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VIM is an experimental computer system being developed at MIT for supporting functional 
programming. The execution mechanism of the computer is based on data flow. This thesis presents 
mechanisms for managing data structures in this system. The thesis also develops a methodology for 
designing computers, which is based on successive refinement of formal models of the computer. 

A formal model Ll of the abstract architecture of VIM is first developed. The behaviour of this model is 
described by its operational semantics; Ll is the specification of VIM. Ll is then refined to model hierarchical 
physical storage consisting of main memory and disk. This refined model is called L2. The unit of storage 
allocation and of data transfer between main store and disk is a chunk. The thesis proposes a new data 
structure called VIM-tree which is a tree of chunks. Data structures in VIM (arrays and records) are stored on 
VIM-trees. VIM-trees allow efficient applicative operations on data structures and permit a large amount of 
sharing. A reference count mechanism is proposed to perform automatic storage reclamation. Special care is 
taken to handle operations in L2 on data structures containing early-completion queues and suspensions, which 
are distinctive features of VIM. A base language for this machine is outlined in the thesis. 

The models Ll and L2 are then shown to be equivalent for the proposed base language. 'fh:e 
equivalence is proved by exhibiting a McGowan mapping between the states of the two models during the 
execution of a program writen in the base language. 
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Chapter One 

Introduction 

In recent years data flow computer systems have been the focus of vigorous research, especially in 

the context of high speed scientific computations. In addition to higher speed, the data flow model of 

computation appears to provide a more robust programming environment than is available on 

conventional systems. The VIM project of the Computation Structures Group at MIT is aimed at 

examining the issues involved in implementing a modern, general-purpose computing environment 

based on the principles of dataflow that can effectively support such diverse computational applications 

as database systems, logic programming, etc. The ideas about the VIM system have evolved over the 

years, drawing much from the works of Dennis [9, 10, ll], Patil [31] and Weng [38]. 

The VIM system will support functional programming and the execution mechanism is based on 

data flow. In the world of functional programming all values are treated as mathematical values. 'This 

implies that the traditional view of data structures (arrays and records) as modifiable entities is no longer 

valid - the system must operate so that the user gets the view that a new structure is created from the 

old one whenever required. In a simplistic implementation, this would lead to a proliferation of copies 

of data structures, each differing from the others in only a small number of values. It is recognized that 

sharing of common elements among structures would reduce both the amount of copying and the 

storage space required to run the program. Various proposals have been made to implement data 

structures in data flow systems: none of them can be called definitive solutions. Applicative languages 

arc also side-effect free languages and the language constructs provided in the functional language for 

\'i\1 docs not allow the creation of circular structures. Therefore. reference-counted memory 

managcmcnrt becomes an attractive alternative to traditional mark-and-sweep methods for garbage 

collection. This thesis prornscs a rcrrcsent:itinn for d:it;i sm1ctures th;it greatly reduces the ;imount of 

wr~ ing and describe~ a reference count rncchdnis111 for stor;1ge recl<1m;nion. 

In ll1ll~t current!~ rrnro~cd f'unction;d bngu;1gc architccturL'"· ;in implicit assumption is tluc the 
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program and the data which the program operates upon are all located in the main memor/. VI\f has a 

two-level physical hierarchy of storage consisting of a large, slow disk and a smaller, faster main store. 

Values in the main-memory can be accessed immediately while values which are resident in the disk 

must be read into the main memory first 

The problem of storage reclamation on systems with large address spaces is a prickly one; the 

strategy for garbage collection in VIM is based on reference counting. The architecture of Vr:\1 modelled 

in this thesis consists of a single processor, some main store and disk store. The principal source of 

parallelism in the single-processor version of VIM stems from the concurrency in the processing of 

instructions and disk activities. 

1.1 The VIM Project 

The goal of the VIM project is to develop a computing environment which supports functional 

programming and provides a large address space and automatic storage reclamation. A two-level 

physical storage has been chosen to reduce the cost of physical memory. The primary vehicle for 

programming on this system will be the VimVal language, a functional language that is an extension of 

the language VAL developed by Ackerman and Dennis [I. 26, 27). The criteria that have guided the 

design of the new language are that it should have the following characteristics. 

• It should be sufficiently expressive in that it provides language constructs to the 
programmer to express most application programs that he needs to, without 
having w appeal to some features of the underlying architecture that are not 
evidenced in the language. 

• A program consists of one or more modules. Modules must be independently 
compilable. All the independently compiled modules of a program are linked 
prior to execution by a linker. 

•The language must be strongly typed. i.e .. if the compiler and the linker cenify 
the program to be legally typed then L.hc program will not encounter any type 
errors at the time of execution of the program. 

• The lang.uagc must pro' ide constructs to express computations on streams. 

1 
Inc rnodcls rroro,cd h\ l knnis and Weng ha\ c 3 [\\ o-lc1 cl rh) SIC.11 stornge. 

, 
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• Non-detenninacy must be expressible in the language. 

• Higher-order functions must be pennitted. 

Programs written in Vr~VAL will be run on a data flow processor with hierarchical storage. The 

conceptual framework for the machine was described in [38]. As currently envisioned, the YIM system 

consists of a single processing element and a two-level physical storage consisting of main memory and 

disk. 

1.2 Background and Previous Work 

A number of projects have aimed at providing a coherent and structured programming 

environment within the framework of a multiprocessing system. Of principal interest from the 

perspective of this thesis are the Hydra/C.mmp system, the Cm* computer and the SYMBOL 

computer. 

The Hydra/C.mmp was an experimental multiprocessor system (39]. Capabilities were adopted as 

a mechanism for providing a large and unifonn address space and also to control accesses to shared data 

structures. However, the system fell short of providing a truly integrated interface between the 

capability architecture and the programming language. The task of processor management was left 

largely in the hands of the user. The user had to ensure the correct usage of shared data structures by 

the use of appropriate locking and synchronization primitives. with a resultant decrease in the 

programmability of the system (23]. However, in spite of these shortcomings the Hydra/C.mmp system 

represented a significant advance in programmability over the multiprocessor systems then existing. 

The Cm* [34, 35] was also a capability based architecture consisting of a large number of 

processors and memory modules. An underlying goal of the Cm* project was LO develop a system that 

would be scalable, i.e .. the computing power of the system would grow in proponion to the number of 

processors in the system. However. this effort too left the issue of processor management as a user 

rcspomihility. Also. since the cost of a memory access was proportional to t11e distance of t11e memory 

cell from lhc procc~sor. the t;t~k of urg,111i1i11g the progr;un so t11at the nurnher of non-local memory 

rci'crcnu:~ would be minim;tl V.d~ left[\) Lill' rnigr.immcr 122]. 

3 
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The !'v1u project [18] at MIT was aimed at assessing the importance of programmability in 

multiprocessor organizations. Though the theoretical framework appears to provide a better working 

environment than in Cm* and C.mmp. the system was still unable to provide an elegant way of avoiding 

the need for explicit synchronizaton mechanisms for shared data that could be updated independently 

by the processors. It became clear from Halstead's work that the language supported by a 

multiprocessor is critical to the usability of the system. The difficulty of programming on a 

multiprocessor can be alleviated if the user can write programs without having to worry about task 

scheduling, process synchronization and hazards such as read-before-writes, such chores being taken 

care of by the underlying system automatically. 

The SYMBOL computer system [8, 29) was a language based multiprocessor system that allowed 

the user to program without having to worry about low level considerations like mapping the tasks onto 

the processors. Each of the processors had a very specific task; however, the task division was so rigid 

that it ruled out the possibility of scaling the system. Also, the various processors did not aim at solving 

a single problem in parallel. There was a processor dedicated to compilation, one to memory 

management, one to l/O management, one that actually executed the compiled program, etc. The 

parallelism in this system resulted from the fact that memory management, input-output and actual 

processing could be done in parallel. There was no facility in the system whereby multiple processors 

could concurrently execute a compiled program. 

The SYMBOL was not a true multiprocessor since it was unable to support parallel execution of a 

program exhibiting a lot of computational parallelism. However, many of the ideas it introduced were 

far ahead of the times. It was one of the first processors to specialize the memory architecture to 

support structure memory. The memory representations of data were specialized to reflect the type of 

data. allowing operations to be performed 9n such typed data more effieciencly. Significant amount of 

sreciJlized hardware was developed to allPw structun.: operations tn be executed fast - a revolutionary 

approach. considering the cost of hardware in that period. 

One of tJ1c seminal contrih11tions of the SY~fBOI. S\stcm is tJ1at it\ iewed that tJ1c Jcsign of the 

mcrn\lr:- rn:111:1g,·rncnt s~stcm w;i~ ,in inrcgr.ll p.:n of tl1c multipru~:c~sur sy-,tcin dc~i::n. The memory 

11u11.1::c111,·nt rncch,in ism rn11 iJcJ p1imiti \ c~ v. h icll rnu IJ support high· le\ cl 1m:mur:- dbstr:ictions such 



§ 1.2 l'\TRODLCTIO:>; 5 

as stacks. queues, lists and strings. A specialized processor performed the memory management tasks. 

exemplifying the philosophy of static load distribution that so characterized the system. 

In spite of its fiJilings, the SYMBOL system. which predated the other projects discussed above by 

a number of years. presented a pointer to the direction in which the development of programming 

environments for multiprocessor systems ought to proceed - an architecture based on a high·level 

language that provided a very unifonn. integrated environment for programming. 

Among the various general purpose computing enviroments available on modern systems, the one 

on the Lisp machines deserve special mention. Lisp machines are language-based uniprocessors 

designed at Massachusetts Institute Technology [24, 28. 32, 33, 36). They provide a uniform 

programming environment; there is no distinction between the command language used for interaction 

with the system and the principal programming language supported (Lisp), the hardware is tailored for 

processing Lisp primitives. high level data structures such as lists and arrays are regarded as data types 

even at the machine architecture level, and mechanisms for storage reclamation constitute an integral 

part of the system design. 

Lisp machines provide a very large address space which can be effectively used to support a 

uniform addressing scheme for all objects created in the system. However, the necessity of explicitly 

"loading" a file containing an object residing in secondary storage before the object can be used detracts 

from the uniform addressability feature. Once the file is loaded. the object may be placed on the disk. 

by the memory manager; references to this object are handled by the system so that its actual placement 

in the memory hierarchy is transparent to the user. Ideally, the user should never have to worry about 

whether the object is in the primary storage or in the secondary; given the name of the object, the 

system should automatically resolve the references to the object appropriately. In the VIM system. 

there is no concept of a file - all data structures arc persistent in that they continue tu exist across 

sessions, until there exist no references to the structure in the system. in which case they arc discarded. 

This strategy obviates the necessity of "loading" files. 

The ~tor.1ge recbm;1tio11 scheme .idurted hy rJ1e I isr rn.ichine is ;i \ariallt of rJ1e mark and sweep 

stL1tcg\. I he process of in.irking and s""ccring tile <Jlidrcss space swns v.hen the system mns out of 

swr;igc. In tile Lisp maci1 i ne. the process of g.1rhagc wlleuion ts O\ ertipped with the processing of 

5 
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other tasks in the system. This overlap is achieved by frequent switching of the task of reclamation with 

other activities. In conventional systems (van Neumann derived architectures). the switching of tasks 

involves the execution of substantial amounts of code to save the state. reducing the efficiency of the 

process of switching. The data flow model of program execution allows such switching to be perfonned 

with only a small overhead. In mark-and-sweep garbage collection, the time required to reclaim storage 

is proportional to the size of the address space over which the reclamation is to be performed. By 

constrast. the time required to reclaim the storage occupied by an object by reference-count based 

reclamation schemes is proportional to the size of the storage occupied by the reclaimed objects. 

1.3 Outline of the Thesis 

The design of the Vru architecture espouses the following philosophy. An architecture should be 

developed by successive refinement, starting from an abstract mathematical specification. The 

extensions and refinements at each of specification are designed to permit more efficient 

implementation of the machine. By proving that all the models are equivalent2• one can largely 

eliminate the unexpected behaviours that one encounters when designing a system in an ad hoc basis. 

This type of top-down approach is especially important to the design of multiprocessor systems, since 

the possibility for errors of omission and commision is so much greater. 

The design of the Vru system started with the design of the language VI:\iVAL which conformed 

to the aims outlined earlier. VI:\iV AL programs are compiled into programs in a base language, a 

preliminary version of which was proposed by Dennis and Stoy in 1982; a refinement of the base 

language is presented in this work. 

In this thesis. first the operational semantics of an abstract model for YIM is described. The 

model. called LL is the basis for specifying the behaviour of YIM. and is a set theoretic characterization 

of the abstract machine. The execution model is defined by a non-deterministic state-transition 

function. The set of instrnctions in this abstract model is an extension of that prorosed hy Dennis and 

Siov. Chapter 2 giH:s a brief description of the \'i\t\'.\I language ;md then presents tile formal model 

, 
-.\ 11:11\L' 11ot1nn ol qul\akncc 111J1 hL· that the m<11:kl, prnJuc( the ...amc rcs1i11 ... .\ form:il notion of equ11akncc for the 

1annu' modL·b ol \IM" ill be detinrd in charter -I 
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The operational model L2 is a refinement of Ll and is obtained by adding the notion of storage. 

In this model. structure values (such as arrays and records) which were modelled as clements of sets in 

Ll are viewed as stored values. L2 models a system with a hierarchically organized physical memory 

consisting of main store and disk. Storage consists of a large collection of equal sized chunks, each of 

which is an ordered set of words. Structure values are stored in trees of chunks, thus permitting sharing 

of information. L2 models a strategy for storage reclamation based on a reference count mechanism. 

The operational semantics of this model is presented in chapter 3. 

In accordance with our proposal of designing by refinement, we must next demonstrate that the 

L2 satisfies the specifications of LL This is shown by proving that the two machines are 

computationally equivalent. A formal definition of equivalence is developed in Chapter 4 and the proof 

of the equivalence of Ll and L2 is presented. 

The base language for the machine, which is the target language of the compiler for VI.:\1V AL, is 

described in Chapter 5. Essentially. the data flow graphs are such that when the computation of a 

program terminates. the reference counting mechanism would guarantee that if a structure becomes 

inaccessible in LL the corresponding element in L2 would have reference count of zero and would thus 

be reclaimed. 

The thesis concludes with a discussion of the relationship between L2 and its physical realization, 

and a brief list of related problems which are beyond the scope of this thesis and need further 

investigation. 

7 
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Chapter Two 

The Val Interpretive Machine 

The goal of the VIM project is the design and development of a computer system that supports 

functional programming well. The architecture of the computer is based on data flow principles and the 

data flow model of program execution is well suited for interpreting functional languages. 

The functional language suuported by VIM is VL\1V AL, which has evolved from VAL VL\1VAL is a 

textual language and a brief description of it is given in the first section. VIMV AL programs are 

compiled into programs in the base language, which consists of a set of data flow graph schemata. 

Translation from VIMVAL to the base language is straightforward since each construct in VIMVAL 

corresponds to a graph schema in the base language. 

Programs in the base language are executed by inte.rpreting the data flow instructions which are 

the nodes in the data flow graph for the program. Section 2.3 gives an informal description of some of 

the distinctive mechanisms used in VIM. The operational semantics of the abstract model L1 is 

presented in section 2.4. The model is the specification of VL\1 and all implementations of VIM must 

meet the specifications. 

2.1 The V1MVAL Language 

The programming language for the VIM system is the VIM VAL, an applicative language which is a 

revision and an extension of the Val programming language. The extensions include the addition of 

stream-types. free \·ariablcs. recursion and mutual recursion. and higher order functions. A type 

inference mechanism guarantees type safety even if most type declarations arc absent. Type inference is 

also used to pro\'ide polymorphic functions. 

The d.1tJ l}pcs (If\ J\1\ .. \1 fJ!l into l\'.o cla~ses - si11111!1 tH1es and sm1ct1irc 1ypes. The simple 

lyres include the !.1mi11ar type~ intq!l'L rl·;JI. hooll·;,111, cl1;,1rnc1cr :111d null_ The structure types include 

<1tT<1}-tyres. record-types. distinguished unions. stream-types. and functions. 

s 
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Functions are first-class objects. They may be passed as arguments to and returned as results from 

functions. and they may be built into data structures. The body of a function definition is an 

expression. Evaluation of an expression yields a single value or a tuple of values. Fonns of expressions 

include the conditional expression, the tagcase expression, and the function invocation. There is no 

fonn of expression for expressing iteration, use of recursion being preferred. 

2.2 An Example Program in V1MV AL 

A program in VIM VAL consists of one or more modules. Each module has a header specifying its 

interface, type declarations, function definitions and one expression which constitutes the body of the 

module. An example module is shown in Figures 1 and 2. Figure 1 illustrates how the user may define 

a new data type List, which represents a list of integers. The example module defines three simple 

operations on objects of type List. Figure 2 illustrates the use of streams in the language. The functions 

car, cdr and cons defined by the example programs have the same meaning as in Lisp. The function 

ListToStream creates a stream of integers when it is given a list of integers. SumOjStream sums up the 

elements of a stream of integers. 

A module written in V1MV AL defines a function that may be invoked from within another module 

or by a user command to the system. A module may contain function definitions - these may be 

invoked only from within the module unless they are explicitly exported by incorporating them into 

data structures sent out as module results. The body of a module may use names that are not defined 

bound to values by definitions in the module. These free names must be bound to other modules 

before the module may be run. 

Within a module. type declarations precede the function definitions and the body. Within a 

function. the type declarations must precede the expression that constitutes the body of the function. 

An array A of integers is declared as follows. 

A : array[intcgcrs] = array(l, 100) 

The clcmcnl~ of the array arc initially undefined. select( A. il returns the Vulue of the ith clement ()f the 

;1rray. append( ·I. i. l) crc;!lcs :1 ncv. array wh1cl1 i~ idc111ic:il ttl the arra~ :I cxcq1t th<1t the 1 ;iluc of the ilh 

ckmc1H of tl1c new arr.ty is 1•. 

9 
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module returns record[ head. tail. tuple : function] 
type Lzs1 = oneof [empty! ist : nil; 

atom : integer; 
pair: rccord[first, second: Listll 

function car ( L: List) returns List; 
tagcasc L 

tag e111ptylis1 : error; 
tag atom : error; 
tag pair: L.first; 

end tag 
endfun 

function cdr ( L: List) returns list; 
tagcase l 

tag empty/is/ : error; 
tag atom : error; 
tag pair : l.second; 

endtag 
end fun 

function cons (LI, l2 : List) returns list; 
make List[pair: rccord[first: LI, second: Ull 

end fun 

record[head:car, tail:cdr, tuple:cons) 
endmodule 

Figure I: An example program in VIM VAL. 

The definition of a record-type is of the fonn 

type Pair = rccord[first, second: list] 

Records of type Pair have two fields named left and rit;ht. The operation 

rccordl/irsl: vi, second: vl] 

§ 2.2 

constructs a record where 1·/ and 1•2 arc of type Us1. Record fields arc accessed by the select operation, 

for instance 

l.jirs1 

! ic!J-. the 1 ;due of t.hc !1Ji fil'ld of/.\.\ l11ch must be oft} re /isl in 11 hich the tag is pair. Tagged unions 

.11-c u,eJ \.\here different choice' of rcpr..:-sc11talilll1 :ire ,qirrupni!tC for different C<IS\.'S of a value. Fur 

c\;1I11plc. tl1c C! pc !1.11 is d wggcJ union. 

