
""" :1.
._:_

_$.,.:

On Playing Well in a Sum of Games

by

La.ura Jo Yedwab

B.S.E., University of Penmylvania
(1980)

Submitted in partial fnlfUlmeni of
the requirements for the degree of

Muter of Science
in

Electrical Engineering and Computer Science

a.t the
Ma.ssachuaettl Institute of Technology

August, 198S

© La.ura Jo Yedwab 1985
The a.uthor hereby grants to MIT permiaion to reproduce and
to distribute copies of this thesis document in whole or in part.

Si1D&ture of Ami- . '-- /LUw}__
Department of Electrical Engineeriq anr~ence

August 19, 198S

Ceriilecl 'br.-----~,,______ t_U___.._
Ronald Rivest

Profeaor of Electrical Engineerin1 and Computer Science

Arthur Smith
Chairman, Department Commitae on Graduate Student.

On Playing Well in a Sum of Games 1

by

Laura Jo Yedwab

Submitted to the
Department of Electrical Engineering and Computer Science

on August 22, 1985
in partial fulfillment of the requirements for the degree of

Master of Science
lil

Electrical Engineering and Computer Science

Abstract

Many games are naturally described as a sum of games, e.g., nim and
the endgame of Go. Let Gi, ... , Gn represent n games. Then a move in the
sum G1 + · · · + Gn consists of picking a component game Gi and making
a move in Gi. This thesis analyzes play in a sum of games from three
different perspectives: computational complexity, approximate solutions,
and optimal search algorithms.

Lockwood Morris[l 7] proves that the problem of determining the opti­
mal strategy in a sum of games is PS PACE-complete. This thesis proves
that the problem is PSPACE-complete even when the component games
are so simple that they can be represented as depth two trees.

Hanner [7] shows that the value of a sum of games can approximated
to within the maximum temperature of the component games. This thesis
presents a clear and concise proof of Hanner's bounds. This thesis also
improves upon Hanner's result. It shows that the value of a sum of games
can be approximated to within the second highest temperature.

This thesis describes how Berliner's B* search algorithm[4] can be ef­
fectively combined with the approximate solutions to speed up the search
for an optimal solution.

Thesis Supervisor: Dr. Ronald Rivest
Title: Professor of Electrical Engineering and Computer Science

1This research was supported in part by a AT&T graduate fellowship

11

Acknowledgments

I would like to thank my advisor, Ron Rivest, for his support during
this research. His guidance and insight were invaluable.

Joe Buhler brought Morris's PSPACE-completeness proof to my at­
tention. Joe Buhler and Jean Michel read early drafts of the thesis, and
provided useful comments.

Ray Hirschfeld's constant willingness to .. help went beyond the call of
duty.

I would like to thank John Conway, Philip Klein, Charles Leiserson,
Peter Shor, and Daniel Weise for helpful discussions concerning this work
and its presentation.

Finally, I gratefully thank AT&T for providing me with a graduate
fellowship.

iii

Contents

1 Introduction

2 Basics
2.1 Games
2.2 Sum of Games
2.3 Sente
2.4 The Negative of a Game
2.5 Mean Value
2.6 Taxation

2.6.1 Temperature . .
2.6.2 The Value of a Taxed Game .

2. 7 Thermographs
2.8 Mean Value Revisited ..

3 Easy Games - Hard Games
3.1 Switches
3.2 Stacks of Coins
3.3 Left Heavy Games

3.3.1 C-Left Heavy Games .
3.3.2 Log(n)-Left Heavy Games
3.3.3 n-Left Heavy Games

4 Complexity of SUM
4.1 SU Md9 is NP-hard
4.2 SUMd~ 2 is PSPACE-complete .

iv

1

4
4
7
7
9

10
11
12
13
15
18

19
19
20
21
21
25
26

29
30
37

5 Coping with SUM
5.1 Heuristic Solutions

5.1.1 Follow the Leader Strategy
5.1.2 Mean Strategy
5.1.3 Improving Hanner's Bounds .
5.1.4 Thermostatic Strategy
5.1.5 Comparing Results .

5.2 Search
5.2.1 The B* Algorithm

6 Endgame of Go
6.1 Ko
6.2 Complexity Results
6.3 Approximation and Search Algorithms

7 Future Research
7.1 Complexity
7 .2 Heuristic Solutions
7.3 Search

v

46
47
48
49
59
63
65
66
67

72
74
76
79

80
80
82
83

List of Figures

1.1 A Dots and Boxes Game as a Sum of Games

2.1 Defining Hi
2.2 VL(H2), VR(H2), Ln(H2) and !ln(H2) .
2.3 Optimal Play in a Sum of Two Games
2.4 Defining Hs and H4 •••

2.5 Defining H 5 , Hs, and H1 .
2.6 Defining H8 • • • • • • • •

2.7 Defining H 9 and H 10 •••

2.8 Computing VL and VR for H11 and H12 .
2.9 Thermograph for { 5 I -5 }
2.10 Defining H 13 •••••••••••••••

2.11 Constructing the Thermograph for { { 5 I -5 } I 20 }
2.12 Constructing the Thermograph for His .

2

5
6
8
g

10
12
13
15
16
17
17
17

3.1 Stacked Coins 20
3.2 Representing a Stack of Coins 21
3.3 A Left Heavy Tree where Left's Move is Sente . 22
3.4 A 1-Left Heavy Game . . . 25
3.5 Defining H15, Hi6 , and H 17 • • • • 27
3.6 The Importance of Context . . . 28

4.1 Constructing an Instance of ALT 32
4.2 Comparing the Structure of the Proofs . 38
4.3 Transforming a Formula into an Instance of 2P-EXACT-

COVER.. 40

5.1 Comparing the Accuracy of Hanner's and Milnor's Results. 50

vi

5.2 t-optimal moves in H 22 . . • 52
5.3 A Sum Where the First Move Is Not Sente 53
5.4 A Sum Where the Locally Optimal Response Is Incorrect 53
5.5 Hanner's Bounds as G' Is Played . . . 60
5.6 Constructing the Thermograph for H' 61
5.7 Defining H 23 , H 24 , and H 25 63
5.8 Defining H 26 and H27 65
5.9 Defining H28 and H29 66
5.10 Defining H 30 , H3i, and H 32 67
5.11 Defining H 33 , H34 , and H 35 68
5.12 Expanding the Search Tree One Level 69
5.13 The Search Tree Expanded using Disprove-Rest . 70
5.14 The Search Tree Expanded using Prove Best 71

6.1 An end position in a game of Go
6.2 Chosei
6.3 Ko
6.4 Representing a Left Heavy Tree .
6.5 A Key Game in the PSPACE-complete Proof

7.1 A Sum of All Small Games

Vll

73
74
75
77
77

81

Chapter 1

Introduction

Let G1, ... , Gn represent n games. The sum,

G1 + ··· + Gn,

is a game in which a move consists of picking a component game Gi and
making a move in Gi. The sum is over when a player is unable to make a
move in any of the component games.

Many games are naturally described as a sum of games. Nim is the
sum of a number of simple heap games. A hackenbush game is a sum of a
number of distinct hackenbush pictures.

Other common examples occur when, during the course of a game, a
single integrated game becomes decomposed into a sum of games. For ex­
ample, when the game dots and boxes is played, the board quickly becomes
divided up into a number of isolated dots and boxes games. Figure 1.1
shows a dots and boxes game that is the sum of three distinct games. To
move in the sum, a player decides which area to play in, and then draws a
line in that area.

The game of Go is another example. Towards the end of the game,
the black and white stones divide the board into separate territories. The
endgame of Go revolves around a number of small, independent, border
disputes and is naturally characterized as a sum of games. To move in the
sum, a player decides with area to play in, and then places a stone in that
area.

The endgame of Go is an important example because of the wide spread
interest in the game. Go is played professionally in the Orient at the level

1

L I L
L L
L L •
LL LL R

- LLRRR
RRR

[filfil : R R R

+

Figure 1.1: A Dots and Boxes Game as a Sum of Games

that chess is played in the West. Furthermore, Go has attracted a reason­
able amount of attention from the A.I. community as being a good domain
for studying problem solving issues, e.g., [1], [13], [23], and [24]. In fact,
the endgame of Go was the author's original motivation for studying sums
of games.

This thesis analyzes the play in a sum of games from three different per­
spectives: computational complexity, approximate solutions, and optimal
search algorithms.

Call SUM the problem of determining the winning strategy in a sum of
games. The goal, in analyzing the computational complexity of SUM, is to
determine the theoretical bound on how efficient any algorithm for solving
SUM or a restricted subclass of SUM can be. Lockwood Morris[l 7] proves
that SUM is PSPACE-complete. Hence, assuming that P f. PSPACE,
no polynomial time, optimal strategy exists for playing an arbitrary sum of
games. However, Morris's proof leaves open the possibility that there exist
interesting restricted subclasses of SUM that can be solved in polynomial
time.

This thesis narrows the gap between those problems known to be in P
and those that are known to be PSPACE-complete. It proves that SUM
is PS PACE-complete even when the component games are so simple that
they can be represented as depth two trees.

Since SUM is PS PACE-complete, it is unlikely that an efficient algo­
rithm for solving it will be discovered. Two alternate approaches exist for
coping with an instance of SUM. The first is to relax the criteria of success.

2

Instead of requiring an optimal solution, an algorithm is only required to
produce a solution that is close to optimal. The second alternative is to do
an exponential time search for the optimal solution.

Approximate solutions are beneficial when speed is critical and small
errors in the solution are tolerable. Hanner [7] proves that the value of
a sum of games can approximated to within the maximum temperature of
the component games. These bounds are surprisingly accurate. They are
independent of the number of component games in the sum and independent
of the complexity of the component games. This thesis presents a clear and
concise proof of Hanner's bounds.

This thesis also improves upon Harmer's result. It show that the value
of a sum of games can be approximated to within the second highest tem­
perature.

When the optimal solution to an instance of SUM is required, the only
currently available technique is exponential time search. However, the ap­
proximate solution described in this thesis provide a great deal of power
in directing and pruning search. In particular, this thesis describes how
Berliner's B* search algorithm[4] can be effectively combined with the ap­
proximate solutions to speed up the search for an optimal solution.

The remainder of this thesis is organized as follows: Chapter 2 gives the
basic definitions used through out the thesis. This includes the definition
of a game, a sum of games, and taxation. Chapter 3 analyzes optimal play
for some simple restricted classes of SUM. Chapter 4 proves that SUM is
PS PACE-complete even when the component games have depth two or
less. Chapter 5 considers the two basic approaches for coping with a sum
of games: approximate solutions and optimal search algorithms. Chapter 6
considers how the theory of sums of games as described in this thesis applies
to the endgame of Go. Chapter 7 summarizes the results and considers
future research directions.

3

Chapter 2

Basics

Conway developed a unified theory of numbers and games. The theory is
beautiful, elegant, and fun. The reader is encouraged to read [5], [11], and
[2] for an extensive introduction. [5] provides a presentation of the whole
theory. [11] presents a simple introduction to the development of numbers.
[2] presents an extensive treatment of the theory with respect to games.

This chapter presents the portion of the theory used in this thesis. In
particular the notion of game, sums of games, and taxation is described.
However, the chapter does not go into the development of numbers, but
assumes that numbers, such as 5 and -3i, are well defined.

2.1 Games

Consider a two person, zero sum, perfect information game like chess, check­
ers, sprouts, or nim. Let the two players be called Left and Right. It is
natural to represent such a game as a tree, where

• the nodes represent positions,

• the root is the initial position,

• an edge between node a and b represents a valid move from
position a to position b,

• leaf nodes represent stopping positions, and

• the value of a leaf represents the payoff to Left when the
game reaches that final position.

4

H-~
1-£0 A _7

100 15

Figure 2.1: Defining H 1

By definition, Left wins the game if the final score (his payoff) is greater
than zero, or if the the final score equals zero and its Right's turn to play
when the game ends.

Moves for Left are distinguished from moves for Right by the direction
of the edges. In particular, moves for Left are represented by edges that
go down and to the left. Moves for Right are represented by edges that go
down and to the right.

For example, consider the game shown in Figure 2.1. If Right plays
first, then his only move his to - 7. He collects 7 from Left. · If Left plays
first, then Left has two options. He can either move to 20, thus ending the
game and collecting 20 from Right, or he can move to:

A
100 15

and when Right responds, Left collects 15. Since Left prefers gaining 20
over gaining 15, Left's optimal move is to 20.

This representation of a game is slightly unconventional in that at every
position moves for both Left and Right are represented. Representing moves
for both players at every position is necessary to handle sums of games.

The following notation is used to specify a game in a more textual way
than as a picture of a tree: if Li, ... , Ln and Ri, . .. , Rn are games then

5

25 20

VL(H2) = 25
L1(H2) = { 100 I { 25 I 20}}
L2 (H 2) = { 25 I 20 }
Ls(H2) = 25

VR(H2) = -15
R1(H2) = -15

is a game where Left has the option of moving to one of the Li games, and
Right has the option of moving to one of the ~ games. For example, in
this notation, the game shown in Figure 2.1 becomes:

{ 20, { 100 115} I -7}

The following notation is used to specify the position a game reaches
after n moves and the value of a game:

Ln (G) => The position that results after n moves when both
players play alternately, both players play optimally, and
Left starts.

Rn(G) => has the same meaning as Ln(G) except that Right
starts the play in G.

VL (G) => is the final score when both players play alternately,
both players play optimally, and Left starts.

VR(G) => is the same as VL(G) except that Right starts the play
in G.

For example, Figure 2.2 shows the notation applied to H 2 •

6

This thesis only considers games for which both players want to play,
i.e., a player gains more by playing in the game than by allowing his op­
ponent to play. More precisely, for all games G and for each position G' in
G:

VL(G') ~ VR(G').
When the condition does not hold, the game is called a number. Again the
reader is referred to [5] and [11] for a more detailed treatment of numbers.

2.2 Sum of Games

Let Gi, ... , Gn represent n games. Then a move in the sum

G = G1 + ··· + Gn

consists of picking a component game Gi and making a move in Gi. G
terminates when each component game, Gi, is reduced to a number. The
final score is the sum of the final positions.

For example, Figure 2.3 shows optimal play in the sum of two games.
Left begins by playing in the second component game and thus preventing
Right from gaining -80. Right is not obliged to respond in the same
game that Left played in. In fact, Right's optimal move is to play in the
first component game. Finally, on the third move, Left plays in the only
remaining game. The final score is positive, so Left wins.

As with a single game, Left 's optimal strategy in a sum of games is to
maximize the final score. However, unlike a single game where the optimal
strategy can be determine efficiently by a min-max procedure, there appears
to be no fast algorithm for determining the optimal strategy in a sum of
games.

2.3 Sente

Bente is a Japanese word often used to describe a move in a Go game. A
move in a sum of games is sente if it forces the opponent to respond locally,
i.e., in the same component game.

The notion of sente is important in understanding optimal play in a sum
of games. For example, consider H3 , and H4 shown in Figure 2.4. Left's

7

A + ~o 5 -5
9 1

Left 's optimal move

,

A + A
5 -5 9 2

Right's optimal move

t

-5 + A
9 2

Left 's optimal move

...

