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Abstract 

Programs that make decisions need mechanisms for representing and reasoning 
about the desirability of the possible consequences of their choices. This work is an 
exploration of preference models based on utility theory. The framework presented is 
distinguished by a qualitative view of preferences and a knowledge-based approach to 
the application of utility theory. The design for a comprehensive preference modeler 
is implemented in part by the Utility Reasonin·g Package (URP), a collection of 
facilities for constructing and analyzing preference models. 

Qualitative mathematical reasoning techniques are employed to develop partial 
specifications of single-attribute utility functions from qualitative preference asser­
tions. Functions are described in terms of gross behaviors, symbolic forms, and 
para.metric constraints. Appropriate dominance-testing algorithms are chosen from 
a knowledge base of stochastic dominance routines based on qualitative properties 
of the utility function. URP constructs multiattribute utility functions from a set of 
independence conditions by applying.proof rules from a knowledge base containing 
the important decomposition theorems from the literature. Proof rules describe the 
logical relations among independence conditions and functional forms. Hierarchical 
decompositions are structured automatically. 

Flexible model construction provides the potential for interpreting preference 
choices under a procedure that does not depend on the underlying utility model. 
Model-independent interpretation enables assessment under a wide range of de­
scriptive theories of preference choice. Domain-specific preference knowledge is in­
corporated in URP by tying domain concepts to the modeler's technical vocabu(ary. 
Development of a health preference knowledge base illustrates how preference mod­
eling could be included in a·knowledge-based.system for a particular application. 
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1.3. THE BASIC APPROACH 3 

the sum of the utility of each certain outcome weighted by its probability in that 
prospect. Utilities rank the prospects by preference; u{p1) > u(P2) if and only if 
p1 >- P2· If we base our preference model on the notion of a utility function, we 
can exploit a large body of results from utility theory, and more general analytical 
techniques from the mathem~tics of functions. This thesis is largely an account of 
some of these possible exploitations. 

Formally, a utility function u maps states of the world (outcomes) x in the 
outcome space X = X1 x · · · x X" to real numbers in such a way that the optimal 
decision is the one that maximizes the. expected value of this function. Often x is 
expressed as a vector of attributes, (xi, x2, ... , Xn), Xi E Xi, where the values of the 
xis totally describe the aspects of the outcome pertinent to the decision. 

While a major preference modeling effort is often undertaken for the sake of the 
if&8ight it brings to decision making, I will be primarily concerned with the use of 
preference models for the analysis of a particular decision.3 For our .purposes, a 
decision involves a choice among a set of stratitegies1 e~ of wlaich is associated with 
some resulting outcome x E X (or more generally, a prospect p E P, where P, the 
decision space is the set of simple probability distributions. over X). To make the 
decision, we must figure out which strategy has the greatest expected utility. 

1.3 The Basic Approach 

The main features that distinguish the attitude toward utility modeling devel­
oped here from traditional computerized utility m®eling are its qualitative view of 
preference structures .•d its knowledge-based approach lo the encoding of utility­
theoretic concepts. Taken together, these f eatmes result in a system which em­
phasizes model structuring over model parameteriJation. This attitude has been 
embodied· in a collection of programs and overall framework for preference model-

decision making. Thia is not to eay that these aximna are totally accepted. However, it is not my 
intention to enter the debate at this point. A particular)y lucid axiomatic deYelopment of expected 
utility can be found in Savage's important work [92]. Ahernative axiomatiaationa are provided by 
Fishburn !3S]. The original existenee proof is due to von Neumann and Morganstem (107). 

3 Although, as will be explained later~ I believe that mode.la created using this methodology offer 
the potential for greater insight ·due to their deep, explkit qualitatiYe structure. And there is no 
reason to believe that any m the imight-yielding c:hazw:terietica that are inherent in traditional 
utility a.na1yais efforts will not carry over to this methodoloo. UnfortuDately, I do not know how 
to prove an insight theorem. 



4 CHAPTER 1. INTRODUCTION 

ing called URP (for Utility Reasoning Package). The sections immediately below 

describe features of the general attitude; descriptions of the actual URP framework 
and programs make up the remainder of this thesis. 

1.3.1 Qualitative View of Preferences 

An important novelty of the approach described here is in the qualitative mech­
anisms used to analyze preference structures. Utility analysis is usually considered 
a primarily quantitative" task, and previous utility modeling aids (basically assess­
ment tools) have reflected that bias. I believe that the emphasis on numerical com­
putation has tended to obscure the more important modeling and ana'lysis issues, 
just as implementations of mathematical models often hide the central qualitative 
structure of the problems they are supposed to represent. Recent work in artifi­
cial intelligence (that of Kuipers [67), Forbus (39], and Sacks [90], for example} has 
shown that it is often possible to reason effectively about the qualitative behaviors 
of mathematical structures without resorting to overly precise descriptions. Such a 
capability would be enormously useful for utility analysis, because (as with any kind 
of psychological measurement) virtually any numeric data is uncomfortably precise. 
A more complete account of the potential advantages is given in section 9.1.2. 

This qualitative view meshes nicely with the notion of a preference model as 
a partial description of a preference order. The view is supported by URP in its 
tendency to focus on· propositions about the utility structure rather than on direct 
specification of components making up the structure. Speciic methods contributing 

· to this focus are described below. 

1.3.2 Knowledge-Based Approach to Utility Theory 

The second major distinction in.how URP models preferences is that it relies on 

utility theory knowledge expressed in a (relatively) declarative format, rather than_ 
compiled into analysis procedures. Encoding utility-theoretic concepts in expliCit 
knowledge structures leads to advantages in flexibility, extensibility, and explain~ 

'It ia difficult to avoid the confuaiou inherent in words like ftllllitative and quantitative. Naturally, 
all mathematical models are compmed of .relationships among quantities, and in that aense they are 
quantitative. But it ia impcl'tant to distinguiah qualitative ckuriptiou of quantities from numeric 

descriptions. A symbolic expnmsion ia juat one form of. qualitative description. The term quali&Gtive 
as WJed here ia almost always meant in contrut to numeric:, or more generally in oppoaition to excess 
precision of any BOrl. 

---------~------~------------



1.4. MODEL CONSTRUCTION AND ANALYSIS 5 

ability, which will be noted as we get into specifics. For now I will just mention 

that the process of building URP has resulted in the collection of a large corpus 
of utility-theoretic knowledge, encoded in a uniform representation, ezecutable by 
URP's interpreter. The creation of this .knowledge base (especially-that pertaining 
to multiattribute decomposition) may be a worthwhile exercise in its own right. 

1.4 Model Construction and Analysis 

A high-level view of the URP preference modeling framework is depicted in fig­
ure 1.1. Given a probabilistic model of the alternative strategies, the program will 
produce decisions based on a specification of preferences. The probabilistic model 

is given as (pi, ... ,pm), where Pi, the result of the ith strategy, is & prospect in P 
(that is, a simple probability distribu.tion over the outcome space, X). 

qualitative 
assertions 

preference 
choices 

probabilistic 
model----

preference 
mod.O 

conh'ol. liuk 

constructi0n analysis 

decision 

Figure 1.1: A high-level view of tire program'& behavior 

Preference specifications are in terms of the same basic variables as the proba· 
bilistic model: the attributes Xi, ... , X'll. The two main categories of specifications 
are qualitative utility assertions and preference choices. Qualitative utility asser­
tions are propositions that refer to preference conditions for attributes or sets of 
attn'butes. Some illustrative examples, stated ·in English (rather than URPese5), 

with the js and Y s standing for attributes and attribut$ sets, respectively: 

5It will 10011 be demoostrated that UltPme is cloee1y related to the tecbnica1 ~guage of utility 
theory. 



6 CHAPTER 1. INTRODUCTION 

• Preference for prospects over attributes in Y1 is independent of the fixed value 
of the rest of the attributes 

• All other things equal, higher levels of (numeric) attribute j 1 are preferred 

• The attnoutes in Y2 a.re complementary 

• The marginal value of equal increments of attribute i2 is decreasing with i2 

• An additive form is valid for the utility function over Ya 

The implications of these assertions on the preference model will be made clearer 
below. 

Preference choices are assertions similar to those generated by the standard 
lottery technique of utility assessment, where the assessor is re9uired to report 
preferences in hypothetical choices among simplified pmspects. The form and use 
of preference choices is the subject of chapter 7. 

The output of the first black box of figure 1.1 is a data structure representing 
the current preference model. The model is a collection of assertions about the 
utility structure, containing some combination of functional constraints, algebraic 
forms, parametric constraints, and other qualitative properties. Because the model 
is the central object of reasoning activity, it is useful to separate the process into 
two componentS: model c~truction and model analyaia. This is a natural distinc· 
tion, because the two activities use very different types of knowledge and inference 
mechanisms. The processes are not totally independent, of course, since we con­
struct models in the first place for purposes of analysis. Therefore, there must be a 
control link tying the results of the analysis to the goals of the construction. 

1.4.1 Model Construction 

Several ·mechanisms are employed to construct preference models from the qual­
itative properties and preference choices input. Of course, by my .definition these 
raw input assertions alone can constitute a preference model, but we are typically 
more interested in higher-level inferences we can make from these premises. -::: 

URP's most completely dev~loped model construction mechanisms deal with 
assertions about mupendence mama and qualitative helaavior1 of single-attribute 
utility functions. Examples of URP's rea.soaing in these areas are given in the next 
chapter; deeper analyses of thee mechanisms appear in. chapters 3 and 5. 
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8 CHAPTER 1. INTRODUCTION 

about the qualitative properties themse.lves and how they relate to the utility func­
tion are also demonstrated. Though the program cannot always take advantage of 
the inferences it makes about the function for decision making, a deci1ion qalyst 
would find these facilities useful for developing utility models that could then be 
used in conventional decision analysis tools (along the lines of the program described 
by Pauker and Kassirer [82], in routine use at TufU..New England Medical Center). 

The facilities implemented for multiattribute decomposition are limited to model· 
structuring. To use a multiattribute model generated by URP for an actual analysis, 
one would have to transfer the model to a package that performs multiattribute as­
sessment and evaluation. 7 Utility theorists may also find the program useful for 
exploring novel decompositions based on different combinations of axioms. One can 
test the implications of new results in multiattribute utility by encoding them as 
URP independence concepts and theorems, adding them to the existing knowledge 
base. 

The main ob}ectiVe of this work has been to demonstrate that the overall ap­
proach to preference modeling is feaaible and worthwhile. An asse88Illent of how 
this project has ~tisfied ~at goal is deferred to the concluding section. 

1.6 Guide to the Thesis 

This introductory chapter has served as an abstract description of the preference 
modeling task, and as au overview of the approach to preference modeling embodied 
by this project. The rest of this thesi& deacribea the l1RP preference modeling 
framework iJi greater detail: including working representations and mechanisms as 
well as unimplemented components that have been worked out to some degree. 

Chapter 2 provides the setting for the rest of the thesis by describing a medical 
decision example. and illustrating some preference modeling capabilities of URP. The 
case exemplili.es the kind of decision problem of interest: a situation where there 
are several feasible strategies, none of which is obviously the best course of action. 
The example also serves to provide a context for the more detailed descriptions of 
URP's mechanisms that follow. 

7For example, Keeney and Sicherman's MUFCAP !62) can accept as input many of the models that 
might he comtructed by URP. Though using a conventional utility -.nalysis package sacrifices some 

· of the advantages of the URP framework (the ability to reuon about partially specified functiODB, 
for example), there is still aubetantial benefit to structuring the model 1J8iDg URP. 

----------···---------
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2. A Medical Decision Example 

In this chapter I present the outline of a medical decision problem that typifies 
the kind of decision to which URP might be applied. After setting up the problem, I 
work through some exercises in preference modeling that could be performed in an 
application of URP to this problem. Remember that the purpose of this exercise is 
to demonstrate URP's capabilities; I am not making suggestions about the patient's 
actual preferences in this case. It is not at all important to understand the medical 
context of this decision to appreciate the preference modeling facilities. Therefore, 
my description of the case focuses on the structure of the problem at the expense 
of (clinically important) details of the medical situation. 

2.1 The Decision Problem 

The case is taken from a clinical decision consult performed by Dunn at the 
Division of Clinical Decision Making at Tufts-New England Med~cal Center [24]. It 
is a representative example of the many routine clinical decision analyses performed 
by members of that group [22] over the past eight years. 

2.1.1 Case Description 

The patient is a 72-year-old white male with a large abdominal aortic aneurysm 
(AAA) and a history of coronary artery disease {CAD) and cerebrovascular disease 
(CVD). There are potential treatments for each of these problems: aneurysm re­
section (removal) for the AAA, coronary artery bypass graft (CABG) surgery to 
fix the CAD, and carotid endarterectomy to relieve the CVD. His most pressing 
problem is the aneurysm; without surgery to repair the AAA his prognosis is poor. 
However, his underlying CAD and CVD place him at a greatly increased risk for 
death or disabling stroke during the AAA surgery. The question is whether to go 
ahead and operate to repair the aneurysm anyway, or to try and fix the patient's 
coronary· artery and carotid problems first. Five primary options were considered 
in the analysis: 

1. no-repair: Do nothing. 

11 

- -- ---- ---------- ------
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2. aaa: Perform surgery to repair the aneurysm only. 

3. cabg: Perform cardiac catheterization to determine the extent and operability 
of CAD. Perform CABG, if indicated, to reduce AAA operative mortality. 
Then resect the aneurysm. 

4. endart: Perform carotid arteriography to determine the severity of CVD. If 
severe and operable, perform carotid endarterectomy to reduce likelihood of 
disabling stroke during AAA surgery. Then resect the aneurysm. 

5. both: Perform both tests and whichever procedures (CABG and/or en­
darterectomy) are indicated, followed by aneurysm resection. 

In addition, two variations were identified: cabg* and both*, which differ from 
their counterparts above in their criteria for performing CABG. In the variation 
strategies, bypass surgery is not performed for three-vessel CAD. 

2.1.2 The Analysis 

In the original analysis; the decision criterion was expected survival, with dis­
abling stroke treated like immediate death. A large probability tree was constructed, 
resulting in a probability distribution over expected lifetimes (a prospect) for each 
strategy. The expectation for years of life for each prospect is given in table 2.1.. 

strategy life expectancy (years) 

no-repair 2.7 
aaa 5.1 
cabg 7.0 
en dart 5.2 
both 7.4 
cabg* 6.2 
both* 6.5 

Table 2.1: Baseline life expectancies for each strategy 

Survival was computed using the DEALE model of life expectancy [2]. Each 
terminal node in the decision tree is associated with a DEALE parameter, which 
approximates the life expectancy for that outcome. For now and in· the remainder 
of this chapter I will treat this parameter as if it represented the actual lifetime of 
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the patient for the outcome in question; the implications of that treatment and a 

further discussion of the DEALE model is deferred to section 8.6.1. 
The analysis also included a substantial amount of sensitivity analysis and dis­

cussion, concluding that cabg and both were the preferred strategies, with both 
offering a marginal advantage over cabg. 

2.2 Qualitative Reasoning About Single-Attribute 
Utility 

For the remainder of this chapter, I will take the baseline probabilistic model 
developed for this case as given, and use URP to explore a variety of preference 
modeling issues. The outcome space (X) is the set of values possible for life-years:1 

the positive real numbers, perhaps bounded by a practical maximum for this patient. 
For disabling stroke, x is zero regardless of lifetime. 

The preference model used in the original analysis is simply maximization of 
life expectancy, u( x) = x. This function implies that all prospects offering the 
same expected value for life years are equally preferred. For example, one would 
be indifferent between living five years for certain and Hipping a fair coin for ten 
years versus immediate death. We can apply this ~odel using URP, but it would 
be much more interesting to explore the range of less-restrictive models that the 
program is able to generate and reason about. Though less-restrictive models will 
in general yield fewer conclusions, the conclusions that they do imply are based on 
weaker assumptions. 

Construction of single-attribute utility functions often begins with the specifi­
cation of qualitative behaviors of the function. In this case, an obvious qualitative 
property of preference for life-years is that "more is better." In other words, the 
utility function is increasing in life-years. This can be represented in URP via the 
assertion 

(monotonic-increasing life-years) 

This assertion, although based on trivial intuition, tells us quite a bit about the util­
ity function. The outcomes (under certainty) are now totally ordered with respect 
to preference, and it is even possible to rank some nontrivial uncertain prospects 

1Even though the name of the outcome attribute is "life-11ears," I will continue to use "z" in 
mathematical expressions for notational convenience. 
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(as we will see in the next section). Moreover, URP can make use of this information 
in the context of particular functional forms: both for consistency checking and for 
deriving constraints on parameters. 

Some qualitative properties uniquely determine an analytical form for the utility 
function. Suppose we know something about the risk attitude of the patient in this 
case, namely that 

(constant-risk-posture life-years), 

holds. 2 From this, URP concludes 

u(x) = ae-cz + b (2.1) 

An analysis of this function (with the help of Sacks's QM [89]) reveals that it is 
only increasing if a and c are of opposite sign. This fact is recorded, and may be 
employed in further inference. 

Asserting the qualitative behavior risk-averse is equivalent to saying that the 
utility function is concave. The function u (equation 2.1) is concave if and only if 
a < O; from the monotonicity assertion above URP can also deduce that c must be 
positive. . 

If instead risk-neutral holds, URP determines that the utility "function must be 
u( x) = ax + b, with a > 0 if preferences are increasing. Usually we would also scale 
u from zero to one, giving the equalities u{O) = 0 and u(lOOO) = 1.3 Using this, 
URP can solve for a and b, giving 

(2.2) 

Note that this function implies a strategy equivalent to the "maximization of life 
expectancy" criterion used in the original decision analysis for this case:' Using 
URP, the risk neutrality assumption is explicit and easily retractable. 

2To law1ch into a discussion of the utility-theoretic principles of risk attitude would take us too 
far away from the point at hand. For now it should suffice to take constant-risk-posture as 
a generic qualitative property that it might make sense to assert (or for the program to infer 
from other information). The purpose of this chapter is to convey a general feel for the types of 
reasoning performed by the program. A deeper discussion of the utility theory involved is reserved 
for chapter 3. 

3In this example we have arbitrarily set the upper bound for li/e-71eara to 1000 (measured in hun­
dredths of a year). Note that we only know that this is the "best" value because monotonic­
increasing was asserted. 

4If f is a utility ftmction for :r:, any function g such that g(:r:) = a/(:r:) + b, a > O, has the property 
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Reasoning about qualitative behaviors of utility functions can also work in the 
opposite direction. We can assert that a particular functional form holds (perhaps 
based on some well-studied utility model) and ask URP about its qualitative be­
havior. Figure 2.1 illustrates an example terminal interaction (user input follows 
the "-->" prompts, my comments are in italics) where the user asserts a utility 
function for life-years of the form u( x) = ( x + b )-c, with b positive and -1 < c < 0. 5 

Here URP was able to determine that preference is increasing and decreasin~ly risk 
averse. Without the constraint on c, URP can only determine that the function is 
monotonic {in one direction or the other). 

The manipulations of qualitative behaviors I have been presenting in this sec­
tion do not really have much to do with the particular medical example we are 
discussing. Rather, the exercise is meant as an illustration of what qualitative be­
haviors look like and a demonstration of some of the things we can do with them in 
URP. They can be extremely useful for decision making when they determine a func­
tional form (as risk-neutral and constant-risk-posture do above), or constrain 
a pre-existing functional form. A further use of qualitative behaviors for deriving 
decisions is illustrated in the next section, on dominance testing. Discussion of the 
general value of reasoning based on qualitative assumptions pervades this thesis, 
particularly the conclusion. 

2.3 Dominance Testing 

The ultimate goal of the preference modeling task is to show that certain strate­
gies are preferred to others. Since our incomplete preference models do not ad­
mit the calculation of unique preference measures, we must resort to more general 
dominance-testing routines to prove that a particular strategy is best for all admis­
sible utility functions. The general dominance problem is discussed in section 4.1. 

Recall from above that when risk-neutral is assumed (as in the Tufts consult} 
the function u is completely determined. In such a situation, URP would choose the 

that f(z) > /(y) <=> g(z) > g(y). In this case we say that f and g are atrategically equivalent 

utility functions. Given that utilities are finitely hounded, it is always possible to generate a utility 
function strategically equivalent to f having any finite range. Thus, arbitrary scaling from zero to 
one is allowed, and it was really not necessary to solve for a and bin this case. When using u as 
part of a multiattribute function, however, these constants will matter. 

5Naturally, only users experienced in utility analysis would use URP in this fashion. More realistically, 
these forms would come from some other program using URP and would be invisible to the user. 
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command --> ASSERT-FUNC-FORM 
attribute --> life-years 
Start of interval --> 0 end of interval --> 1000 

All behavior and functional form assertions may be specified over arbi­

trary intervals of the utility function. Here I chose an upper bound of 

1000 (hundredths of a year), a reasonable maximum for this patient. 

Enter the functional form for the utility function 
--> (expt (+ x b) (- c)) 

Setting functional form for attribute a to: 
1 

c 
(X + B) 

Functional form specifications may be built up from the standard op­

erators, written in prefix notation. The form is . displayed in a more 

reasonable form to catch typographical errors. 

Enter constraint --> (> b 0) 
Enter constraint --> (< c 0) 
Enter constraint --> (> c -1) 

Enter constraint --> () 

Before analysis, the user enters constraints on the parameters of the 

function. Finally, we ask URP to determine which of the qualitative 

behaviors it knows about apply to this function. 

command --> DESCRIBE-BEHAVIORS 
attribute --> life-years 

MONOTONIC-INCREASING holds 
RISK-AVERSE holds 
DECREASING-RISK-AVERSE holds 
INCREASING-PROPORTIONAL-RISK-POSTURE holds 

Figure 2.1: Determining the qualitative behavior of an asserted functional form 

--- -----~---
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option which maximized equation 2.2, in this case the strategy both. Of course, 
if we always had such strong constraints we would not need a program with the 
generality of URP. 

In the more common (and more interesting) case, we will have only a constrained 
analytical form, or perhaps not even that. Fortunately, there are often conclusions 
we can reach with only very weak qualitative restrictions on the utility function. 
Researchers in the field of stochastic dominance [112] have developed a collection 
of criteria under which prospects can be shown to be ordered for certain classes of 
utility functions. Each dominance algorithm is associated with a well-defined class 
of utility functions U. When run on the prospects p1 and p2, the algorithm returns 
true only if p1 >- p2 for all u E U. A deeper discussion of stochastic dominance and 
how it is used in URP appears in chapter 4. 

For example first-order dominance6 is associated with the class of monotonically 
increasing utility functions. Therefore, whenever we know that preference for an at­
tribute is monotonically increasing, we can use the first-order dominance algorithm 
to partially order prospects over that attribute. Second-order dominance applies to 
the concave (risk-averse) utility functions. 

Figure 2.2 depicts the results of applying the first- and second-order dominance 
algorithms on the prospects associated with the strategies in our medical example. 
In the diagram, there is a single arrow from strategy A to strategy B if and only 
if A first-order-dominates B. Double arrows represent second-order dominance. As 
we can see, several of these strategies considered may be eliminated with relatively 
weak restrictions on the utility function for life-years. 

It is interesting to note in figure 2.2 that four of the seven options are ruled 
out under the trivial assumption that more life-years are preferred to less. The 
second-order links are redundant in this example, but they are still useful to record 
just in case some of the options are unavailable for some reason. These relations 
hold as long as the patient is not risk prone for length of life-usually considered 
a very reasonable assumption. An in-depth discussion of why a person may or 
may not be risk averse for life-years is given in section 8.4.2 below. Note that 
the only undominated options are cabg, both, and no-repair. The first two are 
not surprising, since they are the strategies recommended by the original consult. 
And even though no-repair is by far the worst strategy with regard, to expected 
lifetime, the fact that it is undominated makes sense. It is the only strategy that 
does not include an immediate surgical procedure, and therefore the only one that 

6Fishbum and Vickson [38] describe this as well as all other dominance conditions mentioned here. 

------- ------ ---- -- - -
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both 

cabg no-repair 

Figure 2.2: Dominance relations in the medical example 

does not present a significant risk of immediate death. A utility function that pfaced 
a large value on life in the very short term (perhaps an extremely risk averse form) 
would rank no-repair the highest-such utility functions may be consistent with 
the conditions of first- and second-order dominance. In this case, establishing that 
the patient is not extremely risk averse (a relatively easy task from the perspective 
of assessment) should eliminate no-repair as a viable option. 

In other cases, it may turn out that first- and second-order dominance conditions 
are not sufficient to rank the competing strategies. Such a result would indicate 
that stronger assumptions about the preference model are required. Note that 
application of a particular functional form (such as u(:z:) = :z: used in the consult) 
would not uncover this kind of sensitivity in the model. 

2.4 Multiattribute Utility 

In this section I explore the possibilities of extending the analysis of this case 
to include other factors in addition to life-years. Consideration of outcomes with 
more than one dimension requires the construction of a multiattribute utility func­
tion. URP has considerable facilities for structuring multiattribute models, however 
there are no implemented procedures for mathematical reasoning about these mod­
els. Though multiattribute utility is not useful for determining decisions in URP, 

---------------------~ 



2.4. MULTIATTRIBUTE UTILITY 19 

expertise in structuring these models is useful and interesting in its own right. 
It is easy to imagine decision-making criteria other than length-of-life that may 

be important to consider in this case. I have already mentioned that there is a 
possibility that the patient will suffer a disabling stroke; he may not be indifferent 
between this outcome and immediate death. The strategies include major surgical 
procedures which can have a significant impact on the patient's quality of life, in 
addition to their influence on survival. Finally, financial cost may enter into the 
decision, as the various strategies differ greatly in that dimension. 

The attributes we will consider for this example, then, are length-of-life, whether 
or not the patient suffers a disabling stroke, the morbidity (pain and discomfort) 
associated with the major surgical procedures (CABG and carotid endarterectomy), 
and financial cost. For the remainder of this discussion I will use the attribute names 
and shortened notation given in table 2.2. 

X1 life-years 

X2 - disabling-stroke f 
Xa - endart-morbidity 

x, - cabg-morbidity 

Xr, cost 

Table 2.2: Notation for utility attributes in the medical decision example 

The rest of this discussion is concerned with finding a form for the multiat­
tribute utility function u(x11 ••• , x5). Finding a form consists of decomposing the 
multivariate function into combinations of functions of smaller dimension, usually 
culminating in utility functions of a single attribute. URP contains a substantial 
knowledge base of specifications for these decompositions, and theorems that pre­
scribe the conditions under which they are valid. These conditions are usually 
expressed as independence· axioms which constrain the way in which preferences 
over subsets of the attributes may interact. Independence axioms, theorems, and 
decomposition in general are discussed at length in chapters 5 and 6. 

The following example illustrates one possible way in which URP's knowledge 
about independence axioms may be used for this medical decision situation. Sup­
pose that we are willing to make some independence judgments7 about preference 

7 Once again, definin~ what these particular independence concepts mean would take us too far afield 
at this point. For now I am just trying to convey a feel for the kinds of reasoning URP performs in 
multiattribute decomposition. 

------ --- -------------- -- -------------------
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over the attributes Xi, ... ,X5• In particular, we assert: 

1. (utility-independence (X2 X3 X, Xs) (X1)) 

2. (utility-independence (X1 X3 X, Xs) (X2)) 

3. (utility-independence (X1 X2 X, Xs) (X3)) 

4. (utility-independence (X1 X2 X3 Xs) (X,)) 

5. (utility-independence (X1 X2 X3 X4) {X5)) 

URP can quickly determine that a valid decomposition structure is: 

1. (multiplicative-form (X1 X2 X3 X, Xs)) 

Assumptions 1 through 5 above say that preferences over prospects involving any 
four of the attributes do not depend on the fixed value of the fifth. These are 
fairly strong assumptions, and indeed, the multiplicative utility function is one of 
the simpler multiattribute forms known to URP. Decomposition conclusions such 
as this can be graphically displayed in the form of figure 2.3. 

x 

multiplicative 

Figure 2.3: X decomposed via the multiplicative functional form 

Now, suppose we decide that some of the original assumptions do not hold after 
all, because relative preference for outcomes containing X3, ••• , X5 depends cru­
cially on length of life and the presence or absence of stroke. For example, the 
patient might be more willing to trade possible short-term morbidities (attributes 
X3 and X4) for a reduced chance of disabling stroke (X2) if he is going to live longer. 
Similarly, tradeoffs between morbidities and length of life may be different for pa­
tients who have suffered disabling strokes. Therefore, we must retract assumptions 
1 and 2. Since all URP assumptions are maintained as propositions in an underlying 
truth maintenance system (part of McAllester's Reasoning Utility Package [73), or 
RUP) such modular assertion and retraction is easy to perform. URP determines 
that the multiplicative form is no longer valid for X (retracting conclusion 1). 

----- ---------
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Perhaps we are willing to make additional assumptions in lieu of 1 and 2. In 
particular, suppose we assert that preference for morbidities and costs are invariant 
when both X1 and X2 are fixed, and that preference for lotteries containing Xi, X4, 
and X5 does not depend on the other attributes. 

6. (utility-independence {X3 X4 Xs) {X1 X2)) 

7. (utility-independence {X1 X" Xs) {X2 X3)) 

With these replacement assumptions, the multilinear form is valid, as are several 
other propositions, including conclusion 3. 

2. {multilinear-form (X1 X2 X3 X4 Xs)) 

3. (utility-independence {X4 X5) {X1 X2 X3)) 

Another alternative is to decompose X hierarchically, combining the attributes 
Xi, X2, and X3 into a single vector attribute, W0 • Attributes X4 and Xs are 
similarly combined to form the vector W1• The utility independence of W1 from Jfo 
{conclusion 3) directly validates a two-attribute functional form which I will refer to 
as the "UI form." To complete the decomposition we need to find a multiattribute 
form for the attributes composing W0 and W1• This is accomplished by applying 
the usual procedure recursively to a subset of the original universe of attributes. In 
this case, URP is able to determine that a multiplicative utility function is valid for 
W0 and that the UI form is valid for W1• 

4. (multiplicative-form (X1 X2 Xa)) 

5. (utility-independence (X4) {Xs)) 

The resulting decompositions are depicted in figure 2.4. 

x 
I x 

UI form 

multilinear 
I I 

W1 Wo 

Xi X2 Xa X4 Xs I ~Ifo~ I multiplicative 

X" Xs X1 X2 X3 

Figure 2.4: Two possible decompositions for X based on assumptions 3 through 7 
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In this case, there exists a simple single-level decomposition using the multi­
linear form and a two-level decomposition requiring intermediate vector attributes 
(introduced automatically by URP). But while the hierarchy for the decomposition 
on the left-hand side of figure 2.4 is simpler, the utility function corresponding to 
the multilinear form for X contains 30 (25 - 2) independent scaling constants com­
pared to only seven (three for the multiplicative decomposition of W0 and two each 
for the UI forms) for the decomposition on the right. Based on this simple metric, 
the second decomposition would be chosen for the preference model. 

