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CHAPTER 1 

Perspective 

Advances in integrated circuiL technology have had a revolutionary impact on computer 

system design. A chip today integrates far greater sophistication and computing power than 

ever before. Fabrication processes have progressed rapidly so that chips with one million com­

ponents are a reality, and enthusiasts predict chips with upto one hundred million components 

within a rler.ade. Tndr>ed, if, is r>X!"'''i.r>d l.hnf. if' iori he~m r>lt·hinr; f,,,·hni'l""" h"'"ornr• vi·ihln 

for "printing" chips directly, then minimum feature sizes would drop by a factor of ten, thus 

allowing a hundred-fold increase in the number of' components on a chip. 

More significantly, the new technology encourages custom design of special purpose rn­

tcgrated systems for solving very large scale sophisticated problems. No longer is it necessary 

to use a single conventional architecture for solving diverse problems. Instead, the computa­

tional structure of a problem may be mapped directly into hardware. This has shifted the 

emphasis from searching for algorithms, nece~;sarily convoluted to suit a given architecture, to 

efTicient hardware design suited to individual problems. 

While< this emphasis on greater design flexibiliLy has opened up new directions in cornput .. 

ing, a number of dilncult problems must be addressed before Lhc emerging technolo1~ies can be 

cITcctively exploited. Probably t,hc most significant development in casing the awesome task 

of designing and implementing large systems has been Uw standardization of design rules and 

the widespread use of' standard building blocks. The design methodology expound<~d by Mead 

and Conway [55], and the rlevclopment of building blocks such as gate-arrays, PLA's, and 

JiOM's has helped shift the emphasis in circuit design from the exclusive domain of electronics 

to a higher, rnorc l'uncl.ional level, whcre aspects of circuit layout. may be treated in purely 

6 



PERSPECTIVE 7 

geometrical terms. 

This thesis examines various aspects ol' the circuit layout problem. We address que8tions 

such a8: why is circuit layout difncult, what properties of a circuit critically determine the 

quality of its layout, and what kinds of heurbtics can help solve layout problems efficienlly? 

These questions arc motivated by the need for general techniques for laying out very large 

circuils. Such basic issues must be addressed before building any automatic or computer-aided 

design and layout system. 

Although the circuit layout problem is not new, progress has been painfully slow. The 

proliferation of diverse technologies and concerns has only exacerbated the layout problem. 

On the one hand we desire to minimize layout area, signal delays, and power dissipation, while 

on the other hand we need to increase reliability by increased redundancy. In addition we 

require that custom circuits be assembled using standard configurable or restructurable chips 

as building blocks. It is not at all clear whether these diIIercnt requirements arc compatible or 

necessarily contradictory. 

Part I pre::>ents a general theory for VLSI graph layout. Not only does the theory identify 

strncturnl properties of circuits that critically determine the quality of layouts, but also provides 

techniques for solving various layout problems. Perhaps the most significant result that emerges 

is a general framework for solving diverse problems in a simple and uniform manner. In 

particular, the unified framework provides a layout Lcchniquc which is suitable for custom 

layout, and at the same time is efiicienL wiLh regard to area, delay, and fault-tolerance. Part I 

consists of ChapLers 2 through 5. 

Part II examines the channel routing problem. Algorithms for channel routing form the 

basis of many existing auLornatic layouL systenrn. AlLhough this problem has received wide 

attention over the last decade and a number of heuristic algorithms have been proposed, none 

of these is guaranteed to always determine dlicienL routings. Approaching this problem from 

a theoretical viewpoinL, we characterize completely the properties that make chanrwl routing 

dif!iculL. Moreover, we provide a novel, lincar-tirr1c algorithm that is always guaranteed Lo find 

near-optimal solutions. Chapters 6 and 7 con8titute Part II ol' this thesis. 



8 PEHSl'ECTIVE 

Although the two parts of' the thesis investigate different problems, they share a common 

underlyin[~ philosophy. We begin with a theoretical characterization of the properties that make 

the problems difficult. In the next stcp, algorithmic techniques arc developed for exploiting 

these properties to solve the problems. Although the results in their prcs<'nt form arc primarily 

theoretical in nature, the techniques provide new insights and approaches for VLS[ layout. It 

is likely that some of' the techniques can be adapted for use in practice. 

The remainder of this chapter discusses the two parts of the thesis m more detail, and 

concludes with an outline of the thesis. 

1.1. The Complexity of VLSI Graph Layout 

In recent years a number of' interconnection networks have been proposed for solving diverse 

problems. For example, one- and two-dimensional arrays of processors arc naturally suited to 

vector and matrix computations [50]. Binary trees arc particularly attractive because of their 

logarithmic depth and have been proposed for a variety of applications including raster graphics 

[27], databases [75], and direct execution of applicative programming languages [54]. The 

mesh of trees [19, 44, 57] combines arrays and trees in an elegant manner. By virtue of their 

sophisticated structure, networks such as the shufne-exchange network [73], cube-connected 

cycles network [63], and fast-fouricr transform network [76], in which recursive algorithms 

arc programmed conveniently in a natural manner, arc computationally more V<'fsatile and 

powerful than the simpler array structures. 

Can we exploit the power of' sophisticated nPlworks in VLSI? This question becomes 

increasingly important as problem sir.cs, and Lhe number of proces::mrs increase. It might 

be relatively simple to fit a thousand processor array on one chip, but can we fit a thousand 

processor shufllc-exehange network on one chip? Moreover, even if Lhc shufilc-exchange network 

fits, will its performance, determined. by the clockperiod or longest delay, be comparable to the 

array? To answer such questions, and to compare the relative merits of different networks, it 

is necessary to develop a general theory for VLSI graph layout. 

Hcsearch in layout theory was initiated by Thompson [79, 80] who proposed a formal model 
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for VLSI graph layout and investigated area-time tradco!Ts for computing certain functions. 

Using in f'ormation-trarrnf'cr arguments, he obtai ncd strong lower bounds on Lhe layout areas of 

graphs such as the shuflle-cxchangc and cube-connected cycles graphs. Subsequently, Leiserson 

[1!J, 50] and Valiant [83], focussing on the problem of minimizing layout area, independently 

developed a divide-and-conquer layout strategy for general classes of graphs. Using elegant 

combinatorial arguments, Leighton [10, 11] showed that the bounds of Leiserson and Valiant 

were the best possible in Lhat each cbss contained graphs for which the bounds were, upto 

constant factors, op Li rnal. For some graphs however, the bounds were very weak. 

Layout area is not the only consideration in choosing one layout over a multitude of 

possible layouts. In practice, we desire to fabricate small, inexpensive, and ea.~ily testable chips 

which compute quickly and reliably. A large number of' important engineering issues need to 

be considered in fulfilling these (possibly conflicting) requirements. 

Propagation delays across long wires critically affect the performance of' a circuit layout. In 

pipelined or systolic systems, long delays deterinine the clockperiod and overall performance of 

the system. SincC' propagation delay can be reduced by decreasing wire length, it is important to 

make Lhe longest wire in the layout as short as possible. Another way to reduce the propagation 

delay across a long wire is by increasing the size of' the transistor that drives the wire; by 

carefully adjusting transistor sizes to match wire lengths, the clockpcrio<l can be dramatically 

reduced. Since wire delays determine the efliciency of' a chip, it is imperative that techniques 

to minimize delay be developed within a general theory for VLSl layout. 

Fault tolerance is another important design consideration. Fabrication processes are prone 

to errors so that every wafer invariably contains a small number of defects. Even if a wafer 

contains a number of defective processors, it may still be possible to use the wafer by configuring 

wires around the defective processors. This may, f'or example, b(~ performed by laser restruc­

turing techniques [61]. This ability Lo wire together processors sekctively has considerable 

impact on sytem design. For example, how should a thousand processor wafer be designed so 

that a two-dimensional array can be rcaliwd using all the good processorn, no matter how the 

ddcctive processors are distributed? 

Another major concern is the problem of assembling large systems. Iiesearchcrs have 
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proposed networks with as many as one million processing elements [54]. Such systems are 

c!Parly too large to fit on a single chip. \'Vhenever any system is largrr than a singlP chip, 

it is necessary to partition the system among several chips which can be assemb!Pd at the 

printed circuit (or chip carrier) level. What is thP most effective way to partition a large 

system among several chips? This question is pressing becausP although fabrication technology 

has been advancing at a rapid pace, the technology for packaging chips has been crawling in 

comparison: current projections indicate as many as one hundred million components per chip 

but not more than two hundred off-chip pin connections. 

The economics of fabrication technology dictates that it is expensive to make one chip, 

but cheap to make many copies. For this reason, manufacturers of custom chips have been 

encouraged to make configurable designs such as gate-arrays, ROM's, and PLA's. The entire 

chip is manufactured, except for one mask. Given a desired configuration of the chip, a 

final layer of metallization connects up the circuitry in that way. Most of the desigr. and 

fabrication costs are thus factored over several chips. Similarly, restructuring techniques allow 

a chip to be modified after fabrication. For example, "diode-busting" is used to configure 

PROM's (programmable read only memory) after fabrication. More recent and exciting is the 

prospect of "laser welding" by which connections between wires can be either made or broken 

after fabrication by high-intensity laser beams. Such techniques further encourage configurable 

design of VLSI chips. Thus, we are led to consider how to design efficient layouts which may 

be configured to realize, for example, arbitrary binary trees or arbitrary rectangular arrays. 

Motivated by the engineering issues outlined above, Part I develops a general framework for 

VLSI graph layout. Within this framework all the diverse concerns mentioned above are dealt 

with in an efficient and uniform manner. The framework is based on a divide-and-conquer 

strategy for graph layout which differs significantly from the divide-and-conquer strategy of 

Leiserson [49, 50] and Valiant [83]. The improved strategy is based on the notion of graph 

bifurcators introduced by Leighton [42], and provides universally close bounds on important 

cost functions such as layout area and propagation delay. The results of Part I are based on 

the papers of Bhatt and Leiserson [8, 9], and Leighton [42]. In addition, the resulta of Chapters 

4 and 5 appear in [7]. 
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1.2. The Complexity of Channel Routing 

Although the graph layout problems considered in Part [provide new insights and paradigms 

for VLSI layout, they arc nonetheless abstractions of' layout problems encountered in practice. 

Part II focuses on a specific problem confronting current automatic layout systems. 

Channel routing plays a central role in automated layout systems. Most layout systems 

proceed by first placing modules on a chip, and then wiring together terminals on different 

modules that should be electrically connected. To solve the latLcr wiring problem, the chip 

is heuristically partitioned into a set of rectangular channels, and each channel is assigned a 

set of wires which are to pass through it. This effectively reduces a diflicult "global" wiring 

problem to a set of disjoint (and presumably easier), "local" channel routing subproblems. 

An instance of the channel routing problem is specified by a set of terminals located at 

fixeu 1iu~iLiuus un Lwo horiwuLai Lrat:k::;. F:ad1 seL o! Lcrrninals with foe same land constitutes 

a net which must be electrically connected by wires running in horizontal tracks and vertical 

columns. Figure 1.1 shows a channel with six nets. Horizontal and vertical wire segments are 

placed on two different layers of interconnect. The objective is to wire up all nets in a way 

that minimizes the channel width, which is the number of horizontal tracks used for wiring. 

For example, Figure 1.2 shows a minimum width wiring of the channel in Figure 1.1. 

The channel routing problem has been intensively studied for over a decade, and many 

heuristic algorithms have been proposed for solving the problem [l, 2, ll, 12, 18, 20, 21, 34, 35, 

36, 38, 51, 60, 62, 67, 68, 81, 8'1]. RecenLly, Szymanski [77] showed that the general problem is 

NP- complete, and with Yannakakis [78] showed thal the problem is NP- complete even when 

every wire connects cxacLly two terminals. This might explain why the fast heuristic algorithms 

developed t.lrns far either produce arbitrarily bad solutions in many cas~s and/or completely 

fail on other instances. 

Part II of the thesis presents a linear-Lime algorithm which always produces a near-optimal 

solution. This algorithm is based 011 the key notion of channel flux which is introduced rn 

Chapter 7. The algorithm originally appears in a paper by Baker, Bhatt, and Lcighlon [3]. 
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Figure 1.1: A channel with six nets. 
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Figure 1.2: A minimum width routing. 

1.3. Overview 

The next four chapters are devoted to VLSI graph layout, and form Part I of the thesis. 

Chapter 2 outlines Thompson's model for VLSI layout, reviews previous research, and describes 

important layout probl.ems in a formal setting. Chapter 3 focuses on layouts for the simplest 

of networks: binary trees. In addition to presenting new layouts with improved bounds on edge 

lengths, the complexity of producing optimal layouts is examined. The new layout strategy 

motivates the paradigm for general graph layout presented in Chapter 4. Finally, Chapter 

5 shows how the new layout paradigm can be used to efficiently solve the important layout 

problems of Chapter 2. 

Part II of the thesis consists of Chapters 6 and 7. Chapter 6 describes the channel routing 

problem, its use in automatic layout systems, and briefly reviews previous research. Chapter 7 

introduces the concept of channel flux and presents a linear-time approximation algorithm for 

Manhattan routing. 

In conclusion, Chapter 8 summarizes the major results of both parts and outlines a number 

of important, unresolved problems. 



CHAPTER 2 

Issues in VLSI Graph Layout 

The first three sections of this chapter introduce the layout model developed by Thompson 

[79, 80] and briefly review previous research in VLSI graph layout. In particular, we discuss the 

layout strategy of Leiserson [·rn] and Valiant [8:~] and note that bounds on layout area based on 

separator theorems can be very different from the actual minimum layout area. The remainder 

of this chapter is devoted to formalizing a number of layout <}l!Pstions mnt.iv::itNI hy 1'n['_;i11~Prin~ 

considerations. 

2.1. The Layout Model 

In order to cast VLSI layout problems within a mathematical framework, Thompson [79, 

80] developed a formal model J'or VLSI graph layout. The model is based on, and is consistent 

with, the VLSI design rules c:stablishcd by Mead and Conway [55]. It is also similar Lo the 

widely used Manhattan wiring model. In Lhe Thomspon grid model, a layout for a graph is 

characterized as an embedding within a two-d£mensional grid. A two-dimens£onal grid is a 

collection of horizontal and vertical tracks spaced apart at unit intervals. 1\ layout for a graph 

C is specified by an embedding which assigns nodes of G to points in the grid where horiwntal 

and vertical tracks intersect, LogcLhcr with an (incidcnce-prcsc:rving) as~;ignrncnt of the edges 

or G to paths in the grid. The paths of the layout arc restricted Lo follow along grid tracks 

and arc not allowed to overlap for any distance (alt.houµ;h a vertical palh ~;egrnent may cross 

a horizontal path segment). !11 addition, the pnLhs may noL cross nodes Lo which they arc not 

adjacent.. For obvious reasons, we rest.rid our aUcnLion to graphs in which 110 node has d<~gree 
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Figure 2.1: A layout for K 4. 

greater than four. As an example, Figure 2.1 shows a layout. for the complete graph on four 

nodes. 

Remark. The results of this thesis extend to variants and generalizations of the Thomspon 

grid model. For example, graphs with bounded valence greater than four may be laid out by 

mapping each node to a region of the grid, instead of a single grid point. The results are also 

applicable to networks with large processors. Techniques for dealing with large processors are 

described more fully in Chapter 5. 

2.2. Elementary Bounds on Layout Area 

Although there are a variety of important engineering considerations in choosing one layout 

for a graph over other possible layouts, the best understood, and perhaps the most desirable 

cost measure to minimize is layout area. The area of a layout is most naturally defined as 

the area of the "bounding-box" around the layout, and equals the product of the number of 

vertical tracks and the number of horizontal tracks that contain a node or wire segment of the 

graph. For example, the layout of Figure 2.1 has area 15. This is not the minimum possible; 

there is another layout with area 9. 

How much area does an N-node graph require? Clearly, the area cannot be less than 

. the number N of nodes. On the other hand, by embedding nodes at equally spaced intervals 

along a line, and using a distinct horizontal track for each edge (as shown in Figure 2.2), it is 

clear that the area required for an N-node graph is no greater than O(N2 ). These bounds are 

independent of the structure of the graph and hold for all N-node graphs. In general, however, 

the minimum area needed to lay out a graph depends on the graph. 
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l 
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! 
~----O(Nl----.. 

Figure 2.2: Every N -node graph can be laid out in O(N 2 ) 

area. 

Thompson [79, 80] identified bisection width as an important property of graphs that affects 

minimum layout area. The bisection width of an N-node graph is the minimum num.ber of 

edges which must be removed from the graph in order to disconnect it into two subgraphs 

each of size at least lN /2J. Thompson showed that, up to a constant factor, the layout area 

can be no less than the square o~ the bisection width. Therefore, if the bisection width for 

a graph is known, a lower bound on area can be easily computed. By showing that certain 

computationally powerful graphs such as the shuffle-exchange graph have large bisection width, 

Thompson showed that these graphs require large area. In fact, Thompson extended this 

observation to obtain area-time tradeo!Ts for computing certain functions. 

Leighton [40, 41] identified crossing number as another general property that affects layout 

area. The crossing number of a graph is defined as the minimum number of edge crossings in 

any drawing of the graph in the plane. It is easy to see that the crossing number of a graph is a 

lower bound on layout area. Using more sophisticated arguments for special graphs, Leighton 

also directly obtained lower bounds on total wire length (the sum of the lengths of the wires 

in a layout), which of course is a lower bound on layout area. These techniques are heavily 

dependent on the recursive structure of the special graphs and are generalized in [7]. 

2.3. Layouts Based on Separator Theorems 

Leiserson [49, 50] and Valiant [83] investigated general properties that provide effective 

upper bounds on layout area. They independently developed a divide-and-conquer strategy for 

graph layout and showed, for example, that every N-node tree can be laid out in O(N) area 



Hi ISSUES IN VLSI GRAl'II LAYOUT 

and tbat every N-node planar graph can be laid out in O(N lg2 N) area. Their technique is 

based on the notion of separator theorems for graphs. 

Definition: A class of graphs which is closed under the subgraph relation is said to have 

an J(x)-.~eparator theorem if there exist constants a and b where 0 < a ~ 1/2 and b > 0 

such that every N-node graph in the class can be partitioned (by the removal of at most 

bf(N) edges of' the graph) into disjoint subgraphs having a' N and (1 - a')N nodes where 

a< a'< 1- a. - -

Given a class of graphs for which a separator theorem is known (e.g., trees have a 1-

separator theorem [52] and planar graphs have a y'x-separator theorem [53]), it is possible to 

construct a layout for any N-node graph in the class by using a simple divide-and-conquer 

approach. For example, Leiserson ['19, 50] proved the following upper bounds on layout area. 

x"'-separator theorem 

a< 1/2 

Q = 1/2 

Q > 1/2 

Layout Area 

O(N) 

O(Nlg2 N) 

O(N2o) 

Remark. The layout procedure assumes that a complete recursive decomposition of the graph 

is {';iven. If a complete decomposition is not given, then there is 110 known polynomial time 

algorithm which achieves the upper bounds on area. This severely limits the applicability of 

scpawtor-bascd layout strategics to classes of graphs (such as trees or planar graphs) for which 

decompositions arc easily computed. 