-5 +9 = 4

Figure 2.3: Optimal Play in a Sum of Two Games

8

H-~
s-is A -5 H·=A

-10 -20
100 12

Figure 2.4: Defining H3 and H4

optimal move in game H 3 is to collect 15. Left's optimal move in H 4 is to
collect -10. However, if Left plays either of these locally optimal moves in
H3 + H4 , then Right will respond in the other component game and win.
Left's optimal move in H3 + H4 is to { 100 I 12 }. This forces Right to
respond locally and take 12. Left is then able to play first in the second
component game. The final score is 12 - 10 = 2 and Left wins.

Left's move to { 100 I 12 }, though not locally optimal, forces a response
from Right. It is a sente move. Using chess terminology, it allows Left to
keep tempo.

2.4 The Negative of a Game

The negative of a game is obtained by reversing the roles of Left and Right.
In particular, if G = { L I R }, then the negative of G is defined as follows:

-G = {-R 1-L}

For example:

-{514} = {-41-5}
-{ { 10 1 s} I -4} = { 4 I { -5 I -10}}

For any game G, the first player to move in

G + (-G)

will always lose. Without loss of generality, assume Left starts. For every
move Left can make, Right can respond in the other component game with

9

H5= A
A-3o Hs=A

100 -100

H1= A
A-4o

100 20 20 0

Mean(H6) = 20 Mean(H6) = 0 Mean(H1) = -15

Figure 2.5: Defining H 6 , Hs, and H1

the negative of Left's move. Hence, Right can cancel any gain Left makes
by going first. The final score will be zero with Left to play, but he has no
play, so he loses.

2.5 Mean Value

The mean value of a game was first defined by Hanner[7] and used to
approximate the value of a sum of games. The mean value of a game
measures the inherent worth of a game not counting the advantage a player
gains by moving first.

Let nG represent the sum of n copies of G, i.e.,

n

G+···+G.

The mean value of G is defined to be

M (G) 1
. VL(nG)

ean = 1m --­
n--+oo n

The limit always exists [7].
One way to compute the mean value of G is to analyze optimal play in

nG for large n. This is best described through examples. What follows is
a description of how the mean value for each of the three games shown in
Figure 2.5 is computed.

Consider optimal play in the game nH6 • Every time Left plays, Left
reduces a component game to { 100 I 20 }. In doing so, Left threatens to

10

take 100. This forces Right to respond and reduce the switch to 20. Hence,
each component game of nH5 is reduced to 20, VL(nH5) = 20n, and

n * 20 Mean(H5) = lim = 20
n--+oo n

Next, consider optimal play in the game nH6 where n is even. Since the
mean value is defined as a limit as n goes to infinity, no generality is lost
by assuming that n is even. Every play by "Left in nH6 is balanced by a
play by Right, i.e., every time Left plays in a switch and takes 100, Right
responds in another switch and takes -100. Hence, VL(nH6) = 0 and

M ean(H6) = lim ~ = 0
n-+oo n

Finally, consider play in the game nH7 • Without loss of generality,
assume that n is a multiple of 4. Play is divided into two stages. During
the first stage, Left 's optimal move is always to reduce one of the H 7 games
to { 20 I 0} and Right's optimal response is to reduce one of the H1 games
to -40. At the end of the first stage, the game has been reduced to:

n
l

-40n
{ 20 Io}+ ... + { 20 Io}+--.

2

During the second stage, Left and Right will play out the i switches. The
final result is that half of the H7 games are reduced to -40, a quarter of
them are reduced to 20 and a quarter of them are reduced to 0. Therefore:

-40n + 20n + On _ 60
Mean(H7) = lim 2 4 4 = -- = -15

n-+oo n 4

Determining the mean value of a game G by analyzing play in nG is
cumbersome. Section 2.8 provides an efficient method for computing the
mean value of a game.

2.6 Taxation

It is useful to consider the value of a game when a tax of t is imposed on
every move in the game. When a game is taxed and its Left 's turn to play,

11

H,= 1~
20 10

Figure 2.6: Defining Ha

Left either pays Right t and makes a move, or passes. Similarly, on Right's
turn, Right either pays Left t and makes a move, or Right passes.

For example, consider play in Ha (Figure 2.6) when the tax is 3. If
Left pays 3 to take 12, then he gains 9. However, if Left pays 3 to move
to { 20 I 10 }, then when Right responds, Right pays 3 to move to 10.
The taxes Left paid to Right and the taxes Right paid to Left balance out.
Left gets a net gain of 10. Hence, when t = 3, Left's optimal move is to
{ 20 J 10 }.

Though it is not immediately apparent, taxation is a powerful concept.
It is at the heart of some good heuristics for playing in a sum of games
described in Chapter 5.

This section defines the temperature of a game, and then specifies a
simple equation for the value of a game when a tax oft is imposed on every
move.

2.6.1 Temperature

The temperature of a game, u(G), is the maximum tax that can be imposed
and still have Left and Right willing to play first in G. For example, consider
the game H 9 (Figure 2. 7) and consider how the players react when a tax of
t is imposed on every move for different values oft:

t < 100: Both players want to play first in H 9 • That is, a player
prefers paying t to his opponent and gaining 100 than hav­
ing his opponent pay him t but losing 100.

12

Hg=A
100 -100

Mean(Hg) = 0
a(Hg) = 100

H1o=A
5 -5

Mean(H10) = 0
a(H10) = 5

Figure 2.7: Defining Hg and H10

t = 100: Both players are indifferent; it does not matter who
plays first.

t > 100: Neither player will want to play first.

Since the players are willing to pay a tax oft ~ 100 in order to play first
in Hg, a(Hg) = 100.

Intuitively, temperature measures how excited a player is to play in a
game G. By quantifying how much a player is willing to pay in order to
move in G, it provides some measure for the worth of a move in G. For
example, consider the two games in Figure 2.7. If the two games appear in
a sum of games, then both players will be very anxious to play first in Hg
but will be relatively indifferent as to who plays first in H10 • Temperature
captures this idea, since a(Hg) ~ a(H10).

Temperature measures the value of a move in a game. Mean value
measures the inherent worth of the game having explicitly factored out the
advantage a player gains for moving first in a game. Together, they provide
a good first order approximation to a game.

2.6.2 The Value of a Taxed Game

The value of a game G for a player can be defined recursively as what his
opponent gains after he has made one move, i.e., if G is not a number then:

VL(G) = VR(L1(G))
VR(G) = VL(R1(G))

13

(2.1)
(2.2)

This subsection formulates similar equations for the value of a game
when a tax oft is imposed. The following notation is used:

tLn(G) => The position that results after n moves when a tax
of t is imposed on each move, players alternate moves, and
both players play optimally.

t.Rn(G) => has the same meaning as tLn(G) except that Right
starts the play in G.

tyL (G) => is the final score when a tax of t is imposed on each
move, players alternate turns, Left starts, and both players
play optimally.

tVR(G) => is the same as tVL(G) except that Right starts the
play in G.

If t > u(G) then neither player is willing to move in G. In that case
it is convenient to define tvL(G) and tVR(G) to be the same value as when
t = u(G). If t ~ u(G), then the value for Left is the value for Right in t L1 G
minus the tax t that Left paid to Right. Thus:

if t ~ u(G)
if t > u(G)

(2.3)

where u(G) is the minimum t such that tvL(G) = tVR(G). The equation
for tyR is the dual 1 of the above equation. For example, Figure 2.8 shows
the values of tvL(H11) and tvR(H11) for different values oft.

Once the tax is set, it remains constant through out play in a game.
However, not all moves in a game are worth the same amount. Hence,
it is common for the players to be willing to pay the tax only for some
portion of a game. For example, consider the game H12 shown in Figure
2.8. Assume that Left pays t and moves to { 5 J -5 }. If t ~ 5, then Right
will respond to Left's move. The taxes balance out, and the final score is
-5. However, if 5 < t ~ 10 then Right will not respond to Left's move.
Since tvR({ 5 J -5}) = 0, the final score is 0 - t.

1Since Left is trying to maximize and Right is trying to minimize, an equation for Left and
can be converted into an equation for Right by taking its dual. The dual of an equation
is obtained by transforming all< to >, < to >, +to -, and - to+. Furthermore, all
Rs become Ls and all Ls become Rs in the notation ivL, ivR, i Ln. and i Rn.

14

H12= A
A-20 H11=A

5 -5
5 -5

u(Hu) = 5 u(H12) = 10

t=O t=2 t=4 t=6 t=8 t = 10
TVLIHu) 5 3 1 0 0 0
'VR(Hu) -5 -3 -1 0 0 0
'VL(H12) -5 -5 -5 -6 -8 -10
TVR(H12) -20 -18 -16 -14 -12 -10

Figure 2.8: Computing tvL and tvR for H 11 and H 12

2. 7 Thermographs

Therrnographs provide a simple, efficient method for computing u(G), and
for computing tVL(G) and tvR(G) for all values oft. A thermograph is a
plot of tvL and tvR for increasing values oft where the tax is on they axis,
and the value of the game is on the x axis. In order to keep tvL to the left
of tvR, the values on the x axis are in decreasing order. For example, the
thermograph for { 5 I -5 } is shown in Figure 2.9.

Since taxing a number has no effect, the thermograph for a number is
a vertical line. The thermograph for G = { L I R} is obtained recursively
from the thermograph of L and R by applying Equation 2.3 and its dual.
The thermograph for G has three parts: its left edge, its right edge, and
its ma.st. What follows is a description of how each part is obtained.

By Equation 2.3, when t:::; u(G):

Hence, the left edge of G's thermograph is obtained by subtracting t from
every point on the right edge of L's thermograph. Graphically, subtracting
increasing values oft corresponds to changing lines of slope one ("-) into

15

t = 15- - - - - - - - - - -

t = 10-- - - - - - - - - - -

t=5---------

20 15 10 -10 -15 -20 -25

Figure 2.9: Thermograph for { 5 I -5 }

vertical lines, and changing vertical lines into lines with slope minus one
(/).

Similarly, by the dual of Equation 2.3 when t :s; u(G), then

Hence, the right edge of the thermograph for G is obtained by adding t
to every point on the left edge of R's thermograph. Graphically, adding
increasing values of t corresponds to changing lines of slope minus one
(/) into vertical lines, and changing vertical lines into lines with slope
one (""-).

The plot of tvL(G) and tvR(G) intersect at u(G). Since for all t > u(G):

tyL(G) = tVR(G) = a(GlVL(G)

each thermograph is surmounted by an infinite vertical mast that starts at
t = u(G).

To construct the thermograph for a game, start at the bottom of the
tree and work up. For example, consider the game H 13 shown in Figure
2.10. The thermograph for R1(H13) is obtained from the thermographs
for { 5 I -5} and -20 as shown in Figure 2.11. The thermograph for H13

is obtained from the thermographs for R1 (H13) and L 1(H13) as shown in
Figure 2.12.

16

5 -5

Figure 2.10: Defining H13

t = 15- - - - - - - - - - - - - - - - - - -

t = 1(}- - - - - - - - - - -

t=5-----------

20 15 10 5 -5 -15 -20 -25

Figure 2.11: Constructing the Thermograph for { { 5 I -5 } I 20 }

t = 15- -

t = 1(}- - -

{{ 22110} I
{ { 5 I -5} I -20}} { { 5 I -5} I -20}

20 15 10 5 0 -5 -10 -15 -20 -25

Figure 2.12: Constructing the Thermograph for H 13

17

The line representing tvL(G) in a thermograph either goes vertically up
or goes up and to the right (slope -1). The line representing tvR(G) either
goes vertical up or goes up and to the left (slope 1). Furthermore, since
the lines meet when t = u(G), it is easy to show the following bounds on
a(G)VR(G)

tVL(G) ~ u(G)VL(G) ~ tVR(G) (2.4)

tVL(G) ~ u(G)VL(G) ~ tVL(G) + t (2.5)

2.8 Mean Value Revisited

One surprising fact is that the value of a game when a tax of t ~ u(G) is
imposed equals the mean value of a game, i.e.,

Vt~ u(G) : Mean(G) = tvL(G) = tvR(G). (2.6)

This result is proved by Hanner [7].
[2] contains a short argument for why Equation 2.6 is true. Unfortu­

nately, the argument is unconvincing. The heart of the argument is that
taxation is a linear function. However, the argument assumes that if in the
game A+ Ba tax t : u(A) < t < u(B) is imposed on every move then play
in the game is equivalent to play in the game:

However, this assumes the result. If taxation is not linear, then one has
now way of knowing what play in A+ B is like when a tax is imposed.

Conway[6] provides a more convincing argument. However, special care
is still need to handle the case when t is close to u(A).

Since the value of a game when a tax oft ~ u(G) is imposed equals the
mean value of a game, thermographs provide an efficient way of computing
mean values. In particular, to compute the mean value of a game G, simply
draw the thermograph for G and read off the graph tvL fort~ u(G). For
example, the thermograph for H 13 (Figure 2.12) shows that mean(H13) =
a(His)vL(H13) = 2.5, and the thermograph for tR1(H13} (Figure 2.11) shows
that mean('R1 (H13}} = 10.

18

Chapter 3

Easy Games - Hard Games

In general, SUM is PS PACE-complete. However, there exists restricted
classes of SUM that have polynomial time solutions. This chapter analyzes
a few restricted classes and shows that some have polynomial time solutions
while others seem hard to play.

3.1 Switches

A game { x I y } where x, y are numbers and x > y is called a switch. A
sum of switches, though not hard to play, is an important special case that
is used repeatedly through out this thesis.

Any switch { x I y} can be unbiased by converting it into

u + { v 1-v}

where u equals 1/2(x + y) and v, the temperature of the switch, equals
1/2(x - y). For example,

{ 20 I -12} ==> 4 + { 16 I -16 }.

Left does not care if the game consists of { 20 I -12} or if the game consists
of { 16 I -16} but he is given 4 additional points at the start of the game.

In general, it is convenient to unbias a switch. Though the value of u
affects the value of the final score, it does not affect optimal play and can
be ignored in all discussions of strategy.

19

15 25 20 -- -- --
I
I

10 , 30 , ' 10 ,
Figure 3.1: Stacked Coins

Consider the following game composed of n unbiased switches:

{ X1 I -X1 } + • ·' + { Xn I -Xn}

where x1 2:'.: .•• 2:'.: Xn· [2] makes a good analogy between this game and a
game where a bunch of coins {xi, ... , Xn) are placed on a table. On each
move a player can take a coin off the table and place it in his pocket. The
final score represents the difference between the amount of money in Left's
pocket and the amount in Right's pocket. .

The optimal strategy for both players is to choose the largest switch
(coin). If Left plays first, then the value of the game is equal to the alter­
nating sum:

ALT= X1 - X2 + · · · ± Xn•

If Right plays first, then the value of the game is the negative of ALT.

3.2 Stacks of Coins

One simple generalization of the above game is to imagine several stacks of
coins placed on a table as in Figure 3.1. On each turn a player can remove
one of the exposed coins and place that coin in his pocket. The score is the
difference between the a.mount of money in Left 's pocket and the amount
in Right 's pocket.

The tree representation of a stack of two coins, x and y where xis on y,
is shown in Figure 3.2. If x < y, then the game is a number. For example,
in the game shown in Figure 3.1, Left is unwilling to take the 25 coin since

20

x - ...
.._ Y_. ;

==>
x+y ~y ~+y -~y

Figure 3.2: Representing a Stack of Coins

Right would then be able to take the 30 coin. From Left's point of view
this is a net loss of 5.

Like the previous game, this game is easy to play. The optimal strategy
is simply the greedy strategy, i.e., take the largest coin on a stack which is
not a number. For example, in the game shown in Figure 3.1 Left's optimal
move is to take the 20 coin on top of the third stack.