Similarly, we could retract any of the other assumptions, perhaps replacing them 
with weaker or stronger independence conditions described in URP's knowledge base. 
Each time a replacement is made URP restructures the preference model according 
to which utility functions are justified by the assumptions. Through automatic 
hierarchical decomposition, the program is able to construct models ranging over a 
continuum of possible structures. 



3. Reasoning About Qualitative 
Behaviors 

Utility theorists have developed a large vocabulary for describing general proper­
ties of utility functions that helps bridge the gap between intuition and mathematics. 
A major goal in the URP project has been to show that it is possible to perform 
the greatest bulk of reasoning about preferences in terms of these properties, and 
that conclusions based on them will be more satisfying than those derived under a 
purely quantitative approach. Qualitative behaviors of single-attribute utility func­
tions make up one very important category of qualitative property, but they are 
by no means the only type. This chapter describes URP's facilities for reasoning 
about them, with special emphasis on mechanisms necessary to produce the exam­
ple of section 2.2. Reasoning about independence axioms-the second major type 
of qualitative property used by URP-is the subject of chapter 5. 

3.1 Functions in URP 

Recall that an URP preference model consists of a collection of assertions about a 
multiattribute utility function. Multiattribute utility functions themselves are often 

defined in terms of other utility functions, usually culminating in single-attribute 
functions. In reasoning about overall preferences, we consider various properties of 
the unidimensional functions as well as the possible decomposition patterns. It is 
fairly obvious that functions are a central object of all of this reasoning, and that 
a large fraction of assertions about utility structure can be expressed in terms of 
properties of particular functions making up that structure. 

For the remainder of this discussion I will use the term function to mean the 
object in URP that specifies a function of a single numeric variable. Since these 

specifications are incomplete, we cannot in general manipulate them as we could 
explicit mathematical functions. Nonetheless, there is a substantial variety of kinds 
of reasoning we can perform with them. 

While URP employs functions other than utility functions {such as risk functions, 

to be discussed below), these special functions are the main objects of concern. A 
utility function u is a mapping from Y to [O, 1], where y E Y describes some part 

23 
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of the outcome space. More formally, Y = Y1 x · · · x Ym, where {Y11 ... , Ym} is a 
subset of {X11 ... , Xn}· In the unidimensional case (the one we are most concerned 
with here), y will be the value of a single attribute, and we will say Ui: Xi~ [O, 1]. 

Two components of a function are therefore its domain and range. There are 
always two distinguished points in the domain; the most and least preferred, denoted 
by y* and y., respectively. These may or may not be known, or there may be 
constraints on the possibilities. There may be other outcomes which are indifferent 
(equally preferred) to y* or y •. 

Three other function components restrict the possible mappings between the 
domain and range: functional forms, evaluations, and qualitative behaviors. Each 
of these is described in greater detail below. Representation for URP functions 
is based on the QM package developed by Sacks [89]. Much of the mathematical 
reasoning about functions is performed by QM, described in section 3.3. 

3.1.1 Functional Forms 

The functional form is an expression which describes the computation of the 
function's value from the mput. This description is built from standard arithmetic 
operations and conditional expressions, over numbers and symbolic parameters. 
Symbolic parameters may be associated with arbitrary constraints or relations to 
other URP objects. 

Functions that have different symbolic forms over different slices of their domain 
are represented by piecewise. function intervals. Piecewise functions fit in naturally 
with QM's analysis of functions as collections of monotonic intervals. 

3.1.2 Evaluations 

Evaluations are objects that represent the value of the function at specific points. 
Like symbolic parameters, these objects may be defined by arbitrary relations to 
other objects in the system. A function may include any number of these evalua­
tions. Evaluations typically become useful in reasoning about utility assertions in 
the form of preference choices. Utility functions all include the two special evalua­
tions u(y.) = 0 and u(y*) = 1. 
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3.1.3 Qualitative Behaviors 

Qualitative behaviors1 are overall constraints on a function's characteristics that 
can be described by a single proposition. Part of the value of these constraints is that 
they restrict the possibilities for the other components of URP functions: functional 
forms and evaluations, as well as the subcomponents making up these objects. The 
qualitative behaviors are treated as first-class components because they may have 
significant interactions (that is, certain combinations of behaviors may have special 
interpretations) and because their meaning may vary for different functional forms. 
Some qualitative properties (including monotonic-increasing) were illustrated in 
the example of section 2.2. A list of the qualitative properties of unidimensional 
utility functions currently represented in URP is given in appendix A. 

Most of these qualitative behaviors only have meaning if the domain of the func­
tion is a set of numeric values, such as subranges of reals or integers. If Y is made 
up of non-numeric values (such as vectors or discrete categories) URP may apply 
a mapping from the members of Y to some numeric domain. Discrete categories, 
for example, would map to an index set of integers.2 Then the program can use 
the same qualitative propositions to describe the index set, taking care to make the 
correct type conversions when making inferences about the utility function from 
them. These issues are discussed more fully in section 8.3.1. 

3.2 Manipulating Qualitative Behaviors 

3.2.1 Qualitative Behavior Assertions 

Like assertions about independence axioms, qualitative behavior assertions are 
handled by RUP. A qualitative behavior assertion is a two-place predicate, where 
the arguments indicate the utility attribute and an interval of values over which the 
behavior applies (the interval is omitted in the notation below when the behavior 
holds over the entire domain of the attribute). Logical relations among the qual­
itative behaviors are specified and maintained by RUP. Inference across intervals 

1 Behaviors of functions are a specific type of property that may be expressed qualitatively in URP. 

When it is clear that we are talking about functions, the terms qualitative properties and qualitative 

behaviors may be used interchangeably. 

2It may even be reasonable for URP to change this mapping dynamically during preference modeling. 
For example, it will usually be most useful to map the categories in a way that preserves preference 
order-which may not be known at the outset. 
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is handled specially, for reasons of efficiency. Some illustrative logical relations are 
given in figure 3.1. 

(risk-neutral ?f ?i) # 

(monotonic ?f ?i) # 

(constant-proportional-risk-posture ?f ?i) 
/\ (constant-risk-posture ?f ?i) 

(monotonic-nonincreasing ?f ?i) V (monotonic-nondecreasing ?f ?i) 

(decreasing-risk-aversion ?f ?i) # 

(decreasing-risk-posture ?f ?i) /\ (risk-averse ?f ?i) 

Figure 3.1: Logical relations among qualitative behaviors of functions 

In URP, a behavior that is fully characterized by a combination of lower-level 
behaviors is treated as a terminological definition, resulting in simpler specification 
of the logical relations and mathematical properties of the behavior. 

3.2.2 Qualitative Behaviors and Function Com.ponents 

The mechanisms by which qualitative behaviors affect other function compo­
nents are a bit more complex than the logical relations above. Qualitative behaviors 
can determine the functional form, they can constrain parameters of a particular 
form, or they can restrict the value of evaluations. There are two alternate imple­
mentation approaches; URP employs a combination of these. 

Surface-Level Approach 

The simplest approach is to associate each significant combination of qualitative 
behaviors with its implications for the functional fonn. For example, the knowl­
edge base of a purely surface-level reasoner would contain many logical statements 
looking something like 

(risk-neutral ?f) # functional-form(?£) = linear-form 

where the structure of linear-form is specified elsewhere as ax+ b. Also associated 
with linear-form would be the implications of various other qualitative properties 
on the parameters. For example, if u(x) =ax+ b, then 

(monotonic-increasing u) #a> 0. 

~----~ ----- ----------.--------
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These sorts of inference are easily handled by the TMS within RUP. The im­
plications that result in a functional form are part of the original knowledge base, 
instantiated at the same time as the function object. The implications from func­
tional forms and further qualitative behaviors to parametric constraints are imple­
mented as pattern-directed inference rules, activated only when the functional form 
is established. These noticers also contain LISP code to directly modify the data 
structures representing the function object. 

A Deeper Mathematical Approach 

The problem with the above approach is that it does not capture the deeper 
mathematical meaning of the qualitative behavior assertions. Because of this, it is 
necessary to anticipate the effect of every qualitative behavior on every different 
functional form and combination of qualitatively significant parametric c~nstraints. 

For example, consider the interaction between the useful qualitative behavior 
constant-risk-averse and the sign of the slope of a monotonic utility function, u. 
Reasoning at the surface level, the knowledge base would have to contain separate 
rules to determine the functional form given constant-risk-averse and each of the 
two direction possibilities. In this case, the two rules would be: 

1. (monotonic-increasing u) # u(x) = ae-c:i: + b,a < O,c > 0 

2. (monotonic-decreasing u) {::} u(x) = ae-c:i: + b,a < O,c < 0 

As shown, the two functions differ only in the sign of the exponent. Similar sym­
metries will be explicitly represented in describing the interactions of the two types 
of monotonicity with other qualitative behaviors (risk-neutral and constant-risk­
prone, for example). Other natural symmetries (or other simple structural rela­
tionships) are also ignored by the surface-reasoning system, such as that between 
risk aversion and pr~neness, increasing and decreasing risk postures, etc. 

This duplication is particularly irritating because we are failing to take ad­
vantage of the very elegant structure of the concepts underlying the qualitative 
behaviors useful in utility theory. 3 The alternative is to represent these qualitative 
behaviors in terms ,of their mathematical interpretations. These concepts gener­
ally have a strict mathematical definition which is largely independent of the other 
qualitative behaviors that apply in a particular case. 

3This structure is apparent on a simple perusal of the list of qualitative beh~viors given in ap­
pendix A. 
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Let us look at risk aversion, since most of the unidimensional qualitative be­
haviors defined thus far deal with that phenomenon. The risk aversion function r 

associated with a monotonically increasing utility function u is defined as 

u"(x) 
r(x) =-­

u'(x) 
(3.1) 

For monotonically decreasing utility functions, the risk aversion function is called 
q, with 

u"(x) 
q(x)- -

- u'(x) (3.2} 

For the rest of this discussion, all references to r are meant to indicate q for de­
creasing functions (non-monotonic functions are ignored for the time being). 

With this definition, risk aversion has a simple meaning. The assertion (risk­
averse u) is now equivalent to saying that for all x, r(x) is positive.4 Given the 
relationship between r and u, this piece of information is sufficient for all inference 
that was possible in reasoning about risk aversion on the surface level. More im­
portantly, representing the assertion at this level provides for greater orthogonality 
between qualitative behaviors. Now, for example, the effect of asserting (constant­
risk-posture u) is simply to add the fact that r(x) = c, for some constant c. Taken 
together, it is quickly seen that c > 0. 

Not quite as quickly, it would also be possible for the system to derive the 
functional form directly from these mathematical descriptions of the qualitative 
behaviors. Substituting the definition -of r, we get a differential equation 

u"(x) + cu'(x) = 0 

which can be solved to determine the functional form of u (here ae-cx +b, with a < 0 

and c > 0, as above). So we see that it may not even be necessary to explicitly 
include relations from qualitative behaviors to functional forms at the surface level 
at all. 

Of course, this is how utility theorists determined these functional forms in the 
first place. The results, usually along with the derivations, appear in textbooks. 
But it also seems wrong to have to perform this derivation each time we encounter 
this combination of qualitative behaviors. After all, the notion of constant risk 

4 Actually, for this example, all we really need to know is that u is concave (that is, the second 
derivative is negative). Thus, we may consider risk aversion for even nonmonotonic functions. For 
higher-order risk properties it will be necessary to reason in terms of the risk function r. 

- ----~-----------
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aversion was deemed important enough to give it its own name, so there must be 
some reason to think of it at that surface level. Even though utility analysts are 
mathematically oriented, my bet is that they would prefer to memorize functional 
forms or look them up in reference books than to derive them from first principles 
each time. 

Having come full circle, the answer to the choice of approaches seems clearer. For 
useful combinations of qualitative behaviors, it is worthwhile as well as legitimate 
to enumerate their effects on functional forms and parameters directly. However, 
because URP may encounter previously unanticipated combinations of these be­
haviors, it is necessary to develop a deeper mathematical representation for their 
meaning. As QM has proven powerful enough to determine parameter constraints 
from qualitative behaviors, and vice-versa, URP uses it for deep reasoning about 
parameters. Functional forms are generated from surface-level relationships. 

3.3 Qualitative Mathematics 

URP's mechanisms for reasoning about the qualitative mathematical behavior 
of functions are based on the Qualitative Mathematics package (QM) developed by 
Sacks [89]. QM uses calculus and other mathematical techniques to analyze the be­
havior of piecewise continuous functions of real numbers. While designed primarily 
for reasoning about the dynamic behavior of physical systems, QM's representations 
and capabilities for manipulation of function objects have proved quite useful for 
analyzing the behavior of utility functions. This section briefly describes some as­
pects of QM, and how some of the program's mechanisms have been adapted for use 
in URP. 

3.3.1 Functions in QM 

QM represents a function as a collection of intervals on which it is continuous 
and monotonic. Each interval (called a fun-int) is a data structure which records 
such information as the function's form, inverse, derivatives, and boundary points. 
QM constructs these representations from a closed-form expression made up of 
symbolic parameters (possibly constrained), standard arithmetic operations, and 
a variable. Since a function may have different qualitative behaviors for different 
values of its parameters, QM generates separate function objects for each distinct 
case, recording the parameter ranges for which it is appropriate. The algorithms 
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and data structures are described in full detail in Sacks's original thesis report [89]. 

3.3.2 Partially Specified Functions 

In applying QM to the analysis of utility functions in URP, it was necessary to 
extend the function object representation to handle a broader range of incomplete 
specifications. We often have quite a lot of information about an URP utility function 
(qualitative behaviors, constraints on evaluations) without an analytic expression. 
Existing QM data structures c.in accommodate the expression of this partial knowl­
edge with only slight augmentation. For example, it was necessary to add a facility 
for specification of information about evaluations, and for expressing disjunctions 
of possible directions for the function on an interval. 

3.3.3 Encoding Function Behaviors 

For reasoning about qualitative behaviors as in section 3.2.2, we have to relate 
the behaviors to mathematical properties represented by QM functions. Fortunately, 
many of the behaviors of interest for utility functions are directly included in the 
function object data structure, or are easily computed from it. In particular, direc­
tion and convexity have built-in predicates in QM. 

Given an incompletely specified function and a behavior, we would like to know 
whether the function exhibits that behavior, and what implications an assertion that 
the behavior holds would have on the function specification. Each URP qualitative 
behavior is encoded as a set of three procedures, operating on a function object and 
an interval (range of domain values): 

1. A possibility predicate (pas), which is true if the behavior possibly holds over 
the indicated interval of the function 

2. A necessity predicate (nee), which is true if the behavior necessarily holds 
over the function interval 

3. An enforcer procedure (en!), which constrains the function object to observe 
the behavior over the interval 

These procedures are encoded as (generally short) fragments of LISP code. As 
mentioned above, some behaviors are completely defined in terms of other behaviors, 
and therefore do not require their own procedure specifications. 

-- ---- -- - - -- - ------
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Behavior Form name Expression 

risk-neutral linear ax+b 

constant-risk-posture exponential ae-c:i: + b 

constant-proportional-risk-posture power axl-c + b 

(two possibilities) log a(log x) + b 

Table 3.1: Qualitative behaviors that imply single-attribute functional forms 

For example, the nee predicate for risk-averse simply checks that all QM fun­

ints over the interval of interest are marked concave; Similarly, the pos predicate 
checks that none are convex. The en/ procedure marks as concave any fun-int of 
unknown convexity. Some of the en/ procedures corresponding to other behaviors 
are significantly more complicated. 

An URP function object in general includes a list of possible QM functions repre­
senting it. This disjunctive form allows for conditioning dependent on the value of 
parameters of the analytical form. Because the URP behavior procedures described 
above work for individual QM function objects, a predicate over the entire URP 

function is a conjunction of nee predicates or a disjunction of ·poss. Enforcing a 
behavior over an interval involves discarding any of the possible QM functions that 
is inconsistent with the behavior (that is, not pos), and applying the en/ procedure 
to each one remaining. 

Thus, one way that constraints on parameters of symbolic forms are determined 
is by elimination of cases generated by QM. For the. types of behaviors implemented 
and the functional forms analyzed in tests of the program, QM generates all of the 
necessary distinguishing cases. We should expect this to work as long as the quali­
tative behaviors that are important for utility correspond to qualitative properties 
of functions known to QM. In URP, all of the behaviors are first-class QM concepts 
of the utility function or of functions derived from the utility function. 

3.3.4 Enforcing a Functional Form 

The behaviors in URP that determine a symbolic form for the utility function 
are particularly useful. There are three of these, shown with their associated forms 
in table 3.1. 

When one of these behaviors is asserted, QM creates a list of possible function 
objects representing the function (differing in parameter ranges). URP merges these 

- - -- -- -- - - - ---- ---- -- ~~---- --~-- ------
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objects with the current incomplete description of the utility function, discarding 
the QM possibilities which are inconsistent with what is already known. For the 
forms appearing in the table, direction and convexity information constrains the 
values {usually the sign) of parameters a and c. 

3.3.5 Risk Functions 

To reason about the risk properties of utility functions (which most of the defined 
behaviors describe), URP analyzes the risk functions defined in equations 3.1and3.2. 
QM is used to generate a function object corresponding to the ratio of the second 
and first derivatives, created from symbolic expressions already computed by QM. 

Thus, behaviors dealing with high-order risk properties correspond to qualitative 
properties of the risk function r. For example, increasing-risk-averse holds if and 
only if r is positive (or equivalently, u is concave) and increasing. 

Similarly, behaviors dealing with proportional risk posture are treated as quali­
tative properties of the function p(x) = xr(x). 

3.3.6 Describing Behaviors 

Using QM in conjunction with the pos, nee, and en/ mechanism, it is possible to 
assert and analyze a wide range of combinations of qualitative behaviors, functional 
forms, and parametric constraints. To test this capability, I tried the system on 
all of the single-attribute utility functions appearing as examples and exercises 
in chapter 4 of Keeney and Raiffa [61]. Of these 18 diverse functions, URP was 
able to generate correct behavior descriptions of the sort depicted in figure 2.1 
for all but one. 5 In addition to testing for behaviors, the system may be used to 
derive constraints on parameters for all of these functions, or to display the risk or 
proportional risk functions associated with them. 

3.4 Qualitative => Intuitive? 

The preceding discussion illustrated some of the qualitative properties URP 

knows about and how they influence the mathematical utility model. An assump-

5This exception only failed in the analysis of the proportional risk behavior, due to a fairly complex 
expression for the proportional risk function. As a further note of interest, the system uncovered 
a typographical (sign) error in table 4.5 of the aforementioned text. 
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tion that has been implicit throughout is that reasoning in terms of qualitative 
behaviors is somehow more intuitive than the usual numeric approach. The reader 
may reasonably protest, however, that the above properties are not very intuitive 
(except perhaps to utility experts) and therefore not necessarily helpful. I would 
contend, though, that they are only one step away from being intuitive. That is, · 
each property (risk aversion, proportional risk aversion, etc.) will have a more in­
tuitive interpretation in the context of a particular attribute or decision domain. 
URP uses the technical terminology because it is more general and more concise. 
Nevertheless, I will concede that a system that cannot tie utility-theoretic concepts 
to domain principles will not be very useful to a decision maker unfamiliar with 
utility theory. This issue will be addressed at length below in chapter 8, about 
preference knowledge for specific application domains. 



4. Stochastic Dominance 

Although the qualitative analysis of utility function behaviors is interesting in 
its own right for the insight it provides into the structure of preferences, we are 
at least as interested in the implications these qualitative behaviors have for par­
ticular decision situations. As we have seen, URP can represent a wide range of 
partial specifications for utility functions, incorporating constraints from different 
sources into a central function object. The use of this function object as a basis for 

prescribing decisions raises some interesting questions. In this chapter I discuss the 
general problem, outline some approaches, and describe the mechanisms employed 
by URP. Possibilities for extending URP 's capabilities in this area are also discussed. 

4.1 Dominance 

4.1.1 The General Case 

Testing for the dominance of prospect p1 over prospect p2 is a search for a proof 
that u(p1 ) > u(p2) given all the known constraints on u. Taking the definition of 
expected utility, this is equivalent to 

L Pi(x)u(x) > L P2(x)u(x) (4.1) 
:i:EX :i:EX 

where Pi(x) is the probability of outcome x in prospect Pi· In the most general case, 
u is specified to an arbitrary level of completeness and the search for a dominance 
proof is arbitrarily difficult. Therefore, the basic strategy is to avoid the general 
case by recognizing features of u which indicate the relevance of special-purpose 
strategies. But since a wide range of different special-purpose strategies may be 
employed depending on the features of u, the overall system approaches generality 

as more feature-strategy combinations are incorporated. 

4.1.2 The Case of Known Functional Forms 

An enormous improvement from the general case is obtained when we have 
a symbolic form for the utility function. In this situation the inequality 4.1 is 
a closed-form expression, annotated by any known constraints on the parameters 

34 
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of u. Overall ·behavior information or constraints on evaluations of u at specific 
points may also be known, but these are harder to use if they are not translated to 
parametric constraints. Though URP is often able to generate these constraints from 
qualitative behaviors (as described in section 3.3 above), there are many situations 
where it cannot, or where the information is simply not expressible in this form. 

Even when functional forms are known, dominance-proving is a hard problem­
one that has long concerned mathematicians, operations researchers, and those 
developing symbolic algebraic reasoners, among others.1 Its difficulty will depend 
on the structure of the inequality expression we are trying to prove. Since each 
side of 4.1 is a linear combination of utility function evaluations, the expression's 
complexity is totally determined by the complexity of u. Thus, examinations of 
u's form will indicate which constraint algorithms will be tractable and correct, or 
which may be most likely to give us a good answer. Choosing these algorithms and 
incorporating them into URP is an important area for future research. As we will 
see in section 7.3, similar problems arise in reasoning about hypothetical preference 
choices for assessment. 

There are some simple tricks we can employ to make the problem somewhat 
easier. First, we may perform any positive linear transformation of u that would 
simplify the dominance expression. This will often eliminate one or two parameters 
(which are usually only included to allow linear transformations for scaling purposes 
anyway). Thus, the linear form implied by the behavior risk-neutral can be seen 
to order all prospects trivially by expected value. 

Second, we may simplify the prospects themselves by removing common com­
ponents. That is, we generate new prospects p11 and P2', where 

MAX [O, P1(z) - 112(z)J 
MAX [O, 112(z) - P1(z)J 

Of course, this transformation applies regardless of u. 

(4.2} 

Finally, note that deciding the preference order of certain outcomes is usually 
considerably easier than proving dominance among uncertain prospects. Typically 
we rely on monotonicity assertions, or transitivity with respect to known ordered 
pairs. ·While this may seem a trivial matter, ordering of certain outcomes is a 
common operation in testing for dominance of more complex prospects. 

1The volume by Hardy, Littlewood, and P6lya [45] is an early, comprehensive work devoted entirely 
to the problem of determining that one mathematical expression dominates another. While their 
interests are of course much different than ours here, it illustrates the extent of mathematical 
activity in the subject. 



36 CHAPTER 4. STOCHASTIC DOMINANCE 

4.2 Stochastic Dominance 

In the section above I suggested that the way to structure our dominance test­
ing is to match specific strategies to features of the utility function. The next step, 
then, is to identify the useful features and develop their associated strategies. For­
tunately, there is a substantial body of research in the field of stochastic dominance 

[1] [112] which is devoted to precisely this problem. Though developed primarily 
with applications to finance and economics in mind, stochastic dominance results 
apply to utility functions in general. Typically, these results associate algorithms 
for dominance-testing with well-specified classes of utility functions for which they 
are valid. The dominance-testing procedures are specified solely in terms of the 
prospects to be ranked. 

Fishburn and Vickson [38] describe four major stochastic dominance results, 
providing successively stronger dominance-proving power while placing greater re­
strictions on the class of utility functions U they hold for. Table 4.1 lists these 
dominance categories along with the properties of the utility functions u EU. 

Dominance Type Properties of U 

first-order monotonic-increasing 
second-order monotonic-increasing, 

third-order 

DARA 

risk-averse 
monotonic-increasing, 
risk-averse, 
positive third derivative 
monotonic-increasing, 
decreasing-risk-averse 

Table 4.1: Four dominance categories with their associated utility function. classes 

Notice that all of the utility-class specifications-with. the exception of third­
order dominance2-can be completely described in terms of qualitative behaviors 
already defined in URP. Thus URP is able to determine which dominance algorithms 
are valid for arbitrarily specified utility functions, and to indicate the implications 
for u of adding the assumptions necessary for a technique to be applicable. This ca-

2This deficiency is not serious; including the third derivative's sign u a new qualitative behavior 
would be a simple matter. 
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pability underscores the value of reasoning directly in terms of qualitative behaviors 
Jor single-attribute utility. 

\ 

4.3 Encoding Dominance Routines in URP 

A dominance test in the URP knowledge base is an association between an algo­
rithm and a set of applicability criteria. An algorithm-coded directly in a general­
purpose programming language-is a predicate. Given prospects p1 and pa, the 
predicate returns true if and only if it can determine that p1 dominates Pa· The 
applicability criteria define the class of utility functions and the structure of the 
prospects that the algorithm is designed for. 

A sample URP dominance test specification is depicted in figure 4.1. It may 
be considered for outcomes measured on interval scales (explained below in sec­
tion 8.3.1). The input prospects must be described by simple probability distribu- . 
tions. Though these are the only kinds of prospects supported in URP, it would 
undoubtedly prove useful to describe uncertain outcomes with distributions having 
analytical (possibly continuous) forms. Several dominance algorithms in the litera­
ture are specifically designed for probability distributions of particular parametric 
classes (normal or log-normal, for example). 

(def-dominance-test 
:source 
:outcome-type 
:prob-dist-type 
:preconditions 
:utility-conditions 
:algorithm 

SECOND-ORDER 
11Fishburn and Vickson" 
'(interval) 
'simple 
'(:totally-ordered?) 
'(monotonic risk-averse) 
'second-order-dom?) 

Figure 4.1: A dominance test specification in URP 

It is helpful to observe that the utility function criteria given in table 4.1 are 
overly restrictive-the dominance tests are actually applicable under more general 
circumstances. For example, first-order dominance is applicable whenever our spec­
ification for u gives a total ordering on the outcomes (or at least. those appearing 
in the prospects under consideration). Thus, the first-order conditions are satisfied 

--------- ------
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by monotonicaily decreasing utility functions, and even by some functions that are 
nonmonotonic but nevertheless order the relevant outcomes. 

Before running the second-order dominance algorithm (the LISP function named 

second-order-dom?), URP must verify that the outcomes appearing in P1 and P2 
are totally ordered in preference by the incompletely specified u. This precondition 
is necessary because the algorithm applies a ">-" predicate in the course of its pro­
cessing. In usual descriptions of the dominance criteria (as above), the condition 
monotonic-increasing is required so that the program can substitute the > rela­
tion over real numbers for >-. With a flexible coding of the algorithm that employs 
the preference order relation directly, we avoid this unnecessary requirement.3 

The utility conditions specify the class of utility functions u must belong to, here 
the monotonic (either direction) and risk-averse functions. These conditions may 
be tested with the URP nee predicates associated with the behaviors. 

Only a few dominance tests have been specified (and the algorithms coded) for 
use by URP. These are the first-, second-, and third-order dominance classes defined 
by Fishburn and Vickson [38]. URP also may try "zero-order" dominance, which 
holds only if the worst possible outcome in p1 is preferred to the best in p2• This 
test does not even require total ordering, just the ability to pick the worst and best 
from P1 and P2 and to order that pair. Naturally, zero-order dominance holds in 
only the most trivial of cases. I would argue, though, that it is useful to be able to 
recognize the degree of triviality of a particular case. 

These mechanisms, in conjunction with qualitative behavior assertions, are suffi­
cient to work out the medical decision· example of section 2.3. Applying all of URP's 
dominance tests to the prospects represented by the competing strategies results in 
the dominance diagram of figure 2.2. 

H none of the applicable dominance tests are sufficient to order the prospeds, 
URP must resort to more general methods. In the current state of implementation, 
this rarely results in a successful dominance proof. 

4.4 Multiattribute Dominance 

Any discussion of dominance testing in the multiattribute case is necessarily 
speculative, since URP does not support qualitative behaviors for multiattribute 

3In generalizing these conditions, it is necessary to make sure that the condition is not other­
wise essential to the dominance proof. In this case the criterion monotonic is substituted for 
monotonic-increasing. For first-order dominance monotonicity is not necessary at all. 
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functions, or any mathematical reasoning about such functions. Nevertheless, it is 
worthwhile to note some of the promising approaches which may be undertaken in 
a more complete preference modeling system. 

Though stochastic dominance research has been mainly concerned with the 
unidimensional case, recent efforts have extended the techniques to certain mul­
tiattribute situations. Since the dominance algorithms are associated with specific 
forms of the multiattribute decomposition, URP's reasoning facilities regarding mul­
tiattribute structure will be very useful for selecting appropriate tests. For example, 
Mosler [79] reviews dominance conditions for additive decompositions4 and develops 
criteria for multiplicative and certain multilinear forms. These latter two forms can 
be defined in terms of utility independence axioms, which are prominent concepts 
in URP. 

Sarin [91] developed his evaluation and bound procedure to take advantage of 
partial information about the parameters and conditional functions making up a 
multiattribute utility function (additive or multiplicative). The procedure is par­
ticularly useful for deriving bounds on additive forms. He found that this partial 
information was often sufficient to prove dominan~e in realistic cases. This finding 
is consistent with some psychological results (such as the study of Schoemaker and 
Waid [94]), which suggest that precise numerical weights are often not critical to 
the predictive validity of linear models. 

Recently, Kirkwood and Sarin [64]' showed how multiattribute prospects could 
be ranked with only ordering information regarding the parameters of additive or 
multiplicative functions. Ordering information is a particularly useful (and quite 
weak) type of constraint, since it often corresponds to "natural" qualitative behav­
iors. 

I expect that these results could be incorporated into the URP framework in 
a similar manner to the single-attribute stochastic dominance facilities described 
above. 

4The meaning of these terms and URP's facilities for multiattribute decomposition are described 
below in chapters 5 and 6. 

--------------- - -------------



5. Reasoning with Multiattribute 
Utility Theorems 

In this chapter I describe URP's facilities for representing and using knowledge 
about multiattribute utility decompositions to select a multiattribute utility func­
tion. The structure of theorems that can be represented in this framework is defined, 
and the mechanisms for accomplishing the exan1ple of section 2.4 are explained. 