Ilow good are the preceding area bounds? Thompson [7!l, 80] and Leighton [10, H] showed 

that none of the bounds can be improved. More precisely, they showed that within each class 

there is a graph for which the bo11nd is optimal. But this does not mean that the bounds arc 

optimal for every graph within a class. In fact, while the bouHds are existentially optimal, 

i,h('y arc not universally optimal. For example, an N-nodc square grid can b(~ laid out in area 

linear in N, but since the rninirnum separator theorem for lhe class of square grids is ft, the 
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best bound obtainable by separator-based layouts is O(Nlg2 N), which is ofT by a factor of 

O(lg2 N) from the optimal. Of course, since N-node graphs require area at least N, Lhc bounds 

for graphs wiLh x 0 -scparator Lheorems, o: < 1/2, arc asymptotically universally opLirnal. 

For graphs with larger separator Lheorcms, the discrepancy between the minimum layout 

area and that given in the Lable can be much worse. Consider, for example, the N-node graph 

SN which consists of N /lg N disjoint lg N-node expander graphs. An m-node expander graph 

has the property that every subset of k nodes is linked by 8(min(k, m - k)) edges Lo them - k 

nodes outside the subset.* The bisection width of such a graph is O(m), and hence Lhc minimum 

separator theorem is 8(x). The existence of trivalent graphs that satisfy this defintion has been 

known for a long time [28, 31]. In fact, almost all trivalent graphs satisfy this definition. Since 

each lg N-node expander graph can be trivially laid out in O(lg2 N) area, the layout area of 

SN is no greater than O(NlgN). However, Leighton [12] showed that the minimum separator 

theorem for the class of graphs SN exceeds O(x/ lg2 x), so that Lhc area bound frorn the table 

above is O(N2 / lg4 N), which is much worse than the optimal bound of O(N lg N). 

Remark. Any class of graphs closed under the subgraph relation and containing SN must 

also contain expander graphs. Hence, Lhe minimum separator theorem (as defined earlier) for 

the class is E-)(x). Instead of defining separator theorems for classes of graphs closed under the 

subgraph relation, it is more convenient (and general) Lo define separators for individual graphs 

in terms of the subgraphs produced by its recursive decomposition. Using the less restrictive 

(but more useful) definition, it is possible to show that SN has an O(N /lg N)-scparator. The 

lg N-nodc expander graphs arc split in the upper levels of the decomposition and never appear 

intact as subgraphs in the lower levels of' the decomposition. Leighton [12] proved that even 

using the rnosL liberal definition, Lhc minimum separator for SN is at least 0( N / lg2 N). Any 

bound on layout area for SN based on the minimum separator can Lhcrefore be no less than 

O(N 2 I lg 4 N). 

Thus, while the divide-and-conquer strategy based on separator theorems gives existentially 

*The original dPflnition of expander graphs is slightly difforent from that r;iven here. We adopl lhis minor 
variant because it, allows nodes of degree no greater than three. 
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optimal bounds, the bounds can be unacceptably poor in a universal sense. IL was the discovery 

of such large discrepancies that led to the search for an alternative framework for VI,Sl layout. 

Within the new framework presented in Chapter { we shall sec how these large discrepancies 

arc overcome. 

2.4. Eight VLSI Graph Layout Problems 

As mentioned earlier, there arc many important considerations in choosing one layout over 

a multitude of other possible layouts. The problems in this section are motivated by some 

engineering concerns fundamental to circuit design and layout. Though not exhaustive, this 

list covers most of the thcoreLical issues studied recently. Many of the problems are known 

to be NP-Complete. The emphasis throughout this thesis is the development of a general 

unif"ying framework for dealing with diverse issues in a uniform manner. Within the framework, 

solutions to some problems are reasonably close to optimal. For other problems, good heuristics 

are developed or suggested, and general bounds obtained. 

Problem 1. Given a graph G, produce an area-efficient layout for G. 

As mentioned before, minimizing area is a critical concern in \'LSI circuit layout. In 

addition to the work on area-efiicient layouts described in the previous section, Dolcv, Leighton, 

and Trickey [22] have shown that determining the minimum layout area of a forest of trees is 

NP-Complete. 

Problem 2. Given a graph G, produce an area-efficient layout for G with minimax edge 

length. 

Besides area, speed is anothPr critical !'actor in chip performance. Signals do not propagate 

instantaneously across wires, and Lhc longer the wire, the longer the propagation delay. In 

pipelined or systolic systems, the effect of propagation delays is even more dramatic. The 

maximum delay determines the clockperiod, and hence the Lhroughput, of" the system. To 

maximize throughput we need to minimize the maximum delay. ln short, we must produce 

layouts so that the longest <~dgc is as short as possible. The minimum, over all layouts, of' the 
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length of the longest edge is called the minimax edge length. 

Paterson, Huzzo and Snyder [59] studied the problem of minimizing edge lengths for 

complete binary trees. They showed that the minimax edge length of an N-no<le complete 

binary tree is e( .JN I lg N). Adopting a difTerent strategy based on separator theorems, the 

next chapter presents a general technique for bounding the maximum edge length of arbitrary 

trees, while Chapters 4 and 5 exten<l the techniques to general graphs. The next chapter also 

shows that minimizing the edge lengths of trees is NP-complete. 

Problem 3. Gfoen a graph, produce an area-effici'ent layout m which each wire has 

bounded delay in the capacitive model. 

Although it is certainly true that propagation delay :i,cross a wire depends on the length 

of the wire, there has been little consensus on how fast propagation delay grows as a function 

of wire !Pn~th. Thompson [79, RO] assnrncs prnpap;:d.ion dPhy to lw r•ond,..rit, inr!"f'"'!dent 0f 

wire length. This might seem unreasonable given the ultimate speed-of-light limitation which 

indicates that the delay increases linearly with length. The speed-of-light limitation, however, 

greatly C'xaggerates the importance of wire delay in determining the speed of circuits. Mead 

and Conway [55] take into account some ol' the electrical characLeristics of interconnecLions on 

MOS integrated circuits, and emphasize the role of' wire capacitance in determining propagation 

delay. Hccent analysis by Bilardi, Pracchi, and Preparata [l OJ strongly supports the belief that 

capacitive effeds play the predominant !'Ole in determining the speed o!' MOS circuits. 

In a capacitive model, each wire is assumed to present a purely capacitive load to the 

transistor that drives a signal across the wire. This load is proportional to the length of the 

wire plus the area of tlw transistor that receives the signal. The delay is proportional to 

this load divided by the area of' the driving transistor. By increasing the size of the driving 

transistor it is therefore possible to bound Lhc propagation delay, independent of the length of 

the wire. A second well-known techniq11c f'or reducing delay across a long wire is to "ramp" 

the wire with a geometrically increasing scri(~S or inverters [55]. The lllllllber or intermediate 

drivers, and hence the d<'lay, is logarithmic in the length of' the wire, but an attractive feature 

is that this process can be carried 011t without the nrl'd to resizr th!' original transistors in the 
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circuit. 

Of course, increasing the size of one transistor or introducing new transistors might force 

some wires to be stretched to avoid the enlarged transistor area. Tn other words, decreasing 

the delay across one wire might force an increase in delay over other wires. Leiserson [17] and 

Mehlhorn [56] independently posed the question of whether or not the transistors in a layout 

could be resized so that every wire in the layout has constant propagation delay. Harnachandran 

[65] investigated the problem of introducing intermediate drivers along long wires to decrease 

delays, but under the constraint that the topology of the layout remain unchanged. With the 

restriction that wires can not be rerouted, she showed that logarithmic delay can be achieved, 

but at the expense of squaring the layout area in the worst case. We allow the layout topology 

to be changed, and obtain significantly better results. 

Problem 4. Given a graph G, produce a layout for G with few wire cro.~sings. 

;'u1 untiesirabie feature of iayouts is the presence of a large number of wire crossings. 

When two wires cross, they must be on different layers. For faster operation, and less power 

dissipation, it is advantageous to maximize the total amount of wiring on a layer of low 

resistance, e.g. the metal layer, while minimizing the wiring on a layer of high resistance, 

e.g. the polysilicon layer. The net wiring on one layer may be reduced by laying wires on that 

layer only just before and after two wires cross. If the number of wire crossings is small, the 

number of contact-cuts which connect wire segments on di!Terent layers is small so that the area 

of the layout is not blown up by the contact cuts which occupy large area. In addition, long 

wires that arc crossed by many other wires arc susceptible to cross-talk when all the crossing 

wires simultaneously carry the same signal. 

The crossi"ng number of' a graph is defined Lo be the minimum number of wire crossings in 

any drawing of the graph on the plane. Leighton [10, 11] proved upper and lower bounds on 

crossing numbers and then used the results to find bounds on layout area. Garcy and Johnson 

[29] showed that determining the crossing mimber of bipartite graphs is NP-Complete. 
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Problem 5. Given a graph, produce an area-efficient regular layout for the graph. 

Some design methodologies, most notably gate-arrays, require that processors be located 

at fixed positions on a chip. In gate-arrays the processors arc placed in a grid pattern with 

uniform spacing between processors adjacent along every row and column. Such layouts are 

said to he regular. An important advantage of this design restriction is its flexibility: even it' 

the size of every processor is increased, the wiring between processors remains unaffected and 

the total area remains proportional to the sum of the wire area (as computed with unit-size 

processors) and the processor area. This is because only the VIV' rows and columns containing 

the N unit-size processors need to be expanded to accomodate the non-unit-size processors. In 

non-regular layouts, every row and column might have to be expanded since there might be a 

node in every row and in every column. Increasing the linear dimension of the processors by a 

factor of s could result in an 6(s 2
) increase in layout area. 

Previous divide-and-r.onqucr layo11t strategics do not. !1roducc rcgnl~r layo111.s. Tff'ncc1 t.hpy 

arc not useful in laying out circuits with non-unit-size processors. A good strategy for producing 

regular layouts would solve the nagging problem of how to cope with variable-size processors. 

Problem 6. Design area-efficient chips that can be configured to realize a large number 

of graphs. 

Because it is expensive to make one chip but cheap to make many copies, manufacturers of 

custom chips have been encouraged Lo make configurable designs such as gate-arrays, llOM's 

and PLA's. In such designs, the entire chip is prefabricated except for one layer. The customer 

then specifics a configuration for the chip, and Lhc final layer of' metalization connects up 

the circuitry in that particular w:ty. llcncc, rnusL of Lhe design and fabrication costs can be 

factored over many custom chips. Similarly, the fast emerging laser-restructuring technology 

[6'1] provides another economical way to customize chips after fabrication is complete. Laser 

restructuring allows connections between wires to be made or broken after the chip has been 

fabricated. In either case, it is desirable to design layouts that can be configured f'rom one of 

a few basic patterns. 
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Problem 7. On a wafer which ha8 arbitrarily diBtributed defective cel/8, realize a given 

graph on the good cell8. 

In any fabrication process, it is expected that some of the processing cells will be defective. 

In a two-dimensional array of cells on a wafrr in which defective cells arc arbitrarily distributed, 

it may still be possible Lo use Lhc wafer by configuring wires around the defective cells. This 

may, for example, be performed by laser restructuring techniques [fi1]. Given this ability to 

isolate defective cells, it is important to consider how a graph may be realized on the remaining 

good cells. This problem has received considerable attention recently [:33, 15, 69]. The problem 

is similar to the general graph layout problem in the Thompson model but with the important 

restriction that nodes of the circuit can only be mapped Lo a restricted set of nodes in the grid. 

Problem 8. Given a graph G, a88emb/e G uBing the minimum number of copies of a 

.single chip having few external pin connections. 

A number of very large networks have been proposed in recent years for implementing 

priority queues [18], for searching [5], for direct execution of applicative programming languages 

[51], and for recognizing regular cxpresions [26]. Some of these networks arc Loo large to fit 

on a single chip. For example, the tree-structured network of [51] is envisioned to contain 

as many as one million processing clements. Clearly, such networks must be partitioned over 

many interconnected chips, so that each chip realizes a small portion of the network. 

The technology for packaging chips severely limits Lhe number of external pin connections 

on a chip. While chips with over a million components arc forsecablc in the near future, no one 

predicts a chip with over two hundred external pin connections. This poses a pressing problem 

in assembling large networks of processors. 

Even if a network could be partitioned so that each portion has only a few external 

connections, it would be economically inf'e:u.;ible Lo dcsit~n each chip individually. For instance, 

iL would be prohibitively expensive to design one thousand different chips, each containing a 

thousand processing clements, to assemble a network of' one !llillion processors. For this reason, 

it is necessary to assemble large systems using copies of' a f'ew configurabl1~ or rcstructurablc 

chips. The nexL chapter presents one solution to the problem of' assembling large trc~c structures 
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using copies of a single, area-efficient, rcstruciurable chip with few external pin connections. 

Within the new framework, dlicient solutions arc provided for each of these problems. fn 

fact, a single layout simultaneously solves many of these problems elflciently. The framework 

provides a two-step strategy for solving these problems. First, the graph to be laid out is 

embedded within a very special network called the tree of meshes. For the tree of meshes it is 

possible to solve all these problems efliciently. In the second step, therefore, :.t good layout for 

the tree of meshes also solves these problems for the embedded graph. 



CHAPTER :3 

Layouts for Trees 

A binary tree may not be the best multiprocessor organization, but it has been proposed by 

many researchers for a variety of reasons. For example, a complete binary tree can be the major 

component of a priority queue resource [18] and of a smart-memory raster graphics system [27]. 

A complete binary tree can also serve as a hardware structure for searching [5], for databases 

[75], or for direct execution of applicative programming languages [51]. Browning [t 5] proposes 

a complete binary tree for general-purpose multiprocessing, and two systems based on her ideas 

arc being built at Caltech and Bell Laboratories. 

Attention is also directed to binary trees which are not complete. Floyd and Ullman [15] 

show that strings described by a regular expression can be recognized by processing elements 

organized as the parse tree of the regular expression. Foster and Kung [25] have a similar 

scheme based on the simple configurable layout developed by Leiserson [50]. There are other 

proposals, for example [58, 71], of machine organizations that, while not trees, are nevertheless 

tree-like. 

We shall not debate the merits of the various tree machines here, but shall confine our:-;dvcs 

to understanding their physical org:rnization. fn this regard trees arc particularly attractive 

because of their simple intercorrnection structure. Not only can trees lH! laid out cflicienLly, but 

good layouts for Lrees also suggest cflicie:nt ways to lay out general graphs. Moreover, problems 

that arc intractable for trees arc also intractable in general. Thus, by investigating layouts for 

trees we stand to learn more about general graph layout. 

In Lhe following section we examine two well-known layouts for complete binary trees and 

present a bcUcr layout which minimizes (asyrnpLoLically) both area as well as maximum edge 

24 
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Figure 3.1: :\11 0(11 lg n) nrrn layout of a ro111plr le bznary 
lrrl. 

kllgth. ThcsP bounds <H(' cxl<'IJ(kd to arbitrarily ~tructurcd trc<'s in Spc·tion '.{.'..!, a!ld to planar 

layouts for trees in Sect.ion 3.:3. Computing the minimum cdge length exactly is shown to be 

NP-complete in Section 3.4. Section 3.5 describes Leiserson's [50] assembly of large complete 

trees using multiple copies of a single chip with only four external pin connections. Section 

3.6 introduces and examines the two-color bisection problrm for arbitrary trees. Section 3.7 

presents one way to assemble largr arbitrarily structured trees using the minimum number of 

copies of a single restructurabl(' chip with few pins. 

3.1. Layouts for Complete Binary Trees 

In addition to their usefulness in speeding up computation time by allowing both paral­

lelism and pipelining, complete binary trees arc attractive also because they can be laid out 

efficiently. Figure 3.1 shows the naive layout of a complete binary tree. Since the height of an 

N-leaf tree is lg N, and the N leaves are spread out over a line of length 2N, it follows that 

the area of the layout is 2N lg N. Furthermore, the longest edges are at the top level and their 

length is ~N. 

The familiar H-tree layout in Figure 3.2 was originally proposed by Mead and Rem [55]. 

In contrast to the naive layout which, in a scru;e is one-dimensional, this layout exploits both 

dimensions symmetrically. If S(N) is the side of the layout, then we have that S(l) = 1 and 

more generally, 

S(N) = '2S(N /1) + 1, 

which yields 8(N) = 2j!J - 1. Con~Pqucnt.ly, the area of the layout is no greater than 4N. 

The longest edges arc ag:iin at the top ln·el, and thPir length is no more than ~ ../N. 
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Figure 3.2: The JJ-tree layout of a complete binary tree. 

The H-tree layout asymptotically minimizes area but not maximum edge length. Paterson, 

Ruzzo, and Snyder [59] demonstrated a linear-area layout with maximum edge length 

O(..,!N /lg N). In any layout tlll~re arc two nod1·~ which arc· distarH:f' V.i\--; apart: moreover, these 

two nodes are connected by a path containing no more than '.?lg N tree edges. It follows then 

that at least one of these Pdges must have length at lca~t 'vr5,r /'.?lg;\'. Thus. 1 lil' layout of [59] 

asymptotically minimizes area as well as maximum edge length. Unfortunately, however, the 

layout technique of [59] does not extend to more general graphs. The remainder of this section 

demonstrates another layout with asymptotically optimal area and maximum edge length. The 

following section generalizes our technique to arbitrary trees and, the next chapter to general 

graphs. 

To illustrate our technique, consider the layout of Figure 3.3 in which the nodes at the 

second and third levels of the tree have been brought closer to the root so that all edges within 

the top four levels are of equal length. This "averaging" of edge lengths reduces the maximum 

edge length from ~VN to T~ Jf..i. Of course, the layout is stretched in the middle in order to 

accomodate two edges instead of one. This increases the area of the layout, but only slightly, 

from 4N to 4N + 6vN. 

This averaging operation can be carried out further down the tree so that many levels 

arc brought. closer to\vards the root. 1n order to space top levels of the trPP closely together, 

we embed these levels wit.bin an ll-charmcl structure shown in Figure 3.4. This structure is 
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Figure 3.3: The 11- lrer layo11/ u·ith .,/wrtcr cdgo al the top 
levels. 

Fig~re 3.4: The H-channel structure. 

obtained by taking the H-tree layout of a complete binary tree and blowing up the layout in 

both dimensions by a suitable factor. The details of the embedding are described next. 

Theorem 3.1. An N -node complete binary tree can be embedded in linear area with maximum 

edge length O(./N /lg N). 

Proof. To layout a complete binary tree with N leaves, start with the H-tree layout of 

a complete binary tree with lg 2 N leave~ which has area 4 lg2 N and maxim11m edge length 

1 lg N. Dlow up this layout. in either dimension by a factor 0:vN /Jg N, where Ct is a constant 

specified later. The area of the layout becomes 4Ct 2 N and t.he longest. channel has length 

~Ct.JN. 
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Next, lay the root at the centre of the II-channel structure and place the second level nodes 

at distance f3VN /lg N from the root on either side. Once again, {3 is a constant specified later. 

Place lower levels of the tree as shown in Figure 3.1, with successive levels spaced equally apart. 

At every corner of the IT-channel structure, bisect the tree so that the subtrees embedded 

within the Lwo substructures arc of equal size. Finally, in the lowest level channels lay out the 

remaining subtrees in the II-tree manner. 

We must ensure that every channel is wide enough to accomodate all the nodes in any 

level embedded within it, and also that the ff-tree layouts in the final step fit within the lowest 

level channels. To satisfy these conditions, let us first calculate the total number of tree levels 

embedded in all but the lowest level channels. The total length of' all channels encountered 

from the centre of the layout to the end of a terminal channel docs not exceed the quantity 

2a.VN. Since the distance between successive tree levels is f3VN /lg N, the number of tree 

levels embedded is bounded by (2a./ {3) lg N. The total number of tree nodes within any one 

of these levels is therefore no greater than N 20 //3. If 2a./ {3 < 1/2 then the number· of nodes 

in any level is asymptotically less than the width of a channel which equals /JVN/ lg N. The 

first condition is therefore satisfied by having a < {3 / 4. 