10 
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function listToStream ( L: list. C: list) returns strcam[integer] 
tagcase L 

tag empty: tagcase C 
tag empty : strcamO; 
tag atom : affix( C. strcamO); 
tag pair: listTuStream(carl..L), cdr(L)) 

cndtag 
tag atom: affix(L ListToStream(car(L), cons(cdr(L), C); 
tag pair: listToStream(car(L), cons(cdrl..L). C)) 

end tag 
endfun; 

function SumOjS'tream(S:stream[integcrJ) returns integer; 
if isempty(S) then 0 
else first(S) + SumOJStream(rest(S)) 
end if 

endfun; 

Figure 2: Continuation of the example. 

type List = oneof [empty/isl : nil; 
atom : integer; 
pair: record [first. rest : Listll 

11 

where the subtypes are distinguished by the rags emptylist, atom and pair. make[atom : O] creates a 

oneof in which the rag field is atom and the associated value is 0. A case expression is used to access 

values of a oneof type : 

tagcase L 
tag empty/isl: exprl; 
tag atom: expr2; 
tag pair: expr3 

endtag 

A stream is a sequence of values. all of the same type. that arc passed in succession, one-at-a-time 

between functions. The operations defined on streams arc O. first. rest, affix and empt). O produces an 

empty stream. first(S) produces the first clement of the stream .)·. The result of rest(.)) is the stream left 

after rellHJ\ ing tJ1e first clement of S. 41flix( 1, S) is the stream y. ho~c first clement is v and whose 

rc111.1i11i11g ckmcnL'i Jrc Lhc ~tr,';1rn S. lhe result of l'111pt)(S) is true if S i~ an empty stream. false 

otllern ise. 

11 
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2.3 The VAL Interpretive Machine - VIM 

The abstract architecture of VI.\1 uses data driven program execution. A program in the base 

language consists of one or more functions, each represented by an acyclic, directed data flow graph. 

The nodes of the graph are the instructions and the arcs between the nodes specify the data 

dependencies among the instructions. Arcs connecting two nodes may be of two types - value arcs and 

signal arcs. Values are carried on tokens along the directed value arcs of the graph. A function temp/are 

is an array of the instructions which belong to the data flow graph corresponding to a function 

definition in V1.\1VAL. The size of the array is equal to the number of instructions in the data flow 

graph and the indexing of the array starts from 1. Instructions are identified by their array indices 

within a function template. 

In VI.\1, iteration is modelled as recursion. and the chosen method for implementing recursion 

avoids the use of cyclic graphs3. Instead, each function application uses a fresh copy of the graph 

represented by the function template, the copy being called an activation template. An instruction is 

enabled or ready for firing when a value is available on each input value arc, and a signal has been 

received on each signal arc. Note that it may happen that some instructions in a template4 will receive 

values but will never fire because no signal will ever arrive. In chapter 5 we give rules of graph 

construction to ensure that this does not happen; otherwise. the storage reclamation scheme will be 

unable to reclaim all possible structures, leading to degraded memory utilization. 

A salient characteristic of VIM is that no arc is ever reused - at most one value or signal will be 

sent from one instruction to another along a value or signal arc of an activation template. respectively. 

This is assured by the acyclic nature of the data flow graphs and by the property that each function 

application produces a new activation template. This is quite different from the data flow models used 

by the U-Interpreter (2) or the Static Data f-low machine [14. 12). In the static data flow machine. the 

d;na flow graph docs not change during program execution. The creation of function activations 

provides a very natural way of implementing recursion in Vr:\4. VI.\1 is similar lO the static machine in 

that instructions have special fields for holding the operand values. This is quite unlike the mechanism 

1 
· I umc·r u,cs C) cl1c t'.r;1ph' 10 implcm~nt rL·curs1on in [.HJ 

12 
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used in the C-interpreter where the value is stored in an associative store. Function application in Vr\-1 

expands the execution graph due to the creation of activation templates: the graph contracts whenever a 

function terminates and the activation is discarded. In the U-interpretcr function application results in 

the creation of a new context, which is a part of the tags on values. 

Another feature of VJ\f which distinguishes it from other data flow models such as the U­

interpreter or the Static data flow machine is the heap. VIM maintains a heap in which all objects except 

scalars that enter into computation are held. Scalar values are stored in the operand fields of the 

instructions, and passed around among the instructions on the tokens. The kinds of objects held by the 

heap include function templates, closures, early-completion queues (described below) and data 

structures (arrays, records, etc.). Each object on the heap has a unique identifier which pennits its 

selection from among all objects in the heap. Conceptually, the heap is a multi-rooted, directed acyclic 

graph in which an arc signifies that the target object is a component of its superior. 

A distinctive feature of VIM is the set of mechanisms designed to support aspects of the VIMV AL 

language; in particular, these include support for function application and tail recursion and 

computation on streams. These mechanisms are described informally below; a fonnal description of the 

mechanisms will be presented in the next section. 

2.3.l Function Application 

Function applications are made by the APPLY instruction, which requires two operands - a 

function closure for the function to be applied, and a data structure containing argument values. The 

first element of the closure is the uid of the function template which is to be applied; the rest of the 

closure contains information defining the binding of any free variables of the function. The APPLY 

instruction creates an activativn of. the function by copying the function template. It then sends the 

closure. the argument structure anJ the return link to the first oper.rnd of the first three instrnctions in 

the activation template, respectively. The return link consists of the uid of the calling activation and the 

uid of the destination list of APPLY. 

lnstruu1u11s uf the acti\<ition arc tllcn cxccut~·d ;1ccorJing w the d.1t.1 flow tiring rule until the 

RITLR "\ instruction is cn;ihkd. I he fH !'LR"\ instruction uses the rclurn link w ... end tile result of the 

13 
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function invocation to the recipients. Due to the presence of early-completion structures the RETLR'.\ 

instruction may not be the last instruction to execute in the activation. A separate RELEASE instruction 

releases the storage occupied by the activation template. 

The following notation will be used for drawing data flow graphs. The nodes of a function 

template are instructions drawn as rectangular boxes. The value arcs connect from bottoms to tops of 

instruction boxes and convey data values. The signal arcs convey signals that perfonn control functions 

such as the release of function templates. The signal arcs connect from right sides to left sides of 

instruction boxes. Numerals at the left corner of instruction boxes denote the index of the instruction in 

the activation. A Greek letter next to an instruction box corresponds to the address of the instruction, 

consisting of the uid of the activation template and the index of the instruction. An open box with two 

or more values or signals is the merge operator. The graphs are arranged such that exactly one Value or 

signal will arrive at a merge box. This is merely a notational convenience; in VIM, the signal count and 

operand counts are set such that the merge occurs naturally. 

Figure 3(a) shows a data flow graph which causes a function activation. >. is the address of the 

destination instruction of APPLY, which is sent to the third instruction of the activation created by 

APPLY. Figure 3(b) shows a typical function template. The RETlJR'.\'. instruction receives the destination 

list consisting of the address>.; when it receives the result computed by the function body, it sends the 

result to the instructions whose addresses are listed in the return link and sends a signal to a RELEASE 

instruction. 

In many cases the value returned by a function f is computed directly by a tail-recursive 

application off, as shown in Figure 4. In this situation the result to be returned by the caller is exactly 

that returned from the callee. and the reactivation of the caller is unnecessary. The TAILAPPLY 

instruction in Vr\.f implements this. It also causes a function acti\ation hut is different from APPLY: it 

has an extra operand. a return link which it passes to tl1e callee instead of generating a new one: also, it 

sends signals to the instmctions whose indices arc in the destination list of the TAILAPPIY instruction. 

Figure 4(a) sho'As the f.\II .\Pl'I Y instruction and illustr.itcs the opcr;mds that it needs. Figure 

-l(h) ~llo'A<; a tq1ictl tcmpLne wrrcspundi11:; to d t.1il-rccur~i1c function. The SWITCH insm1ction takes 

t'Ao or11.:-rands: if its second operand. y, hcih must he hoolc;rn. is true then the first oper,md is sent to all 

14 
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(a) 

(b) 

Function template 

for F 

value arc 

T!IE VAL l\"TERPRETI\'E \1ACHl\"E 

return link 

RETL'R'I 

argument record 

closure argument record 

1. l 2· l 
·~J 

function 

body 

~ signalarc 

RELEASE 

F~~url! 3: (a) shows the data now graph for function imocation (h) Data tlow ~raph ofa t\p!cal function template ;\ 
is the addrL"''- of the d~tmation Clf .\PP! Y: 1t 1, a pair con'"ung of th,· u1ll uf the c1ll111g Jct11;it1011 and th.: mlle.\ of the 
1mtrucuon in the template. 

15 

t.llc destin;1tions ofswrrn1 who-;c addrc-.-.e-; arc m,trked true in irs dcstin<1tion list and if it is false then 

the first 11rcr.1t1J i~ "cnr to the Jcsti11dti11n-; nurkcd false. The function h(JJ:. dctcn11incs if 110 furtJ1 ... ·r 

<1prlic.1ti11ns ..1re to lll..'cllr. in"' hich 1<1-1 LR\ i" .tcli\alcd. Pthern 1-.c l11c I .\II \l'l'I) i11struclion is c11;1hkd. 

15 
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(a) return link 

argument record 

Function template for F 

(b) return link closure argument record 

3: 1 1: 1 2 1 
·~ 

~ 
I RETlR'i ~~---------. 

I • 

I.____ -·.__I _____, 

Fif:ure .f: (a) The HI! APPLY instruction (h) T! pica! d.!l;i now grJph for th~ hod) of J tJil-rccur<,i1 c function. 

16 



§ 2.3.2 THE\ AL l:\TERPRETIVE \1AC!!I:\E 17 

2.3.2 Early·Completion Queues 

In computations involving data strnctures, concurrency is increased if a data strncture can be 

made available for access before all the component values have been computed. If instrnctions are 

required to receive all their operands before their application, as is usual for the execution of data flow 

programs, this concurrency of creating and accessing a data strncture is not possible. 

In VIM there is a special facility called early-completion queue (abbreviated EC-queue) to permit 

strnctures to be created before the values of all the components are available. Arrays will be used to 

describe the early-completion mechanism informally (figure (5). The behaviour of strnctures containing 

EC-queues is specified by the state-transition rules of the \if KIN ARRA YEC, SELECT, APPEND and SET 

instrnctions. 

An EC-queue is a collection of addresses of instrnctions. :vtKINARRA YEC creates an array in which 

all the elements are EC-queues, all initially empty. This shell of the structure is passed onto consumers 

of the data structure, and also to producers which replace the EC-queues by values using the SET 

instrnction. If a SELECT tries to access an element which is an EC-queue, its address is added to the 

EC-queue and the instrnction is removed from the set of enabled instrnctions. Eventually, a SET 

instrnction replaces the EC-queue by a Value and adds the addresses of the instrnctions in the EC-queue 

to the set of enabled instrnctions. When these instructions are attempted for execution again, they 

would read the value, as desired. Strnctures with EC-queues provide a powerful mechanism for 

synchronisation, and is an effective solution to the read-before-write problem [4]. 

Figure 5 illustrates the early-completion mechanism. Figure 5(a) shows a data flow graph which 

creates an array of one element which is an empty EC-queue. lbe array is sent to two consumers whose 

addresses arc a and {3. and to a set instruction y. Figure 5(b) shows how the contents of the array 

changes when the instrnctions a. f3 and y fire in sequence. If y fires first. then a and f3 can access the 

value in the usual manner: the erstwhile presence of the re-queue docs not affect subsequent accesses 

after it is replaced. 

·1 he c;1rl1-comrlction mech;rnism m;ikcs it pnssihlc [l) ;dlow function arplic!lions to begin 

CXCCllllOrl hd(1re the \;dues of .ill their :1rp1111c11ts h;l\C heen Comrutcd. f'11is i\ done hy p;id:1~i11g the 

;irgumenls 111!0 a record or I C·l'iemcnts. S1111il.1rly. Lhe result \alue~. if there arc more L11.1n one. ma) he 
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returned as a structure of EC-clements so each may be available to the caller without waiting for all the 

results to be evaluated. 

L 
1 1 

(a) 
1 x 1 1 

.\IKI:\TARRA HC I I I I 
A • a: • y: {3: 

SET SELECT SELECT 

(b) 

f3 fires 

-C> 
1 1 

ecq ecq 

a a p 

Figure 5: (al Oata flow graph showing producer-consumer relationship for structure containing EC-queue. (b) The 
contents of the array under lhe firing of a, f1 and y in sequence. First. lhe firing of a causes a to be added to the 
EC-queue. which was empt}. :-.iext f1 attempt-; to acce~ the clement and also gets added to lhe Ee-queue. Eventually 
IA.hen xis computed. the su fires It replaces the EC-queue 1A.ith A and add!. a and f1 to lhc set of enabled mstructions. 

The semantics of arrays with ecqueues is very similar to the semantics of I-structures, which were 

prupnsed hy ,\rvind and Thomas [5]. An 1-smJCture is a linear contiguous daw structure: an clement of 

an htructurc c.111 he y.. rittcn into .it must once. Re.ids occurring before ;m clement has been written 

into .ire dcfcm:J lllllil tJ1c arm al of the 1aluc. 1'11c ;inurr.\ rnnstll.IL't of H.ds1c:1d (19J is <1ls1i of similar 

na~our. 

18 
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2.3.3 Suspensions and Streams 

Stream structures are an attractive language feature since they pennit the producer and consumers 

of the stream to operate concurrently. Vr.\1 provides a special mechanism for efficient implementation 

of streams. A stream is represented in VI\1 as a chain of records of two elements, each of which is an 

EC-queue: the first element contains an element of the stream and the second element is a pointer to the 

rest of the stream. In a completely data driven evaluation of a stream, the producer would proceed at its 

own pace and generate the values to construct the stream. The consumer process accesses the elements 

of the stream at its own rate, waiting whenever it encounters an EC-queue until the value is supplied. 

The problem with this scheme is that it allows the producer to get arbitrarily far ahead of the 

consumer process. If the consumer needs only a part of stream then substantial computation perfonned 

by the producer may wasted. In particular, if streams are evaluated in a data driven manner. then 

infinite streams cannot be supported on VI\1. So streams are produced in a data driven manner, 

allowing the user to write programs in VIMV AL which deal with potentially infinite streams. 

VIM uses suspensions to implement demand-driven evaluation of streams. Suspension 

mechanisms have been used to implement infinite data structures by Henderson [20], Friedman and 

Wise [16], etc. In VIM. a suspension contains the address of an instruction, consisting of the uid of the 

activation template of the instruction and its index in the template. When a SELECT instruction tries to 

access an element which is a suspension, the suspension is replaced by an EC-queue containing the 

address of the SELECT and a signal is sent to the instruction whose address is found in the suspension. 

The signalled instruction eventually causes the EC-queue to be eventually replaced by a value and the 

SELECT instruction gets the value it was crying to access. 

Figure 6(a) shows the creation of an array whose only clement is an re-queue. If SETSLSP fires 

before Srt.KT. it finds an empty re-queue and replaces it hy a suspension. When sn !.:CT executes, the 

suspension is replaced by an EC-queue containing the address {J of SE! ECT and a signal is sent to the 

instrnction indicated in the suspension. If SFI rcT tires tirsr. it is enqueued in the FC-queuc: SFTSLSP 

executes. finJs J non-empt) re -queue. and sinirly sends a sign:1l. The gr:1ph is arr:mgcd such that the 

<11Ti\Jl pf ll1e ~i~nal inlli;1tcs ,1 c11mpuU[Jon L11a1 ultim:1tdy enables J SI I instruuiun. The SET 

insm1ctio11 rep bees the 1 c-4ucuc in thi~ ;1rr:i~ hy .i \Jlue .md ~en ices the I c -queue h~ <.1JJing ll1c set of 

19 
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instructions whose addresses are in the EC-queue to the set of enabled instructions. 

(a) 

1 1 

1 k 1 

YIKI:\T ARRA YEC I I I 
A 

(b) 

;i 
a tires 

~ C> A 

1 

,ft~ 
1 

8 /3 fir/.c 
susp 

\: a tires causes a signal to 

_;__t =====C> ~ A be sent to (uFA' k) 

1 1 

fi'~ure 6: (a) Creation of an arra} with a su,pcnsion clement. (b) Ffrccl of finng ofsu 1·CT and SITSt.:SP inslrucrions in 
d1 ITcrcnl orders. 

l'hc use of ~us pensions for g.encr;1ti11g the elemenL'i of a stream 1s shown in I igure 7. ·111e records 

20 
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which constitute the stream have two fields which arc named head and tail. The stream consists of 

successive integers. Figure 7(a} shows an initial stream whose first element is 1 and the tail component 

is a suspension. When a consumer a tries to access the tail of the stream. the suspension is replaced by 

an EC-queue containing the address of the consumer (7(b)). A signal is sent to the suspended 

instruction which causes the EC-queue to be replaced by new record whose head component contains 

the next element of the stream and the tail component is a suspension (7(c)). The consumer which tries 

to access the rest of this stream in turn replaces the suspension by an EC-queue. If there are no 

consumers which have pointers to the beginning of the stream then the element at the front may be 

abandoned (7(d)). Suspensions can also be used to advantage for evaluating the elements of arrays in a 

demand driven manner. The main benefit in doing this would be that array elements which are never 

read need not be computed, thus reducing the amount of computation performed. 

The rest of the chapter gives a mathematical specification of VN. The operational semantics of 

the instructions of VL\f are presented. The specification will be called Ll in this thesis. Ll will serve as 

the basis for the development of an operational model for VI:vt in which storage is modelled; that model 

will called L2. 

2.4 Operational Model for VIM • LI 

The V1:vi: interpreter has two components : a function Interp and State. Interp takes two 

arguments - a State and an enabled instruction (defined later) and produces a new State of the 

machine. The following notation will be used in the thesis. Sets are denoted by bold font. elements of 

sets (which may themselves be sets) are denoted by italicised letters and names are indicated in a 

distinctive font. Thus, This is a set. This E This and Th.is is a name. 

The actions of the interpreter'<1re described by state transition rules. A programming language-ish 

description is used to specify r.he ruks for m;1rpmg ..t set to another set. Mathematic1l notations such as 

set unions and differences arc used wherever convenient. A rule Fis expressed as follows: 

lkfinc F( A. (i.1). I')= 

... hod) of the rule 

Tile def111it1on~ m~iy he rccursi\ e. 
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(a) 

(c) 
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I I 
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I .... 
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cb ~ 
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Figure 7: Demand-driven generation of stream elements. (a) Stream element: the producer is awaiting a demand. (b) 
The consumer demands the nc.'<t stream element. (c) The producer generates one stream element and suspends itself. 
(d) The consumer abandons the previous element and demands another. 