These explanations may be excessively detailed at times, particularly in the 
discussions of theorem interpretation and set-membership constraint propagation 
(section 5.3). The reader is encouraged to skim over sections which seem to be at 
a low level of description. 

5.1 Representing Independence Axioms 

An independence axiom is a relation on attribute sets that rest.ricts the possible 
interactions of preferences over outcomes described by those attributes. The rich 
axiomatic structure of multiattribute utility theory is one of its strongest attrac­
tions and one of the greatest motivations for this approach. As the fundamental 
building blocks for reasoning about utility structures, independence axioms play a 
central role in URP. Representation and manipulation of these objects has been an 
important focus of URP's design. 

5.1.1 Axiom Schemata 

Figure 5.1 depicts a typical independence axiom schema. There are 22 axioms 
known to URP, but not all of these are actually used in theorems. A complete list of 
these is given in appendix B; descriptions of the axioms appear in the next chapter. 
The source and definition slots contain information strictly for human eyes. Other 
slots hold specifications for argument types, logical properties, and relations to other 
axioms. 

The arg-count and arg-relns slots specify the syntactically legal arguments 
to the relation. For example, utility independence is a relation of two attribute 
sets, which must be exclusive and nonempty. This information is used to type-
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(defaxiom 'utility-independence 
:source ''Keeney k Raiffa p. 284'' 
: definition textual definition 
:special-case-of '(preferential-independence 

generalized-utility-independence 
interpolation-independence) 

:arg-count 2 
:arg-relns '((exclusive-nonempty-subsets 1 2)) 
:rel-prop nil) 

Figure 5.1: A sample axiom schema 
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check user assertions, and to constrain the generation of subgoals during theorem 
interpretation (described below}. 

The special-case-of list enumerates the independence axioms that are strict 
generalizations of the axiom. Using this, URP can conclude, for example, that 

(utility-independence Y Z} => (preferential-independence Y Z) 

for any Y and Z. URP only makes such deductions, however, when the more general 
relation is an active goal. The special-case-of mechanism is much more efficient than 
using separate theorems for each special case. 

The final slot is used to specify any special properties of the relation which 
may be exploited for more efficient reasoning. Valid rel-props include symmetry, 
transitivity, and other relation properties of that ilk. 

5.1.2 Axioms as RUP Propositions 

All inferences about independence axioms are performed in RUP. Axiom in­
stances exist as nodes in the truth maintenance system, with the name of the axiom 
serving as the predicate name. Logical relations between the nodes are set up by 
URP, either by noticers corresponding to special-case-of conditions and rel-props, 
or during theorem interpretation. 

Assertions and retractions of independence conditions are handled directly by 
RUP, with certain events in the data base triggering conditions in URP. RUP's 
dependency-tracing facility is also useful for generating justifications for the pro­
gram's conclusions. 

--~----- ----------------------
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5.2 Representing Theorems 

Multiattribute utility theorems make up a large part of the utility-theoretic 
knowledge used by URP. These theorems, developed by researchers over the past 
fifteen years or so, relate combinations of independence axioms to multiattribute 
utility forms. Many of the theorems can be found in review articles by Farquhar 
[27] [28] (with a theoretical emphasis), the textbook of Keeney and Raiffa [61] (a 
more methodological treatment), and separately throughout the literature. 

I have developed a representation language for specifying these theorems so 
that they can be interpreted by URP. There were three principal language design 
objectives: flexibility, interpretability, and clarity. The first objective refers to the 
desire to be able to represent a large portion of the available utility theorems. 
Second, the language should express theorems in a manner easily interpreted by 
URP. Finally, they should be fairly easy to read by humans. The result is a simple 
language with a highly constrained logic-like/LISP-ish syntax, which tries as much 
as possible to state the theorems as they appear in the literature. 

An example of an URP theorem is shown in figure 5.2. This theorem is used 
by the program to derive utility independence relations from others already known 
to the system. It corresponds to theorem 6. 7 of Keeney and Raiffa, and resembles 
their language quite closely. The rest of the theorems are given in appendix C. 
Chapter 6 contains descriptions of the content of the theorems. 

Here I will only point out some of the main features of the language. A theorem 
consists of a premise and a consequent,. each of which specifies a collection of axioms. 
The defining expressions may contain variables, either free or bound by universal 
or existential quantifiers. Variables stand for either attributes or sets of attributes, 
distinguished by context. Expressions also contain axiom names and constraint 
terms (union, difference, and overlapping-subset, for example). 

In theorem009, X Y1 and Y2 are existentially quantified set variables. The conse­
quent clause consists of the conjunction of five utility independence axioms, which 
contain no variables not appearing in the premise. URP can make an inference from 
this theorem if it can find bindings of Y1, Y2, and X which satisfy the premise and 
the type constraints of the consequents. In that case, it would conclude each of the 
five consequents computed from those bindings. 

The constraint expressions may appear in quantification domains or in argu­
ments to the axioms. An expression consisting of a constraint name and k argu­
ments can be thought of as a ( k + 1 )-ary relation holding on the arguments and the 
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(deftheorem 'theorem009 
:source "Keeney & Raiffa p. 316" 
:premise '(for-some-set X 

(for-some-set Y1 in (subset X) 
(for-some-set Y2 in (overlapping-subset Y1 X) 

((utility-independence Y1 (difference X Y1)) 
(utility-independence Y2 (difference X Y2)))))) 

:consequent '((utility-independence (union Yi Y2) 
(difference X (union Y1 Y2))) 

(utility-independence (intersection Y1 Y2) 
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(difference X (intersection Y1 Y2))) 
(utility-independence (sym-difference Y1 Y2) 

(difference X 
(sym-difference Y1 Y2))) 

(utility-independence (difference Y1 Y2) 
(difference X (difference Y1 Y2)))­

(utility-independence (difference Y2 Y1) 
(difference X (difference Y2 Y1))))) 

Figure 5.2: A sample URP multiattribute utility theorem 

value of the expression. For quantification domains any relation is usually valid, but 
for axiom arguments the value must be a function of the expression arguments.1 

5.3 Goal-directed Inference 

The theorem specification language does not restrict the direction of URP's rea­
soning about the theorems. While a forward-chaining interpretation of the theo­
rems is easiest, when used exclusively it will result in too many inferences which 
are redundant or irrelevant with respect to the particular problem at hand. The 
alternative is for the program to reason backward from the goals it is trying to 
prove. While a backward-chaining approach is prone to the same combinatorial 
problems, it seems to be more controllable for the types of problems URP is faced 
with. Therefore, URP contains a fairly sophisticated facility for generating subgoals 
to pursue when presented with a theorem and a higher-level goal. 

1This is not strictly required, since typing information implicit in the axiom 'arguments may be 
sufficient to lllliquely determine the expression's value even if the expression itself is not. 
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5.3.1 Inte.rpreting Theorems 

Interpretation of a theorem in a context consists of reducing the premise and 
consequent to conjunctions of axiom instances. Such a reduction can be readily 
converted to a logical implication in RUP. Often, a single interpretation operation 
in URP will result in several of these reductions. 

This reduction is accomplished by binding the theorem variables to the at­
tributes and sets appropriate for the reasoning context, and instantiating the rela­
tions appearing in the arguments of the utility axioms. Naturally, the bindings and 
relations must satisfy the logical structure of the theorem clauses. The theorem 
interpretation problem can thus be stated succinctly as follows: given a theorem 
and some binding constraints, find all distinct conjunctions of legal axiom instances 
that satisfy the logical structure of the theorem. Distinctness is defined in terms of 
the effect of adding the implication constraint to RUP's database.2 

The solution cannot be computed directly since the constraint terms do not 
generally have inverse functions. Exhaustive enumeration of variable bindings is 
also out of the question since the number of such bindings is exponential in the 
number of attributes. Therefore, URP has resorted to a fairly complex mechanism 
based on constraint propagation to generate the variable bindings. The mechanism 
is fully implemented as described in the next section. 

5.3.2 Set-Membership Constraint Propagation 

As URP interprets a theorem, each variable it encounters becomes a node in a 
constraint propagation network. There are two types of nodes, representing sets 
and elements (in our domain, the elements are always utility attributes). For most 
of this discussion we will consider only set nodes. 

In its least constrained state, a set may be any subset of the attributes. Since 
we know the n attributes at theorem interpretation time, it would be possible to 
enumerate these 2n possibilities. Their number decreases markedly with partial 
information about which elements are in or outside of the set. To represent this 
partial information, each node contains an in and an out list, which hold the 
elements that are known to be in each of these categories. A set node is maximally 
constrained when all of the elements in the universe appear in either its in or out 
list; this uniquely determines the set it represents. Naturally, an element cannot be 
on both lists of the same set node. 

2But we can test for distinctness without using RUP. 

----~ -----~~-----~--
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Nodes also maintain upper and lower bounds on their cardinality (max-size 
and min-size, respectively). Cardinality is restricted directly by the size of the 
universe and the in and out lists, and also indirectly through external constraints. 
For example, axiom arguments are usually required to be nonempty attribute sets. 
Such external constraints are often useful for determining set membership through 
elimination reasoning. 

Constraints 

In the network, set nodes are connected by constraints-objects which enforce 
some relation among the sets they connect. These relations restrict the combina­
tions of elements each set may contain. The two primitive constraints are union 
and complement; all of the other terms appearing in theorems are defined in terms 
of these. Often, it is necessary to create intermediate set nodes (which do not corre­
spond to any variable) in order to build the more complex constraints. The complex 
constraints currently defined are given in appendix D. 

Let us look, for example, at the union constraint. The expression (union Y1 

Y2) denotes a set Z such that Z = Y1 U Y2• Say that we indeed have three nodes 
in our network labeled Y1, Y2, and Z, and a union constraint connecting them in 
that manner. The constraint enforces the logical properties given in figure 5.3. The 
predicates in and out used in the figure denote the presence of an element on the in 
or out list, respectively, and the functions max-size and min-size give cardinality 
bounds on the set. 

The constraint is enforced by propagation. Whenever a set node adds an ele­
ment to either the in or out list, it communicates that fact to each constraint it 
participates in. The union constraint, in tum, checks each of the above relations 
which may have been affected by the change, and performs any changes to the set 
nodes necessary to satisfy the condition. Since changes are only made in the di­
rection of further constraint (adding elements to the in or out lists, tightening the 
cardinality bounds), the set node operations are determined unambiguously. 

The list of properties enforced by the complement constraint is easily con­
structed by analogy to union. 

This constraint propagation scheme was inspired by the network paradigm of 
Sussman and Steele [98], and bears a close resemblance to the type of constraint 
propagation developed by Waltz [108]. The similarity to Waltz is in the mean­
ing of the nodes of the network. A set node really represents a space of possible 
sets restricted by the in and out lists and the cardinality bounds. As in Waltz's 

------------------------- -------
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For any a: 

1. in(Y1,a) - in(Z,a) 

2. in(Y2,a) - in(Z,a) 

3. out(Z,a)- [out{Y1,a) /\out(Y2,a)] 
I 

4. [out(Y1, a)/\ out(Y2, a)] - out(Z, a) 

5. [in{Z, a)/\ out(Y1, a)] - in{Y2, a) 

6. [in{Z, a)/\ out{Y2, a)] - in{Y1, a) 

7. min-size( Z) ~ MAX [min-size( Yi), min-size(Y2)] 

8. max-size(Y1) ~ max-size(Z) 

9. max-size(Y2) ~ max-size(Z) 

10. max-size(Z) ~ max-size(Y1) + max-size(Y2) 

Figure 5.3: Properties enforced by the union constraint, Z = Yi U Y2 

line-labeling domain, our combinatorial space is represented compactly, and small 
incremental restrictions in a single node often reduce the overall size of this space 
substantially. 

The theorem language also provides for variables and constraints that refer to 
single attributes and relate them to sets. The mechanisms for dealing with these are 
similar to those dealing with sets, but are more complex. This additional complexity 
arises because it is necessary to maintain separate contexts corresponding to the 
possible bindings of universally quantified attribute variables. I will not discuss 
this mechanism in any detail beyond the simple claim that it works for all of URP's 
theorems. 

Hypothetical Reasoning 

As we will see in the example, it is sometimes necessary to make tentative asser­
tions about set membership, due to the incompleteness of our constraint reasoning 

technique. This incompleteness arises in two ways. The first is the limited expres­
sive power of our representation for sets. With only in and out lists and cardinality 
bounds we cannot in general express disjunctions of membership relations. For ex­
ample, it is not possible to say "a E S V b E S ," unless by coincidence this is 
required by cardinality bounds. Such a condition may be implied by the network 
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(in that assertions that one is out will result in the other being placed in), but is 
not observable from the set node in isolation. 

The other source of incompleteness is the locality of the constraints. Suppose, 
for example, we have three union constraints: 

1. AU B = 81 

2. AUG= 81 

3. BUG= 82 

and are told that the element a is a member of the set 82 but does not appear in 
A. A global analysis of the system would result in the conclusion that a must be a 
member of B, G, and 81, since all elements not in A must be in both or neither of 
B and C. Examination of each constraint individually, on the other hand, does not 
lead to this conclusion. 

We can solve this problem with hypothetical reasoning. If we arbitrarily hy­
pothesized in the above example the relation out(B,a), the system would go on to 
conclude out(8Iia), out(G,a), and therefore out(82 ,a) from the local constraints. 
This last conclusion, however, contradicts one of the original specifications. Since 
all of this reasoning arose from the out(B, a) assumption, we are allowed to with­
draw all of these conclusions and assert the assumption's negation, in( B, a), as well 
as all it implies. 

Unfortunately, not all of these difficulties are resolved with single assumptions. 
In URP's current implementation, the constraint system maintains a stack of hypoth­
esis levels, and backtracks chronologi~ally when contradictions arise. A dependency­
directed backtracking mechanism would be much more elegant and efficient, but the 
expected benefit was not deemed worth the extra implementation effort in the short 
run. After all, this thesis is supposed to be about preferences, not set membership. 

5.3.3 An Example Theorem Interpretation 

We are now ready to work through a small example demonstrating theorem 
interpretation. We will use theorem009, displayed earlier in figure 5.2. For the 
example, we will only look at the first consequent clause: the one with (union 
Yi Y2) as its first argument. Suppose our current goal is to conclude 

(utility-independence (X1 X2 X3) (X, X5)) 
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where Xi, ... , X5 are utility attributes (not necessarily the only ones). The inter­
pretation task is to generate all possible bindings for Y1, Y2, and X which satisfy 
the premise pattern of theorem009. 

The interpretation module would first parse the theorem and set up a set­
membership constraint propagation network. This network contains set nodes for 
Y1, Y2, and X, as well some internal nodes created during unification or in decom­
posing complex constraints. For this example, we need two internal nodes 

• Ai= {XbX2,X3} 

• A2 = {X,,Xs} 

to stand for the arguments to the goal axiom (there will be other internal nodes as 
well, but these appear at a lower level of description). The network is defined by 
the following relations: 

• union(Yb Y2, Ai) 

• difference(X, Ah A2) 

• subset(Y1, X) 

• overlapping-s1.1.bset(Y2, Y1, X) 

which are all defined in terms of the primitive constraints union and complement. 
Figure 5.4 illustrates the network and the propagation of values. The network 

starts with the definitions for Ai and A2 as given, and proceeds to fill in as much of 
the table as possible. Propagation through the union constraint results in X4 and 
X5 being placed out of Y1 and Y2, by condition 3 of figure 5.3. Similarly, X4 and X5 

must be in X since they are in A2 and X -Ai = A2 • These are the only conclusions 
possible from local propagation. Employing hypothetical reasoning, however, we 
are able to show by contradiction that X1, X2, and X3 must be in X. 

This leaves only six unknowns in the table, and therefore 26 possible bindings 
for the three theorem variables. This is a substantial improvement over the 215 enu­
merations required by the most naive approach. 3 Of these 26 possible combinations, 
it turns out that only six are consistent with the network. Note that we do not have 
to enumerate even these 26, since the space is pruned as we notice contradictions 

3The improvement is actually better, since the universe of attributes may have been larger than the 
five appearing in this goal. Such additional attributes would not contribute to the complexity of 
the constraint computation, hut would enormously increase the cost of a straight enumeration. 
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arising from partial assignments. As mentioned above, a mechanism that recorded 
dependencies would perform even better. 

The interpretation is completed as we instantiate the theorem premise for each 
possible binding. At this point we notice that the six consistent bindings yield only 
three distinct axiom conjunctions. The resulting implications are added to RUP's 
database, and the appropriate subgoals are recorded in URP's control structure. The 
binding patterns are memoized, so that interpretation of the theorem for a goal with 
the same argument structure {for this example a utility-independence axiom with 
three attributes in the first argument and two in the second) may proceed without 
requiring any of this set-membership reasoning. 

5.4 Control of Reasoning 

Given a set of independence axioms and a goal axiom to establish, the control 
task faced by the system is to choose a path through the URP theorems that can 
prove the desired result. URP has no set overall control structure, since it has no 
set mode of usage. The default control structure can perform the sort of utility 
function choice task demonstrated in section 2.4. The knowledge structures and 
subgoaling (that is, theorem interpretation) procedures have been designed to work 
within a wide variety of conceivable reasoning strategies. 

5.4.1 Default Control Mechanisms 

Typically, the top level goal in reasoning with multiattribute utility theorems 
would be to find a functional form for a set of attributes (the find task), or to 
test the validity of a particular functional form (the verify task). URP maintains 
a goal structure, which is a tree when traversed in terms of subgoal expressions, 
but will generally contain cycles when traversed through individual axioms' in the 
expressions. Goals may be proposed by the user, generated as subgoals during 
theorem interpretation, or suggested by other modules of URP itself. In a complete 
system, the mathematical reasoning facility would often request that a particular 
functional form be pursued. 

Search of the goal graph may also be controlled in various ways. URP may 
proceed on its own based on a rudimentary best-first heuristic, by explicit direction 
from the user, or through other sorts of heuristic control. The implemented URP 
relies mainly on the best-first method, though it is relatively simple to exert manual 

----------- ----------------
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control or to implement top-level driving procedures to focus the search according 
to some pattern. 

Control for the find task is a bit more open-ended than for verify. Usually, a 
find task will contain several instances of verify tasks as subgoals. Under the default 
control procedure, URP first tries to establish that one of the n-attribute functional 
forms is valid over the whole universe of attributes. To do so, it successively applies 
verify to the axioms representing the multiattribute forms. In restricted situations, 
it will notice that certain forms are hopeless due to the absence of particular classes 
of premises. Increasing the sophistication of this mechanism would go a long way 
toward improving the efficiency of URP in the decomposition task. 

5.4.2 Hierarchical Decomposition 

Failing to find a direct decomp.osition after some effort (or failing to find a 
sufficiently simple one), the system uses forward reasoning to assert a two-attribute 
form from· one of the independence conditions that is already known to the system 
(as a premise or by inference) ;!I This decomposition form holds over two vector 
attributes corresponding to the arguments of the independence condition used to 
justify the form. For example, to use the independence condition 

(value-independence (X1 X2 Xs) (X, Xs)) 

for a binary decomposition, URP would introduce the two vector attributes Wo = 
X1 x X2 x X3 and W1 = X4 x X5• URP then pursues as subgoals the tasks of finding 
multiattribute forms for W0 and W1• H this search is unsuccessful, URP can try a 
different binary decomposition or pursue the n-attribute form further. 

In restarting the search for a multiattribute form for the original set of attributes, 
it may be useful to automatically aggregate sets of attributes for which forms are 
known. For exa.lnple, if a form for W0 above was determined, our new problem is 
to find a form for {W0,X,,X5}. Note that W0 is treated just like its expansion in 
determining the truth value of axioms it appears in. However, the vector is treated 
like a single attribute for the purposes of set operations in theorem interpretation. 
The distinction between vectors and sets of attributes is defined more precisely in 
section 6.3. 

4 As described in the next chapter, several two-argument independence axioms directly validate 
two-attribute utility functions. These forms are given in appendix section E.1 .. 
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5.4.3 Heuristic Control 

The possibility of providing some kind of declarative heuristic control language 
for defining search strategies has not been adequately explored. Such a capability 
would be desired, since the implemented scheme follows many obviously useless 
paths. There is reason to think that heuristics could help, because there is usually 
some structure to the kinds of axioms that are asserted, and to combinations of 
theorems that bridge commonly-occuring inference gaps. And providing this lan­
guage should not be very difficult, since the theorem interpreter is coded to allow 
a fine-grained control over inference primitives. 

One weakness of the implemented scheme is that the system cannot recognize 
when it is performing hopeless search. This is not a problem if axioms are actually 
asserted to be not true; URP will not bother trying to verify a proposition it can 
prove to be false. 5 The major difficulty is when there is a lack of asserted axioms. 
This is where forward-directed control and higher-level heuristic knowledge will 
become useful for containing the excessive backtracking, or at least for initially 
focusing the search. 

Despite these problems, performance appears to be acceptable. In the examples 
tested, the system verifies true propositions with a reasonable amount of effort. 
Once a significant piece of the proposition space has been explored, retraction and 
addition of new axioms are handled quickly. 

5It is not clear, though, that URP is as proficient at finding falsity proofs as at finding validating 
proofs. 

------- -----



6. The Multiattribute 
Decomposition Knowledge Base 

One of the motivations for this project was the opportunity to develop a formal­
ization of utility-theoretic knowledge in a uniform representation. In constructing 
the URP knowledge base, I have tried to capture this knowledge in a form that 
would lead to competent and efficient model construction while at the same time 
preserving the structure of the field as reflected in its literature. This chapter is 
an attempt to describe the contents of the portion of URP's knowledge base dealing 

with multiattribute decomposition. It serves to delimit the extent of the program's 
knowledge, with explanations for the terminology used and rationale for some im­
portant design decisions. 

Because the discussion will be focused on issues of utility theory rather than 
on reasoning mechanisms or representations, the reader who is not primarily con­
cerned with utility should not hesitate to skip this chapter. The intended audience 
consists of those who are interested in examining an encoding of utility-theoretic 
concepts, or others who may want to validate, correct, modify, or extend the URP 
knowledge base. It is provided to document the components of utility theory se­
lected, and to justify the structures chosen to embody those components. While 
a knowledge-based system should ideally be "self-documenting," this is rarely the 
case in actuality, and URP is no exception. 

A note on the status of the implementation: all of the concepts described in this 
chapter have been represented in the knowledge base (given in appendices B, C, 
and E), and a working interpreter for the theorem language exists. The capability 
of the system is described in sections 5.3 and 5.4. Achieving the performance 
specified in section 6.2.1 below would require further work. 

6.1 Formalization 

It may be argued that the knowledge of multiattribute utility theory is already 
formalized. The basic results of the field are expressed in mathematical terminology 

that is standard and unambiguous. Nevertheless, there is a great difference between 
formal description for human interpretation and formal description for automatic 
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interpretation by computer. In writing a formal description for a human, we can 
be comfortable in assuming a certain forgiveness for minor abuses of the strictest 
conventions. Some of my points in this section and further below will have the 
flavor of nitpicking; in such cases recall that computers are the most notorious of 
nitpickers. 

A formal description for automatic interpretation by computer must be coupled 
with a specification for a procedure which operates on that description. Any mean­
ing assigned to the declarative representation only arises from how it is manipulated 
by that procedure. For our purposes, it will suffice to talk about the meaning of a 
representation in terms of the inferences that can be made by URP as a result of its 
inclusion in the knowledge base. To be clear about what is meant by an inference, I 
will try to specify precisely the classes of questions URP is expected to answer about 
each segment of its knowledge base. 

This formalization exercise is a necessary part of building a system like URP. But 
the development of a utility-theoretic knowledge base has benefits independent of its 
use by a consultation program. At the very least it enforces consistent terminology 
for its concepts. Although_ this is usually a minor problem, 1 there is potential for 
confusion in concepts with more than one name {for example, value and additive 
independence, multilinear and quasi-additive forms) names with more than one 
concept, or similar/dissimilar names for dissimilar/similar concepts. 

A related issue is the burial of knowledge in terminology. In a literature designed 
for human interpretation, part of the meaning of concepts may be contained in the 
names used to describe them. In a computer program, the name is just a symbol like 
any other, with no linguistic connection to other knowledge. All concept connections 
are explicit. 

Another strict requirement for a computer representation is a consistent notion 
of data types. In the literature it is possible to refer to objects such as attribute 
sets or independence conditions without being perfectly precise about their seman­
tic types. In the discussion below I will demonstrate the possible ambiguities or 
inconsistencies that may arise in such cases. Note that in general these ambiguities 
would present no problem to any reasoner with common sense (which includes most 
humans but not URP). 

In developing a computer representation there is a strong incentive to keep the 
interpreter as simple and as general as possible. This in turn motivates the drive 

1 An inevitable one for any young, dynamic discipline. Utility theory probably suffers less from this 
malady thwi most other technical fields. 
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for a well-stru.ctured and uniform knowledge representation, since structure in the 

representation can often substitute directly for special-case mechanisms in the in­
terpreter. This is desirable, because the declarative representation will be much 
more transparent than the interpreting procedure. Therefore, the representational 
formalism developed may contain structure which was not apparent in the original 
descriptions. An example of this is the means by which vector attributes com­
bine with conditional independence concepts to yield hierarchical decompositions 
without special procedures for that concept. 

The segment of utility-theoretic knowledge dealing with decomposition of multi­
attribute functions is the segment which I have had the most success in formalizing. 
This is undoubtedly due to its rich axiomatic structure-the characteristic which 
first suggested this undertaking, in fact. Experience in building this knowledge base 
should be useful for similar endeavors in other mathematical modeling disciplines. 

6.2 The Extent of URP 's Knowledge 

6.2.1 The Decomposition Task 

The task performed by URP is best defined by a description of the class of 
questions it should be able to answer about multiattribute decomposition. The 
questions are expressed in terms of URP concepts (that is, axioms and attributes) 
and are answered with respect to the theorems contained in the knowledge base. 

Questions are of the following general form: 

Given: A set of axiom assertions, G 
Hypothesize: A set of axiom assertions, H 
Question: Does G entail H? (written Gt- H) 

In the most usual case, H will represent some decomposition of the multiat­
tribute problem culminating in a functional form or a hierarchy of forms. An axiom 
assertion is defined as a pair consisting of an instance of an URP axiom (where the 
arguments are of correct type) and a value of true or false. The sets G and H may 
be of any size. A question with a null H may be construed as "Is G consistent?" 
The analogous interpretation for a null G would be "Is H tautological?" This, 
however, would never be the case for a conjunction of URP axioms. 

The main variation of this question form is to allow one of G or H to be unspeci­
fied or only partially specified. For unspecified H the task is to find a decomposition 
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which is entailed by the assertions in G. The user may fix some constraints oii the 
allowable decompositions, or specify optimality conditions. The most obvious op­
timality condition is to minimize the number of conditional utility functions and 
scaling constants to be assessed. Examples of prespecified constraints include: 

• Restriction to single-attribute conditionals at base-level 

• Prestructuring of hierarchy (specification of all allowable vector attributes) 

• Maximum number of scaling constants and/ or conditional functions 

If the user leaves G unspecified, URP 's task is to find a minimal set of axioms 
that would entail H. As above, the notion of minimality may be subject to some 
specification by the user. 

A final variation would be to give URP two sets such that G ~ H and ask it to 
try to weaken G or strengthen H while still preserving the "~" relation. This should 
be substantially easier than finding the minimal/optimal set in the first place. 

I do not claim that URP will always be able to find these minimal Gs or optimal 
H s, or even that it will even find any that exist. Though an exhaustive algorithm 
would always succeed in finding these, the space is so large as to require heuristic 
search techniques. An URP augmented to handle the "find" task should be good 
enough to answer questions of the first type with reasonable efficiency in the major­
ity of cases, and should be fairly proficient at weakening/strengthening questions of 
the last type. 

The final component of the decomposition task is explanation. Given a con­
clusion that G ~ H, URP is able to trace its deductions, reporting the theorems 
employed at each step. 

6.2.2 Coverage 

URP's knowledge about multiattribute decompositions has been gathered from 
a variety of sources. The most important of these have been Keeney and Raiffa 
[61], Farquhar [27], Bell [6], and Fishburn and Keeney [36]. Other sources will be 
listed in the sections discussing their specific contributions. 

It is difficult to characterize the subset of knowledge that is represented in URP. 
I claim that the program completely covers the decomposition results appearing in 
chapter six of Keeney and Raiffa's text, in the sense that it should be able to answer 
any "G ~ H?" question that is answerable solely by applying theorems from that 
chapter. It should also be able to find answers to unspecified Gs and H s at least as 
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good as those findable from the text. All of the independence concepts mentioned 
there are expressible in URP, and all functional forms are represented. Hierarchical 
decomposition using conditional independence is performed without any prestruc­
turing. Note, however, that I am not making any claims at the moment about 
URP 's efficiency in performing this reasoning. And note that URP only performs 
the decomposition; it does not assess the scaling constants and conditional utilities 
necessary to completely specify the function. 

The knowledge base also contains many concepts not appearing in Keeney and 
Raiffa. In principle, I believe that this knowledge covers any multiattribute de­
composition that has been used in real applications to date {this does not include 
special-purpose decompositions for things like time streams). Currently, however, I 
do not claim completeness over any other part of the literature. 

The knowledge base contains considerable redundancy. In general there are sev­
eral paths to the same result (H), using different theorems or the same theorem 
instantiated for different patterns. Some theorems, in fact, could be removed with­
out changing the class of decompositions that URP would be able to determine. 
These redundancies are retained because they often provide shortcuts in URP's in­
ference, or refer to aggregate concepts that are useful in structuring preferences. I 
have generally taken the attitude that high-level theorems appearing in the liter­
ature deserve inclusion even if their content is subsumed by lower-level theorems 
because, after all, some utility theorist had a reason for thinking they were useful. 

6.3 Attributes · 

In. the standard notation and terminology, we say that the outcome space Xis 
equal to the cross product of the sets of possible values for each attribute. That is, 
X = X1 x · · · x Xn. In this context it is clear that each Xi is a set corresponding 
to ;,\fl attribute i. It. would seem, then, that an attribute should be referred to by 
an index according to which dimension of the outcome space it corresponds. But in 
literature usage the symbol Xi is often used to refer to the attribute itself.2 Here Xi 
is a name for the attribute, not a set. Using sets for names would present problems 
if more than one attribute had the same domain of values. 