To ensure that the II-tree layouts at the final step fit within the final channel, it suffices 

to check that the dimensions of the layout are smaller than the dimensions of the channel. 

The size of a subtree embedded within a final-level channel cannot be more than N / lg2 N 

bemuse the tree is split into half at each corner. The side of the JI-tree layout is no greater 

than 2VN/ lg N. By choosing a > 2, the side of' the channel is guaranteed to be larger than 

a side of the II-tree layout. Therefore, by choosing a > 2 and f3 > 4a., we see that the layout 

can be completed. Finally, the area is linear in N and the maximum edge length is bounded 

by O(VN/ lg N). I 

3.2. Layouts for Arbitrary Binary Trees 

One property of complete binary trees crucial to U1P layouL of' Theorem :t I is t.hat a 

complete binary trPe can be bisected into two equal size subtrees simply by removing the root. 
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At every corner in the I I-channel structure, a forest of complete trees is bisected into two equal 

halves, each "growing" in opposite directions. This controls the size of every subgraph at the 

final level so that a standard layout fits within a final-level channel. 

Arbitrarily structured binary trees arc only slightly harder to bisect. Any N-nodc binary 

tree can be separated into Lwo components, each with no more than l~ NJ + 1 nodes, by 

removing a single edge [52]. (The worst-case occurs for the four-node tree in which one node is 

adjacent to three others.) Either of the Lwo components might be a forest, but the same result 

applies Lo forests, so that Lhc binary tree can be ~;plit recursively. Dy recursively splitting the 

larger component, a tree can be bisected by cutting at most O(lg N) edges, or by removing 

the nodes incident to these edges. The O(lg N) bound follows because the subgraphs decrease 

geometrically in size with each cut. 

The property that all trees have small bisections was used by Leiserson [19, 50] and Valiant 

[8:~] to show that all trees have linear-area layouts. We strengthen this result to show that Lhe 

maximum edge length of any N-node tree is bounded by 0( ..JN/ lg N). Tlw details of the 

layout are described iu the following Theorem. 

Theorem 3.3. Every N-node tree can be embedded in linear area with maximum edge 

length 0( ..JN/ lg N). 

Proor. As before, begin with the fl-tree layout of a complete binary tree with lg2 N leaves, 

and blow up the lnyout in either dimension by a factor a../N /lg N, where a is a constant 

specified later. The area of' the layout becomes '1a2 N and the longest channel has length 

1 r,;.-
2av N. 

Find a set of' O(lg N) nodes which bisect the tree and locate them at the center of the 

layout. Place nodes of' the tree in breadth-first levels starting with the bisector set as the roots 

of Lhe search, so that consecutive levels arc distance f3VN /lg N apart (fJ is a cons Lant specified 

later). AL every corner of the II-channel structure, bisect the remaining f'oresL of subtrees so 

that the subforests embedded within the two substructures arc of equal size. Add the new 

biRcdor set Lo Lhe sd of nodes from Lhe previous breadth-first level, as shown in Figure 3.5. 

In the new channel, start with the updated set as the root of a breadth-first search and repeal 
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Figure 3.5: /11.~crting w II' lnMrlor Mis al rncry rorncr. 

the procedure used before. Finally, in the lowest level channels lay out the remaining subtrees 

using the standard divide-and-conquer layout uf Leiserson [19, 50] or Valiant [83]. 

As before, we need to ensure that every channel is wide enough to acromodat.e all the nodes 

embedded within any level, and also that the layouts in the final step fit within the lowest level 

channels. 

Let us first calculate a crude upper bound on the tot.al number of nodes embedded in any 

one breadth-first level. This quantity is certainly less than the tot.al number ol' nodes embedded 

in all but the final-level channels. To bound the latter quantity, suppose that nodes in each 

bisector set within the II-channel structure arc pulled in to the center of the layout, and the 

remaining nodes placed in breadth-first levels until the final-level channels. Bringing all the 

bisector sets towards the center can only increase the number of nodes in all but the final-level 

channels. Since an N-node tree has a bisector of size O(lgN), the total number of nodes within 

the union of all bisector sets is bounded by: 

(

2lglgN N) 
0 i~ 2' lg ·~ = O(lg

3 
N). 

The total length of all channels encountered from the centre of the layout to the end 

of a final-level channel docs not exceed 2a.VN. Since the distance between successive tree 

kvels is /1VN /lg N, U1<' number of t.rrc kvf'ls f'rniH'ddf'd within the I l-rh:H111PI is boundC'd by 

(2a//3) lg N. Starting with O(lg 3 N) nodes as the roots of a breadth-first search, the number 

of nodes ('fl('Olllltcrcd in ('2n/ (J) 11~ .'V levels cannot cxccrd ouv 2u/fJ lg 3 .V). Since every node 

cmlwdrl<'d within the 11-ch:inncl must ill' in onP such breadth-first. level, the previous quantity 



PLANAR LAYOUTS FOR TREES :H 

also bounds lhc total number of nodes within the II-channel struclure. By choosing 2a//3 < 
1/2, or a < /3/4, we sec that the width of a channel asymptotically exceeds the number of 

nodes in any level wilhin the channel. Therefore, the firsl condilion is salisfied by having 

a < /3/4. 

To ensure that the layouts at the final step flt within a final-level channel, it suffices to 

check that the dimensions of a layout generated by the Lciserson-Valiant strategy arc smaller 

than the dimensions of the channel. Their layout of an x-node tree is linear in x, i.e., bounded 

by /X, for all x and some constant I· In the layout described above, the size of a forest 

embedded within a final-level channel cannot be more than N / lg2 N because the tree is split 

into half at each corner. The side of a layout at the final level is no greater than .../7N /lg N. 

By choosing a > ,,;=y, the side of the channel is guaranteed to be larger than a side of the II-tree 

layout. Therefore, by choosing a > ,,/1 and f3 > 4a, we sec that the layout can be completed. 

Finally, the area is linear in N and the maximum edge length is bounded by 0( ../N /lg N). I 

3.3. Planar Layouts for Trees 

It is sometimes necessary to produce layouts in which distinct edges do not cross one 

another. Planar layouts have the advantage that only one layer of interconnect is required; by 

using a low-resistance metal layer, the resulting circuit is not only faster, but also dissipates less 

power. Many current automatic layout systems reserve a single layer of interconnect for special 

purposes such as, for example, power and ground connections. In such cases, it is necessary to 

find good planar layouts. Needless to say, the underlying connection scheme must be planar. 

Planar layouts may require much more area than non-planar layouts. In particular, Valiant 

[8:3] demonstrated an N-nodc planar graph for which every planar layout occupies at least 

n(N 2
) area and has edges of length n(N). On the other hand, Leiscrson [19, 50] and Valiant 

[8:~] showed that every N-nodc planar graph can be laid out in O(N Jg 2 N) area with edges of 

length O(VJVlg N) in Thompson's layout model, which allows distinct wires to cross. 

Valiant [8:3] further show<'d that every tree has a linear-area planar layout. In other words, 

the planarity restriction docs not affect Lhe asymptotic area req1tiremcnts of trees. But what 



about edge length? Intuitively, the len~th of a wire can be reduced by taking a short-cut across 

another wire, instead of going around it. So, an important question is whether the planarity 

requirement affects the maximum edge length for trees. 

Although the layout of Section :3.2 has linear area, and asymptotically optimal edge length 

in the worst-case, it is not guaranteed to be planar. However, lluzzo and Snyder [70] showed 

that this layout could be transformed into a planar layout without increasing edge length 

asymptotically. The details of their transformation are fairly complicated; in the following 

Theorem, we present a simpler transformation. 

Theorem 3.4. Every N-node tree has a linear-area planar layout with maximum edge 

length 0( ../N/ lg N). 

Proof. The layout proceeds exactly as in the proof of Theorem 3.3, with particular 

In particular, if a forest of x nodes has to be separated from an N-node tree, x :S lN /2J, 
then it suflices to remove at most fig x l nodes. The key fact is that these nodes can be chosen 

from a single path in the tree. This path induces a natural linear ordering on the set of nodes 

removed. 

To sec this, consider a binary tree rooted at a node of degree either one or two. It is always 

possible to choose such a root, and if the remainder of the tree is drawn in levels then every 

internal node has at most two sons. Label each node in the tree by the size of the subtree 

rooted at that node and below iL. Pick any node whose label is no less than x, and both of 

whose sons have labels less than J:. Mark this node. [fits label equals x then we have found a 

node whose removal separates a subtree of the required size. Otherwise, one of' its sons must 

have a label y 2:: l x/2 J, while the other son has label no less than x - y - 1. Recursively 

mark nodes in the subtree rooted at the second son so that the removal of the marked nodes 

separates a forest ol' size x-y- l. [tis easily seen that the marked nodes lie along a path of the 

original tree. Moreover, the removal of all m<irked nodes separates a component of' siw exacL!y 

x. Finally, since the first node separates a component of size at least lx/2J +I, it f'ollows Lhat 

no more than fig x l nodes am marked. Figure :3.6 illustrates this procedure. 
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Figure 3.6: Three cuts separate a subforest of 19 nodes. 

Bl'SEC. To R SE. T 

Figure 3.7: The removed nodes are placed in the order 
of occurrence along the path. 

Given a tree, use the above procedure to find a set of nodes which bisect the tree, and lie 

along a path. Place these nodes at the center of the layout in the same order in which they are 

encountered along the common path. Next, find all nodes adjacent to the bisector set and place 

them on either side as before. However, Lhe ordering of nodes in these breadth-first levels is 

chosen as follows: for each pair of nodes u, v that arc placed next to each other in the bisector 

set, if the path connecting them is u, ti, t2, ... , tk, v, then place nodes t 1 and tk next to each 

each other in the second level, as shown in Figure 3.7. The orderings of nodes on either side of 

the center again satisfy the condition that nodes connected by a path in the forest embedded 

on that side appear in the order in which they arc encountered along the common path. 

Dy placing nodes in every level in the same order in which they lie along a common path 

within the forest still to be embedded, it is easy to guarantee that the layout is planar inside 

the channel (sec Figure :t7). All that remains is to guarantee that the layout can be made 

planar at every corner when new bisector set.s arc added to a level. 

When the end of a channel is reached, the situation is as shown in Figure 3.8. Nodes 

u1, n2, ... , u., arc those in the last level of the ch an ncl. The subgraph which remains to be 

embedded is a forest of subtrees. Then nodes can be grouped according to which subtree they 
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X: b\st.c.rov­
~ode~ 

bisec~o~ 
t\oaes 

Figure 3.8: To bisect a forest of trees, only one tree need 
be separated. 

Figure 3.9: Nodes in the final level may be connected to 
their subtrees without crossovers. 

belong to, nodes in the same subtree being adjacent within the ordering. To bisect this forest, 

it suffices Lo split only one of these subtrees: order the subtrees top-down and pick the lowest 

one so that the subforcst above it contains at most one-half of all nodes in the forest. Split 

the subtree this node belongs Lo into two components as required so that the original forest is 

bisected. Uy laying out the next breadth-first level and the new bisector nodes as in Figure 

3.8, we sec that in each of the two lower-level channels the nodes within the same subtree are 

ordered in the order in wl1ich they are encountered along a common path. 

Repealing this process further down the II-channel structure, we sec that the layout is free 

of wire crossings. To complete the layout., within the linal-lcvcl channels we use Valiant's [83] 

linear-area planar layouts J'or each remaining subtree. Edges from these subtrees to nodes in 

Lhc last breadth-first level of Lhe pcnulLimalc channel can be inserted wilhout crossovers as 

shown in Figure 3.9. This completes the planar layout. I 
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3.4. The Complexity of Minimizing Edge Lengths 

Thus far we have only showed Lhat every tree can be laid out with maximum edge length 

bounded by O(VN/lgN). While Lhis bound is asyrnptoLically optimal for some trees such as 

the complcLe binary tree, it is way olT for others. For example, a two-ended string with every 

node connected only to its immediate neighbors can be trivially laid out with every edge of 

length one, independent of the number of nodes. 

This motivates the problem: it Given a tree, produce a layout with minimax edge length. In 

this section we show that determining the minimax edge length is computationally intractable. 

The results are quite discouraging - even the problem of deciding if a given tree can be laid 

out with all edges of unit length is NP-complete. 

Theorem 3.5. Given a tree T, deciding whether or not T hall a layout with unit length 

edgell ill NP-complete. 

Proof. Observe that the problem is clearly in NP; it is easy to guess a layout and verify 

that no edge has length greater than one. It remains to show that the problem is NP-hard. 

The known NP-complete problem used in the reduction is Lhe NOT-ALL-EQUAL 3CNFSAT 

problem [29, 72] stated below. 

NOT-ALL-EQUAL 3CNFSAT: Given a boolean formula <P in 3CNF (conjunctive 

normal form with three literals per clause), docs there exist a truth assignment which satisfies 

<P such that each clause contains at least one false literal? 

Given a formula <P in 3CNF, we construct a graph G with the property that G can be 

laid out with all edges of unit length if! <P is an instance of' NOT-ALL-EQUAL 3CNFSAT, 

i.e., <P can be satisfied with at least one .false literal per clause. The graph G is constructed 

l'rorn elementary components termed "lines" (Figure 3.10). The crucial property of' a line is 

its rigidity, meaning that in any layouL with unit-length edges, nodes u1, .. . , Un must be lined 

up either horizontally or vertically. Figure 3.10 shows how to connect two lines so that the 

resulting graph can be laid out in only two ways (ignoring rotations). 

Let x 1 , •• • , Xn be the variables, and C\, ... , Cm be Lhe clauses of c/J. The basic "skeleton" 
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Figure 3.ll:The skeleton of the transformation. Each column 
represents a variable, while each clause is as­
sociated with two rows that are mirror images 
with respect to the x-axis. 
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of G is shown in Figure 3.11. For each j, 1 ~ j ~ m, the distances (number of intermediate 

nodes) Qi - C1i, Qi - C:~, are all equal. The line Ui-Vi corresponds to variable x,, and the two 

ways of embedding it with respect to the A-B axis correspond to assigning x, true or false. 

Thus far, there are 2n possible ways of laying out G with unit length edges, each correspond­

ing to a truth assignment to the variables of ¢. Next, we encode within G the "structure" of 

¢ as described below. 

Let clause Ci be denoted l3, V lJ, V l1,. If 11, is positive (x1 ) add a "striker" at node C1 ,J;· 

Otherwise, if l3; is negative (:i\) add a striker at node C~,1,. Finally, for every k -:f- J1,J2,j3, 

add strikers both at C1 ,k and at C~,k· For example, if C1 = x 1 V x2 V x3 , the strikers are added 

as shown in Figure 3.12. 

Think of a node without a striker as a "hole". The rows C1 and C~ together share three 

holes, and 2n - 3 strikers. Because of the boundary constraints at the sides, no more than 

n - 1 of these strikers may liP on any side of the A - B axis. In other words, for each clause 
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Figure 3.12:/n any unit-length layout each row contains at 
lrn81 011c holr; this correspond8 to an instance 
of NAR-SCNFSAT. 

Figure 3.13:A binary tree which has a unique (upto rota­
tions) unit-length layout. 

there must be at least one hole on either side of the axis in a unit-length layout. For each 

clause, a hole "above" the axis implies a truth assignment which makes the clause true, while 

a hole "below" the axis implies at least one false literal within the clause. Therefore, there 

is a unit-length layout if and only if the formula is satisfiable with at least one false literal 

per clause. In short, G has a unit-length layout iIT ¢ is an instance of NOT-ALL-EQUAL 

3CNFSAT. Since the reduction is easily carried out in polynomial time, the theorem follows. 

I 

In the above reduction, many nodes had degree four. We may strengthen the result to 

binary trees with maximum degree 3. A rigid line may be implemented by stringing together 

binary trees as shown in Figure 3.13. It is not hard to show that the structure is rigid; the key 

property is that the complete binary tree on 31 nodes has a unique (up to rotations) unit-length 

layout. This yields the following result. 
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Corollary 3.6. Given a binary tree, deciding whether or not it has a layout with unit­

lcngth edges is NP-complete. 

3.5. Assembling Complete Trees 

Whenever any system is larger than a single chip, it is necessary to partition it among 

separate chips which can be assembled at the printed circuit (or chip carrier) level. What is 

th<~ most effective way to partition a large binary tree among several chips? 

This question is pressing because although integrated circuit technology has been advancing 

at a rapid pace, the technology for packaging chips has been crawling in comparison. Packaging 

technology severely restricts the number of external connections to an integrated circuit. While 

the number of components per chip is expected to reach one hundred million, no one forsees 

chips with more than two or three external pin connections. 

This section presents Leiserson's scheme [50] for assembling complete binary trees using one 

kind of chip with only four external pin connections. This chip has been used in tree-machine 

projects at Caltech and Bell Laboratories [16]. We review this scheme here for its simplicity 

and because the general scheme developed in Section 3.7 is based on similar ideas. 

Figure 3.14 shows how arbitrarily large complete binary trees can be built out of a single 

chip that has only four off-chip connections. Each chip contains one internal node of the tree, 

and Lhe remainder of the chip is packed as full as possible with an II-tree layout. The internal 

node requires three off-chip connections (denoted F, R, and Lin the figure) for its father, right 

son, and left son. The If-tree requires only one off-chip connection (denoted T) to its father. 

To interconnect two chips, the unconnected internal node of one of the two chips is selected 

as Lhe father of the Lwo II-trees. In Figure 3.11 Lhc internal node on Lhe left has been chosen for 

this purpose. The R pin on this chip is connected to its own T pin, and Llw L pin is connected 

to Lhc T pin on the other chip. Considered as a unit, the combined two chips now have the 

same structure as a single chip -- Lhree connections Lo an internal node and one to the root 

of a complete binary tree. The pair of chips can be similarly combined with another pair to 

produce a quadruple of chips, which can in turn be combined, and so forth. Fil~lHC 3.15 shows 
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Figure 3.15:.A large complete binary tree assembled using 
many copies of the same chip. 

a large complete binary tree which has been wired up in this recursive fashion. 

Unlike the assembly for complete trees, configurable or restructurable designs are required 

for assembling arbitrary binary trees. The reason is simple: a single fixed chip with N processors 

can realize only one N-node binary tree. In order to realize every N-node binary tree, either a 

new mask must be dcsignl'd for each trl'e, or else connections on the chip must be restructured 

(for example, by laser) after fabrication. Given the ability to restructure wires on a chip, we 

ask: Is there an ari:a-efficient reslructurable chip with N processors and m pin.~ (m < < N} 

which can be u.qed to assemble every binary tree, independent of its size? 



This quC'stion is affirr11ati\<'ly a11~wcrcd i11 S('ction :~.7. Th<' solution d!'pcnds heavily on 

tlw rc,,ult~ of the· rwxt ~c·ctiu11 1\li1ch cor1~idc·r~ the problem of' part1t1011i11.e. ;1 l>111;1r.1· tn·P into 
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other subforr·sts. Tile solution to thi:: probkm leads directly to the r!'structurab!!' chip dPsign 

ol' SPct io11 :l.7. 

3.6. Collinear Layouts and Two-color Bisectors 

This section introduces th<' notion of two-color bisectors for trees. Two-color bisectors 

are a natural extension of graph bisectors, and will be critically used in partitioning graphs 

for layout. In this section we show how to use two-color bisectors to partition an arbitrary 

tree into subforests of size N so that every subforest has at most O(Jg N) edges connected to 

nodes in other subforests. Bounds on the size of two-color bisectors are obtained from collinear 

layouts developed by Bentley and Leiserson [50]. 