VI:\1 = <lntcrp. Slate> where 
fnlerp : State X EIS - State 
State = Act X H X EIS. 
,\ct = U - Function 
H = u-sT 
LI = the set of all unique identifiers. 
FIS = the set of all en<1blcd instructions. described later. 

.\ct i~ Ll1c set of .ill acti\.ttiun~: .in ~1cti1 .ition is crc.1tcJ hy Ll1c i111ocation of a function. The heap 

11 u111L1in~ ,ill ~truuure 1,tlucs ,111J t'unl.'tion tcmpl;itc~. c,11 ly·comrktion quL·ucs (discus~cd later). 
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Figure 8: The abstract V1M architecture 
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23 

function closures and the instructions. Each element on the heap has a unique identifier (uid). Only 

scalar values and uids are sent on tokens from one data flow actor to another; data structures always 

reside on the heap. 

Scalar values arc tagged. 

Scalars = Integers U Reals U Booleans U Character U Null 
Integers = {int} X ( { undej} U the set of all integers) 
Reals = {real} X ( { u11dcj} U the set of all reals) 
Booleans = {boot} X ( {true.false. undcj}) 
Ch&1ractcr = {char} X (tundcj} Uthe set of characters in the m:ichinc.) 
Null = {nUU} X {nil, undej} 

The set ST describes the elements \\-hich reside on the heap. Elements of different tyres ;ire 

distingui..,l1cd by their tags. 

23 
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ST= (fa.rr}X(.\rrayU{1111dej})) U ({fn}XFunction) 
U ({ecqxECQ) U ({inst}Xlnstruction) U {d.ests}X Dests 
U ({clsr}XClsr) 

Array = [Integers ...... (U U Scalars U SUSP]. Integers being the set of integers. 

Function = (N ...... Instruction], N being the set of natural numbers. 

§ 2.4 

An early-completion element (Ec-element)is a tuple (u, i) where u is the uid of a function 

activation and i is the index of an instruction in the activation. An early-completion queue is a 

collection of such EC-elements. 

ECE = U X N. 

Thus (u, k) E ECE where u corresponds to the uid of a function activation and N is the index of 

the instruction in the activation template. 

The EC-queue is a collection of elements of ECE. All EC-queues are members of the set ECQ 

which is defined below. The notation ~N) denotes the powerset of the set N. 

ECQ = ~(ECE) 

A suspension is a member of the set SUSP specified by : 

SUSP = {susp} x (U x N) 

An instruction is a seven-tuple : 

Instruction = OPS X (U U Scalars)3 X N X N X U 

OPS is the set of opcodes. the next three elements of the tuple refer to the operands. the fifth and sixth 

elemcms of the tuple are the operand count and the signal count and the last clement is the unique 

identifier of the list of destinations. Fach destination of an instruction is the index of the instruction to 

which the result is to be sent The result may be a value or a signal. For IE I. the clement<; of the tuple 

"ill he denoted by the '.' notation. Thus. /.opcod.e is the first clement of cJ1e tuple. I.opt. l.Op2 and 

/.op3 refer to the second through fourth clements of the tuple, I.opcnt. /.si9Cnt and /.d.estlist 

dc11me tJ1c fifth through SC\Cnth clements of the tuple. 

OPS = { 1 \llll. !SLR \IK1\·1.\1'.1n 'I.""'"' ·'HR.\ YI c s111cr. ,\!'PI "D. ~Lr. 
SI I ~L SP SWll Cl!. . :\l'l'I Y. ·1 .. \ll .\l'l'I 'I. HI I l !< \. Rl'I !:.\Sr} 

,\ dc~tin~1tion of an instrw.::tiun consi~ts llf tJ1c L11e address of tJle instruction to" hich the result is 
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to be sent, and the operand which is to receive the result value. op!. op2 and op3 denote the first. 

second and third operand fields in an instruction, respectively. If the result is a signal then no operand 

number is required. The destination also specifics if the result is to be sent unconditionally or 

conditionally. For· all instructions except for SWITCH, the results of instructions (both values and 

signals) arc sent to the destinations unconditionally. 

Dests = ~D) 

D = {un.coruiitionaJ., true, false} x N x {op1, op2, op3, si9nal} 

Clsr is the set of closure records. The operator (APPLY, TAILAPPLY, STREA\1-APPLY) which cause a 

function activation take a closure as the first argument. The first component of the closure is the uid of 

a function template; that uid corresponds to the function which is to be called. 

Clsr = [({Function ToApply} U M) - (U U Scalars] 

where C(Function ToApply) EU such that H(u) E ({fn}XFunction). 

An enabled instruction is an element of EI !;; U X N. An instruction I becomes enabled when 

/.opcnt and /.s~nt both become zero. The set of enabled instructions describes the collection of 

instructions which arc ready to executed because they have received an operand on each of the operand 

arcs and a signal on each of the signal arcs. The set of enabled instructions is: 

EIS= ~El) 

The function Choice selects an element from a set of enabled instruction. The instruction is then 

interpreted by the function lnterp. Thus Choice is our scheduler, 

Choice: EIS__. EI 

Functions AdaToHeap and DeleteFromHeap add and delete elements from the heap. AdaToAct 

and Dele1cFromAct which 

AdJToHeap: H X U X ST__. H 

AdJToHcaP,.H. u. r) produces a new function If such that: 

('t/ u' ':I: u [lf(u") = H(u')j) and lf(u) = V 

/Jt ic1t! m111 !leap : II X U X ST -+ H /JrlC!cFro111 l/1111~ I I. u. I) produces a new hcJp If such 

tll.l( the dolll.1111 of Jr is the d11111;iin or// v.1tlwut the ckmcnt u. 

H such ll1c1l ('t/ u· ':I: u l/l(li") = //(1i")j) 

25 
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AddToHeap( H, u, v) creates a new heap which contains. in addition to the associations between 

uids and objects in H. a new association between u and v. DeleteFromHea/i._H. u, v) creates a new heap 

which does not contain the uid u in its domain. 

Similarly, AddToAct and DeleteFromAct create new activation sets by adding an activation to and 

deleting an activation from the current set of activations. 

AddToAct: Act X U X Function-+ Act 
DeleteFromAct : Act X U X Function -+ Act 

Function SendResult is used to dispatch the result of an instruction I to a destination instruction. 

SendResult models the following actions : the result is stored in the appropriate operand field of the 

destination instruction, and the operand count and signal count fields are decremented accordingly. 

Since we arc dealing with a mathematical representation of instructions and function activations, this 

updating is modelled by producing new values that reflect the changes. Thus, r is the destination 

instruction after it receives the result. FA' is the new new value of FA with the updated r and Act' is the 

same as Act except that the ith instruction of activation FA has received some operand (or signal). 

SendResult: Act X EIS X U X DX [[{value} X (U U Scalars)] U {s4:fnal}] 
-+Act X EIS 

define SendResult(Act, EIS. uFA' (de, i, opnum), result)= 

let 

in 

FA = Act(uF)• 
I= FA(i) 

% FA is an activation template. 
% I is the ith instruction in the activation template. 

AddToAcl(DeleteFromAct(Act, uFA' FA), UFA' FA'). 
if (f .opcnt = 0) /\ (f.s4:Jcnt = 0) then EIS U {(uFA' i)} 
else FIS 
end if 

end let 
ft here 

FA'(;) = F A(j). 
= r. 

j '*' i. 
j = i. 

26 
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and I' E Instruction, 
r.opcoa.e = 1.opcoae, 
r.opl = if op11w11 :;t: opl then /.Opl else t where result= (Value, t) 
r.op2 = if op11w11 :;t: op2 then !.Op2 else r where result = (Value, L) 
r.op3 = if op11w11 :;t: op3 then /.op3 else t where result = (Value, L) 
r.opcnt = if op11u111 E {op 1. op2. op3} then /.opcnt else /.opcnt - 1 
[.Si.gent = if opnum = Sign.al then /.si.gcnt-1 else /.Si.gent 
r .desUist = /.destlist 

27 

The function SendToDeslinalions sends the result of an instruction to all the destinations of the 

instruction. It is a simple tail-recursive function which uses SendResult repeatedly to send the value or 

signal to the destination. 

SendT0Des1i11a1ions: Act X EIS XU X ~(DX ([{value} X (U U Scalars)] U {signal}) 
--+Act X EIS 

define SendToDestinations (Act. EIS. u, Dest Value)= 
if Dest Value = {} then Act, EIS 
else 

let ((de, d, opnum), V) = e where e E Dest Value 
in 

if V = signal then 
SendToDeslinations 

(SendResull(Act, EIS, u, (de, d, signal), signal), Dest Value - {e}) 
else 

S endT oDesl inations 
(SendResull(Act, EIS, u, (de, d, opnum), v), Dest Value - {e}) 

cndif 
endlet 

end if 

Execution of a program on VIM is initiated by the invocation of a function in the base language. 

The execution terminates when there arc no more enabled insrtuctions. The execution loop may be 

summed as: 

define ,\/ui11/.uop (.)·111te) = 
let (Act. H, EIS) = State 
in 
if n:.; = {} then halt 
dsc .\/a11rl uu1~ !111a{J(Sta1r. ( holni FIS))) 
l'ndif 

(.'ndlet 

.,-7 _, 
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The interpreter is defined by the function lnterp and Choice is a function which selects an element 

from the set of enabled instructions. This instruction is interpreted by lnterp in the context of the 

current state of the machine; the result of the execution of the instruction is a new state. Choice is the 

scheduler in Yr:'vf since it makes the choice of the instruction which is to be executed. Choice(EIS) 

where EIS E EIS is the address of an enabled instruction. 

lnterp: State X Choice(EIS)--+ State 
where State = Act X H X EIS. 

It is pertinent to point out that VIM is a non-deterministic state transition system; any one of the 

enabled instructions could be selected for execution and the final result of the computation is 

independent of the order of execution of the enabled instructions. 

The following notation is used to denote that the new state (Act', If, EIS) is produced when the 

instruction e is interpreted by lnterp in the state (Act, H, EIS). 

(Act, H, EIS) t- (Act', If, EIS') one. 

Now we can define the interpreter by specifying the state transitions for each of the opcodes. The 

state transitions for some of the more interesting instructions will be presented below; these serve as the 

model for specifying the transition rules for the rest of the instruction set The body of lnterp is a big 

conditional statement; the branches of the conditional are based on the opcodes of the instruction being 

executed. Some general comments are in order here. The result of an instruction is sent to its indicated 

destinations unconditionally, unless it is a SWITCH instruction. 

define lnterp(State, (uFA' kF)) = 
let 

FA = Act( u F ). % the function activation 
I= FA(kFA). % the instruction 
{(dc1. d1• opnum1), (dc2• d,, op11um,) • ...• (de, d. opnum )} = l.c1estlist - ~ ,, ,, ,, 

% the destinations of the instruction I. 
in 

if /.opcoae = srr then ... 
clscif /.opcode = APPLY then ... 

end if 
en diet 

The ~pccilic.itiun of the swtc tr~in~illon ruks for some of Lhc intcrc~ting and representative 
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instructions of VI\1 will be the subject of the rest of this chapter. Each conditional statement of the 

form "if I.opcode = ... then " is an arm of the big conditional statement in !nterp above. Thus. the 

names Act. H, EIS. uFA' kFA' (dc1• d1, opnum1) . .... (den, dn, opnum,) will have the same bindings as 

indicated in the body of !nterp shown above. 

Let us begin with the simple instruction !ADD which adds two integers. The operands are read 

from the operand fields of the instruction and the result of the addition is sum. This value is sent to the 

listed destinations. Observe that the heap remains unchanged. 

if /.opcode = !ADD then 
let 
(int. m) = /.op1, 
(int, n) = 1.op2, 
sum= m+n, 
Act', EIS= 

SendToDestinationsi.. Act. E!S. u FA' {((unconditional, d1, opnum1), a 1), ... , 

((uncondi.tional. d , opnum ), a '}) 
in 

Act', 
H, 
EIS - {(u FA' kFA)} 

endlet 
endif 

n n rr 

where a 
1 
E {(ualue, sum), signal} 

The actions of the interpreter for instructions such as ISuB. IMUL. !DIV, IGT, !LT, etc. are very 

similar and will not be described. 

The instructions which operate on structures produce a new heap. The operations on one type of 

structures - arrays - arc described here: the actions of !nterp for instructions which operate on record 

and oncof types are very similar and arc not presented. The array instructions of interest which arc 

discussed below arc: \1KARR.\ YI'-T. \1KARRA YI'.\TFC. SHECT .. \PPE'.\D. SET and SETSLSP. 

\1KARRAYI~'T takes two integer operands (m and 11) and adds an array with bounds (111. 11) to the 

hcJp. All the clements of the arra~ arc undefined. The uid of the new arrc1y i~ sent JS the result to the 

dcstin.illo11s. ;ilp11g v.ith sit:n;ib if 11ccc:i~ar:.. 
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if /.opcode = \1KI\'T ARRAY then 
let 
(int. p} = 1.op1. 
(int. q) = !.Op2, % p and q are integers, p < q. 
u = a new uid in U, v 
Act'. EIS' = 

SendToDestinations(Act. EIS. uFA' {((Unc;onaitional, d1. opnum1), a 1). ... , 

{(unconaition.a!., d, opnum ). a \}) 

in 
n n ,Y 

Act', 
AdaToHeap(H, uv. (arr. ((p, q]-+ undej))), 
EIS' - {(uFA' kFA)} 

endlet 
end if 

where a i is either (uaLu.e, u) or Si9na1. 

§ 2.4 

The instruction \1KI\I ARRA YEC works quite similarly except that the elements of the array are all 

early-completion queues, all empty. 

The APPEND instruction takes three operands - an array A, an index i and a value x. It creates a 

new array A' which is identical to A except that the i th element of A' has value x. It is important to be 

very careful while performing APPE!'iD operations on arrays with EC-clements. If some clements in A 

are EC-elements then the corresponding elements of A' would also be EC-elements. When a SET 

instructions replaces an EC-element in A by a value, this value must be forwarded to the corresponding 

elements in structures which were created by APPEND on A. There may be a cascade of value­

forwarding precipitated by this since the values may also have to be forwarded to arrays created by 

APPENDS on structures derived from A. Since suspensions are potential sites for EC-queues, APPEND 

operations on arrays containing suspensions introduces a similar need for Value forwarding. This thesis 

adopts a simple alternative to the value-forwarding discipline outlined above. An APPE"iD instruction is 

executed provided that there are no EC-clements or suspensions in the array on which the operation is to 

be perfonned. If there is any EC-clement in the array then there is no change in the state of the 

machine: the APPEND instruction remains in the set of enabled instructions and will be selected for 

cxi.:cution at some future time. 

.10 
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if /.opcode = APPE\'.D then 
let 
u = /.Op1, 
(arr. A) = H(u). 
(int. i) = 1.op2. 
x = l.op3, 
u' = new uid from U 
Act'. EIS' = 

SendToDestinations(Act. EIS. ufA' {((t.mcon.ditiona1, d1, opnum1), a 1), ...• 

((u.ncon.ditwn.at. d . opnum ), a )} ) n rr n 
in 
if l{i: A(1) EU X {({ecq} X ECQ) U ({SU.Sp} X SUSP)}I = 0 then 

Act', 
AddToHea;<.H. u', A'), 

EIS' - {(uFA' kFA)} 
else 

Act, 
H, 
EIS 

endif 
endlet 

where A'(;) = A(;) 

=x 
j~i 

j = i. 
and where a i is either (uaJ.u.e. u') or s4Jnal. 

31 

SELECT requires two operands - the uid of an array A and an integer i, and in the simplest case 

(the element being accessed is neither an early-completion structure nor a suspension) returns the value 

associated with the element of A that has index i. The behaviour of the interpreter is more complex 

when such is not the case. The state transition is specified below, and the discussion on early­

completion elements and suspensions follows. The special value est is used for indicating the end of a 

stream. 

Jl 
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if 1.opcod.e = SELECT then 

end if 

let 
u = /.opt). 
(arr. A) = H(u). 
(int, I) = !.Op2, 
t = A(1)) 

% (ur (arr, A)) EH 
% i must be an integer 

in 
if t = (uv' (ecq, Q) then 

Act, 
AddToHeafJ(.DeleteFromHeafi...H, uv, (ecq, Q)). uv' (ecq, Q U {(uFA' kFA)}))} 
E 1 S - { ( u FA' k FA)} 

clsif t = (uv. (SU.Sp, (u'. k'))) then 
let Act', EIS' = SendResult(Act, EIS, u', (u.ncond.itional, k', signal). signal)) 
in 
Act', 
AddToHeafJ(.DeleteFromHeafJ(.H. uv' (SU.Sp, u', k')), uv' (ecq, uFA' kFA}), 
EIS' - {(uFA' kFA)} 

endlet 
else 

let x = 
Act', EIS' = 

SendToDestinationi,Act, EIS, uFA' {((u.ncond.itional, d1, opnum1), a 1), ... , 
((U.ncoruiiti.onal. dn, opnum,). a,)}) 

in 
Act', 
H, 
EIS~ - {(uFA' kFA)} 

cndlet 

where a i = either (Ualu.e, x) or signal . 



§ 2.4 

if I.opcode = SET then 
let 

u
1 

= /.opt. 
(arr. A) = H(u1). 

(int. /) = 1.op2. 
v = I.op3. 

t = A(t), 
Act'. EIS' = 

THE 'vAL I'\ TERPRET!VE \fACHl\:E 

% (ur (arr, A)) EH 
% 1 must he an integer 
% v E Scalars U U 

% where the uids must he of records, arrays, oneofs. 
% / = (u x' (ecq, Q)) 

SendToDestinations(Act. EIS. ufA' {((Unconditional. d1, opnum1). a 1) •... , 

((uncorutitLOn.al, d. opnum ), a \}) 
n n rr 

in 
Act', % the new set of activations. 
AddToHeap(DeleteFromHeap( H. u1• (arr. A)). u

1
• (arr, A')), 

% the new heap reflects the fact that the ith element 
% of the array with uid u has value v. 

(EIS - {(uFA' kFA)}) U Q 

endlet 
end if 

% The new El S 'includes the instructions whose addresses were in the 
% EC-queue. (u FA' k F) is the address of the cun-ent instruction, 
% which is renwved from the set of enabled instructions. When the value 
% becomes available. this instruction will he added hack to the set of enabled 
% instructions. 

where A(j) = A(j), j '¢ i 

J=i. = v, 

33 

The use of EC·elements in data structures permits the construction of a data structure before the 

values of all the components have been computed. Suspensions allow demand driven computation. A 

suspension is a tagged triple - a tag susp. the uid u of some function activation. and i the index of an 

instruction in the activation. The instruction SETSCSP takes three arguments : an array A. an integer v1 

which is an index of the array, and another integer v
2 

which is the index of an instruction in the 

template of the SETSLSP instruction. SF.TSLSP secs the 1•
1 
th element of the array to a suspension of the 

form (SUSp. uFA' r2) where uFA is the uid of the activation template of the SETSLSP. When a SFLrcr 

tries to access the element the suspension is replaced by an FC·qucue which cont;-iins the address of the 

su !Cl and a signal is sent to the instruction whose aJJress is found in the su:-.pcnsion. The gr;iph is so 

arran::cd Lhal tJ1c arri\~il ul° tJ1c signJI cndhles the instrnctillll (uf'..r r2). which initiates the cornpuution 

pf tJ1e \ aluc of the clement. 
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if /.opcode = SETSCSP then 
let 
u

1 
= /.opt, 

(arr. A) = H(u
1
). 