3.3 Left Heavy Games

A left heavy game is a game of the form { { x j y } j z } where x, y, z are
numbers and x ~ y ~ z. A left heavy game is the simplest game for which
the notion of a sente move for Left applies, e.g., Figure 3.3. Hence, they
add a good deal of complexity to a sum of games.

A f(n)-left heavy game is a sum composed n games where f(n) of them
are left heavy games and the rest are switches. The goal of this section is
to analyze such games for various functions f(n).

3.3.1 C-Left Heavy Games

Ac-left heavy game, for any constant c, is handled efficiently by computing
a formula for the score of the game. Without loss of generality, assume
that the switches in a c-left heavy game have been unbiased. Then a c-left
heavy game has the form:

21

After Left moves in Ha, he threatens to take oo. Right
is compelled to respond to prevent the threat. Hence,
Left's move is sente.

Figure 3.3: A Left Heavy Tree where Left 's Move is Bente

Theorem 3.1 In a c-left heavy game, it is at least as good if not better for
Left to play in the largest switch then to play in any other switch.

Proof: Let G be a c-left heavy game, and let Gi be the game that
results when Left moves in the ith switch. The theorem states that from
Left 's point of view G1 is as least as good as Gi.

It is sufficient to show that in G1 + (-Gi) Left has a winning strategy
even when Right starts [5, page 78]. Consider G1 + (-Gi) with the Ph
component game of G1 paired with Ph component game of -Gi, i.e.,

{ { X1 I Y1 } I Z1 } + -{ { X1 I Y1 } I Z1 } +

{ {Xe I Ye} I Ze} + -{ { Xe I Ye } I Ze } +
t1 + -{ t1 I -ti}) +
{ t2 I -t2} + -{ t2 I -t2} +

{ ti-1 I -ti-1 } + -{ ti-1 I -ti-1} +
{ti I -ti} + -ti +
{ ti+1 I -ti+l } + -{ ti+l I -ti+1 } +

{ tn I -tn} + -{ tn-c I -tn-c }

Except for the (c+l)th and (c+l+i)th component games, each component
game is paired with its negative. Whenever Right plays in such a pair,

22

Left can respond with the negative of Right 's move in the other game, and
cancel any gain Right makes by going first in the pair.

Hence, the problem is reduced to showing that Left has a winning strat­
egy when Right moves first in the following game:

Since the negative of an unbiased switch is the switch itself, the game above
is equivalent to:

ti + { ti I -ti } + { ti I -ti } - t,

Right's optimal strategy is to play in the largest switch, {ti I -ti }, and
Left's optimal response is to play in the remaining switch, { t, I -t, }. The
final score is ti - ti+ t; - t, = 0 with Right to move. Thus Left wins. I

Using the above theorem, the optimal strategy for a c-left heavy game,
for any value of c, can be computed. However, for simplicity, only the case
when c = 1 is considered here.

Given Theorem 3.1, optimal play in a 1-left heavy game proceeds in
three distinct stages. First, players alternately play in the largest switch.
At some point, a player will play in the left heavy tree. If Left plays there,
the tree is reduced to a switch. If Right plays there, the tree is reduced to
a number. In either case, the players then return to playing alternately in
the largest switch.

The key question is on what move should Left or Right play in the left
heavy tree. To answer this question it is sufficient to compute formulas for
the score of the game when Left and Right move in the left heavy tree at
move i.

It is convenient to have a shorthand notation for the amount the switches
{ t, I -t, } through { t; I -t; } add to the score when Left starts play in the
game

{ ti I -ti } + .. · + { tn-c I -tn-c }

In particular, let:

[. ']-() ()i+i 1,J - t, - ti+l + ... ± t; * -1

If Right moves first in the left heavy tree at move i, then the score for
the first stage of the game is [1,i-1]. For the second stage, right moves in

23

the left heavy tree and takes z. For the third stage, play resumes with Left
and hence the score is the negative of the alternating sum of switches from
i ton. Adding together the three stages and simplifying, we get:

RightScore(i) = [1, n] + z - 2[i, n]

When Left plays in the left heavy game, he throws a biased switch,
{ x I y }, into the set of remaining unbiased switches. It is convenient to
view that switch as unbiased, i.e., { x I y } = m 0 + { t 0 I -t0 } where
m0 = (x + y)/2 and t 0 = (x -y)/2. It is also convenient to know where the
unbiased switch { t 0 I -t0 } fits into the ordered list of biased switches. Let
k be the number such that t1c ~ t0 ~ t1c+i·

If Left first moves in the left heavy tree at move i > k, then Right will
immediately respond in the { x I y } switch and play will then proceed as
usual. So,

LeftScore(i) = [1, n] + m0 - t0 when i > k.

If Left first moves in the left heavy tree at move i ~ k, then the score
for stage 1 is [1,i-1]. No score is generated for the second stage of the game,
but the unbiased switch { t 0 I -t0 } is thrown into the game. The score for
the third stage is: -[i,k] + m0 + (-l)lc+ 1t0 + [k + 1,n]. Adding together
the score at each stage and simplifying produces:

LeftScore(i) = [1,n] - 2[i,k] + m0 + (-l)lc+1t 0 when i ~ k.

Assume that Left always goes first. For increasing i, (2 4 6 ...) the value
of RightScore(i) will decrease. Since Right is trying to minimize the score,
Right will delay moving in the left heavy tree. However, if on the next
move it is to Left's advantage to play in the left heavy tree, then Right will
play there in defense. Specifically, Right moves in the left heavy tree on
move i iff

RightScore(i+2) ~ LeftScore(i+l)

Similarly, Left's optimal strategy on move i is to move in the left heavy
tree iff:

LeftScore(i+2) ~ RightScore(i+l)

For example, consider the game shown in Figure 3.4. It is easy to

24

+A
5 -5

Figure 3.4: A 1-Left Heavy Game

compute that:
LeftScore(l) 6
RightScore(2) - 20
LeftScore(3) 16
RigthScore(4) 10
LeftScore(5) - 16

Left can play in the largest switch on his first move but must move in left
heavy tree on the third move.

3.3.2 Log(n)-Left Heavy Games

A log(n)-left heavy game can be played in polynomial time, though not as
efficiently as a c-left heavy game.

Under reasonable play, the log(n)-left heavy game can take on only a
polynomial number of different states. In particular, each of the log(n) left
heavy games can be in one of two states, i.e., either { { x I y} I z} or
{ x I y }. Furthermore, by Theorem 3.1, reasonable play in the switches
will consist of first playing out the switches in order. So there are only n
different ways in which the switches will appear. Hence, there are

2log(n) * n

possible configurations.
Since there are only polynomial number of different states, standard

dynamic programming techniques can be used to solve the problem in poly­
nomial time.

25

3.3.3 n-Left Heavy Games

There is no known polynomial time algorithm for determining the optimal
strategy for n-left heavy games. This section will present some properties
of left heavy games that suggest that finding a polynomial time strategy is
hard.

In order to study the properties of left heavy games it is convenient to
consider a special class of left heavy games th;~.t have the form { { x I 0} I z }.
This can be done without loss of generality since any left heavy game can
be put into this form via the following transformation:

{ { x I y } I z } = -y + { { x - y I o } I z - y }

The value -y will not affect the strategy of either player and can be ignored.
The following notation is used:

A t>x'. B iff an optimal move for Left in A + B is in A

It is easy to compute that if A = { {a I 0} I c} and B = { { d I 0} I f}
then

A t>x'. B <===:>-min(!+ a,O) ~ min(c + d,O)

In the best of all possible worlds, there would exist an evaluation func­
tion F such that A t>x'. B iff F(A) ~ F(B). However, for this to be true

t>x'. would have to be transitive between left heavy games. That is not the
case. For example,

{ { 1 I o} I -1} t>x: { { 2 Io} I -1} t>x: { { 2 Io} I -2}

but it is not the case that

{ { 1 I o} I -1} t>x: { { 2 I o} I -2}

Even given that t>x'. is not transitive, it is natural to conjecture that
if A t>x'. B, and A t>x'. C then in the sum A + B + C the optimal move is
A. However, this is not true. For example, consider the games shown in
Figure 3.5. In the sum of any pair containing His, Left's optimal move is
in His· However, in the sum H15 +His+ Hi1, Left's optimal move is in
His·

26

His= A
A-60

His= A A-7o Hi1= A
A-24

56 0 34 0 32 0

Figure 3.5: Defining H 15 , His, and Hi1

From Right's point of view, the world is a bit simpler. It is easy to show
that if A = { { a I 0 } I c } and B = { { d I 0 } I f } then

A !>a B ¢::::::!? c ?:. I

The !>a operator is transitive for Right. However, A !>a B and A ~ C
does not imply that A is the optimal move for Right in the game A+B+C.
For example:

{ { 4 I o} I -61 } ~ { { 73 I o} I -66 },

and
{ { 4 I o} I -61 } ~ { { 18 I o} I -95 },

but in the sum:

{ { 4 I o} I -61 } + { { 13 I o} I -66} + { { 18 I o} I -95 }.

Right's optimal move is in the second game.
All of the above examples show that understanding the context in which

two or more a left heavy games appear is paramount to understanding
the relative importance of the games. On further example is shown in
Figure 3.6. The left heavy games A,B,C, and D, are placed in four different
contexts. In the first sum, the optimal move is in game A. In the second
sum, the optimal move is in game B. In the third sum, the optimal move
is in game C. In the fourth sum, the optimal move is in game D.

27

A- A
A-48

15 0

B- A
A-41

17 0

c- A D- A
A-46 A-43

20 0 25 0

Gamel:IAI+ B + C + D + A+ A A -i2 A ~
17 0 10 0

Game 2: A +[ID+ C + D + A + A A -21 A -28
28 0 13 0

Game 3: A + B + [QJ + D + A + A A -23 A -i4
20 0 16 0

Game4: A+ B + C +[QJ+ A\+ A\
10 0 4 0

The optimal move in each game appears in the box

Figure 3.6: The Importance of Context

28

Chapter 4

Complexity of SUM

Lockwood Morris[l 7] shows that determining optimal play in a disjunctive
sum of games is PS PACE-complete. His proof holds when the component
games in the sum are of depth 4 or more, but it leaves open the possibility
that instances of SUM composed of shorter games could (even assuming
P-::/ PSPACE) be handled in polynomial time.

This chapter narrows the gap between those problems known to be in P,
and those problems known to be PS PACE-complete. Let SU A{1. n refer
to the problem of determining optimal play in a sum of games, where each
component game has depth less than or equal to n. The natural question
arises as to how small n can be and still have SUMd·" be PSPACE­
complete. This chapter will prove that SU Afd, 2 is PS PAC £-complete.

The result is important for two reasons. Previously, the only known way
of determining the optimal play in an instance of SU Md·. 2 or SU Md'J was
via an exponential time search. However, there was no convincing evidence
that the problem was hard enough to warrant such an algorithm Now, with
a free conscience, one can accept an algorithm with an exponential running
time.

The result also affects the types of heuristic solutions that are possible.
The next chapter presents a relatively complex heuristic that determines a
good move in a sum of games by using ta.-xation to approximate each compo­
nent game. One could imagine a simpler algorithm that approximated each
component game with a depth two or depth three game. Since a depth two
or a depth three game maintains the notion of sente, the approximation
could be quite accurate. However, since SU Mds_ 2 is PSPACE-complete

29

this approach will fail. The approximated version of the game will be
(roughly speaking) as hard to solve as the original version.

What follows is the proof that SU Md'-2 is PS PACE-complete. The
proof proceeds in two parts. The first part proves that SU Md<2 is as hard
as SAT, i.e., the problem of determining if a boolean formula is satisfiable.
The second part, expands upon the first part to show that SU Md9 is
equivalent to QBF, i.e., the problem of determining if a quantified boolean
formula is satisfiable.

4.1 SUMd~2 is NP-hard

Morris transforms an arbitrary instance of PARTITION consisting of num­
bers x 1 , ••• , Xn and the value S = 1/2 I: Xi into an instance of SUM. He
shows that under optimal play, Left chooses a subset of the x's, whose sum
is L, to remain in play. Right then has the option of playing such that the
final score is either S - L or L - S. Left wins iff either of Rights options
result in a final score that is greater than or equal to zero. Hence, Left wins
iff S = L and he has partitioned the x's.

This section will prove that SU Mds 2 is NP-hard. The proof_ given here
is very similar to Morris's proof. However, the following proof reduces the
size of the component games by dealing with alternating sums of numbers.
This allows the more complex games used by Morris to be replaced by
switches.

The proof proceeds in three steps. First it is shown that ALT is N ?­
complete. Namely, given the set of integers and a value, the problem of
deciding if there is a subset of integers such that their alternating sum
(taken in descending order) equals the given value is N ?-complete.

Next, SUBSET SWITCH is shown to be N ?-complete. Namely, given
a value, B, and a set of switches, the problem of deciding if there exists a
subset of switches, X, such that VL(X) = B 1 is N ?-complete.

Finally, SU Mds_ 2 is shown to be NP-hard. An arbitrary instance of
SUBSET SWITCH, consisting of a set of switches and a value B, is trans-

1 VL is defined in Section 2.1. When applied to a set, it is the final score of the sum
composed of all clements in the set assuming that Left starts and both players play
optimally.

30

formed into SU Md9 . A game is constructed where optimal play pro­
ceeds as follows: Left plays and leaves a subset of switches, X, such that
VL (X) = L. Right then has the choice of playing such that the final score
is B - L and L - B. Left wins if both of Right's alternatives results in a
final score that is greater than or equal to zero. So, Left wins iff he has
been able to solve the SUBSET SWITCH problem.

Lemma 4.1 ALT is NP-complete. Given tlie set Y of integers and a value
B, the problem of deciding if there exists a subset Y' = {Yb, y~, ... , ya C Y
where Yb ~ Yi ~ ... ~ y~ and

B = y~ - y~ + ... ± y~

is NP-complete.

Proof: ALT is in NP. A non-deterministic algorithm simply guesses a
subset Y' and checks in polynomial time that its alternating sum is equal
to B.

Consider the PARTITION problem. An instance consists of a set of
integers X = {xo, ... ,xn} where x0 ~ ••• ~ Xn. Karp[lO] showed that
problem of determining if there is a subset X' ~ X such that

L Xi= L Xi
z;EX' z;EX-X'

is NP-Complete.
It is sufficient to reduce PARTITION to ALT. In particular, the fol­

lowing construction creates an an instance of ALT consisting of a value B
and a set of integers Y such that it can be solved iff the given instance of
PARTITION can be solved:

1. B +- ! LXi

2. For each integer xi E X, add to the set Y the integers Yil and Yi2·

Assume k is the maximum number of bits required to represent B
and Xo. Let Yil and Yi2 bes bits long where s = 2n + log(n) + k bits.
Then:

Yil - 2•-2i + Xi

Y. - 2•-2i 12 - •

31

2n log(n) k _....._,_ --...
Yo1: 1 0 0 0 . . . 0 0 ... 0 X1
Yo2: 1 0 0 0 . . . 0 0 ... 0 0
Yu: 0 0 1 0 . . . 0 0 ... 0 X2
Y12: 0 0 1 0 . . . 0 0 ... 0 0

. . .
: : . : :

0 0 0 0 . . . 1 0 ... 0 Xn

0 0 0 0 . . . 1 0 ... 0 0

Figure 4.1: Constructing an Instance of ALT

The lower order k bits of Yit contain the value Xi, and the higher order
bits are 0 except for the (s - 2i)th bit. All bits in Yi2 are zero except
for the (s - 2i)th. Figure 4.1 shows the construction of the Yili Yi2
pairs. Note, log(n) bits are left between the high order positional bits
and the lower order bits containing Xi to guard against overflow.