Definition. Suppose that an N -node graph G has b black nodes and w white nodes. A two­

color bi.5ector for G is a set of edges whose removal bisects G into two subgraphs each of size 

at least lN/2J, and such that each contains at least lb/2J black and lw/2J white nodes. 

Theorem 3.7. Every N-node forest of binary trees has a two-color bisector of si'ze no greater 

than 21gN. 

Proof. Following Bentley and Leiserson [50], construct a collinear layout for the forest 

as follows. By removing one edge, separate the forest into two subforests so that neither 

contains no more than l~NJ + 1 nodes [52]. If either component contains more than lN/2J 
nodes, separate it into two smaller components using the one-separator theorem again. Next, 

recursively construct collinear layouts for each subforest, and place these layouts side-by-side 

along the baseline. Finally, as shown in Figure 3.16, connect the two (or three) subforests by 
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Figure 3.16: The recursive construction of a collinear layout. 

routing the separator edges on distinct vertical tracks and along a common horizontal track. 

(For two components this is trivial since only edge is routed; for three components, place the 

subforcst connected to both other subforests in the middle as shown.) Foi each node there arc 

three vertical tracks to accomo<late edges incident to that node. 

The height of the layout is determined by a simple recurrence relation. Let h(N) be the 

height ot the layout, so that h(l) = U, and in general, 

h(N) ~. h(lN /2J) + 1. 

A straightforward calculation yields h(N) ~ lg N. 

Thus far we have ignored the coloring on the nodes. Suppose there arc b black nodes and 

N - b white nodes. Consider a "window" which overlaps lN /2J consecutive nodes, and place 

it over the leftmost lN /2J nodes. If more than lb/2J black nodes fall within the window, slide 

the window one position to the right. Observe that by sliding the window on position, the 

number of black nodes within the window changes by at most one. Furthermore, by sliding 

the window all the way to the right, less than lb/2J black nodes would fall within the window. 

Consequently, there must be an intermediate placement of the window (sec Figure 3.17) in 

which exactly lb/2J black nodes and exactly l(N - b)/2J white nodes arc contained within the 

window. (Such a placement can be obtained in linear time.) 

Draw vertical lines through the endpoints of the window in the position obtained above. 

The edges of the forest intersecting these lines form a two-color bisector of the forest. The size 

of this two-color bisector is no more than twice the height of' the layout.; in other words, the 

size of the two-color bisector is no more than 2 lg N. I 
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2. 3 

Figure 3.17:.111 some point, a window of .~iu n /2 slid along 
thf baseline must contain half the black and half 
the while nodes. 

For our purpose the foil owing variant of two-color bisectors is appropriate. Suppose each 

node of an N-node forest is assigned a weight from a bounded set {1, 2, ... , k} of weights. We 

wish to bisect the forest into two equal-size su bforests whose total weights differ by at most k. 

How many edges need be cut? Adapting the argument for two-color bisectors to this variant 

in a straightforward manner shows again that 2 lg N cuts suffice. 

Having obtained bounds on the size of two-color bisectors for forests, we wish to use them 

for partitioning an arbitrary binary tree into subforests of size at most N so that every subforest 

has O(lg N) edges connected to nodes in other subforests. This result is established in the 

following Theorem. 

Theorem 3.8. Every N -node binary tree can be partitioned into r NI Ml subforests, each of 

size at most M, such that no subforest has more than 4lgM + 8 edges connected to nodes 

in other subforests. 

Proof. First bisect the tree into two subforests, each of size at least lN /2J, by cutting 

no more than lg N edges. Split each subforest recursively as follows: For each node in a 

recursively split component of size m assign a weight equal to the number of edges incident 

to that node and which were cut at a previous level. Since the degree of a node is at most 

three, the weight assigned to a node is at most 2. From th<' argument. following Theorem 3.7, 

there is a weighted bisector of size no greater than 2 lg m for the component. This weighted 

bisector divides the number of external connections almost equally (the dilTerence is at most 

two) between the subcomponents of sizes lm/2J and f m/21. As :;cen in Figure 3.18, the number 
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Figure 3.18:To hep th£ riumbn of rxternal connr:rtion.~ to 
all subcompon(nts .~mall when a component is 
biuctcd, the extrrnal connections must be evenly 
divided bdwecn the subcomponents. 

of external connections into either of thP new subcomponents is no more than the size of the 

weighted bisector plus one-half the number of external connections into the component just 

split (plus two). This recursive decomposition terminates when each component has size at 

most M. Letting c (m) be the number of external connections into any component of size m, 

we have C{N) = 0, and 

c(m) ::; ~ c(2m) + 2 lg(2m) + 2. 

A little calculation shows that c(m) ::; 4 Jg m + 8. This means that every subforcst of size 

m in the recursive decomposition has at most 4 lg m + 8 external edges to other subforests. 

Substituting M for m, the result follows. I 

3. 7. Assembling A rbit ra ry Trees 

The recursive decomposition of Theorem 3.8 leads directly to the design of an efficient 

restructurable chip which can assemble all trees. Observe that the layouts developed in earlier 

sections cannot be used for configurable or restructurable design because the locations at which 

nodes are embedded are determined by the structure of the tree and are not the same for all 

trees. The only way to have nodes at fixed locations, independent of the tree structure, is by 

predetermining the tracks along which edges arc routed. 

We can predetermine the tracks ·along which edges arc routed by using restructurable 

permuters. A permuter Pk has k terminals on each side of a rectangle and can realize any 

one-to-one connection between the terminals. The switch shown in Figure 3.19 implements a 

permuter. It has dimensions 2k X k, with the terminals along the longer sides. 
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connections between thr terminals on its two 
sides. 

Figure 3.20:A restructurable chip which can assemble ar­
bitrarily large binary trees. 

The construction of the restructurable ·chip is recursive and follows the recursive decom­

position of Theorem 3.8. We shall use Rm to denote a level of the recursive layout with m 

nodes, and let RM denote the restructurable chip of M nodes itself. Figure 3.20 shows how 

the chip RM is constructed from four copies of RM 14 , four copies of P4 1g M, and two copies of 

P4 1gM+4 • Letting S(M) be the length of the side of the layout, we have S(l) = 1 and, 

S(M) ~ 2S(M /4) + O(lg M), 

which yields S(M) = 0( VM), so that the area is linear in M. The number of pins on RM is 

4 lg M + 8. We now show that every large tree can be assembled using RM· 



ASSl~MBLlNG AIWITn.ARY TIWES 11i 

Theorem 3. 9. Suppose each restrncturable chip contains M nodes. Then any N-node 

binary tree can be assembled using r NI Ml chips, the minimum possible. 

Proof. Following Theorem :3.8, decompose the tree into r NI ,Ml components, each of size 

at most M and having no more than 1 lg M + 8 external edges to other components. l~ach of 

the r NI Ml components can be realized on a single chip RM· To sec this, USC Theorem :3.8 to 

recursively decompose each component into single nodes. fn this decomposition each subforcst 

of size m has at most 1 lg m + 8 external edges. This decomposition may now be mapped 

directly onto the chip, using the permutcrs to route edges between diITcrcnt subcomponents. 

Since the number of external edges at any level is no greater than the size of the permuters at 

that level, the permutcrs can realize the desired routing. Nodes of the tree arc embedded at 

fixed posi Lions in the lowest level perm u tcrs /'1 . Finally, each chip has enough pin connections 

so that the assembly can be completed off-chip by connecting the chips together as required 

directly.) I 

The constant factors on area can be improved if one uses the smaller restructurable 

permutcr 1\ with dimensions (k+O(Vk)) X (k+O(Vk)) that follows from the channel routing 

algorithm ol' Part II of this thesis. Whereas the simpler permuter from Figure 3.19 requires 

only two welds to make a connection, the dem;e layout might require as many as k welds f'or 

each connection. Although the total number of welds required by either scheme is O(AI), the 

number per wire is O(lg J'vl) if' the simpler switch is used and O(lg2 M) if' the channel-routing 

pcrrnutcr is used. 

fn related work, Rosenberg [69] has also considered pcrrnutcrs to obtain a degree of 

configurability in layouts. 



CHAPTER 1 

The General Framework 

This chapter presents a new framework for general graph layout. Like previous approaches 

to graph layout, the new framework is based on the divide-and-conquer paradigm. Instead of 

using a separator theorem to recursively partition a graph, the new framework uses graph 

bifurcators. The notion of a graph bifurcator was introduced by Leighton [12] to overcome the 

rif'fi<'if'nry of sq1:ir:il.or t.h0orf'rns. 1\ll.ho1l~h th0 difTPrPn""" hetwc0n 'h!f1!rf.'.3t0rs :u~<l ~cp:!r:ltor 

theorems will be elaborated in this chapter, there arc two primary advantages of bifurcators over 

separator theorems. First, unlike separator theorems, bifurcators may be efiiciently computed 

using either a good graph partitioning heuristic, or from a layout with small area. Second, 

bifurcators can be used, as in the next chapter, to produce layouts that.arc eflicienL in a variety 

of respects, not layout area alone. 

The techniques for general graph layout closely parallel those in Chapter 3 for efficient 

tree layout. Section 1.1 examines multi-colored bisectors for two-ended strings and forests of 

complete binary trees, and generalizes the results of Section 3.6 to more than two colors. 

Section 1.2 introduces decomposition trees and bif"urcators as generalizations of separator 

theorems. Section 4.3 considers the problem of' balancing decomposition trees, just as Section 

3.6 considered the problem of decomposing a tree while balancing the number of external edges 

arnt>ng split components. Section ·1.'l introduces the tree of me.~hes which is a generalization 

of the restructurable chip of Section :3.7, and investigates techniques !"or embedding general 

graphs within the tree of meshes, given a balanced decomposition tree for Lhe graph. Section 

4.5 concludes by devcl,)pin[!; good layouts for the tree of meshes. 

Taken together, an embedding; of' a graph within Lhc tree of' meshes, and a good layout for 

'16 
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the tree of' meshes induce a good layout for the embedded graph. The strategy for laying out a 

general graph, given a decomposition tree is: balance the decomposition tree, embed the graph 

within the tree of' meshes, and lay out the tree ol' meshes. In Chapter 5 we will see how this 

strategy can be used to efl1cicntly solve all the layout problems described in Chapter 2. 

4.1. Combinatorial Lemmas 

This section contains three combinatorial lemmas which provide the foundation for the 

framework presented in the next section. 

Lemma 4.1. Consider any two-ended string of n colored pearls of k different colors, and 

let ni be the number of pearls which are color i for l s; i s; k. For any integer r ~ 2, 

the pearls can be partitioned into two sets by cutting the string in no more than 9rk places 

such that the total number of pearls in each set is l n/2 J or r n/21, the number of pearls of 

color 1 in each set is lni/2 j or r ni/21, and StlCh that the number of pearls of Co/or i > l 

in each set lies between r(~ - z'r)nil and l(~ + 2\)niJ· 

Proof. Let i be a number between 1 and k and let T( i) denote the number of cuts necessary 

to divide the set of all pearls into two sets that satisfy the constraints of the theorem for colors 

1, 2, ... , i. Other than requiring that the total number of pearls be split in half by the cuts, we 

have made no constraints on the distribution of pearls with colors greater than i. We wish to 

find a good bound on T(i) in the worst case, i.e., over all choices of' n, k ~ i, and all possible 

colorings. In what follows, we will show that T( l) = 2 and that 

T(i) s; rT(i - 1) + 1r + 7 

for i > 1. As a consequence, we can solve the recurrence to coIJclude that T(i) s; 9ri - 15 for 

r ~ 2. Thus for i = k, at most 9rk cut.s arc required, as claimed. 

For i = 1, Lhc argument used in Theorem :3.7 shows that two cuts surlice. Consider a 

"window" of size ln/2J positioned at the left end of' the string. Without loss of generality, 
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assume that the window covers less than l n t/2 J of the pearls colored 1. Move the window to 

the right, one pearl at a time until the window covers ln1/2J pearls of color l. Since the right 

half of the string contains more than one-half of all pearls of color 1, there must, by continuity, 

exist a placement when the window covers exactly one-half of all pearls of color 1. By cutting 

the string at the endpoints of the window, the portion of the string under the window will 

contain half of the total number of pearls and hall' of the pearls colored l. Hence T(l) = 2, as 

claimed. 

For a given i > 1, break the string into r segments 83, 1 ::; j ::; r, (making r - 1 cuts) so 

that each segment contains at least lni/r J pearls of color i. Next split each 83 into two subsets 

830 and 831 (making a total of rT(i - I) cuts) so that each split satisfies the theorem locally 

for colors l, 2, ... , i - 1. 

vVithout loss of generality, assume that 830 contains no fewer pearls of color i than 831. 

At this stage, we divide the set C of all pearls into two subsets C 1 and C? as follows. Initially. 

let C1=LJ830· If C1 contains more than l(! + f,:-)nij pearls of color i, remove 81 0 from Ct 

and add 8 11 . Repeat this procedure, successivdy switching 820 with 821, 830 with 8;11, and so 

on until the first time C1 has at most l(~ + 2
1r)niJ pearls of color i. Such a stage must occur 

since the number of' pearls of color i in C 1 will eventually fall below r ni/21 if C1 and C2 arc 

completely interchanged. The number of pearls of color i in C 1 after the final switch cannot 

be less than rO - :ir )nil - 2 since every 81 contains no more than r ni/r l pearls of color i. If 

the number of pearls of color i in C1 is r(& - d,:)nil - l or rO - 2
1r)nil - 2, then move either 

one or two pearls of color i from C2 to C 1 , making no more than four cuts. 

\Ve also have to ensure that the total set of pearls and the pearls ol' the first i - 1 colors are 

divided as required. The pearls with colors between 2 and i - 1 arc divided correctly because 

they were divided correctly at the recursive step. The counts of' pearls of color 1 in C1 and C2 

may difTer in size by r, however. To balance the number of pearls with color 1 in each set, we 

need only remove up to lr/2J rwar!s colored 1 from the excess set (making at most r cuts) and 

put them in the deficient set. To balance the difTcrence in the overall sizes of the sets (which 

now might be as large as 2r + 1), we need only extract up to r + 2 pearls from the larger set 

(making no more than 2r + 1 cuts) and put them in the smaller set. or course, these pearls 



COMBINATOIUAL LEMMAS 19 

must be chosen carefully so that each set retain-.' ,,__, , 'iuirccl minimum number of pearls of 

each color. Since pearls are extracted only from the larger set, it is clear that this requirement 

may be easily satisfied. 

The total number of cuts made by the procedure is rT(i - 1) + 4r + 7, as claimed. I 

Using an elegant topological argument, Goldberg and West [:~2] recently proved that k cuts 

suffice to divide the pearls of each color exactly in half. This clrarnatically reduces the number 

of cuts, and makes our analysis signincantly less cumbersome. All of our layout results may, 

however, be proved with the weaker Lemma 4.1. Doth results are implementable in polynomial 

time when the number of colors is fixed, as is the case throughout this thesis. 

Lemma 4.2. Consider any two-ended string of n pearls, ni of which are coiored i, 1 :::::; 

i :::::; k. By cutting the string in k places it i.~ po8sible to divide the pearls into two sets so 

that each set has a total of ln/2J or f n/21 pearls, and lni/2J or f ni/21 pearls of color i 

for all i, I :::::; i :::::; k. 

In the following, we recast Lemma 4.2 in terms of' complete binary trees, which will be 

particularly useful since the recursive decomposition of a graph may be viewed as a tree. The 

height of' a tree is the length of the longest path from the root to a leaf, while the height of a 

forest is the maximum height of a tree in the forest. Finally, the level of a node in the forest 

is defined Lo be the height of' the forest minus the length of' the longest path from the node to 

a leaf'. (Note that the top level is level zero.) 

Lem.ma 4.3. Consider a forest of complete binary trees whose n leaves are colored 

arbitrarily with k colors. Let ni be the number of leaves colored i for l :::::; i :::::; k. By 

removing no more than k nodes (a.'J well as all incident edges) from each internal level of 

the forest, it is pos1Jible to produce a new forest of complete binary tree.'!, some subset of 

which contains ln/2J or fn/21 leaves, and lni/2J or fni/21 nodeB of color i for each i, 

1 < i < k. 
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Figure 4.1: An illustration of the procedure in Lemma 4-9. 

Proof. Draw the trees in the canonical manner and place them side-by-side, in any order, 

so that the leaves of all trees are placed along a line. By applying Lemma 4.2 to the induced 

left-to-right ordering on the leaves of the forest, it is possible to break the ordering in no more 

than k places such that the union of the leaves contained in every other segment contains the 

desired total number of leaves and the desired number of leaves of each color. 

For each break, remove the nodes (and incident edges) which are simultaneously ancestors 

of the leaf immediately to the left of the break and the leaf immediately to the right of the 

break. It is easily seen that at most one node is removed from each internal level of the forest 

for each break. Therefore, no more than k total nodes are removed from each internal level. 

In addition, the removal of the common ancestors of the leaves neighboring a break divides 

the associated tree into two or more complete binary trees, at least one on each side of the 

break. Thus the removal of all such nodes produces a forest of complete binary trees, subsets 

of which correspond precisely to the sets of leaves between pairs of adjacent break points. Thus 

the union of the subsets of trees corresponding to every other segment of leaves contains the 

desired number of leaves of each color. Figure 4.1 illustrates this procedure. I 
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Figure 4.2: An (Fo, F1 , ••• , F,. )-decomposition tree 

4.2. Decomposition Trees and Bifu rcators 

The recursive decomposition of a graph into smaller and smaller subgraphs may be viewed 

as a decomposition tree. In particular, we say that a graph G has an ( P0 , F1 , •• ., F,. )-decomposition 

tree if G can be decomposed into two subgraphs Go and G 1 by removing no more than Fo edges 

from G, and, in turn, both Co and C 1 can br decomposed into smaller subg;aphs by removing 

no more than F1 edges from each, and so on until each subgraph is either empty or an isolated 

node. Figure 4.2 illustrates this recursive decomposition. 

As one might expect, the decomposition of a graph by separator theorems may be viewed 

as a decomposition tree. It follows by definition that if a class of graphs has an J(x)-separator 

theorem, then there are constants a and (3 such that each graph in the class has a decomposition 

tree of the form (f3f(N),{3f(aN),{3f(a 2 N),. .. ,{3f(1)). The converse is not necessarily true. 

Subgraphs generated at each step of a decomposition by a separator theorem are constrained 

to be proportional in size, whereas decomposition trees need not satisfy this constraint. Of 

course, if the decomposition tree has precisely lg N levels, then subgraphs at each level must 

be equal in size. 

We shall be particularly interested· in a special class of decomposition trees, namely bifur­

cators, that is distinct from the class of separators. 

Definition. An N-nodc graph has an a-bifurcator of size F (more simply, an (F, a)­

bijurcator) if it has an (F,F/a,F/0: 2 , ... , 1)-dccomposition tree. 
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or particular interest is the class of v'2-bifurcators. By the definition, WC know that an 

N-node graph has a v'2-bif'urcator of size F if and only if it, has an (F, Fjy'2, F /2, ... , 1)­

dccomposition tree. The depth of' this tree is no greater than 2 lg F'. Tn order to completely 

decompose an N-node graph into indivi<lual nodes, the height of' any decomposition tree cannot 

be less th:i.n the lg N. Thus, F must always be at least ...(R. On the other hand, F is always 

less than 2N since every N-node graph with maximum node degree four has at most 2N edges. 