(int. v1) = /.Op2 
(int. v2) = I.op3 
(u'. (ecq, Q) = A(1) 
Act'. EIS' = 

% (u r (arr, A)) E H 
% (1• / must be an integer 
% (v 1 must be an integer 

% A (i) must be an early-completion queue. 

in 

SendToDestinations<., Act. EIS. u fA' {((unconditional, dl' signal), Si.gnat) .... , 
((uncondittonal, dn, signal), signal)}) 

if IQI = 0 then 
% put a suspension in the ith element of the strocture with uid u r 

Act', 
AddToHea/i._DeleteFromHea{i..,H, u

1
, (arr, A). u

1
, (arr. A'))), 

EIS - {(uFA' kFA)} 

where A'(j) = (if j ':I: v1 then A(j) else (SU.Sp, (uFA' v2)) 
else 

% just send a signal to the instruction whose index is v T 

let Act", EIS' = 
SendResult(Act', EIS', UFA' (unconditionaL, v2, signal). signal) 

in 
Act", 
H. 
EIS' - {(uFA' kFA)} 

endlet 
endif 

end let 
end if 

§ 2.4 

The SWITCH operator is used to implement the conditional graph schema. It takes two operands 

- a value v1 and a boolean b. The condition fields of the destinations of the SWITCH operator must 

have values either true or false. If bis true, then v
1 

is sent to the destinations which are marked true. 

otherwise they are sent to the destinations marked false. The destinations (true. d,r opnum
11

), .... 

(true. d, . op11w11 ) denote the destinations to which c11e first operand must be sent if c11e second 
P rp 

operand is true: otherwise the first operand is sent to the destinations (false, <f;i. op11u111
17

), .... (false, 

dr.. Uf!llU!llr: ). 
J'/ J</ 
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if 
/.opcode = SWITCH then 

let 
u1 = I.op1, 
(bool. b) = f.op2, % b must be a boolean value. 
(true. d

1
!' opnum

11
) • .... (true, d

1
P., opnum

1
J, 

(f~e. ~· op11w11/I) . .... (false. dfq' opnum1i) = /.destlist, 
Act.EIS= 

if b then 

else 

SendToDestinationi_Act, EIS. uFA' {((dc
11

, d
1
r opnumll)' all), .. ., 

((dc1P, drp' opnum1J, a 1J}) 
SendToDestination5(Act, EIS, uFA' {((def!, dfl, opnumfl)' a/I), .. ., 

d
'f ((dcfq' dfq' opnum1). a1)}) 

en 1 

in 
Act', 
H, 
EIS· {(uFA' kFA)} 

en diet 
end if 

35 

The SWITCH-SIGNAL operator is very similar. It takes a boolean operand; if the operand has true 

value then it sends signals to the destinations tagged true. otherwise it sends signals to the destinations 

marked faJ.se. 

The SIGNAL instruction requires no operands; it becomes enabled when it receives a signal on 

each of the signal arcs incident on it. The result of executing the instruction is a signal which is sent to 

the destinations listed in the dests field of the instruction. The state transition rule for the SIGNAL 

instruction is very simple and will not be specified here. 

15 
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if I.opcode = APPLY then 
let 

Tl!E \AL [\TFRl'RETl\E \1ACHl\E 

(Clsr, C) = H( !.op 1 ). % (u I' (tlsr, CJ) E H 

§ 2.4 

u, = t.op2, % (u.,. (tee, RJ) E H 
f~ = H(C(Fu~ti.on ToAppLy)), % (u

1 
lfn, F)) EH. u

1
= C(Functi.on ToAppLy) 

u' = a new uid from U, 
Act' = AddToAct(.Act, u', F), 
Act", EIS' = 

in 

Send Result 
(SendResu/1 
(SendResult 

(Act'. EIS. u', (unconditional. 1. opl ). (Value, u1)). % function closure. 
u'. (Unconditional. 2. op2). (Value. u2)). % arguments 
u·. (Unconditional, 3, opl ). (value, /.destlist)) % return link. 

Act", H. EIS· {(uFA' kFA)} 
endlet 

endif. 

The function closure, argument structure and the return link are sent to the first operand of the 

first, second and third instruction in the activation template of the called function. A RETURN 

instruction in the called function will send the result of the function application to the destinations of 

APPLY. 

The TAILAPPLY instruction is used whenever tail-recursive function application is performed. It 

sends the closure. argument structure and the return link to the first operand of the first three 

instructions in the called activation. It then sends a signal to each of its destinations. 
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if !.opcode= TAILAPPLY then 
let 
(clsr. C) = H( I.opt). % (u I' (tlsr. C)) E H, the closure 
u, = !.op2. % (u,, ('rec. R)) E H, the arguments 
u ~ = I.op3. % (u ~ (des ts, Destinations) E H, the return link 
f = H(C(FunctionToApply)). 

% (u
1 

(fn, F)) E H, u
1
= C(function ToApplyJ 

u' = a new uid from U, 
Act' = AddToAct(AcJ, u', f), 
Act", EIS'= 

SendResult 
(SendResult 
(SendResult 

(Act'. EIS, u'. (unconditional.. 1. op!). (uaJ.ue, u1)). 

u'. (Unconditional.. 2. op2). (uaJ.ue. u
2
)). 

u'. (unconditional.. 3, opt). (UaJ.ue. u
3
)), 

Act'", EIS" = 

% function closure. 
% arguments 
% return link. 

SendT0Destina1ion~Ac1. EIS. ufA' {((Unconditional., dr signal.), Signal.), ... , 
((Uncondit1.0naJ.. dn, signal.). signal}}) 

in 
Ad", H, EIS" - {(uFA' kFA)} 

endlet 
endif 

37 

STREA:\1-TAILAPPLY is another instruction for function application and is used for tail-recursive 

evaluation of streams. It takes three arguments - a function closure which contains the stream 

producer, a record which will contain the next element of the stream, and the argument record. Its 

semantics are very similar to that of TAILAPPLY and it sends signals to the destinations listed in its aests 

field. The compilation of functions which generate streams and use this instruction is discussed in 

chapter 5. 

The RETLR'..: instruction is responsible for sending the result of a function activation to the caller. 

It requires two operands - a return link and a value. It constructs the addresses of the insm1ctions 

which arc to receive the result of the function imocation from the return link and sends the \alue to 

each of those destinations. In addition. it sends signals to those insm1ctions in its own activation whose 

indices appear in the destination list of RF!LR.'\. 

p . I 
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if opcode = RETliRS then 
let 

{dc'l' d
1
• opnum) . .... (de'. d. opnum)} = H(l.Op1), 

% the list of destil1Jltio/s r/which the value computed 
% by the function must be forwarded 

uv = /.op2, % the value to be returned 
Ad, EIS, = 

SendToDestinations( Act. EIS. u FA' {((unconditiona1. d1, s{9na1), signal), ... , 
((unconditional, dn. signal). signal)}). 

Act", EIS'= 
Se11dT0Destinatio115\Act. EIS. uFA' {((unconditional, d 1, opnum'1). a 1). ... , 

in 
((unconditional.. d p' opnum'). a _o>}) 

Act", 
H. 
EIS'· {(uFA' kFA}} 

endlet 
endif 

§ 2.4 

The data flow graph of a function is arranged so that RELE.\SE is the last instruction to be enabled 

and executed in the activation. The effect of the instruction is to remove the activation it belongs to 

from the set of current activations in the system. In a "real" system, this would amount to the release of 

the storage occupied by the activation template to the pool of free storage in the system. 

if opcode = RELEASE then 
DeleteFromAct(Act,uFA' FA) 
H. 
EIS· {(uFA' kFA)} 

where FA is the activation template associated with u FA' 
endif 

2.5 Summary 

In the preceding section a formal specification of VI\1 was given by defining its operational 

semantics. A brief description of the functional language VI\tVAL was given. and some example 

programs illustrated some features of the language. Some of the key features of VIM were described 

informally. Next. we developed a formal model of the ahstract machine for VI\1. An interpreter for 

cxecut111g the d,l(J now instructions was defined. The orerationzil scm.1ntics of the d;1L1 flow 

i11-,tructions of the m:ilhine were prc'>ented. Tl1e state tr•111sitiun rules lur operations on early· 

cu111rktiu11 ..,true tu res .ind su~rcnsiun~ 1~cre t<.irmJlised. 
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Chapter Three 

Operational Semantics of VIM with Storage 

The VI.\1 computer system is envisioned to have a hierarchically organized physical storage 

consisting of main-memory and a disk. Information is brought from the disk into the main memory 

upon demand. Since the system has finite main storage, objects are periodically moved from the main 

memory to the disk to create free space in the main store into which objects from the disk are brought 

in. It is desired that the only information brought into the main memory from the disk are those 

required by the computation and no other. 

The address space of the system is governed by the size of the disk. For the purpose of this thesis 

it is assumed that a sufficiently large disk is available. thus avoiding the complications of managing the 

disk space. To facilitate data transfers between the disk and the main store, the address space is divided 

into equal sized pages, where a page is a set of contiguous words in the address space. Objects are 

stored in these pages. If the page size is large. it may be necessary to pack multiple objects in a page to 

reduce internal fragmentation. It is likely that when a page containing an object referenced by the 

computation is brought into main memory, objects which arc not required by the computation would 

also be brought in since they share the same page. This conflicts with our stated goal of reading in only 

referenced objects from the disk into the main memory. 

In VI.\1 the basic unit of storage allocation and for disk -main store transfer is a chunk. A chunk 

is a small page. and is expected to consist of 24-32 words. Each chunk has a unique chunk identifier 

(cid). Since the pages are small. it is unnecessary to allocate multiple objects on the same chunk. 

ObJeCL<; which arc larger than one chunk arc stored in data structures made of chunks. 

The small page si1e in VI\1 allows us to allocate at most one object per chunk without causing 

sig11iiica11t V.d'>l.1gc llf "tor;1gc ~p;ice due to internal fr.1gmc11t;1tion. When an object residing on the disk 

i-. rcti.:re11ccd. 0111) LJ1.1L uh1cct (or p;lrt of Llic ohj1.'Ct. it it uHN'.'IL~ of m~111y chunks) i~ hrl1uglll into tile 

u1~k. ~incc brgc d~ll;1 structure-, ..ire wmpm1.'d lit" m..111> chunks. choice of a suit.ihlc u.1!.41 structure 

.+O 
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organization should permit large amount of sharing of information: this sharing is essential for efficient 

execution of structure operations in an applicative environment. 

In Ll we saw that data structures reside on the heap and only the pointers to the structures (their 

uids) are passed among instructions. In this chapter the operational semantics of an extension of the 

model Ll is presented. The extended model. called L2, adds the notion of storage to Ll - data 

structures (arrays, records and oneofs) are stored in chunks. The storage representation of arrays in 

tenns of chunks will be described; the concepts presented may be extended to the storage 

representation of records and oneofs. 

The modelling of arrays as stored values makes it necessary for us to consider the issues of storage 

allocation and reclamation. The unit of storage allocation in L2 is a chunk. For the purpose of this 

thesis it is assumed that there is a large pool of free chunks (which are not part of any data structure). 

The allocation of a storage unit amounts to selecting a cid from this free pool and using the storage 

corresponding to that cid. In L2, chunks which are modelled as being in the main store are tagged 

accessible and the chunks which coorespond to those resident in the disk are tagged inaccessible. 

It is assumed that the free cid selected corresponds to a chunk whose storage part is in the main memory 

(i.e. the chunk is tagged accessible). 

A program executing in L2 exhibits dynamically changing storage requirements during the course 

of the computation. This variable demand arises from the fact that data structures are created and 

discarded (in the sense that they are not used any more) during program execution. The storage that is 

discarded can be reused for storing other data structures. 

The function of a storage management scheme in a language implementation is two-fold -

allocation of memory when the con:iputation demands. and the reclamation of storage which contain the 

values of to discarded inform;ition structures. RecL1mation of storage and its suhsequent recycling 

allows the system to satisfy the storage requirements of the program within the existing bounds of the 

system. C\Cil though the total amount of memory (number of free chunks) requested by the 

comrut.1Lion far excceJs the tdtal storage cip;iciry of the system. There .ire t\\11 principal strategic~ for 

~tor;1f!c reclamation - the m;i 1 k-.md-s1' cep scheme ;.ind the rekrcnce-cot1nt scheme. 
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Mark and sweep garbage collection is the most common method of automatic storage reclamation. 

In a simple mark and sweep scheme. the size of the inaccessible infonnation occupying the address 

space keeps growing until there is no free storage left. at which point all nonnal processing is suspended. 

All the units of storage which are in use are marked by tracing down all the structures which are 

accessible from the current state of the system. Then the entire memory is scanned to identify all the 

unmarked storage units - these are the discarded memory units which are aggregrated into the pool of 

free chunks and used for reallocation. A drawback of this strategy is that if the address space is very 

large and the physical store spans disks. the process of garbage collection can be very expensive. Simple 

implementations of mark-and-sweep suspend all computations other than those for reclamation; a large 

number of disk accesses will imply that all other computations will remain suspended for a long time. 

Various algorithms have been proposed which pennit concurrent execution of the mark-and-sweep 

reclamation and other computational activities (also known as real-time garbage collection); however, 

they are complicated and exhibit questionable perfonnance in real-life situations. Real-time garbage 

collectors of acceptable performance are difficult to implement even on single-processor systems; how 

the schemes may be extended to perform garbage collection with acceptable efficiency in a 

multiprocessor architecture remains an open problem. 

The notion of using reference counts on the information structures used by the computation has 

been around for a long time; however. there are only a scant number of garbage collectors which use 

reference counts exclusively. The basic idea is very simple. A counter is associated with each 

information unit; it keeps a count of the number of references to the· structure in the system. The 

counter is incremented whenever a new reference is created and decremented when one is destroyed. 

When the count becomes zero. the structure becomes inaccessible from the computation and the storage 

occupied by it may be reclaimed for reallocation. This simple scheme has one major drawback which 

has prevented its use in any practical garbage collector so far - it cannot reclaim circular structures. 

However. it has been shown that memory reclamation using reference counts is possible in the presence 

of certain classes of circular stnictures [7. 17). 

Circular stn.1cturcs c;m be crc<1tcd only if tJ1crc arc operations which cause side-effect. All 

opcr;1tions in V1v1V \I .ire free from side ct'kcl~ ;inJ so tlll' user cannot create circular structures. The 

crc.1l1on of circubr structures b~ tJ1c interpreter (for wh;itc\er may he the purriose) has been precluded 
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by dcsign5. These features of the Yr~ system make it feasible to use a reference count mechanism for 

garbage collection. The principal argument against reference counts is that the cost of updating the 

count every time a structure is manipulated may be unacceptably high. A significant advantage of 

reference count mechanism for garbage collection is that storage reclamation is done concurrently with 

the computation. Also, the scheme appears to be more amenable to implementation on a 

multiprocessor architecture. 

In L2, two counts - refcnt and setcnt are associated with each chunk. refcnt contains the 

count of the number of references to the chunk in the current state of the machine. A chunk is 

reclaimed when its refcnt field becomes zero. The refcnt fields of all the structures which are 

pointed at by the chunk whose refcnt field becomes zero are also decremented. The setcnt field of a 

chunk is used only if it is the root chunk of some structure. It keeps a count of the number of elements 

in the structure which are EC-queues. 

Some simplifications (of "real" life behaviour of computer systems) have been made in 

developing the formal model L2 to reduce the complexity of the model within manageable limits. In a 

"real" system, information which is in main memory is immediately accessible: in L2 the chunks which 

correspond to those resident in the main store arc tagged accessible. The chunks which correspond to 

those on the disk are tagged inaccessibte. Instructions are tagged executable if they have received 

all their operands and signals. Only such an instruction is chosen for execution. The instruction 

executes ("runs to completion") only if all the chunks that it requires to access are tagged accessible. 

If such is not the case then the system requests that the chunk be made accessible and the instruction is 

tagged dorm.ant. Some other executable instruction is then selected and run for execution. 

Eventually. the requested chunk becomes accessible and the instruction which requested the chunk is 

made executable. 

Data flow graphs usually expose a high degree of concurrency in most programs. It is hoped that 

by using suitable program transfonn:ition techniques. the number of enabled instructions at ;iny time 

during the execution of the program will be ver:. large. The overlap hcr-...ccn in~trm:tion execution and 

' . ·in an 1mplcmcntat1on for h1> comhinator rcduC'l1on langu:1~c. Turner [l7J u>es c1rrul:ir structures to model recursion. 
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disk accesses is the principal source of concurrency in the system. I expect that in an actual 

implementation the paging algorithms and instruction scheduling can be so ordered that the system 

seldom has to wait for a disk access to complete before it can execute an instruction. This translates into 

the following caveat - there must be at least one executable instruction during most of the time of the 

program execution. 

3.1 Arrays and V1M·trees 

We now examine a special kind of data structure called a VI~·tree, which is used to store the 

elements of an array in L2. 

A positional k-tree is a directed tree with the following property : Each edge out of a node v is 

associated with one of the numbers in {0, 1, .. , k-1}; different edges, out of v, are associated with 

different numbers. It follows that the number of edges out of a node is at most k, but may be less; in 

fact, a leaf has none. 

We associate with each leaf node v in a positional k-tree V the word consisting of the sequence of 

numbers associated with the edges on the path from the root r to the node v. This sequence is called the 

index word of node v. The index word also represents an integer in base k. The height of the tree is the 

length of longest index word in the tree [15]. 

A Vr~·tree is a positional k-tree in which every node is associated with a chunk. The chunk 

associated with the root node is called the root chunk. A chunk has two parts - header and chunkstore. 

The header part of the chunk contains some book-keeping information about the chunk: the chunkstore 

contains the actual data values (or pointers to other chunks). Elements of an array are stored in the 

chunkstorc part of some of the chunks ass~iated with the leaf nodes. Those leaf chunks which contain 

clements of the array arc called value chunks. !\11 \;iluc chunks have index words of the same length. 

For convenience. the terms "value chunk" and "root chunk" will be used in place of "chunk associated 

with the leaf node" and the chunk associated with the root node". ;\ word in the clrnnkstore of a value 

chunk in a \ l\t-trce is u11iquely id1.'ntifkd by Ll1c h.1..,c-k imcg.cr wi. where tt· is Ll11.' inJex word of the 

\dluc chunk dnJ i is Ll1e y,urd numher in Lli-· chunksturc. I sh•ill u~c Ll1c tenninolo'.:!Y "the tt/Lh word in 

the \ l\!-trcc I" to denote Ll1e /Ll1 word in the chunk "ith index wtird tt· in I·: wi is Ll1e tturJ 11u111bcr (in 
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base·k) for that element of the array in V. All the words of the chunkstore part of a chunk contain the 

value unallocated by default. If an arc from node A to B be marked i, then the ith word of chunk 

associated with A con tarns the cid of the chunk at B. If there is no node corresponding to the ith edge 

from A. the Ith word. of A contains the value unallocated. 