A collection of attributes may be referred to as a single vector attribute. The 
set of values possible for a vector attribute Y is the cross product of its constituent 

20r even to the objectiue for which the attribute is a measure. 
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attributes, Y ~ Xi1 x · · · x Xik. But once again, we will take the symbol Y to 
be the name of the vector attribute only. For multiattribute decomposition, URP 

treats vector attributes exactly like scalar attributes. 
It is important in URP to make a distinction between a vector attribute and a 

set of attributes. The problem arises in using theorems that perform set operations 
on the "arguments" of independence axioms. While conceptually the two objects 
are identical, in the course of its reasoning URP must distinguish between situations 
when a symbol Y stands for a vector attribute and when it stands for a set of 
attributes. Only in the latter case is it permissible to perform set operations on 
the object. Also note that while vector attributes may be nested (that is, it is 
permissible to have a vector containing vectors) arbitrarily, the members of attribute 
sets are all attributes, not attribute sets {though these attributes may be vectors.) 

One limitation of URP that should be remedied is that it does not provide for 
subrange attributes. A subrange attribute can be used to indicate that a certain 
axiom is only applicable over a limited portion of the outcome space. Such asser­
tions are a natural generalization of independence relations over entire attribute 
value ranges, and form the basis for the multivalent decompositions proposed by 
Farquhar [29]. Mechanisms for handling assertions of independence conditions over 
intervals would be similar to URP 's facilities for handling assertions of qualitativ~ 
behaviors over arbitrary intervals. 

6.4 Independence Ax~oms 

Probably the central knowledge base design decision in URP was the separation 
of knowledge about multiattribute decompositions into independence conditions, 
functional forms, and theorems relating them. The rationale for this structure is 
fairly obvious, given the large technical vocabulary developed for describing these 
conditions and the large number of papers in the literature which prove various 
theorems relating the conditions to each other and to functional forms. 

Sorting through the literature, I found that a wide variety of independence 
concepts had been identified, that a few of these seemed most important (or at least 
most useful), and that there was some variation in the terminology or mathematical 
formalisms used to describe these concepts. This variation underscores the potential 
benefit to be gained from an effort to build a uniform representation. 

An independence axiom is a specification for a relation defined over a fixed 
number of arguments which may be attributes or sets of attributes. The type 

-----~~----- ------~-------
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and number of arguments varies among axioms. Note that in the literature these 
axioms are sometimes considered relations on subspaces of the outcome space, which 
corresponds to the view of attributes as value domains for dimensions of that space. 

6.4.1 special-case-of 

Many of the URP independence axioms are linked together by the special-case­
of property. An axiom denoting relation A is a special case of the axiom denoting 
relation B if A ~ B. Note that this requires that the two axioms have the same 
number of arguments, and that the type restrictions on A are at least as strong as 
those on B.3 

The special-case-of property is useful because it lets us make inferences from 
the hierarchical structure of the axioms without applying theorems. In defining 
theorems, therefore, we use the weakest version of the axiom in the premise and.the 
strongest in the consequent. The results are always applicable for axioms stronger 
than the premise and/or weaker than the consequent. 

6.4.2 rel-prop 

The rel-prop list of an axiom contains the special properties of the r~lation 
defined by that axiom. Possible special properties include symmetry, transitivity, 
or other mathematical concepts of relations. These properties are not used very 
much in the URP knowledge base. 

In sections below I will describe the particular axioms defined in URP. A com­
plete listing of URP's axiom definitions is given in appendix B. 

6.5 Theorems 

An URP theorem specifies a pattern of implications between sets of axioms. 
Theorems are used to capture knowledge that links combinations of independence 
conditions to each other and to functional forms. The two main components of 
theorems, the premise and consequent, each represent a conjunction of axioms when 
the variables are bound to specific legal values. 

3More generally, we would like to allow the argwnents of B to be computable frqm A's, rather than 
requiring them to be identical. This would be useful in the case of conditional independence, for 
example, since there the axiom is related to a class of general cases. 
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Theorems in the URP knowledge base have been drawn from numerous sources. 
Many of these will be discussed in sections below, usually along with the axioms they 
deal with. A complete listing of URP's theorem definitions appears in appendix C. 

Restrictions 

Some theorems (and some axioms) are annotated with restrictions on the ap­
plicability of the result. These restrictions are informal and are never checked by 
URP. Usually they refer to highly technical conditions for which the knowledge base 
does not contain concepts. For example, many theorems and axioms require essen­

tiality of the attributes (informally, that they matter to the decision), convexity of 
the space of attribute levels, or some other technical condition. I have not been 
consistent in recording all of these qualifications. 

6.6 Multiattribute Functional Forms 

Functional forms are symbolic specifications for the mathematical functions 
which represent different multiattribute decompositions. Each form is associated 
with a particular independence axiom whose truth value determines its validity for 
the arguments of that axiom. The forms can be instantiated for any number of at­
tributes, including scalars and vectors. A complete listing of the functional forms in 
the URP knowledge base is given in appendix E. Recall that URP does not perform 
any reasoning based on the mathematical structure specified with those forms. 

6. 7 Preferential and Utility Independence 

Preferential independence (PI) and utility independence (VI) in URP have the 
standard definitions given in Fishburn and Keeney [36], Farquhar [27], and else­
where. Intuitively, (PI Y Z) holds if preferences for certain outcomes described 
by attribute Y do not depend on the fixed value of attribute Z. UI expresses the 
analogous condition for preferences over lotteries on Y. A more formal expression 
of these statements is given below in equations 6.1 and 6.2 on page 66. Members 
of the relation are pairs of mutually exclusive sets of attributes, where the first 
is PI (or UI) of the other. Utility independence is a special case of preferential 
independence. 

------ ---~- - -----
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Utility independence is directly connected to a two-attribute utility function, as 
described in Fishburn [34] and elsewhere.4 Since sets of attributes may be trans­
lated to single vector attributes, each UI assertion can be a step in a hierarchical 
decomposition of functional forms. 

PI and UI are the axioms appearing most commonly in URP theorems. The­
orems 1, 2, 5, and 12 relate UI directly to aggregate conditions (see section 6.13 
below). Theorems 9 and 33 build UI conditions from combinations of other UI 
conditions. Theorem 10 is the PI analog of theorem 9. Combinations of UI with 
weaker conditions are used to imply other UI conditions in theorems 18, 19, and 
20. Weaker conditions ·(including PI) alone are sufficient for a UI conclusion using 
theorem 21. UI appears with implicit (strong) conditional UI (see section 6.10) in 
theorems 23, 24, 29, and 30. Theorems 25 and 26 define various relations among UI, 
PI, and their explicit (weak) conditional versions. The implicit and explicit forms 
of conditionalizing are related in theorems 27 and 28. Recall that these theorems 
can be found in appendix C in numerical order. 

I have not included the concept of risk independence [58] in the knowledge base 
since it is a special case of utility independence for increasing, twice-differentiable 
scalar attributes that does not seem to offer any stronger conclusions or explanatory 
power. 

6.8 Value Independence 

Like PI and UI, value independence (VI) figures prominently in URP's knowledge 
base. The definition of VI is taken from Fishburn and Keeney [36], and is equivalent 
to definitions appearing elsewhere. Informally, VI holds between two attributes if 
only their marginal probability distributions are relevant. The concept of VI appears 
to be equivalent to additive independence as described in Keeney and Rai.ffa [61]. 
Value independence is a symmetric5 relation on pairs of mutually exclusive attribute 
sets, and is a special case of UI (and of PI, etc., since special-case-of is a transitive 
property). This differs from usages of VI where the relation is over an unspecified 
number of attribute sets (such as the definition in Farquhar [27] and the usage of 

4Bcll [6] provides a very useful table which gives the most important two-attribute functions in 
conditional form, along with their associated independence concepts. 

5In fact, VI is the only relation with a special rel-prop defined in URP. Relation properties, 
like special-case-of properties, simplify the reasoning by bypassing the theorem application 
mechanism. 
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additive independence in Keeney and Raiffa [61]). URP uses the name additive 
i"ndependence for the concept of VI over sets of (possibly vector) attributes. 

Theorem 17 provides a , way to build VI assertions from other VI assertions 
combined with a weaker axiom. VI is related to a functional form in theorem 22. 

6.9 Joint Independence 

In multiattribute decomposition, there is often special relevance to an indepen­
dence condition that holds in both directions. Rather than define a special axiom 
and provide theorems defining such conditions, I have built a construct into the the­
orem language to facilitate expression of this concept. Wherever the qualifier "joint" 
precedes the name of an independence axiom, the expression denotes the conjunc­
tion of two relations-one for each ordering of the arguments. For example, the 
expression (joint utility-independence Y Z) can be considered an abbreviatfon 
for the two expressions (utility-independence Y Z) and (utility-independence 
Z Y). 

6.10 Conditional Independence 

Several independence axioms can be associated with conditioning concepts whith 
enable consideration of independence conditions among non-exhaustive subsets of 
the outcome space. URP has axioms for conditional VI, UI, and Pl. 

Keeney and Raiffa [61] discuss two kinds of conditional independence. Consider 
a partition of the attributes into three nonempty sets, Yi, Y2t and Y3• Saying that 
conditional "foo" independence (FI), for example, hol4s for Y1 and Y2 given Ya 
means that for any fixed value y; E Ya, Y1 is FI of Y2• An--assertion that conditional 
FI holds for Y1 and Y2 given Ys means that for the particular value 113 E Y3, Y1 is FI 
of Y2• Clearly the first kind of conditional independence is a stronger assertion.6 

In the URP knowledge base, conditional independence is associated with the 
weaker version. It appears to me that there is no real reason to treat the strong 
version of conditional FI any differently from FI in the context of a restricted uni­
verse of attributes. That is, any conclusions that are derivable from (FI Y1 Y2) in a 
problem where all the attributes are in Y1 and Y2 are also valid for a problem with 
additional attributes as long as it is understood that the result is -conditional on 

6Bell [3] means this strong version when he refers to conditional utility independence. 
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"the rest of the attributes." In other words, URP treats the implied conditional as 
if it were working on a problem of smaller dimension. 

Conditional independence in URP, then, is a relation on three exclusive sets of 
attributes. The assertion (conditional-FI Y1 Y2 Y3) means that there exists some 

y; E Y3 such that Y1 and Y2 are FI when the rest of the attributes are fixed at that 
level. For applying the theorems, it is not necessary to know what that level is, just 
that it exists. To assess the functions and scaling constants, however, it is necessary 
to know the conditioning value. 

This treatment of conditional independence is not a completely satisfactory one 
because it does not truly represent the concept of conditionalization directly. It was 
necessary to include separate conditioning axioms for each independence concept, 
even though the notion of conditioning is orthogonal to the concept being condi­
tioned. Nevertheless, this option was chosen over the more fundamental change in 
URP's framework that would be necessary to avoid the duplication. Reimplementa­
tions of URP should provide a better long run solution. 

6.11 Weaker Axioms 

In addition to UI, PI, and VI, Fishburn and Keeney [36] discuss four axioms 
that are strictly weaker conditions on preference interaction. Two of these, called 
generalized PI and UI (GPI and GUI), are slight modifications of the base axioms 
that allow for restricted kinds of choice reversals. Another paper by Fishburn and 
Keeney [37] discusses GUI in greater· detail. 

GUI appears as one of the consequents of theorem 19. It is used as a premise in 
combination with some PI conditions to conclude some UI conditions in theorem 21. 
Theorem 31 builds GUI conditions from other GUI conditions. GUI conditions alone 
are sufficient to validate a multiattribute form in applications of theorem 32. GPI 
axioms do not appear in any URP theorem. 

The other two axioms, indifference independence and weak indifference indepen­

dence (WII), concern riskless preferences and are less restrictive than any of the 
above. Indifference independence does not appear to be very useful (and does not 
appear in any URP theorems), but WII seems to be a valid substitute for PI in many 
situations. 

WII is applied in theorems 17, 18, and 19. In each case, WII combines with 
stronger axioms (VI and UI) to conclude different instances of these stronger axioms. 
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6.12 Interpolation Independence 

Interpolation independence (II), as described by Bell [4] [5] [6], is a relatively weak 
restriction on the interaction of preferences under risk that nevertheless provides 
substantial power in the decomposition of multiattribute utility functions. Briefly, 
II holds between Y and Z when the collection of conditional utility functions for y 

given z is related by a function of z alone. This condition is stated more clearly in 
the assertion of equation 6.3 on page 66. Joint II is directly related to a two-attribute 
decomposition which is defined in URP, and combinations of joint II conditions are 
sufficient to justify the multilinear generalization functional form (theorem 16). 

Though URP is able to generate these II decompositions, it does not have the abil­
ity to execute the interpolation-based assessment procedure that Bell [5] advocates. 
This procedure provides a way to converge on increasingly accurate representations 
of the utility function for cases where II is only an approximation. URP does not 
provide for such approximation techniques, but it is easy to envision an adaptation 
which would accommodate their implementation. This point is discussed further in 
section 6.15.3. 

6.13 Aggregate Conditions 

All of the axioms discussed so for have been binary or ternary relations on sets 
of attributes. It is often useful to specify relations that hold over an unspecified 
number of arguments; for this purpose URP contains several axioms whose argument 
is a single set of attributes. As always, hierarchy is maintained by aggregating scalar 
attributes into vectors. 

Many of these axioms relate directly to multiattribute functional forms. Theo­
rem 1 describes sufficient conditions for applicability of the multilinear form. Suffi­
cient conditions for the multiplicative form-a special case of the multilinear form­

are given in theorems 3 and 32. The most usual justification for this form is mutual 

uti"lity independence (MUI), which is a consequent of theorems 2 and 5. MUI can 
be used to conclude individual UI conditions by application of theorem 12. 

The additive independence axiom does not appear in any theorems, but is the 

precondition for applicability of the additive form for the multiattribute utility 
function. Additive independence is a special case of MUI. 

Theorem 14 relates generalized bilateral independence to the bilateral form, but 

these concepts are not well-developed in URP. The same goes for the concept of 
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an additive value function, the consequent of theorem 13. Finally, the multilinear 

generalization form is valid under combinations of joint interpolation independence 
conditions, as defined in theorem 16. 

6.14 Axioms not Implemented 

There remain a few URP axioms that do not figure in any of URP's reasoning, 
but are retained for future expansion of the knowledge base. It is expected that in­
difference independence, GPI, bilateral independence, parametric independence [63}, 
and mutual preferential independence will become useful as the URP knowledge base 
is developed. 

A further gap exists in independence conditions and decomposition approaches 
that are entirely absent from URP. Of these, the multivalent structures [29] men­
tioned above and fractional hypercube models [26) probably merit some attention. , 
Another possibility is risk invariance as developed by Willig (113]. The additive and 
multiplicative generalizations described by Bell [5] would also be useful, but URP 
cannot express the preconditions concerning corner constants. 

The multiattribute decomposition knowledge base (as well as the rest of URP) 
is in a prototype stage. I like to view the implemented version as only a basis for a 
potentially more solid and complete encapsulation of important results from utility 
theory. 

6.15 Assessing the Decomposed Function 

As mentioned earlier, URP contains a substantial amount of expertise in choos­
ing a multiattribute decomposition, but almost none regarding assessment of the 
resulting function. .In order for the program to be useful to a utility analyst, it 
should provide a lot more help in this portion of the model construction task. The 
absence of this capability in the implemented URP system is due to lack of time; 
the present framework should be able to accommodate the necessary knowledge. In 
this section I examine the possibilities for inclusion of better multiattribute assess­
ment facilities within URP. Issues of single-attribute assessment are the subject of 
chapter 7. 
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6.15.1 Assessing Scaling Constants and Conditional Func­
tions 

The only representation of scaling constants and conditional functions in URP is 
in the specification language for multiattribute functional forms. The specification 
only defines these objects as components of the multiattribute decomposition, spec­
ifying their values in terms of lower level objects such as evaluations of the function 
at specific points. The specification does not provide any clue about how to go 
about finding or constraining the values for these objects. 

An automatic assessment facility would model-independent definitions for these 
components, including partial procedures for determining their values. Assessment 
of conditional utility functions should be a straightforward modification of the meth­
ods for single attribute assessment described in chapter 7. 

6.15.2 Relation of Axioms to Conditional Functions 

As far as URP is concerned, independence axioms are only important to the 
extent that they may be applied in decomposition theorems. Since these axioms 
are often defined in terms of what they imply for conditional preference orderings, 
it seems that we are missing important information by limiting their use in this 
fashion. For example, the proposition (UI Y Z) has the assertional import of 

\/y E Y, \/z', z" E Z [u(ylz') = u(yli'}] (6.1) 

An assertion of (PI Y Z) means 

Vy', y" E Y, Vz', z" E Z [u(y', z') > u(y", z') => u(y', z") > u(y", z")] (6.2) 

Finally, (II Y Z) is true if and only if 

\/y E Y, Vz, z', z" E Z [u(ylz) = O(z)u(ylz') + (1 - O(z))u(yjz")] (6.3) 

from Bell's definition [6]. Other independence conditions have implications for con­
ditional functions of a similar structure. These conditions should lend substantial 
constraint to the values permissible for these functions. 

6.15.3 Encoding of Assessment Algorithms 

In section 6.12 I pointed out that the URP knowledge base does not capture 
assessment procedures that are often associated with particular decompositions. 
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This has been partly intentional, since an aim of this project has been to avoid rigid 
algorithms in favor of more flexible use of preference specification. Nevertheless, 
flexible use of information does not imply that there should not be more focused 
information-gathering techniques. 

There may be natural ways to implement multiattribute assessment algorithms 
within URP 's framework through the introduction of question-asking heuristics. Sets 
of heuristics associated with particular model situations may be switched in and out 
to provide for the "execution" of a procedure. Any such assessment framework must 
be integrated with the single-attribute assessment concepts developed in chapter 7, 
below. 

---~--------- --



7. Assessment with Preference 
Choices 

7.1 Model-Independent Interpretation 

Traditional utility assessment relies heavily on expressed preference choices to 

determine the parameters of a utility function. The mechanisms built into URP deal 

exclusively with reasoning about the form of the utility function, which is usually 

a precompiled component of assessment tools. URP's flexibility in model structure 
affords a less-constrained approach towards assessment, where hypothetical prefer­

ence choices are interpreted under a procedure which is independent of a particular 

underlying utility model. Assessment programs that employ a prechosen model 
generally implement a procedure for generating lottery questions that fill in the 
parameters of the model with the fewest possible responses. The interpretation of 

the response is a direct translation to a particular parameter of the model. 

In URP, interpretation of preference choices must be more general. Since the 

model structure may be changed at any time (due to assertion or retraction of in­
dependence conditions or qualitative behaviors), URP must be able to compute the 

implications of a hypothetical preference choice for any utility model. The extra 

generality means that URP will not be as good at optimizing the set of questions 

generated for particular models, since programs using static models can employ effi­
cient question-asking strategics that exploit the special structure of their particular 

models. This may not be as important as it sounds, however, because URP does 

not require completely specified utility functions. The completeness requirement of 
traditional assessment tools places an unfortunate emphasis on the coverage of a set 

of questions, at the expense of their information content with respect to a particular 

decision, or consideration of how easy they may be to answer. In general, these effi­

cient question sets include lotteries involving outcomes at the extreme ranges of the 

attributes, which are considered difficult to answer and prone to biased responses. 

In the remainder of this chapter I outline a framework for utility assessment 

using hypothetical preference choices in URP. Keep in mind that this chapter does 

not describe an implementation, rather it conveys an overall attitude and some 

intriguing assessment capabilities which may be possible under the URP approach. 

68 
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7.2 Inequalities vs. Indifference Points 

A lottery is a choice presented to an assessor between two prospects, each a 

probability distribution over outcomes. I will use the notation L1 >-c L2, where 
the ">-c'' relation is read "is chosen over," 1 to describe the assertion that the asses­
sor expressed a preference for lottery L 1• The lotteries offered to the assessor are 
almost always simple-one or two possible outcomes in each L-to limit the pro­
cessing burden on both the assessor and the program. Complicating the outcome 
distributions does not provide any information advantage to the reasoner. 

A common device used by assessment procedures is the certainty or probability 
equivalent, where the subject is given two lotteries (L1 and L2) with a single pa­
rameter (a probability or outcome from one of the Ls) unspecified, and asked to 
indicate the value which would make her indifferent between L1 and £2 (£1 "'c £2). 

Note that an answer to this sort of question yields more constraint than a pref­
erence choice, since it specifies an equality point. But by dragging the assessor 
all the way to the indifference point (perhaps converging from either side), we are 
straining the limits of her judgmental confidence. We would expect these questions 
to be more difficult and .prone to errors, as studies have shown [48]. Moreover, 
without the restriction to fully specified utility functions, indifference questions are 
often unnecessarily precise. Indeed, assessment algorithms generally stop after the 
minimal number of questions are asked, because further questions inevitably lead 
to contradictory conclusions. In such cases it is necessary to resort to statistical 
best-fit schemes to assign values ,to parameters based on lottery choices. Due to 
these concerns, assessment in URP is restricted to inequality questions, with the 
required narrowness of bounds determined by the particular decision at hand. 

7.3 Constraints on Utility Functions 

Information in the form of hypothetical preference choices constrains the space 
of possible utility functions by revealing portions of the underlying preference re­
lation (>-). By assuming that >- is the same as >-c (an assumption of every utility 
assessment program), each preference choice yields a linear inequality among points 

1The subscript c is used to distinguish this relation from the usual preference relation ">-," meaning 
"is preferred to." I make this distinction to allow for the interpretation of elicited responses under 
a descriptive model other than expected utility, discussed in section 7.4 below. 
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on the utility function. That is, an assertion that L 1 >-- L2 implies 

(7.1) 
xcx xEX 

where PL, and pi1 are probability mass functions corresponding to the two lotteries. 
Naturally, Ex pi(x) = 1 for all lotteries. 

Without any further information about u, we can use these linear constraints to 
compute bounds for the utility of specific outcomes (those appearing in at least one 
lottery), or distributions over outcomes. Treating each evaluation of u at a point 
(generically denoted by "u( · )") as a variable, we calculate the lower bound for an 
expression made up of a linear combination of utility values by solving a linear 
program. The objective function to minimize is simply this expression, subject to 
the constraints derived from the lottery choices and equation 7.1, augmented by 
constraints of the form 0 :::; u(·) :::; 1. To compute the upper bound, we minimize 
the negation of the expression. 

Incorporating other kinds of constraints on u complicate the computations. 
Some of these, such as monotonicity of u with respect to scalar outcomes, can 
be represented as linear constraints (not necessarily very efficiently), while others 
require nonlinear representations. Combining preference choice information with 
specific functional forms for u will generally result in a set of nonlinear constraints. 
Computing bounds for nonlinear expressions subject to nonlinear constraints is a 
much harder problem, closely related to the dominance-proving problem discussed 
in section 4.1.2. Algorithms for restricted versions of the problem exist, but I have 
not explored the possibilities for incorporating them in URP •2 Naturally, the most 
general methods are least efficient and least inclined to converge, while more pow­
erful techniques only work on restricted classes of problems. Choosing a constraint 
reasoner for URP will involve classifying assessment subtasks according to the con­
straint types they involve. This is an important focus of the effort required for 
extending URP to perform utility assessment. 

20ne example is the algebraic constraint manipulation system developed by Brooks for geometric 
reasoning in vision [17], which is based on a linear procedure called SUP-INF originally due to 
Bledsoe [13] and improved by Shostak [96]. While the usefulness of this system for the kinds of 
problems that would come up in URP is untested, I suspect it will be able to reason about some of 
the multiattrihute forms: bounding multiattribute utility from singl~attribute lotteries and vie~ 
versa. It should also he able to handle some of the nonlinearities arising in some of the descriptive 
theories described below. It appears, however, that this system would he incapable of reasoning 
about some of the more important single-dimension utility functions. 

-- -----~---- --------
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7.4 Alternate Descriptive Theories 

The descriptive validity of expected utility theory has been a subject of much 

controversy ever since the development of the model over forty years ago. As Schoe­
maker points out in his review of the field [93], researchers with different perspectives 

on or purposes for the model have diverging views on the validity and importance of 
the descriptive aspects of expected utility. While it is legitimate to support the pre­
scriptive significance of the model without making any descriptive claims, practical 
uses of the model for decision making invariably require subjective preference judg­
ments from an individual to determine the utility function. By incorporating these 
assessed preferences in a formal utility model, the analyst is making an assumption· 

about the relation between professed preferences and utility: in effect adopting a 
descriptive view of expected utility. 

This prescriptive-descriptive cycle is disturbing, if not embarrassing. Analysts 

tend to support their formal models as normative approaches toward overcoming 
the failings of human judgment, yet their own models depend crucially on the 
ability of humans to make certain judgments. The only way out is to demonstrate 
that the required judgments are significantly simpler and less prone to error than 
the original decision problem. But simpler may not be simple ·enough; empirical 
studies using choices similar to those used in utility assessment consistently reveal 
important cognitive biases.3 As Tversky [105] forcefully argues, decision analysts 
need to worry a lot more about this. 

In the remainder of this chapter, I will discuss some of these biases and how the 
URP framework offers an interesting way to address the problem. The basic idea is 
to exploit URP's flexibility to interpret preference choices under descriptive theories 
other than maximization of expected utility. That is, we do not need to assume that 

>-is equivalent to >-c· Instead, we define some other relationship between >-c and>-, 
corresponding to a particular psychological theory of preference choice. Though the 
extra degrees of freedom often introduced by these alternate theories will generally 

weaken the conclusions we can make from a given set of. hypothetical choices, I 
suspect that these should still provide useful constraint on the utility function. 

3See Tversky and Kahneman [106] and Hershey, Kunreuther, and Schoemaker [47] for a general 
flavor of the results. 

--- ---------~-------~--
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7.4.1 Descriptive Theories of Preference Choice 

Psychologists, decision theorists, and economists have long noted discrepancies 
between subjects' expressed preference choices (in the laboratory or the real world) 
and normative decision theories. Over the years a substantial literature has de­
veloped, cataloging a large number of persistent biases observed in typical utility 
measurement tasks. While identification of these cognitive effects is useful for de­
veloping bias-resistant assessment procedures, a more significant benefit may be 
reaped through the development of formal descriptive theories of preference choice. 
The remainder of this section outlines some of the potentially useful theories de­
veloped over the last few years; my focus is on the structure of the theories rather 
than their rationale or descriptive validity. The description may get overly techni­
cal at times, since illustrating the feasibility of turning these diverse theories into 
assessment procedures requires a demonstration that their mathematical structure 
may be incorporated into the URP framework. 4 Implementation of interpreters for 
them is discussed in the next section (7.4.2). 

Prospect Theory 

Prospect theory [55] attempts to account for observed violations of expected 
utility in expressed preference choices with a two-step process of editing and evalu­
ation of simple lotteries. The first phase is an editing procedure, where the lotteries 
are transformed in ways which may or may not preserve their ·normative utility­
theoretic properties. Kahneman and Tversky describe six editing operations, each 
a straightforward syntactic manipulation of the lotteries. The first operation, cod­
ing, requires identification of a reference point, which dictates the perception of a.n 

outcome as a gain or loss. 5 Some of the other editing operations are valid manipula­
tions under expected utility, such as the removal of common subcomponents. This 
is equivalent to the transformation described earlier by equation 4.2. 

41 would suggest that the reader skim over the mathematical details that are not of major concern 
while paying special attention to the /orm of the models. The individual theories are much better 
motivated in the cited papers than in the presentation here. 

5Fischhoff [33] notes that it may not always be possible in practice to determine the reference point 
used by assessors in this editing step. In particular, it seems that subjects' own impressions of their 
reference point is often misleading (at least under a prospect theory interpretation). This may be a 
hindrance to its use for assessment, since interpretation of preference choices under prospect theory 
will require us to identify the reference point. 

-~------ ----------
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Evaluation of the edited prospects requires a weighting function of probability, 
71" 1 and a value function, v. The value of a prospect with two nonzero outcomes x 

and y, associated with probabilities p and q respectively is given by 

! 
7r(p)v(x) + 7r(q)v(y) 

V(x,p; y, q) = v(y) + 7r(p) [v(x) - v(y)] 

if p + q < 1 or x ~ 0 ~ y 
or x:::; 0 :::=; y 

if p + q = 1 and either 
x > y > 0 or x < y < 0. 

(7.2) 

The theory also dictates certain constraints on the functions 11" and v. For example, 
subjects tend to exhibit risk aversion for gains and risk proneness for losses, and 
losses loom larger than gains. Thus, v"(x) < 0 for positive x, v"(x) > 0 for negative 
x, and 0 < v'(x) < v'(-x) for all x (if these derivatives exist). 

As for the probability weighting function, prospect theory asserts that 11" is in­
creasing in p, with 7r(O) = 0 and 7r{l) = 1 (though the endpoints may not be 
continuous). In addition, 7r(p) > p and 7r(rp) > r7r(p) for small p and 0 < r < 1. 
For all p, 7r(p) + 7r(l - p) < 1 (subcertainty). 

Karmarkar's subjectively weighted utility model [56} evaluates lotteries by com­
bining a classical expected utility function with a transformation <?f the probabilities. 
Unlike prospect theory's 7r(p), Karmarkar's probability weights are computed us­
ing a function of a single parameter. . This restricted form may make assessment 
considerably more tractable. 

While discussion thus far has been con.fined to single-attribute lotteries (as are 
assessment tools and descriptive theories in general), some of these concepts may 
be extensible to multidimensional problems. For example, Payne, Laughhunn, and· 
Crum [84] discuss ways in which editing operators similar to those of prospect theory 
may be applied to multiattribute lotteries. 

Regret Theories 

It has long been observed that decision makers may derive value or disutility 

from the correctness of their decision, separate from the utility attributed to the 
outcome itself. This phenomenon-called regret or rejoice-has been used to explain 
deviations from expected utility theory, and has recently been the centerpiece of 
some formal models of preference choice. 

Bell's approach [8] is to model utility as a two-attribute function of final assets 
x, and foregone assets y. A series of assumptions about preferences for the two 
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attributes leads to the result 

u(x,y) = v(x) + f(v(x) -v(y)) (7.3) 

where v is a function measuring the incremental value of ksets and f is an arbi­
trary function. Further qualitative characteristics of regret constrain the space of 
possible f s. Note that direct use of this two-attribute function requires that the 
joint probability distribution for x and y is specified (that is, outcomes of foregone 
lotteries are resolved). In a sequel paper, Bell [10] examines the special case of inde­
pendence between lotteries, and cases where foregone lotteries are left unresolved. 
In using regret theory for assessment, it is· necessary to choose a policy regarding 
the resolution of unchosen lotteries. 

The regret theory of Loomes and Sugden [71], while not founded on a two­
attribute utility-theoretic model, yields implications similar to Bell's. 

Consumer Choice Models 

Researchers in marketing are interested in a descriptive model of preference 
choice to predict consumer behavior. While much of their work involves stochastic 
choice, or choice over aggregate populations, some of their models may be appli­
cable to deterministic individual behavior (in a modified form, if not directly). Of 
particular interest are those that have a utility-theoretic basis (for example, the 
approach described by Hauser [46]). Possibilities for assessment can be envisioned 
for those theories employing specific utility forms in conjunction with measure­
ment error models (that of Eliashberg and Hauser [25] provides a recent example). 
While these models may not have a compelling psychological rationale, they may 
have value for assessment. Treating these models as descriptive theories and using 
them for assessment is similar in spirit to statistical best-fit approaches to utility 
modeling. 