It is important to note that the y's decrease in size rapidly, and that
they are all significantly larger than the value of B. If Yil is added to the
alternating sum, then to reach the value of B it is necessary to subtract
the value Yi2. Any solution of the instance of ALT constructed above either
contains both Yil and Yi2 or contains neither value. Furthermore, since
Xi = Yit - Yi2 the value of the alternating sum of the Yit, Yi2 pairs is the
sum of the Xi's coded in the lower k bits of the 1/it values.

The given instances of ALT and PARTITION are equivalent problems.
The solution for one implies the solution for the other. A solution for the
instance of ALT constructed above will contain a number of Yii, 1Ji2 pairs.
The corresponding solution to PARTITION is the set of Xi values coded in
the k lower order bits of the Yil 's. Similarly, given a solution, X', for an
instance of PARTITION, the corresponding solution to ALT is the set of
Yib 1Ji2 values constructed from the xi E X'.

Since the construction is accomplished in polynomial time, and since
ALT can be solved if and only if PARTITION can be solved, ALT is NP­
complete. I

32

Corollary 4.1 SUBSET SWITCH is NP-complete. In particular, given
a value S and a set of unbiased switches the problem of deciding if there
exists a subset of switches whose sum equals B is NP-complete.

Proof: The value for Left in a sum of unbiased switches is the alternating
sum of the component values of the switches. For example:

VL({ 9 I -9} + { 4 I -4} + { 3 I -3} + { 2 I -2}) = 9 - 4 + 3 - 2

The problem of choosing a subset of switches such that the value for Left
when Left plays first in their sum, i.e., the alternating sum of their com­
ponents, equals a given value is equivalent to the ALT problem.

Theorem 4.1 SU Md9 , i.e., determining the optimal play in a sum of
games where each component game has depth less than or equal to 2, is
NP-hard.

Proof: Transform an arbitrary instance of SUBSET SWITCH, consisting
of a value B and a set of switches { xi I -xi }, ... , { Xn I -xn } where
Xi ~ ... ~ Xn, into an instance of SUMd-52· Namely, construct the game:

J + Gu + G12 + · · · + Gni + Gn2 + H + I+ j

where

J --+ {{ ool E?=i Ai - C}I - oo}
Gil --+ {{xii - xi}I - Ai}
Gi2 --+ {OI - Ai}
H --+ {Cl-C}
I --+ {DI - s, {SI - E}}
i --+ {Oj{OjO}}
Ai > (4 * Ai+i)
An > 4 * (C + D + E + S + E?=i xi)
c > D + E?=1Xi
D > 4 * E
E > 2 * E?:i Xi

In the above sum, the game j will never affect the score. Furthermore
since neither player can gain an advantage by playing in it, it will not be

33

played until all other games have ended. Thus, it will not affect either
player's strategy and will be ignored in all discussions of strategy.

However, j does affect the above game. Left wins a sum of games if
the final score is greater than zero, or if the final score equals zero and it
is Right's turn to play when the game ends. j guarantees that when the
game ends, it is Right's turn to move. Thus, a final score of zero will be a
victory for Left.

To show that Left has a winning strategy iff he can choose a subset
of switches whose value is S, it will be convenient to first consider how
the players are expected to play. This will be called the normal strategy.
Afterwards it will be shown that neither player can hope to benefit from
deviating from the normal strategy.

Normal play proceeds in three stages: beginning, middle and final. The
beginning stage consists of Left playing in J and Right responding in the
same game, picking up E Ai - C.

The middle stage consists of Left and Right both playing in the G games.
Left begins by playing in either G11 or G12• Right responds in the other
game. Left then chooses to play in either G21 or G22 and Right responds in
the other one. Play proceeds down the pairs of G;'s until all the G games
are played. This ends the middle stage.

Notice that Left 's choice between Gi1 and Gi2 is the choice between
including or excluding the switch {xi I -xi} in the final game. In normal
play Left has total control over which switches are included and which are
excluded.

When the final stage begins, the game has been reduced to the sum of
I, H, and the subset of switches that Left choose to leave in the game. For
convenience, Let L be VL of the sum of those switches.

Play begins in the final stage with Left playing in H.
Right then has a major decision to make. He must choose between

playing in the first option and playing in second option of I. If he plays
in the first option (-S), Left will start the play in the remaining switches.
The switches will be played out and the final score will be -S + L. If he
plays in the second option ({ S I - E }) , Left will respond in { S I - E }
taking S and Right will start the play in the switches. The final score will
be S-L.

Left will win iff both of Right's options (taking S - Lor L - S) result

34

in a non-negative final score. This is only true if Left solved the SUBSET
SWITCH problem.

To show that the normal play described above is optimal for both play­
ers, it will be shown that in each stage of play neither player can gain an
advantage by deviating from the strategy described above.

The play in the beginning stage of the game is obviously optimal. If
Left does not move in J, Right will gain -oo and win. Similarly, after Left
plays in J, he is threatening to gain oo. Right must respond in the same
game to prevent this threat.

To analyze the play in the middle stage of the game, note that after the
beginning stage, Left has a huge advantage (E At - G). With normal play
Right recoups his loss by gaining one -At for each of the (Gil, Gi2) pair.
For Right, the major drive in the middle stage is his need to regain at least
- L:Ai.

If Left is playing in the normal way, can Right gain an advantage by
not responding directly to Left's moves in the pair Gil, Gi2 ? The answer is
no. If Right plays elsewhere, Left will play in the other Gi game preventing
Right from getting -At. This is bad for Right since:

i-1 n

At > (2 * L Ak) + G + D + E + s + L Xi
k=l i=l

Even if Right could play first in all the other games, he would gain less than
Ai. It is not only better for Right to play in Gi than to play somewhere
else, it is better for Right to play in Gi than to play everywhere else.

Note that the above argument is symmetrical. If for some reason, Right
was the first player to play in pair Gu, G12 , then Left would be forced to
respond by playing in the other G1 game. If Left did not do so, he would
be unable to compensate for Right having gained 2 * -A1• The fact that
a move in the pair Gu, G12 forces the opponent to respond in that pair of
games is the key fact needed to prove that Left can not gain an advantage
by deviating from normal play.

In particular, suppose that Left and Right have played in the normal way
in the games: (Gu, G12, ••• , Gi-l,1' Gi-i,2) and suppose that Left decided
to play somewhere besides in the pair Gil, Gi2 • There are three cases that
must be analyzed.

35

First suppose that Left decided to play in the Gu, G1c2 pair where k > i.
It is easy to see that playing in the G1ci, G1c2 pair early does not gain Left
any advantage but only increases Right's options. Right can respond in
the pair G;i, G;2. By the previous argument, Left is forced to respond in
the same pair. Right can then play in the pair G;+l,1' Gi+ 1,2 forcing Left
to respond. Right can continue to force the play until the Gu, G1c2 pair
is reached. Hence, Right can force a line of play that is equivalent to
the normal play except that Right had contrt>l over which of the switches
{ x; I -x;} where i ~ j > k were included in the remaining game. Left
gains nothing by giving up his control.

The second case is that Left deviated from normal play in order to play
in H early. Using the same reasoning as above, Right can force a line of
play that is equivalent to the normal play except that Right has control for
the pairs Gil, G;2 through Gni, Gn2. Left gains nothing by giving up control
in this way.

The third possibility, is that Left deviates from normal play in order to
play in I, j, or one of the { x; I -xi } switches. This is truly disastrous
for Left. Not only does Right gain control for the pairs G;i, G;2 through
Gni, Gn2, Right also gains the option of playing in H and gaining -C. Even
if Left could then play first in every other game, he could not recoup his
loss since C > D +I: x;.

When the final stage of the game commences, its Left's tum to play
and the game has been reduced to the sum of H, I, j, and a subset of the
switches.

With normal play Left would play in H and gain C. The only reason for
Left not playing in H and allowing Right to play there, is that he hopes to
gain more than C. However, C is greater than the sum of all of Left's options
in all the remaining games, i.e., C > D +I: x;. Not only is playing in H
better than playing somewhere else, playing in H is better than playing
everywhere else.

Normal play then dictates that Right plays in I. If Right plays in any
other game, Left will play in I and pick up D > 8 * I: x;. Even if Right
could play first in every other game, he would not gain more than D. Hence,
playing in I is optimal.

After I has been played, the game is a sum of switches. The optimal
strategy is simply the optimal strategy for playing in a sum of switches.

36

This is equivalent to the normal play described above.
Thus, normal play does describe the optimal play for both players. Left

can win iff he can solve the SUBSET SWITCH problem. I

4.2 SUMd~2 is PSPACE-complete

This section will prove that SU Ma$. 2 is PS PACE-complete. Stockmeyer
and Meyer[27] proved that QBF, the problem of determining if a quantified
boolean formula is true, is PS PACE-complete. This section will reduce
QBF to SU Ma$.2·

Again, the proof is very similar to Morris's proof that SUM is PS PACE­
complete[l 7], but alternating sums of numbers are used in the reductions.
This allows the complex games used by Morris to be replaced by switches.
Hence, the depth of the component games is reduced.

The proof consists of reducing QBF to 2P-EXACT-COVER, which is
reduced to 2P-GEN-PARTITION, which is reduced to 2P-ALT, which is
reduced to 2P-SUBSET-SWITCH which is reduced to SU Ma$.2· This is a
rather long series of reductions. However, each step is analogous to a step in
the NP-hardness proof given in section 4.1. The major difference between
the two proofs is that the NP-harness proof reduces SAT to SU Ma9 via
a series of one person games, where as this proof reduces QBF to SU Ma9
via a series of two person games. The structural similarity of the two proofs
is shown in Figure 4.2.

The games used in the PSPACE-completeness proof (2P-EXACT­
COVER, 2P-ALT, 2P-GEN-PARTITION, 2P-SUBSET-SWITCH) are the
two person versions of the games used in the NP-hardness proof. They all
have the same basic form. An instance of the game consists of the following
set of objects:

Xi,Xi,· · ·,X,.,X,., Yi,···, Ym

and possibly the value B. Play begins with Left selecting either Xi, or X 1

Right then selects either X 2, or X 2 • Left and Right continue to alternate
turns until all the X objects have been selected. Left then selects some
number of the Y objects. Left wins iff all the selected objects satisfy some
condition.

The only difference between the games is what the objects are, and what

37

NP-Hard Proof

SAT ! Karp [10]

EXACT COVER ! Karp [10]

PARTITION ! Lemma 4.1

ALT ! Corollary 4.1

SUBSET SWITCH ! Theorem 4.1

SUMd'5.2

PS PACE-Complete Proof

QBF ! Lemma4.2

2P-EXACT-COVER ! Lemma 4.3

2P-GEN-PARTITION ! Lemma 4.4

2P-ALT ! Corollary 4.2

2P-SUBSET-SWITCH ! Theorem 4.2

SUMd9

Figure 4.2: Comparing the Structure of the Proofs

38

the winning condition is. In 2P-EXACT-COVER the objects are subsets of
a set, and Left wins iff the selected subsets form an exact cover of the set.
In 2P-GEN-PARTITION the objects are numbers, and Left wins iff the
sum of selected numbers equals B 2 • In 2P-ALT the objects are numbers,
and Left wins iff the alternating sum of the selected numbers equals B.
Finally, in 2P-SUBSET-SWITCH the objects are switches, and Left wins
iff VL of the sum of the selected switches equals B.

What follows are the reductions used to prove that SU Md$.2 is PS PACE­
complete. The first two reductions (QBF to 2P-EXACT-COVER and 2P­
EXACT-COVER to 2P-GEN-PARTITION) are given in [17]. They are
repeated here for completeness.

Lemma 4.2 2P-EXACT-COVER is PSP ACE-complete.

Proof: 2P-EXACT-COVER is obviously in PSPACE. Since the size of
the game decreases, a simple exhaustive search with a stack can solve 2P­
EXACT-COVER using a polynomial amount of space.

QBF can be viewed as a game between two players, called Exist and
Forall. Given a formula cp = 3x1 Vx2 ••• </>, Exist begins play by choosing if
x1 is to be set to true of false. Forall then chooses if x2 is to be set to true
or false. Play continues with Exist and Forall alternating turns until all
the variables have been given a truth assignment. Exists wins iff the truth
assignment of the variables make</> true.

The basic idea is to convert an arbitrary formula cp = 3x1 Vx2 ••• </> into
an instance of 2P-EXACT-COVER such that Left's (Right's) decision over
whether to choose Xi or Xi is equivalent to Exist's (Forall's) decision of
whether to set xi to be true or false. It will be shown that Left will be
able to choose the Yi subsets to form an exact cover iff </> is true under the
specified truth assignments.

Without loss of generality, assume that the instance of QBF is in quan­
tified 3SAT form, i.e.,

2 Note, in 2P-GEN-PARTITION, read as "two person generalized partition", B can be
any value, and not necessarily equal to half of the sum of the given numbers.

39

Figure 4.3: Transforming a Formula into an Instance of 2P-EXACT-COVER

where <P = C1 /\ •.. /\ Cn and each clause Ci is the disjunct of exactly
three literals or negated literals. Morris transforms cp into an instance of
2P-EXACT-COVER via the following construction:

1. The grand set X contains the following 4m points:

(a) One point, Ci, for each clause of q,.
(b) One point, x{, for each ij such that xi is a literal in

clause C;

(c) One point, xt, for each ij such that Xi is in clause C;.

2. The subset Xi contains all points in X of the form x{.
3. The subset Xi contains all points in X of the form x{.
4. The 6m Yi subsets are defined as follows:

(a) One subset for each point x{ in X.

(b) One subset for each point l!'f in X.

(c) Onesubsetforeachpairofpoints (x{,C;) and (X'[,CJ)
in X

For example, Figure 4.3 shows the transformation of a formula into an
instance of 2P-EXACT-COVER.

40

There is a direct correspondence between play in an instance of QBF
and play in the corresponding instance of a 2P-EXACT-COVER game. If
a player sets a variable to false in QBF, then that variable can not be used
to turn on any clause. This is analogous to a player in the 2P-EXACT­
COVER game selecting the subset X;, since it prevents Left from using
any (x{, C;) subset to cover C;. Similarly, if a player in QBF sets a variable
to true, then that variable turns on any clause that contains it. This is
analogous to a player in the EXACT-SET game selecting subset X; and
enabling any (x{, C;) to cover C;.

Since the reduction can be done in polynomial time, and since the QBF
game can be solved iff the 2P-EXACT-COVER can be solved 2P-EXACT­
COVER is PS PACE-complete. I

Lemma 4.3 £P-GEN-PARTITION is PS PACE-complete.

Proof: 2P-GEN-PARTITION is obviously in PSPACE. Since the size
of the game decreases, a simple exhaustive search with a stack can solve
2P-GEN-PARTITION using a polynomial amount of space.

Hence, it is sufficient to reduce 2P-EXACT-COVER to 2P-GEN-PAR­
TITION. Let:

be the subsets of X in an instance of 2P-EXACT-COVER. To convert it
into an instance of 2P-GEN-PARTITION is easy. If the set X contains k
elements, then each subset is represented as a k digit, base four number.
Each digit in the number represents an element in the set. The ,-th digit of
the number is set to one iff the subset contains the ith element of the set.
Otherwise it is set to zero. B is set to 2H1 - 1, i.e., 111 ... 111.

