SR DATA STRUCTURE » o
| A
DATA FLO | ot

This blank page was inserted to preserve pagination.

Data Structure Management
in a
Data Flow Computer System

Bhaskar Guharoy

May 1985

© Bhaskar Guharoy 1985
The author hereby grants to M.LT. permission to reproduce and distribute copies of this thesis
document in whole or in part.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Laboratory for Computer Science
Cambridge, MA 02139

This empty page was substituted for a
blank page in the original document.

Abstract

DATA STRUCTURE MANAGEMENT
INA
DATA FLOW COMPUTER SYSTEM
by
Bhaskar Guharoy

Submitted to the Department of Electrical Engineering and Computer Science
on May 28, 1985 in partial fulfiliment of the requirements
for the Degree of Master of Science

VIM is an experimental computer system being developed at MIT for supporting functional
programming. The execution mechanism of the computer is based on data flow. This thesis presents
mechanisms for managing data structures in this system. The thesis also develops a methodology for
designing computers, which is based on successive refinement of formal models of the computer.

A formal model 1.1 of the abstract architecture of VIM is first developed. The behaviour of this model is
described by its operational semantics; L1 is the specification of VIM. L1 is then refined to model! hierarchical
physical storage consisting of main memory and disk. This refined model is called L.2. The unit of storage
allocation and of data transfer between main store and disk is a chunk. The thesis proposes a new data
structure called ViM-tree which is a tree of chunks. Data structures in VIM (arrays and records) are stored on
ViM-trees. VIM-trees allow efficient applicative operations on data structures and permit a large amount of
sharing. A reference count mechanism is proposed to perform automatic storage reclamation. Special care is
taken to handle operations in L2 on data structures containing early-completion queues and suspensions, which
are distinctive features of VIM. A base language for this machine is outlined in the thesis.

The models L1 and 1.2 are then shown to be equivalent for the proposed base language. The
equivalence is proved by exhibiting a McGowan mapping between the states of the two models during the
execution of a program writen in the base language.

Thesis Supervisor : Jack B. Dennis
Professor of Elecrical Engincering and Computer Science

Keywords: - VM, Dataflow Graphs, Functional Languages, Structure Management, Hierarchical
Storage, Heaps, Tree structures, Early-Completion Structures, Suspensions, Strecams, Machine Equivalence,
VIMVAL Compilation.

This empty page was substituted for a
blank page in the original document.

Acknowledgments

There are many people who contributed, directly or indirectly, to the writing of this thesis. I wish to
thank Jack Dennis for providing encouragement and support during the long period of gestation of this thesis.
Thanks to Suresh Jagannathan for being ever ready to listen to my ideas and coming up with constructive
criticism. Much of the formal model L1 was developed jointly with Suresh.

My sincere thanks to David Culler for being such a wonderful friend. Thanks to Sara Mayeno for
allowing me to cook for her whenever 1 visited her and David. Steve Heller provided much of the fun and
laughter. My thanks to Keshav Pingali for the many interesting discussions I had with him. Thanks to Andy
Boughton, Guang-Rong Gao, Vinod Kathail, Greg Papadopoulos, Earl Waldin and all the other members of
CSG and FLA who make the laboratory such a fun place to work in.

My family has always been very encouraging and I cherish their enthusiasm and interest in my work.
Finally, my thanks to Marcela for making me finally go crazy, in the right way, and for being the perfect
partner in goofiness.

The woods are lovely, dark and deep
But I have promises to keep
And miles to go before I sleep
And miles to go before 1 sleep.
- "Stopping by woods on a snowy evening”
Robert Frost.

This empty page was substituted for a
blank page in the original document.

This empty page was substituted for a
blank page in the original document.

TABLE OF CONTENTS

Table of Contents

Chapter One: Introduction

1.1 The VIM Project
1.2 Background and Previous Work
1.3 Outline of the Thesis

Chapter Two: The Val Interpretive Machine

2.1 The VIMVAL Language

2.2 An Example Program in VIMVAL

2.3 The VAL Interpretive Machine — VIM
2.3.1 Function Application
2.3.2 Early-Completion Queues
2.3.3 Suspensions and Streams

2.4 Operational Model for VimM - L1

2.5 Summary

Chapter Three: Operational Semantics of Vvt with Storage

3.1 Arrays and VIM-trees
3.2 Operational semantics of L.2
3.3 Discussion

Chapter Four: Equivalence of L1 and L2

4.1 Proof of Equivalence of L1 and L2
4.2 Discussion

Chapter Five: A Base Language for VM

5.1 The Let expression

5.2 Conditional Expression

5.3 The Tagcase Expression

5.4 Function Application and Returns
5.5 Stream Producers and Consumers
5.6 Discussion

Chapter Six: Conclusion and Scope for Further Work

S

O O w N

12
13
17
19
21
38

45
68

70

71
81

82

82
83
84
86
87
90

92

This empty page was substituted for a
blank page in the original document.

§1 INTRODUCTION 1

Chapter One

Introduction

In recent years data flow computer systems have been the focus of vigorous research, especially in
the context of high speed scientific computations. In addition to higher speed, the data flow model of
computation appears to provide a more robust programming environment than is available on
conventional systems. The VIM project of the Computation Structures Group at MIT is aimed at
examining the issues involved in implementing a modern, general-purpose computing environment
based on the principles of dataflow that can effectively support such diverse computational applications
as database systems, logic programming, etc. The ideas about the VIM system have evolved over the

years, drawing much from the works of Dennis [9, 10, 11], Patil [31] and Weng [38].

The VIM system will support functional programming and the execution mechanism is based on
data flow. In the world of functional programming all values are treated as mathematical values. This
implies that the traditional view of data structures (arrays and records) as modifiable entities is no longer
valid — the system must operate so that the user gets the view that a new structure is created from the
old one whenever required. In a simplistic implementation, this would lead to a proliferation of copies
of data structures, each differing from the others in only a small number of values. It is recognized that
sharing of common elements among structures would reduce both the amount of copying and the
storage space required to run the program. Various proposals have been made to implement data
structures in data flow systems: none of them can be called definitive solutions. Applicative languages
are also side-effect free languages and the language constructs provided in the functional language for
VM does not allow the creation of circular structures. Thercfore, reference-counted memory
managemenrt becomes an attractive alternative to traditional mark-and-sweep mcethods for garbage
collection. This thesis proposes a representation for data structures that greatly reduces the amount of

copying and describes a reference count mechanism for storage reclamation.

In most currenthy proposed functional kinguage architectures, an implicit assumption s that the

2 INTRODLCTION §1

program and the data which the program operates upon are all located in the main mcmoryl. VM has a
two-level physical hierarchy of storage consisting of a large, slow disk and a smaller, faster main store.
Values in the main-memory can be accessed immediately while values which are resident in the disk

must be read into the main memory first.

The problem of storage reclamation on systems with large address spaces is a prickly one; the
strategy for garbage collection in VIM is based on reference counting. The architecture of VIM modelled
in this thesis consists of a single processor, some main store and disk store. The principal source of
parallelism in the single-processor version of VIM stems from the concurrency in the processing of

instructions and disk activities.

1.1 The VIM Project

The goal of the VIM project is to develop a computing environment which supports functional
programming and provides a large address space and automatic storage reclamation. A two-level
physical storage has been chosen to reduce the cost of physical memory. The primary vehicle for
programming on this system will be the VimVal language, a functional language that is an extension of
the language VAL developed by Ackerman and Dennis [1, 26, 27]. The criteria that have guided the
design of the new language are that it should have the following characteristics.

o [t should be sufficiently expressive in that it provides language constructs to the
programmer to express most application programs that he needs to, without
having to appeal to some features of the underlying architecture that are not
evidenced in the language.

e A program consists of one or more modules. Modules must be independently
compilable. All the independently compiled modules of a program are linked
prior to execution by a ljnker.

o The language must be strongly tvped, i.e. if the compiler and the linker certify
the program to be legally typed then the program will not encounter any type
crrors at the time of cxccution of the program.

e The language must provide constructs to cxpress computations on streams.

! I'he miodels proposed by Dennis and Weng have a two-level physical storage,

§ll INTRODUCTION 3

e Non-determinacy must be expressible in the language.

e Higher-order functions must be permitted.

Programs written in VIMVAL will be run on a data flow processor with hierarchical storage. The
conceptual framework for the machine was described in [38]. As currently envisioned, the VIM system
consists of a single processing element and a two-level physical storage consisting of main memory and

disk.

1.2 Background and Previous Work

A number of projects have aimed at providing a coherent and structured programming
environment within the framework of a multiprocessing system. Of prncipal interest from the
perspective of this thesis are the Hydra/C.mmp system, the Cm* computer and the SYMBOL

computer.

The Hydra/C.mmp was an experimental multiprocessor system [39]. Capabilities were adopted as
a mechanism for providing a large and uniform address space and also to control accesses o shared data
structures. However, the system fell short of providing a truly integrated interface between the
capability architecture and the programming language. The task of processor management was left
largely in the hands of the user. The user had to ensure the correct usage of shared data structures by
the use of appropriate locking and synchronization primitives, with a resultant decrease in the
programmability of the system [23]. However, in spite of these shortcomings the Hydra/C.mmp system

represented a significant advance in programmability over the multiprocessor systems then existing.

The Cm* [34, 35] was also a capability based architecture consisting of a large number of
processors and memory modules. An underlying goal of the Cm* project was to develop a system that
would be scalable, i.e., the computing power of the system would grow in proportion to the number of
processors in the system. However, this effort too left the issue of processor management as a user
responsibility. Also, since the cost of a memory access was proportional to the distance of the memory
cell from the processor. the wisk of organizing the program so that the number of non-locai memory

references would be minimal was 1ett to the programmer [22].

4 INTRODUCTION §l2

The Mu project {18] at MIT was aimed at assessing the importance of programmability in
multiprocessor organizations. Though the theoretical framework appears to provide a better working
environment than in Cm* and C.mmp. the system was still unable to provide an elegant way of avoiding
the need for cxplicit synchronizaton mechanisms for shared data that could be updated independently
by the processors. It became clear from Halstead's work that the language supported by a
multiprocessor is critical to the usability of the system. The difficulty of programming on a
multiprocessor can be alleviated if the user can write programs without having to worry about task
scheduling, process synchronization and hazards such as read-before-writes, such chores being taken

care of by the underlying system automatically.

The SYMBOL computer system [8, 29] was a language based multiprocessor system that allowed
the user to program without having to worry about low level considerations like mapping the tasks onto
the processors. Each of the processors had a very specific task; however, the task division was so rigid
that it ruled out the possibility of scaling the system. Also, the various processors did not aim at solving
a single problem in parallel. There was a processor dedicated to compilation, one to memory
management, one to I/0 management, one that actually executed the compiled program, etc. The
parallelism in this system resulted from the fact that memory management, input-output and actual
processing could be done in parallel. There was no facility in the system whereby multiple processors

could concurrently execute a compiled program.

The SYMBOL was not a true multiprocessor since it was unable to support parallel execution of a
program exhibiting a lot of computational parallelism. However, many of the ideas it introduced were
far ahead of the times. It was one of the first processors to specialize the memory architecture to
support structure memory. The memory representations of data were specialized to reflect the type of
data. allowing operations to be performed on such typed data more efficciently. Significant amount of
spectalized hardware was developed to allow structure operations to be executed fast — a revoluuonary

approach. considering the cost of hardware in that period.

One of the seminal contributions of the SYMBO!. svstem is that it viewed that the design of the
Memory management system was an integral part of the multiprocessor system design. The memory

munagement mechanism provided primitises which could support high-level memory abstructions such

§1.2 INTRODUCTION 5

as stacks, queues, lists and strings. A specialized processor performed the memory management tasks,

exemplifying the philosophy of static load distribution that so characterized the system.

[n spite of its failings, the SYMBOL system, which predated the other projects discusscd above by
a number of years, presented a pointer to the direction in which the devclopment of programming
environments for multiprocessor systems ought to proceed — an architecture based on a high-level

language that provided a very uniform, integrated environment for programming.

Among the various general purpose computing enviroments available on modern systems, the one
on the Lisp machines deserve special mention. Lisp machines are language-based uniprocessors
designed at Massachusetts Institute Technology {24, 28, 32, 33,36]. They provide a uniform
programming environment; there is no distinction between the command language used for interaction
with the system and the principal programming language supported (Lisp), the hardware is tailored for
processing Lisp primitives, high level data structures such as lists and arrays are regarded as data types
even at the machine architecture level, and mechanisms for storage reclamation constitute an integral

part of the system design.

Lisp machines provide a very large address space which can be effectively used to support a
uniform addressing scheme for all objects created in the system. However, the necessity of explicidy
"loading" a file containing an object residing in secondary storage before the object can be used detracts
from the uniform addressability feature. Once the file is loaded, the object may be placed on the disk
by the memory manager; references to this object are handled by the system so that its actual placement
in the memory hierarchy is transparent to the user. Ideally, the user should never have to worry about
whether the object is in the primary storage or in the secondary; given the name of the object, the
system should automatically resolve the references to the object appropriately. In the VIM system.
there is no concept of a file — all data structures arc persistent in that they continue to exist across
scssions, until there exist no references to the structure in the system, in which case they are discarded.

This strategy obviates the necessity of "loading” files.

The storage reclamation scheme adopted by the Lisp machine is a varant of the mark and sweep
strategy. The process of marking and sweeping the address space starts when the system runs out of

storage. In the Lisp maching, the process of garbuge cotlection is overlapped with the processing of

6 INTRODLCTION §1.2

other tasks in the system. This overlap is achieved by frequent switching of the task of reclamation with
other activities. In conventional systems (von Neumann derived architectures), the switching of tasks
involves the exccution of substantial amounts of code to save the state, reducing the efficiency of the
process of switching. The data flow model of program execution allows such switching to be performed
with only a small overhead. In mark-and-sweep garbage collection, the time required to reclaim storage
is proportional to the size of the address space over which the reclamation is to be performed. By
constrast, the time required to reclaim the storage occupied by an object by reference-count based

reclamation schemes is proportional to the size of the storage occupied by the reclaimed objects.

1.3 Outline of the Thesis

The design of the VIM architecture espouses the following philosophy. An architecture should be
developed by successive refinement, starting from an abstract mathematical specification. The
extensions and refinements at each of specification are designed to permit more efficient
implementation of the machine. By proving that all the models are equivalentz, one can largely
eliminate the unexpected behaviours that one encounters when designing a system in an ad hoc basis.
This type of top-down approach is especially important to the design of multiprocessor systems, since

the possibility for errors of omission and commision is so much greater.

The design of the VIM system started with the design of the language VIMVAL which conformed
to the aims outlined earlier. VIMVAL programs are compiled into programs in a base language, a
preliminary version of which was proposed by Dennis and Stoy in 1982; a refinement of the base

language is prescnted in this work.

In this thesis, first the operational semantics of an abstract modcl for ViM is described. The
model. called L1. is the basis for specifying the behaviour of VM, and is a set theoretic characterization
of the abstract machine. The execution model is defined by a non-detcrministic statc-transition
function. The set of instructions in this abstract model is an extension of that proposed by Dennis and

Stoy. Chapter 2 gives a brief description of the VismVar language and then presents the formal model

,
A nanve notion of equnalence may be that the modeds produce the same results. A tormal notton of equivalence for the

vanous models of Vs will be defined in chapier 4

6

~4

§1.3 INTRODUCTION

L1

The operational model L2 is a refinement of L1 and is obtained by adding the notion of storage.
In this model, structure values (such as arrays and records) which were modelled as elements of sets in
L1 are viewed as stored values. L2 models a system with a hierarchically organized physical memory
consisting of main store and disk. Storage consists of a large collection of equal sized chunks, each of
which is an ordered set of words. Structure values are stored in trees of chunks, thus permitting sharing
of information. L2 models a strategy for storage reclamation based on a reference count mechanism.

The operational semantics of this model is presented in chapter 3.

In accordance with our proposal of designing by refinement, we must next demonstrate that the
L2 satisfies the specifications of L1. This is shown by proving that the two machines are
computationally equivalent. A formal definition of equivalence is developed in Chapter 4 and the proof

of the equivalence of L1 and L2 is presented.

The base language for the machine, which is the target language of the compiler for VIMVAL, is
described in Chapter 5. Essentially, the data flow graphs are such that when the computation of a
program terminates, the reference counting mechanism would guarantee that if a structure becomes
inaccessible in L1, the corresponding element in L2 would have reference count of zero and would thus

be reclaimed.

The thesis concludes with a discussion of the relationship between L2 and its physical realization,
and a brief list of related problems which are beyond the scope of this thesis and need further

investigation.

8 THE VAL INTERPRETIVE MACHINE §2

Chapter Two

The Val Interpretive Machine

The goal of the VIM project is the design and development of a computer system that supports
functional programming well. The architecture of the computer is based on data flow principles and the

data flow model of program execution is well suited for interpreting functional languages.

The functional language suuported by ViM is VIMVAL, which has evolved from VAL. VIMVAL is a
textual language and a brief description of it is given in the first section. VIMVAL programs are
compiled into programs in the base language, which consists of a set of data flow graph schemata.
Translation from VIMVAL to the base language is straightforward since each construct in VIMVAL

corresponds to a graph schema in the base language.

Programs in the base language are executed by interpreting the data flow instructions which are
the nodes in the data flow graph for the program. Section 2.3 gives an informal description of some of
the distinctive mechanisms used in ViM. The operational semantics of the abstract model L1 is
presented in section 2.4. The model is the specification of VIM and all implementations of VIM must

meet the specifications.

2.1 The VimVaL Language

The programming language for the VIM system is the VIMVAL, an applicative language which is a
revision and an cxtension of the Val programming language. The extensions include the addition of
stream-types. free variables. recursion and mutual recursion. and higher order functions. A type
inference mechanism guarantees type safcty even if most type declarations are absent. Type inference is

also used to provide polymorphic functions.

The data types of VIMVAaL fall into two classes — simple types and srrueture types. 'The simple
tvpes include the tamiliar types integer. real, boolean. character and null. The structure types include

array-types. record-types. distinguished unions, stream-types. and functions.

§2.1 THE VAL INTERPRETIVE MACHINE 9

Functions are first-class objects. They may be passed as arguments to and returned as results from
functions, and they may be built into data structures. The body of a function definition is an
expression. Evaluation of an expression yiclds a single value or a tuple of values. Forms of expressions
include the conditional expression, the tagcase expression, and the function invocation. There is no

form of expression for expressing iteration, use of recursion being preferred.

2.2 An Example Program in ViMVAL

A program in VIMVAL consists of one or more modules. Each module has a header specifying its
interface, type declarations, function definitions and one expression which constitutes the body of the
module. An example module is shown in Figures 1 and 2. Figure 1 illustrates how the user may define
a new data type List, which represents a list of integers. The example module defines three simple
operations on objects of type List. Figure 2 illustrates the use of streams in the language. The functions
car, cdr and cons defined by the example programs have the same meaning as in Lisp. The function
ListToStream creates a stream of integers when it is given a list of integers. SumQfStream sums up the

elements of a stream of integers,

A module written in VIMVAL defines a function that may be invoked from within another module
or by a user command to the system. A module may contain function definitions — these may be
invoked only from within the module unless they are explicitly exported by incorporating them into
data structures sent out as module results. The body of a module may use names that are not defined
bound to values by definitions in the module. These free names must be bound to other modules

before the module may be run.