Accounting for Disappointment 

The final example of a descriptive theory that may be used for assessment is 
Bell's recent model of disappointment effects [11]. Disappointment is conceptually 
similar to regret in that preference for outcomes is dependent on structural features 
of the lottery. The major difference is that here the relevant comparison is to 
expectations, not foregone assets. Decision makers experience disappointment when 
outcomes are significantly worse than expectations, and elation when outcomes are 
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better. These- measures of psychological satisfaction form a second component (in 
addition to the outcome itself) of utility for a lottery. 

Consider a lottery that offers a probability of p of obtaining outcome x and 
1 - p for a less-preferred outcome y. In the simplest model-where preference for 
the outcome and for psychological satisfaction are additive, expectations are linear · 
in the outcome, and disappointment-free preference is risk neutral-the certainty 
equivalent is 

y + (x - y)11"(p) (7.4) 

where 7r may be interpreted as a subjective probability measure.6 Using this simple 
model, preference choices yield linear constraints on 11"( · ), resulting in straightfor­
ward assessment. Bell [11] discusses direct assessment of 71" by indifference points, as 
well as less direct methods requiring explicit tradeoffs between the outcome and dis­
appointment/ elation. This latter form of assessment employs questions regarding 
the value of winning (or losing) lotteries instead of straight preference choices. 

7.4.2 Interpreting Choices with Respect to a Theory 

The key thing to notice from the above descriptions is that several of these 
alternate theories of preference choice have analytic forms that may be related to 
traditional prescriptive models. To implement an assessment procedure based on 
one of them rather than maximization of expected utility, we would simply replace 
the utility maximization criterion (equation 7.1) with the choice criterion operating 
in the descriptive theory (equation 7.2 for prospect theory, 7.3 for regret theory, 
or 7.4 for disappointment). An expressed choice of one lottery over another yields 
an inequality within that particular formalism; constraint reasoning analogous to 
that described in section 7.3 above may be applied to infer facts about the model's 
components. 

Example: Implementing Assessment Based on Prospect Theory 

An expressed choice in prospect theory constrains the possibilities for v and 11', 

beyond the restrictions provided by the theory. URP 's mechanisms for reasoning 
I 

about partially specified utility functions may be applied directly for dealing with 

6Notc the similarity to prospect theory. Even though prospect theory's 'II' arises from behavioral 
considerations of probability interpretation, when combined with editing of risk-free components it 
results in the same model as disappointment (see the second clause of equation 7.2), ignoring the 
transformation by ti. 
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incomplete representations for functions like these. To derive a prescriptive model 
from our choice-constrained descriptive model, we need to apply transformations 
specific to the particular theory. For prospect theory (and similarly for Karmarkar's 
weighted utility [56]), we might replace 7r with the identity mapping, in effect treat­
ing v as the utility function. In addition, we probably would eliminate the prospect 
editing operations that are not utility-preserving. Deciding how (and whether) to 
adjust the reference point is a tricky question. This adjustment would have a serious 
impact on v, which should be appropriate in many situations. 

To illustrate assessment under prospect theory, consider an expressed preference 
for the edited prospect L1 = (xi,p1; yi,q1) over L2 = (x2,P2i Y2,q2), with P1 +q1 < 
1, P2 + q2 < 1, x1 and x2 positive, and Y1 and Y2 negative. From this we may 
conclude (from 7.2) 

(7.5) 

which is a nonlinear constraint on eight values. To simplify this for assessment, we 
would typically ask questions in which some of the ps and qs or xs and ys are the 
same (or known points of the functions, such as 7r(O), 7r(1), or v(O)). For example, 
suppose X1 = 300, P1 = .1, X2 = 100, P2 = .2, and Y1 = Y2 .. - 0 in 7.5. This 
constraint, together with prospect theory's subproportionality and subadditivity 
conditions (which imply that 7r(rp) > r7r(p) for 0 < r < 1) result in the relation 
v(300) > 2v(100), the result that would be concluded from expected utility theory. 
In addition, the condition that v is concave for positive x enables us to strengthen 
our result. 

1 v(lOO) 1 
3 :::; v(300) < 2 

Additional prospect choices add further constraint on the shapes of v and 11". A 
constraint reasoner that is able to handle limited. nonlinearity (such as the one 
Brooks developed for ACRONYM [17], noted above) will be needed to perform this 
task in any useful assessment tool. 

Choosing a Descriptive Theory 

Once several assessment procedures based on different descriptive theories have 
been implemented, we need to decide which interpretive model to use in which sit­
uations. Ideally, we would like to "diagnose" the types of bias that are present for 
particular assessment sessions and apply the theory that best explains that flavor 
of bias. This is certainly beyond the state-of-the-art, though I suspect that the 

-----------~--- ------------
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capability of switching between alternate theories may provide a useful tool for bias 
diagnosis. But even without such sophistication, it may be possible to match de­
scriptive theories to assessment situations based on other criteria. For example, the 
type of attribute being assessed (financial, length of life, health dimension) may 
indicate that certain psychological choice theories are more relevant than others. 
Most of the theorie_s developed are specifically geared toward preference for finaacial 
assets, though other work has looked at related biases for other attributes. An ex­
ample is the study of McNeil, Pauker, Sox, et al. [76], which found correspondences 
between biases due to framing of health outcomes and prospect theory. 

Another possible criterion is the setting for collecting the preference choices. 
While the theories described above are generally related to answers to lottery ques­
tions similar to those used in traditional utility assessment, often it is desirable to 
use preferences revealed through real-world observation of decision making (such as 
consumer behavior, safety practices, public policy, or other economic activities). In 
such cases it would be a good idea to consider some of the biases typically observed 
in real-world economic behavior; the marketing models mentioned above may be 
particularly suited to these situations. Thaler [102] describes many biases that seem 
to be widespread in economic behavior. One of them, due to the phenomenon of 
self-control, is incorporated in a model developed by Thaler and -Shefrin [ 103]. We­
instein and Quinn [109] discuss biases which are prevalent in societal health policy. 

Conclusion 

By representing choices in a theory-independent manner, we may switch between 
interpretive frameworks in a modular fashion. Thus, this psychological modeling 
serves as a form of structural sensitivity analysis, in which we weaken the assump­
tion of normative choice to examine its effect on the result. If the decision proves 
invariant under a set of theories that admit various sorts of response bias, we may be 
justifiably confident that our result exhibits a novel form of robustness that would 
be difficult to demonstrate any other way. 



8. Incorporating Domain 
Preference Knowledge 

In a previous section (3.4) I put forth the contention that the qualitat; · ' prop­
erties used by URP are "one step away" from being intuitive. In this chapter 1 argue 
that the reason the concepts used by the program are not totally intuitive is that 
there is inevitably a substantial gap between general knowledge about a modeling 
discipline and knowledge of how to apply its models in a particular problem domain. 
This difficulty is quite serious, since a consultation system that knows everything 
about a field of mathematical modeling but nothing about relating those models to 

particular real problems would be virtually useless to practitioners trying to solve 
these real problems. Nevertheless, we do not wish to create narrow systems de­
signed for modeling problems in only a restricted domain. The aim is to separate 
general modeling knowledge so that it can be employed in problems from a wide 
variety of areas. 

The sections below serve to define the nature of the gap between modeling and 
domain knowledge more clearly. I provide a framework for spanning URP's gap 
by incorporating domain preference knowledge, illustrated by examples relevant to 

medical decision problems. 

8.1 Modeling and the Ground Domain 

The use of a mathematical modeling technique always involves an area of ap­
plication separate from the modeling discipline. Gale and Pregibon [43] refer to 
this area as the ground domain. They point out that relating modeling concepts 
to experts in a ground domain is a serious challenge in building knowledge-based 
systems for statistics. The approach taken here is somewhat different: rather than 
building this relation on a user interface, the idea is to bring concepts from the 
domain into the modeling knowledge base. 

8.1.1 Modeling as Abstraction 

Whenever a mathematical formalism is used to model real world phenomena-

78 
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for decision making, prediction, theory formation, or whatever-there is inevitably 
an abstraction from the objects of the real-world domain to objects in the mathe­
matical domain. The modeling exercise is appropriate if and only if the abstraction 
can be said to preserve the essential properties of the real-world object, where essen­
tiality is defined relative to the goals of the modeling effort. Since this requirement 
is central to any modeling discipline, such disciplines have generally evolved rich 
vocabularies for specifying the essential properties and relating them to the mod­
eling tools which comprise the discipline. The essential properties are commonly 
referred to as modeling assumptions. 

8.1.2 Technical Vocabularies 

For modeling disciplines intended for application in several domains (or even to 
varying problems in a single domain), the vocabulary must be in a language with a 
technical level more akin to the objects of the mathematical formalism than to the 
real-world objects being modeled. This is why a system like URP, which contains a 
substantial amount of knowledge about modeling and none about a ground domain, 
must deal in concepts thai are one step away from those that would be intuitive to 
an application expert using the program. It seems ironic that the same generality of 
the essential properties that made them qualitative and therefore closer to intuitive 
principles in the first place also provides the argument that they cannot be intuitive 
in the final sense. 

I have spent the greatest portion of this thesis describing what I think the 
technical vocabulary for preference modeling using utility theory looks like, and how 
it is possible to get a computer program to use it. But while utility theory provides 
an exemplary case of the vocabulary notion, the idea is by no means limited to this 
particular theory or this particular modeling task. I will further contend that any 

modeling formalism designed to work for more than a single problem instance needs 
a technical vocabulary. 

Perhaps this point will be strengthened with a few brief examples. In proba­
bility theory (a component of many modeling disciplines), there is a fundamental 
abstraction from real-world phenomena to a formal notion of events in a space of 
events. Modelers use tools of probabilistic analysis to make conclusions about the 
real world phenomena represented by these abstract events. The technical vocabu­
lary in this case includes (among other things) the characterizations· of events which 
make various tools and methods appropriate or inappropriate. Some very simple 
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characterizatioiis (of collections of events) include mutual exclusion, collective ex­
haustion, and various flavors of statistical independence. Note that few programs 

that perform so-called "probabilistic reasoning" have explicit knowledge of even 
these simple characterizations. 

The second example is in the area of statistical test design. Although this 
modeling task presents several important issues, one of the most fundamental ones 
concerns the measurement scales of the parameters of the model. In designing 
a test sequence, it is essential that the modeler (human or computer program) 
choose only tests that manipulate the parameter in ways meaningful with respect 
to measurement properties of its scale. To a statistician, the concepts of ordinal 
and interval scales, for example, are very basic and simple to apply. The scale type 
for a particular parameter can be easily identified, and tests appropriate for that 
type can be generated. Nonetheless, the vocabulary is technical, and there does not 
appear to be a simple one-line explanation that would enable an expert from any 
domain to determine whether her scale is ordinal. A human statistician usually can 
solve the problem by resorting to common sense or world knowledge; often it is not 
necessary to be an expert in the ground domain to elicit the essential properties of 
the modeled domain objects. 

The two examples described were intentionally taken from extremely simple 
modeling issues (the second issue-reasoning about measurement properties-will 
be discussed in the context of utility modeling later in this chapter). The point 
is that if even the most simple of modeling concepts require a technical language, 
the more sophisticated modeling concepts will undoubtedly be beyond intuitive 
explanation for a particular ground domain. 

8.1.3 . Expressing Domain Concepts in a Technical Vocabu­
lary 

Even with this serious limitation, reasoning in terms of qualitative properties is 
substantially more explainable than strict quantitative reasoning. The vocabulary 
is still within the technical bounds of mathematics and the modeling discipline, 

but it is a lot closer to the fringe. Thus, the models will be accessible to those 
with less modeling expertise and perhaps more comprehensible even to modeling 
specialists. And for application to particular ground domains, or restricted problems 
within domains, it may be feasible to build in domain-specific knowledge about the 
mapping from domain principles to this technical vocabulary. 
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This last option is particularly reassuring for incorporation of preference model­

ing in decision-making knowledge-based systems. These programs typically operate 

over a narrow range of problem types in a highly restricted domain. I suspect that 

it will often be reasonable to build in the ground domain concepts necessary to 

maintain an interface to URP in terms of its own technical vocabulary. 

8.2 A Domain Preference Knowledge Base 

To test the expressive power of URP's technical vocabulary, I suggest the devel­

opment of a domain preference knowledge base: a collection of useful knowledge 

about modeling preferences in a particular domain encoded for use by URP. This 

knowledge base would act as an interface module for programs using URP and as a 

library of models and components for a human analyst using the program. 
In the remainder of this chapter I provide a framework for building this knowl­

edge base using examples from preferences in medical decision problems. None of 

these representations and mechanisms have been implemented, but the design is 

compatible with URP's overall framework. I expect that many of the concepts pro­

posed for inclusion in the knowledge base can be incorporated ~to URP with little 
modification of the existing system. Others will require more substantial imple­
mentation effort. The knowledge base for medical preferences as developed in this 

chapter is summarized in appendix F. 

8.3 Built-in Attributes 

8.3.1 Specifying Attributes in URP 

The first step in encoding domain preference knowledge is to specify attributes 

that will be relevant to decisions in that area. Patterns for combining these at­

tributes constrain the base structure of preference models, and URP assertions about 

their utility-theoretic properties help determine the form of these models. 

Attribute Definition 

An attribute definition in URP consists of a name, a measurement scale, and a 

description. Figure 8.1 depicts a sample URP attribute definition for the life-years 
attribute used in the medical example of chapter 2. The name "LIFE-YEARS" is 
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simply the symbol used by URP to refer to the attribute, and value-set defines 
the set of values possible for that attribute. This set may be any collection of real 
numbers or integers (not necessarily contiguous). 

(def attribute LIFE-YEARS 
:value-set '(real-range 0 max-life-years) 
:scale-type 'ratio 
:unit 'years 
:description 

'(life-years (#of years from NOW until DEATH) 
max-life-years (Largest possible value for life-years))) 

Figure 8.1: An example of an attribute definition in URP 

The scale-type specifies some measurement-theoretic properties of the attribute 
scale. Given a set of values and some interpretation of ordering and combination 
(generally some kind of addition or concatenation) associated with the attribute 
quantity, the scale-type defines the set of mathematical transformations that pre­
serve this interpretation. Table 8.1 associates some of the most common scales with 
their class of permissible transforms.1 This information is highly useful in model­
building, since the class of transformations constrains the kinds of concepts that 
make sense for a particular attribute. For example, it is reasonable to talk about 
direction of preference along all of the depicted scales (except arbitrary naming), 
since direction is invariant under all monotonic transformations. It is dangerous 
to consider the convexity (risk properties) of preference for attributes with ordinal 
scales, however, since this property may be changed by nonlinear transformations. 
While consideration of risk aversion for attributes defined by log-interval scales is 
not a good idea, the risk property of the logarithm of that attribute may be a useful 
concept. 

Measurement properties are likely to be useful in several components of the 
overall preference modeling task: formulation and explanation are two that come 
to mind. In general, I would argue that the measurement properties of the quan­
tities manipulated by a mathematical modeling program are an essential part of 
the knowledge required to reason about them, and should therefore be included 

1The volume by Krantz, Luce, Suppes, et al. [66] is the source for these definitions (except arbitrary 
naming), and is a good general reference on the theory of measurement. 

------~--~--------
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scale-type permissible transformations 

arbitrary naming all transformations (since no ordering exists) 
ordinal all monotonic transformations 

interval . ax + /3, a > 0 
log-interval a.xi\ a > O, J3 > 0 
ratio ax, a > 0 

Table 8.1: Some useful measurement properties and their permissible transforma­
tions (x denotes the measured quantity) 

in any system that works with different kinds of quantities. I have already noted 
the usefulness of measurement properties to determine the applicability of statistical 
tests. Specification of the measurement scales provides a convenient way to indicate 
something about the allowable intuitive interpretations of a quantity's magnitude 
without a deeper knowledge of the real-world concept associated with the quantity. 
In other words, it describes the structure of the informal interpretation of the quan­
tity without requiring that the computer understand what that intuitive meaning 
IS. 

The scale specification may need to be fairly complex, because many attributes 
are described by membership in arbitrarily defined categories rather than by con­
tinuously varying quantities, discrete gradations on a continuous scale, or the cardi­
nality of a set. The unit slot of an URP attribute definition measured by a quantity 
is the semantic dimension of that quantity; for attributes measured by category 
membership, unit specifies the mapping from the attribute's value to definitions 
for the various categories represented. In the categorical case, we can still talk about 
the properties of numeric functions by associating an index set of integers with the 
set of categories. Recall that the main purpose of defining attributes is so that we 
can specify utility-theoretic properties of preferences over them (discussed further 
below). Therefore, the indexing scheme should be chosen with these properties in 
mind. An obvious desideratum in specification should be to choose a scale which 
provides the maximum structure for interpreting the value with respect to prefer­
ence. Keeney [59] discusses issues in selecting and constructing scales for measuring 
objectives in preference models. In trying to capture this formulation knowledge 
in a program, the measurement properties of the scales will undoubtedly play an 
important role. 

The description of an attribute conveys the interpretation of an attribute's 

------ ___ " ________ ------------
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value. Typically this will consist merely of textual definitions associated with the 
attribute name. If other URP symbols occur in the attribute definition {for example, 
to parameterize the scale specification), these are also described. 

Combining Patterns 

Once a substantial number of attributes have been defined in URP, it is useful 
to constrain the ways in which they may be combined in formulating a preference 

) 

model. This/ type of specification serves to assist the user in selecting the URP 
attributes to include in the model, and may prevent some potential errors arising 
from uses of the attributes in ways unintended by the attribute definer. Combining 
patterns may also affect the structure of preferences over the chosen attributes. 

Two mechanisms can be provided for specifying combining patterns. The first is 
to define component relations. A component relation is used to indicate that certain 
attributes are partial measures of other attributes. For example, if attribute Yo can 
be defined as a function of attributes X 1, •• • , X 1" then the Xis are components of 
Y0 . In an URP fornmlation, Y0 would automatically be treated as a vector attribute 
containing the Xis. These component relations may be built up into a hierarchical 
structure. 

The second mechanism for specifying combining patterns is to define inclusion 
links between pairs of attributes. We can think of these links as specifying binary 
relations R and R', where (X, Y) E R implies that any preference model containing 
attribute X must also contain attribute Y. Similarly, (X, Y) E R' implies that 
any preference model containing X must not contain Y. R and R' are of course 
exclusive. Note that R' is symmetric, though R may not be. 

8.3.2 Built-in Attributes for Medical Decision Making 

Although medical decision problems present a wide variety of issues and crite­
ria important to value judgments, it is possible and useful to define a few of the 
more common attributes and their utility-theoretic properties. Actual formulations 
for specific problems may use different combinations of these attributes, and may 
introduce others which have not been predefined. In this section, I will describe a 
few attributes which should be useful in a wide variety of medical decisions. Spec­
ification of the utility-theoretic properties of these attributes in 1!RP's technical 
vocabulary is the subject of subsequent sections. 
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Life Years and Health Status 

The first common attribute, illustrated in figure 8.1, is called life-years. As 
one would expect, the length of the patient's life is a major factor in most difficult 
medical decisions. Inclusion in a preference model, however, depends on stochastic 
relevance as well as importance. In a situation where the only difference between 
alternative strategies pertaining to lifetime is in short-term risk {operative mortality 
of a surgical procedure, for example), the appropriate attribute may be one that 
only distinguishes between surviving or not surviving beyond a certain time horizon. 
A program to help in the formulation task should have knowledge about relevance 
patterns such as this. 

Another "generic" attribute is health-status. This attribute will denote different 
criteria in various kinds of medical decisions. In the simplest case-where there is 
only one relevant health criterion in addition to lifetime-health-status will simply 
represent that criterion. In the more general case, health-status will be a vector 
attribute consisting of several lower-level medical criteria, or the value of some 
health status index developed for specific kinds of problems. For reasons that will 
become apparent in section 8.6, the attribute health-status will only be used to 
describe states: conditions that exist at a point or over an interval of time. 

Unlike life-years, health-status does not have a consistently defined measurement 
scale. For that reason, it is important to build in special attributes for the particular 
measures of health status dimensions that will be relevant in specific cases. These 
attributes would be connected to health-status through component relations. 

An example of such a component. attribute is the measure of physical function 
used by Torrance, Boyle, and Horwood (104] in their study of health state prefer­
ences. Their scale for the attribute physical-function is composed of six categories 
ranging from unrestricted mobility and physical activity to being dependent on oth­
ers for getting around and lacking control of limbs. We can define this attribute 
directly in URP with little difficulty. The scale-type would be ordinal with a scale 
of (integer-range 1 6). The unit slot specifies the mapping from the integer scale 
values to the categories. In this example we would use the value one for the most 
restricted category of physical-function and six for the least. The description of the 
various categories can be taken directly from the English descriptions used by the 
scale's developers. 

Other componen~ attributes include those introduced in the example of sec­
tion 2.4. There we might consider the attributes disabling-stroke?, cabg-morbidity, 

and endart-morbidity (X2 , X3, and X.,) to collectively define health-status. To in-
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elude these in the URP domain preference knowledge base we would need to generate 
attribute definitions similar to those described above. 

Health Status Indices 

Researchers in medical decision making and public health have compiled a con­
siderable literature on health status indices and other mechanisms for measuring the 
desirability of health states.2 While the indices have been developed for different 

purposes {health policy, clinical decisions, research evaluation) and under different 
methodologies {Gustafson et al. [44] compare indices developed using utility theory, 
actuarial approaches, and more ad hoc methods), they all provide a potentially 
useful scale for measuring difficult-to-quantify health status attributes. 

Encoding these various measures as URP attributes is a feasible task that would 
have substantial value in bringing together a large body of research in a uniform 
framework. Provided with such a knowledge base, a health preference modeler 
would be able to pick and choose among a large variety of options in selecting 
attributes to include in the model. An additional advantage of predefined attributes 
related to health status indices is that these are often associated with well-tested 
measuring techniques (usually questionnaire responses or more objective criteria), 
and empirical validation over large groups of patients. 

8.4 Predefined Qualitative Properties 

It will often be possible to specify qualitative constraints on preferences for some 
of the built-in attributes for a particular application domain. These qualitative 
properties can sometimes be described directly in URP's terminology. Qualitative 
property assertions were described in section 3.2.1; a complete listing of the prop­
erties known to URP is given in appendix A. 

8.4.1 Monotonicity 

Many of these properties are quite simple and intuitive. For example, an obvious 
property of the attribute life-years is that its utility increases with the number of 
years. The URP assertion {monotonic-increasing life-years) means simply that 

2 Thc indices described by Parkerson ct al. [81], Torrance, Boyle, and Horwood [104], and Fryback 
and Keeney [40] arc just a sampling. 
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the patient will always prefer a longer life to a shorter one, all other things being 
equal.3 Similarly, for most measures of health status, the assertion (monotonic­
increasing health-status) will hold. Recall from table 8.1 that monotonicity as­
sertions only make sense for certain types of measurement scales specified in the 
attribute definition. Constraints like this are useful to URP during model construc­
tion. 

In many cases, it will be necessary to examine lower-level components of health 
status directly. These are very likely to have measurement scales consisting of 
discrete categories, as in the example of physical function described above. When 
these categories have some ''natural" ordering (degree of physical functionality in 
the example) this ordering should be reflected by the index values. These natural 
orderings are often closely related to preference orders. 

Preferences for physical-function are of course also monotonically increasing, but 
for other lower-level components of health-status, smaller values may be preferred, 
for example, required hospital visits per month. In still others, it is possible that 
there is an optimal point, say Ynormal, which is preferred to values either above 
or below. To represent direction of preference for such an attribute, we would 
make two monotonicity assertions: (monotonic-increasing Y [Ylb Ynorma1J), and 
(monotonic-decreasing Y [Ynormal Yub]). Here Ynormal may be a constant or may 
vary depending on other aspects of the problem. 

Naturally, these properties are an artifact of the measurement scale chosen to 
represent the attribute. Scales can be inverted to change increasing preferences to 
decreasing ones and vice versa.4 Often it may make sense to transform the non­
monotonic attribute Y to another called Z, where z = jy - Ynormall· In this case, 
preferences over Z would be monotonically decreasing. In fact, the arbitrary na­
ture of measurement scale helps to illustrate why qualitative properties from URP's 
technical vocabulary alone may not be intuitive. The interpretation of qualitative 
assertions depends critically on both the technical definition of the property and the 
meaning of the scale describing the attribute. Once again, the scale specification 
in the attribute definition' is useful, because it tells us that a transform such as the 
one above results in a scale with a very different intuitive interpretation. Since the 

30£ course, even this is a simplification. The possibility of situations so bad as to make one prefer 
a shorter life is examined in section 8.5, on independence relations. 

4In fact, Torrance, Boyle, and Horwood [104] numbered the physical-function <;ategories from one 
(best) to six (worst), rather than from six to one as I described previously. Using their indexing, 
utility for physical-function is decreasing. 

- -- - - ---- - - --------------------------
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transform from. Y to Z is nonmonotonic, relations between magnitudes of Y are 
not invariant with respect to Z. 

8.4.2 Risk Aversion 

The dependence of intuitive interpretation on both measurement scale and tech­
nical definition is particularly important for the property of risk aversion. In purely 
mathematical terms, risk aversion corresponds directly to concavity of the utility 
function. To see how this technical definition translates to the notions conjured up 
by the property's name, we will have to look closer at the quantity measured by the 
utility attribute. 

Bell [7] points out the importance of separating the different components of risk 
aversion; Several conditions may contribute to the risk aversion (concavity) of the 
utility function,5 some of these with intuitive interpretations seemingly unrelated to 
"tendency to avoid uncertainty." For example, Bell [7] cites five influences on risk 
aversion for financial outcomes: non-linear measurement of the attribute, decreas­
ing marginal value, effects of uncertainty on planning, risk anxiety, and decision 
regret. Although the legitimacy of regret and anxiety is questionable in a prescrip­
tive framework,6 the other factors may be applicable for a wide range of attributes. 
Gafni and Torrance [41] partition risk aversion into three components: a quantity 
effect (analogous to decreasing marginal value), a gambling effect (intended to cap­
ture the "attitude toward uncertainty"; not a very well-defined notion here), and a 
time-preference effect. Of course, the precise definitions of these factors depend on 
the particular attribute in question. As we will see below, some attributes may be 
associated with components of risk aversion in addition to these. 

To accommodate the possibility of multiple factors affecting qualitative prop-

5 And correspondingly, proneness or neutrality {convexity or linearity). To simplify further discus­
sion, I will speak only of aversion and will assume that preferences for the attribute in question are 
increasing. Extension to the decreasing case or to risk proneness is straightforward. 

6Unless the psychological factors behind regret and anxiety (such as disappointment, hopes, or fears) 
or the tangible effects on planning are explicitly treated in the model, there is no guarantee that 
preferences can be represented by a von Neumann-Morganstern utility function. Generalizations of 
expected utility (many of which are mentioned in a survey by Machina [721) do not offer a solution, 
in my opinion, since even these mually require that all of the factors affecting hopes, fears, etc., 
are summarized in the statement of the prospect. Nevertheless, I believe that some of these models 
as well as psychological models of preference choice may tum out to be superior for descriptive 
purposes and, therefore, useful in the assessment process. 
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erties, URP must provide a mechanism for defining influences. An influence is an 
assertion that a particular factor tends to support or refute the applicability of a 
qualitative property. URP determines that a property holds if all of its non-neutral 
influences are positive. The problem of resolving qualitative influences is similar 
to that faced by qualitative reasoning programs (like those of Kuipers [67] and 
Forbus [39]). 

Risk A version for life-years 

Defining a qualitative property for a built-in attribute consists of specifying its 
influences and asserting the ones that are valid. The influences I have chosen to 
define risk aversion for life-years are decreasing-marginal-value, time-preference, and 
age-preference. This separation is far from obvious; the discussion below serves to 
define and delimit the concept that each influence represents. 

Decreasing-marginal-value corresponds to the well-known phenomenon whereby 
agents derive smaller benefits from successive increments of the same commodity. 
The concept is particularly applicable for economic resources such as money (as in 
Bell's example noted above), since the agent is presumed to apply the resource to 
the most pressing needs or most value-gaining activities first. The value expected 
from each additional dollar decreases, since there are no items yielding greater value 
than the ones already purchased, neglecting effects of discrete purchases. 

How does decreasing-marginal-value apply to life-years? Consider the collection 
of achievements and experiences a person may hope to amass in a long lifetime. 
Premature ending of that life would generally require that some of the items be 
removed from the collection-undoubtedly those of least importance. Progress to­
ward goals may be viewed in a similar way. It makes most sense to take the steps 
yielding the most benefit, given that there is not enough time to complete the goal. 
In each case we reach the conclusion that additional years have decreasing marginal 
value. 

Of course, this conclusion is dependent on several further assumptions. First, 
it is assumed that achievements, experiences, and progress toward goals is linearly 
related to additional years. This is at best an approximation, and it is easy to think 
of several reasons it should be significantly violated. Perhaps progress towards goals 
accelerates as they are approached, or one learns to achieve faster with experience. 

The second major simplification concerns the continuity of these items. Measur­
ing them in discrete milestones would be more realistic and would have a dramatic 
impact on risk aversion. We might still expect to see decreasing marginal value for 
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life years in the long-term, but would also expect dramatically increasing value for 
lifetime increments in the immediate future. The usual example is the mother who 
would pay a large premium in life expectancy to achieve a greater probability of 
living through her child's college graduation. All-or-nothing goals present a similar 
situation. 

A third problem is uncertainty. The decreasing marginal value argument works 
for money partly because agents know for certain how much they have to allocate 
towards consumption, at least in the short run. People do not generally have such 
reliable estimates of their lifetimes, so they cannot plan their actions optimally. 
This is perhaps a good argument for ordering all efforts and experience-quests in 
decreasing value, therefore contributing to risk aversion. Unfortunately, inherent 
sequentialities of life and other types of interactions may rule out this ordering in 
practice. 

I have deliberately employed this narrow interpretation of decreasing-marginal­

value to minimize overlap with the other influences on risk aversion for life-years. 

These other influences are due to a peculiarity of the measurement scale for 
lifetime. Since life-years is a quantity of time, it is laid out in a distinct fashion: all 
additional time is added on the end. This may seem a trivie:tl point, but it has a 
substantial (perhaps unexpected) effect on risk aversion. 