Consider a typical solution to the instance of 2P-GEN-PARTITION
constructed above. Since the sum of the selected numbers can never pro­
duce a carry, the only way to achieve B is to have, for all i, exactly one
of the selected numbers have the ,-th digit set to one. Hence, the solution
represents an exact cover of X.

Since the reduction can be done in polynomial time, 2P-GEN-PARTI­
TION is PSP ACE-complete. I

41

Lemma 4.4 2P-ALT is PSPACE-complete.

Proof: 2P-ALT is obviously in PSPACE. Since the size of the game
decreases, a simple exhaustive search with a stack can solve 2P-ALT using
a polynomial amount of space.

Let the value b and the numbers:

be an instance of 2P-GEN-PARTITION. Without loss of generality, assume
that the largest value requires k bits to represent, and that n is odd. Then,
the following instance of 2P-ALT is solvable iff the given instance of 2P­
GEN-PARTITION is solvable:

..X-o,..X-o,···..X-n,..X-n,Y"11,Y"12,···,Y"m1,Y"m2

where
s 2m + log(m) + k
t s+n

..x-i r-· +X;
if i even

---+ 2t-i if i odd - Xi

..x-i
2t-i +Xi if i even

---+ 2t-i - if i odd - Xi
Y;1 ---+ 2•-2i +Yi

Y;2 ---+ 2•-2i

B ---+ 2t-l + 2t-3 + ... + 2•+1 + b

The high order bits of the ..X-i and ..X-i guarantee that their values are
decreasing in size as i increases. This ensures in the alternating sum, the
values Left selects will be added into the sum and that the values Right
selects will be subtracted from the sum.

Ignoring the high order bits of ..X-i and ..X-i, the effect of selecting Xi in
2P-GEN-PARTITION and the effect of selecting ..X-i in 2P-ALT is the same.
If i is even, then in either case the value of xi is added into the sum. If i is
odd, then in the case of 2P-GEN-PARTITION, the value xi is added into
the sum. In the case of 2P-ALT, the value -xi is subtracted from the sum
which is equivalent to adding Xi into the sum.

42

Unfortunately, the high order bits do have a secondary effect of adding
into the sum 2t-1 +2t-3 +. · ·+2•+1. However, this extra amount is accounted
for in the value of B.

The construction of the Y;1 and Y;2 is exactly the same as in the re­
duction of PARTITION to ALT. Again the construction guarantees that if
Left selects Y;1 he must also select Y;2 • The net result of selecting Y;1 and
Y;2 is that Yi is added to the sum.

Hence, there is a simple and direct correspondence between a solution
to the given instance of 2P-GEN-PARTITION and 2P-ALT. x, is in the
solution of 2P-GEN-PARTITION iff X, is in the solution of the correspond­
ing instance of 2P-ALT. x, is in the solution of 2P-GEN-PARTITION iff
X, is in the solution of the corresponding instance of 2P-ALT. Y; is in the
solution of 2P-GEN-PARTITION iff Y;1 and Y;2 is in the solution of the
corresponding instance of 2P-ALT.

Since the reduction can be done in polynomial time, 2P-ALT is PSPACE­
complete. I

Corollary 4.2 2P-SUBSET-SWITCH is PSPACE-complete.

Proof: 2P-ALT and 2P-SUBSET-SWITCH are obviously equivalent since
the value for Left when starting play in the sum of unbiased switches is the
alternating sum of the component values of the switches.

Theorem 4.2 SUMd9 is PSPACE-complete

Proof: SUMd9 is obviously in PSPACE. Since the size of the game
decreases, a simple exhaustive search with a stack can solve SU Md9 using
a polynomial amount of space.

Hence, if is sufficient to reduce 2P-SUBSET-SWITCH to SU Md-9· The
difference between a 2P-SUBSET-SWITCH game and a SUBSET SWITCH
game is that a 2P-SUBSET-SWITCH game contains an extra stage where
Left and Right alternately select switches. Hence, it is sufficient to add com­
ponents games to the sum constructed in Theorem 4.1 such that optimal
play in the sum contains an extra stage where Left and Right alternately
decide which switches are to remain in the game. In particular, transform

43

an arbitrary instance of 2P-SUBSET-SWITCH consisting of the value S
and the switches:

{x1 l-x1},{x1 l-x1},···,{x2n l-x2n},{'X2n l-'X2n},
{ Yl I -yl }, · · · ' { Ym I -ym}

into an instance of SU Md9 , construct the game:

J +Ku + K12 + · · · + Kn1 + Kn2 + Gu+ G12 + · · · + Gm1 + Gm2 + H +I+ j

where

J -+

Ki1 -+

Ki2 -+

G;1 -+

G;2 -+

H -+

I -+

i -+

and

{ { oo I E?:1 At - c} I -oo }
{ { X2i-l I -X2i-l }, { "?l2i-l I -X2i-l} I -F2i-l}
{ F2i I { X2i I -X2i }, { X2i I -X2i} }
{ { Yi I -Yi } I -A; }
{ 0 I -A;}
{Cl-C}
{ D I -S, { s I -E}}
{Ol{OIO}}

Fi > 4 * .Fi+i
Fn > 4 * A1
Ai > 4 * Ai+1
An > 4 * (C + D + E + S + E?:1 xi)
c > D + E?:1Xi
D > 4*E
E > 2 * Ei=1Xi 0

The only significant difference between this game and the game con­
structed for Theorem 4.1 is that this game contains a number of K com­
ponent games. Optimal play in both games is very similar.

As in the game constructed for Theorem 4.1, optimal play begins with
Left moving in J and Right responding taking Ef=1 Ai - C. If Left does
not move in J, Right can gain -oo and win. Similarly, after Left plays in
J, he is threatening to gain oo. Right must respond in the same game to
prevent this threat.

Next, Left must play in K 11 • If he does not, Right will pick up -F1 •

Since F1 is greater than the sum of all other values in the sum, Left is better
off playing in K 11 then playing first in all other games.

44

Similarly, Right then must play in K 12 • If he does not, Left will pick up
F2 • Since F2 is greater than the sum of all other values in the sum, Right
could play first in all other games and still not recoup her loss.

By Repeating the above argument, it is easy to see that the K games will
be played out in order. Left and Right will alternately make the decision
of whether to include {xi I -xi} or {xi I -xi} into the rest of the game.

After the Ki games have been played out, the game is exactly like
the game constructed in Theorem 4.1 except that the game contains an
additional 2n switches. However, the additional switches do not affect
optimal play as the games G;i, G;2 , H, and I are played out.

So, as in the game constructed in Theorem 4.1, play then proceeds in the
G games. Left begins by playing in either G11 or G12 , and hence deciding if
the switch {y1 I -y1} should be selected or not. Right responds in the other
game. Play proceeds down the pairs of Gi's, with Left choosing whether or
not to select each {Yi I -yi }.

After the G game is played out, Left must play in H and Right gains
control over the play.

Let L be VL of the remaining switches. Right must decide which option
of I to play in. If he plays in first option, Left will start the play in the
remaining switches. The switches will be played out and the final score will
be -S + L. If he plays in the second option, Left will respond in { S I - E }
taking S and Right will start the play in the switches. The final score will
be S-L.

Thus, Left will win iff both of Right's options (taking S - L or L - S)
result in a non negative final score. This is true iff Left solved the 2P-SUB­
SET-S WITCH problem.

Since the reduction can be done in polynomial time, SU Md9 is PS PAGE­
complete. I

45

Chapter 5

Coping with SUM

Since SUM is PS PACE-complete, it is unlikely that an efficient algorithm
for solving it will be discovered. Two alternate approaches exist for coping
with an instance of SUM. The first is to relax the criteria of success. Instead
of requiring optimal solutions, an algorithm is only required to produce
a solution that is close to optimal. The second alternative is to do an
exponential time search for the optimal solution.

Heuristic solutions are obviously beneficial when speed is critical and
small errors in the solution are tolerable.

A "good" though not optimal solution to SUM can have one of two
forms. It can approximate the value of the final score when both players
play optimally, or it can heuristically choose a move. This thesis focuses
on algorithms that approximate the final score to within a known error.

If P f= PS PACE, then there are constraints on how good any polyno­
mial time approximation can be. Assume that an efficient heuristic solution
approximates the value of the final score under optimal play to within some
specified accuracy. By a simple "change of currency" argument, it is easy
to show that the accuracy can not be within a constant of the optimal so­
lution. Similarly, the accuracy can not be within a multiple of the optimal
solution since determining if the final score of an instance of SUM equals
zero is PS PACE-complete.

However, Hanner[7] proved that it is possible to approximate the final
score of a sum of games to within an accuracy dependent solely upon the
"worst" component game. His bounds are independent on the complex­
ity of the component games, and on the number of component games. In

46

particular, he proved that in the sum G1 + ... + Gn, it is possible to ap­
proximate the final score to within max{ u(Gi) I 1 :::; i :::; n} of the optimum
solution.

This chapter presents a revised version of Hanner's proof. Hanner's
result was obtained by imagining that each player in a game is forced to
pay a tax for the privilege of moving. The fact that this yields results
which apply to normal play seems to be a bit magical. This chapter recasts
the work in a more intuitive light, and develops the mathematical notation
required for a clean and concise proof.

This chapter also improves upon Hanner's result to show that the final
score of G1 + ... + Gn can be approximated to within the second largest
u(Gi)·

The second approach to handling an instance of SUM is to perform a
min-max search for the optimal solution. Such algorithms require exponen­
tial time. However, their running time can be greatly improved upon by
pruning techniques. This chapter considers how the approximate solutions
developed in the chapter can be used to guide and prune the search for an
optimal solution. Particular attention will be paid to the use of the approx­
imate algorithms in conjunction with Berliner's B*[4] search algorithm.

One consequence of using B* is that it increases the motivation for
finding better approximate solutions. The better the approximate solution,
the more "informed" and hence the better the B* search will be.

5.1 Heuristic Solutions

This section places bounds on the final score of a sum of games. The basic
approach is to define a heuristic strategy, and then show that if Left uses
the strategy he can force the final score be at least some minimum value,
and if Right uses the strategy he can hold down the final score to be at most
some maximum value. Hence, the true value of the game is guaranteed to
be between the minimum and maximum value.

This section outlines four different results. The first, by Milnor[16],
is obtained via a follow the leader strategy. The second, by Hanner[7], is
obtained via the mean strategy. The last two results are improvements on
Hanner's.

47

5.1.1 Follow the Leader Strategy

The basic strategy used for approximating the value of a game is the fol­
lowing follow the leader strategy:

1. Only play locally optimal moves.

2. Whenever possible, play in the same game as the opponent.

The purpose of the strategy is to simplify the play in a sum of games.
Each component game is played out as if it were the sole game in the sum.
Thus, it is possible to approximate the final score for G in terms of the its
component games.

The follow the leader strategy was first used by Milnor[16] 1 to bound
the sum of two games. If G = G1 + ... + Gn, then the generalized version
of the result is:

To prove the right hand side of the inequality, assume that Right adopts
the follow the leader strategy: If Right always plays in the same game as
Left, then each component game G; will be played out as if it was the only
game in the sum. Furthermore, if both Left and Right play locally optimal
moves, then the final score of each component game will be VL(G;). Thus,
the final score of the sum will be

Left can not increase this final score. If Left plays any move that is not
locally optimal, the final score will be the same or lowered.

If in one of the games Left plays into an end position, Right will be
forced to play twice (or first) in some other game. Since its always to
Right's advantage to play twice in a game (or to start a game), this only
serves to lower the final score. Hence by using the strategy Right can
guarantee that

1 Milnor's and Hanner's model of a game is slightly different than Conway's. They do not
make a clean distinguish between a number and a game. However, their results hold in
Conway's model.

48

Similarly, to prove the left hand side of the inequality, assume that Left
follows Right and responds with locally optimal moves. Also assume that
Left 's first move is the locally optimal move in G1 to Gf. If Left is always
able to play in the same game as Right, and if Right always makes locally
optimal moves than the final score will be

VR(Gf) + VR(G2) + • • • + VR(Gn)·

The situation can only improve for Left if Right does not make locally
optimal moves, or if Right plays into an end position forcing Left to play
twice (or first) in the another game. Since VR(Gf) = VL(G1), this yields:

VL(G1) + VR(G2) + • • • + VR(Gn) ~ VL(G1 + · • · + Gn) I

5.1.2 Mean Strategy

The follow the leader strategy, as used by Milnor, is not very powerful. The
game is played out in a way that strongly favors the "leader". Hanner[7]
improves on Milnor's result by devising a more powerful follow the leader
strategy. In particular, he defines the mean strategy which is a follow the
leader strategy where the follower always plays t-optimal moves. Using the
strategy, he proves that if G = G1 + ... + Gn then

Mean(G) ~ VL(G) ~ Mean(G) + Max(u(Gi))

Hanner's bounds are surprisingly accurate. They are dependent solely
on the hottest game. Thus, unlike Milnor's bounds, the accuracy of the
bounds do not decrease as the number of games in the sum increases. Any
number of cooler games can be included in the sum, and the accuracy re­
mains the same. For example, Figure 5.1 compares the accuracy of Hanner's
and Milnor's bounds.

Before defining t-optimal moves, it is necessary to generalize the no­
tation for t Ln (G), 'Rn (G), 'VL (G), and tvR (G) to include the concept of a
player using a specific strategy. In particular:

t L~11 (G) => The position that results after n moves when a tax
oft is imposed on each move, both players play alternately,
Left starts, Left plays according to strategy x, and Right
plays according to strategy y. If no strategy is specified,
then an optimal strategy is assumed.

49

His H19 H2o H2i

Ns a<A No
40 30 30 20 -20 -30 0 -10 25 15

VL 30 20 35 15
VR -25 -20 0 -10

Mean: 5 0 15 5
u 30 20 20 15

His+ H19 His + H19 + H2o His + H19 + H20 + Hn
Milnor: bounds 10 ~ VL ~ 50 10 ~ VL ~ 85 0 ~ VL ~ 100

accuracy 40 75 100
Hanner: bounds 5 ~ VL ~ 35 20 ~ VL ~ 50 25 ~ VL ~ 65

accuracy 30 30 30

Figure 5.1: Comparing the Accuracy of Hanner's and Milnor's Results

50

tR~11 (G) ~ has the same meaning as tL!"(G) except that Right
starts the play in G.

tv,t" (G) ~ is the final score when a tax of t is imposed on
each move, both players play alternately, Left starts, Left
plays according to strategy x, and Right plays according
to strategy y. If no strategy is specified, then an optimal
strategy is assumed.

~

tv;"(G) ~ is the same as tv,t"(G) except that Right starts the
play in G.

Furthermore, the following notation is used for referring to particular strate­
gies:

• "O" - optimal strategy

• "-" - arbitrary strategy

• "t" - t-optimal strategy (to be defined).

For example, R5°G is the position reached after 5 moves in G when
Left plays an arbitrary strategy, Right plays optimally, and Right plays
first. ty2-(R5°G) is the final score when R'5°G is played such that Left
plays only optimal moves, Right plays an arbitrary strategy, Left starts the
play, and a tax of t is applied to each move.