If a class of' graphs has an x°'-separator theorem, where a :=:; 1/2, and the corresponding 

decomposition is balanced in that every graph is always decomposed into equal-size subgraphs, 

then it is straightforward to show that every N-nocle graph in the class has a v'2-bifurcator of 

size 0( VN). Similarly, if a class of graphs has a balanced separator theorem of size x°' with 

a > 1/2, then every N-node graph in the class has a v'2-bifurcator of size O(N°'). 

The converse is not true even if we consider only bifurcators whose corresponding decorn-

example, the N-nodc graph SN defined in Section 2.3 has a balanced v'2-bifurcator of size 

0( ..j]VTg-N) but the smallest separator for this class of graphs is O(x/ lg2 x). 

When translated into bounds on layout area, this seemingly minor difference between 

bifurcators and separators is greatly magnified. Graphs with small l~yout area always have 

small ../2-bifurcators, but do not always have small separators. This is formalized in the 

following lemma. Later on we will prove the converse: graphs with small v'2-bifurcutors always 

have small layout area. 

Lemma 4.4. If a graph G can be laid out in area A, then G has a (VA, v2)-bifurcator. 

Proof. Consider a vertical cut of length y}( through the center of the layouL. Next, cut 

each of the sublayouts horizontally through the center. Continuing this sequence of' alternating 

vertical and horizontal cuts, it is easy to sec that at the ith step no more than y-;{/2li/ 2J edges 

arc cut from each subgraph. This sequ<~nce of cuts yiP!ds a {v/f, v'2)-bif'urcator f'or G. I 
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4.2.1. Special Cases 

Many graphs have decomposition trees in which the number of cuts decreases very slowly 

as we go lower down the tree. In such cases the number of cu Ls aL higher levels of' the tree may 

be very small. On the other hand, in decomposition trees corresponding to bifurcaLors, the 

number of cuts permitted decreases smoothly as we go down Lhe tree. ft is conceivable then, 

Lhat Lhe bifurcaLor permits far more cuLs aL higher levels than arc necessary. For example, 

N-node binary trees have decomposition trees of height O(lg N) in which no more Lhan 1 cut 

is required at every level. Since the minimum bif'urcator is at least VN, the decomposition 

tree corresponding Lo the bifurcaLor allows far more cuts at the top levels than needed. 

Similarly, some graphs have decomposition trees in which many cuts are required at the 

Lop levels, but this number decreases very quickly as we go down the decomposition tree. In 

such cases, the minimum bifurcator is large so that decomposition trees corresponding to the 

do greatly overestimate the number of cuts at lower levels. 

IL is useful Lo separate such extreme cases from a general discussion. Of course, general 

upper bounds are valid for graphs with extreme decompositions, but they may overestimate 

the true bound. A particularly important reason for separating these classes is that many 

computationally useful graphs such as binary trees fall into the first category while cubc­

connected-cycles and multidimensional meshes fall into the second category. 

An N-nodc graph is defined Lo have a type A ../2-bifurcator if it has an ( 0( VN), ../2)­

bifurcator such that no more than O((N /2i)o:) cuts, a < I /2, are required for each partition 

at the ith level ol' the associated decomposition tree. Observe that at the higher levels of the 

tree, i <<lg N, the number of cuts is far less Lhan the O(VN/2i/2
) cuts allowed by the usual 

bif'urcator. 

Similarly, an N-nodc graph is defined to have a type JJ ../'i-bifurcator ii' it has an (O(N<>), ../2)­

bifurcator, a > I /2, irnch Lhat only O((N /2i)<>) edges arc cut in any partition at the ith level. 

Observe that f'or the lower levels of the tree, i > > l, this quantity is l'ar smaller than the 

O(Nu /2i/ 2 ) cuts allowed by the usual bif'urcator. 

For simplicity, we will prove results only for general ../2-hifurcators in this thesis. llowevcr, 
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whenever there is a significant difference, results for the special cases are stated separately. The 

proofs for these special cases are e:u;ily worked out, and closely follow the proofs for the general 

cases. 

4.3. Balanced Decomposition Trees 

Of particular interest to the layout results reported in this thesis are decomposition trees 

where at each step of the decomposition, the two subgraphs arc nearly equal in size. This section 

considers such balanced decompositions and gives an effective procedure for transforming an 

arbitrary decomposition tree into one that is balanced. 

Formally, a decomposition tree for a graph C is balanced if each subgraph Cw in the tree 

is the father of two subgraphs Cwo and Cw 1 such that the number of nodes in the subg;raphs 

differ by at most 1. In addition, we say that a decomposition tree is fully balanced if it is 

baianced, and if for every subgraph Ow in the tree, the set of edges conncctmg (J - Liw to Ciw 

is divided into two subsets of nearly equal size by the partition of Cw into Cwo and Cwt· {Here 

we allow the number of edge connections in the two subgraphs to differ by a small constant, 

say 5. For the purposes of simplicity, however, we shall often ignore such small di!Tcrcnces and 

asHumc that the nodes and connections are split evenly between the two subgraphs.) 

Somewhat surprisingly, any decomposition tree may be transformed into a fully balanced 

one at litLlc or no cost. We prove this in the following theorem which generalizes earlier results 

in [9, 40, 41, ,12]. 

Theorem 4.5. Let C be any N -node graph with an ( ft'o, F1 , ••• , Pr )-decomposition tree 

T. Then Chas a fully balanced (F0, l1'i, .. . , FlgN)-dccomposition tree, such that for 0::; 
i _::; lg N, 

r 

P'· = 6 '"""" F ' L..., s 

Proof. Ld I' be a forest <>f complete biuary trees consisting initially of the decomposition 

tree T. Color the leaves of T with two colors accordinµ; to whether or not the subgraph of C 
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assoc1at.rd with the leaf' is empty. Apply Lemma 4.3 (k = 2) tor, removing the indica!Pd nodes 

;rnd Pdges ol' '/'. Each r1odP of'/' <"Hr<'spo!lds naturally to a S<'L of Pdges of G, n:imely the Pdgrs 

whose rernon1I ;.;plit~ th<· ;is~o<·iatPd ~;ubgraph in two. He1r1oving a 11od<' of ·r corrcsponds to 

removillg this rutsrt. of Pdges from (,'. Sill<'<' no morP th:rn 2 11odes ar<' removed from each level 

of r, t.hr number of Pdgrs rrmovrd from c; in applying Lemrna 4.:~ does not C'XCPPd 2 .z=::c_-Q Fs, 

which is less than F;l. 

Further !lotc that (; is divided into two disjoint subgraphs of nearly-equal-size by the 

removal of these edges. Each subgraph, in turn, corresponds in a natural way to a subforest 

of complete binary trees in r. Consider one such subgraph G 0 and color the leaves of the 

associated forest of complete binary trees r 0 u,;ing six colors as follows: 

If the leaf corresponds to an empty subgraph, color the leaf with color 1. Otherwise, if the 

single node corresponding to the leaf is incident to exactly j edges of G removed earlier, 

0 :S .i :S 4, then color the leaf with color j + 2. 

By applying Lemma 4.3 (k = 6) to fa, it is clear that Go can be decomposed into two 

disjoint subgraphs Goo and Go 1 of nearly-equal-size such that the number of edges from G-Go 

to Goo is nearly-equal to the number of edges from G - G 0 to G 01 . Since at most 6 nodes were 

removed from each level off 0 and since f 0 does not contain the root of T, we can conclude 

that no more than 6 .z=::=l Fs = F~ edges were removed from G 0 • 

By applying the above argument recursively, the desired fully-balanced decomposition tree 

is obtained. With each application of Lemma 4.3, the total number of leaves in each forest 

is cut in half at each step so that the biggest tree in any forest corresponding to a subgraph 

decreases in height by at least one. Also, lg N + 1 levels suffice since the size of each subgraph 

is also halved at each step. I 

Theorem 4.6. Every graph with a ,/2-bifurcator of size F has a fully balanced ,/2-bifurcator 

of size 6(2 + v'2)F. 

Proof. Immediate from Theorem 4.5, since I:,~ 0 2-•/2 < 2 + ,/2. I 
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Figure 4.3: The 4 X 4 tree of meshes T4. 

Remark. The procedure described in Theorems 4.5 and 4.6 can be implemented in polynomial 

time. 

4.4. Embeddings in the Tree of Meshes 

Leighton [40, 41] introduced the tree of meshes as an example of a planar graph that cannot 

be laid out in linear area. He also showed that every N-node planar graph can be embedded in 

an O(N lg N)-node tree of meshes. In this section, we define the tree of meshes and describe a 

general strategy for embedding a graph in the tree of meshes. 

The tree of meshes is formed by replacing each node of a complete binary tree with a mesh 

and each edge by several edges which connect meshes at consecutive levels. More precisely, the 

root of the complete binary tree is replaced by an n X n mesh (it is assumed that n is a power 

of 2), the nodes at the second level are replaced by n X n/2 meshes, those at the third level 

by n/2 X n/2 meshes, and so on until the leaves of the tree are replaced by 1 X 1 meshes. As 

shown in Figure 4.3, each edge of the tree is replaced with edges connecting nodes on one side 

of the higher-level mesh to the top row of the mesh at the lower level. The resulting graph is 

called then X n tree of meshes Tn. It is not difficult to see that Tn, has N = 2n2 lgn + n 2 

nodes. 

In many cases, we use only the top levels of the tree of meshes. The subgraph consisting 

of levels O, 1, ... , p (p s;; 2 lg N) of Tn is called a truncated tree of meshes Tn,p· 
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Theorem 4. 7. There is a constant c such that every N -node graph G with an ( F, J2)­

bijurcator can be embedded in 7~F, 2 Ig J-. Moreover} the embedding is regular in the sense 

that F 2 
/ N nodes of C are embedded in a regular fashion each of the N 2 

/ F 2 bottom-level 

meshes of TcF, 2 lg1f.-. 

Proof. We first use Theorem 1.6 Lo corn;trnct a fully-balanced /2-bifurcaLor of size 6(2 + 
/2)F for G. We then use the internal meshes of TcF 21g !:!_ to route the edges that were removed 

' F 

in the upper 2 lg lJ.- levels of the fully balanced decomposition tree for C. The imbgraphs in 

the (2 lg }.\)th level of the decomposition tree (each of which has lF 2 /NJ or f F2 
/ Nl nodes) arc 

then embedded in the meshes on the bottom level of the truncated tree of meshes. 

The internal meshes arc used as rcstructurablc pcrmutcrs. As we saw in Section 3.7, 

terminals on opposite sides of a mesh can be connected in any order through the mesh. In 

general, if the number of wires routed through a mesh does not exceed any side-length of 

embedded in a 11\:f X 1M mesh with nodes placed in a regular fashion. 

Consider only the Lop 2lg1J. + 1 levels of a fully balanced decomposition tree for G. Each 

of the subgraphs at level 2 lg IJ.- of the decomposition tree has N(l/2) 21
g ft.- = fi' 2 / N nodes. 

(For simplicity we shall assume that F 2 / N is an integer.) Furthermore, if Ei is the maximum 

number of edges between C - Ci and Ci, where Ci is a subgraph in the decomposition tree at 

level i, then it is easy to sec that E 0 = 0 and by Theorem 1.6, that 

Ei ~ ~Ei-1 + 6(2 + J2) F 
2 2(i-l)/2 

for 1 ~ i ~ 2lg1J.. Solving the above recurrence, we obtain: 

and thus 

r~, ~ n(2 + v2) 2 __!_'_. 
2(•- 1)/2 
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We now embed G in TcF, 2 lg f.- . First, embed cN.:1i of the (2 lg ~)-level subgraphs of the 

decomposition tree in the boLLorn level meshes. This can be done if the side of each mesh at 

level 2 lg £f- exceeds 1F2 / N. This is true provided 

/
.1n2lg'f 2; 

cF v2 2 1.F N. 

For c 2 1, this inequality is easily satisfied. 

Next embed the additional edges through the upper-level meshes in the natural way. No 

more than 2Ei+t edges pass through any ith level mesh. Thus the routing can be perf'ormcd 

if' the smaller side of the ith level meshes exceeds 2Ei+l · In other words, we must have: 

cF/2li/2l 2 12(2 + ../2)2 F/2i/2
• 

A simple calculation shows that the inequality is satisfied f'or sufliciently large c. I 

Remark. Throughout the thesis, we express bounds using the term lg~. For all practical 

purposes, F is much smaller than N and this term is greater than one. Should the value of 

F be larger, however, we shall still dcflne lg~ to be at least one. Similar interpretations arc 

assumed f'or lg lg ~ and for lg lg lg !J. The conventions avoid the annoying (and trivial) cases 

when F is very large without complicating the analysis f'urthcr. 

In I.he preceding embedding, all the nodes of C were mapped to meshes at the bottom level 

of the truncated tree of meshes. Thus, edges between nodes in different meshes might have to 

be routed through as many as 1 lg lj? meshes. Such long edges arc undesirable f'or a variety of 

reasons. [t is natural to ask whether an embedding can be f'ound in which each edge can be 

routed through fewer intermediate meshes. This is answered in the following theorem. 
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Theorem 4.8. There exist constants c and k such that every N -node graph C with an 

(P, v'i)-bifurcator can be embedded in 1~F, 2111 ~ and such that no edge is routed through 

more than k intermediate meshes. 

Proof. We adopt a slight variant of Lhc strategy used in the previous theorems. The 

balancing and embedding arc done simultaneously an<l in the same manner as before, except 

at levels 0, k, 2k, :3k, ... (where k is a constant specified later). At these levels, we embed the 

nodes LhaL arc incident to edges previously cut, and we cut the previously uncut edges incident 

Lo these nodes. Of course, this could triple the number of cut edges every k levels but if k is 

sufncicntly large, this happens infrequently and is not harmful. AL all other levels the procedure 

is the same as before, using 6 colors and Lemma 3 to partition the dccornposi Lion tree. The 

process terminates after 2lg1jf.- levels. 

As before, the embedding is accomplished by using meshes as switching boxes for routing 

side lengths of the mesh. The calcuiation is the same as before except that the number of cut 

edges is tripled at every kLh level. Thus the recurrence for E.; is 

Herc, we have (without loss of generality) increased number of cut edges by a factor of ;3 initially 

and by a factor of 3l/k at each level instead of increasing the number of cuts by a factor of 3 

at every kth level. Solving the recurrence, we find 

( 
- )B F 2 ,~,i ~ 18(2 +vi)~-- 2:: ..;: 3l/k . 

. 2(i-1)/2 s:::::o 2 

For k 2:: 4, Lhe sum converges to a constant. The remaining analysis 1s the same as in the 

previous theorems except that Lhc constants are larger. I 

Remark. It is worthwhile Lo point out here that Theorems 7 and 8 could also have been 

proved using Lemma 1. l instead of Lemma '1.2. The nodes of C would still be balanced in 

the decomposition tree but the cut edges could only be split 1/:3 2/:~ at each decomposition. 
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Figure 4.4: The H-layout of the tree of meshes 

While this increases the value of the sum, it still converges to a constant. (This is because, for 

sufficiently large k, ¥3 1/k < 1.) Hence, k and c would be larger but the statements of the 

theorems remain the same. 

4.5. Layouts for the Tree of Meshes 

Thus far we have considered only the problem of embedding graphs in the tree of meshes. 

How do we lay out the tree of meshes efficiently? Clearly, any layout for the tree of meshes 

also gives a layout for every graph that can be embedded within the tree of meshes. In this 

section we develop two different layouts for the tree of meshes. 

The first layout is a straightforward modification of the "H-tree" layout for complete binary 

trees [55]. The modified layout is obtained by expanding each node of the complete binary tree 

into a mesh of the appropriate size. Figure 4.4 shows this layout. It is easy to see that if S(F) 

denotes the side of the layout for TF, then S(l) = 1, and 

S(F) S 2S(F/2) + O(F), 

which gives S(F) = O(F lgF). This means that the area of the layout for TF is bounded by 

O(F2 lg2 F). As shown in [40, 41], this bound is optimal. 

For truncated trees of meshes, such as considered in Theorems 4.7 and 4.8, a similar result 

holds. 
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Theorem 4.9. The truncated tree of meshes TF ,2 ls )'- has a layout of area 0( F 2 lg2 lf). 

Proof. ThP obvious r<'striction of the> JI-layout to the top !Pvcls suffices. I 

Although the mesh edges in the layout shown in Figure 4.4 have length 1, the c>dges between 

meshes can be quite long (nearly half the side of the layout). By pulling in meshes closer towards 

the top level, we can reduce the length of the longest edge considerably. This technique was 

introduced in Chapter 3 to produce minimax edge length layouts for trees, and generalizes to 

graphs with known bifurcators. This layout will later be used to find layouts with short edges 

for graphs embedded within the truncated tree of meshes. 

Theorem 4.10. The truncated tree of meshes TF, 2 !glf- can be laid out in area O(F 2 lg2 ~) 

so that mesh edges have length 1 and edges between meshes have length at most O(F lg ~/lg lg~). 

Proof. Consider the H-tree layout of a complete binary tree of height 2 Jg lg lg tj, and 

having (lg lg~ )2 leaves. Expand each linear dimension by a factor f3 = B(F lg~/ lg lg~), so 

that each edge of the II-tree layout becomes a channel of width (3 and each node becomes a 

f3 X /3 square. The resulting area is (/3 lg lg If, )2 = 8(F 2 lg 2 1J. ). 

Since the channels are much wider than the side of any mesh, we can stack many meshes 

within one channel. In particular, as seen in Figure 4.5, we embed the top level mesh at the 

center of the layout with the second-level meshes on either side. In the first stage of the layout, 

the meshes in the top levels are placed together in a breadth-first manner. Meshes at successive 

levels are equally spaced at distance B(F lg 1J. /lg lg 1J.) apart. 

We need to ensure that every channel is wide enough to accomodate the meshes stacked 

within it. To this end, let us suppose that all meshes embedded in the first stage are stacked 

together in the same channel. Of course, this is a gross overestimate, but suffices for our 

argument. Since the path from the root to a leaf in the original (lg lg If, )2-Jeaf H-layout has 

length 8(1g lg~), a total of c lg lg ·1/ levPls of TF-, 21g y: are embedded in the first stage. The 

value of the constant c depends on the values of the other constants in the 8-terms and can 

be made as small as necessary. 

The total number of meshes embedded in the first stage is no more than 21+clglg¥. Each 
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Figure 4.5: An improved layout for the tree of meshes. 

mesh has side length no greater than F, so to stack all these meshes within one channel of side 

/3, it suffices to have: 

F21+c1g1g-t- < o(Flg~) 
- !gig~ ' 

which is easily satisfied when c :=; 1/2. Hence every channel has sufficient width to stack all 

the ith level meshes across the channel for any i :=; clg lg lj.-. 

In the second stage, we embed the remaining meshes in the f3 X f3 squares. A total of 

(lg ~)c /(lg lg~ )2 copies of an O(lg ~) level (lg ,f )c/ 2 X (lg !>< 12 truncated tree of meshes must 

be embedded in each of the (lg lg~ )2 /3 X (3 regions to accomplish this. Using the layout 

described in Theorem 4.9 for each copy, the total area required in each region is 

e F lg2 
- = e . 

( 
(lg N.)c F2 (N)) ( F2 lg2 l'f.-) 

(lglg~) 2 (1glj.-)c F (lglg~)2 

This is precisely the amount of area available in each /3 X /3 region. Hence the embedding is 

possible. 