The refcnt field of a chunk is a count of the number of occurrences of the cid of the chunk in the 

current state of the machine. This is used for reference counted automatic storage reclamation. The 

setcnt field of the root chunk contains the number of elements of the array which are currently 

EC-queues. This field is used to detennine if an APPE~D operation should be perfonned. The d.epth 

field of the root chunk has value d. where the height of the tree is d-1. It is used to construct the index 

word to the value chunk. The number of array elements that can be stored in a full VIM-tree of height 

d-1 is k'1. 

The lo and hi fields of the root chunk of VIM-tree V contain the low and high indices of the array 

whose elements are stored in the tree. If the low index of the array is p and the word number for the pth 

element in Vis sd- 1sd-2 ... s1s0 then the mmin field _of the root chunk is (p - sd-1sd-2"""s1s0). all arithmetic 

being done in base-k. Them field is used to detennine the index word of the Value chunk in which mm 

the element which is to be accessed resides. 

Let an array A with index bounds p and q be stored in a VIM tree Vin which the m . and d.epth mm 

fields of the root chunk have values m . and d. For every i within the bounds, (i - m . ) is the word 
mm mm 

number corresponding to the ith element of the array A. The word corresponding to the word number 

wi in Vis said to be shared if there is a chunk corresponding to the the index word w. and the refcnt 

field of some chunk along the path from the root detcnnincd by the word index has value greater than 

1. Otherwise. the word is unshared. 

3.2 Operational semantics of L2 

In LI we saw that •mays arc rcprc~l..'ntcd as abstract mathematical entities - as fum:tions mapping 

integers to \;dues. In 12 \\1.' .1ug111cnt LI hy introducing a qtiragc moJcl for :1rr:iys. This ch.iptcr 

fucusc" \lll the oper<nio11-; tin ;irrays in 1.2. The (ircr;itillnS on record-. and uncllfs arc \Cl)' sirnilur to 

l110sc tlll arra:- ~: records anJ 011cuf.., may he rcg.irdcJ ;_is fixcJ·kngth arra) s frnm the point of view of the 

~5 
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implementation of their operations in the machine. Functions. activations. early-completions queues, 

etc. are still regarded as abstract mathematical entities. This simplifies the presentation and keeps the 

complexity of the model within reasonable bounds. The techniques illustrated in this thesis may be 

used to develop a model in which the aforesaid entities arc also data structures, rather than sets and 

functions. 

The rest of this chapter is a description of the model L2. The notation used is the same as the one 

used in presenting Ll. Sets are denoted by bold font, elements of sets are denoted by italicised letters 

and names are written in a special font. Thus, This is a set, This E This and Th.is is a name. 

A State S in L2 is a four-tuple consisting of Act (the current set of function activations), H (the 

heap), EIS (the set of enabled instructions) and C (the set of chunks which are currently in use to store 

the arrays on the heap). 

VIM = <lnterp. State> where 
State = Act X H X EIS X C 

Act = U -+ [N -+ Instruction] 

H = U-+ [( {fn} X Function) U ({ecq} X ECQ) 
U {(instr} X Instruction) U ({d.ests} X Dests) 
U ({clsr} X Clsr) U ({arr} X Structure] 

Cid = the set of unique names of chunks. 

The functions AddToHeap, DeleteFromHeap, AddToAct and DeleteFromAct are the same as 

defined in Ll. 

A structure is defined by a cid and a collection of chunks which store the values of the clements of 

the strncture: the cid corresponds to that of the root chunk of the VIM·trce. 

Structure = Cid X C 

The set of enabled instructions is partitioned into two subsets depending on the tags on the 

instructions. When an instruction first becomes cnahlcd it is t;1ggcd executable ;111d added to the set 

of cn~1blcd instructions. Instructions with executable tags arc taggeJ ciormant if they attempt to 

accc~" cl1u11ks v..i11cl1 arc inJCl'CSsihlc. ciormant 111structions hccornc executable when the lhunks 

lhc) \\-Crc tr) mg to Jcccss become ai.:ccs~iblc. 

...+6 
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EIS =~El) 
EI = Status X U X N 
Status = {executable} U (dormant X Cid) 

Each chunk has a unique name. a tag, and some storage called chunkstore. There is a unique 

chunkstore associated with each cid. The storage part consists of some header and k words for values. 

C = 'J(Chunk) 
Chunk = Cid X {accessible. inaccessible} X Chunkstore 
ChunkStorc = Header X DataPart 
Header = Int6 

DataPart = (Scalar U U U SUSP U Cid U {unallocated}l 
Both Header and Data Part are sets of ordered tuples. 

The following notation is strictly adhered to in the rest of the presentation. Ch. always represents 
I 

an element of Chunk, c. denotes the unique name of the chunk Ch. and cs. denotes the chunkstore part 
I I I 

of the chunk Ch. Thus, if Ch is a chunk, then c is its cid and cs is the chunkstore part of the chunk. 
I W W W 

c .m . , c lo, c .hi, c .d.e,.,th.. c .refcnt and c .setcnt) denote the first six elements of the ordered w mm w w w t' w w 

tuple csw. cJ1] denotes the (i+ 6)th element in the tuple. The notation for drawing a chunk and 

specifying the contents of the chunkstore part is given in figure 9. 

The chunkgraph of an array A in L2 is defined as follows. Let V be the VIM-tree in which the 

elements of the array A are stored. The nodes in the chunk graph correspond to the chunks associated 

with the nodes in V; if the edge from node A to B in Vis marked i, then an arc is drawn from the box 

number i of the chunk associated with A to the chunk at B. Chunkgraphs are an efficient and concise 

notational convenience for specifying the operations on VIM-trees. 

The chunk graph of a heap is the collection of the chunkgraphs of the structures on the heap. The 

chunk graph of a heap provides an easy way of indicating the sharing of chunks among structures. 

Scalar values arc as defined in Ll. 

Scalars = Integers U Reals U Booleans U Character U Null 
lntq,:crs = {int I X ({ u11.l1J1 U the set of ,ill integers) 
lfrals = {reat} X ({1111d1J} Uthe set of all reals) 
Booll'am = ibOOL} X ({ 1mc._1;i1.,1. 1111d<:/}) 
( harartl'r = :char} X ( ~ w1c/(J1 U tl1c ~el ofchar<11.:tcr~ ill the machine.) 
Null = {null} X \ 11if. w1cft'J} 

.+7 
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The cid of the chunk 

~ ' ...-m.~m-in-.-~w~--,.~-h-i---,r---d.e-p_t_h-r--s-et_c_n_t..,..-r_e_fc_n--,t 

(~·-··~ 
\ 0 I 2 • • • k-2 k-1 

k words of the data pan of the chunk. The header pan of the chunk 

where c 1 is the cid of the chunk and cs1 is the chunkstore pan of the chunk. 
Figure 9: \"oLauon for drawing a chunk and specifying its value. The chunkstore pan of the chunk is represented by a 
box. which is divided into two rows of boxes. The upper row is divided into six boxes. one corresponding to each of 
m. .. w. hi. depth. setcnt and refcnt fields of the header pan of the chunk. in that order. The second 

min 
row contains the k words of the data pan of the chunk. The unique name (cid) of the chunk is indicated at the left of 
the box. An unsigned integer in the refcnt or setcnt field means that the field now has that value. A signed 
integer in the box llTlplies that the new contents of the box is equal to the old contents added to the signed integer. This 
notauon will be used to specify how the reference counts on chunks is incremented and decremented. 

ECE = U X N 
ECQ = ~ECE) 
SUSP = [U X N] 

The definitions of the sets Instruction, Function, ECE, ECQ and nests are the same as in Ll. 

Instruction = OPS X (U U Scalars)3 X N2 X U 
Dests = ~D) 
o = {unconditiDnaJ.. true. fatse} x N x {opt. op2, op3} 
Clsr = [( {FunctiDn ToApply} UM)-+ UJ 

where C(f unctiDn ToAppt.y) EU X ({fn} X Function). CE Clsr 

The function Se11dResu/1 which is inrnked to dispatch the result of an instruction to the 

destination instructions is almost identical to the one in Ll. The only difference between is that in L2 

the instructions which become enabled arc tagged executable: in L1 no tagging is done. The function 

Se11JTu/Jrs1111u1iu11s is the same as in LL 
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SendResu!t: Act X EIS XU X DX [({uatue} X (U U Scalars)] U {Signal}] 
--+Act X EIS 

Deline SendResul1(Ac1. EIS, uFA' (de, i, opnum), result)= 

let 

in 

FA = Acl(uF)· 
I= FA(1) 

AddToAct(DeleteFromAcl(Act. uFA' FA), uFA' FA') % new set of activations 
if (I'.opcnt = O) /\ (I'.sigcnt = 0) then EIS u {(executable, uFA' i)} 
else EIS 
end if 

endlet 
where 

F A'(j) = F A(j), j ~ i. 
= f, j = i. 

and I' E Instruction, 
f.Opl = if opnum ;t:. opl then /.Opl else t where result= (uaLu.e, t) 
r.op2 = if opnum ;e op2 then !.Op2 else t where result = (vaLu.e, t) 
r.op3 = if opnum ;e op3 then /.op3 else t where result = (vaLu.e, t) 
f.opcnt = if npnum E {Opl. op2. op3} then (l.opcnt - 1) else /.opcnt 
r .st.gent = if opnum = signal then (l.sigcnt-1) else /.Si.gent 
f .destlist = l.dest!ist 

endfun. 
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The function lnterp maps a state and an enabled instruction to a new state. The enabled 

instruction chosen by Choice must have tag executable. 

lnterp: State X Chaice(EIS)--+ State 
where State = Act X H X EIS X C 

A practical implementation of YIM would have a finite amount of main store and a very large 

amount of storage space on the disk. The contents of a chunk cannot be read unless it is present in the 

main memory. Chunks arc read into the main memory from the disk on demand. Eventually there 

may not be any free storage in the main memory into which chunks may be brought in. The system 

frees main storage by moving some chunks from the main memory to the disk and declaring the main 

storage that was occupied by them to be free. New chunks from the disk :ire placed in this free storage, 

which is thrn marked as occupied. Fffecti1 ely. chunks which arc resident in che disk arc not directly 

dCccssihlc to Lile comput.ition. Thus chunks become ;11.:ccssihlc/in.icccssihlc Jurin!_:: the execution of a 

49 
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Chunks which are modelled as being in the main memory arc tagged accessible, otherwise they are 

tagged inaccessible. To capture this notion of chunks becoming inaccessible during program 

execution. a function PageOut is introduced. PageOut selects some chunks in the current state of the 

machine which have tag accessible and marks them as inaccessible. 
PageOut: C-+ C 

Every element marked c1orma.nt in the set EIS E EIS contains a pointer to a chunk (the cid of 

the chunk); the tag on the chunk is inaccessible. Fetch selects some such cid, tags it as accessible 

and all the instructions which had become c1orma.nt trying to access this chunk are tagged 

executable. The action performed by Fetch corresponds to the conventional notion of pages being 

brought into the main memory from the disk. 

Fetch : EIS X C -+ EIS X C 

Let c be the cid of a chunk which is tagged inaccessible and let W = {(u. k) : (c1orma.nt, c, (u. 

k)) E EIS}, W :;e {},in some state (Act, H. EIS, C) of the machine. Fetch( EIS, C) returns a new set of 

enabled instructions given by (EIS U {(executable, u. k) : (u, k) E W}) - W, and a new set of 

chunks specified by (CU {c. accessible, cs}) - {(c. inaccessible, cs)} where cs is the chunkstore 

associated with the chunk with name c. 

The main loop of the machine is defined by the following tail· recursive function. The machine 

executes an instruction, makes some chunks inaccessible and then makes some of the demanded chunks 

accessible. 
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Define Main loop (S: State) = 
let 

(Act
1
, H

1
, EIS1, C1) = S 

in 
jf EIS = {} then halt 
else 

let 

in 

e = Choict{E!S) where e =(executable, uFA' kF)· 
EIS, C = Fetch(EIS1, Page0ut(C1)), 

H= H1, 

Act= Act1 

Mainloop(lnterp(Act, H, EIS, C), e) 
endlet 

end if 
endlet; 
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lnterp defines the manner in which the state transitions are made, depending on the instruction 

which is being executed. 

Define lnterp((Act, H, EIS, C), e) = 
let 

(status, u, k) = e, 

% The instruction must have tag executable. 

in 

FA= Act(u), 
I= FA(k) 

if /.opcode = IADD then ... 
clsif /.opcode = MK INT ARRA y then ... 

elsif /.opcode = APPLY then ... 

end if, 
end if 

end let 

The notation 

(Ac/, H, EIS.() I- (Ad. H. FIS', C) one 

denotes that if the state of the machine given by (Act, H. /:"IS. C) is the argument to Ma;nruup then 

(Ad. H. Fl.~~. C) is the result of executing the instruction e chosen by (hoice. and invoking PageOut 

and Felch in sequence. 

\Ve arc now equipped to desnibe the actions of the interpreter. The scalar operations do not 
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affect the heap and so the C component of the state is unaffected. The state transition rule of the 

instruction is almost identical to that in Ll, the only difference being the introduction of the fourth 

component in the state (which remains unchanged). 

if I.opcode = IADD then 
let 
(int, m) ::: /.op 1, 
(int, n) = /.op2, 
sum= m+n, 
Act', EIS= 

SendResu!t( 
SendResull( ... ( 
SendResult(Act, EIS, (uF4, (Unconditional, d1, opnum1)), a 1), ... ) ... , 

(u FA' (unconditional, dn, opnum,)), an)) 
in 
Act', 
H, 
EIS - {(executable, uFA' kFA)}, 
c 

endlet 
end if 

where a i E {(value, sum), signal} 

Other scalar operations have very similar state transition rules and do not affect the heap or the set 

of chunks. 

Operations on arrays will now be described. Figures are used to explain the algorithms for 

building and manipulating the trees of chunks that store the contents of the arrays. 

The state resulting from the execution of the MKI!'.'TARRAY instruction is described below. 
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if /.opcode= MKll'iTARRAY then 
let 
(int, p} = l.Op1, 
(int. q) = I.op2, 
n = .I l.destsl. 
(c1• accessible, cs

1
) =a new chunk, 

u =a new uid, 
A = (u. (arr. c

1
, {(c1. accessible, cs1)})), 

Ad, EIS' = 
SendToDestinatiom(Act. EIS, uFA' {((unconditional, d1, opnum1), a 1), ... , 

((Unconditional, dn, opnum), a)}) 
in 

Act', 
AddToHeati.,H, u, A), 
EIS' - {(executable, UFA' kFA)}, 
CU {(c

1
, accessible, cs

1
)} 

endlet 
end if 

where a i is either (value, u) or signal. 
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As mentioned earlier, it is assumed that an accessible free chunk is available. The contents of the 

chunk with cid c
1 

is in figure 10. The contents ef this chunk along with the definition of the SELECT 

operation ensure that any SELECT operation on this tree produces the an undefined value. 

The cid of the chunk 

l., mmin ID 

p p 

h.i depth. sei<;nt refcnt 

q d 0 n 

\ UA UA UA 

0 I 2 

• • • VA VA UA 

• • • k-2 k-1 

k words of the data part of the chunk. The header part of the chunk 

Fi~ure 10: The chunk structure crcat.:d by the ~11-.1:'\l.·\IUL\Y m:-trucLion. ·rhc cntirl' lfl'<: trc.: of chunb i> not created; 
0111\ the mot chunk is allocated. '!he sy mhol U A stands for unollorn1cd '[he depth. !kid 1s set to the value d = 
r lo~ k( l/ - p + 11) 
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Let us now consider the effect of the instruction \1KI:\T ARRA YEC on the state of the machine. It 

acquires a collection of chunks which are not members of the set C in the current state of the machine. 

These chunks are used to build a tree which is illustrated in figure 11. 

if l.opcod.e = \1KINTARRA YEC then 
let 

in 

(int. p) = 1.op1. 
(int, q) = /.Op2, 
n = 11.d.estsj, 
M = q-p+l, 
N = M(kd+ 1-l)/((k-l)JC'+ 1), 

{(c1. accessible, cs1), .. ., (c N' accessible, csN}} = N free accessible chunks, 
u =a new uid, 
A = (u, (arr. cl' {(c1. accessible, cs1). .. ., (cN' accessible, csN}}}}, 
Act', EIS' = 

SendToDestinatiom(Act, EIS, uFA' {((un.coruiitionaJ., d1, opnum1}, a 1}, ... , 

((un.coruiitionaJ., d , opnum ), a,,)}) n n 

Act', 
AddToHeap(H, u, A}, 
CU {(c1, accessible, cs), .. ., (cN' accessible, csN)} 

endlet 
endif 

where a; is either signal or (value, u), the 
contents of the chunks is shown in figure 11 and the resulting 
heap H is specified by augmenting the chunkgraph of the heap H by 
the chunkgraph shown in figure 11. 

The APPDID operation is by far the most complex operation. It requires three arguments - an 

array, an integer index and a value (uid of some other structure or a scalar value). Recall that the 

APPE\D operation creates a new array only if its argument array (first operand) docs not have any 

EC-queues: otherwise it is attempted for reexecution at some later time. In L2 the setcnt field of the 

root chunk of the first operand (which must be an array) contains number of EC-queues in the structure. 

If the setcnt field is not zero. then no change occurs in the stace. Instead. some other instruction is 

selected by the Choice function in the next iteration of MainLoop. The APPEi"D instmction remains in 

the set of enabled instructions and will be e\ emually executed, when all the Fe-queues have been 

repbced b} '<dues by SFT instructions. 

If the first operand tu .\l'PF'\D i~ a shared structure (m;m) pointers to it exist in the currrcnt state 
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SJ.I 

I I I I I I 

I I I 

' \ 
• I 

I I I 

• • 

\ 
I I I 

I I I 

ECQO ECQO • • ECQ[) ECQ[) ECQ[) ECQ[) ECQ[) 

Figure 11: Tree of chunks created by created by MKINTARRA YEC. p and q are the bounds of the array, M = q-p+ 1, d 
= r log k(M l) and n is the number of destinations of the instruction c(mkintarrayec). ccqO denotes an empty EC-queue. 
Thus all the elements of the array point to empty EC-queues. s (} 1 s it

2 
... s

1
s
0 

is the word number of element with index 
q in the array. The word number of the element with index pis 00 ... 0. 
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of the system), then a new array is created which shares a number of chunks with the argument array. If 

the value of the refcnt field of the root chunk of the first operand to APPEND is one, then it is possible 

to perfonn an in place update. This condition under which no copying need be perfonned at all to 

implement the APPEND operation can be taken advantage of by the compiler. If the integer index (the 

second operand) is outside the bounds of the argument array. APPE.'\D creates a larger array. The 

transition rules arc specified in the following pages. 