Within a module, type declarations precede the function definitions and the body. Within a
function. the type declarations must precede the expression that constitutes the body of the function.

An array A ofintegers is declared as follows.
A : array|integers] = array(l, 100)

The clements of the array are initially undefined. select(A. i) returns the Fulue of the ith element of the
arrav. append(. fov) ereates aonew array which is identical o the array A except that the valuc ot the ith

clement of the new array is v,

10 THE VAL INTERPRETIVE MACHINE

§ 2.

module returns record[#ead, (ail, tuple : function]
type List = oncof [emptylist : nil;
atom : integer,
pair: record(first, second : List]]

function car (L: List) returns List;
tagcase L
tag emptylist : error;
tag atom . error;
tag pair: L.first,
endtag
endfun

function cdr (L: List) returns List;
tagcase L
tag emptylist . error;
tag atom : error;
tag pair . L.second,
endtag
endfun

function cons (L1, L2 : List) returns List;
make List[pair: record[first: L1, second : L2]]
endfun

record[head: car, tail:cdr, tuple:cons)
endmodule

Figure I: An example program in VIMVAL.

The definition of a record-type is of the form
type Pair = record(first, second . List]

Records of type Pairhave two ficlds named /eft and right. The operation

recordlfirst ; vl second : v2)

constructs a record where v/ and v2 arc of type /ist. Record ficlds are accessed by the select operation,

for instance
L. first

viclds the value of the /ey ficld of 7. which must be of type £is in which the wg is pair. Tagged unions

are used where difterent choices of representation are appropriate tor differcnt cases of a value. For

cxample, the type Listis a tagged union.

§2.2 THE VAL INTERPRETIVE MACHINE 11

function ListToStream (L: List. C: List) returns streamfinteger]
tagcase L
tag empiy : tagcase C
tag empty : stream(];
tag arom : affix(C, stream(]);
tag pair : ListToStream(car(L), cdr(L))
endtag
tag atom : affix(L. ListToStrean(can L), cons(cdr(L), C);
tag pair: ListToStream(car(L), cons(cdr(L), C))
endtag
endfun;

function SumOfStream(S:stream[integer]) returns integer;
if isempty(S) then 0
else first(5) + SumOfStream(rest(S))
endif

endfun;

Figure 2: Continuation of the example.

type List = oneof [emptylist : nil;
atom : integer;
pair : record [first, rest : List])

where the subtypes are distinguished by the tags emptylist, atom and pair. make[atom : 0] creates a
oneof in which the tag field is atom and the associated value is 0. A case expression is used to access

values of a oneof type :
tagcase L

tag emptylist : exprl;

tag atom : expr2;

tag pair: cxprl

endtag
A stream is a sequence of values, all of the same type, that are passcd in succession, one-at-a-time

between functions. The operations defined on streams arc []. first, rest, affix and empty. [] produces an
empty stream. first(S) produces the first element of the stream S, The result of rest(S) is the stream left
after remioving the first clement of S, affin(y, S) is the strcam whose first element is v and whose

remaining elements are the stream S, The result of empty(S) is truc if S iy an empty stream. false

otherwise.

12 THE VAL INTERPRETIVE MACHINE §23

2.3 The VAL Interpretive Machine — VimM

The abstract architecture of VIM uses data driven program execution. A program in the base
language consists of one or more functions, each represented by an acyclic, directed data flow graph.
The nodes of the graph are the instructions and the arcs between the nodes specify the data
dependencies among the instructions. Arcs connecting two nodes may be of two types — value arcs and
signal arcs. Values are carried on tokens along the directed value arcs of the graph. A function template
is an array of the instructions which belong to the data flow graph corresponding to a function
definition in VIMVAL. The size of the array is equal to the number of instructions in the data flow
graph and the indexing of the array starts from 1. Instructions are identified by their array indices

within a function template.

In VIM, iteration is modelled as recursion, and the chosen method for implementing recursion
avoids the use of cyclic graphs3. Instead, each function application uses a fresh copy of the graph
represented by the function template, the copy being called an activation template. An instruction is
enabled or ready for firing when a value is available on each input value arc, and a signal has been
received on each signal arc. Note that it may happen that some instructions in a template“ will receive
values but will never fire because no signal will ever arrive. In chapter 5 we give rules of graph
construction to ensure that this does not happen; otherwise, the storage reclamation scheme will be

unable to reclaim all possible structures, leading to degraded memory utilization.

A salient characteristic of VIM is that no arc is ever reused — at most one value or signal will be
sent from one instruction to another along a value or signal arc of an activation tempiate, respectively.
This is assured by the acyclic nature of the data flow graphs and by the property that each function
application produccs a new activation template. This is quite diffcrent from the data flow models used
by the U-Interpreter f2] or the Static Data Flow machine {14. 12]. In the static data flow machine, the
data flow graph docs not change during program cxccution. The creation of function activations
provides a very natural way of implementing recursion in VIM., VIM is similar to the static machine in

that instructions have special ficlds for holding the operand values. This is quite unlike the mechanism

3 .
fumer uses ¢y clic graphs o implement recursion in [37)

We shall use "lemplale” instead of “actination template” whenever there is no cause for conlusion.

§23 THE VAL INTERPRETIVE MACHINE 13

used in the U-interpreter where the value is stored in an associative store. Function application in ViM
expands the execution graph due to the creation of activation templates: the graph contracts whenever a
function terminates and the activation is discarded. In the U-interpreter function application results in

the creation of a new context, which is a part of the tags on values.

Another feature of VIM which distinguishes it from other data flow models such as the U-
interpreter or the Static data flow machine is the heap. VIM maintains a heap in which all objects except
scalars that enter into computation are held. Scalar values are stored in the operand fields of the
instructions, and passed around among the instructions on the tokens. The kinds of objects held by the
heap include function templates, closures, early-completion queues (described below) and data
structures (arrays, records, etc.). Each object on the heap has a unique identifier which permits its
selection from among all objects in the heap. Conceptually, the heap is a multi-rooted, directed acyclic

graph in which an arc signifies that the target object is a component of its superior.

A distinctive feature of VIM is the set of mechanisms designed to support aspects of the VIMVAL
language; in particular, these include support for function application and tail recursion and
computation on streams. These mechanisms are described informally below; a formal description of the

mechanisms will be presented in the next section.

2.3.1 Function Application

Function applications are made by the APPLY instruction, which requircs two operands — a
function closure for the function to be applied, and a data structure containing argument values. The
first clement of the closure is the uid of the function template which is to be applied: the rest of the
closure contains information defining the binding of any frece variables of the function. The APPLY
instruction creates an activation of the function by copying the function template. 1t then sends the
closure, the argument structure and the return link to the first operand of the first three instructions in
the activation template, respectively. The return link consists of the uid of the calling activation and the

uid of the destination list of APPLY.

Instructions of the activation are then executed according to the data flow firing rule untl the

RETURN nstruction is enabled. The RETURN instruction uses the return link to send the result of the

14 THE VAL INTERPRETIVE MACHINE §23.1

function invocation to the recipients. Due to the presence of early-completion structures the RETURN
instruction may not be the last instruction to execute in the activation. A separate RELEASE instruction

releases the storage occupied by the activation template.

The following notation will be used for drawing data flow graphs. The nodes of a function
template are instructions drawn as rectangular boxes. The value arcs connect from bottoms to tops of
instruction boxes and convey data values. The signal arcs convey signals that perform control functions
such as the release of function templates. The signal arcs connect from right sides to left sides of
instruction boxes. Numerals at the left corner of instruction boxes denote the index of the instruction in
the activation. A Greek letter next 10 an instruction box corresponds to the address of the instruction,
consisting of the uid of the activation template and the index of the instruction. An open box with two
or more values or signals is the merge operator. The graphs are arranged such that exactly one Value or
signal will arrive at a merge box. This is merely a notational convenience; in VIM, the signal count and

operand counts are set such that the merge occurs naturally.

Figure 3(a) shows a data flow graph which causes a function activation. A is the address of the
destination instruction of APPLY, which is sent to the third instruction of the activation created by
APPLY. Figure 3(b) shows a typical function template. The RETURN instruction receives the destination
list consisting of the address A; when it receives the result computed by the function body, it sends the
result to the instructions whose addresses are listed in the return link and sends a signal to a RELEASE

instruction.

In many cases the value returned by a function fis computed directly by a tail-recursive
application of f; as shown in Figure 4. In this situation the result to be returned by the caller is cxactly
that returned from the callee, and the reactivation of the caller is unncccssary. The TAILAPPLY
instruction in VIM implements this. Tt also causes a function activation but is different from APPLY: it
has an extra operand, a return link which it passes to the callee instcad of generating a new one; also, it

sends signals to the instructions whosc indices are in the destination list of the TAILAPPLY instruction.

Figure 4¢a) shows the TAILAPPEY instruction and illustrates the operands that it needs. Figure
4(b) shows a typical template corresponding o a tail-recursive tunction. The SWITCH instruction tikes

two operands: if its sccond operand, wheih must be booleun, is true then the first operand is sent to all

14

§2.3.1 THE VAL INTERPRETIVE MACHINE 15

(a) ; t argument record

APPLY

clsr

Function template

for F
(b) return link closure argument record
3 L: 2
function
body
A
A 4
RETURN —d RELEASE
value arc signal arc

Figure 3: (a) shows the data flow graph for function invocation (b) data flow graph of a typreal function template. A
is the address of the destination of APPI Y it is @ pair conmisting of the uid of the calling activation and the mdex of the
instruction in the template.

the destinations of SWITCH whose addresses are marked true in its destination fist and if it is false then
the first operand is sent to the destinations marked fatse. The function body determines if no further

applications are to occur, i which RIFTTURN s activated, otherwise the (AN APPLY instruction is cnabled.

16 THE VAL INTERPRETIVE MACHINE

§2.32

(a) return link

argument record

TAILAPPLY

Function template for F

(b) return link closure argument record

Function body

N
v v v v v 9 v v

SWITCH‘] SWITCH SWITCH SWITCH

Lo e

RETURN TAILAPPLY

Figure 4: (2) The TaiLAPPLY instruction. (b) Typical data low graph for the body of a tail-recursive function.

16

§23.2 THE VAL INTERPRETIVE MACHINE 17

2.3.2 Early-Completion Queues

In computations involving data structures, concurrency is increased if a data structure can be
made available for access before all the component values have been computed. If instructions are
required to receive all their operands before their application, as is usual for the execution of data flow

programs, this concurrency of creating and accessing a data structure is not possible.

In VIM there is a special facility called early-complction queue {abbreviated EC-queue) to permit
structures to be created before the values of all the components are available. Arrays will be used to
describe the early-completion mechanism informally (figure (5). The behaviour of structures containing
EC-queues is specified by the state-transition rules of the MKINARRAYEC, SELECT, APPEND and SET

instructions.

An EC-queue is a collection of addresses of instructions. MKINARRAYEC creates an array in which
all the elements are EC-queues, all initially empty. This shell of the structure is passed onto consumers
of the data structure, and also to producers which replace the EC-queues by values using the SET
instruction. If a SELECT tries to access an element which is an EC-qQueue, its address is added to the
EC-queue and the instruction is removed from the set of enabled instructions. Eventually, a SET
instruction replaces the EC-queue by a Value and adds the addresses of the instructions in the EC-queue
to the set of enabled instructions. When these instructions are attempted for execution again, they
would read the value, as desired. Structures with EC-queues provide a powerful mechanism for

synchronisation, and is an effective solution to the read-before-write problem [4].

Figure § illustrates the early-completion mechanism. Figure 5(a) shows a data flow graph which
creates an array of one element which is an empty EC-queue. The array is sent to two consumers whose
addresscs are a and 8. and to a set instruction y. Figure 5(b) shows how the contents of the array
changes when the instructions a. 8 and ¥ firc in sequence. If y fires first. then a and B can access the
value in the usual manner; the erstwhile presence of the FC-queue does not affect subsequent accesses

after it is replaced.

The early-completion mechanism makes it possible o allow function applications to begin
cxccution betore the values ot all their arguments have been computed. This is done by packazing the

arguments into a record ot Fe-clements. Similarly, the result values. if there are more than one. may he

18 THE VAL INTERPRETIVE MACHINE §23.2

returned as a structure of EC-clements so each may be available to the caller without waiting for all the

results to be evaluated.

1 1
@ | | 1 x 1 1
| MKINTARRAYEC ' ' \
L
A y: v ‘ } a v ‘ B . \ 4 ¢
SET SELECT "| SELECT

(b) A 4
‘r_t \a fires y fires d
‘ h N
CREIE S

Figure 5: (a) Data flow graph showing producer-consumer relationship for structure containing gc-queue. (b) The
contents of the array under the firing of a, 8 and y in sequence. First, the firing of a causes a to be added to the
EC-qucuc. which was empty. Next 8 attempts to access the element and also gets added 1o the EC-queue. Eventually
when x is computed. the sET fires. [t replaces the EC-Qucue with x and adds a and 8 to the sct of enabled instructions.

The semantics of arrays with ecqueucs is very similar to the semantics of /-structures, which were
proposed by Arvind and Thomas [5]. An I-structure is a lincar contiguous data structure: an clement of
an [-structure can be written into at most once. Reads occurring betore an clement has been written
mto are deferred untl the arrival of the value. The sicrures construct of Halstead [19] 1s also of similar

flavour.

§233 THLE VAL INTERPRETIVE MACHINE 19

2.3.3 Suspensions and Streams

Stream structures are an attractive language feature since they permit the producer and consumers
of the stream to operate concurrently. ViM provides a special mechanism for efficient implementation
of streams. A strcam is represcnted in VIM as a chain of records of two elements, each of which is an
EC-queue; the first element contains an element of the stream and the sccond element is a pointer to the
rest of the stream. In a completely data driven evaluation of a stream, the producer would proceed at its
own pace and generate the values to construct the stream. The consumer process accesses the elements

of the stream at its own rate, waiting whenever it encounters an EC-queue until the value is supplied.

The problem with this scheme is that it allows the producer to get arbitrarily far ahead of the
consumer process. If the consumer needs only a part of stream then substantial computation performed
by the producer may wasted. In particular, if streams are evaluated in a data driven manner, then
infinite streams cannot be supported on VIM. So streams are produced in a data driven manner,

allowing the uscr to write programs in VIM VAL which deal with potentially infinite streams.

VIM uses suspensions to implement demand-driven evaluation of streams. Suspension
mechanisms have been used to implement infinite data structures by Hendecrson [20], Friedman and
Wise [16), etc. In VIM. a suspension contains the address of an instruction, consisting of the uid of the
activation template of the instruction and its index in the template. When a SELECT instruction tries to
access an element which is a suspension, the suspension is replaced by an EC-queue containing the
address of the SELECT and a signal is sent to the instruction whose address is found in the suspension.
The signalled instruction eventually causes the EC-queue to be eventually replaced by a value and the

SELECT instruction gets the value it was trying to access.

Figure 6(a) shows the creation of an array whose only eicment is an EC-quecue, If SETSUSP fires
before SELECT. it finds an empty 1C-queuc and replaces it by a suspension. When STI ECT cxccutes, the
suspension is replaced by an EC-queue containing the address 8 of SEIECT and a signal is sent to the
instruction indicated in the suspension. If SFEECT fires first. it is enqueucd in the FC-gucue: SETSUSP
cxecures. finds a non-empty FC-gueue. and simiply sends a signal. The graph is arranged such that the
arrival of the signal imtiutes a computation that ultimately cnubles a SET instruction. The SET

instruction replaces the te-queuc in this array by avalue and services the BC-queue by adding the set of

20 THE VAL INTERPRETIVE MACHINE §233

instructions whose addresses are in the EC-queue 1o the set of enabled instructions.

(a)
1 1
! ! 1 & 1
MKINTARRAYEC ’ l '
L
4 o Y V¥ g: —Y v
SETSUSP SELECT
(b)

A a fires
1 > Y
1

causes a signal to

4 I :——(> I A be sent to (44> k)

Figure 6: (a) Creation of an array with a suspension element. (b) Effect of firing of st +¢T and SETSUSP instructions in
different orders.

I'he use of suspensions for gencrating the clements of a stream is shown in Figure 7. The records

§233 THE VAL INTERPRETIVE MACHINE 21

which constitute the stream have two fields which arc named head and tail. The stream consists of
successive integers. Figure 7(a) shows an initial stream whose first element is 1 and the tail component
is a suspension. When a consumer a tries to access the tail of the stream, the suspension is replaced by
an EC-queue containing the address of the consumer (7(b)). A signal is sent to the suspended
instruction which causes the EC-quecue to be replaced by new record whose head component contains
the next element of the stream and the tail component is a suspension (7(c)). The consumer which tries
to access the rest of this stream in turn replaces the suspension by an EC-qucue. If there are no
consumers which have pointers to the beginning of the stream then the element at the front may be
abandoned (7(d)). Suspensions can also be used to advantage for evaluating the elements of arrays in a
demand driven manner. The main benefit in doing this would be that array elements which are never

read need not be computed, thus reducing the amount of computation performed.

The rest of the chapter gives a mathematical specification of VIM. The operational semantics of
the instructions of VIM are presented. The specification will be called L1 in this thesis. L1 will serve as
the basis for the development of an operational model for ViM in which storage is modelled; that model

will called L2.

2.4 Operational Model for Vim - L1

The ViM interpreter has two components : a function /nterp and State. Interp takes two
arguments — a State and an enabled instruction (defined later) and produces a new State of the
machine. The following notation will be used in the thesis. Sets are denoted by bold font, elcments of
scts (which may themselves be sets) are denoted by italicised letters and names are indicated in a

distinctive font. Thus, This is a set, This € This and This is a name.

The actions of the interpreter’are described by state transition rules. A programming language-ish
description is used to specify the rules for mapping a sct to another set. Mathematical notations such as

sct unions and differences are used wherever convenient. A rule Fis expressed as follows:

Define FOA (L ov) =
... bady of the rule

The definttions may be recursive,

22 THE VAL INTERPRETIVE MACIIINE §24

(a) T (b) T

[| I |
head tail head tail
susp ecq
producer consumer
© T (d) ’
!
r 1 TTTTTTTTT
head tail head tail
l
(1)
l] , r 1
head tail head tail
susp ecq
producer consumer

Figure 7: Demand-driven generation of stream elements. (a) Stream element: the producer is awaiting a demand. (b)
The consumer demands the next stream element. (c) The producer generates one stream element and suspends itself.
(d) The consumer abandons the previous element and demands another.

VIM = </nterp. State> where
Interp : State X EIS — State
State = Act X H X EIS,
Act = U — Function
H=U—=ST
U = the set of all unique identificrs,
EIS = the set ot all enubled instructions, described later.

Act is the set of all activations: an activation is created by the imvocation of a function. The heap

H contains all structire values and function templates. carly-completion queues (discussed later),

Al

§24 THE VAL INTERPRETIVE MACHINE

23

address of
enabled
instruction

<_

Set of
enabled
instructions

EIS

Set of
Activations

Act

result values

—»| Interpreter /nterp

Structure values

Figure 8: The abstract Vim architecture

function closures and the instructions. Each element on the heap has a unique identifier (uid). Only

scalar values and uids are sent on tokens from one data flow actor to another; data structures always

reside on the heap.

Scalar values are tagged.