It remains to verify that the edges between meshes have length O(F lg~/ lg lg~). This 

is easily done since meshes in adjacent levels were spaced distance S(F lg~/ lglg ~) apart in 

·the first stage, and since meshes in adjacent· levels were located in the same /3 X /3 region in 

the second stage. I 
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Solving the Layout Problems 

Using the framework described in the previous section, we are now ready to present general 

solutions to the dght problems posed in Chapter 2. The layout framework of Chapter 1 applies 

directly to most of these problems, supporting our belief that the divide-and-conquer strategy 

based on bifurcaLors is an efficient paradigm for VLSI grnph layout. In particular, the tree of 

meshes emerges as an extremely versatile network for graph layout. \Vhile specific instances 

of' some problems might be bdter solved using di!Terent techniques, the framework- provides 

a novel and uniform approach for VLSI layout which c!Tectively addresses various unrelated 

issues. The solutions presented in this section arc evaluated by comparing Lhern with known 

lower bounds. 

Problem 1. Given a graph G, produce an area-efficient layout for G. 

By Theorem 4.7, every N-node graph with an (F, v'2)-bifurcator can be embedded in the 

truncated tree of meshes To(F), 2 lg)}. Next, by Theorem 1.9, the truncated tree of mcshefJ can 

be laid out in O(F2 lg2 1;;'.") area. Therefore, every N-nodc graph with an (P, v'2)-bifurcator 

can be laid out in O(F'2 lg2 ~) area. 

As a consequence of Lemma ,1.1, every N-nodc graph whose smallest ./2-bifurcator is F, 

must occupy at least F 2 area. l•'or otherwise the graph would have a ./2-bifurcator strictly 

smaller than F. Therefore, for every graph Lhe upper bound is at most. a factor of' O(lg2 
-)}) 

worse than optimal, i.e., the area bound is univer.sally close to optimal. 

The bounds are also exi.stentially optimal. Lc~ighton [7, 42] has shown the existence of 

N-nodc graphs with minimum ./2-bifurcator F which rPquirc area at least O(Nlg2 ~). In 
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other words, no strategy based on bifurcators alone can asymptotically improve upon the 

divide-and-conquer framework. 

Special Cases. Graphs with (F, J2)-bifurcators with either of the special forms described 

in Section 1.2.l have 0( F 2 )-area layouts. Thus, for example, N-node trees have 0( N)-area 

layouts. 

Problem 2. Gi'ven a graph G, produce an area-efficient layout for G with minimax edge 

length. 

From Theorem 4.8 we know that every N-no<le graph with an (F, VZ)-bifurcator can be 

embedded in the truncated tree of meshes 'l'o(F), 2 Ig lj.- so that no edge passes through more than 

a constant number of intermediate meshes. Furthermore, the layout for the truncated tree of 

meshes given in Theorem 1. LO guarantees that every edge between meshes has length bounded 

theorems, we sec that every N-nodc graph with an (F, v'z)-bif'urcator has an O(F2 lg2 ~)-area 

layout with maximum edge length bounded by O(F lg lj /lg lg 5f ). 
This bound, too, is existentially optimal [7]. In other words, there exist N-nodc graphs 

with minimum VZ-bifurcator F whose minimax edge length is n(F lg lj I lg lg 5f ). 
Unfortunately, the bounds are not universally close to optimal. The only general lower 

bound on minimax edge length for N-node graphs whose minimum v'2-bil\1rcator is F, is 

n( /1' 2 IN). This general lower bound is also existentially optimal. 

The problem of minimizing maximum edge length appears to quite difficult. Although the 

preceding bounds arc disappointingly weak, they are the best known. Hecall that in Chapter 

3 we showed that even determining if a tree can be laid out with minimax edge length one, is 

NP-complete. 

Special Cases. The minimax edge length bounds for graphs with special (P, v2)-bif11rcators 

arc 0( VN /lg N) for type A v'2-bifurcalors and O(F) for type 13 v'z-bifurcators. 
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Problem 3. Given a graph, produce an area-efficient layout zn which each wire has 

bounded delay in the capacitive model. 

First we formalize some details of' Lhc model. As usual, a µ;raph describes a conncdion of 

processors, with an edge corresponding Lo a bidirectional link between two processors. Each 

node is a processing clement which contains one driver and one receiver for each incident edge. 

Every transistor in a processing clement has the same size. Thus, in our layouts, a node may 

be represented by a long and skinny box of constant thickness, with length equal to the area 

of an internal transistor. Since each node has bounded degree, a box will be just big enough 

to contain all the transistors in the corresponding processor. Note that di!Tcrent nodes in the 

layout will have di!Tcrcnt lengths, but the same thickness. We assume that Lhe grid spacing is 

adjusted so that nodes and edges have unit thickness and may be laid along grid lines. Although 

wires arc allowed to cross, we will not allow nodes to cross; this corresponds to transistors not 

length l driven by a transistor of area D with capacitive load 1\ is proportional to (l +A)/ D. 

The capacitive load presented to a transistor equals the sum of incident wire lengths and areas 

of adjacent transistors. 

Theorem 5.1. Every N-node graph G with an (F, ../'i)-bifurcator has a bounded-delay 

layout of area 0( F 2 lg2 ~ ). 

Proof. As in Theorem 4.8, emb(~d Gin a tree of' meshes so that adjacent nodes arc mapped 

to meshes no more than a constant. number of levels apart. Since the dimensions of meshes at 

successive levels, as well as the lengths of edges connecting adjacent meshes in the layout of 

Theorem 4.9, decrease at the same geometric rate, we know that the length of an edge of G is 

proportional to the side lengths of' the meshes Lhat contain Lhe corresponding nodes. Assign Lo 

each node an area that is proportional to the side lengths of' Lhe mesh in which it is embedded. 

Thus, the capacitive load on any node, which equals the sum of the areas of' all the incident 

edges and adjacent nodes, is proportional to the area of the node. In other words, every wire 

in Lhe layout has bounded delay. 
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Figure 5.1: Laying out expanded nodes in a mesh. 

We need to ensure that each enlarged node can be accomodated in its assigned mesh 

without blowing up the area of the layout by more than a constant factor. This can be done 

by increasing the dimensions of each mesh by a constant factor, and laying out the nodes and 

incident edges as shown in Figure 5.1. Notice that the nodes do not overlap other nodes or 

wires. The area of each node remains proportional to the side lengths of the mesh containing 

it, and thus the delay across every wire is bounded. I 

Special Cases. Similarly, graphs with special (F, v'2)-bifurcators have O(F2)-area bounded­

delay layouts. Thus, for example, every N-node tree has an O(N)-area bounded-delay layout. 

Theorem 5.1 implies that the area bounds for bounded-delay layouts are no worse than 

the best known general area bounds for Problem 1. However, it is not known whether or not 

there exists a graph for which any bounded-delay layout requires asymptotically greater area 

than the minimum area layout. In the following corollary, we show that any increase in area 

need not be large. 

Corollary 5.2. Any layout of area A for an N-node graph can be transformed into a bounded­

delay layout of area O(A lg2 '{f- ). 

Proof. By Lemma 4.4, an area A layout yields a (VA, v'2)-bifurcator which can be quickly 

found. Next, by Theorem 5.1, a bounded-delay layout of area O(A lg 2 ~) can be easily 

constructed. Observe that this transformation is effective. I 
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Problem 4. Given a graph G, produce a layout for G with few wire crossings. 

The layouts for the lruncated tree of meshes in Theorems 1.9 and 1.10 do not have any edge 

crossings. Since every N-nodc graph G with an (F, v'2)-bifurcator can be embedded within the 

truncated tree of meshes 1o(F),2 Ig lf' this means that Lbe number of crossings in Lhc layout for 

G cannot exceed Lhe number of nodes in Ta(F), 2 lg t;f· In other words, the number of crossings 

in the layout for G is bounded by O(F 2 lg~). 

Once again, this bound too is existentially optimal [7]. Moreover, if the minimum v'2-

bifurcator F of an N-nodc graph is asymptotically greater than ../N, the number of crossings 

in the layout for G is no more than a l'acLor O(lg ~) Limes optimal. 

Special Cases. Graphs with special (F, v'2)-bifurcators can be laid out with O(F2
) crossings. 

Problem 5. Given a graph, produce an area-efficient regular layout for the graph. 

In Theorem 4.7, we showed how to embed any N-nodc graph G with an (F, v'2)-bifurcator 

rn 1~F, 2 ig Ff for some constant c. Moreover, the nodes of G were divided evenly amoni~ the 

N 2 
/ F 2 bottom-level meshes of TcF, 2 lg !f. and in each bottom-level mesh, the nodes of G were 

embedded in a regular l'ashion. Thus to produce an O(F2 Ig 2 ~)-area layout for G that is 

regular, we need only produce a layout for Tc/, 2 lg !J for which the nodes at the (2 lg -~)th level 

arc located in a regular fashion. In fact, we can do much better, as we show in the following 

theorem. 

Theorem 5.3. The truncated tree of meshes Ta(F), 2 lg !J can be laid out in O(P2 lg 2 ~) 

area so that, for every level i, all node.~ with£n ith level meshes are placed in a regular 

fashion. 

Proof. The first step is to construct a 8(lg ~)-layer three-dimensional layout [1W] of' the 

truncated tree of meshes. Fold the connections bcLwecn the root of the tree of meshes and 

each of its two sons so that the sons fit. naturally on a second layer over the root mesh. Fold 

Lhc connections to each of' Lhc meshes al Lhe next lower level so they fit, on Lhe Lhird layer, 

directly over the meshes on Lhc second layer, and so forth. This generates a lg 'j.-laycr three-
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dimensional layout, with each layer occupying linear area. By projecting the three-dimensional 

layouL onLo the plane in Lhe manner of Thompson [80, pp. :rn<i8], the resulL follows. (The 

same layout can be constructed by interleaving the meshes aL each level.) I 

Special Ca8e8. The O(F2 )-area layouts for graphs with special v'2-bifurcators arc also regular. 

Problem 6. DeBign area- efficient chipB that can be configured to realize a large number 

of graphs. 

In Theorem 4.7 we showed that every N-node graph with an (F, \/'2)-bifurcaLor can be 

embedded in a truncated tree of meshes such thaL the nodes of the graph arc embedded in a 

regular fashion in the bottom-level meshes of TcF, 2 lg 1t--. In fact, the nodes can be mapped to 

fixed positions within the meshes. Therefore, if we lay out the truncated tree of meshes on a 

chip with processors at these fixed positions, we have a configurable chip for all graphs with 

for conflgurablc layouts are the same as for unrestricted layouts. 

Theorem 5.4. Every N-node graph with an (F, \!'2)-bifurcator haB a configurable layout 

of area O(F 2 lg2 ~). 

Proof. Simply make the connections in the meshes after the rest of the chip has been 

fabricated. Hecall that we used the meshes as crossbar switches in Theorem 4.7. I 

Special Ca8es. Similarly, graphs with special bifurcators have O(F 2 )-area configurable layouts. 

The O(N)-arca rcsLructurablc tree layout of Chapter 3 is such an example. 

Problem 7. On a wafer which ha8 arbitrarily distributed defective cells, realize a given 

graph on the good cells. 

Theorem 4.7showcd how to embed any N-nnde graph CJ with an (F, \/'2)-bif11rcator in the 

truncated tree of' meshes 'f'o(F), 2 lg lf · The embedding had the property that nodes of the graph 

could be mapped Lo fixed positions within the meshes at the bottom level. Accordingly, we 

fixed processors at each of' these positions. 
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Faulty processors on a wafer thcrPfore rorrc'spond to faulty procc'ssors in the truncated tree 

of meshes, the correspondence being induced \'ia thP layout for the tree of meshes. 11 is clearly 

Tl() longPr possib!P to r!'alizP C in the faulty t rep of meshes. llowPvPr, it is possible to rPalize a 

smallPr graph with a similar structure' using only thP functioning processors. 

More formally. considc:r a class of graphs for which any N-node graph in the class has a 

)2-bifurcator of size 0(1(1\i)) where the function J is such that f(I)/ Jr is nondecreasing for 

increasing x. For example, J(x) = ../X for the class of square meshes (as well as for the class of 

trees or the class of planar graphs). In what follows, we will show how to embed any M-node 

graph from the class in any Tcf(N), 2 Ig ri\l that has M functioning processors where N 2 M 

and c is a sufficiently large constant. 

In particular, we will show how to embed Tf(M) 21g _ At in the faulty tree of meshes. By 
' JTi\ii 

applying Theorem 4. 7 to the smaller tree of meshes embedded within the faulty one, this will 

prove our claim. Thus the layout strategy developed in Chapter 4 is impervious to the existence 

of faulty processors. This result substantially generalizes and simplifies a similar result proved 

by Leighton and Leiserson for embedding meshes around faults in [45]. 

Theorem 5.5. Given the preceding constraints on N, M, c and f, a completely functioning 

truncated tree of meshes Tf(M) 21g _M_ with M processors can be embedded in any partially 
' f(M) 

functioning truncated tree of meshes Tcf(N), 2 Ig 
1

(,,
1 

with N processors {M of which are 

functioning) so that the processors of the former are mapped onto the functioning processors 

of the latter. 

Proof. Label the functioning processors in each tree of meshes from 1 to M by counting 

from left to right across the bottom level of each graph. (Recall that the processors are 

evenly distributed on the bottom level.) Map the kth processor of Tf(M) 21g .\1 onto the 
' J(M) 

kth functioning processor of Tcf(N), 2 Ig' J{"-.i. Route the edges of the former graph through the 

meshes of the latter in the usual way, at the same time embedding meshes of the former in 

blocks within the meshes of the latter. 

It remains to show that the capacity of each mesh in Tcf(N) 21g ---L. is sufficient for the 
' J(S) 
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embedding. Consider a mesh X on Lhe ith level of 1~f(N) Z lg_!:!_. This mesh has side lengths 
' f(N) 

cf(N)/2i/2 and at most N /2i functioning processors below it in the bottom level of the 

graph. The only meshes and edges of Tf(M) 21 g _M__~ Lhat arc embedded in X arc those that 
' f(M) 

correspond to roots of the f'orest of complete binary trees f'orrncd by removing the corresponding 

interval of (at most N /2i) processors in Tf(M) 21g -M_. These roots are identified by splitting 
' f(M) 

Tf(M) 21 g ~¥__ (as in Lennna 4.:~) at the two endpoints of the interval. There arc at most two 
' f(M) 

roots at each level in the resulting forest and the sum of their side lengths (a geometrically 

decreasing sum) is proportional to J(M)/2il 2 where j is such that M /2i ~ N /2i. (Hemember 

that there arc at most N /2i processors in the leaves of the forest so that the height of the 

largest complete binary tree in the forest is 1· where M /2i ~ N /2i .) Thus the sum of the side 

lengths of the meshes embedded in x is o( !2(.¥,2 ~) which, for sufficiently large c, is less 

than cf(N)/2il2 (this is the side length of X), since N ~Mand J(x)/y'X is a nondecreasing 

function. Hence X is large enough and the embedding is possible. I 

Special Cases. A similar argument works for graphs with special bifurcators. 

Problem 8. Given a graph G, assemble G using the minimum number of copies of a 

single chip having few external pin connections. 

Suppose that we wish to assemble N-node graphs with (F, V2)-bifurcators but that each 

chip contains only m nodes, where m < N. Consider a chip consisting of a truncated tree 

of meshes 'f'a(~·),O(lg v'i~E)' with them processors divided equally :.imong the bottom-level 

meshes, and external pin connections to the top of the top level mesh. Two copies of this chip 

may be wired together to form a truncated tree of meshes with 2m processors .. Thus, graphs 

with twice as many processors can be assembled with two chips than can be assembled on a 

single chip. More generally, we have the following result. 



SOLVING Tiii<: LAYOUT PIWBLEMS 71 

Theorem 5.6. There i8 a univer8al re.~tructurable chip with m proce880r8 and 0( ~) 

external pin8, occupying area 0( F:Vm lg2 ~rr;pv ), 8uch that every N-node graph with an 

(F, v'2)-bifurcator can be a8.sembled U8i.ng multiple copie8 of the univer8al chip. Furthermore, 

the number of chip8 u8ed in the a88embly i8 the minimum po88ible. 

Proof. Consider the top lg N - lg m levels of a fully balanced decomposition tree of 

G. Each of the subgraphs at level lg N - lg m has N /21g N-lg m = m nodes, and has a v'2-

bifurcator of size O(~). By Theorem 4.7, each of these subgraphs can be realized with a 

single universal chip consisting ol" a truncated tree of meshes 1'a(-"7f ),O(lg -1·;:-r:i) whose area is 

bounded by 0( F-"l;n lg2 ~ ), and which has 0( ~) external pin connections. To complete 

the assembly, the chips arc wired up by making connections between pins on different chips as 

given by the decomposition tree. I 

,\ •1 ..,~.., ... ..,~n ... ""''"C~ue··-" .I' IL!_ --- .. !; : .. 11 .I ..• 11 ... 1 ['. _ nl rpn •L. • .. • .. 1 I _I• 
.LL L VlJ\..,"yVi UUJ '-.-vu.:1 \..{ JJ.\~\... VJ. lJlJ.it..., J.\.....:>UJlJ h-, llllOll VVl L!i ' -- V\ v "")1lil1C1C~VJ. ULlJUIO.Ult..: t:.1111' 

has 0( vm) pins, which is independent of the size of the network to be assembled. This is the 

best possible. To realize networks with larger bif'urcators, the parameters of the restructurable 

chip depend Oil the size of the network assembled. 

Special Ca8e8. For graphs with special bif"urcators, the same is true except that only O(F 2
) 

area is used on each chip. For type A v'2-bifurcators, the number of pins needed is much lower. 

For example, N-node trees require only O(lg m) pins per chip (Theorem 3.U). As is the case for 

all planar graphs, the number of pins docs not depend on the number of nodes. This is because 

N-no<le planar graphs have v'2-bif'urcaLors of size 0( VN).) 



CHAPTER 6 

The Channel Routing Problem 

While Lhe layout problems considered in Part I provide new insigbLs and parndigrns for 

VLSI graph layout, they are nevertheless abstractions of problems encounLered by current 

automatic layout systems. In this second part (Chapters 6 and 7) we shall study the widely en­

countered channel routing problem which forms the basis of a popular pnradigrn for automatic 

lavout. 

The typical routing problem is characterized by a set of rcctangul:u modules with terminals 

at fixed positiolls along module boundaries. Labels on the terminals specify the required 

connections -- all tcrrnillals with Lhc same label must he electrically connected. The problem is 

to wire togcLher all terminals that have Lbc same label. 

Most layout systems proceed in two phases: placement and routing. [n the placement phase 

the modules arc located aL nxed posiLions, and the required connections arc later made in the 

routing phase by running wires around and in between Lhc modules. Of course, the two phases 

go hand-in-hand; a placeme!lt for which a complete routing is impcrnsible is of little use. The 

intractability of obtaining optimal solutions in either phase demands that efficient heuristics 

be developed for practical use. 

Introduced by IIashirnoLo and Stevens in 1971 [3•1], channel routing has become a very 

popular and successful heuristic for routing inLegrated circuits. As illusLraLed in Figure 6.1, 

afLcr Lhc modules have been placed, Lhc chip is heuristically partitioned inLo a sC'I. of rectangular 

channels, and each channel is assigned a set of wires which a.re Lo pass through iL. This 

clTc•ctively reduces a difliculL "global" wiring problem to a set of disjoint (and presumably 

easier), "local" channel rout.ing subproblems. 