Let the array on which the APPi .'\D instruction is to performed have the chunkgr;.iph shown in 

Figure 12. 
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Figure 12: Chunkgraph of the array on which the APPEND operation is performed. 

if I.opcode = APPEND then 
let 

u1 = /.op1, 
(arr, c1, {(c1, afi, cs1}, ... , (cN' afN csN})) = H(u1}, 
(int, i} = 1.op2, 
x = I.op3, 
P = cl.lo' 
q = crh.i, 
d = c] .depth, 
n = 11.destsl. 
u2 = new uid from U 

in 
if Ii: clement with word index i of the array is a suspension 

or an EC-queue! > 0 
then Act. H. FIS. (' 

% There are Fe-queues in the structure - APPF'.;D does not execute. 
ebif /J ~ i ~ q then 

if ( \\ ord num her (i- c 
1 
.m . ) in VI\1-structurc \\ ith root c

1 
is unshared) nun 

then ... 
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else ... 
end if 

OPERATIONAL SE.'v!A'.\TICS or VI.'v! WITH STORAGE 

% The element is shared. 

clsif c
1
.m . < i < p then ... 

min 
clsif i < c

1
.m . then ... 

min d 
clsif q < i < cl'mmin + k then ... 
else ... % i>crmmin + ~ ••• 
end if 

endlet 
endif 
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First consider the case in which the ith element of the array is not shared among any other 

structures. The APPEND instruction performs an in place update by replacing the value of the ith 

element of the array by the new value x. The VIM-tree represents a new array, which is reflected by the 

new uid that is associated with the structure. The set of chunks C remains unchanged from the previous 

state. 

If any chunk with cid c whose contents need to be accessed during the execution of the APPEND 

instruction is found to have an inaccessible tag, the state s
1 

= (Act
1

, H1 , EIS!' C) resulting from 

the execution of the APPEND instruction is defined below. 

Act
1
= Act 

H=H 
ifs!= (EIS U {((ctormant, c), UFA' kFA)} - {(executable, UFA' kFA)} 

C1 = C 

The instruction thus remains in the set of enabled instructions. Eventually when the chunk c 

becomes accessible (caused by the function Fetch), it will again become executable. 

The actions of the interpreter for the APPE!'<D operation will now be presented. Consider first the 

case when the ith element of the array on which the APPEND is performed is an unshared clement and 

ith lies within the bounds of the array6. 

h\ qmpl1!1111;; a''umpt1on m:1dc here i' that there i> a leaf chunk com:.;ponding to the 1th clement of the arra). If that is not 
the Ghc then nL·11 c:hunk> arc added to the >Ct of chunh 1n the 'late and the set (" i'> au),'.mcntcd su11ably. 
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if p ~ i ~ q and (word number (i-c1.mmin) in VIM-structure with root c1 is unshared) 
then 

let 

in 

Act', EIS'= 
SendResult( 
SendResult(....( 
SendResult(Act, EIS, (uFA' (Unconditional, d1, opnum1)), a 1) . ... ) ... , 

(uFA' (Unconditional, dn. opnum,)). an)) 

Act', 
(H- (u1, (arr. c1, {(c1, accessible, cs1) .... , (cN' accessible, csN)}))) 

U {(u2• (arr. c1, {(c1. accessible, cs1}, ... , (cN' accessible, csN}))} 

EIS' - {(executable, UFA' kFA)}, 
C where C reflects the fact that an in situ change has been made to the chunks of 

the structure A as shown in figure 13. 
end let 

end if 

c, I I I -I -It I 1-1 I -I -I t I .1.1··.1.1 .1.1··.1.1 .••• 

i \s~, 
I I 

I I I 
I I 

j \'1 \ 
I 1- I I I I ' I I I I 

I 1 I 1 

I - I - I 
1 I i I ct1-[-[·[tl 

1.\ I I I • • • I I I I • • • I I 
so 

Fi!!ure 13: Chunkgraph of the result of APPr·:-<D on the array 'hown in figure 12 when p ~ i ~ q and the element is 
an un:-h:ircd clcm~nt (:If = 0 and n -= l) 

Now consider the case in which the clement is shared among structures on the heap. A new 
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structure is created by copying chunks along the access path. The reference count of the argument 

structure A is decremented by 1. If A.refcnt becomes zero. the node is deleted from the heap and the 

reference counts of all the chunks that c
1 

points at arc also decremented. This may cause a cascade of 

deletion of nodes from the heap. If any of the chunks whose contents needs to be accessed (for 

decrementing its reference count field or for reading the contents of its chunkstore) is tagged 

inaccessible then the instruction is made dormant and no changes are made to the Act, H and C 

components of the state. The state transition rule for such a case has already been described. 

if p :$; i < q and (word number (i-c1.mmi,) in Vr\1-structure with root c
1 

is shared) 
then 

let 

in 

Act', EIS' = 
SendResult( 
SendResull( ... ( 
SendResult(Act, EIS. (uFA' (unconditional, d1, opnum1)), a1}, ... ) .. ., 

. (u FA' (Unconditional, dn, opnumn)), an}), 
(c'1, accessible, cs) .... , (c'd-l' accessible, cs' 1) = new chunks unused in C, 

H = HU {u2, (arr, c'1, {chunks shared between argument and result arrays} 
U{(c'l' accessible, cs'1) .... , (c'N' accessible, cs'N)} 
- {structures whose root chunk has refcnt field has value zero} 

Act', 
If, 

EIS' - {executable, uFA' kFA)}, 
CU {(c'1. accessible, cs) .... , (c'N' accessible, cs'N)} 

- {chunks whose refcnt field becomes zero} 
endlet 

end if 

Now consider the case in which A.m . < i < A.Lo. The resulting VIM structure is of the same mm 

height as the old structure. New chunks are acquired from the pool of free chunks and are initialized 

such that much of the information common to the two arrays is shared on chunks. A.refcnt is 

decremented: if it becomes zero then A is deleted from the heap, as arc strnctures whose reference 

count becomes zero. The chunks in which the clements of the structures arc stored arc deleted from C 

if their refcnt field becomes zero. It is easily seen that the result structure A' preserves the semantics 

of the append operation - a SFLFCT done on A' on L2 maps to the same value as a SFl ECT on the result 

of Al'Pl :\D( A. i. x) in LI. 

·111c third case arises when c
1 

S i < c
1
.Lo. f'hc resulting tree has the same height as the argument 
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D ··· D • • • 

• • • 

1-1- 1- I -1 · 1+ 
1
1 1-1- I -I -I -1+o1 1-1- 1 - I -I -1+ 1! 

.1.1 II 1.1 •••. 1.1 H 1.1 ••. 1.1 II 1.1 
11 

Figure U: Chunkgraph produced by APPEND on the ith element of the structure whose chunkgraph is shown in figure 
12. This is the case when p ~ i ~ q and the element is a shared element 

tree. Chunks along the access path are copied, while others arc shared as shown in figure 16. The lo 

field of the root chunk of the VIM-tree for the result array is set to i. No change is made to the value 

represented by the argument structure. The refcnt field of c
1 

is decremented. If that becomes zero, 

then the usual process of decrementing reference counts is started. The deletion of structures must be 

reflected in the resulting heap and set of chunks in the state. 
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if c1.m . < i( p then mm 
let 

Act', EIS' = ... 
in 

end let 
end if 

61 

The action of the interpreter on this occasion is similar to that in the previous cases. See figure 16 for 

the chunkgraph of the part of the heap which is affected. 

\~ 
D ··· D • • • • • • 

• • • 

1: 1 · 1 · 1 · 1 · 1+ 
1
1 1 · 1 · 1 

· 
1 

· 
1 

· 1+ 'I 1 · 1 · 1 · 1 · 1 · r /1 . I . I II I . I • • • . I . I I vi I . I • • . I . I II I . I 
1J 

Fi~ure 15: Chunkgraph for result of Al'l'l :\D \\hen c1.mmin < i<p. 
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Now we consider the case in which the height of the VIM-tree resulting from the APPEND on A is 

greater than the VIM-tree for A. This happens when i < A.m .. The YIM-tree for the result array A' min 

created by APPEND is of the minimum such height that A'.m . < i, and SELECT(A, A.m . ' = min mrrr 

SELECT( A', A.m . ). The semantics of the APPEND operation (as specified in Ll) is preserved; a fonnal min 

proof of this assertion will be presented in the next chapter. The reference count of A docs not change 

since one reference to it is consumed by APPEND while a new one is inserted in A'. 

Given i < c1.m . , a tree of the minimum possible height must be constructed such that if c'1 be mm 

the root of the resulting tree then i-c'
1
.m . > 0. The appropriate height can be computed as follows. mm 

Let d be the height of the resulting tree, which is shown in figure 17. Clearly, the word number of 

c1.m . in this tree is 100 ... 00 such the length of the sequence is d. mm 
... cl.mmin - c'l.mmin = 100 .. 00 
=> c'1·":'-min = cl"mmin - (100 ... ?f), in base k 
so that c 1.mmin = c1.mmin - k!1 . 

It is of interest to note that the word number of c1.m . could also be ss000 ... 00, where 1 <s<k. mm - -

The arithmetic would be vary similar to the above case. 

The instruction becomes dormant if any of the required chunks is tagged inaccessible. The 

refcnt field of the argument array need not be decremented because even though the instruction 

consumes a reference to athe array, a new one is created in the new structure. Therefore. in this case no 

storage reclamation will be triggered. 
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if i < c1.mmin then 
let 

Ad.EIS= ... 
in 

cndlet 
end if 

see figure 17. 

The cases for the rest of the two cases are similar to the previous two cases and are not discussed. 
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The state transition rule for the SELECT operation is specified below. The select operation 

decrements the reference count of the argument structure. If the element which is being accessed by 

SELECT is an EC-queue then the address of SELECT is placed on the EC-queue and the instruction is 

removed from EIS. If the element is a suspension then the suspension is replaced by an EC-queue 

containing the address of SELECT and a signal is sent to the instruction whose address was specified in 

the suspension. If the element is a scalar value then the value is simply dispatched to the destinations. 

If the result of SELECT is a structure, then its refc;nt field is incremented by n, the number of 

destinations of SELECT. If A.refc;nt becomes zero due to the decrementing of the reference count it is 

deleted from the heap. 1be refcnt fields of the chunks that the root chunk c1 of A points at are also 

decremented and the chunk c
1 

reclaimed. The decrementing of refc;nt fields may trigger more 

reclamation. If any of the chunks which needs to be accessed is tagged in.accessible then SELECT is 

made dormant; no changes are made to the Act, Hand C components of the state. 
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root chunk of result array 

~ 
0 1 

0 

root chunk of argument array 

• • • 
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1-1- I -I -I -11 I .1.1···1.1 .••• I i-1-1 i-1 'I I I • • • I I 

\ \ 
• • • • • • • 

• • • 
• • • 

f"i1:ure 16: Chunkgraph for result of APPLJp when i < cl°mmin "lhe height of the result VIM-tree is d = 
flogk(cl.mmin - i)l + 1. a= cl.mmin - k -I_ 
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if I.opcode = SELECT then 
let 

in 

u1 = /.op1, 
(arr. c1, {(c1, afi, cs1), ... , (cN' afN' csN})) = H((u1), 

(int, i) = I.op2, 

if (i < c1.lo) or (i > c1 .hi) then undef 
else 

let 
x = contents of word number (i - c

1
.m . ) in the VIM-tree with root c1 . mm 

m 
if x is a scalar then ... 
elsif x is a uid u H corresponding to structure B then ... 

% send the value and increment refcnt 
% field of the root chunk of the VI!'vf ·tree for B. 

elsif xis an EC-queue then add (uFA' kF) to the queue, etc. 
elsif xis a suspension then [replace suspension by EC-queue with (uFA' kFA), 

increment c1.setcnt, decrement c1.refcnt, etc.] 
end if 

end let 
end if 

endlet 
endif 
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Observe that if c1.refcnt becomes zero after SELECT executes, the node corresponding to the uid 

u
1 

is deleted from the resulting heap and the refcnt fields of all the structures that it points to are 

decremented. If any chunk required by SELECT (either for accessing the element or for updating the 

refcnt fields) is tagged inaccessible, the instruction is made dormant, thus changing EIS; the other 

components of the state remain unaffected. When the chunk becomes accessible later, the SELECT 

instruction becomes executable. 

The transition rule for SET is given below. 
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if I.opcode == SET then 
let 

in 

(u
1 

== I.opt, 
(arr, c1, {(c1, af1• cs

1
), ... , (cN' afN' csN})) == H(u1), 

(int, i) == ].Op2, 
x == /.op3 

if the ( i-c
1
.m . )th word of the VIM-tree with root c

1 
is an EC-queue Q then mm 

let 

in 

Act', EIS' == send signals to destinations of e, 
EIS" == EIS' u {(executable, u', k'): (u', k') E Q}, 
H == the old H plus the change in the contents of the chunk of A is reflected, 
C' == same as C except that the chunk containing the EC-queue contains x 

and decrement refcnt and setcnt fields of c1 

Act', H, EIS'', C 
endlet 

else 
let 

in 
Act', EIS' == send signals to destinations of e 

Act', 
H, 
EIS, 
c 

endlet 
end if 

end let 
endif 

The transition rule for SETSL'SP is defined as follows. 
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if I.opc;oc:te = SETSUSP then 
let 

in 

(u1' (arr, c1, {(c1, afi, cs1), ... , (cN' afN' csN})) =I.opt, 
(int, i) = I.op2, 
(int, m) = I.op3 

if word number (i-c1.m . ) in VJ\1-tree with root c1 is an empty EC-queue then mm 
let 

in 

Act', EIS = send signals to destinations of e, 
H = reflect the fact that the ith element of the array is a suspension 

and the EC-queue at the element is deleted from heap 
and elements deleted from heap due to refc;nt becoming zero 

C = different from C in that the chunk containing the ith element 

Act', 
H 
EIS', 
c 

now contains a suspension and decrement refc;nt field of c1 

endlet 
elsif the element is an non-empty EC-queue then 

let 

in 

Act', EIS = send signals to destinations of e' and to (uFA' m), 
C = decrement refc;nt fields of c

1 
and reclaim, if applicable, 

H = Reflect the changes due to changes in C and due to reclamation 

Act', H, EIS, C 
endlet 

else 
let 

Act', EIS = send signals to destinations of e', 
C = decrement refc;nt fields of c1 and reclaim, if applicable, 
H = Reflect the changes due to changes in C and due to reclamation 

in 
Act', H, EIS, C 

cndlct 

cndif 
cndlet 

cndif 
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The set of instrnctions related to function application (APPLY. TAIL\PPLY. STRFA\1-L\ll.APPLY. 

RFILIC\) .ibo Jo not affect the heap or the set of chunks ;.111d their transition rules m;.iy thus be directly 

ad;ipted from 1.1. 
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3.3 Discussion 

The problem of efficiently implementing data structures in functional languages is of long 

standing. Various solutions have been proposed by researchers so that APPE:\D type operations can be 

done on such aggregrates of values without copying the entire array. 

I-structures proposed by Arvind are write-once structures. I-structures solves the problem of 

read-before write synchronization in a concurrent system; however, the implementation described 

causes the structure to be copied when an append operation is done on it. 

Myers proposed an implementation of applicative lists on A VL-trees [30). The paper describes a 

generalization of an A VL-tree, called an A VL-dag, which is used as a representation for linear lists. He 

presents algorithms which oerform applicative manipulation of linear lists in time that is proportional to 

the logarithm of the length of the list. He also gives algorithms that perform SELECT and APPEND 

operations on fixed sized arrays with N elements in time O(KN11K}, where K can be chosen arbitrarily. 

Hudak and Bloss [21) have recently proposed schemes for statically inferring situations in which 

an APPEND may be implemented as place updates. Failing this, they propose that reference counts be 

maintained on the structures; the entire structure is copied if an APPEND occurs on a structure with its 

reference count greater than one. 

None of the above solutions satisfactorily address the issue of sharing information among 

structures. The new data structure VIM-tree proposed in this thesis allows APPEl'iD and SELECT 

operations to be performed in logarithmic time. Moreover, the algorithms common information to be 

shared among structures, so that the storage requirements of programs is reduced significantly. The 

following factors influenced the design of the data structure for representing arrays : sharing, fast 

Sr:I FCT and APPF:°'ID operations. and the constraint that the storage has a physical hierarchy. fl-trees and 

A VL-trees were considered candidates for representing arrays: however. analysis indicated that the 

amount of processing required to balance the trees is substantially more than that for VIM-trees. It was 

found that habncing a k-way A VL-tree or B-tree would require a larger numher of clrnnks (than for a 

Vi\1-trcc) lO be accessed. many of which might not he in the main memory. It was desir;.ihlc to ke1.'p the 

hranching 1:1ctor of the trees quite high so that the dcpt11 of the tree that had to he traversed to perform 

t11e frequent SFI I er operations would he quite low. For example. an array of 40% clements can be 

68 



§ 3.3 OPERATIONAL SEMA:\TICS OF VIM WITH STORAGE 69 

stored in a 16-way VIM-tree of height three. The use of trees of chunks to store data structures also 

eliminates the problem of compaction. 

This chapter also described a reference count mechanism which is used for reclamation of chunks. 

Reference counting permits real-time garbage collection in VIM. The operational semantics of the 

instructions are defined such that if a chunk required to be accessed by an instruction is not in the main 

memory, then the instruction is not executed. In a more detailed model, it may be possible (and maybe 

worthwhile in an actual implementation) to consider partial execution of instructions, so that an 

instruction is removed from the set of enabled instructions once it has been chosen for execution by the 

scheduler. 
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Chapter Four 

Equivalence of Ll and L2 

In chapter 2 the operational semantics of Ll was presented. Ll was then refined to model 

hierarchical physical stage consisting of main memory and disk and a representation for data structures 

of the storage model was described in Chapter 3. As mentioned earlier, Ll provides the specification 

for any implementation of an archicture for VIM. We desire that programs executed on Ll produce the 

same result as that produced by running the program on L2, and vice versa. This would demonstrate 

that L2 indeed satisfies the specifications of Ll. A formal proof of the equivalence of Ll and L2 is 

presented in this chapter. 

Let P be a program written in the base language. Let Translateu translate a program in the base 

language to some initial state for Ll. Similarly, Translateu produces an initial state in L2 for a program 

in the base language. 

The heap of Ll is a directed, acyclic graph in which the nodes are the arrays, closures, etcc, and an 

arc between two nodes in the graph denotes that one structure is a component of the other. We want to 

capture concept of a node in the heap being accessible (not to be confused with tags accessible) from 

the current State of the computation. If the node is not accessible then the structure associated with the 

node is not usable. and is garbage. 