Scalars = Integers U Reals U Booleans U Character U Null
Integers = {int} X ({undef} U the set of all integers)

Reals = {real} X ({undef} U the sct of all reals)

Booleans = {bool} X ({/ruc. faise, undef})

Character = {char} X ({undef} U the sct of characters in the machine.)

Null = {null} X {nil, undef}

The sct ST describes the elements which reside on the heap. Elements of different types are

distinguished by their tags.

24 THE VAL INTERPRETIVE MACHINE §24

ST = ({arr}X(ArrayU{undef})) U ({fn} XFunction)
U ({ecq X ECQ) U ({inst} XInstruction) U {dests}X Dests
U ({clsr}XClsr)

Array = {Integers — (U U Scalars U SUSP], Integers being the set of integers.

Function = [N — Instruction], N being the set of natural numbers.

An early-completion element (EC-element)is a tuple (u, {) where u is the uid of a function
activation and i is the index of an instruction in the activation. An early-completion queue is a

collection of such EC-elcments.
ECE = UXN.

Thus (u, k) € ECE where u corresponds to the uid of a function activation and N is the index of

the instruction in the activation template.

The EC-queue is a collection of elements of ECE. All EC-queues are members of the set ECQ

which is defined below. The notation KN) denotes the powerset of the set N.
ECQ = ?(ECE)

A suspension is a member of the set SUSP specified by :
SUSP = {susp} X (UXN)

An instruction is a seven-tuple ;

Instruction = OPS X (U U Secalars)’ X N X N X U
OPS is the set of opcodes. the next threc elements of the tuple refer to the operands. the fifth and sixth
clements of the tuple are the operand count and the signal count and the last clement is the unique
identificr of the list of destinations. Fach destination of an instruction is the index of the instruction to
which the result is to be sent. The result may be a value or a signal. For / € I. the elements of the tuple
will be denoted by the " notation. Thus, /0pcode is the first element of the tuple, 70p1. 1.0p2 and
1.0p3 refer to the sccond through fourth clements of the tuple, L.opcnt, /sigent and /.destlist

denote the fitth hrough seventh elements of the wple.

OPS = {1I\DDISUB, . MKINTAPRAY, MRINTARRAYIC, SETECT. APPEND, SET.
SETSUSP SWITCH. . APPEY.TAIAPPLY. RETURN, RE EASL}

A destination of an instruction consists of the the address of the instruction to which the result is

§24 THE VAL INTERPRETIVE MACHINE 25

to be sent, and the operand which is to receive the result value. Opt, 0p2 and 0p3 denote the first,
second and third operand ficlds in an instruction, respectively. If the result is a signal then no operand
number is required. The destination also specifies if the result is to be sent unconditionally or
conditionally. For all instructions except for SWITCH, the results of instructions (both values and
signals) arc sent to the destinations unconditionally.

Dests = D)
D = {unconditional, true, false} X N X {op!, op2, op3, signal}

Clsr is the set of closure records. The operator (APPLY, TAILAPPLY, STREAM-APPLY) which cause a
function activation take a closure as the first argument. The first component of the closure is the uid of
a function template; that uid corresponds to the function which is to be called.

Clsr = [({FunctionToApply} U M) — (U U Scalars]
where C(FunctionToApply) € U such that H(u) € ({fn}XFunction).

An enabled instruction is an element of EI C U X N. An instruction / becomes enabled when
lopent and /sigent both become zero. The set of enabled instructions describes the collection of
instructions which are ready to executed because ihey have received an operand on each of the operand
arcs and a signal on each of the signal arcs. The set of enabled instructions is:

EIS = HEI)

The function Choice selects an element from a set of enabled instruction. The instruction is then

interpreted by the function /nterp. Thus Choice is our scheduler:
-Choice . EIS — EI

Functions AddToHeap and DeleteFromHeap add and delete elements from the heap. AddToAct

and DeleteFromAct which
AddToHeap : H X U X ST — H

AddToHeap(H. u. v) produccs a new function & such that :
(Vu#ulHW)= Hu)))and Hwy = V

Deierel ramHeap : H X U X ST — H DeleictromHeap I, u. 1) produces a new heap H such

that the domain of /170y the domain of H without the clement w.
A such that(V w' = w[H () = H))

26 THE VAL INTERPRETIVE MACHINE §24

AddToHeap(H, u, v) creates a new heap which contains, in addition to the associations between
uids and objects in H, a new association between w and v. DeleteFromHeap(H, u, v) creates a new heap

which does not contain the uid u in its domain.

Similarly, AddToAct and DeleteFromAct create new activation sets by adding an activation to and

deleting an activation from the current set of activations.

AddToAct: Act X U X Function — Act
DeleteFromAct : Act X U X Function — Act

Function SendResult is used to dispatch the result of an instruction / to a destination instruction.
SendResult models the following actions : the result is stored in the appropriate operand field of the
destination instruction, and the operand count and signal count fields are decremented accordingly.
Since we are dealing with a mathematical representation of instructions and function activations, this
updating is modelled by producing new values that reflect the changes. Thus, [is the destination
instruction after it receives the result, F 4’ is the new new value of F4 with the updated I’ and Act’ is the

same as Act except that the ith instruction of activation FA has received some operand (or signal).
SendResult - Act X EIS X U X D X [[{value} X (U U Scalars)] U {signal}]

— Act X EIS
define SendResult(Act, EIS, u Fa (de, i, opnum), result) =
let
FA = Act(u.) % FA is an activation template.
I = FA(D % 1 is the ith instruction in the activation template.
in

AddToAcK DeleteFromAct(Act, Up g FA), Ug g FA),
if (r.opent = 0) A (7'sigcnt = 0) then £/S U {(“FA' 0}
else £1S
endif
endlet
where ,
FAQ) = FAG). j#i
=T, j=1i

§ 2.4 THE VAL INTERPRETIVE MACHINE 27

and ' € Instruction,
r.opcode = /opcode,
r.opt = if opnum # op1 then /0p1 clse ¢ where result = (Value, 1)
r.op2 = if opnum = 0p2 then /.0p2 else ¢ where result = (VAlue, ()
r.op3 = if opnum = 0p3 then 1.0p3 clse r where result = (Value, 1)
r.opent = if opnum € {0p1.0p2. 0p3} then /.0pent clse J.opent - 1
I sigent = if opnum = signal then /.sigent-1 else /sigent
I destlist = /destlist

The function SendToDestinations sends the result of an instruction to all the destinations of the

instruction. It is a simple tail-recursive function which uses SendResult repeatedly to send the value or

signal to the destination.

SendToDestinations : Act X EIS X U X ?(D X ([{value} X (U U Scalars)] U {signal})
— Act X EIS

define SendToDestinations (Act, EIS, u, DestValue) =
if DestValue = {} then Act, EIS
else
let ((dc, d. opnum), V) = e where e € DestValue
in
if V' = signal then
SendToDestinations
(SendResul(Act, EIS, u, (dc, d, signal), signal), DestValue — {e})
else
SendToDestinations
(SendResulf Act, EIS, u,{dc, d, opnum), v), DestValue — {e})
endif
endlet
endif

Exccution of a program on VIM is initiated by the invocation of a function in the base language.

The exccution terminates when there are no more cnabled insrtuctions. The execution loop may be

summed as :
define Muinl.vop (State) =

let (Acr, H, E1S) = State

in
if 1’15 = {} then halt
clse Maotl vopd Inrerp Stare, Choic F1S)))
endif

endlet

28 THE VAL INTERPRETIVE MACHINE §24

The interpreter is defined by the function /nterp and Choice is a function which sclects an element
from the sct of enabled instructions. This instruction is interpreted by /nterp in the context of the
current state of the machine: the result of the exccution of the instruction is a new state. Choice is the
scheduler in VIM since it makes the choice of the instruction which is to be executed. Choic EIS)

where £/S5 € EIS is the address of an enabled instruction.

Interp : State X ChoicEIS) — State
where State = Act X H X EIS.

It is pertinent to point out that VIM is a non-deterministic state transition system; any one of the
enabled instructions could be selected for execution and the final result of the computation is

independent of the order of execution of the enabled instructions.

The following notation is used to denote that the new state (Act’, H', EIS") is produced when the

instruction eis interpreted by Interp in the state (Act, H, EIS).
(Act, H, EIS) V= (Act, H, EIS) on e.

Now we can define the interpreter by specifying the state transitions for each of the opcodes. The
state transitions for some of the more interesting instructions will be presented below; these serve as the
model for specifying the transition rules for the rest of the instruction set. The body of /nterp is a big
conditional statement; the branches of the conditional are based on the opcodes of the instruction being
executed. Some general comments are in order here. The result of an instruction is sent to its indicated

destinations unconditionally, unless it is a SWITCH instruction.

deﬁnle tlmerp(.S'tate, (uFA. k“)) =
e
FA = Acl{ug.). % the function activation
I'= FA(kg,) % the Instruction
{(dc,. d|. opnum)), (dc,. dy, opnum,). ... (dc,. d , opnum)} = ldestlist
% the destinations of the instruction I.
in
if /.0pcode = SET then ...
clscif /opcode = ArpLY then ...

endif
endict

The specification of the state transition rules for some of the interesting and representative

§24 THE VAL INTERPRETIVE MACHINE 29

instructions of VIM will be the subject of the rest of this chapter. Each conditional statement of the
form "if /opcode = ... then " is an arm of the big conditional statement in /nterp above. Thus, the
names Act, H, EIS, Up e Kpyp (de. d), opnum,), ..., (dc, dn, opnum) will have the same bindings as

indicated in the body of Interp shown above,

Let us begin with the simple instruction IADD which adds two integers. The operands are read
from the operand fields of the instruction and the result of the addition is sum. This value is sent to the

listed destinations. Observe that the heap remains unchanged.

if /.0pcode = IADD then
let
(int, m) = Lop1,
(int, n) = Lop2,
sum = m+n,
Act EIS =
SendToDestinations(Act. EIS, up ., {((unconditional, d,, opnum,), a,), ...,
((unconditional, d,. opnum), & n)})
in
Act',
H,
EIS-{(ug, kg)}
endlet
endif

where a € {(value, sum), sighal}

The actions of the interpreter for instructions such as ISUB. IMUL, IDIV, IGT, ILT, etc. are very

similar and will not be described.

The instructions which operate on structures produce a new heap. The operations on one type of
structures — arrays — are described here; the actions of /nrerp for instructions which operate on record
and oneof types are very similar and arc not presented. The array instructions of interest which are

discussed below are : MKARRAYINT. MKARRAYINTEC. SELECT. APPEND. SET and SETSUSP.

MKARRAYINT takes two integer operands (s and ») and adds an array with bounds (m, n) to the
heap. All the elements of the array are undefined. The uid of the new array is sent as the resuit to the

destinations. along with signals if necessary.

30 THE VAL INTERPRETIVE MACHINE §24

if /.0pcode = MKINTARRAY then

let
(int. p) = lop1,
(int, g) = r0p2, % p and q are integers, p < g.
u, = anew uid in U,
Act' EIS =
SendToDestinations(Act, EIS. Uy {{{tunconditional, d,. opnum,), a
((unconditional, dn, opnum), an)})
in
Act,

AddToHeap(H, u, (@rr, (Ip, g) — undef))),
EIS — {(uF , kFA)}
endlet
endif
where a. is either (Value, u) or signal.
The instruction MKINTARRAYEC works quite similarly except that the elements of the array are all

early-completion queues, all empty.

The APPEND instruction takes three operands — an array A, an index / and a value x. [t creates a
new array A’ which is identical to A except that the / th element of 4’ has value x. It is important to be
very careful while performing APPEND operations on arréys with EC-clements. If some e¢lements in A
are EC-elements then the corresponding elements of A’ would also be EC-clements. When a SET
instructions replaces an EC-element in A by a value, this value must be forwarded to the corresponding
elements in structures which were created by APPEND on A. There may be a cascade of value-
forwarding precipitated by this since the values may also have to be forwarded to arrays created by
APPENDS on structures derived from A. Since suspensions are potential sites for EC-queues, APPEND
operations on arrays containing suspensions introduces a similar need for Value forwarding. This thesis
adopts a simple alternative to the value-forwarding discipline outlined above. An APPEND instruction is
exccuted provided that there are no EC-clements or suspensions in the array on which the operation is to
be performed. If there is any EC-clement in the array then there is no change in the state of the
machine: the APPEND instruction remains in the set of cnabled instructions and will be sclected for

execution at some future tume.

30

§24 THE VAL INTERPRETIVE MACHINE 31

if /Jopcode = APPEND then
let
u=lopl,
arr. A) = H(u),
(int,) = iop2,
x = 1.op3,
«' = new uid from U
Act’ EIS =
SendToDestinations(Act. EIS. u. , {((unconditional, dl’ opnuml), a),
((unconditional, d , opnum), a)})
in
if {i: A7) € U X {({ecq} X ECQ) U ({susp} X SUSP)}| = 0 then
Acl’,
AddToHeap(H, u', A’),
EIS — {(uFA, kFA)}
else
Act,
H,
EIS
endif
endlet
where A4'(j) = A()) J#Ei

X J=i

and where a,is either (value, u") or signal.

SELECT requires two operands — the uid of an array A and an integer /, and in the simplest case
(the element being accessed is neither an early-completion structure nor a suspension) returns the value
associated with the element of A that has index .. The behaviour of the interpreter is more complex
when such is not the case. The state transition is specified below, and the discussion on early-
completion elements and suspensions follows. The special value est is used for indicating the end of a

stream.

32 THE VAL INTERPRETIVE MACHINE §24

if /opcode = SELECT then

let

u = 1op1),

(arr. 4) = H(u), % (u p @17, 4)) EH
(int,) = Lop2, % | must be an integer
= A(D)

in
if 1 = (u, (ecq, Q) then
Act,
AddToHeap(DeleteFromHeap(H, u, (ecq, on. u, (ecq, ou {(“FA' kFA)})))
EIS — {(u“, kFA)}
elsif 1 = (u, (Susp, (v, k))) then
let Act', EIS = SendResulf(Act, EIS, u', (unconditional, £, signal), signal))
in
Act’,
AddToHeap(DeleteFromHeap(H, u, (susp, u', k")), U, (ecq, Up e kFA»’
EIS — {(uFA, kFA)}
endlet
else
let x =
Acl EIS =
SendToDestinations(Act, EIS, u ,, {((unconditional, d,, opnum,), @), ..,
((unconditional, 4, opnum), a)})
. n
in
Act,
H9
EIS — {(“FA' kFA)}
endlet
endif

where a; = either (value, x) or signal.

§24 THE VAL INTERPRETIVE MACHINE 33

if /.0pcode = SET then

let

u, = lopt,

(@arr, 4) = H(uy). % (u, @rr, 4) € H

(int,) = lop2, % | must be an integer

v = 1.0p3, % v € Scalars U U

% where the uids must be of records, arrays, oneofs.

= A(P), %t = (u,@cq, Q)

Acl EIS =

SendToDestinations(Act. EIS. Up g {((unconditional. d,, opnum,), a,), ...
((unconditional, d, opnum), an)})
in
Act, % the new set of activations.
AddToHeap(DeleteFromHeap(H, Uy, (arr, 4)). Uy, (arr, 4)),
% the new heap reflects the fact that the ith element
% of the array with utd u has value v.

(EIS - {(“FA‘ kFA)}) U Q
% The new E[S’includes the instructions whose addresses were in the
% EC-queue. (u 4 K ,) IS the address of the current instruction,
% which is removed from the set of enabled instructions. When the value
% becomes available, this instruction will be added back to the set of enabled
% instructions.

endlet

endif

where A(S) = A()), J#EI

The use of EC-elements in data structures permits the construction of a data structure before the
values of all the components have been computed. Suspensions allow demand driven computation. A
suspension is a tagged triple — a tag SUSP, the uid u of some function activation, and i the index of an
instruction in the activation. The instruction SETSUSP takes three arguments : an array 4. an integer v,
which is an index of the array, and anothcr integer v, which is the index of an instruction in the
template of the SETSUSP instruction. SETSUSP scts the vlth elemcent of the array to a suspension of the
form (SUSP. ;.. vy) where ;. is the uid of the activation template of the SETSUSP. When a SELFCT
tries to access the element, the suspension is replaced by an EC-queue which contains the address of the
SELECT and a signal s sent to the instruction whose address is found in the suspension. The gruph is so
arranged that the arrival of the signal enables the instruction (U g v which initiates the computation

of the value of the clement.

33

34 THE VAL INTERPRETIVE MACHINE

if Jopcode = SETSUSP then

let
u, = 1opf,
(@rr. 4) = H(u). % (u,@rr, A))€H
(int, v)) = 7.0p2 % (v, must be an integer
(int. v,) = [Op3 % (v, must be an integer
(«'.(ecq, Q) = A() % A(i) must be an early-completion queue.
Act' EIS" =
SendToDestinations(Act. EIS, Up {(tunconditional, 4,. signal), signal), ...,
((unconditional, 4, signal), signal)})
in
if |Q = 0 then
% put a suspension in the ith element of the structure with uid u r
Act,

AddToHeap DeleteFromHeap(H, up, (arr, 4), uy, (arr, A7),
ELS - {(“FA’ kFA)}

where 4’()) = (if j# v, then A()) else (susp, (um, v2))

else
% just send a signal to the instruction whose index is vy

let Acr”, EIS” =
SendResull(Act', EIS", up,, (unconditional, Vye signal), signal)

in
Act”,
H,
EIS” - {(“FA' kFA)}

endlet

endif
endlet
endif

The SWITCH operator is used to implement the conditional graph schema. It takes two operands

— a value v, and a boolean 5. The condition ficlds of the destinations of the SWITCH operator must

have values either true or false. If bis true, then v, is sent to the destinations which are marked true,

otherwise they are sent to the destinations marked false. The destinations (true, d,. opnum), ..
(true, drp' ()pnum’p) denote the destinations to which the first operand must be sent if the second

operand is truc; otherwise the first operand is sent to the destinations (false, dﬂ. opnwnﬂ), ... (false,

dﬁ{. upnuqu).

RE)

§24 THE VAL INTERPRETIVE MACHINE 35

if
lopcade = SWITCH then
let
u, = lopi,
(bool, b) = lop2, % b must be a boolean value.
(true, d{l, opnum”). .. (tTue, d[p. opnum),
(false. 4 ,. opnun). .. (false. d., opnuqu) = ldestlist,
Act, EIS = !
if & then
SendToDestinations(Act, EIS, Up g {((dcu, d”, opnum”), aﬂ),
((dc(p, d’p, opnumlp), a’p)})
else
SendToDestinations(Act, EIS, Up e {((dcﬂ, dﬂ, opnumﬂ), aﬂ),
. ((dch’ dfq’ op nuqu) ’ afzr) b
endif
in
Act,
H,
EIS - {(ug . ke)}
endlet
endif

The SWITCH-SIGNAL operator is very similar. It takes a boolean operand; if the operand has true
value then it sends signals to the destinations tagged true, otherwise it sends signals to the destinations

marked false.

The SIGNAL instruction requires no operands; it becomes enabled when it receives a signal on
each of the signal arcs incident on it. The result of executing the instruction is a signal which is sent to
the destinations listed in the dests field of the instruction. The state transition rule for the SIGNAL

instruction is very simple and will not be specified here.