In the notation for tL!"(G), tR~"(G), tv{"(G), and tv;"(G), the strategy
x and y is defined after the rules of the game are defined, i.e., the strategy is
dependent upon whether a tax oft is imposed on every move. For example,
in general, t L~-(G) f. L~-(G) since the optimal move in a taxed game is
different from the optimal move in a untaxed game.

A t-optimal move in a (untaxed) game is defined to be the move that
would be optimal if tax oft was imposed on every move in the game. How­
ever, t-optimal moves only exist for t ~ u (G). If a tax of t > u (G) is
imposed on every move in G, then it is in neither player's advantage to
move first and the game is a number. Hence, the t-optimal move in the
untaxed version of the game is undefined. Thus, a t-optimal for Left is
defined as follows:

Lt-(G) = { tL~-(G) if t ~ u(G)
1 undefined if t > u (G) (5.1)

51

L~- H22
Ll-H22
L~-H22 -
L~-H22

H,,=lw
20 10

a(H22) = 8

12
12
{ 20110}
undefined

R~-(H22) 2
Rt-(H22) 2
R~-(H22) - 2
R~-(H22) undefined

Figure 5.2: t-optimal moves in H22

The "t" in "t-optimal" is a variable that can take on different values.
For example, Figure 5.2 shows the t-optimal moves in H 22 for various values
oft. Note, a 0-optimal move is equivalent to an optimal move since a tax
of zero is equivalent to no tax.

Hanner provides some motivation for using a strategy with t-optimal
moves by stating that

When a player shall move in a sum of games he chooses one
game, say G, and there makes a move. Thereby he loses the
possibility to make the move in one of the other games. If the
value of this possibility is put equal to t it is natural to compare
the situation with the case when the player has to move in G
and pay the amount t to the other player when moving.

Unfortunately, Hanner does not expound any further on the nature oft­
optimal moves. The important question of how t-optimal moves work re­
mains.

One way to view Harmer's strategy, is that it addresses a basic weakness
found in Milnor's strategy, i.e., tempo. In Milnor's strategy, the follower is
a wimp that passively responds to the leader's move, even when it is obvious
that the leader's move is not sente. For example, consider the game shown
in Figure 5.3. The first game is hot, and it is natural to assume that the

52

100 98 -98 -100 10 0

Figure 5.3: A Sum Where the First Move Is Not Sente

10 0

Figure 5.4: A Sum Where the Locally Optimal Response Is Incorrect

leader will play there. However, the follower gains very little by responding
to the leader's move.

In Milnor's strategy, the follower's ignorance of tempo is also illustrated
by his exclusive use of locally optimal moves. A non-optimal move that
forces a response from one's opponent is often better than a locally optimal
move that can be ignored. For example, consider the game shown in Figure
5.4. Assume that the leader (Right) played in the first game. The locally
optimal response it to reduce the game to 10. However, from a global
perspective, it is better for the follower to reduce the game to { 100 I 9 },
force the leader to take 9, and then play first in the other component.

Hanner's strategy addresses the issue of tempo via taxation. Taxation
provides some insight into the value of a move. It was used in section 2.6
to efficiently compute the temperature of a game. Here, in the form oft­
optimal moves, it is used to provide the follower with some intuition about
tempo. In particular, before using Hanner's mean strategy it is necessary

53

to set the value oft. This sets a minimum threshold oft on the value of a
move. The effect is two fold.

First, t-optimal moves only exist if a move is worth at least t. Hence,
the follower can only respond in the same game as the leader when doing
so is worth at least t. For example, reconsider Figure 5.3. A t-optimal
response to the leader's move in the first game exists only when t ~ 1.
That is, the follower can only respond in the first game if the threshold is
set to be less than or equal to one.

Second, setting the value oft sets minimum threshold on the amount the
follower can lose in a local situation in order to keep sente. For example,
reconsider Figure 5.4. After the leader (Right) plays in the first game,
the follower(Left) has two options. Under Hanner's mean strategy, which
option is chosen depends upon the value oft. If t ~ 1 then the t-optimal
response is to move to { 100 I 9 }. That is, Left takes a local loss of 1 (he
gets 9 instead of 10) in order to move first in the other component game.
On the other hand, if t < 1, then the follower is unwilling to take a loss of
1. The t-optimal response is to take 10.

What follows is a revised version of Hanner's proof. The proof is divided
into two parts. The first part proves that in a single game Gi, a player
playing u(Gi)-optimal moves can force the mean of final position of Gi to
be within u(Gi) of mean(Gi)· The second part proves that in a sum of
game G = G 1 + ... + Gn, a player has a strategy that forces the final score
to be close to its mean value.

Lemma 5.1 Assume t ~ u(G). Consider a sequence of n moves in G such
that Left always has at-optimal move, i.e.,

Vi, 1 ~ i ~ n - 1, u(L:-(G)) > t.

If Left always plays a t-optimal move, then the following equations describe
how mean(G) compares to the mean of the final position in the sequence
based upon who moves first and last in the sequence.

Mean(L~-;+IG) > Mean(G) + t
Mean(L~"k G) > Mean(G) if u(L~"k G) ~ t
Mean(R;;(G)) > Mean(G)
Mean(R;:;+l(G)) > Mean(G) -t if u(R;:;+IG) < t

54

In general, it is hard to prove anything about non-optimal moves in a
game. However, a t-optimal move in a untaxed game is the optimal move
in a taxed game. Hence, questions about t-optimal moves in an untaxed
game can be answered by considering optimal moves in a taxed game.

In particular, consider a sequence of moves in a taxl'd game. Assume
both players play optimally. If there are an even number of moves, then
the taxes Left pays to Right and the taxes Right pays to Left will cancel
out. If there are an odd number of moves, then one player will pay an extra
tax. By repeatedly applying equations 2.3 and its dual, this can be stated
algebraically as follows:

tvnCL2k. i(G))
tviCL2k(G))
tvnCR2k(G))
tVi C R2k , i (G))

1.VL(G) + t
1Vi(G)
1Vn(G)
1Vn(G) -- t

This is the heart of the lemma. The rest of the proof simply massages
the above equations into the desired form.

The left hand side of the above equations assume that both players play
optimally. However, if Right does not play optimally this only helps Left.
So:

t-v tio- (G)
R 2k+ 1 > tvn 1L2k .1 (G) 1Vi(G) + t

1 VLtL~k (G) > 1VitL2k(G) 1VL(G)
1Vn 1 R~i:- (G) > 1Vn 1R2k(G) '\ '11 (C)
tvL t Rgk-t i (G) > tVi 1R2k, i(G) 'V11(G) - t

By equation 5.1 optimal moves in a taxed game arc t-optimal moves in
a non-taxed game. So,

tVRL~i ,._ 1 (G)
tVLL~A; (G)
1VnR~A;(G)
1VLR~k+l (G)

tvn1Lg;_1(G) > 1l'i,(C) + t
tVLtLg; (G) > 1Vi(G)
1Vn 1 R~,; (G) > 1Vn(G)
tvLt Rg,;_ l (G) > 1Vn(G) - t

The right hand side of all the above equations can be simplified since
by Equation 2.6 when t ~ a(G), tVn(G) = 1Vn(G) = Mean(G). So,

tvnL~k+l(G) > 1Vi(G)+t Mean(G)+t
tvLL~i(G) > tvi(G) Mean(G)
1VnR~;(G) > tvn(G) Mean(G)
tvLR~k+ 1 (G) > tvn(G) - t Mean(G) - t

55

Finally, the left hand side of the first and third equations can be simplified
since the mean value of a position is always greater than the value for
Right (equation 2.6 combined with equation 2.4). The second and fourth
equations can be simplified using equations 2.6 assuming that u of the final
position in the sequence is lower than t. So,

Mean(L~"k+iG) > tVRL~"k+i(G) -
Mean(L~"kG) > tvLL~"k(G)
Mean(R~"kG) > tVRR~i(G)
Mean(R~i+iG) > tvL~k°+i(G)

Mean(G) +t
Mean(G)
Mean(G)
Mean(G) - t

Theorem 5.1 For the game G = G1 + ... + Gn, let:

Mean(G) = Mean(G1 + · ·· + Gn)

u = max{u(G1:) I 1:::; k:::; n}

If Left is the first player to move, then:

Mean(G):::; VL(G1 + · · · + Gn):::; Mean(G) + u

Proof: The proof proceeds by induction on the number of moves in a game.
Let l(G) be the maximum number of of moves that can be played in G.

Basis: If l(G1 + ... + Gn) = 0 then all G10 1:::; k:::; n, are end positions,
i.e., numbers. Thus, u(G1:) = 0 and mean(G1:) = VL(G1:). The theorem
holds.

Induction Step: Assume the theorem holds for all games such that
l(G1 + ... + Gn) :::; m. It will be shown that it holds for all games such that
l(G1 + ... + Gn) = m + 1.

The proof will center around the mean strategy. The mean strategy is
the follow the leader strategy described below:

1. Always play in the same game as your opponent except if
you must make the first move.

2. Only play a-optimal moves.

56

It will not always be possible to play according to the above strategy since u­
optimal moves do not always exist. In particular, the strategy is considered
valid only until one of the following two conditions occur:

a : The opponent plays in Gi leaving position Pi such that
u(Pi) ~ u

(3 : Positions Pr, 1 ~ r ~ n have been reached for which u(Pr) ~
u.

To prove the left hand side of the inequality, it is sufficient to show
that if Left uses the mean strategy until one of the two stopping conditions
occur, then G will be reduced to a game P = P1 + ... + Pn such that if
its Left's turn to play in P then VL(P) 2:: Mean(G) where as if its Right's
turn to play in P then VR(P) 2:: Mean(G).

Consider how the mean of each game Pi compares to the mean of the
corresponding Gi game. Each Pi will have one of the following four forms
L~.k+iGi, L~,kGi, .H;;;+iGi, or R~;;Gi. Lemma 5.1 specifies to for each i :
1 ~ i ~ n:

M ean(L~.k+i Gi) > Mean(Gi) + t
Mean(L~,kGi) > Mean(Gi) if u(L~,kGi) ~ t
M ean(R~;;Gi) > Mean(Gi)
M ean(R~;;+l Gi) > Mean(Gi) - t if u(R~;+1 Gi) ~ t

It is important to note that if Right makes the last move in the ith com­
ponent game reducing it to Pi, then it must be the case that u(Pi) is
greater than u (otherwise Left would have responded with a a-optimal
move). Hence, the conditions applying to the second and fourth equations
above are satisfied.

The above four formulas can be condensed into the following equation:

Mean(Pi) 2:: Mean(Gi) + h,iu - lR,iu

where h,i is the number of moves made by Left in Gi and lR,i is the number
of moves made by Right in Gi. Taking the sum of the inequalities for all
i, 1 ~ i ~ n produces

(5.2)

57

where lL and lR are the number of moves made by Left and Right respec­
tively.

Consider the number of moves made when G is reduced to P. If it is
even, then h = lR and it is Left's turn to move in P. By the induction
hypothesis and equation 5.2

VL(P) ~ Mean(P) ~ Mean(G)

If the number of moves is odd, then lL = lR + 1 and its Right's turn to
move in P. Play must have ended due to the f3 stopping condition. Hence,
max{a(P,)11 ~ i ~ n} ~a. This, combined with the dual of the induction
hypothesis and equation 5.2 yields:

VR(P) > Mean(P) - max{a(P;)ll ~ i ~ n}
> Mean(P) -a
> Mean(G)+a-a
> Mean(G)

Thus, by playing a-optimal moves Left can reduce G to some game P
such that the value of P is greater than or equal to the mean value of G.
The left hand side of the inequality is proven.

To prove the right hand side of the inequality, it is sufficient to show if
Right uses the follow-the-leader strategy, then G will be reduced to a game
P = P1 + ... + Pn and the value of Pis less than Mean(G) +a.

Consider a component games f'i of P. By construction Right will never
play first in a game. Hence, the dual of the first two equations of Lemma
5.1 specify how the mean of each Pi compares to the mean value of the
corresponding G;. That is, for each i, 1 ~ i ~ n:

Mean(L;:G) ~ Mean(G;)
Mean(L"i:+iG) ~ Mean(G;) +a

Proceeding as before, the above equations are reduced to

M ean(P;) < Mean(G;) + lL,ia - lR,i·

Summing the above equation for all i yields:

Mean(P) < Mean(G) +ha - lRa (5.3)

58

Consider the number of moves made when G is reduced to P. If it
is even, then IL = lR and it is Left's move in P. Play must have ended
due to the {3 stopping condition. Hence, max{u(Pi)ll ~ i ~ n} ~ u. This,
combined with the dual of the induction hypothesis and equation 5.3 yields:

VL(P) ~ Mean(P) + max{u(Pi) I 1 ~ i ~ n}
~ Mean(P) + u
~ Mean(G) + u

If the number of moves is odd, then h = lR + 1 its Right's move in P.
By the dual of the induction hypothesis and equation 5.3:

VR(P) ~ Mean(P) ~ Mean(G) + u.

Thus, the right hand side of the inequality is proven. I

5.1.3 Improving Hanner's Bounds

Hanner's strategy is actually better than Hanner claimed. Consider what
happens to Hanner's bounds as G' in Figure 5.5 is played out. Initially,
Hanner's bounds are quite accurate, i.e., if Left plays first in G' then the
final score will be between -90 and -64. After Left moves the game be­
comes more volatile and the accuracy of Hanner's bounds decrease, i.e.,
-110 ~ VL(G) ~ 10.

However, the bounds computed for G' also apply to G. Consider the
upper bound on G'. Hanner proves that no matter how Left plays, Right has
a strategy that guarantees to hold the final score below -64. In particular,
if Left moves to G, Hanner proves that Right has a strategy that guarantees
the final score will be less than or equal to -64, Therefore, Right, starting
from G, has a strategy that holds the final score down to -64 and it is fair
to claim that VR(G) ~ -64.

This suggests an interesting way to improve on Hanner's bounds. As­
sume that the game originally began with Right to move first in G. Hanner's
bounds would not be very informative. Better bounds could be computed
simply by imagining that the game actually began with G' and Left to
move.

What follows is a proof that the value of a game, G = G1 + ... + Gn can
be estimated to within the second largest u(Gi). The basic idea is that a

59

G'- N6+ Ns + 2<A
100 -100 50 0 10 -10

Hanner's bounds: -90 ~ VL (G') ~ -64

G=A +
100 -100

50

Left's move using

Hanner's strategy

0

Hanner's bounds: -90 ~ VR (G) ~ 10

10

Figure 5.5: Harmer's Bounds as G' Is Played

60

-10

y

Figure 5.6: Constructing the Thermograph for H'

new game G' is constructed such that the u(G') equals the second largest
u(Gi) and in a way that guarantees that Hanner's bounds on G' also apply
to G. The ability to construct such a game is proven in the following two
lemmas:

Lemma 5.2 For any game H and number x ~ O, a new game H' can be
constructed such that u(H') = x and Vs,L!-(H') = H, i.e., the only Left
option from H' is to move to H.

Proof: Let H' be { y I H } for some value of y. Consider an arbitrary
thermograph for H and the resulting thermograph for H' as shown in Figure
5.6. It is obvious that one can always set the value of y such that u(H') is
as high or as low as one wants. I

Lemma 5.3 Let G = G1 + ... + G" and u = max{u(Gi) J 1 ::; i ::; n}.
Then,

61

Proof: The basic idea is that Hanner's bounds on G also apply to the game
that results when Left plays a u-optimal move.