Definition 4·1: Let S = (Act, H, EIS) be a state of machine Ll. A node on Hin Sis 
reachable if one of the following two conditions arc satisfied: 

1. There is some unexecutcd instrnction in Act which has a pointer to the 
node (holds the uid of the node), or 

2. It is a component of some structure on H, and the node corresponding to 
that structure is reachable in S. 

The preceding chapter f!.1\e an in fonnal definition or the chunkgraph of a heap. The chunkgraph 

of a he<1p in some st<1tc is now fonnally defined in t:r:iph-theoretic tenns. 

lkfinition 4·2: I.ct.'-," == (·id. If". US'. ( ') E St•ltc in 1.2. let C = {Ch
1
• Ch2 • .... 

Clz } . "'here Ch is of the fonn ( c. af. cs) and af is either accessible orinaccessible. 
n I I 'I I I 
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The chunkgraph of Hin Sis a graph G = ( V. E) where V = { Ch1, Ch2 ..... Chn} and E = 
{( c, c) : ( 3p E {O, 1. ... , k- l}) c IP] = c } . Recall that the c[m] denotes the contents of the 

l I ) 

mth word in the chunkstore part of the cnunk whose cid is c. 

71 

It is possible that two different states in L2 represent the same set of values, the only difference 

being that the set of chunks used to store the clements of arrays in the two states are different. Two 

such states arc said to be similar; the formal definition of the similar relation is given below. 

Define two functions StValue1 and StValue
2 

for Ll and L2, respectively, as follows. If u be a uid 

and Hbe a heap in some state in Ll then StValue
1
(u, H) returns an ordered set; the elements of the set 

are the results of SELECT operations done on the array associated with u, SELECT being performed for all 

integer indices. If there is no structure in Ll with uid u, the result of StValue1(u, H) is the null set 

StValue2 is also defined in the same manner, except that the heap must be in some state in L2. 

Definition 4-3: Let Sr S2 E State in L2, where S1 = (Act1, H1, E!Sl' C1) and S2 = 
(Act2, H2, EIS2, C2). 

sl and s2 are similar if 

1. Act1 = Act2 

2. Vu EU [StValue2(u, H1) = StValue2 (u, H2)] 

3. (VuE U)(V k E N)(V s E Status) [(u, k, s) E £/S1 ~ [(3s' E Status) : (u, k, 
s') E £/S2ll 

4. The chunkgraphs for H1 in S1 and H2 in S2 are isomorphic. 

The last condition simply indicates that in two similar states the chunks exhibit the same sharing 

relationships, except that the chunk ids are different. 

It is easily seen that the similar relation is an equivalence relation, and the set of similar states 

constitutes an equivalence class. 

4.1 Proof of Equivalence of L 1 and L2 

Informally, two machines arc equivalent if they produce idcntic.11 results for a given program. 

Moreover. there is a correspondence between computational stale~ t11at each machine goes tllrough. 
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We shall use an adaptation of the McGowan mapping technique for proving the equivalence of 

two machines [25]. A similar technique was used by Berry [6] to prove the equivalence of two 

information structure models of block structured languages. 

Let P be a program in the base language. Schematically, the computation of Pon Ll and L2 is 

shown in the Figure 18. A computation is a sequence of states starting with some initial state; if the 

computation terminates, then the final state contains the result. Translate,JP) produces an initial state 

for the program P on the machine M. S is the final state of Ll on computation of P and n 

ResultValueJJS) prints the value of the node on the heap which contains the result of the 

computation. Let S0 be some initial state of machine Ll. The computation of the machine Ll starting 

at the initial S0 is denoted by Mainloopu(S0). Function Final(MainloopJJSJ) gives the final state of 

the machine in a computation, if it halts. Similar notation is used for the machine L2. In the following 

discussion, rule definitions which have the same name in both Ll and L2 are distinguished by 

subscripted Ll or L2. 

sn-1 

Program P cp p cp p 

ti>~ D~. 
\ ~ultVa/uell 

p cp p • cp p cp 

~ ~tValue12 
---• 1 1 ••----.• ~esul 

s· 0 s· 1 

Figure 17: McGowan mapping of states of Ll and 1.2. 

s· k s· n-1 s· n 

The mappings cp and p provide a map between the states of the machines Ll and L2 on the 

computaLion P. To show that Ll and L2 arc equivalent for programs in the base language, it suffices to 

construct mappings cp and p 

'r/.\" cp: ,..,~-+ s 
'r/S p: S-+ S 
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where S' E StateL2 and S E Stateu such that for all programs P in the base language the following 

holds: 

Let S0 = Translateu(P) and S'0 = Translateu(P). MainLoopu(S0) produces in succession the 

states S0• S1, ... and MainLoopu(S' 0) produces in succession S' 0, S' 1, ... 

Then 

2. If p(S) = S'i and Si ;e Final(MainLoopLl(Sc)) then p(Si+l) = S'i+l' 

Ifcp(S') = SiandS'i;e Final(MainLoopL2(S'0))th.encp(S'i+l) = Si+ 1. 

3. If Sn= Final(MainLoopu(Sc)) then p(Sn) = Final(MainLoopu(S' a)) 

If S' n = Final(MainLoopu(S' 0)) then ip(S' n) = Final(MainLoopLl(Sc)) 

4. ResultValueu(S' n) = ResultVa!ueu(<p(S)) and ResultValueLl(S,) = 
ResultValueLi<p(Sn)) where S'n = Final(MainLoopu.(S'0)) and Sn = 
Final(M ainLoopLl (Sc)) 

Theorem 4-4: Ll is equivalent to L2 for the base language. 

Proof: We exhibit McGowan mappings cp and p to prove th.e equivalence. cp maps a 
state S' of L2 to a corresponding state S of Ll, and p maps a state S of Ll to a corresponding 
state S' of L2. 

First we describe mapping <p(S') = S. 

Let S' = (Act', If, EIS', C). 

1. Construct Act = Act'. 

2. Construct Has follows. Let UH = {u: u is the uid of node on If}. 

\:/ u E UH [if If( u) E Structure then (u. If) E H such th.at A E Array and 
StVa/ucLl(u. If)= St 1 ·alucu(u, If) 

otherwise (u, lf(u)) E //] 

Clearly. if the reference counting is done correctly, then the following holds : \:/ u 
I{ i : 31i'{ u·} X {arr} X .\rrny E II and snrcr(u·. i) = u}i = 11.refcnt where 
(arr. A)= ff(u) and A= (u. cl' {k1• <!t;. c.1 1) •.••• (cN. 1~/1~. csN)}). 

3. Construct FIS as follows. 

FIS= {(u. k): (Status X {(u. k)}) E F/.q 
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Secondly, we describe the mapping p : S-+ S such that S = p(S). 

Let S = (Act, H, EIS). 

1. Construct Act' = Act 

2. Construct If as follows. 

let UR = { u : u is the uid of a reachable node in H} 

For u E UR). if u is the uid of an array then (u, c1, {(c1, afi, cs1), ... , (cN' 
afN' csN)}) E If such that StValueL2(u, If) = StValueu(u, H). Also, 
c1.refcnt = (The number of occurrences of the uid u in unexecuted 
instructions of Act or in reachable nodes in H) and c1.setcnt = (The 
number of suspensions or EC-queues in the structure with uid u). 

If u is not the uid of an array (or record or oneot) then (u, H(u) E If. 

3. EIS' = {(executable, u, k) : (u, k) E EIS} 

4. C = {(c, af, cs): (3u 3c1 3C: (u, c1, C) E If and (c, af, cs) EC)}. 

Observe that S is a member of an equivalence class under the similar relation. 

Thirdly, we show that cp and p meet the requisite conditions. 

Condition 1 : 
If cp(S0) = S0 then p(S0) = S''0 where S''0 is a member of an equivalence class under the 
similar relation. Also, cp(S''o> = S0. By judicious of chunks. we can obtain p(So> = S' 0. 

Condition 2 : 

If cp(S) = S. and S. is not a final state then cp(S'. 1) = S.+i· We shall consider each 
I I I I+ I 

instruction and show that the maps hold after the execution of the instruction provided the 
map was correct prior to the execution of the instruction. 

Let e' = (executable. u. k) E EIS', which is executed. Assume that all the chunks needed 
I 

by lnterp1 2 during the execution of e' arc tagged accessible by some omniscient Fetch and 
f'ageOut functions. Essentially, we arc ensuring that an instruction in L2 docs not become 
dormant during execution. (We shall later sec that this assumption places no restriction on 
the generality of the result). 

For case of exposition. define three functions cp Act cp EIS and cp H such that cp(S') = cp((Ad. 
If. US")) = (cp Ac/Ad). cp 1f ff). cp l:"J.~0:'/S')). 

1. Sc1br instructions: 
The result of the instruction is sent to instnictions in 1d . the rcsulling activation 

I 

heing Adi+ 1. 

74 

§ 4.1 



§ 4.1 EQCIVALDiCE OF Ll AND L2 

The same set of instructions in Act. receive the result of the scalar instruction in Ll, 
I 

to produce Acti+ 1. 

The actions of SendResultu and SendResultL2 on Acti and Act'i is the same, as is 
easily seen by looking at their definitions. Therefore 

cp Act(Act'i+l) = Acti+l 

EIS'·+ 
1 

= (EIS' - {e'}) U {(executable, u, k): (u, k) is a destination of e' 
I I . 

and /.opent = O and /.st.gent = O}, where I= (Act'
1
(u))(k)}. 

Also, EIS. 1 = (EIS - {e}) U {(u, k): (u, k) is a destination of e' and /.opent 
I+, I = 0 and /.st.gent= O}, where I= (Act(u))(k). 

I 

The heap is unaffected. Therefore ff i+ 1 = Hi and Hi+ 1 = Hi Since cp JH) = 
H, it is obvious that cp l ff. 1) = H. 1. 

I JI' I+ I+ 

Thus for scalar instructions the map cp holds. 

2. APPE'.\'.D instruction 
By the same reasoning as used for scalars. in the state produced by APPEND, 
cp AciAct'i+l) = Acti+l' under the stated preconditions. 

We have cp H. = Hi We will look at the different cases that arise during the 
execution of APPEND. 

Let u1 be the uid of the array A; u1 is the first argument to APPEND. 

a. Number of EC-clements or suspensions in the array> 0 : E!S'i+ 1 = EIS' i 
inL2. 

By precondition and the definition of cp and p, in Ll, this corresponds to 
the case that i{i: element i of A in H. is a suspension or an EC-queue}!> 1. 

I 

Therefore £/Si+ 1 = EI Si Therefore q; nf<EIS'i+l) = E!Si+l' 

The heap is unaffected since the instrnction docs not execute. Thus 
rp Ff If i+ l) = Hi+ l since cp if ff;) = Hi 

Therefore q; holds for this case of APPEND. 

b. No suspensions or 1 c-elcments and A .refent = 1. 
/\s before. mA (,fc(. 1) =Act 1 and m£1,.(/:'/.).+I) =FIS. 1. 

T er I+ I+ T : •' I 1+ 

;\ fter c' executes. A is deleted and is absent in tr i + 
1
: a new array is rlaced 

on Hit r /\II stn1ccurc-. v.llich were poimcd at by A have their refent 
field decremented. If they ;ire pointed at onl) by A t11e11 t11eir refent will 
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become zero and they will be absent in If i+ 1. 

Since cp(" = S. and A.refcnt = 1, A must be reachable from H. only 
J . I I 

from e. Therefore, after e executes, A is no longer reachable in the new 
heap Hi+ 1 and a new heap is added to this heap for the new array. All 
nodes in H. which were reachable only through A will also become 

I 
unreachbale in H. 

1
. 

1+ 

Therefore under the given preconditions, cp 1f..Hi+ 1) = Hi+l' 

Thus, cp(S'i+l) = Si+l for this case of APPEND. 

c. No suspensions or EC-elements and A.refcnt > 1 
As in the previous case, cpAcrCAct'i+l = Acti+l and cpnf.-EIS'i+l) = 
E!Si+l' 

After e' executes. A remains on the heap since its refcnt field does not 
become zero. A new array is added to the heap If i + 1 and the value of its 
refcnt field is equal to the number of destination instructions of e'. 

Since cp 1/lf) = Hr A is pointed at by many objects in the current State, 
and is reachable from more than one instruction or reachable structure. 
After e executes. A becomes unreachable in H. 

1 
through e. However, A 

I+ 
remains reachable on the heap. 

Therefore, given that cp(S i) =Sr we have cp J..lf i+ 1) = Hi+ 1 for this case 
of APPEND. 

This finally yields cp(S'. 1) = S. 1 for the APPEND instruction under the 
1+ 1+ 

given preconditions. 

3. SELECT instruction 
Let A and j be the first and second operands of SELECT, respectively. We shall 
prove that cp holds for SELECT by considering the various cases that arise during 
the execution of SELECT. 

a. Element being accessed is not Fe-queue or suspension : By reasoning as 
for scalars. cp Acr(Adi+ 1) = Acti+ 1 and cp us(/:"/S'i+ 1) = El Si+ 1. 

In L2. if the result of SELECT is a structure B then B.refcnt = 11. the 
number of destinations of e'. If A.refcnt = 1 then A is deleted from 
If 

1
• If A is deleted from the resulting heap. the refcnt fields of the 

1+ 
structures it points to must also be decremented. 

In Ll. if the result of the in~truction is a astructure B. it is reachable in 
H 1 from the instruction~ \\ ilich arc t11e destinations of c. If A were 

I 1" 

rcaclwhlc only throw:.h c then it becomes rc;1ch;1blcunreachablc in H. 
1
• 

~ 1+ 
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as doo all structures which were reachable only through A in H. 
I 

Thus we get that cp 1j)f i+ 1) = Hi+ 1 showing that cp(S i+ 1) = Si+ 1 for 
this case of SELECT. 

b. Element being accessed is an EC-gueue 
EIS'. 

1 
= EIS. - {e'}. 

I+ I 

Also, the execution of e in Ll yields £/Si+ 1 = EIS; - {e}. 

Since cp Elf EIS') = £/Sr it is obvious that cp Elf EIS' i+ 1) = EISi+ 1. 

On executing e', the heap If i+ 1 is the same as If i except that the 
EC-queue has an additional element (u, k). On executing e in Ll, the 
resulting heap Hi+l is the same as Hi except that the EC-queue has an 
additional element (u, k). 

Since cp JH) = Hr clearly it is the case that cp JH i+ 1) = Hi+ l" 

Therefore, under the given preconditions, cp(S' i+ 1) = Si+ 1 for this case of 
SELECT. 

c. The element is a suspension 
The execution of e' in L2 causes its removal from EIS' i+ 1. A signal is sent 
to the suspended instruction whose address is found in the suspension, 
which may become enabled. 

The actions of Ll are the same so that cpEJfEIS'i+l) 
cp Act(Act'i+l) = Acti+l since cp(S') =Si 

E/Si+l and 

In L2, if the ith element is a non-empty EC-queue then (u. k) is added to 
the EC-queue and this change is refelccted in the heap If i+ 1. The same 
actions accur in Ll to yield H. 1. 

1+ 

In L2. if the ith clement is an empty EC-queue then it is replaced by an 
ff-queue containing only (u. k) and the EC-queue is added to the heap 
Hi+l' The same action occurs in LL 

Therefore. given the q;(Y ) = S. 
1 

and s·. is not a final state. cp(S. 1) = S
1
.+ 1 ~ I It- I 1+ 

after the SI UC! instruction is executed. 

4. SFT instructilln 
Let u1 be the uid of the array A which is the first argument of SIT, and let j and x 
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be the second and third operands. 

Signals are sent to the destinations of e', producing Act'. 1. In LL signals are set 
1+ 

to the corresponding destinations of e in Ac!, yielding Act 1. 
I 1+ 

Since cpA (Act') = Ac!, we get cpA (Act'. 1) = Act. 1 after SET executes. 
Cl l / Cl l+ 1+ 

After e' executes it is removed from EIS. 
1

. The addresses of the instructions in 
I+ 

the EC-queue for the ith clement of A arc added to the set of enabled instructions. 
The instructions which receive signal from set and thus become enabled are added 
to the enabled instruction set, too, to yield EIS 

1
. The corresponding actions 

1+ 
occur in Ll; if (u', k') is an entry in the EC-queue then (executable, u', k') is 
added to the set of enabled instructions in LL 

Therefore, given that cp Elf EIS) = EIS!' we get cp Elf EIS i+ 1) = El Si+ 1. 

The heaps are affected in the following way. The EC-queue at the ith element A is 
replaced by x. If the ith element is an EC-queue then decrement A.setcnt. 

The corresponding actions occur in Ll with heap H _ The EC-queue at the ith 
I 

element of A becomes unreachable in Hi+ 1. A now has one less EC-queue, if the 
ith element was an EC-queue. 

Therefore, given the condition that cp(S') 
cp(Si+l) = Si+l for the SET instruction. 

5. SETSL'SP instruction 

S. and S'. is not the final state, 
/ / 

Let the three arguments to the instruction be u1, i and m. Let u1 be the uid of the 
array A. 

After e' executes. it disappears from EIS i+ r If the ith element of A is not an 
empty EC-queue then a signal is sent to the destination instruction (u, m). 
Corresponding action occurs in LL Also. signals arc sent to the destinations of e' 
and e in L2 and LL respectively. Thus the corresponding set of instructions get 
enabled in the two machines . 

. ·. cp(S) = \implies that after setsusp executes cpEl~~E/Si+l> = E!Si+l and 

cp AclAct'i+l) = Acli+l' 

If the ith clement of A is an empty re-queue. then it is replaced hy a suspension. 
The re-queue is deleted from the heap If. 

1
• The same is done in Ll to produce 

1+ 

the heap Hi+ 1• 

If the ith clement of :1 is a n(ln-cmpty I c-qucuc then Hi+ 1 and Iii+ 1 arc identical 
to If and H. rcspcctivclv. 

I I . 
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Thus for both cases, given that cp J.lf) 
Hi+l' 

cp i we conclude that cp 1Jlf i+ 1) = 

From the above analysis we conclude that given cpS' = S. and S. is not the final 
. I I 

state, cp(Si+l) = si+l for the SET instruction. I 

6. MKl:\TARRAY and MKI?\'.TARRAYEC instructions 
After e' executes it disappears from EIS. 

1
. The uid of the result of the 

1+ 
instruction (or a signal) is sent to the destinations of e', which may then become 
enabled and so would be added to the set of enabled instructions to yield EIS. 

1
. 

1+ 
Corresponding actions are performed by the Ll machine. . ·. given that cp(S) = 
S.weconcludethatcp£1 tEIS'. 1)=EIS. 1 andcpA (Act'. 

1
)=Act. 1. I S' I+ I+ Ct 1+ 1+ 

Suppose the instruction is MKI!'oo'TARRAY. The execution of e' causes a new node 
corresponding to an array to be added to the heap If. 1. Any SELECT operation 

1+ 
on the array produces an undefined value. In Ll, a new node is added to the heap 
coresponding to an array due to the execution of e. Recall that in Ll an array is 
represented as a function mapping indices to values; the array added to the heap 
maps all indices to the undefined value. 

Suppose the instruction is MKINTARRA YEC. e' adds a new node to the heap such 
that an clement within the bounds of the array points at an empty EC-queue. Anu 
SELECT operation which tries to access an element outside the bounds of the array 
would produce an undefined value. In Ll, the function is defined such that the 
indices within the specified bounds map to empty EC-queues and indices outside 
the bounds are mapped to undefined values. 