5

36 THE VAL INTERPRETIVE MACHINE §24

if .opcode = APPLY then

let
(clsr, O) = H(lop1), % (up €lsT, C)) € H
uy, = 1.0op2, % (u, rec, R)) € H

F= H(C(FungtionToApply)), % (u, N, F)) € H, u = CFunctionToApply)
¥ = anew uid from U,
Act = AddToAcKAct, u', F),

Act” EIS" =
SendResult
(SendResult
(SendResult
(Act, EIS, v, (unconditional, 1, op1), (value, u)), % function closure.
v’ (unconditional. 2. op2), (value, Us)). % arguments
u', (unconditional, 3, op1), (value, /.destlist)) % return link.
in
Act”, H, EIS - {(uFA, kFA)}
endlet
endif.

The function closure, argument structure and the return link are sent to the first operand of the
first, second and third instruction in the activation template of the called function. A RETURN
instruction in the called function will send the result of the function application to the destinations of

APPLY.

The TAILAPPLY instruction is used whenever tail-recursive function application is performed. It
sends the closure, argument structure and the return link to the first operand of the first three

instructions in the called activation. It then sends a signal to each of its destinations.

§24 THE VAL INTFRPRETIVE MACHINE 37

if /0pcode = TAILAPPLY then

let
(clsr. ©) = H(lop1). % (u, €lsr, C)) € H, the closure
u, = 10p2, % (u,, (T€C. R)) € H, the arguments
u, = lop3. % (u (dests, Destinations) € H, the return link

F= H(C(FunctwnToApplg))
% (u, fn, F)) € H, up = CfunctionToApply)
u = anew uid from U,
Act = AddToAc{ Act, u', F),
Act”, EIS =
SendResult
(SendResult
(SendResult
(Act, EIS, u' (unconditional 1,0p1). (value, u)), % function closure,
.(unconditional. 2. 0p2). (value, u,)). % arguments
u', (um:onattwnal 3,0p1), (Value, u3)) % return link.

o, EIS” =
SendToDestinations(Act. EIS. u £ {((unconditional, 4., signal), signal), ...
((unconditional, 4, signal), smgnab})
in
Act™, H, EIS” - {(ug ., kg)}
endlet
endif

STREAM-TAILAPPLY is another instruction for function application and is used for tail-recursive
evaluation of streams. It takes three arguments — a function closure which contains the stream
producer, a record which will contain the next element of the stream, and the argument record. Its
semantics are very similar to that of TAILAPPLY and it sends signals to the destinations listed in its deSts
field. The compilation of functions which generate streams and use this instruction is discussed in

chapter 5.

The RETURN instruction is responsible for sending the result of a function activation to the caller.
It requires two operands — a return link and a value. It constructs the addresses of the instructions
which arc to receive the result of the function invocation from the rcturn link and sends the value to
cach of those destinations. In addition, it sends signals to those instructions in its own activation whose

indices appear in the destination list of RETURN.

38 THE VAL INTERPRETIVE MACHINE §24

ifopcode = RETURN then
let
{dc'. & opnum’). .. (dc" d'p. opnump)} = H(lopt),
% the list of destinations to which the value computed
% by the function must be forwarded
u, = 1.0p2, % the value to be returned
Act'| EIS, =
SendToDestinations(Act, EIS, Up g {({unconditional. dl‘ signal), signal), ...,
((unconditional, d, signal), signal)}),
Act”, EIS" =
SendToDestinations(Act, EIS, Up g {{((unconditional, d,, opnum’), a,), ...,
((unconditional, dp, opnum'p), ap)})

in
Act”,
H,
EIS” - {(uFA, kFA)}
endlet
endif

The data flow graph of a function is arranged so that RELEASE is the last instruction to be enabled
and executed in the activation. The effect of the instruction is to remove the activation it belongs to
from the set of current activations in the system. In a "real" system, this would amount to the release of

the storage occupied by the activation template to the pool of free storage in the system.

if opcode = RELEASE then
DeleteFromAct(Act,u o FA)

H,
EIS - {(ug, kFA)}
where FA is the activation template associated with u Fa
endif
2.5 Summary

In the preceding section a formal specification of VIM was given by dcfining its operational
semantics. A brief description of the functional language VIMVAL was given, and some cxample
programs illustrated some featurcs of the language. Some of the key featurces of ViM were described
informally. Next. we developed a formal model of the abstract machine for VIM. An interpreter for
exccuting the data flow instructions was defined. The aperational semuntics of the data flow
instructions of the machine were presented. The state wansition rules for operations on carly-

completion structures and suspensions were formalised.

18

»

This operational modcl iscrplad T 199 el s the specification of ViM. The next chapter
«mmemnmmnmofummmmukmﬂndmmamw

“""WMM&Q&!&? !aﬂenmaq()

3ge10ie Seoy g bandnsme ellnsidowrsd & svad o bssokivos o maleve ILgmod WV edT

Crnmem sl erh oire Aelb sl moT Mgemd @ pousondlel b s ?ans VIOISIR- fHEn 10 §odeiznus

sty pods bevom dinmbonog 916 avdo *gsm}z s wm zael mmzia il 33m2 bpsmab nogy

PIE FAD sfw T 210800 (3w gial 21682 asm oAl of soege *.m’i 318515 05 A2ib 9l g1 yomem
2200 1A Ak s mofl CYomsm niso sl 5af inguod mmrmcﬁm a0 o) e bouesd &t 1 .al

bt o bas ooilsIugmoo ol vd benips

geerly 2l 3o senquug o9 0H daib sy is esiz aih xfé bsmovog 2 masye ol Yo 208qe e291bbe 98T
oflt grigenent 1o enousatigmios o griblos st sic Sllﬂs’ﬁ i daib agml yhassitue s 3l homueas zi 3
bebivib & ooeqe 2zwibbe o o0k niam o bise %2ib s nmm*xi ma&mm ss.sb siasfiont oT ,mﬂa ek

vib a®it0 sage wnbbs ol rlebinw cuouginon Yo Joe 8 & ss&r.z 5 915w 2988 boaiz leups ol

01 g8 6 f A slaliumm Mot of adsuss o (e i opel d s sgsq ars] 2886 ,ﬂu:ﬁ ni beae

:

sty v Desassiyt 0%ids AE ROUSINGS 5869 & aaiw e sdi al zi wﬁsmsmgsﬁ sgmmm aubn

(oUW OUELTInes 3 od DeHudsT e e dunw zmzéc CIOMSm miem ol 2dguord E oouslugmon

vino i goahes 1o sag beisiz e diw aoiflnos HAT .agsy shee s visde yad? sunie ar Mignotd 26 o2l

oM nism sl I8N deid ey mott 2vsido bazamein

Anuds 2 dedn oo toleng w105 oism e deib 16T bnd noliesolis :rgme;z G0 now aesd arll 117 gl
iAokt nuro suidaw B et dpwds dued abiwow S0-RE M0 1enos o) boivogxn 4 b ogsg lsme s &

Aty

wrhy oau oot slgitium weaolis o neaesennu a..é u ligme s 20eq ot o A

RACHL NG O pw e Bl rmmwm, iﬁmﬁﬁaﬁcnm w*m ng duis 2ndd
g duedtne donds 10 Tadto o leom o sissofle ol 2u ewolls MV mt o 2169 Homp od¥

il oorl no gatleer: Vado an asthd pouanmere lstani o oude 9560 920 ale Yo s ¥ JGna e
il i Blgoonart g Gedaciy Sinm o edaseiees 1 a6l W Dige ek davido il oo Ltoaastut a

GO s MElL L L g

o 39

LN 2 ainiy LT TG BRI Gl £ TR e onb ol vomd detl

40 OPIRATIONAL SEMANTICS OF VIM WITH STORAGE §3

Chapter Three

Operational Semantics of Vim with Storage

The VIM computer system is envisioned to have a hierarchically organized physical storage
consisting of main-memory and a disk. Information is brought from the disk into the main memory
upon demand. Since the system has finite main storage, objects are periodically moved from the main
memory to the disk to create free space in the main store into which objects from the disk are brought
in. It is desired that the only information brought into the main memory from the disk are those

required by the computation and no other.

The address space of the system is governed by the size of the disk. For the purpose of this thesis
it is assumed that a sufficiently large disk is available, thus avoiding the complications of managing the
disk space. To facilitate data transfers between the disk and the main store, the address space is divided
into equal sized pages, where a page is a set of contiguous words in the address space. Objects are
stored in these pages. If the page size is large. it may be necessary to pack multiple objects in a page to
reduce internal fragmentation. It is likely that when a page containing an object referenced by the
computation is brought into main memory, objects which are not required by the computation would
also be brought in since they share the same page. This conflicts with our stated goal of reading in only

referenced objects from the disk into the main memory.

In VIM the basic unit of storage allocation and for disk «» main store transfer is a chunk. A chunk
is a small page, and is expected to consist of 24-32 words. Each chunk has a unique chunk identifier
(cid). Since the pages are small, it is unnccessary to allocate multiple objects on the same chunk.

Objects which are larger than one chunk are stored in data structures made of chunks,

The small page size in VIM allows us to allocate at most one object per chunk without causing
significant wastage of storage space due o internal fragmentation. When an object residing on the disk
is retercnced. only that ubyect (or part of the object, i it consists of many chunks) is brought into the

disk. Since furge data structures are composed of many chunks. choice of a suitable data structure

40

§3 OPERATIONAL SEMANTICS OF VIM WITH STORAGE 41

organization should permit large amount of sharing of information; this sharing is essential for efficient

execution of structure operations 1n an applicative environment.

In L1 we saw that data structures reside on the heap and only the pointers to the structures (their
uids) are passed among instructions. In this chapter the operational semantics of an extension of the
model L1 is presented. The extended model, called 1.2, adds the notion of storage to L1 — data
structures {arrays, records and oneofs) are stored in chunks. The storage representation of arrays in
terms of chunks will be described; the concepts presented may be extended to the storage

representation of records and oneofs.

The modelling of arrays as stored values makes it necessary for us to consider the issues of storage
allocation and reclamation. The unit of storage allocation in L2 is a chunk. For the purpose of this
thesis it is assumed that there is a large pool of free chunks (which are not part of any data structure).
The allocation of a storage unit amounts to selecting a cid from this free pool and using the storage
corresponding to that cid. In L2, chunks which are modeclled as being in the main store are tagged
accessible and the chunks which coorespond to those resident in the disk are tagged inaccessible.
[t is assumed that the free cid selected corresponds to a chunk whose storage part is in the main memory

(Le the chunk is tagged accessible).

A program executing in L2 exhibits dynamically changing storage requirements during the course
of the computation. This variable demand arises from the fact that data structures are created and
discarded (in the sense that they are not used any more) during program execution. The storage that is

discarded can be reused for storing other data structures.

The function of a storage management scheme in a language implementation is two-fold —
allocation of memory when the computation demands. and the reclamation of storage which contain the
values of to discarded information structurcs. Reclamation of storage and its subsequent recycling
allows the system to satisfy the storage requirements of the program within the existing bounds of the
system. cven though the total amount of memory (number of frece chunks) requested by the
computation far exceeds the total storage capacity of the system. There are two principal strategics for

storage reclamation — the mark-and-sweep scheme und the reference-count scheme.

41

42 OPFRATIONAL SEMANTICS OF VIM WITH STORAGE §3

Mark and sweep garbage collection is the most common method of automatic storage reclamation.
In a simple mark and sweep scheme, the size of the inaccessible information occupying the address
space keeps growing until there is no free storage left, at which point all normal processing is suspended.
All the units of storage which are in use are marked by tracing down all the structures which are
accessible from the current state of the system. Then the entire memory is scanned to identify all the
unmarked storage units — these are the discarded memory units which are aggregrated into the pool of
free chunks and used for reallocation. A drawback of this strategy is that if the address space is very
large and the physical store spans disks, the process of garbage collection éan be very expensive. Simple
implementations of mark-and-sweep suspend all computations other than those for reclamation; a large
number of disk accesses will imply that all other computations will remain suspended for a long time.
Various algorithms have been proposed which permit concurrent execution of the mark-and-sweep
reclamation and other computational activities (also known as real-time garbage collection); however,
they are complicated and exhibit questionable performance in real-life situations. Real-time garbage
collectors of acceptable performance are difficult to implement even on single-processor systems; how
the schemes may be extended to perform garbage collection with acceptable efficiency in a

multiprocessor architecture remains an open problem.

The notion of using reference counts on the information structures used by the computation has
been around for a long time; however, there are only a scant number of garbage collectors which use
reference counts exclusively. The basic idea is very simple. A counter is associated with each
information unit; it keeps a count of the number of references to the: structure in the system. The
counter is incrcmented whenever a new reference is created and decremented when one is destroyed.
When the count becomes zero, the structure becomes inaccessible from the computation and the storage
occupied by it may be reclaimed for reallocation. This simple scheme has one major drawback which
has prevented its use in any practical garbage collector so far — it cannot reclaim circular structures.
However, it has been shown that memory reclamation using reference counts is possible in the presence

of certain classes of circular structures 7. 17].

Circular structures can be created only if there are operations which cause side-cffect. All
operations in VIMValL are free from side effects and so the user cannot create circular structures. The

creation of circular structures by the interpreter (for whatever may be the purpose) has been precluded

42

§3 OPERATIONAL SEMANTICS OF VIM WITH STORAGE 43

by designs. These features of the VIM system make it feasible to use a reference count mechanism for
garbage collection. The principal argument against reference counts is that the cost of updating the
count every time a structurc is manipulated may be unacceptably high. A significant advantage of
reference count mechanism for garbage collection is that storage reclamation is done concurrently with
the computation. Also, the scheme appears to be more amenable to implementation on a

multiprocessor architecture.

In L2, two counts — tefcnt and setcnt are associated with each chunk. refcnt contains the
count of the number of references to the chunk in the current state of the machine. A chunk is
reclaimed when its refcnt field becomes zero. The refent fields of all the structures which are
pointed at by the chunk whose refcnt field becomes zero are also decremented. The setent field of a
chunk is used only if it is the root chunk of some structure. It keeps a count of the number of elements

in the structure which are EC-queues.

Some simplifications (of "real” life behaviour of computer systems) have been made in
developing the formal model 1.2 to reduce the complexity of the model within manageable limits. In a
"real” system, information which is in main memory is immediately accessible; in L2 the chunks which
correspond to those resident in the main store are tagged accessible. The chunks which correspond to
those on the disk are tagged itnaccessible. Instructions are tagged executable if they have received
all their operands and signals. Only such an instruction is chosen for execution. The instruction
executes ("runs to completion”) only if all the chunks that it requires to access are tagged accessibie.
If such is not the case then the system requests that the chunk be made accessible and the instruction is
tagged dormant. Some other executable instruction is then sclected and run for execution.
Eventually, the requested chunk becomes accessible and the instruction which requested the chunk is

made executable.

Data flow graphs usually expose a high degree of concurrency in most programs. It is hoped that
by using suitable program wransformation techniques, the number of cnabled instructions at any time

during the exccution of the program will be very large. The overlap between insiruction execution and

5 . . .
“In an mplementation for his combinator reduction lanvutgee, Turner [37] uses circular structures to model recursion.

43

44 OPERATIONAL SEMANTICS OF VIM WITH STORAGE §3

disk accesses is the principal source of concurrency in the system. I expect that in an actual
implementation the paging algorithms and instruction scheduling can be so ordered that the system
scldom has to wait for a disk access to complete before it can execute an instruction. This translates into
the following caveat — there must be at least one executable instruction during most of the time of the

program exccution.

3.1 Arrays and ViM-trees
We now examine a special kind of data structure called a ViM-tree, which is used to store the

elements of an array in L2,

A positional k-tree is a directed tree with the following property : Each edge out of a node v is
associated with one of the numbers in {0, 1, .., k-1}; different edges, out of v, are associated with
different numbers. It follows that the number of edges out of a node is at most &, but may be less; in

fact, a leaf has none.

We associate with each leaf node v in a positional k-tree V¥ the word consisting of the sequence of
numbers associated with the edges on the path from the root r to the node v. This sequence is called the
index word of node v. The index word also represents an integer in base k. The height of the tree is the

length of longest index word in the tree [15].

A VIM-tree is a positional k-tree in which every node is associated with a chunk. The chunk
associated with the root node is called the root chunk. A chunk has two parts — header and chunkstore.
The header part of the chunk contains some book-keeping information about the chunk: the chunkstore
contains the actual data values (or pointers to other chunks). Elements of an array are stored in the
chunkstore part of some of the chunks associated with the leaf nodes. Those leaf chunks which contain
clements of the array are called value chunks. All value chunks have index words of the same length.
For convenience, the terms “value chunk™ and "root chunk™ will be used in place of "chunk associated
with the Icaf node” and the chunk associated with the root node”. A word in the chunkstore of a value
chunk in a Vivi-tree is uniquely identified by the base-& integer wi, where wis the index word of the
value chunk and 7 is the word number in the chunkstore. | shall use the terminology "the with word in

the Vi -tree 17 to denote the ah word in the chunk with index word win }7 wiis the word nuniber (in

§3.1 OPERATIONAL SEMANTICS OF VIM WITH STORAGE 45

base-k) for that element of the array in V. All the words of the chunkstore part of a chunk contain the
value wnallocated by default. If an arc from node A4 to B be marked /, then the ith word of chunk
associated with A4 contains the cid of the chunk at B. If there is no node corresponding to the /ith edge

from A. the ith word of A contains the value unallocated.

The refcnt field of a chunk is a count of the number of occurrences of the c¢id of the chunk in the
current state of the machine. This is used for reference counted automatic storage reclamation. The
setcnt ficld of the root chunk contains the number of elements of the array which are currently
EC-queues. This field is used to determine if an APPEND operation should be performed. The depth
field of the root chunk has value 4, where the height of the tree is ¢-1. It is used to construct the index
word to the value chunk. The number of array elements that can be stored in a full ViM-tree of height

d-lis k4

The 10 and hi fields of the root chunk of ViM-tree ¥ contain the low and high indices of the array
whose elements are stored in the tree. If the low index of the array is p and the word number for the pth
element in V'is S21522515 then the m field .of the root chunk is (p - sﬂsd_z...slso), all arithmetic
being done in base-4. The m_ field is used to determine the index word of the Value chunk in which

the element which is to be accessed resides.

Letan array A with index bounds p and g be stored in a VIM tree Vin which them . and depth
fields of the root chunk have values m.. and 4. For every / within the bounds, (7 - mmm) is the word
number corresponding to the ith element of the array 4. The word corresponding to the word number
wi in V' is said to be shared if there is a chunk corresponding to the the index word w, and the refcnt
field of some chunk along the path from the root determined by the word index has value greater than

1. Otherwise, the word is unshared.

3.2 Operational semantics of L2

In [.1 we saw that arrays are represented as abstract mathematical entitics — as functions mapping
integers to values. In 1.2 we augment L1 by introducing a storuge model for arrays, This chapter
focuses on the operations on arrays in 1.2, The operations on records and oncofs are very similar to

those on arrays: records and oncofs may be regarded as fixed-length arrays from the point of view of the

45

46 OPERATIONAL SEMANTICS OF VIM WITH STORAGE §32

implementation of their operations in the machine. Functions, activations, early-completions queues,
etc. are still regarded as abstract mathematical entities. This simplifies the presentation and keeps the
complexity of the model within reasonable bounds. The techniques illustrated in this thesis may be
used to develop a model in which the aforesaid entities are also data structures, rather than sets and

functions.