To illustrate, let us consider two values of life-years: n a.nd n + k. The difference 
is not just k years, it is those k years from 1985 + n to 1985 + n + k. Higher values 
of n mean that the benefit from the extra k years of life will not be realized until 
further in the future. It is widely accepted that economic returns in the future have 
less value;7 can this also be true for life-years? If so, we will say that time-preference 

is an influence on risk aversion. 
Health economists and policy analysts make a habit of assuming positive time 

preference for life-years, usually by analogy to economic products. The validity 
of this analogy is questionable, since many of the justifications are specific to this 
class of goods.8 Concern about legacy might explain the phenomenon, since earlier 

7Thongh widely accepted, the rationale behind discounting can be quite complex. The presence of 
positive interest rates is clear evidence that discowiting is appropriate, yet the underlying economic 
justifications combine several diverse components: value of capital for production, uncertainty, risk 
aversion, variation in income streams over lifetime, and irrational behavior are some of the expla­
nations. Olson and Bailey [80] try to distill a notion of time preference from this conglomeration, 
but it is not clear that their results are transferable to health attributes-especially life-11eara. 

8From the standpoint of societal preference for years of life the analogy may be more realistic. Raiffa, 
Schwartz, and Weinstein [86] point out that the discounting of life years in cost·effectivenffis analysis 



8.4. PREDEFINED QUALITATIVE PROPERTIES 91 

earnings have. a greater contribution to the value of one's estate at a fixed point 
in time. Belief that the world will be a significantly better or worse place in the 
future can also have an impact on time-preference. There may be more compelling 
justifications, though none have occurred to me. My aim here is not to argue for 
or against the influence, only to suggest its potential applicability. 

The final and possibly most important influence is age-preference. Each addi­
tional life year comes at a higher age, so preferences for years at different ages will 
naturally affect risk aversion properties. There are many obvious reasons for hav­
ing different values for different ages, and some that are not so obvious. Physical 
attributes would tend to favor younger ages, though physical aspects taken account 
of in other health status attributes should not be considered here; the tendency of 
mental or emotional attributes are less clear. The criteria that would support influ­
ence in either direction are too numerous to discuss here. In any case, it is certainly 
an individual matter, one deserving serious attention in considering preference for 
life-years. 

The purpose of this exercise has not been to decide whether individuals should 
be risk averse for life-years, but to point out the surprising complexity behind 
what was supposed to be an intuitive concept. It should be obvious at this point 
that the interpretation of the qualitative behavior of a utility function is highly 
dependent on the attribute in question, underscoring the need for a separate module 
for translating between domain concepts and technical modeling vocabularies. 

Risk Aversion for Other Health ·Attributes 

It would also be useful to define risk aversion properties for health-related at­
tributes other than life-years. In creating these definitions, it would be necessary 
to proceed as above for each attribute, considering the possible influences on risk 
posture and their applicability in particular cases. Of course, we must also heed 
the requirements imposed by the measurement scales. 

Consider, as a brief example, the attribute hospital-confinement, measured by 
the number of days spent in a hospital bed. Note that preference for hospital­

confinement is monotonic-decreasing. Gafni and Torrance [41] suggest that 
preference in this case would also be risk-averse, since each successive day is con­
sidered worse as the patient becomes weary of her situation. If instead the patient 

I 

is justified under an assumption that the dollar value of a current life year is time invariant. While 
such an assumption and its conclusion are valid for making resource allocation policy, this does not 
necessarily have implications for the utility function of an individual patient. 



92 CHAPTER 8. DOMAIN PREFERENCE KNOWLEDGE 

became accustomed to hospitalization (therefore deriving less disutility each suc­
ceeding day), preference for hospital-confinement would be risk-prone. 

8.4.3 Other Qualitative Properties 

Similar definitions may be encoded for qualitative properties in addition to 
monotonicity and risk posture. These include the qualitative behaviors of single­
attribu te functions described previously, or other qualitative utility concepts not 
currently known to URP (such as descriptions of attribute dependencies, or multi­
attribute risk properties). 

8.5 Predefined Independence Conditions 

In chapter 5 URP's extensive facilities for reasoning about independence condi­
tions were described. To exploit this capability, the health preference knowledge 
base should contain as much knowledge as possible about the independence condi­
tions that exist among the built-in URP attributes. Defining this part of the knowl­
edge base is similar in spirit to the predefined qualitative properties; the difference 
is only in the nature of the assertions represented. 

Consider as an example our two favorite attributes, life-years and health-status. 

Earlier (section 8.4.1) I claimed that longer lives are preferred to shorter ones, 
and represented that as a monotonicity assertion in URP. While this statement 
also includes the qualifier "all other things being equal," there was no qualification 
regarding the level at which the other attributes were fixed. To say that this level 

does not matter is equivalent to an assertion of preferential-independence of 
life-years from the other attributes (in this example only health-status). 

But suppose that there is some value of health-status that is so bad that one 
would prefer to die than to live in that state of health. For example, an individual 
might express a desire that life-support be discontinued if she becomes a vegetable. 
We would encode this preference in the URP knowledge base by including the fol­

lowing two assertions in place of the original monotonicity assertion: 

(monotonic-increasing life-years I health-status f. brain-dead) 

(monotonic-decreasing life-years I health-status = brain-dead)9 

9If the individual was merely indifferent to life expectancy as a vegetable, she would not care if the 
plug was pulled or not. A decreasing conditional utility function for life years implies that utility 
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Now that we have allowed a "state worse than death" we can no longer as­
sume preferential-independence. Instead we can assert a weaker independence 
condition (introduced in section 6.11) 

(generalized-preferential-independence {life-years} {health-status}) 

by noting that the preference ordering for life-years is completely reversed in the 
extremely morbid state. 

These three assertions capture an important part of the individual's expressed 
preferences directly in URP's technical vocabulary. Just imagine how much smoother 
deciding medical ethics questions would be for the law courts if everyone recorded 
their preferences in URP assertions, rather than in casual remarks to family mem­
bers! 

Many of the other attributes that may be considered in health decisions can be 
uncontroversially declared to be independent (for some form of independence); these 
declarations should be included in the URP knowledge base to save time on utility 
formulations. For example, patients will not care much about cost for medical care 
that is paid through insurance, and society's preference for that money does not 
have any relation to the health of the patient it is spent on. Therefore, we can 
usually assert the strongest independence axiom for cost 

(value-independence {cost} everything-else) 

or at least assert it when we know that the expense is not borne by the patient. Pref­
erence for everything else is also independent of cost, since value-independence 
is a symmetric relation. 

8.6 Special Functional Forms 

The final compo:r:ient of a domain preference knowledge base is a representation 
for special-purpose functional forms that are considered useful for particular at­
tributes or combinations of built-in attributes. Utility modelers in specific domains 
have developed and tested many such models, and it would be useful to incorporate 
these experiences in URP. 

for immediate plug-pulling is strictly greater than that for delayed plug-pulling, which in turn is 
strictly preferred to living the maximum technological life. Note that these direction assertions say 
nothing further about the relative values of life under the different health statai. 
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8.6.1 DEALE 

The importance of the attribute life-years in medical decision making has been 
noted above. However, deriving a precise probability distribution over possible 
lifetime lengths is often difficult in practice. Beck, Kassirer, and Pauker [2] describe 
a simplified model of life years: the declining exponential approximation of life 
expectancy, or DEALE. The DEALE is computed solely from actuarial mortality 
rates (µAsn, the mortality rate adjusted for age, sex, and race), combined with 
excess mortality rates due to patient-specific disease conditions {the µis). 

LE= l 
µASR + Ei JJ.i 

(8.1) 

The DEALE is a very convenient model, since it is determined completely by the 
µs, which are relatively available in or computable from the literature and may be 
collected in different combinations for various patient states. Indeed, it is used rou­
tinely in decision analyses performed at NEMCH, including the example discussed 
in chapter 2. 

LE in equation 8.1 may be considered as a proxy measure for life-years, or may 
be treated as a summary statistic for the distribution over survival times implied 
by the DEALE model. Note that LE is a sufficient statistic; there is exactly one 
DEALE survival curve corresponding to. any particular LE. The interpretation de­
cision is important, since consideration of the qualitative behavior for preferences 
over LE often depends on the particular point of view. In the example analysis of 
preference for DEALE life expectancy in section 2.2, LE was implicitly taken to 
be a proxy for life-years. It turns out that direction of preference (monotonicity 
assertions) and the presence of risk aversion for life-years correspond directly to 
monotonicity and risk aversion for DEALE LE under its interpretation as a sum­
mary statistic for a survival distribution. In general, transformations like this may 
not preserve these properties. It is important to define these correspondences in 
the knowledge base along with specifications for the special models.19 

10In empiric tests of the DEALE approximation, Beck, Kassirer, and Pauker [2J only considered its 
validity as a measure of expectation-not as an approximation of the actual distribution of li/e­
years. Therefore, extreme caution must be observed in taking the distribution literally, especially in 
consideration of preference properties of the attribute. This is a compelling argument for sticking 
to qualitative behaviors as much as possible, since few utility functiODB preserve implications over 
different interpretations of survival distributions {the risk neutral form is a notable exception). 
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8.6.2 Quality-Adjusted Life Years 

One of the most widely employed utility scales of 1nedical decision analysis is the 
quality-adjusted life year ( QALY) [85]. A utility model based on QALY s is attrac­

tive to clinical decision analysts because it is computationally simple, relatively easy 
to assess, and it offers an intuitive interpretation for the numbers. The intuitive 
notion is based on the premise that a year spent in a morbid health state is "worth" 
some fraction of a year of good health. Pliskin, Shepard, and Weinstein [85] report 
necessary and sufficient utility-theoretic conditions for applying a utility function 
based on QAL Y s, which may be encoded directly in URP 's technical vocabulary. I 
will outline these conditions below, following the development of Pliskin et al. 

QALY may be appropriate when constructing a utility function for two at­
tributes: life-years and health-status. It is assumed that health-status is constant 
over the entire lifetime or that we can choose a health state that would be equiv­
alent to the particular time-stream of health states (denoted by a vector q) · we 
are faced with. That is, if Uqjy is the utility function for health status given a 
particular number of life-years, y, then there exists a health state q such that 
Uqjy(q,q, ... ,q) = Uqjy(q); For determining the applicability of QALY, we take 
the ability to choose the constant health state equivalent of a time stream of states 
for granted. Note that this task in itself may require a major preference modeling 
effort, and that the value of q may be a vector quantity made up of a variety of 
health-status sub-attributes. 

The simplest version of the quality-adjustment utility function is 

u(y, q) = yh(q) (8.2) 

where h(q) is defined as the fraction of a year in the perfect health state that the 
patient considers equivalent to a year in state q. This form is valid under the 
following conditions;11 

(joint utility-independence {life-years} {health-status}) 

( constant-proportional-tradeoff life-years health-status) 

(risk-neutral life-years) 

11The assumption that preference for life-years is monotonic-increasing is already part of the 
knowledge base. 
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Conditions ~ne and three are familiar URP concepts, but constant-proportional­
tradeoff is a qualitative property of attribute interaction, a category of utility­
theoretic knowledge not yet known to the program. Assertions like these can be 
very useful for validating or constraining multiattribute forms, therefore future ex­
tensions of URP should exploit them extensively. Reasoning about these kinds of 
properties would not be very different from URP 's manipulation of other utility 
concepts. 

In cases where risk-neutral does not hold, the form of the QALY utility model 
IS 

( ) { 
! ([yh(qff - 1) + r for r -:f 0 

'U y, q = r 
log [yh(q)] for r = 0 

(8.3) 

where r is a measure of risk aversion. This follows from constant-proportional­
risk-posture for life-years, implied by the constant-proportional-tradeoff as­
sumption. These results are derived in the paper of Pliskin, Shepard, and Wein­
stein [85]. I have restated them to illustrate how they.may be incorporated in the 
URP knowledge base. 

URP is already able to derive a two-dimensional form for u(y, q) given joint 
utility-independence, and a single-attribute form for u(y) under assumed behav­
iors risk-neutral or constant-proportional-risk-posture. The leap comes in 
the use of the function h, a nonlinear transformation of u9 , in equations 8.2 and 8.3. 
Th'us, to implement QALY in URP we would have to give an interpretation for 
the function h-how it is assessed and its relation to u9 • More directly, we would 
support an assertion that QALY is appropriate at a high level, associating that 
assertion with the three (or two) implied assumptions listed above and the related 
functional form for life-years and health-status. 

8.6.3 Time Streams 

As illustrated in the utility model for health-status over a lifetime, it can be 
important to model preferences for outcomes represented by streams of states over 
time. Consequently, utility theorists have developed special models to deal with 
this kind of situation (see Meyer [78] for a discussion of the general issues). Due 
to the special structure of time-period attributes (sequentiality, constant dimen­
sion), intuitive concepts of preference may be stated succinctly-resulting in mod­
els far simpler than the general case. For example, for n-period streams of the 
form x = (xi, ... , Xn), the concept of successive pairwise preferential independence 
is equivalent to the URP concept: 
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(preferential-independence (Xi Xi+i) Xi,i+t), i = 1, ... , n - 1 

To build expertise. about preference modeling over time into URP, we would 
include definitions for those concepts developed specifically for utility analysis of 
outcome streams. In general, these concepts are combinations of general-purpose 
independence conditions, or other qualitative properties, that are already known 
to URP. Therefore, we can represent these in the knowledge base simply by using 
the concept name as a definition to be expanded into lower-level assertions (similar 
to URP's handling of joint independence described in section 6.9). Alternatively, 
URP can reason about these concepts at two levels: reduced to lowest terms and 
as top-level concepts. This latter possibility is advantageous when the concepts are 
closely related to specific utility models. 

Several analysts have developed their own models of preference over time for 
specific application projects. We could include these models with their associated 
utility assumptions directly in the URP knowledge base, providing a wide variety 
of time models to choose from. For example, in an application of decision analysis 
to prostate cancer, Higgins et al. [49] employed an independence condition they 
called the "separability assumption" to simplify time streams of health states. to 
an equivalent (with respect to preference) symptom-free outco~e. Bell [3] gives 
sufficient conditions for a utility function that allows certain limited dependencies 
of preference among elements of a time stream. While URP can reason about the 
first principles from which both of these were derived, direct encoding of the special 
model leads to more efficient model generation and superior assessment, interpre­
tation, and explanation ability. 

8.6.4 Value of Life 

Economists and public policy analysts have long studied models for placing 
economic values on life and health. Some of these models are close enough to' utility­
theoretic treatments that they may be encoded in the URP technical vocabulary for 
inclusion in a domain preference knowledge base. 

For example, Howard's model for measuring the value of small risks of death 
or disability [53] assumes that consumption and lifetime can be traded off pro­
portionately and that constant-risk-aversion holds over the function combining 
consumption and lifetime. From this he derives a measure of the value associated 
with small risks of death. The model is extended to disability under assumptions 
about health states similar to those required for the QALY model (described in 

- ----------------- -----------------------
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section 8.6.2 above). It might be convenient to have this model, as well as other 
similar models, available in URP because of its simple structure and attractive ex­
planatory power. Indeed, Holtzman 's rule-based system for decision analysis in the 
domain of infertility problems [52] uses Howard's model as part of its underlying 
value function. 

8.7 Summary: Using a Domain Preference Knowl­

edge Base 

The purpose of this chapter was to demonstrate that while a domain-independent 
mathematical modeling system like URP must reason in terms of a technical mod­
eling vocabulary, it is possible to define a layer of domain knowledge that can be 
combined with the modeling system to yield a more complete modeling tool. In in­
troducing the URP health preference knowledge base, I suggested that such a corpus 
may be useful as both an interface to expert systems and a library of model com­
ponents for a human analyst. Advantages of separating the modeling kernel from 
concepts of the application domain are described in detail in another paper [111]; 
here I am more interested in speculating about the content and form of knowledge 
about preferences in a particular domain. 

The module that maps between domain concepts to the technical modeling vo­
cabulary may in general consist of model templates, model component specifica­
tions, assertions about specific components, or special reasoning strategies. For 
URP, I have suggested that the forms of domain knowledge include: 

• built-in attributes 

• predefined qualitative properties for single-attribute preference 

• predefined independence conditions among attributes 

• special-purpose functional forms 

• existing preference measures (e.g. health status indices) described in the lit­
erature 

The health preference knowledge base is summarized in appendix F. 
An expert system using URP for preference modeling would co~municate with 

the modeler through the domain concept mapping module. Reasoning events in the 
program would be linked to preference concepts, directing the model construction 
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process. For example, it would be up to the expert domain program to decide 

which attributes are important for a particular decision problem (for some expert 
systems this would be the same for every problem instance), and to determine which 
qualitative properties apply. We can easily envision a MYCIN-like system containing 
rules such as the ones illustrated in figure 8.2. 

RULEOOl: 
IF 
THEN 

RULE002: 
IF 
THEN 

There are no states worse than death 
(joint preferential-independence {life-years} {health-status}) 
(monotonic-increasing life-years) 

Financial costs are not borne by the patient 
(value-independence {cost} everything else) 
(monotonic-decreasing cost) 

Figure 8.2: Constructing preference models in a rule-based expert system. 

Similarly, the domain expert system would use the result of URP's model analy­
sis to make decisions, drive further preference modeling, and generate expla?ations 
and justifications. While it would be relatively straightforward to give a rule-based 
system access to URP's results (for example, by providing a predicate to test dom­
inance, or describing the qualitative· structure of the preference model), making 
intelligent use of the analyses is a subject for future work. 

-----~-----~-------



9. Conclusion 

Having examined the mechanisms of preference modeling in some detail, it is 
appropriate to step back and examine again the task as a whole. In evaluating the 
contributions of this work from a larger perspective, it helps to keep the following 
questions in mind: 

1. What are the problems that URP tries to solve? 

2. How does URP's approach compare to related efforts? 

3. What insights and specific achievements have evolved from this work? 

4. What are the shortcomings of URP, and how might they be remedied? 

5. What is the practical potential for including preference models in decision 
n1aking programs? 

In the discussions below I address these and other issues. 

9.1 Perspectives on this Research 

The goals and patterns of emphasis in this project have been influenced by inter­
ests in several different fields. I have found it useful to classify the potential benefits 
of this line of research into three areas, each representing a separate audience for 
this material. In this section I discuss what I believe are the important motivations 
and contributions of this work from each perspective. 

9.1.1 Decision Making Programs 

It seems an inescapable fact of technology that more and more decisions affecting 
society will be performed by computer programs, in one capacity or another. The 
spread of expert-systems-building methodology, including commercially available 

generation tools, has spawned many projects seeking to develop programs to make 
decisions in some specialized area requiring considerable expertise. These efforts 
have demonstrated enough promise to indicate that computers will play an increas­
ingly large role in providing expert-level advice and decisions to broader categories 
of users. 

100 
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Much has been written about requirements for these systems to become accept­
able, particularly in sensitive areas like medicine.1 Writers of these papers (Szolovits 
and Pauker [101], for example) often point out that programs must be able to ex­
plain and justify their conclusions and their knowledge bases should clearly reflect 
knowledge used (or usable) by experts in the field. But work on explanation has 
been mainly concerned with the elucidation of reasoning structures and mechanisms, 
providing justification for the program's inferences about the state of the world. At 
best, recommendations a.re justified by explaining the program's beliefs about what 
would happen under various strategies under consideration. There is never any 
explanation of why the program considers one outcome to be more desirable than 
another, because such comparisons are rarely (if ever) examined explicitly. 

In using a decision-making program that employed preference models, the con­
sultee would be able to query the system about its underlying preference assump­
tions. This capability is especially important if preferences can vary significantly 
among different decision makers.2 Note that even a program that explicitly consid­
ers tradeoffs may be unexplainable if its confi.ict resolution method is sufficiently ad 
hoc. 

Often, it is not necessary to have a sophisticated explicit preference model. In 
fact, most AIM {for AI in Medicine) programs that make decisfons are in domains 
where a simplified objective structure is sufficient. For example, MYCIN [95] has a 
single objective-prescribe drugs to cover for all likely infecting organisms. Since 
most of the drugs in MYCIN's repertoire are fairly benign, this simple goal may pro­
duce results very similar to a program embodying the real goals of the patient. Here 
most of the effort is in determining the likelihoods of each organism-what might 
be called the probabilistic model formulation stage in a decision-analytic approach. 
In general, problems where the decision is uniquely determined by the result of the 
program's reasoning about the state of the world a.re not prime candidates for a 

1 Examples in this section are taken from work in knowledge-based systems for medicine. Much 
of the pioneering work in applied AI has been in medicine, and medical problems often have the 
characteristics of difficult decisions that motivate formal approaches. Besides, it is the area with 
which I am most familiar. 

2Studies by McNeil, Weichselbaum, and Pauker [77] and Pauker, Pauker, and McNeil [83] illustrate 
the widespread differences in patient preferences for particular health outcomes, as well as the 
importance of these differences for decision making. A third paper [75] highlights variations in 
preference for life-yeara and argues that preferences are crucial in a large class of medical decisions. 
Kassirer [57] argues more generally that preferences of mdividual patients should play a central 
role in clinical decision malting. 
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preference modeling approach. 
Sometimes it is possible to deal with small deviations from the single-objective 

case without resorting to full-fl.edged preference models. ABET [16] chooses a ther­
apy designed to restore a patient's proper electrolyte and pH levels. Conflicts be­
tween the individual electrolyte objectives are mediated through the use of an ad 
hoc urgency mechanism. Imbalances of different electrolytes may be compared in 
terms of health risk, in effect turning the multiattribute problem into one of a sin­
gle attribute. Interactions which would invalidate this translation are treated in a 
special-case fashion. Note that this method of modeling objectives is entirely im­
plicit in the program design, and it is doubtful that the designer thought of the 
model in these terms. 

( 

Many decisions in medicine as well as other fields, however, cannot be forced so 
easily into such a simple objective structure. AIM has generally avoided such prob­
lems, concentrating instead on diagnosis and reasoning about physiology. This. is 
appropriate, since it represents the greatest part of medical expertise. And in cases 
where the diagnosis uniquely determines the decision, it is a complete solution. But 
for some important. and difficult decisions, another type of expertise is required-a 
more fundamental decision making expertise. A necessary approach toward captur­
ing that expertise is to explicitly represent and reason about the desirability of the 
various possible outcomes. 

The argument for formal preference models is even more compelling for decisions 
made by computers than for human decisions. Those who object to the practical use 
of utility analysis for decision making can claim that unaided human decision makers 
may be taking into account criteria that are beyond our abilities to model. This 
claim does not hold that the decision making of humans is superior in every respect, 
only that utility theory alone does not (and fundamentally cannot) fully capture 
all of the subtleties of human preference choices. While decision analysts will argue 
that we do not want to imitate most of these subtleties, we are undoubtedly missing 
some positive features. 

Computer programs that make decisions are themselves formal objects. For this 
reason, it is more difficult to argue that we would miss something by treating the 
preference structure formally. If we cannot tell what the preference model of a 
decision making program is by inspection and analysis, it is because the model is 
buried within the knowledge and control structures, not because there is anything 
magical or inherently unmodelable going on. The program designer has imposed 
an implicit preference structure on the process, which may or may not conform to 
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her own interrial model. 
The idea of separate, explicit preference models is also a good policy from the 

standpoint of modularity in knowledge-based system design. Modifications or addi­
tions to the knowledge base may have unpredictable and undesirable effects on the 
program's objective structure if that structure is allowed to be implicitly distributed 
throughout the program. Once again, the use of ad hoc tradeoff mechanisms shares 
many of the defects of using no explicit mechanism at all. 

In summary, the presence of an explicit objective structure enhances the ca­
pabilities of the system in three important ways. First, the decisions are more 
explainable and justifiable. Second, explicit representation of objectives greatly 
improves the modularity, and therefore the integrity, of the system. Finally (and 
perhaps most importantly), the decisions will be better-at least according to cer­
tain formal theories of decision making. Any program working within a reasonably 
complex decision space is almost certain to produce contradictions (with respect to 
axiomatic expected utility theory) if it does not expressly attempt to avoid them. 

9.1.2 Utility Analysis 

Researchers in decision analysis, as well as other areas of Operations Research 
and Management Science, often lament the fact that their techniques are not in 
widespread use by real-world decision makers.3 This is certainly not because these 
decision makers do well enough on their own, or because the theories have not 
been developed enough. Bell [9] poi~ts out that decision analysts themselves fail 
to apply the methodology to their own problems. There may be many reasons for 
this failure, but the main cause is undoubtedly the tremendous effort and difficulty 
involved with using the formal models. 

In the case of utility theory, there might be a question related to the admissibility 
of the axioms on which it is based. But this seems to be a negligible problem, 
since the axioms are generally very weak and acceptable to prospective decision 

( 

makers. Besides, analysts are often extremely willing to use much cruder models 
that have either no theoretical basis or implicit assumptions that are demonstrably 

3Little [70] begins a discussion of modeling tools (what would now be called Decision Support Sys­
tems) by declaring "The big problem with management science models is that managers practically 
never use them." While the statement is a bit dated, the sentiment is still quite true. The prolifera­
tion of personal computers and spreadsheet software have made the use of simple forecasting models 
more commonplace, but for the most part the more sophisticated models see little application. It 
is fair to say that with respect to theory, practice has been left in the dust. 
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inappropriate for the problem at hand. Another problem is a general skepticism 
regarding the legitimacy of techniques used to assess utility functions. Formally the 
theory is airtight, but in practice subjective judgments are an inextricable part of 
the process. Thus, the main barriers to the use of utility analysis are the practical 
difficulties of constructing and interpreting utility functions and a lack of confidence 
in the judgments required for their assessment. In the rest of this section, I will 
describe how URP and the overall framework described here may help to alleviate 
these problems. 

Incomplete Specification of Preference Model 

By removing the restriction that requires utility functions to be completely spec­
ified before analysis can begin, we add a great amount of flexibility to an assessment 
system. Even when employing the most simplifying assumptions, the task of assess­
ing a utility function in complete detail is tedious, painful (requiring soul-wrenching 
decisions regarding unpleasant events), and subject to serious cognitive biases. If 
we are able to derive a decision before specification is complete, we alleviate much 
assessment effort. We may feel more confident in the result, because it depends on 
fewer and weaker assumptions. The inability to use partial information is proba­
bly the major reason that the mathematically complex models developed by utility 
theorists to represent weaker assumptions are rarely used in applications. 

We have seen above that URP is able to derive some interesting conclusions and 
sometimes decisions from incomplete single-attribute utility functions. The exam­
ple used earlier is far from unique; the commonality of situations where partially 
defined utility functions are adequate is the impetus for research in stochastic dom­
inance. In a recent discussion of the important future developments in decision 
analysis, Winkler [114] emphasizes the promise of utility analysis tools that can 
take advantage of incomplete information. 

In multiattribute utility, complexity, and correspondingly the strength of un­
derlying assumptions, is measured by the degree of interdependence of preference 
among the attributes. By relaxing the restriction to complete specifications, we 
open up possibilities for applying multiattribute decompositions that admit lim­
ited kinds of dependence (another promising research area cited by Winkler (114]). 
Multiattribute ~tility assessment using current methodology is difficult enough in 
the simplest situation-to acknowledge attribute interdependence is tantamount to 
acknowledging that utility analysis is inappropriate. In fact, I am not aware of 
a real-world application that used anything more complex than a multiplicative 
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utility function, or perhaps nested combinations of multiplicative utility functions. 
These functions are valid only under fairly strong independence assumptions. This 
represents the feasibility limit under current utility assessment methodology, which 
is clearly inadequate for credible preference modeling. 

URP already has the facilities for generating decompositions based on more re­
alistic assumptions. Combining this with the ability to reason about partial models 
(still in the future for the multiattribute case) should help to extend the feasibility 
frontier. 

Reasoning About Underlying Assumptions 

The validity of any utility representation depends on assumptions about the 
preference structure. At the most basic level, use of URP requires acceptance of 
axioms that imply the existence of a utility function. 4 Further conclusions about 
the utility function are based on additional assumptions. Clearly, these assumptions 
are important building blocks for model construction. 

The underlying premises of an URP preference model (qualitative behaviors and 
independence axioms) are maintained as propositions in a truth maintenance sys­
tem to provide for modular assertion and retraction. At the very least, modelers 
who use this program for developing a utility function will be aware of what under­
lying assumptions they are making. This may induce them to think more carefully 
about their simplifications. Further, examiners of the model can then see what pre­
suppositions went into the formulation, and use that knowledge to decide whether 
to believe it or not. The whole process becomes more transparent and more honest. 

Another advantage is the explicit representation of the relations between various 
types of assumptions. This knowledge is built into the program, to be used for both 
reasoning and explanation. Modelers may find that a particularly useful assumption 
is implied by several different sets of weaker primitive axioms and can choose the 
set which appears most justifiable. It may also prevent the analyst from making 
strong assumptions (or thinking that she is making strong assumptions) that are 
unnecessary for the model in question. 

Further discussion about the importance of assumptions in a more general math­
ematical modeling context may be found in a forthcoming paper [111). 

40n startup, URP asserts the primitive proposition "(von-ncumann-morganstern-axioms)." H 
this assertion is ever retracted, then URP will do something drastic like erase 'all conclusions and 
halt. Except for this and some assumptions like continuity and differentiability employed by the 
mathematical reasoning system, all premises are explicitly asserted by the user. 
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Structural Sensitivity Analysis 

Analysts will often attempt to validate their results by performing a sensitivity 
analysis on their model. The purpose of this analysis is to examine the effect of 
perturbations in parameter values on the overall result. If it turns out that small 
changes of the parameters over their realistic ranges does not have a large effect­
that is, it does not change the decision-then the analyst will be confident in the 
correctness of the result. 

It may be argued that the restriction to completely specified models is not much 
of a restriction, since we can simply choose baseline values for the parameters ar­
bitrarily and use sensitivity analysis to account for variations. But this will not 
lead to a satisfactory validation, because only a few parameters are varied at a 
time. In moderately complex decision analyses, there may be dozens of parame­
ters. In such cases, the model may prove unjustifiably insensitive to variations in 
only a few. Variation of more than two or three parameters turns out to be both 
computationally infeasible and difficult to interpret. 

One reason that the model may be unjustifiably insensitive is that there may be 
couplings among the parameters that are not explicitly represented. That is, a built­
in redundancy or other interaction captured in the estimates. Part of this may be 
eliminated by decomposing the higher-level parameters of the decision to a smaller 
number of common "influences" [53] affecting them, and expressing the higher­
level parameters as functions of the lower-level ones (this mechanism is available 
in decision analysis tools). But this does not solve the problem, since there may 
be obvious relations among the parameters without any easily identifiable common 
components. Choice of parameters is often dictated by external factors such as 
measurability, convention, or intuitive appeal, which may make them difficult to 
decompose. Perhaps these may be captured by some other sorts of constraints, 
using inequalities rather than definitions. Something like this may be possible even 
within the current framework for sensitivity analysis, but it is more natural in a 
system that avoids baseline estimates in the first place. 