Hanner proves that if Left moves to Li-G then he can force the final
score to be greater than or equal to Mean(G), i.e.,

Similarly, Hanner proves that for any Left move in G, Right can respond
such that the final score is less than Mean(G) + u. In particular, if Left
moves to Li-G, Right can respond such that the final score is less than
Mean(G) + u. Hence,

Theorem 5.2 Let G = G1 + G2 + ... + Gn where Vi, 1 ~ i ~ n-1, u(Gi) 2:
u(G;+i). Then, it is possible to approximate the value of G1 + ... + G,,, to
within u(G2) of the optimal value.

Proof: Construct a new game H 1 out of G1 such that Vs, Li-H 1 = G1 and
u(Hi) = u(G2). Lemma 5.2 guarantees that this can be done.

Let G' = H 1 + G2 + ... + G,,,. Lemma 5.3 guarantees

Mean(G') ~ VR(L1-G') ~ Mean(G') + u(G').

One u-optimal move in G' is to move in H1• This reduces the G' to G. So,

Mean(G') ~ VRG ~ Mean(G') + u(G').

Furthermore:

u(G') = max({u(G;) j 1 ~ i ~ n}) = u(G1) = u(G2)

Hence,

62

H,,= ~O
-30 -40

Mean(H23) = -42.5
u(H23) = 7.5
5VLH2s = -40
5VRH2s = -45

H24= A A-s
0 -4

Mean(H24) = -5
u(H24) = 3
5VLH24 = -5
5VRH24 = -5

H2s= A
-20 -30

M ean(H2s) = -25
u(H2s) = 5
5VLH2s = -25
5VRH2s = -25

Figure 5.7: Defining H23 , H 24, and H2s

5.1.4 Thermostatic Strategy

Berlekamp, Conway, and Guy [2] also improved on the mean strategy. In
particular, if G = G1 + ... + Gn, then for all t,

tvL(Gi) + tvR(G2) + ... + tvR(Gn) :::; tvL(G)
:::; tvL(G1) + · · · + tvL(Gn) + t

This is a generalization of Hanner's and Milnor's results. If t = 0, then the
result is identical to Milnor's. If t = u (G) then the result is identical to
Hanner's.

For example, consider the three games, H 23 , H24 , and H 25 , shown in
Figure 5.7. By Hanner's result (Theorem 5.1):

However, if t = 5 then Berlekamp, Conway, and Guy prove that:

Berlekamp, Conway, and Guy[2] provide an efficient algorithm for find­
ing the t that produces the tightest bounds based on thermographs and they
give an argument of the correctness of the bounds. What follows is a proof
of their results consistent with the notation developed here.

63

Theorem 5.3 Let G = G 1 + ... + Gn. For all t, Left has a strategy such
that he can guarantee:

a: tvR(G) 2'.: tvR(G1) + ... + tvR(Gn) - t
{3: tvL(G) 2'.: tvL(G1) + tvR(G2) + ... + tvR(Gn)

Proof: First, assume that part {3 is true. To show that part a follows,
assume that Right moves in G1 • By induction:

tvR(G) = tvL(tR~-(G1) + G2 + ... + Gn)
2'.: tvLeR~-(G1)) + tvR(G2) + ... + tvR(Gn)

(5.4)

By the dual of equation 2.3, and since the value of a game can only increase
if Right plays non-optimal moves:

tvR(Gi) - t = tvL(tR1(G1)) ~ tvLeR~-(G1))

Replacing tvL(tR~-(G1)) with tvR(Gi) - tin Equation 5.4 yields:

tvR(G) 2'.: (tVR(G1) - t) + tvR(G2) + ... + tvR(Gn)

Now assume that part a is true. Left has a strategy that guarantees {3.
In particular, Left makes an optimal move in some game, lets say Gi, such
that u(G1) ~ t. By induction:

tvL(G) = tvR(tL~-(Gi) + G2 + ... + Gn)
2'.: tvReL~-(Gi)) + tvR(G2) + ... + tvR(Gn) - t

Since u(Gi) ~ t, by equation 2.3:

tvL(G1) = tvR(tL~-(G1)) - t

So replacing tvL(Gi) for tvR(tL~-(Gi)) - tin Equation 5.5 yields:

tvL(G) 2'.: tvL(Gi) + tvR(Gn) + ... + tvR(Gn)

(5.5)

If there are no component game G1 for which u(Gi) > t then the above
argument does not hold. However, in that case {3 by Equation 2.6 reduces
to:

mean(G1 + · · · + Gn) = mean(Gi) + · · · + mean(Gn)

The linearity of the mean value function was proved by Hanner[7]. I

64

H2s= A
150 50

Mean(H2s) = 45
u(H2s) = 55
0VLH2s = 50
0VRH2s = 45

130 30

Mean(H21) = 20
u(H21) = 60
0VLH21 = 30
0VRH21 = 10

Figure 5.8: Defining H26 and H21

5.1.5 Comparing Results

10 -90

The thermostatic strategy and the second highest u result both improve
upon Hanner's result. Often they produce the same bounds. For example,
they both produce the same bounds for H 23 + H24 + H25 where H 23, H24,
and H25 are defined in Figure 5.7.

However, there exist sums of games for which each result is superior.
For example, consider the games shown in Figure 5.8. The second largest
u method can only bound the value of the game to within 55. The ther­
mostatic strategy produces the best bounds when t = 0, in which case:

0VLH2s +
0VRH21 < VL(H2s + H21) < 0VLH2s + 0VLH21 + t

50+10 < VL{H26 +H27) < 50+30+0
60 < VL(H2s + H21) < 80

The accuracy of the bounds is 20.
On the other hand, cases exist when the second highest u produces

better bounds. For example, consider the games shown in Figure 5.9 2 •

2 A slightly more complex example that has exactly the same behavior is

{ 25, { 50 Io} I -75} + { 20 I -20}

65

H2s= A
25 -75

Mean(H2s) = -25
u(H2s) = 50
0VLH2s = 25
0VRH2s = -25

H29= A
20 -20

Mean(H29) = 0
u(Hi9) = 20
0VLH29 = 20
0VRH29 = -20

Figure 5.9: Defining H 28 and H29

The thermostatic strategy states that the best bounds are obtained when
t = 0. In particular:

0VLH2s + 0VRH29 < VL(H2s + H29) < 0VLH2s + 0VLH29 + t
25 + -20 < VL(H2s + H29) < 25 + 20 + 0
5 < VL(H2s + H29) < 45

So, the accuracy of the bounds is 40. However, using the second largest u
result, it is possible to bound the value of the game to within 20.

5.2 Search

Searching for the optimal solution to an instance of SUM requires expo­
nential time. However, good pruning techniques can greatly cut down the
time required to perform a search. In particular, the approximate solutions
presented in this chapter provide a great deal of power in terms of pruning
and directing the search for an optimal solution.

One simple example occurs in an alpha-beta pruning search. The effec­
tiveness of the alpha-beta pruning techniques is highly dependent on the
order that the nodes are searched [12]. The approximate algorithms can be
used to place an ordering on the nodes. One useful heuristic, for example, is
to first explore the search tree below the node that has the highest possible
pay off.

66

Hw=N Hs1=<A 10
H32 =

2 1 0 -10 20 0 -4 -8

Mean(H30) = 1 Mean(H31) = 7.5 Mean(H32) = 0
a(H30) = 1 a(H31) = 7.5 a(H32) = 6

Figure 5.10: Defining H30, H31, and H32

However, the alpha-beta pruning technique does not fully use the in­
formation provided by the approximate solutions. For example, assume its
Left's move in the sum of games shown in Figure 5.10. Applying Theorem
5.1 3 to each of Left's options, yields:

9 ~ VL(L1H30 + H31 + H32) < 16.5
11 ~ VL(H30 + L1H31 + H32) < 17
18.5 ~ VL(H30 + H31 + L1H32) < 28.5.

It becomes immediately apparent that playing in H32 is optimal. However,
an alpha-beta search would expand out the search tree in order to prove
that H 32 is optimal.

Theorem 5.1, does not guarantee that it will uniquely distinguish one
move as superior to all others. However, it does give valuable information
about the relative merit of each move. One effective use of the information
supplied by the approximate algorithms occurs in the B* algorithm [4].
What follows is a description of the algorithm.

5.2.1 The B* Algorithm

Each node in the search tree generated by B* search is associated a range of
values such that the actual value of the node is guaranteed to be within that

3 Though Theorem 5.2 and and Theorem 5.3 produce better bounds, the bounds produced
by Theorem 5.1 are easier for the author to produce and for the reader to verify. Theorem
5.1 will be used exclusively through out this section.

67

H,.=No
40 10

M ean(H33) = 2.5
u(H33) = 22.5

31 21

Mean(H34) = 3
u(H34) = 18

H35= A A-s
4 -2

Mean(H3s) = -2
u(H3s) = 3

Figure 5.11: Defining H33, H34, and H3s

range. This information is used both to direct the search, and to terminate
the search promptly.

At any point in the search, the range of values associated with a node
has been determined via an evaluation function like Theorem 5.1, or have
been derived by backing up information obtained through exploration of
the search tree below the given node. For example, assume that the search
begins with Left to move in the sum of games defined in Figure 5.11. By
Theorem 5.1, 3 ~ VL(H33 + H34 + H 35) ~ 26. However, after exploring the
search tree as shown in Figure 5.12, it becomes apparent that, at worst,
Left can move to { 40 I 10 } + H34 + H 35 and get 8. Hence, the bounds can
be improved to be: 8 ~ VL(H33 + H34 + H35) ~ 26.

The basic B• algorithm consists of expanding a leaf of the search tree,
using the evaluation function to compute the range of that node, and then
backing up the new information. Assuming the search is looking for the
optimal move for Left, the search is terminated when the lower bounds on
one of Left 's options is greater than or equal to the upper bound of all the
other options.

The key question in B• search is which node on the frontier to expand.
What distinguishes B• from other search strategies, like best-first, is that
B• employs two different strategies. The first strategy, called Disprove-Rest,
deepens the search tree under the second best node trying to decrease its
upper bound. The other strategy, called Prove-Best, deepens the search
tree under the "best" candidate node trying to increase that nodes lower
bound.

. 68

{ 40 I 10 } + H34 + H35

8 ~ VR ~ 26

H3s + H34 + H35

3 ~ VL ~ 26 =}

8 ~ VL ~ 26

H 33 + { { 31 I 21 } I 20 } + H 35

-1 ~ VR ~ 21.5

H33 + H34 + { 4 I 2 }

-16 ~ VR ~ 6.5

Figure 5.12: Expanding the Search Tree One Level

The power of the B• search comes from its ability to use both strategies.
In game situations, it is often easier to prove that a move is bad, then to
prove that a move is good. For example, Figure 5.13 shows the search
tree in Figure 5.12 expanded one level using the Disprove-Rest strategy.
The expansion lowers the runner-up's upper bound from 21.5 to 2. This
is enough to terminate the search, since the best nodes lower bound (8)
is now greater than the other nodes upper bounds (2, 6.5). However, if
the tree in Figure 5.12 is explored using Prove-Best, then the search does
not terminated as quickly. Figure 5.14 shows the best-node expanded one
level. The expansion produces tighter bounds for the best node, but does
not produce a lower bound greater than 21.5.

Berliner [4] suggested two rules for choosing between Prove-Best and
Disprove-Rest. The first favored exploration of subtree which had not been
explored deeply. The second favored the exploration of nodes with large
ranges. Palay [19] obtained better results by assuming that the actual
value of a node is uniformly distributed over the range of the node, and
then the strategy with the highest probability of success was chosen. Palay
[20] improved upon his previous work to allow for a arbitrary probability
distribution, as oppose to assuming uniform distributions.

69

{ 40 J 10 } + Hs, + Hss

8 :$ VR :$ 26

-20 + { { 31 I 21} I 20} + Hss

-1 :$ VL :$ 2

Hss + Hs4 + Hss

3 :$ VL :$ 26 =>
8 :$ VL :$ 26

Hss + { { 31 I 21 } I 20 } + Hss

-1 :$ VR :$ 21.5 =>
-1 :$ VR :$ 2

Hs3 + { 31 J 21 } + H3s

26.5 :$ VL :$ 40

H33 + H34 + { 4 J 2 }

-16 :$ VR :$ 6.5

H 33 + { { 31 I 21 } I 20 } - 5

18.5 :$ VL :$ 41

Figure 5.13: The Search Tree Expanded using Disprove-Rest

70

{ 40 I 10 } + Hs• + Hss

8 s VR s 26 ::::}

8 s VR s 20

10 + Hs• + Hss

11 s VL s 20

Hss + Hs• -f Hss

3 s VL s 26::::}

8 S VL S 26

Hss + { { 31 I 21} I 20} + Hss

-1 S VR S 21.5

{ 40 I 10 } + -15 + Hss

8 S VL S 23

H33 + H34 + { 4 I 2 }

-16 s VR s 6.5

{ 40 I 10 } + H34 - 5

23 S VL S 41

Figure 5.14: The Search Tree Expanded using Prove Best

71

Chapter 6

Endgame of Go

The endgame of Go is naturally characterized as a sum of games. During
a game of Go, the players place black and white stones down on a square
grid trying to surround territory for themselves and to invade the poten­
tial territory of their opponent. In the beginning and middle game, it is
very common for a move to have both a local and global effect. However,
towards the end of the game, the board becomes divided up into a number
of separate regions and each move has only a local effect.

For example, Figure 6.1 shows a simplistic Go position that has reached
the final stages of the endgame. Black has taken a large center territory
while white has carved out four separate corner territories. The rest of the
game revolves around a number of small, distinct, border disputes.

The endgame of Go is an important example of a sum of games because
of the wide spread interest in the game. Go is played professionally in the
Orient at the level that chess is played in the West. It is common for a
game between professionals to be very close (within one point) and hence
the endgame has been studied extensively, e.g., [18].

Furthermore, Go has attracted a reasonable amount of attention from
the A.I. community. Unlike Chess, Go does not simply succumb to brute
force search. For that reason, Berliner [3] said that "even if a full-width
search program were to become World Chess Champion, such an approach
cannot possibly work for Go, and this game may have to replace chess as the
task par excellence for A.I." Interesting work has been done on constructing
Go playing programs, e.g., [1], [13], [23], and [24].

Though the endgame of Go is naturally described as a sum of games,

72

Figure 6.1: An end position in a game of Go

73

Assuming its Black's turn to move, optimal play is the following:
Black plays at a, White responds at b, Black plays at c taking
two white stones, and White responds at © capturing two black
stones. At which point, the position has repeated itself. Under
Japanese rules the game is considered a draw.

Figure 6.2: Chosei:

issues arise when the theory of a sum of games is applied to the endgame
of Go. This chapter address those issues.

This chapter assumes that the reader is familiar with the basic rules of
Go. A good introduction to the game can be found in How to Play Go by
Takagawa[28].

6.1 Ko

Repetitive situations requiring special rules often occur in board games.
For example, in Chess, if a board position is repeated three times, then
the rules state that the game is a draw. Similarly, using the Japanese Go
rules, some repetitive situations result in a drawn game. Such situations
are rare, but do exist. For example, Figure 6.2 shows one such situation
called chosei meaning eternal life[29].

One instance of a potentially repetitive situation that often occurs in Go
is called ko. The two typical configurations of a ko are shown in Figure 6.3.
Without a special rule, both positions could result in an infinite capture -
recapture sequence. The ko rule prevents an infinite repetitive sequence by
stating that if one player takes a ko, then his opponent can not retake the
ko on the next turn.