The rest of this chapter is a description of the model L2. The notation used is the same as the one
used in presenting L.1. Sets are denoted by bold font, elements of sets are denoted by italicised letters

and names are written in a special font. Thus, This is a set, This € This and This is a name.

A State S in L2 is a four-tuple consisting of Act (the current set of function activations), H (the
heap), E1S (the set of enabled instructions) and C (the set of chunks which are currently in use to store

the arrays on the heap).

VIM = {[nterp, State> where
State = Act X H X EIS X C

Act = U — [N — Instruction)

H = U — [({fn} X Function) U ({ecq} X ECQ)
U {(instr} X Instruction) U ({destS} X Dests)
U ({clsr} X Clsr) U ({arr} X Structure]

Cid = the set of unique names of chunks.

The functions AddToHeap, DeleteFromHeap, AddToAct and DeleteFromAct are the same as
defined in L1.

A structure is defined by a cid and a collection of chunks which store the values of the clements of

the structure: the cid corresponds to that of the root chunk of the ViM-tree.
Structure = Cid X C

The set of cnabled instructions is partitioned into two subscts depending on the tags on the
instructions. When an instruction first becomes cnabled it is taigged executable and added to the set
of cnabled instructions. Instructions with executable tags arc tagged dormant if they attempt to
access chunks which are inaccessible. dormant instructions become executable when the chunks

they were tnving to access become accessiblie.

46

§3.2 OPIRATIONAL SEMANTICS OF VIM WITH STORAGE 47

EIS = RED)
EI = Status X U X N
Status = {executable} U (dormant X Cid)

Each chunk has a unique name, a tag, and some storage called chunkstore. There is a unique

chunkstore associated with each cid. The storage part consists of some header and k& words for values.

C = ?(Chunk)

Chunk = Cid X {accessible, inaccessible} X Chunkstore

ChunkStore = Header X DataPart

Header = Int®

DataPart = (Scalar U U U SUSP U Cid U {unallocated})*
Both Header and DataPart are sets of ordered tuples.

The following notation is strictly adhered to in the rest of the presentation. C hl. always represents
an element of Chunk, ¢, denotes the unique name of the chunk C h; and cs, denotes the chunkstore part
of the chunk Ch. Thus, if Ch_is achunk, then ¢, is its cid and cs is the chunkstore part of the chunk.

c.m ¢ 10 ¢ hi c depth, c refcntand ¢ setcnt) denote the first six elements of the ordered
w min w w w w w

i
tuple cs. c“jz] denotes the (i/+6)th element in the tuple. The notation for drawing a chunk and

specifying the contents of the chunkstore part is given in figure 9.

The chunkgraph of an array A4 in L2 is defined as follows. Let V be the ViM-tree in which the
elements of the array A are stored. The nodes in the chunk graph correspond to the chunks associated
with the nodes in V; if the edge from node 4 to 8in Vis marked i then an arc is drawn from the box
number / of the chunk associated with A to the chunk at B. Chunkgraphs are an efficient and concise

notational convcnience for specifying the operations on ViM-trees,

The chunkgraph of a heap is the collection of the chunkgraphs of the structures on the heap. The

chunkgraph of a heap provides an casy way of indicating the sharing of chunks among structures.

Scalar values are as defined in L1,

Scalars = Integers U Reals U Booleans U Character U Null

Integers = {int} X ({undeft U the set of all integers)

Reals = {real} X ({undcf} U the set of all reals)

Booleans = (bool} X ({rrue. faise, undef})

Character = (char} X (Jumndes} U the set of characters in the machine.)
Null = {null} X {0l undef}

47

48 OPLRATIONAL SEMANTICS OF VIM WITH STORAGE §32

The cid of the chunk

m. . .o hi depth setcnt refcnt
c
* o o
0 7 2 s ¢ . k-2 k-1
k words of the data part of the chunk. The header part of the chunk

where ¢, is the cid of the chunk and ¢s, is the chunkstore part of the chunk.

Figure 9: Notation for drawing a chunk and specifying its vaiue. The chunkstore part of the chunk is represented by a
box. which is divided into two rows of boxes. The upper row is divided into six boxes. one corresponding to each of
m_ 1o hi.depth, setcnt and refCNL felds of the header part of the chunk, in that order. The second
row contains the k words of the data part of the chunk. The unique name (cid) of the chunk is indicated at the left of
the box. An unsigned integer in the T€fCNL or SETCNL field means that the field now has that value. A signed
integer in the box implies that the new contents of the box is equal to the old contents added to the signed integer. This
notation will be used to specify how the reference counts on chunks is incremented and decremented.

ECE = UXN
ECQ = HECE)
SUSP = [U X N]

The definitions of the sets Instruction, Function, ECE, ECQ and Dests are the same as in L1.
Instruction = OPS X (U U Scalars)® X N2 X U
Dests = HD)
D = {unconditional. true. false} X N X {op1, op2, op3}
Cisr = [({FunctionToApply} U M) — U]
where C(FunctionToApply) € U X ({fn} X Function), C € Clsr
The function SendResult which is invoked to dispatch the result of an instruction to the
destination instructions is almost identical to the onc in [L1. The only difference between is that in L2

the instructions which become enabled arc tagged executabie: in L1 no tagging is donc. The function

SendToDestinutions is the sume as in L1,

48

§3.2 OPLERATIONAL SEMANTICS OF VIM WITH STORAGE 49

SendResult : Act X EIS X U X D X [[{value} X (U U Scalars)] U {signal}]
— Act X EIS

Define SendResult(Act, EIS, Up g (de, i, opnum), result) =

let
Fa = Acl(uFA).
I = FA()

in
AddToAct DeleteFromAct(Act. Ug 4. FA), Up, FA") % new set of activations
if (7.opcnt = 0) A (I sigent = 0) then £/S U {(executable, u,.,)}
else £1S
endif

endlet

where
FA () = FA(), J# i

=T, j=1i

and I € Instruction,
r.opt = if gpnum # Op1 then 10p1 else ¢ where result = (value, 1)
r.op2 = if opnum # 0p2 then .0p2 else ¢ where result = (Lalue, 1)
r.0p3 = if opnum # 0p3 then /.0p3 clse ¢ where result = (Value, 1)
ropent = if opnum € {0p1.0p2, op3} then (/opcnt - 1) else 70pent
rsigent = if opnum = signal then (/.sigent-1) else /.sigent
[.destlist = ldestlist

endfun.

The function /nterp maps a state and an enabled instruction to a new state. The enabled

instruction chosen by Choice must have tag executable.
Interp : State X Choic EIS) — State

where State = Act X H X EIS X C

A practical implementation of VIM would have a finite amount of main store and a very large
amount of storage space on the disk. The contents of a chunk cannot be read unless it is present in the
main mcmory. Chunks are read into the main memory from the disk on demand. Eventually there
may not be any free storage in the main memory into which chunks may be brought in. The system
frees main storage by moving some chunks from the main memory to the disk and declaring the main
storage that was occupiced by them to be free. New chunks from the disk are placed in this free storage,
which is then marked as occupied. Fffectively, chunks which are resident in the disk are not directly
accessible to the computation. Thus chunks become accessible/inaccessible during the exccution of a

program. depending on whether they move from the disk to main memory. or from main store to disk.

49

S0 OPERATIONAL SEMANTICS OF VIM WITH STORAGE §3.2

Chunks which are modelled as being in the main memory are tagged accessible, otherwise they are
tagged inaccessible. To capture this notion of chunks becoming inaccessible during program
exccution, a function PageQOut is introduced. PageQui sclects some chunks in the current state of the

machine which have tag accessible and marks them as inaccessible.
PageQut : C— C

Every element marked dormant in the set £/S € EIS contains a pointer to a chunk (the cid of
the chunk); the tag on the chunk is inaccessible. Ferch selects some such cid, tags it as accessible
and all the instructions which had become dormant trying to access this chunk are tagged
executable, The action performed by Fetch corresponds to the conventional notion of pages being

brought into the main memory from the disk.
Fetch:EISXC—EISXC

Let ¢ be the cid of a chunk which is tagged inaccessible and let W = {(u, k) : (dormant, c, (4,
k)) € EIS}, W # {}, in some state (Act, H, EIS, C) of the machine. Fetch(E1S, C) returns a new set of
enabled instructions given by (EIS U {(executable, u, k) : (u, k) € W}) — W, and a new set of
chunks specified by (C U {c, accessible, cs}) — {(c, inaccessible, cs)} where cs is the chunkstore

associated with the chunk with name c.

The main loop of the machine is defined by the following tail-recursive function. The machine

executes an instruction, makes some chunks inaccessible and then makes some of the demanded chunks

accessible.

50

§ 3._2 OPERATIONAL SEMANTICS OF VIM WITH STORAGE 51

Define MainLoop (S : State) =
let
(Actl, Hl, EISl, Cl) =S5
in
if EIS = {} then halt
else
let
e = Choice EIS) where e = (executable, u
EIS, C = Fetch(ELS, PageOut(Cl)),
H= Hl,
Act = Act1
in
MainLoop(Interp{ Act, H, EIS, C), e)
endlet
endif
endlet;

Fa kFA)’

Interp defines the manner in which the state transitions are made, depending on the instruction

which is being executed.

Define Interp((Act, H, EIS, C), e) =
let
(status, u, k) = e,
% The instruction must have tag executable.
FA = Ac(u),
I = FA(k)
in

if Jopcode = 1ADD then ...
elsif 7.0pcode = MKINTARRAY then ...

elsif 7.0pcode = APPLY then ...

endif,
endif
endlet

The notation
(Act, H EIS, OY V= (Act, H, ELS", CYon e

denotes that if the state of the machine given by (Acr, H. E1S, C) is the argument to Mail vop then
(Acr'. H. FIS, (T) is the result of exccuting the instruction e chosen by Choice. and invoking PageQut

and Fereh in sequence,

We are now cquipped to describe the actions of the interpreter. The scalar operations do not

51

52 OPERATIONAL SEMANTICS OF VIM WITH STORAGE §3.2

affect the heap and so the C component of the state is unaffected. The state transition rule of the
instruction is almost identical to that in L1, the only difference being the introduction of the fourth

component in the state (which remains unchanged).

if /.0pcode = 1ADD then
let
(int, m) = Lopt,
(int, n) = lop2,
sum = m+n,
Act EIS =
SendResull
SendResulA...
SendResult(Act, EIS. (up., (unconditional, d, opnum,)), @), ..} ...

(up,. (unconditional, d , opnum,)), a,))
in
Act,
H9
EIS - {(executable, u. . k.)},
C
endlet

endif

where a, € {(value, sum), signal}

Other scalar operations have very similar state transition rules and do not affect the heap or the set

of chunks.

Operations on arrays will now be described. Figures are used to explain the algorithms for

building and manipulating the trees of chunks that store the contents of the arrays.

The state resulting from the execution of the MKINTARRAY instruction is described below.

§3.2 OPCRATIONAL SEMANTICS OF ViM WITH STORAGE 53

if /opcode = MKINTARRAY then
let
(int, p) = Lopt,
(int, g) = Lop2,
n = |1.dests|,
(). accessible, ¢s)) = a new chunk,
u = anew uid,
A= (u(arr ¢, {(c,. accessible, esp)H),
Act, EIS =
SendToDestinations(Act, EIS, up., {((unconditional, d, opnuml), ay), s
((unconditional, d , opnum), a)})
in
Act,
AddToHeap(H, u, A),
EIS - {(executable, u o KE Ot
C U {(c,, accessible, cs))}
endlet
endif

where a_is either (value, u) or signal.
As mentioned earlier, it is assumed that an accessible free chunk is available. The contents of the

chunk with cid ¢ is in figure 10. The contents of this chunk along with the definition of the SELECT

operation ensure that any SELECT operation on this tree produces the an undefined value.

The cid of the chunk
M., W hi depth setcnt refcnt
¢ p p q d 0 n 1
U4 (U4 |UA ¢ o o Ud (U4 |UA
0 ! 2 . . . k-2 k-1
k words of the data part of the chunk. The header part of the chunk

Figure 10: ‘The chunk structure created by the MRKINTARRAY instruction. The entire tree tree of chunks is not created:
only the root chunk is allocated. The symbol U4 stands tor unallocared. The dzpm ficld 1s set 1o the value d =
[log {q-p+ 1.’)

53

54 OPERATIONAL SEMANTICS OF VIM WITH STORAGE §3.2

Let us now consider the effect of the instruction MKINTARRAYEC on the state of the machine. It
acquires a collection of chunks which are not members of the set C in the current state of the machine.

These chunks are used to build a tree which is illustrated in figure 11.

if Jopcode = MKINTARRAYEC then
let
(int, p) = Lop1,
(int, ¢) = Lop2,
n = |1dests|,
M= qgp+1,
N = MK)/((k-1)kA+ Y,
{(c,, accessible, €sp), s (Cpp accessible, csN)} = N free accessible chunks,
u = anew uid,
A= (u @11, ¢, {(c}, accessible, €5 s (Cpp accessible, esp)H)
Act, EIS’ =
SendToDestinations(Act, E1S, u,, {((unconditional, d,, opnum)),), ...,
((unconditional, d,. opnum), a")})
in
Acl,
AddToHeap(H, u, A),
C U {(c,, accessible, €s)), v (Cpp accessible, csp)t
endlet
endif

where a, is either signal or (value, u), the

contents of the chunks is shown in figure 11 and the resulting

heap H is specified by augmenting the chunkgraph of the heap H by
the chunkgraph shown in figure 11,

The APPEND operation is by far the most complex operation. It requires three arguments — an
array, an integer index and a value (uid of some other structure or a scalar value). Recall that thé
APPEND operation creates a new array only if its argument array (first operand) does not have any
EC-queues; otherwise it is attempted for reexecution at some later time. In L2 the setcnt ficld of the
root chunk of the first operand (which must be an array) contains number of EC-queucs in the structure.
If the setent ficld is not zero, then no change occurs in the state. Instcad. some other instruction is
selected by the Choice function in the next iteration of Mainloop. 'The APPEND instruction remains in
the set of cnabled instructions and will be eventually executed, when all the BC-queues have been

replaced by values by ST instructions,

I the first operand to APPEND s a shared structure (many pointers to it exist in the currrent state

54

§3.2 OPERATIONAL SEMANTICS OF VIM WITH STORAGE 55

, e 0 0 \
St1
¢ S N B A S I A A Y S T A N I
[] L]]
[I I] o 0 0 s 0 9
/ \ o
[] []
[I I]
.]
/ !
! R T | ! CN Sk
e o @ o 8 o o 0 @
N AN
)) b
ECQ[} ECQ[] e ECQ[} ECQ[] ECQ[l ECQI] ECQ

Figure 11: Tree of chunks created by created by MKINTARRAYEC. p and q are the bounds of the array, M = ¢p+1,d
= [log (M]) and n is the number of destinations of the instruction o(mkintarrayec). ecq{] denotes an empty EC-queue.
Thus all the elements of the array point to empty EC-queues. 5,5 2515 is the word number of element with index
gin the array. The word number of the element with index p E%&%

of the system), then a new array is created which shares a number of chunks with the argument array. If
the value of the refent ficld of the root chunk of the first operand to APPEND is one, then it is possible
to perform an in place update. This condition under which no copying need be performed at all to
implement the APPEND operation can be taken advantage of by the compiler. If the integer index (the
second operand) is outside the beunds of the argument array. APPEND creates a larger array. The

transition rules arc specificd in the following pages.

[.ct the array on which the APPEND instruction is to performed have the chunkgraph shown in

Figure 12.

55

56 OPERATIONAL SEMANTICS OF VIM WITH STORAGE §3.2

c |
1tpPlp|lgld|M|n
s 0 0
1 |
(: St
v
¢, 1 i 1
¢ o
o 8 @ [I I ¢ & 0
[\
[] . []
o o @
. []
/ ! \
5
: 1 . . . - 1 7,'2 R R R 1
[v ['}

&5

Figure 12: Chunkgraph of the array on which the APPEND operation is performed.

if J.opcode = APPEND then
let
u, = lopl,
(qrr, e {(Cl' afl, csl), (CN, afN. csN})) = H(ul),
(int,) = Lop2,

x = 1op3,

p = ¢ lo,

g= clhi,

d= cl.depth,

n = |1.dests|,

1, = new uid from U

L2
in

if |/ : element with word index / of the array is a suspension

or an £C-queuce] > 0
then Act. H, EIS. C
% There are v'C -queues in the structure — APPEND does not execute.

elsif p <71 < gthen
il (word number (1’—c1.mmm) in VIM-structure with root ¢ is unshared)
then ...

56

§3.2 OPERATIONAL SEMANTICS OF VIM WITH STORAGE 57

else ... % The element is shared.
endif
elsif om . (i< pthen ...
min
elsif i < cm then ...
. - min d
elsif g< i< cm o+ k“ then ...
else' % [)cl.mmm + i
endif
endlet
endif

First consider the case in which the ith element of the array is not shared among any other
structures. The APPEND instruction performs an in place update by replacing the value of the ith
element of the array by the new value x. The VIM-tree represents a new array, which is reflected by the

new uid that is associated with the structure. The set of chunks C remains unchanged from the previous

state.

If any chunk with cid ¢ whose contents need to be accessed during the execution of the APPEND
instruction is found to have an ithaccessible tag, the state § = (Act . H s EIS o C J) resulting from

the execution of the APPEND instruction is defined below.

Actf= Act
H=H
E[b;fz (EIS U {((dormant, o), Up gk D - {(executable, Up o kg i

O

The instruction thus remains in the set of enabled instructions. Eventually when the chunk ¢

becomes accessible (caused by the function Fetch), it will again become executable.

The actions of the interpreter for the APPEND operation will now be presented. Consider first the

case when the ith element of the array on which the APPEND is performed is an unshared element and

ith lies within the bounds of the array6.

6
A simpliting assumption made here is that there is a leaf chunk corresponding to the ith clement of the array. [f that is not
the case then new chunks are added to the set of chunks in the state and the set (7 s augmenied suntably.