72 
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Figure 6.1: Reducing the global wiring problem into a set 
of channel routing subproblems. 

The performance of the overall strategy is largely determined by the algorithm used to solve 

the individual channel routing subproblems. For this reason, the channel routing problem has 

been intensively studied for over a decade, and many heuristic algorithms have been proposed 

for solving the problem [1, 2, 11, 12, 18, 20, 21, 34, 35, 36, 38, 51, 60, 62, 67, 68, 81, 84]. 

Although many of these heuristics have proved reasonably successful in practice, there are 

instances (albeit theoretical) when the heuristics either produce arbitrarily bad solutions or 

fail to produce any solution. · Chapter 7 presents a fast approximation algorithm which is 

guaranteed to produce a solution close to optimal. The remainder of this chapter, however, 

poses the problem in a formal framework and briefly reviews some of the previous work on 

channel routing. 

6.1. Manhattan Routing Within Channels 

The channel routing problem may be described as follows. A channel consists of a two-layer 

rectangular grid of columns and tracks (rows). Terminals are located on the top and bottom 

tracks at grid points. The number of tracks between the top and bottom tracks is the width of 

the channel. Each set of terminals to be electrically connected constitutes a net, and distinct 

nets are disjoint. A ncL with r terminals is called an r-point net. The width may be varied 

by moving the tracks vertically; however, the tracks are not allowed to slide horizontally. In 

other words, the columns arc fixed. We also assume that there are no trivial nets (two-point 
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Figure G.2: Manhattan routing within a channel. Vertical 
cuts measure channel density. 

nets with both terminals in the same column). 

The objective of the channel routing problem is to wire together all terminals in each net 

in a way which minimizes channel width. Wires may be routed on either layer, along any 

track between the top and bottom tracks, and along any column. There is no restriction on 

the number of columns at either end. Electrically disjoint wires may cross at grid points on 

different layers, but may not overlap for any distance even on different layers. A wire may 

change layers at a grid point, in which case no other electrically disjoint wire may pass through 

that grid point on either layer. 

In the Manhattan wiring model, these constraints are satisfied by restricting all horizontal 

wire segments to lie on one layer, and all vertical segments to lie on the other layer. For a wire 

to turn a corner it has to change layers, which requires a contact cut. Clearly, distinct wires 

cannot share a corner since that would violate the constraint that only one wire may change 

layers at any point. For obvious reasons, Manhattan routing is also referred to as layer per 

direction or reserved layer routing. Figure 6.2 illustrates an example of Manhattan routing in 

a channel. 

Remark. The channel routing problem described above is a simpler version of switch box routing 

in which terminals arc located on all s·ides of a rectangular channel. In many instances, such 

as when two large mod ulcs arc placed next to each other, terminals lie only along two opposite 

sides of a channel. For this reason, and because switchbox routing problem is much more 

difficult, engineers have focussed attention primarily on the simpler channel routing problem. 
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6.2. Bounds on Channel Width 

Consider a vertical cuL which slices the channel in two (sec Figure ().2). Every net which 

has a terminal on both sides of Lhe cut is said to be split by the cut. Since aL least one wire 

must cross the verLical cut f'or each split ncl, it follows that at every point the channel must 

be at least as wide as the number of nets split by a vertical cut through that point. In short, 

channel width can be no less than channel density, which is defined as the maximum number 

of nets split by a vertical cut. For example, Lhe channel of Figure ().2 has density three. 

Can every channel wiLh density d be routed in O(d) tracks? In practice, mosL channels can 

be routed in d plus two or three tracks. In general however, this is far from the truth. Brown 

and RivesL [11] gave examples of two-point net channels, with n terminals, whose density is 

one, but for which channel width can be no less than ,,/2n,. Since we shall employ an identical 

argument later, their result is rederived below. 

Theo-rem 6.1 (Brown-Rivest). Consider the two-point, n-net {shift-one} channel in 

which terminal i is located in column i on the top track, and in column i + 1 on the bottom 

track. Any Manhattan routing for this channel must have width at least ./'in - 1. 

Proof. Suppose that a routing of width w is given. Since the top and bottom terminals 

of any net lie in difTerent columns, each wire in the routing must use a horizontal track to 

change columns at least once. Now, if a wire changes from column i to column j along track y 

(1 < y < n) then either the vertical segment (j,.y-1)-(j,y) or the segment (j,y)-(j,y+ 1) 

can not have a wire laid on it. Otherwise, as seen in Figure ().3, two different nets will overlap 

at point (j,y). 

In other words, whenever a wire changes columns within the channel, it must change to a 

blank column, one which has no wire in one incident vertical segment. J\ wire may also change 

columns by exiting across a side of' the channel along a horizontal track. 

Ilow many win~s can change columns along the first horizontal track? Since all grid points 

on the top track arc occupied, a wire can change columns only by exiting the chanr1cl. But, 

since segment overlaps are prohibited, at most two wires can change columns in this way. 
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Figure 6.3: A wire can only turn into a blank spot. 

Observe that whenever a wire exits the channel, one blank segment is created along a column. 

The number of wires that can change columns on any horizontal track is bounded by 

the number of blank vertical segments incident to that track, plus two (for wires that exit the 

channel). If 2 wires change columns on the first horizontal track, this creates two empty vertical 

segments incident to the second track, so that 4 wires can change columns on the second track, 

and so on. In general, it is easy to see that the number of wires that can change columns on • 
track y is at most 2y when y :=;; lw/2J and at most 2(w + 1 - y) otherwise. 

Summing over all horizontal tracks, the total number of wires that can change columns is 

consequently no greater than 

o::;y::;Lw/2j Lw/2J+1 

which is always less than H w + 1) 2 . Finally, since every wire connecting a net has to change 

columns, we have 

~(w + 1)2 2 n, 

or, w 2 ffn - 1, thus proving the result. I 

An obvious question that arises is: Can every channel be quickly routed in minimum width? 

Unfortunately, the general problem is NP-complete [77], and remains NP-complete even for 

two-point nets [77, 78]. This might help explain why none of the current heuristics is even 

guaranteed to find solutions that are close to optimal. 
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Figure 6.4: In the knock-knee wiring model, two wires may 

share a corner a.~ long as they remain on di.ff erenl 

layers. 

6.3. Bounds for Other Wiring Models 

While Manhattan wiring rules ease the task of mask fabrication, less restrictive wiring 

models are also occasionally used. For example, some manufacturers may permit wires to 

change direction within a layer, or may allow non-rectilinear wiring. Similarly, other manufac­

turers may provide more than two layers of interconnect. It is important to consider how 

variations-in the wiring rules affect the mutability of channels. 

In the knock-knee wiring model, wires are allowed to change direction within a layer, and 

wires on different layers may share a grid point as long as neither one changes layers at that 

point. The routing illustrated in Figure 6.4 is permissible in the knock-knee model, but not 

in the Manhattan model. Channel density of course remains a lower bound on channel width. 

Rivest, Baratz, and Miller [67] investigated the channel routing problem under the knock-knee 

wiring model. They showed that every two-point net channel with density d can be routed in 

width 2d - 1, independent of the number of nets. In view of Theorem 6.1, this implies that 

the knock-knee wiring model is more powerful than the Manhattan wiring model. Leighton 

[43] gave a construction for channels with density d which cannot be routed in less than 2d-1 

tracks, so that the Rivest, Baratz, and Miller algorithm is optimal in the worst case. For 

multi-point net channels, their algorithm guarantees a routing of width at most 4d - 1. 

Preparata and Lipski [62] consider the channel routing problem under the knock-knee 

model, but with three layers of interconnect instead of only two. With this extra layer, they 

guarantee that every two-point net channel with density d can be optimally routed using exactly 

d tracks. Moreover, this routing can be accomplished quickly. For multi-point net channels, 
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their algorithm guarantees a routing of width no great''' than 2d. 

The problem of' "river routing," which is single-layer channel routing, has also received 

considerable attention [21, 23, 51, 81]. Under Lhe single-layer restriction, there exist fast 

algorithms for channel routing. In particular, Leiscrson and Pinter [51] also examine the 

problem of' placing movable modules along the top and bottom tracks so as to minimize the 

horizontal "spread" and width of a channel. Pinter [u l] also studies the problem of river routing 

within polygonal regions with terminals along the perimeter of the polygon. Finally, LaPaugh 

[39] studies the problem of wiring terminals placed along the perimeter of a rectnngular module 

where the wires arc on two layers, but arc restricted to lie outside the module. 



CJ£APTER 7 

An Approximation Algorithm for Manhattan Routing 

Brown an<l llivcst's lower bound for the one-shift example indicates that channel density is 

not the only fundamental limitation on ch:rnnel width. Motivated by their argument, Section 

7.1 introduces the concept of channel flux, which provides another fundamental limitation 

on channel width. Unlike density, flux is a local phenomenon and captures the amount of 

"congestion" within a channel. 

Flux and density together completely characterize the difliculty of Manhattan routing. 

Section 7.2 presents a linear-time algorithm which routes every two-point net channel in width 

proportional to its flux and density. This settles a conjecture of Brown and Rivest that their 

lower bounds arc tight to within a constant factor. Moreover, in practice, Hux is extremely 

small so that the algorithm for two-point nets uses no more than a constant number of tracks 

more than density. Section 7.3 analyzes the running time of the algorithm, while Section 7.4 

extends the algorithm to multi-point net channels. 

7 .1. Channel Flux 

While channel density provides a fundamental limitation on channel width, it fails to 

capture the local congestion inside a channel. For example, while the one-shift channel has 

low density, the channel width must nevertheless be large to overcome congestion within the 

channel. This cong<>slion arises from the fact that every column in the top track contains a 

terminal whose mate lies in a different column along the bottom track. Since wires in adjacent 

columns may not both "turn right" along a common track without colliding;, many horizontal 

7!} 



80 AN APP!lOXIMATION ALGOIUTllM FO!i MANHATTAN ROUTING 

2. 4 

Figure 7.1: The modified one-shift channel can be routed 

in width two. 

tracks are needed to complete the wiring. 

In striking contrast, consider modifying the one-shift channel by making every alternate 

column blank. While this channel is globally similar to the one-shift, it can be routed using 

only two horizontal tracks as shown in Figure 7 .1. This channel is not locally congested because 

the empty columns enable many wires to simultaneously turn along the same horizontal track. 

We now introduce the concept of channel flux to measure congestion. Although there are 

a variety of ways to measure congestion, we choose here a simple definition which permits a 

clean analysis. In Section 7.4 we vary the definition slightly to obtain better bounds. 

Suppose that instead of making vertical cuts in the channel, we instead make a horizontal 

cut which isolates a set of contiguous columns from one track. Observe that we can vary the 

size of a cut (measured by the number of columns within the cut) as well as its position. As 

before, we say that a net is split by a horizontal cut if it contains terminals both within the 

cut and outside. For any given position of a cut we can measure the number of distinct nets 

split by the cut. 

Intuition suggests that the greater the number of distinct nets split by a cut, the greater 

the congestion is within the cut. Moreover, the larger the size of a congested cut, the larger 

the channel width, because if the region of local congestion is very large, then so is the overall 

global congestion of the channel. This intuition is formalized below. As mentioned earlier, we 

restrict attention only to channels which do not contain any trivial nets. 

Definition. The flux of a channel is the largest integer f for which there exists a horizontal 

cut of size 2f2 which splits at least 2f2 - f nontrivial nets. 
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For example, the one-shift channel has flux 0( yin) because a horizontal cut of size n which 

isolates the top track splits n nets. Similarly, the modified one-shift of Figure 7.1 has flux one. 

For the fiux to equal two there must be a cut of size 8 which splits at least 6 nets, but since 

every alternate column in either track is blank no such cut exists. 

Using Brown and Hivest's argument for the one-shift channel, we next show that flux is 

indeed a lower bound on channel width. 

Theorem 7.1. Every channel with density d and flux I requzre5 channel width at least 

max(d, I). 

Proof. Find a horizontal cut of the channel which spans 212 columns and splits at least 

212 
- I nontrivial nets. For each nontrivial net split by the cut, choose any two terminals 

from different columns that lie on opposite sides of the cut. 

Consider the channel formed by the set of chosen terminals, i.e., assume that all columns 

which do not contain a chosen terminal are blank. This new channel consists of at least 212 - I 

nontrivial two-point nets. Moreover, at most I of the 212 columns spanned by the original cut 

may be empty. By the same argument used to prove Theorem 6.1, no more than I + 2 of the 

nontrivial nets can be routed into the correct column on the first track: I into empty columns 

and one out each side of the cut. After the first track, there are at most f + 2 empty columns, 

the extra two having possibly been created by wires exiting across the side of the cut in the 

first track. Thus, at most f + 4 nontrivial nets can be routed into the correct column on the 

second track. In general, at most f + 2i nontrivial nets can be routed into the correct column 

on the ith track. 

Let w be the minimum width for which a wiring exists. By the preceding argument, the 

total number of nets that can change columns anywhere in the channel is no greater than 

E~= 1 (J + 2i) = wf + w(w + 1). But since at least 212 - f nontrivial nets must eventually 

be routed, it follows that wf + w(w + 1) 2 2j2 - f, or w 2 f. Thus the original problem 

requires a channel of width at least f. Finally, since the density d also is a lower bound on 

channel width, the Theorem follows. I 



82 AN APPIWXIMATION ALGORITllM Fon MANllATTAN IWUTING 

Flux is negligibly small in practice, and for all purposes never exceeds Uiree or four. One 

explanation for this is that terminals arc movable; it is good engineering practice to leave 

enough empty space so that if' the channel is congested, then the terminals can be moved 

slighlly Lo allow a better wiring. Moreover, many columns contain less than two terminals, 

and a large fraction of' nets contain terminals that are close together on the same side of the 

channel. These arc precisely the conditions that make fiux small. Finally, unlike density, flux 

is a local phenomenon and is less likely to grow with the size of' a channel or the total number 

of' nets. As an example, Deutsch's "difficult problem" [20] has 72 nets, 171 columns and density 

19, but the flux is just 3. 

7.2. An Approximation Algorithm for Top-to-bottom Nets 

In this section we present a linear-time approximation algorithm for routing channels with 

two-point nets. It is assumed that each net is nontrivial and has exactly two terminals, one each 

on the top and bottom tracks. The next section extends this algorithm to general multi-point 

net channels. 

The input to the algorithm may be presented in one of two ways. It might consist of a list 

of columns, each entry describing the terminals in the top and bottom tracks in that column 

(possibly none). A more compact representation is a list of nets, each net itself being a list 

describing the positions of terminals in that net. The algorithm outputs a detailed wiring of 

the channel. The leng;th of the output is proportional to the total wire area used to route the 

channel. 

Tlw running Lime of the algorithm will be measured as a function of the shortest possible 

output. This is more reasonable than measuring time as a function of the length of the input 

because the length of the output is always at least as large as the length of' the input. In fact, 

the output is generally much longer than the length of the input. 

With this convention !'or measuring the running time, iL is straightforward to sec that either 

input representation described above may be converted to the other in linear time. Moreover, 

if' the total number of' columns in the channel is c, artd if the channel has flux f and density d, 
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Figure 7.2: The regions routed in each phase. 

the minimum area required to route the channel is at least O(c(d + J)). The running time of 

our algorithm is bounded above by O(c(d + !)), so that it is a linear-time algorithm. 

The algorithm proceeds in four phases. Figure 7 .2 sketches the regions routed within the 

different phases. The first two phases distribute empty columns uniformly across the channel, 

thereby dividing the channel into blocks each containing a small number of empty columns. 

This creates a new channel routing problem with possibly higher density, but with reduced 

flux. The third phase, the heart of the algorithm, routes the correct number of wires between 

blocks, without worrying about which columns within a block these wires lie in. Finally, the 

fourth phase routes the wires within each block into the correct column. The empty columns 

within each block allow a block to be wired independently of other blocks, so that every block 

is wired simultaneously on the same horizontal tracks. 

The Top-to-bottom Channel Routing Algorithm 

Phase 1: Partition the channel into groups. 

Find the least integer k such that the channel can be partitioned into groups of k2 

consecutive columns, each group containing at IC'ast 3k empty grid points in both the top 

and bottom tracks. (An empty grid point is one at which no terminal is placed.) This 

can be accomplished by trying successive values for k (starting with 1, 2, 3, ... ) until the 

constraint is satisfied. 
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The definition of ftux guarantees that k does not exceed 6(! + 1). For, suppose that 

k = 6(! + 1) does not satisfy the constraint. Then some group of 36(! + 1 )2 columns 

contains less than 18(! + 1) empty grid points on one track. If wr partition this group 

into 18 blocks, each of size 2(! + 1) 2 , then one of them must have less than(!+ l) empty 

grid points on one track. But this means that the flux is at least f + l -- a contradiction. 

Phase 2: Distribute empty points uniformly. 

Divide each group of k2 columns into k blocks of k columns each. Route wires from the 

first 3 points (if non-empty) on the top track of each block into columns that are empty 

on the top track. Since each group has at least 3k empty points on the top track, this 

routing can be easily accomplished using no more than 3k horizontal tracks. Repeat the 

same for the bottom track, so that the original channel is reduced to one which can be 

partitioned into blocks of size k such that the leftmost 3 columns of each block are empty. 

The significance of having 3 empty points in each block will be made clear in the detailed 

interblock routing of Phase 3. Observe that although the density of the resulting channel 

may be greater than the density d of the original channel, it can be no greater than d + 6k. 

Phase 3: Route wires between blocks. 

This phase routes the correct number of wires between different blocks: if x nets have one 

terminal in the top track of block A and the second terminal in the bottom track of block 

B, then route x wires from the top track of block A to the bottom track of block B. It is 

not necessary that the wires be routed into the correct columns, but only that the correct 

number are routed between blocks. This phase is relatively complicated and forms the core 

of the overall strategy. At most d + 3k horizontal tracks are used. Details are descibed 

later in this section. 

Phase 4: Route wires within each block: 

At the end of Phase 3, all that remains is the problem of routing within each block. Each 

block has at most k nets and at least three empty columns. The location of each net is 

determined in Phases 2 and 3. Each net may be routed entirely within its block using, 
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for example, the algorithm of Kawamoto and Kajitani [3G], which uses no more than 

1k horizontal tracks. Mor<'over, every block can be simultaneously routed on the same 

horizontal tracks, so that this phase uses at most ~k tracks. 

Specifically, the nets arc routed one per track: the order of routing is determined by 

constraints caused by a top terminal for one net lying above a bottom terminal of another 

net. When a cycle of constraints occurs, one net of the involved cycle is temporarily routed 

into an empty column to eliminate one constraint, and routed to its other terminal after 

the other nets in the cycle have been routed. Two tracks are used Lo route the last net in 

each such cycle of constraints. I 

Next, we present the detailed routing of Phase 3. Each net is first classified into one of 

three categories. If both terminals of a net lie in the same block then the net is said to be a 

vertical net. Othf'rwise, if U1e i.Prmin~ls MP in difTNrnt hlo<>lq; :ind if thr t.op h'rmin"l i" to th~ 

left of the bottom terminal, then the net is called a falling net. Finally, if the terminals are in 

different blocks and if the top terminal is to the right of the bottom terminal, then the net is 

called a risi'ng net. 

The interblock routing procedure performs a left to right scan across the channel, routing 

each block completely before proceeding to the next block. Between any two consecutive blocks, 

the rising nets run along the upper horizontal tracks, the falling nets run along the lower tracks, 

ar:d every empty horizontal track lies between the tracks containing the rising and falling nets. 