A fundamental limitation of traditional sensitivity analysis is that we can vary 
the parameters, but not the underlying model. It is impossible to ask questions 

I 

like "What if this particular assumption is wrong?" Recognizing the importance 
of such questions, Farquhar [30] has called for the development of procedures for 
performing structural sensitivity analysi8 which would examine the effects of more 
fundamental changes in the model. 

The potential for structural sensitivity analysis in URP has been pointed out 

------ - - ---- -------- ~------ --------------
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earlier in this thesis. In the multiattribute decomposition example (section 2.4), re­
traction of an assumption led to a significant restructuring of the preference model. 
Assertion and retraction of qualitative behaviors may be handled dynamically, re­
sulting in a wide range of functional forms and parametric constraints. The possibil­
ity for switching between alternate ·psychological theories for interpreting preference 

choices was discussed in section 7.4.2. This would be a particularly novel form of 
structural sensitivity analysis. 

Efficiency in structural sensitivity analysis is achieved through maintaining de­
pendencies between premises and derived inferences about the preference model. 
At the propositional level these dependencies are recorded by RUP. Dependency­
directed reasoning has been a subject of much study by AI researchers in recent 
years; it would be no surprise if a capability for structural sensitivity analysis was 
first developed in systems employing AI techniques. It will be interesting to see how 
dependency-directed inference may be incorporated into other aspects of URP's rea­
soning about preference models. McDermott [74] offers suggestions for maintaining 
dependencies among inequality assertions. His techniques are likely to be useful 
in extending URP to handle preference choice information-basically assertions of 
inequalities among utility function evaluations. 

Explainability 

It is undoubtedly easier to describe in intuitive terms a preference model that is 
based on qualitative characteristics than one that is a purely mathematical object. 
Each conclusion made in constructing the model is traceable to base-level premises, 
which should have some meaning to whoever asserted them (a human user or some 
level of interface). The program should be capable of providing a good explanation 

of the model structure-after all, the program constructed the model in the first 
place. This is somewhat analogous to the explanation work of Swartout [99], where 
the program is more explainable because it is written by an automatic programmer. 
In our case, the model is more explainable because it is constructed by an automatic 
modeler. 

But of course, explainability does not come for free. As Clancey points out [19], 
the knowledge that is best for reasoning is not necessarily appropriate for explana­

tion and justification. And Swartout's system [99] would not work with just any 
automatic programmer. XPLAIN generates the expert system based on a detailed 
domain model and a knowledge base of domain principles. Special explanation 

problems arise in mathematical modeling applications, particularly in describing 
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quantitative relationships. Kosy and Wise [65] have demonstrated an approach for 
explaining simple spreadsheet models; it may be possible to extend their methods 
to other quantitative relationships. The major explanation issues have not been 
explored extensively in URP, but there is reason to suspect that there will be some 
improvement over traditional approaches. Decision-analytic models which do not 
maintain ties between the quantitative constructs and their qualitative justifications 
are notoriously opaque. 

Utility Analysis: Summary 

Some of the benefits of the URP approach for utility analysis were not discussed 
in this section, because they are described in some detail elsewhere in the thesis: 

• Encoding knowledge about utility theory (specifically multiattribute decom-
position) in an explicit representation {chapter 6) 

• Interpretation-independent representation of assertions {sections 3.2.2 and 7.1) 

• Tying model assertions to domain knowledge (chapter 8) 

In summary, facilities provided by URP and potential capabilities of future pro­
grams built within the URP framework address many of the problems associated 
with utility analysis under current methodology. By emphasizing underlying as­
sumptions and allowing partially specified functions, URP supports a qualitative 
view of utility. This qualitative basis in conjunction with URP's framework for 
dominance-proving and structural sensitivity analysis provides a response, or even 
a solution to each of the complaints about the multiattribute utility approach enu­
merated by Starr and Zeleny [97] in a recent survey of decision making with multiple 
criteria. 

0.1.3 Mathematical Modeling 

The third and final perspective comes from viewing utility analysis as just one 
kind of mathematical modeling. Mathematical models are used extensively in just 
about all branches of physical and social science, and one might regard the skill 
and knowledge involved in creating and analyzing them an important type of ex­
pertise. Of course, this expertise is very different for different modeling tasks, but 
undoubtedly there are some general principles and mathematical capabilities that 
are broadly applicable. 
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I have found the preference modeling task to be a particularly good example 
for studying mathematical modeling expertise, because it deals with many of the 
central issues I believe arise more generally. In addition to the issues of reasoning 
with mathematics, there are a set of issues pertaining more specifically to the con­
struction of formal structures representing a simplification of the real world. The 
remainder of this section highlights the features of URP which may have implications 
for general issues in building knowledge-based systems for mathematical modeling. 

Mathematical Expertise 

A program that is expert at mathematical modeling should naturally be com­
petent in mathematical reasoning. It is important to note the distinction between 
numerical computation and mathematical analysis. We are interested here in the 
latter, deeper type of mathematical capability. 

URP's mechanisms for reasoning about qualitative behaviors represent a step 
in the direction of deeper mathematical knowledge. Because the program reasons 
about behaviors in terms of their mathematical definitions, the concept associated 
with them may be applied in a variety of ways, some unanticipated during the 
original design of the program. 

Usually mathem.atical models are constructed to answer a set of questions that 
may be expressed in a formal language. If the types of questions are known in ad­
vance or are of a highly restricted form, it is feasible to develop algorithms to answer 
each type of allowable question for each qualitatively distinct possible model struc­
ture. But there is often a substantial benefit to be gained by taking a more general 
approach. We may wish to restructure the models dynamically (as in structural sen­
sitivity analysis, discussed above), or permit a much broader range of queries about 
the model. In such cases, the strict algorithmic approach breaks down, requiring 
a much more flexible kind of problem-solving behavior. To gain this flexibility, ex­
pert programs for mathematical modeling will have to look a lot more like theorem 
provers than like the model analysis packages of today. 

Emphasis on Assumptions 

I have already discussed in some detail the benefits of reasoning directly about 
assumptions underlying preference models. The only thing to add here is the obser­
vation that assumptions are a fundamental part of virtually all modeling disciplines, 
therefore, we should expect analogous benefits in the general case. 
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Measurement Properties 

As argued in section 8.3.1, programs that manipulate quantities should know 
something about the measurement properties of those quantities. This can prevent 
some "common sense" errors as well as indicate allowable operations and transfor­
mations that may help in mathematical problem solving. 

Technical Vocabularies 

The notion of a technical vocabulary developed in section 8.1.2 is a useful con­
cept in the design of knowledge-based systems for mathematical modeling. The 
vocabulary is the language of the domain-independent modeling system, which ul­
timately defines the scope of the modeler's expertise. This language also provides 
a basis for building knowledge bases specific to modeling in particular domains, as 
illustrated by the health preference knowledge base specified for URP. In general, a 
well-designed technical vocabulary will lead to a clean separation of modeling and 
application-area expertise. 

Flexible Use of Algorithms 

When it is necessary to use algorithms coded directly in a general-purpose pro­
gramming language, it helps to provide the overall modeling system with some 
knowledge about the algorithms available. Though the ideas have not been de­
veloped very far, URP's facility for specifying dominance-testing algorithms (sec­
tion 4.3) illustrates some kinds of information that should be useful. As mentioned 
in section 9.2.2 above, several other programs, particularly in statistics, have pro­
vided similar facilities for specifying analysis algorithms. 

Other Components of Modeling Expertise 

Work on URP has scratched only the surface of the mathematical modeling issues 
described above. In addition to these, there are several kinds of knowledge not used 
by URP that are in general important for programs that reason about mathematical 
models: 

• Empirical verification of assumption validity 

• Heuristics to direct search for valid model structures 

• Effects of approximations 

--~.~--- - -- ---~--------- ---- -- -
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• Computational complexity of model analysis algorithms 

• Qualitative interpretation of model results 

The possibility of including these components of modeling expertise in knowledge­
based systems has not been adequately explored. All are probably necessary for a 
truly expert automatic modeler. 

9.2 Other Work 

9.2.1 AI and Decision Analysis 

Considering the large amount of research that has been concerned with comput­
erized decision making and decision aiding, it is surprising (and regrettable) that 
there have been so few attempts to integrate approaches from artificial intelligence 
(AI) and decision analysis (DA).5 I believe that this lack is due to the prevailing per­
ception of the fields as competitive-that it is necessary to choose one or the other 
as the "better" methodology. Of course, neither strategy is clearly ''more right," 
rather each has particular strengths and weaknesses which are highly dependent on 
the situation. Recognizing this, some researchers have attempt"ed to identify the 
features or stages of decision situations in which either methodology is more or less 
appropriate. An example is the discussion by Szolovits and Pauker [100] of issues 
arising in trying to cope with uncertainty in medical diagnostic programs. While a 
method of deriving beliefs does not necessarily imply a method of choosing actions 
based on beliefs, many of the issues they discuss are relevant to the choice between 
AI and DA as an overall approach. 

A different kind of question to ask is "How might ideas from either discipline 
complement the other?" There are many conceivable ways in which AI techniques 
could enhance DA tools (the AI-+DA direction) and DA approaches could be incor­
porated in AI programs {DA-+AI). Although some have recognized the potential 
of integrating the two methodologies [32], serious attempts at this synthesis have 
been few and far between. The technical issues involved have not been adequately 
explored, and the precise benefits to be gained from the integrated system have not 
been clearly formulated. 

5The use of probabilistic methods in an AI program does not constitute an integration of DA into 
a system. At the very least there must be some principle of expected utility maximization as a 
choice criterion. Bayesian or pseudo-probabilistic inference l!Chemes are for managing beliefs, not 
for making decisions based on beliefs. 
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The rest of this section presents some details of a few early attempts to exploit 
AI techniques for the improvement of DA systems. Though none of these efforts 
are devoted primarily to utility analysis (and I know of no other work that is), a 
review of these systems serves to develop a perspective for the research described 
in this thesis. Use of URP for decision analysis should be considered in the context 
of these integrated approaches. 

Decision Tree Generation 

Structuring a decision problem in the form of a decision tree is one of the primary 
tasks in performing an analysis. One of the more promising avenues for an AI--.DA 
approach is to use a domain knowledge base to formulate a decision problem from 
a description of the situation, for example, disease states of the patient. 

Rutherford et al. [88] describe a decision analysis program for Hodgkins disease 
which employs ,some novel methods for representing knowledge for the generatfon 
and evaluation of decision trees. Rather than directly encoding the tree as a struc­
ture of nodes with associated probability and utility expressions, the Hodgkins 
program uses predefined concepts of tests and treatments to dynamically construct 
a decision tree at decision evaluation time. The structure of the tree is compiled 
into the interpreter, in the sense that the decision at any point is a choice among 
the remaining tests and the available treatments. The effect of tests is to revise the 
likelihood of the various patient conditions, perhaps exposing the patient to some 
mortality risk. Treatments are always terminal nodes of the decision tree. The 
expected utility of a treatment is calculated directly from the input distribution of 
patient conditions. 

Even though this simple decision structure is compiled into the program, the 
system's use of test and treatment as high-level concepts provides a flexibility not 
found in typical DA t.ools. Characteristics of the patient may be used to determine 
the list of available tests and treatments, or these may be controlled directly by the 
user. It is even possible for the user to define her own tests and/ or treatments, to 
modify existing ones, and to specify new strategies or parts of strategies. Since any 
of these changes results in widespread structural modifications of the decision tree, 
such a task would be extremely cumbersome using traditional ''tree-defining" DA 
programs. Algorithms designed specifically for optimizing test selection sometimes 
avoid these difficulties. 

Hollenberg's Decision Tree Builder (DTB) [50] generates decision trees using a 
medical knowledge base of diseases and interventions (tests and treatments). Unlike 
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the Hodgkins program, DTB is intended to handle a broad range of medical decision 
problems. Consequently, its representations are considerably more general, and its 
tree generation correspondingly more flexible. A disease may be parameterized by 
attributes, which in turn may influence the applicability of various interventions as 
well as probabilities and utilities in the model. Tests and treatments may indicate 
or modify the values of disease attributes. A simple control structure directs tree 
construction, employing a model of patient states for bookkeeping purposes. 

Hollenberg's work has also explored the use of influence diagrams, a represen­
tation for decision structures developed by Howard and Matheson [54]. Influence 
diagrams off er several advantages over decision trees as an internal representation 
for a decision formulation in automatic DA model-builders. Like decision trees, in­
fluence diagrams are graphs where the nodes represent decisions or chance events. 
The links in influence diagrams represent information and probabilistic dependen­
cies among the nodes. Because decision trees must be strictly hierarchical, they 
contain a substantial duplication of structure that is unnecessary in influence dia­
grams. In fact, the number of nodes in a decision tree grows exponentially with the 
size of an influence diagram. Furthermore, a decision tree representation cannot 
take advantage of known independence relations, since a left-to-right ordering is 
always imposed on events. Though sometimes this ordering reflects the temporal 
course of the situation, often the precedence choice is quite arbitrary. 

Consultation Systems 

The systems described thus far, including URP, would be characterized as pri­
marily Al-tDA approaches. Attempts to integrate AI and DA in systems for direct 
consultation, on the other hand, contain elements of both directions. 

RACHEL, designed by Holtzman [52], is a program to aid in decisions faced by 
infertile couples. The program has a prespecified formulation of the most general 
form of decision problem, represented as an influence diagram. For consultation, 
RACHEL uses domain knowledge encoded as production rules to determine which 
parts of the internal model should be instantiated for particular cases. In establish­
ing and parameterizing the model, the program is controlled by a backward-chaining 
inference engine. Parameters of the model are filled in by user input or inference 
rules which may take the structure of the model into account. 

"Intelligent decision systems" built along the lines of RACHEL incorporate do· 
main knowledge to cover a well-defined class of decisions {infertility in this case, 
end-stage renal disease in a precursor system also developed by Holtzman [51]). 
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The domain knowledge is primarily in the form of a general decision model, en­
coded as an influence diagram with assessment functions for each node of the graph. 
Constructing a model for a particular decision is largely a matter of reducing the 
template model that is built into the program. Note the contrast between this and 
the tree generation approach described above, where models are constructed by 
combining primitive components in a controlled fashion. 

Le~ner and Donnell [69] propose an architecture for a decision aiding system 
based on a combination of DA models and rule-based expert systems. Basically, 
their system consists of a prespecified utility model that is parameterized by the 
application of inference rules. Although this approach is severely limited, it repre­
sents a simple kind of integration that can be routinely implemented with current 
application technology. 

It would be interesting to identify the domain-independent component of model­
ing expertise and separate it from knowledge specific to the decision-class supported 
by the consultation system. Such a clean division is not apparent in existing ap­
proaches. 

9.2.2 Knowledge-Based Approaches to Mathen.iatical Mod­
eling 

At a recent major AI conference (IJCAI 1983), four papers were presented that 
described projects merging expert systems and mathematical modeling. Though 
differing widely in application area (oil-well data interpretation [15], portfolio selec­
tion [20], flood control [21], and macroeconomics [87]) as well as in the mathemati­
cal modeling discipline employed, each takes a similar approach toward integration: 
applying production rules to parameterize model templates. This sample is repre­
sentative of the existing expert systems that incorporate a mathematical modeling 
component.6 

A rule-based system that fills in parameters often makes mathematical models 
easier to use. An extra layer is placed between the model and the user, translating 
qualitative criteria to the numeric input required by the model analysis package. Or 
perhaps the translation is in the other direction, from the model's numeric output 
to qualitative concepts more intuitive to the user. In either case, the rule base is 
useful for connecting mathematical modeling to other sorts of automated reasoning 

61 am excluding from this discussion expert systems that perform tasks (such as scheduling or 
inventory control) in areas where mathematical models are traditionally employed. 

--·--·· ---------------
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and certainly provides an improvement over unaided use of modeling algorithms. 
Some of the issues in developing these interface layers are discussed by Weiss et al. 
[110]. 

Nevertheless, systems that treat the modeling algorithm as a black box are un­
duly limited in the range of mathematical models they can construct and the pos­
sible conclusions they can derive from the analysis. This rigidity typically restricts 
uses of the program's knowledge to modeling in only one narrow application domain 
or even to a single problem instance. For example, the portfolio selection program 
built by Cohen and Lieberman (FOLIO) [20] contains a template goal programming 
formulation which it parameterizes and then solves by calling the black-box algo­
rithm. Since there is no domain-independent knowledge about goal programming, 
it cannot adapt to different model structures that may be appropriate for specific 
cases. While sometimes it is possible to mimic a structure by setting parameters 
of an overly general model appropriately, the algorithm cannot take advantage of 
potential simplifications. A more serious problem is that the program is unable to 
deal with violations of the assumptions underlying the model. (The model in FO­

LIO is equivalent to an a~ditive-linear multiattribute utility function-a form that 
is valid under only the strongest of independence conditions.) A program with a 
more general modeling expertise might be able to handle cases where some of the 
default structural assumptions are inappropriate. 

One important component of modeling expertise is to choose among alterna­
tive analysis algorithms. An expert system built specifically for this purpose is 
SACON [12], a program that advises engineers in the use of a structural analy­
sis package. The package is a large collection of programs for specific modeling 
tasks. SACON uses knowledge about the package to determine which of its algo­
rithms should be used to analyze the structure that the engineer is interested in. 
Knowledge about algorithms includes items like error tolerance and the types of 
structural phenomena that are considered (fatigue, for example). This knowledge is 
encoded in production rules. URP makes use of the same types of knowledge about 
dominance-testing algorithms but records the information in a schematic data struc­
ture. Similar specifications for algorithms have been employed in knowledge-based 
approaches to statistics (Blum's RX [14] and a regression system developed by Gale 
and Pregibon (42]). 

Other expert systems perform some kinds of quantitative reasoning. Kunz's 
AI/MM [68] utilizes simple quantitative relations between physiological parameters 
within a rule-based system. The mathematical modeling components of these sys-
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terns are not nearly as sophisticated (that is, complex to apply and interpret) as 
those we are most concerned with here, but the development of techniques for cou­
pling categorical and quantitative reasoning methods is potentially useful for our 
purposes. 

9.3 Limitations 

Deficiencies of URP have been pointed out throughout this thesis report. Many 
of these are due to time constraints; it was simply impossible within the scope 
of this project to explore every issue of the preference modeling problem that the 
approach described here might address. Of course, the implementation of even the 
best-developed parts of the task leaves much to be desired. Other limitations are 
more fundamental in that it is difficult to foresee their solution within the currently 
envisioned preference modeling paradigm. The sections below examine the weak 
points in more detail, suggesting possibilities for improvement in some cases. 

9.3.1 Preference Modeling Issues 

While URP is useful for a substantial part of the preference modeling task, it 
does not quite cover the high-level view depicted in figure 1.1 on page 5. There is 
at least one complete path from input assertions to a decision, though many of the 
paths we would like to take using the system run into missing components along 
the way. 

Chapters 7 and 8 discuss how the issues of assessment and domain preference 
knowledge would be addressed within the URP framework. The facilities described 
there have not been implemented, leaving URP with several gaps in its preference 
modeling ability. Until an assessment facility is implemented, the proposition that 
we can perform structural sensitivity analysis and interpretation under descriptive 
theories of choice must be regarded as an untested hypothesis, although I think there 
is a strong case for believing that such capabilities can be <}thieved. It is difficult to 
argue forcefully that URP will be easy to use by expert systems or human analysts 
without providing the technical-vocabulary/domain-concept mapping supported by 
the domain preference knowledge base. 

Another large gap in URP is its lack of support for asserting qualitative be­
haviors of multiattribute utility functions and lack of any mathematical reasoning 
about multiattribute forms. In contrast to independence conditions, multiattribute 

--- ------------------
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qualitative behaviors describe the nature of dependencies among attributes in a 
utility function. Like single-attribute behaviors, they are useful for characteriz­
ing mathematical properties of the function as well as indicating the validity of 
dominance-testing procedures. While I do not anticipate any difficulties in defin­
ing these behaviors and performing logical inference based on them, a significant 
extension of QM would be required to represent and reason about multivariate func­
tions. Nevertheless, an extended QM would undoubtedly be able to handle many of 
the kinds of inferences that would be useful in multiattribute problems. Qualita­
tive behaviors of these functions expressible as properties of partial derivatives (a 
large class of the interesting behaviors) can be handled using QM's single-variable 
representation. 

There are as yet no general-purpose dominance-proving or constraint reasoning 
procedures to address the problems of chapters 4 and 7. While URP should make use 
of its special-purpose dominance knowledge as much as possible, it should be never­
theless be somewhat competent at employing weaker methods in the more general 
cases. Similarly, it will be necessary to choose appropriate constraint manipulation 
methods to implement the flexible assessment capability discussed above. 

9.3.2 The Implementation 

Even the parts of URP that have been fully implemented could use quite a bit of 
revising, tuning, extending, and fixing. Because this was an experimental project, 
pieces of the program were only developed to the point that they could demonstrate 
that the desired capability was achievable. The major thrusts of improvements to 
URP's implementation should be toward efficient use of existing mechanisms, an 
expanded knowledge base, and the development of user interfaces. 

The most pressing efficiency consideration is in the derivation of multiattribute 
decompositions. There is considerable opportunity for optimization of the lower­
level algorithms involved and for improvements to the simple control structure cur­
rently in use. Perhaps the most promising avenue for efficiency gains is in the 
heuristic control mechanism suggested in section 5.4.3. 

The knowledge base might be expanded in several directions: to include more 
behaviors, more independence axioms and theorems, and more stochastic dominance 
algorithms. Of these, the last is probably most important; URP currently ha:s a 
very limited repertoire of dominance-testing procedures. Though investigations are 
preliminary, it appears that there is quite a large body of useful results to draw 
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from [1]. 
The existing program is a perfect example of "user-hostile" software. Since the 

mechanisms were built without any precommitment to a particular mode of usage, 

it is generally not possible to interact with URP without knowing something about 
the inner workings of the program. This situation will clearly have to be remedied 

before the system can be useful as a utility analysis tool. 

9.3.3 The Approach 

Most troublesome are the limitations of preference modeling with URP that do 

not appear to be just a matter of gaps in the implementation. This section identifies 

a few of the more fundamental difficulties which I do not have any particularly good 

ideas about resolving. 

Driving Model Construction 

The first problem concerns URP's failure to cover the full preference modeling 

task as diagrammed in figure 1.1. Recall that in the figure there is a control link ty­

ing the results of model analysis to goals of model construction. Unfortunately, URP 

does not actually close that loop, and it is not obvious to me how to do so. While 

there are some fairly simple tactics which might be applied when analysis fails to 
derive a decision, such as establishing preconditions for a more powerful dominance 

routine or finding an incrementally simpler utility expression or decomposition, 

these do not take advantage· of information derived from the failed analysis. 

Complexity 

Probably the most apparent problem of the entire approach is that URP is cer­

tainly not a "simple and elegant" solution to the preference modeling problem. It 
is comprised of many complex mechanisms and relies on some fairly sizable rea­

soning tools (RUP and QM, which ,in turn uses MACSYMA) to do some of its work. 

Extensions mentioned above would require even more complexity and additional 
high-powered tools. 

Part of this complexity is a conscious response to the overly simplified view of 

preferences typically taken by decision-making programs. One of the major points 

of this thesis project was to demonstrate that it is possible and desirable to exploit 

the large body of theory concerning formal preference models. Given the present 
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structure of utility theory, this requires a lot of separate, complicated mechanisms. 
It may be that some of these mechanisms will turn out to be more useful than 
others-the fact that they are separate also implies that there should be some benefit 
to each mechanism in isolation. Thus, I expect that further work will concentrate 
on identifying the pieces that are most important in particular preference modeling 
tasks. These mechanisms could then be tuned to provide the best performance for 
those tasks. 

Formulation 

It is an unfortunate fact that URP's model construction starts with considerably 
more than scratch. A large part of the expertise of a utility analyst is in choosing 
the right attributes to model. Since URP abdicates this responsibility, any success 
it has might be attributed to having fed it the right formulation to begin with. 

This is a difficult problem, and I am not optimistic that it can be easily solved. 
Choosing attributes requires a great amount of domain and' real-world knowledge of 
the sort that cannot be contained in a general-purpose preference modeling program. 
Some of this knowledge may be supplied by a domain preference knowledge base of 
the sort outlined in chapter 8, though the actual methods for using it (particularly 
for attribute selection) have not been worked out. There are, in addition, some 
domain-independent principles which may help to determine the applicability of a 
set of attributes for a given problem [59] [60]. Defining measurement properties 
(discussed in section 8.3.1) may help. Formalizing these principles is a challenging 
though worthwhile exercise, crucial to the development of a truly useful utility 
analysis system. 

9.4 Future Work: Planning with Preferences 

Much has been said here about the potential for preference modeling in decision 
making programs without any serious discussion of how it might be incorporated in 
actual program designs. URP is precisely what its acronym suggests: a collection of 
programs which perform various sorts of reasoning about utility. Embedding this 
reasoning in a larger decision making system architecture would require a consid­
erable engineering effort. And undoubtedly the issues involved in an integration of 
preference modeling in AI programs would vary greatly across different problem­
solving paradigms. 
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To test the usefulness of some of the ideas developed in this project, I will 
attempt to incorporate elements of preference reasoning in a domain-independent 
planner and apply the program to problems in patient management. Planning is 
a particularly good framework for studying the implications of preferences, since 
constructing a plan requires many choices among alternative actions. It is no coin­
cidence that planning spaces bear a close resemblance to decision trees. 

Charniak and McDermott [18] (page 524) point out that little AI planning work 
has incorporated a decision-theoretic basis for choice.7 Indeed, the problem of choice 
has received minimal attention of any kind. State-of-the-art planners have no means 
to reason about partial or uncertain satisfaction of goals, much less to explicitly 
consider tradeoffs in choosing planning steps. Developing such a capability would 
entail an expanded language for describing objectives, a means for representing 
uncertainty, and mechanisms for expressing and reasoning about the desirability of. 
o-utcomes. 

From the point of view of the proposed planner, URP is a vehicle for exploring 
this last issue. Experiments with URP should help to identify the most useful types 
of assertions about preferences and how to reason about them. The goal will be 
to select a subset of the conceivable URP assertions to include as primitives in 
the planning system. My expectation is that most of the qualitative behaviors 
and independence conditions already defined in URP will turn out to be useful, in 
addition to qualitative multiattribute properties not yet implemented. 

Work in planning will also highlight an issue that has not been explored much 
with URP: how these preference assertions may be used in formulation. Knowledge 
about the decision maker's objective structure will often be useful for determin­
ing whether a tradeoff situation exists and which are the pivotal attributes of the 
situation that must be included in the model. 

Any more detailed discussion of how preference modeling in the URP framework 
would be accomplished in a planning environment would be purely speculative at 
this stage. In any case, the ability for formulation {or even simply recognition) of 
tradeoff situations alone would be a substantial advance in AI planning technology. 

7Feldman and Sproull [31} argue for the use of decision theory in robot planning. Though their 
numerical approach to utility shares many of the shortcomings of heuristic evaluation functions, 
using outcome desirability to plan actions is shown to be valuable for revealing tradeoffs, allocating 
planning effort, and directing information acquisition. As far as I know, their ideas have not been 
incorporated in an actual planning system. 
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9.5 Contributions 

9.5.1 Summary 

In my opinion, the important contribution of this work is in its overall approach 
toward preference modeling, rather than in any of the particular capabilities that 
have been described. Nevertheless, in the course of attempting to demonstrate the 
potential advantages of a qualitative view of preferences and a knowledge-based rep­
resentation of utility theory, several more specific goals were accomplished. These 
achievements have all been chronicled in the thesis body; the remainder of the 
section is a brief outline of what I believe to be the most important contributions. 

Qualitative Behaviors 

• Explicit maintenance of the qualitative premises underlying single-attribute 
utility functions 

• Integration of logical and mathematical relations among behavior assertions 
and function objects 

• Adaptation of QM to handle some types of incompletely specified functions 

Stochastic Dominance 

• Knowledge-based approach tying dominance tests to qualitative preconditions 
for their applicability 

• Framework for incorporating algorithms in the overall system 

Multiattribute Decomposition 

• Language for describing independence axioms and decomposition theorems, 
with interpreter/theorem prover 

• Encoding a substantial body of multiattribute utility theory in this language, 
covering the major results of the field 

• Generation of hierarchical decompositions without prestructuring by the user 

-------------------~ --------------~---- -----------
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Assessment 

• Framework for model-independent use of hypothetical preference choices 

• Potential for interpretation under descriptive theories of preference choice 

Domain Preferences 

• Notion of a technical vocabulary for domain-independent modeling systems; 
nature of the mapping to domain concepts 

• Using properties of measurement scale to capture some "common-sense" fea­
tures of a quantity 

• Construction of a fragmentary health preference knowledge base 

9.5.2 Outlook on Preference Modeling 

Of greater interest than the merits of the individual contributions themselves 
is the potential for integrating them into a coherent and comprehensive preference 
modeling system. While there is quite a large disparity between URP's capabilities 
and this ultimate objective, there are several reasons to believe that the goal is a 
realistic one. From the vantage of the existing URP implementation, there are some 
obvious extensions which could be undertaken to cover a larger share of the overall 
task. 

Only a few of the limitations noted in section 9.3 seem to be fundamental. Most 
would require substantial engineering effort, but should be possible with off-the­
shelf AI technology. The overall design is quite complex, but simplifications and 
generalizations are likely to become apparent as more of utility theory is formalized. 
Indeed, experience in implementing URP indicates that there may be considerable 
"hidden" generality that can be exploited by an automated reasoner. Without a 
program that can flexibly apply the theory, orthogonality of utility concepts does 
not get much attention in the literature. For example, two generalities of utility 
theory that do not often get applied in practical model structuring (though they 
are exploited in proving decomposition theorems) are the ability to treat sets of 
attributes as single vector attributes and the extension of independence relations to 
analogous relations with fewer conditioning attributes (URP theorem 23). Applying 
these together with knowledge of two-attribute functional forms, URP automati­
cally generates hierarchical decompositions. This opportunity "falls out" of the 

--- ----------------~ 
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structure of the theory; it is not practically important without an automatic model 
constructor. 

We should also expect that the comprehensive modeling system will become 
more feasible with the advancement of related AI technologies. Work in qualitative 
mathematics should result in more efficient and powerful reasoners. Continuing 
research in integrated AI and DA systems (both AI--tDA and DA--tAI) will provide 
useful mechanisms as well as a context for applying preference modelers. And 
ideas from other knowledge-based systems for mathematical modeling should be 
transferable to the preference modeling task. 