57

58 OPERATIONAL SEMANTICS OF VIM WITH STORAGE §32

if p < i< gand (word number (z‘——cl.mmm) in ViM-structure with root ¢, is unshared)

then

let

Act', EIS =

SendResul((
SendResulf...(
SendResuli(Act, EIS, (u. . (unconditional, d), opnum,)), @), .) .
(g4 (unconditional, dn, opnum")), an))

in

Act,

(H - (u, (@rT, cp {(Cl' accessible, €sy), e (cN, accessible, csN)})))
U {(u,. (@rT,), {(cy, accessible, €s)), s (Cpp accessible, csyin}
EIS - {(executable, u , ke b,
C where (reflects the fact that an in situ change has been made to the chunks of
the structure A4 as shown in figure 13.
endlet
endif

o 8 0 |
S#1
¢, 1 1 1
L] 1] []

[I BN | ¢ 0 8 | I N |

L] L]

[I I]

. [

/ \S’ \
c
! ° N . - - i N]
"0 0 X [Y
%

Figare 13: Chunkgraph of the result of APPEND on the array shown in figure 12 when p S i S g and the element 1§
an unshared element (3 = Qand » = 1)

Now consider the case in which the clement is shared among structures on the heap. A new

§3.2 OPERATIONAL SEMANTICS OF VIM WITH STORAGE 59

structure is created by copying chunks along the access path. The reference count of the argument
structure A is decremented by 1. If A.refcnt becomes zero, the node is deleted from the heap and the
reference counts of all the chunks that ¢ points at are also decremented. This may cause a cascade of
deletion of nodes from the heap. If any of the chunks whose contents needs to be accessed (for
decrementing its reference count field or for reading the contents of its chunkstore) is tagged
inaccessible then the instruction is made dormant and no changes are made to the Act, H and C

components of the state. The state transition rule for such a case has already been described.

if p < i < gand (word number (i —cl.mmi”) in VIM-structure with root ¢, is shared)
then
let
Act, EIS =
SendResull
SendResulf(...
SendResul(Act, EIS. (u. . (unconditional, d, opnum,)), @), ..) ..
(Up 4 (unconditional, d , opnum), a,)),
(c'}, accessible, es'y), e (€ 41 accessible, ¢s';) = new chunks unused in C,
H=HU {“2' (arr, c‘l, {chunks shared between argument and result arrays}
U{(c}, accessible, €s'y), v (g accessible, cs’ N)}
— {structures whose root chunk has refcnt field has value zero}
in
Act,
.
EIS - {executable, Up o kg b :
CU {(c',. accessible, cs')), .., (¢, accessible, cs')}
- {chunks whose refcnt field becomes zero}
endlet
endif

Now consider the case in which Aam_ . <i< Alo. The resulting VIM structure is of the same
height as the old structure. New chunks are acquired from the pool of free chunks and are initialized
such that much of the information common to the two arrays is shared on chunks. A.refcnt is
decremented: if it becomes zero then A4 is deleted from the heap, as arc structurcs whose reference
count becomes zero. The chunks in which the clements of the structures are stored are deleted from C
if their refent field becomes zero. It is casily seen that the result structure A° preserves the semantics
of the append operation — a SELFCT done on A” on L2 maps to the same value as a SELECT on the result

Of APPENIX A, £, x)in L1,

The third case arises when 9 < i< cl.lo. I'he resulting tree has the same height as the argument

59

60 OPERATIONAL SEMANTICS OF VIM WITH STORAGE §3.2

root chunk of argument VIM-tree root chunk of result VIM-tree

2 N IC I IER T R I I R IO R oY AN SN EEREL
e 9
s e e se ss e
AN r A
%2 %2
[) 00 PR s 00
5 S
s o o B B R e £ 1/ - -1
o \ b \ |
v 3
1-1-1-1- T d-kd [T R IEBEEE
0o oo
v X
b %

Figure 14: Chunkgraph produced by APPEND on the ith element of the structure whose chunkgraph is shown in figure
12. This is the case when p _<_ i < gand the element is a shared element.

tree. Chunks along the access path are copied, while others are shared as shown in figure 16. The lo
ficld of the root chunk of the Vim-tree for the result array is sct to i. No change is made to the value
represented by the argument structure. The refent ficld ufc] is decremented. If that becomes zero,

then the usual process of decrementing reference counts is started. The deletion of structures must be

reflected in the resulting heap and set of chunks in the state.

60

§3.2 OPERATIONAL SEMANTICS OF VIM WITH STORAGE 61

if eem L <iKp then
let
Acl, EIS = ..
in
endlet
endif

The action of the interpreter on this occasion is similar to that in the previous cases. See figure 16 for

the chunkgraph of the part of the heap which is affected.

root chunk of argument VIM-tree . root chunk of result VIM-tree
C117pqd0-1 Pli|lqldlo|n
[N BN] s 00
L 1
4
e
1 *1
v
4 +1 +0) + 1 -1
[I
s 00 ¢ 00 [I I] o000
\'Sd-z \'%2
e eee s e e (N
s s 0] O s NENE
t \ > \]
[—F— \~
v v
+1 0 y - /
s 08 [I]
v X
Y b

Figure 15: Chunkgraph for result of aprrND when cl.mmm <ip.

61

62 OPERATIONAL SEMANTICS OF VIM WITH STORAGE §3.2

Now we consider the case in which the height of the ViM-tree resulting from the APPEND on A4 is
greater than the ViM-tree for 4. This happens when /< Aam_ . The ViM-tree for the result array A’
crcated by APPEND is of the minimum such height that A’.mmm < i, and SELECT(A, A.mmm) =
min)- 1€ semantics of the APPEND operation (as specified in L.1) is preserved; a formal

proof of this assertion will be presented in the next chapter. The reference count of A4 does not change

SELECT(A’, AM

since one reference to it is consumed by APPEND while a new one is inserted in 4’

Given i< ¢ .M . atree of the minimum possible height must be constructed such that if ¢’; be

the root of the resulting tree then Fem > 0. The appropriate height can be computed as follows.

Let & be the height of the resulting tree, which is shown in figure 17. Clearly, the word number of

¢m . in this tree is 100...00 such the length of the sequence is &.
eem (¢ .mmm = 100..00

1My = M i (lOOkdOO) in base k
so that ¢ 1M pin = €M

Now, ;- c’1 l"rlm"l
= - Ty 1 >0
11 m
= i 2 ¢ m .-
= J-1> log (c1 mm.n-)]
= d > log,(c,m min -D+1
=d= [logk(cl.mmm -)] + L
It is of interest to note that the word number of c;,m . could also be 55000...00, where 1<s<k.

The arithmetic would be vary similar to the above case.

The instruction becomes dormant if any of the required chunks is tagged thaccessible. The
refcnt ficld of the argument array need not be decremented because even though the instruction
consumes a rcference to athe array, a new one is created in the new structure. Therefore, in this case no

storage reclamation will be triggered.

§3.2 OPERATIONAL SEMANTICS OF VIM WITH STORAGE 63

if i< cl.m
m
let
Act', EIS’ = ...

in then

in
endlet
endif

see figure 17.
The cases for the rest of the two cases are similar to the previous two cases and are not discussed.

The state transition rule for the SELECT operation is specified below. The select operation
decrements the reference count of the argument structure. If the element which is being accessed by
SELECT is an EC-queue then the address of SELECT is placed on the EC-Queue and the instruction is
removed from EIS. If the element is a suspension then the suspension is replaced by an EC-queue
containing the address of SELECT and a signal is sent to the instruction whose address was specified in
the suspension. If the element is a scalar value then the value is simply dispatched to the destinations.
If the result of SELECT is a structure, then its refcnt field is incremented by n, the number of
destinations of SELECT. If A.refcnt becomes zero due to the decrementing of the reference count it is
deleted from the heap. The refcnt fields of the chunks that the root chunk ¢, of 4 points at are also
decremented and the chunk ¢, reclaimed. The decrementing of refcnt fields may trigger more
reclamation. If any of the chunks which needs to be accessed is tagged inaccessible then SELECT is

made dormant; no changes are made to the Act, H and C components of the state.

63

64 _ OPERATIONAL SEMANTICS OF VIM WITH STORAGE §3.2

root chunk of result array

—

—
-

'

L S
- '

—p

~

! 0

T-T- I

P oo T root chunk of argument array
) ,

Figure 16: Chunkgraph for result o fAPPIJI) when i < cl.mmm. ‘The height of the result Vim-tree is 4 =
[loglepm . -dl+La=cm -k

64

§3.2 OPERATIONAL SEMANTICS OF VIM WITH STORAGE 65

if Jopcode = SELECT then
let
u; = [op1,
(qrr, F {(Cl‘ afl, csl), s (Cpp afN, csN})) = H((ul),
(int,)) = lop2,

in
if (i< cl.lo) or(i> clhi) then undef
else
let
x = contents of word number (; - Cl'mmin) in the Vim-tree with root ¢;
in
if x is a scalar then ...
elsif x is a uid u corresponding to structure B then ...
% send the value and increment refcnt
% field of the root chunk of the ViM-tree for B.
elsif x is an EC-queue then add (ug , k- ,) to the queue, etc.
elsif x is a suspension then (replace suspension by EC-queue with (u , kF .4)'
increment ¢, SetcNt, decrement ¢, .refcnt, etc)]
endif
endlet
endif
endlet
endif

Observe that if cl.refcnt becomes zero after SELECT executes, the node corresponding to the uid
u, is deleted from the resulting heap and the refent fields of all the structures that it points to are
decremented. If any chunk required by SELECT (either for accessing the element or for updating the
refcnt fields) is tagged inaccessible, the instruction is made dormant, thus changing EZS; the other

components of the state remain unaffected. When the chunk becomes accessible later, the SELECT

instruction becomes executable.

The transition rule for SET is given below.

65

66 OPERATIONAL SEMANTICS OF VIM WITH STORAGE §3.2

if Jopcode = SET then
let
(u1 = Jopt,
(qrr, s {(cl, af). csl), (cN. afN csN})) = H(ul),
(int,) = 1op2,
x = [0p3
in
if the (i-cl.mmm)th word of the VIM-trec with root ¢ is an EC-queue Q then
let
Act’, EIS’ = send signals to destinations of e,
EIS” = EIS" U {(executable, v, k') : (&, k') € 0},
H' = the old H plus the change in the contents of the chunk of A is reflected,
C’ = same as C except that the chunk containing the £C-queue contains x
and decrement refent and setent fields of ¢
in '
Act, H,EIS”, C
endlet
else
let
Act’, EIS = send signals to destinations of e
in
Act’,
H,
EIS,
C
endlet
endif
endlet
endif

The transition rule for SETSUSP is defined as follows.

66

§32 OPERATIONAL SEMANTICS OF VIM WITH STORAGE 67

if 7opcode = SETSUSP then
let
(uy, (@rT, c,, {(cl, af}, s)), ws (Cpn Ay csN})) = [opt,
(int, j) = Lop2,
(int, m) = Lop3
in
if word number (z‘-cl.mmin) in VIM-tree with root ¢, is an empty EC-queue then
let
Act’, EIS" = send signals to destinations of e,
H' = reflect the fact that the ith element of the array is a suspension
and the EC-qucue at the element is deleted from heap
and clements deleted from heap due to refcnt becoming zero
C" = different from C in that the chunk containing the ith element
now contains a suspension and decrement refent field of ¢
in
Act,
H
EIS,
C
endlet
elsif the element is an non-empty EC-queue then
let
Act’, EIS = send signals to destinations of ¢ and to (u ” n),
C" = decrement refent fields of ¢, and reclaim, if applicable,
H = Reflect the changes due to changes in C and due to reclamation
in
Act, ', EIS, C
endlet
else
let
Act’, EIS" = send signals to destinations of ¢,
C = decrement refent fields of ¢, and reclaim, if applicable,
H = Reflect the changes due to changes in C and due to reclamation
in
Act', H,EIS, C
endlet

endif
endlet
endif

The sct of instructions related to function application (APPLY. TAILAPPLY, STREAM-TAILAPPLY,
RETURN) also do not affect the heap or the set of chunks and their transition rules may thus be directly

adapted from L1,

67

68 OPERATIONAL SEMANTICS OF VIM WITH STORAGE §33

3.3 Discussion

The problem of efficiently implementing data structures in functional languages is of long
standing. Various solutions have been proposed by researchers so that APPEND type operations can be

done on such aggregrates of values without copying the entire array.

[-structures proposed by Arvind are write-once structures. I-structures solves the problem of
read-before write synchronization in a concurrent system; however, the implementation described

causes the structure to be copied when an append operation is done on it.

Myers proposed an implementation of applicative lists on AVL-trees [30]. The paper describes a
generalization of an AVL-tree, called an AVL-dag, which is used as a representation for linear lists. He
presents algorithms which oerform applicative manipulation of linear lists in time that is proportional to
the logarithm of the length of the list. He also gives algorithms that perform SELECT and APPEND

operations on fixed sized arrays with N elements in time O(KNU K), where K can be chosen arbitrarily.

Hudak and Bloss [21] have recently proposed schemes for statically inferring situations in which
an APPEND may be implemented as place updates. Failing this, they propose that reference counts be
maintained on the structures; the entire structure is copied if an APPEND occurs on a structure with its

reference count greater than one,

None of the above solutions satisfactorily address the issue of sharing information among
structures. The new data structure VIM-tree proposed in this thesis allows APPEND and SELECT
operations to be performed in logarithmic time. Moreover, the algorithms common information to be
shared among structures, so that the storage requirements of programs is reduced significantly. The
following factors influenced the design of the data structure for representing arrays : sharing, fast
SELECT and APPEND opcerations, and the constraint that the storage has a physical hierarchy. B-trees and
AVl.-trees were considered candidates for representing arrays; however, analysis indicated that the
amount of processing required to balance the trecs is substantially more than that for VIM-trees. It was
found that balancing a A-way AVIL.-trec or B-tree would require a larger number of chunks (than for a
Vin-tree) to be accessed. many of which might not be in the main memory. [t was desirable to keep the
branching factor of the trees quite high so that the depth of the tree that had 1o be traversed to perform

the frequent SEFECT operations would be quite low. For exampie, an array of 4096 clements can be

68

§3.3 OPERATIONAL SEMANTICS OF VIM WITH STORAGE 69

stored in a 16-way VIM-tree of height three. The use of trees of chunks to store data structures also

eliminates the problem of compaction.

This chapter also described a reference count mechanism which is used for reclamation of chunks.
Reference counting permits real-time garbage collection in VIM. The operational semantics of the
instructions are defined such that if a chunk required to be accessed by an instruction is not in the main
memory, then the instruction is not executed. In a more detailed model, it may be possible (and maybe
worthwhile in an actual implementation) to consider partial execution of instructions, so that an
instruction is removed from the set of enabled instructions once it has been chosen for execution by the

scheduler.

69

70 EQUIVALENCEOF L1 AND L2 § 4
Chapter Four

Equivalence of L1 and L2

In chapter 2 the operational semantics of L1 was presented. L1 was then refined to model
hierarchical physical stoge consisting of main memory and disk and a representation for data structures
of the storage model was described in Chapter 3. As mentioned earlier, L1 provides the specification
for any implementation of an archicture for VIM. We desire that programs executed on L1 produce the
same result as that produced by running the program on L2, and vice versa. This would demonstrate
that L2 indeed satisfies the specifications of L1. A formal proof of the equivalence of L1 and L2 is

presented in this chapter.

Let P be a program written in the base language. Let TranslateLl translate a program in the base
language to some initial state for L1. Similarly, Translate, , produces an initial state in L2 for a program

in the base language.

The heap of L1 is a directed, acyclic graph in which the nodes are the arrays, closures, etcc, and an
arc between two nodes in the graph denotes that one structure is a component of the other. We want to
capture concept of a node in the heap being accessible (not to be confused with tags accessible) from
the current State of the computation. If the node is not accessible then the structure associated with the

node is not usable. and is garbage.

Definition 4-1: Let S = (Act, H, EIS) be a state of machine L1. A nodeon Hin S'is
reachable if onc of the following two conditions arc satisfied:

1. There is some unexccuted instruction in Ac¢r which has a pointer to the
node (holds the uid of the node), or

2. It is a component of some structure on A, and the node corresponding to
that structure is rcachable in S.
The preceding chapter gave an informal definition of the chunkgraph of a heap. The chunkgraph

of a heup in some state is now formally defined in graph-theoretic terms,

Definition 4-2; Lot 8 = (Ao, H, FLS . ()Y € State in 120 let (7 = {("/1]. ('/12.
Ch,} where Ch is of the form (¢, af . ¢s) und of is either accessible or inaccessible.

70

§4 EQUIVALENCE OF L1AND L2 71

The chunkgraph of H in S is a graph G = (V, E) where V = {Chl, Chy, ..., Chn} and £ =
{(Cr c):3p€ {01, .. k1}H c[[p] = ¢ }. Recall that the ¢fm] denotes the contents of the
mth word in the chunkstore part of the céunk whose cid is c.

[t is possible that two different states in L2 represent the same set of values, the only difference
being that the set of chunks used to store the elements of arrays in the two states are different. Two

such states are said to be similar;, the formal definition of the similar relation is given below.

Define two functions .S tValue1 and St Value2 for L1 and L2, respectively, as follows. If u be a uid
and H be a heap in some state in L1 then St Value,(u, H) returns an ordered set; the elements of the set
are the results of SELECT operations done on the array associated with , SELECT being performed for all
integer indices. If there is no structure in L1 with uid u, the result of StValuel(u, H) is the null set.

StValue, is also defined in the same manner, except that the heap must be in some state in L2.

Definition 4-3;: Let S 32 € State in 1.2, where S1 = (Actl, Hl, EISI, Cl) and S2 =
(Acty, H,, EIS,, C,).

1’
S, and S2 are similar if
1. Acty = Act,
2.Yu€U [StValuez(u, H)= StValue, (u, H,)]

3. (Vu€ UXVk € NYVs € Status) [(u, k, 5) € EIS, = [(3s° € Status) : (u, &,
s) € EIS,]]

4. The chunkgraphs for H, in S, and H, in S, are isomorphic.

The last condition simply indicates that in two similar states the chunks exhibit the same sharing

relationships, exce'pt that the chunkids are different.

It is easily scen that the similar relation is an equivalence relation, and the set of similar states

constitutes an cquivalence class.

4.1 Proof of Equivalence of L1 and L2

Informally, two machines arc cquivalent if they produce identical results for a given program.

Morcover, there is a correspondence between computational states that cach machine gocs through.

71

2 _ EQUIVALENCE OF L1 AND L2 §4.1

We shall use an adaptation of the McGowan mapping technique for proving the equivalence of
two machines [25]. A similar technique was used by Berry [6] to prove the cquivalence of two

information structure models of block structured languages.

Let P be a program in the base language. Schematically, the computation of P on L1 and L2 is
shown in the Figure 18. A computation is a sequence of states starting with some initial state; if the
computation terminatcs, then the final state contains the result. TralzslateM(l’) produces an initial state
for the program P on the machine M. Sn is the final state of Ll on computation of P and
ResultValue, (S) prints the value of the node on the heap which contains the result of the
computation. Let S; be some initial state of machine L1. The computation of the machine L1 starting
at the initial S is denoted by MainLoopu(SO). Function FinalMainLoop M(SO)) gives the final state of
the machine in a computation, if it halts. Similar notation is used for the machine L2. In the following

discussion, rule definitions which have the same name in both L1 and L2 are distinguished by

subscripted L1 or L2.
SO S] Sk' Sn-l Sn
o >0 o608 —/8PO® 2 ¢ O—m—mp
Translate Ll ‘ ResultValue LI
Program P ® o (9 b ole o (¢ o .
Translate 2 ' ResultValue L2
P O o909 —P® s O——PO
S S S S S

Figure 17: McGowan mapping of statcs of L1 and [.2.

The mappings ¢ and p provide a map between the states of the machines L1 and L2 on the
computation £. ‘Toshow that L1 and 1.2 arc equivalent for programs in the basc language, it suffices to

construct mappings ¢ and p
VS @: 85 =S
VS p:S—S%

§4.1

EQUIVALENCEOF L1 AND L2 73

where §" € State , and § € State; | such that for all programs P in the base language the following

holds :

Let SO = Translateu(P) and S’O = Translateu(P). MainLoopu(SO) produces in succession the

states SO. Sl,

Then

... and MainLoopu(S’O) produces in succession S’O, N

L p(So) = S’O
p(Sy =S,

2. pr(S) = §,and §, # FinaI(MainLoole(SO)) then p(Si+1) = S’i+1.
Ifq;(S") = SI. and &, # Final(MainLoopLz(S’O)) then q;(S”i+1) = Si+ 1
3 If'Sn = FinaI(MainLoole(SO)) then p(Sn) = Final(MainLoopu(S‘O))

IfS", = Final(MainLoop, ,(5) then @(S")) = Final(MainLoop ,(S,))

4. Resu/lValueLz(S’n) = ResultValueu((p(S‘n)) and ResultValueu(Sn) =
ResullValueLz(p(Sn)) where § . = Final(MainLoopu(S" o)) and §, =
FinaI(MainLoole(So))

Theorem 4-4: L1 is equivalent to L2 for the base language.
Proof: We exhibit McGowan mappings ¢ and p to prove the equivalence. ¢ maps a

state §” of L2 to a corresponding state S of L1, and p maps a state S of L1 to a corresponding
state S of L2.