74

If Black plays at a, then by the ko rule, White can not play at
© on the next turn

Figure 6.3: Ko

Consider a ko position as in Figure 6.3. When it is important to the
players whether Black ends up with a stone at a or whether White ends
up with a stone at © a ko fight ensues. The basic form of a ko fight is
the following: Black takes the ko. Unable to immediately retake due to
the ko rule, White plays a ko threat, i.e., a threatening move elsewhere on
the board. Black, unwilling to watch White carry through on the threat,
responds to the ko threat. White then takes the ko. Black is now in the
position White was at the start of the fight. Black wants to take the ko
but is unable to because of the ko rule. So, Black makes a ko threat. The
ko fight continues until one player ignores his opponent's ko threat and fills
the ko.

Ko fights are an important part of the game of Go. They occur fre­
quently in the endgame. Unfortunately, the nature of kos and of a ko fight
is very different than the games considered thus far.

The ko rule, along with other special case rules, prevent repetitive board
positions. However, when viewed in a local situation, a ko is a repetitive
situation. In particular, assume that the endgame of Go is represented as
a sum of small border disputes and assume that one of the border disputes
involves a ko. During the ko fight, the border position containing the ko
will repeatedly oscillate between two positions, i.e., Black has the ko, or
White has the ko.

This cyclic nature, prevents ko from being represented as a finite Con­
way game. One could imagine representing ko as an infinite tree or as a
graph. However, such a representation is outside of the theory as currently

75

known.
The notion of mean value and temperature of a game is crucial to the

heuristic solutions developed in section 5.1. However, these notions do not
make sense in relationship to ko. The computation of mean value and
temperature, via thermographs, is dependent upon the representation of a
game as a finite tree.

6.2 Complexity Results

Lichtenstein and Sipser[15] proved that Go is PSPACE-hard. At first
glance it would appear that one could prove that the endgame of Go is also
PSPACE-hard by using theorem 4.2 and constructing a reduction from
SUMd< 2 to the endgame of GO 1 • However, two difficulties arise with this
approach.

The first difficulty is in constructing a reduction from SU Md~2 to the
endgame of GO. It is easy to construct a Go position that has the structure
of a switch or a left heavy tree, e.g., Figure 6.4. However, to transform
more complex games into Go positions is hard. It is not at all clear that
the games used in the reduction from QBF to SU Md9 correspond to Go
positions.

The basic problem is that a Go position has a great deal of structure
that is not part of an arbitrary game. For example, in a Go position almost
all the places Black can play White can play. It is hard to imagine a Go
position where Black has 100 valid moves but White only has one. Hence,
in any game corresponding to a Go position, Left and Right will have
approximately equal number of options.

Similarly, the persistence of moves in a Go position greatly restricts the
types of games that can be represented on a Go board. Generally speaking,
if a move is initially available for Black, then the move remains available for
Black until one players places a stone at that point. This type of structure
is uncommon.

The games used in the reduction from QBF to SU Md9 in Theorem 4.2
are switches, left heavy trees, and the game shown in Figure 6.5. Switches

1The comments made in this section also apply to Morris's [17] proof that SUM is
PS PACE-complete

76

Assume that Left is playing white, and that the white group is
alive. Then, this position represents the tree:

Figure 6.4: Representing a Left Heavy Tree

~s
S -E

Figure 6.5: A Key Game in the PSP ACE-complete Proof

77

and left heavy trees are easy to represent on a go board. However, there
is strong reason to believe that the game shown in Figure 6.5 can not be
represented on a Go board.

The game in Figure 6.5 seems to violates Go's persistence of moves.
Right has two moves. Right can make a very large threat or Right can
take a quick profit. What's unusual, however, is that if Right takes a quick
profit, then he can no longer make the threat. That is, the move that takes
the quick profit must also stabilize, invalidate, or in some way remove the
other move. Similarly, if Right takes the quick profit, he can no longer
make the threat. Constructing such a Go position seems unlikely.

Even if one had a reduction from SU Md9 to the endgame of GO, a
problem remains. If the standard representation of a GO position is used,
then the chain of reductions from QBF to SU Md~2 as in Theorem 4.2 to
the endgame of GO does not correspond to polynomial time reduction. The
heart of the problem is that Go positions are unary representations, and
the reduction from QBF to SU Md< 2 uses position numeric notation.

In particular, the standard representation of a Go position as a n x n
square grid implies that the size of a Go position is proportional to its
value. For example, on a square grid, a position worth 30 corresponds to
position corresponds to either 30 open grid points, 15 grid points contain­
ing 15 prisoners, or some other combination of open points and prisoners.
Furthermore, though the reductions in Theorem 4.2 create an instance of
SU Md9 that is only polynomially larger than the initial input, the value of
the numbers in the constructed game are exponentially larger than the size
of the original input. Hence, if the reduction from QBF to the endgame of
Go used Theorem 4.2, then the resulting Go position would be exponential
larger than size of the original input.

Morris[l 7] conjectures that this problem can be solved through the use
of a compact notation for fractional values. He comments that Go positions
"can exhibit almost any form of composition from dyadic rationals." How­
ever, though fractional values are used to estimate Go positions, fractional
values never actually appear in Go. The leaf values of any game tree cor­
responding to a Go position are always integral. Hence, fractional notation
will not solve the problem.

The problem might be solved if a compact representation of Go posi­
tions was allowed. For example, one could imagine a representation where

78

the territory surrounded by a group was represented by a binary number,
instead of by the corresponding number of empty grid points.

6.3 Approximation and Search Algorithms

Ignoring ko, the approximate solutions and search algorithms discussed in
this thesis are applicable to the endgame of Go. One could imagine a Go
playing program that represented each of the border disputes as a tree,
and then determined its next move by Hanner's heuristics, or by B* search
combined with Hanner's approximations.

The biggest problem facing such a Go playing program, is simply ex­
tracting the game trees from the Go board. The success of the extraction
depends upon the programs ability to recognize the decomposition of the
board into a number of separate border disputes, determine the life and
death of groups, and determine the connectivity of loosely related stones.
All these tasks are non-trivial.

79

Chapter 7

Future Research

This thesis analyzes play in a sum of games from three different perspec­
tives: computational complexity, heuristic solutions, and optimal search
algorithms. This chapter summarizes the results and considers directions
for future research.

7.1 Complexity

Determining the optimal strategy in a sum of games seems to be hard.
Lockwood Morris[l 7] proved that SUM is PS PACE-complete. This thesis
proves that even when the component games in the sum are very small, i.e.,
maximum depth of two, the problem remains PS PACE-complete. How­
ever, there may be interesting classes of sums of games that, even assum­
ing P =j:. PSPACE, can be played optimally in polynomial time. Future
research is needed to determine exactly when the problem is PSPACE­
complete.

For example, both Morris's PS PACE-completeness proof and the proof
of Theorem 4.2 rely on a game that has multiple options, i.e., the proofs
rely on a game in which Right is given a choice between two moves. The
question arises: does the difficulty of playing a sum of games depend upon
having multiple options. My conjecture, after spending a large amount of
time unsuccessfully trying to determine optimal play in a sum of left heavy
trees, is that SUM is PS PACE-complete even when the component games
have maximum depth two and have no multiple options.

80

+

0 0 0 0 0 0

Figure 7.1: A Sum of All Small Games

An interesting class of games are the all small[2] games. A game is all
small if all the leaf values are zero, and both players have legal moves from
every non-terminal position. Thus, no subtree of the game represents a
number. For example, Figure 7.1 shows a sum of all small games.

Determining the optimal strategy in a sum of all small games seems
hard. Some knowledge about how to play all small games can be obtained
through Berlekamp, Conway, and Guy's theory of atomic weights[2]. How­
ever, I conjecture that the problem of determining the winning strategy in
sum of all small games is also PS PACE-complete.

The possibility exists that SUM could be solved using a pseudo-polyno­
mial time algorithm. The question is whether there exists a natural set of
restrictions that can be applied to instances of SUM to yield a polynomial
algorithm. For example, does limiting the size of the values of the terminal
positions allow for a polynomial time algorithm? Unfortunately, given the
difficulty of playing all small games, there is a real possibility that SUM is
hard in a strong sense. Search for a pseudo-polynomial time algorithm and
a NP-hardness proof in a strong sense should proceed in parallel.

81

7 .2 Heuristic Solutions

Hanner[7] proved that the final score of a sum of games can be approximated
to within the maximum temperature of a component game. This result
is quite remarkable. It bounds the value of a sum of games in a way
that is independent of the number of games in the sum and independent
of the complexity of the component. Though this thesis presents a clear
proof, a simple, short, intuitive argument for why the final score can be
approximated to within the largest temperature is still needed.

Central to Hanner's proof is the concept of taxation. An important
property of taxation is that it is linear. Let G = G1 + ... + Gn and let each
component game Gi be approximated by the taxed version of that game.
Then one way to view Hanner's proof is that G is approximated as the sum
of the approximated component games.

In the search for better heuristics, a natural way to proceed is to con­
sider other linear approximation functions besides taxation. However, it
is surprisingly hard to find linear functions. The mean function and any
multiple of the mean function is linear. Also, in [2], a linear function, called
overheating, is defined. However, the simpler heating function is not linear.

All the functions mentioned above, i.e., taxation, mean, heating, over­
heating, have the form

F({ L I R}) = { c * ({ L - t I R + t})
N(G, ...)

if P(G, ...)
otherwise

for some value of c, some predicate P, and some function N. It would
be useful to known the constraints on P and N such that the above form
produces a linear function.

Perhaps even more amazing than Hanner's bounds is Harmer's mean
strategy. Hanner proved if a player uses the mean strategy in

G = G1 + ... + Gn,

then he can force the final score to be within the Max(u(Gi)) of the optimal
score. This thesis proved that, by using the mean strategy, a player can
force the final score to be within the second largest u(Gi)· However, by
using the mean strategy, a player often does even better than that. How
good is the mean strategy?

82

7.3 Search

Searching for the optimal solution to an instance of SUM requires expo­
nential time. However, the approximate solutions presented in this thesis
provide a great deal of power in terms of pruning and directing the search
for an optimal solution. In particular, the thesis suggests that the approx­
imate solutions combined with Berliner's B* search algorithm will reduce
the time required to find the optimal solution.

One direction for future research is to quantitatively measure how effi­
cient n• is. On average, what improvement does one gain using an• instead
of alpha-beta search algorithm? Is there a simple way to characterize those
games that are solved efficiently using n·?

The power of the n• search comes from its use of both a prove best and
a disprove rest strategy. In the context of solving an instance of SUM, are
there any good heuristics for choosing one strategy over another?

83

Bibliography

[1] Benson, D., Hilditch, B. R., and Denbigh, S. [1979] "Tree Analysis Tech­
niques in Tsumego" Proceedings of 6th International Joint Conference on
Artificial Intelligence, Tokyo.

[2] Berlekamp, E. R., J. H. Conway, and R. K. Guy [1982], Winning Ways,
Academic Press Inc., London.

[3] Berliner, H. [1978], "A Chronology of Computer Chess and its Litera­
ture", Artificial Intelligence, Vol 10, Number 2.

[4] Berliner, H. [1979], "The B* Tree Search Algorithm: A Best-First Proof
Procedure", Artificial Intelligence, Vol 12, pp. 23-40.

[5] Conway, J. H. [1976], On Numbers and Games, Academic Press Inc.,
London, New York and San Francisco.

[6] Conway, J. H. [1985] Personal Communications.

[7] Hanner, 0. [1959] "Mean play of sums of positional games", Pacific J.
Math. Vol 9, pp. 81-99.

[8] Fraenkel, A. S. and Lichtenstein, D. [1981] "Computing a Perfect Strat­
egy for nxn Chess Requires Time Exponential in n" Journal of Combi­
natorial Theory Series A 31, pp. 199-214.

[9] Johnson, D. S., [1983] "The NP-Completeness Column: An Ongoing
Guide", Journal of Algorithms Vol 4, pp. 397-411.

[10] Karp, R.M. [1972], "Reducibility among combinatorial problems," Com­
plexity of Computer Computations, R. E. Miller and J. W. Thatcher
(eds), Plenum Press, N.Y., pp. 85-103.

84

[11] Knuth, D. E. [1974], Surreal Numbers, Addison-Wesley Publishing
Company, Inc.

[12] Knuth, D. E. and Moore, R. W. [1975] "An Analysis of Alpha-Beta
Pruning", Artificial Intelligence, Vol 6, Number 4, pp. 293-326.

[13] Lehner, P. E., Planning in Adversity: A computational Model of Strate­
gic Planning in the Game of Go [1981] Ph.D. Thesis, University of Michi­
gan.

[14] Nilsson, N. J. [1980], Principles of Artificial Intelligence, Tioga Pub­
lishing Company, California.

[15] Lichtenstein, D. and Sipser, M. [1978] "Go is Pspace Hard", Proceed­
ings of the Nineteenth Annual Symposium on Foundations of Computer
Science, Ann Arbor, Michigan.

[16] Milnor, J. [1953], "Sums of Positional Games", Contributions to the
Theory of Games, Ann. Math Studies # 28 editors Kuhn and Tucker,
pp. 291-301.

[17] Morris, F. L., "Playing Disjunctive Sums is Polynomial" Space Com­
plete", Int. Journal of Game Theory Vol. 10, Issue 3/4, pp. 195-205.

[18] Ogawa, T. and J. Davies [1976], The Endgame, lshi Press Inc., Tokyo.

[19] Palay, A. J. [1982], "The B* Tree Search Algorithm - New Results",
Artificial Intelligence, Vol 19, Number 2, pp.145-163.

[20] Palay, A. J. [1983] Searching with Probabilities Ph. D. Thesis, Carnegie­
Mellon University, Pittsburgh, Pa.

[21] Propp, J. [1983] "Nim for Three - An Overview and an Offer of Alcol­
hol" Eureka Cambridge University, England.

[22] Reif, J. H. [1984] "The Complexity of Two-Player Games of Incomplete
Information" Journal of Computer and System Sciences Vol 29. pp. 274-
301.

85

[23] Reitman, W., Nado, R., and Wilcox, B. [1978] "Machine Perception:
What Makes It So Hard for Computers to See?" Perception and Cogni­
tion: Issues in the Foundations of Psychology Minnesota Studies in the
Philosophy of Science, Vol 9., University of Minneapolis Press.

[24] Reitman,W., and Wilcox, B. [1979] "The structure and performance
of the Interim.2 Go Program", Proceedings of 6th International Joint
Conference on Artificial Intelligence, Tok~o.

[25] Schafer, T. J. [1978] "On the Complexity of Some Two-Person Perfect­
Information Games" Journal of Computer and System Sciences Vol 16,
pp. 185-225.

[26] Stockmeyer, L. J. and Chandra, A. K. [1979] "Provably Difficult Com­
binatorial Games" SIAM J. Comput. Vol 8, No 2, pp. 151-174.

[27] Stockmeyer, L. J. and Meyer, A. R. [1973] "Word Problems Requiring
exponential Time: Preliminary Report", Proceedings of the 5th Anual
ACM Symposium on Theory of Computation, Association for Computing
Machinery, New York.

[28] Takagawa, S. [1956] How to Play Go, The Nihon Ki-in, Japan.

[29] Tilley, J.S. [1970] Go: International Handbook and Dictionary, Ishi
Press, Tokyo.

86