A distinguishing architectural feature of programs that employ preference mod­
eling is the separation of reasoning about consequences of actions from reasoning 
about desirability of outcomes. In itself this is a strong constraint on reasoning 
style; it implies that decision making programs can never associate beliefs directly 
with actions. For example, a program for medical therapy cannot implement poli­
cies of prescribing drugs based only on observations. Rather, such programs must ' 
reason about the implications of these observations combined with the consequences 
of possible actions (drug .recommendations) in terms of the patient state or other 
relevant attributes. The resulting outcomes are compared with respect to prefer­
ence to choose the best recommendation. In practice, we might wish to circumvent 
most of this reasoning for "obvious" action indicators. A policy may be thought of 
as a conscious decision not to explicitly consider consequences of actions and their 
desirability in certain common situations. This notion will have to be developed 
further before preference modeling can be practical for routine decision making. 

In the introductory chapter I noted that research on URP could be viewed as 
a step toward the development of a "calculus" for preference assertions. To per­
form preference modeling, programs will need a language to express their objective 
structures; URP 's technical vocabulary is an early design of that language. The 
ability to define the· language also affords control over the scope of the preference 
reasoning task. Applications that refer to a constrained set of outcomes or possible 
preference structures can get by with only a subset of the language and therefore a 
smaller preference reasoner. This is another way to combat the complexity of the 
most general preference modeling problem. Thus, some future work may be ap­
plied to the identification of simpler preference reasoning tasks sufficient for specific 
applications. 

Once proven preference reasoning capabilities are developed, ·it would not be 
surprising to see preferences models used for purposes other than decision making. 
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The value of explicit preferences for explanation and jnst.ification of program behav­

ior has already been discussed. In addition, preference representations may prove 

a useful basis for heuristics for directing search or inforrnai ion acquisition, or for 

some kinds of cognitive modeling. Programs that 111oclel users' beliefs (for h1toring 

or interactive consultation, for example) might also benefit frorn models of users' 

preferences. 
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A. Qualitative Behaviors of 
Unidimensional Utility Functions 

Reasoning about qualitative behaviors of single-attribute utility functions was 
discussed in chapter 3. This appendix describes the qualitative behaviors currently 
implemented in URP. 

A.1 Behavior Descriptions 

monotonic: u's derivative is either nonpositive or nonnegative over the entire do­
mam 

strict-monotonic: u's derivative is either positive or negative 

monotonic-increasing: u's derivative is strictly positive 

monotonic-nondecreasing: u's derivative is nonnegative 

monotonic-decreasing: u's derivative is strictly negative 

monotonic-nonincreasing: u's derivative is nonpositive 

risk-averse: u is concave (second derivative is negative) 

risk-neutral: u is linear (zero second derivative); the functional form linear ap­
plies 

risk-prone: u is convex (postive second derivative) 

constant-risk-averse: the risk aversion function (r or q from 3.1 or 3.2) is con­
stant; the functional form exponential applies 

constant-proportional-risk-posture: the proportional risk function p(x) = xr(x) 
(or xq( x) for decreasing u) is constant; one of the functional forms power or 
log applies (intensity of risk aversion distinguishes the cases) 

increasing-risk-posture: the risk function is monotonic-increasing 

decreasing-risk-posture: the risk function is monotonic-decreasing 

The mathematical relations between the behaviors and u is encoded in the pos, 
nee, and enf procedures described in section 3.3.3. Logical relations among the 
behaviors arc encoded in RUP. The functional forms mentioned above appear in 
table 3.1. 
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A.2 Terminological Definitions 

constant-risk-averse 

constant-risk-prone 

constant-proportional-risk-averse 

constant-proportional-risk-prone 

increasing-risk-averse 

increasing-risk-prone 

decreasing-risk-averse 

decreasing-risk-prone 

constant-risk-posture 
/\ risk-averse 

constant-risk-posture 
/\ risk-prone 

constant-proportional-risk-posture 
/\ risk-averse 

constant-proportional-risk-posture 
/\ risk-prone 

risk-averse 
/\ increasing-risk-posture 

risk-prone 
/\ increasing-risk-posture 

risk-averse 
/\ decreasing-risk-posture 

risk-prone 
/\ decreasing-risk-posture 

-------- ----------



B. Axiom Schemata 

Here is a complete alphabetized listing of the independence axioms currently 
known to URP. Some of these are not yet used in any significant reasoning (they do 
not appear in any theorems). The representation is described in section 5.1.1, and 
the meanings of the individual axioms are discussed in chapter 6. The ":def ini­
tion" slots are not filled iu carefully (or at all) since there is as yet no explanation 
facility. Definitions from the literature can be found in the document appearing in 
the ":source" slot; pointers are given in the references section. 

(defaxiom 'additive-independence 
:source "Keeney & Raiffa p. 295" 
:special-case-of '(mutual-utility-independence) 
:arg-count 1 
:arg-relns '((nonempty 1))) 

(defaxiom 'additive-value-function 
:definition "can use additive form for value function" 
:source "Farquhar 77 p. 64" 
:arg-count 1 
:arg-relns '((nonempty 1))) 

(defaxiom 'bilateral-form 
:definition "functional form" 
:source "Farquhar 77 p. 71 11 

:arg-count 1 
:arg-relns '((nonempty 1))) 

(defaxiom 'bilateral-independence 
:source "Farquhar 77 p. 71 11 

:special-case-of '(generalized-bilateral-independence 
joint-interpolation-independence) 

:arg-count 2 
:arg-relns '((exclusive-nonempty-subsets 1 2))) 

138 



(defaxiom 'conditional-preferential-independence 
:definition "PI given Y-(not ij)'" 
:source "Keeney and Raiffa p. 334" 
:arg-count 3 
:arg-relns '((exclusive-exhaustive-nonempty-subsets 1 2 3))) 

(defaxiom 'conditional-utility-independence 
:definition 11 UI given Y-(not ij)'" 
:source "Keeney and Raiffa p. 334 11 

:arg-count 3 
:arg-relns '((exclusive-exhaustive-nonempty-subsets 1 2 3))) 

(defaxiom 'conditional-value-independence 
:definition "VI given Y-(not ij)' 11 

:source "Keeney and Raiffa p. 336" 
:arg-count 3 
:arg-relns '((exclusive-exhaustive-nonempty-subsets 1 2 3))) 

(defaxiom 'generalized-bilateral-independence 
:definition "BI with reversals allowed" 
:source "Farquhar 77 p. 71" 
:arg-count 2 
:arg-relns '((exclusive-nonempty-subsets 1 2))) 

(defaxiom 'generalized-preferential-independence 
:source "Fishburn & Keeney 74 p. 299" 
:special-case-of '(indifference-independence) 
:arg-count 2 
:arg-relns '((exclusive-nonempty-subsets 1 2))) 

(defaxiom 'generalized-utility-independence 
:source "Farquhar 77 p. 69" 
:special-case-of '(generalized-preferential-independence) 
:arg-count 2 
: arg-relns ' ((exclusive-nonempty-subsets 1 2))) 
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(defaxiom 'indifference-independence 
:source "Fishburn & Keeney 74 p. 299" 
:restrictions "s-c-o GP! requires Axiom 1 from source" 
:special-case-of '(weak-indifference-independence 

generalized-preferential-independence) 
:arg-count 2 
:arg-relns '((exclusive-nonempty-subsets 1 2))) 

(defaxiom 'interpolation-independence 
:definition "see Bell 79b p. 1056 11 

:source "Bell 78, 79a, 79b" 
:arg-count 2 
:arg-relns '((exclusive-nonempty-subsets 1 2))) 

(defaxiom 'multilinear-form 
:definition "functional form" 
:source "Keeney & Raiffa p. 293 11 

:arg-count 1 
:arg-relns '((nonempty 1))) 

(defaxiom 'multilinear-generalization-form 
:definition "functional form" 
:source "Bell 79a p. 748" 
:arg-count 1 
:arg-relns '((nonempty 1))) 

(defaxiom 'multiplicative-form 
:definition "functional form" 
:source "Keeney & Raiffa p. 289 11 

:special-case-of '(multilinear-form) 
:arg-count 1 
:arg-relns '((nonempty 1))) 

(defaxiom 'mutual-preferential-independence 
:definition "every subset PI its complement" 
:source "Keeney and Raiffa p. 111 11 

:arg-count 1 
:arg-relns '((nonempty 1))) 



(defaxiom 'mutual-utility-independence 
:source "Keeney & Raiffa p. 289" 
:arg-count 1 
:arg-relns '((nonempty 1))) 

(defaxiom 'parametric-independence 
:source "Kirkwood" 
:arg-count 2 
:arg-relns '((exclusive-nonempty-subsets 1 2))) 

(defaxiom 'preferential-independence 
:source "Keeney & Raiffa p. 109" 
:special-case-of '(generalized-preferential-independence) 
:arg-count 2 
:arg-relns '((exclusive-nonempty-subsets 1 2))) 

(defaxiom 'utility-independence 
:source "Keeney & Raiffa p. 284" 
:special-case-of '(preferential-independence 

generalized-utility-independence 
bilateral-independence) 

:arg-count 2 
:arg-relns '((exclusive-nonempty-subsets 1 2))) 

(defaxiom 'value-independence 
:source "Fishburn & Keeney 74 p. 297" 
:restrictions "special-case of UI requires (5) from source" 
:special-case-of '(utility-independence) 
:arg-count 2 
:arg-relns '((exclusive-nonempty-subsets 1 2)) 
:op-prop '(symmetric)) 

(defaxiom 'weak-indifference-independence 
:source "Fishburn & Keeney 74 p. 300" 
:arg-count 2 
:arg-relns '((exclusive-nonempty-subsets 1 2))) 
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(deftheorem 'theorem009 
: source "Keeney & Raiffa p. 3i6" 
:premise '(for-some-set Yi in (subset X) 

(for-some-set Y2 in (overlapping-subset Yi X) 
((utility-independence Yi (difference X Yi)) 
(utility-independence Y2 (difference X Y2))))) 

:consequent '((utility-independence (union Yi Y2) 
(difference X (union Yi Y2))) 

(utility-independence (intersection Yi Y2) 

113 

(difference X (intersection Yi Y2))) 
(utilicy-independence (sym difference Yi Y2) 

(difference X 
(s ym-diff erence Yi Y2))) 

(utility-independence (difference 
(difference 

(utility-independence (difference 
(difference 

(deftheorem 'theoremOiO 
: source "Keeney & Raif fa p. 1i2" 
:premise '(for-some-set Yin (subset X) 

Yi Y2) 
X (difference Yi Y2))) 
Y2 Yi) 
X (difference Y2 Yi))))) 

(for-some-set Z in (overlapping-subset Y X) 
((preferencial-independence Y (difference X Y)) 
(preferential-independence Z (difference X Z))))) 

: consequent 
'((preferential-independence (union Y Z) (difference X (union Y Z))) 

(preferential-independence (intersection Y Z) 
(difference X (intersection Y Z))) 

(preferential-independence (aym-difference Y Z) 
(difference X (sym-difference Y Z))) 

(preferential-independence (difference Y Z) 
(difference X (difference Y Z))) 

(preferential-independence (difference Z Y) 
(difference X (difference Z Y))))) 

(deftheorem 'theorem0i2 
: source "Keeney & Raiifa p. 289" 
:premise '(for-some-·sct Z in (subset X) 

((mutual-utility-independence X))) 
:consequent '((utility-independence Z (difference X Z)))) 
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(deftheorem 'theorem013 
:source "Farquhar 77 Thm. 111 

:premise '(for-some· k in X 
(for-all j in (difference X (set-of k)) 

((preferential-independence 
(set-of j k) (difference X (set-of j K)))))) 

:consequent '((additive-value-function X))) 

(deftheorem 'theorem014 
:source "Farquhar 77 Thm. 611 

:premise '(for-all i in X 
((generalized-bilateral-independence 

(set-of i) (difference X (set-of i))))) 
:consequent '((bilateral-form X))) 

(deftheorem 'theorem016 
:source "Bell 79a p. 748" 
:premise '(for-all i in X 

((joint interpolation-independence 
(set-of i) (difference X (set-of i))))) 

:consequent '((multilinear-generalization-form X))) 

(deftheorem 'theorem017 
:source "Fishburn and Keeney 74 Thm 1." 
:restrictions "Axiom 1, Y1 essential" 
:premise '(for-some-set Y1 

(for-some-set Y2 
(for-some-set Y3 

((weak-indifference-independence (union Y1 Y2~ 

Y3) 
(value-independence Y1 (union Y2 Y3)))))) 

:consequent '((value-independence (union Y1 Y2) Y3) 
(value-independence (union Y1 Y3) Y2))) 



(deftheorem 'theorem018 
:source "Fishburn and Keeney 74 Thm 2." 
:restrictions "Axiom 1, Y1 essential" 
:premise '(for-some-set Y1 

(for-some-set Y2 
(for-some-set Y3 

((weak-indifference-independence (union Y1 Y2) 
Y3) 

(utility-independence Y1 (union Y2 Y3)))))) 
:consequent '((utility-independence (union Y1 Y2) Y3))) 

(deftheorem 'theorem019 
:source "Fishburn and Keeney 74 Thm. 3 11 

:restrictions "Axiom 1, Y1 + Y2 essential, see also page 303" 
:pre~ise '(for-some-set Y1 

(for-some-set Y2 
(for-some-set Y3 

((weak-indifference-independence (union Y1 Y2) 
Y3) 

(utility-independence (union Yi Y3) Y2))))) 
:consequent '((utility-independence Y3 (union Yi Y2)) 

(generalized-utility-independence (union Y1 Y2) Y3))) 

(deftheorem 'theorem020 
:source "Fishburn and Keeney 74 Thm. 3 corollary (at bottom)" 
:restrictions "Axiom 1, Y1 + Y2 essential, see also page 303" 
:premise '(for-some-set Y1 

(for-some-set Y2 
(for-some-set Y3 

((preferential-independence (union Y1 Y2) Y3) 
(utility-independence (union Y1 Y3) Y2))))) 

:consequent '((utility-independence (union Yi Y2) Y3))) 
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(deftheorem 'theorem021 
: source "Fishburn and Keeney 74 corollary p. 308" 
:restrictions "Axiom 1, Yi essential" 
:premise '(for-some-set Yi 

(for-some-set Y2 
(for-some-set Y3 

((generalized-utility-independence Yi 
(union Y2 Y3)) 

(preferential-independence (union Yi Y2) Y3) 
(preferential-independence (union Yi Y3) Y2))))) 

:consequent '((utility-independence Yi (union Y2 Y3)) 
(utility-independence (union Yi Y2) Y3) 
(utility-independence (union Yi Y3) Y2))) 

(deftheorem 'theorem023 
: source "Keeney and Raiffa Thm. 6. i5" 
:premise '(for-some-set Yi 

(for-some-set Y2 
(for-some-set Y3 

((utility-independence Yi (union Y2 Y3)))))) 
: comiequent ' ((utility-independence Yi Y2))) 

(deftheorem 'theorem024 
:source "Keeney and Raiffa Thm. 6. i7" 
:premise '(for-some-set Yi 

(for-some-set Y2 
(for-some-set Y3 

((utility-independence Yi Y2) 
(conditional-utility-independence Yi Y3 Y2))))) 

:consequent '((utility-independence Yi (union Y2 Y3)))) 



(deftheorem 'theorem025 
:source "Keeney and Raiffa Thm. 6.i8" 
:premise '(for-some-set Yi 

(for-some-set Y2 
(for-some-set Y3 

((utility-independence (union Yi Y2) Y3) 
(conditional-preferential-independence 

Yi Y2 Y3))))) 
:consequent '((preferential-independence Yi (union Y2 Y3)))) 

(deftheorem 'theorem026 
:source "Keeney and Raiffa Thm. 6.i9" 
:premise '(for-some-set Yi 

(for-some-set Y2 
(for-some-set Y3 

((utility-independence (union Yi Y2) Y3) 
(conditional-utility-independence Yi Y2 Y3))))) 

:consequent '((utility-independence Y1 (union Y2 Y3)))) 

(deftheorem 'theorem027 
:source "special case of conditional UI" 
:premise '(for-some-set Y1 in X 

(for-some-set Y2 in (difference X Yi) 
((utility-independence Y1 Y2)))) 

:consequent '((conditional-utility-independence 
Yi Y2 (difference X (union Y1 Y2))))) 

(deftheorem 'theorem028 
:source "flpecial case of conditional PI" 
:premise '(for-some-set Yi in X 

(for-some-set Y2 in (difference X Yi) 
((preferential-independence Y1 Y2)))) 

:consequent '((conditional-preferential-independence 
Y1 Y2 (difference X (union Yi Y2))))) 
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(deftheorem 'theorem029 
:source "Bell 77 Lemma 2" 
:restriction "I dropped the X4 but I think this still works" 
:premise '(for-some-set Y1 

(for-some-set Y2 
(for-some-set Y3 in (subset (complement Y2)) 

((joint utility-independence Y1 (union Y2 Y3)))))) 
:consequent '((joint utility-independence Y1 Y2) 

(joint utility-independence Yi Y3))) 

(deftheorem 'theorem030 
:source "Bell 77 Lemma 2 extension" 
:restriction "I dropped the X4 but I think this still works" 
:premise '(for-some-set Yi 

(for-some-set Y2 
(for-some-set Y3 in (subset (complement Y2)) 

((utility-independence Y1 Y2) 
(utility-independence Y1 Y3))))) 

:consequent '((utility-independence Y1 (union Y2 Y3)))) 

(deftheorem 'theorem031 
:source "Fishburn & Keeney 75 Lemma 1 p. 931" 
:restriction "Yi essential" 
:premise '(for-some-set Y1 

(for-some-set Y2 
(for-some-set Y3 

(for-some-set Y4 
((generalized-utility-independence 

(union Yi Y2) (union Y3 Y4)) 
(generalized-utility-independence 

(union Yi Y3) (union Y2 Y4))))))) 
: consequent ' ((generalized-utility-independence 

(union Yi (union Y2 Y3)) Y4))) 



(deftheorem 'theorem032 
:source "Fishburn & Keeney 75 Thm 1 p. 934" 
:restriction "Yi essential" 
:premise '(for-some i in X 

(for-all j in (difference X (set-of i)) 

((generalized-utility-independence 

H9 

(set-of i j) (difference X (set-of i j)))))) 
:consequent '((multiplicative-form X))) 

(deftheorem 'theorem033 
:source "Keeney 74 Lemma 2 p. 24 11 

:premise '(for-some-set Y1 
(for-some·-set Y2 

(for-some-set Y3 
(for-some-set Y4 

((utility-independence (union Y1 Y2) 
(union Y3 Y4)) 

(utility-independence (union Y1 Y3) 
(union Y2 Y4))))))) 

:consequent '((utility-independence (union Yi (union Y2 Y3)) Y4))) 



D. Set Membership Constraints 

The following is a complete list of set membership constraints appearing in the 
current set of URP multiattribute utility theorems. Each is defined in terms of the 
primitive constraints union and complement, described in section 5.3.2. 

The expressions defined below are shown as they appear in URP theorems. The 
set denoted by the expression is called Z in the definition. When notation is given 
it is for use in subsequent constraint definitions. The predicate nonempty on a set 
is used to indicate that min-size for that set is restricted to be greater than or 
equal to one.1 

(intersection Yi Y2) 

notation: 

definition: 

(difference X Y) 

notation: 

definition: 

(sym-difference X Y) 

Z = Y1 nY2 

Z=Y1UY2 

Z=X-Y 

Z=XUY 

definition: Z = (X - Y) U (Y - X) 

(subset x) 

notation: 

definition: 

Z<;X 

X=XUZ 

(nonempty-subset x) 

definition: 

(proper-subset x) 

definition: 

ZCX· - ' 

ZCX· - ' 
(overlapping-subset y x) 

nonempty(Z) 

nonempty ( X - Z) 

1Strictly speaking, nonempty is not a constraint since it does not appear as an object in the network. 
It only influences the initial value for min-size during network construction. 
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definition: Z ~ X; Y ~ X; nonempty(Z - Y); 

nonempty(Y - Z); nonempty(Y n Z); 

nonempty(X - (YU Z)) 

The following two constraints are used exclusively for type-checking the argu­
ments to URP axioms. They appear in the arg-relns slot of the axiom schemata. 

(exclusive-nonempty-subsets Y1 Y2) 

definition: Y1 ~ Y2; nonempty(Y1)i 

(exclusive-exhaustive-nonempty-subsets Y1 Y2 Y3) 

definition: Y1 ~ Y2; Y3 = Y1 U Y2; nonempty(Yi); 

nonempty(Y2); nonempty(Y3) 

URP can also handle constraints that relate set nodes to element nodes. The 
only one used explicitly in theorems is set-of (although the definition below uses 
two arguments, the constraint may be used for an arbitrary number of element 
variables): 

(set-of i j) 

definition: z = {i,j} 

-------------~- --- -------



E. Multiattribute Functional 
Forms 

This appendix lists the multiattribute functional forms that may be part of 
decompositions generated by URP. Each form (named for the independence axiom 
it is associated with) is written in a mathematical notation and a plausible URP 
specification. The specification is for illustration only; no facilities for mathematical 
reasoning about multiattribute functions has been implemented. 

E.1 Two-attribute Forms 

Several of URP's binary independence relations are associated directly with two­
attribute decompositions. This section lists those conditions, along with a specifi­
cation for the functional form they imply. This listing is almost identical to table 1 
from Bell [6] (except for the URP specification, of course). Conditialization is omit­
ted for unidimensional functions if the conditioning level of the fixed attribute is 
not significant. 

• value-independence 
au(x) + (1 - a)u(y) 

(( + ( * a ( u x)) 

( * ( - 1 a) ( u y))) 

(where a (evaluation u (best x) (worst y)))) 

• joint utility-independence 

au(x) + bu(y) + (1 - a - b)u(x)u(y) 

(( + ( * a ( u x)) 

(* b (u y)) 

( * ( - 1 a b) ( u x) ( u y))) 

(where a (evaluation u (best x) (worst y)) 

b (evaluation u (worst x) (best y)))) 

• utility-independence 

au(x) + bu(x*,y) - bu(x)u(x*,y) + (1 - a)u(x)u(x*,y) 
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(( + ( * a ( u x)) 
(* b (u y (worst x))) 
(* (- b) (u x) (u y (worst x))) 
(* (- 1 a) (u x) (u y (best x)))) 

(where a (evaluation u (best x) (worst y)) 
b (evaluation u (worst x) (best y)))) 

• bilateral-independence 

au(x, y*) + bu(y, x*) 

+ i-!-b · [(1 - b)u(x, y*) - au(x, y*)] · [(1 - a)u(x, y*) - bu(y, x*)] 

((+ (* a (u x)) 

(* b (u y (worst x))) 
(* (/ 1 (- 1 a b)) 

(- (* (- 1 b) (u x (best y))) 
(* a (u x (worst y)))) 

(- (* (- 1 a) (u y (best x))) 
(* b (u y (worst x)))))) 

(where a (evaluation u (best x) (worst y)) 
b ( evaluation u (worst x) (best y))) l 

• joint interpolation-independence · 

au(x, y.) + bu(y, x.) - ku(x, y.)u(y, x.) 

+(k-a)u(x, y*)u(y, x*) + (k-b)u(x, y*)u(y, x.) + (1-k)u(x, y*)u(y, x*) 

((+ (* a (u x)) 
(* b (u y (worst x))) 
(* (- k) (u x (worst y)) (u y (worst x))) 
(* (- k a) (u x (worst y)) (u y (best x))) 
(* (- k b) (u x (best y)) (u y (worst x))) 
(* (- 1 k) (u x (best y)) (u y (best x))) 

(where a (evaluation u (best x) (worst y)) 
b (evaluation u (worst x) (best y)))) 

--------------~ 
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E.2 n-attribute Forms 

• Additive: 
t'I 

L kiui(x), where ki = u(xi, xi*) 
i=l 

((sum i (from-to 1 n) 
(* (k i) (u i))) 

(where (k i) (evaluation u (best i) (worst (comp i))))) 

For the following forms I will use the notation ir to stand for a collection 
of r subscripts, and the symbol Sr to denote the space of all such subscript 
collections. 

• Multiplicative: 
t'I 

L L kr-1 TI ~ui(x;) 
r=l lrESr iEir 

where 1 + k = f1~1 (1 + kki), ki as above 

((sum r (from-to 1 n) 
(sum i-subs (subscript-collns-of-size r n) 

(* (expt k (- r 1)) 
(product i (subscripts-in i-subs) 

( * (k i) ( u i)) ) )) ) 
(where (k i) (evaluation u (best i) (worst (comp i))) 

k (iterative-soln (- (product i (from-to 1 n) 
(+ 1 (* k (k i)))) 

1)))) 

• Multilinear: 
t'I 

L L k1. TI ui(xi) 
r=l lrESr iEir 

where k = u(x* x- ) - "'-1 
" k1 lr lr' lr* L...ro=l L...ir0 Elr0 ro 



E.2. N-ATTRIBUTE FORMS 

((suni r (from-to 1 n) 
(sum i-subs (subscript-collns-of-size r n) 

( * (k i-subs) 
(product i (subscripts-in i-subs) 

(u i))))) 

(where (k i-subs) 
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(- (evaluation u (best i-subs) (worst (comp i-subs))) 
(sum r-zero (from-to 1 (- (length i-subs) 1)) 

(sum i-subs-zero 
(subscript-collns-of-size r-z-ero n) 
(k i-subs-zero)))))) 

• Multilinear Generalization: 

n 

() + L L kL II v;(xi) II Vi•(xi) 
r=l irESr id, i~lr 

where 1( = u( xi_, xr.J - (), () is an interpolation constant, 
v* and v. are as defined by Bell (5], page 747. 

((+ theta 
(sum r (from-to 1 n) 

(sum i-subs (subscript-collns-of-size r n) 
(* (k-prime i-subs) 

(product i (subscripts-in i-subs) 
(v-best i)) 

(product i (comp (subscripts-in i-subs)) 
(v-worst i)))))) 

(where (k-prime i-subs) 

• Bilateral: 

(- (evaluation u (best i-subs) (worst (comp i-subs))) 
theta))) 

where ai and b, are also defined by Bell [5] 

The bilateral form could be specified in a fashion similar to the above. 



F. The Health Preference 
Knowledge Base 

This appendix summarizes the health preference knowledge base developed in 
chapter 8 (plus a few concepts not included there). The representations are built 
from URP's technical vocabulary, with some special-purpose mechanisms that will 
be necessary to manage the knowledge base. The concepts encoded here are just for 
illustration; there is no claim that they are complete or that they represent anyone's 
actual preferences. This knowledge base has not been implemented for URP. 

F .1 Built-in Attributes 

(def attribute LIFE-YEARS 
:value-set '(real-range 0 max-life-years) 
:scale-type 'ratio 
:unit 'years 
:description 

'(life-years (#of years from NOW until DEATH) 
max-life-years (Largest possible value for life-years))) 

(def attribute PHYSICAL-FUNCTION 
:source Torrance, Boyle, and Horwood 
:value-set '(integer-range 1 6) 
:scale-type 'ordinal 
:unit '((1 (Needs help to get around; no control of limbs)) 

(2 (Needs help; needs mechanical aids to walk)) 
(3 (Needs help; limitations in physical activity)) 
(4 (Can get around; needs mechanical aids)) 
(6 (Can get around; limitations in activity)) 
(6 (Can get around; no limitations))) 

:description 
'(physical-function (Mobility and physical activity))) 
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F.2. PREDEFINED QUALITATIVE BEHAVIORS 

( compo~ent physical-function health-status) 

(component role-function health-status) 

(component social-emotional-function health-status) 

(component health-problem health-status) 
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Note: These components of health status are taken from the health state clas­
sification system of Torra.nee, Boyle, and Horwood [104]. 

F .2 Predefined Qualitative Behaviors 

(monotonic-increasing life-years )1 

(monotonic-increasing physical-function) 

(monotonic-decreasing hospital-confinement) 

(monotonic-decreasing cost) 

(influence+ decreasing-marginal-value life-years risk-averse) 

(influence+ increasing-marginal-value life-years risk-prone) 

(influence+ time-preference life-years risk-averse) 

(influence+ youth-preference life-years risk-averse) 

(influence+ age-preference life-years risk-prone) 

Note: a positive influence on risk-averse is equivalent to a negative influence 
on risk-prone, and vice-versa. 

F .3 Predefined Independence Conditions 

(preferential-independence {health-status} {life-years}) 

(generalized-preferential-independence {life-years} {health-status}) 

Other independence conditions may be inferred from domain concepts using the 
rules of section F .5. 

1 Following the development in section 8.5, it might be desirable to condition this on a health state 
other than "bra.in-dead." 

--------------- - ------- --------
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F .4 Special Functional Forms 

(monotonic-transform life-years deale-life-expectancy) 

{iff (and (joint utility-independence {life-years} {health-status}) 
( constant-proportional-tradeoff life-years health-status) 
(risk-neutral life-years)) 

(QALY-form-1)) 

{iff (and (joint utility-independence {life-years} {health-status}) 
{ constant-proportional-tradeoff life-years health-status)) 

(QALY-form-2)) 

{if f (successive-pairwise-preferential-independence T) 
(from-to i (1 (- n 1)) 

(preferential-independence 
(set-of (nth i T) (nth ( + i 1) T)) 
(difference T (set-of (nth i T) (nth (+ i 1) T)))))) 

(if f (and ( constant-proportional-tradeoff consumption life-years) 
(constant-risk-averse life-years)) · 

( micromort-model)) 

Notes: The monotonic-transform assertion on two attributes states that be­
haviors that are invariant over monotonic transformations which hold for the first 
attribute also hold for the second. QALY-form-1 and QALY-form-2 correspond 
to equations 8.2 and 8.3, respectively. The micromort model is Howard's measure 
for the small-risk value of life [53], mentioned in section 8.6.4. 

F .5 Relations to Domain Concepts 

The validity of these URP assertions will often depend on the characteri'stics of 
the medical situation. Facts of the particular case will indicate which attributes 
are relevant, features of preference for these attributes, and valid independence 
assumptions. This section illustrates some simple rule encodings for these relations. 
Through a mechanism such as this, any of the above assertions may be tied to 
triggering or exceptional situations. 

RULEOOl: 
IF 
THEN 

There are no states worse than death 
(joint preferential-independence {life-years} {health-status}) 
(monotonic-increasing life-years) 



F.5. RELATIONS TO DOA11HN CONCEPTS 

RULI~002: 

IF 
Tlll~N 

IUJLl 1~003: 

IF 
TlmN 
- - - . - - -

RULE004: 

Financial costs arc not borne by the patient 
(value-independence { cosl} everything else) 
( mouotonic-decreasing cost) 

Patient gets weary of slaying in hospital 
(risk-averse hnspital-conjinernenl) 

Jf 1~ Patient gets accustomed to staying in hospital 
TII1~N (risk-prono hospital-confinement) 
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