First we describe mapping @(S”) = S.

Let 8" = (Acet, H, EIS,).

1. Construct Act = Act.

2. Construct H as follows. et Uy = {u: uis the uid of node on H'}.

Vuc€ U, [if H(u) € Structure then (u, A) € H such that 4 € Array and
St Va/ucl‘](u. H) = Sll'a/u(’l Su, H)
otherwise (u, H(u)) € H]

Clearly, if the reference counting is done correctly, then the following holds : V «
{i 3w} x{arry X Array € H and SELECT(w, i) = u}] = A.refecnt where
@arr, Ay = Hwand A = (u. ¢} {(('l. qu‘ ('31). e (Cpn ‘7-/;\/‘ C.s'N)}).

3. Construct £1S as follows.

LIS = {(u k) (Status X {(u. k)}) € LIS}

73

74

EQUIVALENCE OF L1 AND L2

Secondly, we describe the mapping p : § — § such that §* = p(S).
Let S = (Act, H, EIS).

1. Construct Act’ = Act
2. Construct A as follows.
let U R = { u: uis the uid of a reachable node in H}

For u € Up), if u is the uid of an array then (v, [oF {(cl, afl, €s))s o (Cpp
afp csN)}) € H such that StValue, (u H) = StValue 1w H). Also
¢ .refent = (The number of occurrences of the uid u 1n unexecuted
instructions of Act or in reachable nodes in H) and ¢ setcnt = (The
number of suspensions or EC-queues in the structure wiLh uid u).

If u is not the uid of an array (or record or oneof) then (u, H(u) € H'.
3. EIS’ = {(executable, u, k) : (u, k) € EIS}

4.C ={(c,af cs): (Qu 3¢, 3C: (U ¢}, O) € K and (¢, af, cs) € O)}.
Observe that S is a member of an equivalence class under the similar relation.
Thirdly, we show that ¢ and p meet the requisite conditions.

Condition 1 :
If q>(S”0) = S then p(S)=S" 0 where S” 0 is a member of an equivalence class under the
similar relauon Also, <p(S’ o = S By judicious of chunks, we can obtain p(Sp) = 5.

Condition 2 :

If <p(S”I.) S and S is not a final state then (S, +1) +1. We shall consider each
instruction and show that the maps hold after the execution of the instruction provided the
map was correct prior to the execution of the instruction.

Let e = (executable, u, k) € EIS’, which is exccuted. Assume that all the chunks needed
by Interp, , during the execution ofe arc tagged accessible by some omniscient Ferch and
PageOut ﬁmcuom Essentially, we arc ensuring that an instruction in L2 docs not become
dormant during exccution. (We shall later sce that this assumption places no restriction on
the generality of the result).

For casc of exposition, define three functions @ , . ¢, and @, such that @(5) = @((Acf,
HEIS)) = (@, (Ac). @ (). @, LEIS)).

1. Scalar instructions :
‘The result of the instruction is sent to instructions in Acr' . the resulting activation
being Acr', |

74

§ 4.1 EQUIVALENCE OF L1 AND L2

The same set of instructions in Acti receive the result of the scalar instruction in L1,
to produce Act, 1.

The actions of SendResult; , and SendResult; , on Act, and Act is the same, as is
easily scen by looking at their definitions. Therefore

| P oAl) = At

EIS. | = (ElS’i — {e}H) U {(executable, u, k) : (u, k) is a destination of ¢
and opcnt = 0 and /sigent = 0}, where / = (Act (w)X(K)}.

Also. EIS, | = (EIS; — {eh U {(u, k) : (u, k) is a destination of ¢’ and /.opcnt
= 0 and /sigent = 0}, where / = (Act())(k).

Since @ o, (E1S") = EIS,itisclear that @ o, EIS", |) = EIS, ;.

The heap is unaffected. Therefore 7T,

Hitis obvious that @ H',) = H,_;

=Hand H,_, = H, Since g (') =

Thus for scalar instructions the map ¢ holds.

2. APPEND instruction
By the same reasoning as used for scalars, in the state produced by APPEND,

® 4 (Acl;) = Act, |, under the-stated preconditions.

We have @ ,. = H. We will look at the different cases that arise during the
execution of APPEND.

Let u, be the uid of the array 4; u, is the first argument to APPEND.

a. Number of EC-clements or suspensions in the array > 0: EIS’I.+1 = E[S’i
in L2.

By precondition and the definition of ¢ and p, in L1, this corresponds to
the case that |{i : element i of 4 in H_is a suspension or an EC-queuc} > 1.
Therefore £1S, | = EIS, Therefore @ o, EIS",) = EIS, ;.
The heap is unaffected since the instruction does not cxecute. Thus
P A)= H since g () = H,

Thercfore @ holds for this casc of APPEND.

b. No suspensions or 'C-clements and Arefent = 1.
As betore, P it Aet i+ l) = A(‘/l.+1 and '"pEI.S'(I"I'S H]) = ItlSl.H.

After ¢ exccutes. A is deleted and is absent in pr (@ new array is placed
on . All structures which were pointed at by A have their refent
ficld decremented. 1f they are pointed at only by 4 then their refent will

75

76

EQUIVALENCEOF L1 AND 1.2

become zero and they will be absent in HH—l

Since ¢ = S, and 4. refcnt = 1, 4 must be reachable from H, only
from e. Thercfore after e exccutes, 4 is no longer reachable in the new
heap H,‘+1 and a new heap is added to this heap for the new array. All
nodes in Hi which were reachable only through A4 will also become
unreachbale in HI.Jrl

Therefore under the given preconditions, o,)= +1.

Thus, (S | for this case of APPEND.

) =S

c. No suspensions or EC-elements and 4.refent > 1

As in the previous case, @ , (Acl, | = Act; | and @ JEIS, |) =
EIS,

i+l

After ¢ executes, A remains on the heap since its refent field does not
become zero. A new array is added to the heap /', ,and the value of its
refcnt field is equal to the number of destination mstrucﬂons of €.

Since p (H') = HI, A is pointed at by many objects in the current State,
and is reachable from more than one instruction or reachable structure.
After e executes, 4 becomes unreachable in Hi +1 through e. However, A
remains reachable on the heap.

Therefore, given that @(S") =S, we have @ ,(H,) = H,_, for this case
of APPEND.

This finally yields (S
given preconditions.

+1) =5 for the APPEND instruction under the

3. SELECT instruction
Let A and j be the first and sccond operands of SELECT, respectively. We shall
prove that ¢ holds for SELECT by considering the various cases that arise during
the execution of SELECT.

a. Element being accessed is not EC-queue or suspension : By rcasoning as
for scalars, (pA”(Acl i+1) = A”i+1 and ‘1’1;-15""3 ,.H) = LISI.+1

In L2, if the result of SELECT is a structure B then Brefent = n, the
number of destinations of ¢'. If Arefent = 1 then A is deleted from
H, . If Ais dcleted from the resulting heap, the refcnt ficlds of the
structures it points to must also be decremented.

In 1.1, if the result of the instruction is a astructure B, it is reachable in

H ol from the instructions which are the destinations of e, If A4 were
rcachablic only through ¢ then it becomes reachableunrcachable in Hi+l

76

§4.1

§4.1

EQUIVALENCEOF L1 AND L2

as doo all structures which were reachable only through A4 in Hr

Thus we get that @ (', |) = H1'+1 showing that (S",_) = S, for

this case of SELECT.

i+1

. Element being accessed is an EC-queue

EIS. | = EIS, — {€}.
Also, the execution of e in L1 yields EIS, = EISI. — {e}.

Since @, (EIS") = EIS, itis obvious that @ o, LEIS",) = EIS, .

!

Act | = Acl ;= Act, = Act, _;sothate , (Acl, |) = Act, .
On executing ¢, the heap H’I. +1 is the same as H’l. except that the
EC-queue has an additional element (1, k). On exccuting e in L1, the
resulting heap A, _, is the same as H, except that the EC-queue has an
additional element (u, k).

Since @ {H') = H,clearly it is the case that @ (i,) = H,_,.

Therefore, under the given preconditions, (p(S’i +1) = S, for this case of
SELECT.

. The element is a suspension

The exccution of ¢ in L2 causes its removal from EIS i1 A signal is sent
to the suspended instruction whose address is found in the suspension,
which may become enabled.

The actions of L1 are the same so that @, (FIS",) = EIS, , and
(Act’l.+1) = Act, since (p(S'r.) = Sr

i+1
‘pAct
In L2, if the ith element is a non-empty EC-queue then (u, k) is added to

the EC-queue and this change is refelected in the heap H’,.+ - The same
actions accur in L1 to yield H,.+ I

In L2, if the ith clement is an empty EC-qucue then it is replaced by an
EC-queuc containing only (u, k) and the EC-qucue is added to the heap
H |- The same action occurs in L1

Therefore, given that g, (i) = H itisthecasethat @ (H',)= H, .

Therefore, given the @(57) = S, | and &, is not a final state, (5",) = S, ;

irl

after the SELECT instruction is executed.

4, ST instruction
et u be the uid of the array A4 which is the first argument of SET, and let jund x

77

77

78

EQUIVALENCEOF L1 AND 1.2

be the second and third operands.

Signals are sent to the destinations of ¢, producing Act’, ;. In L1, signals are set
to the corresponding destinations of e in Act, yiclding Act, .

Since @ aclAct)= Act,wegete (Act i+ 1) = Act;_, after SET executes.

After ¢ executcs it is removed from E]S1'+1‘ The addresses of the instructions in
the EC-queue for the ith element of A are added to the set of enabled instructions.
The instructions which receive signal from set and thus become cnabled are added
to the enabled instruction set, too, to yield EIS”I. 1 The corresponding actions
occur in L1; if (&, k') is an entry in the EC-quecue then (executable, o', &) is
added to the set of enabled instructions in L1.

Therefore, given that Pk EIS") = EIS, we get cpEIS(EIS‘I.H) = EIS,; .

The heaps are affected in the following way. The EC-queue at the ith element A4 is
replaced by x. Ifthe ith element is an EC-queue then decrement 4.Setcnt.

The corresponding actions occur in L1 with heap Hr The EC-queue at the ith
element of A becomes unreachable in Hl. +1 A now has one less EC-queue, if the
ith element was an EC-queue.

Therefore, given that @ (H') = H wegetp (H,) =H, |

i+1

Therefore, given the condition that (p(S".) = §,and ', is not the final state,
o(S ; +1) = Si +1 for the SET instruction. :

. SETSUSP instruction

Let the three arguments to the instruction be uy, iand m. Let uy be the uid of the
array A.

After ¢ cxecutes, it disappears from E]S‘H-l' If the ith element of A4 is not an
empty EC-queue then a signal is sent to the destination instruction (u, m).
Corresponding action occurs in L1, Also, signals are sent to the destinations of ¢’
and e in 1.2 and L1, respectively, Thus the corresponding set of instructions get
enabled in the two machines.

@(S") = S, implics that after setsusp exccutes @, (1S,) = EIS:'+1 and
P 4o A) = Aet .

If the ith clement of A is an empty LC-queue, then it is replaced by a suspension.
The rc-queuc is deleted from the heap Ifl.+ - The samc is done in 1.1 to produce
the heap H1+1'

If the ith clement of A is a non-empty tC-gqueuc then /| and Hi+l are identical
10 /fl.and H[. respectively.

78

§4.1

§4.1

EQUIVALENCE OF L1AND L2

Thus for both cases, given that @ (H') = @, we conclude that ¢ (', |) =
i+1'
From the above analysis we conclude that given P = S,. and S”l. is not the final

— 1 H {
state, @(§',_ ;) = S, for the SET instruction.

. MKINTARRAY and MKINTARRAYEC instructions

After ¢ executes it disappears from EIS ., The uid of the result of the
instruction {or a signal) is sent to the destinations of ¢, which may then become
enabled and so would be added to the set of enabled instructions to yield EIS‘I.H.
Corresponding actions are performed by the L1 machine. .". given that (S)=
S, we conclude that @ o, LEIS", () = EIS, jand @, (dcf,)= Act, ;.

Suppose the instruction is MKINTARRAY. The execution of € causes a new node
corresponding to an array to be added to the heap H' i41- Any SELECT operation
on the array produces an undefined value. In L1, a new node is added to the heap
coresponding to an array due to the execution of e. Recall that in L1 an array is
represented as a function mapping indices to values; the array added to the heap
maps all indices to the undefined value.

Suppose the instruction is MKINTARRAYEC. ¢ adds a new node to the heap such
that an element within the bounds of the array points at an empty EC-queue. Anu
SELECT operation which tries to access an element outside the bounds of the array
would produce an undefined value. In L1, the function is defined such that the
indices within the specified bounds map to empty EC-queues and indices outside
the bounds are mapped to undefined values.

Therefore, given the ¢ (H) = H, we get H _)J)=H ..
! i P i i+1

Hence, given ¢(S") = S;and §', is not the final state, ¢(Si+l) =51 for the
MKINTARRAY and MKINTARRAYEC instructions.

. APPLY instruction

A new function activation is added to Acf’, _, as a result of the execution of €. The
first three instructions of the nre activation receive the closure, argument list and
return link, respectively. Corresponding action occurs in L1, .°, under the given

preconditions, <pA”(Acl i+1) = AC’/+1'
' is deleted from 1:'/5'1. and instructions which received the closure, argument list
or return link, if they become cnabled, arc added to the set of enabled instructions

to yield EIS’I.H. L1 acts in tha same manner to yicld EIS,.+ I

ﬂmrpforc gi\'cn' that <p!’.[§(l:‘15"1.) = I:‘ISI, we gt (PI:‘A(HSHJ) = EISI.H.
provided that .S'I. is not a finul state.

The heap is unaftected. so that /1 = ”HI and H/ = H;+l' Since we have

@ AH) = H itis tivially true that'p 4K) = H, .

79

79

EQUIVALENCE OF L1 AND L2 §4.1

.. under the given preconditions, <p(S'H_1) = SH—I'
The cases for TAILAPPLY and STREAM-TAILAPPLY are similar and are left as an
exercise.

8. RETURN instruction
A glance at the transition rules for the RETURN instruction in L1 and L2 tells us
that there is no difference between them, except that the instructions which
become enabled in 1.2 are tagged executable. The heap is unaffected. Thus we
can conclude that (S",_ ;) = S, given that (5") = S, and that § is not a final
state.

9. RELEASE instruction
The execution of ¢ deletes the activation of ¢ from Act 1o produce Act’l. 1
Similarly, the activation of e disappers from Acti to produce Act, . Since @(&)
=5, we conclude that <pAa(Ac1 i+ P = Acty .

EIS, | = EIS, — {€} and EIS, | = EISl. — {e}. Therefore, under the stated
preconditions, ¢, (EIS,) = EIS, .

The assertions of the validity of the mapping for the heap needs some comments.
The transition rule for this instruction is identical in both machines. In L1, all
nodes in the heap Hi which were reachable only through instructions in the
activation to which RELEASE belongs become unreachable.

The base language ensures that a RELEASE instruction is enabled only after all the
instructions which have pointers to nodes corresponding to structures — arrays,
records, etc. on the heap have been executed. This is done by arranging the data
flow graph for a function such that the RELEASE instruction is the last instruction to
become enabled. This ensures that when RELEASE is enabled, the instructions
which received structure operands have already executed; if the structures were
pointed at only by the instructions, then their refcnt field must be 1 in H‘l. and
would become zero after the execution of €' and would be deleted from the heap.
Therefore, the mapping @ , still holds.

Thus we conclude that if S, is not a final state and @(S") = S, then after RELEASE
exccutes, <p(S'i+l) = Si+1'

Wec demonstrated that the @ indecd provides the desired mapping. Similar reasoning may
be used to show that the mapping p is prescrved by instruction exccution. The map p(S) isa
member of an equivalence class under the similar relation. This is an artifact due to the
different chunks which may be uscd to represent the same data structure, and hence, the
heap.

Thirdly. we prove that ¢ and p satisfy the third condition for cquivatence. Clearly, ifS[. 1s
Final then @(5) is final both will have £15, = /;'I.S"I. = {}. Similarly, if S'I. is final then
p(S") is final.

80

§4.1 EQUIVALENCE OF L1 AND L2 81

Finally, let Sn and S‘,7 be the final states of machines L1 and L2, respectively. By the
previous two cinditions, (p(Sn) = Sn and p(S") =5, by a judicious choice of chunks.

We proved that at every step during the execution of program P the set of values
represented on the heap werc the same. Therefore, ResultValueLl(S") =
Result Valueu(S”n).l

We now argue informally that even if the Ferch function is not omniscient, that is, it does not
mark as accessible all the chunks required during the execution of the instruction, the result
produced by the computation is the same as would be if it were omniscient. Recall that if a chunk
which is required to be accessed during the execution of an instruction is marked inaccessible, the
instruction is made dormant and no change is made to the Act. H and C components of the machine.
The state of the machine is changed only by the fact that the status of the instruction changes in the EIS
component of the state. Some other instruction may be selected for execution; eventually when the
chunk becomes accessible the instruction becomes executable. The order of execution of
instructions is thus different. Let the sequence of states during the computation of program P on L2 (in
which the instructions may become dormant) be S”’OS”’I...S’ ’n. The map ¢ gives us a corresponding
sequence of states in L1. Since this is a non-deterministic state transition system, it can be shown that
the result of this computation is the same as for the original sequence on L1, and so the result is the

same.

4.2 Discussion

It was shown that L2 satisfies the spccifications of VIM by .proving that L1 and L2 are equivalent.
This technique of taking a component of the VIM system (in this case, it is the structure memory) and
designing an implementation which is formally proved to satisfy the specifications given by L1 can be
cxtended to design the entire machine. At cach step of the implementation, the resulting format model
must be proven to satisfy the specifications of 1.1, This mecthodology of designing by successive
refinement with formal proofs of equivalence between the original model and its refinement will be
very uscful in the design of more complex implementations of VIM, such as in a computer system with

multiple processing clements,

81

82 A BASE LANGUAGE FOR VIM §5

Chapter Five

A Base Language for Vim

I shall now present a base language for VIM; I shall do this by describing the base language graph
corresponding to the VIMVAL language constructs. These graphs are characterised by a property called
safety. A graph is safe if every instruction (in the graph) which receives a structure operand becomes
enabled before the activation, of which the instruction is a part, is removed from the set of activations
by the RELEASE instruction. The firing of the instruction would cause the reference counts of the the
operand structures to be appropriately decremented. The discussion in chapter 4 described why the two
machines are equivalent for this base language. In terms of pragmatics, the use of safe graphs would
ensure that the chunks which contain garbage values are reclaimed in the actual implementation of VIM.
The base language described is not the only possible one; the intent of this chapter is to give the reader
a flavor of how one might go about designing the language. No formal proof will be given to
demonstrate that the graphs are indeed safe and that a compiler using the base language as its target
language will always generate safe graphs; the interested reader may convince himself of the safety of
programs written in this base language by examining each graph and the operational semantics of each

of its instructions.

