven Horn, Jr. wes born in Cincinnati, Ohio on
January 2k, 1939. He attended the Cincinnati public schools, graduating
from Welnut Hills High School in June, 1957. He received the S.B.
and S.M. degrees in Electrical Science and Engineering from the
Massachusetts Institute of Technology in June, 1961, and February, 1963,
respectively. In June, 1965, he was married to the former Sandra Ann
Wallaesa of Cherry Hill, New Jersey.

In 1962 Mr. Van Horn was a Teaching Assistant for the M.I.T.
Electrical Engineering Department. In 1963 he was a Research Assistant
for the M.I.T. Electronic Systems Laboratory, the facilities of which
he used in his Master's thesis research concerning a computer-controlled
psychological experiment. Since 1963 he has been a Research Assistant
for M.I.T.'s Project MAC, which has supported his current research in
the field of computer system organization.

While in high school and college he pursued interests in theatrical
lighting and audio technology. During summer vacations he worked for the
General Electric Compeny on instrumentation for Jet engine testing, for
the Bendix Corporation in the testing of digital systems, for the
Aerospace Corporation in research on digital adaptive control systems,
and for Informetion International, Inc. on the preliminary design of &
digital computer. In recent years he has had the opportunity to serve
as consultent for Computer Control Compeny, Inc., Honeywell, Inc., and
Abt Associates, Inc.

Mr. Van Horn is & member of Tau Beta Pi, Eta Kappa Nu, Sigme Xi,
the Association for Computing Mechinery, and the Institute of Electrical
and Electronic Engineers. He is co-author of two publications:

A computer-controlled experimént in human prediction. Fourth National
Symposium on Human Factors in Electronics (May 1963). Institute of
Electrical and Electronic Engineers, New York. (with L. Stark)

Pro mming semantics for multiprogrammed computations. Comm. ACM 9
(Mar. 1966? 143-155. (with J. B. Dennis) -

237

This empty page was substituted for a
blank page in the original document.