Therefore, given the 'P 1Jlf) = Hr we get <p Jlf i+ 1) = Hi+ 1. 

Hence, given cp(S') = Si and S'i is not the final state, q;(Si+l) = Si+l for the 
MKINTARRAY and MKINTARRAYEC instructions. 

7. APPLY instrnction 
A new function activation is added to Ad. 

1 
as a result of the execution of e'. The 

r+ 
first three instructions of the nre activation receive the closure. argument list and 
return link. respectively. Corresponding action occurs in Ll. . ·. under the given 
preconditions. 'P Acr(Adi+l> = Acti+l' 

e' is deleted from EIS. and instrnctions which received the closure. argument list 
I 

or return link. if they become enabled. arc added to the set of enabled instructions 
to yield EIS'. 1. Ll acts in tha same manner to yield EIS. 

1
. I+ 1+ 

Therefore giYcn that cp I.I.\~ FIS) = Fl\. we get <p Fl!)~ FIS' i+ 1) 

provided th<1l ,<;.is not a final state. 
I 

The heap is un;dTectcd. so that /{ = Ir. 
1 

and H = fl 
1
. Since Y.C ha\·e 

r r+ r r+ 
cp 1f II) = Hr it is triYially true that cp 11(fri+ 1) = Hi+ 1. 
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. ·. under the given preconditions, cp(S' i+ 1) = Si+ 1. 

The cases for TAILAPPLY and STREAM-TAILAPPLY are similar and are left as an 
exercise. 

8. RETt.:R~ instruction 
A glance at the transition rules for the REIUR\I instruction in Ll and L2 tells us 
that there is no difference between them, except that the instructions which 
become enabled in L2 are tagged executable. The heap is unaffected. Thus we 
can conclude that cp(S'i+l) = SI' given that cp(S') = Si and that S'i is not a final 
state. 

9. RELEASE instruction 
The execution of e' deletes the activation of e' from Act' i to produce Act' i+ 1. 

Similarly, the activation of e disappers from Acti to produce Acti+l' Since cp(S') 
=Sr we conclude that cp AciAct'i+l) = Acti+I' 

E!S'i+l = E!S'i - {e'} and E!Si+l = E!Si - {e}. Therefore, under the stated 
preconditions, cpEifEIS'i+l) = E!Si+l' 

The assertions of the validity of the mapping for the heap needs some comments. 
The transition rule for this instruction is identical in both machines. In Ll, all 
nodes in the heap H. which were reachable only through instructions in the 

I 
activation to which RELEASE belongs become unreachable. 

The base language ensures that a RELEASE instruction is enabled only after all the 
instructions which have pointers to nodes corresponding to structures - arrays, 
records. etc. on the heap have been executed. This is done by arranging the data 
flow graph for a function such that the RELEASE instruction is the last instruction to 
become enabled. This ensures that when RELEASE is enabled, the instructions 
which received structure operands have already executed; if the structures were 
pointed at only by the instructions, then their refcnt field must be 1 in If i and 
would become zero after the execution of e' and would be deleted from the heap. 
Therefore, the mapping cp H still holds. 

Thus we conclude that if S is not a final state and cp(S') = S. then after RELEASE 
I f I 

executes. cp(S'. 1) = S. 1. 
1+ 1+ 

We demonstrated that the cp indeed provides the desired mapping. Similar reasoning may 
be used to show that the mapping p is prescned by instruction execution. The map p(.~} is a 
member of an equivalence class under the similar relation. This is an artifact due to the 
different chunks which may be used to rcpresenL the same data structure. and hence, the 
heap. 

Thirdly. we prm e that cp and p satisfy tJ1e third rnndition for equi\;tlcnce. Clearly. if Si is 
F111ul then m(S) is final both will ha~-: FIS.= Ff.\'.= {}. SimiLtrlv. if Y. is final then ..,. I I I - I 

p(Y ) is final. 
I 
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Finally, let S and S be the final states of machines Ll and L2, respectively. By the 
n n 

previous two cinditions, cp(S ) = S and p(S ) = s· , by a judicious choice of chunks. n n n n 

We proved that at every step during the execution of program P the set of values 
represented . on the heap were the same. Therefore, ResultValueu(S,) 
Result Valueu(S n).I 

We now argue informally that even if the Fetch function is not omniscient, that is, it does not 

mark as accessible all the chunks required during the execution of the instruction, the result 

produced by the computation is the same as would be if it were omniscient. Recall that if a chunk 

which is required to be accessed during the execution of an instruction is marked inaccessible, the 

instruction is made dormant and no change is made to the Act.. H and C components of the machine. 

The state of the machine is changed only by the fact that the status of the instruction changes in the EIS 

component of the state. Some other instruction may be selected for execution; eventually when the 

chunk becomes accessible the instruction becomes executable. The order of execution of 

instructions is thus different. Let the sequence of states during the computation of program Pon L2 (in 

which the instructions may become dormant) be S'0S'' l' .. S'' n· The map <p gives us a corresponding 

sequence of states in LL Since this is a non-deterministic state transition system, it can be shown that 

the result of this computation is the same as for the original sequence on Ll, and so the result is the 

same. 

4.2 Discussion 

It was shown that L2 satisfies the specifications of VIM by proving that Ll and L2 are equivalent 

This technique of taking a component of the VIM system (in this case. it is the structure memory) and 

designing an implementation which is formally proved to satisfy the specifications given by Ll can be 

extended to design the entire machine. At each step of the implementation. the resulting formal model 

must be proven to satisfy the specifications of LL This methodology of designing by successive 

refinement with formal proofs of equivalence between the original model and its refinement will be 

very useful in the design of more complex implementations of VIM. such as in a computer system with 

multiple processing clements. 
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Chapter Five 

A Base Language for VIM 

I shall now present a base language for VIM; I shall do this by describing the base language graph 

corresponding to the VIMV AL language constructs. These graphs are characterised by a property called 

safety. A graph is safe if every instruction (in the graph) which receives a structure operand becomes 

enabled before the activation, of which the instruction is a part, is removed from the set of activations 

by the RELEASE instruction. The firing of the instruction would cause the reference counts of the the 

operand structures to be appropriately decremented. The discussion in chapter 4 described why the two 

machines are equivalent for this base language. In terms of pragmatics, the use of safe graphs would 

ensure that the chunks which contain garbage values arc reclaimed in the actual implementation of VIM. 

The base language described is not the only possible one; the intent of this chapter is to give the reader 

a flavor of how one might go about designing the language. No formal proof will be given to 

demonstrate that the graphs are indeed safe and that a compiler using the base language as its target 

language will always generate safe graphs; the interested reader may convince himself of the safety of 

programs written in this base language by examining each graph and the operational semantics of each 

of its instructions. 

5.1 The Let expression 

The let construct permits local bindings to be expressed and is of the form : 

let x1 = £1, 

x2 = E2, 

x = E n n 
in 

E(x1, x2 • ... , xn) 
end let 

where the rs all represent data flow graphs. 

The base language graph for the above let expression is ~hown in figure 19. 
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Figure 18: Translation of a let expression 

5.2 Conditional Expression 

A BASE LA!\GlAGE FOR VI:'vi 

E 

@ 
;/ 

The conditional expression in VIMVAL is of the fonn: 

if /then b'(xl' x2, ... , x,) 
else h(_x1, x2, ... , x,) 

83 

where g and h are data flow graphs and f denotes a graph that computes a boolean result In some 

graphs, the values of all the operands of an instruction are known at the time of compilation. It is 

necessary to send a signal to such instructions to enable them. If there is such an instruction in either of 

graphs g and h and the instruction is not in the graph of a let or tagcase expression inside g or h, then 

the SWITCI1-SJG;-.<AL instruction is used; it is omitted otherwise. Each branch of the if expression must 

produce the same number of signals; this is accomplished by feeding all the signals in an arm into a 

SIG:SAL instruction which generates one signal. If neither of the arms produces signals. then the parts of 

the graph that deal with them maybe omitted. If the RELEASE instruction is triggered by the signal 

produced by the if expression. and jg and h arc all safe graphs. then it is the case that the graph for the 

conditional expression is also safe. 
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f 

SWITCH SWITCH 

T 

g h 

S true Sjalse_. 

SIGNAL 

Figure 19: Translation of a conditional expression 

5.3 The Tagcase Expression 

Let Tbe a oncof with tags 11• 12 • ...• In. The tagcase expression is: 

tagcase T 
tag 11 : £ 1(u1• u2, •.. , u): 
tag t 2 : F2( v1• v2 • ...• 1•J: 

tag I : F ( z1• z2, .• ., Z ) 
n n m 

end tag 
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I SWITCH·SIGNAL I :~ 
F S false 
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where the Es are data flow graphs. The use of the SWITCH-SIGNAL and SIGNAL instructions is governed 

by the same considerations as for the conditional expression. 

T 

TAG I f 
+ 'Y 

SWITCH·SIGNAL SWITCH • • • I SWITCH 

\ / 
••• El SIGNAL 

TAG 

SWITCH·SIGNAL 

Figure 20: Translation of a tagcase expression 
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5.4 Function Application and Returns 

The syntax for function application in VJMVAL is : 

.f(x1, x2, .. ., x,) 

where /is the name of a furiction. In most cases. the function application is performed by the APPLY 

operator. The arguments x1 ..... xn are collected into a single record all of whose elements are intially 

EC-elements. The code is shown in figure 22. The TAILAPPL Y instruction is used in place of the APPLY 

whenever the compiler can recognize that a function application is tail-recursive. The instruction 

STREAM-TAILAPPLY is used only in the body of stream producers and will be discussed in the next 

section. 

Function 

template 

of f 

n 

MK.RECORD EC 
2 x2 

I I 
RSET RSET 

Figure 21: Code for creating the argument record for function activation. 

I I" 
••• RSET 

The HTCR:"i instruction is used to dispatch the results computed by the function to the 

destinations listed in the return link. which is its first operand. The return-link was received by the 

template from the APPLY instruction. The results computed by the activation arc packed into a record. 

the fields of which arc re-clements. Values returned from a function arc similarly packed into a record. 

In most cases. one of the destinations for the signal produced by the RFILR'-. instruction is the RFl.FASF 

instruction for the acti\ation. 
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n 

1 zl 2 z2 n Zn 
!\IKRECORDEC 

I I I I l 1 <\ + + + + 

~ ~TURN 
RSET RSET ••• RSET 

return link 

Figure 22: Code for returning the result of an activation. 

5.5 Stream Producers and Consumers 

A stream is a sequence of values, all of the same type, that are passed in succession, one-at-a-time 

between functions. The operations on values of type stream of type Tare defined below where Sand S 

are streams. and vis a value of type T. 

1. 0[7] : returns an empty stream (of clements of type 7) which is the sequence of 

length zero. 

2. first(S) : The result is the value v which is the first element of the stream S. If S 

= 0 (the empty stream), then the result is undej 

3. rcst(S) : The result is the stream left after removing the first clement of S. If S 

= 0 the result is undej 

4. affix( v, S) : The result is the stream s· whose first clement is 11 and whose 

remaining clements arc the stream S. 

5. cmpty(S): The result is /rue if S = O.Ji1!sc otherwise. 
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For a non-empty stream S, the following property is satisfied : 
S = affix(first(S), rcst(S)) 

In VIM the storage representation for a stream is a chain of oneofs. Operations on streams are 

expressed in tenns of operations on the components of the oneofs. 1be data structure for a stream 

whose elements are of type Tis: 

strcam[7] = oncoqempty: null; 
nonempty: rccord[/irst: T; 

second: stream[7]]] 

The following discussion describes the rules using which the compiler can translate the VIMV AL 

text into data flow graph. The translation rules specified are by no means complete; only the simpler 

cases are dealt with in this thesis and the more complex cases need further investigation. 

The expression D for creating an empty stream is translated into an expression for creating a oneof 

with tag empty. 

make[empty: nil] 

first(S) is tranlated into the following code: 

tagcase(S) 
tag empty: undef, 
tag nonempty: S.first 

end tag 

rcst(S) is tranlated into the following code: 

tagcasc(S) 
tag empty: undef, 
tag nonempty: S.rest 

endtag 

The code generated for the affix( v, S) is shown below in figure 24. The instructions are so 

organized that the computation of the rest of the stream is suspended until some instruction demands it. 

When some computation attempts to perform the rest operation on the resulting stream, the suspension 

is replaced by a pointer to the next clement of the stream and a signal is sent to the instruction which 

initiates t11c computation of t11c next clement. 
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l 
MKRECORDEC 

RSET 

2 

i i 
nonempty I 

,....1-MK"'--O-NE_O_F'---. 
RSETSUSP 

v 

• 

• 

Figure 23: The general form of the base language graph for the expression affix(v, S). i is the index of the instruction 
in the current template which st.arts the computation of the stream S. 
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The translation for self-tail-recursive stream producers is quite interesting. I assume that the 

compiler can recognize stream producers which are self-tail-recursive. The use of tail recursion allows 

the activation template of the caller to be released before the computation of the callee is completed. 

This is a significant optimization since it results in a much lower amount of storage that is required for 

the computation. Mutually tail-recursive programs are translated naively, using simple APPLY and 

RETURN instructions without taking advantage of the STREAM-TAILAPPLY instruction. 

Let f be a self-tail-recursive function that requires n arguments and produces a stream. Let the 

function be of the fonn: 

functionJ(x1 ..... xn) returns strcam[T]; 
body of function 

endfun; 

'Ibe compiler generates an auxiliary function faux from f The code for the body of the function 

f is generated using the rules specified above, except that every instance of affix( v, ./( ... )) is translated 

into the graph in figure 25. 

The V1:-.1 VAL text of faux is the same as that of the function f The only difference is that each 
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2 

l 
MKRECORDEC 

RSETl 1----•• 

2 

~ i 
~ 

v 

argument 

closure for ----~ I record 

faux ~ + .---S~T-RE_A_M_·~T-A-IL_A_P_P~L-Y----,l e 

Figure U: Translation of affix( v, j ... )) in the body of the function f 

instance of affix( v, fi: ... )) inf is translated into the graph shown in figure 26. 

§ 5.5 

The correctness and generality of these translations are under current investigation and will be the 

subject of another treatise. 

5.6 Discussion 

We described a base language such that machines Ll and L2 arc equivalent for all programs 

written in this language. Stated in another way. programs in this base language ensure that when a 

program halts. the only clements on the heap arc those that represent the result value of the 

computation. Since the data structures arc stored in chunks. this ensures that all chunks which were 

acquired during the computation and which arc not part of the result structure arc reclaimed. 

'll1e hase language uses early-completion clements for creating argument lisL~ for function 

inrncations and for creating records in which the result of a function invocation is returned. The use of 

c;1rly-crnnplction clements in these records allows a function to he invoked even if all the arguments 
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L 2 

l 
VALUE MKRECORDEC 

1 

i ~ 
v 

RSET l • nonempty 

i 2 

i i 
2 MK01''EOF RSETSUSP t----. 

argument 
RSET r record closure for • faux 

I STREAM·TAILAPPLY • 

Figure 25: A base language graph for the expression afTlx(v, ,.A:x
1
, x

2 
.... , x,)) in the body of j which is 

self·tail·recursive, is translated into the above graph in the body off aux. 
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have not been evaluated. Similarly, early-completion queues in return records allows values to be 

returned to the caller even if the computation of all the values which are to be returned has not 

completed. The other use of the early-completion structures is in the construction of streams. 

A major use of the early-completion feature of the language is in the construction of arrays. 

Creation of arrays whose clements are then initialized by large computations can benefit from the use of 

EC-queues. Such techniques for increasing the amount of parallelism in programs arc the subject of 

ongoing research. 
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Chapter Six 

Conclusion and Scope for Further Work 

The objective of the thesis was to develop a storage management strategy for VIM. An abstract 

architecture for VIM was informally discussed and some of the distinctive features of VIM explained in 

an informal manner. This was followed by a formal model Ll of the abstract architecture. The thesis 

then went on to refine the model Ll to include hierarchical storage consisting of main memory and disk. 

Chunks, which are the unit of storage allocation and reclamation of storage and the unit of data transfer 

between main store and disk, were used as the constituent of a new data structure called a VIM-tree. 

VIM-trees are used to represent structure values (arrays, records and oneofs). An automatic storage 

reclamation strategy was developed using reference counting. Particular attention was paid to ensure 

that the machine L2 exhibited desirable behaviour in the presence of EC-queues and suspensions. 

A concurrent objective of the thesis was to demonstrate the usefulness of the methodology of 

computer design by successive refinement. We started with an abstract machine and developed a 

formal specification for it. The machine model was then refined to include a storage model. In order to 

show that the refined model L2 (with hierarchical memory, paging, dormant instructions and tree 

structures for storing arrays, etc.) exhibited the same behaviour as Ll for programs written in the base 

language discussed in the thesis. we proceeded to prove the equivalence of the two machines. A 

modification of the McGowan mapping was used to accomplish this. 

L2 represents a machine which is closer to an envisioned implementation. L2 may now be refined 

so that EC-queues. Function templates and activation templates would also be represented as data 

structures. This new model. say U, may then be proved to he equivalent to L2. and hence to LL using 

the kind of technique described in this thesis. Such successive refinement would finally yield a machine 

model which can be directly implemented to construct a real machine. 
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Future Research 

There are a number of topics which arc natural extensions of the ideas and issues addressed in this 

thesis. 

1. An implementation of VI'.\1 : The abstract architecture may be successively 
refined to produce a model which reflects the characteristics of the physical 
elements of a machine - disk interaction, paging algorithms. process priorities, 
non-terminating computations. faults and exception handling, etc. Each model 
must be shown to be equivalent to the preceding model, and thus the final 
implementation would satisfy the specifications of Ll and the two would be 
computationally equivalent. It is a matter of conjecture as to how far this process 
of refinement can be performed before the designer is overwhelmed by the 
details of the machine formalism. 

2. Storage Management and Guardians : Guardians are a special construct 
proposed in VIM VAL [13] which allows the programmer to express indeterminacy 
in computations. They are similar to the manager construct in Id [3] and allow 
the programmer to write programs for, say, data base transactions. It remains to 
be investigated how the incorporation of guardians in the abstract model would 
affect the reference counting scheme. 

3. Storage Management in Multiprocessors : It would be interesting to develop a 
model of V1~1 which has multiple processors and prove the equivalence of this 
model to Ll for the base language in consideration in this thesis. The issues of 
storage allocation and reclamation and instruction scheduling can be formally 
addressed in this model. 

4. Extending the Base Language : The base language presented in this thesis is 
being extended to express efficient computations on arrays. Judicious use of 
EC-queues should significantly increase the amount of concurrency in the 
program. This increase in parallelism can be exploited to overlap disk activities 
in a single processor implementation of VI'.\1, or by multiple processors. VrMV AL 

construct<; which corcspond to these new base language constructs must be 
developed: preliminary research shows that naive extensions of VIMVAL 

introduces in the type system of VrMV AL. 
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