5.1 The Let expression

The let construct permits local bindings to be expressed and is of the form :

let X, = 1:
Xy = EZ‘
x = F
. n n
in

F(xl, Xas s x")
endlet

where the £7s all represent data flow graphs.

The base language graph for the above let expression is shown in figure 19.

§5.2 A BASE LANGUAGE FOR VIM 83

Figure 18: Translation of a let expression

5.2 Conditional Expression

The conditional expression in VIMVAL is of the form :

if fthen g(xl, Koy cony x")
else h(xl, Xos v xn)

where g and A are data flow graphs and fdenotes a graph that computes a boolean result. In some
graphs, the values of all the operands of an instruction are known at the time of compilation. It is
necessary to send a signal to such instructions to enable them. If there is such an instruction in cither of
graphs g and 4 and the instruction is not in the graph of a let or tagcase expression inside g or A, then
the SWITCH-SIGNAL instruction is used; it is omitted otherwise. Each branch of the if expression must
produce the same number of signals; this is accomplished by fceding all the signals in an arm into a
SIGNAL instruction which generates one signal. If neither of the arms produces signals, then the parts of
the graph that deal with them maybc omitted. If the RELEASE instruction is triggered by the signal
produccd by the if expression, and £, g and k4 are all safe graphs, then it is the case that the graph for the

conditional expression is also safe.

83

84 A BASE LANGUAGE FOR VIM §5.3

n
l v l 2 l v v T Strue
SWITCH SWITCH e e @ SWITCH SWITCH-SIGNAL '
4o

T F T F T F F S pue

SIGNAL

Figure 19: Translation of a conditional expression

5.3 The Tagcase Expression

Let 7 be a oneof with tags lt
tagcase T
tag f; E,x(“l‘ L
tag /,: 1'.2(Vie Ve e vb):

R The tagcase expression is :

I

tag s : Izn(zl, Zye i 2)
endtag

84

§5.3

A BASE LANGUAGE FOR VIM

85

where the E’s are data flow graphs. The use of the SWITCH-SIGNAL and SIGNAL instructions is governed

by the same considerations as for the conditional expression,

T
1
TAG
| |
: by v v
SWITCH-SIGNAL SWITCH SWITCH
oo o)
SIGNAL
1
TAG
|
SWITCH-SIGNAL SWITCH SWITCH
SIGNAL f———

Figure 20: Translation of a tagcase expression

3

85

86 A BASE LANGUAGE FOR VIM §54

5.4 Function Application and Returns

The syntax for function application in VIMVAL is ;
Axy, Xy weny xn)
where fis the name of a function. In most cases, the function application is performed by the APPLY
operator. The arguments X\ e X arC collected into a single record all of whose elements are intially
EC-elements. The code is shown in figure 22. The TAILAPPLY instruction is used in place of the APPLY
whenever the compiler can recognize that a function application is tail-recursive. The instruction

STREAM-TAILAPPLY is used only in the body of stream producers and will be discussed in the next

section.
n
1 X, 2 X, n x
MKRECORDEC ' l
v v L 4 ,
RSET - RSET L RSET
v
APPLY
_Function l
template
of f

Figure 21: Code for creating the argument record for function activation.

The RETURN instruction is used to dispatch the results computed by the function to the
destinations listed in the return link, which is its first operand. The return-link was received by the
template from the APPLY instruction. The results computed by the activation are packed into a record,
the ficlds of which are EC-clements. Values returned from a function are similarly packed into a record.
In most cases. one of the destinations for the signal produced by the RETURN instruction is the RELEASE

instruction for the activation.

86

§5.5 A BASE LANGUAGE FOR VIM 87

1 Z 2 z n z
MKRECORDEC ’ ! 2 n

v v v L

@ RSET RSET L RSET

v

RETURN

return link

Figure 22: Code for returning the result of an activation.

5.5 Stream Producers and Consumers

A stream is a sequence of values, all of the same type, that are passed in succession, one-at-a-time
between functions. The operations on values of type stream of type T are defined below where S and &
are streams, and v is a value of type 7.

L. [J[7] : returns an empty stream (of elements of type T) which is the sequence of
length zero.

2. first(S) : The result is the value v which is the first element of the stream S. If S
= [] (the empty stream), then the result is undef.

3. rest(S) : The result is the strcam left after removing the first clement of . If S
= [] the result is undef.

4. affix(v, S) : The result is the stream §° whose first element is v and whose

remaining clements are the strcam S.

5. empty(S) : The result is rrue if S = []. false otherwise.

87

88 A BASE LANGUAGE FOR VIM §5.5

For a non-empty stream S, the following property is satisfied :
S = affix(first(S), rest(S))

In VIM the storage representation for a stream is a chain of oneofs. Operations on streams are
expressed in terms of operations on the components of the oneofs. The data structure for a stream

whose elements are of type 7 is:

stream[7] = oncof[empty: null;
nonempty: record{first: T;
second: stream[T]]]

The following discussion describes the rules using which the compiler can translate the VIMVAL
text into data flow graph. The translation rules specified are by no means complete; only the simpler

cases are dealt with in this thesis and the more complex cases need further investigation.

The expression [] for creating an empty stream is translated into an expression for creating a oneof

with tag empty.
make[empty: nil]

first(S) is tranlated into the following code:

tagcase(S)
tag empty: undef:
tag nonempty. S first
endtag

rest(.S) is tranlated into the following code:
tagcase(S)
tag empty: undef,
tag nonempty: S.rest
endtag
The code gencrated for the affix(v, S) is shown below in figure 24. The instructions are so
organized that the computation of the rest of the stream is suspended until some instruction demands it.
When some computation attempts to perform the rest operation on the resulting stream, the suspension

is replaced by a pointer to the next clement of the stream and a signal is sent to the instruction which

initiates the computation of the next element.

88

§5.5 A BASE LANGUAGE FOR VIM 89

l

—————e MKRECORDEC

1 v
Vi
RSET
nonempty ,
2 ——
v v l v
MKONEOF RSETSUSP e

Figure 23: The general form of the base language graph for the expression affix(v, S). i is the index of the instruction
in the current template which starts the computation of the stream .

The translation for self-tail-recursive stream producers is quite interesting. I assume that the
compiler can recognize stream producers which are self-tail-recursive. The use of tail recursion allows
the activation template of the caller to be released before the computation of the callee is completed.
This is a significant optimization since it results in a much lower arhount of storage that is required for
the computation. Mutually tail-recursive programs are translated naively, using simple APPLY and

RETURN instructions without taking advantage of the STREAM-TAILAPPLY instruction.

Let fbe a self-tail-recursive function that requires n arguments and produces a stream. Let the

function be of the form :

function Ax,, ..., x,) returns stream[7];
body of function
endfun;

The compiler gencrates an auxiliary function faux from £, The code for the body of the function
/ is generated using the rules specificd above, except that every instance of affix(v, £...)) is translated

into the graph in figure 285.

The VIMVAL text of faux is the same as that of the function £ The only difference is that cach

89

90 A BASE LANGUAGE FOR VIM §55

2

l

———— e MKRECORDEC

l i
v b4

RSETSUSP |——®

argument

record
closure for ——1
v v

Jaux
STREAM-TAILAPPLY {+—F—@

Figure 24: Translation of affix(v, A...)) in the body of the function f

instance of affix(v, £...)) in f is translated into the graph shown in figure 26.

The correctness and generality of these translations are under current investigation and will be the

subject of another treatise.

5.6 Discussion

We described a base language such that machines L1 and L2 are equivalent for all programs
written in this language. Stated in another way, programs in this base language cnsure that when a
program halts, the only elements on the heap are those that represent the result value of the
computation. Since the data structures are stored in chunks, this cnsures that all chunks which were

acquired during the computation and which are not part of the result structurc are reclaimed.

The base language uses carly-completion elements for creating argument lists for function
invocations and for creating records in which the result of a function invocation is returned. The use of

carly-completion clements in these records allows a function to be invoked cven if all the arguments

90

§5.6 A BASE LANGUAGE FOR VIM 91

L 2
VALUE ——— | MKRECORDEC
1 vy
IR
RSET ——
nonemplty
2
l ! i
v y
2 MKONEOF RSETSUSP ——
l ; argument
RSET ——e record

closure for ——j *

Jaux
STREAM-TAILAPPLY

Figure 25: A base language graph for the expression affix(v, J(xl, Xyo o xn)) in the body of f which is
self-tail-recursive, is translated into the above graph in the body of faux.

have not been evaluated. Similarly, early-completion queues in return records allows values to be
returned to the caller even if the computation of all the values which are to be returned has not

completed. The other use of the early-completion structures is in the construction of streams.

A major use of the early-completion feature of the language is in the construction of arrays.
Creation of arrays whose elements are then initialized by large computations can benefit from the use of
EC-quecues. Such techniques for increasing the amount of parallelism in programs are the subject of

ongoing research.

91

92 CONCLUSION AND SCOPE FOR FURTHER WORK §6

Chapter Six

Conclusion and Scope for Further Work

The objective of the thesis was to develop a storage management strategy for VIM. An abstract
architecture for VIM was informally discussed and some of the distinctive features of VIM explained in
an informal manner. This was followed by a formal model L1 of the abstract architecture. The thesis
then went on to refine the model L1 to include hierarchical storage consisting of main memory and disk.
Chunks, which are the unit of storage allocation and reclamation of storage and the unit of data transfer
between main store and disk, were used as the constituent of a new data structure called a VIM-tree.
VIM-trees are used to represent structure values (arrays, records and oneofs). An automatic storage
reclamation strategy was developed using reference counting. Particular attention was paid to ensure

that the machine L2 exhibited desirable behaviour in the presence of EC-queues and suspensions.

A concurrent objective of the thesis was to demonstrate the usefulness of the methodology of
computer design by successive refinement. We started with an abstract machine and developed a
formal specification for it. The machine model was then refined to include a storage model. In order to
show that the refined model L2 (with hierarchical memory, paging, dormant instructions and tree
structures for storing arrays, etc.) exhibited the same behaviour as L1 for programs written in the base
language discussed in the thesis, we proceeded to prove the equivalence of the two machines. A

modification of the McGowan mapping was used to accomplish this.

[.2 represents a machine which is closer to an envisioned implementation. [.2 may now be refined
so that EC-queues, Function templates and activation templates would also be represented as data
structures. This new model, say 1.3, may then be proved to be cquivalent to 1.2, and hence to L1, using
the kind of technique described in this thesis. Such successive refinement would finally yicld a machine

modcl which can be dircectly implemented to construct a real machine.

§6 CONCLUSION AND SCOPE FOR FURTHER WORK 93

Future Research

There are a number of topics which are natural extensions of the ideas and issues addressed in this
thesis.

1. An_implementation of ViM : The abstract architecture may be successively
refined to produce a model which reflects the characteristics of the physical
elements of a machine — disk intcraction, paging algorithms, process priorities,
non-terminating computations, faults and exception handling, ctc. Each model
must be shown to be equivalent to the preceding model, and thus the final
implementation would satisfy the specifications of L1 and the two would be
computationally equivalent. It is a matter of conjecture as to how far this process
of refinement can be performed before the designer is overwhelmed by the
details of the machine formalism.

2. Storage Management and_Guardians : Guardians are a special construct
proposed in VIMVAL [13] which allows the programmer to express indcterminacy

in computations. They are similar to the manager construct in Id [3] and allow
the programmer to write programs for, say, data base transactions. It remains to
be investigated how the incorporation of guardians in the abstract model would
affect the reference counting scheme,

3. Storage Management in Multiprocessors : It would be interesting to develop a
model of ViM which has multiple processors and prove the equivalence of this
model to L1 for the base language in consideration in this thesis. The issues of
storage allocation and reclamation and instruction scheduling can be formally
addressed in this model.

4. Extending the Base Language : The base language presented in this thesis is
being extended to express efficient computations on arrays. Judicious use of
EC-qucues should significantly increase the amount of concurrency in the
program. This increase in parallelism can be exploited to overlap disk activities
in a single processor implementation of VIM, or by multiple processors. VIMVAL
constructs which corespond to these new base language constructs must be
developed: preliminary rescarch shows that naive extensions of VIMVAL
introduces in the type system of VIMVAL.

94 | REFERENCES §

References

1. Ackerman, W. B. and Dennis, J. B. VAL -- A Value - Oriented Algorithmic Language: Preliminary
Reference Manual. 218, Laboratory for Computer Scicnce, MI'T, Cambridge, Mass., December, 1978.

2. Arvind, and Gostelow, K. P. "The U-interpreter”. COMPUTER 15,2 (Feburary 1982), 42-49.

3. Arvind and JI. D. Brock. Lecture Notes in Computer Science. Volume 143: Streams and Managers.
In Operating Systems Engineering, M. Mackawa and L. A. Belady, Ed., Springer-Verlag, 1980.

4. Arvind, and R. A. Iannucci. A Critique of Multiprocessing von Neumann Style. Proc. of the 10t
International Symposium on Computer Architecture, June, 1983.

5. Arvind, and R. E. Thomas. I-Structures: An Efficient Data Type for Functional Languages.
TM-178, Laboratory for Computer Science, MIT, Cambridge, Mass., September, 1980.

6. Berry, Daniel M. Block Structure : Retention or Deletion. Proc. of the Third Annual Symposium on
the Theory of Computing, May, 1971.

7. Bobrow, Daniel G. "Managing Reentrant Structures Using Reference Counts". ACM Transactions
of Programming Languages and Systems 2, 3 (July 1980).

8. Chu, Yachan. High-Level Language Computer Architerture. Academic Press, New York, 1975.

9. Dennis, J. B. Programming Generality, Parallelism and Computer Architecture. Information
Processing 68, 1968, pp. 484-492. Also CSG-Memo 30. :

10. Dennis, J. B. On the Design and Specification of a Common Base I.anguage. Procecdings of the
Symposium on Computers and Automata, Polytechnic Institute of Brooklyn, New York, April, 1971,
pp. unknown,

11. Dennis, J. B. Leciure Notes in Computer Science. Volume 19: First Version of a Data Flow
Procedure Language. In Programming Symposium: Proceedings, Colloque sur la Programmation,
B. Robinet, Ed., Springer-Verlag, 1974, pp. 362-376.

12. Dennis, J.B.. Guang-Rong Gao and K.W. Todd. A Data Flow Supercomputer. Computation
Structures Group Memo 213, Laboratory for Computer Science, MIT, Cambridge, Mass., March, 1982.

13. Dennis, J. B. Data Should Not Change : A Model for a Computer System. Group memo.

14. Dennis. 1. B.. C. K. C. Leung, and DD. P. Misunas. A Highly Parallel Processor Using a Data Flow
Machine Language. Memo 134-2, Computation Structures Group, laboratory for Computer Science,
MIT, Cambridge, Mass.. Jung, 1980.

15. Even. Shimon. Graph Algorithms. Computer Scicnce Press, 1979.

94

§ REFERENCES 95

16. Friedman, D. P, and D. S. Wise. CONS Should Not Evaluate its Arguments. In Automata,
Languages, and Programming, Michaclson and Milner, Eds., unknown, 1976, pp. 257-284.

17. Friedman, D. P, and D. S. Wise. Lecture Notes in Computer Science. Volume 70: An Approach to
Fair Applicative Multiprogramming. In Semantics of Concurrent Computation, G. Kahn, Ed., Springer-
Verlag, 1979, pp. 203-225.

18. Halstead. Robert. Reference Tree Networks : Virtual Machine and Implementation. Ph.D. Th,,
Laboratory for Computer Science, MIT, Cambridge, Mass., 1979. MIT/LCS/TR-222.

19. Halstead, Robert H. Multil.isp : A Language for Structured Concurrency. Real Time Systems
Group, Massachusetts Institute of Technology, 1984. Submitted to the ACM Transactions of
Programming Languages and Systems.

20. Henderson, P.. Functional Programming: Application and Implementation. Prentice/Hall
International, Englewood Cliffs, New Jersey, 1980.

21. Hudak, Paul, and Adrienne Bloss. The Aggregate Update Problem in Functional Programming
Systems. Proceedings of the 1985 Conference on the Principles of Programming Languages, 1985.

22. Jones, Anita K., R. J. Chansler, Jr., I. Durham, P. Feiler and K. Schwans. Software management of
Cm* - A distributed multiprocessor. Proceedings of the National Computer Conference, 1977.

23. Jones, A. K. and P. Schwartz. "Experience Using Multiprocessor Systems - a Status Report”. ACM
Computing Surveys 12,2 (June 1980), 121-166.

24. McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P. and Levin, M. L. T.. LISP L5
Programmer’s Manual. MIT Press, Cambridge, Mass., 1965.

25. McGowan, C. An Inductive Proof Technique for Interpreter Correctness. Courant Institute
Symposium on Formal Semantics of Programming Languages, 1970.

26. McGraw, J. R. Data Flow Computing - The VAL Language. Mcemo 188, Computation Structures
Group, Laboratory for Computer Science, MIT, Cambridge, Mass., January, 1980.

27. McGraw, J. R. "The VAL Language: Description and Analysis". ACM Transactions on
Programming Languages and Systems 4, 1 (January 1982), 44-82.

28. Moon. David A. Architecture of the Symbolics 3600. Proceedings of the 12th IEEE Intcrnational
Symposium on Computer Architecture, June, 1985.

29. Myers, Glenford J.. Advances in Computer Architecture. John Wilcy and Sons, 1981.

30. Myers, Eugcne W. Efficient Applicative Data Types. Proceedings of the 11th ACM Conference on
Principles of Programming [anguagcs, . 1984, pp. 66-75.

31. Patil, Suhas. An Abstract Paralle! Processing System. Dept. of Electrical Engincering, MIT, June,
1967.

32. Stecle. G.1.. and Sussman. G.J. Storage management in a L.ISP-Based processor. Proc. Caltech
Conf. on Very Large Scale Integration. Junuary, 1979, pp. 227-241.

95

96 REFERENCES §

33. Steele, G.L. and Sussman, G.J. "Design of a LISP-Based Microprocessor”. CACM 23, 11
(November 1980).

34. Swan, R.J., Fuller, S.H., and Siewiorek, D.P. Cm* - A Modular Multiprocessor. Proceedings of the
National Computer Conference, 1977.

35. Swan, R.J., Bechtolsheim, A., Lai, Kwok-Woon, and Ousterhout, John. The Implementation of the
Cm* Multi-microprocessor. Proceedings of the National Computer Conference, 1977.

36. Symbolics Inc.. Symbolics 3600 Technical Summary. Symbolics Inc., 1984,

37. Tumer, D. A. "A New Implementation Technique for Applicative Languages". Software - Practice
and Experience 9(1979), 31-49.

38. Weng, K.-S. An Abstract Implementation for a Generalized Data Flow Language. TR-228,
Laboratory for Computer Science, MIT, Cambridge, Mass., 1979.

39. Wulf, W., Levin, A.R,, and Harbison, S.. Hydra/C.mmp: An Experimental Computer System.
McGraw-Hill Book Company, New York, 1981,

96