In some cases a wire must be routed through previously routed blocks on the left before 

it can proceed to the right. This requires that space be maintained for wires to backtrack 

(pun intended) when necessary. By keeping the empty tracks between the rising and !'ailing 

nets within each block, we can coalesce .the empty tracks in consecutive blocks to form the 

pyramid shown in Figure 7.3. Pyramids are crucial to backtracking; as an example, Figure 7.3 

illustrates how a "blocked" wire can backtrack through Uw pyramid on its way right. After a 

wire backtracks through the pyramid, the pyramid is updated as shown. 

The following outline describes the interblock routing procedure in detail. Each of the 

steps is illustrated in Figure 7.4. Figure 7.1a shows the initial situation just before a new 
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Figure 7 .3: Maintaining a pyramid for backtracking. 

block is entered. The arrows on the tracks indicate whether the net is a rising/falling net that 

terminates within the block, or whether the net terminates in a different block on the right. 

The empty tracks are contained within the pyramid shown. In the case when the block to be 

routed is the leftmost block, the pyramid contains all horizontal tracks and extends to the left 

of the channel. 

The Interblock Routing Procedure 

Step 1: Ending nets. 

Nets with one terminal in a block on the left and the other in the current block are called 

ending nets. By moving the lowest ending rising net upward and the highest ending falling 

net downward wherever possible, the ending nets can be routed in a staircase pattern as 

shown in Figure 7.4b. 

Step 2: Continuing nets. 

Nets with one terminal in a block on the left and the other terminal in a block to the right 

of the current block are called continuing nets. Route the rising (falling) continuing nets 
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Lhrough Lhe block by shifLing them up to higher (lower) Lracks in a staircase pattern that 

fits Lhc sLaircasc paLLcrn of' the ending nets. 

As shown in Figure 7.1c, the sLaircase patLcrn of the continuing ncLs blocks one grid point 

in the top track as well as in the botLorn track (unless the block has no ending nets). In 

other words, no net can begin at the grid points shown. 1 [owever, remember that Phase 

2 provides at least 3 empty grid points on either track in each block. Since we arc free 

to place these empty grid points in any position, we still have at least two empty points 

remaining on either track. 

Step 9: Balancing. 

Suppose the number of ending rising nets is greater than the number of ending falling 

nets. Balance the diITerence by routing some Blarting rising nets (those which originate in 

the block) as shown in Fi~ure 7.1d. In case there are more ending falling nets than ending 

rising nets, follow a symmetrically oppo:,;ite procedure. 

Tn order to ensure that every empty column remains between the rising and falling nets it 

may be necessary to force one more empty grid point on the bottom track. Similarly, one 

grid point in the top track is forced to be empty because it is blocked by the rightmost 

starting rising net. At the end of this step, observe that the pyramid may be updated as 

shown in Figure 7.4e. 

Step 4: Starting netB. 

Suppose again that the number of ending rising nets is greater than the number of ending 

falling nets. After balancing the columns in Step 3, route all the starting !'ailing nets as 

shown in Figure 7.1f. Observe that one more grid poinL on the bottom track is blocked, 

and therefore must be ernpLy. Follow a symmetric procedure in the opposite case. 

Step 5: Remaining netB. 

At this stage either starting rising nets or starting falling nds remain to be wired. Suppose 

that some starting rising nets remain. lloutc these nets as shown in Figure 7.1g, making 
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use of' the pyramid to backtrack whenever necessary. In case the number of' remaining 

starling nets equals the number of' starling falling nets routed in Step 4, then route the 

last starting rising net using the empty column from Step 3. 

Step 6: Vertical nets. 

Houle Lhe vertical nets in the natural way as shown in Figure 7.4h. Note that no extra 

empty points are required. I 

Figure 7.1h shows the complete routing for the block, as well as the updated pyramid 

structure. Observe that the initial conditions arc satisfied for routing the next block on the 

right. Furthermore, note that no more than 3 points on any track are required to be empty, so 

that Phase 2 of' the main algorithm distributes sufficiently many empty grid points throughout 

the channel. 

::;ince every endmg net is routed before every starting net, the total number or horizontal 

tracks used is no greater than d +Gk, the density of' the resulting channel at the end of Phase 

2. Consequently, the number of' horizontal tracks used by the main algorithm is at most 

d + 15k = d + 0(1). 

7.3. Running Time Analysis 

To analyze the running time of' lhe algorithm we shall calculate the running time of each 

phase separately. Suppose that a channel has c columns, density d, and flux f. Then, as shown 

earlier, O(c(d + f)) is a lower bound on the minimum area needed to wire the channel. As 

shown below, this is also an upper bound on the running time of' the algorithm. 

The first phase computes the smallest integer k for which the channel can be divided into 

groups of k2 coiumns each such that every group has at least 3k empty grid points in both 

the top and bottom tracks. The value of k is computed by successively trying every integer 

(starling with 1, 2, ... ) until the condition is satisfied. For any possible value i, the size of each 

group is i 2 and there are c/i2 · groups in all. The required condition can easily be checked for 

each group in time O(i2
) so !.hat the total Lime is O(c). The total time for Phase l is therefore 
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no more than O(ck). But, since k :S 6(! + 1), this is no neater than O(cf). 

ln Lhe second phase, empty columns are evenly distributed among the dilTerent blocks 

within each group. Each wire runs along one horizontal track so that the time is no more than 

the Lota! length of wire laid out. Since no more than 3k tracks arc used, the total wire length 

docs not exceed O(ck) = O(cf). 

Phase :~ is slightly more complicated to analyze. As long as wires do not change direction, 

the time to lay them out is never more than the length of wire laid. However, whenever a 

wire must turn a corner or backtrack, the time requirements can potentially increase. A priori, 

it seems that maintaining the pyramid strucLure is time consuming; furthermore, the time to 

update the pyramid each time can be significanUy large. 

Fortunately, however, the pyramid is only an aid in understanding why the algorithm works 

corrccLly; there is no need to explicitly maintain the pyramid at all. Any time a wire must 

backtrack, all we really have to do is to simultaneously backtrack along the uppermost and 

lowermost empty tracks until a column, which is empty between the two tracks, is encountered. 

In fact, following this procedure gives the same routing as with the pyramid. It is relatively 

straightforward to argue that, with the modified strategy, the total time spent in Phase 3 is 

no more than O(c(d + k)) = O(c(d + f)). 

Finally, Phase 1 requires no more than O(c/) time. Each channel routing subproblem of 

size k can be routed in time O(k) using O(k) tracks. The total Lime over all subproblems is 

therefore O(ck) = O(cf). 

Summing up, we conclude that the running time of the algorithm is dominated by Phase 

3, and docs not exceed O(c(d +/)),which is linear in the area of the minimum area routing. 

7 .4. The Channel Routing Algorithm 

The algorithm of Section 7.3 routed two-point nets which had one terminal in the top 

track and the other in the bottom track. This section extends the algorithm Lo multi-point 

nets. As before, the algorithm is divided into four phases. Once again, we assume that the 

channel has no trivial two-point nets, and has density d and flux J. 
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The General Channel Routing Algorithm 

Phase 1: Partition the channel into groups. 

Find the least integer k for which the channel can be partitioned into groups of' k 2 

consecutive columns, such that a horizontal cut of size k2 which isolates either Lhe Lop or 

bottom track of any group splits at most k 2 - 3k nets. The value of k may be found by 

trying successive values (starting with 1, 2, ... ) until the required condition is satisfied. 

As before, it may be verified that the value of k is bounded by O(f), where f is the flux 

of the channel. 

Phase 2: Distribute empty points uniformly. 

For each track within a group count the number p of empty points. If p 2 3k, then 

distribute the empty points as before. If p < 3k then there are at least 3k - p duplicate 

terminals within the group and on the same track. Choose any :~k-p duplicated terminals 

and connect these Lo other terminals from the same net using one horizontal track for each 

such net. 

Next, pick one representative terminal for each duplicated net connected above. The 

duplicate terminals, being already connected, may be ignored so that each group now has 

at least 3k empty points on either track. Distribute these empty points uniformly as before 

so that each block of size k has at least 3 empty points. Observe that the total number of 

horizontal tracks used is O(k) = O(f). 

Phase 3: Route wires between blocks. 

Although the basic strategy is the same as before, the major difference is that a net 

may have representative terminals in many different blocks. (Within a block choose any 

one representative terminal, if it exist:;, on each track.) The modified interblock routing 

procedure is described later in this section, and Ui>CS no more than 2d + O(f) tracks. 
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Phase 4: Route wires within each block. 

This phase remains essentially unchanged. The only difTerence is thaL within each block 

the representative terminal of any net should be connected Lo all its duplicates. Although 

Lhe choice of representatives dderrnines the number of horizontal tracks used, this never 

exceeds 0(1). I 

Next, WC present the detailed inLerblock routing or Phase 3. Each net is first classified into 

one of four categories. A net whose leftmost terminal on the top track lies in Lhc same block as 

its left.most terminal on the bottom track is called a vertical net. If the leftmost top terminal 

(i.e., on the top track) of a net falls in a block to the left of the block containing Lhe leftmost 

bottom terminal (i.e., on the bottom track) of the net then the net is said to be a falling net. 

Conversely, if the block containing the leftmost top terminal of a net is to the right of the 

block cont.:i.inin£1: t.hP lr>ft.rnost. hot1.orn trrrnin:il "f UH' 11et. l;hcn the n"f l" ""Jl,,d 1'_ .. ;~fr'-1 r>,et. 

Finally, if all terminals of a net lie on the same track (either top or bottom) then the net is 

called a same-side net. 

In additioa, each net is divided into a rising portion and a falling portion. The rising 

portion of a net links the block containing the leHmost terminal to the blocks containing 

terminals in the top track of the channel. The falling portion of a net links the block containing 

the leftmost terminal to the blocks containing terminals in the bottom track of the channel. 

The intcrblock routing procedure connects the top terminals with the bottom terminals using 

a single connection crn<~rging from the block containing the leftmost terminal. Figure 7.5 

illustrates the rising and falling portions of a net and where the connection is made. Observe 

that not every net is required to have both a rising as well as a falling portion. 

As before, the procedure ensures that between consecutive blocks tracks containing rising 

portions of nets are above every empty Lrack and that every empty track is above the tracks 

containing falling portions of nets. This allows us to once again maintain a pyramid structure 

for backtracking. 

The routing proceeds b!o{:k-by-block from lcfL to right in Lhc middle 2d + O(f) tracks of 

the channel. Each block is routed in seven steps described below. The steps arc numbered to 
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F AL LINEf PoP..l1otJ 
-- - - :Y. - -- - --- -

t ' ' • 
Figure 7.5: Dividing net.~ into rising and falling portions. 

Some nets may have only a falling/rising por­
tion. 

coincide with the algorithm of Section 7 .3. Figure 7 .6 shows a complete routing of a block. 

The lnterblock Routing Procedure 

Step 1: Ending nets. 

Route the ending nets (those which do not have a terminal to the right of the current 

block) in staircase patterns at the left end of the block. 

Step 2: Continuing nets. 

Route the continuing nets (those with a terminal in a block to the right of the current 

block) in staircase patterns nestled against those generated in Step 1. If a continuing net 

also has a representative terminal in the current block, then place the terminal to the right 

of the staircase and make a connection as shown in Figure 7.6. 

Step 2.5: Starting same-side nets. 

Route every same-side net whose leftmost terminal lies in the current block in a staircase 

fashion, bringing wires from the bottom (top) track to the lowest (highest) available empty 

track. 

Step 9: Balancing. 

If more columns have been used at the top of the channel than at the bottom, make up 

the difference by routing the rising portions of some starting rising nets. If the opposite 

case holds, follow the symmetric procedure. 
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Step 4 
,.....__ 

-- -----... -ili1- -- -- --i ............................................. . -- ---- ------- --r:: : : -1Jt~.i:- -~ :: : : : : Rising ponions 

• :: ¥---- i- r.::: :: of nets ...... -- ............... ... ·-- --------- ( --------- - - +--(Step 5) 

Back tracking l If -- Empty track 
region ._ _ __ _ _: }- (Step 5) 

1- - - -.. -- --:: fh .-t:. :1:: :: : : Falling portions 
t - • IJ: ---- -- of nets . :: -__ t·:;: :j::: _ :: :: -- - -- -- . ------ -- --
• = = -- _::::::::::: 

E~ -;--

1

....,.__,
1 

+ :V~rtical ne.t (Step 6) 
nets g R1smg n~t with 

(Step 1 l backtracking (Step 5) 
Rising nets for 

balancing (Step )) 

Same-side nets (Step 2.5) 

Connections to (Step 2) 
cont1nu1ng nets 

Figure 7.6: Complete Phase 9 routing within a block. 

Step 4: Starting nets. 

Route the falling portions of starting falling nets (or the rising portions of starting rising 

nets depending on which was in excess in Step 3). 

Step 5: Remaining nets. 

Route the remaining rising portions of starting rising nets (or the falling portions of remain­

ing starting falling nets), using the pyramid for backtracking if necessary. Furthermore, 

route the falling portions of starting rising nets and the rising portions of starting falling 

nets in the straightforward way using empty tracks. 

Step 6: Vertical nets. 

Route the vertical nets in empty columns as before. I 
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Since the rising and falling portions of each net are effectively separated, the interblock 

routing procedure requires no more than 2d + O(f) horizontal tracks. As before, it can be 

argued that the overall algorithm runs in linear time, and routes a channel of density d and 

flux f in width 2d + O(f). To summarize, we have shown the following. 

Theorem 7.2. Every multi-point net channel with density d and flux f can be routed in width 

no greater than 2d + O(f) in linear time. 

Furthermore, if every net is a same-side net or only has a rising portion or a falling portion 

(but not both) then the number of tracks used is d + O(f). In particular, for two-point net 

channels we have the fallowing result. 

Theorem 7.3. Every two-point net channel with density d and flux f can be routed in width 
~ 

d + O(f) in linear time. 



CHAPTER 8 

Conclusions, Extensions and Open Problems 

This thesis was motivated by the need for a clearer understanding of various issues in 

circuit layout. The techniques developed provide new insights and approaches for VLSI layout. 

Although the results in their present form are theoretical in nature, it is likely that some of 

the techniques can be adapted for use in practice. 

The two parts of the thesis share a common underlying methodology. First, the critical 

properties that determine the quality of a layout are identified. In the next step, these properties 

are effectively exploited to obtain good layouts. Thus, for example, the minimum bifurcator 

of a graph gives a lower bound on layout area, and good layouts can be found quickly if a 

decomposition is available. Similarly, flux and density give lower bounds on channel width; 

they also provide the basis for a fast, provably good channel routing algorithm. 

The strategy for VLSI graph layout in Part I provides a simple and uniform technique for 

solving a variety of layout problems efficiently. The unified framework is suitable for custom 

layout, and at the same time is efficient with regard to area, delay, and fault-tolerance. The 

tree of meshes, in particular, emerges as a surprisingly versatile and powerful network for 

circuit layout. A priori, there is no reason to believe that such diverse concerns can be handled 

simultaneously in a compatible manner, let alone within a common framework. 

Approaching the channel routing problem from a theoretical viewpoint, Part II charac­

terizes the properties that make Manhatta11 routing diificult. These properties then form the 

basis of a new, linear-time approximation algorithm that is guaranteed to always find a near­

optimal routing. In contrast, although the problem had been studied intensively for over a 

decade from an engineering viewpoint, all previous heuristics could be made to perform ar-

9() 
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bitrarily poorly on certain inputs. 

These results notwithstanding, a number of problems are left unresolved in this thesis. 

The following sections mention somr of thr morr import.ant open problems, and also sketch 

extensions to the results reported. More details on specific problems may be found in [7]. 

8.1. Problems in Graph Layout 

The divide-and-conquer strategy based on graph bifurcators has also bern successfully ap­

plied by Leighton and Hosenberg [46] to the study of three-dimensional VLSI circuit layout. 

In addition, the techniques and results are also applicable to graph and data-structure embed­

dings, and also provide bounds on one- and two- dimensional bandwidth minimization. 

Question 1. How much area is required to lay out an N-node planar graph? The best 

universal upper bound is O(N lg2 N) [49, 83] while the best existential lower bound (for 

the tree of meshes) is O(N lg N) [40, 41 ]. 

Question 2. Is there a polynomial time algorithm for laying out trees with edges not much 

longer than the minimax edge length? The best tree layout algorithm (Chapter 3) produces 

layouts with edges of length 6( .JN/ lg N). Although this is optimal for some trees, it is 

way off for other~. 

Question 3. Is there a better way to realize a network in an environment that contains 

defective processors? The results of Chapter 5 guarantee that any graph can be realized 

using the good processors provided the "channels" have width 0( JN lg 1J.) in a regular 

layout. Although this bound is optimal for some networks [7], it is not known to be 

optimal for simpler networks such as two-dimensional arrays. 

Question 4. Is there a provably good heuristic for graph bisection? Any such heuristic 

could be used to find efficient decomposition trees and bifurcators, which, in turn, could 

be used to produce good layouts [7, 42]. There are many heuristics which do very well in 

practice [13, 17, 24, 37, 66, 71]. Analyzing these or developing new heuristics along similar 

lines is likely to have an impact on VLSI layout. 
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Question 5. Can the framework be extended to deal with processors of variable size and 

shape? While it is relatively easy to deal with equal-si1,e processors, any progress toward 

the general problem would be very interesting. 

8.2. Problems in Channel Routing 

While the algorithms of Chapter 7 are fast and are guaranteed to produce near-optimal 

routings, the analysis of the constant factors leaves much room for improvement. In particular, 

the actual number of tracks used by the algorithm may be much less than the upper bounds 

indicate. 

For example, if the empty grid points are already uniformly distributed to begin with, 

then Phase 2 needs to perform only a minor redistribution of empty points. Consequently, the 

upper bound of 6k ::;; 36(! + 1) tracks to redistribute empty points, is a gross overestimate. On 

the other hand, if the empty points are not uniformly distributed, but are bunched together in 

groups, then the actual lower bound is underestimated by flux. To see this, observe that along 

a horizontal track at most two wires can turn into a blank column inside a bunch of empty 

columns. However, the lower bound argument for flux does not take the density /frequency of 

blank points into consideration. Since flux underestimates the true bound in this case, once 

again, we see that the performance of the algorithm is much better in relation to the actual 

value than what the bounds indicate. 

In addition, it is possible to obtain tighter bounds more directly, by redefining the notion of 

flux. Rather than making horizontal cuts in the channel, it is better to employ the argument to 

"windows," i.e., groups of contiguous columns. This is the idea adopted by Brown and Rivest 

in their lower bound arguments. The advantage of this lower bound strategy is that if many 

wires are forced to change columns within the window, then the lower bound is very high. On 

the other hand, if many wires exit across the sides of the window, then the width must again 

be large since at most two wires can exit the window along a horizontal track. Is it possible 

to redefine the notion of flux to capture some of these bounds? What is the best definition for 

flux? Finally, do multi-point nets really require 2d + O(f) tracks, or will d + O(!) suffice? 



PROBLEMS IN CHANNEL ROUTING 

At a more general level, it would be intereetiq to invettipte the applicability or flux to 

other wiring problems, such u, for example, the ~ ,......._. In conclusion, we mention 

that Baker, Bhatt, and Leighton (3) extend the raulta of' the ~ wiring model to· the 

cue where contact cute are larpr than Wire1. In thit ... it t .. eut that In ia never more 
( ... . . 

. th~ a con1tant, eo that dentity ii the ·aote limiting fader .cm ....... width. 
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